xref: /freebsd-src/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 753f127f3ace09432b2baeffd71a308760641a62)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/BinaryFormat/MsgPackDocument.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/Object/Archive.h"
37 #include "llvm/Object/ELF.h"
38 #include "llvm/Object/ELFObjectFile.h"
39 #include "llvm/Object/ELFTypes.h"
40 #include "llvm/Object/Error.h"
41 #include "llvm/Object/ObjectFile.h"
42 #include "llvm/Object/RelocationResolver.h"
43 #include "llvm/Object/StackMapParser.h"
44 #include "llvm/Support/AMDGPUMetadata.h"
45 #include "llvm/Support/ARMAttributeParser.h"
46 #include "llvm/Support/ARMBuildAttributes.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Endian.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/FormatVariadic.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/LEB128.h"
55 #include "llvm/Support/MSP430AttributeParser.h"
56 #include "llvm/Support/MSP430Attributes.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/MipsABIFlags.h"
59 #include "llvm/Support/RISCVAttributeParser.h"
60 #include "llvm/Support/RISCVAttributes.h"
61 #include "llvm/Support/ScopedPrinter.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cinttypes>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstdlib>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   Optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223 
224   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 
226   std::string describe(const Elf_Shdr &Sec) const;
227 
228   unsigned getHashTableEntSize() const {
229     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230     // sections. This violates the ELF specification.
231     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232         Obj.getHeader().e_machine == ELF::EM_ALPHA)
233       return 8;
234     return 4;
235   }
236 
237   Elf_Dyn_Range dynamic_table() const {
238     // A valid .dynamic section contains an array of entries terminated
239     // with a DT_NULL entry. However, sometimes the section content may
240     // continue past the DT_NULL entry, so to dump the section correctly,
241     // we first find the end of the entries by iterating over them.
242     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 
244     size_t Size = 0;
245     while (Size < Table.size())
246       if (Table[Size++].getTag() == DT_NULL)
247         break;
248 
249     return Table.slice(0, Size);
250   }
251 
252   Elf_Sym_Range dynamic_symbols() const {
253     if (!DynSymRegion)
254       return Elf_Sym_Range();
255     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256   }
257 
258   const Elf_Shdr *findSectionByName(StringRef Name) const;
259 
260   StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 
262 protected:
263   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 
267   void
268   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 
271   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272                                  const RelSymbol<ELFT> &RelSym) = 0;
273   virtual void printRelrReloc(const Elf_Relr &R) = 0;
274   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275                                        const DynRegionInfo &Reg) {}
276   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278   void printDynamicReloc(const Relocation<ELFT> &R);
279   void printDynamicRelocationsHelper();
280   void printRelocationsHelper(const Elf_Shdr &Sec);
281   void forEachRelocationDo(
282       const Elf_Shdr &Sec, bool RawRelr,
283       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284                               const Elf_Shdr &, const Elf_Shdr *)>
285           RelRelaFn,
286       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 
288   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289                                   bool NonVisibilityBitsUsed) const {};
290   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291                            DataRegion<Elf_Word> ShndxTable,
292                            Optional<StringRef> StrTable, bool IsDynamic,
293                            bool NonVisibilityBitsUsed) const = 0;
294 
295   virtual void printMipsABIFlags() = 0;
296   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 
299   Expected<ArrayRef<Elf_Versym>>
300   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 
304   std::vector<GroupSection> getGroups();
305 
306   // Returns the function symbol index for the given address. Matches the
307   // symbol's section with FunctionSec when specified.
308   // Returns None if no function symbol can be found for the address or in case
309   // it is not defined in the specified section.
310   SmallVector<uint32_t>
311   getSymbolIndexesForFunctionAddress(uint64_t SymValue,
312                                      Optional<const Elf_Shdr *> FunctionSec);
313   bool printFunctionStackSize(uint64_t SymValue,
314                               Optional<const Elf_Shdr *> FunctionSec,
315                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
316                               uint64_t *Offset);
317   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
318                       unsigned Ndx, const Elf_Shdr *SymTab,
319                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
320                       const RelocationResolver &Resolver, DataExtractor Data);
321   virtual void printStackSizeEntry(uint64_t Size,
322                                    ArrayRef<std::string> FuncNames) = 0;
323 
324   void printRelocatableStackSizes(std::function<void()> PrintHeader);
325   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
326 
327   /// Retrieves sections with corresponding relocation sections based on
328   /// IsMatch.
329   void getSectionAndRelocations(
330       std::function<bool(const Elf_Shdr &)> IsMatch,
331       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
332 
333   const object::ELFObjectFile<ELFT> &ObjF;
334   const ELFFile<ELFT> &Obj;
335   StringRef FileName;
336 
337   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
338                                     uint64_t EntSize) {
339     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
340       return createError("offset (0x" + Twine::utohexstr(Offset) +
341                          ") + size (0x" + Twine::utohexstr(Size) +
342                          ") is greater than the file size (0x" +
343                          Twine::utohexstr(Obj.getBufSize()) + ")");
344     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
345   }
346 
347   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
348                        support::endianness);
349   void printMipsReginfo();
350   void printMipsOptions();
351 
352   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
353   void loadDynamicTable();
354   void parseDynamicTable();
355 
356   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
357                                        bool &IsDefault) const;
358   Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
359 
360   DynRegionInfo DynRelRegion;
361   DynRegionInfo DynRelaRegion;
362   DynRegionInfo DynRelrRegion;
363   DynRegionInfo DynPLTRelRegion;
364   Optional<DynRegionInfo> DynSymRegion;
365   DynRegionInfo DynSymTabShndxRegion;
366   DynRegionInfo DynamicTable;
367   StringRef DynamicStringTable;
368   const Elf_Hash *HashTable = nullptr;
369   const Elf_GnuHash *GnuHashTable = nullptr;
370   const Elf_Shdr *DotSymtabSec = nullptr;
371   const Elf_Shdr *DotDynsymSec = nullptr;
372   const Elf_Shdr *DotAddrsigSec = nullptr;
373   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
374   Optional<uint64_t> SONameOffset;
375   Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
376 
377   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
378   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
379   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
380 
381   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
382                                 DataRegion<Elf_Word> ShndxTable,
383                                 Optional<StringRef> StrTable,
384                                 bool IsDynamic) const;
385   Expected<unsigned>
386   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
387                         DataRegion<Elf_Word> ShndxTable) const;
388   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
389                                            unsigned SectionIndex) const;
390   std::string getStaticSymbolName(uint32_t Index) const;
391   StringRef getDynamicString(uint64_t Value) const;
392 
393   void printSymbolsHelper(bool IsDynamic) const;
394   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
395 
396   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
397                                                 const Elf_Shdr *SymTab) const;
398 
399   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
400 
401 private:
402   mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
403 };
404 
405 template <class ELFT>
406 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
407   return ::describe(Obj, Sec);
408 }
409 
410 namespace {
411 
412 template <class ELFT> struct SymtabLink {
413   typename ELFT::SymRange Symbols;
414   StringRef StringTable;
415   const typename ELFT::Shdr *SymTab;
416 };
417 
418 // Returns the linked symbol table, symbols and associated string table for a
419 // given section.
420 template <class ELFT>
421 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
422                                            const typename ELFT::Shdr &Sec,
423                                            unsigned ExpectedType) {
424   Expected<const typename ELFT::Shdr *> SymtabOrErr =
425       Obj.getSection(Sec.sh_link);
426   if (!SymtabOrErr)
427     return createError("invalid section linked to " + describe(Obj, Sec) +
428                        ": " + toString(SymtabOrErr.takeError()));
429 
430   if ((*SymtabOrErr)->sh_type != ExpectedType)
431     return createError(
432         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
433         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
434         ", but got " +
435         object::getELFSectionTypeName(Obj.getHeader().e_machine,
436                                       (*SymtabOrErr)->sh_type));
437 
438   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
439   if (!StrTabOrErr)
440     return createError(
441         "can't get a string table for the symbol table linked to " +
442         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
443 
444   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
445   if (!SymsOrErr)
446     return createError("unable to read symbols from the " + describe(Obj, Sec) +
447                        ": " + toString(SymsOrErr.takeError()));
448 
449   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
450 }
451 
452 } // namespace
453 
454 template <class ELFT>
455 Expected<ArrayRef<typename ELFT::Versym>>
456 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
457                                  StringRef *StrTab,
458                                  const Elf_Shdr **SymTabSec) const {
459   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
460   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
461           sizeof(uint16_t) !=
462       0)
463     return createError("the " + describe(Sec) + " is misaligned");
464 
465   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
466       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
467   if (!VersionsOrErr)
468     return createError("cannot read content of " + describe(Sec) + ": " +
469                        toString(VersionsOrErr.takeError()));
470 
471   Expected<SymtabLink<ELFT>> SymTabOrErr =
472       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
473   if (!SymTabOrErr) {
474     reportUniqueWarning(SymTabOrErr.takeError());
475     return *VersionsOrErr;
476   }
477 
478   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
479     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
480                         Twine(VersionsOrErr->size()) +
481                         ") does not match the number of symbols (" +
482                         Twine(SymTabOrErr->Symbols.size()) +
483                         ") in the symbol table with index " +
484                         Twine(Sec.sh_link));
485 
486   if (SymTab) {
487     *SymTab = SymTabOrErr->Symbols;
488     *StrTab = SymTabOrErr->StringTable;
489     *SymTabSec = SymTabOrErr->SymTab;
490   }
491   return *VersionsOrErr;
492 }
493 
494 template <class ELFT>
495 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
496   Optional<StringRef> StrTable;
497   size_t Entries = 0;
498   Elf_Sym_Range Syms(nullptr, nullptr);
499   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
500 
501   if (IsDynamic) {
502     StrTable = DynamicStringTable;
503     Syms = dynamic_symbols();
504     Entries = Syms.size();
505   } else if (DotSymtabSec) {
506     if (Expected<StringRef> StrTableOrErr =
507             Obj.getStringTableForSymtab(*DotSymtabSec))
508       StrTable = *StrTableOrErr;
509     else
510       reportUniqueWarning(
511           "unable to get the string table for the SHT_SYMTAB section: " +
512           toString(StrTableOrErr.takeError()));
513 
514     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
515       Syms = *SymsOrErr;
516     else
517       reportUniqueWarning(
518           "unable to read symbols from the SHT_SYMTAB section: " +
519           toString(SymsOrErr.takeError()));
520     Entries = DotSymtabSec->getEntityCount();
521   }
522   if (Syms.empty())
523     return;
524 
525   // The st_other field has 2 logical parts. The first two bits hold the symbol
526   // visibility (STV_*) and the remainder hold other platform-specific values.
527   bool NonVisibilityBitsUsed =
528       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
529 
530   DataRegion<Elf_Word> ShndxTable =
531       IsDynamic ? DataRegion<Elf_Word>(
532                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
533                       this->getElfObject().getELFFile().end())
534                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
535 
536   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
537   for (const Elf_Sym &Sym : Syms)
538     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
539                 NonVisibilityBitsUsed);
540 }
541 
542 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
543   formatted_raw_ostream &OS;
544 
545 public:
546   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
547 
548   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
549       : ELFDumper<ELFT>(ObjF, Writer),
550         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
551     assert(&this->W.getOStream() == &llvm::fouts());
552   }
553 
554   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
555                         ArrayRef<std::string> InputFilenames,
556                         const Archive *A) override;
557   void printFileHeaders() override;
558   void printGroupSections() override;
559   void printRelocations() override;
560   void printSectionHeaders() override;
561   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
562   void printHashSymbols() override;
563   void printSectionDetails() override;
564   void printDependentLibs() override;
565   void printDynamicTable() override;
566   void printDynamicRelocations() override;
567   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
568                           bool NonVisibilityBitsUsed) const override;
569   void printProgramHeaders(bool PrintProgramHeaders,
570                            cl::boolOrDefault PrintSectionMapping) override;
571   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
572   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
573   void printVersionDependencySection(const Elf_Shdr *Sec) override;
574   void printHashHistograms() override;
575   void printCGProfile() override;
576   void printBBAddrMaps() override;
577   void printAddrsig() override;
578   void printNotes() override;
579   void printELFLinkerOptions() override;
580   void printStackSizes() override;
581 
582 private:
583   void printHashHistogram(const Elf_Hash &HashTable);
584   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
585   void printHashTableSymbols(const Elf_Hash &HashTable);
586   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
587 
588   struct Field {
589     std::string Str;
590     unsigned Column;
591 
592     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
593     Field(unsigned Col) : Column(Col) {}
594   };
595 
596   template <typename T, typename TEnum>
597   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
598                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
599                          TEnum EnumMask3 = {}) const {
600     std::string Str;
601     for (const EnumEntry<TEnum> &Flag : EnumValues) {
602       if (Flag.Value == 0)
603         continue;
604 
605       TEnum EnumMask{};
606       if (Flag.Value & EnumMask1)
607         EnumMask = EnumMask1;
608       else if (Flag.Value & EnumMask2)
609         EnumMask = EnumMask2;
610       else if (Flag.Value & EnumMask3)
611         EnumMask = EnumMask3;
612       bool IsEnum = (Flag.Value & EnumMask) != 0;
613       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
614           (IsEnum && (Value & EnumMask) == Flag.Value)) {
615         if (!Str.empty())
616           Str += ", ";
617         Str += Flag.AltName;
618       }
619     }
620     return Str;
621   }
622 
623   formatted_raw_ostream &printField(struct Field F) const {
624     if (F.Column != 0)
625       OS.PadToColumn(F.Column);
626     OS << F.Str;
627     OS.flush();
628     return OS;
629   }
630   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
631                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
632                          uint32_t Bucket);
633   void printRelrReloc(const Elf_Relr &R) override;
634   void printRelRelaReloc(const Relocation<ELFT> &R,
635                          const RelSymbol<ELFT> &RelSym) override;
636   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
637                    DataRegion<Elf_Word> ShndxTable,
638                    Optional<StringRef> StrTable, bool IsDynamic,
639                    bool NonVisibilityBitsUsed) const override;
640   void printDynamicRelocHeader(unsigned Type, StringRef Name,
641                                const DynRegionInfo &Reg) override;
642 
643   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
644                                   DataRegion<Elf_Word> ShndxTable) const;
645   void printProgramHeaders() override;
646   void printSectionMapping() override;
647   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
648                                     const Twine &Label, unsigned EntriesNum);
649 
650   void printStackSizeEntry(uint64_t Size,
651                            ArrayRef<std::string> FuncNames) override;
652 
653   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
655   void printMipsABIFlags() override;
656 };
657 
658 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
659 public:
660   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
661 
662   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
663       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
664 
665   void printFileHeaders() override;
666   void printGroupSections() override;
667   void printRelocations() override;
668   void printSectionHeaders() override;
669   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
670   void printDependentLibs() override;
671   void printDynamicTable() override;
672   void printDynamicRelocations() override;
673   void printProgramHeaders(bool PrintProgramHeaders,
674                            cl::boolOrDefault PrintSectionMapping) override;
675   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
676   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
677   void printVersionDependencySection(const Elf_Shdr *Sec) override;
678   void printHashHistograms() override;
679   void printCGProfile() override;
680   void printBBAddrMaps() override;
681   void printAddrsig() override;
682   void printNotes() override;
683   void printELFLinkerOptions() override;
684   void printStackSizes() override;
685 
686 private:
687   void printRelrReloc(const Elf_Relr &R) override;
688   void printRelRelaReloc(const Relocation<ELFT> &R,
689                          const RelSymbol<ELFT> &RelSym) override;
690 
691   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
692                           DataRegion<Elf_Word> ShndxTable) const;
693   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
694                    DataRegion<Elf_Word> ShndxTable,
695                    Optional<StringRef> StrTable, bool IsDynamic,
696                    bool /*NonVisibilityBitsUsed*/) const override;
697   void printProgramHeaders() override;
698   void printSectionMapping() override {}
699   void printStackSizeEntry(uint64_t Size,
700                            ArrayRef<std::string> FuncNames) override;
701 
702   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
704   void printMipsABIFlags() override;
705 
706 protected:
707   ScopedPrinter &W;
708 };
709 
710 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
711 // it uses a JSONScopedPrinter.
712 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
713 public:
714   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
715 
716   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
717       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
718 
719   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
720                         ArrayRef<std::string> InputFilenames,
721                         const Archive *A) override;
722 
723 private:
724   std::unique_ptr<DictScope> FileScope;
725 };
726 
727 } // end anonymous namespace
728 
729 namespace llvm {
730 
731 template <class ELFT>
732 static std::unique_ptr<ObjDumper>
733 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
734   if (opts::Output == opts::GNU)
735     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
736   else if (opts::Output == opts::JSON)
737     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
738   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
739 }
740 
741 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
742                                            ScopedPrinter &Writer) {
743   // Little-endian 32-bit
744   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
745     return createELFDumper(*ELFObj, Writer);
746 
747   // Big-endian 32-bit
748   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
749     return createELFDumper(*ELFObj, Writer);
750 
751   // Little-endian 64-bit
752   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
753     return createELFDumper(*ELFObj, Writer);
754 
755   // Big-endian 64-bit
756   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
757 }
758 
759 } // end namespace llvm
760 
761 template <class ELFT>
762 Expected<SmallVector<Optional<VersionEntry>, 0> *>
763 ELFDumper<ELFT>::getVersionMap() const {
764   // If the VersionMap has already been loaded or if there is no dynamic symtab
765   // or version table, there is nothing to do.
766   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
767     return &VersionMap;
768 
769   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
770       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
771   if (MapOrErr)
772     VersionMap = *MapOrErr;
773   else
774     return MapOrErr.takeError();
775 
776   return &VersionMap;
777 }
778 
779 template <typename ELFT>
780 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
781                                                       bool &IsDefault) const {
782   // This is a dynamic symbol. Look in the GNU symbol version table.
783   if (!SymbolVersionSection) {
784     // No version table.
785     IsDefault = false;
786     return "";
787   }
788 
789   assert(DynSymRegion && "DynSymRegion has not been initialised");
790   // Determine the position in the symbol table of this entry.
791   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
792                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
793                       sizeof(Elf_Sym);
794 
795   // Get the corresponding version index entry.
796   Expected<const Elf_Versym *> EntryOrErr =
797       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
798   if (!EntryOrErr)
799     return EntryOrErr.takeError();
800 
801   unsigned Version = (*EntryOrErr)->vs_index;
802   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
803     IsDefault = false;
804     return "";
805   }
806 
807   Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
808       getVersionMap();
809   if (!MapOrErr)
810     return MapOrErr.takeError();
811 
812   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
813                                      Sym.st_shndx == ELF::SHN_UNDEF);
814 }
815 
816 template <typename ELFT>
817 Expected<RelSymbol<ELFT>>
818 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
819                                      const Elf_Shdr *SymTab) const {
820   if (R.Symbol == 0)
821     return RelSymbol<ELFT>(nullptr, "");
822 
823   Expected<const Elf_Sym *> SymOrErr =
824       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
825   if (!SymOrErr)
826     return createError("unable to read an entry with index " + Twine(R.Symbol) +
827                        " from " + describe(*SymTab) + ": " +
828                        toString(SymOrErr.takeError()));
829   const Elf_Sym *Sym = *SymOrErr;
830   if (!Sym)
831     return RelSymbol<ELFT>(nullptr, "");
832 
833   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
834   if (!StrTableOrErr)
835     return StrTableOrErr.takeError();
836 
837   const Elf_Sym *FirstSym =
838       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
839   std::string SymbolName =
840       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
841                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
842   return RelSymbol<ELFT>(Sym, SymbolName);
843 }
844 
845 template <typename ELFT>
846 ArrayRef<typename ELFT::Word>
847 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
848   if (Symtab) {
849     auto It = ShndxTables.find(Symtab);
850     if (It != ShndxTables.end())
851       return It->second;
852   }
853   return {};
854 }
855 
856 static std::string maybeDemangle(StringRef Name) {
857   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
858 }
859 
860 template <typename ELFT>
861 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
862   auto Warn = [&](Error E) -> std::string {
863     reportUniqueWarning("unable to read the name of symbol with index " +
864                         Twine(Index) + ": " + toString(std::move(E)));
865     return "<?>";
866   };
867 
868   Expected<const typename ELFT::Sym *> SymOrErr =
869       Obj.getSymbol(DotSymtabSec, Index);
870   if (!SymOrErr)
871     return Warn(SymOrErr.takeError());
872 
873   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
874   if (!StrTabOrErr)
875     return Warn(StrTabOrErr.takeError());
876 
877   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
878   if (!NameOrErr)
879     return Warn(NameOrErr.takeError());
880   return maybeDemangle(*NameOrErr);
881 }
882 
883 template <typename ELFT>
884 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
885                                                unsigned SymIndex,
886                                                DataRegion<Elf_Word> ShndxTable,
887                                                Optional<StringRef> StrTable,
888                                                bool IsDynamic) const {
889   if (!StrTable)
890     return "<?>";
891 
892   std::string SymbolName;
893   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
894     SymbolName = maybeDemangle(*NameOrErr);
895   } else {
896     reportUniqueWarning(NameOrErr.takeError());
897     return "<?>";
898   }
899 
900   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
901     Expected<unsigned> SectionIndex =
902         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
903     if (!SectionIndex) {
904       reportUniqueWarning(SectionIndex.takeError());
905       return "<?>";
906     }
907     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
908     if (!NameOrErr) {
909       reportUniqueWarning(NameOrErr.takeError());
910       return ("<section " + Twine(*SectionIndex) + ">").str();
911     }
912     return std::string(*NameOrErr);
913   }
914 
915   if (!IsDynamic)
916     return SymbolName;
917 
918   bool IsDefault;
919   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
920   if (!VersionOrErr) {
921     reportUniqueWarning(VersionOrErr.takeError());
922     return SymbolName + "@<corrupt>";
923   }
924 
925   if (!VersionOrErr->empty()) {
926     SymbolName += (IsDefault ? "@@" : "@");
927     SymbolName += *VersionOrErr;
928   }
929   return SymbolName;
930 }
931 
932 template <typename ELFT>
933 Expected<unsigned>
934 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
935                                        DataRegion<Elf_Word> ShndxTable) const {
936   unsigned Ndx = Symbol.st_shndx;
937   if (Ndx == SHN_XINDEX)
938     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
939                                                      ShndxTable);
940   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
941     return Ndx;
942 
943   auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
944     std::string Desc;
945     if (Offset)
946       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
947     else
948       Desc = Name.str();
949     return createError(
950         "unable to get section index for symbol with st_shndx = 0x" +
951         Twine::utohexstr(Ndx) + " (" + Desc + ")");
952   };
953 
954   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
955     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
956   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
957     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
958   if (Ndx == ELF::SHN_UNDEF)
959     return CreateErr("SHN_UNDEF");
960   if (Ndx == ELF::SHN_ABS)
961     return CreateErr("SHN_ABS");
962   if (Ndx == ELF::SHN_COMMON)
963     return CreateErr("SHN_COMMON");
964   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
965 }
966 
967 template <typename ELFT>
968 Expected<StringRef>
969 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
970                                       unsigned SectionIndex) const {
971   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
972   if (!SecOrErr)
973     return SecOrErr.takeError();
974   return Obj.getSectionName(**SecOrErr);
975 }
976 
977 template <class ELFO>
978 static const typename ELFO::Elf_Shdr *
979 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
980                              uint64_t Addr) {
981   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
982     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
983       return &Shdr;
984   return nullptr;
985 }
986 
987 const EnumEntry<unsigned> ElfClass[] = {
988   {"None",   "none",   ELF::ELFCLASSNONE},
989   {"32-bit", "ELF32",  ELF::ELFCLASS32},
990   {"64-bit", "ELF64",  ELF::ELFCLASS64},
991 };
992 
993 const EnumEntry<unsigned> ElfDataEncoding[] = {
994   {"None",         "none",                          ELF::ELFDATANONE},
995   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
996   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
997 };
998 
999 const EnumEntry<unsigned> ElfObjectFileType[] = {
1000   {"None",         "NONE (none)",              ELF::ET_NONE},
1001   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1002   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1003   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1004   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1005 };
1006 
1007 const EnumEntry<unsigned> ElfOSABI[] = {
1008   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1009   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1010   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1011   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1012   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1013   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1014   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1015   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1016   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1017   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1018   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1019   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1020   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1021   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1022   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1023   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1024   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1025   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1026 };
1027 
1028 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1029   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1030   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1031   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1032 };
1033 
1034 const EnumEntry<unsigned> ARMElfOSABI[] = {
1035   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1036 };
1037 
1038 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1039   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1040   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1041 };
1042 
1043 const EnumEntry<unsigned> ElfMachineType[] = {
1044   ENUM_ENT(EM_NONE,          "None"),
1045   ENUM_ENT(EM_M32,           "WE32100"),
1046   ENUM_ENT(EM_SPARC,         "Sparc"),
1047   ENUM_ENT(EM_386,           "Intel 80386"),
1048   ENUM_ENT(EM_68K,           "MC68000"),
1049   ENUM_ENT(EM_88K,           "MC88000"),
1050   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1051   ENUM_ENT(EM_860,           "Intel 80860"),
1052   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1053   ENUM_ENT(EM_S370,          "IBM System/370"),
1054   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1055   ENUM_ENT(EM_PARISC,        "HPPA"),
1056   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1057   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1058   ENUM_ENT(EM_960,           "Intel 80960"),
1059   ENUM_ENT(EM_PPC,           "PowerPC"),
1060   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1061   ENUM_ENT(EM_S390,          "IBM S/390"),
1062   ENUM_ENT(EM_SPU,           "SPU"),
1063   ENUM_ENT(EM_V800,          "NEC V800 series"),
1064   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1065   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1066   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1067   ENUM_ENT(EM_ARM,           "ARM"),
1068   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1069   ENUM_ENT(EM_SH,            "Hitachi SH"),
1070   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1071   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1072   ENUM_ENT(EM_ARC,           "ARC"),
1073   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1074   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1075   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1076   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1077   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1078   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1079   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1080   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1081   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1082   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1083   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1084   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1085   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1086   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1087   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1088   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1089   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1090   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1091   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1092   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1093   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1094   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1095   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1096   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1097   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1098   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1099   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1100   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1101   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1102   ENUM_ENT(EM_VAX,           "Digital VAX"),
1103   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1104   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1105   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1106   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1107   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1108   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1109   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1110   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1111   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1112   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1113   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1114   ENUM_ENT(EM_V850,          "NEC v850"),
1115   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1116   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1117   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1118   ENUM_ENT(EM_PJ,            "picoJava"),
1119   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1120   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1121   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1122   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1123   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1124   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1125   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1126   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1127   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1128   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1129   ENUM_ENT(EM_MAX,           "MAX Processor"),
1130   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1131   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1132   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1133   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1134   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1135   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1136   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1137   ENUM_ENT(EM_UNICORE,       "Unicore"),
1138   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1139   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1140   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1141   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1142   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1143   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1144   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1145   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1146   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1147   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1148   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1149   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1150   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1151   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1152   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1153   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1154   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1155   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1156   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1157   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1158   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1159   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1160   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1161   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1162   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1163   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1164   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1165   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1166   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1167   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1168   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1169   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1170   //        an identical number to EM_ECOG1.
1171   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1172   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1173   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1174   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1175   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1176   ENUM_ENT(EM_RX,            "Renesas RX"),
1177   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1178   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1179   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1180   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1181   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1182   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1183   ENUM_ENT(EM_L10M,          "EM_L10M"),
1184   ENUM_ENT(EM_K10M,          "EM_K10M"),
1185   ENUM_ENT(EM_AARCH64,       "AArch64"),
1186   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1187   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1188   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1189   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1190   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1191   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1192   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1193   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1194   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1195   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1196   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1197   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1198   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1199   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1200   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1201   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1202   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1203   ENUM_ENT(EM_RISCV,         "RISC-V"),
1204   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1205   ENUM_ENT(EM_BPF,           "EM_BPF"),
1206   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1207   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1208 };
1209 
1210 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1211     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1212     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1213     {"Weak",   "WEAK",   ELF::STB_WEAK},
1214     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1215 
1216 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1217     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1218     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1219     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1220     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1221 
1222 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1223   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1224 };
1225 
1226 static const char *getGroupType(uint32_t Flag) {
1227   if (Flag & ELF::GRP_COMDAT)
1228     return "COMDAT";
1229   else
1230     return "(unknown)";
1231 }
1232 
1233 const EnumEntry<unsigned> ElfSectionFlags[] = {
1234   ENUM_ENT(SHF_WRITE,            "W"),
1235   ENUM_ENT(SHF_ALLOC,            "A"),
1236   ENUM_ENT(SHF_EXECINSTR,        "X"),
1237   ENUM_ENT(SHF_MERGE,            "M"),
1238   ENUM_ENT(SHF_STRINGS,          "S"),
1239   ENUM_ENT(SHF_INFO_LINK,        "I"),
1240   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1241   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1242   ENUM_ENT(SHF_GROUP,            "G"),
1243   ENUM_ENT(SHF_TLS,              "T"),
1244   ENUM_ENT(SHF_COMPRESSED,       "C"),
1245   ENUM_ENT(SHF_EXCLUDE,          "E"),
1246 };
1247 
1248 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1249   ENUM_ENT(SHF_GNU_RETAIN, "R")
1250 };
1251 
1252 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1253   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1254 };
1255 
1256 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1257   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1258   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1259 };
1260 
1261 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1262   ENUM_ENT(SHF_ARM_PURECODE, "y")
1263 };
1264 
1265 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1266   ENUM_ENT(SHF_HEX_GPREL, "")
1267 };
1268 
1269 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1270   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1271   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1272   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1273   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1274   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1275   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1276   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1277   ENUM_ENT(SHF_MIPS_STRING,  "")
1278 };
1279 
1280 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1281   ENUM_ENT(SHF_X86_64_LARGE, "l")
1282 };
1283 
1284 static std::vector<EnumEntry<unsigned>>
1285 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1286   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1287                                        std::end(ElfSectionFlags));
1288   switch (EOSAbi) {
1289   case ELFOSABI_SOLARIS:
1290     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1291                std::end(ElfSolarisSectionFlags));
1292     break;
1293   default:
1294     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1295                std::end(ElfGNUSectionFlags));
1296     break;
1297   }
1298   switch (EMachine) {
1299   case EM_ARM:
1300     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1301                std::end(ElfARMSectionFlags));
1302     break;
1303   case EM_HEXAGON:
1304     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1305                std::end(ElfHexagonSectionFlags));
1306     break;
1307   case EM_MIPS:
1308     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1309                std::end(ElfMipsSectionFlags));
1310     break;
1311   case EM_X86_64:
1312     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1313                std::end(ElfX86_64SectionFlags));
1314     break;
1315   case EM_XCORE:
1316     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1317                std::end(ElfXCoreSectionFlags));
1318     break;
1319   default:
1320     break;
1321   }
1322   return Ret;
1323 }
1324 
1325 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1326                                uint64_t Flags) {
1327   // Here we are trying to build the flags string in the same way as GNU does.
1328   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1329   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1330   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1331   // "p". It only will print "E" when no other processor flag is set.
1332   std::string Str;
1333   bool HasUnknownFlag = false;
1334   bool HasOSFlag = false;
1335   bool HasProcFlag = false;
1336   std::vector<EnumEntry<unsigned>> FlagsList =
1337       getSectionFlagsForTarget(EOSAbi, EMachine);
1338   while (Flags) {
1339     // Take the least significant bit as a flag.
1340     uint64_t Flag = Flags & -Flags;
1341     Flags -= Flag;
1342 
1343     // Find the flag in the known flags list.
1344     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1345       // Flags with empty names are not printed in GNU style output.
1346       return E.Value == Flag && !E.AltName.empty();
1347     });
1348     if (I != FlagsList.end()) {
1349       Str += I->AltName;
1350       continue;
1351     }
1352 
1353     // If we did not find a matching regular flag, then we deal with an OS
1354     // specific flag, processor specific flag or an unknown flag.
1355     if (Flag & ELF::SHF_MASKOS) {
1356       HasOSFlag = true;
1357       Flags &= ~ELF::SHF_MASKOS;
1358     } else if (Flag & ELF::SHF_MASKPROC) {
1359       HasProcFlag = true;
1360       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1361       // bit if set so that it doesn't also get printed.
1362       Flags &= ~ELF::SHF_MASKPROC;
1363     } else {
1364       HasUnknownFlag = true;
1365     }
1366   }
1367 
1368   // "o", "p" and "x" are printed last.
1369   if (HasOSFlag)
1370     Str += "o";
1371   if (HasProcFlag)
1372     Str += "p";
1373   if (HasUnknownFlag)
1374     Str += "x";
1375   return Str;
1376 }
1377 
1378 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1379   // Check potentially overlapped processor-specific program header type.
1380   switch (Arch) {
1381   case ELF::EM_ARM:
1382     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1383     break;
1384   case ELF::EM_MIPS:
1385   case ELF::EM_MIPS_RS3_LE:
1386     switch (Type) {
1387       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1388       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1389       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1390       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1391     }
1392     break;
1393   case ELF::EM_RISCV:
1394     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1395   }
1396 
1397   switch (Type) {
1398     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1399     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1400     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1401     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1402     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1403     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1404     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1405     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1406 
1407     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1408     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1409 
1410     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1411     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1412     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1413 
1414     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1415     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1416     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1417   default:
1418     return "";
1419   }
1420 }
1421 
1422 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1423   StringRef Seg = segmentTypeToString(Arch, Type);
1424   if (Seg.empty())
1425     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1426 
1427   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1428   if (Seg.consume_front("PT_ARM_"))
1429     return Seg.str();
1430 
1431   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1432   if (Seg.consume_front("PT_MIPS_"))
1433     return Seg.str();
1434 
1435   // E.g. "PT_RISCV_ATTRIBUTES"
1436   if (Seg.consume_front("PT_RISCV_"))
1437     return Seg.str();
1438 
1439   // E.g. "PT_LOAD" -> "LOAD".
1440   assert(Seg.startswith("PT_"));
1441   return Seg.drop_front(3).str();
1442 }
1443 
1444 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1445   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1446   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1447   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1448 };
1449 
1450 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1451   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1452   ENUM_ENT(EF_MIPS_PIC, "pic"),
1453   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1454   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1455   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1456   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1457   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1458   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1459   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1460   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1461   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1462   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1463   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1464   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1465   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1466   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1467   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1468   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1469   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1470   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1471   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1472   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1473   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1474   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1475   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1476   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1477   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1478   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1479   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1480   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1481   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1482   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1483   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1484   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1485   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1486   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1487   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1488   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1489   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1490   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1491   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1492   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1493   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1494 };
1495 
1496 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1548   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1549   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1550   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1554 };
1555 
1556 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1580   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1581   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1582   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1583   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1584   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1585   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1586   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1587   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1588   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1589   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1590   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1591   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1610   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1611   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1612   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1613   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1614   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1615   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1616   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1617   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1618 };
1619 
1620 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1621   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1622   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1623   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1624   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1625   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1626   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1627 };
1628 
1629 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1630   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1631   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1632   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1633   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1634   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1635   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1636   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1637   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1638   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1639   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1640   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1641   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1642   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1643   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1644   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1645   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1646   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1647   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1648   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1649 };
1650 
1651 
1652 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1653   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1654   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1655   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1656 };
1657 
1658 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1659   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1660   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1661   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1662   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1663 };
1664 
1665 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1666   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1667 };
1668 
1669 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1670   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1671   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1672   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1673 };
1674 
1675 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1676     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1677 
1678 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1679   switch (Odk) {
1680   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1681   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1682   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1683   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1684   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1685   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1686   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1687   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1688   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1689   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1690   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1691   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1692   default:
1693     return "Unknown";
1694   }
1695 }
1696 
1697 template <typename ELFT>
1698 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1699 ELFDumper<ELFT>::findDynamic() {
1700   // Try to locate the PT_DYNAMIC header.
1701   const Elf_Phdr *DynamicPhdr = nullptr;
1702   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1703     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1704       if (Phdr.p_type != ELF::PT_DYNAMIC)
1705         continue;
1706       DynamicPhdr = &Phdr;
1707       break;
1708     }
1709   } else {
1710     reportUniqueWarning(
1711         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1712         toString(PhdrsOrErr.takeError()));
1713   }
1714 
1715   // Try to locate the .dynamic section in the sections header table.
1716   const Elf_Shdr *DynamicSec = nullptr;
1717   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1718     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1719       continue;
1720     DynamicSec = &Sec;
1721     break;
1722   }
1723 
1724   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1725                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1726                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1727                        DynamicPhdr->p_offset))) {
1728     reportUniqueWarning(
1729         "PT_DYNAMIC segment offset (0x" +
1730         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1731         Twine::utohexstr(DynamicPhdr->p_filesz) +
1732         ") exceeds the size of the file (0x" +
1733         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1734     // Don't use the broken dynamic header.
1735     DynamicPhdr = nullptr;
1736   }
1737 
1738   if (DynamicPhdr && DynamicSec) {
1739     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1740             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1741         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1742       reportUniqueWarning(describe(*DynamicSec) +
1743                           " is not contained within the "
1744                           "PT_DYNAMIC segment");
1745 
1746     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1747       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1748                                                   "PT_DYNAMIC segment");
1749   }
1750 
1751   return std::make_pair(DynamicPhdr, DynamicSec);
1752 }
1753 
1754 template <typename ELFT>
1755 void ELFDumper<ELFT>::loadDynamicTable() {
1756   const Elf_Phdr *DynamicPhdr;
1757   const Elf_Shdr *DynamicSec;
1758   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1759   if (!DynamicPhdr && !DynamicSec)
1760     return;
1761 
1762   DynRegionInfo FromPhdr(ObjF, *this);
1763   bool IsPhdrTableValid = false;
1764   if (DynamicPhdr) {
1765     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1766     // validated in findDynamic() and so createDRI() is not expected to fail.
1767     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1768                                   sizeof(Elf_Dyn)));
1769     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1770     FromPhdr.EntSizePrintName = "";
1771     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1772   }
1773 
1774   // Locate the dynamic table described in a section header.
1775   // Ignore sh_entsize and use the expected value for entry size explicitly.
1776   // This allows us to dump dynamic sections with a broken sh_entsize
1777   // field.
1778   DynRegionInfo FromSec(ObjF, *this);
1779   bool IsSecTableValid = false;
1780   if (DynamicSec) {
1781     Expected<DynRegionInfo> RegOrErr =
1782         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1783     if (RegOrErr) {
1784       FromSec = *RegOrErr;
1785       FromSec.Context = describe(*DynamicSec);
1786       FromSec.EntSizePrintName = "";
1787       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1788     } else {
1789       reportUniqueWarning("unable to read the dynamic table from " +
1790                           describe(*DynamicSec) + ": " +
1791                           toString(RegOrErr.takeError()));
1792     }
1793   }
1794 
1795   // When we only have information from one of the SHT_DYNAMIC section header or
1796   // PT_DYNAMIC program header, just use that.
1797   if (!DynamicPhdr || !DynamicSec) {
1798     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1799       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1800       parseDynamicTable();
1801     } else {
1802       reportUniqueWarning("no valid dynamic table was found");
1803     }
1804     return;
1805   }
1806 
1807   // At this point we have tables found from the section header and from the
1808   // dynamic segment. Usually they match, but we have to do sanity checks to
1809   // verify that.
1810 
1811   if (FromPhdr.Addr != FromSec.Addr)
1812     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1813                         "program header disagree about "
1814                         "the location of the dynamic table");
1815 
1816   if (!IsPhdrTableValid && !IsSecTableValid) {
1817     reportUniqueWarning("no valid dynamic table was found");
1818     return;
1819   }
1820 
1821   // Information in the PT_DYNAMIC program header has priority over the
1822   // information in a section header.
1823   if (IsPhdrTableValid) {
1824     if (!IsSecTableValid)
1825       reportUniqueWarning(
1826           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1827     DynamicTable = FromPhdr;
1828   } else {
1829     reportUniqueWarning(
1830         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1831     DynamicTable = FromSec;
1832   }
1833 
1834   parseDynamicTable();
1835 }
1836 
1837 template <typename ELFT>
1838 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1839                            ScopedPrinter &Writer)
1840     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1841       FileName(O.getFileName()), DynRelRegion(O, *this),
1842       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1843       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1844       DynamicTable(O, *this) {
1845   if (!O.IsContentValid())
1846     return;
1847 
1848   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1849   for (const Elf_Shdr &Sec : Sections) {
1850     switch (Sec.sh_type) {
1851     case ELF::SHT_SYMTAB:
1852       if (!DotSymtabSec)
1853         DotSymtabSec = &Sec;
1854       break;
1855     case ELF::SHT_DYNSYM:
1856       if (!DotDynsymSec)
1857         DotDynsymSec = &Sec;
1858 
1859       if (!DynSymRegion) {
1860         Expected<DynRegionInfo> RegOrErr =
1861             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1862         if (RegOrErr) {
1863           DynSymRegion = *RegOrErr;
1864           DynSymRegion->Context = describe(Sec);
1865 
1866           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1867             DynamicStringTable = *E;
1868           else
1869             reportUniqueWarning("unable to get the string table for the " +
1870                                 describe(Sec) + ": " + toString(E.takeError()));
1871         } else {
1872           reportUniqueWarning("unable to read dynamic symbols from " +
1873                               describe(Sec) + ": " +
1874                               toString(RegOrErr.takeError()));
1875         }
1876       }
1877       break;
1878     case ELF::SHT_SYMTAB_SHNDX: {
1879       uint32_t SymtabNdx = Sec.sh_link;
1880       if (SymtabNdx >= Sections.size()) {
1881         reportUniqueWarning(
1882             "unable to get the associated symbol table for " + describe(Sec) +
1883             ": sh_link (" + Twine(SymtabNdx) +
1884             ") is greater than or equal to the total number of sections (" +
1885             Twine(Sections.size()) + ")");
1886         continue;
1887       }
1888 
1889       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1890               Obj.getSHNDXTable(Sec)) {
1891         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1892                  .second)
1893           reportUniqueWarning(
1894               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1895               describe(Sec));
1896       } else {
1897         reportUniqueWarning(ShndxTableOrErr.takeError());
1898       }
1899       break;
1900     }
1901     case ELF::SHT_GNU_versym:
1902       if (!SymbolVersionSection)
1903         SymbolVersionSection = &Sec;
1904       break;
1905     case ELF::SHT_GNU_verdef:
1906       if (!SymbolVersionDefSection)
1907         SymbolVersionDefSection = &Sec;
1908       break;
1909     case ELF::SHT_GNU_verneed:
1910       if (!SymbolVersionNeedSection)
1911         SymbolVersionNeedSection = &Sec;
1912       break;
1913     case ELF::SHT_LLVM_ADDRSIG:
1914       if (!DotAddrsigSec)
1915         DotAddrsigSec = &Sec;
1916       break;
1917     }
1918   }
1919 
1920   loadDynamicTable();
1921 }
1922 
1923 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1924   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1925     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1926       this->reportUniqueWarning(Msg);
1927       return Error::success();
1928     });
1929     if (!MappedAddrOrError) {
1930       this->reportUniqueWarning("unable to parse DT_" +
1931                                 Obj.getDynamicTagAsString(Tag) + ": " +
1932                                 llvm::toString(MappedAddrOrError.takeError()));
1933       return nullptr;
1934     }
1935     return MappedAddrOrError.get();
1936   };
1937 
1938   const char *StringTableBegin = nullptr;
1939   uint64_t StringTableSize = 0;
1940   Optional<DynRegionInfo> DynSymFromTable;
1941   for (const Elf_Dyn &Dyn : dynamic_table()) {
1942     switch (Dyn.d_tag) {
1943     case ELF::DT_HASH:
1944       HashTable = reinterpret_cast<const Elf_Hash *>(
1945           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1946       break;
1947     case ELF::DT_GNU_HASH:
1948       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1949           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1950       break;
1951     case ELF::DT_STRTAB:
1952       StringTableBegin = reinterpret_cast<const char *>(
1953           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1954       break;
1955     case ELF::DT_STRSZ:
1956       StringTableSize = Dyn.getVal();
1957       break;
1958     case ELF::DT_SYMTAB: {
1959       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1960       // no program headers), we ignore its value.
1961       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1962         DynSymFromTable.emplace(ObjF, *this);
1963         DynSymFromTable->Addr = VA;
1964         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1965         DynSymFromTable->EntSizePrintName = "";
1966       }
1967       break;
1968     }
1969     case ELF::DT_SYMENT: {
1970       uint64_t Val = Dyn.getVal();
1971       if (Val != sizeof(Elf_Sym))
1972         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1973                                   Twine::utohexstr(Val) +
1974                                   " is not the size of a symbol (0x" +
1975                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1976       break;
1977     }
1978     case ELF::DT_RELA:
1979       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1980       break;
1981     case ELF::DT_RELASZ:
1982       DynRelaRegion.Size = Dyn.getVal();
1983       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1984       break;
1985     case ELF::DT_RELAENT:
1986       DynRelaRegion.EntSize = Dyn.getVal();
1987       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1988       break;
1989     case ELF::DT_SONAME:
1990       SONameOffset = Dyn.getVal();
1991       break;
1992     case ELF::DT_REL:
1993       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1994       break;
1995     case ELF::DT_RELSZ:
1996       DynRelRegion.Size = Dyn.getVal();
1997       DynRelRegion.SizePrintName = "DT_RELSZ value";
1998       break;
1999     case ELF::DT_RELENT:
2000       DynRelRegion.EntSize = Dyn.getVal();
2001       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2002       break;
2003     case ELF::DT_RELR:
2004     case ELF::DT_ANDROID_RELR:
2005       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2006       break;
2007     case ELF::DT_RELRSZ:
2008     case ELF::DT_ANDROID_RELRSZ:
2009       DynRelrRegion.Size = Dyn.getVal();
2010       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2011                                         ? "DT_RELRSZ value"
2012                                         : "DT_ANDROID_RELRSZ value";
2013       break;
2014     case ELF::DT_RELRENT:
2015     case ELF::DT_ANDROID_RELRENT:
2016       DynRelrRegion.EntSize = Dyn.getVal();
2017       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2018                                            ? "DT_RELRENT value"
2019                                            : "DT_ANDROID_RELRENT value";
2020       break;
2021     case ELF::DT_PLTREL:
2022       if (Dyn.getVal() == DT_REL)
2023         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2024       else if (Dyn.getVal() == DT_RELA)
2025         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2026       else
2027         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2028                             Twine((uint64_t)Dyn.getVal()));
2029       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2030       break;
2031     case ELF::DT_JMPREL:
2032       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2033       break;
2034     case ELF::DT_PLTRELSZ:
2035       DynPLTRelRegion.Size = Dyn.getVal();
2036       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2037       break;
2038     case ELF::DT_SYMTAB_SHNDX:
2039       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2040       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2041       break;
2042     }
2043   }
2044 
2045   if (StringTableBegin) {
2046     const uint64_t FileSize = Obj.getBufSize();
2047     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2048     if (StringTableSize > FileSize - Offset)
2049       reportUniqueWarning(
2050           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2051           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2052           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2053     else
2054       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2055   }
2056 
2057   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2058   if (DynSymRegion) {
2059     // Often we find the information about the dynamic symbol table
2060     // location in the SHT_DYNSYM section header. However, the value in
2061     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2062     // locate .dynsym at runtime. The location we find in the section header
2063     // and the location we find here should match.
2064     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2065       reportUniqueWarning(
2066           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2067                       "the location of the dynamic symbol table"));
2068 
2069     // According to the ELF gABI: "The number of symbol table entries should
2070     // equal nchain". Check to see if the DT_HASH hash table nchain value
2071     // conflicts with the number of symbols in the dynamic symbol table
2072     // according to the section header.
2073     if (HashTable && IsHashTableSupported) {
2074       if (DynSymRegion->EntSize == 0)
2075         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2076       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2077         reportUniqueWarning(
2078             "hash table nchain (" + Twine(HashTable->nchain) +
2079             ") differs from symbol count derived from SHT_DYNSYM section "
2080             "header (" +
2081             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2082     }
2083   }
2084 
2085   // Delay the creation of the actual dynamic symbol table until now, so that
2086   // checks can always be made against the section header-based properties,
2087   // without worrying about tag order.
2088   if (DynSymFromTable) {
2089     if (!DynSymRegion) {
2090       DynSymRegion = DynSymFromTable;
2091     } else {
2092       DynSymRegion->Addr = DynSymFromTable->Addr;
2093       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2094       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2095     }
2096   }
2097 
2098   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2099   // present.
2100   if (HashTable && IsHashTableSupported && DynSymRegion) {
2101     const uint64_t FileSize = Obj.getBufSize();
2102     const uint64_t DerivedSize =
2103         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2104     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2105     if (DerivedSize > FileSize - Offset)
2106       reportUniqueWarning(
2107           "the size (0x" + Twine::utohexstr(DerivedSize) +
2108           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2109           ", derived from the hash table, goes past the end of the file (0x" +
2110           Twine::utohexstr(FileSize) + ") and will be ignored");
2111     else
2112       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2113   }
2114 }
2115 
2116 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2117   // Dump version symbol section.
2118   printVersionSymbolSection(SymbolVersionSection);
2119 
2120   // Dump version definition section.
2121   printVersionDefinitionSection(SymbolVersionDefSection);
2122 
2123   // Dump version dependency section.
2124   printVersionDependencySection(SymbolVersionNeedSection);
2125 }
2126 
2127 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2128   { #enum, prefix##_##enum }
2129 
2130 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2131   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2132   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2133   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2134   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2135   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2136 };
2137 
2138 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2139   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2140   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2141   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2142   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2143   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2144   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2145   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2146   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2147   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2148   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2149   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2150   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2151   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2152   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2153   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2154   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2155   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2156   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2157   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2158   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2159   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2160   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2161   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2162   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2163   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2164   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2165   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2166 };
2167 
2168 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2169   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2170   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2171   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2172   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2173   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2174   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2175   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2176   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2177   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2178   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2179   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2180   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2181   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2182   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2183   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2184   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2185 };
2186 
2187 #undef LLVM_READOBJ_DT_FLAG_ENT
2188 
2189 template <typename T, typename TFlag>
2190 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2191   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2192   for (const EnumEntry<TFlag> &Flag : Flags)
2193     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2194       SetFlags.push_back(Flag);
2195 
2196   for (const EnumEntry<TFlag> &Flag : SetFlags)
2197     OS << Flag.Name << " ";
2198 }
2199 
2200 template <class ELFT>
2201 const typename ELFT::Shdr *
2202 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2203   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2204     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2205       if (*NameOrErr == Name)
2206         return &Shdr;
2207     } else {
2208       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2209                           ": " + toString(NameOrErr.takeError()));
2210     }
2211   }
2212   return nullptr;
2213 }
2214 
2215 template <class ELFT>
2216 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2217                                              uint64_t Value) const {
2218   auto FormatHexValue = [](uint64_t V) {
2219     std::string Str;
2220     raw_string_ostream OS(Str);
2221     const char *ConvChar =
2222         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2223     OS << format(ConvChar, V);
2224     return OS.str();
2225   };
2226 
2227   auto FormatFlags = [](uint64_t V,
2228                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2229     std::string Str;
2230     raw_string_ostream OS(Str);
2231     printFlags(V, Array, OS);
2232     return OS.str();
2233   };
2234 
2235   // Handle custom printing of architecture specific tags
2236   switch (Obj.getHeader().e_machine) {
2237   case EM_AARCH64:
2238     switch (Type) {
2239     case DT_AARCH64_BTI_PLT:
2240     case DT_AARCH64_PAC_PLT:
2241     case DT_AARCH64_VARIANT_PCS:
2242       return std::to_string(Value);
2243     default:
2244       break;
2245     }
2246     break;
2247   case EM_HEXAGON:
2248     switch (Type) {
2249     case DT_HEXAGON_VER:
2250       return std::to_string(Value);
2251     case DT_HEXAGON_SYMSZ:
2252     case DT_HEXAGON_PLT:
2253       return FormatHexValue(Value);
2254     default:
2255       break;
2256     }
2257     break;
2258   case EM_MIPS:
2259     switch (Type) {
2260     case DT_MIPS_RLD_VERSION:
2261     case DT_MIPS_LOCAL_GOTNO:
2262     case DT_MIPS_SYMTABNO:
2263     case DT_MIPS_UNREFEXTNO:
2264       return std::to_string(Value);
2265     case DT_MIPS_TIME_STAMP:
2266     case DT_MIPS_ICHECKSUM:
2267     case DT_MIPS_IVERSION:
2268     case DT_MIPS_BASE_ADDRESS:
2269     case DT_MIPS_MSYM:
2270     case DT_MIPS_CONFLICT:
2271     case DT_MIPS_LIBLIST:
2272     case DT_MIPS_CONFLICTNO:
2273     case DT_MIPS_LIBLISTNO:
2274     case DT_MIPS_GOTSYM:
2275     case DT_MIPS_HIPAGENO:
2276     case DT_MIPS_RLD_MAP:
2277     case DT_MIPS_DELTA_CLASS:
2278     case DT_MIPS_DELTA_CLASS_NO:
2279     case DT_MIPS_DELTA_INSTANCE:
2280     case DT_MIPS_DELTA_RELOC:
2281     case DT_MIPS_DELTA_RELOC_NO:
2282     case DT_MIPS_DELTA_SYM:
2283     case DT_MIPS_DELTA_SYM_NO:
2284     case DT_MIPS_DELTA_CLASSSYM:
2285     case DT_MIPS_DELTA_CLASSSYM_NO:
2286     case DT_MIPS_CXX_FLAGS:
2287     case DT_MIPS_PIXIE_INIT:
2288     case DT_MIPS_SYMBOL_LIB:
2289     case DT_MIPS_LOCALPAGE_GOTIDX:
2290     case DT_MIPS_LOCAL_GOTIDX:
2291     case DT_MIPS_HIDDEN_GOTIDX:
2292     case DT_MIPS_PROTECTED_GOTIDX:
2293     case DT_MIPS_OPTIONS:
2294     case DT_MIPS_INTERFACE:
2295     case DT_MIPS_DYNSTR_ALIGN:
2296     case DT_MIPS_INTERFACE_SIZE:
2297     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2298     case DT_MIPS_PERF_SUFFIX:
2299     case DT_MIPS_COMPACT_SIZE:
2300     case DT_MIPS_GP_VALUE:
2301     case DT_MIPS_AUX_DYNAMIC:
2302     case DT_MIPS_PLTGOT:
2303     case DT_MIPS_RWPLT:
2304     case DT_MIPS_RLD_MAP_REL:
2305     case DT_MIPS_XHASH:
2306       return FormatHexValue(Value);
2307     case DT_MIPS_FLAGS:
2308       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2309     default:
2310       break;
2311     }
2312     break;
2313   default:
2314     break;
2315   }
2316 
2317   switch (Type) {
2318   case DT_PLTREL:
2319     if (Value == DT_REL)
2320       return "REL";
2321     if (Value == DT_RELA)
2322       return "RELA";
2323     LLVM_FALLTHROUGH;
2324   case DT_PLTGOT:
2325   case DT_HASH:
2326   case DT_STRTAB:
2327   case DT_SYMTAB:
2328   case DT_RELA:
2329   case DT_INIT:
2330   case DT_FINI:
2331   case DT_REL:
2332   case DT_JMPREL:
2333   case DT_INIT_ARRAY:
2334   case DT_FINI_ARRAY:
2335   case DT_PREINIT_ARRAY:
2336   case DT_DEBUG:
2337   case DT_VERDEF:
2338   case DT_VERNEED:
2339   case DT_VERSYM:
2340   case DT_GNU_HASH:
2341   case DT_NULL:
2342     return FormatHexValue(Value);
2343   case DT_RELACOUNT:
2344   case DT_RELCOUNT:
2345   case DT_VERDEFNUM:
2346   case DT_VERNEEDNUM:
2347     return std::to_string(Value);
2348   case DT_PLTRELSZ:
2349   case DT_RELASZ:
2350   case DT_RELAENT:
2351   case DT_STRSZ:
2352   case DT_SYMENT:
2353   case DT_RELSZ:
2354   case DT_RELENT:
2355   case DT_INIT_ARRAYSZ:
2356   case DT_FINI_ARRAYSZ:
2357   case DT_PREINIT_ARRAYSZ:
2358   case DT_RELRSZ:
2359   case DT_RELRENT:
2360   case DT_ANDROID_RELSZ:
2361   case DT_ANDROID_RELASZ:
2362     return std::to_string(Value) + " (bytes)";
2363   case DT_NEEDED:
2364   case DT_SONAME:
2365   case DT_AUXILIARY:
2366   case DT_USED:
2367   case DT_FILTER:
2368   case DT_RPATH:
2369   case DT_RUNPATH: {
2370     const std::map<uint64_t, const char *> TagNames = {
2371         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2372         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2373         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2374         {DT_RUNPATH, "Library runpath"},
2375     };
2376 
2377     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2378         .str();
2379   }
2380   case DT_FLAGS:
2381     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2382   case DT_FLAGS_1:
2383     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2384   default:
2385     return FormatHexValue(Value);
2386   }
2387 }
2388 
2389 template <class ELFT>
2390 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2391   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2392     reportUniqueWarning("string table was not found");
2393     return "<?>";
2394   }
2395 
2396   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2397     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2398                         Msg);
2399     return "<?>";
2400   };
2401 
2402   const uint64_t FileSize = Obj.getBufSize();
2403   const uint64_t Offset =
2404       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2405   if (DynamicStringTable.size() > FileSize - Offset)
2406     return WarnAndReturn(" with size 0x" +
2407                              Twine::utohexstr(DynamicStringTable.size()) +
2408                              " goes past the end of the file (0x" +
2409                              Twine::utohexstr(FileSize) + ")",
2410                          Offset);
2411 
2412   if (Value >= DynamicStringTable.size())
2413     return WarnAndReturn(
2414         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2415             ": it goes past the end of the table (0x" +
2416             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2417         Offset);
2418 
2419   if (DynamicStringTable.back() != '\0')
2420     return WarnAndReturn(": unable to read the string at 0x" +
2421                              Twine::utohexstr(Offset + Value) +
2422                              ": the string table is not null-terminated",
2423                          Offset);
2424 
2425   return DynamicStringTable.data() + Value;
2426 }
2427 
2428 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2429   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2430   Ctx.printUnwindInformation();
2431 }
2432 
2433 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2434 namespace {
2435 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2436   if (Obj.getHeader().e_machine == EM_ARM) {
2437     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2438                                             DotSymtabSec);
2439     Ctx.PrintUnwindInformation();
2440   }
2441   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2442   Ctx.printUnwindInformation();
2443 }
2444 } // namespace
2445 
2446 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2447   ListScope D(W, "NeededLibraries");
2448 
2449   std::vector<StringRef> Libs;
2450   for (const auto &Entry : dynamic_table())
2451     if (Entry.d_tag == ELF::DT_NEEDED)
2452       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2453 
2454   llvm::sort(Libs);
2455 
2456   for (StringRef L : Libs)
2457     W.startLine() << L << "\n";
2458 }
2459 
2460 template <class ELFT>
2461 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2462                             const typename ELFT::Hash *H,
2463                             bool *IsHeaderValid = nullptr) {
2464   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2465   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2466   if (Dumper.getHashTableEntSize() == 8) {
2467     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2468       return E.Value == Obj.getHeader().e_machine;
2469     });
2470     if (IsHeaderValid)
2471       *IsHeaderValid = false;
2472     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2473                        " is not supported: it contains non-standard 8 "
2474                        "byte entries on " +
2475                        It->AltName + " platform");
2476   }
2477 
2478   auto MakeError = [&](const Twine &Msg = "") {
2479     return createError("the hash table at offset 0x" +
2480                        Twine::utohexstr(SecOffset) +
2481                        " goes past the end of the file (0x" +
2482                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2483   };
2484 
2485   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2486   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2487 
2488   if (IsHeaderValid)
2489     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2490 
2491   if (Obj.getBufSize() - SecOffset < HeaderSize)
2492     return MakeError();
2493 
2494   if (Obj.getBufSize() - SecOffset - HeaderSize <
2495       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2496     return MakeError(", nbucket = " + Twine(H->nbucket) +
2497                      ", nchain = " + Twine(H->nchain));
2498   return Error::success();
2499 }
2500 
2501 template <class ELFT>
2502 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2503                                const typename ELFT::GnuHash *GnuHashTable,
2504                                bool *IsHeaderValid = nullptr) {
2505   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2506   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2507          "GnuHashTable must always point to a location inside the file");
2508 
2509   uint64_t TableOffset = TableData - Obj.base();
2510   if (IsHeaderValid)
2511     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2512   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2513           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2514       Obj.getBufSize())
2515     return createError("unable to dump the SHT_GNU_HASH "
2516                        "section at 0x" +
2517                        Twine::utohexstr(TableOffset) +
2518                        ": it goes past the end of the file");
2519   return Error::success();
2520 }
2521 
2522 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2523   DictScope D(W, "HashTable");
2524   if (!HashTable)
2525     return;
2526 
2527   bool IsHeaderValid;
2528   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2529   if (IsHeaderValid) {
2530     W.printNumber("Num Buckets", HashTable->nbucket);
2531     W.printNumber("Num Chains", HashTable->nchain);
2532   }
2533 
2534   if (Err) {
2535     reportUniqueWarning(std::move(Err));
2536     return;
2537   }
2538 
2539   W.printList("Buckets", HashTable->buckets());
2540   W.printList("Chains", HashTable->chains());
2541 }
2542 
2543 template <class ELFT>
2544 static Expected<ArrayRef<typename ELFT::Word>>
2545 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2546                       const typename ELFT::GnuHash *GnuHashTable) {
2547   if (!DynSymRegion)
2548     return createError("no dynamic symbol table found");
2549 
2550   ArrayRef<typename ELFT::Sym> DynSymTable =
2551       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2552   size_t NumSyms = DynSymTable.size();
2553   if (!NumSyms)
2554     return createError("the dynamic symbol table is empty");
2555 
2556   if (GnuHashTable->symndx < NumSyms)
2557     return GnuHashTable->values(NumSyms);
2558 
2559   // A normal empty GNU hash table section produced by linker might have
2560   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2561   // and have dummy null values in the Bloom filter and in the buckets
2562   // vector (or no values at all). It happens because the value of symndx is not
2563   // important for dynamic loaders when the GNU hash table is empty. They just
2564   // skip the whole object during symbol lookup. In such cases, the symndx value
2565   // is irrelevant and we should not report a warning.
2566   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2567   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2568     return createError(
2569         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2570         ") is greater than or equal to the number of dynamic symbols (" +
2571         Twine(NumSyms) + ")");
2572   // There is no way to represent an array of (dynamic symbols count - symndx)
2573   // length.
2574   return ArrayRef<typename ELFT::Word>();
2575 }
2576 
2577 template <typename ELFT>
2578 void ELFDumper<ELFT>::printGnuHashTable() {
2579   DictScope D(W, "GnuHashTable");
2580   if (!GnuHashTable)
2581     return;
2582 
2583   bool IsHeaderValid;
2584   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2585   if (IsHeaderValid) {
2586     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2587     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2588     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2589     W.printNumber("Shift Count", GnuHashTable->shift2);
2590   }
2591 
2592   if (Err) {
2593     reportUniqueWarning(std::move(Err));
2594     return;
2595   }
2596 
2597   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2598   W.printHexList("Bloom Filter", BloomFilter);
2599 
2600   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2601   W.printList("Buckets", Buckets);
2602 
2603   Expected<ArrayRef<Elf_Word>> Chains =
2604       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2605   if (!Chains) {
2606     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2607                         "section: " +
2608                         toString(Chains.takeError()));
2609     return;
2610   }
2611 
2612   W.printHexList("Values", *Chains);
2613 }
2614 
2615 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2616   StringRef SOName = "<Not found>";
2617   if (SONameOffset)
2618     SOName = getDynamicString(*SONameOffset);
2619   W.printString("LoadName", SOName);
2620 }
2621 
2622 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2623   switch (Obj.getHeader().e_machine) {
2624   case EM_ARM:
2625     if (Obj.isLE())
2626       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2627                       std::make_unique<ARMAttributeParser>(&W),
2628                       support::little);
2629     else
2630       reportUniqueWarning("attribute printing not implemented for big-endian "
2631                           "ARM objects");
2632     break;
2633   case EM_RISCV:
2634     if (Obj.isLE())
2635       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2636                       std::make_unique<RISCVAttributeParser>(&W),
2637                       support::little);
2638     else
2639       reportUniqueWarning("attribute printing not implemented for big-endian "
2640                           "RISC-V objects");
2641     break;
2642   case EM_MSP430:
2643     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2644                     std::make_unique<MSP430AttributeParser>(&W),
2645                     support::little);
2646     break;
2647   case EM_MIPS: {
2648     printMipsABIFlags();
2649     printMipsOptions();
2650     printMipsReginfo();
2651     MipsGOTParser<ELFT> Parser(*this);
2652     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2653       reportUniqueWarning(std::move(E));
2654     else if (!Parser.isGotEmpty())
2655       printMipsGOT(Parser);
2656 
2657     if (Error E = Parser.findPLT(dynamic_table()))
2658       reportUniqueWarning(std::move(E));
2659     else if (!Parser.isPltEmpty())
2660       printMipsPLT(Parser);
2661     break;
2662   }
2663   default:
2664     break;
2665   }
2666 }
2667 
2668 template <class ELFT>
2669 void ELFDumper<ELFT>::printAttributes(
2670     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2671     support::endianness Endianness) {
2672   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2673          "Incomplete ELF attribute implementation");
2674   DictScope BA(W, "BuildAttributes");
2675   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2676     if (Sec.sh_type != AttrShType)
2677       continue;
2678 
2679     ArrayRef<uint8_t> Contents;
2680     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2681             Obj.getSectionContents(Sec)) {
2682       Contents = *ContentOrErr;
2683       if (Contents.empty()) {
2684         reportUniqueWarning("the " + describe(Sec) + " is empty");
2685         continue;
2686       }
2687     } else {
2688       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2689                           ": " + toString(ContentOrErr.takeError()));
2690       continue;
2691     }
2692 
2693     W.printHex("FormatVersion", Contents[0]);
2694 
2695     if (Error E = AttrParser->parse(Contents, Endianness))
2696       reportUniqueWarning("unable to dump attributes from the " +
2697                           describe(Sec) + ": " + toString(std::move(E)));
2698   }
2699 }
2700 
2701 namespace {
2702 
2703 template <class ELFT> class MipsGOTParser {
2704 public:
2705   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2706   using Entry = typename ELFT::Addr;
2707   using Entries = ArrayRef<Entry>;
2708 
2709   const bool IsStatic;
2710   const ELFFile<ELFT> &Obj;
2711   const ELFDumper<ELFT> &Dumper;
2712 
2713   MipsGOTParser(const ELFDumper<ELFT> &D);
2714   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2715   Error findPLT(Elf_Dyn_Range DynTable);
2716 
2717   bool isGotEmpty() const { return GotEntries.empty(); }
2718   bool isPltEmpty() const { return PltEntries.empty(); }
2719 
2720   uint64_t getGp() const;
2721 
2722   const Entry *getGotLazyResolver() const;
2723   const Entry *getGotModulePointer() const;
2724   const Entry *getPltLazyResolver() const;
2725   const Entry *getPltModulePointer() const;
2726 
2727   Entries getLocalEntries() const;
2728   Entries getGlobalEntries() const;
2729   Entries getOtherEntries() const;
2730   Entries getPltEntries() const;
2731 
2732   uint64_t getGotAddress(const Entry * E) const;
2733   int64_t getGotOffset(const Entry * E) const;
2734   const Elf_Sym *getGotSym(const Entry *E) const;
2735 
2736   uint64_t getPltAddress(const Entry * E) const;
2737   const Elf_Sym *getPltSym(const Entry *E) const;
2738 
2739   StringRef getPltStrTable() const { return PltStrTable; }
2740   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2741 
2742 private:
2743   const Elf_Shdr *GotSec;
2744   size_t LocalNum;
2745   size_t GlobalNum;
2746 
2747   const Elf_Shdr *PltSec;
2748   const Elf_Shdr *PltRelSec;
2749   const Elf_Shdr *PltSymTable;
2750   StringRef FileName;
2751 
2752   Elf_Sym_Range GotDynSyms;
2753   StringRef PltStrTable;
2754 
2755   Entries GotEntries;
2756   Entries PltEntries;
2757 };
2758 
2759 } // end anonymous namespace
2760 
2761 template <class ELFT>
2762 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2763     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2764       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2765       PltRelSec(nullptr), PltSymTable(nullptr),
2766       FileName(D.getElfObject().getFileName()) {}
2767 
2768 template <class ELFT>
2769 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2770                                    Elf_Sym_Range DynSyms) {
2771   // See "Global Offset Table" in Chapter 5 in the following document
2772   // for detailed GOT description.
2773   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2774 
2775   // Find static GOT secton.
2776   if (IsStatic) {
2777     GotSec = Dumper.findSectionByName(".got");
2778     if (!GotSec)
2779       return Error::success();
2780 
2781     ArrayRef<uint8_t> Content =
2782         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2783     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2784                          Content.size() / sizeof(Entry));
2785     LocalNum = GotEntries.size();
2786     return Error::success();
2787   }
2788 
2789   // Lookup dynamic table tags which define the GOT layout.
2790   Optional<uint64_t> DtPltGot;
2791   Optional<uint64_t> DtLocalGotNum;
2792   Optional<uint64_t> DtGotSym;
2793   for (const auto &Entry : DynTable) {
2794     switch (Entry.getTag()) {
2795     case ELF::DT_PLTGOT:
2796       DtPltGot = Entry.getVal();
2797       break;
2798     case ELF::DT_MIPS_LOCAL_GOTNO:
2799       DtLocalGotNum = Entry.getVal();
2800       break;
2801     case ELF::DT_MIPS_GOTSYM:
2802       DtGotSym = Entry.getVal();
2803       break;
2804     }
2805   }
2806 
2807   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2808     return Error::success();
2809 
2810   if (!DtPltGot)
2811     return createError("cannot find PLTGOT dynamic tag");
2812   if (!DtLocalGotNum)
2813     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2814   if (!DtGotSym)
2815     return createError("cannot find MIPS_GOTSYM dynamic tag");
2816 
2817   size_t DynSymTotal = DynSyms.size();
2818   if (*DtGotSym > DynSymTotal)
2819     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2820                        ") exceeds the number of dynamic symbols (" +
2821                        Twine(DynSymTotal) + ")");
2822 
2823   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2824   if (!GotSec)
2825     return createError("there is no non-empty GOT section at 0x" +
2826                        Twine::utohexstr(*DtPltGot));
2827 
2828   LocalNum = *DtLocalGotNum;
2829   GlobalNum = DynSymTotal - *DtGotSym;
2830 
2831   ArrayRef<uint8_t> Content =
2832       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2833   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2834                        Content.size() / sizeof(Entry));
2835   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2836 
2837   return Error::success();
2838 }
2839 
2840 template <class ELFT>
2841 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2842   // Lookup dynamic table tags which define the PLT layout.
2843   Optional<uint64_t> DtMipsPltGot;
2844   Optional<uint64_t> DtJmpRel;
2845   for (const auto &Entry : DynTable) {
2846     switch (Entry.getTag()) {
2847     case ELF::DT_MIPS_PLTGOT:
2848       DtMipsPltGot = Entry.getVal();
2849       break;
2850     case ELF::DT_JMPREL:
2851       DtJmpRel = Entry.getVal();
2852       break;
2853     }
2854   }
2855 
2856   if (!DtMipsPltGot && !DtJmpRel)
2857     return Error::success();
2858 
2859   // Find PLT section.
2860   if (!DtMipsPltGot)
2861     return createError("cannot find MIPS_PLTGOT dynamic tag");
2862   if (!DtJmpRel)
2863     return createError("cannot find JMPREL dynamic tag");
2864 
2865   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2866   if (!PltSec)
2867     return createError("there is no non-empty PLTGOT section at 0x" +
2868                        Twine::utohexstr(*DtMipsPltGot));
2869 
2870   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2871   if (!PltRelSec)
2872     return createError("there is no non-empty RELPLT section at 0x" +
2873                        Twine::utohexstr(*DtJmpRel));
2874 
2875   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2876           Obj.getSectionContents(*PltSec))
2877     PltEntries =
2878         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2879                 PltContentOrErr->size() / sizeof(Entry));
2880   else
2881     return createError("unable to read PLTGOT section content: " +
2882                        toString(PltContentOrErr.takeError()));
2883 
2884   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2885           Obj.getSection(PltRelSec->sh_link))
2886     PltSymTable = *PltSymTableOrErr;
2887   else
2888     return createError("unable to get a symbol table linked to the " +
2889                        describe(Obj, *PltRelSec) + ": " +
2890                        toString(PltSymTableOrErr.takeError()));
2891 
2892   if (Expected<StringRef> StrTabOrErr =
2893           Obj.getStringTableForSymtab(*PltSymTable))
2894     PltStrTable = *StrTabOrErr;
2895   else
2896     return createError("unable to get a string table for the " +
2897                        describe(Obj, *PltSymTable) + ": " +
2898                        toString(StrTabOrErr.takeError()));
2899 
2900   return Error::success();
2901 }
2902 
2903 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2904   return GotSec->sh_addr + 0x7ff0;
2905 }
2906 
2907 template <class ELFT>
2908 const typename MipsGOTParser<ELFT>::Entry *
2909 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2910   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2911 }
2912 
2913 template <class ELFT>
2914 const typename MipsGOTParser<ELFT>::Entry *
2915 MipsGOTParser<ELFT>::getGotModulePointer() const {
2916   if (LocalNum < 2)
2917     return nullptr;
2918   const Entry &E = GotEntries[1];
2919   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2920     return nullptr;
2921   return &E;
2922 }
2923 
2924 template <class ELFT>
2925 typename MipsGOTParser<ELFT>::Entries
2926 MipsGOTParser<ELFT>::getLocalEntries() const {
2927   size_t Skip = getGotModulePointer() ? 2 : 1;
2928   if (LocalNum - Skip <= 0)
2929     return Entries();
2930   return GotEntries.slice(Skip, LocalNum - Skip);
2931 }
2932 
2933 template <class ELFT>
2934 typename MipsGOTParser<ELFT>::Entries
2935 MipsGOTParser<ELFT>::getGlobalEntries() const {
2936   if (GlobalNum == 0)
2937     return Entries();
2938   return GotEntries.slice(LocalNum, GlobalNum);
2939 }
2940 
2941 template <class ELFT>
2942 typename MipsGOTParser<ELFT>::Entries
2943 MipsGOTParser<ELFT>::getOtherEntries() const {
2944   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2945   if (OtherNum == 0)
2946     return Entries();
2947   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2948 }
2949 
2950 template <class ELFT>
2951 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2952   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2953   return GotSec->sh_addr + Offset;
2954 }
2955 
2956 template <class ELFT>
2957 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2958   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2959   return Offset - 0x7ff0;
2960 }
2961 
2962 template <class ELFT>
2963 const typename MipsGOTParser<ELFT>::Elf_Sym *
2964 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2965   int64_t Offset = std::distance(GotEntries.data(), E);
2966   return &GotDynSyms[Offset - LocalNum];
2967 }
2968 
2969 template <class ELFT>
2970 const typename MipsGOTParser<ELFT>::Entry *
2971 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2972   return PltEntries.empty() ? nullptr : &PltEntries[0];
2973 }
2974 
2975 template <class ELFT>
2976 const typename MipsGOTParser<ELFT>::Entry *
2977 MipsGOTParser<ELFT>::getPltModulePointer() const {
2978   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2979 }
2980 
2981 template <class ELFT>
2982 typename MipsGOTParser<ELFT>::Entries
2983 MipsGOTParser<ELFT>::getPltEntries() const {
2984   if (PltEntries.size() <= 2)
2985     return Entries();
2986   return PltEntries.slice(2, PltEntries.size() - 2);
2987 }
2988 
2989 template <class ELFT>
2990 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2991   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2992   return PltSec->sh_addr + Offset;
2993 }
2994 
2995 template <class ELFT>
2996 const typename MipsGOTParser<ELFT>::Elf_Sym *
2997 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2998   int64_t Offset = std::distance(getPltEntries().data(), E);
2999   if (PltRelSec->sh_type == ELF::SHT_REL) {
3000     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3001     return unwrapOrError(FileName,
3002                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3003   } else {
3004     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3005     return unwrapOrError(FileName,
3006                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3007   }
3008 }
3009 
3010 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3011   {"None",                    Mips::AFL_EXT_NONE},
3012   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3013   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3014   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3015   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3016   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3017   {"LSI R4010",               Mips::AFL_EXT_4010},
3018   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3019   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3020   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3021   {"MIPS R4650",              Mips::AFL_EXT_4650},
3022   {"MIPS R5900",              Mips::AFL_EXT_5900},
3023   {"MIPS R10000",             Mips::AFL_EXT_10000},
3024   {"NEC VR4100",              Mips::AFL_EXT_4100},
3025   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3026   {"NEC VR4120",              Mips::AFL_EXT_4120},
3027   {"NEC VR5400",              Mips::AFL_EXT_5400},
3028   {"NEC VR5500",              Mips::AFL_EXT_5500},
3029   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3030   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3031 };
3032 
3033 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3034   {"DSP",                Mips::AFL_ASE_DSP},
3035   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3036   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3037   {"MCU",                Mips::AFL_ASE_MCU},
3038   {"MDMX",               Mips::AFL_ASE_MDMX},
3039   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3040   {"MT",                 Mips::AFL_ASE_MT},
3041   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3042   {"VZ",                 Mips::AFL_ASE_VIRT},
3043   {"MSA",                Mips::AFL_ASE_MSA},
3044   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3045   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3046   {"XPA",                Mips::AFL_ASE_XPA},
3047   {"CRC",                Mips::AFL_ASE_CRC},
3048   {"GINV",               Mips::AFL_ASE_GINV},
3049 };
3050 
3051 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3052   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3053   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3054   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3055   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3056   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3057    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3058   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3059   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3060   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3061    Mips::Val_GNU_MIPS_ABI_FP_64A}
3062 };
3063 
3064 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3065   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3066 };
3067 
3068 static int getMipsRegisterSize(uint8_t Flag) {
3069   switch (Flag) {
3070   case Mips::AFL_REG_NONE:
3071     return 0;
3072   case Mips::AFL_REG_32:
3073     return 32;
3074   case Mips::AFL_REG_64:
3075     return 64;
3076   case Mips::AFL_REG_128:
3077     return 128;
3078   default:
3079     return -1;
3080   }
3081 }
3082 
3083 template <class ELFT>
3084 static void printMipsReginfoData(ScopedPrinter &W,
3085                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3086   W.printHex("GP", Reginfo.ri_gp_value);
3087   W.printHex("General Mask", Reginfo.ri_gprmask);
3088   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3089   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3090   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3091   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3092 }
3093 
3094 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3095   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3096   if (!RegInfoSec) {
3097     W.startLine() << "There is no .reginfo section in the file.\n";
3098     return;
3099   }
3100 
3101   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3102       Obj.getSectionContents(*RegInfoSec);
3103   if (!ContentsOrErr) {
3104     this->reportUniqueWarning(
3105         "unable to read the content of the .reginfo section (" +
3106         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3107     return;
3108   }
3109 
3110   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3111     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3112                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3113     return;
3114   }
3115 
3116   DictScope GS(W, "MIPS RegInfo");
3117   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3118                               ContentsOrErr->data()));
3119 }
3120 
3121 template <class ELFT>
3122 static Expected<const Elf_Mips_Options<ELFT> *>
3123 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3124                 bool &IsSupported) {
3125   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3126     return createError("the .MIPS.options section has an invalid size (0x" +
3127                        Twine::utohexstr(SecData.size()) + ")");
3128 
3129   const Elf_Mips_Options<ELFT> *O =
3130       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3131   const uint8_t Size = O->size;
3132   if (Size > SecData.size()) {
3133     const uint64_t Offset = SecData.data() - SecBegin;
3134     const uint64_t SecSize = Offset + SecData.size();
3135     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3136                        " at offset 0x" + Twine::utohexstr(Offset) +
3137                        " goes past the end of the .MIPS.options "
3138                        "section of size 0x" +
3139                        Twine::utohexstr(SecSize));
3140   }
3141 
3142   IsSupported = O->kind == ODK_REGINFO;
3143   const size_t ExpectedSize =
3144       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3145 
3146   if (IsSupported)
3147     if (Size < ExpectedSize)
3148       return createError(
3149           "a .MIPS.options entry of kind " +
3150           Twine(getElfMipsOptionsOdkType(O->kind)) +
3151           " has an invalid size (0x" + Twine::utohexstr(Size) +
3152           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3153 
3154   SecData = SecData.drop_front(Size);
3155   return O;
3156 }
3157 
3158 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3159   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3160   if (!MipsOpts) {
3161     W.startLine() << "There is no .MIPS.options section in the file.\n";
3162     return;
3163   }
3164 
3165   DictScope GS(W, "MIPS Options");
3166 
3167   ArrayRef<uint8_t> Data =
3168       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3169   const uint8_t *const SecBegin = Data.begin();
3170   while (!Data.empty()) {
3171     bool IsSupported;
3172     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3173         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3174     if (!OptsOrErr) {
3175       reportUniqueWarning(OptsOrErr.takeError());
3176       break;
3177     }
3178 
3179     unsigned Kind = (*OptsOrErr)->kind;
3180     const char *Type = getElfMipsOptionsOdkType(Kind);
3181     if (!IsSupported) {
3182       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3183                     << ")\n";
3184       continue;
3185     }
3186 
3187     DictScope GS(W, Type);
3188     if (Kind == ODK_REGINFO)
3189       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3190     else
3191       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3192   }
3193 }
3194 
3195 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3196   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3197   if (!StackMapSection)
3198     return;
3199 
3200   auto Warn = [&](Error &&E) {
3201     this->reportUniqueWarning("unable to read the stack map from " +
3202                               describe(*StackMapSection) + ": " +
3203                               toString(std::move(E)));
3204   };
3205 
3206   Expected<ArrayRef<uint8_t>> ContentOrErr =
3207       Obj.getSectionContents(*StackMapSection);
3208   if (!ContentOrErr) {
3209     Warn(ContentOrErr.takeError());
3210     return;
3211   }
3212 
3213   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3214           *ContentOrErr)) {
3215     Warn(std::move(E));
3216     return;
3217   }
3218 
3219   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3220 }
3221 
3222 template <class ELFT>
3223 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3224                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3225   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3226   if (!Target)
3227     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3228                         " in " + describe(Sec) + ": " +
3229                         toString(Target.takeError()));
3230   else
3231     printRelRelaReloc(R, *Target);
3232 }
3233 
3234 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3235                                StringRef Str2) {
3236   OS.PadToColumn(2u);
3237   OS << Str1;
3238   OS.PadToColumn(37u);
3239   OS << Str2 << "\n";
3240   OS.flush();
3241 }
3242 
3243 template <class ELFT>
3244 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3245                                               StringRef FileName) {
3246   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3247   if (ElfHeader.e_shnum != 0)
3248     return to_string(ElfHeader.e_shnum);
3249 
3250   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3251   if (!ArrOrErr) {
3252     // In this case we can ignore an error, because we have already reported a
3253     // warning about the broken section header table earlier.
3254     consumeError(ArrOrErr.takeError());
3255     return "<?>";
3256   }
3257 
3258   if (ArrOrErr->empty())
3259     return "0";
3260   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3261 }
3262 
3263 template <class ELFT>
3264 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3265                                                     StringRef FileName) {
3266   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3267   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3268     return to_string(ElfHeader.e_shstrndx);
3269 
3270   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3271   if (!ArrOrErr) {
3272     // In this case we can ignore an error, because we have already reported a
3273     // warning about the broken section header table earlier.
3274     consumeError(ArrOrErr.takeError());
3275     return "<?>";
3276   }
3277 
3278   if (ArrOrErr->empty())
3279     return "65535 (corrupt: out of range)";
3280   return to_string(ElfHeader.e_shstrndx) + " (" +
3281          to_string((*ArrOrErr)[0].sh_link) + ")";
3282 }
3283 
3284 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3285   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3286     return E.Value == Type;
3287   });
3288   if (It != makeArrayRef(ElfObjectFileType).end())
3289     return It;
3290   return nullptr;
3291 }
3292 
3293 template <class ELFT>
3294 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3295                                           ArrayRef<std::string> InputFilenames,
3296                                           const Archive *A) {
3297   if (InputFilenames.size() > 1 || A) {
3298     this->W.startLine() << "\n";
3299     this->W.printString("File", FileStr);
3300   }
3301 }
3302 
3303 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3304   const Elf_Ehdr &e = this->Obj.getHeader();
3305   OS << "ELF Header:\n";
3306   OS << "  Magic:  ";
3307   std::string Str;
3308   for (int i = 0; i < ELF::EI_NIDENT; i++)
3309     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3310   OS << "\n";
3311   Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3312   printFields(OS, "Class:", Str);
3313   Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3314   printFields(OS, "Data:", Str);
3315   OS.PadToColumn(2u);
3316   OS << "Version:";
3317   OS.PadToColumn(37u);
3318   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3319   if (e.e_version == ELF::EV_CURRENT)
3320     OS << " (current)";
3321   OS << "\n";
3322   Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3323   printFields(OS, "OS/ABI:", Str);
3324   printFields(OS,
3325               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3326 
3327   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3328     Str = E->AltName.str();
3329   } else {
3330     if (e.e_type >= ET_LOPROC)
3331       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3332     else if (e.e_type >= ET_LOOS)
3333       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3334     else
3335       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3336   }
3337   printFields(OS, "Type:", Str);
3338 
3339   Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3340   printFields(OS, "Machine:", Str);
3341   Str = "0x" + utohexstr(e.e_version);
3342   printFields(OS, "Version:", Str);
3343   Str = "0x" + utohexstr(e.e_entry);
3344   printFields(OS, "Entry point address:", Str);
3345   Str = to_string(e.e_phoff) + " (bytes into file)";
3346   printFields(OS, "Start of program headers:", Str);
3347   Str = to_string(e.e_shoff) + " (bytes into file)";
3348   printFields(OS, "Start of section headers:", Str);
3349   std::string ElfFlags;
3350   if (e.e_machine == EM_MIPS)
3351     ElfFlags =
3352         printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3353                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3354                    unsigned(ELF::EF_MIPS_MACH));
3355   else if (e.e_machine == EM_RISCV)
3356     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3357   else if (e.e_machine == EM_AVR)
3358     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3359                           unsigned(ELF::EF_AVR_ARCH_MASK));
3360   Str = "0x" + utohexstr(e.e_flags);
3361   if (!ElfFlags.empty())
3362     Str = Str + ", " + ElfFlags;
3363   printFields(OS, "Flags:", Str);
3364   Str = to_string(e.e_ehsize) + " (bytes)";
3365   printFields(OS, "Size of this header:", Str);
3366   Str = to_string(e.e_phentsize) + " (bytes)";
3367   printFields(OS, "Size of program headers:", Str);
3368   Str = to_string(e.e_phnum);
3369   printFields(OS, "Number of program headers:", Str);
3370   Str = to_string(e.e_shentsize) + " (bytes)";
3371   printFields(OS, "Size of section headers:", Str);
3372   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3373   printFields(OS, "Number of section headers:", Str);
3374   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3375   printFields(OS, "Section header string table index:", Str);
3376 }
3377 
3378 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3379   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3380                           const Elf_Shdr &Symtab) -> StringRef {
3381     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3382     if (!StrTableOrErr) {
3383       reportUniqueWarning("unable to get the string table for " +
3384                           describe(Symtab) + ": " +
3385                           toString(StrTableOrErr.takeError()));
3386       return "<?>";
3387     }
3388 
3389     StringRef Strings = *StrTableOrErr;
3390     if (Sym.st_name >= Strings.size()) {
3391       reportUniqueWarning("unable to get the name of the symbol with index " +
3392                           Twine(SymNdx) + ": st_name (0x" +
3393                           Twine::utohexstr(Sym.st_name) +
3394                           ") is past the end of the string table of size 0x" +
3395                           Twine::utohexstr(Strings.size()));
3396       return "<?>";
3397     }
3398 
3399     return StrTableOrErr->data() + Sym.st_name;
3400   };
3401 
3402   std::vector<GroupSection> Ret;
3403   uint64_t I = 0;
3404   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3405     ++I;
3406     if (Sec.sh_type != ELF::SHT_GROUP)
3407       continue;
3408 
3409     StringRef Signature = "<?>";
3410     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3411       if (Expected<const Elf_Sym *> SymOrErr =
3412               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3413         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3414       else
3415         reportUniqueWarning("unable to get the signature symbol for " +
3416                             describe(Sec) + ": " +
3417                             toString(SymOrErr.takeError()));
3418     } else {
3419       reportUniqueWarning("unable to get the symbol table for " +
3420                           describe(Sec) + ": " +
3421                           toString(SymtabOrErr.takeError()));
3422     }
3423 
3424     ArrayRef<Elf_Word> Data;
3425     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3426             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3427       if (ContentsOrErr->empty())
3428         reportUniqueWarning("unable to read the section group flag from the " +
3429                             describe(Sec) + ": the section is empty");
3430       else
3431         Data = *ContentsOrErr;
3432     } else {
3433       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3434                           ": " + toString(ContentsOrErr.takeError()));
3435     }
3436 
3437     Ret.push_back({getPrintableSectionName(Sec),
3438                    maybeDemangle(Signature),
3439                    Sec.sh_name,
3440                    I - 1,
3441                    Sec.sh_link,
3442                    Sec.sh_info,
3443                    Data.empty() ? Elf_Word(0) : Data[0],
3444                    {}});
3445 
3446     if (Data.empty())
3447       continue;
3448 
3449     std::vector<GroupMember> &GM = Ret.back().Members;
3450     for (uint32_t Ndx : Data.slice(1)) {
3451       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3452         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3453       } else {
3454         reportUniqueWarning("unable to get the section with index " +
3455                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3456                             ": " + toString(SecOrErr.takeError()));
3457         GM.push_back({"<?>", Ndx});
3458       }
3459     }
3460   }
3461   return Ret;
3462 }
3463 
3464 static DenseMap<uint64_t, const GroupSection *>
3465 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3466   DenseMap<uint64_t, const GroupSection *> Ret;
3467   for (const GroupSection &G : Groups)
3468     for (const GroupMember &GM : G.Members)
3469       Ret.insert({GM.Index, &G});
3470   return Ret;
3471 }
3472 
3473 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3474   std::vector<GroupSection> V = this->getGroups();
3475   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3476   for (const GroupSection &G : V) {
3477     OS << "\n"
3478        << getGroupType(G.Type) << " group section ["
3479        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3480        << "] contains " << G.Members.size() << " sections:\n"
3481        << "   [Index]    Name\n";
3482     for (const GroupMember &GM : G.Members) {
3483       const GroupSection *MainGroup = Map[GM.Index];
3484       if (MainGroup != &G)
3485         this->reportUniqueWarning(
3486             "section with index " + Twine(GM.Index) +
3487             ", included in the group section with index " +
3488             Twine(MainGroup->Index) +
3489             ", was also found in the group section with index " +
3490             Twine(G.Index));
3491       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3492     }
3493   }
3494 
3495   if (V.empty())
3496     OS << "There are no section groups in this file.\n";
3497 }
3498 
3499 template <class ELFT>
3500 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3501   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3502 }
3503 
3504 template <class ELFT>
3505 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3506                                            const RelSymbol<ELFT> &RelSym) {
3507   // First two fields are bit width dependent. The rest of them are fixed width.
3508   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3509   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3510   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3511 
3512   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3513   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3514 
3515   SmallString<32> RelocName;
3516   this->Obj.getRelocationTypeName(R.Type, RelocName);
3517   Fields[2].Str = RelocName.c_str();
3518 
3519   if (RelSym.Sym)
3520     Fields[3].Str =
3521         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3522 
3523   Fields[4].Str = std::string(RelSym.Name);
3524   for (const Field &F : Fields)
3525     printField(F);
3526 
3527   std::string Addend;
3528   if (Optional<int64_t> A = R.Addend) {
3529     int64_t RelAddend = *A;
3530     if (!RelSym.Name.empty()) {
3531       if (RelAddend < 0) {
3532         Addend = " - ";
3533         RelAddend = std::abs(RelAddend);
3534       } else {
3535         Addend = " + ";
3536       }
3537     }
3538     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3539   }
3540   OS << Addend << "\n";
3541 }
3542 
3543 template <class ELFT>
3544 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3545   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3546   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3547   if (ELFT::Is64Bits)
3548     OS << "    ";
3549   else
3550     OS << " ";
3551   if (IsRelr && opts::RawRelr)
3552     OS << "Data  ";
3553   else
3554     OS << "Offset";
3555   if (ELFT::Is64Bits)
3556     OS << "             Info             Type"
3557        << "               Symbol's Value  Symbol's Name";
3558   else
3559     OS << "     Info    Type                Sym. Value  Symbol's Name";
3560   if (IsRela)
3561     OS << " + Addend";
3562   OS << "\n";
3563 }
3564 
3565 template <class ELFT>
3566 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3567                                                  const DynRegionInfo &Reg) {
3568   uint64_t Offset = Reg.Addr - this->Obj.base();
3569   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3570      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3571   printRelocHeaderFields<ELFT>(OS, Type);
3572 }
3573 
3574 template <class ELFT>
3575 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3576   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3577          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3578          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3579          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3580 }
3581 
3582 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3583   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3584     // Android's packed relocation section needs to be unpacked first
3585     // to get the actual number of entries.
3586     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3587         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3588       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3589           this->Obj.android_relas(Sec);
3590       if (!RelasOrErr)
3591         return RelasOrErr.takeError();
3592       return RelasOrErr->size();
3593     }
3594 
3595     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3596                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3597       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3598       if (!RelrsOrErr)
3599         return RelrsOrErr.takeError();
3600       return this->Obj.decode_relrs(*RelrsOrErr).size();
3601     }
3602 
3603     return Sec.getEntityCount();
3604   };
3605 
3606   bool HasRelocSections = false;
3607   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3608     if (!isRelocationSec<ELFT>(Sec))
3609       continue;
3610     HasRelocSections = true;
3611 
3612     std::string EntriesNum = "<?>";
3613     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3614       EntriesNum = std::to_string(*NumOrErr);
3615     else
3616       this->reportUniqueWarning("unable to get the number of relocations in " +
3617                                 this->describe(Sec) + ": " +
3618                                 toString(NumOrErr.takeError()));
3619 
3620     uintX_t Offset = Sec.sh_offset;
3621     StringRef Name = this->getPrintableSectionName(Sec);
3622     OS << "\nRelocation section '" << Name << "' at offset 0x"
3623        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3624        << " entries:\n";
3625     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3626     this->printRelocationsHelper(Sec);
3627   }
3628   if (!HasRelocSections)
3629     OS << "\nThere are no relocations in this file.\n";
3630 }
3631 
3632 // Print the offset of a particular section from anyone of the ranges:
3633 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3634 // If 'Type' does not fall within any of those ranges, then a string is
3635 // returned as '<unknown>' followed by the type value.
3636 static std::string getSectionTypeOffsetString(unsigned Type) {
3637   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3638     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3639   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3640     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3641   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3642     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3643   return "0x" + utohexstr(Type) + ": <unknown>";
3644 }
3645 
3646 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3647   StringRef Name = getELFSectionTypeName(Machine, Type);
3648 
3649   // Handle SHT_GNU_* type names.
3650   if (Name.consume_front("SHT_GNU_")) {
3651     if (Name == "HASH")
3652       return "GNU_HASH";
3653     // E.g. SHT_GNU_verneed -> VERNEED.
3654     return Name.upper();
3655   }
3656 
3657   if (Name == "SHT_SYMTAB_SHNDX")
3658     return "SYMTAB SECTION INDICES";
3659 
3660   if (Name.consume_front("SHT_"))
3661     return Name.str();
3662   return getSectionTypeOffsetString(Type);
3663 }
3664 
3665 static void printSectionDescription(formatted_raw_ostream &OS,
3666                                     unsigned EMachine) {
3667   OS << "Key to Flags:\n";
3668   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3669         "(info),\n";
3670   OS << "  L (link order), O (extra OS processing required), G (group), T "
3671         "(TLS),\n";
3672   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3673   OS << "  R (retain)";
3674 
3675   if (EMachine == EM_X86_64)
3676     OS << ", l (large)";
3677   else if (EMachine == EM_ARM)
3678     OS << ", y (purecode)";
3679 
3680   OS << ", p (processor specific)\n";
3681 }
3682 
3683 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3684   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3685   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3686   OS << "There are " << to_string(Sections.size())
3687      << " section headers, starting at offset "
3688      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3689   OS << "Section Headers:\n";
3690   Field Fields[11] = {
3691       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3692       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3693       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3694       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3695   for (const Field &F : Fields)
3696     printField(F);
3697   OS << "\n";
3698 
3699   StringRef SecStrTable;
3700   if (Expected<StringRef> SecStrTableOrErr =
3701           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3702     SecStrTable = *SecStrTableOrErr;
3703   else
3704     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3705 
3706   size_t SectionIndex = 0;
3707   for (const Elf_Shdr &Sec : Sections) {
3708     Fields[0].Str = to_string(SectionIndex);
3709     if (SecStrTable.empty())
3710       Fields[1].Str = "<no-strings>";
3711     else
3712       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3713           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3714     Fields[2].Str =
3715         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3716     Fields[3].Str =
3717         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3718     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3719     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3720     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3721     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3722                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
3723     Fields[8].Str = to_string(Sec.sh_link);
3724     Fields[9].Str = to_string(Sec.sh_info);
3725     Fields[10].Str = to_string(Sec.sh_addralign);
3726 
3727     OS.PadToColumn(Fields[0].Column);
3728     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3729     for (int i = 1; i < 7; i++)
3730       printField(Fields[i]);
3731     OS.PadToColumn(Fields[7].Column);
3732     OS << right_justify(Fields[7].Str, 3);
3733     OS.PadToColumn(Fields[8].Column);
3734     OS << right_justify(Fields[8].Str, 2);
3735     OS.PadToColumn(Fields[9].Column);
3736     OS << right_justify(Fields[9].Str, 3);
3737     OS.PadToColumn(Fields[10].Column);
3738     OS << right_justify(Fields[10].Str, 2);
3739     OS << "\n";
3740     ++SectionIndex;
3741   }
3742   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3743 }
3744 
3745 template <class ELFT>
3746 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3747                                             size_t Entries,
3748                                             bool NonVisibilityBitsUsed) const {
3749   StringRef Name;
3750   if (Symtab)
3751     Name = this->getPrintableSectionName(*Symtab);
3752   if (!Name.empty())
3753     OS << "\nSymbol table '" << Name << "'";
3754   else
3755     OS << "\nSymbol table for image";
3756   OS << " contains " << Entries << " entries:\n";
3757 
3758   if (ELFT::Is64Bits)
3759     OS << "   Num:    Value          Size Type    Bind   Vis";
3760   else
3761     OS << "   Num:    Value  Size Type    Bind   Vis";
3762 
3763   if (NonVisibilityBitsUsed)
3764     OS << "             ";
3765   OS << "       Ndx Name\n";
3766 }
3767 
3768 template <class ELFT>
3769 std::string
3770 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3771                                         unsigned SymIndex,
3772                                         DataRegion<Elf_Word> ShndxTable) const {
3773   unsigned SectionIndex = Symbol.st_shndx;
3774   switch (SectionIndex) {
3775   case ELF::SHN_UNDEF:
3776     return "UND";
3777   case ELF::SHN_ABS:
3778     return "ABS";
3779   case ELF::SHN_COMMON:
3780     return "COM";
3781   case ELF::SHN_XINDEX: {
3782     Expected<uint32_t> IndexOrErr =
3783         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3784     if (!IndexOrErr) {
3785       assert(Symbol.st_shndx == SHN_XINDEX &&
3786              "getExtendedSymbolTableIndex should only fail due to an invalid "
3787              "SHT_SYMTAB_SHNDX table/reference");
3788       this->reportUniqueWarning(IndexOrErr.takeError());
3789       return "RSV[0xffff]";
3790     }
3791     return to_string(format_decimal(*IndexOrErr, 3));
3792   }
3793   default:
3794     // Find if:
3795     // Processor specific
3796     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3797       return std::string("PRC[0x") +
3798              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3799     // OS specific
3800     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3801       return std::string("OS[0x") +
3802              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3803     // Architecture reserved:
3804     if (SectionIndex >= ELF::SHN_LORESERVE &&
3805         SectionIndex <= ELF::SHN_HIRESERVE)
3806       return std::string("RSV[0x") +
3807              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3808     // A normal section with an index
3809     return to_string(format_decimal(SectionIndex, 3));
3810   }
3811 }
3812 
3813 template <class ELFT>
3814 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3815                                      DataRegion<Elf_Word> ShndxTable,
3816                                      Optional<StringRef> StrTable,
3817                                      bool IsDynamic,
3818                                      bool NonVisibilityBitsUsed) const {
3819   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3820   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3821                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3822   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3823   Fields[1].Str =
3824       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3825   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3826 
3827   unsigned char SymbolType = Symbol.getType();
3828   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3829       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3830     Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3831   else
3832     Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3833 
3834   Fields[4].Str =
3835       enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3836   Fields[5].Str =
3837       enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3838 
3839   if (Symbol.st_other & ~0x3) {
3840     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3841       uint8_t Other = Symbol.st_other & ~0x3;
3842       if (Other & STO_AARCH64_VARIANT_PCS) {
3843         Other &= ~STO_AARCH64_VARIANT_PCS;
3844         Fields[5].Str += " [VARIANT_PCS";
3845         if (Other != 0)
3846           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3847         Fields[5].Str.append("]");
3848       }
3849     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3850       uint8_t Other = Symbol.st_other & ~0x3;
3851       if (Other & STO_RISCV_VARIANT_CC) {
3852         Other &= ~STO_RISCV_VARIANT_CC;
3853         Fields[5].Str += " [VARIANT_CC";
3854         if (Other != 0)
3855           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3856         Fields[5].Str.append("]");
3857       }
3858     } else {
3859       Fields[5].Str +=
3860           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3861     }
3862   }
3863 
3864   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3865   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3866 
3867   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3868                                           StrTable, IsDynamic);
3869   for (const Field &Entry : Fields)
3870     printField(Entry);
3871   OS << "\n";
3872 }
3873 
3874 template <class ELFT>
3875 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3876                                            unsigned SymIndex,
3877                                            DataRegion<Elf_Word> ShndxTable,
3878                                            StringRef StrTable,
3879                                            uint32_t Bucket) {
3880   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3881   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3882                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3883   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3884   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3885 
3886   Fields[2].Str = to_string(
3887       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3888   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3889 
3890   unsigned char SymbolType = Symbol->getType();
3891   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3892       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3893     Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3894   else
3895     Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3896 
3897   Fields[5].Str =
3898       enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3899   Fields[6].Str = enumToString(Symbol->getVisibility(),
3900                                makeArrayRef(ElfSymbolVisibilities));
3901   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3902   Fields[8].Str =
3903       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3904 
3905   for (const Field &Entry : Fields)
3906     printField(Entry);
3907   OS << "\n";
3908 }
3909 
3910 template <class ELFT>
3911 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3912                                       bool PrintDynamicSymbols) {
3913   if (!PrintSymbols && !PrintDynamicSymbols)
3914     return;
3915   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3916   this->printSymbolsHelper(true);
3917   if (PrintSymbols)
3918     this->printSymbolsHelper(false);
3919 }
3920 
3921 template <class ELFT>
3922 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3923   if (this->DynamicStringTable.empty())
3924     return;
3925 
3926   if (ELFT::Is64Bits)
3927     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3928   else
3929     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3930   OS << "\n";
3931 
3932   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3933   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3934   if (!FirstSym) {
3935     this->reportUniqueWarning(
3936         Twine("unable to print symbols for the .hash table: the "
3937               "dynamic symbol table ") +
3938         (this->DynSymRegion ? "is empty" : "was not found"));
3939     return;
3940   }
3941 
3942   DataRegion<Elf_Word> ShndxTable(
3943       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3944   auto Buckets = SysVHash.buckets();
3945   auto Chains = SysVHash.chains();
3946   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3947     if (Buckets[Buc] == ELF::STN_UNDEF)
3948       continue;
3949     BitVector Visited(SysVHash.nchain);
3950     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3951       if (Ch == ELF::STN_UNDEF)
3952         break;
3953 
3954       if (Visited[Ch]) {
3955         this->reportUniqueWarning(".hash section is invalid: bucket " +
3956                                   Twine(Ch) +
3957                                   ": a cycle was detected in the linked chain");
3958         break;
3959       }
3960 
3961       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3962                         Buc);
3963       Visited[Ch] = true;
3964     }
3965   }
3966 }
3967 
3968 template <class ELFT>
3969 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3970   if (this->DynamicStringTable.empty())
3971     return;
3972 
3973   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3974   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3975   if (!FirstSym) {
3976     this->reportUniqueWarning(
3977         Twine("unable to print symbols for the .gnu.hash table: the "
3978               "dynamic symbol table ") +
3979         (this->DynSymRegion ? "is empty" : "was not found"));
3980     return;
3981   }
3982 
3983   auto GetSymbol = [&](uint64_t SymIndex,
3984                        uint64_t SymsTotal) -> const Elf_Sym * {
3985     if (SymIndex >= SymsTotal) {
3986       this->reportUniqueWarning(
3987           "unable to print hashed symbol with index " + Twine(SymIndex) +
3988           ", which is greater than or equal to the number of dynamic symbols "
3989           "(" +
3990           Twine::utohexstr(SymsTotal) + ")");
3991       return nullptr;
3992     }
3993     return FirstSym + SymIndex;
3994   };
3995 
3996   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3997       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3998   ArrayRef<Elf_Word> Values;
3999   if (!ValuesOrErr)
4000     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4001                               "section: " +
4002                               toString(ValuesOrErr.takeError()));
4003   else
4004     Values = *ValuesOrErr;
4005 
4006   DataRegion<Elf_Word> ShndxTable(
4007       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4008   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4009   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4010     if (Buckets[Buc] == ELF::STN_UNDEF)
4011       continue;
4012     uint32_t Index = Buckets[Buc];
4013     // Print whole chain.
4014     while (true) {
4015       uint32_t SymIndex = Index++;
4016       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4017         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4018                           Buc);
4019       else
4020         break;
4021 
4022       if (SymIndex < GnuHash.symndx) {
4023         this->reportUniqueWarning(
4024             "unable to read the hash value for symbol with index " +
4025             Twine(SymIndex) +
4026             ", which is less than the index of the first hashed symbol (" +
4027             Twine(GnuHash.symndx) + ")");
4028         break;
4029       }
4030 
4031        // Chain ends at symbol with stopper bit.
4032       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4033         break;
4034     }
4035   }
4036 }
4037 
4038 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4039   if (this->HashTable) {
4040     OS << "\n Symbol table of .hash for image:\n";
4041     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4042       this->reportUniqueWarning(std::move(E));
4043     else
4044       printHashTableSymbols(*this->HashTable);
4045   }
4046 
4047   // Try printing the .gnu.hash table.
4048   if (this->GnuHashTable) {
4049     OS << "\n Symbol table of .gnu.hash for image:\n";
4050     if (ELFT::Is64Bits)
4051       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4052     else
4053       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4054     OS << "\n";
4055 
4056     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4057       this->reportUniqueWarning(std::move(E));
4058     else
4059       printGnuHashTableSymbols(*this->GnuHashTable);
4060   }
4061 }
4062 
4063 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4064   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4065   OS << "There are " << to_string(Sections.size())
4066      << " section headers, starting at offset "
4067      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4068 
4069   OS << "Section Headers:\n";
4070 
4071   auto PrintFields = [&](ArrayRef<Field> V) {
4072     for (const Field &F : V)
4073       printField(F);
4074     OS << "\n";
4075   };
4076 
4077   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4078 
4079   constexpr bool Is64 = ELFT::Is64Bits;
4080   PrintFields({{"Type", 7},
4081                {Is64 ? "Address" : "Addr", 23},
4082                {"Off", Is64 ? 40 : 32},
4083                {"Size", Is64 ? 47 : 39},
4084                {"ES", Is64 ? 54 : 46},
4085                {"Lk", Is64 ? 59 : 51},
4086                {"Inf", Is64 ? 62 : 54},
4087                {"Al", Is64 ? 66 : 57}});
4088   PrintFields({{"Flags", 7}});
4089 
4090   StringRef SecStrTable;
4091   if (Expected<StringRef> SecStrTableOrErr =
4092           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4093     SecStrTable = *SecStrTableOrErr;
4094   else
4095     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4096 
4097   size_t SectionIndex = 0;
4098   const unsigned AddrSize = Is64 ? 16 : 8;
4099   for (const Elf_Shdr &S : Sections) {
4100     StringRef Name = "<?>";
4101     if (Expected<StringRef> NameOrErr =
4102             this->Obj.getSectionName(S, SecStrTable))
4103       Name = *NameOrErr;
4104     else
4105       this->reportUniqueWarning(NameOrErr.takeError());
4106 
4107     OS.PadToColumn(2);
4108     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4109     PrintFields({{Name, 7}});
4110     PrintFields(
4111         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4112          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4113          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4114          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4115          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4116          {to_string(S.sh_link), Is64 ? 59 : 51},
4117          {to_string(S.sh_info), Is64 ? 63 : 55},
4118          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4119 
4120     OS.PadToColumn(7);
4121     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4122 
4123     DenseMap<unsigned, StringRef> FlagToName = {
4124         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4125         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4126         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4127         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4128         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4129         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4130 
4131     uint64_t Flags = S.sh_flags;
4132     uint64_t UnknownFlags = 0;
4133     ListSeparator LS;
4134     while (Flags) {
4135       // Take the least significant bit as a flag.
4136       uint64_t Flag = Flags & -Flags;
4137       Flags -= Flag;
4138 
4139       auto It = FlagToName.find(Flag);
4140       if (It != FlagToName.end())
4141         OS << LS << It->second;
4142       else
4143         UnknownFlags |= Flag;
4144     }
4145 
4146     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4147       uint64_t FlagsToPrint = UnknownFlags & Mask;
4148       if (!FlagsToPrint)
4149         return;
4150 
4151       OS << LS << Name << " ("
4152          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4153       UnknownFlags &= ~Mask;
4154     };
4155 
4156     PrintUnknownFlags(SHF_MASKOS, "OS");
4157     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4158     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4159 
4160     OS << "\n";
4161     ++SectionIndex;
4162   }
4163 }
4164 
4165 static inline std::string printPhdrFlags(unsigned Flag) {
4166   std::string Str;
4167   Str = (Flag & PF_R) ? "R" : " ";
4168   Str += (Flag & PF_W) ? "W" : " ";
4169   Str += (Flag & PF_X) ? "E" : " ";
4170   return Str;
4171 }
4172 
4173 template <class ELFT>
4174 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4175                              const typename ELFT::Shdr &Sec) {
4176   if (Sec.sh_flags & ELF::SHF_TLS) {
4177     // .tbss must only be shown in the PT_TLS segment.
4178     if (Sec.sh_type == ELF::SHT_NOBITS)
4179       return Phdr.p_type == ELF::PT_TLS;
4180 
4181     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4182     // segments.
4183     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4184            (Phdr.p_type == ELF::PT_GNU_RELRO);
4185   }
4186 
4187   // PT_TLS must only have SHF_TLS sections.
4188   return Phdr.p_type != ELF::PT_TLS;
4189 }
4190 
4191 template <class ELFT>
4192 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4193                          const typename ELFT::Shdr &Sec) {
4194   // SHT_NOBITS sections don't need to have an offset inside the segment.
4195   if (Sec.sh_type == ELF::SHT_NOBITS)
4196     return true;
4197 
4198   if (Sec.sh_offset < Phdr.p_offset)
4199     return false;
4200 
4201   // Only non-empty sections can be at the end of a segment.
4202   if (Sec.sh_size == 0)
4203     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4204   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4205 }
4206 
4207 // Check that an allocatable section belongs to a virtual address
4208 // space of a segment.
4209 template <class ELFT>
4210 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4211                      const typename ELFT::Shdr &Sec) {
4212   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4213     return true;
4214 
4215   if (Sec.sh_addr < Phdr.p_vaddr)
4216     return false;
4217 
4218   bool IsTbss =
4219       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4220   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4221   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4222   // Only non-empty sections can be at the end of a segment.
4223   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4224     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4225   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4226 }
4227 
4228 template <class ELFT>
4229 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4230                            const typename ELFT::Shdr &Sec) {
4231   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4232     return true;
4233 
4234   // We get here when we have an empty section. Only non-empty sections can be
4235   // at the start or at the end of PT_DYNAMIC.
4236   // Is section within the phdr both based on offset and VMA?
4237   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4238                      (Sec.sh_offset > Phdr.p_offset &&
4239                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4240   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4241                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4242   return CheckOffset && CheckVA;
4243 }
4244 
4245 template <class ELFT>
4246 void GNUELFDumper<ELFT>::printProgramHeaders(
4247     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4248   if (PrintProgramHeaders)
4249     printProgramHeaders();
4250 
4251   // Display the section mapping along with the program headers, unless
4252   // -section-mapping is explicitly set to false.
4253   if (PrintSectionMapping != cl::BOU_FALSE)
4254     printSectionMapping();
4255 }
4256 
4257 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4258   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4259   const Elf_Ehdr &Header = this->Obj.getHeader();
4260   Field Fields[8] = {2,         17,        26,        37 + Bias,
4261                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4262   OS << "\nElf file type is "
4263      << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4264      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4265      << "There are " << Header.e_phnum << " program headers,"
4266      << " starting at offset " << Header.e_phoff << "\n\n"
4267      << "Program Headers:\n";
4268   if (ELFT::Is64Bits)
4269     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4270        << "  FileSiz  MemSiz   Flg Align\n";
4271   else
4272     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4273        << "MemSiz  Flg Align\n";
4274 
4275   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4276   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4277 
4278   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4279   if (!PhdrsOrErr) {
4280     this->reportUniqueWarning("unable to dump program headers: " +
4281                               toString(PhdrsOrErr.takeError()));
4282     return;
4283   }
4284 
4285   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4286     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4287     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4288     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4289     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4290     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4291     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4292     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4293     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4294     for (const Field &F : Fields)
4295       printField(F);
4296     if (Phdr.p_type == ELF::PT_INTERP) {
4297       OS << "\n";
4298       auto ReportBadInterp = [&](const Twine &Msg) {
4299         this->reportUniqueWarning(
4300             "unable to read program interpreter name at offset 0x" +
4301             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4302       };
4303 
4304       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4305         ReportBadInterp("it goes past the end of the file (0x" +
4306                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4307         continue;
4308       }
4309 
4310       const char *Data =
4311           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4312       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4313       size_t Len = strnlen(Data, MaxSize);
4314       if (Len == MaxSize) {
4315         ReportBadInterp("it is not null-terminated");
4316         continue;
4317       }
4318 
4319       OS << "      [Requesting program interpreter: ";
4320       OS << StringRef(Data, Len) << "]";
4321     }
4322     OS << "\n";
4323   }
4324 }
4325 
4326 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4327   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4328   DenseSet<const Elf_Shdr *> BelongsToSegment;
4329   int Phnum = 0;
4330 
4331   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4332   if (!PhdrsOrErr) {
4333     this->reportUniqueWarning(
4334         "can't read program headers to build section to segment mapping: " +
4335         toString(PhdrsOrErr.takeError()));
4336     return;
4337   }
4338 
4339   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4340     std::string Sections;
4341     OS << format("   %2.2d     ", Phnum++);
4342     // Check if each section is in a segment and then print mapping.
4343     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4344       if (Sec.sh_type == ELF::SHT_NULL)
4345         continue;
4346 
4347       // readelf additionally makes sure it does not print zero sized sections
4348       // at end of segments and for PT_DYNAMIC both start and end of section
4349       // .tbss must only be shown in PT_TLS section.
4350       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4351           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4352         Sections +=
4353             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4354             " ";
4355         BelongsToSegment.insert(&Sec);
4356       }
4357     }
4358     OS << Sections << "\n";
4359     OS.flush();
4360   }
4361 
4362   // Display sections that do not belong to a segment.
4363   std::string Sections;
4364   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4365     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4366       Sections +=
4367           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4368           ' ';
4369   }
4370   if (!Sections.empty()) {
4371     OS << "   None  " << Sections << '\n';
4372     OS.flush();
4373   }
4374 }
4375 
4376 namespace {
4377 
4378 template <class ELFT>
4379 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4380                                   const Relocation<ELFT> &Reloc) {
4381   using Elf_Sym = typename ELFT::Sym;
4382   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4383                            const Twine &Reason) -> RelSymbol<ELFT> {
4384     Dumper.reportUniqueWarning(
4385         "unable to get name of the dynamic symbol with index " +
4386         Twine(Reloc.Symbol) + ": " + Reason);
4387     return {Sym, "<corrupt>"};
4388   };
4389 
4390   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4391   const Elf_Sym *FirstSym = Symbols.begin();
4392   if (!FirstSym)
4393     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4394 
4395   // We might have an object without a section header. In this case the size of
4396   // Symbols is zero, because there is no way to know the size of the dynamic
4397   // table. We should allow this case and not print a warning.
4398   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4399     return WarnAndReturn(
4400         nullptr,
4401         "index is greater than or equal to the number of dynamic symbols (" +
4402             Twine(Symbols.size()) + ")");
4403 
4404   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4405   const uint64_t FileSize = Obj.getBufSize();
4406   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4407                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4408   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4409     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4410                                       " goes past the end of the file (0x" +
4411                                       Twine::utohexstr(FileSize) + ")");
4412 
4413   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4414   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4415   if (!ErrOrName)
4416     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4417 
4418   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4419 }
4420 } // namespace
4421 
4422 template <class ELFT>
4423 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4424                                    typename ELFT::DynRange Tags) {
4425   size_t Max = 0;
4426   for (const typename ELFT::Dyn &Dyn : Tags)
4427     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4428   return Max;
4429 }
4430 
4431 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4432   Elf_Dyn_Range Table = this->dynamic_table();
4433   if (Table.empty())
4434     return;
4435 
4436   OS << "Dynamic section at offset "
4437      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4438                        this->Obj.base(),
4439                    1)
4440      << " contains " << Table.size() << " entries:\n";
4441 
4442   // The type name is surrounded with round brackets, hence add 2.
4443   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4444   // The "Name/Value" column should be indented from the "Type" column by N
4445   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4446   // space (1) = 3.
4447   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4448      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4449 
4450   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4451   for (auto Entry : Table) {
4452     uintX_t Tag = Entry.getTag();
4453     std::string Type =
4454         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4455     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4456     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4457        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4458   }
4459 }
4460 
4461 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4462   this->printDynamicRelocationsHelper();
4463 }
4464 
4465 template <class ELFT>
4466 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4467   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4468 }
4469 
4470 template <class ELFT>
4471 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4472   this->forEachRelocationDo(
4473       Sec, opts::RawRelr,
4474       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4475           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4476       [&](const Elf_Relr &R) { printRelrReloc(R); });
4477 }
4478 
4479 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4480   const bool IsMips64EL = this->Obj.isMips64EL();
4481   if (this->DynRelaRegion.Size > 0) {
4482     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4483     for (const Elf_Rela &Rela :
4484          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4485       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4486   }
4487 
4488   if (this->DynRelRegion.Size > 0) {
4489     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4490     for (const Elf_Rel &Rel :
4491          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4492       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4493   }
4494 
4495   if (this->DynRelrRegion.Size > 0) {
4496     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4497     Elf_Relr_Range Relrs =
4498         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4499     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4500       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4501   }
4502 
4503   if (this->DynPLTRelRegion.Size) {
4504     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4505       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4506       for (const Elf_Rela &Rela :
4507            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4508         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4509     } else {
4510       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4511       for (const Elf_Rel &Rel :
4512            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4513         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4514     }
4515   }
4516 }
4517 
4518 template <class ELFT>
4519 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4520     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4521   // Don't inline the SecName, because it might report a warning to stderr and
4522   // corrupt the output.
4523   StringRef SecName = this->getPrintableSectionName(Sec);
4524   OS << Label << " section '" << SecName << "' "
4525      << "contains " << EntriesNum << " entries:\n";
4526 
4527   StringRef LinkedSecName = "<corrupt>";
4528   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4529           this->Obj.getSection(Sec.sh_link))
4530     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4531   else
4532     this->reportUniqueWarning("invalid section linked to " +
4533                               this->describe(Sec) + ": " +
4534                               toString(LinkedSecOrErr.takeError()));
4535 
4536   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4537      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4538      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4539 }
4540 
4541 template <class ELFT>
4542 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4543   if (!Sec)
4544     return;
4545 
4546   printGNUVersionSectionProlog(*Sec, "Version symbols",
4547                                Sec->sh_size / sizeof(Elf_Versym));
4548   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4549       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4550                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4551   if (!VerTableOrErr) {
4552     this->reportUniqueWarning(VerTableOrErr.takeError());
4553     return;
4554   }
4555 
4556   SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4557   if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4558           this->getVersionMap())
4559     VersionMap = *MapOrErr;
4560   else
4561     this->reportUniqueWarning(MapOrErr.takeError());
4562 
4563   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4564   std::vector<StringRef> Versions;
4565   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4566     unsigned Ndx = VerTable[I].vs_index;
4567     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4568       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4569       continue;
4570     }
4571 
4572     if (!VersionMap) {
4573       Versions.emplace_back("<corrupt>");
4574       continue;
4575     }
4576 
4577     bool IsDefault;
4578     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4579         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4580     if (!NameOrErr) {
4581       this->reportUniqueWarning("unable to get a version for entry " +
4582                                 Twine(I) + " of " + this->describe(*Sec) +
4583                                 ": " + toString(NameOrErr.takeError()));
4584       Versions.emplace_back("<corrupt>");
4585       continue;
4586     }
4587     Versions.emplace_back(*NameOrErr);
4588   }
4589 
4590   // readelf prints 4 entries per line.
4591   uint64_t Entries = VerTable.size();
4592   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4593     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4594     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4595       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4596       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4597                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4598       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4599     }
4600     OS << '\n';
4601   }
4602   OS << '\n';
4603 }
4604 
4605 static std::string versionFlagToString(unsigned Flags) {
4606   if (Flags == 0)
4607     return "none";
4608 
4609   std::string Ret;
4610   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4611     if (!(Flags & Flag))
4612       return;
4613     if (!Ret.empty())
4614       Ret += " | ";
4615     Ret += Name;
4616     Flags &= ~Flag;
4617   };
4618 
4619   AddFlag(VER_FLG_BASE, "BASE");
4620   AddFlag(VER_FLG_WEAK, "WEAK");
4621   AddFlag(VER_FLG_INFO, "INFO");
4622   AddFlag(~0, "<unknown>");
4623   return Ret;
4624 }
4625 
4626 template <class ELFT>
4627 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4628   if (!Sec)
4629     return;
4630 
4631   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4632 
4633   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4634   if (!V) {
4635     this->reportUniqueWarning(V.takeError());
4636     return;
4637   }
4638 
4639   for (const VerDef &Def : *V) {
4640     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4641                  Def.Offset, Def.Version,
4642                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4643                  Def.Name.data());
4644     unsigned I = 0;
4645     for (const VerdAux &Aux : Def.AuxV)
4646       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4647                    Aux.Name.data());
4648   }
4649 
4650   OS << '\n';
4651 }
4652 
4653 template <class ELFT>
4654 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4655   if (!Sec)
4656     return;
4657 
4658   unsigned VerneedNum = Sec->sh_info;
4659   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4660 
4661   Expected<std::vector<VerNeed>> V =
4662       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4663   if (!V) {
4664     this->reportUniqueWarning(V.takeError());
4665     return;
4666   }
4667 
4668   for (const VerNeed &VN : *V) {
4669     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4670                  VN.Version, VN.File.data(), VN.Cnt);
4671     for (const VernAux &Aux : VN.AuxV)
4672       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4673                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4674                    Aux.Other);
4675   }
4676   OS << '\n';
4677 }
4678 
4679 template <class ELFT>
4680 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4681   size_t NBucket = HashTable.nbucket;
4682   size_t NChain = HashTable.nchain;
4683   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4684   ArrayRef<Elf_Word> Chains = HashTable.chains();
4685   size_t TotalSyms = 0;
4686   // If hash table is correct, we have at least chains with 0 length
4687   size_t MaxChain = 1;
4688   size_t CumulativeNonZero = 0;
4689 
4690   if (NChain == 0 || NBucket == 0)
4691     return;
4692 
4693   std::vector<size_t> ChainLen(NBucket, 0);
4694   // Go over all buckets and and note chain lengths of each bucket (total
4695   // unique chain lengths).
4696   for (size_t B = 0; B < NBucket; B++) {
4697     BitVector Visited(NChain);
4698     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4699       if (C == ELF::STN_UNDEF)
4700         break;
4701       if (Visited[C]) {
4702         this->reportUniqueWarning(".hash section is invalid: bucket " +
4703                                   Twine(C) +
4704                                   ": a cycle was detected in the linked chain");
4705         break;
4706       }
4707       Visited[C] = true;
4708       if (MaxChain <= ++ChainLen[B])
4709         MaxChain++;
4710     }
4711     TotalSyms += ChainLen[B];
4712   }
4713 
4714   if (!TotalSyms)
4715     return;
4716 
4717   std::vector<size_t> Count(MaxChain, 0);
4718   // Count how long is the chain for each bucket
4719   for (size_t B = 0; B < NBucket; B++)
4720     ++Count[ChainLen[B]];
4721   // Print Number of buckets with each chain lengths and their cumulative
4722   // coverage of the symbols
4723   OS << "Histogram for bucket list length (total of " << NBucket
4724      << " buckets)\n"
4725      << " Length  Number     % of total  Coverage\n";
4726   for (size_t I = 0; I < MaxChain; I++) {
4727     CumulativeNonZero += Count[I] * I;
4728     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4729                  (Count[I] * 100.0) / NBucket,
4730                  (CumulativeNonZero * 100.0) / TotalSyms);
4731   }
4732 }
4733 
4734 template <class ELFT>
4735 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4736     const Elf_GnuHash &GnuHashTable) {
4737   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4738       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4739   if (!ChainsOrErr) {
4740     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4741                               toString(ChainsOrErr.takeError()));
4742     return;
4743   }
4744 
4745   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4746   size_t Symndx = GnuHashTable.symndx;
4747   size_t TotalSyms = 0;
4748   size_t MaxChain = 1;
4749   size_t CumulativeNonZero = 0;
4750 
4751   size_t NBucket = GnuHashTable.nbuckets;
4752   if (Chains.empty() || NBucket == 0)
4753     return;
4754 
4755   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4756   std::vector<size_t> ChainLen(NBucket, 0);
4757   for (size_t B = 0; B < NBucket; B++) {
4758     if (!Buckets[B])
4759       continue;
4760     size_t Len = 1;
4761     for (size_t C = Buckets[B] - Symndx;
4762          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4763       if (MaxChain < ++Len)
4764         MaxChain++;
4765     ChainLen[B] = Len;
4766     TotalSyms += Len;
4767   }
4768   MaxChain++;
4769 
4770   if (!TotalSyms)
4771     return;
4772 
4773   std::vector<size_t> Count(MaxChain, 0);
4774   for (size_t B = 0; B < NBucket; B++)
4775     ++Count[ChainLen[B]];
4776   // Print Number of buckets with each chain lengths and their cumulative
4777   // coverage of the symbols
4778   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4779      << " buckets)\n"
4780      << " Length  Number     % of total  Coverage\n";
4781   for (size_t I = 0; I < MaxChain; I++) {
4782     CumulativeNonZero += Count[I] * I;
4783     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4784                  (Count[I] * 100.0) / NBucket,
4785                  (CumulativeNonZero * 100.0) / TotalSyms);
4786   }
4787 }
4788 
4789 // Hash histogram shows statistics of how efficient the hash was for the
4790 // dynamic symbol table. The table shows the number of hash buckets for
4791 // different lengths of chains as an absolute number and percentage of the total
4792 // buckets, and the cumulative coverage of symbols for each set of buckets.
4793 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4794   // Print histogram for the .hash section.
4795   if (this->HashTable) {
4796     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4797       this->reportUniqueWarning(std::move(E));
4798     else
4799       printHashHistogram(*this->HashTable);
4800   }
4801 
4802   // Print histogram for the .gnu.hash section.
4803   if (this->GnuHashTable) {
4804     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4805       this->reportUniqueWarning(std::move(E));
4806     else
4807       printGnuHashHistogram(*this->GnuHashTable);
4808   }
4809 }
4810 
4811 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4812   OS << "GNUStyle::printCGProfile not implemented\n";
4813 }
4814 
4815 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4816   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4817 }
4818 
4819 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4820   std::vector<uint64_t> Ret;
4821   const uint8_t *Cur = Data.begin();
4822   const uint8_t *End = Data.end();
4823   while (Cur != End) {
4824     unsigned Size;
4825     const char *Err;
4826     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4827     if (Err)
4828       return createError(Err);
4829     Cur += Size;
4830   }
4831   return Ret;
4832 }
4833 
4834 template <class ELFT>
4835 static Expected<std::vector<uint64_t>>
4836 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4837   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4838   if (!ContentsOrErr)
4839     return ContentsOrErr.takeError();
4840 
4841   if (Expected<std::vector<uint64_t>> SymsOrErr =
4842           toULEB128Array(*ContentsOrErr))
4843     return *SymsOrErr;
4844   else
4845     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4846                        toString(SymsOrErr.takeError()));
4847 }
4848 
4849 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4850   if (!this->DotAddrsigSec)
4851     return;
4852 
4853   Expected<std::vector<uint64_t>> SymsOrErr =
4854       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4855   if (!SymsOrErr) {
4856     this->reportUniqueWarning(SymsOrErr.takeError());
4857     return;
4858   }
4859 
4860   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4861   OS << "\nAddress-significant symbols section '" << Name << "'"
4862      << " contains " << SymsOrErr->size() << " entries:\n";
4863   OS << "   Num: Name\n";
4864 
4865   Field Fields[2] = {0, 8};
4866   size_t SymIndex = 0;
4867   for (uint64_t Sym : *SymsOrErr) {
4868     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4869     Fields[1].Str = this->getStaticSymbolName(Sym);
4870     for (const Field &Entry : Fields)
4871       printField(Entry);
4872     OS << "\n";
4873   }
4874 }
4875 
4876 template <typename ELFT>
4877 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4878                                   ArrayRef<uint8_t> Data) {
4879   std::string str;
4880   raw_string_ostream OS(str);
4881   uint32_t PrData;
4882   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4883     if (PrData & Flag) {
4884       PrData &= ~Flag;
4885       OS << Name;
4886       if (PrData)
4887         OS << ", ";
4888     }
4889   };
4890 
4891   switch (Type) {
4892   default:
4893     OS << format("<application-specific type 0x%x>", Type);
4894     return OS.str();
4895   case GNU_PROPERTY_STACK_SIZE: {
4896     OS << "stack size: ";
4897     if (DataSize == sizeof(typename ELFT::uint))
4898       OS << formatv("{0:x}",
4899                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4900     else
4901       OS << format("<corrupt length: 0x%x>", DataSize);
4902     return OS.str();
4903   }
4904   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4905     OS << "no copy on protected";
4906     if (DataSize)
4907       OS << format(" <corrupt length: 0x%x>", DataSize);
4908     return OS.str();
4909   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4910   case GNU_PROPERTY_X86_FEATURE_1_AND:
4911     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4912                                                         : "x86 feature: ");
4913     if (DataSize != 4) {
4914       OS << format("<corrupt length: 0x%x>", DataSize);
4915       return OS.str();
4916     }
4917     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4918     if (PrData == 0) {
4919       OS << "<None>";
4920       return OS.str();
4921     }
4922     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4923       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4924       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4925     } else {
4926       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4927       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4928     }
4929     if (PrData)
4930       OS << format("<unknown flags: 0x%x>", PrData);
4931     return OS.str();
4932   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4933   case GNU_PROPERTY_X86_FEATURE_2_USED:
4934     OS << "x86 feature "
4935        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4936     if (DataSize != 4) {
4937       OS << format("<corrupt length: 0x%x>", DataSize);
4938       return OS.str();
4939     }
4940     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4941     if (PrData == 0) {
4942       OS << "<None>";
4943       return OS.str();
4944     }
4945     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4946     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4947     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4948     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4949     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4950     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4951     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4952     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4953     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4954     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4955     if (PrData)
4956       OS << format("<unknown flags: 0x%x>", PrData);
4957     return OS.str();
4958   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4959   case GNU_PROPERTY_X86_ISA_1_USED:
4960     OS << "x86 ISA "
4961        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4962     if (DataSize != 4) {
4963       OS << format("<corrupt length: 0x%x>", DataSize);
4964       return OS.str();
4965     }
4966     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4967     if (PrData == 0) {
4968       OS << "<None>";
4969       return OS.str();
4970     }
4971     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4972     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4973     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4974     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4975     if (PrData)
4976       OS << format("<unknown flags: 0x%x>", PrData);
4977     return OS.str();
4978   }
4979 }
4980 
4981 template <typename ELFT>
4982 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4983   using Elf_Word = typename ELFT::Word;
4984 
4985   SmallVector<std::string, 4> Properties;
4986   while (Arr.size() >= 8) {
4987     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4988     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4989     Arr = Arr.drop_front(8);
4990 
4991     // Take padding size into account if present.
4992     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4993     std::string str;
4994     raw_string_ostream OS(str);
4995     if (Arr.size() < PaddedSize) {
4996       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4997       Properties.push_back(OS.str());
4998       break;
4999     }
5000     Properties.push_back(
5001         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5002     Arr = Arr.drop_front(PaddedSize);
5003   }
5004 
5005   if (!Arr.empty())
5006     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5007 
5008   return Properties;
5009 }
5010 
5011 struct GNUAbiTag {
5012   std::string OSName;
5013   std::string ABI;
5014   bool IsValid;
5015 };
5016 
5017 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5018   typedef typename ELFT::Word Elf_Word;
5019 
5020   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5021                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5022 
5023   if (Words.size() < 4)
5024     return {"", "", /*IsValid=*/false};
5025 
5026   static const char *OSNames[] = {
5027       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5028   };
5029   StringRef OSName = "Unknown";
5030   if (Words[0] < array_lengthof(OSNames))
5031     OSName = OSNames[Words[0]];
5032   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5033   std::string str;
5034   raw_string_ostream ABI(str);
5035   ABI << Major << "." << Minor << "." << Patch;
5036   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5037 }
5038 
5039 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5040   std::string str;
5041   raw_string_ostream OS(str);
5042   for (uint8_t B : Desc)
5043     OS << format_hex_no_prefix(B, 2);
5044   return OS.str();
5045 }
5046 
5047 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5048   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5049 }
5050 
5051 template <typename ELFT>
5052 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5053                          ArrayRef<uint8_t> Desc) {
5054   // Return true if we were able to pretty-print the note, false otherwise.
5055   switch (NoteType) {
5056   default:
5057     return false;
5058   case ELF::NT_GNU_ABI_TAG: {
5059     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5060     if (!AbiTag.IsValid)
5061       OS << "    <corrupt GNU_ABI_TAG>";
5062     else
5063       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5064     break;
5065   }
5066   case ELF::NT_GNU_BUILD_ID: {
5067     OS << "    Build ID: " << getGNUBuildId(Desc);
5068     break;
5069   }
5070   case ELF::NT_GNU_GOLD_VERSION:
5071     OS << "    Version: " << getDescAsStringRef(Desc);
5072     break;
5073   case ELF::NT_GNU_PROPERTY_TYPE_0:
5074     OS << "    Properties:";
5075     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5076       OS << "    " << Property << "\n";
5077     break;
5078   }
5079   OS << '\n';
5080   return true;
5081 }
5082 
5083 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5084 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5085                                                       ArrayRef<uint8_t> Desc) {
5086   AndroidNoteProperties Props;
5087   switch (NoteType) {
5088   case ELF::NT_ANDROID_TYPE_MEMTAG:
5089     if (Desc.empty()) {
5090       Props.emplace_back("Invalid .note.android.memtag", "");
5091       return Props;
5092     }
5093 
5094     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5095     case NT_MEMTAG_LEVEL_NONE:
5096       Props.emplace_back("Tagging Mode", "NONE");
5097       break;
5098     case NT_MEMTAG_LEVEL_ASYNC:
5099       Props.emplace_back("Tagging Mode", "ASYNC");
5100       break;
5101     case NT_MEMTAG_LEVEL_SYNC:
5102       Props.emplace_back("Tagging Mode", "SYNC");
5103       break;
5104     default:
5105       Props.emplace_back(
5106           "Tagging Mode",
5107           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5108               .str());
5109       break;
5110     }
5111     Props.emplace_back("Heap",
5112                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5113     Props.emplace_back("Stack",
5114                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5115     break;
5116   default:
5117     return Props;
5118   }
5119   return Props;
5120 }
5121 
5122 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5123                              ArrayRef<uint8_t> Desc) {
5124   // Return true if we were able to pretty-print the note, false otherwise.
5125   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5126   if (Props.empty())
5127     return false;
5128   for (const auto &KV : Props)
5129     OS << "    " << KV.first << ": " << KV.second << '\n';
5130   OS << '\n';
5131   return true;
5132 }
5133 
5134 template <typename ELFT>
5135 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5136                                     ArrayRef<uint8_t> Desc) {
5137   switch (NoteType) {
5138   default:
5139     return false;
5140   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5141     OS << "    Version: " << getDescAsStringRef(Desc);
5142     break;
5143   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5144     OS << "    Producer: " << getDescAsStringRef(Desc);
5145     break;
5146   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5147     OS << "    Producer version: " << getDescAsStringRef(Desc);
5148     break;
5149   }
5150   OS << '\n';
5151   return true;
5152 }
5153 
5154 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5155     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5156     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5157     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5158     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5159     {"LA48", NT_FREEBSD_FCTL_LA48},
5160     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5161 };
5162 
5163 struct FreeBSDNote {
5164   std::string Type;
5165   std::string Value;
5166 };
5167 
5168 template <typename ELFT>
5169 static Optional<FreeBSDNote>
5170 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5171   if (IsCore)
5172     return None; // No pretty-printing yet.
5173   switch (NoteType) {
5174   case ELF::NT_FREEBSD_ABI_TAG:
5175     if (Desc.size() != 4)
5176       return None;
5177     return FreeBSDNote{
5178         "ABI tag",
5179         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5180   case ELF::NT_FREEBSD_ARCH_TAG:
5181     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5182   case ELF::NT_FREEBSD_FEATURE_CTL: {
5183     if (Desc.size() != 4)
5184       return None;
5185     unsigned Value =
5186         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5187     std::string FlagsStr;
5188     raw_string_ostream OS(FlagsStr);
5189     printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5190     if (OS.str().empty())
5191       OS << "0x" << utohexstr(Value);
5192     else
5193       OS << "(0x" << utohexstr(Value) << ")";
5194     return FreeBSDNote{"Feature flags", OS.str()};
5195   }
5196   default:
5197     return None;
5198   }
5199 }
5200 
5201 struct AMDNote {
5202   std::string Type;
5203   std::string Value;
5204 };
5205 
5206 template <typename ELFT>
5207 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5208   switch (NoteType) {
5209   default:
5210     return {"", ""};
5211   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5212     struct CodeObjectVersion {
5213       uint32_t MajorVersion;
5214       uint32_t MinorVersion;
5215     };
5216     if (Desc.size() != sizeof(CodeObjectVersion))
5217       return {"AMD HSA Code Object Version",
5218               "Invalid AMD HSA Code Object Version"};
5219     std::string VersionString;
5220     raw_string_ostream StrOS(VersionString);
5221     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5222     StrOS << "[Major: " << Version->MajorVersion
5223           << ", Minor: " << Version->MinorVersion << "]";
5224     return {"AMD HSA Code Object Version", VersionString};
5225   }
5226   case ELF::NT_AMD_HSA_HSAIL: {
5227     struct HSAILProperties {
5228       uint32_t HSAILMajorVersion;
5229       uint32_t HSAILMinorVersion;
5230       uint8_t Profile;
5231       uint8_t MachineModel;
5232       uint8_t DefaultFloatRound;
5233     };
5234     if (Desc.size() != sizeof(HSAILProperties))
5235       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5236     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5237     std::string HSAILPropetiesString;
5238     raw_string_ostream StrOS(HSAILPropetiesString);
5239     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5240           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5241           << ", Profile: " << uint32_t(Properties->Profile)
5242           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5243           << ", Default Float Round: "
5244           << uint32_t(Properties->DefaultFloatRound) << "]";
5245     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5246   }
5247   case ELF::NT_AMD_HSA_ISA_VERSION: {
5248     struct IsaVersion {
5249       uint16_t VendorNameSize;
5250       uint16_t ArchitectureNameSize;
5251       uint32_t Major;
5252       uint32_t Minor;
5253       uint32_t Stepping;
5254     };
5255     if (Desc.size() < sizeof(IsaVersion))
5256       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5257     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5258     if (Desc.size() < sizeof(IsaVersion) +
5259                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5260         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5261       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5262     std::string IsaString;
5263     raw_string_ostream StrOS(IsaString);
5264     StrOS << "[Vendor: "
5265           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5266           << ", Architecture: "
5267           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5268                        Isa->ArchitectureNameSize - 1)
5269           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5270           << ", Stepping: " << Isa->Stepping << "]";
5271     return {"AMD HSA ISA Version", IsaString};
5272   }
5273   case ELF::NT_AMD_HSA_METADATA: {
5274     if (Desc.size() == 0)
5275       return {"AMD HSA Metadata", ""};
5276     return {
5277         "AMD HSA Metadata",
5278         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5279   }
5280   case ELF::NT_AMD_HSA_ISA_NAME: {
5281     if (Desc.size() == 0)
5282       return {"AMD HSA ISA Name", ""};
5283     return {
5284         "AMD HSA ISA Name",
5285         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5286   }
5287   case ELF::NT_AMD_PAL_METADATA: {
5288     struct PALMetadata {
5289       uint32_t Key;
5290       uint32_t Value;
5291     };
5292     if (Desc.size() % sizeof(PALMetadata) != 0)
5293       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5294     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5295     std::string MetadataString;
5296     raw_string_ostream StrOS(MetadataString);
5297     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5298       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5299     }
5300     return {"AMD PAL Metadata", MetadataString};
5301   }
5302   }
5303 }
5304 
5305 struct AMDGPUNote {
5306   std::string Type;
5307   std::string Value;
5308 };
5309 
5310 template <typename ELFT>
5311 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5312   switch (NoteType) {
5313   default:
5314     return {"", ""};
5315   case ELF::NT_AMDGPU_METADATA: {
5316     StringRef MsgPackString =
5317         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5318     msgpack::Document MsgPackDoc;
5319     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5320       return {"", ""};
5321 
5322     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5323     std::string MetadataString;
5324     if (!Verifier.verify(MsgPackDoc.getRoot()))
5325       MetadataString = "Invalid AMDGPU Metadata\n";
5326 
5327     raw_string_ostream StrOS(MetadataString);
5328     if (MsgPackDoc.getRoot().isScalar()) {
5329       // TODO: passing a scalar root to toYAML() asserts:
5330       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5331       //    "plain scalar documents are not supported")
5332       // To avoid this crash we print the raw data instead.
5333       return {"", ""};
5334     }
5335     MsgPackDoc.toYAML(StrOS);
5336     return {"AMDGPU Metadata", StrOS.str()};
5337   }
5338   }
5339 }
5340 
5341 struct CoreFileMapping {
5342   uint64_t Start, End, Offset;
5343   StringRef Filename;
5344 };
5345 
5346 struct CoreNote {
5347   uint64_t PageSize;
5348   std::vector<CoreFileMapping> Mappings;
5349 };
5350 
5351 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5352   // Expected format of the NT_FILE note description:
5353   // 1. # of file mappings (call it N)
5354   // 2. Page size
5355   // 3. N (start, end, offset) triples
5356   // 4. N packed filenames (null delimited)
5357   // Each field is an Elf_Addr, except for filenames which are char* strings.
5358 
5359   CoreNote Ret;
5360   const int Bytes = Desc.getAddressSize();
5361 
5362   if (!Desc.isValidOffsetForAddress(2))
5363     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5364                        " is too short, expected at least 0x" +
5365                        Twine::utohexstr(Bytes * 2));
5366   if (Desc.getData().back() != 0)
5367     return createError("the note is not NUL terminated");
5368 
5369   uint64_t DescOffset = 0;
5370   uint64_t FileCount = Desc.getAddress(&DescOffset);
5371   Ret.PageSize = Desc.getAddress(&DescOffset);
5372 
5373   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5374     return createError("unable to read file mappings (found " +
5375                        Twine(FileCount) + "): the note of size 0x" +
5376                        Twine::utohexstr(Desc.size()) + " is too short");
5377 
5378   uint64_t FilenamesOffset = 0;
5379   DataExtractor Filenames(
5380       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5381       Desc.isLittleEndian(), Desc.getAddressSize());
5382 
5383   Ret.Mappings.resize(FileCount);
5384   size_t I = 0;
5385   for (CoreFileMapping &Mapping : Ret.Mappings) {
5386     ++I;
5387     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5388       return createError(
5389           "unable to read the file name for the mapping with index " +
5390           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5391           " is truncated");
5392     Mapping.Start = Desc.getAddress(&DescOffset);
5393     Mapping.End = Desc.getAddress(&DescOffset);
5394     Mapping.Offset = Desc.getAddress(&DescOffset);
5395     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5396   }
5397 
5398   return Ret;
5399 }
5400 
5401 template <typename ELFT>
5402 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5403   // Length of "0x<address>" string.
5404   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5405 
5406   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5407   OS << "    " << right_justify("Start", FieldWidth) << "  "
5408      << right_justify("End", FieldWidth) << "  "
5409      << right_justify("Page Offset", FieldWidth) << '\n';
5410   for (const CoreFileMapping &Mapping : Note.Mappings) {
5411     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5412        << format_hex(Mapping.End, FieldWidth) << "  "
5413        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5414        << Mapping.Filename << '\n';
5415   }
5416 }
5417 
5418 const NoteType GenericNoteTypes[] = {
5419     {ELF::NT_VERSION, "NT_VERSION (version)"},
5420     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5421     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5422     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5423 };
5424 
5425 const NoteType GNUNoteTypes[] = {
5426     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5427     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5428     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5429     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5430     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5431 };
5432 
5433 const NoteType FreeBSDCoreNoteTypes[] = {
5434     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5435     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5436     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5437     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5438     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5439     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5440     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5441     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5442     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5443      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5444     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5445 };
5446 
5447 const NoteType FreeBSDNoteTypes[] = {
5448     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5449     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5450     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5451     {ELF::NT_FREEBSD_FEATURE_CTL,
5452      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5453 };
5454 
5455 const NoteType NetBSDCoreNoteTypes[] = {
5456     {ELF::NT_NETBSDCORE_PROCINFO,
5457      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5458     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5459     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5460 };
5461 
5462 const NoteType OpenBSDCoreNoteTypes[] = {
5463     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5464     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5465     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5466     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5467     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5468 };
5469 
5470 const NoteType AMDNoteTypes[] = {
5471     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5472      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5473     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5474     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5475     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5476     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5477     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5478 };
5479 
5480 const NoteType AMDGPUNoteTypes[] = {
5481     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5482 };
5483 
5484 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5485     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5486      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5487     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5488      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5489     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5490      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5491 };
5492 
5493 const NoteType AndroidNoteTypes[] = {
5494     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5495     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5496     {ELF::NT_ANDROID_TYPE_MEMTAG,
5497      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5498 };
5499 
5500 const NoteType CoreNoteTypes[] = {
5501     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5502     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5503     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5504     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5505     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5506     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5507     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5508     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5509     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5510     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5511     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5512 
5513     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5514     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5515     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5516     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5517     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5518     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5519     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5520     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5521     {ELF::NT_PPC_TM_CFPR,
5522      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5523     {ELF::NT_PPC_TM_CVMX,
5524      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5525     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5526     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5527     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5528     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5529     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5530 
5531     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5532     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5533     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5534 
5535     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5536     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5537     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5538     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5539     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5540     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5541     {ELF::NT_S390_LAST_BREAK,
5542      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5543     {ELF::NT_S390_SYSTEM_CALL,
5544      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5545     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5546     {ELF::NT_S390_VXRS_LOW,
5547      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5548     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5549     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5550     {ELF::NT_S390_GS_BC,
5551      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5552 
5553     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5554     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5555     {ELF::NT_ARM_HW_BREAK,
5556      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5557     {ELF::NT_ARM_HW_WATCH,
5558      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5559 
5560     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5561     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5562     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5563 };
5564 
5565 template <class ELFT>
5566 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5567   uint32_t Type = Note.getType();
5568   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5569     for (const NoteType &N : V)
5570       if (N.ID == Type)
5571         return N.Name;
5572     return "";
5573   };
5574 
5575   StringRef Name = Note.getName();
5576   if (Name == "GNU")
5577     return FindNote(GNUNoteTypes);
5578   if (Name == "FreeBSD") {
5579     if (ELFType == ELF::ET_CORE) {
5580       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5581       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5582       if (!Result.empty())
5583         return Result;
5584       return FindNote(CoreNoteTypes);
5585     } else {
5586       return FindNote(FreeBSDNoteTypes);
5587     }
5588   }
5589   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5590     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5591     if (!Result.empty())
5592       return Result;
5593     return FindNote(CoreNoteTypes);
5594   }
5595   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5596     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5597     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5598     if (!Result.empty())
5599       return Result;
5600     return FindNote(CoreNoteTypes);
5601   }
5602   if (Name == "AMD")
5603     return FindNote(AMDNoteTypes);
5604   if (Name == "AMDGPU")
5605     return FindNote(AMDGPUNoteTypes);
5606   if (Name == "LLVMOMPOFFLOAD")
5607     return FindNote(LLVMOMPOFFLOADNoteTypes);
5608   if (Name == "Android")
5609     return FindNote(AndroidNoteTypes);
5610 
5611   if (ELFType == ELF::ET_CORE)
5612     return FindNote(CoreNoteTypes);
5613   return FindNote(GenericNoteTypes);
5614 }
5615 
5616 template <class ELFT>
5617 static void printNotesHelper(
5618     const ELFDumper<ELFT> &Dumper,
5619     llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5620                             typename ELFT::Addr)>
5621         StartNotesFn,
5622     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5623     llvm::function_ref<void()> FinishNotesFn) {
5624   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5625   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5626 
5627   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5628   if (!IsCoreFile && !Sections.empty()) {
5629     for (const typename ELFT::Shdr &S : Sections) {
5630       if (S.sh_type != SHT_NOTE)
5631         continue;
5632       StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5633                    S.sh_size);
5634       Error Err = Error::success();
5635       size_t I = 0;
5636       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5637         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5638           Dumper.reportUniqueWarning(
5639               "unable to read note with index " + Twine(I) + " from the " +
5640               describe(Obj, S) + ": " + toString(std::move(E)));
5641         ++I;
5642       }
5643       if (Err)
5644         Dumper.reportUniqueWarning("unable to read notes from the " +
5645                                    describe(Obj, S) + ": " +
5646                                    toString(std::move(Err)));
5647       FinishNotesFn();
5648     }
5649     return;
5650   }
5651 
5652   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5653   if (!PhdrsOrErr) {
5654     Dumper.reportUniqueWarning(
5655         "unable to read program headers to locate the PT_NOTE segment: " +
5656         toString(PhdrsOrErr.takeError()));
5657     return;
5658   }
5659 
5660   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5661     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5662     if (P.p_type != PT_NOTE)
5663       continue;
5664     StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5665     Error Err = Error::success();
5666     size_t Index = 0;
5667     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5668       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5669         Dumper.reportUniqueWarning("unable to read note with index " +
5670                                    Twine(Index) +
5671                                    " from the PT_NOTE segment with index " +
5672                                    Twine(I) + ": " + toString(std::move(E)));
5673       ++Index;
5674     }
5675     if (Err)
5676       Dumper.reportUniqueWarning(
5677           "unable to read notes from the PT_NOTE segment with index " +
5678           Twine(I) + ": " + toString(std::move(Err)));
5679     FinishNotesFn();
5680   }
5681 }
5682 
5683 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5684   bool IsFirstHeader = true;
5685   auto PrintHeader = [&](Optional<StringRef> SecName,
5686                          const typename ELFT::Off Offset,
5687                          const typename ELFT::Addr Size) {
5688     // Print a newline between notes sections to match GNU readelf.
5689     if (!IsFirstHeader) {
5690       OS << '\n';
5691     } else {
5692       IsFirstHeader = false;
5693     }
5694 
5695     OS << "Displaying notes found ";
5696 
5697     if (SecName)
5698       OS << "in: " << *SecName << "\n";
5699     else
5700       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5701          << format_hex(Size, 10) << ":\n";
5702 
5703     OS << "  Owner                Data size \tDescription\n";
5704   };
5705 
5706   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5707     StringRef Name = Note.getName();
5708     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5709     Elf_Word Type = Note.getType();
5710 
5711     // Print the note owner/type.
5712     OS << "  " << left_justify(Name, 20) << ' '
5713        << format_hex(Descriptor.size(), 10) << '\t';
5714 
5715     StringRef NoteType =
5716         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5717     if (!NoteType.empty())
5718       OS << NoteType << '\n';
5719     else
5720       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5721 
5722     // Print the description, or fallback to printing raw bytes for unknown
5723     // owners/if we fail to pretty-print the contents.
5724     if (Name == "GNU") {
5725       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5726         return Error::success();
5727     } else if (Name == "FreeBSD") {
5728       if (Optional<FreeBSDNote> N =
5729               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5730         OS << "    " << N->Type << ": " << N->Value << '\n';
5731         return Error::success();
5732       }
5733     } else if (Name == "AMD") {
5734       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5735       if (!N.Type.empty()) {
5736         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5737         return Error::success();
5738       }
5739     } else if (Name == "AMDGPU") {
5740       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5741       if (!N.Type.empty()) {
5742         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5743         return Error::success();
5744       }
5745     } else if (Name == "LLVMOMPOFFLOAD") {
5746       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5747         return Error::success();
5748     } else if (Name == "CORE") {
5749       if (Type == ELF::NT_FILE) {
5750         DataExtractor DescExtractor(Descriptor,
5751                                     ELFT::TargetEndianness == support::little,
5752                                     sizeof(Elf_Addr));
5753         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5754           printCoreNote<ELFT>(OS, *NoteOrErr);
5755           return Error::success();
5756         } else {
5757           return NoteOrErr.takeError();
5758         }
5759       }
5760     } else if (Name == "Android") {
5761       if (printAndroidNote(OS, Type, Descriptor))
5762         return Error::success();
5763     }
5764     if (!Descriptor.empty()) {
5765       OS << "   description data:";
5766       for (uint8_t B : Descriptor)
5767         OS << " " << format("%02x", B);
5768       OS << '\n';
5769     }
5770     return Error::success();
5771   };
5772 
5773   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5774 }
5775 
5776 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5777   OS << "printELFLinkerOptions not implemented!\n";
5778 }
5779 
5780 template <class ELFT>
5781 void ELFDumper<ELFT>::printDependentLibsHelper(
5782     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5783     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5784   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5785     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5786                               Twine(SecNdx) + " is broken: " + Msg);
5787   };
5788 
5789   unsigned I = -1;
5790   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5791     ++I;
5792     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5793       continue;
5794 
5795     OnSectionStart(Shdr);
5796 
5797     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5798     if (!ContentsOrErr) {
5799       Warn(I, toString(ContentsOrErr.takeError()));
5800       continue;
5801     }
5802 
5803     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5804     if (!Contents.empty() && Contents.back() != 0) {
5805       Warn(I, "the content is not null-terminated");
5806       continue;
5807     }
5808 
5809     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5810       StringRef Lib((const char *)I);
5811       OnLibEntry(Lib, I - Contents.begin());
5812       I += Lib.size() + 1;
5813     }
5814   }
5815 }
5816 
5817 template <class ELFT>
5818 void ELFDumper<ELFT>::forEachRelocationDo(
5819     const Elf_Shdr &Sec, bool RawRelr,
5820     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5821                             const Elf_Shdr &, const Elf_Shdr *)>
5822         RelRelaFn,
5823     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5824   auto Warn = [&](Error &&E,
5825                   const Twine &Prefix = "unable to read relocations from") {
5826     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5827                               toString(std::move(E)));
5828   };
5829 
5830   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5831   // For them we should not treat the value of the sh_link field as an index of
5832   // a symbol table.
5833   const Elf_Shdr *SymTab;
5834   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5835     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5836     if (!SymTabOrErr) {
5837       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5838       return;
5839     }
5840     SymTab = *SymTabOrErr;
5841   }
5842 
5843   unsigned RelNdx = 0;
5844   const bool IsMips64EL = this->Obj.isMips64EL();
5845   switch (Sec.sh_type) {
5846   case ELF::SHT_REL:
5847     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5848       for (const Elf_Rel &R : *RangeOrErr)
5849         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5850     } else {
5851       Warn(RangeOrErr.takeError());
5852     }
5853     break;
5854   case ELF::SHT_RELA:
5855     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5856       for (const Elf_Rela &R : *RangeOrErr)
5857         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5858     } else {
5859       Warn(RangeOrErr.takeError());
5860     }
5861     break;
5862   case ELF::SHT_RELR:
5863   case ELF::SHT_ANDROID_RELR: {
5864     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5865     if (!RangeOrErr) {
5866       Warn(RangeOrErr.takeError());
5867       break;
5868     }
5869     if (RawRelr) {
5870       for (const Elf_Relr &R : *RangeOrErr)
5871         RelrFn(R);
5872       break;
5873     }
5874 
5875     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5876       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5877                 /*SymTab=*/nullptr);
5878     break;
5879   }
5880   case ELF::SHT_ANDROID_REL:
5881   case ELF::SHT_ANDROID_RELA:
5882     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5883       for (const Elf_Rela &R : *RelasOrErr)
5884         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5885     } else {
5886       Warn(RelasOrErr.takeError());
5887     }
5888     break;
5889   }
5890 }
5891 
5892 template <class ELFT>
5893 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5894   StringRef Name = "<?>";
5895   if (Expected<StringRef> SecNameOrErr =
5896           Obj.getSectionName(Sec, this->WarningHandler))
5897     Name = *SecNameOrErr;
5898   else
5899     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5900                               ": " + toString(SecNameOrErr.takeError()));
5901   return Name;
5902 }
5903 
5904 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5905   bool SectionStarted = false;
5906   struct NameOffset {
5907     StringRef Name;
5908     uint64_t Offset;
5909   };
5910   std::vector<NameOffset> SecEntries;
5911   NameOffset Current;
5912   auto PrintSection = [&]() {
5913     OS << "Dependent libraries section " << Current.Name << " at offset "
5914        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5915        << " entries:\n";
5916     for (NameOffset Entry : SecEntries)
5917       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5918          << "\n";
5919     OS << "\n";
5920     SecEntries.clear();
5921   };
5922 
5923   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5924     if (SectionStarted)
5925       PrintSection();
5926     SectionStarted = true;
5927     Current.Offset = Shdr.sh_offset;
5928     Current.Name = this->getPrintableSectionName(Shdr);
5929   };
5930   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5931     SecEntries.push_back(NameOffset{Lib, Offset});
5932   };
5933 
5934   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5935   if (SectionStarted)
5936     PrintSection();
5937 }
5938 
5939 template <class ELFT>
5940 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5941     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5942   SmallVector<uint32_t> SymbolIndexes;
5943   if (!this->AddressToIndexMap) {
5944     // Populate the address to index map upon the first invocation of this
5945     // function.
5946     this->AddressToIndexMap.emplace();
5947     if (this->DotSymtabSec) {
5948       if (Expected<Elf_Sym_Range> SymsOrError =
5949               Obj.symbols(this->DotSymtabSec)) {
5950         uint32_t Index = (uint32_t)-1;
5951         for (const Elf_Sym &Sym : *SymsOrError) {
5952           ++Index;
5953 
5954           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5955             continue;
5956 
5957           Expected<uint64_t> SymAddrOrErr =
5958               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5959           if (!SymAddrOrErr) {
5960             std::string Name = this->getStaticSymbolName(Index);
5961             reportUniqueWarning("unable to get address of symbol '" + Name +
5962                                 "': " + toString(SymAddrOrErr.takeError()));
5963             return SymbolIndexes;
5964           }
5965 
5966           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5967         }
5968       } else {
5969         reportUniqueWarning("unable to read the symbol table: " +
5970                             toString(SymsOrError.takeError()));
5971       }
5972     }
5973   }
5974 
5975   auto Symbols = this->AddressToIndexMap->find(SymValue);
5976   if (Symbols == this->AddressToIndexMap->end())
5977     return SymbolIndexes;
5978 
5979   for (uint32_t Index : Symbols->second) {
5980     // Check if the symbol is in the right section. FunctionSec == None
5981     // means "any section".
5982     if (FunctionSec) {
5983       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5984       if (Expected<const Elf_Shdr *> SecOrErr =
5985               Obj.getSection(Sym, this->DotSymtabSec,
5986                              this->getShndxTable(this->DotSymtabSec))) {
5987         if (*FunctionSec != *SecOrErr)
5988           continue;
5989       } else {
5990         std::string Name = this->getStaticSymbolName(Index);
5991         // Note: it is impossible to trigger this error currently, it is
5992         // untested.
5993         reportUniqueWarning("unable to get section of symbol '" + Name +
5994                             "': " + toString(SecOrErr.takeError()));
5995         return SymbolIndexes;
5996       }
5997     }
5998 
5999     SymbolIndexes.push_back(Index);
6000   }
6001 
6002   return SymbolIndexes;
6003 }
6004 
6005 template <class ELFT>
6006 bool ELFDumper<ELFT>::printFunctionStackSize(
6007     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
6008     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6009   SmallVector<uint32_t> FuncSymIndexes =
6010       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6011   if (FuncSymIndexes.empty())
6012     reportUniqueWarning(
6013         "could not identify function symbol for stack size entry in " +
6014         describe(StackSizeSec));
6015 
6016   // Extract the size. The expectation is that Offset is pointing to the right
6017   // place, i.e. past the function address.
6018   Error Err = Error::success();
6019   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6020   if (Err) {
6021     reportUniqueWarning("could not extract a valid stack size from " +
6022                         describe(StackSizeSec) + ": " +
6023                         toString(std::move(Err)));
6024     return false;
6025   }
6026 
6027   if (FuncSymIndexes.empty()) {
6028     printStackSizeEntry(StackSize, {"?"});
6029   } else {
6030     SmallVector<std::string> FuncSymNames;
6031     for (uint32_t Index : FuncSymIndexes)
6032       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6033     printStackSizeEntry(StackSize, FuncSymNames);
6034   }
6035 
6036   return true;
6037 }
6038 
6039 template <class ELFT>
6040 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6041                                              ArrayRef<std::string> FuncNames) {
6042   OS.PadToColumn(2);
6043   OS << format_decimal(Size, 11);
6044   OS.PadToColumn(18);
6045 
6046   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6047 }
6048 
6049 template <class ELFT>
6050 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6051                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6052                                      const Elf_Shdr *SymTab,
6053                                      const Elf_Shdr *FunctionSec,
6054                                      const Elf_Shdr &StackSizeSec,
6055                                      const RelocationResolver &Resolver,
6056                                      DataExtractor Data) {
6057   // This function ignores potentially erroneous input, unless it is directly
6058   // related to stack size reporting.
6059   const Elf_Sym *Sym = nullptr;
6060   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6061   if (!TargetOrErr)
6062     reportUniqueWarning("unable to get the target of relocation with index " +
6063                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6064                         toString(TargetOrErr.takeError()));
6065   else
6066     Sym = TargetOrErr->Sym;
6067 
6068   uint64_t RelocSymValue = 0;
6069   if (Sym) {
6070     Expected<const Elf_Shdr *> SectionOrErr =
6071         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6072     if (!SectionOrErr) {
6073       reportUniqueWarning(
6074           "cannot identify the section for relocation symbol '" +
6075           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6076     } else if (*SectionOrErr != FunctionSec) {
6077       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6078                           "' is not in the expected section");
6079       // Pretend that the symbol is in the correct section and report its
6080       // stack size anyway.
6081       FunctionSec = *SectionOrErr;
6082     }
6083 
6084     RelocSymValue = Sym->st_value;
6085   }
6086 
6087   uint64_t Offset = R.Offset;
6088   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6089     reportUniqueWarning("found invalid relocation offset (0x" +
6090                         Twine::utohexstr(Offset) + ") into " +
6091                         describe(StackSizeSec) +
6092                         " while trying to extract a stack size entry");
6093     return;
6094   }
6095 
6096   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6097                                Data.getAddress(&Offset), R.Addend.value_or(0));
6098   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6099                                &Offset);
6100 }
6101 
6102 template <class ELFT>
6103 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6104     std::function<void()> PrintHeader) {
6105   // This function ignores potentially erroneous input, unless it is directly
6106   // related to stack size reporting.
6107   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6108     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6109       continue;
6110     PrintHeader();
6111     ArrayRef<uint8_t> Contents =
6112         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6113     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6114     uint64_t Offset = 0;
6115     while (Offset < Contents.size()) {
6116       // The function address is followed by a ULEB representing the stack
6117       // size. Check for an extra byte before we try to process the entry.
6118       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6119         reportUniqueWarning(
6120             describe(Sec) +
6121             " ended while trying to extract a stack size entry");
6122         break;
6123       }
6124       uint64_t SymValue = Data.getAddress(&Offset);
6125       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6126                                   &Offset))
6127         break;
6128     }
6129   }
6130 }
6131 
6132 template <class ELFT>
6133 void ELFDumper<ELFT>::getSectionAndRelocations(
6134     std::function<bool(const Elf_Shdr &)> IsMatch,
6135     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6136   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6137     if (IsMatch(Sec))
6138       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6139               .second)
6140         continue;
6141 
6142     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6143       continue;
6144 
6145     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6146     if (!RelSecOrErr) {
6147       reportUniqueWarning(describe(Sec) +
6148                           ": failed to get a relocated section: " +
6149                           toString(RelSecOrErr.takeError()));
6150       continue;
6151     }
6152     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6153     if (IsMatch(*ContentsSec))
6154       SecToRelocMap[ContentsSec] = &Sec;
6155   }
6156 }
6157 
6158 template <class ELFT>
6159 void ELFDumper<ELFT>::printRelocatableStackSizes(
6160     std::function<void()> PrintHeader) {
6161   // Build a map between stack size sections and their corresponding relocation
6162   // sections.
6163   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6164   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6165     StringRef SectionName;
6166     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6167       SectionName = *NameOrErr;
6168     else
6169       consumeError(NameOrErr.takeError());
6170 
6171     return SectionName == ".stack_sizes";
6172   };
6173   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6174 
6175   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6176     PrintHeader();
6177     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6178     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6179 
6180     // Warn about stack size sections without a relocation section.
6181     if (!RelocSec) {
6182       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6183                                 ") does not have a corresponding "
6184                                 "relocation section"),
6185                     FileName);
6186       continue;
6187     }
6188 
6189     // A .stack_sizes section header's sh_link field is supposed to point
6190     // to the section that contains the functions whose stack sizes are
6191     // described in it.
6192     const Elf_Shdr *FunctionSec = unwrapOrError(
6193         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6194 
6195     SupportsRelocation IsSupportedFn;
6196     RelocationResolver Resolver;
6197     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6198     ArrayRef<uint8_t> Contents =
6199         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6200     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6201 
6202     forEachRelocationDo(
6203         *RelocSec, /*RawRelr=*/false,
6204         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6205             const Elf_Shdr *SymTab) {
6206           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6207             reportUniqueWarning(
6208                 describe(*RelocSec) +
6209                 " contains an unsupported relocation with index " + Twine(Ndx) +
6210                 ": " + Obj.getRelocationTypeName(R.Type));
6211             return;
6212           }
6213 
6214           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6215                                *StackSizesELFSec, Resolver, Data);
6216         },
6217         [](const Elf_Relr &) {
6218           llvm_unreachable("can't get here, because we only support "
6219                            "SHT_REL/SHT_RELA sections");
6220         });
6221   }
6222 }
6223 
6224 template <class ELFT>
6225 void GNUELFDumper<ELFT>::printStackSizes() {
6226   bool HeaderHasBeenPrinted = false;
6227   auto PrintHeader = [&]() {
6228     if (HeaderHasBeenPrinted)
6229       return;
6230     OS << "\nStack Sizes:\n";
6231     OS.PadToColumn(9);
6232     OS << "Size";
6233     OS.PadToColumn(18);
6234     OS << "Functions\n";
6235     HeaderHasBeenPrinted = true;
6236   };
6237 
6238   // For non-relocatable objects, look directly for sections whose name starts
6239   // with .stack_sizes and process the contents.
6240   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6241     this->printRelocatableStackSizes(PrintHeader);
6242   else
6243     this->printNonRelocatableStackSizes(PrintHeader);
6244 }
6245 
6246 template <class ELFT>
6247 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6248   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6249   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6250     OS.PadToColumn(2);
6251     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6252     OS.PadToColumn(11 + Bias);
6253     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6254     OS.PadToColumn(22 + Bias);
6255     OS << format_hex_no_prefix(*E, 8 + Bias);
6256     OS.PadToColumn(31 + 2 * Bias);
6257     OS << Purpose << "\n";
6258   };
6259 
6260   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6261   OS << " Canonical gp value: "
6262      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6263 
6264   OS << " Reserved entries:\n";
6265   if (ELFT::Is64Bits)
6266     OS << "           Address     Access          Initial Purpose\n";
6267   else
6268     OS << "   Address     Access  Initial Purpose\n";
6269   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6270   if (Parser.getGotModulePointer())
6271     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6272 
6273   if (!Parser.getLocalEntries().empty()) {
6274     OS << "\n";
6275     OS << " Local entries:\n";
6276     if (ELFT::Is64Bits)
6277       OS << "           Address     Access          Initial\n";
6278     else
6279       OS << "   Address     Access  Initial\n";
6280     for (auto &E : Parser.getLocalEntries())
6281       PrintEntry(&E, "");
6282   }
6283 
6284   if (Parser.IsStatic)
6285     return;
6286 
6287   if (!Parser.getGlobalEntries().empty()) {
6288     OS << "\n";
6289     OS << " Global entries:\n";
6290     if (ELFT::Is64Bits)
6291       OS << "           Address     Access          Initial         Sym.Val."
6292          << " Type    Ndx Name\n";
6293     else
6294       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6295 
6296     DataRegion<Elf_Word> ShndxTable(
6297         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6298     for (auto &E : Parser.getGlobalEntries()) {
6299       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6300       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6301       std::string SymName = this->getFullSymbolName(
6302           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6303 
6304       OS.PadToColumn(2);
6305       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6306       OS.PadToColumn(11 + Bias);
6307       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6308       OS.PadToColumn(22 + Bias);
6309       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6310       OS.PadToColumn(31 + 2 * Bias);
6311       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6312       OS.PadToColumn(40 + 3 * Bias);
6313       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6314       OS.PadToColumn(48 + 3 * Bias);
6315       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6316                                 ShndxTable);
6317       OS.PadToColumn(52 + 3 * Bias);
6318       OS << SymName << "\n";
6319     }
6320   }
6321 
6322   if (!Parser.getOtherEntries().empty())
6323     OS << "\n Number of TLS and multi-GOT entries "
6324        << Parser.getOtherEntries().size() << "\n";
6325 }
6326 
6327 template <class ELFT>
6328 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6329   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6330   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6331     OS.PadToColumn(2);
6332     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6333     OS.PadToColumn(11 + Bias);
6334     OS << format_hex_no_prefix(*E, 8 + Bias);
6335     OS.PadToColumn(20 + 2 * Bias);
6336     OS << Purpose << "\n";
6337   };
6338 
6339   OS << "PLT GOT:\n\n";
6340 
6341   OS << " Reserved entries:\n";
6342   OS << "   Address  Initial Purpose\n";
6343   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6344   if (Parser.getPltModulePointer())
6345     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6346 
6347   if (!Parser.getPltEntries().empty()) {
6348     OS << "\n";
6349     OS << " Entries:\n";
6350     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6351     DataRegion<Elf_Word> ShndxTable(
6352         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6353     for (auto &E : Parser.getPltEntries()) {
6354       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6355       const Elf_Sym &FirstSym = *cantFail(
6356           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6357       std::string SymName = this->getFullSymbolName(
6358           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6359 
6360       OS.PadToColumn(2);
6361       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6362       OS.PadToColumn(11 + Bias);
6363       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6364       OS.PadToColumn(20 + 2 * Bias);
6365       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6366       OS.PadToColumn(29 + 3 * Bias);
6367       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6368       OS.PadToColumn(37 + 3 * Bias);
6369       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6370                                 ShndxTable);
6371       OS.PadToColumn(41 + 3 * Bias);
6372       OS << SymName << "\n";
6373     }
6374   }
6375 }
6376 
6377 template <class ELFT>
6378 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6379 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6380   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6381   if (Sec == nullptr)
6382     return nullptr;
6383 
6384   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6385   Expected<ArrayRef<uint8_t>> DataOrErr =
6386       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6387   if (!DataOrErr)
6388     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6389 
6390   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6391     return createError(ErrPrefix + "it has a wrong size (" +
6392         Twine(DataOrErr->size()) + ")");
6393   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6394 }
6395 
6396 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6397   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6398   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6399           getMipsAbiFlagsSection(*this))
6400     Flags = *SecOrErr;
6401   else
6402     this->reportUniqueWarning(SecOrErr.takeError());
6403   if (!Flags)
6404     return;
6405 
6406   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6407   OS << "ISA: MIPS" << int(Flags->isa_level);
6408   if (Flags->isa_rev > 1)
6409     OS << "r" << int(Flags->isa_rev);
6410   OS << "\n";
6411   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6412   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6413   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6414   OS << "FP ABI: "
6415      << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6416   OS << "ISA Extension: "
6417      << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6418   if (Flags->ases == 0)
6419     OS << "ASEs: None\n";
6420   else
6421     // FIXME: Print each flag on a separate line.
6422     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6423        << "\n";
6424   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6425   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6426   OS << "\n";
6427 }
6428 
6429 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6430   const Elf_Ehdr &E = this->Obj.getHeader();
6431   {
6432     DictScope D(W, "ElfHeader");
6433     {
6434       DictScope D(W, "Ident");
6435       W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6436       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6437       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6438                   makeArrayRef(ElfDataEncoding));
6439       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6440 
6441       auto OSABI = makeArrayRef(ElfOSABI);
6442       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6443           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6444         switch (E.e_machine) {
6445         case ELF::EM_AMDGPU:
6446           OSABI = makeArrayRef(AMDGPUElfOSABI);
6447           break;
6448         case ELF::EM_ARM:
6449           OSABI = makeArrayRef(ARMElfOSABI);
6450           break;
6451         case ELF::EM_TI_C6000:
6452           OSABI = makeArrayRef(C6000ElfOSABI);
6453           break;
6454         }
6455       }
6456       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6457       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6458       W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6459     }
6460 
6461     std::string TypeStr;
6462     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6463       TypeStr = Ent->Name.str();
6464     } else {
6465       if (E.e_type >= ET_LOPROC)
6466         TypeStr = "Processor Specific";
6467       else if (E.e_type >= ET_LOOS)
6468         TypeStr = "OS Specific";
6469       else
6470         TypeStr = "Unknown";
6471     }
6472     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6473 
6474     W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6475     W.printNumber("Version", E.e_version);
6476     W.printHex("Entry", E.e_entry);
6477     W.printHex("ProgramHeaderOffset", E.e_phoff);
6478     W.printHex("SectionHeaderOffset", E.e_shoff);
6479     if (E.e_machine == EM_MIPS)
6480       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6481                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6482                    unsigned(ELF::EF_MIPS_MACH));
6483     else if (E.e_machine == EM_AMDGPU) {
6484       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6485       default:
6486         W.printHex("Flags", E.e_flags);
6487         break;
6488       case 0:
6489         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6490         LLVM_FALLTHROUGH;
6491       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6492         W.printFlags("Flags", E.e_flags,
6493                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6494                      unsigned(ELF::EF_AMDGPU_MACH));
6495         break;
6496       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6497       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6498         W.printFlags("Flags", E.e_flags,
6499                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6500                      unsigned(ELF::EF_AMDGPU_MACH),
6501                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6502                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6503         break;
6504       }
6505     } else if (E.e_machine == EM_RISCV)
6506       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6507     else if (E.e_machine == EM_AVR)
6508       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6509                    unsigned(ELF::EF_AVR_ARCH_MASK));
6510     else
6511       W.printFlags("Flags", E.e_flags);
6512     W.printNumber("HeaderSize", E.e_ehsize);
6513     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6514     W.printNumber("ProgramHeaderCount", E.e_phnum);
6515     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6516     W.printString("SectionHeaderCount",
6517                   getSectionHeadersNumString(this->Obj, this->FileName));
6518     W.printString("StringTableSectionIndex",
6519                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6520   }
6521 }
6522 
6523 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6524   DictScope Lists(W, "Groups");
6525   std::vector<GroupSection> V = this->getGroups();
6526   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6527   for (const GroupSection &G : V) {
6528     DictScope D(W, "Group");
6529     W.printNumber("Name", G.Name, G.ShName);
6530     W.printNumber("Index", G.Index);
6531     W.printNumber("Link", G.Link);
6532     W.printNumber("Info", G.Info);
6533     W.printHex("Type", getGroupType(G.Type), G.Type);
6534     W.startLine() << "Signature: " << G.Signature << "\n";
6535 
6536     ListScope L(W, "Section(s) in group");
6537     for (const GroupMember &GM : G.Members) {
6538       const GroupSection *MainGroup = Map[GM.Index];
6539       if (MainGroup != &G)
6540         this->reportUniqueWarning(
6541             "section with index " + Twine(GM.Index) +
6542             ", included in the group section with index " +
6543             Twine(MainGroup->Index) +
6544             ", was also found in the group section with index " +
6545             Twine(G.Index));
6546       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6547     }
6548   }
6549 
6550   if (V.empty())
6551     W.startLine() << "There are no group sections in the file.\n";
6552 }
6553 
6554 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6555   ListScope D(W, "Relocations");
6556 
6557   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6558     if (!isRelocationSec<ELFT>(Sec))
6559       continue;
6560 
6561     StringRef Name = this->getPrintableSectionName(Sec);
6562     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6563     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6564     W.indent();
6565     this->printRelocationsHelper(Sec);
6566     W.unindent();
6567     W.startLine() << "}\n";
6568   }
6569 }
6570 
6571 template <class ELFT>
6572 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6573   W.startLine() << W.hex(R) << "\n";
6574 }
6575 
6576 template <class ELFT>
6577 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6578                                             const RelSymbol<ELFT> &RelSym) {
6579   StringRef SymbolName = RelSym.Name;
6580   SmallString<32> RelocName;
6581   this->Obj.getRelocationTypeName(R.Type, RelocName);
6582 
6583   if (opts::ExpandRelocs) {
6584     DictScope Group(W, "Relocation");
6585     W.printHex("Offset", R.Offset);
6586     W.printNumber("Type", RelocName, R.Type);
6587     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6588     if (R.Addend)
6589       W.printHex("Addend", (uintX_t)*R.Addend);
6590   } else {
6591     raw_ostream &OS = W.startLine();
6592     OS << W.hex(R.Offset) << " " << RelocName << " "
6593        << (!SymbolName.empty() ? SymbolName : "-");
6594     if (R.Addend)
6595       OS << " " << W.hex((uintX_t)*R.Addend);
6596     OS << "\n";
6597   }
6598 }
6599 
6600 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6601   ListScope SectionsD(W, "Sections");
6602 
6603   int SectionIndex = -1;
6604   std::vector<EnumEntry<unsigned>> FlagsList =
6605       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6606                                this->Obj.getHeader().e_machine);
6607   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6608     DictScope SectionD(W, "Section");
6609     W.printNumber("Index", ++SectionIndex);
6610     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6611     W.printHex("Type",
6612                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6613                                              Sec.sh_type),
6614                Sec.sh_type);
6615     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6616     W.printHex("Address", Sec.sh_addr);
6617     W.printHex("Offset", Sec.sh_offset);
6618     W.printNumber("Size", Sec.sh_size);
6619     W.printNumber("Link", Sec.sh_link);
6620     W.printNumber("Info", Sec.sh_info);
6621     W.printNumber("AddressAlignment", Sec.sh_addralign);
6622     W.printNumber("EntrySize", Sec.sh_entsize);
6623 
6624     if (opts::SectionRelocations) {
6625       ListScope D(W, "Relocations");
6626       this->printRelocationsHelper(Sec);
6627     }
6628 
6629     if (opts::SectionSymbols) {
6630       ListScope D(W, "Symbols");
6631       if (this->DotSymtabSec) {
6632         StringRef StrTable = unwrapOrError(
6633             this->FileName,
6634             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6635         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6636 
6637         typename ELFT::SymRange Symbols = unwrapOrError(
6638             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6639         for (const Elf_Sym &Sym : Symbols) {
6640           const Elf_Shdr *SymSec = unwrapOrError(
6641               this->FileName,
6642               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6643           if (SymSec == &Sec)
6644             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6645                         false);
6646         }
6647       }
6648     }
6649 
6650     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6651       ArrayRef<uint8_t> Data =
6652           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6653       W.printBinaryBlock(
6654           "SectionData",
6655           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6656     }
6657   }
6658 }
6659 
6660 template <class ELFT>
6661 void LLVMELFDumper<ELFT>::printSymbolSection(
6662     const Elf_Sym &Symbol, unsigned SymIndex,
6663     DataRegion<Elf_Word> ShndxTable) const {
6664   auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6665     if (Symbol.isUndefined())
6666       return StringRef("Undefined");
6667     if (Symbol.isProcessorSpecific())
6668       return StringRef("Processor Specific");
6669     if (Symbol.isOSSpecific())
6670       return StringRef("Operating System Specific");
6671     if (Symbol.isAbsolute())
6672       return StringRef("Absolute");
6673     if (Symbol.isCommon())
6674       return StringRef("Common");
6675     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6676       return StringRef("Reserved");
6677     return None;
6678   };
6679 
6680   if (Optional<StringRef> Type = GetSectionSpecialType()) {
6681     W.printHex("Section", *Type, Symbol.st_shndx);
6682     return;
6683   }
6684 
6685   Expected<unsigned> SectionIndex =
6686       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6687   if (!SectionIndex) {
6688     assert(Symbol.st_shndx == SHN_XINDEX &&
6689            "getSymbolSectionIndex should only fail due to an invalid "
6690            "SHT_SYMTAB_SHNDX table/reference");
6691     this->reportUniqueWarning(SectionIndex.takeError());
6692     W.printHex("Section", "Reserved", SHN_XINDEX);
6693     return;
6694   }
6695 
6696   Expected<StringRef> SectionName =
6697       this->getSymbolSectionName(Symbol, *SectionIndex);
6698   if (!SectionName) {
6699     // Don't report an invalid section name if the section headers are missing.
6700     // In such situations, all sections will be "invalid".
6701     if (!this->ObjF.sections().empty())
6702       this->reportUniqueWarning(SectionName.takeError());
6703     else
6704       consumeError(SectionName.takeError());
6705     W.printHex("Section", "<?>", *SectionIndex);
6706   } else {
6707     W.printHex("Section", *SectionName, *SectionIndex);
6708   }
6709 }
6710 
6711 template <class ELFT>
6712 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6713                                       DataRegion<Elf_Word> ShndxTable,
6714                                       Optional<StringRef> StrTable,
6715                                       bool IsDynamic,
6716                                       bool /*NonVisibilityBitsUsed*/) const {
6717   std::string FullSymbolName = this->getFullSymbolName(
6718       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6719   unsigned char SymbolType = Symbol.getType();
6720 
6721   DictScope D(W, "Symbol");
6722   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6723   W.printHex("Value", Symbol.st_value);
6724   W.printNumber("Size", Symbol.st_size);
6725   W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6726   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6727       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6728     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6729   else
6730     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6731   if (Symbol.st_other == 0)
6732     // Usually st_other flag is zero. Do not pollute the output
6733     // by flags enumeration in that case.
6734     W.printNumber("Other", 0);
6735   else {
6736     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6737                                                    std::end(ElfSymOtherFlags));
6738     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6739       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6740       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6741       // cases separately.
6742       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6743         SymOtherFlags.insert(SymOtherFlags.end(),
6744                              std::begin(ElfMips16SymOtherFlags),
6745                              std::end(ElfMips16SymOtherFlags));
6746       else
6747         SymOtherFlags.insert(SymOtherFlags.end(),
6748                              std::begin(ElfMipsSymOtherFlags),
6749                              std::end(ElfMipsSymOtherFlags));
6750     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6751       SymOtherFlags.insert(SymOtherFlags.end(),
6752                            std::begin(ElfAArch64SymOtherFlags),
6753                            std::end(ElfAArch64SymOtherFlags));
6754     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6755       SymOtherFlags.insert(SymOtherFlags.end(),
6756                            std::begin(ElfRISCVSymOtherFlags),
6757                            std::end(ElfRISCVSymOtherFlags));
6758     }
6759     W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6760   }
6761   printSymbolSection(Symbol, SymIndex, ShndxTable);
6762 }
6763 
6764 template <class ELFT>
6765 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6766                                        bool PrintDynamicSymbols) {
6767   if (PrintSymbols) {
6768     ListScope Group(W, "Symbols");
6769     this->printSymbolsHelper(false);
6770   }
6771   if (PrintDynamicSymbols) {
6772     ListScope Group(W, "DynamicSymbols");
6773     this->printSymbolsHelper(true);
6774   }
6775 }
6776 
6777 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6778   Elf_Dyn_Range Table = this->dynamic_table();
6779   if (Table.empty())
6780     return;
6781 
6782   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6783 
6784   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6785   // The "Name/Value" column should be indented from the "Type" column by N
6786   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6787   // space (1) = -3.
6788   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6789                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6790 
6791   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6792   for (auto Entry : Table) {
6793     uintX_t Tag = Entry.getTag();
6794     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6795     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6796                   << " "
6797                   << format(ValueFmt.c_str(),
6798                             this->Obj.getDynamicTagAsString(Tag).c_str())
6799                   << Value << "\n";
6800   }
6801   W.startLine() << "]\n";
6802 }
6803 
6804 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6805   W.startLine() << "Dynamic Relocations {\n";
6806   W.indent();
6807   this->printDynamicRelocationsHelper();
6808   W.unindent();
6809   W.startLine() << "}\n";
6810 }
6811 
6812 template <class ELFT>
6813 void LLVMELFDumper<ELFT>::printProgramHeaders(
6814     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6815   if (PrintProgramHeaders)
6816     printProgramHeaders();
6817   if (PrintSectionMapping == cl::BOU_TRUE)
6818     printSectionMapping();
6819 }
6820 
6821 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6822   ListScope L(W, "ProgramHeaders");
6823 
6824   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6825   if (!PhdrsOrErr) {
6826     this->reportUniqueWarning("unable to dump program headers: " +
6827                               toString(PhdrsOrErr.takeError()));
6828     return;
6829   }
6830 
6831   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6832     DictScope P(W, "ProgramHeader");
6833     StringRef Type =
6834         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6835 
6836     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6837     W.printHex("Offset", Phdr.p_offset);
6838     W.printHex("VirtualAddress", Phdr.p_vaddr);
6839     W.printHex("PhysicalAddress", Phdr.p_paddr);
6840     W.printNumber("FileSize", Phdr.p_filesz);
6841     W.printNumber("MemSize", Phdr.p_memsz);
6842     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6843     W.printNumber("Alignment", Phdr.p_align);
6844   }
6845 }
6846 
6847 template <class ELFT>
6848 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6849   ListScope SS(W, "VersionSymbols");
6850   if (!Sec)
6851     return;
6852 
6853   StringRef StrTable;
6854   ArrayRef<Elf_Sym> Syms;
6855   const Elf_Shdr *SymTabSec;
6856   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6857       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6858   if (!VerTableOrErr) {
6859     this->reportUniqueWarning(VerTableOrErr.takeError());
6860     return;
6861   }
6862 
6863   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6864     return;
6865 
6866   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6867   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6868     DictScope S(W, "Symbol");
6869     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6870     W.printString("Name",
6871                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6872                                           /*IsDynamic=*/true));
6873   }
6874 }
6875 
6876 const EnumEntry<unsigned> SymVersionFlags[] = {
6877     {"Base", "BASE", VER_FLG_BASE},
6878     {"Weak", "WEAK", VER_FLG_WEAK},
6879     {"Info", "INFO", VER_FLG_INFO}};
6880 
6881 template <class ELFT>
6882 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6883   ListScope SD(W, "VersionDefinitions");
6884   if (!Sec)
6885     return;
6886 
6887   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6888   if (!V) {
6889     this->reportUniqueWarning(V.takeError());
6890     return;
6891   }
6892 
6893   for (const VerDef &D : *V) {
6894     DictScope Def(W, "Definition");
6895     W.printNumber("Version", D.Version);
6896     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6897     W.printNumber("Index", D.Ndx);
6898     W.printNumber("Hash", D.Hash);
6899     W.printString("Name", D.Name.c_str());
6900     W.printList(
6901         "Predecessors", D.AuxV,
6902         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6903   }
6904 }
6905 
6906 template <class ELFT>
6907 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6908   ListScope SD(W, "VersionRequirements");
6909   if (!Sec)
6910     return;
6911 
6912   Expected<std::vector<VerNeed>> V =
6913       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6914   if (!V) {
6915     this->reportUniqueWarning(V.takeError());
6916     return;
6917   }
6918 
6919   for (const VerNeed &VN : *V) {
6920     DictScope Entry(W, "Dependency");
6921     W.printNumber("Version", VN.Version);
6922     W.printNumber("Count", VN.Cnt);
6923     W.printString("FileName", VN.File.c_str());
6924 
6925     ListScope L(W, "Entries");
6926     for (const VernAux &Aux : VN.AuxV) {
6927       DictScope Entry(W, "Entry");
6928       W.printNumber("Hash", Aux.Hash);
6929       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6930       W.printNumber("Index", Aux.Other);
6931       W.printString("Name", Aux.Name.c_str());
6932     }
6933   }
6934 }
6935 
6936 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6937   W.startLine() << "Hash Histogram not implemented!\n";
6938 }
6939 
6940 // Returns true if rel/rela section exists, and populates SymbolIndices.
6941 // Otherwise returns false.
6942 template <class ELFT>
6943 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6944                              const ELFFile<ELFT> &Obj,
6945                              const LLVMELFDumper<ELFT> *Dumper,
6946                              SmallVector<uint32_t, 128> &SymbolIndices) {
6947   if (!CGRelSection) {
6948     Dumper->reportUniqueWarning(
6949         "relocation section for a call graph section doesn't exist");
6950     return false;
6951   }
6952 
6953   if (CGRelSection->sh_type == SHT_REL) {
6954     typename ELFT::RelRange CGProfileRel;
6955     Expected<typename ELFT::RelRange> CGProfileRelOrError =
6956         Obj.rels(*CGRelSection);
6957     if (!CGProfileRelOrError) {
6958       Dumper->reportUniqueWarning("unable to load relocations for "
6959                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6960                                   toString(CGProfileRelOrError.takeError()));
6961       return false;
6962     }
6963 
6964     CGProfileRel = *CGProfileRelOrError;
6965     for (const typename ELFT::Rel &Rel : CGProfileRel)
6966       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6967   } else {
6968     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6969     // the format to SHT_RELA
6970     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6971     typename ELFT::RelaRange CGProfileRela;
6972     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6973         Obj.relas(*CGRelSection);
6974     if (!CGProfileRelaOrError) {
6975       Dumper->reportUniqueWarning("unable to load relocations for "
6976                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6977                                   toString(CGProfileRelaOrError.takeError()));
6978       return false;
6979     }
6980 
6981     CGProfileRela = *CGProfileRelaOrError;
6982     for (const typename ELFT::Rela &Rela : CGProfileRela)
6983       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6984   }
6985 
6986   return true;
6987 }
6988 
6989 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6990   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
6991 
6992   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
6993     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
6994   };
6995   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
6996 
6997   for (const auto &CGMapEntry : SecToRelocMap) {
6998     const Elf_Shdr *CGSection = CGMapEntry.first;
6999     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7000 
7001     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7002         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7003     if (!CGProfileOrErr) {
7004       this->reportUniqueWarning(
7005           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7006           toString(CGProfileOrErr.takeError()));
7007       return;
7008     }
7009 
7010     SmallVector<uint32_t, 128> SymbolIndices;
7011     bool UseReloc =
7012         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7013     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7014       this->reportUniqueWarning(
7015           "number of from/to pairs does not match number of frequencies");
7016       UseReloc = false;
7017     }
7018 
7019     ListScope L(W, "CGProfile");
7020     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7021       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7022       DictScope D(W, "CGProfileEntry");
7023       if (UseReloc) {
7024         uint32_t From = SymbolIndices[I * 2];
7025         uint32_t To = SymbolIndices[I * 2 + 1];
7026         W.printNumber("From", this->getStaticSymbolName(From), From);
7027         W.printNumber("To", this->getStaticSymbolName(To), To);
7028       }
7029       W.printNumber("Weight", CGPE.cgp_weight);
7030     }
7031   }
7032 }
7033 
7034 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7035   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7036   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7037     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7038         Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7039       continue;
7040     }
7041     Optional<const Elf_Shdr *> FunctionSec = None;
7042     if (IsRelocatable)
7043       FunctionSec =
7044           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7045     ListScope L(W, "BBAddrMap");
7046     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7047         this->Obj.decodeBBAddrMap(Sec);
7048     if (!BBAddrMapOrErr) {
7049       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7050                                 toString(BBAddrMapOrErr.takeError()));
7051       continue;
7052     }
7053     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7054       DictScope D(W, "Function");
7055       W.printHex("At", AM.Addr);
7056       SmallVector<uint32_t> FuncSymIndex =
7057           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7058       std::string FuncName = "<?>";
7059       if (FuncSymIndex.empty())
7060         this->reportUniqueWarning(
7061             "could not identify function symbol for address (0x" +
7062             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7063       else
7064         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7065       W.printString("Name", FuncName);
7066 
7067       ListScope L(W, "BB entries");
7068       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7069         DictScope L(W);
7070         W.printHex("Offset", BBE.Offset);
7071         W.printHex("Size", BBE.Size);
7072         W.printBoolean("HasReturn", BBE.HasReturn);
7073         W.printBoolean("HasTailCall", BBE.HasTailCall);
7074         W.printBoolean("IsEHPad", BBE.IsEHPad);
7075         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7076       }
7077     }
7078   }
7079 }
7080 
7081 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7082   ListScope L(W, "Addrsig");
7083   if (!this->DotAddrsigSec)
7084     return;
7085 
7086   Expected<std::vector<uint64_t>> SymsOrErr =
7087       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7088   if (!SymsOrErr) {
7089     this->reportUniqueWarning(SymsOrErr.takeError());
7090     return;
7091   }
7092 
7093   for (uint64_t Sym : *SymsOrErr)
7094     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7095 }
7096 
7097 template <typename ELFT>
7098 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7099                                   ScopedPrinter &W) {
7100   // Return true if we were able to pretty-print the note, false otherwise.
7101   switch (NoteType) {
7102   default:
7103     return false;
7104   case ELF::NT_GNU_ABI_TAG: {
7105     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7106     if (!AbiTag.IsValid) {
7107       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7108       return false;
7109     } else {
7110       W.printString("OS", AbiTag.OSName);
7111       W.printString("ABI", AbiTag.ABI);
7112     }
7113     break;
7114   }
7115   case ELF::NT_GNU_BUILD_ID: {
7116     W.printString("Build ID", getGNUBuildId(Desc));
7117     break;
7118   }
7119   case ELF::NT_GNU_GOLD_VERSION:
7120     W.printString("Version", getDescAsStringRef(Desc));
7121     break;
7122   case ELF::NT_GNU_PROPERTY_TYPE_0:
7123     ListScope D(W, "Property");
7124     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7125       W.printString(Property);
7126     break;
7127   }
7128   return true;
7129 }
7130 
7131 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7132                                       ScopedPrinter &W) {
7133   // Return true if we were able to pretty-print the note, false otherwise.
7134   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7135   if (Props.empty())
7136     return false;
7137   for (const auto &KV : Props)
7138     W.printString(KV.first, KV.second);
7139   return true;
7140 }
7141 
7142 template <typename ELFT>
7143 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7144                                              ArrayRef<uint8_t> Desc,
7145                                              ScopedPrinter &W) {
7146   switch (NoteType) {
7147   default:
7148     return false;
7149   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7150     W.printString("Version", getDescAsStringRef(Desc));
7151     break;
7152   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7153     W.printString("Producer", getDescAsStringRef(Desc));
7154     break;
7155   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7156     W.printString("Producer version", getDescAsStringRef(Desc));
7157     break;
7158   }
7159   return true;
7160 }
7161 
7162 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7163   W.printNumber("Page Size", Note.PageSize);
7164   for (const CoreFileMapping &Mapping : Note.Mappings) {
7165     ListScope D(W, "Mapping");
7166     W.printHex("Start", Mapping.Start);
7167     W.printHex("End", Mapping.End);
7168     W.printHex("Offset", Mapping.Offset);
7169     W.printString("Filename", Mapping.Filename);
7170   }
7171 }
7172 
7173 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7174   ListScope L(W, "Notes");
7175 
7176   std::unique_ptr<DictScope> NoteScope;
7177   auto StartNotes = [&](Optional<StringRef> SecName,
7178                         const typename ELFT::Off Offset,
7179                         const typename ELFT::Addr Size) {
7180     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7181     W.printString("Name", SecName ? *SecName : "<?>");
7182     W.printHex("Offset", Offset);
7183     W.printHex("Size", Size);
7184   };
7185 
7186   auto EndNotes = [&] { NoteScope.reset(); };
7187 
7188   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7189     DictScope D2(W, "Note");
7190     StringRef Name = Note.getName();
7191     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7192     Elf_Word Type = Note.getType();
7193 
7194     // Print the note owner/type.
7195     W.printString("Owner", Name);
7196     W.printHex("Data size", Descriptor.size());
7197 
7198     StringRef NoteType =
7199         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7200     if (!NoteType.empty())
7201       W.printString("Type", NoteType);
7202     else
7203       W.printString("Type",
7204                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7205 
7206     // Print the description, or fallback to printing raw bytes for unknown
7207     // owners/if we fail to pretty-print the contents.
7208     if (Name == "GNU") {
7209       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7210         return Error::success();
7211     } else if (Name == "FreeBSD") {
7212       if (Optional<FreeBSDNote> N =
7213               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7214         W.printString(N->Type, N->Value);
7215         return Error::success();
7216       }
7217     } else if (Name == "AMD") {
7218       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7219       if (!N.Type.empty()) {
7220         W.printString(N.Type, N.Value);
7221         return Error::success();
7222       }
7223     } else if (Name == "AMDGPU") {
7224       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7225       if (!N.Type.empty()) {
7226         W.printString(N.Type, N.Value);
7227         return Error::success();
7228       }
7229     } else if (Name == "LLVMOMPOFFLOAD") {
7230       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7231         return Error::success();
7232     } else if (Name == "CORE") {
7233       if (Type == ELF::NT_FILE) {
7234         DataExtractor DescExtractor(Descriptor,
7235                                     ELFT::TargetEndianness == support::little,
7236                                     sizeof(Elf_Addr));
7237         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7238           printCoreNoteLLVMStyle(*N, W);
7239           return Error::success();
7240         } else {
7241           return N.takeError();
7242         }
7243       }
7244     } else if (Name == "Android") {
7245       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7246         return Error::success();
7247     }
7248     if (!Descriptor.empty()) {
7249       W.printBinaryBlock("Description data", Descriptor);
7250     }
7251     return Error::success();
7252   };
7253 
7254   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7255 }
7256 
7257 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7258   ListScope L(W, "LinkerOptions");
7259 
7260   unsigned I = -1;
7261   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7262     ++I;
7263     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7264       continue;
7265 
7266     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7267         this->Obj.getSectionContents(Shdr);
7268     if (!ContentsOrErr) {
7269       this->reportUniqueWarning("unable to read the content of the "
7270                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7271                                 toString(ContentsOrErr.takeError()));
7272       continue;
7273     }
7274     if (ContentsOrErr->empty())
7275       continue;
7276 
7277     if (ContentsOrErr->back() != 0) {
7278       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7279                                 Twine(I) +
7280                                 " is broken: the "
7281                                 "content is not null-terminated");
7282       continue;
7283     }
7284 
7285     SmallVector<StringRef, 16> Strings;
7286     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7287     if (Strings.size() % 2 != 0) {
7288       this->reportUniqueWarning(
7289           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7290           " is broken: an incomplete "
7291           "key-value pair was found. The last possible key was: \"" +
7292           Strings.back() + "\"");
7293       continue;
7294     }
7295 
7296     for (size_t I = 0; I < Strings.size(); I += 2)
7297       W.printString(Strings[I], Strings[I + 1]);
7298   }
7299 }
7300 
7301 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7302   ListScope L(W, "DependentLibs");
7303   this->printDependentLibsHelper(
7304       [](const Elf_Shdr &) {},
7305       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7306 }
7307 
7308 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7309   ListScope L(W, "StackSizes");
7310   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7311     this->printRelocatableStackSizes([]() {});
7312   else
7313     this->printNonRelocatableStackSizes([]() {});
7314 }
7315 
7316 template <class ELFT>
7317 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7318                                               ArrayRef<std::string> FuncNames) {
7319   DictScope D(W, "Entry");
7320   W.printList("Functions", FuncNames);
7321   W.printHex("Size", Size);
7322 }
7323 
7324 template <class ELFT>
7325 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7326   auto PrintEntry = [&](const Elf_Addr *E) {
7327     W.printHex("Address", Parser.getGotAddress(E));
7328     W.printNumber("Access", Parser.getGotOffset(E));
7329     W.printHex("Initial", *E);
7330   };
7331 
7332   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7333 
7334   W.printHex("Canonical gp value", Parser.getGp());
7335   {
7336     ListScope RS(W, "Reserved entries");
7337     {
7338       DictScope D(W, "Entry");
7339       PrintEntry(Parser.getGotLazyResolver());
7340       W.printString("Purpose", StringRef("Lazy resolver"));
7341     }
7342 
7343     if (Parser.getGotModulePointer()) {
7344       DictScope D(W, "Entry");
7345       PrintEntry(Parser.getGotModulePointer());
7346       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7347     }
7348   }
7349   {
7350     ListScope LS(W, "Local entries");
7351     for (auto &E : Parser.getLocalEntries()) {
7352       DictScope D(W, "Entry");
7353       PrintEntry(&E);
7354     }
7355   }
7356 
7357   if (Parser.IsStatic)
7358     return;
7359 
7360   {
7361     ListScope GS(W, "Global entries");
7362     for (auto &E : Parser.getGlobalEntries()) {
7363       DictScope D(W, "Entry");
7364 
7365       PrintEntry(&E);
7366 
7367       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7368       W.printHex("Value", Sym.st_value);
7369       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7370 
7371       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7372       DataRegion<Elf_Word> ShndxTable(
7373           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7374       printSymbolSection(Sym, SymIndex, ShndxTable);
7375 
7376       std::string SymName = this->getFullSymbolName(
7377           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7378       W.printNumber("Name", SymName, Sym.st_name);
7379     }
7380   }
7381 
7382   W.printNumber("Number of TLS and multi-GOT entries",
7383                 uint64_t(Parser.getOtherEntries().size()));
7384 }
7385 
7386 template <class ELFT>
7387 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7388   auto PrintEntry = [&](const Elf_Addr *E) {
7389     W.printHex("Address", Parser.getPltAddress(E));
7390     W.printHex("Initial", *E);
7391   };
7392 
7393   DictScope GS(W, "PLT GOT");
7394 
7395   {
7396     ListScope RS(W, "Reserved entries");
7397     {
7398       DictScope D(W, "Entry");
7399       PrintEntry(Parser.getPltLazyResolver());
7400       W.printString("Purpose", StringRef("PLT lazy resolver"));
7401     }
7402 
7403     if (auto E = Parser.getPltModulePointer()) {
7404       DictScope D(W, "Entry");
7405       PrintEntry(E);
7406       W.printString("Purpose", StringRef("Module pointer"));
7407     }
7408   }
7409   {
7410     ListScope LS(W, "Entries");
7411     DataRegion<Elf_Word> ShndxTable(
7412         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7413     for (auto &E : Parser.getPltEntries()) {
7414       DictScope D(W, "Entry");
7415       PrintEntry(&E);
7416 
7417       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7418       W.printHex("Value", Sym.st_value);
7419       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7420       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7421                          ShndxTable);
7422 
7423       const Elf_Sym *FirstSym = cantFail(
7424           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7425       std::string SymName = this->getFullSymbolName(
7426           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7427       W.printNumber("Name", SymName, Sym.st_name);
7428     }
7429   }
7430 }
7431 
7432 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7433   const Elf_Mips_ABIFlags<ELFT> *Flags;
7434   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7435           getMipsAbiFlagsSection(*this)) {
7436     Flags = *SecOrErr;
7437     if (!Flags) {
7438       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7439       return;
7440     }
7441   } else {
7442     this->reportUniqueWarning(SecOrErr.takeError());
7443     return;
7444   }
7445 
7446   raw_ostream &OS = W.getOStream();
7447   DictScope GS(W, "MIPS ABI Flags");
7448 
7449   W.printNumber("Version", Flags->version);
7450   W.startLine() << "ISA: ";
7451   if (Flags->isa_rev <= 1)
7452     OS << format("MIPS%u", Flags->isa_level);
7453   else
7454     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7455   OS << "\n";
7456   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7457   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7458   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7459   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7460   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7461   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7462   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7463   W.printHex("Flags 2", Flags->flags2);
7464 }
7465 
7466 template <class ELFT>
7467 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7468                                            ArrayRef<std::string> InputFilenames,
7469                                            const Archive *A) {
7470   FileScope = std::make_unique<DictScope>(this->W, FileStr);
7471   DictScope D(this->W, "FileSummary");
7472   this->W.printString("File", FileStr);
7473   this->W.printString("Format", Obj.getFileFormatName());
7474   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7475   this->W.printString(
7476       "AddressSize",
7477       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7478   this->printLoadName();
7479 }
7480