1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/DebugInfo/BTF/BTFParser.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 35 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 36 #include "llvm/Debuginfod/BuildIDFetcher.h" 37 #include "llvm/Debuginfod/Debuginfod.h" 38 #include "llvm/Debuginfod/HTTPClient.h" 39 #include "llvm/Demangle/Demangle.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 44 #include "llvm/MC/MCInst.h" 45 #include "llvm/MC/MCInstPrinter.h" 46 #include "llvm/MC/MCInstrAnalysis.h" 47 #include "llvm/MC/MCInstrInfo.h" 48 #include "llvm/MC/MCObjectFileInfo.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/MC/MCTargetOptions.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Object/Archive.h" 53 #include "llvm/Object/BuildID.h" 54 #include "llvm/Object/COFF.h" 55 #include "llvm/Object/COFFImportFile.h" 56 #include "llvm/Object/ELFObjectFile.h" 57 #include "llvm/Object/ELFTypes.h" 58 #include "llvm/Object/FaultMapParser.h" 59 #include "llvm/Object/MachO.h" 60 #include "llvm/Object/MachOUniversal.h" 61 #include "llvm/Object/ObjectFile.h" 62 #include "llvm/Object/OffloadBinary.h" 63 #include "llvm/Object/Wasm.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/Option.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Errc.h" 70 #include "llvm/Support/FileSystem.h" 71 #include "llvm/Support/Format.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/GraphWriter.h" 74 #include "llvm/Support/LLVMDriver.h" 75 #include "llvm/Support/MemoryBuffer.h" 76 #include "llvm/Support/SourceMgr.h" 77 #include "llvm/Support/StringSaver.h" 78 #include "llvm/Support/TargetSelect.h" 79 #include "llvm/Support/WithColor.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/TargetParser/Host.h" 82 #include "llvm/TargetParser/Triple.h" 83 #include <algorithm> 84 #include <cctype> 85 #include <cstring> 86 #include <optional> 87 #include <set> 88 #include <system_error> 89 #include <unordered_map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace llvm::object; 94 using namespace llvm::objdump; 95 using namespace llvm::opt; 96 97 namespace { 98 99 class CommonOptTable : public opt::GenericOptTable { 100 public: 101 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 102 const char *Description) 103 : opt::GenericOptTable(OptionInfos), Usage(Usage), 104 Description(Description) { 105 setGroupedShortOptions(true); 106 } 107 108 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 109 Argv0 = sys::path::filename(Argv0); 110 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 111 Description, ShowHidden, ShowHidden); 112 // TODO Replace this with OptTable API once it adds extrahelp support. 113 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 114 } 115 116 private: 117 const char *Usage; 118 const char *Description; 119 }; 120 121 // ObjdumpOptID is in ObjdumpOptID.h 122 namespace objdump_opt { 123 #define PREFIX(NAME, VALUE) \ 124 static constexpr StringLiteral NAME##_init[] = VALUE; \ 125 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 126 std::size(NAME##_init) - 1); 127 #include "ObjdumpOpts.inc" 128 #undef PREFIX 129 130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 131 #define OPTION(...) \ 132 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), 133 #include "ObjdumpOpts.inc" 134 #undef OPTION 135 }; 136 } // namespace objdump_opt 137 138 class ObjdumpOptTable : public CommonOptTable { 139 public: 140 ObjdumpOptTable() 141 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 142 " [options] <input object files>", 143 "llvm object file dumper") {} 144 }; 145 146 enum OtoolOptID { 147 OTOOL_INVALID = 0, // This is not an option ID. 148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 149 #include "OtoolOpts.inc" 150 #undef OPTION 151 }; 152 153 namespace otool { 154 #define PREFIX(NAME, VALUE) \ 155 static constexpr StringLiteral NAME##_init[] = VALUE; \ 156 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 157 std::size(NAME##_init) - 1); 158 #include "OtoolOpts.inc" 159 #undef PREFIX 160 161 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 163 #include "OtoolOpts.inc" 164 #undef OPTION 165 }; 166 } // namespace otool 167 168 class OtoolOptTable : public CommonOptTable { 169 public: 170 OtoolOptTable() 171 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 172 "Mach-O object file displaying tool") {} 173 }; 174 175 } // namespace 176 177 #define DEBUG_TYPE "objdump" 178 179 enum class ColorOutput { 180 Auto, 181 Enable, 182 Disable, 183 Invalid, 184 }; 185 186 static uint64_t AdjustVMA; 187 static bool AllHeaders; 188 static std::string ArchName; 189 bool objdump::ArchiveHeaders; 190 bool objdump::Demangle; 191 bool objdump::Disassemble; 192 bool objdump::DisassembleAll; 193 bool objdump::SymbolDescription; 194 bool objdump::TracebackTable; 195 static std::vector<std::string> DisassembleSymbols; 196 static bool DisassembleZeroes; 197 static std::vector<std::string> DisassemblerOptions; 198 static ColorOutput DisassemblyColor; 199 DIDumpType objdump::DwarfDumpType; 200 static bool DynamicRelocations; 201 static bool FaultMapSection; 202 static bool FileHeaders; 203 bool objdump::SectionContents; 204 static std::vector<std::string> InputFilenames; 205 bool objdump::PrintLines; 206 static bool MachOOpt; 207 std::string objdump::MCPU; 208 std::vector<std::string> objdump::MAttrs; 209 bool objdump::ShowRawInsn; 210 bool objdump::LeadingAddr; 211 static bool Offloading; 212 static bool RawClangAST; 213 bool objdump::Relocations; 214 bool objdump::PrintImmHex; 215 bool objdump::PrivateHeaders; 216 std::vector<std::string> objdump::FilterSections; 217 bool objdump::SectionHeaders; 218 static bool ShowAllSymbols; 219 static bool ShowLMA; 220 bool objdump::PrintSource; 221 222 static uint64_t StartAddress; 223 static bool HasStartAddressFlag; 224 static uint64_t StopAddress = UINT64_MAX; 225 static bool HasStopAddressFlag; 226 227 bool objdump::SymbolTable; 228 static bool SymbolizeOperands; 229 static bool DynamicSymbolTable; 230 std::string objdump::TripleName; 231 bool objdump::UnwindInfo; 232 static bool Wide; 233 std::string objdump::Prefix; 234 uint32_t objdump::PrefixStrip; 235 236 DebugVarsFormat objdump::DbgVariables = DVDisabled; 237 238 int objdump::DbgIndent = 52; 239 240 static StringSet<> DisasmSymbolSet; 241 StringSet<> objdump::FoundSectionSet; 242 static StringRef ToolName; 243 244 std::unique_ptr<BuildIDFetcher> BIDFetcher; 245 246 Dumper::Dumper(const object::ObjectFile &O) : O(O) { 247 WarningHandler = [this](const Twine &Msg) { 248 if (Warnings.insert(Msg.str()).second) 249 reportWarning(Msg, this->O.getFileName()); 250 return Error::success(); 251 }; 252 } 253 254 void Dumper::reportUniqueWarning(Error Err) { 255 reportUniqueWarning(toString(std::move(Err))); 256 } 257 258 void Dumper::reportUniqueWarning(const Twine &Msg) { 259 cantFail(WarningHandler(Msg)); 260 } 261 262 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { 263 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) 264 return createCOFFDumper(*O); 265 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) 266 return createELFDumper(*O); 267 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) 268 return createMachODumper(*O); 269 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) 270 return createWasmDumper(*O); 271 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) 272 return createXCOFFDumper(*O); 273 274 return createStringError(errc::invalid_argument, 275 "unsupported object file format"); 276 } 277 278 namespace { 279 struct FilterResult { 280 // True if the section should not be skipped. 281 bool Keep; 282 283 // True if the index counter should be incremented, even if the section should 284 // be skipped. For example, sections may be skipped if they are not included 285 // in the --section flag, but we still want those to count toward the section 286 // count. 287 bool IncrementIndex; 288 }; 289 } // namespace 290 291 static FilterResult checkSectionFilter(object::SectionRef S) { 292 if (FilterSections.empty()) 293 return {/*Keep=*/true, /*IncrementIndex=*/true}; 294 295 Expected<StringRef> SecNameOrErr = S.getName(); 296 if (!SecNameOrErr) { 297 consumeError(SecNameOrErr.takeError()); 298 return {/*Keep=*/false, /*IncrementIndex=*/false}; 299 } 300 StringRef SecName = *SecNameOrErr; 301 302 // StringSet does not allow empty key so avoid adding sections with 303 // no name (such as the section with index 0) here. 304 if (!SecName.empty()) 305 FoundSectionSet.insert(SecName); 306 307 // Only show the section if it's in the FilterSections list, but always 308 // increment so the indexing is stable. 309 return {/*Keep=*/is_contained(FilterSections, SecName), 310 /*IncrementIndex=*/true}; 311 } 312 313 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 314 uint64_t *Idx) { 315 // Start at UINT64_MAX so that the first index returned after an increment is 316 // zero (after the unsigned wrap). 317 if (Idx) 318 *Idx = UINT64_MAX; 319 return SectionFilter( 320 [Idx](object::SectionRef S) { 321 FilterResult Result = checkSectionFilter(S); 322 if (Idx != nullptr && Result.IncrementIndex) 323 *Idx += 1; 324 return Result.Keep; 325 }, 326 O); 327 } 328 329 std::string objdump::getFileNameForError(const object::Archive::Child &C, 330 unsigned Index) { 331 Expected<StringRef> NameOrErr = C.getName(); 332 if (NameOrErr) 333 return std::string(NameOrErr.get()); 334 // If we have an error getting the name then we print the index of the archive 335 // member. Since we are already in an error state, we just ignore this error. 336 consumeError(NameOrErr.takeError()); 337 return "<file index: " + std::to_string(Index) + ">"; 338 } 339 340 void objdump::reportWarning(const Twine &Message, StringRef File) { 341 // Output order between errs() and outs() matters especially for archive 342 // files where the output is per member object. 343 outs().flush(); 344 WithColor::warning(errs(), ToolName) 345 << "'" << File << "': " << Message << "\n"; 346 } 347 348 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 349 outs().flush(); 350 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 351 exit(1); 352 } 353 354 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 355 StringRef ArchiveName, 356 StringRef ArchitectureName) { 357 assert(E); 358 outs().flush(); 359 WithColor::error(errs(), ToolName); 360 if (ArchiveName != "") 361 errs() << ArchiveName << "(" << FileName << ")"; 362 else 363 errs() << "'" << FileName << "'"; 364 if (!ArchitectureName.empty()) 365 errs() << " (for architecture " << ArchitectureName << ")"; 366 errs() << ": "; 367 logAllUnhandledErrors(std::move(E), errs()); 368 exit(1); 369 } 370 371 static void reportCmdLineWarning(const Twine &Message) { 372 WithColor::warning(errs(), ToolName) << Message << "\n"; 373 } 374 375 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 376 WithColor::error(errs(), ToolName) << Message << "\n"; 377 exit(1); 378 } 379 380 static void warnOnNoMatchForSections() { 381 SetVector<StringRef> MissingSections; 382 for (StringRef S : FilterSections) { 383 if (FoundSectionSet.count(S)) 384 return; 385 // User may specify a unnamed section. Don't warn for it. 386 if (!S.empty()) 387 MissingSections.insert(S); 388 } 389 390 // Warn only if no section in FilterSections is matched. 391 for (StringRef S : MissingSections) 392 reportCmdLineWarning("section '" + S + 393 "' mentioned in a -j/--section option, but not " 394 "found in any input file"); 395 } 396 397 static const Target *getTarget(const ObjectFile *Obj) { 398 // Figure out the target triple. 399 Triple TheTriple("unknown-unknown-unknown"); 400 if (TripleName.empty()) { 401 TheTriple = Obj->makeTriple(); 402 } else { 403 TheTriple.setTriple(Triple::normalize(TripleName)); 404 auto Arch = Obj->getArch(); 405 if (Arch == Triple::arm || Arch == Triple::armeb) 406 Obj->setARMSubArch(TheTriple); 407 } 408 409 // Get the target specific parser. 410 std::string Error; 411 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 412 Error); 413 if (!TheTarget) 414 reportError(Obj->getFileName(), "can't find target: " + Error); 415 416 // Update the triple name and return the found target. 417 TripleName = TheTriple.getTriple(); 418 return TheTarget; 419 } 420 421 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 422 return A.getOffset() < B.getOffset(); 423 } 424 425 static Error getRelocationValueString(const RelocationRef &Rel, 426 bool SymbolDescription, 427 SmallVectorImpl<char> &Result) { 428 const ObjectFile *Obj = Rel.getObject(); 429 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 430 return getELFRelocationValueString(ELF, Rel, Result); 431 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 432 return getCOFFRelocationValueString(COFF, Rel, Result); 433 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 434 return getWasmRelocationValueString(Wasm, Rel, Result); 435 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 436 return getMachORelocationValueString(MachO, Rel, Result); 437 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 438 return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription, 439 Result); 440 llvm_unreachable("unknown object file format"); 441 } 442 443 /// Indicates whether this relocation should hidden when listing 444 /// relocations, usually because it is the trailing part of a multipart 445 /// relocation that will be printed as part of the leading relocation. 446 static bool getHidden(RelocationRef RelRef) { 447 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 448 if (!MachO) 449 return false; 450 451 unsigned Arch = MachO->getArch(); 452 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 453 uint64_t Type = MachO->getRelocationType(Rel); 454 455 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 456 // is always hidden. 457 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 458 return Type == MachO::GENERIC_RELOC_PAIR; 459 460 if (Arch == Triple::x86_64) { 461 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 462 // an X86_64_RELOC_SUBTRACTOR. 463 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 464 DataRefImpl RelPrev = Rel; 465 RelPrev.d.a--; 466 uint64_t PrevType = MachO->getRelocationType(RelPrev); 467 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 468 return true; 469 } 470 } 471 472 return false; 473 } 474 475 /// Get the column at which we want to start printing the instruction 476 /// disassembly, taking into account anything which appears to the left of it. 477 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { 478 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 479 } 480 481 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 482 raw_ostream &OS) { 483 // The output of printInst starts with a tab. Print some spaces so that 484 // the tab has 1 column and advances to the target tab stop. 485 unsigned TabStop = getInstStartColumn(STI); 486 unsigned Column = OS.tell() - Start; 487 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 488 } 489 490 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, 491 formatted_raw_ostream &OS, 492 MCSubtargetInfo const &STI) { 493 size_t Start = OS.tell(); 494 if (LeadingAddr) 495 OS << format("%8" PRIx64 ":", Address); 496 if (ShowRawInsn) { 497 OS << ' '; 498 dumpBytes(Bytes, OS); 499 } 500 AlignToInstStartColumn(Start, STI, OS); 501 } 502 503 namespace { 504 505 static bool isAArch64Elf(const ObjectFile &Obj) { 506 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 507 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 508 } 509 510 static bool isArmElf(const ObjectFile &Obj) { 511 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 512 return Elf && Elf->getEMachine() == ELF::EM_ARM; 513 } 514 515 static bool isCSKYElf(const ObjectFile &Obj) { 516 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 517 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 518 } 519 520 static bool hasMappingSymbols(const ObjectFile &Obj) { 521 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 522 } 523 524 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 525 const RelocationRef &Rel, uint64_t Address, 526 bool Is64Bits) { 527 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 528 SmallString<16> Name; 529 SmallString<32> Val; 530 Rel.getTypeName(Name); 531 if (Error E = getRelocationValueString(Rel, SymbolDescription, Val)) 532 reportError(std::move(E), FileName); 533 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 534 if (LeadingAddr) 535 OS << format(Fmt.data(), Address); 536 OS << Name << "\t" << Val; 537 } 538 539 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, 540 object::SectionedAddress Address, 541 LiveVariablePrinter &LVP) { 542 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); 543 if (!Reloc) 544 return; 545 546 SmallString<64> Val; 547 BTF.symbolize(Reloc, Val); 548 FOS << "\t\t"; 549 if (LeadingAddr) 550 FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA); 551 FOS << "CO-RE " << Val; 552 LVP.printAfterOtherLine(FOS, true); 553 } 554 555 class PrettyPrinter { 556 public: 557 virtual ~PrettyPrinter() = default; 558 virtual void 559 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 560 object::SectionedAddress Address, formatted_raw_ostream &OS, 561 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 562 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 563 LiveVariablePrinter &LVP) { 564 if (SP && (PrintSource || PrintLines)) 565 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 566 LVP.printBetweenInsts(OS, false); 567 568 printRawData(Bytes, Address.Address, OS, STI); 569 570 if (MI) { 571 // See MCInstPrinter::printInst. On targets where a PC relative immediate 572 // is relative to the next instruction and the length of a MCInst is 573 // difficult to measure (x86), this is the address of the next 574 // instruction. 575 uint64_t Addr = 576 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 577 IP.printInst(MI, Addr, "", STI, OS); 578 } else 579 OS << "\t<unknown>"; 580 } 581 }; 582 PrettyPrinter PrettyPrinterInst; 583 584 class HexagonPrettyPrinter : public PrettyPrinter { 585 public: 586 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 587 formatted_raw_ostream &OS) { 588 uint32_t opcode = 589 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 590 if (LeadingAddr) 591 OS << format("%8" PRIx64 ":", Address); 592 if (ShowRawInsn) { 593 OS << "\t"; 594 dumpBytes(Bytes.slice(0, 4), OS); 595 OS << format("\t%08" PRIx32, opcode); 596 } 597 } 598 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 599 object::SectionedAddress Address, formatted_raw_ostream &OS, 600 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 601 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 602 LiveVariablePrinter &LVP) override { 603 if (SP && (PrintSource || PrintLines)) 604 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 605 if (!MI) { 606 printLead(Bytes, Address.Address, OS); 607 OS << " <unknown>"; 608 return; 609 } 610 std::string Buffer; 611 { 612 raw_string_ostream TempStream(Buffer); 613 IP.printInst(MI, Address.Address, "", STI, TempStream); 614 } 615 StringRef Contents(Buffer); 616 // Split off bundle attributes 617 auto PacketBundle = Contents.rsplit('\n'); 618 // Split off first instruction from the rest 619 auto HeadTail = PacketBundle.first.split('\n'); 620 auto Preamble = " { "; 621 auto Separator = ""; 622 623 // Hexagon's packets require relocations to be inline rather than 624 // clustered at the end of the packet. 625 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 626 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 627 auto PrintReloc = [&]() -> void { 628 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 629 if (RelCur->getOffset() == Address.Address) { 630 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 631 return; 632 } 633 ++RelCur; 634 } 635 }; 636 637 while (!HeadTail.first.empty()) { 638 OS << Separator; 639 Separator = "\n"; 640 if (SP && (PrintSource || PrintLines)) 641 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 642 printLead(Bytes, Address.Address, OS); 643 OS << Preamble; 644 Preamble = " "; 645 StringRef Inst; 646 auto Duplex = HeadTail.first.split('\v'); 647 if (!Duplex.second.empty()) { 648 OS << Duplex.first; 649 OS << "; "; 650 Inst = Duplex.second; 651 } 652 else 653 Inst = HeadTail.first; 654 OS << Inst; 655 HeadTail = HeadTail.second.split('\n'); 656 if (HeadTail.first.empty()) 657 OS << " } " << PacketBundle.second; 658 PrintReloc(); 659 Bytes = Bytes.slice(4); 660 Address.Address += 4; 661 } 662 } 663 }; 664 HexagonPrettyPrinter HexagonPrettyPrinterInst; 665 666 class AMDGCNPrettyPrinter : public PrettyPrinter { 667 public: 668 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 669 object::SectionedAddress Address, formatted_raw_ostream &OS, 670 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 671 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 672 LiveVariablePrinter &LVP) override { 673 if (SP && (PrintSource || PrintLines)) 674 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 675 676 if (MI) { 677 SmallString<40> InstStr; 678 raw_svector_ostream IS(InstStr); 679 680 IP.printInst(MI, Address.Address, "", STI, IS); 681 682 OS << left_justify(IS.str(), 60); 683 } else { 684 // an unrecognized encoding - this is probably data so represent it 685 // using the .long directive, or .byte directive if fewer than 4 bytes 686 // remaining 687 if (Bytes.size() >= 4) { 688 OS << format( 689 "\t.long 0x%08" PRIx32 " ", 690 support::endian::read32<llvm::endianness::little>(Bytes.data())); 691 OS.indent(42); 692 } else { 693 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 694 for (unsigned int i = 1; i < Bytes.size(); i++) 695 OS << format(", 0x%02" PRIx8, Bytes[i]); 696 OS.indent(55 - (6 * Bytes.size())); 697 } 698 } 699 700 OS << format("// %012" PRIX64 ":", Address.Address); 701 if (Bytes.size() >= 4) { 702 // D should be casted to uint32_t here as it is passed by format to 703 // snprintf as vararg. 704 for (uint32_t D : 705 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 706 Bytes.size() / 4)) 707 OS << format(" %08" PRIX32, D); 708 } else { 709 for (unsigned char B : Bytes) 710 OS << format(" %02" PRIX8, B); 711 } 712 713 if (!Annot.empty()) 714 OS << " // " << Annot; 715 } 716 }; 717 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 718 719 class BPFPrettyPrinter : public PrettyPrinter { 720 public: 721 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 722 object::SectionedAddress Address, formatted_raw_ostream &OS, 723 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 724 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 725 LiveVariablePrinter &LVP) override { 726 if (SP && (PrintSource || PrintLines)) 727 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 728 if (LeadingAddr) 729 OS << format("%8" PRId64 ":", Address.Address / 8); 730 if (ShowRawInsn) { 731 OS << "\t"; 732 dumpBytes(Bytes, OS); 733 } 734 if (MI) 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 else 737 OS << "\t<unknown>"; 738 } 739 }; 740 BPFPrettyPrinter BPFPrettyPrinterInst; 741 742 class ARMPrettyPrinter : public PrettyPrinter { 743 public: 744 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 745 object::SectionedAddress Address, formatted_raw_ostream &OS, 746 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 747 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 748 LiveVariablePrinter &LVP) override { 749 if (SP && (PrintSource || PrintLines)) 750 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 751 LVP.printBetweenInsts(OS, false); 752 753 size_t Start = OS.tell(); 754 if (LeadingAddr) 755 OS << format("%8" PRIx64 ":", Address.Address); 756 if (ShowRawInsn) { 757 size_t Pos = 0, End = Bytes.size(); 758 if (STI.checkFeatures("+thumb-mode")) { 759 for (; Pos + 2 <= End; Pos += 2) 760 OS << ' ' 761 << format_hex_no_prefix( 762 llvm::support::endian::read<uint16_t>( 763 Bytes.data() + Pos, InstructionEndianness), 764 4); 765 } else { 766 for (; Pos + 4 <= End; Pos += 4) 767 OS << ' ' 768 << format_hex_no_prefix( 769 llvm::support::endian::read<uint32_t>( 770 Bytes.data() + Pos, InstructionEndianness), 771 8); 772 } 773 if (Pos < End) { 774 OS << ' '; 775 dumpBytes(Bytes.slice(Pos), OS); 776 } 777 } 778 779 AlignToInstStartColumn(Start, STI, OS); 780 781 if (MI) { 782 IP.printInst(MI, Address.Address, "", STI, OS); 783 } else 784 OS << "\t<unknown>"; 785 } 786 787 void setInstructionEndianness(llvm::endianness Endianness) { 788 InstructionEndianness = Endianness; 789 } 790 791 private: 792 llvm::endianness InstructionEndianness = llvm::endianness::little; 793 }; 794 ARMPrettyPrinter ARMPrettyPrinterInst; 795 796 class AArch64PrettyPrinter : public PrettyPrinter { 797 public: 798 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 799 object::SectionedAddress Address, formatted_raw_ostream &OS, 800 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 801 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 802 LiveVariablePrinter &LVP) override { 803 if (SP && (PrintSource || PrintLines)) 804 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 805 LVP.printBetweenInsts(OS, false); 806 807 size_t Start = OS.tell(); 808 if (LeadingAddr) 809 OS << format("%8" PRIx64 ":", Address.Address); 810 if (ShowRawInsn) { 811 size_t Pos = 0, End = Bytes.size(); 812 for (; Pos + 4 <= End; Pos += 4) 813 OS << ' ' 814 << format_hex_no_prefix( 815 llvm::support::endian::read<uint32_t>( 816 Bytes.data() + Pos, llvm::endianness::little), 817 8); 818 if (Pos < End) { 819 OS << ' '; 820 dumpBytes(Bytes.slice(Pos), OS); 821 } 822 } 823 824 AlignToInstStartColumn(Start, STI, OS); 825 826 if (MI) { 827 IP.printInst(MI, Address.Address, "", STI, OS); 828 } else 829 OS << "\t<unknown>"; 830 } 831 }; 832 AArch64PrettyPrinter AArch64PrettyPrinterInst; 833 834 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 835 switch(Triple.getArch()) { 836 default: 837 return PrettyPrinterInst; 838 case Triple::hexagon: 839 return HexagonPrettyPrinterInst; 840 case Triple::amdgcn: 841 return AMDGCNPrettyPrinterInst; 842 case Triple::bpfel: 843 case Triple::bpfeb: 844 return BPFPrettyPrinterInst; 845 case Triple::arm: 846 case Triple::armeb: 847 case Triple::thumb: 848 case Triple::thumbeb: 849 return ARMPrettyPrinterInst; 850 case Triple::aarch64: 851 case Triple::aarch64_be: 852 case Triple::aarch64_32: 853 return AArch64PrettyPrinterInst; 854 } 855 } 856 857 class DisassemblerTarget { 858 public: 859 const Target *TheTarget; 860 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; 861 std::shared_ptr<MCContext> Context; 862 std::unique_ptr<MCDisassembler> DisAsm; 863 std::shared_ptr<MCInstrAnalysis> InstrAnalysis; 864 std::shared_ptr<MCInstPrinter> InstPrinter; 865 PrettyPrinter *Printer; 866 867 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 868 StringRef TripleName, StringRef MCPU, 869 SubtargetFeatures &Features); 870 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); 871 872 private: 873 MCTargetOptions Options; 874 std::shared_ptr<const MCRegisterInfo> RegisterInfo; 875 std::shared_ptr<const MCAsmInfo> AsmInfo; 876 std::shared_ptr<const MCInstrInfo> InstrInfo; 877 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; 878 }; 879 880 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 881 StringRef TripleName, StringRef MCPU, 882 SubtargetFeatures &Features) 883 : TheTarget(TheTarget), 884 Printer(&selectPrettyPrinter(Triple(TripleName))), 885 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { 886 if (!RegisterInfo) 887 reportError(Obj.getFileName(), "no register info for target " + TripleName); 888 889 // Set up disassembler. 890 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); 891 if (!AsmInfo) 892 reportError(Obj.getFileName(), "no assembly info for target " + TripleName); 893 894 SubtargetInfo.reset( 895 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 896 if (!SubtargetInfo) 897 reportError(Obj.getFileName(), 898 "no subtarget info for target " + TripleName); 899 InstrInfo.reset(TheTarget->createMCInstrInfo()); 900 if (!InstrInfo) 901 reportError(Obj.getFileName(), 902 "no instruction info for target " + TripleName); 903 Context = 904 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), 905 RegisterInfo.get(), SubtargetInfo.get()); 906 907 // FIXME: for now initialize MCObjectFileInfo with default values 908 ObjectFileInfo.reset( 909 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); 910 Context->setObjectFileInfo(ObjectFileInfo.get()); 911 912 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); 913 if (!DisAsm) 914 reportError(Obj.getFileName(), "no disassembler for target " + TripleName); 915 916 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); 917 918 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 919 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), 920 AsmPrinterVariant, *AsmInfo, 921 *InstrInfo, *RegisterInfo)); 922 if (!InstPrinter) 923 reportError(Obj.getFileName(), 924 "no instruction printer for target " + TripleName); 925 InstPrinter->setPrintImmHex(PrintImmHex); 926 InstPrinter->setPrintBranchImmAsAddress(true); 927 InstPrinter->setSymbolizeOperands(SymbolizeOperands); 928 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); 929 930 switch (DisassemblyColor) { 931 case ColorOutput::Enable: 932 InstPrinter->setUseColor(true); 933 break; 934 case ColorOutput::Auto: 935 InstPrinter->setUseColor(outs().has_colors()); 936 break; 937 case ColorOutput::Disable: 938 case ColorOutput::Invalid: 939 InstPrinter->setUseColor(false); 940 break; 941 }; 942 } 943 944 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, 945 SubtargetFeatures &Features) 946 : TheTarget(Other.TheTarget), 947 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 948 Features.getString())), 949 Context(Other.Context), 950 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), 951 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), 952 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), 953 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), 954 ObjectFileInfo(Other.ObjectFileInfo) {} 955 } // namespace 956 957 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 958 assert(Obj.isELF()); 959 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 960 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 961 Obj.getFileName()) 962 ->getType(); 963 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 964 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 965 Obj.getFileName()) 966 ->getType(); 967 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 968 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 969 Obj.getFileName()) 970 ->getType(); 971 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 972 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 973 Obj.getFileName()) 974 ->getType(); 975 llvm_unreachable("Unsupported binary format"); 976 } 977 978 template <class ELFT> 979 static void 980 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 981 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 982 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 983 uint8_t SymbolType = Symbol.getELFType(); 984 if (SymbolType == ELF::STT_SECTION) 985 continue; 986 987 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 988 // ELFSymbolRef::getAddress() returns size instead of value for common 989 // symbols which is not desirable for disassembly output. Overriding. 990 if (SymbolType == ELF::STT_COMMON) 991 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 992 Obj.getFileName()) 993 ->st_value; 994 995 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 996 if (Name.empty()) 997 continue; 998 999 section_iterator SecI = 1000 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 1001 if (SecI == Obj.section_end()) 1002 continue; 1003 1004 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1005 } 1006 } 1007 1008 static void 1009 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 1010 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1011 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1012 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 1013 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1014 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 1015 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1016 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 1017 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1018 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 1019 else 1020 llvm_unreachable("Unsupported binary format"); 1021 } 1022 1023 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 1024 for (auto SecI : Obj.sections()) { 1025 const WasmSection &Section = Obj.getWasmSection(SecI); 1026 if (Section.Type == wasm::WASM_SEC_CODE) 1027 return SecI; 1028 } 1029 return std::nullopt; 1030 } 1031 1032 static void 1033 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 1034 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1035 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 1036 if (!Section) 1037 return; 1038 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 1039 1040 std::set<uint64_t> SymbolAddresses; 1041 for (const auto &Sym : Symbols) 1042 SymbolAddresses.insert(Sym.Addr); 1043 1044 for (const wasm::WasmFunction &Function : Obj.functions()) { 1045 uint64_t Address = Function.CodeSectionOffset; 1046 // Only add fallback symbols for functions not already present in the symbol 1047 // table. 1048 if (SymbolAddresses.count(Address)) 1049 continue; 1050 // This function has no symbol, so it should have no SymbolName. 1051 assert(Function.SymbolName.empty()); 1052 // We use DebugName for the name, though it may be empty if there is no 1053 // "name" custom section, or that section is missing a name for this 1054 // function. 1055 StringRef Name = Function.DebugName; 1056 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 1057 } 1058 } 1059 1060 static void addPltEntries(const ObjectFile &Obj, 1061 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1062 StringSaver &Saver) { 1063 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 1064 if (!ElfObj) 1065 return; 1066 DenseMap<StringRef, SectionRef> Sections; 1067 for (SectionRef Section : Obj.sections()) { 1068 Expected<StringRef> SecNameOrErr = Section.getName(); 1069 if (!SecNameOrErr) { 1070 consumeError(SecNameOrErr.takeError()); 1071 continue; 1072 } 1073 Sections[*SecNameOrErr] = Section; 1074 } 1075 for (auto Plt : ElfObj->getPltEntries()) { 1076 if (Plt.Symbol) { 1077 SymbolRef Symbol(*Plt.Symbol, ElfObj); 1078 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1079 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 1080 if (!NameOrErr->empty()) 1081 AllSymbols[Sections[Plt.Section]].emplace_back( 1082 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 1083 continue; 1084 } else { 1085 // The warning has been reported in disassembleObject(). 1086 consumeError(NameOrErr.takeError()); 1087 } 1088 } 1089 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 1090 " references an invalid symbol", 1091 Obj.getFileName()); 1092 } 1093 } 1094 1095 // Normally the disassembly output will skip blocks of zeroes. This function 1096 // returns the number of zero bytes that can be skipped when dumping the 1097 // disassembly of the instructions in Buf. 1098 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1099 // Find the number of leading zeroes. 1100 size_t N = 0; 1101 while (N < Buf.size() && !Buf[N]) 1102 ++N; 1103 1104 // We may want to skip blocks of zero bytes, but unless we see 1105 // at least 8 of them in a row. 1106 if (N < 8) 1107 return 0; 1108 1109 // We skip zeroes in multiples of 4 because do not want to truncate an 1110 // instruction if it starts with a zero byte. 1111 return N & ~0x3; 1112 } 1113 1114 // Returns a map from sections to their relocations. 1115 static std::map<SectionRef, std::vector<RelocationRef>> 1116 getRelocsMap(object::ObjectFile const &Obj) { 1117 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1118 uint64_t I = (uint64_t)-1; 1119 for (SectionRef Sec : Obj.sections()) { 1120 ++I; 1121 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1122 if (!RelocatedOrErr) 1123 reportError(Obj.getFileName(), 1124 "section (" + Twine(I) + 1125 "): failed to get a relocated section: " + 1126 toString(RelocatedOrErr.takeError())); 1127 1128 section_iterator Relocated = *RelocatedOrErr; 1129 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1130 continue; 1131 std::vector<RelocationRef> &V = Ret[*Relocated]; 1132 append_range(V, Sec.relocations()); 1133 // Sort relocations by address. 1134 llvm::stable_sort(V, isRelocAddressLess); 1135 } 1136 return Ret; 1137 } 1138 1139 // Used for --adjust-vma to check if address should be adjusted by the 1140 // specified value for a given section. 1141 // For ELF we do not adjust non-allocatable sections like debug ones, 1142 // because they are not loadable. 1143 // TODO: implement for other file formats. 1144 static bool shouldAdjustVA(const SectionRef &Section) { 1145 const ObjectFile *Obj = Section.getObject(); 1146 if (Obj->isELF()) 1147 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1148 return false; 1149 } 1150 1151 1152 typedef std::pair<uint64_t, char> MappingSymbolPair; 1153 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1154 uint64_t Address) { 1155 auto It = 1156 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1157 return Val.first <= Address; 1158 }); 1159 // Return zero for any address before the first mapping symbol; this means 1160 // we should use the default disassembly mode, depending on the target. 1161 if (It == MappingSymbols.begin()) 1162 return '\x00'; 1163 return (It - 1)->second; 1164 } 1165 1166 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1167 uint64_t End, const ObjectFile &Obj, 1168 ArrayRef<uint8_t> Bytes, 1169 ArrayRef<MappingSymbolPair> MappingSymbols, 1170 const MCSubtargetInfo &STI, raw_ostream &OS) { 1171 llvm::endianness Endian = 1172 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1173 size_t Start = OS.tell(); 1174 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1175 if (Index + 4 <= End) { 1176 dumpBytes(Bytes.slice(Index, 4), OS); 1177 AlignToInstStartColumn(Start, STI, OS); 1178 OS << "\t.word\t" 1179 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1180 10); 1181 return 4; 1182 } 1183 if (Index + 2 <= End) { 1184 dumpBytes(Bytes.slice(Index, 2), OS); 1185 AlignToInstStartColumn(Start, STI, OS); 1186 OS << "\t.short\t" 1187 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1188 return 2; 1189 } 1190 dumpBytes(Bytes.slice(Index, 1), OS); 1191 AlignToInstStartColumn(Start, STI, OS); 1192 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1193 return 1; 1194 } 1195 1196 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1197 ArrayRef<uint8_t> Bytes) { 1198 // print out data up to 8 bytes at a time in hex and ascii 1199 uint8_t AsciiData[9] = {'\0'}; 1200 uint8_t Byte; 1201 int NumBytes = 0; 1202 1203 for (; Index < End; ++Index) { 1204 if (NumBytes == 0) 1205 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1206 Byte = Bytes.slice(Index)[0]; 1207 outs() << format(" %02x", Byte); 1208 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1209 1210 uint8_t IndentOffset = 0; 1211 NumBytes++; 1212 if (Index == End - 1 || NumBytes > 8) { 1213 // Indent the space for less than 8 bytes data. 1214 // 2 spaces for byte and one for space between bytes 1215 IndentOffset = 3 * (8 - NumBytes); 1216 for (int Excess = NumBytes; Excess < 8; Excess++) 1217 AsciiData[Excess] = '\0'; 1218 NumBytes = 8; 1219 } 1220 if (NumBytes == 8) { 1221 AsciiData[8] = '\0'; 1222 outs() << std::string(IndentOffset, ' ') << " "; 1223 outs() << reinterpret_cast<char *>(AsciiData); 1224 outs() << '\n'; 1225 NumBytes = 0; 1226 } 1227 } 1228 } 1229 1230 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1231 const SymbolRef &Symbol, 1232 bool IsMappingSymbol) { 1233 const StringRef FileName = Obj.getFileName(); 1234 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1235 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1236 1237 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { 1238 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1239 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1240 1241 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1242 std::optional<XCOFF::StorageMappingClass> Smc = 1243 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1244 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, 1245 isLabel(XCOFFObj, Symbol)); 1246 } else if (Obj.isXCOFF()) { 1247 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1248 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, 1249 /*IsXCOFF=*/true); 1250 } else { 1251 uint8_t Type = 1252 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; 1253 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); 1254 } 1255 } 1256 1257 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1258 const uint64_t Addr, StringRef &Name, 1259 uint8_t Type) { 1260 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) 1261 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); 1262 else 1263 return SymbolInfoTy(Addr, Name, Type); 1264 } 1265 1266 struct BBAddrMapLabel { 1267 std::string BlockLabel; 1268 std::string PGOAnalysis; 1269 }; 1270 1271 static std::string constructPGOLabelString(const PGOAnalysisMap &PGOMap, 1272 size_t BBEntryIndex) { 1273 std::string PGOString; 1274 raw_string_ostream PGOSS(PGOString); 1275 1276 PGOSS << " ("; 1277 if (PGOMap.FeatEnable.FuncEntryCount && BBEntryIndex == 0) { 1278 PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount); 1279 if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) { 1280 PGOSS << ", "; 1281 } 1282 } 1283 1284 if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) { 1285 assert(BBEntryIndex < PGOMap.BBEntries.size() && 1286 "Expected PGOAnalysisMap and BBAddrMap to have the same entires"); 1287 const PGOAnalysisMap::PGOBBEntry &PGOBBEntry = 1288 PGOMap.BBEntries[BBEntryIndex]; 1289 1290 if (PGOMap.FeatEnable.BBFreq) { 1291 PGOSS << "Frequency: " << Twine(PGOBBEntry.BlockFreq.getFrequency()); 1292 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { 1293 PGOSS << ", "; 1294 } 1295 } 1296 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { 1297 PGOSS << "Successors: "; 1298 interleaveComma( 1299 PGOBBEntry.Successors, PGOSS, 1300 [&PGOSS](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) { 1301 PGOSS << "BB" << SE.ID << ":"; 1302 PGOSS.write_hex(SE.Prob.getNumerator()); 1303 }); 1304 } 1305 } 1306 PGOSS << ")"; 1307 1308 return PGOString; 1309 } 1310 1311 static void collectBBAddrMapLabels( 1312 const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1313 const std::unordered_map<uint64_t, PGOAnalysisMap> &AddrToPGOAnalysisMap, 1314 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1315 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels, 1316 const StringRef FileName) { 1317 if (AddrToBBAddrMap.empty()) 1318 return; 1319 Labels.clear(); 1320 uint64_t StartAddress = SectionAddr + Start; 1321 uint64_t EndAddress = SectionAddr + End; 1322 auto Iter = AddrToBBAddrMap.find(StartAddress); 1323 if (Iter == AddrToBBAddrMap.end()) 1324 return; 1325 auto PGOIter = AddrToPGOAnalysisMap.find(StartAddress); 1326 1327 for (size_t I = 0; I < Iter->second.getBBEntries().size(); ++I) { 1328 const BBAddrMap::BBEntry &BBEntry = Iter->second.getBBEntries()[I]; 1329 uint64_t BBAddress = BBEntry.Offset + Iter->second.getFunctionAddress(); 1330 if (BBAddress >= EndAddress) 1331 continue; 1332 1333 std::string LabelString = ("BB" + Twine(BBEntry.ID)).str(); 1334 std::string PGOString; 1335 1336 if (PGOIter != AddrToPGOAnalysisMap.end()) 1337 PGOString = constructPGOLabelString(PGOIter->second, I); 1338 1339 Labels[BBAddress].push_back({LabelString, PGOString}); 1340 } 1341 } 1342 1343 static void 1344 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA, 1345 MCDisassembler *DisAsm, MCInstPrinter *IP, 1346 const MCSubtargetInfo *STI, uint64_t SectionAddr, 1347 uint64_t Start, uint64_t End, 1348 std::unordered_map<uint64_t, std::string> &Labels) { 1349 // So far only supports PowerPC and X86. 1350 const bool isPPC = STI->getTargetTriple().isPPC(); 1351 if (!isPPC && !STI->getTargetTriple().isX86()) 1352 return; 1353 1354 if (MIA) 1355 MIA->resetState(); 1356 1357 Labels.clear(); 1358 unsigned LabelCount = 0; 1359 Start += SectionAddr; 1360 End += SectionAddr; 1361 const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF(); 1362 for (uint64_t Index = Start; Index < End;) { 1363 // Disassemble a real instruction and record function-local branch labels. 1364 MCInst Inst; 1365 uint64_t Size; 1366 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1367 bool Disassembled = 1368 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1369 if (Size == 0) 1370 Size = std::min<uint64_t>(ThisBytes.size(), 1371 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1372 1373 if (MIA) { 1374 if (Disassembled) { 1375 uint64_t Target; 1376 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1377 if (TargetKnown && (Target >= Start && Target < End) && 1378 !Labels.count(Target)) { 1379 // On PowerPC and AIX, a function call is encoded as a branch to 0. 1380 // On other PowerPC platforms (ELF), a function call is encoded as 1381 // a branch to self. Do not add a label for these cases. 1382 if (!(isPPC && 1383 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF)))) 1384 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1385 } 1386 MIA->updateState(Inst, Index); 1387 } else 1388 MIA->resetState(); 1389 } 1390 Index += Size; 1391 } 1392 } 1393 1394 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1395 // This is currently only used on AMDGPU, and assumes the format of the 1396 // void * argument passed to AMDGPU's createMCSymbolizer. 1397 static void addSymbolizer( 1398 MCContext &Ctx, const Target *Target, StringRef TripleName, 1399 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1400 SectionSymbolsTy &Symbols, 1401 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1402 1403 std::unique_ptr<MCRelocationInfo> RelInfo( 1404 Target->createMCRelocationInfo(TripleName, Ctx)); 1405 if (!RelInfo) 1406 return; 1407 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1408 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1409 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1410 DisAsm->setSymbolizer(std::move(Symbolizer)); 1411 1412 if (!SymbolizeOperands) 1413 return; 1414 1415 // Synthesize labels referenced by branch instructions by 1416 // disassembling, discarding the output, and collecting the referenced 1417 // addresses from the symbolizer. 1418 for (size_t Index = 0; Index != Bytes.size();) { 1419 MCInst Inst; 1420 uint64_t Size; 1421 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1422 const uint64_t ThisAddr = SectionAddr + Index; 1423 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1424 if (Size == 0) 1425 Size = std::min<uint64_t>(ThisBytes.size(), 1426 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1427 Index += Size; 1428 } 1429 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1430 // Copy and sort to remove duplicates. 1431 std::vector<uint64_t> LabelAddrs; 1432 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1433 LabelAddrsRef.end()); 1434 llvm::sort(LabelAddrs); 1435 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1436 LabelAddrs.begin()); 1437 // Add the labels. 1438 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1439 auto Name = std::make_unique<std::string>(); 1440 *Name = (Twine("L") + Twine(LabelNum)).str(); 1441 SynthesizedLabelNames.push_back(std::move(Name)); 1442 Symbols.push_back(SymbolInfoTy( 1443 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1444 } 1445 llvm::stable_sort(Symbols); 1446 // Recreate the symbolizer with the new symbols list. 1447 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1448 Symbolizer.reset(Target->createMCSymbolizer( 1449 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1450 DisAsm->setSymbolizer(std::move(Symbolizer)); 1451 } 1452 1453 static StringRef getSegmentName(const MachOObjectFile *MachO, 1454 const SectionRef &Section) { 1455 if (MachO) { 1456 DataRefImpl DR = Section.getRawDataRefImpl(); 1457 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1458 return SegmentName; 1459 } 1460 return ""; 1461 } 1462 1463 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1464 const MCAsmInfo &MAI, 1465 const MCSubtargetInfo &STI, 1466 StringRef Comments, 1467 LiveVariablePrinter &LVP) { 1468 do { 1469 if (!Comments.empty()) { 1470 // Emit a line of comments. 1471 StringRef Comment; 1472 std::tie(Comment, Comments) = Comments.split('\n'); 1473 // MAI.getCommentColumn() assumes that instructions are printed at the 1474 // position of 8, while getInstStartColumn() returns the actual position. 1475 unsigned CommentColumn = 1476 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1477 FOS.PadToColumn(CommentColumn); 1478 FOS << MAI.getCommentString() << ' ' << Comment; 1479 } 1480 LVP.printAfterInst(FOS); 1481 FOS << '\n'; 1482 } while (!Comments.empty()); 1483 FOS.flush(); 1484 } 1485 1486 static void createFakeELFSections(ObjectFile &Obj) { 1487 assert(Obj.isELF()); 1488 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1489 Elf32LEObj->createFakeSections(); 1490 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1491 Elf64LEObj->createFakeSections(); 1492 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1493 Elf32BEObj->createFakeSections(); 1494 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1495 Elf64BEObj->createFakeSections(); 1496 else 1497 llvm_unreachable("Unsupported binary format"); 1498 } 1499 1500 // Tries to fetch a more complete version of the given object file using its 1501 // Build ID. Returns std::nullopt if nothing was found. 1502 static std::optional<OwningBinary<Binary>> 1503 fetchBinaryByBuildID(const ObjectFile &Obj) { 1504 object::BuildIDRef BuildID = getBuildID(&Obj); 1505 if (BuildID.empty()) 1506 return std::nullopt; 1507 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1508 if (!Path) 1509 return std::nullopt; 1510 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1511 if (!DebugBinary) { 1512 reportWarning(toString(DebugBinary.takeError()), *Path); 1513 return std::nullopt; 1514 } 1515 return std::move(*DebugBinary); 1516 } 1517 1518 static void 1519 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, 1520 DisassemblerTarget &PrimaryTarget, 1521 std::optional<DisassemblerTarget> &SecondaryTarget, 1522 SourcePrinter &SP, bool InlineRelocs) { 1523 DisassemblerTarget *DT = &PrimaryTarget; 1524 bool PrimaryIsThumb = false; 1525 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; 1526 1527 if (SecondaryTarget) { 1528 if (isArmElf(Obj)) { 1529 PrimaryIsThumb = 1530 PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); 1531 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1532 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 1533 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 1534 uintptr_t CodeMapInt; 1535 cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt)); 1536 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); 1537 1538 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { 1539 if (CodeMap[i].getType() == chpe_range_type::Amd64 && 1540 CodeMap[i].Length) { 1541 // Store x86_64 CHPE code ranges. 1542 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); 1543 CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length); 1544 } 1545 } 1546 llvm::sort(CHPECodeMap); 1547 } 1548 } 1549 } 1550 1551 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1552 if (InlineRelocs || Obj.isXCOFF()) 1553 RelocMap = getRelocsMap(Obj); 1554 bool Is64Bits = Obj.getBytesInAddress() > 4; 1555 1556 // Create a mapping from virtual address to symbol name. This is used to 1557 // pretty print the symbols while disassembling. 1558 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1559 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; 1560 SectionSymbolsTy AbsoluteSymbols; 1561 const StringRef FileName = Obj.getFileName(); 1562 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1563 for (const SymbolRef &Symbol : Obj.symbols()) { 1564 Expected<StringRef> NameOrErr = Symbol.getName(); 1565 if (!NameOrErr) { 1566 reportWarning(toString(NameOrErr.takeError()), FileName); 1567 continue; 1568 } 1569 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1570 continue; 1571 1572 if (Obj.isELF() && 1573 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { 1574 // Symbol is intended not to be displayed by default (STT_FILE, 1575 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will 1576 // synthesize a section symbol if no symbol is defined at offset 0. 1577 // 1578 // For a mapping symbol, store it within both AllSymbols and 1579 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will 1580 // not be printed in disassembly listing. 1581 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && 1582 hasMappingSymbols(Obj)) { 1583 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1584 if (SecI != Obj.section_end()) { 1585 uint64_t SectionAddr = SecI->getAddress(); 1586 uint64_t Address = cantFail(Symbol.getAddress()); 1587 StringRef Name = *NameOrErr; 1588 if (Name.consume_front("$") && Name.size() && 1589 strchr("adtx", Name[0])) { 1590 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, 1591 Name[0]); 1592 AllSymbols[*SecI].push_back( 1593 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); 1594 } 1595 } 1596 } 1597 continue; 1598 } 1599 1600 if (MachO) { 1601 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1602 // symbols that support MachO header introspection. They do not bind to 1603 // code locations and are irrelevant for disassembly. 1604 if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header")) 1605 continue; 1606 // Don't ask a Mach-O STAB symbol for its section unless you know that 1607 // STAB symbol's section field refers to a valid section index. Otherwise 1608 // the symbol may error trying to load a section that does not exist. 1609 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1610 uint8_t NType = (MachO->is64Bit() ? 1611 MachO->getSymbol64TableEntry(SymDRI).n_type: 1612 MachO->getSymbolTableEntry(SymDRI).n_type); 1613 if (NType & MachO::N_STAB) 1614 continue; 1615 } 1616 1617 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1618 if (SecI != Obj.section_end()) 1619 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1620 else 1621 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1622 } 1623 1624 if (AllSymbols.empty() && Obj.isELF()) 1625 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1626 1627 if (Obj.isWasm()) 1628 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1629 1630 if (Obj.isELF() && Obj.sections().empty()) 1631 createFakeELFSections(Obj); 1632 1633 BumpPtrAllocator A; 1634 StringSaver Saver(A); 1635 addPltEntries(Obj, AllSymbols, Saver); 1636 1637 // Create a mapping from virtual address to section. An empty section can 1638 // cause more than one section at the same address. Sort such sections to be 1639 // before same-addressed non-empty sections so that symbol lookups prefer the 1640 // non-empty section. 1641 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1642 for (SectionRef Sec : Obj.sections()) 1643 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1644 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1645 if (LHS.first != RHS.first) 1646 return LHS.first < RHS.first; 1647 return LHS.second.getSize() < RHS.second.getSize(); 1648 }); 1649 1650 // Linked executables (.exe and .dll files) typically don't include a real 1651 // symbol table but they might contain an export table. 1652 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1653 for (const auto &ExportEntry : COFFObj->export_directories()) { 1654 StringRef Name; 1655 if (Error E = ExportEntry.getSymbolName(Name)) 1656 reportError(std::move(E), Obj.getFileName()); 1657 if (Name.empty()) 1658 continue; 1659 1660 uint32_t RVA; 1661 if (Error E = ExportEntry.getExportRVA(RVA)) 1662 reportError(std::move(E), Obj.getFileName()); 1663 1664 uint64_t VA = COFFObj->getImageBase() + RVA; 1665 auto Sec = partition_point( 1666 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1667 return O.first <= VA; 1668 }); 1669 if (Sec != SectionAddresses.begin()) { 1670 --Sec; 1671 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1672 } else 1673 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1674 } 1675 } 1676 1677 // Sort all the symbols, this allows us to use a simple binary search to find 1678 // Multiple symbols can have the same address. Use a stable sort to stabilize 1679 // the output. 1680 StringSet<> FoundDisasmSymbolSet; 1681 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1682 llvm::stable_sort(SecSyms.second); 1683 llvm::stable_sort(AbsoluteSymbols); 1684 1685 std::unique_ptr<DWARFContext> DICtx; 1686 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); 1687 1688 if (DbgVariables != DVDisabled) { 1689 DICtx = DWARFContext::create(DbgObj); 1690 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1691 LVP.addCompileUnit(CU->getUnitDIE(false)); 1692 } 1693 1694 LLVM_DEBUG(LVP.dump()); 1695 1696 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1697 std::unordered_map<uint64_t, PGOAnalysisMap> AddrToPGOAnalysisMap; 1698 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1699 std::nullopt) { 1700 AddrToBBAddrMap.clear(); 1701 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1702 std::vector<PGOAnalysisMap> PGOAnalyses; 1703 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses); 1704 if (!BBAddrMapsOrErr) { 1705 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1706 return; 1707 } 1708 for (const auto &[FunctionBBAddrMap, FunctionPGOAnalysis] : 1709 zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) { 1710 uint64_t Addr = FunctionBBAddrMap.Addr; 1711 AddrToBBAddrMap.emplace(Addr, std::move(FunctionBBAddrMap)); 1712 if (FunctionPGOAnalysis.FeatEnable.anyEnabled()) 1713 AddrToPGOAnalysisMap.emplace(Addr, std::move(FunctionPGOAnalysis)); 1714 } 1715 } 1716 }; 1717 1718 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1719 // single mapping, since they don't have any conflicts. 1720 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1721 ReadBBAddrMap(); 1722 1723 std::optional<llvm::BTFParser> BTF; 1724 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { 1725 BTF.emplace(); 1726 BTFParser::ParseOptions Opts = {}; 1727 Opts.LoadTypes = true; 1728 Opts.LoadRelocs = true; 1729 if (Error E = BTF->parse(Obj, Opts)) 1730 WithColor::defaultErrorHandler(std::move(E)); 1731 } 1732 1733 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1734 if (FilterSections.empty() && !DisassembleAll && 1735 (!Section.isText() || Section.isVirtual())) 1736 continue; 1737 1738 uint64_t SectionAddr = Section.getAddress(); 1739 uint64_t SectSize = Section.getSize(); 1740 if (!SectSize) 1741 continue; 1742 1743 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1744 // corresponding to this section, if present. 1745 if (SymbolizeOperands && Obj.isRelocatableObject()) 1746 ReadBBAddrMap(Section.getIndex()); 1747 1748 // Get the list of all the symbols in this section. 1749 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1750 auto &MappingSymbols = AllMappingSymbols[Section]; 1751 llvm::sort(MappingSymbols); 1752 1753 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1754 unwrapOrError(Section.getContents(), Obj.getFileName())); 1755 1756 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1757 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1758 // AMDGPU disassembler uses symbolizer for printing labels 1759 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), 1760 SectionAddr, Bytes, Symbols, SynthesizedLabelNames); 1761 } 1762 1763 StringRef SegmentName = getSegmentName(MachO, Section); 1764 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1765 // If the section has no symbol at the start, just insert a dummy one. 1766 // Without --show-all-symbols, also insert one if all symbols at the start 1767 // are mapping symbols. 1768 bool CreateDummy = Symbols.empty(); 1769 if (!CreateDummy) { 1770 CreateDummy = true; 1771 for (auto &Sym : Symbols) { 1772 if (Sym.Addr != SectionAddr) 1773 break; 1774 if (!Sym.IsMappingSymbol || ShowAllSymbols) 1775 CreateDummy = false; 1776 } 1777 } 1778 if (CreateDummy) { 1779 SymbolInfoTy Sym = createDummySymbolInfo( 1780 Obj, SectionAddr, SectionName, 1781 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); 1782 if (Obj.isXCOFF()) 1783 Symbols.insert(Symbols.begin(), Sym); 1784 else 1785 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); 1786 } 1787 1788 SmallString<40> Comments; 1789 raw_svector_ostream CommentStream(Comments); 1790 1791 uint64_t VMAAdjustment = 0; 1792 if (shouldAdjustVA(Section)) 1793 VMAAdjustment = AdjustVMA; 1794 1795 // In executable and shared objects, r_offset holds a virtual address. 1796 // Subtract SectionAddr from the r_offset field of a relocation to get 1797 // the section offset. 1798 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1799 uint64_t Size; 1800 uint64_t Index; 1801 bool PrintedSection = false; 1802 std::vector<RelocationRef> Rels = RelocMap[Section]; 1803 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1804 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1805 1806 // Loop over each chunk of code between two points where at least 1807 // one symbol is defined. 1808 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1809 // Advance SI past all the symbols starting at the same address, 1810 // and make an ArrayRef of them. 1811 unsigned FirstSI = SI; 1812 uint64_t Start = Symbols[SI].Addr; 1813 ArrayRef<SymbolInfoTy> SymbolsHere; 1814 while (SI != SE && Symbols[SI].Addr == Start) 1815 ++SI; 1816 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1817 1818 // Get the demangled names of all those symbols. We end up with a vector 1819 // of StringRef that holds the names we're going to use, and a vector of 1820 // std::string that stores the new strings returned by demangle(), if 1821 // any. If we don't call demangle() then that vector can stay empty. 1822 std::vector<StringRef> SymNamesHere; 1823 std::vector<std::string> DemangledSymNamesHere; 1824 if (Demangle) { 1825 // Fetch the demangled names and store them locally. 1826 for (const SymbolInfoTy &Symbol : SymbolsHere) 1827 DemangledSymNamesHere.push_back(demangle(Symbol.Name)); 1828 // Now we've finished modifying that vector, it's safe to make 1829 // a vector of StringRefs pointing into it. 1830 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1831 DemangledSymNamesHere.end()); 1832 } else { 1833 for (const SymbolInfoTy &Symbol : SymbolsHere) 1834 SymNamesHere.push_back(Symbol.Name); 1835 } 1836 1837 // Distinguish ELF data from code symbols, which will be used later on to 1838 // decide whether to 'disassemble' this chunk as a data declaration via 1839 // dumpELFData(), or whether to treat it as code. 1840 // 1841 // If data _and_ code symbols are defined at the same address, the code 1842 // takes priority, on the grounds that disassembling code is our main 1843 // purpose here, and it would be a worse failure to _not_ interpret 1844 // something that _was_ meaningful as code than vice versa. 1845 // 1846 // Any ELF symbol type that is not clearly data will be regarded as code. 1847 // In particular, one of the uses of STT_NOTYPE is for branch targets 1848 // inside functions, for which STT_FUNC would be inaccurate. 1849 // 1850 // So here, we spot whether there's any non-data symbol present at all, 1851 // and only set the DisassembleAsELFData flag if there isn't. Also, we use 1852 // this distinction to inform the decision of which symbol to print at 1853 // the head of the section, so that if we're printing code, we print a 1854 // code-related symbol name to go with it. 1855 bool DisassembleAsELFData = false; 1856 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1857 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1858 DisassembleAsELFData = true; // unless we find a code symbol below 1859 1860 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1861 uint8_t SymTy = SymbolsHere[i].Type; 1862 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1863 DisassembleAsELFData = false; 1864 DisplaySymIndex = i; 1865 } 1866 } 1867 } 1868 1869 // Decide which symbol(s) from this collection we're going to print. 1870 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1871 // If the user has given the --disassemble-symbols option, then we must 1872 // display every symbol in that set, and no others. 1873 if (!DisasmSymbolSet.empty()) { 1874 bool FoundAny = false; 1875 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1876 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1877 SymsToPrint[i] = true; 1878 FoundAny = true; 1879 } 1880 } 1881 1882 // And if none of the symbols here is one that the user asked for, skip 1883 // disassembling this entire chunk of code. 1884 if (!FoundAny) 1885 continue; 1886 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { 1887 // Otherwise, print whichever symbol at this location is last in the 1888 // Symbols array, because that array is pre-sorted in a way intended to 1889 // correlate with priority of which symbol to display. 1890 SymsToPrint[DisplaySymIndex] = true; 1891 } 1892 1893 // Now that we know we're disassembling this section, override the choice 1894 // of which symbols to display by printing _all_ of them at this address 1895 // if the user asked for all symbols. 1896 // 1897 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1898 // only the chunk of code headed by 'foo', but also show any other 1899 // symbols defined at that address, such as aliases for 'foo', or the ARM 1900 // mapping symbol preceding its code. 1901 if (ShowAllSymbols) { 1902 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1903 SymsToPrint[i] = true; 1904 } 1905 1906 if (Start < SectionAddr || StopAddress <= Start) 1907 continue; 1908 1909 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1910 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1911 1912 // The end is the section end, the beginning of the next symbol, or 1913 // --stop-address. 1914 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1915 if (SI < SE) 1916 End = std::min(End, Symbols[SI].Addr); 1917 if (Start >= End || End <= StartAddress) 1918 continue; 1919 Start -= SectionAddr; 1920 End -= SectionAddr; 1921 1922 if (!PrintedSection) { 1923 PrintedSection = true; 1924 outs() << "\nDisassembly of section "; 1925 if (!SegmentName.empty()) 1926 outs() << SegmentName << ","; 1927 outs() << SectionName << ":\n"; 1928 } 1929 1930 bool PrintedLabel = false; 1931 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1932 if (!SymsToPrint[i]) 1933 continue; 1934 1935 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1936 const StringRef SymbolName = SymNamesHere[i]; 1937 1938 if (!PrintedLabel) { 1939 outs() << '\n'; 1940 PrintedLabel = true; 1941 } 1942 if (LeadingAddr) 1943 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1944 SectionAddr + Start + VMAAdjustment); 1945 if (Obj.isXCOFF() && SymbolDescription) { 1946 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1947 } else 1948 outs() << '<' << SymbolName << ">:\n"; 1949 } 1950 1951 // Don't print raw contents of a virtual section. A virtual section 1952 // doesn't have any contents in the file. 1953 if (Section.isVirtual()) { 1954 outs() << "...\n"; 1955 continue; 1956 } 1957 1958 // See if any of the symbols defined at this location triggers target- 1959 // specific disassembly behavior, e.g. of special descriptors or function 1960 // prelude information. 1961 // 1962 // We stop this loop at the first symbol that triggers some kind of 1963 // interesting behavior (if any), on the assumption that if two symbols 1964 // defined at the same address trigger two conflicting symbol handlers, 1965 // the object file is probably confused anyway, and it would make even 1966 // less sense to present the output of _both_ handlers, because that 1967 // would describe the same data twice. 1968 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1969 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1970 1971 auto Status = DT->DisAsm->onSymbolStart( 1972 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, 1973 CommentStream); 1974 1975 if (!Status) { 1976 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1977 // any interesting handling for this symbol. Try the other symbols 1978 // defined at this address. 1979 continue; 1980 } 1981 1982 if (*Status == MCDisassembler::Fail) { 1983 // If onSymbolStart returns Fail, that means it identified some kind 1984 // of special data at this address, but wasn't able to disassemble it 1985 // meaningfully. So we fall back to disassembling the failed region 1986 // as bytes, assuming that the target detected the failure before 1987 // printing anything. 1988 // 1989 // Return values Success or SoftFail (i.e no 'real' failure) are 1990 // expected to mean that the target has emitted its own output. 1991 // 1992 // Either way, 'Size' will have been set to the amount of data 1993 // covered by whatever prologue the target identified. So we advance 1994 // our own position to beyond that. Sometimes that will be the entire 1995 // distance to the next symbol, and sometimes it will be just a 1996 // prologue and we should start disassembling instructions from where 1997 // it left off. 1998 outs() << DT->Context->getAsmInfo()->getCommentString() 1999 << " error in decoding " << SymNamesHere[SHI] 2000 << " : decoding failed region as bytes.\n"; 2001 for (uint64_t I = 0; I < Size; ++I) { 2002 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 2003 << "\n"; 2004 } 2005 } 2006 Start += Size; 2007 break; 2008 } 2009 2010 Index = Start; 2011 if (SectionAddr < StartAddress) 2012 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 2013 2014 if (DisassembleAsELFData) { 2015 dumpELFData(SectionAddr, Index, End, Bytes); 2016 Index = End; 2017 continue; 2018 } 2019 2020 // Skip relocations from symbols that are not dumped. 2021 for (; RelCur != RelEnd; ++RelCur) { 2022 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 2023 if (Index <= Offset) 2024 break; 2025 } 2026 2027 bool DumpARMELFData = false; 2028 bool DumpTracebackTableForXCOFFFunction = 2029 Obj.isXCOFF() && Section.isText() && TracebackTable && 2030 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && 2031 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); 2032 2033 formatted_raw_ostream FOS(outs()); 2034 2035 // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes 2036 // are (incorrectly) written directly to the unbuffered raw_ostream 2037 // wrapped by the formatted_raw_ostream. 2038 if (DisassemblyColor == ColorOutput::Enable || 2039 DisassemblyColor == ColorOutput::Auto) 2040 FOS.SetUnbuffered(); 2041 2042 std::unordered_map<uint64_t, std::string> AllLabels; 2043 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels; 2044 if (SymbolizeOperands) { 2045 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), 2046 DT->DisAsm.get(), DT->InstPrinter.get(), 2047 PrimaryTarget.SubtargetInfo.get(), 2048 SectionAddr, Index, End, AllLabels); 2049 collectBBAddrMapLabels(AddrToBBAddrMap, AddrToPGOAnalysisMap, 2050 SectionAddr, Index, End, BBAddrMapLabels, 2051 FileName); 2052 } 2053 2054 if (DT->InstrAnalysis) 2055 DT->InstrAnalysis->resetState(); 2056 2057 while (Index < End) { 2058 uint64_t RelOffset; 2059 2060 // ARM and AArch64 ELF binaries can interleave data and text in the 2061 // same section. We rely on the markers introduced to understand what 2062 // we need to dump. If the data marker is within a function, it is 2063 // denoted as a word/short etc. 2064 if (!MappingSymbols.empty()) { 2065 char Kind = getMappingSymbolKind(MappingSymbols, Index); 2066 DumpARMELFData = Kind == 'd'; 2067 if (SecondaryTarget) { 2068 if (Kind == 'a') { 2069 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; 2070 } else if (Kind == 't') { 2071 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; 2072 } 2073 } 2074 } else if (!CHPECodeMap.empty()) { 2075 uint64_t Address = SectionAddr + Index; 2076 auto It = partition_point( 2077 CHPECodeMap, 2078 [Address](const std::pair<uint64_t, uint64_t> &Entry) { 2079 return Entry.first <= Address; 2080 }); 2081 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { 2082 DT = &*SecondaryTarget; 2083 } else { 2084 DT = &PrimaryTarget; 2085 // X64 disassembler range may have left Index unaligned, so 2086 // make sure that it's aligned when we switch back to ARM64 2087 // code. 2088 Index = llvm::alignTo(Index, 4); 2089 if (Index >= End) 2090 break; 2091 } 2092 } 2093 2094 auto findRel = [&]() { 2095 while (RelCur != RelEnd) { 2096 RelOffset = RelCur->getOffset() - RelAdjustment; 2097 // If this relocation is hidden, skip it. 2098 if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) { 2099 ++RelCur; 2100 continue; 2101 } 2102 2103 // Stop when RelCur's offset is past the disassembled 2104 // instruction/data. 2105 if (RelOffset >= Index + Size) 2106 return false; 2107 if (RelOffset >= Index) 2108 return true; 2109 ++RelCur; 2110 } 2111 return false; 2112 }; 2113 2114 if (DumpARMELFData) { 2115 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 2116 MappingSymbols, *DT->SubtargetInfo, FOS); 2117 } else { 2118 // When -z or --disassemble-zeroes are given we always dissasemble 2119 // them. Otherwise we might want to skip zero bytes we see. 2120 if (!DisassembleZeroes) { 2121 uint64_t MaxOffset = End - Index; 2122 // For --reloc: print zero blocks patched by relocations, so that 2123 // relocations can be shown in the dump. 2124 if (InlineRelocs && RelCur != RelEnd) 2125 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 2126 MaxOffset); 2127 2128 if (size_t N = 2129 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 2130 FOS << "\t\t..." << '\n'; 2131 Index += N; 2132 continue; 2133 } 2134 } 2135 2136 if (DumpTracebackTableForXCOFFFunction && 2137 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { 2138 dumpTracebackTable(Bytes.slice(Index), 2139 SectionAddr + Index + VMAAdjustment, FOS, 2140 SectionAddr + End + VMAAdjustment, 2141 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); 2142 Index = End; 2143 continue; 2144 } 2145 2146 // Print local label if there's any. 2147 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 2148 if (Iter1 != BBAddrMapLabels.end()) { 2149 for (const auto &BBLabel : Iter1->second) 2150 FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis 2151 << ":\n"; 2152 } else { 2153 auto Iter2 = AllLabels.find(SectionAddr + Index); 2154 if (Iter2 != AllLabels.end()) 2155 FOS << "<" << Iter2->second << ">:\n"; 2156 } 2157 2158 // Disassemble a real instruction or a data when disassemble all is 2159 // provided 2160 MCInst Inst; 2161 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 2162 uint64_t ThisAddr = SectionAddr + Index; 2163 bool Disassembled = DT->DisAsm->getInstruction( 2164 Inst, Size, ThisBytes, ThisAddr, CommentStream); 2165 if (Size == 0) 2166 Size = std::min<uint64_t>( 2167 ThisBytes.size(), 2168 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 2169 2170 LVP.update({Index, Section.getIndex()}, 2171 {Index + Size, Section.getIndex()}, Index + Size != End); 2172 2173 DT->InstPrinter->setCommentStream(CommentStream); 2174 2175 DT->Printer->printInst( 2176 *DT->InstPrinter, Disassembled ? &Inst : nullptr, 2177 Bytes.slice(Index, Size), 2178 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 2179 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); 2180 2181 DT->InstPrinter->setCommentStream(llvm::nulls()); 2182 2183 // If disassembly succeeds, we try to resolve the target address 2184 // (jump target or memory operand address) and print it to the 2185 // right of the instruction. 2186 // 2187 // Otherwise, we don't print anything else so that we avoid 2188 // analyzing invalid or incomplete instruction information. 2189 if (Disassembled && DT->InstrAnalysis) { 2190 llvm::raw_ostream *TargetOS = &FOS; 2191 uint64_t Target; 2192 bool PrintTarget = DT->InstrAnalysis->evaluateBranch( 2193 Inst, SectionAddr + Index, Size, Target); 2194 2195 if (!PrintTarget) { 2196 if (std::optional<uint64_t> MaybeTarget = 2197 DT->InstrAnalysis->evaluateMemoryOperandAddress( 2198 Inst, DT->SubtargetInfo.get(), SectionAddr + Index, 2199 Size)) { 2200 Target = *MaybeTarget; 2201 PrintTarget = true; 2202 // Do not print real address when symbolizing. 2203 if (!SymbolizeOperands) { 2204 // Memory operand addresses are printed as comments. 2205 TargetOS = &CommentStream; 2206 *TargetOS << "0x" << Twine::utohexstr(Target); 2207 } 2208 } 2209 } 2210 2211 if (PrintTarget) { 2212 // In a relocatable object, the target's section must reside in 2213 // the same section as the call instruction or it is accessed 2214 // through a relocation. 2215 // 2216 // In a non-relocatable object, the target may be in any section. 2217 // In that case, locate the section(s) containing the target 2218 // address and find the symbol in one of those, if possible. 2219 // 2220 // N.B. Except for XCOFF, we don't walk the relocations in the 2221 // relocatable case yet. 2222 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 2223 if (!Obj.isRelocatableObject()) { 2224 auto It = llvm::partition_point( 2225 SectionAddresses, 2226 [=](const std::pair<uint64_t, SectionRef> &O) { 2227 return O.first <= Target; 2228 }); 2229 uint64_t TargetSecAddr = 0; 2230 while (It != SectionAddresses.begin()) { 2231 --It; 2232 if (TargetSecAddr == 0) 2233 TargetSecAddr = It->first; 2234 if (It->first != TargetSecAddr) 2235 break; 2236 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 2237 } 2238 } else { 2239 TargetSectionSymbols.push_back(&Symbols); 2240 } 2241 TargetSectionSymbols.push_back(&AbsoluteSymbols); 2242 2243 // Find the last symbol in the first candidate section whose 2244 // offset is less than or equal to the target. If there are no 2245 // such symbols, try in the next section and so on, before finally 2246 // using the nearest preceding absolute symbol (if any), if there 2247 // are no other valid symbols. 2248 const SymbolInfoTy *TargetSym = nullptr; 2249 for (const SectionSymbolsTy *TargetSymbols : 2250 TargetSectionSymbols) { 2251 auto It = llvm::partition_point( 2252 *TargetSymbols, 2253 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 2254 while (It != TargetSymbols->begin()) { 2255 --It; 2256 // Skip mapping symbols to avoid possible ambiguity as they 2257 // do not allow uniquely identifying the target address. 2258 if (!It->IsMappingSymbol) { 2259 TargetSym = &*It; 2260 break; 2261 } 2262 } 2263 if (TargetSym) 2264 break; 2265 } 2266 2267 // Branch targets are printed just after the instructions. 2268 // Print the labels corresponding to the target if there's any. 2269 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 2270 bool LabelAvailable = AllLabels.count(Target); 2271 2272 if (TargetSym != nullptr) { 2273 uint64_t TargetAddress = TargetSym->Addr; 2274 uint64_t Disp = Target - TargetAddress; 2275 std::string TargetName = Demangle ? demangle(TargetSym->Name) 2276 : TargetSym->Name.str(); 2277 bool RelFixedUp = false; 2278 SmallString<32> Val; 2279 2280 *TargetOS << " <"; 2281 // On XCOFF, we use relocations, even without -r, so we 2282 // can print the correct name for an extern function call. 2283 if (Obj.isXCOFF() && findRel()) { 2284 // Check for possible branch relocations and 2285 // branches to fixup code. 2286 bool BranchRelocationType = true; 2287 XCOFF::RelocationType RelocType; 2288 if (Obj.is64Bit()) { 2289 const XCOFFRelocation64 *Reloc = 2290 reinterpret_cast<XCOFFRelocation64 *>( 2291 RelCur->getRawDataRefImpl().p); 2292 RelFixedUp = Reloc->isFixupIndicated(); 2293 RelocType = Reloc->Type; 2294 } else { 2295 const XCOFFRelocation32 *Reloc = 2296 reinterpret_cast<XCOFFRelocation32 *>( 2297 RelCur->getRawDataRefImpl().p); 2298 RelFixedUp = Reloc->isFixupIndicated(); 2299 RelocType = Reloc->Type; 2300 } 2301 BranchRelocationType = 2302 RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR || 2303 RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR; 2304 2305 // If we have a valid relocation, try to print its 2306 // corresponding symbol name. Multiple relocations on the 2307 // same instruction are not handled. 2308 // Branches to fixup code will have the RelFixedUp flag set in 2309 // the RLD. For these instructions, we print the correct 2310 // branch target, but print the referenced symbol as a 2311 // comment. 2312 if (Error E = getRelocationValueString(*RelCur, false, Val)) { 2313 // If -r was used, this error will be printed later. 2314 // Otherwise, we ignore the error and print what 2315 // would have been printed without using relocations. 2316 consumeError(std::move(E)); 2317 *TargetOS << TargetName; 2318 RelFixedUp = false; // Suppress comment for RLD sym name 2319 } else if (BranchRelocationType && !RelFixedUp) 2320 *TargetOS << Val; 2321 else 2322 *TargetOS << TargetName; 2323 if (Disp) 2324 *TargetOS << "+0x" << Twine::utohexstr(Disp); 2325 } else if (!Disp) { 2326 *TargetOS << TargetName; 2327 } else if (BBAddrMapLabelAvailable) { 2328 *TargetOS << BBAddrMapLabels[Target].front().BlockLabel; 2329 } else if (LabelAvailable) { 2330 *TargetOS << AllLabels[Target]; 2331 } else { 2332 // Always Print the binary symbol plus an offset if there's no 2333 // local label corresponding to the target address. 2334 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 2335 } 2336 *TargetOS << ">"; 2337 if (RelFixedUp && !InlineRelocs) { 2338 // We have fixup code for a relocation. We print the 2339 // referenced symbol as a comment. 2340 *TargetOS << "\t# " << Val; 2341 } 2342 2343 } else if (BBAddrMapLabelAvailable) { 2344 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel 2345 << ">"; 2346 } else if (LabelAvailable) { 2347 *TargetOS << " <" << AllLabels[Target] << ">"; 2348 } 2349 // By convention, each record in the comment stream should be 2350 // terminated. 2351 if (TargetOS == &CommentStream) 2352 *TargetOS << "\n"; 2353 } 2354 2355 DT->InstrAnalysis->updateState(Inst, SectionAddr + Index); 2356 } else if (!Disassembled && DT->InstrAnalysis) { 2357 DT->InstrAnalysis->resetState(); 2358 } 2359 } 2360 2361 assert(DT->Context->getAsmInfo()); 2362 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), 2363 *DT->SubtargetInfo, CommentStream.str(), LVP); 2364 Comments.clear(); 2365 2366 if (BTF) 2367 printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP); 2368 2369 // Hexagon handles relocs in pretty printer 2370 if (InlineRelocs && Obj.getArch() != Triple::hexagon) { 2371 while (findRel()) { 2372 // When --adjust-vma is used, update the address printed. 2373 if (RelCur->getSymbol() != Obj.symbol_end()) { 2374 Expected<section_iterator> SymSI = 2375 RelCur->getSymbol()->getSection(); 2376 if (SymSI && *SymSI != Obj.section_end() && 2377 shouldAdjustVA(**SymSI)) 2378 RelOffset += AdjustVMA; 2379 } 2380 2381 printRelocation(FOS, Obj.getFileName(), *RelCur, 2382 SectionAddr + RelOffset, Is64Bits); 2383 LVP.printAfterOtherLine(FOS, true); 2384 ++RelCur; 2385 } 2386 } 2387 2388 Index += Size; 2389 } 2390 } 2391 } 2392 StringSet<> MissingDisasmSymbolSet = 2393 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 2394 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 2395 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 2396 } 2397 2398 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 2399 // If information useful for showing the disassembly is missing, try to find a 2400 // more complete binary and disassemble that instead. 2401 OwningBinary<Binary> FetchedBinary; 2402 if (Obj->symbols().empty()) { 2403 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2404 fetchBinaryByBuildID(*Obj)) { 2405 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2406 if (!O->symbols().empty() || 2407 (!O->sections().empty() && Obj->sections().empty())) { 2408 FetchedBinary = std::move(*FetchedBinaryOpt); 2409 Obj = O; 2410 } 2411 } 2412 } 2413 } 2414 2415 const Target *TheTarget = getTarget(Obj); 2416 2417 // Package up features to be passed to target/subtarget 2418 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2419 if (!FeaturesValue) 2420 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2421 SubtargetFeatures Features = *FeaturesValue; 2422 if (!MAttrs.empty()) { 2423 for (unsigned I = 0; I != MAttrs.size(); ++I) 2424 Features.AddFeature(MAttrs[I]); 2425 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2426 Features.AddFeature("+all"); 2427 } 2428 2429 if (MCPU.empty()) 2430 MCPU = Obj->tryGetCPUName().value_or("").str(); 2431 2432 if (isArmElf(*Obj)) { 2433 // When disassembling big-endian Arm ELF, the instruction endianness is 2434 // determined in a complex way. In relocatable objects, AAELF32 mandates 2435 // that instruction endianness matches the ELF file endianness; in 2436 // executable images, that's true unless the file header has the EF_ARM_BE8 2437 // flag, in which case instructions are little-endian regardless of data 2438 // endianness. 2439 // 2440 // We must set the big-endian-instructions SubtargetFeature to make the 2441 // disassembler read the instructions the right way round, and also tell 2442 // our own prettyprinter to retrieve the encodings the same way to print in 2443 // hex. 2444 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2445 2446 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2447 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2448 Features.AddFeature("+big-endian-instructions"); 2449 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big); 2450 } else { 2451 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little); 2452 } 2453 } 2454 2455 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); 2456 2457 // If we have an ARM object file, we need a second disassembler, because 2458 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2459 // We use mapping symbols to switch between the two assemblers, where 2460 // appropriate. 2461 std::optional<DisassemblerTarget> SecondaryTarget; 2462 2463 if (isArmElf(*Obj)) { 2464 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { 2465 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) 2466 Features.AddFeature("-thumb-mode"); 2467 else 2468 Features.AddFeature("+thumb-mode"); 2469 SecondaryTarget.emplace(PrimaryTarget, Features); 2470 } 2471 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 2472 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 2473 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 2474 // Set up x86_64 disassembler for ARM64EC binaries. 2475 Triple X64Triple(TripleName); 2476 X64Triple.setArch(Triple::ArchType::x86_64); 2477 2478 std::string Error; 2479 const Target *X64Target = 2480 TargetRegistry::lookupTarget("", X64Triple, Error); 2481 if (X64Target) { 2482 SubtargetFeatures X64Features; 2483 SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "", 2484 X64Features); 2485 } else { 2486 reportWarning(Error, Obj->getFileName()); 2487 } 2488 } 2489 } 2490 2491 const ObjectFile *DbgObj = Obj; 2492 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2493 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2494 fetchBinaryByBuildID(*Obj)) { 2495 if (auto *FetchedObj = 2496 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2497 if (FetchedObj->hasDebugInfo()) { 2498 FetchedBinary = std::move(*DebugBinaryOpt); 2499 DbgObj = FetchedObj; 2500 } 2501 } 2502 } 2503 } 2504 2505 std::unique_ptr<object::Binary> DSYMBinary; 2506 std::unique_ptr<MemoryBuffer> DSYMBuf; 2507 if (!DbgObj->hasDebugInfo()) { 2508 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2509 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2510 DSYMBinary, DSYMBuf); 2511 if (!DbgObj) 2512 return; 2513 } 2514 } 2515 2516 SourcePrinter SP(DbgObj, TheTarget->getName()); 2517 2518 for (StringRef Opt : DisassemblerOptions) 2519 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) 2520 reportError(Obj->getFileName(), 2521 "Unrecognized disassembler option: " + Opt); 2522 2523 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, 2524 InlineRelocs); 2525 } 2526 2527 void Dumper::printRelocations() { 2528 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2529 2530 // Build a mapping from relocation target to a vector of relocation 2531 // sections. Usually, there is an only one relocation section for 2532 // each relocated section. 2533 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2534 uint64_t Ndx; 2535 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { 2536 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2537 continue; 2538 if (Section.relocation_begin() == Section.relocation_end()) 2539 continue; 2540 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2541 if (!SecOrErr) 2542 reportError(O.getFileName(), 2543 "section (" + Twine(Ndx) + 2544 "): unable to get a relocation target: " + 2545 toString(SecOrErr.takeError())); 2546 SecToRelSec[**SecOrErr].push_back(Section); 2547 } 2548 2549 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2550 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); 2551 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2552 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); 2553 uint32_t TypePadding = 24; 2554 outs() << left_justify("OFFSET", OffsetPadding) << " " 2555 << left_justify("TYPE", TypePadding) << " " 2556 << "VALUE\n"; 2557 2558 for (SectionRef Section : P.second) { 2559 for (const RelocationRef &Reloc : Section.relocations()) { 2560 uint64_t Address = Reloc.getOffset(); 2561 SmallString<32> RelocName; 2562 SmallString<32> ValueStr; 2563 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2564 continue; 2565 Reloc.getTypeName(RelocName); 2566 if (Error E = 2567 getRelocationValueString(Reloc, SymbolDescription, ValueStr)) 2568 reportUniqueWarning(std::move(E)); 2569 2570 outs() << format(Fmt.data(), Address) << " " 2571 << left_justify(RelocName, TypePadding) << " " << ValueStr 2572 << "\n"; 2573 } 2574 } 2575 } 2576 } 2577 2578 // Returns true if we need to show LMA column when dumping section headers. We 2579 // show it only when the platform is ELF and either we have at least one section 2580 // whose VMA and LMA are different and/or when --show-lma flag is used. 2581 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2582 if (!Obj.isELF()) 2583 return false; 2584 for (const SectionRef &S : ToolSectionFilter(Obj)) 2585 if (S.getAddress() != getELFSectionLMA(S)) 2586 return true; 2587 return ShowLMA; 2588 } 2589 2590 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2591 // Default column width for names is 13 even if no names are that long. 2592 size_t MaxWidth = 13; 2593 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2594 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2595 MaxWidth = std::max(MaxWidth, Name.size()); 2596 } 2597 return MaxWidth; 2598 } 2599 2600 void objdump::printSectionHeaders(ObjectFile &Obj) { 2601 if (Obj.isELF() && Obj.sections().empty()) 2602 createFakeELFSections(Obj); 2603 2604 size_t NameWidth = getMaxSectionNameWidth(Obj); 2605 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2606 bool HasLMAColumn = shouldDisplayLMA(Obj); 2607 outs() << "\nSections:\n"; 2608 if (HasLMAColumn) 2609 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2610 << left_justify("VMA", AddressWidth) << " " 2611 << left_justify("LMA", AddressWidth) << " Type\n"; 2612 else 2613 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2614 << left_justify("VMA", AddressWidth) << " Type\n"; 2615 2616 uint64_t Idx; 2617 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2618 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2619 uint64_t VMA = Section.getAddress(); 2620 if (shouldAdjustVA(Section)) 2621 VMA += AdjustVMA; 2622 2623 uint64_t Size = Section.getSize(); 2624 2625 std::string Type = Section.isText() ? "TEXT" : ""; 2626 if (Section.isData()) 2627 Type += Type.empty() ? "DATA" : ", DATA"; 2628 if (Section.isBSS()) 2629 Type += Type.empty() ? "BSS" : ", BSS"; 2630 if (Section.isDebugSection()) 2631 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2632 2633 if (HasLMAColumn) 2634 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2635 Name.str().c_str(), Size) 2636 << format_hex_no_prefix(VMA, AddressWidth) << " " 2637 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2638 << " " << Type << "\n"; 2639 else 2640 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2641 Name.str().c_str(), Size) 2642 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2643 } 2644 } 2645 2646 void objdump::printSectionContents(const ObjectFile *Obj) { 2647 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2648 2649 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2650 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2651 uint64_t BaseAddr = Section.getAddress(); 2652 uint64_t Size = Section.getSize(); 2653 if (!Size) 2654 continue; 2655 2656 outs() << "Contents of section "; 2657 StringRef SegmentName = getSegmentName(MachO, Section); 2658 if (!SegmentName.empty()) 2659 outs() << SegmentName << ","; 2660 outs() << Name << ":\n"; 2661 if (Section.isBSS()) { 2662 outs() << format("<skipping contents of bss section at [%04" PRIx64 2663 ", %04" PRIx64 ")>\n", 2664 BaseAddr, BaseAddr + Size); 2665 continue; 2666 } 2667 2668 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2669 2670 // Dump out the content as hex and printable ascii characters. 2671 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2672 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2673 // Dump line of hex. 2674 for (std::size_t I = 0; I < 16; ++I) { 2675 if (I != 0 && I % 4 == 0) 2676 outs() << ' '; 2677 if (Addr + I < End) 2678 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2679 << hexdigit(Contents[Addr + I] & 0xF, true); 2680 else 2681 outs() << " "; 2682 } 2683 // Print ascii. 2684 outs() << " "; 2685 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2686 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2687 outs() << Contents[Addr + I]; 2688 else 2689 outs() << "."; 2690 } 2691 outs() << "\n"; 2692 } 2693 } 2694 } 2695 2696 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, 2697 bool DumpDynamic) { 2698 if (O.isCOFF() && !DumpDynamic) { 2699 outs() << "\nSYMBOL TABLE:\n"; 2700 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2701 return; 2702 } 2703 2704 const StringRef FileName = O.getFileName(); 2705 2706 if (!DumpDynamic) { 2707 outs() << "\nSYMBOL TABLE:\n"; 2708 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2709 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); 2710 return; 2711 } 2712 2713 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2714 if (!O.isELF()) { 2715 reportWarning( 2716 "this operation is not currently supported for this file format", 2717 FileName); 2718 return; 2719 } 2720 2721 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2722 auto Symbols = ELF->getDynamicSymbolIterators(); 2723 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2724 ELF->readDynsymVersions(); 2725 if (!SymbolVersionsOrErr) { 2726 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2727 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2728 (void)!SymbolVersionsOrErr; 2729 } 2730 for (auto &Sym : Symbols) 2731 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2732 ArchitectureName, DumpDynamic); 2733 } 2734 2735 void Dumper::printSymbol(const SymbolRef &Symbol, 2736 ArrayRef<VersionEntry> SymbolVersions, 2737 StringRef FileName, StringRef ArchiveName, 2738 StringRef ArchitectureName, bool DumpDynamic) { 2739 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2740 Expected<uint64_t> AddrOrErr = Symbol.getAddress(); 2741 if (!AddrOrErr) { 2742 reportUniqueWarning(AddrOrErr.takeError()); 2743 return; 2744 } 2745 uint64_t Address = *AddrOrErr; 2746 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 2747 if (SecI != O.section_end() && shouldAdjustVA(*SecI)) 2748 Address += AdjustVMA; 2749 if ((Address < StartAddress) || (Address > StopAddress)) 2750 return; 2751 SymbolRef::Type Type = 2752 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2753 uint32_t Flags = 2754 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2755 2756 // Don't ask a Mach-O STAB symbol for its section unless you know that 2757 // STAB symbol's section field refers to a valid section index. Otherwise 2758 // the symbol may error trying to load a section that does not exist. 2759 bool IsSTAB = false; 2760 if (MachO) { 2761 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2762 uint8_t NType = 2763 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2764 : MachO->getSymbolTableEntry(SymDRI).n_type); 2765 if (NType & MachO::N_STAB) 2766 IsSTAB = true; 2767 } 2768 section_iterator Section = IsSTAB 2769 ? O.section_end() 2770 : unwrapOrError(Symbol.getSection(), FileName, 2771 ArchiveName, ArchitectureName); 2772 2773 StringRef Name; 2774 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2775 if (Expected<StringRef> NameOrErr = Section->getName()) 2776 Name = *NameOrErr; 2777 else 2778 consumeError(NameOrErr.takeError()); 2779 2780 } else { 2781 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2782 ArchitectureName); 2783 } 2784 2785 bool Global = Flags & SymbolRef::SF_Global; 2786 bool Weak = Flags & SymbolRef::SF_Weak; 2787 bool Absolute = Flags & SymbolRef::SF_Absolute; 2788 bool Common = Flags & SymbolRef::SF_Common; 2789 bool Hidden = Flags & SymbolRef::SF_Hidden; 2790 2791 char GlobLoc = ' '; 2792 if ((Section != O.section_end() || Absolute) && !Weak) 2793 GlobLoc = Global ? 'g' : 'l'; 2794 char IFunc = ' '; 2795 if (O.isELF()) { 2796 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2797 IFunc = 'i'; 2798 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2799 GlobLoc = 'u'; 2800 } 2801 2802 char Debug = ' '; 2803 if (DumpDynamic) 2804 Debug = 'D'; 2805 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2806 Debug = 'd'; 2807 2808 char FileFunc = ' '; 2809 if (Type == SymbolRef::ST_File) 2810 FileFunc = 'f'; 2811 else if (Type == SymbolRef::ST_Function) 2812 FileFunc = 'F'; 2813 else if (Type == SymbolRef::ST_Data) 2814 FileFunc = 'O'; 2815 2816 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2817 2818 outs() << format(Fmt, Address) << " " 2819 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2820 << (Weak ? 'w' : ' ') // Weak? 2821 << ' ' // Constructor. Not supported yet. 2822 << ' ' // Warning. Not supported yet. 2823 << IFunc // Indirect reference to another symbol. 2824 << Debug // Debugging (d) or dynamic (D) symbol. 2825 << FileFunc // Name of function (F), file (f) or object (O). 2826 << ' '; 2827 if (Absolute) { 2828 outs() << "*ABS*"; 2829 } else if (Common) { 2830 outs() << "*COM*"; 2831 } else if (Section == O.section_end()) { 2832 if (O.isXCOFF()) { 2833 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2834 Symbol.getRawDataRefImpl()); 2835 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2836 outs() << "*DEBUG*"; 2837 else 2838 outs() << "*UND*"; 2839 } else 2840 outs() << "*UND*"; 2841 } else { 2842 StringRef SegmentName = getSegmentName(MachO, *Section); 2843 if (!SegmentName.empty()) 2844 outs() << SegmentName << ","; 2845 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2846 outs() << SectionName; 2847 if (O.isXCOFF()) { 2848 std::optional<SymbolRef> SymRef = 2849 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2850 if (SymRef) { 2851 2852 Expected<StringRef> NameOrErr = SymRef->getName(); 2853 2854 if (NameOrErr) { 2855 outs() << " (csect:"; 2856 std::string SymName = 2857 Demangle ? demangle(*NameOrErr) : NameOrErr->str(); 2858 2859 if (SymbolDescription) 2860 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2861 SymName); 2862 2863 outs() << ' ' << SymName; 2864 outs() << ") "; 2865 } else 2866 reportWarning(toString(NameOrErr.takeError()), FileName); 2867 } 2868 } 2869 } 2870 2871 if (Common) 2872 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2873 else if (O.isXCOFF()) 2874 outs() << '\t' 2875 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2876 Symbol.getRawDataRefImpl())); 2877 else if (O.isELF()) 2878 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2879 2880 if (O.isELF()) { 2881 if (!SymbolVersions.empty()) { 2882 const VersionEntry &Ver = 2883 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2884 std::string Str; 2885 if (!Ver.Name.empty()) 2886 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2887 outs() << ' ' << left_justify(Str, 12); 2888 } 2889 2890 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2891 switch (Other) { 2892 case ELF::STV_DEFAULT: 2893 break; 2894 case ELF::STV_INTERNAL: 2895 outs() << " .internal"; 2896 break; 2897 case ELF::STV_HIDDEN: 2898 outs() << " .hidden"; 2899 break; 2900 case ELF::STV_PROTECTED: 2901 outs() << " .protected"; 2902 break; 2903 default: 2904 outs() << format(" 0x%02x", Other); 2905 break; 2906 } 2907 } else if (Hidden) { 2908 outs() << " .hidden"; 2909 } 2910 2911 std::string SymName = Demangle ? demangle(Name) : Name.str(); 2912 if (O.isXCOFF() && SymbolDescription) 2913 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2914 2915 outs() << ' ' << SymName << '\n'; 2916 } 2917 2918 static void printUnwindInfo(const ObjectFile *O) { 2919 outs() << "Unwind info:\n\n"; 2920 2921 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2922 printCOFFUnwindInfo(Coff); 2923 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2924 printMachOUnwindInfo(MachO); 2925 else 2926 // TODO: Extract DWARF dump tool to objdump. 2927 WithColor::error(errs(), ToolName) 2928 << "This operation is only currently supported " 2929 "for COFF and MachO object files.\n"; 2930 } 2931 2932 /// Dump the raw contents of the __clangast section so the output can be piped 2933 /// into llvm-bcanalyzer. 2934 static void printRawClangAST(const ObjectFile *Obj) { 2935 if (outs().is_displayed()) { 2936 WithColor::error(errs(), ToolName) 2937 << "The -raw-clang-ast option will dump the raw binary contents of " 2938 "the clang ast section.\n" 2939 "Please redirect the output to a file or another program such as " 2940 "llvm-bcanalyzer.\n"; 2941 return; 2942 } 2943 2944 StringRef ClangASTSectionName("__clangast"); 2945 if (Obj->isCOFF()) { 2946 ClangASTSectionName = "clangast"; 2947 } 2948 2949 std::optional<object::SectionRef> ClangASTSection; 2950 for (auto Sec : ToolSectionFilter(*Obj)) { 2951 StringRef Name; 2952 if (Expected<StringRef> NameOrErr = Sec.getName()) 2953 Name = *NameOrErr; 2954 else 2955 consumeError(NameOrErr.takeError()); 2956 2957 if (Name == ClangASTSectionName) { 2958 ClangASTSection = Sec; 2959 break; 2960 } 2961 } 2962 if (!ClangASTSection) 2963 return; 2964 2965 StringRef ClangASTContents = 2966 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2967 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2968 } 2969 2970 static void printFaultMaps(const ObjectFile *Obj) { 2971 StringRef FaultMapSectionName; 2972 2973 if (Obj->isELF()) { 2974 FaultMapSectionName = ".llvm_faultmaps"; 2975 } else if (Obj->isMachO()) { 2976 FaultMapSectionName = "__llvm_faultmaps"; 2977 } else { 2978 WithColor::error(errs(), ToolName) 2979 << "This operation is only currently supported " 2980 "for ELF and Mach-O executable files.\n"; 2981 return; 2982 } 2983 2984 std::optional<object::SectionRef> FaultMapSection; 2985 2986 for (auto Sec : ToolSectionFilter(*Obj)) { 2987 StringRef Name; 2988 if (Expected<StringRef> NameOrErr = Sec.getName()) 2989 Name = *NameOrErr; 2990 else 2991 consumeError(NameOrErr.takeError()); 2992 2993 if (Name == FaultMapSectionName) { 2994 FaultMapSection = Sec; 2995 break; 2996 } 2997 } 2998 2999 outs() << "FaultMap table:\n"; 3000 3001 if (!FaultMapSection) { 3002 outs() << "<not found>\n"; 3003 return; 3004 } 3005 3006 StringRef FaultMapContents = 3007 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 3008 FaultMapParser FMP(FaultMapContents.bytes_begin(), 3009 FaultMapContents.bytes_end()); 3010 3011 outs() << FMP; 3012 } 3013 3014 void Dumper::printPrivateHeaders() { 3015 reportError(O.getFileName(), "Invalid/Unsupported object file format"); 3016 } 3017 3018 static void printFileHeaders(const ObjectFile *O) { 3019 if (!O->isELF() && !O->isCOFF()) 3020 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 3021 3022 Triple::ArchType AT = O->getArch(); 3023 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 3024 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 3025 3026 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 3027 outs() << "start address: " 3028 << "0x" << format(Fmt.data(), Address) << "\n"; 3029 } 3030 3031 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 3032 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 3033 if (!ModeOrErr) { 3034 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 3035 consumeError(ModeOrErr.takeError()); 3036 return; 3037 } 3038 sys::fs::perms Mode = ModeOrErr.get(); 3039 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 3040 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 3041 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 3042 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 3043 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 3044 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 3045 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 3046 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 3047 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 3048 3049 outs() << " "; 3050 3051 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 3052 unwrapOrError(C.getGID(), Filename), 3053 unwrapOrError(C.getRawSize(), Filename)); 3054 3055 StringRef RawLastModified = C.getRawLastModified(); 3056 unsigned Seconds; 3057 if (RawLastModified.getAsInteger(10, Seconds)) 3058 outs() << "(date: \"" << RawLastModified 3059 << "\" contains non-decimal chars) "; 3060 else { 3061 // Since ctime(3) returns a 26 character string of the form: 3062 // "Sun Sep 16 01:03:52 1973\n\0" 3063 // just print 24 characters. 3064 time_t t = Seconds; 3065 outs() << format("%.24s ", ctime(&t)); 3066 } 3067 3068 StringRef Name = ""; 3069 Expected<StringRef> NameOrErr = C.getName(); 3070 if (!NameOrErr) { 3071 consumeError(NameOrErr.takeError()); 3072 Name = unwrapOrError(C.getRawName(), Filename); 3073 } else { 3074 Name = NameOrErr.get(); 3075 } 3076 outs() << Name << "\n"; 3077 } 3078 3079 // For ELF only now. 3080 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 3081 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 3082 if (Elf->getEType() != ELF::ET_REL) 3083 return true; 3084 } 3085 return false; 3086 } 3087 3088 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 3089 uint64_t Start, uint64_t Stop) { 3090 if (!shouldWarnForInvalidStartStopAddress(Obj)) 3091 return; 3092 3093 for (const SectionRef &Section : Obj->sections()) 3094 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 3095 uint64_t BaseAddr = Section.getAddress(); 3096 uint64_t Size = Section.getSize(); 3097 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 3098 return; 3099 } 3100 3101 if (!HasStartAddressFlag) 3102 reportWarning("no section has address less than 0x" + 3103 Twine::utohexstr(Stop) + " specified by --stop-address", 3104 Obj->getFileName()); 3105 else if (!HasStopAddressFlag) 3106 reportWarning("no section has address greater than or equal to 0x" + 3107 Twine::utohexstr(Start) + " specified by --start-address", 3108 Obj->getFileName()); 3109 else 3110 reportWarning("no section overlaps the range [0x" + 3111 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 3112 ") specified by --start-address/--stop-address", 3113 Obj->getFileName()); 3114 } 3115 3116 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 3117 const Archive::Child *C = nullptr) { 3118 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O); 3119 if (!DumperOrErr) { 3120 reportError(DumperOrErr.takeError(), O->getFileName(), 3121 A ? A->getFileName() : ""); 3122 return; 3123 } 3124 Dumper &D = **DumperOrErr; 3125 3126 // Avoid other output when using a raw option. 3127 if (!RawClangAST) { 3128 outs() << '\n'; 3129 if (A) 3130 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 3131 else 3132 outs() << O->getFileName(); 3133 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 3134 } 3135 3136 if (HasStartAddressFlag || HasStopAddressFlag) 3137 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 3138 3139 // TODO: Change print* free functions to Dumper member functions to utilitize 3140 // stateful functions like reportUniqueWarning. 3141 3142 // Note: the order here matches GNU objdump for compatability. 3143 StringRef ArchiveName = A ? A->getFileName() : ""; 3144 if (ArchiveHeaders && !MachOOpt && C) 3145 printArchiveChild(ArchiveName, *C); 3146 if (FileHeaders) 3147 printFileHeaders(O); 3148 if (PrivateHeaders || FirstPrivateHeader) 3149 D.printPrivateHeaders(); 3150 if (SectionHeaders) 3151 printSectionHeaders(*O); 3152 if (SymbolTable) 3153 D.printSymbolTable(ArchiveName); 3154 if (DynamicSymbolTable) 3155 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"", 3156 /*DumpDynamic=*/true); 3157 if (DwarfDumpType != DIDT_Null) { 3158 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 3159 // Dump the complete DWARF structure. 3160 DIDumpOptions DumpOpts; 3161 DumpOpts.DumpType = DwarfDumpType; 3162 DICtx->dump(outs(), DumpOpts); 3163 } 3164 if (Relocations && !Disassemble) 3165 D.printRelocations(); 3166 if (DynamicRelocations) 3167 D.printDynamicRelocations(); 3168 if (SectionContents) 3169 printSectionContents(O); 3170 if (Disassemble) 3171 disassembleObject(O, Relocations); 3172 if (UnwindInfo) 3173 printUnwindInfo(O); 3174 3175 // Mach-O specific options: 3176 if (ExportsTrie) 3177 printExportsTrie(O); 3178 if (Rebase) 3179 printRebaseTable(O); 3180 if (Bind) 3181 printBindTable(O); 3182 if (LazyBind) 3183 printLazyBindTable(O); 3184 if (WeakBind) 3185 printWeakBindTable(O); 3186 3187 // Other special sections: 3188 if (RawClangAST) 3189 printRawClangAST(O); 3190 if (FaultMapSection) 3191 printFaultMaps(O); 3192 if (Offloading) 3193 dumpOffloadBinary(*O); 3194 } 3195 3196 static void dumpObject(const COFFImportFile *I, const Archive *A, 3197 const Archive::Child *C = nullptr) { 3198 StringRef ArchiveName = A ? A->getFileName() : ""; 3199 3200 // Avoid other output when using a raw option. 3201 if (!RawClangAST) 3202 outs() << '\n' 3203 << ArchiveName << "(" << I->getFileName() << ")" 3204 << ":\tfile format COFF-import-file" 3205 << "\n\n"; 3206 3207 if (ArchiveHeaders && !MachOOpt && C) 3208 printArchiveChild(ArchiveName, *C); 3209 if (SymbolTable) 3210 printCOFFSymbolTable(*I); 3211 } 3212 3213 /// Dump each object file in \a a; 3214 static void dumpArchive(const Archive *A) { 3215 Error Err = Error::success(); 3216 unsigned I = -1; 3217 for (auto &C : A->children(Err)) { 3218 ++I; 3219 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 3220 if (!ChildOrErr) { 3221 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 3222 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 3223 continue; 3224 } 3225 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 3226 dumpObject(O, A, &C); 3227 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 3228 dumpObject(I, A, &C); 3229 else 3230 reportError(errorCodeToError(object_error::invalid_file_type), 3231 A->getFileName()); 3232 } 3233 if (Err) 3234 reportError(std::move(Err), A->getFileName()); 3235 } 3236 3237 /// Open file and figure out how to dump it. 3238 static void dumpInput(StringRef file) { 3239 // If we are using the Mach-O specific object file parser, then let it parse 3240 // the file and process the command line options. So the -arch flags can 3241 // be used to select specific slices, etc. 3242 if (MachOOpt) { 3243 parseInputMachO(file); 3244 return; 3245 } 3246 3247 // Attempt to open the binary. 3248 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 3249 Binary &Binary = *OBinary.getBinary(); 3250 3251 if (Archive *A = dyn_cast<Archive>(&Binary)) 3252 dumpArchive(A); 3253 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 3254 dumpObject(O); 3255 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 3256 parseInputMachO(UB); 3257 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 3258 dumpOffloadSections(*OB); 3259 else 3260 reportError(errorCodeToError(object_error::invalid_file_type), file); 3261 } 3262 3263 template <typename T> 3264 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 3265 T &Value) { 3266 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 3267 StringRef V(A->getValue()); 3268 if (!llvm::to_integer(V, Value, 0)) { 3269 reportCmdLineError(A->getSpelling() + 3270 ": expected a non-negative integer, but got '" + V + 3271 "'"); 3272 } 3273 } 3274 } 3275 3276 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 3277 StringRef V(A->getValue()); 3278 object::BuildID BID = parseBuildID(V); 3279 if (BID.empty()) 3280 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 3281 V + "'"); 3282 return BID; 3283 } 3284 3285 void objdump::invalidArgValue(const opt::Arg *A) { 3286 reportCmdLineError("'" + StringRef(A->getValue()) + 3287 "' is not a valid value for '" + A->getSpelling() + "'"); 3288 } 3289 3290 static std::vector<std::string> 3291 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 3292 std::vector<std::string> Values; 3293 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 3294 llvm::SmallVector<StringRef, 2> SplitValues; 3295 llvm::SplitString(Value, SplitValues, ","); 3296 for (StringRef SplitValue : SplitValues) 3297 Values.push_back(SplitValue.str()); 3298 } 3299 return Values; 3300 } 3301 3302 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 3303 MachOOpt = true; 3304 FullLeadingAddr = true; 3305 PrintImmHex = true; 3306 3307 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 3308 LinkOptHints = InputArgs.hasArg(OTOOL_C); 3309 if (InputArgs.hasArg(OTOOL_d)) 3310 FilterSections.push_back("__DATA,__data"); 3311 DylibId = InputArgs.hasArg(OTOOL_D); 3312 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 3313 DataInCode = InputArgs.hasArg(OTOOL_G); 3314 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 3315 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 3316 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 3317 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 3318 DylibsUsed = InputArgs.hasArg(OTOOL_L); 3319 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 3320 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 3321 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 3322 InfoPlist = InputArgs.hasArg(OTOOL_P); 3323 Relocations = InputArgs.hasArg(OTOOL_r); 3324 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 3325 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 3326 FilterSections.push_back(Filter); 3327 } 3328 if (InputArgs.hasArg(OTOOL_t)) 3329 FilterSections.push_back("__TEXT,__text"); 3330 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3331 InputArgs.hasArg(OTOOL_o); 3332 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3333 if (InputArgs.hasArg(OTOOL_x)) 3334 FilterSections.push_back(",__text"); 3335 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3336 3337 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3338 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3339 3340 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3341 if (InputFilenames.empty()) 3342 reportCmdLineError("no input file"); 3343 3344 for (const Arg *A : InputArgs) { 3345 const Option &O = A->getOption(); 3346 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3347 reportCmdLineWarning(O.getPrefixedName() + 3348 " is obsolete and not implemented"); 3349 } 3350 } 3351 } 3352 3353 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3354 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3355 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3356 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3357 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3358 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3359 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3360 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3361 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3362 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table); 3363 DisassembleSymbols = 3364 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3365 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3366 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3367 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3368 .Case("frames", DIDT_DebugFrame) 3369 .Default(DIDT_Null); 3370 if (DwarfDumpType == DIDT_Null) 3371 invalidArgValue(A); 3372 } 3373 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3374 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3375 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3376 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3377 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3378 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3379 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3380 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3381 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3382 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3383 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3384 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3385 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3386 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3387 PrintImmHex = 3388 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3389 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3390 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3391 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3392 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3393 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3394 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3395 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3396 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3397 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3398 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3399 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3400 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3401 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3402 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3403 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3404 Wide = InputArgs.hasArg(OBJDUMP_wide); 3405 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3406 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3407 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3408 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3409 .Case("ascii", DVASCII) 3410 .Case("unicode", DVUnicode) 3411 .Default(DVInvalid); 3412 if (DbgVariables == DVInvalid) 3413 invalidArgValue(A); 3414 } 3415 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) { 3416 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue()) 3417 .Case("on", ColorOutput::Enable) 3418 .Case("off", ColorOutput::Disable) 3419 .Case("terminal", ColorOutput::Auto) 3420 .Default(ColorOutput::Invalid); 3421 if (DisassemblyColor == ColorOutput::Invalid) 3422 invalidArgValue(A); 3423 } 3424 3425 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3426 3427 parseMachOOptions(InputArgs); 3428 3429 // Parse -M (--disassembler-options) and deprecated 3430 // --x86-asm-syntax={att,intel}. 3431 // 3432 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3433 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3434 // called too late. For now we have to use the internal cl::opt option. 3435 const char *AsmSyntax = nullptr; 3436 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3437 OBJDUMP_x86_asm_syntax_att, 3438 OBJDUMP_x86_asm_syntax_intel)) { 3439 switch (A->getOption().getID()) { 3440 case OBJDUMP_x86_asm_syntax_att: 3441 AsmSyntax = "--x86-asm-syntax=att"; 3442 continue; 3443 case OBJDUMP_x86_asm_syntax_intel: 3444 AsmSyntax = "--x86-asm-syntax=intel"; 3445 continue; 3446 } 3447 3448 SmallVector<StringRef, 2> Values; 3449 llvm::SplitString(A->getValue(), Values, ","); 3450 for (StringRef V : Values) { 3451 if (V == "att") 3452 AsmSyntax = "--x86-asm-syntax=att"; 3453 else if (V == "intel") 3454 AsmSyntax = "--x86-asm-syntax=intel"; 3455 else 3456 DisassemblerOptions.push_back(V.str()); 3457 } 3458 } 3459 SmallVector<const char *> Args = {"llvm-objdump"}; 3460 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm)) 3461 Args.push_back(A->getValue()); 3462 if (AsmSyntax) 3463 Args.push_back(AsmSyntax); 3464 if (Args.size() > 1) 3465 llvm::cl::ParseCommandLineOptions(Args.size(), Args.data()); 3466 3467 // Look up any provided build IDs, then append them to the input filenames. 3468 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3469 object::BuildID BuildID = parseBuildIDArg(A); 3470 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3471 if (!Path) { 3472 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3473 A->getValue() + "'"); 3474 } 3475 InputFilenames.push_back(std::move(*Path)); 3476 } 3477 3478 // objdump defaults to a.out if no filenames specified. 3479 if (InputFilenames.empty()) 3480 InputFilenames.push_back("a.out"); 3481 } 3482 3483 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) { 3484 using namespace llvm; 3485 3486 ToolName = argv[0]; 3487 std::unique_ptr<CommonOptTable> T; 3488 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3489 3490 StringRef Stem = sys::path::stem(ToolName); 3491 auto Is = [=](StringRef Tool) { 3492 // We need to recognize the following filenames: 3493 // 3494 // llvm-objdump -> objdump 3495 // llvm-otool-10.exe -> otool 3496 // powerpc64-unknown-freebsd13-objdump -> objdump 3497 auto I = Stem.rfind_insensitive(Tool); 3498 return I != StringRef::npos && 3499 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3500 }; 3501 if (Is("otool")) { 3502 T = std::make_unique<OtoolOptTable>(); 3503 Unknown = OTOOL_UNKNOWN; 3504 HelpFlag = OTOOL_help; 3505 HelpHiddenFlag = OTOOL_help_hidden; 3506 VersionFlag = OTOOL_version; 3507 } else { 3508 T = std::make_unique<ObjdumpOptTable>(); 3509 Unknown = OBJDUMP_UNKNOWN; 3510 HelpFlag = OBJDUMP_help; 3511 HelpHiddenFlag = OBJDUMP_help_hidden; 3512 VersionFlag = OBJDUMP_version; 3513 } 3514 3515 BumpPtrAllocator A; 3516 StringSaver Saver(A); 3517 opt::InputArgList InputArgs = 3518 T->parseArgs(argc, argv, Unknown, Saver, 3519 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3520 3521 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3522 T->printHelp(ToolName); 3523 return 0; 3524 } 3525 if (InputArgs.hasArg(HelpHiddenFlag)) { 3526 T->printHelp(ToolName, /*ShowHidden=*/true); 3527 return 0; 3528 } 3529 3530 // Initialize targets and assembly printers/parsers. 3531 InitializeAllTargetInfos(); 3532 InitializeAllTargetMCs(); 3533 InitializeAllDisassemblers(); 3534 3535 if (InputArgs.hasArg(VersionFlag)) { 3536 cl::PrintVersionMessage(); 3537 if (!Is("otool")) { 3538 outs() << '\n'; 3539 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3540 } 3541 return 0; 3542 } 3543 3544 // Initialize debuginfod. 3545 const bool ShouldUseDebuginfodByDefault = 3546 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3547 std::vector<std::string> DebugFileDirectories = 3548 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3549 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3550 ShouldUseDebuginfodByDefault)) { 3551 HTTPClient::initialize(); 3552 BIDFetcher = 3553 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3554 } else { 3555 BIDFetcher = 3556 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3557 } 3558 3559 if (Is("otool")) 3560 parseOtoolOptions(InputArgs); 3561 else 3562 parseObjdumpOptions(InputArgs); 3563 3564 if (StartAddress >= StopAddress) 3565 reportCmdLineError("start address should be less than stop address"); 3566 3567 // Removes trailing separators from prefix. 3568 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3569 Prefix.pop_back(); 3570 3571 if (AllHeaders) 3572 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3573 SectionHeaders = SymbolTable = true; 3574 3575 if (DisassembleAll || PrintSource || PrintLines || TracebackTable || 3576 !DisassembleSymbols.empty()) 3577 Disassemble = true; 3578 3579 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3580 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3581 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3582 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3583 !(MachOOpt && 3584 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3585 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3586 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3587 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3588 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3589 T->printHelp(ToolName); 3590 return 2; 3591 } 3592 3593 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3594 3595 llvm::for_each(InputFilenames, dumpInput); 3596 3597 warnOnNoMatchForSections(); 3598 3599 return EXIT_SUCCESS; 3600 } 3601