xref: /freebsd-src/contrib/llvm-project/llvm/tools/llvm-profdata/llvm-profdata.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/ProfileCommon.h"
23 #include "llvm/ProfileData/RawMemProfReader.h"
24 #include "llvm/ProfileData/SampleProfReader.h"
25 #include "llvm/ProfileData/SampleProfWriter.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Discriminator.h"
28 #include "llvm/Support/Errc.h"
29 #include "llvm/Support/FileSystem.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/InitLLVM.h"
33 #include "llvm/Support/MemoryBuffer.h"
34 #include "llvm/Support/Path.h"
35 #include "llvm/Support/ThreadPool.h"
36 #include "llvm/Support/Threading.h"
37 #include "llvm/Support/WithColor.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 
41 using namespace llvm;
42 
43 enum ProfileFormat {
44   PF_None = 0,
45   PF_Text,
46   PF_Compact_Binary,
47   PF_Ext_Binary,
48   PF_GCC,
49   PF_Binary
50 };
51 
52 static void warn(Twine Message, std::string Whence = "",
53                  std::string Hint = "") {
54   WithColor::warning();
55   if (!Whence.empty())
56     errs() << Whence << ": ";
57   errs() << Message << "\n";
58   if (!Hint.empty())
59     WithColor::note() << Hint << "\n";
60 }
61 
62 static void warn(Error E, StringRef Whence = "") {
63   if (E.isA<InstrProfError>()) {
64     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
65       warn(IPE.message(), std::string(Whence), std::string(""));
66     });
67   }
68 }
69 
70 static void exitWithError(Twine Message, std::string Whence = "",
71                           std::string Hint = "") {
72   WithColor::error();
73   if (!Whence.empty())
74     errs() << Whence << ": ";
75   errs() << Message << "\n";
76   if (!Hint.empty())
77     WithColor::note() << Hint << "\n";
78   ::exit(1);
79 }
80 
81 static void exitWithError(Error E, StringRef Whence = "") {
82   if (E.isA<InstrProfError>()) {
83     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
84       instrprof_error instrError = IPE.get();
85       StringRef Hint = "";
86       if (instrError == instrprof_error::unrecognized_format) {
87         // Hint in case user missed specifying the profile type.
88         Hint = "Perhaps you forgot to use the --sample or --memory option?";
89       }
90       exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
91     });
92   }
93 
94   exitWithError(toString(std::move(E)), std::string(Whence));
95 }
96 
97 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
98   exitWithError(EC.message(), std::string(Whence));
99 }
100 
101 namespace {
102 enum ProfileKinds { instr, sample, memory };
103 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
104 }
105 
106 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
107                                  StringRef Whence = "") {
108   if (FailMode == failIfAnyAreInvalid)
109     exitWithErrorCode(EC, Whence);
110   else
111     warn(EC.message(), std::string(Whence));
112 }
113 
114 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
115                                    StringRef WhenceFunction = "",
116                                    bool ShowHint = true) {
117   if (!WhenceFile.empty())
118     errs() << WhenceFile << ": ";
119   if (!WhenceFunction.empty())
120     errs() << WhenceFunction << ": ";
121 
122   auto IPE = instrprof_error::success;
123   E = handleErrors(std::move(E),
124                    [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
125                      IPE = E->get();
126                      return Error(std::move(E));
127                    });
128   errs() << toString(std::move(E)) << "\n";
129 
130   if (ShowHint) {
131     StringRef Hint = "";
132     if (IPE != instrprof_error::success) {
133       switch (IPE) {
134       case instrprof_error::hash_mismatch:
135       case instrprof_error::count_mismatch:
136       case instrprof_error::value_site_count_mismatch:
137         Hint = "Make sure that all profile data to be merged is generated "
138                "from the same binary.";
139         break;
140       default:
141         break;
142       }
143     }
144 
145     if (!Hint.empty())
146       errs() << Hint << "\n";
147   }
148 }
149 
150 namespace {
151 /// A remapper from original symbol names to new symbol names based on a file
152 /// containing a list of mappings from old name to new name.
153 class SymbolRemapper {
154   std::unique_ptr<MemoryBuffer> File;
155   DenseMap<StringRef, StringRef> RemappingTable;
156 
157 public:
158   /// Build a SymbolRemapper from a file containing a list of old/new symbols.
159   static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
160     auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
161     if (!BufOrError)
162       exitWithErrorCode(BufOrError.getError(), InputFile);
163 
164     auto Remapper = std::make_unique<SymbolRemapper>();
165     Remapper->File = std::move(BufOrError.get());
166 
167     for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
168          !LineIt.is_at_eof(); ++LineIt) {
169       std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
170       if (Parts.first.empty() || Parts.second.empty() ||
171           Parts.second.count(' ')) {
172         exitWithError("unexpected line in remapping file",
173                       (InputFile + ":" + Twine(LineIt.line_number())).str(),
174                       "expected 'old_symbol new_symbol'");
175       }
176       Remapper->RemappingTable.insert(Parts);
177     }
178     return Remapper;
179   }
180 
181   /// Attempt to map the given old symbol into a new symbol.
182   ///
183   /// \return The new symbol, or \p Name if no such symbol was found.
184   StringRef operator()(StringRef Name) {
185     StringRef New = RemappingTable.lookup(Name);
186     return New.empty() ? Name : New;
187   }
188 };
189 }
190 
191 struct WeightedFile {
192   std::string Filename;
193   uint64_t Weight;
194 };
195 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
196 
197 /// Keep track of merged data and reported errors.
198 struct WriterContext {
199   std::mutex Lock;
200   InstrProfWriter Writer;
201   std::vector<std::pair<Error, std::string>> Errors;
202   std::mutex &ErrLock;
203   SmallSet<instrprof_error, 4> &WriterErrorCodes;
204 
205   WriterContext(bool IsSparse, std::mutex &ErrLock,
206                 SmallSet<instrprof_error, 4> &WriterErrorCodes)
207       : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock),
208         WriterErrorCodes(WriterErrorCodes) {}
209 };
210 
211 /// Computer the overlap b/w profile BaseFilename and TestFileName,
212 /// and store the program level result to Overlap.
213 static void overlapInput(const std::string &BaseFilename,
214                          const std::string &TestFilename, WriterContext *WC,
215                          OverlapStats &Overlap,
216                          const OverlapFuncFilters &FuncFilter,
217                          raw_fd_ostream &OS, bool IsCS) {
218   auto ReaderOrErr = InstrProfReader::create(TestFilename);
219   if (Error E = ReaderOrErr.takeError()) {
220     // Skip the empty profiles by returning sliently.
221     instrprof_error IPE = InstrProfError::take(std::move(E));
222     if (IPE != instrprof_error::empty_raw_profile)
223       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
224     return;
225   }
226 
227   auto Reader = std::move(ReaderOrErr.get());
228   for (auto &I : *Reader) {
229     OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
230     FuncOverlap.setFuncInfo(I.Name, I.Hash);
231 
232     WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
233     FuncOverlap.dump(OS);
234   }
235 }
236 
237 /// Load an input into a writer context.
238 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
239                       const InstrProfCorrelator *Correlator,
240                       WriterContext *WC) {
241   std::unique_lock<std::mutex> CtxGuard{WC->Lock};
242 
243   // Copy the filename, because llvm::ThreadPool copied the input "const
244   // WeightedFile &" by value, making a reference to the filename within it
245   // invalid outside of this packaged task.
246   std::string Filename = Input.Filename;
247 
248   auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
249   if (Error E = ReaderOrErr.takeError()) {
250     // Skip the empty profiles by returning sliently.
251     instrprof_error IPE = InstrProfError::take(std::move(E));
252     if (IPE != instrprof_error::empty_raw_profile)
253       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
254     return;
255   }
256 
257   auto Reader = std::move(ReaderOrErr.get());
258   bool IsIRProfile = Reader->isIRLevelProfile();
259   bool HasCSIRProfile = Reader->hasCSIRLevelProfile();
260   if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) {
261     consumeError(std::move(E));
262     WC->Errors.emplace_back(
263         make_error<StringError>(
264             "Merge IR generated profile with Clang generated profile.",
265             std::error_code()),
266         Filename);
267     return;
268   }
269   WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled());
270 
271   for (auto &I : *Reader) {
272     if (Remapper)
273       I.Name = (*Remapper)(I.Name);
274     const StringRef FuncName = I.Name;
275     bool Reported = false;
276     WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
277       if (Reported) {
278         consumeError(std::move(E));
279         return;
280       }
281       Reported = true;
282       // Only show hint the first time an error occurs.
283       instrprof_error IPE = InstrProfError::take(std::move(E));
284       std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
285       bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
286       handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
287                              FuncName, firstTime);
288     });
289   }
290   if (Reader->hasError())
291     if (Error E = Reader->getError())
292       WC->Errors.emplace_back(std::move(E), Filename);
293 }
294 
295 /// Merge the \p Src writer context into \p Dst.
296 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
297   for (auto &ErrorPair : Src->Errors)
298     Dst->Errors.push_back(std::move(ErrorPair));
299   Src->Errors.clear();
300 
301   Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
302     instrprof_error IPE = InstrProfError::take(std::move(E));
303     std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
304     bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
305     if (firstTime)
306       warn(toString(make_error<InstrProfError>(IPE)));
307   });
308 }
309 
310 static void writeInstrProfile(StringRef OutputFilename,
311                               ProfileFormat OutputFormat,
312                               InstrProfWriter &Writer) {
313   std::error_code EC;
314   raw_fd_ostream Output(OutputFilename.data(), EC,
315                         OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
316                                                 : sys::fs::OF_None);
317   if (EC)
318     exitWithErrorCode(EC, OutputFilename);
319 
320   if (OutputFormat == PF_Text) {
321     if (Error E = Writer.writeText(Output))
322       warn(std::move(E));
323   } else {
324     if (Output.is_displayed())
325       exitWithError("cannot write a non-text format profile to the terminal");
326     if (Error E = Writer.write(Output))
327       warn(std::move(E));
328   }
329 }
330 
331 static void mergeInstrProfile(const WeightedFileVector &Inputs,
332                               StringRef DebugInfoFilename,
333                               SymbolRemapper *Remapper,
334                               StringRef OutputFilename,
335                               ProfileFormat OutputFormat, bool OutputSparse,
336                               unsigned NumThreads, FailureMode FailMode) {
337   if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
338       OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
339     exitWithError("unknown format is specified");
340 
341   std::unique_ptr<InstrProfCorrelator> Correlator;
342   if (!DebugInfoFilename.empty()) {
343     if (auto Err =
344             InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
345       exitWithError(std::move(Err), DebugInfoFilename);
346     if (auto Err = Correlator->correlateProfileData())
347       exitWithError(std::move(Err), DebugInfoFilename);
348   }
349 
350   std::mutex ErrorLock;
351   SmallSet<instrprof_error, 4> WriterErrorCodes;
352 
353   // If NumThreads is not specified, auto-detect a good default.
354   if (NumThreads == 0)
355     NumThreads = std::min(hardware_concurrency().compute_thread_count(),
356                           unsigned((Inputs.size() + 1) / 2));
357   // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
358   // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
359   // merged, thus the emitted file ends up with a PF_Unknown kind.
360 
361   // Initialize the writer contexts.
362   SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
363   for (unsigned I = 0; I < NumThreads; ++I)
364     Contexts.emplace_back(std::make_unique<WriterContext>(
365         OutputSparse, ErrorLock, WriterErrorCodes));
366 
367   if (NumThreads == 1) {
368     for (const auto &Input : Inputs)
369       loadInput(Input, Remapper, Correlator.get(), Contexts[0].get());
370   } else {
371     ThreadPool Pool(hardware_concurrency(NumThreads));
372 
373     // Load the inputs in parallel (N/NumThreads serial steps).
374     unsigned Ctx = 0;
375     for (const auto &Input : Inputs) {
376       Pool.async(loadInput, Input, Remapper, Correlator.get(),
377                  Contexts[Ctx].get());
378       Ctx = (Ctx + 1) % NumThreads;
379     }
380     Pool.wait();
381 
382     // Merge the writer contexts together (~ lg(NumThreads) serial steps).
383     unsigned Mid = Contexts.size() / 2;
384     unsigned End = Contexts.size();
385     assert(Mid > 0 && "Expected more than one context");
386     do {
387       for (unsigned I = 0; I < Mid; ++I)
388         Pool.async(mergeWriterContexts, Contexts[I].get(),
389                    Contexts[I + Mid].get());
390       Pool.wait();
391       if (End & 1) {
392         Pool.async(mergeWriterContexts, Contexts[0].get(),
393                    Contexts[End - 1].get());
394         Pool.wait();
395       }
396       End = Mid;
397       Mid /= 2;
398     } while (Mid > 0);
399   }
400 
401   // Handle deferred errors encountered during merging. If the number of errors
402   // is equal to the number of inputs the merge failed.
403   unsigned NumErrors = 0;
404   for (std::unique_ptr<WriterContext> &WC : Contexts) {
405     for (auto &ErrorPair : WC->Errors) {
406       ++NumErrors;
407       warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
408     }
409   }
410   if (NumErrors == Inputs.size() ||
411       (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
412     exitWithError("no profile can be merged");
413 
414   writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
415 }
416 
417 /// The profile entry for a function in instrumentation profile.
418 struct InstrProfileEntry {
419   uint64_t MaxCount = 0;
420   float ZeroCounterRatio = 0.0;
421   InstrProfRecord *ProfRecord;
422   InstrProfileEntry(InstrProfRecord *Record);
423   InstrProfileEntry() = default;
424 };
425 
426 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
427   ProfRecord = Record;
428   uint64_t CntNum = Record->Counts.size();
429   uint64_t ZeroCntNum = 0;
430   for (size_t I = 0; I < CntNum; ++I) {
431     MaxCount = std::max(MaxCount, Record->Counts[I]);
432     ZeroCntNum += !Record->Counts[I];
433   }
434   ZeroCounterRatio = (float)ZeroCntNum / CntNum;
435 }
436 
437 /// Either set all the counters in the instr profile entry \p IFE to -1
438 /// in order to drop the profile or scale up the counters in \p IFP to
439 /// be above hot threshold. We use the ratio of zero counters in the
440 /// profile of a function to decide the profile is helpful or harmful
441 /// for performance, and to choose whether to scale up or drop it.
442 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
443                                     uint64_t HotInstrThreshold,
444                                     float ZeroCounterThreshold) {
445   InstrProfRecord *ProfRecord = IFE.ProfRecord;
446   if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
447     // If all or most of the counters of the function are zero, the
448     // profile is unaccountable and shuld be dropped. Reset all the
449     // counters to be -1 and PGO profile-use will drop the profile.
450     // All counters being -1 also implies that the function is hot so
451     // PGO profile-use will also set the entry count metadata to be
452     // above hot threshold.
453     for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
454       ProfRecord->Counts[I] = -1;
455     return;
456   }
457 
458   // Scale up the MaxCount to be multiple times above hot threshold.
459   const unsigned MultiplyFactor = 3;
460   uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
461   uint64_t Denominator = IFE.MaxCount;
462   ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
463     warn(toString(make_error<InstrProfError>(E)));
464   });
465 }
466 
467 const uint64_t ColdPercentileIdx = 15;
468 const uint64_t HotPercentileIdx = 11;
469 
470 using sampleprof::FSDiscriminatorPass;
471 
472 // Internal options to set FSDiscriminatorPass. Used in merge and show
473 // commands.
474 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
475     "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
476     cl::desc("Zero out the discriminator bits for the FS discrimiantor "
477              "pass beyond this value. The enum values are defined in "
478              "Support/Discriminator.h"),
479     cl::values(clEnumVal(Base, "Use base discriminators only"),
480                clEnumVal(Pass1, "Use base and pass 1 discriminators"),
481                clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
482                clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
483                clEnumVal(PassLast, "Use all discriminator bits (default)")));
484 
485 static unsigned getDiscriminatorMask() {
486   return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
487 }
488 
489 /// Adjust the instr profile in \p WC based on the sample profile in
490 /// \p Reader.
491 static void
492 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
493                    std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
494                    unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
495                    unsigned InstrProfColdThreshold) {
496   // Function to its entry in instr profile.
497   StringMap<InstrProfileEntry> InstrProfileMap;
498   InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
499   for (auto &PD : WC->Writer.getProfileData()) {
500     // Populate IPBuilder.
501     for (const auto &PDV : PD.getValue()) {
502       InstrProfRecord Record = PDV.second;
503       IPBuilder.addRecord(Record);
504     }
505 
506     // If a function has multiple entries in instr profile, skip it.
507     if (PD.getValue().size() != 1)
508       continue;
509 
510     // Initialize InstrProfileMap.
511     InstrProfRecord *R = &PD.getValue().begin()->second;
512     InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
513   }
514 
515   ProfileSummary InstrPS = *IPBuilder.getSummary();
516   ProfileSummary SamplePS = Reader->getSummary();
517 
518   // Compute cold thresholds for instr profile and sample profile.
519   uint64_t ColdSampleThreshold =
520       ProfileSummaryBuilder::getEntryForPercentile(
521           SamplePS.getDetailedSummary(),
522           ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
523           .MinCount;
524   uint64_t HotInstrThreshold =
525       ProfileSummaryBuilder::getEntryForPercentile(
526           InstrPS.getDetailedSummary(),
527           ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
528           .MinCount;
529   uint64_t ColdInstrThreshold =
530       InstrProfColdThreshold
531           ? InstrProfColdThreshold
532           : ProfileSummaryBuilder::getEntryForPercentile(
533                 InstrPS.getDetailedSummary(),
534                 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
535                 .MinCount;
536 
537   // Find hot/warm functions in sample profile which is cold in instr profile
538   // and adjust the profiles of those functions in the instr profile.
539   for (const auto &PD : Reader->getProfiles()) {
540     auto &FContext = PD.first;
541     const sampleprof::FunctionSamples &FS = PD.second;
542     auto It = InstrProfileMap.find(FContext.toString());
543     if (FS.getHeadSamples() > ColdSampleThreshold &&
544         It != InstrProfileMap.end() &&
545         It->second.MaxCount <= ColdInstrThreshold &&
546         FS.getBodySamples().size() >= SupplMinSizeThreshold) {
547       updateInstrProfileEntry(It->second, HotInstrThreshold,
548                               ZeroCounterThreshold);
549     }
550   }
551 }
552 
553 /// The main function to supplement instr profile with sample profile.
554 /// \Inputs contains the instr profile. \p SampleFilename specifies the
555 /// sample profile. \p OutputFilename specifies the output profile name.
556 /// \p OutputFormat specifies the output profile format. \p OutputSparse
557 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
558 /// specifies the minimal size for the functions whose profile will be
559 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
560 /// a function contains too many zero counters and whether its profile
561 /// should be dropped. \p InstrProfColdThreshold is the user specified
562 /// cold threshold which will override the cold threshold got from the
563 /// instr profile summary.
564 static void supplementInstrProfile(
565     const WeightedFileVector &Inputs, StringRef SampleFilename,
566     StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
567     unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
568     unsigned InstrProfColdThreshold) {
569   if (OutputFilename.compare("-") == 0)
570     exitWithError("cannot write indexed profdata format to stdout");
571   if (Inputs.size() != 1)
572     exitWithError("expect one input to be an instr profile");
573   if (Inputs[0].Weight != 1)
574     exitWithError("expect instr profile doesn't have weight");
575 
576   StringRef InstrFilename = Inputs[0].Filename;
577 
578   // Read sample profile.
579   LLVMContext Context;
580   auto ReaderOrErr = sampleprof::SampleProfileReader::create(
581       SampleFilename.str(), Context, FSDiscriminatorPassOption);
582   if (std::error_code EC = ReaderOrErr.getError())
583     exitWithErrorCode(EC, SampleFilename);
584   auto Reader = std::move(ReaderOrErr.get());
585   if (std::error_code EC = Reader->read())
586     exitWithErrorCode(EC, SampleFilename);
587 
588   // Read instr profile.
589   std::mutex ErrorLock;
590   SmallSet<instrprof_error, 4> WriterErrorCodes;
591   auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
592                                             WriterErrorCodes);
593   loadInput(Inputs[0], nullptr, nullptr, WC.get());
594   if (WC->Errors.size() > 0)
595     exitWithError(std::move(WC->Errors[0].first), InstrFilename);
596 
597   adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
598                      InstrProfColdThreshold);
599   writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
600 }
601 
602 /// Make a copy of the given function samples with all symbol names remapped
603 /// by the provided symbol remapper.
604 static sampleprof::FunctionSamples
605 remapSamples(const sampleprof::FunctionSamples &Samples,
606              SymbolRemapper &Remapper, sampleprof_error &Error) {
607   sampleprof::FunctionSamples Result;
608   Result.setName(Remapper(Samples.getName()));
609   Result.addTotalSamples(Samples.getTotalSamples());
610   Result.addHeadSamples(Samples.getHeadSamples());
611   for (const auto &BodySample : Samples.getBodySamples()) {
612     uint32_t MaskedDiscriminator =
613         BodySample.first.Discriminator & getDiscriminatorMask();
614     Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
615                           BodySample.second.getSamples());
616     for (const auto &Target : BodySample.second.getCallTargets()) {
617       Result.addCalledTargetSamples(BodySample.first.LineOffset,
618                                     MaskedDiscriminator,
619                                     Remapper(Target.first()), Target.second);
620     }
621   }
622   for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
623     sampleprof::FunctionSamplesMap &Target =
624         Result.functionSamplesAt(CallsiteSamples.first);
625     for (const auto &Callsite : CallsiteSamples.second) {
626       sampleprof::FunctionSamples Remapped =
627           remapSamples(Callsite.second, Remapper, Error);
628       MergeResult(Error,
629                   Target[std::string(Remapped.getName())].merge(Remapped));
630     }
631   }
632   return Result;
633 }
634 
635 static sampleprof::SampleProfileFormat FormatMap[] = {
636     sampleprof::SPF_None,
637     sampleprof::SPF_Text,
638     sampleprof::SPF_Compact_Binary,
639     sampleprof::SPF_Ext_Binary,
640     sampleprof::SPF_GCC,
641     sampleprof::SPF_Binary};
642 
643 static std::unique_ptr<MemoryBuffer>
644 getInputFileBuf(const StringRef &InputFile) {
645   if (InputFile == "")
646     return {};
647 
648   auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
649   if (!BufOrError)
650     exitWithErrorCode(BufOrError.getError(), InputFile);
651 
652   return std::move(*BufOrError);
653 }
654 
655 static void populateProfileSymbolList(MemoryBuffer *Buffer,
656                                       sampleprof::ProfileSymbolList &PSL) {
657   if (!Buffer)
658     return;
659 
660   SmallVector<StringRef, 32> SymbolVec;
661   StringRef Data = Buffer->getBuffer();
662   Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
663 
664   for (StringRef symbol : SymbolVec)
665     PSL.add(symbol);
666 }
667 
668 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
669                                   ProfileFormat OutputFormat,
670                                   MemoryBuffer *Buffer,
671                                   sampleprof::ProfileSymbolList &WriterList,
672                                   bool CompressAllSections, bool UseMD5,
673                                   bool GenPartialProfile) {
674   populateProfileSymbolList(Buffer, WriterList);
675   if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
676     warn("Profile Symbol list is not empty but the output format is not "
677          "ExtBinary format. The list will be lost in the output. ");
678 
679   Writer.setProfileSymbolList(&WriterList);
680 
681   if (CompressAllSections) {
682     if (OutputFormat != PF_Ext_Binary)
683       warn("-compress-all-section is ignored. Specify -extbinary to enable it");
684     else
685       Writer.setToCompressAllSections();
686   }
687   if (UseMD5) {
688     if (OutputFormat != PF_Ext_Binary)
689       warn("-use-md5 is ignored. Specify -extbinary to enable it");
690     else
691       Writer.setUseMD5();
692   }
693   if (GenPartialProfile) {
694     if (OutputFormat != PF_Ext_Binary)
695       warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
696     else
697       Writer.setPartialProfile();
698   }
699 }
700 
701 static void
702 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
703                    StringRef OutputFilename, ProfileFormat OutputFormat,
704                    StringRef ProfileSymbolListFile, bool CompressAllSections,
705                    bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
706                    bool SampleMergeColdContext, bool SampleTrimColdContext,
707                    bool SampleColdContextFrameDepth, FailureMode FailMode) {
708   using namespace sampleprof;
709   SampleProfileMap ProfileMap;
710   SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
711   LLVMContext Context;
712   sampleprof::ProfileSymbolList WriterList;
713   Optional<bool> ProfileIsProbeBased;
714   Optional<bool> ProfileIsCSFlat;
715   for (const auto &Input : Inputs) {
716     auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
717                                                    FSDiscriminatorPassOption);
718     if (std::error_code EC = ReaderOrErr.getError()) {
719       warnOrExitGivenError(FailMode, EC, Input.Filename);
720       continue;
721     }
722 
723     // We need to keep the readers around until after all the files are
724     // read so that we do not lose the function names stored in each
725     // reader's memory. The function names are needed to write out the
726     // merged profile map.
727     Readers.push_back(std::move(ReaderOrErr.get()));
728     const auto Reader = Readers.back().get();
729     if (std::error_code EC = Reader->read()) {
730       warnOrExitGivenError(FailMode, EC, Input.Filename);
731       Readers.pop_back();
732       continue;
733     }
734 
735     SampleProfileMap &Profiles = Reader->getProfiles();
736     if (ProfileIsProbeBased.hasValue() &&
737         ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
738       exitWithError(
739           "cannot merge probe-based profile with non-probe-based profile");
740     ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
741     if (ProfileIsCSFlat.hasValue() &&
742         ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat)
743       exitWithError("cannot merge CS profile with non-CS profile");
744     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat;
745     for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
746          I != E; ++I) {
747       sampleprof_error Result = sampleprof_error::success;
748       FunctionSamples Remapped =
749           Remapper ? remapSamples(I->second, *Remapper, Result)
750                    : FunctionSamples();
751       FunctionSamples &Samples = Remapper ? Remapped : I->second;
752       SampleContext FContext = Samples.getContext();
753       MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
754       if (Result != sampleprof_error::success) {
755         std::error_code EC = make_error_code(Result);
756         handleMergeWriterError(errorCodeToError(EC), Input.Filename,
757                                FContext.toString());
758       }
759     }
760 
761     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
762         Reader->getProfileSymbolList();
763     if (ReaderList)
764       WriterList.merge(*ReaderList);
765   }
766 
767   if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) {
768     // Use threshold calculated from profile summary unless specified.
769     SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
770     auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
771     uint64_t SampleProfColdThreshold =
772         ProfileSummaryBuilder::getColdCountThreshold(
773             (Summary->getDetailedSummary()));
774 
775     // Trim and merge cold context profile using cold threshold above;
776     SampleContextTrimmer(ProfileMap)
777         .trimAndMergeColdContextProfiles(
778             SampleProfColdThreshold, SampleTrimColdContext,
779             SampleMergeColdContext, SampleColdContextFrameDepth, false);
780   }
781 
782   if (ProfileIsCSFlat && GenCSNestedProfile) {
783     CSProfileConverter CSConverter(ProfileMap);
784     CSConverter.convertProfiles();
785     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false;
786   }
787 
788   auto WriterOrErr =
789       SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
790   if (std::error_code EC = WriterOrErr.getError())
791     exitWithErrorCode(EC, OutputFilename);
792 
793   auto Writer = std::move(WriterOrErr.get());
794   // WriterList will have StringRef refering to string in Buffer.
795   // Make sure Buffer lives as long as WriterList.
796   auto Buffer = getInputFileBuf(ProfileSymbolListFile);
797   handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
798                         CompressAllSections, UseMD5, GenPartialProfile);
799   if (std::error_code EC = Writer->write(ProfileMap))
800     exitWithErrorCode(std::move(EC));
801 }
802 
803 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
804   StringRef WeightStr, FileName;
805   std::tie(WeightStr, FileName) = WeightedFilename.split(',');
806 
807   uint64_t Weight;
808   if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
809     exitWithError("input weight must be a positive integer");
810 
811   return {std::string(FileName), Weight};
812 }
813 
814 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
815   StringRef Filename = WF.Filename;
816   uint64_t Weight = WF.Weight;
817 
818   // If it's STDIN just pass it on.
819   if (Filename == "-") {
820     WNI.push_back({std::string(Filename), Weight});
821     return;
822   }
823 
824   llvm::sys::fs::file_status Status;
825   llvm::sys::fs::status(Filename, Status);
826   if (!llvm::sys::fs::exists(Status))
827     exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
828                       Filename);
829   // If it's a source file, collect it.
830   if (llvm::sys::fs::is_regular_file(Status)) {
831     WNI.push_back({std::string(Filename), Weight});
832     return;
833   }
834 
835   if (llvm::sys::fs::is_directory(Status)) {
836     std::error_code EC;
837     for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
838          F != E && !EC; F.increment(EC)) {
839       if (llvm::sys::fs::is_regular_file(F->path())) {
840         addWeightedInput(WNI, {F->path(), Weight});
841       }
842     }
843     if (EC)
844       exitWithErrorCode(EC, Filename);
845   }
846 }
847 
848 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
849                                     WeightedFileVector &WFV) {
850   if (!Buffer)
851     return;
852 
853   SmallVector<StringRef, 8> Entries;
854   StringRef Data = Buffer->getBuffer();
855   Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
856   for (const StringRef &FileWeightEntry : Entries) {
857     StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
858     // Skip comments.
859     if (SanitizedEntry.startswith("#"))
860       continue;
861     // If there's no comma, it's an unweighted profile.
862     else if (!SanitizedEntry.contains(','))
863       addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
864     else
865       addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
866   }
867 }
868 
869 static int merge_main(int argc, const char *argv[]) {
870   cl::list<std::string> InputFilenames(cl::Positional,
871                                        cl::desc("<filename...>"));
872   cl::list<std::string> WeightedInputFilenames("weighted-input",
873                                                cl::desc("<weight>,<filename>"));
874   cl::opt<std::string> InputFilenamesFile(
875       "input-files", cl::init(""),
876       cl::desc("Path to file containing newline-separated "
877                "[<weight>,]<filename> entries"));
878   cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
879                                 cl::aliasopt(InputFilenamesFile));
880   cl::opt<bool> DumpInputFileList(
881       "dump-input-file-list", cl::init(false), cl::Hidden,
882       cl::desc("Dump the list of input files and their weights, then exit"));
883   cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
884                                      cl::desc("Symbol remapping file"));
885   cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
886                            cl::aliasopt(RemappingFile));
887   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
888                                       cl::init("-"), cl::desc("Output file"));
889   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
890                             cl::aliasopt(OutputFilename));
891   cl::opt<ProfileKinds> ProfileKind(
892       cl::desc("Profile kind:"), cl::init(instr),
893       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
894                  clEnumVal(sample, "Sample profile")));
895   cl::opt<ProfileFormat> OutputFormat(
896       cl::desc("Format of output profile"), cl::init(PF_Binary),
897       cl::values(
898           clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
899           clEnumValN(PF_Compact_Binary, "compbinary",
900                      "Compact binary encoding"),
901           clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
902           clEnumValN(PF_Text, "text", "Text encoding"),
903           clEnumValN(PF_GCC, "gcc",
904                      "GCC encoding (only meaningful for -sample)")));
905   cl::opt<FailureMode> FailureMode(
906       "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
907       cl::values(clEnumValN(failIfAnyAreInvalid, "any",
908                             "Fail if any profile is invalid."),
909                  clEnumValN(failIfAllAreInvalid, "all",
910                             "Fail only if all profiles are invalid.")));
911   cl::opt<bool> OutputSparse("sparse", cl::init(false),
912       cl::desc("Generate a sparse profile (only meaningful for -instr)"));
913   cl::opt<unsigned> NumThreads(
914       "num-threads", cl::init(0),
915       cl::desc("Number of merge threads to use (default: autodetect)"));
916   cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
917                         cl::aliasopt(NumThreads));
918   cl::opt<std::string> ProfileSymbolListFile(
919       "prof-sym-list", cl::init(""),
920       cl::desc("Path to file containing the list of function symbols "
921                "used to populate profile symbol list"));
922   cl::opt<bool> CompressAllSections(
923       "compress-all-sections", cl::init(false), cl::Hidden,
924       cl::desc("Compress all sections when writing the profile (only "
925                "meaningful for -extbinary)"));
926   cl::opt<bool> UseMD5(
927       "use-md5", cl::init(false), cl::Hidden,
928       cl::desc("Choose to use MD5 to represent string in name table (only "
929                "meaningful for -extbinary)"));
930   cl::opt<bool> SampleMergeColdContext(
931       "sample-merge-cold-context", cl::init(false), cl::Hidden,
932       cl::desc(
933           "Merge context sample profiles whose count is below cold threshold"));
934   cl::opt<bool> SampleTrimColdContext(
935       "sample-trim-cold-context", cl::init(false), cl::Hidden,
936       cl::desc(
937           "Trim context sample profiles whose count is below cold threshold"));
938   cl::opt<uint32_t> SampleColdContextFrameDepth(
939       "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
940       cl::desc("Keep the last K frames while merging cold profile. 1 means the "
941                "context-less base profile"));
942   cl::opt<bool> GenPartialProfile(
943       "gen-partial-profile", cl::init(false), cl::Hidden,
944       cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
945   cl::opt<std::string> SupplInstrWithSample(
946       "supplement-instr-with-sample", cl::init(""), cl::Hidden,
947       cl::desc("Supplement an instr profile with sample profile, to correct "
948                "the profile unrepresentativeness issue. The sample "
949                "profile is the input of the flag. Output will be in instr "
950                "format (The flag only works with -instr)"));
951   cl::opt<float> ZeroCounterThreshold(
952       "zero-counter-threshold", cl::init(0.7), cl::Hidden,
953       cl::desc("For the function which is cold in instr profile but hot in "
954                "sample profile, if the ratio of the number of zero counters "
955                "divided by the the total number of counters is above the "
956                "threshold, the profile of the function will be regarded as "
957                "being harmful for performance and will be dropped."));
958   cl::opt<unsigned> SupplMinSizeThreshold(
959       "suppl-min-size-threshold", cl::init(10), cl::Hidden,
960       cl::desc("If the size of a function is smaller than the threshold, "
961                "assume it can be inlined by PGO early inliner and it won't "
962                "be adjusted based on sample profile."));
963   cl::opt<unsigned> InstrProfColdThreshold(
964       "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
965       cl::desc("User specified cold threshold for instr profile which will "
966                "override the cold threshold got from profile summary. "));
967   cl::opt<bool> GenCSNestedProfile(
968       "gen-cs-nested-profile", cl::Hidden, cl::init(false),
969       cl::desc("Generate nested function profiles for CSSPGO"));
970   cl::opt<std::string> DebugInfoFilename(
971       "debug-info", cl::init(""), cl::Hidden,
972       cl::desc("Use the provided debug info to correlate the raw profile."));
973 
974   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
975 
976   WeightedFileVector WeightedInputs;
977   for (StringRef Filename : InputFilenames)
978     addWeightedInput(WeightedInputs, {std::string(Filename), 1});
979   for (StringRef WeightedFilename : WeightedInputFilenames)
980     addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
981 
982   // Make sure that the file buffer stays alive for the duration of the
983   // weighted input vector's lifetime.
984   auto Buffer = getInputFileBuf(InputFilenamesFile);
985   parseInputFilenamesFile(Buffer.get(), WeightedInputs);
986 
987   if (WeightedInputs.empty())
988     exitWithError("no input files specified. See " +
989                   sys::path::filename(argv[0]) + " -help");
990 
991   if (DumpInputFileList) {
992     for (auto &WF : WeightedInputs)
993       outs() << WF.Weight << "," << WF.Filename << "\n";
994     return 0;
995   }
996 
997   std::unique_ptr<SymbolRemapper> Remapper;
998   if (!RemappingFile.empty())
999     Remapper = SymbolRemapper::create(RemappingFile);
1000 
1001   if (!SupplInstrWithSample.empty()) {
1002     if (ProfileKind != instr)
1003       exitWithError(
1004           "-supplement-instr-with-sample can only work with -instr. ");
1005 
1006     supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1007                            OutputFormat, OutputSparse, SupplMinSizeThreshold,
1008                            ZeroCounterThreshold, InstrProfColdThreshold);
1009     return 0;
1010   }
1011 
1012   if (ProfileKind == instr)
1013     mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1014                       OutputFilename, OutputFormat, OutputSparse, NumThreads,
1015                       FailureMode);
1016   else
1017     mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
1018                        OutputFormat, ProfileSymbolListFile, CompressAllSections,
1019                        UseMD5, GenPartialProfile, GenCSNestedProfile,
1020                        SampleMergeColdContext, SampleTrimColdContext,
1021                        SampleColdContextFrameDepth, FailureMode);
1022   return 0;
1023 }
1024 
1025 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1026 static void overlapInstrProfile(const std::string &BaseFilename,
1027                                 const std::string &TestFilename,
1028                                 const OverlapFuncFilters &FuncFilter,
1029                                 raw_fd_ostream &OS, bool IsCS) {
1030   std::mutex ErrorLock;
1031   SmallSet<instrprof_error, 4> WriterErrorCodes;
1032   WriterContext Context(false, ErrorLock, WriterErrorCodes);
1033   WeightedFile WeightedInput{BaseFilename, 1};
1034   OverlapStats Overlap;
1035   Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1036   if (E)
1037     exitWithError(std::move(E), "error in getting profile count sums");
1038   if (Overlap.Base.CountSum < 1.0f) {
1039     OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1040     exit(0);
1041   }
1042   if (Overlap.Test.CountSum < 1.0f) {
1043     OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1044     exit(0);
1045   }
1046   loadInput(WeightedInput, nullptr, nullptr, &Context);
1047   overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1048                IsCS);
1049   Overlap.dump(OS);
1050 }
1051 
1052 namespace {
1053 struct SampleOverlapStats {
1054   SampleContext BaseName;
1055   SampleContext TestName;
1056   // Number of overlap units
1057   uint64_t OverlapCount;
1058   // Total samples of overlap units
1059   uint64_t OverlapSample;
1060   // Number of and total samples of units that only present in base or test
1061   // profile
1062   uint64_t BaseUniqueCount;
1063   uint64_t BaseUniqueSample;
1064   uint64_t TestUniqueCount;
1065   uint64_t TestUniqueSample;
1066   // Number of units and total samples in base or test profile
1067   uint64_t BaseCount;
1068   uint64_t BaseSample;
1069   uint64_t TestCount;
1070   uint64_t TestSample;
1071   // Number of and total samples of units that present in at least one profile
1072   uint64_t UnionCount;
1073   uint64_t UnionSample;
1074   // Weighted similarity
1075   double Similarity;
1076   // For SampleOverlapStats instances representing functions, weights of the
1077   // function in base and test profiles
1078   double BaseWeight;
1079   double TestWeight;
1080 
1081   SampleOverlapStats()
1082       : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1083         BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1084         BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1085         UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1086 };
1087 } // end anonymous namespace
1088 
1089 namespace {
1090 struct FuncSampleStats {
1091   uint64_t SampleSum;
1092   uint64_t MaxSample;
1093   uint64_t HotBlockCount;
1094   FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
1095   FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1096                   uint64_t HotBlockCount)
1097       : SampleSum(SampleSum), MaxSample(MaxSample),
1098         HotBlockCount(HotBlockCount) {}
1099 };
1100 } // end anonymous namespace
1101 
1102 namespace {
1103 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1104 
1105 // Class for updating merging steps for two sorted maps. The class should be
1106 // instantiated with a map iterator type.
1107 template <class T> class MatchStep {
1108 public:
1109   MatchStep() = delete;
1110 
1111   MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1112       : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1113         SecondEnd(SecondEnd), Status(MS_None) {}
1114 
1115   bool areBothFinished() const {
1116     return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1117   }
1118 
1119   bool isFirstFinished() const { return FirstIter == FirstEnd; }
1120 
1121   bool isSecondFinished() const { return SecondIter == SecondEnd; }
1122 
1123   /// Advance one step based on the previous match status unless the previous
1124   /// status is MS_None. Then update Status based on the comparison between two
1125   /// container iterators at the current step. If the previous status is
1126   /// MS_None, it means two iterators are at the beginning and no comparison has
1127   /// been made, so we simply update Status without advancing the iterators.
1128   void updateOneStep();
1129 
1130   T getFirstIter() const { return FirstIter; }
1131 
1132   T getSecondIter() const { return SecondIter; }
1133 
1134   MatchStatus getMatchStatus() const { return Status; }
1135 
1136 private:
1137   // Current iterator and end iterator of the first container.
1138   T FirstIter;
1139   T FirstEnd;
1140   // Current iterator and end iterator of the second container.
1141   T SecondIter;
1142   T SecondEnd;
1143   // Match status of the current step.
1144   MatchStatus Status;
1145 };
1146 } // end anonymous namespace
1147 
1148 template <class T> void MatchStep<T>::updateOneStep() {
1149   switch (Status) {
1150   case MS_Match:
1151     ++FirstIter;
1152     ++SecondIter;
1153     break;
1154   case MS_FirstUnique:
1155     ++FirstIter;
1156     break;
1157   case MS_SecondUnique:
1158     ++SecondIter;
1159     break;
1160   case MS_None:
1161     break;
1162   }
1163 
1164   // Update Status according to iterators at the current step.
1165   if (areBothFinished())
1166     return;
1167   if (FirstIter != FirstEnd &&
1168       (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1169     Status = MS_FirstUnique;
1170   else if (SecondIter != SecondEnd &&
1171            (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1172     Status = MS_SecondUnique;
1173   else
1174     Status = MS_Match;
1175 }
1176 
1177 // Return the sum of line/block samples, the max line/block sample, and the
1178 // number of line/block samples above the given threshold in a function
1179 // including its inlinees.
1180 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1181                                FuncSampleStats &FuncStats,
1182                                uint64_t HotThreshold) {
1183   for (const auto &L : Func.getBodySamples()) {
1184     uint64_t Sample = L.second.getSamples();
1185     FuncStats.SampleSum += Sample;
1186     FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1187     if (Sample >= HotThreshold)
1188       ++FuncStats.HotBlockCount;
1189   }
1190 
1191   for (const auto &C : Func.getCallsiteSamples()) {
1192     for (const auto &F : C.second)
1193       getFuncSampleStats(F.second, FuncStats, HotThreshold);
1194   }
1195 }
1196 
1197 /// Predicate that determines if a function is hot with a given threshold. We
1198 /// keep it separate from its callsites for possible extension in the future.
1199 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1200                           uint64_t HotThreshold) {
1201   // We intentionally compare the maximum sample count in a function with the
1202   // HotThreshold to get an approximate determination on hot functions.
1203   return (FuncStats.MaxSample >= HotThreshold);
1204 }
1205 
1206 namespace {
1207 class SampleOverlapAggregator {
1208 public:
1209   SampleOverlapAggregator(const std::string &BaseFilename,
1210                           const std::string &TestFilename,
1211                           double LowSimilarityThreshold, double Epsilon,
1212                           const OverlapFuncFilters &FuncFilter)
1213       : BaseFilename(BaseFilename), TestFilename(TestFilename),
1214         LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1215         FuncFilter(FuncFilter) {}
1216 
1217   /// Detect 0-sample input profile and report to output stream. This interface
1218   /// should be called after loadProfiles().
1219   bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1220 
1221   /// Write out function-level similarity statistics for functions specified by
1222   /// options --function, --value-cutoff, and --similarity-cutoff.
1223   void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1224 
1225   /// Write out program-level similarity and overlap statistics.
1226   void dumpProgramSummary(raw_fd_ostream &OS) const;
1227 
1228   /// Write out hot-function and hot-block statistics for base_profile,
1229   /// test_profile, and their overlap. For both cases, the overlap HO is
1230   /// calculated as follows:
1231   ///    Given the number of functions (or blocks) that are hot in both profiles
1232   ///    HCommon and the number of functions (or blocks) that are hot in at
1233   ///    least one profile HUnion, HO = HCommon / HUnion.
1234   void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1235 
1236   /// This function tries matching functions in base and test profiles. For each
1237   /// pair of matched functions, it aggregates the function-level
1238   /// similarity into a profile-level similarity. It also dump function-level
1239   /// similarity information of functions specified by --function,
1240   /// --value-cutoff, and --similarity-cutoff options. The program-level
1241   /// similarity PS is computed as follows:
1242   ///     Given function-level similarity FS(A) for all function A, the
1243   ///     weight of function A in base profile WB(A), and the weight of function
1244   ///     A in test profile WT(A), compute PS(base_profile, test_profile) =
1245   ///     sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1246   ///     meaning no-overlap.
1247   void computeSampleProfileOverlap(raw_fd_ostream &OS);
1248 
1249   /// Initialize ProfOverlap with the sum of samples in base and test
1250   /// profiles. This function also computes and keeps the sum of samples and
1251   /// max sample counts of each function in BaseStats and TestStats for later
1252   /// use to avoid re-computations.
1253   void initializeSampleProfileOverlap();
1254 
1255   /// Load profiles specified by BaseFilename and TestFilename.
1256   std::error_code loadProfiles();
1257 
1258   using FuncSampleStatsMap =
1259       std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1260 
1261 private:
1262   SampleOverlapStats ProfOverlap;
1263   SampleOverlapStats HotFuncOverlap;
1264   SampleOverlapStats HotBlockOverlap;
1265   std::string BaseFilename;
1266   std::string TestFilename;
1267   std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1268   std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1269   // BaseStats and TestStats hold FuncSampleStats for each function, with
1270   // function name as the key.
1271   FuncSampleStatsMap BaseStats;
1272   FuncSampleStatsMap TestStats;
1273   // Low similarity threshold in floating point number
1274   double LowSimilarityThreshold;
1275   // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1276   // for tracking hot blocks.
1277   uint64_t BaseHotThreshold;
1278   uint64_t TestHotThreshold;
1279   // A small threshold used to round the results of floating point accumulations
1280   // to resolve imprecision.
1281   const double Epsilon;
1282   std::multimap<double, SampleOverlapStats, std::greater<double>>
1283       FuncSimilarityDump;
1284   // FuncFilter carries specifications in options --value-cutoff and
1285   // --function.
1286   OverlapFuncFilters FuncFilter;
1287   // Column offsets for printing the function-level details table.
1288   static const unsigned int TestWeightCol = 15;
1289   static const unsigned int SimilarityCol = 30;
1290   static const unsigned int OverlapCol = 43;
1291   static const unsigned int BaseUniqueCol = 53;
1292   static const unsigned int TestUniqueCol = 67;
1293   static const unsigned int BaseSampleCol = 81;
1294   static const unsigned int TestSampleCol = 96;
1295   static const unsigned int FuncNameCol = 111;
1296 
1297   /// Return a similarity of two line/block sample counters in the same
1298   /// function in base and test profiles. The line/block-similarity BS(i) is
1299   /// computed as follows:
1300   ///    For an offsets i, given the sample count at i in base profile BB(i),
1301   ///    the sample count at i in test profile BT(i), the sum of sample counts
1302   ///    in this function in base profile SB, and the sum of sample counts in
1303   ///    this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1304   ///    BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1305   double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1306                                 const SampleOverlapStats &FuncOverlap) const;
1307 
1308   void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1309                              uint64_t HotBlockCount);
1310 
1311   void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1312                        FuncSampleStatsMap &HotFunc,
1313                        uint64_t HotThreshold) const;
1314 
1315   void computeHotFuncOverlap();
1316 
1317   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1318   /// Difference for two sample units in a matched function according to the
1319   /// given match status.
1320   void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1321                                      uint64_t HotBlockCount,
1322                                      SampleOverlapStats &FuncOverlap,
1323                                      double &Difference, MatchStatus Status);
1324 
1325   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1326   /// Difference for unmatched callees that only present in one profile in a
1327   /// matched caller function.
1328   void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1329                                 SampleOverlapStats &FuncOverlap,
1330                                 double &Difference, MatchStatus Status);
1331 
1332   /// This function updates sample overlap statistics of an overlap function in
1333   /// base and test profile. It also calculates a function-internal similarity
1334   /// FIS as follows:
1335   ///    For offsets i that have samples in at least one profile in this
1336   ///    function A, given BS(i) returned by computeBlockSimilarity(), compute
1337   ///    FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1338   ///    0.0 meaning no overlap.
1339   double computeSampleFunctionInternalOverlap(
1340       const sampleprof::FunctionSamples &BaseFunc,
1341       const sampleprof::FunctionSamples &TestFunc,
1342       SampleOverlapStats &FuncOverlap);
1343 
1344   /// Function-level similarity (FS) is a weighted value over function internal
1345   /// similarity (FIS). This function computes a function's FS from its FIS by
1346   /// applying the weight.
1347   double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1348                                  uint64_t TestFuncSample) const;
1349 
1350   /// The function-level similarity FS(A) for a function A is computed as
1351   /// follows:
1352   ///     Compute a function-internal similarity FIS(A) by
1353   ///     computeSampleFunctionInternalOverlap(). Then, with the weight of
1354   ///     function A in base profile WB(A), and the weight of function A in test
1355   ///     profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1356   ///     ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1357   double
1358   computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1359                                const sampleprof::FunctionSamples *TestFunc,
1360                                SampleOverlapStats *FuncOverlap,
1361                                uint64_t BaseFuncSample,
1362                                uint64_t TestFuncSample);
1363 
1364   /// Profile-level similarity (PS) is a weighted aggregate over function-level
1365   /// similarities (FS). This method weights the FS value by the function
1366   /// weights in the base and test profiles for the aggregation.
1367   double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1368                             uint64_t TestFuncSample) const;
1369 };
1370 } // end anonymous namespace
1371 
1372 bool SampleOverlapAggregator::detectZeroSampleProfile(
1373     raw_fd_ostream &OS) const {
1374   bool HaveZeroSample = false;
1375   if (ProfOverlap.BaseSample == 0) {
1376     OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1377     HaveZeroSample = true;
1378   }
1379   if (ProfOverlap.TestSample == 0) {
1380     OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1381     HaveZeroSample = true;
1382   }
1383   return HaveZeroSample;
1384 }
1385 
1386 double SampleOverlapAggregator::computeBlockSimilarity(
1387     uint64_t BaseSample, uint64_t TestSample,
1388     const SampleOverlapStats &FuncOverlap) const {
1389   double BaseFrac = 0.0;
1390   double TestFrac = 0.0;
1391   if (FuncOverlap.BaseSample > 0)
1392     BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1393   if (FuncOverlap.TestSample > 0)
1394     TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1395   return 1.0 - std::fabs(BaseFrac - TestFrac);
1396 }
1397 
1398 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1399                                                     uint64_t TestSample,
1400                                                     uint64_t HotBlockCount) {
1401   bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1402   bool IsTestHot = (TestSample >= TestHotThreshold);
1403   if (!IsBaseHot && !IsTestHot)
1404     return;
1405 
1406   HotBlockOverlap.UnionCount += HotBlockCount;
1407   if (IsBaseHot)
1408     HotBlockOverlap.BaseCount += HotBlockCount;
1409   if (IsTestHot)
1410     HotBlockOverlap.TestCount += HotBlockCount;
1411   if (IsBaseHot && IsTestHot)
1412     HotBlockOverlap.OverlapCount += HotBlockCount;
1413 }
1414 
1415 void SampleOverlapAggregator::getHotFunctions(
1416     const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1417     uint64_t HotThreshold) const {
1418   for (const auto &F : ProfStats) {
1419     if (isFunctionHot(F.second, HotThreshold))
1420       HotFunc.emplace(F.first, F.second);
1421   }
1422 }
1423 
1424 void SampleOverlapAggregator::computeHotFuncOverlap() {
1425   FuncSampleStatsMap BaseHotFunc;
1426   getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1427   HotFuncOverlap.BaseCount = BaseHotFunc.size();
1428 
1429   FuncSampleStatsMap TestHotFunc;
1430   getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1431   HotFuncOverlap.TestCount = TestHotFunc.size();
1432   HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1433 
1434   for (const auto &F : BaseHotFunc) {
1435     if (TestHotFunc.count(F.first))
1436       ++HotFuncOverlap.OverlapCount;
1437     else
1438       ++HotFuncOverlap.UnionCount;
1439   }
1440 }
1441 
1442 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1443     uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1444     SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1445   assert(Status != MS_None &&
1446          "Match status should be updated before updating overlap statistics");
1447   if (Status == MS_FirstUnique) {
1448     TestSample = 0;
1449     FuncOverlap.BaseUniqueSample += BaseSample;
1450   } else if (Status == MS_SecondUnique) {
1451     BaseSample = 0;
1452     FuncOverlap.TestUniqueSample += TestSample;
1453   } else {
1454     ++FuncOverlap.OverlapCount;
1455   }
1456 
1457   FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1458   FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1459   Difference +=
1460       1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1461   updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1462 }
1463 
1464 void SampleOverlapAggregator::updateForUnmatchedCallee(
1465     const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1466     double &Difference, MatchStatus Status) {
1467   assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1468          "Status must be either of the two unmatched cases");
1469   FuncSampleStats FuncStats;
1470   if (Status == MS_FirstUnique) {
1471     getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1472     updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1473                                   FuncStats.HotBlockCount, FuncOverlap,
1474                                   Difference, Status);
1475   } else {
1476     getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1477     updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1478                                   FuncStats.HotBlockCount, FuncOverlap,
1479                                   Difference, Status);
1480   }
1481 }
1482 
1483 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1484     const sampleprof::FunctionSamples &BaseFunc,
1485     const sampleprof::FunctionSamples &TestFunc,
1486     SampleOverlapStats &FuncOverlap) {
1487 
1488   using namespace sampleprof;
1489 
1490   double Difference = 0;
1491 
1492   // Accumulate Difference for regular line/block samples in the function.
1493   // We match them through sort-merge join algorithm because
1494   // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1495   // by their offsets.
1496   MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1497       BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1498       TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1499   BlockIterStep.updateOneStep();
1500   while (!BlockIterStep.areBothFinished()) {
1501     uint64_t BaseSample =
1502         BlockIterStep.isFirstFinished()
1503             ? 0
1504             : BlockIterStep.getFirstIter()->second.getSamples();
1505     uint64_t TestSample =
1506         BlockIterStep.isSecondFinished()
1507             ? 0
1508             : BlockIterStep.getSecondIter()->second.getSamples();
1509     updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1510                                   Difference, BlockIterStep.getMatchStatus());
1511 
1512     BlockIterStep.updateOneStep();
1513   }
1514 
1515   // Accumulate Difference for callsite lines in the function. We match
1516   // them through sort-merge algorithm because
1517   // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1518   // ordered by their offsets.
1519   MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1520       BaseFunc.getCallsiteSamples().cbegin(),
1521       BaseFunc.getCallsiteSamples().cend(),
1522       TestFunc.getCallsiteSamples().cbegin(),
1523       TestFunc.getCallsiteSamples().cend());
1524   CallsiteIterStep.updateOneStep();
1525   while (!CallsiteIterStep.areBothFinished()) {
1526     MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1527     assert(CallsiteStepStatus != MS_None &&
1528            "Match status should be updated before entering loop body");
1529 
1530     if (CallsiteStepStatus != MS_Match) {
1531       auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1532                           ? CallsiteIterStep.getFirstIter()
1533                           : CallsiteIterStep.getSecondIter();
1534       for (const auto &F : Callsite->second)
1535         updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1536                                  CallsiteStepStatus);
1537     } else {
1538       // There may be multiple inlinees at the same offset, so we need to try
1539       // matching all of them. This match is implemented through sort-merge
1540       // algorithm because callsite records at the same offset are ordered by
1541       // function names.
1542       MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1543           CallsiteIterStep.getFirstIter()->second.cbegin(),
1544           CallsiteIterStep.getFirstIter()->second.cend(),
1545           CallsiteIterStep.getSecondIter()->second.cbegin(),
1546           CallsiteIterStep.getSecondIter()->second.cend());
1547       CalleeIterStep.updateOneStep();
1548       while (!CalleeIterStep.areBothFinished()) {
1549         MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1550         if (CalleeStepStatus != MS_Match) {
1551           auto Callee = (CalleeStepStatus == MS_FirstUnique)
1552                             ? CalleeIterStep.getFirstIter()
1553                             : CalleeIterStep.getSecondIter();
1554           updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1555                                    CalleeStepStatus);
1556         } else {
1557           // An inlined function can contain other inlinees inside, so compute
1558           // the Difference recursively.
1559           Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1560                                       CalleeIterStep.getFirstIter()->second,
1561                                       CalleeIterStep.getSecondIter()->second,
1562                                       FuncOverlap);
1563         }
1564         CalleeIterStep.updateOneStep();
1565       }
1566     }
1567     CallsiteIterStep.updateOneStep();
1568   }
1569 
1570   // Difference reflects the total differences of line/block samples in this
1571   // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1572   // reflect the similarity between function profiles in [0.0f to 1.0f].
1573   return (2.0 - Difference) / 2;
1574 }
1575 
1576 double SampleOverlapAggregator::weightForFuncSimilarity(
1577     double FuncInternalSimilarity, uint64_t BaseFuncSample,
1578     uint64_t TestFuncSample) const {
1579   // Compute the weight as the distance between the function weights in two
1580   // profiles.
1581   double BaseFrac = 0.0;
1582   double TestFrac = 0.0;
1583   assert(ProfOverlap.BaseSample > 0 &&
1584          "Total samples in base profile should be greater than 0");
1585   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1586   assert(ProfOverlap.TestSample > 0 &&
1587          "Total samples in test profile should be greater than 0");
1588   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1589   double WeightDistance = std::fabs(BaseFrac - TestFrac);
1590 
1591   // Take WeightDistance into the similarity.
1592   return FuncInternalSimilarity * (1 - WeightDistance);
1593 }
1594 
1595 double
1596 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1597                                             uint64_t BaseFuncSample,
1598                                             uint64_t TestFuncSample) const {
1599 
1600   double BaseFrac = 0.0;
1601   double TestFrac = 0.0;
1602   assert(ProfOverlap.BaseSample > 0 &&
1603          "Total samples in base profile should be greater than 0");
1604   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1605   assert(ProfOverlap.TestSample > 0 &&
1606          "Total samples in test profile should be greater than 0");
1607   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1608   return FuncSimilarity * (BaseFrac + TestFrac);
1609 }
1610 
1611 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1612     const sampleprof::FunctionSamples *BaseFunc,
1613     const sampleprof::FunctionSamples *TestFunc,
1614     SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1615     uint64_t TestFuncSample) {
1616   // Default function internal similarity before weighted, meaning two functions
1617   // has no overlap.
1618   const double DefaultFuncInternalSimilarity = 0;
1619   double FuncSimilarity;
1620   double FuncInternalSimilarity;
1621 
1622   // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1623   // In this case, we use DefaultFuncInternalSimilarity as the function internal
1624   // similarity.
1625   if (!BaseFunc || !TestFunc) {
1626     FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1627   } else {
1628     assert(FuncOverlap != nullptr &&
1629            "FuncOverlap should be provided in this case");
1630     FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1631         *BaseFunc, *TestFunc, *FuncOverlap);
1632     // Now, FuncInternalSimilarity may be a little less than 0 due to
1633     // imprecision of floating point accumulations. Make it zero if the
1634     // difference is below Epsilon.
1635     FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1636                                  ? 0
1637                                  : FuncInternalSimilarity;
1638   }
1639   FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1640                                            BaseFuncSample, TestFuncSample);
1641   return FuncSimilarity;
1642 }
1643 
1644 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1645   using namespace sampleprof;
1646 
1647   std::unordered_map<SampleContext, const FunctionSamples *,
1648                      SampleContext::Hash>
1649       BaseFuncProf;
1650   const auto &BaseProfiles = BaseReader->getProfiles();
1651   for (const auto &BaseFunc : BaseProfiles) {
1652     BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1653   }
1654   ProfOverlap.UnionCount = BaseFuncProf.size();
1655 
1656   const auto &TestProfiles = TestReader->getProfiles();
1657   for (const auto &TestFunc : TestProfiles) {
1658     SampleOverlapStats FuncOverlap;
1659     FuncOverlap.TestName = TestFunc.second.getContext();
1660     assert(TestStats.count(FuncOverlap.TestName) &&
1661            "TestStats should have records for all functions in test profile "
1662            "except inlinees");
1663     FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1664 
1665     bool Matched = false;
1666     const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1667     if (Match == BaseFuncProf.end()) {
1668       const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1669       ++ProfOverlap.TestUniqueCount;
1670       ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1671       FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1672 
1673       updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1674 
1675       double FuncSimilarity = computeSampleFunctionOverlap(
1676           nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1677       ProfOverlap.Similarity +=
1678           weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1679 
1680       ++ProfOverlap.UnionCount;
1681       ProfOverlap.UnionSample += FuncStats.SampleSum;
1682     } else {
1683       ++ProfOverlap.OverlapCount;
1684 
1685       // Two functions match with each other. Compute function-level overlap and
1686       // aggregate them into profile-level overlap.
1687       FuncOverlap.BaseName = Match->second->getContext();
1688       assert(BaseStats.count(FuncOverlap.BaseName) &&
1689              "BaseStats should have records for all functions in base profile "
1690              "except inlinees");
1691       FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1692 
1693       FuncOverlap.Similarity = computeSampleFunctionOverlap(
1694           Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1695           FuncOverlap.TestSample);
1696       ProfOverlap.Similarity +=
1697           weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1698                              FuncOverlap.TestSample);
1699       ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1700       ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1701 
1702       // Accumulate the percentage of base unique and test unique samples into
1703       // ProfOverlap.
1704       ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1705       ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1706 
1707       // Remove matched base functions for later reporting functions not found
1708       // in test profile.
1709       BaseFuncProf.erase(Match);
1710       Matched = true;
1711     }
1712 
1713     // Print function-level similarity information if specified by options.
1714     assert(TestStats.count(FuncOverlap.TestName) &&
1715            "TestStats should have records for all functions in test profile "
1716            "except inlinees");
1717     if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1718         (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1719         (Matched && !FuncFilter.NameFilter.empty() &&
1720          FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1721              std::string::npos)) {
1722       assert(ProfOverlap.BaseSample > 0 &&
1723              "Total samples in base profile should be greater than 0");
1724       FuncOverlap.BaseWeight =
1725           static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1726       assert(ProfOverlap.TestSample > 0 &&
1727              "Total samples in test profile should be greater than 0");
1728       FuncOverlap.TestWeight =
1729           static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1730       FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1731     }
1732   }
1733 
1734   // Traverse through functions in base profile but not in test profile.
1735   for (const auto &F : BaseFuncProf) {
1736     assert(BaseStats.count(F.second->getContext()) &&
1737            "BaseStats should have records for all functions in base profile "
1738            "except inlinees");
1739     const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
1740     ++ProfOverlap.BaseUniqueCount;
1741     ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1742 
1743     updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1744 
1745     double FuncSimilarity = computeSampleFunctionOverlap(
1746         nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1747     ProfOverlap.Similarity +=
1748         weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1749 
1750     ProfOverlap.UnionSample += FuncStats.SampleSum;
1751   }
1752 
1753   // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1754   // of floating point accumulations. Make it 1.0 if the difference is below
1755   // Epsilon.
1756   ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1757                                ? 1
1758                                : ProfOverlap.Similarity;
1759 
1760   computeHotFuncOverlap();
1761 }
1762 
1763 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1764   const auto &BaseProf = BaseReader->getProfiles();
1765   for (const auto &I : BaseProf) {
1766     ++ProfOverlap.BaseCount;
1767     FuncSampleStats FuncStats;
1768     getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1769     ProfOverlap.BaseSample += FuncStats.SampleSum;
1770     BaseStats.emplace(I.second.getContext(), FuncStats);
1771   }
1772 
1773   const auto &TestProf = TestReader->getProfiles();
1774   for (const auto &I : TestProf) {
1775     ++ProfOverlap.TestCount;
1776     FuncSampleStats FuncStats;
1777     getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1778     ProfOverlap.TestSample += FuncStats.SampleSum;
1779     TestStats.emplace(I.second.getContext(), FuncStats);
1780   }
1781 
1782   ProfOverlap.BaseName = StringRef(BaseFilename);
1783   ProfOverlap.TestName = StringRef(TestFilename);
1784 }
1785 
1786 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1787   using namespace sampleprof;
1788 
1789   if (FuncSimilarityDump.empty())
1790     return;
1791 
1792   formatted_raw_ostream FOS(OS);
1793   FOS << "Function-level details:\n";
1794   FOS << "Base weight";
1795   FOS.PadToColumn(TestWeightCol);
1796   FOS << "Test weight";
1797   FOS.PadToColumn(SimilarityCol);
1798   FOS << "Similarity";
1799   FOS.PadToColumn(OverlapCol);
1800   FOS << "Overlap";
1801   FOS.PadToColumn(BaseUniqueCol);
1802   FOS << "Base unique";
1803   FOS.PadToColumn(TestUniqueCol);
1804   FOS << "Test unique";
1805   FOS.PadToColumn(BaseSampleCol);
1806   FOS << "Base samples";
1807   FOS.PadToColumn(TestSampleCol);
1808   FOS << "Test samples";
1809   FOS.PadToColumn(FuncNameCol);
1810   FOS << "Function name\n";
1811   for (const auto &F : FuncSimilarityDump) {
1812     double OverlapPercent =
1813         F.second.UnionSample > 0
1814             ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1815             : 0;
1816     double BaseUniquePercent =
1817         F.second.BaseSample > 0
1818             ? static_cast<double>(F.second.BaseUniqueSample) /
1819                   F.second.BaseSample
1820             : 0;
1821     double TestUniquePercent =
1822         F.second.TestSample > 0
1823             ? static_cast<double>(F.second.TestUniqueSample) /
1824                   F.second.TestSample
1825             : 0;
1826 
1827     FOS << format("%.2f%%", F.second.BaseWeight * 100);
1828     FOS.PadToColumn(TestWeightCol);
1829     FOS << format("%.2f%%", F.second.TestWeight * 100);
1830     FOS.PadToColumn(SimilarityCol);
1831     FOS << format("%.2f%%", F.second.Similarity * 100);
1832     FOS.PadToColumn(OverlapCol);
1833     FOS << format("%.2f%%", OverlapPercent * 100);
1834     FOS.PadToColumn(BaseUniqueCol);
1835     FOS << format("%.2f%%", BaseUniquePercent * 100);
1836     FOS.PadToColumn(TestUniqueCol);
1837     FOS << format("%.2f%%", TestUniquePercent * 100);
1838     FOS.PadToColumn(BaseSampleCol);
1839     FOS << F.second.BaseSample;
1840     FOS.PadToColumn(TestSampleCol);
1841     FOS << F.second.TestSample;
1842     FOS.PadToColumn(FuncNameCol);
1843     FOS << F.second.TestName.toString() << "\n";
1844   }
1845 }
1846 
1847 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1848   OS << "Profile overlap infomation for base_profile: "
1849      << ProfOverlap.BaseName.toString()
1850      << " and test_profile: " << ProfOverlap.TestName.toString()
1851      << "\nProgram level:\n";
1852 
1853   OS << "  Whole program profile similarity: "
1854      << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1855 
1856   assert(ProfOverlap.UnionSample > 0 &&
1857          "Total samples in two profile should be greater than 0");
1858   double OverlapPercent =
1859       static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1860   assert(ProfOverlap.BaseSample > 0 &&
1861          "Total samples in base profile should be greater than 0");
1862   double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1863                              ProfOverlap.BaseSample;
1864   assert(ProfOverlap.TestSample > 0 &&
1865          "Total samples in test profile should be greater than 0");
1866   double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1867                              ProfOverlap.TestSample;
1868 
1869   OS << "  Whole program sample overlap: "
1870      << format("%.3f%%", OverlapPercent * 100) << "\n";
1871   OS << "    percentage of samples unique in base profile: "
1872      << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1873   OS << "    percentage of samples unique in test profile: "
1874      << format("%.3f%%", TestUniquePercent * 100) << "\n";
1875   OS << "    total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1876      << "    total samples in test profile: " << ProfOverlap.TestSample << "\n";
1877 
1878   assert(ProfOverlap.UnionCount > 0 &&
1879          "There should be at least one function in two input profiles");
1880   double FuncOverlapPercent =
1881       static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1882   OS << "  Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1883      << "\n";
1884   OS << "    overlap functions: " << ProfOverlap.OverlapCount << "\n";
1885   OS << "    functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1886      << "\n";
1887   OS << "    functions unique in test profile: " << ProfOverlap.TestUniqueCount
1888      << "\n";
1889 }
1890 
1891 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1892     raw_fd_ostream &OS) const {
1893   assert(HotFuncOverlap.UnionCount > 0 &&
1894          "There should be at least one hot function in two input profiles");
1895   OS << "  Hot-function overlap: "
1896      << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1897                              HotFuncOverlap.UnionCount * 100)
1898      << "\n";
1899   OS << "    overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1900   OS << "    hot functions unique in base profile: "
1901      << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1902   OS << "    hot functions unique in test profile: "
1903      << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1904 
1905   assert(HotBlockOverlap.UnionCount > 0 &&
1906          "There should be at least one hot block in two input profiles");
1907   OS << "  Hot-block overlap: "
1908      << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1909                              HotBlockOverlap.UnionCount * 100)
1910      << "\n";
1911   OS << "    overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1912   OS << "    hot blocks unique in base profile: "
1913      << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1914   OS << "    hot blocks unique in test profile: "
1915      << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1916 }
1917 
1918 std::error_code SampleOverlapAggregator::loadProfiles() {
1919   using namespace sampleprof;
1920 
1921   LLVMContext Context;
1922   auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1923                                                      FSDiscriminatorPassOption);
1924   if (std::error_code EC = BaseReaderOrErr.getError())
1925     exitWithErrorCode(EC, BaseFilename);
1926 
1927   auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1928                                                      FSDiscriminatorPassOption);
1929   if (std::error_code EC = TestReaderOrErr.getError())
1930     exitWithErrorCode(EC, TestFilename);
1931 
1932   BaseReader = std::move(BaseReaderOrErr.get());
1933   TestReader = std::move(TestReaderOrErr.get());
1934 
1935   if (std::error_code EC = BaseReader->read())
1936     exitWithErrorCode(EC, BaseFilename);
1937   if (std::error_code EC = TestReader->read())
1938     exitWithErrorCode(EC, TestFilename);
1939   if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1940     exitWithError(
1941         "cannot compare probe-based profile with non-probe-based profile");
1942   if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat())
1943     exitWithError("cannot compare CS profile with non-CS profile");
1944 
1945   // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1946   // profile summary.
1947   ProfileSummary &BasePS = BaseReader->getSummary();
1948   ProfileSummary &TestPS = TestReader->getSummary();
1949   BaseHotThreshold =
1950       ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
1951   TestHotThreshold =
1952       ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
1953 
1954   return std::error_code();
1955 }
1956 
1957 void overlapSampleProfile(const std::string &BaseFilename,
1958                           const std::string &TestFilename,
1959                           const OverlapFuncFilters &FuncFilter,
1960                           uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1961   using namespace sampleprof;
1962 
1963   // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1964   // report 2--3 places after decimal point in percentage numbers.
1965   SampleOverlapAggregator OverlapAggr(
1966       BaseFilename, TestFilename,
1967       static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1968   if (std::error_code EC = OverlapAggr.loadProfiles())
1969     exitWithErrorCode(EC);
1970 
1971   OverlapAggr.initializeSampleProfileOverlap();
1972   if (OverlapAggr.detectZeroSampleProfile(OS))
1973     return;
1974 
1975   OverlapAggr.computeSampleProfileOverlap(OS);
1976 
1977   OverlapAggr.dumpProgramSummary(OS);
1978   OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1979   OverlapAggr.dumpFuncSimilarity(OS);
1980 }
1981 
1982 static int overlap_main(int argc, const char *argv[]) {
1983   cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1984                                     cl::desc("<base profile file>"));
1985   cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1986                                     cl::desc("<test profile file>"));
1987   cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1988                               cl::desc("Output file"));
1989   cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1990   cl::opt<bool> IsCS(
1991       "cs", cl::init(false),
1992       cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1993   cl::opt<unsigned long long> ValueCutoff(
1994       "value-cutoff", cl::init(-1),
1995       cl::desc(
1996           "Function level overlap information for every function (with calling "
1997           "context for csspgo) in test "
1998           "profile with max count value greater then the parameter value"));
1999   cl::opt<std::string> FuncNameFilter(
2000       "function",
2001       cl::desc("Function level overlap information for matching functions. For "
2002                "CSSPGO this takes a a function name with calling context"));
2003   cl::opt<unsigned long long> SimilarityCutoff(
2004       "similarity-cutoff", cl::init(0),
2005       cl::desc("For sample profiles, list function names (with calling context "
2006                "for csspgo) for overlapped functions "
2007                "with similarities below the cutoff (percentage times 10000)."));
2008   cl::opt<ProfileKinds> ProfileKind(
2009       cl::desc("Profile kind:"), cl::init(instr),
2010       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2011                  clEnumVal(sample, "Sample profile")));
2012   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2013 
2014   std::error_code EC;
2015   raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2016   if (EC)
2017     exitWithErrorCode(EC, Output);
2018 
2019   if (ProfileKind == instr)
2020     overlapInstrProfile(BaseFilename, TestFilename,
2021                         OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2022                         IsCS);
2023   else
2024     overlapSampleProfile(BaseFilename, TestFilename,
2025                          OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2026                          SimilarityCutoff, OS);
2027 
2028   return 0;
2029 }
2030 
2031 namespace {
2032 struct ValueSitesStats {
2033   ValueSitesStats()
2034       : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2035         TotalNumValues(0) {}
2036   uint64_t TotalNumValueSites;
2037   uint64_t TotalNumValueSitesWithValueProfile;
2038   uint64_t TotalNumValues;
2039   std::vector<unsigned> ValueSitesHistogram;
2040 };
2041 } // namespace
2042 
2043 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2044                                   ValueSitesStats &Stats, raw_fd_ostream &OS,
2045                                   InstrProfSymtab *Symtab) {
2046   uint32_t NS = Func.getNumValueSites(VK);
2047   Stats.TotalNumValueSites += NS;
2048   for (size_t I = 0; I < NS; ++I) {
2049     uint32_t NV = Func.getNumValueDataForSite(VK, I);
2050     std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2051     Stats.TotalNumValues += NV;
2052     if (NV) {
2053       Stats.TotalNumValueSitesWithValueProfile++;
2054       if (NV > Stats.ValueSitesHistogram.size())
2055         Stats.ValueSitesHistogram.resize(NV, 0);
2056       Stats.ValueSitesHistogram[NV - 1]++;
2057     }
2058 
2059     uint64_t SiteSum = 0;
2060     for (uint32_t V = 0; V < NV; V++)
2061       SiteSum += VD[V].Count;
2062     if (SiteSum == 0)
2063       SiteSum = 1;
2064 
2065     for (uint32_t V = 0; V < NV; V++) {
2066       OS << "\t[ " << format("%2u", I) << ", ";
2067       if (Symtab == nullptr)
2068         OS << format("%4" PRIu64, VD[V].Value);
2069       else
2070         OS << Symtab->getFuncName(VD[V].Value);
2071       OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2072          << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2073     }
2074   }
2075 }
2076 
2077 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2078                                 ValueSitesStats &Stats) {
2079   OS << "  Total number of sites: " << Stats.TotalNumValueSites << "\n";
2080   OS << "  Total number of sites with values: "
2081      << Stats.TotalNumValueSitesWithValueProfile << "\n";
2082   OS << "  Total number of profiled values: " << Stats.TotalNumValues << "\n";
2083 
2084   OS << "  Value sites histogram:\n\tNumTargets, SiteCount\n";
2085   for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2086     if (Stats.ValueSitesHistogram[I] > 0)
2087       OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2088   }
2089 }
2090 
2091 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2092                             uint32_t TopN, bool ShowIndirectCallTargets,
2093                             bool ShowMemOPSizes, bool ShowDetailedSummary,
2094                             std::vector<uint32_t> DetailedSummaryCutoffs,
2095                             bool ShowAllFunctions, bool ShowCS,
2096                             uint64_t ValueCutoff, bool OnlyListBelow,
2097                             const std::string &ShowFunction, bool TextFormat,
2098                             bool ShowBinaryIds, raw_fd_ostream &OS) {
2099   auto ReaderOrErr = InstrProfReader::create(Filename);
2100   std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2101   if (ShowDetailedSummary && Cutoffs.empty()) {
2102     Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2103   }
2104   InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2105   if (Error E = ReaderOrErr.takeError())
2106     exitWithError(std::move(E), Filename);
2107 
2108   auto Reader = std::move(ReaderOrErr.get());
2109   bool IsIRInstr = Reader->isIRLevelProfile();
2110   size_t ShownFunctions = 0;
2111   size_t BelowCutoffFunctions = 0;
2112   int NumVPKind = IPVK_Last - IPVK_First + 1;
2113   std::vector<ValueSitesStats> VPStats(NumVPKind);
2114 
2115   auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2116                    const std::pair<std::string, uint64_t> &v2) {
2117     return v1.second > v2.second;
2118   };
2119 
2120   std::priority_queue<std::pair<std::string, uint64_t>,
2121                       std::vector<std::pair<std::string, uint64_t>>,
2122                       decltype(MinCmp)>
2123       HottestFuncs(MinCmp);
2124 
2125   if (!TextFormat && OnlyListBelow) {
2126     OS << "The list of functions with the maximum counter less than "
2127        << ValueCutoff << ":\n";
2128   }
2129 
2130   // Add marker so that IR-level instrumentation round-trips properly.
2131   if (TextFormat && IsIRInstr)
2132     OS << ":ir\n";
2133 
2134   for (const auto &Func : *Reader) {
2135     if (Reader->isIRLevelProfile()) {
2136       bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2137       if (FuncIsCS != ShowCS)
2138         continue;
2139     }
2140     bool Show = ShowAllFunctions ||
2141                 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2142 
2143     bool doTextFormatDump = (Show && TextFormat);
2144 
2145     if (doTextFormatDump) {
2146       InstrProfSymtab &Symtab = Reader->getSymtab();
2147       InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2148                                          OS);
2149       continue;
2150     }
2151 
2152     assert(Func.Counts.size() > 0 && "function missing entry counter");
2153     Builder.addRecord(Func);
2154 
2155     uint64_t FuncMax = 0;
2156     uint64_t FuncSum = 0;
2157     for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2158       if (Func.Counts[I] == (uint64_t)-1)
2159         continue;
2160       FuncMax = std::max(FuncMax, Func.Counts[I]);
2161       FuncSum += Func.Counts[I];
2162     }
2163 
2164     if (FuncMax < ValueCutoff) {
2165       ++BelowCutoffFunctions;
2166       if (OnlyListBelow) {
2167         OS << "  " << Func.Name << ": (Max = " << FuncMax
2168            << " Sum = " << FuncSum << ")\n";
2169       }
2170       continue;
2171     } else if (OnlyListBelow)
2172       continue;
2173 
2174     if (TopN) {
2175       if (HottestFuncs.size() == TopN) {
2176         if (HottestFuncs.top().second < FuncMax) {
2177           HottestFuncs.pop();
2178           HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2179         }
2180       } else
2181         HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2182     }
2183 
2184     if (Show) {
2185       if (!ShownFunctions)
2186         OS << "Counters:\n";
2187 
2188       ++ShownFunctions;
2189 
2190       OS << "  " << Func.Name << ":\n"
2191          << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2192          << "    Counters: " << Func.Counts.size() << "\n";
2193       if (!IsIRInstr)
2194         OS << "    Function count: " << Func.Counts[0] << "\n";
2195 
2196       if (ShowIndirectCallTargets)
2197         OS << "    Indirect Call Site Count: "
2198            << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2199 
2200       uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2201       if (ShowMemOPSizes && NumMemOPCalls > 0)
2202         OS << "    Number of Memory Intrinsics Calls: " << NumMemOPCalls
2203            << "\n";
2204 
2205       if (ShowCounts) {
2206         OS << "    Block counts: [";
2207         size_t Start = (IsIRInstr ? 0 : 1);
2208         for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2209           OS << (I == Start ? "" : ", ") << Func.Counts[I];
2210         }
2211         OS << "]\n";
2212       }
2213 
2214       if (ShowIndirectCallTargets) {
2215         OS << "    Indirect Target Results:\n";
2216         traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2217                               VPStats[IPVK_IndirectCallTarget], OS,
2218                               &(Reader->getSymtab()));
2219       }
2220 
2221       if (ShowMemOPSizes && NumMemOPCalls > 0) {
2222         OS << "    Memory Intrinsic Size Results:\n";
2223         traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2224                               nullptr);
2225       }
2226     }
2227   }
2228   if (Reader->hasError())
2229     exitWithError(Reader->getError(), Filename);
2230 
2231   if (TextFormat)
2232     return 0;
2233   std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2234   bool IsIR = Reader->isIRLevelProfile();
2235   OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2236   if (IsIR)
2237     OS << "  entry_first = " << Reader->instrEntryBBEnabled();
2238   OS << "\n";
2239   if (ShowAllFunctions || !ShowFunction.empty())
2240     OS << "Functions shown: " << ShownFunctions << "\n";
2241   OS << "Total functions: " << PS->getNumFunctions() << "\n";
2242   if (ValueCutoff > 0) {
2243     OS << "Number of functions with maximum count (< " << ValueCutoff
2244        << "): " << BelowCutoffFunctions << "\n";
2245     OS << "Number of functions with maximum count (>= " << ValueCutoff
2246        << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2247   }
2248   OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2249   OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2250 
2251   if (TopN) {
2252     std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2253     while (!HottestFuncs.empty()) {
2254       SortedHottestFuncs.emplace_back(HottestFuncs.top());
2255       HottestFuncs.pop();
2256     }
2257     OS << "Top " << TopN
2258        << " functions with the largest internal block counts: \n";
2259     for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2260       OS << "  " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2261   }
2262 
2263   if (ShownFunctions && ShowIndirectCallTargets) {
2264     OS << "Statistics for indirect call sites profile:\n";
2265     showValueSitesStats(OS, IPVK_IndirectCallTarget,
2266                         VPStats[IPVK_IndirectCallTarget]);
2267   }
2268 
2269   if (ShownFunctions && ShowMemOPSizes) {
2270     OS << "Statistics for memory intrinsic calls sizes profile:\n";
2271     showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2272   }
2273 
2274   if (ShowDetailedSummary) {
2275     OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2276     OS << "Total count: " << PS->getTotalCount() << "\n";
2277     PS->printDetailedSummary(OS);
2278   }
2279 
2280   if (ShowBinaryIds)
2281     if (Error E = Reader->printBinaryIds(OS))
2282       exitWithError(std::move(E), Filename);
2283 
2284   return 0;
2285 }
2286 
2287 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2288                             raw_fd_ostream &OS) {
2289   if (!Reader->dumpSectionInfo(OS)) {
2290     WithColor::warning() << "-show-sec-info-only is only supported for "
2291                          << "sample profile in extbinary format and is "
2292                          << "ignored for other formats.\n";
2293     return;
2294   }
2295 }
2296 
2297 namespace {
2298 struct HotFuncInfo {
2299   std::string FuncName;
2300   uint64_t TotalCount;
2301   double TotalCountPercent;
2302   uint64_t MaxCount;
2303   uint64_t EntryCount;
2304 
2305   HotFuncInfo()
2306       : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0),
2307         EntryCount(0) {}
2308 
2309   HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2310       : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2311         MaxCount(MS), EntryCount(ES) {}
2312 };
2313 } // namespace
2314 
2315 // Print out detailed information about hot functions in PrintValues vector.
2316 // Users specify titles and offset of every columns through ColumnTitle and
2317 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2318 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2319 // print out or let it be an empty string.
2320 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2321                                 const std::vector<int> &ColumnOffset,
2322                                 const std::vector<HotFuncInfo> &PrintValues,
2323                                 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2324                                 uint64_t HotProfCount, uint64_t TotalProfCount,
2325                                 const std::string &HotFuncMetric,
2326                                 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2327   assert(ColumnOffset.size() == ColumnTitle.size() &&
2328          "ColumnOffset and ColumnTitle should have the same size");
2329   assert(ColumnTitle.size() >= 4 &&
2330          "ColumnTitle should have at least 4 elements");
2331   assert(TotalFuncCount > 0 &&
2332          "There should be at least one function in the profile");
2333   double TotalProfPercent = 0;
2334   if (TotalProfCount > 0)
2335     TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2336 
2337   formatted_raw_ostream FOS(OS);
2338   FOS << HotFuncCount << " out of " << TotalFuncCount
2339       << " functions with profile ("
2340       << format("%.2f%%",
2341                 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2342       << ") are considered hot functions";
2343   if (!HotFuncMetric.empty())
2344     FOS << " (" << HotFuncMetric << ")";
2345   FOS << ".\n";
2346   FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2347       << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2348 
2349   for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2350     FOS.PadToColumn(ColumnOffset[I]);
2351     FOS << ColumnTitle[I];
2352   }
2353   FOS << "\n";
2354 
2355   uint32_t Count = 0;
2356   for (const auto &R : PrintValues) {
2357     if (TopNFunctions && (Count++ == TopNFunctions))
2358       break;
2359     FOS.PadToColumn(ColumnOffset[0]);
2360     FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2361     FOS.PadToColumn(ColumnOffset[1]);
2362     FOS << R.MaxCount;
2363     FOS.PadToColumn(ColumnOffset[2]);
2364     FOS << R.EntryCount;
2365     FOS.PadToColumn(ColumnOffset[3]);
2366     FOS << R.FuncName << "\n";
2367   }
2368 }
2369 
2370 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2371                                ProfileSummary &PS, uint32_t TopN,
2372                                raw_fd_ostream &OS) {
2373   using namespace sampleprof;
2374 
2375   const uint32_t HotFuncCutoff = 990000;
2376   auto &SummaryVector = PS.getDetailedSummary();
2377   uint64_t MinCountThreshold = 0;
2378   for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2379     if (SummaryEntry.Cutoff == HotFuncCutoff) {
2380       MinCountThreshold = SummaryEntry.MinCount;
2381       break;
2382     }
2383   }
2384 
2385   // Traverse all functions in the profile and keep only hot functions.
2386   // The following loop also calculates the sum of total samples of all
2387   // functions.
2388   std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2389                 std::greater<uint64_t>>
2390       HotFunc;
2391   uint64_t ProfileTotalSample = 0;
2392   uint64_t HotFuncSample = 0;
2393   uint64_t HotFuncCount = 0;
2394 
2395   for (const auto &I : Profiles) {
2396     FuncSampleStats FuncStats;
2397     const FunctionSamples &FuncProf = I.second;
2398     ProfileTotalSample += FuncProf.getTotalSamples();
2399     getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2400 
2401     if (isFunctionHot(FuncStats, MinCountThreshold)) {
2402       HotFunc.emplace(FuncProf.getTotalSamples(),
2403                       std::make_pair(&(I.second), FuncStats.MaxSample));
2404       HotFuncSample += FuncProf.getTotalSamples();
2405       ++HotFuncCount;
2406     }
2407   }
2408 
2409   std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2410                                        "Entry sample", "Function name"};
2411   std::vector<int> ColumnOffset{0, 24, 42, 58};
2412   std::string Metric =
2413       std::string("max sample >= ") + std::to_string(MinCountThreshold);
2414   std::vector<HotFuncInfo> PrintValues;
2415   for (const auto &FuncPair : HotFunc) {
2416     const FunctionSamples &Func = *FuncPair.second.first;
2417     double TotalSamplePercent =
2418         (ProfileTotalSample > 0)
2419             ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2420             : 0;
2421     PrintValues.emplace_back(HotFuncInfo(
2422         Func.getContext().toString(), Func.getTotalSamples(),
2423         TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples()));
2424   }
2425   dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2426                       Profiles.size(), HotFuncSample, ProfileTotalSample,
2427                       Metric, TopN, OS);
2428 
2429   return 0;
2430 }
2431 
2432 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2433                              uint32_t TopN, bool ShowAllFunctions,
2434                              bool ShowDetailedSummary,
2435                              const std::string &ShowFunction,
2436                              bool ShowProfileSymbolList,
2437                              bool ShowSectionInfoOnly, bool ShowHotFuncList,
2438                              raw_fd_ostream &OS) {
2439   using namespace sampleprof;
2440   LLVMContext Context;
2441   auto ReaderOrErr =
2442       SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2443   if (std::error_code EC = ReaderOrErr.getError())
2444     exitWithErrorCode(EC, Filename);
2445 
2446   auto Reader = std::move(ReaderOrErr.get());
2447   if (ShowSectionInfoOnly) {
2448     showSectionInfo(Reader.get(), OS);
2449     return 0;
2450   }
2451 
2452   if (std::error_code EC = Reader->read())
2453     exitWithErrorCode(EC, Filename);
2454 
2455   if (ShowAllFunctions || ShowFunction.empty())
2456     Reader->dump(OS);
2457   else
2458     // TODO: parse context string to support filtering by contexts.
2459     Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2460 
2461   if (ShowProfileSymbolList) {
2462     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2463         Reader->getProfileSymbolList();
2464     ReaderList->dump(OS);
2465   }
2466 
2467   if (ShowDetailedSummary) {
2468     auto &PS = Reader->getSummary();
2469     PS.printSummary(OS);
2470     PS.printDetailedSummary(OS);
2471   }
2472 
2473   if (ShowHotFuncList || TopN)
2474     showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2475 
2476   return 0;
2477 }
2478 
2479 static int showMemProfProfile(const std::string &Filename, raw_fd_ostream &OS) {
2480   auto ReaderOr = llvm::memprof::RawMemProfReader::create(Filename);
2481   if (Error E = ReaderOr.takeError())
2482     exitWithError(std::move(E), Filename);
2483 
2484   std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2485       ReaderOr.get().release());
2486   Reader->printSummaries(OS);
2487   return 0;
2488 }
2489 
2490 static int show_main(int argc, const char *argv[]) {
2491   cl::opt<std::string> Filename(cl::Positional, cl::Required,
2492                                 cl::desc("<profdata-file>"));
2493 
2494   cl::opt<bool> ShowCounts("counts", cl::init(false),
2495                            cl::desc("Show counter values for shown functions"));
2496   cl::opt<bool> TextFormat(
2497       "text", cl::init(false),
2498       cl::desc("Show instr profile data in text dump format"));
2499   cl::opt<bool> ShowIndirectCallTargets(
2500       "ic-targets", cl::init(false),
2501       cl::desc("Show indirect call site target values for shown functions"));
2502   cl::opt<bool> ShowMemOPSizes(
2503       "memop-sizes", cl::init(false),
2504       cl::desc("Show the profiled sizes of the memory intrinsic calls "
2505                "for shown functions"));
2506   cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2507                                     cl::desc("Show detailed profile summary"));
2508   cl::list<uint32_t> DetailedSummaryCutoffs(
2509       cl::CommaSeparated, "detailed-summary-cutoffs",
2510       cl::desc(
2511           "Cutoff percentages (times 10000) for generating detailed summary"),
2512       cl::value_desc("800000,901000,999999"));
2513   cl::opt<bool> ShowHotFuncList(
2514       "hot-func-list", cl::init(false),
2515       cl::desc("Show profile summary of a list of hot functions"));
2516   cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2517                                  cl::desc("Details for every function"));
2518   cl::opt<bool> ShowCS("showcs", cl::init(false),
2519                        cl::desc("Show context sensitive counts"));
2520   cl::opt<std::string> ShowFunction("function",
2521                                     cl::desc("Details for matching functions"));
2522 
2523   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2524                                       cl::init("-"), cl::desc("Output file"));
2525   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2526                             cl::aliasopt(OutputFilename));
2527   cl::opt<ProfileKinds> ProfileKind(
2528       cl::desc("Profile kind:"), cl::init(instr),
2529       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2530                  clEnumVal(sample, "Sample profile"),
2531                  clEnumVal(memory, "MemProf memory access profile")));
2532   cl::opt<uint32_t> TopNFunctions(
2533       "topn", cl::init(0),
2534       cl::desc("Show the list of functions with the largest internal counts"));
2535   cl::opt<uint32_t> ValueCutoff(
2536       "value-cutoff", cl::init(0),
2537       cl::desc("Set the count value cutoff. Functions with the maximum count "
2538                "less than this value will not be printed out. (Default is 0)"));
2539   cl::opt<bool> OnlyListBelow(
2540       "list-below-cutoff", cl::init(false),
2541       cl::desc("Only output names of functions whose max count values are "
2542                "below the cutoff value"));
2543   cl::opt<bool> ShowProfileSymbolList(
2544       "show-prof-sym-list", cl::init(false),
2545       cl::desc("Show profile symbol list if it exists in the profile. "));
2546   cl::opt<bool> ShowSectionInfoOnly(
2547       "show-sec-info-only", cl::init(false),
2548       cl::desc("Show the information of each section in the sample profile. "
2549                "The flag is only usable when the sample profile is in "
2550                "extbinary format"));
2551   cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2552                               cl::desc("Show binary ids in the profile. "));
2553 
2554   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2555 
2556   if (Filename == OutputFilename) {
2557     errs() << sys::path::filename(argv[0])
2558            << ": Input file name cannot be the same as the output file name!\n";
2559     return 1;
2560   }
2561 
2562   std::error_code EC;
2563   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2564   if (EC)
2565     exitWithErrorCode(EC, OutputFilename);
2566 
2567   if (ShowAllFunctions && !ShowFunction.empty())
2568     WithColor::warning() << "-function argument ignored: showing all functions\n";
2569 
2570   if (ProfileKind == instr)
2571     return showInstrProfile(
2572         Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2573         ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2574         ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2575         TextFormat, ShowBinaryIds, OS);
2576   if (ProfileKind == sample)
2577     return showSampleProfile(Filename, ShowCounts, TopNFunctions,
2578                              ShowAllFunctions, ShowDetailedSummary,
2579                              ShowFunction, ShowProfileSymbolList,
2580                              ShowSectionInfoOnly, ShowHotFuncList, OS);
2581   return showMemProfProfile(Filename, OS);
2582 }
2583 
2584 int main(int argc, const char *argv[]) {
2585   InitLLVM X(argc, argv);
2586 
2587   StringRef ProgName(sys::path::filename(argv[0]));
2588   if (argc > 1) {
2589     int (*func)(int, const char *[]) = nullptr;
2590 
2591     if (strcmp(argv[1], "merge") == 0)
2592       func = merge_main;
2593     else if (strcmp(argv[1], "show") == 0)
2594       func = show_main;
2595     else if (strcmp(argv[1], "overlap") == 0)
2596       func = overlap_main;
2597 
2598     if (func) {
2599       std::string Invocation(ProgName.str() + " " + argv[1]);
2600       argv[1] = Invocation.c_str();
2601       return func(argc - 1, argv + 1);
2602     }
2603 
2604     if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2605         strcmp(argv[1], "--help") == 0) {
2606 
2607       errs() << "OVERVIEW: LLVM profile data tools\n\n"
2608              << "USAGE: " << ProgName << " <command> [args...]\n"
2609              << "USAGE: " << ProgName << " <command> -help\n\n"
2610              << "See each individual command --help for more details.\n"
2611              << "Available commands: merge, show, overlap\n";
2612       return 0;
2613     }
2614   }
2615 
2616   if (argc < 2)
2617     errs() << ProgName << ": No command specified!\n";
2618   else
2619     errs() << ProgName << ": Unknown command!\n";
2620 
2621   errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2622   return 1;
2623 }
2624