1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/RawMemProfReader.h" 21 #include "llvm/ProfileData/SampleProfReader.h" 22 #include "llvm/ProfileData/SampleProfWriter.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Discriminator.h" 25 #include "llvm/Support/Errc.h" 26 #include "llvm/Support/FileSystem.h" 27 #include "llvm/Support/Format.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include "llvm/Support/InitLLVM.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/Path.h" 32 #include "llvm/Support/ThreadPool.h" 33 #include "llvm/Support/Threading.h" 34 #include "llvm/Support/WithColor.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 38 using namespace llvm; 39 40 enum ProfileFormat { 41 PF_None = 0, 42 PF_Text, 43 PF_Compact_Binary, 44 PF_Ext_Binary, 45 PF_GCC, 46 PF_Binary 47 }; 48 49 static void warn(Twine Message, std::string Whence = "", 50 std::string Hint = "") { 51 WithColor::warning(); 52 if (!Whence.empty()) 53 errs() << Whence << ": "; 54 errs() << Message << "\n"; 55 if (!Hint.empty()) 56 WithColor::note() << Hint << "\n"; 57 } 58 59 static void warn(Error E, StringRef Whence = "") { 60 if (E.isA<InstrProfError>()) { 61 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 62 warn(IPE.message(), std::string(Whence), std::string("")); 63 }); 64 } 65 } 66 67 static void exitWithError(Twine Message, std::string Whence = "", 68 std::string Hint = "") { 69 WithColor::error(); 70 if (!Whence.empty()) 71 errs() << Whence << ": "; 72 errs() << Message << "\n"; 73 if (!Hint.empty()) 74 WithColor::note() << Hint << "\n"; 75 ::exit(1); 76 } 77 78 static void exitWithError(Error E, StringRef Whence = "") { 79 if (E.isA<InstrProfError>()) { 80 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 81 instrprof_error instrError = IPE.get(); 82 StringRef Hint = ""; 83 if (instrError == instrprof_error::unrecognized_format) { 84 // Hint in case user missed specifying the profile type. 85 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 86 } 87 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 88 }); 89 } 90 91 exitWithError(toString(std::move(E)), std::string(Whence)); 92 } 93 94 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 95 exitWithError(EC.message(), std::string(Whence)); 96 } 97 98 namespace { 99 enum ProfileKinds { instr, sample, memory }; 100 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 101 } 102 103 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 104 StringRef Whence = "") { 105 if (FailMode == failIfAnyAreInvalid) 106 exitWithErrorCode(EC, Whence); 107 else 108 warn(EC.message(), std::string(Whence)); 109 } 110 111 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 112 StringRef WhenceFunction = "", 113 bool ShowHint = true) { 114 if (!WhenceFile.empty()) 115 errs() << WhenceFile << ": "; 116 if (!WhenceFunction.empty()) 117 errs() << WhenceFunction << ": "; 118 119 auto IPE = instrprof_error::success; 120 E = handleErrors(std::move(E), 121 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 122 IPE = E->get(); 123 return Error(std::move(E)); 124 }); 125 errs() << toString(std::move(E)) << "\n"; 126 127 if (ShowHint) { 128 StringRef Hint = ""; 129 if (IPE != instrprof_error::success) { 130 switch (IPE) { 131 case instrprof_error::hash_mismatch: 132 case instrprof_error::count_mismatch: 133 case instrprof_error::value_site_count_mismatch: 134 Hint = "Make sure that all profile data to be merged is generated " 135 "from the same binary."; 136 break; 137 default: 138 break; 139 } 140 } 141 142 if (!Hint.empty()) 143 errs() << Hint << "\n"; 144 } 145 } 146 147 namespace { 148 /// A remapper from original symbol names to new symbol names based on a file 149 /// containing a list of mappings from old name to new name. 150 class SymbolRemapper { 151 std::unique_ptr<MemoryBuffer> File; 152 DenseMap<StringRef, StringRef> RemappingTable; 153 154 public: 155 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 156 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 157 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 158 if (!BufOrError) 159 exitWithErrorCode(BufOrError.getError(), InputFile); 160 161 auto Remapper = std::make_unique<SymbolRemapper>(); 162 Remapper->File = std::move(BufOrError.get()); 163 164 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 165 !LineIt.is_at_eof(); ++LineIt) { 166 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 167 if (Parts.first.empty() || Parts.second.empty() || 168 Parts.second.count(' ')) { 169 exitWithError("unexpected line in remapping file", 170 (InputFile + ":" + Twine(LineIt.line_number())).str(), 171 "expected 'old_symbol new_symbol'"); 172 } 173 Remapper->RemappingTable.insert(Parts); 174 } 175 return Remapper; 176 } 177 178 /// Attempt to map the given old symbol into a new symbol. 179 /// 180 /// \return The new symbol, or \p Name if no such symbol was found. 181 StringRef operator()(StringRef Name) { 182 StringRef New = RemappingTable.lookup(Name); 183 return New.empty() ? Name : New; 184 } 185 }; 186 } 187 188 struct WeightedFile { 189 std::string Filename; 190 uint64_t Weight; 191 }; 192 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 193 194 /// Keep track of merged data and reported errors. 195 struct WriterContext { 196 std::mutex Lock; 197 InstrProfWriter Writer; 198 std::vector<std::pair<Error, std::string>> Errors; 199 std::mutex &ErrLock; 200 SmallSet<instrprof_error, 4> &WriterErrorCodes; 201 202 WriterContext(bool IsSparse, std::mutex &ErrLock, 203 SmallSet<instrprof_error, 4> &WriterErrorCodes) 204 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 205 WriterErrorCodes(WriterErrorCodes) {} 206 }; 207 208 /// Computer the overlap b/w profile BaseFilename and TestFileName, 209 /// and store the program level result to Overlap. 210 static void overlapInput(const std::string &BaseFilename, 211 const std::string &TestFilename, WriterContext *WC, 212 OverlapStats &Overlap, 213 const OverlapFuncFilters &FuncFilter, 214 raw_fd_ostream &OS, bool IsCS) { 215 auto ReaderOrErr = InstrProfReader::create(TestFilename); 216 if (Error E = ReaderOrErr.takeError()) { 217 // Skip the empty profiles by returning sliently. 218 instrprof_error IPE = InstrProfError::take(std::move(E)); 219 if (IPE != instrprof_error::empty_raw_profile) 220 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 221 return; 222 } 223 224 auto Reader = std::move(ReaderOrErr.get()); 225 for (auto &I : *Reader) { 226 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 227 FuncOverlap.setFuncInfo(I.Name, I.Hash); 228 229 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 230 FuncOverlap.dump(OS); 231 } 232 } 233 234 /// Load an input into a writer context. 235 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 236 WriterContext *WC) { 237 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 238 239 // Copy the filename, because llvm::ThreadPool copied the input "const 240 // WeightedFile &" by value, making a reference to the filename within it 241 // invalid outside of this packaged task. 242 std::string Filename = Input.Filename; 243 244 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 245 if (Error E = ReaderOrErr.takeError()) { 246 // Skip the empty profiles by returning sliently. 247 instrprof_error IPE = InstrProfError::take(std::move(E)); 248 if (IPE != instrprof_error::empty_raw_profile) 249 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 250 return; 251 } 252 253 auto Reader = std::move(ReaderOrErr.get()); 254 bool IsIRProfile = Reader->isIRLevelProfile(); 255 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 256 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 257 consumeError(std::move(E)); 258 WC->Errors.emplace_back( 259 make_error<StringError>( 260 "Merge IR generated profile with Clang generated profile.", 261 std::error_code()), 262 Filename); 263 return; 264 } 265 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 266 267 for (auto &I : *Reader) { 268 if (Remapper) 269 I.Name = (*Remapper)(I.Name); 270 const StringRef FuncName = I.Name; 271 bool Reported = false; 272 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 273 if (Reported) { 274 consumeError(std::move(E)); 275 return; 276 } 277 Reported = true; 278 // Only show hint the first time an error occurs. 279 instrprof_error IPE = InstrProfError::take(std::move(E)); 280 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 281 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 282 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 283 FuncName, firstTime); 284 }); 285 } 286 if (Reader->hasError()) 287 if (Error E = Reader->getError()) 288 WC->Errors.emplace_back(std::move(E), Filename); 289 } 290 291 /// Merge the \p Src writer context into \p Dst. 292 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 293 for (auto &ErrorPair : Src->Errors) 294 Dst->Errors.push_back(std::move(ErrorPair)); 295 Src->Errors.clear(); 296 297 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 298 instrprof_error IPE = InstrProfError::take(std::move(E)); 299 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 300 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 301 if (firstTime) 302 warn(toString(make_error<InstrProfError>(IPE))); 303 }); 304 } 305 306 static void writeInstrProfile(StringRef OutputFilename, 307 ProfileFormat OutputFormat, 308 InstrProfWriter &Writer) { 309 std::error_code EC; 310 raw_fd_ostream Output(OutputFilename.data(), EC, 311 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 312 : sys::fs::OF_None); 313 if (EC) 314 exitWithErrorCode(EC, OutputFilename); 315 316 if (OutputFormat == PF_Text) { 317 if (Error E = Writer.writeText(Output)) 318 warn(std::move(E)); 319 } else { 320 if (Output.is_displayed()) 321 exitWithError("cannot write a non-text format profile to the terminal"); 322 if (Error E = Writer.write(Output)) 323 warn(std::move(E)); 324 } 325 } 326 327 static void mergeInstrProfile(const WeightedFileVector &Inputs, 328 SymbolRemapper *Remapper, 329 StringRef OutputFilename, 330 ProfileFormat OutputFormat, bool OutputSparse, 331 unsigned NumThreads, FailureMode FailMode) { 332 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 333 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 334 exitWithError("unknown format is specified"); 335 336 std::mutex ErrorLock; 337 SmallSet<instrprof_error, 4> WriterErrorCodes; 338 339 // If NumThreads is not specified, auto-detect a good default. 340 if (NumThreads == 0) 341 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 342 unsigned((Inputs.size() + 1) / 2)); 343 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 344 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 345 // merged, thus the emitted file ends up with a PF_Unknown kind. 346 347 // Initialize the writer contexts. 348 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 349 for (unsigned I = 0; I < NumThreads; ++I) 350 Contexts.emplace_back(std::make_unique<WriterContext>( 351 OutputSparse, ErrorLock, WriterErrorCodes)); 352 353 if (NumThreads == 1) { 354 for (const auto &Input : Inputs) 355 loadInput(Input, Remapper, Contexts[0].get()); 356 } else { 357 ThreadPool Pool(hardware_concurrency(NumThreads)); 358 359 // Load the inputs in parallel (N/NumThreads serial steps). 360 unsigned Ctx = 0; 361 for (const auto &Input : Inputs) { 362 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 363 Ctx = (Ctx + 1) % NumThreads; 364 } 365 Pool.wait(); 366 367 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 368 unsigned Mid = Contexts.size() / 2; 369 unsigned End = Contexts.size(); 370 assert(Mid > 0 && "Expected more than one context"); 371 do { 372 for (unsigned I = 0; I < Mid; ++I) 373 Pool.async(mergeWriterContexts, Contexts[I].get(), 374 Contexts[I + Mid].get()); 375 Pool.wait(); 376 if (End & 1) { 377 Pool.async(mergeWriterContexts, Contexts[0].get(), 378 Contexts[End - 1].get()); 379 Pool.wait(); 380 } 381 End = Mid; 382 Mid /= 2; 383 } while (Mid > 0); 384 } 385 386 // Handle deferred errors encountered during merging. If the number of errors 387 // is equal to the number of inputs the merge failed. 388 unsigned NumErrors = 0; 389 for (std::unique_ptr<WriterContext> &WC : Contexts) { 390 for (auto &ErrorPair : WC->Errors) { 391 ++NumErrors; 392 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 393 } 394 } 395 if (NumErrors == Inputs.size() || 396 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 397 exitWithError("no profile can be merged"); 398 399 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 400 } 401 402 /// The profile entry for a function in instrumentation profile. 403 struct InstrProfileEntry { 404 uint64_t MaxCount = 0; 405 float ZeroCounterRatio = 0.0; 406 InstrProfRecord *ProfRecord; 407 InstrProfileEntry(InstrProfRecord *Record); 408 InstrProfileEntry() = default; 409 }; 410 411 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 412 ProfRecord = Record; 413 uint64_t CntNum = Record->Counts.size(); 414 uint64_t ZeroCntNum = 0; 415 for (size_t I = 0; I < CntNum; ++I) { 416 MaxCount = std::max(MaxCount, Record->Counts[I]); 417 ZeroCntNum += !Record->Counts[I]; 418 } 419 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 420 } 421 422 /// Either set all the counters in the instr profile entry \p IFE to -1 423 /// in order to drop the profile or scale up the counters in \p IFP to 424 /// be above hot threshold. We use the ratio of zero counters in the 425 /// profile of a function to decide the profile is helpful or harmful 426 /// for performance, and to choose whether to scale up or drop it. 427 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 428 uint64_t HotInstrThreshold, 429 float ZeroCounterThreshold) { 430 InstrProfRecord *ProfRecord = IFE.ProfRecord; 431 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 432 // If all or most of the counters of the function are zero, the 433 // profile is unaccountable and shuld be dropped. Reset all the 434 // counters to be -1 and PGO profile-use will drop the profile. 435 // All counters being -1 also implies that the function is hot so 436 // PGO profile-use will also set the entry count metadata to be 437 // above hot threshold. 438 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 439 ProfRecord->Counts[I] = -1; 440 return; 441 } 442 443 // Scale up the MaxCount to be multiple times above hot threshold. 444 const unsigned MultiplyFactor = 3; 445 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 446 uint64_t Denominator = IFE.MaxCount; 447 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 448 warn(toString(make_error<InstrProfError>(E))); 449 }); 450 } 451 452 const uint64_t ColdPercentileIdx = 15; 453 const uint64_t HotPercentileIdx = 11; 454 455 using sampleprof::FSDiscriminatorPass; 456 457 // Internal options to set FSDiscriminatorPass. Used in merge and show 458 // commands. 459 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 460 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 461 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 462 "pass beyond this value. The enum values are defined in " 463 "Support/Discriminator.h"), 464 cl::values(clEnumVal(Base, "Use base discriminators only"), 465 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 466 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 467 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 468 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 469 470 static unsigned getDiscriminatorMask() { 471 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 472 } 473 474 /// Adjust the instr profile in \p WC based on the sample profile in 475 /// \p Reader. 476 static void 477 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 478 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 479 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 480 unsigned InstrProfColdThreshold) { 481 // Function to its entry in instr profile. 482 StringMap<InstrProfileEntry> InstrProfileMap; 483 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 484 for (auto &PD : WC->Writer.getProfileData()) { 485 // Populate IPBuilder. 486 for (const auto &PDV : PD.getValue()) { 487 InstrProfRecord Record = PDV.second; 488 IPBuilder.addRecord(Record); 489 } 490 491 // If a function has multiple entries in instr profile, skip it. 492 if (PD.getValue().size() != 1) 493 continue; 494 495 // Initialize InstrProfileMap. 496 InstrProfRecord *R = &PD.getValue().begin()->second; 497 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 498 } 499 500 ProfileSummary InstrPS = *IPBuilder.getSummary(); 501 ProfileSummary SamplePS = Reader->getSummary(); 502 503 // Compute cold thresholds for instr profile and sample profile. 504 uint64_t ColdSampleThreshold = 505 ProfileSummaryBuilder::getEntryForPercentile( 506 SamplePS.getDetailedSummary(), 507 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 508 .MinCount; 509 uint64_t HotInstrThreshold = 510 ProfileSummaryBuilder::getEntryForPercentile( 511 InstrPS.getDetailedSummary(), 512 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 513 .MinCount; 514 uint64_t ColdInstrThreshold = 515 InstrProfColdThreshold 516 ? InstrProfColdThreshold 517 : ProfileSummaryBuilder::getEntryForPercentile( 518 InstrPS.getDetailedSummary(), 519 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 520 .MinCount; 521 522 // Find hot/warm functions in sample profile which is cold in instr profile 523 // and adjust the profiles of those functions in the instr profile. 524 for (const auto &PD : Reader->getProfiles()) { 525 auto &FContext = PD.first; 526 const sampleprof::FunctionSamples &FS = PD.second; 527 auto It = InstrProfileMap.find(FContext.toString()); 528 if (FS.getHeadSamples() > ColdSampleThreshold && 529 It != InstrProfileMap.end() && 530 It->second.MaxCount <= ColdInstrThreshold && 531 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 532 updateInstrProfileEntry(It->second, HotInstrThreshold, 533 ZeroCounterThreshold); 534 } 535 } 536 } 537 538 /// The main function to supplement instr profile with sample profile. 539 /// \Inputs contains the instr profile. \p SampleFilename specifies the 540 /// sample profile. \p OutputFilename specifies the output profile name. 541 /// \p OutputFormat specifies the output profile format. \p OutputSparse 542 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 543 /// specifies the minimal size for the functions whose profile will be 544 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 545 /// a function contains too many zero counters and whether its profile 546 /// should be dropped. \p InstrProfColdThreshold is the user specified 547 /// cold threshold which will override the cold threshold got from the 548 /// instr profile summary. 549 static void supplementInstrProfile( 550 const WeightedFileVector &Inputs, StringRef SampleFilename, 551 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 552 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 553 unsigned InstrProfColdThreshold) { 554 if (OutputFilename.compare("-") == 0) 555 exitWithError("cannot write indexed profdata format to stdout"); 556 if (Inputs.size() != 1) 557 exitWithError("expect one input to be an instr profile"); 558 if (Inputs[0].Weight != 1) 559 exitWithError("expect instr profile doesn't have weight"); 560 561 StringRef InstrFilename = Inputs[0].Filename; 562 563 // Read sample profile. 564 LLVMContext Context; 565 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 566 SampleFilename.str(), Context, FSDiscriminatorPassOption); 567 if (std::error_code EC = ReaderOrErr.getError()) 568 exitWithErrorCode(EC, SampleFilename); 569 auto Reader = std::move(ReaderOrErr.get()); 570 if (std::error_code EC = Reader->read()) 571 exitWithErrorCode(EC, SampleFilename); 572 573 // Read instr profile. 574 std::mutex ErrorLock; 575 SmallSet<instrprof_error, 4> WriterErrorCodes; 576 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 577 WriterErrorCodes); 578 loadInput(Inputs[0], nullptr, WC.get()); 579 if (WC->Errors.size() > 0) 580 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 581 582 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 583 InstrProfColdThreshold); 584 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 585 } 586 587 /// Make a copy of the given function samples with all symbol names remapped 588 /// by the provided symbol remapper. 589 static sampleprof::FunctionSamples 590 remapSamples(const sampleprof::FunctionSamples &Samples, 591 SymbolRemapper &Remapper, sampleprof_error &Error) { 592 sampleprof::FunctionSamples Result; 593 Result.setName(Remapper(Samples.getName())); 594 Result.addTotalSamples(Samples.getTotalSamples()); 595 Result.addHeadSamples(Samples.getHeadSamples()); 596 for (const auto &BodySample : Samples.getBodySamples()) { 597 uint32_t MaskedDiscriminator = 598 BodySample.first.Discriminator & getDiscriminatorMask(); 599 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 600 BodySample.second.getSamples()); 601 for (const auto &Target : BodySample.second.getCallTargets()) { 602 Result.addCalledTargetSamples(BodySample.first.LineOffset, 603 MaskedDiscriminator, 604 Remapper(Target.first()), Target.second); 605 } 606 } 607 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 608 sampleprof::FunctionSamplesMap &Target = 609 Result.functionSamplesAt(CallsiteSamples.first); 610 for (const auto &Callsite : CallsiteSamples.second) { 611 sampleprof::FunctionSamples Remapped = 612 remapSamples(Callsite.second, Remapper, Error); 613 MergeResult(Error, 614 Target[std::string(Remapped.getName())].merge(Remapped)); 615 } 616 } 617 return Result; 618 } 619 620 static sampleprof::SampleProfileFormat FormatMap[] = { 621 sampleprof::SPF_None, 622 sampleprof::SPF_Text, 623 sampleprof::SPF_Compact_Binary, 624 sampleprof::SPF_Ext_Binary, 625 sampleprof::SPF_GCC, 626 sampleprof::SPF_Binary}; 627 628 static std::unique_ptr<MemoryBuffer> 629 getInputFileBuf(const StringRef &InputFile) { 630 if (InputFile == "") 631 return {}; 632 633 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 634 if (!BufOrError) 635 exitWithErrorCode(BufOrError.getError(), InputFile); 636 637 return std::move(*BufOrError); 638 } 639 640 static void populateProfileSymbolList(MemoryBuffer *Buffer, 641 sampleprof::ProfileSymbolList &PSL) { 642 if (!Buffer) 643 return; 644 645 SmallVector<StringRef, 32> SymbolVec; 646 StringRef Data = Buffer->getBuffer(); 647 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 648 649 for (StringRef symbol : SymbolVec) 650 PSL.add(symbol); 651 } 652 653 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 654 ProfileFormat OutputFormat, 655 MemoryBuffer *Buffer, 656 sampleprof::ProfileSymbolList &WriterList, 657 bool CompressAllSections, bool UseMD5, 658 bool GenPartialProfile) { 659 populateProfileSymbolList(Buffer, WriterList); 660 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 661 warn("Profile Symbol list is not empty but the output format is not " 662 "ExtBinary format. The list will be lost in the output. "); 663 664 Writer.setProfileSymbolList(&WriterList); 665 666 if (CompressAllSections) { 667 if (OutputFormat != PF_Ext_Binary) 668 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 669 else 670 Writer.setToCompressAllSections(); 671 } 672 if (UseMD5) { 673 if (OutputFormat != PF_Ext_Binary) 674 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 675 else 676 Writer.setUseMD5(); 677 } 678 if (GenPartialProfile) { 679 if (OutputFormat != PF_Ext_Binary) 680 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 681 else 682 Writer.setPartialProfile(); 683 } 684 } 685 686 static void 687 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 688 StringRef OutputFilename, ProfileFormat OutputFormat, 689 StringRef ProfileSymbolListFile, bool CompressAllSections, 690 bool UseMD5, bool GenPartialProfile, 691 bool SampleMergeColdContext, bool SampleTrimColdContext, 692 bool SampleColdContextFrameDepth, FailureMode FailMode) { 693 using namespace sampleprof; 694 SampleProfileMap ProfileMap; 695 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 696 LLVMContext Context; 697 sampleprof::ProfileSymbolList WriterList; 698 Optional<bool> ProfileIsProbeBased; 699 Optional<bool> ProfileIsCS; 700 for (const auto &Input : Inputs) { 701 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, 702 FSDiscriminatorPassOption); 703 if (std::error_code EC = ReaderOrErr.getError()) { 704 warnOrExitGivenError(FailMode, EC, Input.Filename); 705 continue; 706 } 707 708 // We need to keep the readers around until after all the files are 709 // read so that we do not lose the function names stored in each 710 // reader's memory. The function names are needed to write out the 711 // merged profile map. 712 Readers.push_back(std::move(ReaderOrErr.get())); 713 const auto Reader = Readers.back().get(); 714 if (std::error_code EC = Reader->read()) { 715 warnOrExitGivenError(FailMode, EC, Input.Filename); 716 Readers.pop_back(); 717 continue; 718 } 719 720 SampleProfileMap &Profiles = Reader->getProfiles(); 721 if (ProfileIsProbeBased.hasValue() && 722 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 723 exitWithError( 724 "cannot merge probe-based profile with non-probe-based profile"); 725 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 726 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 727 exitWithError("cannot merge CS profile with non-CS profile"); 728 ProfileIsCS = FunctionSamples::ProfileIsCS; 729 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 730 I != E; ++I) { 731 sampleprof_error Result = sampleprof_error::success; 732 FunctionSamples Remapped = 733 Remapper ? remapSamples(I->second, *Remapper, Result) 734 : FunctionSamples(); 735 FunctionSamples &Samples = Remapper ? Remapped : I->second; 736 SampleContext FContext = Samples.getContext(); 737 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 738 if (Result != sampleprof_error::success) { 739 std::error_code EC = make_error_code(Result); 740 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 741 FContext.toString()); 742 } 743 } 744 745 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 746 Reader->getProfileSymbolList(); 747 if (ReaderList) 748 WriterList.merge(*ReaderList); 749 } 750 751 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 752 // Use threshold calculated from profile summary unless specified. 753 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 754 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 755 uint64_t SampleProfColdThreshold = 756 ProfileSummaryBuilder::getColdCountThreshold( 757 (Summary->getDetailedSummary())); 758 759 // Trim and merge cold context profile using cold threshold above; 760 SampleContextTrimmer(ProfileMap) 761 .trimAndMergeColdContextProfiles( 762 SampleProfColdThreshold, SampleTrimColdContext, 763 SampleMergeColdContext, SampleColdContextFrameDepth, false); 764 } 765 766 auto WriterOrErr = 767 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 768 if (std::error_code EC = WriterOrErr.getError()) 769 exitWithErrorCode(EC, OutputFilename); 770 771 auto Writer = std::move(WriterOrErr.get()); 772 // WriterList will have StringRef refering to string in Buffer. 773 // Make sure Buffer lives as long as WriterList. 774 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 775 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 776 CompressAllSections, UseMD5, GenPartialProfile); 777 if (std::error_code EC = Writer->write(ProfileMap)) 778 exitWithErrorCode(std::move(EC)); 779 } 780 781 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 782 StringRef WeightStr, FileName; 783 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 784 785 uint64_t Weight; 786 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 787 exitWithError("input weight must be a positive integer"); 788 789 return {std::string(FileName), Weight}; 790 } 791 792 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 793 StringRef Filename = WF.Filename; 794 uint64_t Weight = WF.Weight; 795 796 // If it's STDIN just pass it on. 797 if (Filename == "-") { 798 WNI.push_back({std::string(Filename), Weight}); 799 return; 800 } 801 802 llvm::sys::fs::file_status Status; 803 llvm::sys::fs::status(Filename, Status); 804 if (!llvm::sys::fs::exists(Status)) 805 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 806 Filename); 807 // If it's a source file, collect it. 808 if (llvm::sys::fs::is_regular_file(Status)) { 809 WNI.push_back({std::string(Filename), Weight}); 810 return; 811 } 812 813 if (llvm::sys::fs::is_directory(Status)) { 814 std::error_code EC; 815 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 816 F != E && !EC; F.increment(EC)) { 817 if (llvm::sys::fs::is_regular_file(F->path())) { 818 addWeightedInput(WNI, {F->path(), Weight}); 819 } 820 } 821 if (EC) 822 exitWithErrorCode(EC, Filename); 823 } 824 } 825 826 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 827 WeightedFileVector &WFV) { 828 if (!Buffer) 829 return; 830 831 SmallVector<StringRef, 8> Entries; 832 StringRef Data = Buffer->getBuffer(); 833 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 834 for (const StringRef &FileWeightEntry : Entries) { 835 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 836 // Skip comments. 837 if (SanitizedEntry.startswith("#")) 838 continue; 839 // If there's no comma, it's an unweighted profile. 840 else if (!SanitizedEntry.contains(',')) 841 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 842 else 843 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 844 } 845 } 846 847 static int merge_main(int argc, const char *argv[]) { 848 cl::list<std::string> InputFilenames(cl::Positional, 849 cl::desc("<filename...>")); 850 cl::list<std::string> WeightedInputFilenames("weighted-input", 851 cl::desc("<weight>,<filename>")); 852 cl::opt<std::string> InputFilenamesFile( 853 "input-files", cl::init(""), 854 cl::desc("Path to file containing newline-separated " 855 "[<weight>,]<filename> entries")); 856 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 857 cl::aliasopt(InputFilenamesFile)); 858 cl::opt<bool> DumpInputFileList( 859 "dump-input-file-list", cl::init(false), cl::Hidden, 860 cl::desc("Dump the list of input files and their weights, then exit")); 861 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 862 cl::desc("Symbol remapping file")); 863 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 864 cl::aliasopt(RemappingFile)); 865 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 866 cl::init("-"), cl::desc("Output file")); 867 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 868 cl::aliasopt(OutputFilename)); 869 cl::opt<ProfileKinds> ProfileKind( 870 cl::desc("Profile kind:"), cl::init(instr), 871 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 872 clEnumVal(sample, "Sample profile"))); 873 cl::opt<ProfileFormat> OutputFormat( 874 cl::desc("Format of output profile"), cl::init(PF_Binary), 875 cl::values( 876 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 877 clEnumValN(PF_Compact_Binary, "compbinary", 878 "Compact binary encoding"), 879 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 880 clEnumValN(PF_Text, "text", "Text encoding"), 881 clEnumValN(PF_GCC, "gcc", 882 "GCC encoding (only meaningful for -sample)"))); 883 cl::opt<FailureMode> FailureMode( 884 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 885 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 886 "Fail if any profile is invalid."), 887 clEnumValN(failIfAllAreInvalid, "all", 888 "Fail only if all profiles are invalid."))); 889 cl::opt<bool> OutputSparse("sparse", cl::init(false), 890 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 891 cl::opt<unsigned> NumThreads( 892 "num-threads", cl::init(0), 893 cl::desc("Number of merge threads to use (default: autodetect)")); 894 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 895 cl::aliasopt(NumThreads)); 896 cl::opt<std::string> ProfileSymbolListFile( 897 "prof-sym-list", cl::init(""), 898 cl::desc("Path to file containing the list of function symbols " 899 "used to populate profile symbol list")); 900 cl::opt<bool> CompressAllSections( 901 "compress-all-sections", cl::init(false), cl::Hidden, 902 cl::desc("Compress all sections when writing the profile (only " 903 "meaningful for -extbinary)")); 904 cl::opt<bool> UseMD5( 905 "use-md5", cl::init(false), cl::Hidden, 906 cl::desc("Choose to use MD5 to represent string in name table (only " 907 "meaningful for -extbinary)")); 908 cl::opt<bool> SampleMergeColdContext( 909 "sample-merge-cold-context", cl::init(false), cl::Hidden, 910 cl::desc( 911 "Merge context sample profiles whose count is below cold threshold")); 912 cl::opt<bool> SampleTrimColdContext( 913 "sample-trim-cold-context", cl::init(false), cl::Hidden, 914 cl::desc( 915 "Trim context sample profiles whose count is below cold threshold")); 916 cl::opt<uint32_t> SampleColdContextFrameDepth( 917 "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore, 918 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 919 "context-less base profile")); 920 cl::opt<bool> GenPartialProfile( 921 "gen-partial-profile", cl::init(false), cl::Hidden, 922 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 923 cl::opt<std::string> SupplInstrWithSample( 924 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 925 cl::desc("Supplement an instr profile with sample profile, to correct " 926 "the profile unrepresentativeness issue. The sample " 927 "profile is the input of the flag. Output will be in instr " 928 "format (The flag only works with -instr)")); 929 cl::opt<float> ZeroCounterThreshold( 930 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 931 cl::desc("For the function which is cold in instr profile but hot in " 932 "sample profile, if the ratio of the number of zero counters " 933 "divided by the the total number of counters is above the " 934 "threshold, the profile of the function will be regarded as " 935 "being harmful for performance and will be dropped.")); 936 cl::opt<unsigned> SupplMinSizeThreshold( 937 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 938 cl::desc("If the size of a function is smaller than the threshold, " 939 "assume it can be inlined by PGO early inliner and it won't " 940 "be adjusted based on sample profile.")); 941 cl::opt<unsigned> InstrProfColdThreshold( 942 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 943 cl::desc("User specified cold threshold for instr profile which will " 944 "override the cold threshold got from profile summary.")); 945 946 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 947 948 WeightedFileVector WeightedInputs; 949 for (StringRef Filename : InputFilenames) 950 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 951 for (StringRef WeightedFilename : WeightedInputFilenames) 952 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 953 954 // Make sure that the file buffer stays alive for the duration of the 955 // weighted input vector's lifetime. 956 auto Buffer = getInputFileBuf(InputFilenamesFile); 957 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 958 959 if (WeightedInputs.empty()) 960 exitWithError("no input files specified. See " + 961 sys::path::filename(argv[0]) + " -help"); 962 963 if (DumpInputFileList) { 964 for (auto &WF : WeightedInputs) 965 outs() << WF.Weight << "," << WF.Filename << "\n"; 966 return 0; 967 } 968 969 std::unique_ptr<SymbolRemapper> Remapper; 970 if (!RemappingFile.empty()) 971 Remapper = SymbolRemapper::create(RemappingFile); 972 973 if (!SupplInstrWithSample.empty()) { 974 if (ProfileKind != instr) 975 exitWithError( 976 "-supplement-instr-with-sample can only work with -instr. "); 977 978 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 979 OutputFormat, OutputSparse, SupplMinSizeThreshold, 980 ZeroCounterThreshold, InstrProfColdThreshold); 981 return 0; 982 } 983 984 if (ProfileKind == instr) 985 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 986 OutputFormat, OutputSparse, NumThreads, FailureMode); 987 else 988 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 989 OutputFormat, ProfileSymbolListFile, CompressAllSections, 990 UseMD5, GenPartialProfile, SampleMergeColdContext, 991 SampleTrimColdContext, SampleColdContextFrameDepth, 992 FailureMode); 993 994 return 0; 995 } 996 997 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 998 static void overlapInstrProfile(const std::string &BaseFilename, 999 const std::string &TestFilename, 1000 const OverlapFuncFilters &FuncFilter, 1001 raw_fd_ostream &OS, bool IsCS) { 1002 std::mutex ErrorLock; 1003 SmallSet<instrprof_error, 4> WriterErrorCodes; 1004 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1005 WeightedFile WeightedInput{BaseFilename, 1}; 1006 OverlapStats Overlap; 1007 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1008 if (E) 1009 exitWithError(std::move(E), "error in getting profile count sums"); 1010 if (Overlap.Base.CountSum < 1.0f) { 1011 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1012 exit(0); 1013 } 1014 if (Overlap.Test.CountSum < 1.0f) { 1015 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1016 exit(0); 1017 } 1018 loadInput(WeightedInput, nullptr, &Context); 1019 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1020 IsCS); 1021 Overlap.dump(OS); 1022 } 1023 1024 namespace { 1025 struct SampleOverlapStats { 1026 SampleContext BaseName; 1027 SampleContext TestName; 1028 // Number of overlap units 1029 uint64_t OverlapCount; 1030 // Total samples of overlap units 1031 uint64_t OverlapSample; 1032 // Number of and total samples of units that only present in base or test 1033 // profile 1034 uint64_t BaseUniqueCount; 1035 uint64_t BaseUniqueSample; 1036 uint64_t TestUniqueCount; 1037 uint64_t TestUniqueSample; 1038 // Number of units and total samples in base or test profile 1039 uint64_t BaseCount; 1040 uint64_t BaseSample; 1041 uint64_t TestCount; 1042 uint64_t TestSample; 1043 // Number of and total samples of units that present in at least one profile 1044 uint64_t UnionCount; 1045 uint64_t UnionSample; 1046 // Weighted similarity 1047 double Similarity; 1048 // For SampleOverlapStats instances representing functions, weights of the 1049 // function in base and test profiles 1050 double BaseWeight; 1051 double TestWeight; 1052 1053 SampleOverlapStats() 1054 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1055 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1056 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1057 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1058 }; 1059 } // end anonymous namespace 1060 1061 namespace { 1062 struct FuncSampleStats { 1063 uint64_t SampleSum; 1064 uint64_t MaxSample; 1065 uint64_t HotBlockCount; 1066 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1067 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1068 uint64_t HotBlockCount) 1069 : SampleSum(SampleSum), MaxSample(MaxSample), 1070 HotBlockCount(HotBlockCount) {} 1071 }; 1072 } // end anonymous namespace 1073 1074 namespace { 1075 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1076 1077 // Class for updating merging steps for two sorted maps. The class should be 1078 // instantiated with a map iterator type. 1079 template <class T> class MatchStep { 1080 public: 1081 MatchStep() = delete; 1082 1083 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1084 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1085 SecondEnd(SecondEnd), Status(MS_None) {} 1086 1087 bool areBothFinished() const { 1088 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1089 } 1090 1091 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1092 1093 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1094 1095 /// Advance one step based on the previous match status unless the previous 1096 /// status is MS_None. Then update Status based on the comparison between two 1097 /// container iterators at the current step. If the previous status is 1098 /// MS_None, it means two iterators are at the beginning and no comparison has 1099 /// been made, so we simply update Status without advancing the iterators. 1100 void updateOneStep(); 1101 1102 T getFirstIter() const { return FirstIter; } 1103 1104 T getSecondIter() const { return SecondIter; } 1105 1106 MatchStatus getMatchStatus() const { return Status; } 1107 1108 private: 1109 // Current iterator and end iterator of the first container. 1110 T FirstIter; 1111 T FirstEnd; 1112 // Current iterator and end iterator of the second container. 1113 T SecondIter; 1114 T SecondEnd; 1115 // Match status of the current step. 1116 MatchStatus Status; 1117 }; 1118 } // end anonymous namespace 1119 1120 template <class T> void MatchStep<T>::updateOneStep() { 1121 switch (Status) { 1122 case MS_Match: 1123 ++FirstIter; 1124 ++SecondIter; 1125 break; 1126 case MS_FirstUnique: 1127 ++FirstIter; 1128 break; 1129 case MS_SecondUnique: 1130 ++SecondIter; 1131 break; 1132 case MS_None: 1133 break; 1134 } 1135 1136 // Update Status according to iterators at the current step. 1137 if (areBothFinished()) 1138 return; 1139 if (FirstIter != FirstEnd && 1140 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1141 Status = MS_FirstUnique; 1142 else if (SecondIter != SecondEnd && 1143 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1144 Status = MS_SecondUnique; 1145 else 1146 Status = MS_Match; 1147 } 1148 1149 // Return the sum of line/block samples, the max line/block sample, and the 1150 // number of line/block samples above the given threshold in a function 1151 // including its inlinees. 1152 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1153 FuncSampleStats &FuncStats, 1154 uint64_t HotThreshold) { 1155 for (const auto &L : Func.getBodySamples()) { 1156 uint64_t Sample = L.second.getSamples(); 1157 FuncStats.SampleSum += Sample; 1158 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1159 if (Sample >= HotThreshold) 1160 ++FuncStats.HotBlockCount; 1161 } 1162 1163 for (const auto &C : Func.getCallsiteSamples()) { 1164 for (const auto &F : C.second) 1165 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1166 } 1167 } 1168 1169 /// Predicate that determines if a function is hot with a given threshold. We 1170 /// keep it separate from its callsites for possible extension in the future. 1171 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1172 uint64_t HotThreshold) { 1173 // We intentionally compare the maximum sample count in a function with the 1174 // HotThreshold to get an approximate determination on hot functions. 1175 return (FuncStats.MaxSample >= HotThreshold); 1176 } 1177 1178 namespace { 1179 class SampleOverlapAggregator { 1180 public: 1181 SampleOverlapAggregator(const std::string &BaseFilename, 1182 const std::string &TestFilename, 1183 double LowSimilarityThreshold, double Epsilon, 1184 const OverlapFuncFilters &FuncFilter) 1185 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1186 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1187 FuncFilter(FuncFilter) {} 1188 1189 /// Detect 0-sample input profile and report to output stream. This interface 1190 /// should be called after loadProfiles(). 1191 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1192 1193 /// Write out function-level similarity statistics for functions specified by 1194 /// options --function, --value-cutoff, and --similarity-cutoff. 1195 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1196 1197 /// Write out program-level similarity and overlap statistics. 1198 void dumpProgramSummary(raw_fd_ostream &OS) const; 1199 1200 /// Write out hot-function and hot-block statistics for base_profile, 1201 /// test_profile, and their overlap. For both cases, the overlap HO is 1202 /// calculated as follows: 1203 /// Given the number of functions (or blocks) that are hot in both profiles 1204 /// HCommon and the number of functions (or blocks) that are hot in at 1205 /// least one profile HUnion, HO = HCommon / HUnion. 1206 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1207 1208 /// This function tries matching functions in base and test profiles. For each 1209 /// pair of matched functions, it aggregates the function-level 1210 /// similarity into a profile-level similarity. It also dump function-level 1211 /// similarity information of functions specified by --function, 1212 /// --value-cutoff, and --similarity-cutoff options. The program-level 1213 /// similarity PS is computed as follows: 1214 /// Given function-level similarity FS(A) for all function A, the 1215 /// weight of function A in base profile WB(A), and the weight of function 1216 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1217 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1218 /// meaning no-overlap. 1219 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1220 1221 /// Initialize ProfOverlap with the sum of samples in base and test 1222 /// profiles. This function also computes and keeps the sum of samples and 1223 /// max sample counts of each function in BaseStats and TestStats for later 1224 /// use to avoid re-computations. 1225 void initializeSampleProfileOverlap(); 1226 1227 /// Load profiles specified by BaseFilename and TestFilename. 1228 std::error_code loadProfiles(); 1229 1230 using FuncSampleStatsMap = 1231 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1232 1233 private: 1234 SampleOverlapStats ProfOverlap; 1235 SampleOverlapStats HotFuncOverlap; 1236 SampleOverlapStats HotBlockOverlap; 1237 std::string BaseFilename; 1238 std::string TestFilename; 1239 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1240 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1241 // BaseStats and TestStats hold FuncSampleStats for each function, with 1242 // function name as the key. 1243 FuncSampleStatsMap BaseStats; 1244 FuncSampleStatsMap TestStats; 1245 // Low similarity threshold in floating point number 1246 double LowSimilarityThreshold; 1247 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1248 // for tracking hot blocks. 1249 uint64_t BaseHotThreshold; 1250 uint64_t TestHotThreshold; 1251 // A small threshold used to round the results of floating point accumulations 1252 // to resolve imprecision. 1253 const double Epsilon; 1254 std::multimap<double, SampleOverlapStats, std::greater<double>> 1255 FuncSimilarityDump; 1256 // FuncFilter carries specifications in options --value-cutoff and 1257 // --function. 1258 OverlapFuncFilters FuncFilter; 1259 // Column offsets for printing the function-level details table. 1260 static const unsigned int TestWeightCol = 15; 1261 static const unsigned int SimilarityCol = 30; 1262 static const unsigned int OverlapCol = 43; 1263 static const unsigned int BaseUniqueCol = 53; 1264 static const unsigned int TestUniqueCol = 67; 1265 static const unsigned int BaseSampleCol = 81; 1266 static const unsigned int TestSampleCol = 96; 1267 static const unsigned int FuncNameCol = 111; 1268 1269 /// Return a similarity of two line/block sample counters in the same 1270 /// function in base and test profiles. The line/block-similarity BS(i) is 1271 /// computed as follows: 1272 /// For an offsets i, given the sample count at i in base profile BB(i), 1273 /// the sample count at i in test profile BT(i), the sum of sample counts 1274 /// in this function in base profile SB, and the sum of sample counts in 1275 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1276 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1277 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1278 const SampleOverlapStats &FuncOverlap) const; 1279 1280 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1281 uint64_t HotBlockCount); 1282 1283 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1284 FuncSampleStatsMap &HotFunc, 1285 uint64_t HotThreshold) const; 1286 1287 void computeHotFuncOverlap(); 1288 1289 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1290 /// Difference for two sample units in a matched function according to the 1291 /// given match status. 1292 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1293 uint64_t HotBlockCount, 1294 SampleOverlapStats &FuncOverlap, 1295 double &Difference, MatchStatus Status); 1296 1297 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1298 /// Difference for unmatched callees that only present in one profile in a 1299 /// matched caller function. 1300 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1301 SampleOverlapStats &FuncOverlap, 1302 double &Difference, MatchStatus Status); 1303 1304 /// This function updates sample overlap statistics of an overlap function in 1305 /// base and test profile. It also calculates a function-internal similarity 1306 /// FIS as follows: 1307 /// For offsets i that have samples in at least one profile in this 1308 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1309 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1310 /// 0.0 meaning no overlap. 1311 double computeSampleFunctionInternalOverlap( 1312 const sampleprof::FunctionSamples &BaseFunc, 1313 const sampleprof::FunctionSamples &TestFunc, 1314 SampleOverlapStats &FuncOverlap); 1315 1316 /// Function-level similarity (FS) is a weighted value over function internal 1317 /// similarity (FIS). This function computes a function's FS from its FIS by 1318 /// applying the weight. 1319 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1320 uint64_t TestFuncSample) const; 1321 1322 /// The function-level similarity FS(A) for a function A is computed as 1323 /// follows: 1324 /// Compute a function-internal similarity FIS(A) by 1325 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1326 /// function A in base profile WB(A), and the weight of function A in test 1327 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1328 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1329 double 1330 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1331 const sampleprof::FunctionSamples *TestFunc, 1332 SampleOverlapStats *FuncOverlap, 1333 uint64_t BaseFuncSample, 1334 uint64_t TestFuncSample); 1335 1336 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1337 /// similarities (FS). This method weights the FS value by the function 1338 /// weights in the base and test profiles for the aggregation. 1339 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1340 uint64_t TestFuncSample) const; 1341 }; 1342 } // end anonymous namespace 1343 1344 bool SampleOverlapAggregator::detectZeroSampleProfile( 1345 raw_fd_ostream &OS) const { 1346 bool HaveZeroSample = false; 1347 if (ProfOverlap.BaseSample == 0) { 1348 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1349 HaveZeroSample = true; 1350 } 1351 if (ProfOverlap.TestSample == 0) { 1352 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1353 HaveZeroSample = true; 1354 } 1355 return HaveZeroSample; 1356 } 1357 1358 double SampleOverlapAggregator::computeBlockSimilarity( 1359 uint64_t BaseSample, uint64_t TestSample, 1360 const SampleOverlapStats &FuncOverlap) const { 1361 double BaseFrac = 0.0; 1362 double TestFrac = 0.0; 1363 if (FuncOverlap.BaseSample > 0) 1364 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1365 if (FuncOverlap.TestSample > 0) 1366 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1367 return 1.0 - std::fabs(BaseFrac - TestFrac); 1368 } 1369 1370 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1371 uint64_t TestSample, 1372 uint64_t HotBlockCount) { 1373 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1374 bool IsTestHot = (TestSample >= TestHotThreshold); 1375 if (!IsBaseHot && !IsTestHot) 1376 return; 1377 1378 HotBlockOverlap.UnionCount += HotBlockCount; 1379 if (IsBaseHot) 1380 HotBlockOverlap.BaseCount += HotBlockCount; 1381 if (IsTestHot) 1382 HotBlockOverlap.TestCount += HotBlockCount; 1383 if (IsBaseHot && IsTestHot) 1384 HotBlockOverlap.OverlapCount += HotBlockCount; 1385 } 1386 1387 void SampleOverlapAggregator::getHotFunctions( 1388 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 1389 uint64_t HotThreshold) const { 1390 for (const auto &F : ProfStats) { 1391 if (isFunctionHot(F.second, HotThreshold)) 1392 HotFunc.emplace(F.first, F.second); 1393 } 1394 } 1395 1396 void SampleOverlapAggregator::computeHotFuncOverlap() { 1397 FuncSampleStatsMap BaseHotFunc; 1398 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1399 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1400 1401 FuncSampleStatsMap TestHotFunc; 1402 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1403 HotFuncOverlap.TestCount = TestHotFunc.size(); 1404 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1405 1406 for (const auto &F : BaseHotFunc) { 1407 if (TestHotFunc.count(F.first)) 1408 ++HotFuncOverlap.OverlapCount; 1409 else 1410 ++HotFuncOverlap.UnionCount; 1411 } 1412 } 1413 1414 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1415 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1416 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1417 assert(Status != MS_None && 1418 "Match status should be updated before updating overlap statistics"); 1419 if (Status == MS_FirstUnique) { 1420 TestSample = 0; 1421 FuncOverlap.BaseUniqueSample += BaseSample; 1422 } else if (Status == MS_SecondUnique) { 1423 BaseSample = 0; 1424 FuncOverlap.TestUniqueSample += TestSample; 1425 } else { 1426 ++FuncOverlap.OverlapCount; 1427 } 1428 1429 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1430 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1431 Difference += 1432 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1433 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1434 } 1435 1436 void SampleOverlapAggregator::updateForUnmatchedCallee( 1437 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1438 double &Difference, MatchStatus Status) { 1439 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1440 "Status must be either of the two unmatched cases"); 1441 FuncSampleStats FuncStats; 1442 if (Status == MS_FirstUnique) { 1443 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1444 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1445 FuncStats.HotBlockCount, FuncOverlap, 1446 Difference, Status); 1447 } else { 1448 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1449 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1450 FuncStats.HotBlockCount, FuncOverlap, 1451 Difference, Status); 1452 } 1453 } 1454 1455 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1456 const sampleprof::FunctionSamples &BaseFunc, 1457 const sampleprof::FunctionSamples &TestFunc, 1458 SampleOverlapStats &FuncOverlap) { 1459 1460 using namespace sampleprof; 1461 1462 double Difference = 0; 1463 1464 // Accumulate Difference for regular line/block samples in the function. 1465 // We match them through sort-merge join algorithm because 1466 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1467 // by their offsets. 1468 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1469 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1470 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1471 BlockIterStep.updateOneStep(); 1472 while (!BlockIterStep.areBothFinished()) { 1473 uint64_t BaseSample = 1474 BlockIterStep.isFirstFinished() 1475 ? 0 1476 : BlockIterStep.getFirstIter()->second.getSamples(); 1477 uint64_t TestSample = 1478 BlockIterStep.isSecondFinished() 1479 ? 0 1480 : BlockIterStep.getSecondIter()->second.getSamples(); 1481 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1482 Difference, BlockIterStep.getMatchStatus()); 1483 1484 BlockIterStep.updateOneStep(); 1485 } 1486 1487 // Accumulate Difference for callsite lines in the function. We match 1488 // them through sort-merge algorithm because 1489 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1490 // ordered by their offsets. 1491 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1492 BaseFunc.getCallsiteSamples().cbegin(), 1493 BaseFunc.getCallsiteSamples().cend(), 1494 TestFunc.getCallsiteSamples().cbegin(), 1495 TestFunc.getCallsiteSamples().cend()); 1496 CallsiteIterStep.updateOneStep(); 1497 while (!CallsiteIterStep.areBothFinished()) { 1498 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1499 assert(CallsiteStepStatus != MS_None && 1500 "Match status should be updated before entering loop body"); 1501 1502 if (CallsiteStepStatus != MS_Match) { 1503 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1504 ? CallsiteIterStep.getFirstIter() 1505 : CallsiteIterStep.getSecondIter(); 1506 for (const auto &F : Callsite->second) 1507 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1508 CallsiteStepStatus); 1509 } else { 1510 // There may be multiple inlinees at the same offset, so we need to try 1511 // matching all of them. This match is implemented through sort-merge 1512 // algorithm because callsite records at the same offset are ordered by 1513 // function names. 1514 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1515 CallsiteIterStep.getFirstIter()->second.cbegin(), 1516 CallsiteIterStep.getFirstIter()->second.cend(), 1517 CallsiteIterStep.getSecondIter()->second.cbegin(), 1518 CallsiteIterStep.getSecondIter()->second.cend()); 1519 CalleeIterStep.updateOneStep(); 1520 while (!CalleeIterStep.areBothFinished()) { 1521 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1522 if (CalleeStepStatus != MS_Match) { 1523 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1524 ? CalleeIterStep.getFirstIter() 1525 : CalleeIterStep.getSecondIter(); 1526 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1527 CalleeStepStatus); 1528 } else { 1529 // An inlined function can contain other inlinees inside, so compute 1530 // the Difference recursively. 1531 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1532 CalleeIterStep.getFirstIter()->second, 1533 CalleeIterStep.getSecondIter()->second, 1534 FuncOverlap); 1535 } 1536 CalleeIterStep.updateOneStep(); 1537 } 1538 } 1539 CallsiteIterStep.updateOneStep(); 1540 } 1541 1542 // Difference reflects the total differences of line/block samples in this 1543 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1544 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1545 return (2.0 - Difference) / 2; 1546 } 1547 1548 double SampleOverlapAggregator::weightForFuncSimilarity( 1549 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1550 uint64_t TestFuncSample) const { 1551 // Compute the weight as the distance between the function weights in two 1552 // profiles. 1553 double BaseFrac = 0.0; 1554 double TestFrac = 0.0; 1555 assert(ProfOverlap.BaseSample > 0 && 1556 "Total samples in base profile should be greater than 0"); 1557 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1558 assert(ProfOverlap.TestSample > 0 && 1559 "Total samples in test profile should be greater than 0"); 1560 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1561 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1562 1563 // Take WeightDistance into the similarity. 1564 return FuncInternalSimilarity * (1 - WeightDistance); 1565 } 1566 1567 double 1568 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1569 uint64_t BaseFuncSample, 1570 uint64_t TestFuncSample) const { 1571 1572 double BaseFrac = 0.0; 1573 double TestFrac = 0.0; 1574 assert(ProfOverlap.BaseSample > 0 && 1575 "Total samples in base profile should be greater than 0"); 1576 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1577 assert(ProfOverlap.TestSample > 0 && 1578 "Total samples in test profile should be greater than 0"); 1579 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1580 return FuncSimilarity * (BaseFrac + TestFrac); 1581 } 1582 1583 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1584 const sampleprof::FunctionSamples *BaseFunc, 1585 const sampleprof::FunctionSamples *TestFunc, 1586 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1587 uint64_t TestFuncSample) { 1588 // Default function internal similarity before weighted, meaning two functions 1589 // has no overlap. 1590 const double DefaultFuncInternalSimilarity = 0; 1591 double FuncSimilarity; 1592 double FuncInternalSimilarity; 1593 1594 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1595 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1596 // similarity. 1597 if (!BaseFunc || !TestFunc) { 1598 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1599 } else { 1600 assert(FuncOverlap != nullptr && 1601 "FuncOverlap should be provided in this case"); 1602 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1603 *BaseFunc, *TestFunc, *FuncOverlap); 1604 // Now, FuncInternalSimilarity may be a little less than 0 due to 1605 // imprecision of floating point accumulations. Make it zero if the 1606 // difference is below Epsilon. 1607 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1608 ? 0 1609 : FuncInternalSimilarity; 1610 } 1611 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1612 BaseFuncSample, TestFuncSample); 1613 return FuncSimilarity; 1614 } 1615 1616 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1617 using namespace sampleprof; 1618 1619 std::unordered_map<SampleContext, const FunctionSamples *, 1620 SampleContext::Hash> 1621 BaseFuncProf; 1622 const auto &BaseProfiles = BaseReader->getProfiles(); 1623 for (const auto &BaseFunc : BaseProfiles) { 1624 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 1625 } 1626 ProfOverlap.UnionCount = BaseFuncProf.size(); 1627 1628 const auto &TestProfiles = TestReader->getProfiles(); 1629 for (const auto &TestFunc : TestProfiles) { 1630 SampleOverlapStats FuncOverlap; 1631 FuncOverlap.TestName = TestFunc.second.getContext(); 1632 assert(TestStats.count(FuncOverlap.TestName) && 1633 "TestStats should have records for all functions in test profile " 1634 "except inlinees"); 1635 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1636 1637 bool Matched = false; 1638 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1639 if (Match == BaseFuncProf.end()) { 1640 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1641 ++ProfOverlap.TestUniqueCount; 1642 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1643 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1644 1645 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1646 1647 double FuncSimilarity = computeSampleFunctionOverlap( 1648 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1649 ProfOverlap.Similarity += 1650 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1651 1652 ++ProfOverlap.UnionCount; 1653 ProfOverlap.UnionSample += FuncStats.SampleSum; 1654 } else { 1655 ++ProfOverlap.OverlapCount; 1656 1657 // Two functions match with each other. Compute function-level overlap and 1658 // aggregate them into profile-level overlap. 1659 FuncOverlap.BaseName = Match->second->getContext(); 1660 assert(BaseStats.count(FuncOverlap.BaseName) && 1661 "BaseStats should have records for all functions in base profile " 1662 "except inlinees"); 1663 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1664 1665 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1666 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1667 FuncOverlap.TestSample); 1668 ProfOverlap.Similarity += 1669 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1670 FuncOverlap.TestSample); 1671 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1672 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1673 1674 // Accumulate the percentage of base unique and test unique samples into 1675 // ProfOverlap. 1676 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1677 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1678 1679 // Remove matched base functions for later reporting functions not found 1680 // in test profile. 1681 BaseFuncProf.erase(Match); 1682 Matched = true; 1683 } 1684 1685 // Print function-level similarity information if specified by options. 1686 assert(TestStats.count(FuncOverlap.TestName) && 1687 "TestStats should have records for all functions in test profile " 1688 "except inlinees"); 1689 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1690 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 1691 (Matched && !FuncFilter.NameFilter.empty() && 1692 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 1693 std::string::npos)) { 1694 assert(ProfOverlap.BaseSample > 0 && 1695 "Total samples in base profile should be greater than 0"); 1696 FuncOverlap.BaseWeight = 1697 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1698 assert(ProfOverlap.TestSample > 0 && 1699 "Total samples in test profile should be greater than 0"); 1700 FuncOverlap.TestWeight = 1701 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1702 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1703 } 1704 } 1705 1706 // Traverse through functions in base profile but not in test profile. 1707 for (const auto &F : BaseFuncProf) { 1708 assert(BaseStats.count(F.second->getContext()) && 1709 "BaseStats should have records for all functions in base profile " 1710 "except inlinees"); 1711 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 1712 ++ProfOverlap.BaseUniqueCount; 1713 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1714 1715 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1716 1717 double FuncSimilarity = computeSampleFunctionOverlap( 1718 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1719 ProfOverlap.Similarity += 1720 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1721 1722 ProfOverlap.UnionSample += FuncStats.SampleSum; 1723 } 1724 1725 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1726 // of floating point accumulations. Make it 1.0 if the difference is below 1727 // Epsilon. 1728 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1729 ? 1 1730 : ProfOverlap.Similarity; 1731 1732 computeHotFuncOverlap(); 1733 } 1734 1735 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1736 const auto &BaseProf = BaseReader->getProfiles(); 1737 for (const auto &I : BaseProf) { 1738 ++ProfOverlap.BaseCount; 1739 FuncSampleStats FuncStats; 1740 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1741 ProfOverlap.BaseSample += FuncStats.SampleSum; 1742 BaseStats.emplace(I.second.getContext(), FuncStats); 1743 } 1744 1745 const auto &TestProf = TestReader->getProfiles(); 1746 for (const auto &I : TestProf) { 1747 ++ProfOverlap.TestCount; 1748 FuncSampleStats FuncStats; 1749 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1750 ProfOverlap.TestSample += FuncStats.SampleSum; 1751 TestStats.emplace(I.second.getContext(), FuncStats); 1752 } 1753 1754 ProfOverlap.BaseName = StringRef(BaseFilename); 1755 ProfOverlap.TestName = StringRef(TestFilename); 1756 } 1757 1758 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1759 using namespace sampleprof; 1760 1761 if (FuncSimilarityDump.empty()) 1762 return; 1763 1764 formatted_raw_ostream FOS(OS); 1765 FOS << "Function-level details:\n"; 1766 FOS << "Base weight"; 1767 FOS.PadToColumn(TestWeightCol); 1768 FOS << "Test weight"; 1769 FOS.PadToColumn(SimilarityCol); 1770 FOS << "Similarity"; 1771 FOS.PadToColumn(OverlapCol); 1772 FOS << "Overlap"; 1773 FOS.PadToColumn(BaseUniqueCol); 1774 FOS << "Base unique"; 1775 FOS.PadToColumn(TestUniqueCol); 1776 FOS << "Test unique"; 1777 FOS.PadToColumn(BaseSampleCol); 1778 FOS << "Base samples"; 1779 FOS.PadToColumn(TestSampleCol); 1780 FOS << "Test samples"; 1781 FOS.PadToColumn(FuncNameCol); 1782 FOS << "Function name\n"; 1783 for (const auto &F : FuncSimilarityDump) { 1784 double OverlapPercent = 1785 F.second.UnionSample > 0 1786 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1787 : 0; 1788 double BaseUniquePercent = 1789 F.second.BaseSample > 0 1790 ? static_cast<double>(F.second.BaseUniqueSample) / 1791 F.second.BaseSample 1792 : 0; 1793 double TestUniquePercent = 1794 F.second.TestSample > 0 1795 ? static_cast<double>(F.second.TestUniqueSample) / 1796 F.second.TestSample 1797 : 0; 1798 1799 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1800 FOS.PadToColumn(TestWeightCol); 1801 FOS << format("%.2f%%", F.second.TestWeight * 100); 1802 FOS.PadToColumn(SimilarityCol); 1803 FOS << format("%.2f%%", F.second.Similarity * 100); 1804 FOS.PadToColumn(OverlapCol); 1805 FOS << format("%.2f%%", OverlapPercent * 100); 1806 FOS.PadToColumn(BaseUniqueCol); 1807 FOS << format("%.2f%%", BaseUniquePercent * 100); 1808 FOS.PadToColumn(TestUniqueCol); 1809 FOS << format("%.2f%%", TestUniquePercent * 100); 1810 FOS.PadToColumn(BaseSampleCol); 1811 FOS << F.second.BaseSample; 1812 FOS.PadToColumn(TestSampleCol); 1813 FOS << F.second.TestSample; 1814 FOS.PadToColumn(FuncNameCol); 1815 FOS << F.second.TestName.toString() << "\n"; 1816 } 1817 } 1818 1819 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1820 OS << "Profile overlap infomation for base_profile: " 1821 << ProfOverlap.BaseName.toString() 1822 << " and test_profile: " << ProfOverlap.TestName.toString() 1823 << "\nProgram level:\n"; 1824 1825 OS << " Whole program profile similarity: " 1826 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1827 1828 assert(ProfOverlap.UnionSample > 0 && 1829 "Total samples in two profile should be greater than 0"); 1830 double OverlapPercent = 1831 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1832 assert(ProfOverlap.BaseSample > 0 && 1833 "Total samples in base profile should be greater than 0"); 1834 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1835 ProfOverlap.BaseSample; 1836 assert(ProfOverlap.TestSample > 0 && 1837 "Total samples in test profile should be greater than 0"); 1838 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1839 ProfOverlap.TestSample; 1840 1841 OS << " Whole program sample overlap: " 1842 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1843 OS << " percentage of samples unique in base profile: " 1844 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1845 OS << " percentage of samples unique in test profile: " 1846 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1847 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1848 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1849 1850 assert(ProfOverlap.UnionCount > 0 && 1851 "There should be at least one function in two input profiles"); 1852 double FuncOverlapPercent = 1853 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1854 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1855 << "\n"; 1856 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1857 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1858 << "\n"; 1859 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1860 << "\n"; 1861 } 1862 1863 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1864 raw_fd_ostream &OS) const { 1865 assert(HotFuncOverlap.UnionCount > 0 && 1866 "There should be at least one hot function in two input profiles"); 1867 OS << " Hot-function overlap: " 1868 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1869 HotFuncOverlap.UnionCount * 100) 1870 << "\n"; 1871 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1872 OS << " hot functions unique in base profile: " 1873 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1874 OS << " hot functions unique in test profile: " 1875 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1876 1877 assert(HotBlockOverlap.UnionCount > 0 && 1878 "There should be at least one hot block in two input profiles"); 1879 OS << " Hot-block overlap: " 1880 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1881 HotBlockOverlap.UnionCount * 100) 1882 << "\n"; 1883 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1884 OS << " hot blocks unique in base profile: " 1885 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1886 OS << " hot blocks unique in test profile: " 1887 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1888 } 1889 1890 std::error_code SampleOverlapAggregator::loadProfiles() { 1891 using namespace sampleprof; 1892 1893 LLVMContext Context; 1894 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, 1895 FSDiscriminatorPassOption); 1896 if (std::error_code EC = BaseReaderOrErr.getError()) 1897 exitWithErrorCode(EC, BaseFilename); 1898 1899 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, 1900 FSDiscriminatorPassOption); 1901 if (std::error_code EC = TestReaderOrErr.getError()) 1902 exitWithErrorCode(EC, TestFilename); 1903 1904 BaseReader = std::move(BaseReaderOrErr.get()); 1905 TestReader = std::move(TestReaderOrErr.get()); 1906 1907 if (std::error_code EC = BaseReader->read()) 1908 exitWithErrorCode(EC, BaseFilename); 1909 if (std::error_code EC = TestReader->read()) 1910 exitWithErrorCode(EC, TestFilename); 1911 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1912 exitWithError( 1913 "cannot compare probe-based profile with non-probe-based profile"); 1914 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1915 exitWithError("cannot compare CS profile with non-CS profile"); 1916 1917 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1918 // profile summary. 1919 ProfileSummary &BasePS = BaseReader->getSummary(); 1920 ProfileSummary &TestPS = TestReader->getSummary(); 1921 BaseHotThreshold = 1922 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 1923 TestHotThreshold = 1924 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 1925 1926 return std::error_code(); 1927 } 1928 1929 void overlapSampleProfile(const std::string &BaseFilename, 1930 const std::string &TestFilename, 1931 const OverlapFuncFilters &FuncFilter, 1932 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1933 using namespace sampleprof; 1934 1935 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1936 // report 2--3 places after decimal point in percentage numbers. 1937 SampleOverlapAggregator OverlapAggr( 1938 BaseFilename, TestFilename, 1939 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1940 if (std::error_code EC = OverlapAggr.loadProfiles()) 1941 exitWithErrorCode(EC); 1942 1943 OverlapAggr.initializeSampleProfileOverlap(); 1944 if (OverlapAggr.detectZeroSampleProfile(OS)) 1945 return; 1946 1947 OverlapAggr.computeSampleProfileOverlap(OS); 1948 1949 OverlapAggr.dumpProgramSummary(OS); 1950 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1951 OverlapAggr.dumpFuncSimilarity(OS); 1952 } 1953 1954 static int overlap_main(int argc, const char *argv[]) { 1955 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1956 cl::desc("<base profile file>")); 1957 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1958 cl::desc("<test profile file>")); 1959 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1960 cl::desc("Output file")); 1961 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1962 cl::opt<bool> IsCS( 1963 "cs", cl::init(false), 1964 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1965 cl::opt<unsigned long long> ValueCutoff( 1966 "value-cutoff", cl::init(-1), 1967 cl::desc( 1968 "Function level overlap information for every function (with calling " 1969 "context for csspgo) in test " 1970 "profile with max count value greater then the parameter value")); 1971 cl::opt<std::string> FuncNameFilter( 1972 "function", 1973 cl::desc("Function level overlap information for matching functions. For " 1974 "CSSPGO this takes a a function name with calling context")); 1975 cl::opt<unsigned long long> SimilarityCutoff( 1976 "similarity-cutoff", cl::init(0), 1977 cl::desc("For sample profiles, list function names (with calling context " 1978 "for csspgo) for overlapped functions " 1979 "with similarities below the cutoff (percentage times 10000).")); 1980 cl::opt<ProfileKinds> ProfileKind( 1981 cl::desc("Profile kind:"), cl::init(instr), 1982 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1983 clEnumVal(sample, "Sample profile"))); 1984 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1985 1986 std::error_code EC; 1987 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 1988 if (EC) 1989 exitWithErrorCode(EC, Output); 1990 1991 if (ProfileKind == instr) 1992 overlapInstrProfile(BaseFilename, TestFilename, 1993 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1994 IsCS); 1995 else 1996 overlapSampleProfile(BaseFilename, TestFilename, 1997 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1998 SimilarityCutoff, OS); 1999 2000 return 0; 2001 } 2002 2003 namespace { 2004 struct ValueSitesStats { 2005 ValueSitesStats() 2006 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 2007 TotalNumValues(0) {} 2008 uint64_t TotalNumValueSites; 2009 uint64_t TotalNumValueSitesWithValueProfile; 2010 uint64_t TotalNumValues; 2011 std::vector<unsigned> ValueSitesHistogram; 2012 }; 2013 } // namespace 2014 2015 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2016 ValueSitesStats &Stats, raw_fd_ostream &OS, 2017 InstrProfSymtab *Symtab) { 2018 uint32_t NS = Func.getNumValueSites(VK); 2019 Stats.TotalNumValueSites += NS; 2020 for (size_t I = 0; I < NS; ++I) { 2021 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2022 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2023 Stats.TotalNumValues += NV; 2024 if (NV) { 2025 Stats.TotalNumValueSitesWithValueProfile++; 2026 if (NV > Stats.ValueSitesHistogram.size()) 2027 Stats.ValueSitesHistogram.resize(NV, 0); 2028 Stats.ValueSitesHistogram[NV - 1]++; 2029 } 2030 2031 uint64_t SiteSum = 0; 2032 for (uint32_t V = 0; V < NV; V++) 2033 SiteSum += VD[V].Count; 2034 if (SiteSum == 0) 2035 SiteSum = 1; 2036 2037 for (uint32_t V = 0; V < NV; V++) { 2038 OS << "\t[ " << format("%2u", I) << ", "; 2039 if (Symtab == nullptr) 2040 OS << format("%4" PRIu64, VD[V].Value); 2041 else 2042 OS << Symtab->getFuncName(VD[V].Value); 2043 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2044 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2045 } 2046 } 2047 } 2048 2049 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2050 ValueSitesStats &Stats) { 2051 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2052 OS << " Total number of sites with values: " 2053 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2054 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2055 2056 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2057 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2058 if (Stats.ValueSitesHistogram[I] > 0) 2059 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2060 } 2061 } 2062 2063 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2064 uint32_t TopN, bool ShowIndirectCallTargets, 2065 bool ShowMemOPSizes, bool ShowDetailedSummary, 2066 std::vector<uint32_t> DetailedSummaryCutoffs, 2067 bool ShowAllFunctions, bool ShowCS, 2068 uint64_t ValueCutoff, bool OnlyListBelow, 2069 const std::string &ShowFunction, bool TextFormat, 2070 bool ShowBinaryIds, raw_fd_ostream &OS) { 2071 auto ReaderOrErr = InstrProfReader::create(Filename); 2072 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2073 if (ShowDetailedSummary && Cutoffs.empty()) { 2074 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2075 } 2076 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2077 if (Error E = ReaderOrErr.takeError()) 2078 exitWithError(std::move(E), Filename); 2079 2080 auto Reader = std::move(ReaderOrErr.get()); 2081 bool IsIRInstr = Reader->isIRLevelProfile(); 2082 size_t ShownFunctions = 0; 2083 size_t BelowCutoffFunctions = 0; 2084 int NumVPKind = IPVK_Last - IPVK_First + 1; 2085 std::vector<ValueSitesStats> VPStats(NumVPKind); 2086 2087 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2088 const std::pair<std::string, uint64_t> &v2) { 2089 return v1.second > v2.second; 2090 }; 2091 2092 std::priority_queue<std::pair<std::string, uint64_t>, 2093 std::vector<std::pair<std::string, uint64_t>>, 2094 decltype(MinCmp)> 2095 HottestFuncs(MinCmp); 2096 2097 if (!TextFormat && OnlyListBelow) { 2098 OS << "The list of functions with the maximum counter less than " 2099 << ValueCutoff << ":\n"; 2100 } 2101 2102 // Add marker so that IR-level instrumentation round-trips properly. 2103 if (TextFormat && IsIRInstr) 2104 OS << ":ir\n"; 2105 2106 for (const auto &Func : *Reader) { 2107 if (Reader->isIRLevelProfile()) { 2108 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2109 if (FuncIsCS != ShowCS) 2110 continue; 2111 } 2112 bool Show = ShowAllFunctions || 2113 (!ShowFunction.empty() && Func.Name.contains(ShowFunction)); 2114 2115 bool doTextFormatDump = (Show && TextFormat); 2116 2117 if (doTextFormatDump) { 2118 InstrProfSymtab &Symtab = Reader->getSymtab(); 2119 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2120 OS); 2121 continue; 2122 } 2123 2124 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2125 Builder.addRecord(Func); 2126 2127 uint64_t FuncMax = 0; 2128 uint64_t FuncSum = 0; 2129 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2130 if (Func.Counts[I] == (uint64_t)-1) 2131 continue; 2132 FuncMax = std::max(FuncMax, Func.Counts[I]); 2133 FuncSum += Func.Counts[I]; 2134 } 2135 2136 if (FuncMax < ValueCutoff) { 2137 ++BelowCutoffFunctions; 2138 if (OnlyListBelow) { 2139 OS << " " << Func.Name << ": (Max = " << FuncMax 2140 << " Sum = " << FuncSum << ")\n"; 2141 } 2142 continue; 2143 } else if (OnlyListBelow) 2144 continue; 2145 2146 if (TopN) { 2147 if (HottestFuncs.size() == TopN) { 2148 if (HottestFuncs.top().second < FuncMax) { 2149 HottestFuncs.pop(); 2150 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2151 } 2152 } else 2153 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2154 } 2155 2156 if (Show) { 2157 if (!ShownFunctions) 2158 OS << "Counters:\n"; 2159 2160 ++ShownFunctions; 2161 2162 OS << " " << Func.Name << ":\n" 2163 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2164 << " Counters: " << Func.Counts.size() << "\n"; 2165 if (!IsIRInstr) 2166 OS << " Function count: " << Func.Counts[0] << "\n"; 2167 2168 if (ShowIndirectCallTargets) 2169 OS << " Indirect Call Site Count: " 2170 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2171 2172 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2173 if (ShowMemOPSizes && NumMemOPCalls > 0) 2174 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2175 << "\n"; 2176 2177 if (ShowCounts) { 2178 OS << " Block counts: ["; 2179 size_t Start = (IsIRInstr ? 0 : 1); 2180 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2181 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2182 } 2183 OS << "]\n"; 2184 } 2185 2186 if (ShowIndirectCallTargets) { 2187 OS << " Indirect Target Results:\n"; 2188 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2189 VPStats[IPVK_IndirectCallTarget], OS, 2190 &(Reader->getSymtab())); 2191 } 2192 2193 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2194 OS << " Memory Intrinsic Size Results:\n"; 2195 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2196 nullptr); 2197 } 2198 } 2199 } 2200 if (Reader->hasError()) 2201 exitWithError(Reader->getError(), Filename); 2202 2203 if (TextFormat) 2204 return 0; 2205 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2206 bool IsIR = Reader->isIRLevelProfile(); 2207 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2208 if (IsIR) 2209 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2210 OS << "\n"; 2211 if (ShowAllFunctions || !ShowFunction.empty()) 2212 OS << "Functions shown: " << ShownFunctions << "\n"; 2213 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2214 if (ValueCutoff > 0) { 2215 OS << "Number of functions with maximum count (< " << ValueCutoff 2216 << "): " << BelowCutoffFunctions << "\n"; 2217 OS << "Number of functions with maximum count (>= " << ValueCutoff 2218 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2219 } 2220 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2221 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2222 2223 if (TopN) { 2224 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2225 while (!HottestFuncs.empty()) { 2226 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2227 HottestFuncs.pop(); 2228 } 2229 OS << "Top " << TopN 2230 << " functions with the largest internal block counts: \n"; 2231 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2232 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2233 } 2234 2235 if (ShownFunctions && ShowIndirectCallTargets) { 2236 OS << "Statistics for indirect call sites profile:\n"; 2237 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2238 VPStats[IPVK_IndirectCallTarget]); 2239 } 2240 2241 if (ShownFunctions && ShowMemOPSizes) { 2242 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2243 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2244 } 2245 2246 if (ShowDetailedSummary) { 2247 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2248 OS << "Total count: " << PS->getTotalCount() << "\n"; 2249 PS->printDetailedSummary(OS); 2250 } 2251 2252 if (ShowBinaryIds) 2253 if (Error E = Reader->printBinaryIds(OS)) 2254 exitWithError(std::move(E), Filename); 2255 2256 return 0; 2257 } 2258 2259 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2260 raw_fd_ostream &OS) { 2261 if (!Reader->dumpSectionInfo(OS)) { 2262 WithColor::warning() << "-show-sec-info-only is only supported for " 2263 << "sample profile in extbinary format and is " 2264 << "ignored for other formats.\n"; 2265 return; 2266 } 2267 } 2268 2269 namespace { 2270 struct HotFuncInfo { 2271 std::string FuncName; 2272 uint64_t TotalCount; 2273 double TotalCountPercent; 2274 uint64_t MaxCount; 2275 uint64_t EntryCount; 2276 2277 HotFuncInfo() 2278 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2279 EntryCount(0) {} 2280 2281 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2282 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2283 MaxCount(MS), EntryCount(ES) {} 2284 }; 2285 } // namespace 2286 2287 // Print out detailed information about hot functions in PrintValues vector. 2288 // Users specify titles and offset of every columns through ColumnTitle and 2289 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2290 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2291 // print out or let it be an empty string. 2292 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2293 const std::vector<int> &ColumnOffset, 2294 const std::vector<HotFuncInfo> &PrintValues, 2295 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2296 uint64_t HotProfCount, uint64_t TotalProfCount, 2297 const std::string &HotFuncMetric, 2298 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2299 assert(ColumnOffset.size() == ColumnTitle.size() && 2300 "ColumnOffset and ColumnTitle should have the same size"); 2301 assert(ColumnTitle.size() >= 4 && 2302 "ColumnTitle should have at least 4 elements"); 2303 assert(TotalFuncCount > 0 && 2304 "There should be at least one function in the profile"); 2305 double TotalProfPercent = 0; 2306 if (TotalProfCount > 0) 2307 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2308 2309 formatted_raw_ostream FOS(OS); 2310 FOS << HotFuncCount << " out of " << TotalFuncCount 2311 << " functions with profile (" 2312 << format("%.2f%%", 2313 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2314 << ") are considered hot functions"; 2315 if (!HotFuncMetric.empty()) 2316 FOS << " (" << HotFuncMetric << ")"; 2317 FOS << ".\n"; 2318 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2319 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2320 2321 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2322 FOS.PadToColumn(ColumnOffset[I]); 2323 FOS << ColumnTitle[I]; 2324 } 2325 FOS << "\n"; 2326 2327 uint32_t Count = 0; 2328 for (const auto &R : PrintValues) { 2329 if (TopNFunctions && (Count++ == TopNFunctions)) 2330 break; 2331 FOS.PadToColumn(ColumnOffset[0]); 2332 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2333 FOS.PadToColumn(ColumnOffset[1]); 2334 FOS << R.MaxCount; 2335 FOS.PadToColumn(ColumnOffset[2]); 2336 FOS << R.EntryCount; 2337 FOS.PadToColumn(ColumnOffset[3]); 2338 FOS << R.FuncName << "\n"; 2339 } 2340 } 2341 2342 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 2343 ProfileSummary &PS, uint32_t TopN, 2344 raw_fd_ostream &OS) { 2345 using namespace sampleprof; 2346 2347 const uint32_t HotFuncCutoff = 990000; 2348 auto &SummaryVector = PS.getDetailedSummary(); 2349 uint64_t MinCountThreshold = 0; 2350 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2351 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2352 MinCountThreshold = SummaryEntry.MinCount; 2353 break; 2354 } 2355 } 2356 2357 // Traverse all functions in the profile and keep only hot functions. 2358 // The following loop also calculates the sum of total samples of all 2359 // functions. 2360 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2361 std::greater<uint64_t>> 2362 HotFunc; 2363 uint64_t ProfileTotalSample = 0; 2364 uint64_t HotFuncSample = 0; 2365 uint64_t HotFuncCount = 0; 2366 2367 for (const auto &I : Profiles) { 2368 FuncSampleStats FuncStats; 2369 const FunctionSamples &FuncProf = I.second; 2370 ProfileTotalSample += FuncProf.getTotalSamples(); 2371 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2372 2373 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2374 HotFunc.emplace(FuncProf.getTotalSamples(), 2375 std::make_pair(&(I.second), FuncStats.MaxSample)); 2376 HotFuncSample += FuncProf.getTotalSamples(); 2377 ++HotFuncCount; 2378 } 2379 } 2380 2381 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2382 "Entry sample", "Function name"}; 2383 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2384 std::string Metric = 2385 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2386 std::vector<HotFuncInfo> PrintValues; 2387 for (const auto &FuncPair : HotFunc) { 2388 const FunctionSamples &Func = *FuncPair.second.first; 2389 double TotalSamplePercent = 2390 (ProfileTotalSample > 0) 2391 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2392 : 0; 2393 PrintValues.emplace_back(HotFuncInfo( 2394 Func.getContext().toString(), Func.getTotalSamples(), 2395 TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples())); 2396 } 2397 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2398 Profiles.size(), HotFuncSample, ProfileTotalSample, 2399 Metric, TopN, OS); 2400 2401 return 0; 2402 } 2403 2404 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2405 uint32_t TopN, bool ShowAllFunctions, 2406 bool ShowDetailedSummary, 2407 const std::string &ShowFunction, 2408 bool ShowProfileSymbolList, 2409 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2410 raw_fd_ostream &OS) { 2411 using namespace sampleprof; 2412 LLVMContext Context; 2413 auto ReaderOrErr = 2414 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption); 2415 if (std::error_code EC = ReaderOrErr.getError()) 2416 exitWithErrorCode(EC, Filename); 2417 2418 auto Reader = std::move(ReaderOrErr.get()); 2419 if (ShowSectionInfoOnly) { 2420 showSectionInfo(Reader.get(), OS); 2421 return 0; 2422 } 2423 2424 if (std::error_code EC = Reader->read()) 2425 exitWithErrorCode(EC, Filename); 2426 2427 if (ShowAllFunctions || ShowFunction.empty()) 2428 Reader->dump(OS); 2429 else 2430 // TODO: parse context string to support filtering by contexts. 2431 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS); 2432 2433 if (ShowProfileSymbolList) { 2434 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2435 Reader->getProfileSymbolList(); 2436 ReaderList->dump(OS); 2437 } 2438 2439 if (ShowDetailedSummary) { 2440 auto &PS = Reader->getSummary(); 2441 PS.printSummary(OS); 2442 PS.printDetailedSummary(OS); 2443 } 2444 2445 if (ShowHotFuncList || TopN) 2446 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS); 2447 2448 return 0; 2449 } 2450 2451 static int showMemProfProfile(const std::string &Filename, raw_fd_ostream &OS) { 2452 auto ReaderOr = llvm::memprof::RawMemProfReader::create(Filename); 2453 if (Error E = ReaderOr.takeError()) 2454 exitWithError(std::move(E), Filename); 2455 2456 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 2457 ReaderOr.get().release()); 2458 Reader->printSummaries(OS); 2459 return 0; 2460 } 2461 2462 static int show_main(int argc, const char *argv[]) { 2463 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2464 cl::desc("<profdata-file>")); 2465 2466 cl::opt<bool> ShowCounts("counts", cl::init(false), 2467 cl::desc("Show counter values for shown functions")); 2468 cl::opt<bool> TextFormat( 2469 "text", cl::init(false), 2470 cl::desc("Show instr profile data in text dump format")); 2471 cl::opt<bool> ShowIndirectCallTargets( 2472 "ic-targets", cl::init(false), 2473 cl::desc("Show indirect call site target values for shown functions")); 2474 cl::opt<bool> ShowMemOPSizes( 2475 "memop-sizes", cl::init(false), 2476 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2477 "for shown functions")); 2478 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2479 cl::desc("Show detailed profile summary")); 2480 cl::list<uint32_t> DetailedSummaryCutoffs( 2481 cl::CommaSeparated, "detailed-summary-cutoffs", 2482 cl::desc( 2483 "Cutoff percentages (times 10000) for generating detailed summary"), 2484 cl::value_desc("800000,901000,999999")); 2485 cl::opt<bool> ShowHotFuncList( 2486 "hot-func-list", cl::init(false), 2487 cl::desc("Show profile summary of a list of hot functions")); 2488 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2489 cl::desc("Details for every function")); 2490 cl::opt<bool> ShowCS("showcs", cl::init(false), 2491 cl::desc("Show context sensitive counts")); 2492 cl::opt<std::string> ShowFunction("function", 2493 cl::desc("Details for matching functions")); 2494 2495 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2496 cl::init("-"), cl::desc("Output file")); 2497 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2498 cl::aliasopt(OutputFilename)); 2499 cl::opt<ProfileKinds> ProfileKind( 2500 cl::desc("Profile kind:"), cl::init(instr), 2501 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2502 clEnumVal(sample, "Sample profile"), 2503 clEnumVal(memory, "MemProf memory access profile"))); 2504 cl::opt<uint32_t> TopNFunctions( 2505 "topn", cl::init(0), 2506 cl::desc("Show the list of functions with the largest internal counts")); 2507 cl::opt<uint32_t> ValueCutoff( 2508 "value-cutoff", cl::init(0), 2509 cl::desc("Set the count value cutoff. Functions with the maximum count " 2510 "less than this value will not be printed out. (Default is 0)")); 2511 cl::opt<bool> OnlyListBelow( 2512 "list-below-cutoff", cl::init(false), 2513 cl::desc("Only output names of functions whose max count values are " 2514 "below the cutoff value")); 2515 cl::opt<bool> ShowProfileSymbolList( 2516 "show-prof-sym-list", cl::init(false), 2517 cl::desc("Show profile symbol list if it exists in the profile. ")); 2518 cl::opt<bool> ShowSectionInfoOnly( 2519 "show-sec-info-only", cl::init(false), 2520 cl::desc("Show the information of each section in the sample profile. " 2521 "The flag is only usable when the sample profile is in " 2522 "extbinary format")); 2523 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 2524 cl::desc("Show binary ids in the profile. ")); 2525 2526 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2527 2528 if (Filename == OutputFilename) { 2529 errs() << sys::path::filename(argv[0]) 2530 << ": Input file name cannot be the same as the output file name!\n"; 2531 return 1; 2532 } 2533 2534 std::error_code EC; 2535 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2536 if (EC) 2537 exitWithErrorCode(EC, OutputFilename); 2538 2539 if (ShowAllFunctions && !ShowFunction.empty()) 2540 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2541 2542 if (ProfileKind == instr) 2543 return showInstrProfile( 2544 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets, 2545 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs, 2546 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction, 2547 TextFormat, ShowBinaryIds, OS); 2548 if (ProfileKind == sample) 2549 return showSampleProfile(Filename, ShowCounts, TopNFunctions, 2550 ShowAllFunctions, ShowDetailedSummary, 2551 ShowFunction, ShowProfileSymbolList, 2552 ShowSectionInfoOnly, ShowHotFuncList, OS); 2553 return showMemProfProfile(Filename, OS); 2554 } 2555 2556 int main(int argc, const char *argv[]) { 2557 InitLLVM X(argc, argv); 2558 2559 StringRef ProgName(sys::path::filename(argv[0])); 2560 if (argc > 1) { 2561 int (*func)(int, const char *[]) = nullptr; 2562 2563 if (strcmp(argv[1], "merge") == 0) 2564 func = merge_main; 2565 else if (strcmp(argv[1], "show") == 0) 2566 func = show_main; 2567 else if (strcmp(argv[1], "overlap") == 0) 2568 func = overlap_main; 2569 2570 if (func) { 2571 std::string Invocation(ProgName.str() + " " + argv[1]); 2572 argv[1] = Invocation.c_str(); 2573 return func(argc - 1, argv + 1); 2574 } 2575 2576 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2577 strcmp(argv[1], "--help") == 0) { 2578 2579 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2580 << "USAGE: " << ProgName << " <command> [args...]\n" 2581 << "USAGE: " << ProgName << " <command> -help\n\n" 2582 << "See each individual command --help for more details.\n" 2583 << "Available commands: merge, show, overlap\n"; 2584 return 0; 2585 } 2586 } 2587 2588 if (argc < 2) 2589 errs() << ProgName << ": No command specified!\n"; 2590 else 2591 errs() << ProgName << ": Unknown command!\n"; 2592 2593 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2594 return 1; 2595 } 2596