1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits information about intrinsic functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenIntrinsics.h" 14 #include "CodeGenTarget.h" 15 #include "SequenceToOffsetTable.h" 16 #include "TableGenBackends.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/TableGen/Error.h" 19 #include "llvm/TableGen/Record.h" 20 #include "llvm/TableGen/StringMatcher.h" 21 #include "llvm/TableGen/TableGenBackend.h" 22 #include "llvm/TableGen/StringToOffsetTable.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 namespace { 27 class IntrinsicEmitter { 28 RecordKeeper &Records; 29 bool TargetOnly; 30 std::string TargetPrefix; 31 32 public: 33 IntrinsicEmitter(RecordKeeper &R, bool T) 34 : Records(R), TargetOnly(T) {} 35 36 void run(raw_ostream &OS, bool Enums); 37 38 void EmitPrefix(raw_ostream &OS); 39 40 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 41 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 42 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, 43 raw_ostream &OS); 44 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, 45 raw_ostream &OS); 46 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 47 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 48 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, 49 raw_ostream &OS); 50 void EmitSuffix(raw_ostream &OS); 51 }; 52 } // End anonymous namespace 53 54 //===----------------------------------------------------------------------===// 55 // IntrinsicEmitter Implementation 56 //===----------------------------------------------------------------------===// 57 58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { 59 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 60 61 CodeGenIntrinsicTable Ints(Records, TargetOnly); 62 63 if (TargetOnly && !Ints.empty()) 64 TargetPrefix = Ints[0].TargetPrefix; 65 66 EmitPrefix(OS); 67 68 if (Enums) { 69 // Emit the enum information. 70 EmitEnumInfo(Ints, OS); 71 } else { 72 // Emit the target metadata. 73 EmitTargetInfo(Ints, OS); 74 75 // Emit the intrinsic ID -> name table. 76 EmitIntrinsicToNameTable(Ints, OS); 77 78 // Emit the intrinsic ID -> overload table. 79 EmitIntrinsicToOverloadTable(Ints, OS); 80 81 // Emit the intrinsic declaration generator. 82 EmitGenerator(Ints, OS); 83 84 // Emit the intrinsic parameter attributes. 85 EmitAttributes(Ints, OS); 86 87 // Emit code to translate GCC builtins into LLVM intrinsics. 88 EmitIntrinsicToBuiltinMap(Ints, true, OS); 89 90 // Emit code to translate MS builtins into LLVM intrinsics. 91 EmitIntrinsicToBuiltinMap(Ints, false, OS); 92 } 93 94 EmitSuffix(OS); 95 } 96 97 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { 98 OS << "// VisualStudio defines setjmp as _setjmp\n" 99 "#if defined(_MSC_VER) && defined(setjmp) && \\\n" 100 " !defined(setjmp_undefined_for_msvc)\n" 101 "# pragma push_macro(\"setjmp\")\n" 102 "# undef setjmp\n" 103 "# define setjmp_undefined_for_msvc\n" 104 "#endif\n\n"; 105 } 106 107 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { 108 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" 109 "// let's return it to _setjmp state\n" 110 "# pragma pop_macro(\"setjmp\")\n" 111 "# undef setjmp_undefined_for_msvc\n" 112 "#endif\n\n"; 113 } 114 115 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, 116 raw_ostream &OS) { 117 OS << "// Enum values for Intrinsics.h\n"; 118 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; 119 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 120 OS << " " << Ints[i].EnumName; 121 OS << ((i != e-1) ? ", " : " "); 122 if (Ints[i].EnumName.size() < 40) 123 OS << std::string(40-Ints[i].EnumName.size(), ' '); 124 OS << " // " << Ints[i].Name << "\n"; 125 } 126 OS << "#endif\n\n"; 127 } 128 129 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, 130 raw_ostream &OS) { 131 OS << "// Target mapping\n"; 132 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; 133 OS << "struct IntrinsicTargetInfo {\n" 134 << " llvm::StringLiteral Name;\n" 135 << " size_t Offset;\n" 136 << " size_t Count;\n" 137 << "};\n"; 138 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; 139 for (auto Target : Ints.Targets) 140 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset 141 << ", " << Target.Count << "},\n"; 142 OS << "};\n"; 143 OS << "#endif\n\n"; 144 } 145 146 void IntrinsicEmitter::EmitIntrinsicToNameTable( 147 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 148 OS << "// Intrinsic ID to name table\n"; 149 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 150 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 151 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 152 OS << " \"" << Ints[i].Name << "\",\n"; 153 OS << "#endif\n\n"; 154 } 155 156 void IntrinsicEmitter::EmitIntrinsicToOverloadTable( 157 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 158 OS << "// Intrinsic ID to overload bitset\n"; 159 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 160 OS << "static const uint8_t OTable[] = {\n"; 161 OS << " 0"; 162 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 163 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 164 if ((i+1)%8 == 0) 165 OS << ",\n 0"; 166 if (Ints[i].isOverloaded) 167 OS << " | (1<<" << (i+1)%8 << ')'; 168 } 169 OS << "\n};\n\n"; 170 // OTable contains a true bit at the position if the intrinsic is overloaded. 171 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 172 OS << "#endif\n\n"; 173 } 174 175 176 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! 177 enum IIT_Info { 178 // Common values should be encoded with 0-15. 179 IIT_Done = 0, 180 IIT_I1 = 1, 181 IIT_I8 = 2, 182 IIT_I16 = 3, 183 IIT_I32 = 4, 184 IIT_I64 = 5, 185 IIT_F16 = 6, 186 IIT_F32 = 7, 187 IIT_F64 = 8, 188 IIT_V2 = 9, 189 IIT_V4 = 10, 190 IIT_V8 = 11, 191 IIT_V16 = 12, 192 IIT_V32 = 13, 193 IIT_PTR = 14, 194 IIT_ARG = 15, 195 196 // Values from 16+ are only encodable with the inefficient encoding. 197 IIT_V64 = 16, 198 IIT_MMX = 17, 199 IIT_TOKEN = 18, 200 IIT_METADATA = 19, 201 IIT_EMPTYSTRUCT = 20, 202 IIT_STRUCT2 = 21, 203 IIT_STRUCT3 = 22, 204 IIT_STRUCT4 = 23, 205 IIT_STRUCT5 = 24, 206 IIT_EXTEND_ARG = 25, 207 IIT_TRUNC_ARG = 26, 208 IIT_ANYPTR = 27, 209 IIT_V1 = 28, 210 IIT_VARARG = 29, 211 IIT_HALF_VEC_ARG = 30, 212 IIT_SAME_VEC_WIDTH_ARG = 31, 213 IIT_PTR_TO_ARG = 32, 214 IIT_PTR_TO_ELT = 33, 215 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 216 IIT_I128 = 35, 217 IIT_V512 = 36, 218 IIT_V1024 = 37, 219 IIT_STRUCT6 = 38, 220 IIT_STRUCT7 = 39, 221 IIT_STRUCT8 = 40, 222 IIT_F128 = 41, 223 IIT_VEC_ELEMENT = 42, 224 IIT_SCALABLE_VEC = 43, 225 IIT_SUBDIVIDE2_ARG = 44, 226 IIT_SUBDIVIDE4_ARG = 45, 227 IIT_VEC_OF_BITCASTS_TO_INT = 46 228 }; 229 230 static void EncodeFixedValueType(MVT::SimpleValueType VT, 231 std::vector<unsigned char> &Sig) { 232 if (MVT(VT).isInteger()) { 233 unsigned BitWidth = MVT(VT).getSizeInBits(); 234 switch (BitWidth) { 235 default: PrintFatalError("unhandled integer type width in intrinsic!"); 236 case 1: return Sig.push_back(IIT_I1); 237 case 8: return Sig.push_back(IIT_I8); 238 case 16: return Sig.push_back(IIT_I16); 239 case 32: return Sig.push_back(IIT_I32); 240 case 64: return Sig.push_back(IIT_I64); 241 case 128: return Sig.push_back(IIT_I128); 242 } 243 } 244 245 switch (VT) { 246 default: PrintFatalError("unhandled MVT in intrinsic!"); 247 case MVT::f16: return Sig.push_back(IIT_F16); 248 case MVT::f32: return Sig.push_back(IIT_F32); 249 case MVT::f64: return Sig.push_back(IIT_F64); 250 case MVT::f128: return Sig.push_back(IIT_F128); 251 case MVT::token: return Sig.push_back(IIT_TOKEN); 252 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 253 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 254 // MVT::OtherVT is used to mean the empty struct type here. 255 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 256 // MVT::isVoid is used to represent varargs here. 257 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 258 } 259 } 260 261 #if defined(_MSC_VER) && !defined(__clang__) 262 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. 263 #endif 264 265 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 266 unsigned &NextArgCode, 267 std::vector<unsigned char> &Sig, 268 ArrayRef<unsigned char> Mapping) { 269 270 if (R->isSubClassOf("LLVMMatchType")) { 271 unsigned Number = Mapping[R->getValueAsInt("Number")]; 272 assert(Number < ArgCodes.size() && "Invalid matching number!"); 273 if (R->isSubClassOf("LLVMExtendedType")) 274 Sig.push_back(IIT_EXTEND_ARG); 275 else if (R->isSubClassOf("LLVMTruncatedType")) 276 Sig.push_back(IIT_TRUNC_ARG); 277 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 278 Sig.push_back(IIT_HALF_VEC_ARG); 279 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { 280 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); 281 Sig.push_back((Number << 3) | ArgCodes[Number]); 282 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); 283 EncodeFixedValueType(VT, Sig); 284 return; 285 } 286 else if (R->isSubClassOf("LLVMPointerTo")) 287 Sig.push_back(IIT_PTR_TO_ARG); 288 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 289 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); 290 // Encode overloaded ArgNo 291 Sig.push_back(NextArgCode++); 292 // Encode LLVMMatchType<Number> ArgNo 293 Sig.push_back(Number); 294 return; 295 } else if (R->isSubClassOf("LLVMPointerToElt")) 296 Sig.push_back(IIT_PTR_TO_ELT); 297 else if (R->isSubClassOf("LLVMVectorElementType")) 298 Sig.push_back(IIT_VEC_ELEMENT); 299 else if (R->isSubClassOf("LLVMSubdivide2VectorType")) 300 Sig.push_back(IIT_SUBDIVIDE2_ARG); 301 else if (R->isSubClassOf("LLVMSubdivide4VectorType")) 302 Sig.push_back(IIT_SUBDIVIDE4_ARG); 303 else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) 304 Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); 305 else 306 Sig.push_back(IIT_ARG); 307 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); 308 } 309 310 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 311 312 unsigned Tmp = 0; 313 switch (VT) { 314 default: break; 315 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; 316 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; 317 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; 318 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; 319 case MVT::Any: { 320 // If this is an "any" valuetype, then the type is the type of the next 321 // type in the list specified to getIntrinsic(). 322 Sig.push_back(IIT_ARG); 323 324 // Figure out what arg # this is consuming, and remember what kind it was. 325 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && 326 "Invalid or no ArgCode associated with overloaded VT!"); 327 unsigned ArgNo = NextArgCode++; 328 329 // Encode what sort of argument it must be in the low 3 bits of the ArgNo. 330 return Sig.push_back((ArgNo << 3) | Tmp); 331 } 332 333 case MVT::iPTR: { 334 unsigned AddrSpace = 0; 335 if (R->isSubClassOf("LLVMQualPointerType")) { 336 AddrSpace = R->getValueAsInt("AddrSpace"); 337 assert(AddrSpace < 256 && "Address space exceeds 255"); 338 } 339 if (AddrSpace) { 340 Sig.push_back(IIT_ANYPTR); 341 Sig.push_back(AddrSpace); 342 } else { 343 Sig.push_back(IIT_PTR); 344 } 345 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, 346 Mapping); 347 } 348 } 349 350 if (MVT(VT).isVector()) { 351 MVT VVT = VT; 352 if (VVT.isScalableVector()) 353 Sig.push_back(IIT_SCALABLE_VEC); 354 switch (VVT.getVectorNumElements()) { 355 default: PrintFatalError("unhandled vector type width in intrinsic!"); 356 case 1: Sig.push_back(IIT_V1); break; 357 case 2: Sig.push_back(IIT_V2); break; 358 case 4: Sig.push_back(IIT_V4); break; 359 case 8: Sig.push_back(IIT_V8); break; 360 case 16: Sig.push_back(IIT_V16); break; 361 case 32: Sig.push_back(IIT_V32); break; 362 case 64: Sig.push_back(IIT_V64); break; 363 case 512: Sig.push_back(IIT_V512); break; 364 case 1024: Sig.push_back(IIT_V1024); break; 365 } 366 367 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 368 } 369 370 EncodeFixedValueType(VT, Sig); 371 } 372 373 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes, 374 unsigned int &NumInserted, 375 SmallVectorImpl<unsigned char> &Mapping) { 376 if (R->isSubClassOf("LLVMMatchType")) { 377 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 378 ArgCodes.push_back(3 /*vAny*/); 379 ++NumInserted; 380 } 381 return; 382 } 383 384 unsigned Tmp = 0; 385 switch (getValueType(R->getValueAsDef("VT"))) { 386 default: break; 387 case MVT::iPTR: 388 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); 389 break; 390 case MVT::iPTRAny: 391 ++Tmp; 392 LLVM_FALLTHROUGH; 393 case MVT::vAny: 394 ++Tmp; 395 LLVM_FALLTHROUGH; 396 case MVT::fAny: 397 ++Tmp; 398 LLVM_FALLTHROUGH; 399 case MVT::iAny: 400 ++Tmp; 401 LLVM_FALLTHROUGH; 402 case MVT::Any: 403 unsigned OriginalIdx = ArgCodes.size() - NumInserted; 404 assert(OriginalIdx >= Mapping.size()); 405 Mapping.resize(OriginalIdx+1); 406 Mapping[OriginalIdx] = ArgCodes.size(); 407 ArgCodes.push_back(Tmp); 408 break; 409 } 410 } 411 412 #if defined(_MSC_VER) && !defined(__clang__) 413 #pragma optimize("",on) 414 #endif 415 416 /// ComputeFixedEncoding - If we can encode the type signature for this 417 /// intrinsic into 32 bits, return it. If not, return ~0U. 418 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 419 std::vector<unsigned char> &TypeSig) { 420 std::vector<unsigned char> ArgCodes; 421 422 // Add codes for any overloaded result VTs. 423 unsigned int NumInserted = 0; 424 SmallVector<unsigned char, 8> ArgMapping; 425 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 426 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 427 428 // Add codes for any overloaded operand VTs. 429 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 430 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 431 432 unsigned NextArgCode = 0; 433 if (Int.IS.RetVTs.empty()) 434 TypeSig.push_back(IIT_Done); 435 else if (Int.IS.RetVTs.size() == 1 && 436 Int.IS.RetVTs[0] == MVT::isVoid) 437 TypeSig.push_back(IIT_Done); 438 else { 439 switch (Int.IS.RetVTs.size()) { 440 case 1: break; 441 case 2: TypeSig.push_back(IIT_STRUCT2); break; 442 case 3: TypeSig.push_back(IIT_STRUCT3); break; 443 case 4: TypeSig.push_back(IIT_STRUCT4); break; 444 case 5: TypeSig.push_back(IIT_STRUCT5); break; 445 case 6: TypeSig.push_back(IIT_STRUCT6); break; 446 case 7: TypeSig.push_back(IIT_STRUCT7); break; 447 case 8: TypeSig.push_back(IIT_STRUCT8); break; 448 default: llvm_unreachable("Unhandled case in struct"); 449 } 450 451 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 452 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 453 ArgMapping); 454 } 455 456 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 457 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 458 ArgMapping); 459 } 460 461 static void printIITEntry(raw_ostream &OS, unsigned char X) { 462 OS << (unsigned)X; 463 } 464 465 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, 466 raw_ostream &OS) { 467 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 468 // capture it in this vector, otherwise store a ~0U. 469 std::vector<unsigned> FixedEncodings; 470 471 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 472 473 std::vector<unsigned char> TypeSig; 474 475 // Compute the unique argument type info. 476 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 477 // Get the signature for the intrinsic. 478 TypeSig.clear(); 479 ComputeFixedEncoding(Ints[i], TypeSig); 480 481 // Check to see if we can encode it into a 32-bit word. We can only encode 482 // 8 nibbles into a 32-bit word. 483 if (TypeSig.size() <= 8) { 484 bool Failed = false; 485 unsigned Result = 0; 486 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 487 // If we had an unencodable argument, bail out. 488 if (TypeSig[i] > 15) { 489 Failed = true; 490 break; 491 } 492 Result = (Result << 4) | TypeSig[e-i-1]; 493 } 494 495 // If this could be encoded into a 31-bit word, return it. 496 if (!Failed && (Result >> 31) == 0) { 497 FixedEncodings.push_back(Result); 498 continue; 499 } 500 } 501 502 // Otherwise, we're going to unique the sequence into the 503 // LongEncodingTable, and use its offset in the 32-bit table instead. 504 LongEncodingTable.add(TypeSig); 505 506 // This is a placehold that we'll replace after the table is laid out. 507 FixedEncodings.push_back(~0U); 508 } 509 510 LongEncodingTable.layout(); 511 512 OS << "// Global intrinsic function declaration type table.\n"; 513 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 514 515 OS << "static const unsigned IIT_Table[] = {\n "; 516 517 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 518 if ((i & 7) == 7) 519 OS << "\n "; 520 521 // If the entry fit in the table, just emit it. 522 if (FixedEncodings[i] != ~0U) { 523 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; 524 continue; 525 } 526 527 TypeSig.clear(); 528 ComputeFixedEncoding(Ints[i], TypeSig); 529 530 531 // Otherwise, emit the offset into the long encoding table. We emit it this 532 // way so that it is easier to read the offset in the .def file. 533 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 534 } 535 536 OS << "0\n};\n\n"; 537 538 // Emit the shared table of register lists. 539 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 540 if (!LongEncodingTable.empty()) 541 LongEncodingTable.emit(OS, printIITEntry); 542 OS << " 255\n};\n\n"; 543 544 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 545 } 546 547 namespace { 548 struct AttributeComparator { 549 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 550 // Sort throwing intrinsics after non-throwing intrinsics. 551 if (L->canThrow != R->canThrow) 552 return R->canThrow; 553 554 if (L->isNoDuplicate != R->isNoDuplicate) 555 return R->isNoDuplicate; 556 557 if (L->isNoReturn != R->isNoReturn) 558 return R->isNoReturn; 559 560 if (L->isWillReturn != R->isWillReturn) 561 return R->isWillReturn; 562 563 if (L->isCold != R->isCold) 564 return R->isCold; 565 566 if (L->isConvergent != R->isConvergent) 567 return R->isConvergent; 568 569 if (L->isSpeculatable != R->isSpeculatable) 570 return R->isSpeculatable; 571 572 if (L->hasSideEffects != R->hasSideEffects) 573 return R->hasSideEffects; 574 575 // Try to order by readonly/readnone attribute. 576 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; 577 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; 578 if (LK != RK) return (LK > RK); 579 // Order by argument attributes. 580 // This is reliable because each side is already sorted internally. 581 return (L->ArgumentAttributes < R->ArgumentAttributes); 582 } 583 }; 584 } // End anonymous namespace 585 586 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 587 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, 588 raw_ostream &OS) { 589 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 590 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 591 if (TargetOnly) 592 OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix 593 << "Intrinsic::ID id) {\n"; 594 else 595 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 596 597 // Compute the maximum number of attribute arguments and the map 598 typedef std::map<const CodeGenIntrinsic*, unsigned, 599 AttributeComparator> UniqAttrMapTy; 600 UniqAttrMapTy UniqAttributes; 601 unsigned maxArgAttrs = 0; 602 unsigned AttrNum = 0; 603 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 604 const CodeGenIntrinsic &intrinsic = Ints[i]; 605 maxArgAttrs = 606 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 607 unsigned &N = UniqAttributes[&intrinsic]; 608 if (N) continue; 609 assert(AttrNum < 256 && "Too many unique attributes for table!"); 610 N = ++AttrNum; 611 } 612 613 // Emit an array of AttributeList. Most intrinsics will have at least one 614 // entry, for the function itself (index ~1), which is usually nounwind. 615 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; 616 617 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 618 const CodeGenIntrinsic &intrinsic = Ints[i]; 619 620 OS << " " << UniqAttributes[&intrinsic] << ", // " 621 << intrinsic.Name << "\n"; 622 } 623 OS << " };\n\n"; 624 625 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; 626 OS << " unsigned NumAttrs = 0;\n"; 627 OS << " if (id != 0) {\n"; 628 OS << " switch(IntrinsicsToAttributesMap[id - "; 629 if (TargetOnly) 630 OS << "Intrinsic::num_intrinsics"; 631 else 632 OS << "1"; 633 OS << "]) {\n"; 634 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 635 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), 636 E = UniqAttributes.end(); I != E; ++I) { 637 OS << " case " << I->second << ": {\n"; 638 639 const CodeGenIntrinsic &intrinsic = *(I->first); 640 641 // Keep track of the number of attributes we're writing out. 642 unsigned numAttrs = 0; 643 644 // The argument attributes are alreadys sorted by argument index. 645 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); 646 if (ae) { 647 while (ai != ae) { 648 unsigned argNo = intrinsic.ArgumentAttributes[ai].first; 649 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex 650 651 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {"; 652 bool addComma = false; 653 654 do { 655 switch (intrinsic.ArgumentAttributes[ai].second) { 656 case CodeGenIntrinsic::NoCapture: 657 if (addComma) 658 OS << ","; 659 OS << "Attribute::NoCapture"; 660 addComma = true; 661 break; 662 case CodeGenIntrinsic::NoAlias: 663 if (addComma) 664 OS << ","; 665 OS << "Attribute::NoAlias"; 666 addComma = true; 667 break; 668 case CodeGenIntrinsic::Returned: 669 if (addComma) 670 OS << ","; 671 OS << "Attribute::Returned"; 672 addComma = true; 673 break; 674 case CodeGenIntrinsic::ReadOnly: 675 if (addComma) 676 OS << ","; 677 OS << "Attribute::ReadOnly"; 678 addComma = true; 679 break; 680 case CodeGenIntrinsic::WriteOnly: 681 if (addComma) 682 OS << ","; 683 OS << "Attribute::WriteOnly"; 684 addComma = true; 685 break; 686 case CodeGenIntrinsic::ReadNone: 687 if (addComma) 688 OS << ","; 689 OS << "Attribute::ReadNone"; 690 addComma = true; 691 break; 692 case CodeGenIntrinsic::ImmArg: 693 if (addComma) 694 OS << ','; 695 OS << "Attribute::ImmArg"; 696 addComma = true; 697 break; 698 } 699 700 ++ai; 701 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); 702 OS << "};\n"; 703 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 704 << attrIdx << ", AttrParam" << attrIdx << ");\n"; 705 } 706 } 707 708 if (!intrinsic.canThrow || 709 (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) || 710 intrinsic.isNoReturn || intrinsic.isWillReturn || intrinsic.isCold || 711 intrinsic.isNoDuplicate || intrinsic.isConvergent || 712 intrinsic.isSpeculatable) { 713 OS << " const Attribute::AttrKind Atts[] = {"; 714 bool addComma = false; 715 if (!intrinsic.canThrow) { 716 OS << "Attribute::NoUnwind"; 717 addComma = true; 718 } 719 if (intrinsic.isNoReturn) { 720 if (addComma) 721 OS << ","; 722 OS << "Attribute::NoReturn"; 723 addComma = true; 724 } 725 if (intrinsic.isWillReturn) { 726 if (addComma) 727 OS << ","; 728 OS << "Attribute::WillReturn"; 729 addComma = true; 730 } 731 if (intrinsic.isCold) { 732 if (addComma) 733 OS << ","; 734 OS << "Attribute::Cold"; 735 addComma = true; 736 } 737 if (intrinsic.isNoDuplicate) { 738 if (addComma) 739 OS << ","; 740 OS << "Attribute::NoDuplicate"; 741 addComma = true; 742 } 743 if (intrinsic.isConvergent) { 744 if (addComma) 745 OS << ","; 746 OS << "Attribute::Convergent"; 747 addComma = true; 748 } 749 if (intrinsic.isSpeculatable) { 750 if (addComma) 751 OS << ","; 752 OS << "Attribute::Speculatable"; 753 addComma = true; 754 } 755 756 switch (intrinsic.ModRef) { 757 case CodeGenIntrinsic::NoMem: 758 if (intrinsic.hasSideEffects) 759 break; 760 if (addComma) 761 OS << ","; 762 OS << "Attribute::ReadNone"; 763 break; 764 case CodeGenIntrinsic::ReadArgMem: 765 if (addComma) 766 OS << ","; 767 OS << "Attribute::ReadOnly,"; 768 OS << "Attribute::ArgMemOnly"; 769 break; 770 case CodeGenIntrinsic::ReadMem: 771 if (addComma) 772 OS << ","; 773 OS << "Attribute::ReadOnly"; 774 break; 775 case CodeGenIntrinsic::ReadInaccessibleMem: 776 if (addComma) 777 OS << ","; 778 OS << "Attribute::ReadOnly,"; 779 OS << "Attribute::InaccessibleMemOnly"; 780 break; 781 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: 782 if (addComma) 783 OS << ","; 784 OS << "Attribute::ReadOnly,"; 785 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 786 break; 787 case CodeGenIntrinsic::WriteArgMem: 788 if (addComma) 789 OS << ","; 790 OS << "Attribute::WriteOnly,"; 791 OS << "Attribute::ArgMemOnly"; 792 break; 793 case CodeGenIntrinsic::WriteMem: 794 if (addComma) 795 OS << ","; 796 OS << "Attribute::WriteOnly"; 797 break; 798 case CodeGenIntrinsic::WriteInaccessibleMem: 799 if (addComma) 800 OS << ","; 801 OS << "Attribute::WriteOnly,"; 802 OS << "Attribute::InaccessibleMemOnly"; 803 break; 804 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: 805 if (addComma) 806 OS << ","; 807 OS << "Attribute::WriteOnly,"; 808 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 809 break; 810 case CodeGenIntrinsic::ReadWriteArgMem: 811 if (addComma) 812 OS << ","; 813 OS << "Attribute::ArgMemOnly"; 814 break; 815 case CodeGenIntrinsic::ReadWriteInaccessibleMem: 816 if (addComma) 817 OS << ","; 818 OS << "Attribute::InaccessibleMemOnly"; 819 break; 820 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: 821 if (addComma) 822 OS << ","; 823 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 824 break; 825 case CodeGenIntrinsic::ReadWriteMem: 826 break; 827 } 828 OS << "};\n"; 829 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 830 << "AttributeList::FunctionIndex, Atts);\n"; 831 } 832 833 if (numAttrs) { 834 OS << " NumAttrs = " << numAttrs << ";\n"; 835 OS << " break;\n"; 836 OS << " }\n"; 837 } else { 838 OS << " return AttributeList();\n"; 839 OS << " }\n"; 840 } 841 } 842 843 OS << " }\n"; 844 OS << " }\n"; 845 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; 846 OS << "}\n"; 847 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 848 } 849 850 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( 851 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { 852 StringRef CompilerName = (IsGCC ? "GCC" : "MS"); 853 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; 854 BIMTy BuiltinMap; 855 StringToOffsetTable Table; 856 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 857 const std::string &BuiltinName = 858 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; 859 if (!BuiltinName.empty()) { 860 // Get the map for this target prefix. 861 std::map<std::string, std::string> &BIM = 862 BuiltinMap[Ints[i].TargetPrefix]; 863 864 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) 865 PrintFatalError(Ints[i].TheDef->getLoc(), 866 "Intrinsic '" + Ints[i].TheDef->getName() + 867 "': duplicate " + CompilerName + " builtin name!"); 868 Table.GetOrAddStringOffset(BuiltinName); 869 } 870 } 871 872 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; 873 OS << "// This is used by the C front-end. The builtin name is passed\n"; 874 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 875 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 876 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; 877 878 if (TargetOnly) { 879 OS << "static " << TargetPrefix << "Intrinsic::ID " 880 << "getIntrinsicFor" << CompilerName << "Builtin(const char " 881 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 882 } else { 883 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName 884 << "Builtin(const char " 885 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 886 } 887 888 if (Table.Empty()) { 889 OS << " return "; 890 if (!TargetPrefix.empty()) 891 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 892 OS << "Intrinsic::not_intrinsic;\n"; 893 OS << "}\n"; 894 OS << "#endif\n\n"; 895 return; 896 } 897 898 OS << " static const char BuiltinNames[] = {\n"; 899 Table.EmitCharArray(OS); 900 OS << " };\n\n"; 901 902 OS << " struct BuiltinEntry {\n"; 903 OS << " Intrinsic::ID IntrinID;\n"; 904 OS << " unsigned StrTabOffset;\n"; 905 OS << " const char *getName() const {\n"; 906 OS << " return &BuiltinNames[StrTabOffset];\n"; 907 OS << " }\n"; 908 OS << " bool operator<(StringRef RHS) const {\n"; 909 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; 910 OS << " }\n"; 911 OS << " };\n"; 912 913 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 914 915 // Note: this could emit significantly better code if we cared. 916 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ 917 OS << " "; 918 if (!I->first.empty()) 919 OS << "if (TargetPrefix == \"" << I->first << "\") "; 920 else 921 OS << "/* Target Independent Builtins */ "; 922 OS << "{\n"; 923 924 // Emit the comparisons for this target prefix. 925 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n"; 926 for (const auto &P : I->second) { 927 OS << " {Intrinsic::" << P.second << ", " 928 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; 929 } 930 OS << " };\n"; 931 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n"; 932 OS << " std::end(" << I->first << "Names),\n"; 933 OS << " BuiltinNameStr);\n"; 934 OS << " if (I != std::end(" << I->first << "Names) &&\n"; 935 OS << " I->getName() == BuiltinNameStr)\n"; 936 OS << " return I->IntrinID;\n"; 937 OS << " }\n"; 938 } 939 OS << " return "; 940 if (!TargetPrefix.empty()) 941 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 942 OS << "Intrinsic::not_intrinsic;\n"; 943 OS << "}\n"; 944 OS << "#endif\n\n"; 945 } 946 947 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS, 948 bool TargetOnly) { 949 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true); 950 } 951 952 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS, 953 bool TargetOnly) { 954 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false); 955 } 956