1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 32 #include "llvm/BinaryFormat/ELF.h" 33 #include "llvm/Demangle/Demangle.h" 34 #include "llvm/Object/ELF.h" 35 #include "llvm/Object/ELFObjectFile.h" 36 #include "llvm/Object/ELFTypes.h" 37 #include "llvm/Object/Error.h" 38 #include "llvm/Object/ObjectFile.h" 39 #include "llvm/Object/RelocationResolver.h" 40 #include "llvm/Object/StackMapParser.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/ARMAttributeParser.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Endian.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/FormatVariadic.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/LEB128.h" 52 #include "llvm/Support/MSP430AttributeParser.h" 53 #include "llvm/Support/MSP430Attributes.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/MipsABIFlags.h" 56 #include "llvm/Support/RISCVAttributeParser.h" 57 #include "llvm/Support/RISCVAttributes.h" 58 #include "llvm/Support/ScopedPrinter.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cinttypes> 62 #include <cstddef> 63 #include <cstdint> 64 #include <cstdlib> 65 #include <iterator> 66 #include <memory> 67 #include <string> 68 #include <system_error> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace llvm::object; 73 using namespace ELF; 74 75 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 76 case ns::enum: \ 77 return #enum; 78 79 #define ENUM_ENT(enum, altName) \ 80 { #enum, altName, ELF::enum } 81 82 #define ENUM_ENT_1(enum) \ 83 { #enum, #enum, ELF::enum } 84 85 namespace { 86 87 template <class ELFT> struct RelSymbol { 88 RelSymbol(const typename ELFT::Sym *S, StringRef N) 89 : Sym(S), Name(N.str()) {} 90 const typename ELFT::Sym *Sym; 91 std::string Name; 92 }; 93 94 /// Represents a contiguous uniform range in the file. We cannot just create a 95 /// range directly because when creating one of these from the .dynamic table 96 /// the size, entity size and virtual address are different entries in arbitrary 97 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 98 struct DynRegionInfo { 99 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 100 : Obj(&Owner), Dumper(&D) {} 101 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 102 uint64_t S, uint64_t ES) 103 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 104 105 /// Address in current address space. 106 const uint8_t *Addr = nullptr; 107 /// Size in bytes of the region. 108 uint64_t Size = 0; 109 /// Size of each entity in the region. 110 uint64_t EntSize = 0; 111 112 /// Owner object. Used for error reporting. 113 const Binary *Obj; 114 /// Dumper used for error reporting. 115 const ObjDumper *Dumper; 116 /// Error prefix. Used for error reporting to provide more information. 117 std::string Context; 118 /// Region size name. Used for error reporting. 119 StringRef SizePrintName = "size"; 120 /// Entry size name. Used for error reporting. If this field is empty, errors 121 /// will not mention the entry size. 122 StringRef EntSizePrintName = "entry size"; 123 124 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 125 const Type *Start = reinterpret_cast<const Type *>(Addr); 126 if (!Start) 127 return {Start, Start}; 128 129 const uint64_t Offset = 130 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 131 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 132 133 if (Size > ObjSize - Offset) { 134 Dumper->reportUniqueWarning( 135 "unable to read data at 0x" + Twine::utohexstr(Offset) + 136 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 137 "): it goes past the end of the file of size 0x" + 138 Twine::utohexstr(ObjSize)); 139 return {Start, Start}; 140 } 141 142 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 143 return {Start, Start + (Size / EntSize)}; 144 145 std::string Msg; 146 if (!Context.empty()) 147 Msg += Context + " has "; 148 149 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 150 .str(); 151 if (!EntSizePrintName.empty()) 152 Msg += 153 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 154 .str(); 155 156 Dumper->reportUniqueWarning(Msg); 157 return {Start, Start}; 158 } 159 }; 160 161 struct GroupMember { 162 StringRef Name; 163 uint64_t Index; 164 }; 165 166 struct GroupSection { 167 StringRef Name; 168 std::string Signature; 169 uint64_t ShName; 170 uint64_t Index; 171 uint32_t Link; 172 uint32_t Info; 173 uint32_t Type; 174 std::vector<GroupMember> Members; 175 }; 176 177 namespace { 178 179 struct NoteType { 180 uint32_t ID; 181 StringRef Name; 182 }; 183 184 } // namespace 185 186 template <class ELFT> class Relocation { 187 public: 188 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 189 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 190 Offset(R.r_offset), Info(R.r_info) {} 191 192 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 193 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 194 Addend = R.r_addend; 195 } 196 197 uint32_t Type; 198 uint32_t Symbol; 199 typename ELFT::uint Offset; 200 typename ELFT::uint Info; 201 Optional<int64_t> Addend; 202 }; 203 204 template <class ELFT> class MipsGOTParser; 205 206 template <typename ELFT> class ELFDumper : public ObjDumper { 207 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 208 209 public: 210 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 211 212 void printUnwindInfo() override; 213 void printNeededLibraries() override; 214 void printHashTable() override; 215 void printGnuHashTable() override; 216 void printLoadName() override; 217 void printVersionInfo() override; 218 void printArchSpecificInfo() override; 219 void printStackMap() const override; 220 221 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 222 223 std::string describe(const Elf_Shdr &Sec) const; 224 225 unsigned getHashTableEntSize() const { 226 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 227 // sections. This violates the ELF specification. 228 if (Obj.getHeader().e_machine == ELF::EM_S390 || 229 Obj.getHeader().e_machine == ELF::EM_ALPHA) 230 return 8; 231 return 4; 232 } 233 234 Elf_Dyn_Range dynamic_table() const { 235 // A valid .dynamic section contains an array of entries terminated 236 // with a DT_NULL entry. However, sometimes the section content may 237 // continue past the DT_NULL entry, so to dump the section correctly, 238 // we first find the end of the entries by iterating over them. 239 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 240 241 size_t Size = 0; 242 while (Size < Table.size()) 243 if (Table[Size++].getTag() == DT_NULL) 244 break; 245 246 return Table.slice(0, Size); 247 } 248 249 Elf_Sym_Range dynamic_symbols() const { 250 if (!DynSymRegion) 251 return Elf_Sym_Range(); 252 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 253 } 254 255 const Elf_Shdr *findSectionByName(StringRef Name) const; 256 257 StringRef getDynamicStringTable() const { return DynamicStringTable; } 258 259 protected: 260 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 261 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 262 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 263 264 void 265 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 266 function_ref<void(StringRef, uint64_t)> OnLibEntry); 267 268 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 269 const RelSymbol<ELFT> &RelSym) = 0; 270 virtual void printRelrReloc(const Elf_Relr &R) = 0; 271 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 272 const DynRegionInfo &Reg) {} 273 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 274 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 275 void printDynamicReloc(const Relocation<ELFT> &R); 276 void printDynamicRelocationsHelper(); 277 void printRelocationsHelper(const Elf_Shdr &Sec); 278 void forEachRelocationDo( 279 const Elf_Shdr &Sec, bool RawRelr, 280 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 281 const Elf_Shdr &, const Elf_Shdr *)> 282 RelRelaFn, 283 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 284 285 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 286 bool NonVisibilityBitsUsed) const {}; 287 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 288 DataRegion<Elf_Word> ShndxTable, 289 Optional<StringRef> StrTable, bool IsDynamic, 290 bool NonVisibilityBitsUsed) const = 0; 291 292 virtual void printMipsABIFlags() = 0; 293 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 294 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 295 296 Expected<ArrayRef<Elf_Versym>> 297 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 298 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 299 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 300 301 std::vector<GroupSection> getGroups(); 302 303 // Returns the function symbol index for the given address. Matches the 304 // symbol's section with FunctionSec when specified. 305 // Returns None if no function symbol can be found for the address or in case 306 // it is not defined in the specified section. 307 SmallVector<uint32_t> 308 getSymbolIndexesForFunctionAddress(uint64_t SymValue, 309 Optional<const Elf_Shdr *> FunctionSec); 310 bool printFunctionStackSize(uint64_t SymValue, 311 Optional<const Elf_Shdr *> FunctionSec, 312 const Elf_Shdr &StackSizeSec, DataExtractor Data, 313 uint64_t *Offset); 314 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 315 unsigned Ndx, const Elf_Shdr *SymTab, 316 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 317 const RelocationResolver &Resolver, DataExtractor Data); 318 virtual void printStackSizeEntry(uint64_t Size, 319 ArrayRef<std::string> FuncNames) = 0; 320 321 void printRelocatableStackSizes(std::function<void()> PrintHeader); 322 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 323 324 /// Retrieves sections with corresponding relocation sections based on 325 /// IsMatch. 326 void getSectionAndRelocations( 327 std::function<bool(const Elf_Shdr &)> IsMatch, 328 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap); 329 330 const object::ELFObjectFile<ELFT> &ObjF; 331 const ELFFile<ELFT> &Obj; 332 StringRef FileName; 333 334 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 335 uint64_t EntSize) { 336 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 337 return createError("offset (0x" + Twine::utohexstr(Offset) + 338 ") + size (0x" + Twine::utohexstr(Size) + 339 ") is greater than the file size (0x" + 340 Twine::utohexstr(Obj.getBufSize()) + ")"); 341 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 342 } 343 344 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 345 support::endianness); 346 void printMipsReginfo(); 347 void printMipsOptions(); 348 349 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 350 void loadDynamicTable(); 351 void parseDynamicTable(); 352 353 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 354 bool &IsDefault) const; 355 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const; 356 357 DynRegionInfo DynRelRegion; 358 DynRegionInfo DynRelaRegion; 359 DynRegionInfo DynRelrRegion; 360 DynRegionInfo DynPLTRelRegion; 361 Optional<DynRegionInfo> DynSymRegion; 362 DynRegionInfo DynSymTabShndxRegion; 363 DynRegionInfo DynamicTable; 364 StringRef DynamicStringTable; 365 const Elf_Hash *HashTable = nullptr; 366 const Elf_GnuHash *GnuHashTable = nullptr; 367 const Elf_Shdr *DotSymtabSec = nullptr; 368 const Elf_Shdr *DotDynsymSec = nullptr; 369 const Elf_Shdr *DotAddrsigSec = nullptr; 370 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 371 Optional<uint64_t> SONameOffset; 372 Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 373 374 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 375 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 376 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 377 378 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 379 DataRegion<Elf_Word> ShndxTable, 380 Optional<StringRef> StrTable, 381 bool IsDynamic) const; 382 Expected<unsigned> 383 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 384 DataRegion<Elf_Word> ShndxTable) const; 385 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 386 unsigned SectionIndex) const; 387 std::string getStaticSymbolName(uint32_t Index) const; 388 StringRef getDynamicString(uint64_t Value) const; 389 390 void printSymbolsHelper(bool IsDynamic) const; 391 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 392 393 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 394 const Elf_Shdr *SymTab) const; 395 396 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 397 398 private: 399 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap; 400 }; 401 402 template <class ELFT> 403 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 404 return ::describe(Obj, Sec); 405 } 406 407 namespace { 408 409 template <class ELFT> struct SymtabLink { 410 typename ELFT::SymRange Symbols; 411 StringRef StringTable; 412 const typename ELFT::Shdr *SymTab; 413 }; 414 415 // Returns the linked symbol table, symbols and associated string table for a 416 // given section. 417 template <class ELFT> 418 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 419 const typename ELFT::Shdr &Sec, 420 unsigned ExpectedType) { 421 Expected<const typename ELFT::Shdr *> SymtabOrErr = 422 Obj.getSection(Sec.sh_link); 423 if (!SymtabOrErr) 424 return createError("invalid section linked to " + describe(Obj, Sec) + 425 ": " + toString(SymtabOrErr.takeError())); 426 427 if ((*SymtabOrErr)->sh_type != ExpectedType) 428 return createError( 429 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 430 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 431 ", but got " + 432 object::getELFSectionTypeName(Obj.getHeader().e_machine, 433 (*SymtabOrErr)->sh_type)); 434 435 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 436 if (!StrTabOrErr) 437 return createError( 438 "can't get a string table for the symbol table linked to " + 439 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 440 441 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 442 if (!SymsOrErr) 443 return createError("unable to read symbols from the " + describe(Obj, Sec) + 444 ": " + toString(SymsOrErr.takeError())); 445 446 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 447 } 448 449 } // namespace 450 451 template <class ELFT> 452 Expected<ArrayRef<typename ELFT::Versym>> 453 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 454 StringRef *StrTab, 455 const Elf_Shdr **SymTabSec) const { 456 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 457 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 458 sizeof(uint16_t) != 459 0) 460 return createError("the " + describe(Sec) + " is misaligned"); 461 462 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 463 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 464 if (!VersionsOrErr) 465 return createError("cannot read content of " + describe(Sec) + ": " + 466 toString(VersionsOrErr.takeError())); 467 468 Expected<SymtabLink<ELFT>> SymTabOrErr = 469 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 470 if (!SymTabOrErr) { 471 reportUniqueWarning(SymTabOrErr.takeError()); 472 return *VersionsOrErr; 473 } 474 475 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 476 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 477 Twine(VersionsOrErr->size()) + 478 ") does not match the number of symbols (" + 479 Twine(SymTabOrErr->Symbols.size()) + 480 ") in the symbol table with index " + 481 Twine(Sec.sh_link)); 482 483 if (SymTab) { 484 *SymTab = SymTabOrErr->Symbols; 485 *StrTab = SymTabOrErr->StringTable; 486 *SymTabSec = SymTabOrErr->SymTab; 487 } 488 return *VersionsOrErr; 489 } 490 491 template <class ELFT> 492 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { 493 Optional<StringRef> StrTable; 494 size_t Entries = 0; 495 Elf_Sym_Range Syms(nullptr, nullptr); 496 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 497 498 if (IsDynamic) { 499 StrTable = DynamicStringTable; 500 Syms = dynamic_symbols(); 501 Entries = Syms.size(); 502 } else if (DotSymtabSec) { 503 if (Expected<StringRef> StrTableOrErr = 504 Obj.getStringTableForSymtab(*DotSymtabSec)) 505 StrTable = *StrTableOrErr; 506 else 507 reportUniqueWarning( 508 "unable to get the string table for the SHT_SYMTAB section: " + 509 toString(StrTableOrErr.takeError())); 510 511 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 512 Syms = *SymsOrErr; 513 else 514 reportUniqueWarning( 515 "unable to read symbols from the SHT_SYMTAB section: " + 516 toString(SymsOrErr.takeError())); 517 Entries = DotSymtabSec->getEntityCount(); 518 } 519 if (Syms.empty()) 520 return; 521 522 // The st_other field has 2 logical parts. The first two bits hold the symbol 523 // visibility (STV_*) and the remainder hold other platform-specific values. 524 bool NonVisibilityBitsUsed = 525 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 526 527 DataRegion<Elf_Word> ShndxTable = 528 IsDynamic ? DataRegion<Elf_Word>( 529 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 530 this->getElfObject().getELFFile().end()) 531 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 532 533 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed); 534 for (const Elf_Sym &Sym : Syms) 535 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 536 NonVisibilityBitsUsed); 537 } 538 539 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 540 formatted_raw_ostream &OS; 541 542 public: 543 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 544 545 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 546 : ELFDumper<ELFT>(ObjF, Writer), 547 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 548 assert(&this->W.getOStream() == &llvm::fouts()); 549 } 550 551 void printFileHeaders() override; 552 void printGroupSections() override; 553 void printRelocations() override; 554 void printSectionHeaders() override; 555 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 556 void printHashSymbols() override; 557 void printSectionDetails() override; 558 void printDependentLibs() override; 559 void printDynamicTable() override; 560 void printDynamicRelocations() override; 561 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 562 bool NonVisibilityBitsUsed) const override; 563 void printProgramHeaders(bool PrintProgramHeaders, 564 cl::boolOrDefault PrintSectionMapping) override; 565 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 566 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 567 void printVersionDependencySection(const Elf_Shdr *Sec) override; 568 void printHashHistograms() override; 569 void printCGProfile() override; 570 void printBBAddrMaps() override; 571 void printAddrsig() override; 572 void printNotes() override; 573 void printELFLinkerOptions() override; 574 void printStackSizes() override; 575 576 private: 577 void printHashHistogram(const Elf_Hash &HashTable); 578 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable); 579 void printHashTableSymbols(const Elf_Hash &HashTable); 580 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 581 582 struct Field { 583 std::string Str; 584 unsigned Column; 585 586 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 587 Field(unsigned Col) : Column(Col) {} 588 }; 589 590 template <typename T, typename TEnum> 591 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) const { 592 for (const EnumEntry<TEnum> &EnumItem : EnumValues) 593 if (EnumItem.Value == Value) 594 return std::string(EnumItem.AltName); 595 return to_hexString(Value, false); 596 } 597 598 template <typename T, typename TEnum> 599 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 600 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 601 TEnum EnumMask3 = {}) const { 602 std::string Str; 603 for (const EnumEntry<TEnum> &Flag : EnumValues) { 604 if (Flag.Value == 0) 605 continue; 606 607 TEnum EnumMask{}; 608 if (Flag.Value & EnumMask1) 609 EnumMask = EnumMask1; 610 else if (Flag.Value & EnumMask2) 611 EnumMask = EnumMask2; 612 else if (Flag.Value & EnumMask3) 613 EnumMask = EnumMask3; 614 bool IsEnum = (Flag.Value & EnumMask) != 0; 615 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 616 (IsEnum && (Value & EnumMask) == Flag.Value)) { 617 if (!Str.empty()) 618 Str += ", "; 619 Str += Flag.AltName; 620 } 621 } 622 return Str; 623 } 624 625 formatted_raw_ostream &printField(struct Field F) const { 626 if (F.Column != 0) 627 OS.PadToColumn(F.Column); 628 OS << F.Str; 629 OS.flush(); 630 return OS; 631 } 632 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 633 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 634 uint32_t Bucket); 635 void printRelrReloc(const Elf_Relr &R) override; 636 void printRelRelaReloc(const Relocation<ELFT> &R, 637 const RelSymbol<ELFT> &RelSym) override; 638 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 639 DataRegion<Elf_Word> ShndxTable, 640 Optional<StringRef> StrTable, bool IsDynamic, 641 bool NonVisibilityBitsUsed) const override; 642 void printDynamicRelocHeader(unsigned Type, StringRef Name, 643 const DynRegionInfo &Reg) override; 644 645 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 646 DataRegion<Elf_Word> ShndxTable) const; 647 void printProgramHeaders() override; 648 void printSectionMapping() override; 649 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 650 const Twine &Label, unsigned EntriesNum); 651 652 void printStackSizeEntry(uint64_t Size, 653 ArrayRef<std::string> FuncNames) override; 654 655 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 656 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 657 void printMipsABIFlags() override; 658 }; 659 660 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 661 public: 662 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 663 664 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 665 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 666 667 void printFileHeaders() override; 668 void printGroupSections() override; 669 void printRelocations() override; 670 void printSectionHeaders() override; 671 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 672 void printDependentLibs() override; 673 void printDynamicTable() override; 674 void printDynamicRelocations() override; 675 void printProgramHeaders(bool PrintProgramHeaders, 676 cl::boolOrDefault PrintSectionMapping) override; 677 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 678 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 679 void printVersionDependencySection(const Elf_Shdr *Sec) override; 680 void printHashHistograms() override; 681 void printCGProfile() override; 682 void printBBAddrMaps() override; 683 void printAddrsig() override; 684 void printNotes() override; 685 void printELFLinkerOptions() override; 686 void printStackSizes() override; 687 688 private: 689 void printRelrReloc(const Elf_Relr &R) override; 690 void printRelRelaReloc(const Relocation<ELFT> &R, 691 const RelSymbol<ELFT> &RelSym) override; 692 693 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 694 DataRegion<Elf_Word> ShndxTable) const; 695 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 696 DataRegion<Elf_Word> ShndxTable, 697 Optional<StringRef> StrTable, bool IsDynamic, 698 bool /*NonVisibilityBitsUsed*/) const override; 699 void printProgramHeaders() override; 700 void printSectionMapping() override {} 701 void printStackSizeEntry(uint64_t Size, 702 ArrayRef<std::string> FuncNames) override; 703 704 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 705 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 706 void printMipsABIFlags() override; 707 708 ScopedPrinter &W; 709 }; 710 711 } // end anonymous namespace 712 713 namespace llvm { 714 715 template <class ELFT> 716 static std::unique_ptr<ObjDumper> 717 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 718 if (opts::Output == opts::GNU) 719 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 720 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 721 } 722 723 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 724 ScopedPrinter &Writer) { 725 // Little-endian 32-bit 726 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 727 return createELFDumper(*ELFObj, Writer); 728 729 // Big-endian 32-bit 730 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 731 return createELFDumper(*ELFObj, Writer); 732 733 // Little-endian 64-bit 734 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 735 return createELFDumper(*ELFObj, Writer); 736 737 // Big-endian 64-bit 738 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 739 } 740 741 } // end namespace llvm 742 743 template <class ELFT> 744 Expected<SmallVector<Optional<VersionEntry>, 0> *> 745 ELFDumper<ELFT>::getVersionMap() const { 746 // If the VersionMap has already been loaded or if there is no dynamic symtab 747 // or version table, there is nothing to do. 748 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 749 return &VersionMap; 750 751 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr = 752 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 753 if (MapOrErr) 754 VersionMap = *MapOrErr; 755 else 756 return MapOrErr.takeError(); 757 758 return &VersionMap; 759 } 760 761 template <typename ELFT> 762 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 763 bool &IsDefault) const { 764 // This is a dynamic symbol. Look in the GNU symbol version table. 765 if (!SymbolVersionSection) { 766 // No version table. 767 IsDefault = false; 768 return ""; 769 } 770 771 assert(DynSymRegion && "DynSymRegion has not been initialised"); 772 // Determine the position in the symbol table of this entry. 773 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 774 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 775 sizeof(Elf_Sym); 776 777 // Get the corresponding version index entry. 778 Expected<const Elf_Versym *> EntryOrErr = 779 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 780 if (!EntryOrErr) 781 return EntryOrErr.takeError(); 782 783 unsigned Version = (*EntryOrErr)->vs_index; 784 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 785 IsDefault = false; 786 return ""; 787 } 788 789 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 790 getVersionMap(); 791 if (!MapOrErr) 792 return MapOrErr.takeError(); 793 794 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 795 Sym.st_shndx == ELF::SHN_UNDEF); 796 } 797 798 template <typename ELFT> 799 Expected<RelSymbol<ELFT>> 800 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 801 const Elf_Shdr *SymTab) const { 802 if (R.Symbol == 0) 803 return RelSymbol<ELFT>(nullptr, ""); 804 805 Expected<const Elf_Sym *> SymOrErr = 806 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 807 if (!SymOrErr) 808 return createError("unable to read an entry with index " + Twine(R.Symbol) + 809 " from " + describe(*SymTab) + ": " + 810 toString(SymOrErr.takeError())); 811 const Elf_Sym *Sym = *SymOrErr; 812 if (!Sym) 813 return RelSymbol<ELFT>(nullptr, ""); 814 815 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 816 if (!StrTableOrErr) 817 return StrTableOrErr.takeError(); 818 819 const Elf_Sym *FirstSym = 820 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 821 std::string SymbolName = 822 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 823 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 824 return RelSymbol<ELFT>(Sym, SymbolName); 825 } 826 827 template <typename ELFT> 828 ArrayRef<typename ELFT::Word> 829 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 830 if (Symtab) { 831 auto It = ShndxTables.find(Symtab); 832 if (It != ShndxTables.end()) 833 return It->second; 834 } 835 return {}; 836 } 837 838 static std::string maybeDemangle(StringRef Name) { 839 return opts::Demangle ? demangle(std::string(Name)) : Name.str(); 840 } 841 842 template <typename ELFT> 843 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 844 auto Warn = [&](Error E) -> std::string { 845 reportUniqueWarning("unable to read the name of symbol with index " + 846 Twine(Index) + ": " + toString(std::move(E))); 847 return "<?>"; 848 }; 849 850 Expected<const typename ELFT::Sym *> SymOrErr = 851 Obj.getSymbol(DotSymtabSec, Index); 852 if (!SymOrErr) 853 return Warn(SymOrErr.takeError()); 854 855 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 856 if (!StrTabOrErr) 857 return Warn(StrTabOrErr.takeError()); 858 859 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 860 if (!NameOrErr) 861 return Warn(NameOrErr.takeError()); 862 return maybeDemangle(*NameOrErr); 863 } 864 865 template <typename ELFT> 866 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol, 867 unsigned SymIndex, 868 DataRegion<Elf_Word> ShndxTable, 869 Optional<StringRef> StrTable, 870 bool IsDynamic) const { 871 if (!StrTable) 872 return "<?>"; 873 874 std::string SymbolName; 875 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 876 SymbolName = maybeDemangle(*NameOrErr); 877 } else { 878 reportUniqueWarning(NameOrErr.takeError()); 879 return "<?>"; 880 } 881 882 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 883 Expected<unsigned> SectionIndex = 884 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 885 if (!SectionIndex) { 886 reportUniqueWarning(SectionIndex.takeError()); 887 return "<?>"; 888 } 889 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 890 if (!NameOrErr) { 891 reportUniqueWarning(NameOrErr.takeError()); 892 return ("<section " + Twine(*SectionIndex) + ">").str(); 893 } 894 return std::string(*NameOrErr); 895 } 896 897 if (!IsDynamic) 898 return SymbolName; 899 900 bool IsDefault; 901 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 902 if (!VersionOrErr) { 903 reportUniqueWarning(VersionOrErr.takeError()); 904 return SymbolName + "@<corrupt>"; 905 } 906 907 if (!VersionOrErr->empty()) { 908 SymbolName += (IsDefault ? "@@" : "@"); 909 SymbolName += *VersionOrErr; 910 } 911 return SymbolName; 912 } 913 914 template <typename ELFT> 915 Expected<unsigned> 916 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 917 DataRegion<Elf_Word> ShndxTable) const { 918 unsigned Ndx = Symbol.st_shndx; 919 if (Ndx == SHN_XINDEX) 920 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 921 ShndxTable); 922 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 923 return Ndx; 924 925 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) { 926 std::string Desc; 927 if (Offset) 928 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 929 else 930 Desc = Name.str(); 931 return createError( 932 "unable to get section index for symbol with st_shndx = 0x" + 933 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 934 }; 935 936 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 937 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 938 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 939 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 940 if (Ndx == ELF::SHN_UNDEF) 941 return CreateErr("SHN_UNDEF"); 942 if (Ndx == ELF::SHN_ABS) 943 return CreateErr("SHN_ABS"); 944 if (Ndx == ELF::SHN_COMMON) 945 return CreateErr("SHN_COMMON"); 946 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 947 } 948 949 template <typename ELFT> 950 Expected<StringRef> 951 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 952 unsigned SectionIndex) const { 953 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 954 if (!SecOrErr) 955 return SecOrErr.takeError(); 956 return Obj.getSectionName(**SecOrErr); 957 } 958 959 template <class ELFO> 960 static const typename ELFO::Elf_Shdr * 961 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 962 uint64_t Addr) { 963 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 964 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 965 return &Shdr; 966 return nullptr; 967 } 968 969 const EnumEntry<unsigned> ElfClass[] = { 970 {"None", "none", ELF::ELFCLASSNONE}, 971 {"32-bit", "ELF32", ELF::ELFCLASS32}, 972 {"64-bit", "ELF64", ELF::ELFCLASS64}, 973 }; 974 975 const EnumEntry<unsigned> ElfDataEncoding[] = { 976 {"None", "none", ELF::ELFDATANONE}, 977 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 978 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 979 }; 980 981 const EnumEntry<unsigned> ElfObjectFileType[] = { 982 {"None", "NONE (none)", ELF::ET_NONE}, 983 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 984 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 985 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 986 {"Core", "CORE (Core file)", ELF::ET_CORE}, 987 }; 988 989 const EnumEntry<unsigned> ElfOSABI[] = { 990 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 991 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 992 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 993 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 994 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 995 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 996 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 997 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 998 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 999 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1000 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1001 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1002 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1003 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1004 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1005 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1006 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1007 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1008 }; 1009 1010 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1011 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1012 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1013 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1014 }; 1015 1016 const EnumEntry<unsigned> ARMElfOSABI[] = { 1017 {"ARM", "ARM", ELF::ELFOSABI_ARM} 1018 }; 1019 1020 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1021 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1022 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1023 }; 1024 1025 const EnumEntry<unsigned> ElfMachineType[] = { 1026 ENUM_ENT(EM_NONE, "None"), 1027 ENUM_ENT(EM_M32, "WE32100"), 1028 ENUM_ENT(EM_SPARC, "Sparc"), 1029 ENUM_ENT(EM_386, "Intel 80386"), 1030 ENUM_ENT(EM_68K, "MC68000"), 1031 ENUM_ENT(EM_88K, "MC88000"), 1032 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1033 ENUM_ENT(EM_860, "Intel 80860"), 1034 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1035 ENUM_ENT(EM_S370, "IBM System/370"), 1036 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1037 ENUM_ENT(EM_PARISC, "HPPA"), 1038 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1039 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1040 ENUM_ENT(EM_960, "Intel 80960"), 1041 ENUM_ENT(EM_PPC, "PowerPC"), 1042 ENUM_ENT(EM_PPC64, "PowerPC64"), 1043 ENUM_ENT(EM_S390, "IBM S/390"), 1044 ENUM_ENT(EM_SPU, "SPU"), 1045 ENUM_ENT(EM_V800, "NEC V800 series"), 1046 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1047 ENUM_ENT(EM_RH32, "TRW RH-32"), 1048 ENUM_ENT(EM_RCE, "Motorola RCE"), 1049 ENUM_ENT(EM_ARM, "ARM"), 1050 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1051 ENUM_ENT(EM_SH, "Hitachi SH"), 1052 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1053 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1054 ENUM_ENT(EM_ARC, "ARC"), 1055 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1056 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1057 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1058 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1059 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1060 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1061 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1062 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1063 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1064 ENUM_ENT(EM_PCP, "Siemens PCP"), 1065 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1066 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1067 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1068 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1069 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1070 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1071 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1072 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1073 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1074 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1075 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1076 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1077 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1078 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1079 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1080 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1081 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1082 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1083 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1084 ENUM_ENT(EM_VAX, "Digital VAX"), 1085 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1086 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1087 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1088 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1089 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1090 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1091 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1092 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1093 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1094 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1095 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1096 ENUM_ENT(EM_V850, "NEC v850"), 1097 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1098 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1099 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1100 ENUM_ENT(EM_PJ, "picoJava"), 1101 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1102 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1103 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1104 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1105 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1106 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1107 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1108 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1109 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1110 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1111 ENUM_ENT(EM_MAX, "MAX Processor"), 1112 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1113 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1114 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1115 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1116 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1117 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1118 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1119 ENUM_ENT(EM_UNICORE, "Unicore"), 1120 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1121 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1122 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1123 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1124 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1125 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1126 ENUM_ENT(EM_M16C, "Renesas M16C"), 1127 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1128 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1129 ENUM_ENT(EM_M32C, "Renesas M32C"), 1130 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1131 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1132 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1133 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1134 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1135 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1136 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1137 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1138 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1139 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1140 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1141 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1142 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1143 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1144 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1145 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1146 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1147 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1148 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1149 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1150 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1151 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1152 // an identical number to EM_ECOG1. 1153 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1154 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1155 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1156 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1157 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1158 ENUM_ENT(EM_RX, "Renesas RX"), 1159 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1160 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1161 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1162 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1163 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1164 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1165 ENUM_ENT(EM_L10M, "EM_L10M"), 1166 ENUM_ENT(EM_K10M, "EM_K10M"), 1167 ENUM_ENT(EM_AARCH64, "AArch64"), 1168 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1169 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1170 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1171 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1172 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1173 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1174 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1175 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1176 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1177 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1178 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1179 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1180 ENUM_ENT(EM_RL78, "Renesas RL78"), 1181 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1182 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1183 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1184 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1185 ENUM_ENT(EM_RISCV, "RISC-V"), 1186 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1187 ENUM_ENT(EM_BPF, "EM_BPF"), 1188 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1189 }; 1190 1191 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1192 {"Local", "LOCAL", ELF::STB_LOCAL}, 1193 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1194 {"Weak", "WEAK", ELF::STB_WEAK}, 1195 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1196 1197 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1198 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1199 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1200 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1201 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1202 1203 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1204 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1205 }; 1206 1207 static const char *getGroupType(uint32_t Flag) { 1208 if (Flag & ELF::GRP_COMDAT) 1209 return "COMDAT"; 1210 else 1211 return "(unknown)"; 1212 } 1213 1214 const EnumEntry<unsigned> ElfSectionFlags[] = { 1215 ENUM_ENT(SHF_WRITE, "W"), 1216 ENUM_ENT(SHF_ALLOC, "A"), 1217 ENUM_ENT(SHF_EXECINSTR, "X"), 1218 ENUM_ENT(SHF_MERGE, "M"), 1219 ENUM_ENT(SHF_STRINGS, "S"), 1220 ENUM_ENT(SHF_INFO_LINK, "I"), 1221 ENUM_ENT(SHF_LINK_ORDER, "L"), 1222 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1223 ENUM_ENT(SHF_GROUP, "G"), 1224 ENUM_ENT(SHF_TLS, "T"), 1225 ENUM_ENT(SHF_COMPRESSED, "C"), 1226 ENUM_ENT(SHF_GNU_RETAIN, "R"), 1227 ENUM_ENT(SHF_EXCLUDE, "E"), 1228 }; 1229 1230 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1231 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1232 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1233 }; 1234 1235 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1236 ENUM_ENT(SHF_ARM_PURECODE, "y") 1237 }; 1238 1239 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1240 ENUM_ENT(SHF_HEX_GPREL, "") 1241 }; 1242 1243 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1244 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1245 ENUM_ENT(SHF_MIPS_NAMES, ""), 1246 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1247 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1248 ENUM_ENT(SHF_MIPS_GPREL, ""), 1249 ENUM_ENT(SHF_MIPS_MERGE, ""), 1250 ENUM_ENT(SHF_MIPS_ADDR, ""), 1251 ENUM_ENT(SHF_MIPS_STRING, "") 1252 }; 1253 1254 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1255 ENUM_ENT(SHF_X86_64_LARGE, "l") 1256 }; 1257 1258 static std::vector<EnumEntry<unsigned>> 1259 getSectionFlagsForTarget(unsigned EMachine) { 1260 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1261 std::end(ElfSectionFlags)); 1262 switch (EMachine) { 1263 case EM_ARM: 1264 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1265 std::end(ElfARMSectionFlags)); 1266 break; 1267 case EM_HEXAGON: 1268 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1269 std::end(ElfHexagonSectionFlags)); 1270 break; 1271 case EM_MIPS: 1272 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1273 std::end(ElfMipsSectionFlags)); 1274 break; 1275 case EM_X86_64: 1276 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1277 std::end(ElfX86_64SectionFlags)); 1278 break; 1279 case EM_XCORE: 1280 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1281 std::end(ElfXCoreSectionFlags)); 1282 break; 1283 default: 1284 break; 1285 } 1286 return Ret; 1287 } 1288 1289 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) { 1290 // Here we are trying to build the flags string in the same way as GNU does. 1291 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1292 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1293 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1294 // "p". It only will print "E" when no other processor flag is set. 1295 std::string Str; 1296 bool HasUnknownFlag = false; 1297 bool HasOSFlag = false; 1298 bool HasProcFlag = false; 1299 std::vector<EnumEntry<unsigned>> FlagsList = 1300 getSectionFlagsForTarget(EMachine); 1301 while (Flags) { 1302 // Take the least significant bit as a flag. 1303 uint64_t Flag = Flags & -Flags; 1304 Flags -= Flag; 1305 1306 // Find the flag in the known flags list. 1307 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1308 // Flags with empty names are not printed in GNU style output. 1309 return E.Value == Flag && !E.AltName.empty(); 1310 }); 1311 if (I != FlagsList.end()) { 1312 Str += I->AltName; 1313 continue; 1314 } 1315 1316 // If we did not find a matching regular flag, then we deal with an OS 1317 // specific flag, processor specific flag or an unknown flag. 1318 if (Flag & ELF::SHF_MASKOS) { 1319 HasOSFlag = true; 1320 Flags &= ~ELF::SHF_MASKOS; 1321 } else if (Flag & ELF::SHF_MASKPROC) { 1322 HasProcFlag = true; 1323 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1324 // bit if set so that it doesn't also get printed. 1325 Flags &= ~ELF::SHF_MASKPROC; 1326 } else { 1327 HasUnknownFlag = true; 1328 } 1329 } 1330 1331 // "o", "p" and "x" are printed last. 1332 if (HasOSFlag) 1333 Str += "o"; 1334 if (HasProcFlag) 1335 Str += "p"; 1336 if (HasUnknownFlag) 1337 Str += "x"; 1338 return Str; 1339 } 1340 1341 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1342 // Check potentially overlapped processor-specific program header type. 1343 switch (Arch) { 1344 case ELF::EM_ARM: 1345 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1346 break; 1347 case ELF::EM_MIPS: 1348 case ELF::EM_MIPS_RS3_LE: 1349 switch (Type) { 1350 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1351 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1352 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1353 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1354 } 1355 break; 1356 } 1357 1358 switch (Type) { 1359 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1360 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1361 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1362 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1363 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1364 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1365 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1366 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1367 1368 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1369 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1370 1371 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1372 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1373 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1374 1375 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1376 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1377 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1378 default: 1379 return ""; 1380 } 1381 } 1382 1383 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1384 StringRef Seg = segmentTypeToString(Arch, Type); 1385 if (Seg.empty()) 1386 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1387 1388 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1389 if (Seg.startswith("PT_ARM_")) 1390 return Seg.drop_front(7).str(); 1391 1392 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1393 if (Seg.startswith("PT_MIPS_")) 1394 return Seg.drop_front(8).str(); 1395 1396 // E.g. "PT_LOAD" -> "LOAD". 1397 assert(Seg.startswith("PT_")); 1398 return Seg.drop_front(3).str(); 1399 } 1400 1401 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1402 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1403 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1404 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1405 }; 1406 1407 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1408 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1409 ENUM_ENT(EF_MIPS_PIC, "pic"), 1410 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1411 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1412 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1413 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1414 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1415 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1416 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1417 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1418 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1419 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1420 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1421 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1422 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1423 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1424 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1425 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1426 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1427 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1428 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1429 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1430 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1431 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1432 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1433 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1434 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1435 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1436 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1437 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1438 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1439 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1440 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1441 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1442 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1443 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1444 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1445 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1446 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1447 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1448 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1449 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1450 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1451 }; 1452 1453 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1454 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1455 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1456 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1457 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1458 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1459 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1460 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1461 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1462 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1463 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1464 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1465 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1466 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1467 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1468 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1469 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1470 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1471 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1472 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1473 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1474 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1475 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1476 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1477 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1478 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1479 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1480 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1481 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1482 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1483 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1484 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1485 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1486 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1487 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1488 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1489 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1490 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1491 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1492 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1493 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1494 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1495 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3), 1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3) 1505 }; 1506 1507 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4), 1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4), 1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4), 1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4), 1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4), 1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4) 1563 }; 1564 1565 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1566 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1567 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1568 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1569 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1570 ENUM_ENT(EF_RISCV_RVE, "RVE") 1571 }; 1572 1573 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1592 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1593 }; 1594 1595 1596 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1597 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1598 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1599 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1600 }; 1601 1602 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1603 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1604 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1605 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1606 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1607 }; 1608 1609 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1610 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1611 }; 1612 1613 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1614 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1615 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1616 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1617 }; 1618 1619 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1620 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1621 1622 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1623 switch (Odk) { 1624 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1625 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1626 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1627 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1628 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1629 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1630 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1631 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1632 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1633 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1634 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1635 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1636 default: 1637 return "Unknown"; 1638 } 1639 } 1640 1641 template <typename ELFT> 1642 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1643 ELFDumper<ELFT>::findDynamic() { 1644 // Try to locate the PT_DYNAMIC header. 1645 const Elf_Phdr *DynamicPhdr = nullptr; 1646 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1647 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1648 if (Phdr.p_type != ELF::PT_DYNAMIC) 1649 continue; 1650 DynamicPhdr = &Phdr; 1651 break; 1652 } 1653 } else { 1654 reportUniqueWarning( 1655 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1656 toString(PhdrsOrErr.takeError())); 1657 } 1658 1659 // Try to locate the .dynamic section in the sections header table. 1660 const Elf_Shdr *DynamicSec = nullptr; 1661 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1662 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1663 continue; 1664 DynamicSec = &Sec; 1665 break; 1666 } 1667 1668 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1669 ObjF.getMemoryBufferRef().getBufferSize()) || 1670 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1671 DynamicPhdr->p_offset))) { 1672 reportUniqueWarning( 1673 "PT_DYNAMIC segment offset (0x" + 1674 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1675 Twine::utohexstr(DynamicPhdr->p_filesz) + 1676 ") exceeds the size of the file (0x" + 1677 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1678 // Don't use the broken dynamic header. 1679 DynamicPhdr = nullptr; 1680 } 1681 1682 if (DynamicPhdr && DynamicSec) { 1683 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1684 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1685 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1686 reportUniqueWarning(describe(*DynamicSec) + 1687 " is not contained within the " 1688 "PT_DYNAMIC segment"); 1689 1690 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1691 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1692 "PT_DYNAMIC segment"); 1693 } 1694 1695 return std::make_pair(DynamicPhdr, DynamicSec); 1696 } 1697 1698 template <typename ELFT> 1699 void ELFDumper<ELFT>::loadDynamicTable() { 1700 const Elf_Phdr *DynamicPhdr; 1701 const Elf_Shdr *DynamicSec; 1702 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1703 if (!DynamicPhdr && !DynamicSec) 1704 return; 1705 1706 DynRegionInfo FromPhdr(ObjF, *this); 1707 bool IsPhdrTableValid = false; 1708 if (DynamicPhdr) { 1709 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1710 // validated in findDynamic() and so createDRI() is not expected to fail. 1711 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1712 sizeof(Elf_Dyn))); 1713 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1714 FromPhdr.EntSizePrintName = ""; 1715 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1716 } 1717 1718 // Locate the dynamic table described in a section header. 1719 // Ignore sh_entsize and use the expected value for entry size explicitly. 1720 // This allows us to dump dynamic sections with a broken sh_entsize 1721 // field. 1722 DynRegionInfo FromSec(ObjF, *this); 1723 bool IsSecTableValid = false; 1724 if (DynamicSec) { 1725 Expected<DynRegionInfo> RegOrErr = 1726 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1727 if (RegOrErr) { 1728 FromSec = *RegOrErr; 1729 FromSec.Context = describe(*DynamicSec); 1730 FromSec.EntSizePrintName = ""; 1731 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1732 } else { 1733 reportUniqueWarning("unable to read the dynamic table from " + 1734 describe(*DynamicSec) + ": " + 1735 toString(RegOrErr.takeError())); 1736 } 1737 } 1738 1739 // When we only have information from one of the SHT_DYNAMIC section header or 1740 // PT_DYNAMIC program header, just use that. 1741 if (!DynamicPhdr || !DynamicSec) { 1742 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1743 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1744 parseDynamicTable(); 1745 } else { 1746 reportUniqueWarning("no valid dynamic table was found"); 1747 } 1748 return; 1749 } 1750 1751 // At this point we have tables found from the section header and from the 1752 // dynamic segment. Usually they match, but we have to do sanity checks to 1753 // verify that. 1754 1755 if (FromPhdr.Addr != FromSec.Addr) 1756 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1757 "program header disagree about " 1758 "the location of the dynamic table"); 1759 1760 if (!IsPhdrTableValid && !IsSecTableValid) { 1761 reportUniqueWarning("no valid dynamic table was found"); 1762 return; 1763 } 1764 1765 // Information in the PT_DYNAMIC program header has priority over the 1766 // information in a section header. 1767 if (IsPhdrTableValid) { 1768 if (!IsSecTableValid) 1769 reportUniqueWarning( 1770 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1771 DynamicTable = FromPhdr; 1772 } else { 1773 reportUniqueWarning( 1774 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1775 DynamicTable = FromSec; 1776 } 1777 1778 parseDynamicTable(); 1779 } 1780 1781 template <typename ELFT> 1782 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1783 ScopedPrinter &Writer) 1784 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1785 FileName(O.getFileName()), DynRelRegion(O, *this), 1786 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1787 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1788 DynamicTable(O, *this) { 1789 if (!O.IsContentValid()) 1790 return; 1791 1792 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1793 for (const Elf_Shdr &Sec : Sections) { 1794 switch (Sec.sh_type) { 1795 case ELF::SHT_SYMTAB: 1796 if (!DotSymtabSec) 1797 DotSymtabSec = &Sec; 1798 break; 1799 case ELF::SHT_DYNSYM: 1800 if (!DotDynsymSec) 1801 DotDynsymSec = &Sec; 1802 1803 if (!DynSymRegion) { 1804 Expected<DynRegionInfo> RegOrErr = 1805 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1806 if (RegOrErr) { 1807 DynSymRegion = *RegOrErr; 1808 DynSymRegion->Context = describe(Sec); 1809 1810 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1811 DynamicStringTable = *E; 1812 else 1813 reportUniqueWarning("unable to get the string table for the " + 1814 describe(Sec) + ": " + toString(E.takeError())); 1815 } else { 1816 reportUniqueWarning("unable to read dynamic symbols from " + 1817 describe(Sec) + ": " + 1818 toString(RegOrErr.takeError())); 1819 } 1820 } 1821 break; 1822 case ELF::SHT_SYMTAB_SHNDX: { 1823 uint32_t SymtabNdx = Sec.sh_link; 1824 if (SymtabNdx >= Sections.size()) { 1825 reportUniqueWarning( 1826 "unable to get the associated symbol table for " + describe(Sec) + 1827 ": sh_link (" + Twine(SymtabNdx) + 1828 ") is greater than or equal to the total number of sections (" + 1829 Twine(Sections.size()) + ")"); 1830 continue; 1831 } 1832 1833 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1834 Obj.getSHNDXTable(Sec)) { 1835 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1836 .second) 1837 reportUniqueWarning( 1838 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1839 describe(Sec)); 1840 } else { 1841 reportUniqueWarning(ShndxTableOrErr.takeError()); 1842 } 1843 break; 1844 } 1845 case ELF::SHT_GNU_versym: 1846 if (!SymbolVersionSection) 1847 SymbolVersionSection = &Sec; 1848 break; 1849 case ELF::SHT_GNU_verdef: 1850 if (!SymbolVersionDefSection) 1851 SymbolVersionDefSection = &Sec; 1852 break; 1853 case ELF::SHT_GNU_verneed: 1854 if (!SymbolVersionNeedSection) 1855 SymbolVersionNeedSection = &Sec; 1856 break; 1857 case ELF::SHT_LLVM_ADDRSIG: 1858 if (!DotAddrsigSec) 1859 DotAddrsigSec = &Sec; 1860 break; 1861 } 1862 } 1863 1864 loadDynamicTable(); 1865 } 1866 1867 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1868 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 1869 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 1870 this->reportUniqueWarning(Msg); 1871 return Error::success(); 1872 }); 1873 if (!MappedAddrOrError) { 1874 this->reportUniqueWarning("unable to parse DT_" + 1875 Obj.getDynamicTagAsString(Tag) + ": " + 1876 llvm::toString(MappedAddrOrError.takeError())); 1877 return nullptr; 1878 } 1879 return MappedAddrOrError.get(); 1880 }; 1881 1882 const char *StringTableBegin = nullptr; 1883 uint64_t StringTableSize = 0; 1884 Optional<DynRegionInfo> DynSymFromTable; 1885 for (const Elf_Dyn &Dyn : dynamic_table()) { 1886 switch (Dyn.d_tag) { 1887 case ELF::DT_HASH: 1888 HashTable = reinterpret_cast<const Elf_Hash *>( 1889 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1890 break; 1891 case ELF::DT_GNU_HASH: 1892 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 1893 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1894 break; 1895 case ELF::DT_STRTAB: 1896 StringTableBegin = reinterpret_cast<const char *>( 1897 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1898 break; 1899 case ELF::DT_STRSZ: 1900 StringTableSize = Dyn.getVal(); 1901 break; 1902 case ELF::DT_SYMTAB: { 1903 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 1904 // no program headers), we ignore its value. 1905 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 1906 DynSymFromTable.emplace(ObjF, *this); 1907 DynSymFromTable->Addr = VA; 1908 DynSymFromTable->EntSize = sizeof(Elf_Sym); 1909 DynSymFromTable->EntSizePrintName = ""; 1910 } 1911 break; 1912 } 1913 case ELF::DT_SYMENT: { 1914 uint64_t Val = Dyn.getVal(); 1915 if (Val != sizeof(Elf_Sym)) 1916 this->reportUniqueWarning("DT_SYMENT value of 0x" + 1917 Twine::utohexstr(Val) + 1918 " is not the size of a symbol (0x" + 1919 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 1920 break; 1921 } 1922 case ELF::DT_RELA: 1923 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1924 break; 1925 case ELF::DT_RELASZ: 1926 DynRelaRegion.Size = Dyn.getVal(); 1927 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 1928 break; 1929 case ELF::DT_RELAENT: 1930 DynRelaRegion.EntSize = Dyn.getVal(); 1931 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 1932 break; 1933 case ELF::DT_SONAME: 1934 SONameOffset = Dyn.getVal(); 1935 break; 1936 case ELF::DT_REL: 1937 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1938 break; 1939 case ELF::DT_RELSZ: 1940 DynRelRegion.Size = Dyn.getVal(); 1941 DynRelRegion.SizePrintName = "DT_RELSZ value"; 1942 break; 1943 case ELF::DT_RELENT: 1944 DynRelRegion.EntSize = Dyn.getVal(); 1945 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 1946 break; 1947 case ELF::DT_RELR: 1948 case ELF::DT_ANDROID_RELR: 1949 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1950 break; 1951 case ELF::DT_RELRSZ: 1952 case ELF::DT_ANDROID_RELRSZ: 1953 DynRelrRegion.Size = Dyn.getVal(); 1954 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 1955 ? "DT_RELRSZ value" 1956 : "DT_ANDROID_RELRSZ value"; 1957 break; 1958 case ELF::DT_RELRENT: 1959 case ELF::DT_ANDROID_RELRENT: 1960 DynRelrRegion.EntSize = Dyn.getVal(); 1961 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 1962 ? "DT_RELRENT value" 1963 : "DT_ANDROID_RELRENT value"; 1964 break; 1965 case ELF::DT_PLTREL: 1966 if (Dyn.getVal() == DT_REL) 1967 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 1968 else if (Dyn.getVal() == DT_RELA) 1969 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 1970 else 1971 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 1972 Twine((uint64_t)Dyn.getVal())); 1973 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 1974 break; 1975 case ELF::DT_JMPREL: 1976 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1977 break; 1978 case ELF::DT_PLTRELSZ: 1979 DynPLTRelRegion.Size = Dyn.getVal(); 1980 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 1981 break; 1982 case ELF::DT_SYMTAB_SHNDX: 1983 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1984 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 1985 break; 1986 } 1987 } 1988 1989 if (StringTableBegin) { 1990 const uint64_t FileSize = Obj.getBufSize(); 1991 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 1992 if (StringTableSize > FileSize - Offset) 1993 reportUniqueWarning( 1994 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 1995 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 1996 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 1997 else 1998 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 1999 } 2000 2001 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2002 if (DynSymRegion) { 2003 // Often we find the information about the dynamic symbol table 2004 // location in the SHT_DYNSYM section header. However, the value in 2005 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2006 // locate .dynsym at runtime. The location we find in the section header 2007 // and the location we find here should match. 2008 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2009 reportUniqueWarning( 2010 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2011 "the location of the dynamic symbol table")); 2012 2013 // According to the ELF gABI: "The number of symbol table entries should 2014 // equal nchain". Check to see if the DT_HASH hash table nchain value 2015 // conflicts with the number of symbols in the dynamic symbol table 2016 // according to the section header. 2017 if (HashTable && IsHashTableSupported) { 2018 if (DynSymRegion->EntSize == 0) 2019 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2020 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2021 reportUniqueWarning( 2022 "hash table nchain (" + Twine(HashTable->nchain) + 2023 ") differs from symbol count derived from SHT_DYNSYM section " 2024 "header (" + 2025 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2026 } 2027 } 2028 2029 // Delay the creation of the actual dynamic symbol table until now, so that 2030 // checks can always be made against the section header-based properties, 2031 // without worrying about tag order. 2032 if (DynSymFromTable) { 2033 if (!DynSymRegion) { 2034 DynSymRegion = DynSymFromTable; 2035 } else { 2036 DynSymRegion->Addr = DynSymFromTable->Addr; 2037 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2038 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2039 } 2040 } 2041 2042 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2043 // present. 2044 if (HashTable && IsHashTableSupported && DynSymRegion) { 2045 const uint64_t FileSize = Obj.getBufSize(); 2046 const uint64_t DerivedSize = 2047 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2048 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2049 if (DerivedSize > FileSize - Offset) 2050 reportUniqueWarning( 2051 "the size (0x" + Twine::utohexstr(DerivedSize) + 2052 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2053 ", derived from the hash table, goes past the end of the file (0x" + 2054 Twine::utohexstr(FileSize) + ") and will be ignored"); 2055 else 2056 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2057 } 2058 } 2059 2060 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2061 // Dump version symbol section. 2062 printVersionSymbolSection(SymbolVersionSection); 2063 2064 // Dump version definition section. 2065 printVersionDefinitionSection(SymbolVersionDefSection); 2066 2067 // Dump version dependency section. 2068 printVersionDependencySection(SymbolVersionNeedSection); 2069 } 2070 2071 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2072 { #enum, prefix##_##enum } 2073 2074 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2075 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2076 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2077 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2078 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2079 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2080 }; 2081 2082 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2083 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2084 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2085 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2086 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2087 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2088 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2089 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2090 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2091 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2092 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2093 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2094 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2095 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2096 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2097 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2098 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2099 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2100 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2101 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2102 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2103 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2104 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2105 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2106 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2107 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2108 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2109 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2110 }; 2111 2112 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2113 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2114 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2115 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2116 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2117 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2118 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2119 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2120 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2121 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2122 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2123 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2124 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2125 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2126 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2127 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2128 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2129 }; 2130 2131 #undef LLVM_READOBJ_DT_FLAG_ENT 2132 2133 template <typename T, typename TFlag> 2134 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2135 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2136 for (const EnumEntry<TFlag> &Flag : Flags) 2137 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2138 SetFlags.push_back(Flag); 2139 2140 for (const EnumEntry<TFlag> &Flag : SetFlags) 2141 OS << Flag.Name << " "; 2142 } 2143 2144 template <class ELFT> 2145 const typename ELFT::Shdr * 2146 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2147 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2148 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2149 if (*NameOrErr == Name) 2150 return &Shdr; 2151 } else { 2152 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2153 ": " + toString(NameOrErr.takeError())); 2154 } 2155 } 2156 return nullptr; 2157 } 2158 2159 template <class ELFT> 2160 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2161 uint64_t Value) const { 2162 auto FormatHexValue = [](uint64_t V) { 2163 std::string Str; 2164 raw_string_ostream OS(Str); 2165 const char *ConvChar = 2166 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2167 OS << format(ConvChar, V); 2168 return OS.str(); 2169 }; 2170 2171 auto FormatFlags = [](uint64_t V, 2172 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2173 std::string Str; 2174 raw_string_ostream OS(Str); 2175 printFlags(V, Array, OS); 2176 return OS.str(); 2177 }; 2178 2179 // Handle custom printing of architecture specific tags 2180 switch (Obj.getHeader().e_machine) { 2181 case EM_AARCH64: 2182 switch (Type) { 2183 case DT_AARCH64_BTI_PLT: 2184 case DT_AARCH64_PAC_PLT: 2185 case DT_AARCH64_VARIANT_PCS: 2186 return std::to_string(Value); 2187 default: 2188 break; 2189 } 2190 break; 2191 case EM_HEXAGON: 2192 switch (Type) { 2193 case DT_HEXAGON_VER: 2194 return std::to_string(Value); 2195 case DT_HEXAGON_SYMSZ: 2196 case DT_HEXAGON_PLT: 2197 return FormatHexValue(Value); 2198 default: 2199 break; 2200 } 2201 break; 2202 case EM_MIPS: 2203 switch (Type) { 2204 case DT_MIPS_RLD_VERSION: 2205 case DT_MIPS_LOCAL_GOTNO: 2206 case DT_MIPS_SYMTABNO: 2207 case DT_MIPS_UNREFEXTNO: 2208 return std::to_string(Value); 2209 case DT_MIPS_TIME_STAMP: 2210 case DT_MIPS_ICHECKSUM: 2211 case DT_MIPS_IVERSION: 2212 case DT_MIPS_BASE_ADDRESS: 2213 case DT_MIPS_MSYM: 2214 case DT_MIPS_CONFLICT: 2215 case DT_MIPS_LIBLIST: 2216 case DT_MIPS_CONFLICTNO: 2217 case DT_MIPS_LIBLISTNO: 2218 case DT_MIPS_GOTSYM: 2219 case DT_MIPS_HIPAGENO: 2220 case DT_MIPS_RLD_MAP: 2221 case DT_MIPS_DELTA_CLASS: 2222 case DT_MIPS_DELTA_CLASS_NO: 2223 case DT_MIPS_DELTA_INSTANCE: 2224 case DT_MIPS_DELTA_RELOC: 2225 case DT_MIPS_DELTA_RELOC_NO: 2226 case DT_MIPS_DELTA_SYM: 2227 case DT_MIPS_DELTA_SYM_NO: 2228 case DT_MIPS_DELTA_CLASSSYM: 2229 case DT_MIPS_DELTA_CLASSSYM_NO: 2230 case DT_MIPS_CXX_FLAGS: 2231 case DT_MIPS_PIXIE_INIT: 2232 case DT_MIPS_SYMBOL_LIB: 2233 case DT_MIPS_LOCALPAGE_GOTIDX: 2234 case DT_MIPS_LOCAL_GOTIDX: 2235 case DT_MIPS_HIDDEN_GOTIDX: 2236 case DT_MIPS_PROTECTED_GOTIDX: 2237 case DT_MIPS_OPTIONS: 2238 case DT_MIPS_INTERFACE: 2239 case DT_MIPS_DYNSTR_ALIGN: 2240 case DT_MIPS_INTERFACE_SIZE: 2241 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2242 case DT_MIPS_PERF_SUFFIX: 2243 case DT_MIPS_COMPACT_SIZE: 2244 case DT_MIPS_GP_VALUE: 2245 case DT_MIPS_AUX_DYNAMIC: 2246 case DT_MIPS_PLTGOT: 2247 case DT_MIPS_RWPLT: 2248 case DT_MIPS_RLD_MAP_REL: 2249 return FormatHexValue(Value); 2250 case DT_MIPS_FLAGS: 2251 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags)); 2252 default: 2253 break; 2254 } 2255 break; 2256 default: 2257 break; 2258 } 2259 2260 switch (Type) { 2261 case DT_PLTREL: 2262 if (Value == DT_REL) 2263 return "REL"; 2264 if (Value == DT_RELA) 2265 return "RELA"; 2266 LLVM_FALLTHROUGH; 2267 case DT_PLTGOT: 2268 case DT_HASH: 2269 case DT_STRTAB: 2270 case DT_SYMTAB: 2271 case DT_RELA: 2272 case DT_INIT: 2273 case DT_FINI: 2274 case DT_REL: 2275 case DT_JMPREL: 2276 case DT_INIT_ARRAY: 2277 case DT_FINI_ARRAY: 2278 case DT_PREINIT_ARRAY: 2279 case DT_DEBUG: 2280 case DT_VERDEF: 2281 case DT_VERNEED: 2282 case DT_VERSYM: 2283 case DT_GNU_HASH: 2284 case DT_NULL: 2285 return FormatHexValue(Value); 2286 case DT_RELACOUNT: 2287 case DT_RELCOUNT: 2288 case DT_VERDEFNUM: 2289 case DT_VERNEEDNUM: 2290 return std::to_string(Value); 2291 case DT_PLTRELSZ: 2292 case DT_RELASZ: 2293 case DT_RELAENT: 2294 case DT_STRSZ: 2295 case DT_SYMENT: 2296 case DT_RELSZ: 2297 case DT_RELENT: 2298 case DT_INIT_ARRAYSZ: 2299 case DT_FINI_ARRAYSZ: 2300 case DT_PREINIT_ARRAYSZ: 2301 case DT_RELRSZ: 2302 case DT_RELRENT: 2303 case DT_ANDROID_RELSZ: 2304 case DT_ANDROID_RELASZ: 2305 return std::to_string(Value) + " (bytes)"; 2306 case DT_NEEDED: 2307 case DT_SONAME: 2308 case DT_AUXILIARY: 2309 case DT_USED: 2310 case DT_FILTER: 2311 case DT_RPATH: 2312 case DT_RUNPATH: { 2313 const std::map<uint64_t, const char *> TagNames = { 2314 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2315 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2316 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2317 {DT_RUNPATH, "Library runpath"}, 2318 }; 2319 2320 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2321 .str(); 2322 } 2323 case DT_FLAGS: 2324 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags)); 2325 case DT_FLAGS_1: 2326 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1)); 2327 default: 2328 return FormatHexValue(Value); 2329 } 2330 } 2331 2332 template <class ELFT> 2333 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2334 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2335 reportUniqueWarning("string table was not found"); 2336 return "<?>"; 2337 } 2338 2339 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2340 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2341 Msg); 2342 return "<?>"; 2343 }; 2344 2345 const uint64_t FileSize = Obj.getBufSize(); 2346 const uint64_t Offset = 2347 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2348 if (DynamicStringTable.size() > FileSize - Offset) 2349 return WarnAndReturn(" with size 0x" + 2350 Twine::utohexstr(DynamicStringTable.size()) + 2351 " goes past the end of the file (0x" + 2352 Twine::utohexstr(FileSize) + ")", 2353 Offset); 2354 2355 if (Value >= DynamicStringTable.size()) 2356 return WarnAndReturn( 2357 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2358 ": it goes past the end of the table (0x" + 2359 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2360 Offset); 2361 2362 if (DynamicStringTable.back() != '\0') 2363 return WarnAndReturn(": unable to read the string at 0x" + 2364 Twine::utohexstr(Offset + Value) + 2365 ": the string table is not null-terminated", 2366 Offset); 2367 2368 return DynamicStringTable.data() + Value; 2369 } 2370 2371 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2372 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2373 Ctx.printUnwindInformation(); 2374 } 2375 2376 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2377 namespace { 2378 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2379 if (Obj.getHeader().e_machine == EM_ARM) { 2380 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2381 DotSymtabSec); 2382 Ctx.PrintUnwindInformation(); 2383 } 2384 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2385 Ctx.printUnwindInformation(); 2386 } 2387 } // namespace 2388 2389 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2390 ListScope D(W, "NeededLibraries"); 2391 2392 std::vector<StringRef> Libs; 2393 for (const auto &Entry : dynamic_table()) 2394 if (Entry.d_tag == ELF::DT_NEEDED) 2395 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2396 2397 llvm::sort(Libs); 2398 2399 for (StringRef L : Libs) 2400 W.startLine() << L << "\n"; 2401 } 2402 2403 template <class ELFT> 2404 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2405 const typename ELFT::Hash *H, 2406 bool *IsHeaderValid = nullptr) { 2407 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2408 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2409 if (Dumper.getHashTableEntSize() == 8) { 2410 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2411 return E.Value == Obj.getHeader().e_machine; 2412 }); 2413 if (IsHeaderValid) 2414 *IsHeaderValid = false; 2415 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2416 " is not supported: it contains non-standard 8 " 2417 "byte entries on " + 2418 It->AltName + " platform"); 2419 } 2420 2421 auto MakeError = [&](const Twine &Msg = "") { 2422 return createError("the hash table at offset 0x" + 2423 Twine::utohexstr(SecOffset) + 2424 " goes past the end of the file (0x" + 2425 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2426 }; 2427 2428 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2429 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2430 2431 if (IsHeaderValid) 2432 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2433 2434 if (Obj.getBufSize() - SecOffset < HeaderSize) 2435 return MakeError(); 2436 2437 if (Obj.getBufSize() - SecOffset - HeaderSize < 2438 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2439 return MakeError(", nbucket = " + Twine(H->nbucket) + 2440 ", nchain = " + Twine(H->nchain)); 2441 return Error::success(); 2442 } 2443 2444 template <class ELFT> 2445 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2446 const typename ELFT::GnuHash *GnuHashTable, 2447 bool *IsHeaderValid = nullptr) { 2448 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2449 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2450 "GnuHashTable must always point to a location inside the file"); 2451 2452 uint64_t TableOffset = TableData - Obj.base(); 2453 if (IsHeaderValid) 2454 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2455 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2456 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2457 Obj.getBufSize()) 2458 return createError("unable to dump the SHT_GNU_HASH " 2459 "section at 0x" + 2460 Twine::utohexstr(TableOffset) + 2461 ": it goes past the end of the file"); 2462 return Error::success(); 2463 } 2464 2465 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2466 DictScope D(W, "HashTable"); 2467 if (!HashTable) 2468 return; 2469 2470 bool IsHeaderValid; 2471 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2472 if (IsHeaderValid) { 2473 W.printNumber("Num Buckets", HashTable->nbucket); 2474 W.printNumber("Num Chains", HashTable->nchain); 2475 } 2476 2477 if (Err) { 2478 reportUniqueWarning(std::move(Err)); 2479 return; 2480 } 2481 2482 W.printList("Buckets", HashTable->buckets()); 2483 W.printList("Chains", HashTable->chains()); 2484 } 2485 2486 template <class ELFT> 2487 static Expected<ArrayRef<typename ELFT::Word>> 2488 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion, 2489 const typename ELFT::GnuHash *GnuHashTable) { 2490 if (!DynSymRegion) 2491 return createError("no dynamic symbol table found"); 2492 2493 ArrayRef<typename ELFT::Sym> DynSymTable = 2494 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2495 size_t NumSyms = DynSymTable.size(); 2496 if (!NumSyms) 2497 return createError("the dynamic symbol table is empty"); 2498 2499 if (GnuHashTable->symndx < NumSyms) 2500 return GnuHashTable->values(NumSyms); 2501 2502 // A normal empty GNU hash table section produced by linker might have 2503 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2504 // and have dummy null values in the Bloom filter and in the buckets 2505 // vector (or no values at all). It happens because the value of symndx is not 2506 // important for dynamic loaders when the GNU hash table is empty. They just 2507 // skip the whole object during symbol lookup. In such cases, the symndx value 2508 // is irrelevant and we should not report a warning. 2509 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2510 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2511 return createError( 2512 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2513 ") is greater than or equal to the number of dynamic symbols (" + 2514 Twine(NumSyms) + ")"); 2515 // There is no way to represent an array of (dynamic symbols count - symndx) 2516 // length. 2517 return ArrayRef<typename ELFT::Word>(); 2518 } 2519 2520 template <typename ELFT> 2521 void ELFDumper<ELFT>::printGnuHashTable() { 2522 DictScope D(W, "GnuHashTable"); 2523 if (!GnuHashTable) 2524 return; 2525 2526 bool IsHeaderValid; 2527 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2528 if (IsHeaderValid) { 2529 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2530 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2531 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2532 W.printNumber("Shift Count", GnuHashTable->shift2); 2533 } 2534 2535 if (Err) { 2536 reportUniqueWarning(std::move(Err)); 2537 return; 2538 } 2539 2540 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2541 W.printHexList("Bloom Filter", BloomFilter); 2542 2543 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2544 W.printList("Buckets", Buckets); 2545 2546 Expected<ArrayRef<Elf_Word>> Chains = 2547 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2548 if (!Chains) { 2549 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2550 "section: " + 2551 toString(Chains.takeError())); 2552 return; 2553 } 2554 2555 W.printHexList("Values", *Chains); 2556 } 2557 2558 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2559 StringRef SOName = "<Not found>"; 2560 if (SONameOffset) 2561 SOName = getDynamicString(*SONameOffset); 2562 W.printString("LoadName", SOName); 2563 } 2564 2565 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2566 switch (Obj.getHeader().e_machine) { 2567 case EM_ARM: 2568 if (Obj.isLE()) 2569 printAttributes(ELF::SHT_ARM_ATTRIBUTES, 2570 std::make_unique<ARMAttributeParser>(&W), 2571 support::little); 2572 else 2573 reportUniqueWarning("attribute printing not implemented for big-endian " 2574 "ARM objects"); 2575 break; 2576 case EM_RISCV: 2577 if (Obj.isLE()) 2578 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2579 std::make_unique<RISCVAttributeParser>(&W), 2580 support::little); 2581 else 2582 reportUniqueWarning("attribute printing not implemented for big-endian " 2583 "RISC-V objects"); 2584 break; 2585 case EM_MSP430: 2586 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2587 std::make_unique<MSP430AttributeParser>(&W), 2588 support::little); 2589 break; 2590 case EM_MIPS: { 2591 printMipsABIFlags(); 2592 printMipsOptions(); 2593 printMipsReginfo(); 2594 MipsGOTParser<ELFT> Parser(*this); 2595 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2596 reportUniqueWarning(std::move(E)); 2597 else if (!Parser.isGotEmpty()) 2598 printMipsGOT(Parser); 2599 2600 if (Error E = Parser.findPLT(dynamic_table())) 2601 reportUniqueWarning(std::move(E)); 2602 else if (!Parser.isPltEmpty()) 2603 printMipsPLT(Parser); 2604 break; 2605 } 2606 default: 2607 break; 2608 } 2609 } 2610 2611 template <class ELFT> 2612 void ELFDumper<ELFT>::printAttributes( 2613 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2614 support::endianness Endianness) { 2615 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2616 "Incomplete ELF attribute implementation"); 2617 DictScope BA(W, "BuildAttributes"); 2618 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2619 if (Sec.sh_type != AttrShType) 2620 continue; 2621 2622 ArrayRef<uint8_t> Contents; 2623 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2624 Obj.getSectionContents(Sec)) { 2625 Contents = *ContentOrErr; 2626 if (Contents.empty()) { 2627 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2628 continue; 2629 } 2630 } else { 2631 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2632 ": " + toString(ContentOrErr.takeError())); 2633 continue; 2634 } 2635 2636 W.printHex("FormatVersion", Contents[0]); 2637 2638 if (Error E = AttrParser->parse(Contents, Endianness)) 2639 reportUniqueWarning("unable to dump attributes from the " + 2640 describe(Sec) + ": " + toString(std::move(E))); 2641 } 2642 } 2643 2644 namespace { 2645 2646 template <class ELFT> class MipsGOTParser { 2647 public: 2648 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2649 using Entry = typename ELFT::Addr; 2650 using Entries = ArrayRef<Entry>; 2651 2652 const bool IsStatic; 2653 const ELFFile<ELFT> &Obj; 2654 const ELFDumper<ELFT> &Dumper; 2655 2656 MipsGOTParser(const ELFDumper<ELFT> &D); 2657 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2658 Error findPLT(Elf_Dyn_Range DynTable); 2659 2660 bool isGotEmpty() const { return GotEntries.empty(); } 2661 bool isPltEmpty() const { return PltEntries.empty(); } 2662 2663 uint64_t getGp() const; 2664 2665 const Entry *getGotLazyResolver() const; 2666 const Entry *getGotModulePointer() const; 2667 const Entry *getPltLazyResolver() const; 2668 const Entry *getPltModulePointer() const; 2669 2670 Entries getLocalEntries() const; 2671 Entries getGlobalEntries() const; 2672 Entries getOtherEntries() const; 2673 Entries getPltEntries() const; 2674 2675 uint64_t getGotAddress(const Entry * E) const; 2676 int64_t getGotOffset(const Entry * E) const; 2677 const Elf_Sym *getGotSym(const Entry *E) const; 2678 2679 uint64_t getPltAddress(const Entry * E) const; 2680 const Elf_Sym *getPltSym(const Entry *E) const; 2681 2682 StringRef getPltStrTable() const { return PltStrTable; } 2683 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2684 2685 private: 2686 const Elf_Shdr *GotSec; 2687 size_t LocalNum; 2688 size_t GlobalNum; 2689 2690 const Elf_Shdr *PltSec; 2691 const Elf_Shdr *PltRelSec; 2692 const Elf_Shdr *PltSymTable; 2693 StringRef FileName; 2694 2695 Elf_Sym_Range GotDynSyms; 2696 StringRef PltStrTable; 2697 2698 Entries GotEntries; 2699 Entries PltEntries; 2700 }; 2701 2702 } // end anonymous namespace 2703 2704 template <class ELFT> 2705 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 2706 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 2707 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 2708 PltRelSec(nullptr), PltSymTable(nullptr), 2709 FileName(D.getElfObject().getFileName()) {} 2710 2711 template <class ELFT> 2712 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 2713 Elf_Sym_Range DynSyms) { 2714 // See "Global Offset Table" in Chapter 5 in the following document 2715 // for detailed GOT description. 2716 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2717 2718 // Find static GOT secton. 2719 if (IsStatic) { 2720 GotSec = Dumper.findSectionByName(".got"); 2721 if (!GotSec) 2722 return Error::success(); 2723 2724 ArrayRef<uint8_t> Content = 2725 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2726 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2727 Content.size() / sizeof(Entry)); 2728 LocalNum = GotEntries.size(); 2729 return Error::success(); 2730 } 2731 2732 // Lookup dynamic table tags which define the GOT layout. 2733 Optional<uint64_t> DtPltGot; 2734 Optional<uint64_t> DtLocalGotNum; 2735 Optional<uint64_t> DtGotSym; 2736 for (const auto &Entry : DynTable) { 2737 switch (Entry.getTag()) { 2738 case ELF::DT_PLTGOT: 2739 DtPltGot = Entry.getVal(); 2740 break; 2741 case ELF::DT_MIPS_LOCAL_GOTNO: 2742 DtLocalGotNum = Entry.getVal(); 2743 break; 2744 case ELF::DT_MIPS_GOTSYM: 2745 DtGotSym = Entry.getVal(); 2746 break; 2747 } 2748 } 2749 2750 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 2751 return Error::success(); 2752 2753 if (!DtPltGot) 2754 return createError("cannot find PLTGOT dynamic tag"); 2755 if (!DtLocalGotNum) 2756 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 2757 if (!DtGotSym) 2758 return createError("cannot find MIPS_GOTSYM dynamic tag"); 2759 2760 size_t DynSymTotal = DynSyms.size(); 2761 if (*DtGotSym > DynSymTotal) 2762 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 2763 ") exceeds the number of dynamic symbols (" + 2764 Twine(DynSymTotal) + ")"); 2765 2766 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 2767 if (!GotSec) 2768 return createError("there is no non-empty GOT section at 0x" + 2769 Twine::utohexstr(*DtPltGot)); 2770 2771 LocalNum = *DtLocalGotNum; 2772 GlobalNum = DynSymTotal - *DtGotSym; 2773 2774 ArrayRef<uint8_t> Content = 2775 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2776 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2777 Content.size() / sizeof(Entry)); 2778 GotDynSyms = DynSyms.drop_front(*DtGotSym); 2779 2780 return Error::success(); 2781 } 2782 2783 template <class ELFT> 2784 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 2785 // Lookup dynamic table tags which define the PLT layout. 2786 Optional<uint64_t> DtMipsPltGot; 2787 Optional<uint64_t> DtJmpRel; 2788 for (const auto &Entry : DynTable) { 2789 switch (Entry.getTag()) { 2790 case ELF::DT_MIPS_PLTGOT: 2791 DtMipsPltGot = Entry.getVal(); 2792 break; 2793 case ELF::DT_JMPREL: 2794 DtJmpRel = Entry.getVal(); 2795 break; 2796 } 2797 } 2798 2799 if (!DtMipsPltGot && !DtJmpRel) 2800 return Error::success(); 2801 2802 // Find PLT section. 2803 if (!DtMipsPltGot) 2804 return createError("cannot find MIPS_PLTGOT dynamic tag"); 2805 if (!DtJmpRel) 2806 return createError("cannot find JMPREL dynamic tag"); 2807 2808 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 2809 if (!PltSec) 2810 return createError("there is no non-empty PLTGOT section at 0x" + 2811 Twine::utohexstr(*DtMipsPltGot)); 2812 2813 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 2814 if (!PltRelSec) 2815 return createError("there is no non-empty RELPLT section at 0x" + 2816 Twine::utohexstr(*DtJmpRel)); 2817 2818 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 2819 Obj.getSectionContents(*PltSec)) 2820 PltEntries = 2821 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 2822 PltContentOrErr->size() / sizeof(Entry)); 2823 else 2824 return createError("unable to read PLTGOT section content: " + 2825 toString(PltContentOrErr.takeError())); 2826 2827 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 2828 Obj.getSection(PltRelSec->sh_link)) 2829 PltSymTable = *PltSymTableOrErr; 2830 else 2831 return createError("unable to get a symbol table linked to the " + 2832 describe(Obj, *PltRelSec) + ": " + 2833 toString(PltSymTableOrErr.takeError())); 2834 2835 if (Expected<StringRef> StrTabOrErr = 2836 Obj.getStringTableForSymtab(*PltSymTable)) 2837 PltStrTable = *StrTabOrErr; 2838 else 2839 return createError("unable to get a string table for the " + 2840 describe(Obj, *PltSymTable) + ": " + 2841 toString(StrTabOrErr.takeError())); 2842 2843 return Error::success(); 2844 } 2845 2846 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 2847 return GotSec->sh_addr + 0x7ff0; 2848 } 2849 2850 template <class ELFT> 2851 const typename MipsGOTParser<ELFT>::Entry * 2852 MipsGOTParser<ELFT>::getGotLazyResolver() const { 2853 return LocalNum > 0 ? &GotEntries[0] : nullptr; 2854 } 2855 2856 template <class ELFT> 2857 const typename MipsGOTParser<ELFT>::Entry * 2858 MipsGOTParser<ELFT>::getGotModulePointer() const { 2859 if (LocalNum < 2) 2860 return nullptr; 2861 const Entry &E = GotEntries[1]; 2862 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 2863 return nullptr; 2864 return &E; 2865 } 2866 2867 template <class ELFT> 2868 typename MipsGOTParser<ELFT>::Entries 2869 MipsGOTParser<ELFT>::getLocalEntries() const { 2870 size_t Skip = getGotModulePointer() ? 2 : 1; 2871 if (LocalNum - Skip <= 0) 2872 return Entries(); 2873 return GotEntries.slice(Skip, LocalNum - Skip); 2874 } 2875 2876 template <class ELFT> 2877 typename MipsGOTParser<ELFT>::Entries 2878 MipsGOTParser<ELFT>::getGlobalEntries() const { 2879 if (GlobalNum == 0) 2880 return Entries(); 2881 return GotEntries.slice(LocalNum, GlobalNum); 2882 } 2883 2884 template <class ELFT> 2885 typename MipsGOTParser<ELFT>::Entries 2886 MipsGOTParser<ELFT>::getOtherEntries() const { 2887 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 2888 if (OtherNum == 0) 2889 return Entries(); 2890 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 2891 } 2892 2893 template <class ELFT> 2894 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 2895 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2896 return GotSec->sh_addr + Offset; 2897 } 2898 2899 template <class ELFT> 2900 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 2901 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2902 return Offset - 0x7ff0; 2903 } 2904 2905 template <class ELFT> 2906 const typename MipsGOTParser<ELFT>::Elf_Sym * 2907 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 2908 int64_t Offset = std::distance(GotEntries.data(), E); 2909 return &GotDynSyms[Offset - LocalNum]; 2910 } 2911 2912 template <class ELFT> 2913 const typename MipsGOTParser<ELFT>::Entry * 2914 MipsGOTParser<ELFT>::getPltLazyResolver() const { 2915 return PltEntries.empty() ? nullptr : &PltEntries[0]; 2916 } 2917 2918 template <class ELFT> 2919 const typename MipsGOTParser<ELFT>::Entry * 2920 MipsGOTParser<ELFT>::getPltModulePointer() const { 2921 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 2922 } 2923 2924 template <class ELFT> 2925 typename MipsGOTParser<ELFT>::Entries 2926 MipsGOTParser<ELFT>::getPltEntries() const { 2927 if (PltEntries.size() <= 2) 2928 return Entries(); 2929 return PltEntries.slice(2, PltEntries.size() - 2); 2930 } 2931 2932 template <class ELFT> 2933 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 2934 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 2935 return PltSec->sh_addr + Offset; 2936 } 2937 2938 template <class ELFT> 2939 const typename MipsGOTParser<ELFT>::Elf_Sym * 2940 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 2941 int64_t Offset = std::distance(getPltEntries().data(), E); 2942 if (PltRelSec->sh_type == ELF::SHT_REL) { 2943 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 2944 return unwrapOrError(FileName, 2945 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2946 } else { 2947 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 2948 return unwrapOrError(FileName, 2949 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2950 } 2951 } 2952 2953 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 2954 {"None", Mips::AFL_EXT_NONE}, 2955 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 2956 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 2957 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 2958 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 2959 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 2960 {"LSI R4010", Mips::AFL_EXT_4010}, 2961 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 2962 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 2963 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 2964 {"MIPS R4650", Mips::AFL_EXT_4650}, 2965 {"MIPS R5900", Mips::AFL_EXT_5900}, 2966 {"MIPS R10000", Mips::AFL_EXT_10000}, 2967 {"NEC VR4100", Mips::AFL_EXT_4100}, 2968 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 2969 {"NEC VR4120", Mips::AFL_EXT_4120}, 2970 {"NEC VR5400", Mips::AFL_EXT_5400}, 2971 {"NEC VR5500", Mips::AFL_EXT_5500}, 2972 {"RMI Xlr", Mips::AFL_EXT_XLR}, 2973 {"Toshiba R3900", Mips::AFL_EXT_3900} 2974 }; 2975 2976 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 2977 {"DSP", Mips::AFL_ASE_DSP}, 2978 {"DSPR2", Mips::AFL_ASE_DSPR2}, 2979 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 2980 {"MCU", Mips::AFL_ASE_MCU}, 2981 {"MDMX", Mips::AFL_ASE_MDMX}, 2982 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 2983 {"MT", Mips::AFL_ASE_MT}, 2984 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 2985 {"VZ", Mips::AFL_ASE_VIRT}, 2986 {"MSA", Mips::AFL_ASE_MSA}, 2987 {"MIPS16", Mips::AFL_ASE_MIPS16}, 2988 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 2989 {"XPA", Mips::AFL_ASE_XPA}, 2990 {"CRC", Mips::AFL_ASE_CRC}, 2991 {"GINV", Mips::AFL_ASE_GINV}, 2992 }; 2993 2994 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 2995 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 2996 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 2997 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 2998 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 2999 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3000 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3001 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3002 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3003 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3004 Mips::Val_GNU_MIPS_ABI_FP_64A} 3005 }; 3006 3007 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3008 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3009 }; 3010 3011 static int getMipsRegisterSize(uint8_t Flag) { 3012 switch (Flag) { 3013 case Mips::AFL_REG_NONE: 3014 return 0; 3015 case Mips::AFL_REG_32: 3016 return 32; 3017 case Mips::AFL_REG_64: 3018 return 64; 3019 case Mips::AFL_REG_128: 3020 return 128; 3021 default: 3022 return -1; 3023 } 3024 } 3025 3026 template <class ELFT> 3027 static void printMipsReginfoData(ScopedPrinter &W, 3028 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3029 W.printHex("GP", Reginfo.ri_gp_value); 3030 W.printHex("General Mask", Reginfo.ri_gprmask); 3031 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3032 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3033 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3034 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3035 } 3036 3037 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3038 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3039 if (!RegInfoSec) { 3040 W.startLine() << "There is no .reginfo section in the file.\n"; 3041 return; 3042 } 3043 3044 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3045 Obj.getSectionContents(*RegInfoSec); 3046 if (!ContentsOrErr) { 3047 this->reportUniqueWarning( 3048 "unable to read the content of the .reginfo section (" + 3049 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3050 return; 3051 } 3052 3053 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3054 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3055 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3056 return; 3057 } 3058 3059 DictScope GS(W, "MIPS RegInfo"); 3060 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3061 ContentsOrErr->data())); 3062 } 3063 3064 template <class ELFT> 3065 static Expected<const Elf_Mips_Options<ELFT> *> 3066 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3067 bool &IsSupported) { 3068 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3069 return createError("the .MIPS.options section has an invalid size (0x" + 3070 Twine::utohexstr(SecData.size()) + ")"); 3071 3072 const Elf_Mips_Options<ELFT> *O = 3073 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3074 const uint8_t Size = O->size; 3075 if (Size > SecData.size()) { 3076 const uint64_t Offset = SecData.data() - SecBegin; 3077 const uint64_t SecSize = Offset + SecData.size(); 3078 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3079 " at offset 0x" + Twine::utohexstr(Offset) + 3080 " goes past the end of the .MIPS.options " 3081 "section of size 0x" + 3082 Twine::utohexstr(SecSize)); 3083 } 3084 3085 IsSupported = O->kind == ODK_REGINFO; 3086 const size_t ExpectedSize = 3087 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3088 3089 if (IsSupported) 3090 if (Size < ExpectedSize) 3091 return createError( 3092 "a .MIPS.options entry of kind " + 3093 Twine(getElfMipsOptionsOdkType(O->kind)) + 3094 " has an invalid size (0x" + Twine::utohexstr(Size) + 3095 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3096 3097 SecData = SecData.drop_front(Size); 3098 return O; 3099 } 3100 3101 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3102 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3103 if (!MipsOpts) { 3104 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3105 return; 3106 } 3107 3108 DictScope GS(W, "MIPS Options"); 3109 3110 ArrayRef<uint8_t> Data = 3111 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3112 const uint8_t *const SecBegin = Data.begin(); 3113 while (!Data.empty()) { 3114 bool IsSupported; 3115 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3116 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3117 if (!OptsOrErr) { 3118 reportUniqueWarning(OptsOrErr.takeError()); 3119 break; 3120 } 3121 3122 unsigned Kind = (*OptsOrErr)->kind; 3123 const char *Type = getElfMipsOptionsOdkType(Kind); 3124 if (!IsSupported) { 3125 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3126 << ")\n"; 3127 continue; 3128 } 3129 3130 DictScope GS(W, Type); 3131 if (Kind == ODK_REGINFO) 3132 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3133 else 3134 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3135 } 3136 } 3137 3138 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3139 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3140 if (!StackMapSection) 3141 return; 3142 3143 auto Warn = [&](Error &&E) { 3144 this->reportUniqueWarning("unable to read the stack map from " + 3145 describe(*StackMapSection) + ": " + 3146 toString(std::move(E))); 3147 }; 3148 3149 Expected<ArrayRef<uint8_t>> ContentOrErr = 3150 Obj.getSectionContents(*StackMapSection); 3151 if (!ContentOrErr) { 3152 Warn(ContentOrErr.takeError()); 3153 return; 3154 } 3155 3156 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3157 *ContentOrErr)) { 3158 Warn(std::move(E)); 3159 return; 3160 } 3161 3162 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3163 } 3164 3165 template <class ELFT> 3166 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3167 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3168 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3169 if (!Target) 3170 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3171 " in " + describe(Sec) + ": " + 3172 toString(Target.takeError())); 3173 else 3174 printRelRelaReloc(R, *Target); 3175 } 3176 3177 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3178 StringRef Str2) { 3179 OS.PadToColumn(2u); 3180 OS << Str1; 3181 OS.PadToColumn(37u); 3182 OS << Str2 << "\n"; 3183 OS.flush(); 3184 } 3185 3186 template <class ELFT> 3187 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3188 StringRef FileName) { 3189 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3190 if (ElfHeader.e_shnum != 0) 3191 return to_string(ElfHeader.e_shnum); 3192 3193 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3194 if (!ArrOrErr) { 3195 // In this case we can ignore an error, because we have already reported a 3196 // warning about the broken section header table earlier. 3197 consumeError(ArrOrErr.takeError()); 3198 return "<?>"; 3199 } 3200 3201 if (ArrOrErr->empty()) 3202 return "0"; 3203 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3204 } 3205 3206 template <class ELFT> 3207 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3208 StringRef FileName) { 3209 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3210 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3211 return to_string(ElfHeader.e_shstrndx); 3212 3213 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3214 if (!ArrOrErr) { 3215 // In this case we can ignore an error, because we have already reported a 3216 // warning about the broken section header table earlier. 3217 consumeError(ArrOrErr.takeError()); 3218 return "<?>"; 3219 } 3220 3221 if (ArrOrErr->empty()) 3222 return "65535 (corrupt: out of range)"; 3223 return to_string(ElfHeader.e_shstrndx) + " (" + 3224 to_string((*ArrOrErr)[0].sh_link) + ")"; 3225 } 3226 3227 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3228 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3229 return E.Value == Type; 3230 }); 3231 if (It != makeArrayRef(ElfObjectFileType).end()) 3232 return It; 3233 return nullptr; 3234 } 3235 3236 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3237 const Elf_Ehdr &e = this->Obj.getHeader(); 3238 OS << "ELF Header:\n"; 3239 OS << " Magic: "; 3240 std::string Str; 3241 for (int i = 0; i < ELF::EI_NIDENT; i++) 3242 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3243 OS << "\n"; 3244 Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 3245 printFields(OS, "Class:", Str); 3246 Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); 3247 printFields(OS, "Data:", Str); 3248 OS.PadToColumn(2u); 3249 OS << "Version:"; 3250 OS.PadToColumn(37u); 3251 OS << to_hexString(e.e_ident[ELF::EI_VERSION]); 3252 if (e.e_version == ELF::EV_CURRENT) 3253 OS << " (current)"; 3254 OS << "\n"; 3255 Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); 3256 printFields(OS, "OS/ABI:", Str); 3257 printFields(OS, 3258 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3259 3260 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3261 Str = E->AltName.str(); 3262 } else { 3263 if (e.e_type >= ET_LOPROC) 3264 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")"; 3265 else if (e.e_type >= ET_LOOS) 3266 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")"; 3267 else 3268 Str = "<unknown>: " + to_hexString(e.e_type, false); 3269 } 3270 printFields(OS, "Type:", Str); 3271 3272 Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType)); 3273 printFields(OS, "Machine:", Str); 3274 Str = "0x" + to_hexString(e.e_version); 3275 printFields(OS, "Version:", Str); 3276 Str = "0x" + to_hexString(e.e_entry); 3277 printFields(OS, "Entry point address:", Str); 3278 Str = to_string(e.e_phoff) + " (bytes into file)"; 3279 printFields(OS, "Start of program headers:", Str); 3280 Str = to_string(e.e_shoff) + " (bytes into file)"; 3281 printFields(OS, "Start of section headers:", Str); 3282 std::string ElfFlags; 3283 if (e.e_machine == EM_MIPS) 3284 ElfFlags = 3285 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags), 3286 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 3287 unsigned(ELF::EF_MIPS_MACH)); 3288 else if (e.e_machine == EM_RISCV) 3289 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 3290 else if (e.e_machine == EM_AVR) 3291 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags), 3292 unsigned(ELF::EF_AVR_ARCH_MASK)); 3293 Str = "0x" + to_hexString(e.e_flags); 3294 if (!ElfFlags.empty()) 3295 Str = Str + ", " + ElfFlags; 3296 printFields(OS, "Flags:", Str); 3297 Str = to_string(e.e_ehsize) + " (bytes)"; 3298 printFields(OS, "Size of this header:", Str); 3299 Str = to_string(e.e_phentsize) + " (bytes)"; 3300 printFields(OS, "Size of program headers:", Str); 3301 Str = to_string(e.e_phnum); 3302 printFields(OS, "Number of program headers:", Str); 3303 Str = to_string(e.e_shentsize) + " (bytes)"; 3304 printFields(OS, "Size of section headers:", Str); 3305 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3306 printFields(OS, "Number of section headers:", Str); 3307 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3308 printFields(OS, "Section header string table index:", Str); 3309 } 3310 3311 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3312 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3313 const Elf_Shdr &Symtab) -> StringRef { 3314 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3315 if (!StrTableOrErr) { 3316 reportUniqueWarning("unable to get the string table for " + 3317 describe(Symtab) + ": " + 3318 toString(StrTableOrErr.takeError())); 3319 return "<?>"; 3320 } 3321 3322 StringRef Strings = *StrTableOrErr; 3323 if (Sym.st_name >= Strings.size()) { 3324 reportUniqueWarning("unable to get the name of the symbol with index " + 3325 Twine(SymNdx) + ": st_name (0x" + 3326 Twine::utohexstr(Sym.st_name) + 3327 ") is past the end of the string table of size 0x" + 3328 Twine::utohexstr(Strings.size())); 3329 return "<?>"; 3330 } 3331 3332 return StrTableOrErr->data() + Sym.st_name; 3333 }; 3334 3335 std::vector<GroupSection> Ret; 3336 uint64_t I = 0; 3337 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3338 ++I; 3339 if (Sec.sh_type != ELF::SHT_GROUP) 3340 continue; 3341 3342 StringRef Signature = "<?>"; 3343 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3344 if (Expected<const Elf_Sym *> SymOrErr = 3345 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3346 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3347 else 3348 reportUniqueWarning("unable to get the signature symbol for " + 3349 describe(Sec) + ": " + 3350 toString(SymOrErr.takeError())); 3351 } else { 3352 reportUniqueWarning("unable to get the symbol table for " + 3353 describe(Sec) + ": " + 3354 toString(SymtabOrErr.takeError())); 3355 } 3356 3357 ArrayRef<Elf_Word> Data; 3358 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3359 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3360 if (ContentsOrErr->empty()) 3361 reportUniqueWarning("unable to read the section group flag from the " + 3362 describe(Sec) + ": the section is empty"); 3363 else 3364 Data = *ContentsOrErr; 3365 } else { 3366 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3367 ": " + toString(ContentsOrErr.takeError())); 3368 } 3369 3370 Ret.push_back({getPrintableSectionName(Sec), 3371 maybeDemangle(Signature), 3372 Sec.sh_name, 3373 I - 1, 3374 Sec.sh_link, 3375 Sec.sh_info, 3376 Data.empty() ? Elf_Word(0) : Data[0], 3377 {}}); 3378 3379 if (Data.empty()) 3380 continue; 3381 3382 std::vector<GroupMember> &GM = Ret.back().Members; 3383 for (uint32_t Ndx : Data.slice(1)) { 3384 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3385 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3386 } else { 3387 reportUniqueWarning("unable to get the section with index " + 3388 Twine(Ndx) + " when dumping the " + describe(Sec) + 3389 ": " + toString(SecOrErr.takeError())); 3390 GM.push_back({"<?>", Ndx}); 3391 } 3392 } 3393 } 3394 return Ret; 3395 } 3396 3397 static DenseMap<uint64_t, const GroupSection *> 3398 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3399 DenseMap<uint64_t, const GroupSection *> Ret; 3400 for (const GroupSection &G : Groups) 3401 for (const GroupMember &GM : G.Members) 3402 Ret.insert({GM.Index, &G}); 3403 return Ret; 3404 } 3405 3406 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3407 std::vector<GroupSection> V = this->getGroups(); 3408 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3409 for (const GroupSection &G : V) { 3410 OS << "\n" 3411 << getGroupType(G.Type) << " group section [" 3412 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3413 << "] contains " << G.Members.size() << " sections:\n" 3414 << " [Index] Name\n"; 3415 for (const GroupMember &GM : G.Members) { 3416 const GroupSection *MainGroup = Map[GM.Index]; 3417 if (MainGroup != &G) 3418 this->reportUniqueWarning( 3419 "section with index " + Twine(GM.Index) + 3420 ", included in the group section with index " + 3421 Twine(MainGroup->Index) + 3422 ", was also found in the group section with index " + 3423 Twine(G.Index)); 3424 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3425 } 3426 } 3427 3428 if (V.empty()) 3429 OS << "There are no section groups in this file.\n"; 3430 } 3431 3432 template <class ELFT> 3433 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3434 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3435 } 3436 3437 template <class ELFT> 3438 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3439 const RelSymbol<ELFT> &RelSym) { 3440 // First two fields are bit width dependent. The rest of them are fixed width. 3441 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3442 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3443 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3444 3445 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3446 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3447 3448 SmallString<32> RelocName; 3449 this->Obj.getRelocationTypeName(R.Type, RelocName); 3450 Fields[2].Str = RelocName.c_str(); 3451 3452 if (RelSym.Sym) 3453 Fields[3].Str = 3454 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3455 3456 Fields[4].Str = std::string(RelSym.Name); 3457 for (const Field &F : Fields) 3458 printField(F); 3459 3460 std::string Addend; 3461 if (Optional<int64_t> A = R.Addend) { 3462 int64_t RelAddend = *A; 3463 if (!RelSym.Name.empty()) { 3464 if (RelAddend < 0) { 3465 Addend = " - "; 3466 RelAddend = std::abs(RelAddend); 3467 } else { 3468 Addend = " + "; 3469 } 3470 } 3471 Addend += to_hexString(RelAddend, false); 3472 } 3473 OS << Addend << "\n"; 3474 } 3475 3476 template <class ELFT> 3477 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) { 3478 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3479 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; 3480 if (ELFT::Is64Bits) 3481 OS << " "; 3482 else 3483 OS << " "; 3484 if (IsRelr && opts::RawRelr) 3485 OS << "Data "; 3486 else 3487 OS << "Offset"; 3488 if (ELFT::Is64Bits) 3489 OS << " Info Type" 3490 << " Symbol's Value Symbol's Name"; 3491 else 3492 OS << " Info Type Sym. Value Symbol's Name"; 3493 if (IsRela) 3494 OS << " + Addend"; 3495 OS << "\n"; 3496 } 3497 3498 template <class ELFT> 3499 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3500 const DynRegionInfo &Reg) { 3501 uint64_t Offset = Reg.Addr - this->Obj.base(); 3502 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3503 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n"; 3504 printRelocHeaderFields<ELFT>(OS, Type); 3505 } 3506 3507 template <class ELFT> 3508 static bool isRelocationSec(const typename ELFT::Shdr &Sec) { 3509 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3510 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3511 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3512 Sec.sh_type == ELF::SHT_ANDROID_RELR; 3513 } 3514 3515 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3516 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3517 // Android's packed relocation section needs to be unpacked first 3518 // to get the actual number of entries. 3519 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3520 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3521 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3522 this->Obj.android_relas(Sec); 3523 if (!RelasOrErr) 3524 return RelasOrErr.takeError(); 3525 return RelasOrErr->size(); 3526 } 3527 3528 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || 3529 Sec.sh_type == ELF::SHT_ANDROID_RELR)) { 3530 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3531 if (!RelrsOrErr) 3532 return RelrsOrErr.takeError(); 3533 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3534 } 3535 3536 return Sec.getEntityCount(); 3537 }; 3538 3539 bool HasRelocSections = false; 3540 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3541 if (!isRelocationSec<ELFT>(Sec)) 3542 continue; 3543 HasRelocSections = true; 3544 3545 std::string EntriesNum = "<?>"; 3546 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3547 EntriesNum = std::to_string(*NumOrErr); 3548 else 3549 this->reportUniqueWarning("unable to get the number of relocations in " + 3550 this->describe(Sec) + ": " + 3551 toString(NumOrErr.takeError())); 3552 3553 uintX_t Offset = Sec.sh_offset; 3554 StringRef Name = this->getPrintableSectionName(Sec); 3555 OS << "\nRelocation section '" << Name << "' at offset 0x" 3556 << to_hexString(Offset, false) << " contains " << EntriesNum 3557 << " entries:\n"; 3558 printRelocHeaderFields<ELFT>(OS, Sec.sh_type); 3559 this->printRelocationsHelper(Sec); 3560 } 3561 if (!HasRelocSections) 3562 OS << "\nThere are no relocations in this file.\n"; 3563 } 3564 3565 // Print the offset of a particular section from anyone of the ranges: 3566 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3567 // If 'Type' does not fall within any of those ranges, then a string is 3568 // returned as '<unknown>' followed by the type value. 3569 static std::string getSectionTypeOffsetString(unsigned Type) { 3570 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3571 return "LOOS+0x" + to_hexString(Type - SHT_LOOS); 3572 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3573 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); 3574 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3575 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); 3576 return "0x" + to_hexString(Type) + ": <unknown>"; 3577 } 3578 3579 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3580 StringRef Name = getELFSectionTypeName(Machine, Type); 3581 3582 // Handle SHT_GNU_* type names. 3583 if (Name.startswith("SHT_GNU_")) { 3584 if (Name == "SHT_GNU_HASH") 3585 return "GNU_HASH"; 3586 // E.g. SHT_GNU_verneed -> VERNEED. 3587 return Name.drop_front(8).upper(); 3588 } 3589 3590 if (Name == "SHT_SYMTAB_SHNDX") 3591 return "SYMTAB SECTION INDICES"; 3592 3593 if (Name.startswith("SHT_")) 3594 return Name.drop_front(4).str(); 3595 return getSectionTypeOffsetString(Type); 3596 } 3597 3598 static void printSectionDescription(formatted_raw_ostream &OS, 3599 unsigned EMachine) { 3600 OS << "Key to Flags:\n"; 3601 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 3602 "(info),\n"; 3603 OS << " L (link order), O (extra OS processing required), G (group), T " 3604 "(TLS),\n"; 3605 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 3606 OS << " R (retain)"; 3607 3608 if (EMachine == EM_X86_64) 3609 OS << ", l (large)"; 3610 else if (EMachine == EM_ARM) 3611 OS << ", y (purecode)"; 3612 3613 OS << ", p (processor specific)\n"; 3614 } 3615 3616 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 3617 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 3618 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3619 OS << "There are " << to_string(Sections.size()) 3620 << " section headers, starting at offset " 3621 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 3622 OS << "Section Headers:\n"; 3623 Field Fields[11] = { 3624 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 3625 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 3626 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 3627 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 3628 for (const Field &F : Fields) 3629 printField(F); 3630 OS << "\n"; 3631 3632 StringRef SecStrTable; 3633 if (Expected<StringRef> SecStrTableOrErr = 3634 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 3635 SecStrTable = *SecStrTableOrErr; 3636 else 3637 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3638 3639 size_t SectionIndex = 0; 3640 for (const Elf_Shdr &Sec : Sections) { 3641 Fields[0].Str = to_string(SectionIndex); 3642 if (SecStrTable.empty()) 3643 Fields[1].Str = "<no-strings>"; 3644 else 3645 Fields[1].Str = std::string(unwrapOrError<StringRef>( 3646 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 3647 Fields[2].Str = 3648 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 3649 Fields[3].Str = 3650 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 3651 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 3652 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 3653 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 3654 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags); 3655 Fields[8].Str = to_string(Sec.sh_link); 3656 Fields[9].Str = to_string(Sec.sh_info); 3657 Fields[10].Str = to_string(Sec.sh_addralign); 3658 3659 OS.PadToColumn(Fields[0].Column); 3660 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 3661 for (int i = 1; i < 7; i++) 3662 printField(Fields[i]); 3663 OS.PadToColumn(Fields[7].Column); 3664 OS << right_justify(Fields[7].Str, 3); 3665 OS.PadToColumn(Fields[8].Column); 3666 OS << right_justify(Fields[8].Str, 2); 3667 OS.PadToColumn(Fields[9].Column); 3668 OS << right_justify(Fields[9].Str, 3); 3669 OS.PadToColumn(Fields[10].Column); 3670 OS << right_justify(Fields[10].Str, 2); 3671 OS << "\n"; 3672 ++SectionIndex; 3673 } 3674 printSectionDescription(OS, this->Obj.getHeader().e_machine); 3675 } 3676 3677 template <class ELFT> 3678 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 3679 size_t Entries, 3680 bool NonVisibilityBitsUsed) const { 3681 StringRef Name; 3682 if (Symtab) 3683 Name = this->getPrintableSectionName(*Symtab); 3684 if (!Name.empty()) 3685 OS << "\nSymbol table '" << Name << "'"; 3686 else 3687 OS << "\nSymbol table for image"; 3688 OS << " contains " << Entries << " entries:\n"; 3689 3690 if (ELFT::Is64Bits) 3691 OS << " Num: Value Size Type Bind Vis"; 3692 else 3693 OS << " Num: Value Size Type Bind Vis"; 3694 3695 if (NonVisibilityBitsUsed) 3696 OS << " "; 3697 OS << " Ndx Name\n"; 3698 } 3699 3700 template <class ELFT> 3701 std::string 3702 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol, 3703 unsigned SymIndex, 3704 DataRegion<Elf_Word> ShndxTable) const { 3705 unsigned SectionIndex = Symbol.st_shndx; 3706 switch (SectionIndex) { 3707 case ELF::SHN_UNDEF: 3708 return "UND"; 3709 case ELF::SHN_ABS: 3710 return "ABS"; 3711 case ELF::SHN_COMMON: 3712 return "COM"; 3713 case ELF::SHN_XINDEX: { 3714 Expected<uint32_t> IndexOrErr = 3715 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 3716 if (!IndexOrErr) { 3717 assert(Symbol.st_shndx == SHN_XINDEX && 3718 "getExtendedSymbolTableIndex should only fail due to an invalid " 3719 "SHT_SYMTAB_SHNDX table/reference"); 3720 this->reportUniqueWarning(IndexOrErr.takeError()); 3721 return "RSV[0xffff]"; 3722 } 3723 return to_string(format_decimal(*IndexOrErr, 3)); 3724 } 3725 default: 3726 // Find if: 3727 // Processor specific 3728 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 3729 return std::string("PRC[0x") + 3730 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3731 // OS specific 3732 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 3733 return std::string("OS[0x") + 3734 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3735 // Architecture reserved: 3736 if (SectionIndex >= ELF::SHN_LORESERVE && 3737 SectionIndex <= ELF::SHN_HIRESERVE) 3738 return std::string("RSV[0x") + 3739 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3740 // A normal section with an index 3741 return to_string(format_decimal(SectionIndex, 3)); 3742 } 3743 } 3744 3745 template <class ELFT> 3746 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 3747 DataRegion<Elf_Word> ShndxTable, 3748 Optional<StringRef> StrTable, 3749 bool IsDynamic, 3750 bool NonVisibilityBitsUsed) const { 3751 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3752 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 3753 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 3754 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 3755 Fields[1].Str = 3756 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 3757 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 3758 3759 unsigned char SymbolType = Symbol.getType(); 3760 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3761 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3762 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3763 else 3764 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3765 3766 Fields[4].Str = 3767 printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 3768 Fields[5].Str = 3769 printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3770 3771 if (Symbol.st_other & ~0x3) { 3772 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 3773 uint8_t Other = Symbol.st_other & ~0x3; 3774 if (Other & STO_AARCH64_VARIANT_PCS) { 3775 Other &= ~STO_AARCH64_VARIANT_PCS; 3776 Fields[5].Str += " [VARIANT_PCS"; 3777 if (Other != 0) 3778 Fields[5].Str.append(" | " + to_hexString(Other, false)); 3779 Fields[5].Str.append("]"); 3780 } 3781 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 3782 uint8_t Other = Symbol.st_other & ~0x3; 3783 if (Other & STO_RISCV_VARIANT_CC) { 3784 Other &= ~STO_RISCV_VARIANT_CC; 3785 Fields[5].Str += " [VARIANT_CC"; 3786 if (Other != 0) 3787 Fields[5].Str.append(" | " + to_hexString(Other, false)); 3788 Fields[5].Str.append("]"); 3789 } 3790 } else { 3791 Fields[5].Str += 3792 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 3793 } 3794 } 3795 3796 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 3797 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable); 3798 3799 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 3800 StrTable, IsDynamic); 3801 for (const Field &Entry : Fields) 3802 printField(Entry); 3803 OS << "\n"; 3804 } 3805 3806 template <class ELFT> 3807 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 3808 unsigned SymIndex, 3809 DataRegion<Elf_Word> ShndxTable, 3810 StringRef StrTable, 3811 uint32_t Bucket) { 3812 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3813 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 3814 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 3815 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 3816 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 3817 3818 Fields[2].Str = to_string( 3819 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 3820 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 3821 3822 unsigned char SymbolType = Symbol->getType(); 3823 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3824 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3825 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3826 else 3827 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3828 3829 Fields[5].Str = 3830 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 3831 Fields[6].Str = 3832 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3833 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 3834 Fields[8].Str = 3835 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 3836 3837 for (const Field &Entry : Fields) 3838 printField(Entry); 3839 OS << "\n"; 3840 } 3841 3842 template <class ELFT> 3843 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 3844 bool PrintDynamicSymbols) { 3845 if (!PrintSymbols && !PrintDynamicSymbols) 3846 return; 3847 // GNU readelf prints both the .dynsym and .symtab with --symbols. 3848 this->printSymbolsHelper(true); 3849 if (PrintSymbols) 3850 this->printSymbolsHelper(false); 3851 } 3852 3853 template <class ELFT> 3854 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 3855 if (this->DynamicStringTable.empty()) 3856 return; 3857 3858 if (ELFT::Is64Bits) 3859 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3860 else 3861 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3862 OS << "\n"; 3863 3864 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3865 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3866 if (!FirstSym) { 3867 this->reportUniqueWarning( 3868 Twine("unable to print symbols for the .hash table: the " 3869 "dynamic symbol table ") + 3870 (this->DynSymRegion ? "is empty" : "was not found")); 3871 return; 3872 } 3873 3874 DataRegion<Elf_Word> ShndxTable( 3875 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3876 auto Buckets = SysVHash.buckets(); 3877 auto Chains = SysVHash.chains(); 3878 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 3879 if (Buckets[Buc] == ELF::STN_UNDEF) 3880 continue; 3881 std::vector<bool> Visited(SysVHash.nchain); 3882 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 3883 if (Ch == ELF::STN_UNDEF) 3884 break; 3885 3886 if (Visited[Ch]) { 3887 this->reportUniqueWarning(".hash section is invalid: bucket " + 3888 Twine(Ch) + 3889 ": a cycle was detected in the linked chain"); 3890 break; 3891 } 3892 3893 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 3894 Buc); 3895 Visited[Ch] = true; 3896 } 3897 } 3898 } 3899 3900 template <class ELFT> 3901 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 3902 if (this->DynamicStringTable.empty()) 3903 return; 3904 3905 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3906 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3907 if (!FirstSym) { 3908 this->reportUniqueWarning( 3909 Twine("unable to print symbols for the .gnu.hash table: the " 3910 "dynamic symbol table ") + 3911 (this->DynSymRegion ? "is empty" : "was not found")); 3912 return; 3913 } 3914 3915 auto GetSymbol = [&](uint64_t SymIndex, 3916 uint64_t SymsTotal) -> const Elf_Sym * { 3917 if (SymIndex >= SymsTotal) { 3918 this->reportUniqueWarning( 3919 "unable to print hashed symbol with index " + Twine(SymIndex) + 3920 ", which is greater than or equal to the number of dynamic symbols " 3921 "(" + 3922 Twine::utohexstr(SymsTotal) + ")"); 3923 return nullptr; 3924 } 3925 return FirstSym + SymIndex; 3926 }; 3927 3928 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 3929 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 3930 ArrayRef<Elf_Word> Values; 3931 if (!ValuesOrErr) 3932 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 3933 "section: " + 3934 toString(ValuesOrErr.takeError())); 3935 else 3936 Values = *ValuesOrErr; 3937 3938 DataRegion<Elf_Word> ShndxTable( 3939 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3940 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 3941 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 3942 if (Buckets[Buc] == ELF::STN_UNDEF) 3943 continue; 3944 uint32_t Index = Buckets[Buc]; 3945 // Print whole chain. 3946 while (true) { 3947 uint32_t SymIndex = Index++; 3948 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 3949 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 3950 Buc); 3951 else 3952 break; 3953 3954 if (SymIndex < GnuHash.symndx) { 3955 this->reportUniqueWarning( 3956 "unable to read the hash value for symbol with index " + 3957 Twine(SymIndex) + 3958 ", which is less than the index of the first hashed symbol (" + 3959 Twine(GnuHash.symndx) + ")"); 3960 break; 3961 } 3962 3963 // Chain ends at symbol with stopper bit. 3964 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 3965 break; 3966 } 3967 } 3968 } 3969 3970 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 3971 if (this->HashTable) { 3972 OS << "\n Symbol table of .hash for image:\n"; 3973 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 3974 this->reportUniqueWarning(std::move(E)); 3975 else 3976 printHashTableSymbols(*this->HashTable); 3977 } 3978 3979 // Try printing the .gnu.hash table. 3980 if (this->GnuHashTable) { 3981 OS << "\n Symbol table of .gnu.hash for image:\n"; 3982 if (ELFT::Is64Bits) 3983 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3984 else 3985 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3986 OS << "\n"; 3987 3988 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 3989 this->reportUniqueWarning(std::move(E)); 3990 else 3991 printGnuHashTableSymbols(*this->GnuHashTable); 3992 } 3993 } 3994 3995 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 3996 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3997 OS << "There are " << to_string(Sections.size()) 3998 << " section headers, starting at offset " 3999 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 4000 4001 OS << "Section Headers:\n"; 4002 4003 auto PrintFields = [&](ArrayRef<Field> V) { 4004 for (const Field &F : V) 4005 printField(F); 4006 OS << "\n"; 4007 }; 4008 4009 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4010 4011 constexpr bool Is64 = ELFT::Is64Bits; 4012 PrintFields({{"Type", 7}, 4013 {Is64 ? "Address" : "Addr", 23}, 4014 {"Off", Is64 ? 40 : 32}, 4015 {"Size", Is64 ? 47 : 39}, 4016 {"ES", Is64 ? 54 : 46}, 4017 {"Lk", Is64 ? 59 : 51}, 4018 {"Inf", Is64 ? 62 : 54}, 4019 {"Al", Is64 ? 66 : 57}}); 4020 PrintFields({{"Flags", 7}}); 4021 4022 StringRef SecStrTable; 4023 if (Expected<StringRef> SecStrTableOrErr = 4024 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4025 SecStrTable = *SecStrTableOrErr; 4026 else 4027 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4028 4029 size_t SectionIndex = 0; 4030 const unsigned AddrSize = Is64 ? 16 : 8; 4031 for (const Elf_Shdr &S : Sections) { 4032 StringRef Name = "<?>"; 4033 if (Expected<StringRef> NameOrErr = 4034 this->Obj.getSectionName(S, SecStrTable)) 4035 Name = *NameOrErr; 4036 else 4037 this->reportUniqueWarning(NameOrErr.takeError()); 4038 4039 OS.PadToColumn(2); 4040 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4041 PrintFields({{Name, 7}}); 4042 PrintFields( 4043 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4044 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4045 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4046 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4047 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4048 {to_string(S.sh_link), Is64 ? 59 : 51}, 4049 {to_string(S.sh_info), Is64 ? 63 : 55}, 4050 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4051 4052 OS.PadToColumn(7); 4053 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4054 4055 DenseMap<unsigned, StringRef> FlagToName = { 4056 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4057 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4058 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4059 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4060 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4061 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4062 4063 uint64_t Flags = S.sh_flags; 4064 uint64_t UnknownFlags = 0; 4065 ListSeparator LS; 4066 while (Flags) { 4067 // Take the least significant bit as a flag. 4068 uint64_t Flag = Flags & -Flags; 4069 Flags -= Flag; 4070 4071 auto It = FlagToName.find(Flag); 4072 if (It != FlagToName.end()) 4073 OS << LS << It->second; 4074 else 4075 UnknownFlags |= Flag; 4076 } 4077 4078 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4079 uint64_t FlagsToPrint = UnknownFlags & Mask; 4080 if (!FlagsToPrint) 4081 return; 4082 4083 OS << LS << Name << " (" 4084 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4085 UnknownFlags &= ~Mask; 4086 }; 4087 4088 PrintUnknownFlags(SHF_MASKOS, "OS"); 4089 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4090 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4091 4092 OS << "\n"; 4093 ++SectionIndex; 4094 } 4095 } 4096 4097 static inline std::string printPhdrFlags(unsigned Flag) { 4098 std::string Str; 4099 Str = (Flag & PF_R) ? "R" : " "; 4100 Str += (Flag & PF_W) ? "W" : " "; 4101 Str += (Flag & PF_X) ? "E" : " "; 4102 return Str; 4103 } 4104 4105 template <class ELFT> 4106 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4107 const typename ELFT::Shdr &Sec) { 4108 if (Sec.sh_flags & ELF::SHF_TLS) { 4109 // .tbss must only be shown in the PT_TLS segment. 4110 if (Sec.sh_type == ELF::SHT_NOBITS) 4111 return Phdr.p_type == ELF::PT_TLS; 4112 4113 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4114 // segments. 4115 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4116 (Phdr.p_type == ELF::PT_GNU_RELRO); 4117 } 4118 4119 // PT_TLS must only have SHF_TLS sections. 4120 return Phdr.p_type != ELF::PT_TLS; 4121 } 4122 4123 template <class ELFT> 4124 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 4125 const typename ELFT::Shdr &Sec) { 4126 // SHT_NOBITS sections don't need to have an offset inside the segment. 4127 if (Sec.sh_type == ELF::SHT_NOBITS) 4128 return true; 4129 4130 if (Sec.sh_offset < Phdr.p_offset) 4131 return false; 4132 4133 // Only non-empty sections can be at the end of a segment. 4134 if (Sec.sh_size == 0) 4135 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz); 4136 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz; 4137 } 4138 4139 // Check that an allocatable section belongs to a virtual address 4140 // space of a segment. 4141 template <class ELFT> 4142 static bool checkVMA(const typename ELFT::Phdr &Phdr, 4143 const typename ELFT::Shdr &Sec) { 4144 if (!(Sec.sh_flags & ELF::SHF_ALLOC)) 4145 return true; 4146 4147 if (Sec.sh_addr < Phdr.p_vaddr) 4148 return false; 4149 4150 bool IsTbss = 4151 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 4152 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties. 4153 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS; 4154 // Only non-empty sections can be at the end of a segment. 4155 if (Sec.sh_size == 0 || IsTbssInNonTLS) 4156 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz; 4157 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz; 4158 } 4159 4160 template <class ELFT> 4161 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4162 const typename ELFT::Shdr &Sec) { 4163 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4164 return true; 4165 4166 // We get here when we have an empty section. Only non-empty sections can be 4167 // at the start or at the end of PT_DYNAMIC. 4168 // Is section within the phdr both based on offset and VMA? 4169 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4170 (Sec.sh_offset > Phdr.p_offset && 4171 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4172 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4173 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4174 return CheckOffset && CheckVA; 4175 } 4176 4177 template <class ELFT> 4178 void GNUELFDumper<ELFT>::printProgramHeaders( 4179 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4180 if (PrintProgramHeaders) 4181 printProgramHeaders(); 4182 4183 // Display the section mapping along with the program headers, unless 4184 // -section-mapping is explicitly set to false. 4185 if (PrintSectionMapping != cl::BOU_FALSE) 4186 printSectionMapping(); 4187 } 4188 4189 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4190 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4191 const Elf_Ehdr &Header = this->Obj.getHeader(); 4192 Field Fields[8] = {2, 17, 26, 37 + Bias, 4193 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4194 OS << "\nElf file type is " 4195 << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n" 4196 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4197 << "There are " << Header.e_phnum << " program headers," 4198 << " starting at offset " << Header.e_phoff << "\n\n" 4199 << "Program Headers:\n"; 4200 if (ELFT::Is64Bits) 4201 OS << " Type Offset VirtAddr PhysAddr " 4202 << " FileSiz MemSiz Flg Align\n"; 4203 else 4204 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4205 << "MemSiz Flg Align\n"; 4206 4207 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4208 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4209 4210 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4211 if (!PhdrsOrErr) { 4212 this->reportUniqueWarning("unable to dump program headers: " + 4213 toString(PhdrsOrErr.takeError())); 4214 return; 4215 } 4216 4217 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4218 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4219 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4220 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4221 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4222 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4223 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4224 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4225 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4226 for (const Field &F : Fields) 4227 printField(F); 4228 if (Phdr.p_type == ELF::PT_INTERP) { 4229 OS << "\n"; 4230 auto ReportBadInterp = [&](const Twine &Msg) { 4231 this->reportUniqueWarning( 4232 "unable to read program interpreter name at offset 0x" + 4233 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4234 }; 4235 4236 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4237 ReportBadInterp("it goes past the end of the file (0x" + 4238 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4239 continue; 4240 } 4241 4242 const char *Data = 4243 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4244 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4245 size_t Len = strnlen(Data, MaxSize); 4246 if (Len == MaxSize) { 4247 ReportBadInterp("it is not null-terminated"); 4248 continue; 4249 } 4250 4251 OS << " [Requesting program interpreter: "; 4252 OS << StringRef(Data, Len) << "]"; 4253 } 4254 OS << "\n"; 4255 } 4256 } 4257 4258 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4259 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4260 DenseSet<const Elf_Shdr *> BelongsToSegment; 4261 int Phnum = 0; 4262 4263 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4264 if (!PhdrsOrErr) { 4265 this->reportUniqueWarning( 4266 "can't read program headers to build section to segment mapping: " + 4267 toString(PhdrsOrErr.takeError())); 4268 return; 4269 } 4270 4271 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4272 std::string Sections; 4273 OS << format(" %2.2d ", Phnum++); 4274 // Check if each section is in a segment and then print mapping. 4275 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4276 if (Sec.sh_type == ELF::SHT_NULL) 4277 continue; 4278 4279 // readelf additionally makes sure it does not print zero sized sections 4280 // at end of segments and for PT_DYNAMIC both start and end of section 4281 // .tbss must only be shown in PT_TLS section. 4282 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) && 4283 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) { 4284 Sections += 4285 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4286 " "; 4287 BelongsToSegment.insert(&Sec); 4288 } 4289 } 4290 OS << Sections << "\n"; 4291 OS.flush(); 4292 } 4293 4294 // Display sections that do not belong to a segment. 4295 std::string Sections; 4296 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4297 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4298 Sections += 4299 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4300 ' '; 4301 } 4302 if (!Sections.empty()) { 4303 OS << " None " << Sections << '\n'; 4304 OS.flush(); 4305 } 4306 } 4307 4308 namespace { 4309 4310 template <class ELFT> 4311 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4312 const Relocation<ELFT> &Reloc) { 4313 using Elf_Sym = typename ELFT::Sym; 4314 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4315 const Twine &Reason) -> RelSymbol<ELFT> { 4316 Dumper.reportUniqueWarning( 4317 "unable to get name of the dynamic symbol with index " + 4318 Twine(Reloc.Symbol) + ": " + Reason); 4319 return {Sym, "<corrupt>"}; 4320 }; 4321 4322 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4323 const Elf_Sym *FirstSym = Symbols.begin(); 4324 if (!FirstSym) 4325 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4326 4327 // We might have an object without a section header. In this case the size of 4328 // Symbols is zero, because there is no way to know the size of the dynamic 4329 // table. We should allow this case and not print a warning. 4330 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4331 return WarnAndReturn( 4332 nullptr, 4333 "index is greater than or equal to the number of dynamic symbols (" + 4334 Twine(Symbols.size()) + ")"); 4335 4336 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4337 const uint64_t FileSize = Obj.getBufSize(); 4338 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4339 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4340 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4341 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4342 " goes past the end of the file (0x" + 4343 Twine::utohexstr(FileSize) + ")"); 4344 4345 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4346 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4347 if (!ErrOrName) 4348 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4349 4350 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4351 } 4352 } // namespace 4353 4354 template <class ELFT> 4355 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4356 typename ELFT::DynRange Tags) { 4357 size_t Max = 0; 4358 for (const typename ELFT::Dyn &Dyn : Tags) 4359 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4360 return Max; 4361 } 4362 4363 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4364 Elf_Dyn_Range Table = this->dynamic_table(); 4365 if (Table.empty()) 4366 return; 4367 4368 OS << "Dynamic section at offset " 4369 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4370 this->Obj.base(), 4371 1) 4372 << " contains " << Table.size() << " entries:\n"; 4373 4374 // The type name is surrounded with round brackets, hence add 2. 4375 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4376 // The "Name/Value" column should be indented from the "Type" column by N 4377 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4378 // space (1) = 3. 4379 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4380 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4381 4382 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4383 for (auto Entry : Table) { 4384 uintX_t Tag = Entry.getTag(); 4385 std::string Type = 4386 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4387 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4388 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4389 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4390 } 4391 } 4392 4393 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4394 this->printDynamicRelocationsHelper(); 4395 } 4396 4397 template <class ELFT> 4398 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4399 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4400 } 4401 4402 template <class ELFT> 4403 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4404 this->forEachRelocationDo( 4405 Sec, opts::RawRelr, 4406 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4407 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4408 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4409 } 4410 4411 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4412 const bool IsMips64EL = this->Obj.isMips64EL(); 4413 if (this->DynRelaRegion.Size > 0) { 4414 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4415 for (const Elf_Rela &Rela : 4416 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4417 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4418 } 4419 4420 if (this->DynRelRegion.Size > 0) { 4421 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4422 for (const Elf_Rel &Rel : 4423 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4424 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4425 } 4426 4427 if (this->DynRelrRegion.Size > 0) { 4428 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4429 Elf_Relr_Range Relrs = 4430 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4431 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4432 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4433 } 4434 4435 if (this->DynPLTRelRegion.Size) { 4436 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4437 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4438 for (const Elf_Rela &Rela : 4439 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4440 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4441 } else { 4442 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4443 for (const Elf_Rel &Rel : 4444 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4445 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4446 } 4447 } 4448 } 4449 4450 template <class ELFT> 4451 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4452 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4453 // Don't inline the SecName, because it might report a warning to stderr and 4454 // corrupt the output. 4455 StringRef SecName = this->getPrintableSectionName(Sec); 4456 OS << Label << " section '" << SecName << "' " 4457 << "contains " << EntriesNum << " entries:\n"; 4458 4459 StringRef LinkedSecName = "<corrupt>"; 4460 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4461 this->Obj.getSection(Sec.sh_link)) 4462 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4463 else 4464 this->reportUniqueWarning("invalid section linked to " + 4465 this->describe(Sec) + ": " + 4466 toString(LinkedSecOrErr.takeError())); 4467 4468 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4469 << " Offset: " << format_hex(Sec.sh_offset, 8) 4470 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4471 } 4472 4473 template <class ELFT> 4474 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4475 if (!Sec) 4476 return; 4477 4478 printGNUVersionSectionProlog(*Sec, "Version symbols", 4479 Sec->sh_size / sizeof(Elf_Versym)); 4480 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4481 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4482 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4483 if (!VerTableOrErr) { 4484 this->reportUniqueWarning(VerTableOrErr.takeError()); 4485 return; 4486 } 4487 4488 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr; 4489 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 4490 this->getVersionMap()) 4491 VersionMap = *MapOrErr; 4492 else 4493 this->reportUniqueWarning(MapOrErr.takeError()); 4494 4495 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4496 std::vector<StringRef> Versions; 4497 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4498 unsigned Ndx = VerTable[I].vs_index; 4499 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4500 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4501 continue; 4502 } 4503 4504 if (!VersionMap) { 4505 Versions.emplace_back("<corrupt>"); 4506 continue; 4507 } 4508 4509 bool IsDefault; 4510 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4511 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None); 4512 if (!NameOrErr) { 4513 this->reportUniqueWarning("unable to get a version for entry " + 4514 Twine(I) + " of " + this->describe(*Sec) + 4515 ": " + toString(NameOrErr.takeError())); 4516 Versions.emplace_back("<corrupt>"); 4517 continue; 4518 } 4519 Versions.emplace_back(*NameOrErr); 4520 } 4521 4522 // readelf prints 4 entries per line. 4523 uint64_t Entries = VerTable.size(); 4524 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4525 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4526 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4527 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4528 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4529 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4530 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4531 } 4532 OS << '\n'; 4533 } 4534 OS << '\n'; 4535 } 4536 4537 static std::string versionFlagToString(unsigned Flags) { 4538 if (Flags == 0) 4539 return "none"; 4540 4541 std::string Ret; 4542 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4543 if (!(Flags & Flag)) 4544 return; 4545 if (!Ret.empty()) 4546 Ret += " | "; 4547 Ret += Name; 4548 Flags &= ~Flag; 4549 }; 4550 4551 AddFlag(VER_FLG_BASE, "BASE"); 4552 AddFlag(VER_FLG_WEAK, "WEAK"); 4553 AddFlag(VER_FLG_INFO, "INFO"); 4554 AddFlag(~0, "<unknown>"); 4555 return Ret; 4556 } 4557 4558 template <class ELFT> 4559 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 4560 if (!Sec) 4561 return; 4562 4563 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 4564 4565 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 4566 if (!V) { 4567 this->reportUniqueWarning(V.takeError()); 4568 return; 4569 } 4570 4571 for (const VerDef &Def : *V) { 4572 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 4573 Def.Offset, Def.Version, 4574 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 4575 Def.Name.data()); 4576 unsigned I = 0; 4577 for (const VerdAux &Aux : Def.AuxV) 4578 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 4579 Aux.Name.data()); 4580 } 4581 4582 OS << '\n'; 4583 } 4584 4585 template <class ELFT> 4586 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 4587 if (!Sec) 4588 return; 4589 4590 unsigned VerneedNum = Sec->sh_info; 4591 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 4592 4593 Expected<std::vector<VerNeed>> V = 4594 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 4595 if (!V) { 4596 this->reportUniqueWarning(V.takeError()); 4597 return; 4598 } 4599 4600 for (const VerNeed &VN : *V) { 4601 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 4602 VN.Version, VN.File.data(), VN.Cnt); 4603 for (const VernAux &Aux : VN.AuxV) 4604 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 4605 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 4606 Aux.Other); 4607 } 4608 OS << '\n'; 4609 } 4610 4611 template <class ELFT> 4612 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) { 4613 size_t NBucket = HashTable.nbucket; 4614 size_t NChain = HashTable.nchain; 4615 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 4616 ArrayRef<Elf_Word> Chains = HashTable.chains(); 4617 size_t TotalSyms = 0; 4618 // If hash table is correct, we have at least chains with 0 length 4619 size_t MaxChain = 1; 4620 size_t CumulativeNonZero = 0; 4621 4622 if (NChain == 0 || NBucket == 0) 4623 return; 4624 4625 std::vector<size_t> ChainLen(NBucket, 0); 4626 // Go over all buckets and and note chain lengths of each bucket (total 4627 // unique chain lengths). 4628 for (size_t B = 0; B < NBucket; B++) { 4629 std::vector<bool> Visited(NChain); 4630 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 4631 if (C == ELF::STN_UNDEF) 4632 break; 4633 if (Visited[C]) { 4634 this->reportUniqueWarning(".hash section is invalid: bucket " + 4635 Twine(C) + 4636 ": a cycle was detected in the linked chain"); 4637 break; 4638 } 4639 Visited[C] = true; 4640 if (MaxChain <= ++ChainLen[B]) 4641 MaxChain++; 4642 } 4643 TotalSyms += ChainLen[B]; 4644 } 4645 4646 if (!TotalSyms) 4647 return; 4648 4649 std::vector<size_t> Count(MaxChain, 0); 4650 // Count how long is the chain for each bucket 4651 for (size_t B = 0; B < NBucket; B++) 4652 ++Count[ChainLen[B]]; 4653 // Print Number of buckets with each chain lengths and their cumulative 4654 // coverage of the symbols 4655 OS << "Histogram for bucket list length (total of " << NBucket 4656 << " buckets)\n" 4657 << " Length Number % of total Coverage\n"; 4658 for (size_t I = 0; I < MaxChain; I++) { 4659 CumulativeNonZero += Count[I] * I; 4660 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4661 (Count[I] * 100.0) / NBucket, 4662 (CumulativeNonZero * 100.0) / TotalSyms); 4663 } 4664 } 4665 4666 template <class ELFT> 4667 void GNUELFDumper<ELFT>::printGnuHashHistogram( 4668 const Elf_GnuHash &GnuHashTable) { 4669 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 4670 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 4671 if (!ChainsOrErr) { 4672 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 4673 toString(ChainsOrErr.takeError())); 4674 return; 4675 } 4676 4677 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 4678 size_t Symndx = GnuHashTable.symndx; 4679 size_t TotalSyms = 0; 4680 size_t MaxChain = 1; 4681 size_t CumulativeNonZero = 0; 4682 4683 size_t NBucket = GnuHashTable.nbuckets; 4684 if (Chains.empty() || NBucket == 0) 4685 return; 4686 4687 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 4688 std::vector<size_t> ChainLen(NBucket, 0); 4689 for (size_t B = 0; B < NBucket; B++) { 4690 if (!Buckets[B]) 4691 continue; 4692 size_t Len = 1; 4693 for (size_t C = Buckets[B] - Symndx; 4694 C < Chains.size() && (Chains[C] & 1) == 0; C++) 4695 if (MaxChain < ++Len) 4696 MaxChain++; 4697 ChainLen[B] = Len; 4698 TotalSyms += Len; 4699 } 4700 MaxChain++; 4701 4702 if (!TotalSyms) 4703 return; 4704 4705 std::vector<size_t> Count(MaxChain, 0); 4706 for (size_t B = 0; B < NBucket; B++) 4707 ++Count[ChainLen[B]]; 4708 // Print Number of buckets with each chain lengths and their cumulative 4709 // coverage of the symbols 4710 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket 4711 << " buckets)\n" 4712 << " Length Number % of total Coverage\n"; 4713 for (size_t I = 0; I < MaxChain; I++) { 4714 CumulativeNonZero += Count[I] * I; 4715 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4716 (Count[I] * 100.0) / NBucket, 4717 (CumulativeNonZero * 100.0) / TotalSyms); 4718 } 4719 } 4720 4721 // Hash histogram shows statistics of how efficient the hash was for the 4722 // dynamic symbol table. The table shows the number of hash buckets for 4723 // different lengths of chains as an absolute number and percentage of the total 4724 // buckets, and the cumulative coverage of symbols for each set of buckets. 4725 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() { 4726 // Print histogram for the .hash section. 4727 if (this->HashTable) { 4728 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4729 this->reportUniqueWarning(std::move(E)); 4730 else 4731 printHashHistogram(*this->HashTable); 4732 } 4733 4734 // Print histogram for the .gnu.hash section. 4735 if (this->GnuHashTable) { 4736 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4737 this->reportUniqueWarning(std::move(E)); 4738 else 4739 printGnuHashHistogram(*this->GnuHashTable); 4740 } 4741 } 4742 4743 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 4744 OS << "GNUStyle::printCGProfile not implemented\n"; 4745 } 4746 4747 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() { 4748 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 4749 } 4750 4751 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 4752 std::vector<uint64_t> Ret; 4753 const uint8_t *Cur = Data.begin(); 4754 const uint8_t *End = Data.end(); 4755 while (Cur != End) { 4756 unsigned Size; 4757 const char *Err; 4758 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 4759 if (Err) 4760 return createError(Err); 4761 Cur += Size; 4762 } 4763 return Ret; 4764 } 4765 4766 template <class ELFT> 4767 static Expected<std::vector<uint64_t>> 4768 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 4769 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 4770 if (!ContentsOrErr) 4771 return ContentsOrErr.takeError(); 4772 4773 if (Expected<std::vector<uint64_t>> SymsOrErr = 4774 toULEB128Array(*ContentsOrErr)) 4775 return *SymsOrErr; 4776 else 4777 return createError("unable to decode " + describe(Obj, Sec) + ": " + 4778 toString(SymsOrErr.takeError())); 4779 } 4780 4781 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 4782 if (!this->DotAddrsigSec) 4783 return; 4784 4785 Expected<std::vector<uint64_t>> SymsOrErr = 4786 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 4787 if (!SymsOrErr) { 4788 this->reportUniqueWarning(SymsOrErr.takeError()); 4789 return; 4790 } 4791 4792 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 4793 OS << "\nAddress-significant symbols section '" << Name << "'" 4794 << " contains " << SymsOrErr->size() << " entries:\n"; 4795 OS << " Num: Name\n"; 4796 4797 Field Fields[2] = {0, 8}; 4798 size_t SymIndex = 0; 4799 for (uint64_t Sym : *SymsOrErr) { 4800 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 4801 Fields[1].Str = this->getStaticSymbolName(Sym); 4802 for (const Field &Entry : Fields) 4803 printField(Entry); 4804 OS << "\n"; 4805 } 4806 } 4807 4808 template <typename ELFT> 4809 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 4810 ArrayRef<uint8_t> Data) { 4811 std::string str; 4812 raw_string_ostream OS(str); 4813 uint32_t PrData; 4814 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 4815 if (PrData & Flag) { 4816 PrData &= ~Flag; 4817 OS << Name; 4818 if (PrData) 4819 OS << ", "; 4820 } 4821 }; 4822 4823 switch (Type) { 4824 default: 4825 OS << format("<application-specific type 0x%x>", Type); 4826 return OS.str(); 4827 case GNU_PROPERTY_STACK_SIZE: { 4828 OS << "stack size: "; 4829 if (DataSize == sizeof(typename ELFT::uint)) 4830 OS << formatv("{0:x}", 4831 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 4832 else 4833 OS << format("<corrupt length: 0x%x>", DataSize); 4834 return OS.str(); 4835 } 4836 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 4837 OS << "no copy on protected"; 4838 if (DataSize) 4839 OS << format(" <corrupt length: 0x%x>", DataSize); 4840 return OS.str(); 4841 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 4842 case GNU_PROPERTY_X86_FEATURE_1_AND: 4843 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 4844 : "x86 feature: "); 4845 if (DataSize != 4) { 4846 OS << format("<corrupt length: 0x%x>", DataSize); 4847 return OS.str(); 4848 } 4849 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4850 if (PrData == 0) { 4851 OS << "<None>"; 4852 return OS.str(); 4853 } 4854 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 4855 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 4856 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 4857 } else { 4858 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 4859 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 4860 } 4861 if (PrData) 4862 OS << format("<unknown flags: 0x%x>", PrData); 4863 return OS.str(); 4864 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 4865 case GNU_PROPERTY_X86_FEATURE_2_USED: 4866 OS << "x86 feature " 4867 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 4868 if (DataSize != 4) { 4869 OS << format("<corrupt length: 0x%x>", DataSize); 4870 return OS.str(); 4871 } 4872 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4873 if (PrData == 0) { 4874 OS << "<None>"; 4875 return OS.str(); 4876 } 4877 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 4878 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 4879 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 4880 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 4881 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 4882 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 4883 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 4884 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 4885 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 4886 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 4887 if (PrData) 4888 OS << format("<unknown flags: 0x%x>", PrData); 4889 return OS.str(); 4890 case GNU_PROPERTY_X86_ISA_1_NEEDED: 4891 case GNU_PROPERTY_X86_ISA_1_USED: 4892 OS << "x86 ISA " 4893 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 4894 if (DataSize != 4) { 4895 OS << format("<corrupt length: 0x%x>", DataSize); 4896 return OS.str(); 4897 } 4898 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4899 if (PrData == 0) { 4900 OS << "<None>"; 4901 return OS.str(); 4902 } 4903 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 4904 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 4905 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 4906 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 4907 if (PrData) 4908 OS << format("<unknown flags: 0x%x>", PrData); 4909 return OS.str(); 4910 } 4911 } 4912 4913 template <typename ELFT> 4914 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 4915 using Elf_Word = typename ELFT::Word; 4916 4917 SmallVector<std::string, 4> Properties; 4918 while (Arr.size() >= 8) { 4919 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 4920 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 4921 Arr = Arr.drop_front(8); 4922 4923 // Take padding size into account if present. 4924 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 4925 std::string str; 4926 raw_string_ostream OS(str); 4927 if (Arr.size() < PaddedSize) { 4928 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 4929 Properties.push_back(OS.str()); 4930 break; 4931 } 4932 Properties.push_back( 4933 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 4934 Arr = Arr.drop_front(PaddedSize); 4935 } 4936 4937 if (!Arr.empty()) 4938 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 4939 4940 return Properties; 4941 } 4942 4943 struct GNUAbiTag { 4944 std::string OSName; 4945 std::string ABI; 4946 bool IsValid; 4947 }; 4948 4949 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 4950 typedef typename ELFT::Word Elf_Word; 4951 4952 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 4953 reinterpret_cast<const Elf_Word *>(Desc.end())); 4954 4955 if (Words.size() < 4) 4956 return {"", "", /*IsValid=*/false}; 4957 4958 static const char *OSNames[] = { 4959 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 4960 }; 4961 StringRef OSName = "Unknown"; 4962 if (Words[0] < array_lengthof(OSNames)) 4963 OSName = OSNames[Words[0]]; 4964 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 4965 std::string str; 4966 raw_string_ostream ABI(str); 4967 ABI << Major << "." << Minor << "." << Patch; 4968 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 4969 } 4970 4971 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 4972 std::string str; 4973 raw_string_ostream OS(str); 4974 for (uint8_t B : Desc) 4975 OS << format_hex_no_prefix(B, 2); 4976 return OS.str(); 4977 } 4978 4979 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 4980 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 4981 } 4982 4983 template <typename ELFT> 4984 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 4985 ArrayRef<uint8_t> Desc) { 4986 // Return true if we were able to pretty-print the note, false otherwise. 4987 switch (NoteType) { 4988 default: 4989 return false; 4990 case ELF::NT_GNU_ABI_TAG: { 4991 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 4992 if (!AbiTag.IsValid) 4993 OS << " <corrupt GNU_ABI_TAG>"; 4994 else 4995 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 4996 break; 4997 } 4998 case ELF::NT_GNU_BUILD_ID: { 4999 OS << " Build ID: " << getGNUBuildId(Desc); 5000 break; 5001 } 5002 case ELF::NT_GNU_GOLD_VERSION: 5003 OS << " Version: " << getDescAsStringRef(Desc); 5004 break; 5005 case ELF::NT_GNU_PROPERTY_TYPE_0: 5006 OS << " Properties:"; 5007 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5008 OS << " " << Property << "\n"; 5009 break; 5010 } 5011 OS << '\n'; 5012 return true; 5013 } 5014 5015 template <typename ELFT> 5016 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5017 ArrayRef<uint8_t> Desc) { 5018 switch (NoteType) { 5019 default: 5020 return false; 5021 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5022 OS << " Version: " << getDescAsStringRef(Desc); 5023 break; 5024 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5025 OS << " Producer: " << getDescAsStringRef(Desc); 5026 break; 5027 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5028 OS << " Producer version: " << getDescAsStringRef(Desc); 5029 break; 5030 } 5031 OS << '\n'; 5032 return true; 5033 } 5034 5035 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5036 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5037 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5038 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5039 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5040 {"LA48", NT_FREEBSD_FCTL_LA48}, 5041 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5042 }; 5043 5044 struct FreeBSDNote { 5045 std::string Type; 5046 std::string Value; 5047 }; 5048 5049 template <typename ELFT> 5050 static Optional<FreeBSDNote> 5051 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5052 if (IsCore) 5053 return None; // No pretty-printing yet. 5054 switch (NoteType) { 5055 case ELF::NT_FREEBSD_ABI_TAG: 5056 if (Desc.size() != 4) 5057 return None; 5058 return FreeBSDNote{ 5059 "ABI tag", 5060 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))}; 5061 case ELF::NT_FREEBSD_ARCH_TAG: 5062 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5063 case ELF::NT_FREEBSD_FEATURE_CTL: { 5064 if (Desc.size() != 4) 5065 return None; 5066 unsigned Value = 5067 support::endian::read32<ELFT::TargetEndianness>(Desc.data()); 5068 std::string FlagsStr; 5069 raw_string_ostream OS(FlagsStr); 5070 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS); 5071 if (OS.str().empty()) 5072 OS << "0x" << utohexstr(Value); 5073 else 5074 OS << "(0x" << utohexstr(Value) << ")"; 5075 return FreeBSDNote{"Feature flags", OS.str()}; 5076 } 5077 default: 5078 return None; 5079 } 5080 } 5081 5082 struct AMDNote { 5083 std::string Type; 5084 std::string Value; 5085 }; 5086 5087 template <typename ELFT> 5088 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5089 switch (NoteType) { 5090 default: 5091 return {"", ""}; 5092 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5093 struct CodeObjectVersion { 5094 uint32_t MajorVersion; 5095 uint32_t MinorVersion; 5096 }; 5097 if (Desc.size() != sizeof(CodeObjectVersion)) 5098 return {"AMD HSA Code Object Version", 5099 "Invalid AMD HSA Code Object Version"}; 5100 std::string VersionString; 5101 raw_string_ostream StrOS(VersionString); 5102 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5103 StrOS << "[Major: " << Version->MajorVersion 5104 << ", Minor: " << Version->MinorVersion << "]"; 5105 return {"AMD HSA Code Object Version", VersionString}; 5106 } 5107 case ELF::NT_AMD_HSA_HSAIL: { 5108 struct HSAILProperties { 5109 uint32_t HSAILMajorVersion; 5110 uint32_t HSAILMinorVersion; 5111 uint8_t Profile; 5112 uint8_t MachineModel; 5113 uint8_t DefaultFloatRound; 5114 }; 5115 if (Desc.size() != sizeof(HSAILProperties)) 5116 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5117 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5118 std::string HSAILPropetiesString; 5119 raw_string_ostream StrOS(HSAILPropetiesString); 5120 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5121 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5122 << ", Profile: " << uint32_t(Properties->Profile) 5123 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5124 << ", Default Float Round: " 5125 << uint32_t(Properties->DefaultFloatRound) << "]"; 5126 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5127 } 5128 case ELF::NT_AMD_HSA_ISA_VERSION: { 5129 struct IsaVersion { 5130 uint16_t VendorNameSize; 5131 uint16_t ArchitectureNameSize; 5132 uint32_t Major; 5133 uint32_t Minor; 5134 uint32_t Stepping; 5135 }; 5136 if (Desc.size() < sizeof(IsaVersion)) 5137 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5138 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5139 if (Desc.size() < sizeof(IsaVersion) + 5140 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5141 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5142 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5143 std::string IsaString; 5144 raw_string_ostream StrOS(IsaString); 5145 StrOS << "[Vendor: " 5146 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5147 << ", Architecture: " 5148 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5149 Isa->ArchitectureNameSize - 1) 5150 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5151 << ", Stepping: " << Isa->Stepping << "]"; 5152 return {"AMD HSA ISA Version", IsaString}; 5153 } 5154 case ELF::NT_AMD_HSA_METADATA: { 5155 if (Desc.size() == 0) 5156 return {"AMD HSA Metadata", ""}; 5157 return { 5158 "AMD HSA Metadata", 5159 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5160 } 5161 case ELF::NT_AMD_HSA_ISA_NAME: { 5162 if (Desc.size() == 0) 5163 return {"AMD HSA ISA Name", ""}; 5164 return { 5165 "AMD HSA ISA Name", 5166 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5167 } 5168 case ELF::NT_AMD_PAL_METADATA: { 5169 struct PALMetadata { 5170 uint32_t Key; 5171 uint32_t Value; 5172 }; 5173 if (Desc.size() % sizeof(PALMetadata) != 0) 5174 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5175 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5176 std::string MetadataString; 5177 raw_string_ostream StrOS(MetadataString); 5178 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5179 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5180 } 5181 return {"AMD PAL Metadata", MetadataString}; 5182 } 5183 } 5184 } 5185 5186 struct AMDGPUNote { 5187 std::string Type; 5188 std::string Value; 5189 }; 5190 5191 template <typename ELFT> 5192 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5193 switch (NoteType) { 5194 default: 5195 return {"", ""}; 5196 case ELF::NT_AMDGPU_METADATA: { 5197 StringRef MsgPackString = 5198 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5199 msgpack::Document MsgPackDoc; 5200 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5201 return {"", ""}; 5202 5203 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5204 std::string MetadataString; 5205 if (!Verifier.verify(MsgPackDoc.getRoot())) 5206 MetadataString = "Invalid AMDGPU Metadata\n"; 5207 5208 raw_string_ostream StrOS(MetadataString); 5209 if (MsgPackDoc.getRoot().isScalar()) { 5210 // TODO: passing a scalar root to toYAML() asserts: 5211 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5212 // "plain scalar documents are not supported") 5213 // To avoid this crash we print the raw data instead. 5214 return {"", ""}; 5215 } 5216 MsgPackDoc.toYAML(StrOS); 5217 return {"AMDGPU Metadata", StrOS.str()}; 5218 } 5219 } 5220 } 5221 5222 struct CoreFileMapping { 5223 uint64_t Start, End, Offset; 5224 StringRef Filename; 5225 }; 5226 5227 struct CoreNote { 5228 uint64_t PageSize; 5229 std::vector<CoreFileMapping> Mappings; 5230 }; 5231 5232 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5233 // Expected format of the NT_FILE note description: 5234 // 1. # of file mappings (call it N) 5235 // 2. Page size 5236 // 3. N (start, end, offset) triples 5237 // 4. N packed filenames (null delimited) 5238 // Each field is an Elf_Addr, except for filenames which are char* strings. 5239 5240 CoreNote Ret; 5241 const int Bytes = Desc.getAddressSize(); 5242 5243 if (!Desc.isValidOffsetForAddress(2)) 5244 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5245 " is too short, expected at least 0x" + 5246 Twine::utohexstr(Bytes * 2)); 5247 if (Desc.getData().back() != 0) 5248 return createError("the note is not NUL terminated"); 5249 5250 uint64_t DescOffset = 0; 5251 uint64_t FileCount = Desc.getAddress(&DescOffset); 5252 Ret.PageSize = Desc.getAddress(&DescOffset); 5253 5254 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5255 return createError("unable to read file mappings (found " + 5256 Twine(FileCount) + "): the note of size 0x" + 5257 Twine::utohexstr(Desc.size()) + " is too short"); 5258 5259 uint64_t FilenamesOffset = 0; 5260 DataExtractor Filenames( 5261 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5262 Desc.isLittleEndian(), Desc.getAddressSize()); 5263 5264 Ret.Mappings.resize(FileCount); 5265 size_t I = 0; 5266 for (CoreFileMapping &Mapping : Ret.Mappings) { 5267 ++I; 5268 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5269 return createError( 5270 "unable to read the file name for the mapping with index " + 5271 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5272 " is truncated"); 5273 Mapping.Start = Desc.getAddress(&DescOffset); 5274 Mapping.End = Desc.getAddress(&DescOffset); 5275 Mapping.Offset = Desc.getAddress(&DescOffset); 5276 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5277 } 5278 5279 return Ret; 5280 } 5281 5282 template <typename ELFT> 5283 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5284 // Length of "0x<address>" string. 5285 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5286 5287 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5288 OS << " " << right_justify("Start", FieldWidth) << " " 5289 << right_justify("End", FieldWidth) << " " 5290 << right_justify("Page Offset", FieldWidth) << '\n'; 5291 for (const CoreFileMapping &Mapping : Note.Mappings) { 5292 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5293 << format_hex(Mapping.End, FieldWidth) << " " 5294 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5295 << Mapping.Filename << '\n'; 5296 } 5297 } 5298 5299 const NoteType GenericNoteTypes[] = { 5300 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5301 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5302 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5303 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5304 }; 5305 5306 const NoteType GNUNoteTypes[] = { 5307 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5308 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5309 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5310 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5311 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5312 }; 5313 5314 const NoteType FreeBSDCoreNoteTypes[] = { 5315 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5316 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5317 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5318 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5319 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5320 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5321 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5322 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5323 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5324 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5325 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5326 }; 5327 5328 const NoteType FreeBSDNoteTypes[] = { 5329 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5330 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5331 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5332 {ELF::NT_FREEBSD_FEATURE_CTL, 5333 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5334 }; 5335 5336 const NoteType OpenBSDCoreNoteTypes[] = { 5337 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5338 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5339 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5340 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5341 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5342 }; 5343 5344 const NoteType AMDNoteTypes[] = { 5345 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5346 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5347 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5348 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5349 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5350 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5351 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5352 }; 5353 5354 const NoteType AMDGPUNoteTypes[] = { 5355 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5356 }; 5357 5358 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5359 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5360 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5361 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5362 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5363 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5364 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5365 }; 5366 5367 const NoteType CoreNoteTypes[] = { 5368 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5369 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5370 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5371 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5372 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5373 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5374 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5375 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5376 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5377 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5378 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5379 5380 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5381 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5382 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5383 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5384 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5385 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5386 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5387 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5388 {ELF::NT_PPC_TM_CFPR, 5389 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5390 {ELF::NT_PPC_TM_CVMX, 5391 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5392 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5393 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5394 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5395 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5396 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5397 5398 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5399 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5400 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5401 5402 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5403 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5404 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5405 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5406 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5407 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5408 {ELF::NT_S390_LAST_BREAK, 5409 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5410 {ELF::NT_S390_SYSTEM_CALL, 5411 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5412 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5413 {ELF::NT_S390_VXRS_LOW, 5414 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5415 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5416 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5417 {ELF::NT_S390_GS_BC, 5418 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5419 5420 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5421 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5422 {ELF::NT_ARM_HW_BREAK, 5423 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5424 {ELF::NT_ARM_HW_WATCH, 5425 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5426 5427 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5428 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5429 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5430 }; 5431 5432 template <class ELFT> 5433 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 5434 uint32_t Type = Note.getType(); 5435 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5436 for (const NoteType &N : V) 5437 if (N.ID == Type) 5438 return N.Name; 5439 return ""; 5440 }; 5441 5442 StringRef Name = Note.getName(); 5443 if (Name == "GNU") 5444 return FindNote(GNUNoteTypes); 5445 if (Name == "FreeBSD") { 5446 if (ELFType == ELF::ET_CORE) { 5447 // FreeBSD also places the generic core notes in the FreeBSD namespace. 5448 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 5449 if (!Result.empty()) 5450 return Result; 5451 return FindNote(CoreNoteTypes); 5452 } else { 5453 return FindNote(FreeBSDNoteTypes); 5454 } 5455 } 5456 if (Name.startswith("OpenBSD") && ELFType == ELF::ET_CORE) { 5457 // OpenBSD also places the generic core notes in the OpenBSD namespace. 5458 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 5459 if (!Result.empty()) 5460 return Result; 5461 return FindNote(CoreNoteTypes); 5462 } 5463 if (Name == "AMD") 5464 return FindNote(AMDNoteTypes); 5465 if (Name == "AMDGPU") 5466 return FindNote(AMDGPUNoteTypes); 5467 if (Name == "LLVMOMPOFFLOAD") 5468 return FindNote(LLVMOMPOFFLOADNoteTypes); 5469 5470 if (ELFType == ELF::ET_CORE) 5471 return FindNote(CoreNoteTypes); 5472 return FindNote(GenericNoteTypes); 5473 } 5474 5475 template <class ELFT> 5476 static void printNotesHelper( 5477 const ELFDumper<ELFT> &Dumper, 5478 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off, 5479 typename ELFT::Addr)> 5480 StartNotesFn, 5481 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 5482 llvm::function_ref<void()> FinishNotesFn) { 5483 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5484 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 5485 5486 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5487 if (!IsCoreFile && !Sections.empty()) { 5488 for (const typename ELFT::Shdr &S : Sections) { 5489 if (S.sh_type != SHT_NOTE) 5490 continue; 5491 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset, 5492 S.sh_size); 5493 Error Err = Error::success(); 5494 size_t I = 0; 5495 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5496 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5497 Dumper.reportUniqueWarning( 5498 "unable to read note with index " + Twine(I) + " from the " + 5499 describe(Obj, S) + ": " + toString(std::move(E))); 5500 ++I; 5501 } 5502 if (Err) 5503 Dumper.reportUniqueWarning("unable to read notes from the " + 5504 describe(Obj, S) + ": " + 5505 toString(std::move(Err))); 5506 FinishNotesFn(); 5507 } 5508 return; 5509 } 5510 5511 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5512 if (!PhdrsOrErr) { 5513 Dumper.reportUniqueWarning( 5514 "unable to read program headers to locate the PT_NOTE segment: " + 5515 toString(PhdrsOrErr.takeError())); 5516 return; 5517 } 5518 5519 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5520 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5521 if (P.p_type != PT_NOTE) 5522 continue; 5523 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz); 5524 Error Err = Error::success(); 5525 size_t Index = 0; 5526 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5527 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5528 Dumper.reportUniqueWarning("unable to read note with index " + 5529 Twine(Index) + 5530 " from the PT_NOTE segment with index " + 5531 Twine(I) + ": " + toString(std::move(E))); 5532 ++Index; 5533 } 5534 if (Err) 5535 Dumper.reportUniqueWarning( 5536 "unable to read notes from the PT_NOTE segment with index " + 5537 Twine(I) + ": " + toString(std::move(Err))); 5538 FinishNotesFn(); 5539 } 5540 } 5541 5542 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 5543 bool IsFirstHeader = true; 5544 auto PrintHeader = [&](Optional<StringRef> SecName, 5545 const typename ELFT::Off Offset, 5546 const typename ELFT::Addr Size) { 5547 // Print a newline between notes sections to match GNU readelf. 5548 if (!IsFirstHeader) { 5549 OS << '\n'; 5550 } else { 5551 IsFirstHeader = false; 5552 } 5553 5554 OS << "Displaying notes found "; 5555 5556 if (SecName) 5557 OS << "in: " << *SecName << "\n"; 5558 else 5559 OS << "at file offset " << format_hex(Offset, 10) << " with length " 5560 << format_hex(Size, 10) << ":\n"; 5561 5562 OS << " Owner Data size \tDescription\n"; 5563 }; 5564 5565 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 5566 StringRef Name = Note.getName(); 5567 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 5568 Elf_Word Type = Note.getType(); 5569 5570 // Print the note owner/type. 5571 OS << " " << left_justify(Name, 20) << ' ' 5572 << format_hex(Descriptor.size(), 10) << '\t'; 5573 5574 StringRef NoteType = 5575 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 5576 if (!NoteType.empty()) 5577 OS << NoteType << '\n'; 5578 else 5579 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 5580 5581 // Print the description, or fallback to printing raw bytes for unknown 5582 // owners/if we fail to pretty-print the contents. 5583 if (Name == "GNU") { 5584 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 5585 return Error::success(); 5586 } else if (Name == "FreeBSD") { 5587 if (Optional<FreeBSDNote> N = 5588 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 5589 OS << " " << N->Type << ": " << N->Value << '\n'; 5590 return Error::success(); 5591 } 5592 } else if (Name == "AMD") { 5593 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 5594 if (!N.Type.empty()) { 5595 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5596 return Error::success(); 5597 } 5598 } else if (Name == "AMDGPU") { 5599 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 5600 if (!N.Type.empty()) { 5601 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5602 return Error::success(); 5603 } 5604 } else if (Name == "LLVMOMPOFFLOAD") { 5605 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 5606 return Error::success(); 5607 } else if (Name == "CORE") { 5608 if (Type == ELF::NT_FILE) { 5609 DataExtractor DescExtractor(Descriptor, 5610 ELFT::TargetEndianness == support::little, 5611 sizeof(Elf_Addr)); 5612 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 5613 printCoreNote<ELFT>(OS, *NoteOrErr); 5614 return Error::success(); 5615 } else { 5616 return NoteOrErr.takeError(); 5617 } 5618 } 5619 } 5620 if (!Descriptor.empty()) { 5621 OS << " description data:"; 5622 for (uint8_t B : Descriptor) 5623 OS << " " << format("%02x", B); 5624 OS << '\n'; 5625 } 5626 return Error::success(); 5627 }; 5628 5629 printNotesHelper(*this, PrintHeader, ProcessNote, []() {}); 5630 } 5631 5632 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 5633 OS << "printELFLinkerOptions not implemented!\n"; 5634 } 5635 5636 template <class ELFT> 5637 void ELFDumper<ELFT>::printDependentLibsHelper( 5638 function_ref<void(const Elf_Shdr &)> OnSectionStart, 5639 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 5640 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 5641 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 5642 Twine(SecNdx) + " is broken: " + Msg); 5643 }; 5644 5645 unsigned I = -1; 5646 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 5647 ++I; 5648 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 5649 continue; 5650 5651 OnSectionStart(Shdr); 5652 5653 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 5654 if (!ContentsOrErr) { 5655 Warn(I, toString(ContentsOrErr.takeError())); 5656 continue; 5657 } 5658 5659 ArrayRef<uint8_t> Contents = *ContentsOrErr; 5660 if (!Contents.empty() && Contents.back() != 0) { 5661 Warn(I, "the content is not null-terminated"); 5662 continue; 5663 } 5664 5665 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 5666 StringRef Lib((const char *)I); 5667 OnLibEntry(Lib, I - Contents.begin()); 5668 I += Lib.size() + 1; 5669 } 5670 } 5671 } 5672 5673 template <class ELFT> 5674 void ELFDumper<ELFT>::forEachRelocationDo( 5675 const Elf_Shdr &Sec, bool RawRelr, 5676 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 5677 const Elf_Shdr &, const Elf_Shdr *)> 5678 RelRelaFn, 5679 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 5680 auto Warn = [&](Error &&E, 5681 const Twine &Prefix = "unable to read relocations from") { 5682 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 5683 toString(std::move(E))); 5684 }; 5685 5686 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table. 5687 // For them we should not treat the value of the sh_link field as an index of 5688 // a symbol table. 5689 const Elf_Shdr *SymTab; 5690 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) { 5691 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 5692 if (!SymTabOrErr) { 5693 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 5694 return; 5695 } 5696 SymTab = *SymTabOrErr; 5697 } 5698 5699 unsigned RelNdx = 0; 5700 const bool IsMips64EL = this->Obj.isMips64EL(); 5701 switch (Sec.sh_type) { 5702 case ELF::SHT_REL: 5703 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 5704 for (const Elf_Rel &R : *RangeOrErr) 5705 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5706 } else { 5707 Warn(RangeOrErr.takeError()); 5708 } 5709 break; 5710 case ELF::SHT_RELA: 5711 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 5712 for (const Elf_Rela &R : *RangeOrErr) 5713 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5714 } else { 5715 Warn(RangeOrErr.takeError()); 5716 } 5717 break; 5718 case ELF::SHT_RELR: 5719 case ELF::SHT_ANDROID_RELR: { 5720 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 5721 if (!RangeOrErr) { 5722 Warn(RangeOrErr.takeError()); 5723 break; 5724 } 5725 if (RawRelr) { 5726 for (const Elf_Relr &R : *RangeOrErr) 5727 RelrFn(R); 5728 break; 5729 } 5730 5731 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 5732 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 5733 /*SymTab=*/nullptr); 5734 break; 5735 } 5736 case ELF::SHT_ANDROID_REL: 5737 case ELF::SHT_ANDROID_RELA: 5738 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 5739 for (const Elf_Rela &R : *RelasOrErr) 5740 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5741 } else { 5742 Warn(RelasOrErr.takeError()); 5743 } 5744 break; 5745 } 5746 } 5747 5748 template <class ELFT> 5749 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 5750 StringRef Name = "<?>"; 5751 if (Expected<StringRef> SecNameOrErr = 5752 Obj.getSectionName(Sec, this->WarningHandler)) 5753 Name = *SecNameOrErr; 5754 else 5755 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 5756 ": " + toString(SecNameOrErr.takeError())); 5757 return Name; 5758 } 5759 5760 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 5761 bool SectionStarted = false; 5762 struct NameOffset { 5763 StringRef Name; 5764 uint64_t Offset; 5765 }; 5766 std::vector<NameOffset> SecEntries; 5767 NameOffset Current; 5768 auto PrintSection = [&]() { 5769 OS << "Dependent libraries section " << Current.Name << " at offset " 5770 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 5771 << " entries:\n"; 5772 for (NameOffset Entry : SecEntries) 5773 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 5774 << "\n"; 5775 OS << "\n"; 5776 SecEntries.clear(); 5777 }; 5778 5779 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 5780 if (SectionStarted) 5781 PrintSection(); 5782 SectionStarted = true; 5783 Current.Offset = Shdr.sh_offset; 5784 Current.Name = this->getPrintableSectionName(Shdr); 5785 }; 5786 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 5787 SecEntries.push_back(NameOffset{Lib, Offset}); 5788 }; 5789 5790 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 5791 if (SectionStarted) 5792 PrintSection(); 5793 } 5794 5795 template <class ELFT> 5796 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 5797 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) { 5798 SmallVector<uint32_t> SymbolIndexes; 5799 if (!this->AddressToIndexMap.hasValue()) { 5800 // Populate the address to index map upon the first invocation of this 5801 // function. 5802 this->AddressToIndexMap.emplace(); 5803 if (this->DotSymtabSec) { 5804 if (Expected<Elf_Sym_Range> SymsOrError = 5805 Obj.symbols(this->DotSymtabSec)) { 5806 uint32_t Index = (uint32_t)-1; 5807 for (const Elf_Sym &Sym : *SymsOrError) { 5808 ++Index; 5809 5810 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 5811 continue; 5812 5813 Expected<uint64_t> SymAddrOrErr = 5814 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 5815 if (!SymAddrOrErr) { 5816 std::string Name = this->getStaticSymbolName(Index); 5817 reportUniqueWarning("unable to get address of symbol '" + Name + 5818 "': " + toString(SymAddrOrErr.takeError())); 5819 return SymbolIndexes; 5820 } 5821 5822 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 5823 } 5824 } else { 5825 reportUniqueWarning("unable to read the symbol table: " + 5826 toString(SymsOrError.takeError())); 5827 } 5828 } 5829 } 5830 5831 auto Symbols = this->AddressToIndexMap->find(SymValue); 5832 if (Symbols == this->AddressToIndexMap->end()) 5833 return SymbolIndexes; 5834 5835 for (uint32_t Index : Symbols->second) { 5836 // Check if the symbol is in the right section. FunctionSec == None 5837 // means "any section". 5838 if (FunctionSec) { 5839 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 5840 if (Expected<const Elf_Shdr *> SecOrErr = 5841 Obj.getSection(Sym, this->DotSymtabSec, 5842 this->getShndxTable(this->DotSymtabSec))) { 5843 if (*FunctionSec != *SecOrErr) 5844 continue; 5845 } else { 5846 std::string Name = this->getStaticSymbolName(Index); 5847 // Note: it is impossible to trigger this error currently, it is 5848 // untested. 5849 reportUniqueWarning("unable to get section of symbol '" + Name + 5850 "': " + toString(SecOrErr.takeError())); 5851 return SymbolIndexes; 5852 } 5853 } 5854 5855 SymbolIndexes.push_back(Index); 5856 } 5857 5858 return SymbolIndexes; 5859 } 5860 5861 template <class ELFT> 5862 bool ELFDumper<ELFT>::printFunctionStackSize( 5863 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec, 5864 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 5865 SmallVector<uint32_t> FuncSymIndexes = 5866 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 5867 if (FuncSymIndexes.empty()) 5868 reportUniqueWarning( 5869 "could not identify function symbol for stack size entry in " + 5870 describe(StackSizeSec)); 5871 5872 // Extract the size. The expectation is that Offset is pointing to the right 5873 // place, i.e. past the function address. 5874 Error Err = Error::success(); 5875 uint64_t StackSize = Data.getULEB128(Offset, &Err); 5876 if (Err) { 5877 reportUniqueWarning("could not extract a valid stack size from " + 5878 describe(StackSizeSec) + ": " + 5879 toString(std::move(Err))); 5880 return false; 5881 } 5882 5883 if (FuncSymIndexes.empty()) { 5884 printStackSizeEntry(StackSize, {"?"}); 5885 } else { 5886 SmallVector<std::string> FuncSymNames; 5887 for (uint32_t Index : FuncSymIndexes) 5888 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 5889 printStackSizeEntry(StackSize, FuncSymNames); 5890 } 5891 5892 return true; 5893 } 5894 5895 template <class ELFT> 5896 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 5897 ArrayRef<std::string> FuncNames) { 5898 OS.PadToColumn(2); 5899 OS << format_decimal(Size, 11); 5900 OS.PadToColumn(18); 5901 5902 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 5903 } 5904 5905 template <class ELFT> 5906 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 5907 const Elf_Shdr &RelocSec, unsigned Ndx, 5908 const Elf_Shdr *SymTab, 5909 const Elf_Shdr *FunctionSec, 5910 const Elf_Shdr &StackSizeSec, 5911 const RelocationResolver &Resolver, 5912 DataExtractor Data) { 5913 // This function ignores potentially erroneous input, unless it is directly 5914 // related to stack size reporting. 5915 const Elf_Sym *Sym = nullptr; 5916 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 5917 if (!TargetOrErr) 5918 reportUniqueWarning("unable to get the target of relocation with index " + 5919 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 5920 toString(TargetOrErr.takeError())); 5921 else 5922 Sym = TargetOrErr->Sym; 5923 5924 uint64_t RelocSymValue = 0; 5925 if (Sym) { 5926 Expected<const Elf_Shdr *> SectionOrErr = 5927 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 5928 if (!SectionOrErr) { 5929 reportUniqueWarning( 5930 "cannot identify the section for relocation symbol '" + 5931 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 5932 } else if (*SectionOrErr != FunctionSec) { 5933 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 5934 "' is not in the expected section"); 5935 // Pretend that the symbol is in the correct section and report its 5936 // stack size anyway. 5937 FunctionSec = *SectionOrErr; 5938 } 5939 5940 RelocSymValue = Sym->st_value; 5941 } 5942 5943 uint64_t Offset = R.Offset; 5944 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 5945 reportUniqueWarning("found invalid relocation offset (0x" + 5946 Twine::utohexstr(Offset) + ") into " + 5947 describe(StackSizeSec) + 5948 " while trying to extract a stack size entry"); 5949 return; 5950 } 5951 5952 uint64_t SymValue = 5953 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset), 5954 R.Addend.getValueOr(0)); 5955 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 5956 &Offset); 5957 } 5958 5959 template <class ELFT> 5960 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 5961 std::function<void()> PrintHeader) { 5962 // This function ignores potentially erroneous input, unless it is directly 5963 // related to stack size reporting. 5964 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 5965 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 5966 continue; 5967 PrintHeader(); 5968 ArrayRef<uint8_t> Contents = 5969 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 5970 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 5971 uint64_t Offset = 0; 5972 while (Offset < Contents.size()) { 5973 // The function address is followed by a ULEB representing the stack 5974 // size. Check for an extra byte before we try to process the entry. 5975 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 5976 reportUniqueWarning( 5977 describe(Sec) + 5978 " ended while trying to extract a stack size entry"); 5979 break; 5980 } 5981 uint64_t SymValue = Data.getAddress(&Offset); 5982 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data, 5983 &Offset)) 5984 break; 5985 } 5986 } 5987 } 5988 5989 template <class ELFT> 5990 void ELFDumper<ELFT>::getSectionAndRelocations( 5991 std::function<bool(const Elf_Shdr &)> IsMatch, 5992 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) { 5993 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 5994 if (IsMatch(Sec)) 5995 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr)) 5996 .second) 5997 continue; 5998 5999 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL) 6000 continue; 6001 6002 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info); 6003 if (!RelSecOrErr) { 6004 reportUniqueWarning(describe(Sec) + 6005 ": failed to get a relocated section: " + 6006 toString(RelSecOrErr.takeError())); 6007 continue; 6008 } 6009 const Elf_Shdr *ContentsSec = *RelSecOrErr; 6010 if (IsMatch(*ContentsSec)) 6011 SecToRelocMap[ContentsSec] = &Sec; 6012 } 6013 } 6014 6015 template <class ELFT> 6016 void ELFDumper<ELFT>::printRelocatableStackSizes( 6017 std::function<void()> PrintHeader) { 6018 // Build a map between stack size sections and their corresponding relocation 6019 // sections. 6020 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap; 6021 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6022 StringRef SectionName; 6023 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6024 SectionName = *NameOrErr; 6025 else 6026 consumeError(NameOrErr.takeError()); 6027 6028 return SectionName == ".stack_sizes"; 6029 }; 6030 getSectionAndRelocations(IsMatch, StackSizeRelocMap); 6031 6032 for (const auto &StackSizeMapEntry : StackSizeRelocMap) { 6033 PrintHeader(); 6034 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6035 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6036 6037 // Warn about stack size sections without a relocation section. 6038 if (!RelocSec) { 6039 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6040 ") does not have a corresponding " 6041 "relocation section"), 6042 FileName); 6043 continue; 6044 } 6045 6046 // A .stack_sizes section header's sh_link field is supposed to point 6047 // to the section that contains the functions whose stack sizes are 6048 // described in it. 6049 const Elf_Shdr *FunctionSec = unwrapOrError( 6050 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6051 6052 SupportsRelocation IsSupportedFn; 6053 RelocationResolver Resolver; 6054 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6055 ArrayRef<uint8_t> Contents = 6056 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6057 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6058 6059 forEachRelocationDo( 6060 *RelocSec, /*RawRelr=*/false, 6061 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 6062 const Elf_Shdr *SymTab) { 6063 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6064 reportUniqueWarning( 6065 describe(*RelocSec) + 6066 " contains an unsupported relocation with index " + Twine(Ndx) + 6067 ": " + Obj.getRelocationTypeName(R.Type)); 6068 return; 6069 } 6070 6071 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6072 *StackSizesELFSec, Resolver, Data); 6073 }, 6074 [](const Elf_Relr &) { 6075 llvm_unreachable("can't get here, because we only support " 6076 "SHT_REL/SHT_RELA sections"); 6077 }); 6078 } 6079 } 6080 6081 template <class ELFT> 6082 void GNUELFDumper<ELFT>::printStackSizes() { 6083 bool HeaderHasBeenPrinted = false; 6084 auto PrintHeader = [&]() { 6085 if (HeaderHasBeenPrinted) 6086 return; 6087 OS << "\nStack Sizes:\n"; 6088 OS.PadToColumn(9); 6089 OS << "Size"; 6090 OS.PadToColumn(18); 6091 OS << "Functions\n"; 6092 HeaderHasBeenPrinted = true; 6093 }; 6094 6095 // For non-relocatable objects, look directly for sections whose name starts 6096 // with .stack_sizes and process the contents. 6097 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6098 this->printRelocatableStackSizes(PrintHeader); 6099 else 6100 this->printNonRelocatableStackSizes(PrintHeader); 6101 } 6102 6103 template <class ELFT> 6104 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6105 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6106 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6107 OS.PadToColumn(2); 6108 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6109 OS.PadToColumn(11 + Bias); 6110 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6111 OS.PadToColumn(22 + Bias); 6112 OS << format_hex_no_prefix(*E, 8 + Bias); 6113 OS.PadToColumn(31 + 2 * Bias); 6114 OS << Purpose << "\n"; 6115 }; 6116 6117 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6118 OS << " Canonical gp value: " 6119 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6120 6121 OS << " Reserved entries:\n"; 6122 if (ELFT::Is64Bits) 6123 OS << " Address Access Initial Purpose\n"; 6124 else 6125 OS << " Address Access Initial Purpose\n"; 6126 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6127 if (Parser.getGotModulePointer()) 6128 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6129 6130 if (!Parser.getLocalEntries().empty()) { 6131 OS << "\n"; 6132 OS << " Local entries:\n"; 6133 if (ELFT::Is64Bits) 6134 OS << " Address Access Initial\n"; 6135 else 6136 OS << " Address Access Initial\n"; 6137 for (auto &E : Parser.getLocalEntries()) 6138 PrintEntry(&E, ""); 6139 } 6140 6141 if (Parser.IsStatic) 6142 return; 6143 6144 if (!Parser.getGlobalEntries().empty()) { 6145 OS << "\n"; 6146 OS << " Global entries:\n"; 6147 if (ELFT::Is64Bits) 6148 OS << " Address Access Initial Sym.Val." 6149 << " Type Ndx Name\n"; 6150 else 6151 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6152 6153 DataRegion<Elf_Word> ShndxTable( 6154 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6155 for (auto &E : Parser.getGlobalEntries()) { 6156 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6157 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6158 std::string SymName = this->getFullSymbolName( 6159 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6160 6161 OS.PadToColumn(2); 6162 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6163 OS.PadToColumn(11 + Bias); 6164 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6165 OS.PadToColumn(22 + Bias); 6166 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6167 OS.PadToColumn(31 + 2 * Bias); 6168 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6169 OS.PadToColumn(40 + 3 * Bias); 6170 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6171 OS.PadToColumn(48 + 3 * Bias); 6172 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6173 ShndxTable); 6174 OS.PadToColumn(52 + 3 * Bias); 6175 OS << SymName << "\n"; 6176 } 6177 } 6178 6179 if (!Parser.getOtherEntries().empty()) 6180 OS << "\n Number of TLS and multi-GOT entries " 6181 << Parser.getOtherEntries().size() << "\n"; 6182 } 6183 6184 template <class ELFT> 6185 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6186 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6187 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6188 OS.PadToColumn(2); 6189 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6190 OS.PadToColumn(11 + Bias); 6191 OS << format_hex_no_prefix(*E, 8 + Bias); 6192 OS.PadToColumn(20 + 2 * Bias); 6193 OS << Purpose << "\n"; 6194 }; 6195 6196 OS << "PLT GOT:\n\n"; 6197 6198 OS << " Reserved entries:\n"; 6199 OS << " Address Initial Purpose\n"; 6200 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6201 if (Parser.getPltModulePointer()) 6202 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6203 6204 if (!Parser.getPltEntries().empty()) { 6205 OS << "\n"; 6206 OS << " Entries:\n"; 6207 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6208 DataRegion<Elf_Word> ShndxTable( 6209 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6210 for (auto &E : Parser.getPltEntries()) { 6211 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6212 const Elf_Sym &FirstSym = *cantFail( 6213 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6214 std::string SymName = this->getFullSymbolName( 6215 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6216 6217 OS.PadToColumn(2); 6218 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6219 OS.PadToColumn(11 + Bias); 6220 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6221 OS.PadToColumn(20 + 2 * Bias); 6222 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6223 OS.PadToColumn(29 + 3 * Bias); 6224 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6225 OS.PadToColumn(37 + 3 * Bias); 6226 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6227 ShndxTable); 6228 OS.PadToColumn(41 + 3 * Bias); 6229 OS << SymName << "\n"; 6230 } 6231 } 6232 } 6233 6234 template <class ELFT> 6235 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6236 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6237 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6238 if (Sec == nullptr) 6239 return nullptr; 6240 6241 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6242 Expected<ArrayRef<uint8_t>> DataOrErr = 6243 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6244 if (!DataOrErr) 6245 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6246 6247 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6248 return createError(ErrPrefix + "it has a wrong size (" + 6249 Twine(DataOrErr->size()) + ")"); 6250 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6251 } 6252 6253 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6254 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6255 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6256 getMipsAbiFlagsSection(*this)) 6257 Flags = *SecOrErr; 6258 else 6259 this->reportUniqueWarning(SecOrErr.takeError()); 6260 if (!Flags) 6261 return; 6262 6263 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6264 OS << "ISA: MIPS" << int(Flags->isa_level); 6265 if (Flags->isa_rev > 1) 6266 OS << "r" << int(Flags->isa_rev); 6267 OS << "\n"; 6268 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 6269 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 6270 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 6271 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) 6272 << "\n"; 6273 OS << "ISA Extension: " 6274 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; 6275 if (Flags->ases == 0) 6276 OS << "ASEs: None\n"; 6277 else 6278 // FIXME: Print each flag on a separate line. 6279 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) 6280 << "\n"; 6281 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 6282 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 6283 OS << "\n"; 6284 } 6285 6286 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 6287 const Elf_Ehdr &E = this->Obj.getHeader(); 6288 { 6289 DictScope D(W, "ElfHeader"); 6290 { 6291 DictScope D(W, "Ident"); 6292 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4)); 6293 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 6294 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 6295 makeArrayRef(ElfDataEncoding)); 6296 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 6297 6298 auto OSABI = makeArrayRef(ElfOSABI); 6299 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 6300 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 6301 switch (E.e_machine) { 6302 case ELF::EM_AMDGPU: 6303 OSABI = makeArrayRef(AMDGPUElfOSABI); 6304 break; 6305 case ELF::EM_ARM: 6306 OSABI = makeArrayRef(ARMElfOSABI); 6307 break; 6308 case ELF::EM_TI_C6000: 6309 OSABI = makeArrayRef(C6000ElfOSABI); 6310 break; 6311 } 6312 } 6313 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 6314 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 6315 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD)); 6316 } 6317 6318 std::string TypeStr; 6319 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 6320 TypeStr = Ent->Name.str(); 6321 } else { 6322 if (E.e_type >= ET_LOPROC) 6323 TypeStr = "Processor Specific"; 6324 else if (E.e_type >= ET_LOOS) 6325 TypeStr = "OS Specific"; 6326 else 6327 TypeStr = "Unknown"; 6328 } 6329 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")"); 6330 6331 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType)); 6332 W.printNumber("Version", E.e_version); 6333 W.printHex("Entry", E.e_entry); 6334 W.printHex("ProgramHeaderOffset", E.e_phoff); 6335 W.printHex("SectionHeaderOffset", E.e_shoff); 6336 if (E.e_machine == EM_MIPS) 6337 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags), 6338 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 6339 unsigned(ELF::EF_MIPS_MACH)); 6340 else if (E.e_machine == EM_AMDGPU) { 6341 switch (E.e_ident[ELF::EI_ABIVERSION]) { 6342 default: 6343 W.printHex("Flags", E.e_flags); 6344 break; 6345 case 0: 6346 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 6347 LLVM_FALLTHROUGH; 6348 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 6349 W.printFlags("Flags", E.e_flags, 6350 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 6351 unsigned(ELF::EF_AMDGPU_MACH)); 6352 break; 6353 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 6354 W.printFlags("Flags", E.e_flags, 6355 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 6356 unsigned(ELF::EF_AMDGPU_MACH), 6357 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 6358 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 6359 break; 6360 } 6361 } else if (E.e_machine == EM_RISCV) 6362 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 6363 else if (E.e_machine == EM_AVR) 6364 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags), 6365 unsigned(ELF::EF_AVR_ARCH_MASK)); 6366 else 6367 W.printFlags("Flags", E.e_flags); 6368 W.printNumber("HeaderSize", E.e_ehsize); 6369 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 6370 W.printNumber("ProgramHeaderCount", E.e_phnum); 6371 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 6372 W.printString("SectionHeaderCount", 6373 getSectionHeadersNumString(this->Obj, this->FileName)); 6374 W.printString("StringTableSectionIndex", 6375 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 6376 } 6377 } 6378 6379 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 6380 DictScope Lists(W, "Groups"); 6381 std::vector<GroupSection> V = this->getGroups(); 6382 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6383 for (const GroupSection &G : V) { 6384 DictScope D(W, "Group"); 6385 W.printNumber("Name", G.Name, G.ShName); 6386 W.printNumber("Index", G.Index); 6387 W.printNumber("Link", G.Link); 6388 W.printNumber("Info", G.Info); 6389 W.printHex("Type", getGroupType(G.Type), G.Type); 6390 W.startLine() << "Signature: " << G.Signature << "\n"; 6391 6392 ListScope L(W, "Section(s) in group"); 6393 for (const GroupMember &GM : G.Members) { 6394 const GroupSection *MainGroup = Map[GM.Index]; 6395 if (MainGroup != &G) 6396 this->reportUniqueWarning( 6397 "section with index " + Twine(GM.Index) + 6398 ", included in the group section with index " + 6399 Twine(MainGroup->Index) + 6400 ", was also found in the group section with index " + 6401 Twine(G.Index)); 6402 W.startLine() << GM.Name << " (" << GM.Index << ")\n"; 6403 } 6404 } 6405 6406 if (V.empty()) 6407 W.startLine() << "There are no group sections in the file.\n"; 6408 } 6409 6410 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 6411 ListScope D(W, "Relocations"); 6412 6413 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6414 if (!isRelocationSec<ELFT>(Sec)) 6415 continue; 6416 6417 StringRef Name = this->getPrintableSectionName(Sec); 6418 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 6419 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n"; 6420 W.indent(); 6421 this->printRelocationsHelper(Sec); 6422 W.unindent(); 6423 W.startLine() << "}\n"; 6424 } 6425 } 6426 6427 template <class ELFT> 6428 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 6429 W.startLine() << W.hex(R) << "\n"; 6430 } 6431 6432 template <class ELFT> 6433 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 6434 const RelSymbol<ELFT> &RelSym) { 6435 StringRef SymbolName = RelSym.Name; 6436 SmallString<32> RelocName; 6437 this->Obj.getRelocationTypeName(R.Type, RelocName); 6438 6439 if (opts::ExpandRelocs) { 6440 DictScope Group(W, "Relocation"); 6441 W.printHex("Offset", R.Offset); 6442 W.printNumber("Type", RelocName, R.Type); 6443 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 6444 if (R.Addend) 6445 W.printHex("Addend", (uintX_t)*R.Addend); 6446 } else { 6447 raw_ostream &OS = W.startLine(); 6448 OS << W.hex(R.Offset) << " " << RelocName << " " 6449 << (!SymbolName.empty() ? SymbolName : "-"); 6450 if (R.Addend) 6451 OS << " " << W.hex((uintX_t)*R.Addend); 6452 OS << "\n"; 6453 } 6454 } 6455 6456 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 6457 ListScope SectionsD(W, "Sections"); 6458 6459 int SectionIndex = -1; 6460 std::vector<EnumEntry<unsigned>> FlagsList = 6461 getSectionFlagsForTarget(this->Obj.getHeader().e_machine); 6462 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6463 DictScope SectionD(W, "Section"); 6464 W.printNumber("Index", ++SectionIndex); 6465 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 6466 W.printHex("Type", 6467 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 6468 Sec.sh_type), 6469 Sec.sh_type); 6470 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList)); 6471 W.printHex("Address", Sec.sh_addr); 6472 W.printHex("Offset", Sec.sh_offset); 6473 W.printNumber("Size", Sec.sh_size); 6474 W.printNumber("Link", Sec.sh_link); 6475 W.printNumber("Info", Sec.sh_info); 6476 W.printNumber("AddressAlignment", Sec.sh_addralign); 6477 W.printNumber("EntrySize", Sec.sh_entsize); 6478 6479 if (opts::SectionRelocations) { 6480 ListScope D(W, "Relocations"); 6481 this->printRelocationsHelper(Sec); 6482 } 6483 6484 if (opts::SectionSymbols) { 6485 ListScope D(W, "Symbols"); 6486 if (this->DotSymtabSec) { 6487 StringRef StrTable = unwrapOrError( 6488 this->FileName, 6489 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 6490 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 6491 6492 typename ELFT::SymRange Symbols = unwrapOrError( 6493 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 6494 for (const Elf_Sym &Sym : Symbols) { 6495 const Elf_Shdr *SymSec = unwrapOrError( 6496 this->FileName, 6497 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 6498 if (SymSec == &Sec) 6499 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 6500 false); 6501 } 6502 } 6503 } 6504 6505 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 6506 ArrayRef<uint8_t> Data = 6507 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 6508 W.printBinaryBlock( 6509 "SectionData", 6510 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 6511 } 6512 } 6513 } 6514 6515 template <class ELFT> 6516 void LLVMELFDumper<ELFT>::printSymbolSection( 6517 const Elf_Sym &Symbol, unsigned SymIndex, 6518 DataRegion<Elf_Word> ShndxTable) const { 6519 auto GetSectionSpecialType = [&]() -> Optional<StringRef> { 6520 if (Symbol.isUndefined()) 6521 return StringRef("Undefined"); 6522 if (Symbol.isProcessorSpecific()) 6523 return StringRef("Processor Specific"); 6524 if (Symbol.isOSSpecific()) 6525 return StringRef("Operating System Specific"); 6526 if (Symbol.isAbsolute()) 6527 return StringRef("Absolute"); 6528 if (Symbol.isCommon()) 6529 return StringRef("Common"); 6530 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 6531 return StringRef("Reserved"); 6532 return None; 6533 }; 6534 6535 if (Optional<StringRef> Type = GetSectionSpecialType()) { 6536 W.printHex("Section", *Type, Symbol.st_shndx); 6537 return; 6538 } 6539 6540 Expected<unsigned> SectionIndex = 6541 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 6542 if (!SectionIndex) { 6543 assert(Symbol.st_shndx == SHN_XINDEX && 6544 "getSymbolSectionIndex should only fail due to an invalid " 6545 "SHT_SYMTAB_SHNDX table/reference"); 6546 this->reportUniqueWarning(SectionIndex.takeError()); 6547 W.printHex("Section", "Reserved", SHN_XINDEX); 6548 return; 6549 } 6550 6551 Expected<StringRef> SectionName = 6552 this->getSymbolSectionName(Symbol, *SectionIndex); 6553 if (!SectionName) { 6554 // Don't report an invalid section name if the section headers are missing. 6555 // In such situations, all sections will be "invalid". 6556 if (!this->ObjF.sections().empty()) 6557 this->reportUniqueWarning(SectionName.takeError()); 6558 else 6559 consumeError(SectionName.takeError()); 6560 W.printHex("Section", "<?>", *SectionIndex); 6561 } else { 6562 W.printHex("Section", *SectionName, *SectionIndex); 6563 } 6564 } 6565 6566 template <class ELFT> 6567 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 6568 DataRegion<Elf_Word> ShndxTable, 6569 Optional<StringRef> StrTable, 6570 bool IsDynamic, 6571 bool /*NonVisibilityBitsUsed*/) const { 6572 std::string FullSymbolName = this->getFullSymbolName( 6573 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 6574 unsigned char SymbolType = Symbol.getType(); 6575 6576 DictScope D(W, "Symbol"); 6577 W.printNumber("Name", FullSymbolName, Symbol.st_name); 6578 W.printHex("Value", Symbol.st_value); 6579 W.printNumber("Size", Symbol.st_size); 6580 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 6581 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 6582 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 6583 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 6584 else 6585 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); 6586 if (Symbol.st_other == 0) 6587 // Usually st_other flag is zero. Do not pollute the output 6588 // by flags enumeration in that case. 6589 W.printNumber("Other", 0); 6590 else { 6591 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 6592 std::end(ElfSymOtherFlags)); 6593 if (this->Obj.getHeader().e_machine == EM_MIPS) { 6594 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 6595 // flag overlapped with other ST_MIPS_xxx flags. So consider both 6596 // cases separately. 6597 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 6598 SymOtherFlags.insert(SymOtherFlags.end(), 6599 std::begin(ElfMips16SymOtherFlags), 6600 std::end(ElfMips16SymOtherFlags)); 6601 else 6602 SymOtherFlags.insert(SymOtherFlags.end(), 6603 std::begin(ElfMipsSymOtherFlags), 6604 std::end(ElfMipsSymOtherFlags)); 6605 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) { 6606 SymOtherFlags.insert(SymOtherFlags.end(), 6607 std::begin(ElfAArch64SymOtherFlags), 6608 std::end(ElfAArch64SymOtherFlags)); 6609 } else if (this->Obj.getHeader().e_machine == EM_RISCV) { 6610 SymOtherFlags.insert(SymOtherFlags.end(), 6611 std::begin(ElfRISCVSymOtherFlags), 6612 std::end(ElfRISCVSymOtherFlags)); 6613 } 6614 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u); 6615 } 6616 printSymbolSection(Symbol, SymIndex, ShndxTable); 6617 } 6618 6619 template <class ELFT> 6620 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 6621 bool PrintDynamicSymbols) { 6622 if (PrintSymbols) { 6623 ListScope Group(W, "Symbols"); 6624 this->printSymbolsHelper(false); 6625 } 6626 if (PrintDynamicSymbols) { 6627 ListScope Group(W, "DynamicSymbols"); 6628 this->printSymbolsHelper(true); 6629 } 6630 } 6631 6632 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 6633 Elf_Dyn_Range Table = this->dynamic_table(); 6634 if (Table.empty()) 6635 return; 6636 6637 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 6638 6639 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 6640 // The "Name/Value" column should be indented from the "Type" column by N 6641 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 6642 // space (1) = -3. 6643 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 6644 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 6645 6646 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 6647 for (auto Entry : Table) { 6648 uintX_t Tag = Entry.getTag(); 6649 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 6650 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 6651 << " " 6652 << format(ValueFmt.c_str(), 6653 this->Obj.getDynamicTagAsString(Tag).c_str()) 6654 << Value << "\n"; 6655 } 6656 W.startLine() << "]\n"; 6657 } 6658 6659 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 6660 W.startLine() << "Dynamic Relocations {\n"; 6661 W.indent(); 6662 this->printDynamicRelocationsHelper(); 6663 W.unindent(); 6664 W.startLine() << "}\n"; 6665 } 6666 6667 template <class ELFT> 6668 void LLVMELFDumper<ELFT>::printProgramHeaders( 6669 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 6670 if (PrintProgramHeaders) 6671 printProgramHeaders(); 6672 if (PrintSectionMapping == cl::BOU_TRUE) 6673 printSectionMapping(); 6674 } 6675 6676 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 6677 ListScope L(W, "ProgramHeaders"); 6678 6679 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 6680 if (!PhdrsOrErr) { 6681 this->reportUniqueWarning("unable to dump program headers: " + 6682 toString(PhdrsOrErr.takeError())); 6683 return; 6684 } 6685 6686 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 6687 DictScope P(W, "ProgramHeader"); 6688 StringRef Type = 6689 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 6690 6691 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 6692 W.printHex("Offset", Phdr.p_offset); 6693 W.printHex("VirtualAddress", Phdr.p_vaddr); 6694 W.printHex("PhysicalAddress", Phdr.p_paddr); 6695 W.printNumber("FileSize", Phdr.p_filesz); 6696 W.printNumber("MemSize", Phdr.p_memsz); 6697 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); 6698 W.printNumber("Alignment", Phdr.p_align); 6699 } 6700 } 6701 6702 template <class ELFT> 6703 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 6704 ListScope SS(W, "VersionSymbols"); 6705 if (!Sec) 6706 return; 6707 6708 StringRef StrTable; 6709 ArrayRef<Elf_Sym> Syms; 6710 const Elf_Shdr *SymTabSec; 6711 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 6712 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 6713 if (!VerTableOrErr) { 6714 this->reportUniqueWarning(VerTableOrErr.takeError()); 6715 return; 6716 } 6717 6718 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 6719 return; 6720 6721 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 6722 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 6723 DictScope S(W, "Symbol"); 6724 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 6725 W.printString("Name", 6726 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 6727 /*IsDynamic=*/true)); 6728 } 6729 } 6730 6731 const EnumEntry<unsigned> SymVersionFlags[] = { 6732 {"Base", "BASE", VER_FLG_BASE}, 6733 {"Weak", "WEAK", VER_FLG_WEAK}, 6734 {"Info", "INFO", VER_FLG_INFO}}; 6735 6736 template <class ELFT> 6737 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 6738 ListScope SD(W, "VersionDefinitions"); 6739 if (!Sec) 6740 return; 6741 6742 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 6743 if (!V) { 6744 this->reportUniqueWarning(V.takeError()); 6745 return; 6746 } 6747 6748 for (const VerDef &D : *V) { 6749 DictScope Def(W, "Definition"); 6750 W.printNumber("Version", D.Version); 6751 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags)); 6752 W.printNumber("Index", D.Ndx); 6753 W.printNumber("Hash", D.Hash); 6754 W.printString("Name", D.Name.c_str()); 6755 W.printList( 6756 "Predecessors", D.AuxV, 6757 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 6758 } 6759 } 6760 6761 template <class ELFT> 6762 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 6763 ListScope SD(W, "VersionRequirements"); 6764 if (!Sec) 6765 return; 6766 6767 Expected<std::vector<VerNeed>> V = 6768 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 6769 if (!V) { 6770 this->reportUniqueWarning(V.takeError()); 6771 return; 6772 } 6773 6774 for (const VerNeed &VN : *V) { 6775 DictScope Entry(W, "Dependency"); 6776 W.printNumber("Version", VN.Version); 6777 W.printNumber("Count", VN.Cnt); 6778 W.printString("FileName", VN.File.c_str()); 6779 6780 ListScope L(W, "Entries"); 6781 for (const VernAux &Aux : VN.AuxV) { 6782 DictScope Entry(W, "Entry"); 6783 W.printNumber("Hash", Aux.Hash); 6784 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags)); 6785 W.printNumber("Index", Aux.Other); 6786 W.printString("Name", Aux.Name.c_str()); 6787 } 6788 } 6789 } 6790 6791 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() { 6792 W.startLine() << "Hash Histogram not implemented!\n"; 6793 } 6794 6795 // Returns true if rel/rela section exists, and populates SymbolIndices. 6796 // Otherwise returns false. 6797 template <class ELFT> 6798 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 6799 const ELFFile<ELFT> &Obj, 6800 const LLVMELFDumper<ELFT> *Dumper, 6801 SmallVector<uint32_t, 128> &SymbolIndices) { 6802 if (!CGRelSection) { 6803 Dumper->reportUniqueWarning( 6804 "relocation section for a call graph section doesn't exist"); 6805 return false; 6806 } 6807 6808 if (CGRelSection->sh_type == SHT_REL) { 6809 typename ELFT::RelRange CGProfileRel; 6810 Expected<typename ELFT::RelRange> CGProfileRelOrError = 6811 Obj.rels(*CGRelSection); 6812 if (!CGProfileRelOrError) { 6813 Dumper->reportUniqueWarning("unable to load relocations for " 6814 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6815 toString(CGProfileRelOrError.takeError())); 6816 return false; 6817 } 6818 6819 CGProfileRel = *CGProfileRelOrError; 6820 for (const typename ELFT::Rel &Rel : CGProfileRel) 6821 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 6822 } else { 6823 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 6824 // the format to SHT_RELA 6825 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 6826 typename ELFT::RelaRange CGProfileRela; 6827 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 6828 Obj.relas(*CGRelSection); 6829 if (!CGProfileRelaOrError) { 6830 Dumper->reportUniqueWarning("unable to load relocations for " 6831 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6832 toString(CGProfileRelaOrError.takeError())); 6833 return false; 6834 } 6835 6836 CGProfileRela = *CGProfileRelaOrError; 6837 for (const typename ELFT::Rela &Rela : CGProfileRela) 6838 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 6839 } 6840 6841 return true; 6842 } 6843 6844 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 6845 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap; 6846 6847 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 6848 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 6849 }; 6850 this->getSectionAndRelocations(IsMatch, SecToRelocMap); 6851 6852 for (const auto &CGMapEntry : SecToRelocMap) { 6853 const Elf_Shdr *CGSection = CGMapEntry.first; 6854 const Elf_Shdr *CGRelSection = CGMapEntry.second; 6855 6856 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 6857 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 6858 if (!CGProfileOrErr) { 6859 this->reportUniqueWarning( 6860 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6861 toString(CGProfileOrErr.takeError())); 6862 return; 6863 } 6864 6865 SmallVector<uint32_t, 128> SymbolIndices; 6866 bool UseReloc = 6867 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 6868 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 6869 this->reportUniqueWarning( 6870 "number of from/to pairs does not match number of frequencies"); 6871 UseReloc = false; 6872 } 6873 6874 ListScope L(W, "CGProfile"); 6875 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 6876 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 6877 DictScope D(W, "CGProfileEntry"); 6878 if (UseReloc) { 6879 uint32_t From = SymbolIndices[I * 2]; 6880 uint32_t To = SymbolIndices[I * 2 + 1]; 6881 W.printNumber("From", this->getStaticSymbolName(From), From); 6882 W.printNumber("To", this->getStaticSymbolName(To), To); 6883 } 6884 W.printNumber("Weight", CGPE.cgp_weight); 6885 } 6886 } 6887 } 6888 6889 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() { 6890 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 6891 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6892 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP) 6893 continue; 6894 Optional<const Elf_Shdr *> FunctionSec = None; 6895 if (IsRelocatable) 6896 FunctionSec = 6897 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link)); 6898 ListScope L(W, "BBAddrMap"); 6899 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 6900 this->Obj.decodeBBAddrMap(Sec); 6901 if (!BBAddrMapOrErr) { 6902 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " + 6903 toString(BBAddrMapOrErr.takeError())); 6904 continue; 6905 } 6906 for (const BBAddrMap &AM : *BBAddrMapOrErr) { 6907 DictScope D(W, "Function"); 6908 W.printHex("At", AM.Addr); 6909 SmallVector<uint32_t> FuncSymIndex = 6910 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec); 6911 std::string FuncName = "<?>"; 6912 if (FuncSymIndex.empty()) 6913 this->reportUniqueWarning( 6914 "could not identify function symbol for address (0x" + 6915 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec)); 6916 else 6917 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 6918 W.printString("Name", FuncName); 6919 6920 ListScope L(W, "BB entries"); 6921 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) { 6922 DictScope L(W); 6923 W.printHex("Offset", BBE.Offset); 6924 W.printHex("Size", BBE.Size); 6925 W.printBoolean("HasReturn", BBE.HasReturn); 6926 W.printBoolean("HasTailCall", BBE.HasTailCall); 6927 W.printBoolean("IsEHPad", BBE.IsEHPad); 6928 W.printBoolean("CanFallThrough", BBE.CanFallThrough); 6929 } 6930 } 6931 } 6932 } 6933 6934 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 6935 ListScope L(W, "Addrsig"); 6936 if (!this->DotAddrsigSec) 6937 return; 6938 6939 Expected<std::vector<uint64_t>> SymsOrErr = 6940 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 6941 if (!SymsOrErr) { 6942 this->reportUniqueWarning(SymsOrErr.takeError()); 6943 return; 6944 } 6945 6946 for (uint64_t Sym : *SymsOrErr) 6947 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 6948 } 6949 6950 template <typename ELFT> 6951 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 6952 ScopedPrinter &W) { 6953 // Return true if we were able to pretty-print the note, false otherwise. 6954 switch (NoteType) { 6955 default: 6956 return false; 6957 case ELF::NT_GNU_ABI_TAG: { 6958 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 6959 if (!AbiTag.IsValid) { 6960 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 6961 return false; 6962 } else { 6963 W.printString("OS", AbiTag.OSName); 6964 W.printString("ABI", AbiTag.ABI); 6965 } 6966 break; 6967 } 6968 case ELF::NT_GNU_BUILD_ID: { 6969 W.printString("Build ID", getGNUBuildId(Desc)); 6970 break; 6971 } 6972 case ELF::NT_GNU_GOLD_VERSION: 6973 W.printString("Version", getDescAsStringRef(Desc)); 6974 break; 6975 case ELF::NT_GNU_PROPERTY_TYPE_0: 6976 ListScope D(W, "Property"); 6977 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 6978 W.printString(Property); 6979 break; 6980 } 6981 return true; 6982 } 6983 6984 template <typename ELFT> 6985 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 6986 ArrayRef<uint8_t> Desc, 6987 ScopedPrinter &W) { 6988 switch (NoteType) { 6989 default: 6990 return false; 6991 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 6992 W.printString("Version", getDescAsStringRef(Desc)); 6993 break; 6994 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 6995 W.printString("Producer", getDescAsStringRef(Desc)); 6996 break; 6997 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 6998 W.printString("Producer version", getDescAsStringRef(Desc)); 6999 break; 7000 } 7001 return true; 7002 } 7003 7004 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7005 W.printNumber("Page Size", Note.PageSize); 7006 for (const CoreFileMapping &Mapping : Note.Mappings) { 7007 ListScope D(W, "Mapping"); 7008 W.printHex("Start", Mapping.Start); 7009 W.printHex("End", Mapping.End); 7010 W.printHex("Offset", Mapping.Offset); 7011 W.printString("Filename", Mapping.Filename); 7012 } 7013 } 7014 7015 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7016 ListScope L(W, "Notes"); 7017 7018 std::unique_ptr<DictScope> NoteScope; 7019 auto StartNotes = [&](Optional<StringRef> SecName, 7020 const typename ELFT::Off Offset, 7021 const typename ELFT::Addr Size) { 7022 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 7023 W.printString("Name", SecName ? *SecName : "<?>"); 7024 W.printHex("Offset", Offset); 7025 W.printHex("Size", Size); 7026 }; 7027 7028 auto EndNotes = [&] { NoteScope.reset(); }; 7029 7030 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 7031 DictScope D2(W, "Note"); 7032 StringRef Name = Note.getName(); 7033 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 7034 Elf_Word Type = Note.getType(); 7035 7036 // Print the note owner/type. 7037 W.printString("Owner", Name); 7038 W.printHex("Data size", Descriptor.size()); 7039 7040 StringRef NoteType = 7041 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 7042 if (!NoteType.empty()) 7043 W.printString("Type", NoteType); 7044 else 7045 W.printString("Type", 7046 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 7047 7048 // Print the description, or fallback to printing raw bytes for unknown 7049 // owners/if we fail to pretty-print the contents. 7050 if (Name == "GNU") { 7051 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7052 return Error::success(); 7053 } else if (Name == "FreeBSD") { 7054 if (Optional<FreeBSDNote> N = 7055 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 7056 W.printString(N->Type, N->Value); 7057 return Error::success(); 7058 } 7059 } else if (Name == "AMD") { 7060 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 7061 if (!N.Type.empty()) { 7062 W.printString(N.Type, N.Value); 7063 return Error::success(); 7064 } 7065 } else if (Name == "AMDGPU") { 7066 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 7067 if (!N.Type.empty()) { 7068 W.printString(N.Type, N.Value); 7069 return Error::success(); 7070 } 7071 } else if (Name == "LLVMOMPOFFLOAD") { 7072 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7073 return Error::success(); 7074 } else if (Name == "CORE") { 7075 if (Type == ELF::NT_FILE) { 7076 DataExtractor DescExtractor(Descriptor, 7077 ELFT::TargetEndianness == support::little, 7078 sizeof(Elf_Addr)); 7079 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 7080 printCoreNoteLLVMStyle(*N, W); 7081 return Error::success(); 7082 } else { 7083 return N.takeError(); 7084 } 7085 } 7086 } 7087 if (!Descriptor.empty()) { 7088 W.printBinaryBlock("Description data", Descriptor); 7089 } 7090 return Error::success(); 7091 }; 7092 7093 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes); 7094 } 7095 7096 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 7097 ListScope L(W, "LinkerOptions"); 7098 7099 unsigned I = -1; 7100 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 7101 ++I; 7102 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 7103 continue; 7104 7105 Expected<ArrayRef<uint8_t>> ContentsOrErr = 7106 this->Obj.getSectionContents(Shdr); 7107 if (!ContentsOrErr) { 7108 this->reportUniqueWarning("unable to read the content of the " 7109 "SHT_LLVM_LINKER_OPTIONS section: " + 7110 toString(ContentsOrErr.takeError())); 7111 continue; 7112 } 7113 if (ContentsOrErr->empty()) 7114 continue; 7115 7116 if (ContentsOrErr->back() != 0) { 7117 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 7118 Twine(I) + 7119 " is broken: the " 7120 "content is not null-terminated"); 7121 continue; 7122 } 7123 7124 SmallVector<StringRef, 16> Strings; 7125 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 7126 if (Strings.size() % 2 != 0) { 7127 this->reportUniqueWarning( 7128 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 7129 " is broken: an incomplete " 7130 "key-value pair was found. The last possible key was: \"" + 7131 Strings.back() + "\""); 7132 continue; 7133 } 7134 7135 for (size_t I = 0; I < Strings.size(); I += 2) 7136 W.printString(Strings[I], Strings[I + 1]); 7137 } 7138 } 7139 7140 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 7141 ListScope L(W, "DependentLibs"); 7142 this->printDependentLibsHelper( 7143 [](const Elf_Shdr &) {}, 7144 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 7145 } 7146 7147 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 7148 ListScope L(W, "StackSizes"); 7149 if (this->Obj.getHeader().e_type == ELF::ET_REL) 7150 this->printRelocatableStackSizes([]() {}); 7151 else 7152 this->printNonRelocatableStackSizes([]() {}); 7153 } 7154 7155 template <class ELFT> 7156 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 7157 ArrayRef<std::string> FuncNames) { 7158 DictScope D(W, "Entry"); 7159 W.printList("Functions", FuncNames); 7160 W.printHex("Size", Size); 7161 } 7162 7163 template <class ELFT> 7164 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 7165 auto PrintEntry = [&](const Elf_Addr *E) { 7166 W.printHex("Address", Parser.getGotAddress(E)); 7167 W.printNumber("Access", Parser.getGotOffset(E)); 7168 W.printHex("Initial", *E); 7169 }; 7170 7171 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 7172 7173 W.printHex("Canonical gp value", Parser.getGp()); 7174 { 7175 ListScope RS(W, "Reserved entries"); 7176 { 7177 DictScope D(W, "Entry"); 7178 PrintEntry(Parser.getGotLazyResolver()); 7179 W.printString("Purpose", StringRef("Lazy resolver")); 7180 } 7181 7182 if (Parser.getGotModulePointer()) { 7183 DictScope D(W, "Entry"); 7184 PrintEntry(Parser.getGotModulePointer()); 7185 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 7186 } 7187 } 7188 { 7189 ListScope LS(W, "Local entries"); 7190 for (auto &E : Parser.getLocalEntries()) { 7191 DictScope D(W, "Entry"); 7192 PrintEntry(&E); 7193 } 7194 } 7195 7196 if (Parser.IsStatic) 7197 return; 7198 7199 { 7200 ListScope GS(W, "Global entries"); 7201 for (auto &E : Parser.getGlobalEntries()) { 7202 DictScope D(W, "Entry"); 7203 7204 PrintEntry(&E); 7205 7206 const Elf_Sym &Sym = *Parser.getGotSym(&E); 7207 W.printHex("Value", Sym.st_value); 7208 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 7209 7210 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 7211 DataRegion<Elf_Word> ShndxTable( 7212 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7213 printSymbolSection(Sym, SymIndex, ShndxTable); 7214 7215 std::string SymName = this->getFullSymbolName( 7216 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 7217 W.printNumber("Name", SymName, Sym.st_name); 7218 } 7219 } 7220 7221 W.printNumber("Number of TLS and multi-GOT entries", 7222 uint64_t(Parser.getOtherEntries().size())); 7223 } 7224 7225 template <class ELFT> 7226 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 7227 auto PrintEntry = [&](const Elf_Addr *E) { 7228 W.printHex("Address", Parser.getPltAddress(E)); 7229 W.printHex("Initial", *E); 7230 }; 7231 7232 DictScope GS(W, "PLT GOT"); 7233 7234 { 7235 ListScope RS(W, "Reserved entries"); 7236 { 7237 DictScope D(W, "Entry"); 7238 PrintEntry(Parser.getPltLazyResolver()); 7239 W.printString("Purpose", StringRef("PLT lazy resolver")); 7240 } 7241 7242 if (auto E = Parser.getPltModulePointer()) { 7243 DictScope D(W, "Entry"); 7244 PrintEntry(E); 7245 W.printString("Purpose", StringRef("Module pointer")); 7246 } 7247 } 7248 { 7249 ListScope LS(W, "Entries"); 7250 DataRegion<Elf_Word> ShndxTable( 7251 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7252 for (auto &E : Parser.getPltEntries()) { 7253 DictScope D(W, "Entry"); 7254 PrintEntry(&E); 7255 7256 const Elf_Sym &Sym = *Parser.getPltSym(&E); 7257 W.printHex("Value", Sym.st_value); 7258 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 7259 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 7260 ShndxTable); 7261 7262 const Elf_Sym *FirstSym = cantFail( 7263 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 7264 std::string SymName = this->getFullSymbolName( 7265 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 7266 W.printNumber("Name", SymName, Sym.st_name); 7267 } 7268 } 7269 } 7270 7271 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 7272 const Elf_Mips_ABIFlags<ELFT> *Flags; 7273 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 7274 getMipsAbiFlagsSection(*this)) { 7275 Flags = *SecOrErr; 7276 if (!Flags) { 7277 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 7278 return; 7279 } 7280 } else { 7281 this->reportUniqueWarning(SecOrErr.takeError()); 7282 return; 7283 } 7284 7285 raw_ostream &OS = W.getOStream(); 7286 DictScope GS(W, "MIPS ABI Flags"); 7287 7288 W.printNumber("Version", Flags->version); 7289 W.startLine() << "ISA: "; 7290 if (Flags->isa_rev <= 1) 7291 OS << format("MIPS%u", Flags->isa_level); 7292 else 7293 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 7294 OS << "\n"; 7295 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); 7296 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); 7297 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); 7298 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 7299 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 7300 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 7301 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); 7302 W.printHex("Flags 2", Flags->flags2); 7303 } 7304