1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Transforms/Vectorize.h" 33 34 using namespace llvm; 35 using namespace llvm::PatternMatch; 36 37 #define DEBUG_TYPE "vector-combine" 38 STATISTIC(NumVecLoad, "Number of vector loads formed"); 39 STATISTIC(NumVecCmp, "Number of vector compares formed"); 40 STATISTIC(NumVecBO, "Number of vector binops formed"); 41 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 42 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 43 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 44 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 45 46 static cl::opt<bool> DisableVectorCombine( 47 "disable-vector-combine", cl::init(false), cl::Hidden, 48 cl::desc("Disable all vector combine transforms")); 49 50 static cl::opt<bool> DisableBinopExtractShuffle( 51 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 52 cl::desc("Disable binop extract to shuffle transforms")); 53 54 static cl::opt<unsigned> MaxInstrsToScan( 55 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 56 cl::desc("Max number of instructions to scan for vector combining.")); 57 58 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 59 60 namespace { 61 class VectorCombine { 62 public: 63 VectorCombine(Function &F, const TargetTransformInfo &TTI, 64 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC) 65 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {} 66 67 bool run(); 68 69 private: 70 Function &F; 71 IRBuilder<> Builder; 72 const TargetTransformInfo &TTI; 73 const DominatorTree &DT; 74 AAResults &AA; 75 AssumptionCache &AC; 76 77 bool vectorizeLoadInsert(Instruction &I); 78 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 79 ExtractElementInst *Ext1, 80 unsigned PreferredExtractIndex) const; 81 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 82 unsigned Opcode, 83 ExtractElementInst *&ConvertToShuffle, 84 unsigned PreferredExtractIndex); 85 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 86 Instruction &I); 87 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 88 Instruction &I); 89 bool foldExtractExtract(Instruction &I); 90 bool foldBitcastShuf(Instruction &I); 91 bool scalarizeBinopOrCmp(Instruction &I); 92 bool foldExtractedCmps(Instruction &I); 93 bool foldSingleElementStore(Instruction &I); 94 bool scalarizeLoadExtract(Instruction &I); 95 }; 96 } // namespace 97 98 static void replaceValue(Value &Old, Value &New) { 99 Old.replaceAllUsesWith(&New); 100 New.takeName(&Old); 101 } 102 103 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 104 // Match insert into fixed vector of scalar value. 105 // TODO: Handle non-zero insert index. 106 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 107 Value *Scalar; 108 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 109 !Scalar->hasOneUse()) 110 return false; 111 112 // Optionally match an extract from another vector. 113 Value *X; 114 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 115 if (!HasExtract) 116 X = Scalar; 117 118 // Match source value as load of scalar or vector. 119 // Do not vectorize scalar load (widening) if atomic/volatile or under 120 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 121 // or create data races non-existent in the source. 122 auto *Load = dyn_cast<LoadInst>(X); 123 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 124 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 125 mustSuppressSpeculation(*Load)) 126 return false; 127 128 const DataLayout &DL = I.getModule()->getDataLayout(); 129 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 130 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 131 132 // If original AS != Load's AS, we can't bitcast the original pointer and have 133 // to use Load's operand instead. Ideally we would want to strip pointer casts 134 // without changing AS, but there's no API to do that ATM. 135 unsigned AS = Load->getPointerAddressSpace(); 136 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 137 SrcPtr = Load->getPointerOperand(); 138 139 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 140 // sure we have all of our type-based constraints in place for this target. 141 Type *ScalarTy = Scalar->getType(); 142 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 143 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 144 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 145 ScalarSize % 8 != 0) 146 return false; 147 148 // Check safety of replacing the scalar load with a larger vector load. 149 // We use minimal alignment (maximum flexibility) because we only care about 150 // the dereferenceable region. When calculating cost and creating a new op, 151 // we may use a larger value based on alignment attributes. 152 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 153 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 154 unsigned OffsetEltIndex = 0; 155 Align Alignment = Load->getAlign(); 156 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 157 // It is not safe to load directly from the pointer, but we can still peek 158 // through gep offsets and check if it safe to load from a base address with 159 // updated alignment. If it is, we can shuffle the element(s) into place 160 // after loading. 161 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 162 APInt Offset(OffsetBitWidth, 0); 163 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 164 165 // We want to shuffle the result down from a high element of a vector, so 166 // the offset must be positive. 167 if (Offset.isNegative()) 168 return false; 169 170 // The offset must be a multiple of the scalar element to shuffle cleanly 171 // in the element's size. 172 uint64_t ScalarSizeInBytes = ScalarSize / 8; 173 if (Offset.urem(ScalarSizeInBytes) != 0) 174 return false; 175 176 // If we load MinVecNumElts, will our target element still be loaded? 177 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 178 if (OffsetEltIndex >= MinVecNumElts) 179 return false; 180 181 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 182 return false; 183 184 // Update alignment with offset value. Note that the offset could be negated 185 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 186 // negation does not change the result of the alignment calculation. 187 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 188 } 189 190 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 191 // Use the greater of the alignment on the load or its source pointer. 192 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 193 Type *LoadTy = Load->getType(); 194 InstructionCost OldCost = 195 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 196 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 197 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 198 /* Insert */ true, HasExtract); 199 200 // New pattern: load VecPtr 201 InstructionCost NewCost = 202 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 203 // Optionally, we are shuffling the loaded vector element(s) into place. 204 // For the mask set everything but element 0 to undef to prevent poison from 205 // propagating from the extra loaded memory. This will also optionally 206 // shrink/grow the vector from the loaded size to the output size. 207 // We assume this operation has no cost in codegen if there was no offset. 208 // Note that we could use freeze to avoid poison problems, but then we might 209 // still need a shuffle to change the vector size. 210 unsigned OutputNumElts = Ty->getNumElements(); 211 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 212 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 213 Mask[0] = OffsetEltIndex; 214 if (OffsetEltIndex) 215 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 216 217 // We can aggressively convert to the vector form because the backend can 218 // invert this transform if it does not result in a performance win. 219 if (OldCost < NewCost || !NewCost.isValid()) 220 return false; 221 222 // It is safe and potentially profitable to load a vector directly: 223 // inselt undef, load Scalar, 0 --> load VecPtr 224 IRBuilder<> Builder(Load); 225 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 226 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 227 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 228 229 replaceValue(I, *VecLd); 230 ++NumVecLoad; 231 return true; 232 } 233 234 /// Determine which, if any, of the inputs should be replaced by a shuffle 235 /// followed by extract from a different index. 236 ExtractElementInst *VectorCombine::getShuffleExtract( 237 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 238 unsigned PreferredExtractIndex = InvalidIndex) const { 239 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 240 isa<ConstantInt>(Ext1->getIndexOperand()) && 241 "Expected constant extract indexes"); 242 243 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 244 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 245 246 // If the extract indexes are identical, no shuffle is needed. 247 if (Index0 == Index1) 248 return nullptr; 249 250 Type *VecTy = Ext0->getVectorOperand()->getType(); 251 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 252 InstructionCost Cost0 = 253 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 254 InstructionCost Cost1 = 255 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 256 257 // If both costs are invalid no shuffle is needed 258 if (!Cost0.isValid() && !Cost1.isValid()) 259 return nullptr; 260 261 // We are extracting from 2 different indexes, so one operand must be shuffled 262 // before performing a vector operation and/or extract. The more expensive 263 // extract will be replaced by a shuffle. 264 if (Cost0 > Cost1) 265 return Ext0; 266 if (Cost1 > Cost0) 267 return Ext1; 268 269 // If the costs are equal and there is a preferred extract index, shuffle the 270 // opposite operand. 271 if (PreferredExtractIndex == Index0) 272 return Ext1; 273 if (PreferredExtractIndex == Index1) 274 return Ext0; 275 276 // Otherwise, replace the extract with the higher index. 277 return Index0 > Index1 ? Ext0 : Ext1; 278 } 279 280 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 281 /// vector operation(s) followed by extract. Return true if the existing 282 /// instructions are cheaper than a vector alternative. Otherwise, return false 283 /// and if one of the extracts should be transformed to a shufflevector, set 284 /// \p ConvertToShuffle to that extract instruction. 285 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 286 ExtractElementInst *Ext1, 287 unsigned Opcode, 288 ExtractElementInst *&ConvertToShuffle, 289 unsigned PreferredExtractIndex) { 290 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 291 isa<ConstantInt>(Ext1->getOperand(1)) && 292 "Expected constant extract indexes"); 293 Type *ScalarTy = Ext0->getType(); 294 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 295 InstructionCost ScalarOpCost, VectorOpCost; 296 297 // Get cost estimates for scalar and vector versions of the operation. 298 bool IsBinOp = Instruction::isBinaryOp(Opcode); 299 if (IsBinOp) { 300 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 301 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 302 } else { 303 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 304 "Expected a compare"); 305 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 306 CmpInst::makeCmpResultType(ScalarTy)); 307 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 308 CmpInst::makeCmpResultType(VecTy)); 309 } 310 311 // Get cost estimates for the extract elements. These costs will factor into 312 // both sequences. 313 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 314 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 315 316 InstructionCost Extract0Cost = 317 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 318 InstructionCost Extract1Cost = 319 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 320 321 // A more expensive extract will always be replaced by a splat shuffle. 322 // For example, if Ext0 is more expensive: 323 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 324 // extelt (opcode (splat V0, Ext0), V1), Ext1 325 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 326 // check the cost of creating a broadcast shuffle and shuffling both 327 // operands to element 0. 328 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 329 330 // Extra uses of the extracts mean that we include those costs in the 331 // vector total because those instructions will not be eliminated. 332 InstructionCost OldCost, NewCost; 333 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 334 // Handle a special case. If the 2 extracts are identical, adjust the 335 // formulas to account for that. The extra use charge allows for either the 336 // CSE'd pattern or an unoptimized form with identical values: 337 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 338 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 339 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 340 OldCost = CheapExtractCost + ScalarOpCost; 341 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 342 } else { 343 // Handle the general case. Each extract is actually a different value: 344 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 345 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 346 NewCost = VectorOpCost + CheapExtractCost + 347 !Ext0->hasOneUse() * Extract0Cost + 348 !Ext1->hasOneUse() * Extract1Cost; 349 } 350 351 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 352 if (ConvertToShuffle) { 353 if (IsBinOp && DisableBinopExtractShuffle) 354 return true; 355 356 // If we are extracting from 2 different indexes, then one operand must be 357 // shuffled before performing the vector operation. The shuffle mask is 358 // undefined except for 1 lane that is being translated to the remaining 359 // extraction lane. Therefore, it is a splat shuffle. Ex: 360 // ShufMask = { undef, undef, 0, undef } 361 // TODO: The cost model has an option for a "broadcast" shuffle 362 // (splat-from-element-0), but no option for a more general splat. 363 NewCost += 364 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 365 } 366 367 // Aggressively form a vector op if the cost is equal because the transform 368 // may enable further optimization. 369 // Codegen can reverse this transform (scalarize) if it was not profitable. 370 return OldCost < NewCost; 371 } 372 373 /// Create a shuffle that translates (shifts) 1 element from the input vector 374 /// to a new element location. 375 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 376 unsigned NewIndex, IRBuilder<> &Builder) { 377 // The shuffle mask is undefined except for 1 lane that is being translated 378 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 379 // ShufMask = { 2, undef, undef, undef } 380 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 381 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 382 ShufMask[NewIndex] = OldIndex; 383 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 384 } 385 386 /// Given an extract element instruction with constant index operand, shuffle 387 /// the source vector (shift the scalar element) to a NewIndex for extraction. 388 /// Return null if the input can be constant folded, so that we are not creating 389 /// unnecessary instructions. 390 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 391 unsigned NewIndex, 392 IRBuilder<> &Builder) { 393 // If the extract can be constant-folded, this code is unsimplified. Defer 394 // to other passes to handle that. 395 Value *X = ExtElt->getVectorOperand(); 396 Value *C = ExtElt->getIndexOperand(); 397 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 398 if (isa<Constant>(X)) 399 return nullptr; 400 401 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 402 NewIndex, Builder); 403 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 404 } 405 406 /// Try to reduce extract element costs by converting scalar compares to vector 407 /// compares followed by extract. 408 /// cmp (ext0 V0, C), (ext1 V1, C) 409 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 410 ExtractElementInst *Ext1, Instruction &I) { 411 assert(isa<CmpInst>(&I) && "Expected a compare"); 412 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 413 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 414 "Expected matching constant extract indexes"); 415 416 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 417 ++NumVecCmp; 418 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 419 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 420 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 421 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 422 replaceValue(I, *NewExt); 423 } 424 425 /// Try to reduce extract element costs by converting scalar binops to vector 426 /// binops followed by extract. 427 /// bo (ext0 V0, C), (ext1 V1, C) 428 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 429 ExtractElementInst *Ext1, Instruction &I) { 430 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 431 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 432 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 433 "Expected matching constant extract indexes"); 434 435 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 436 ++NumVecBO; 437 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 438 Value *VecBO = 439 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 440 441 // All IR flags are safe to back-propagate because any potential poison 442 // created in unused vector elements is discarded by the extract. 443 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 444 VecBOInst->copyIRFlags(&I); 445 446 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 447 replaceValue(I, *NewExt); 448 } 449 450 /// Match an instruction with extracted vector operands. 451 bool VectorCombine::foldExtractExtract(Instruction &I) { 452 // It is not safe to transform things like div, urem, etc. because we may 453 // create undefined behavior when executing those on unknown vector elements. 454 if (!isSafeToSpeculativelyExecute(&I)) 455 return false; 456 457 Instruction *I0, *I1; 458 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 459 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 460 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 461 return false; 462 463 Value *V0, *V1; 464 uint64_t C0, C1; 465 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 466 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 467 V0->getType() != V1->getType()) 468 return false; 469 470 // If the scalar value 'I' is going to be re-inserted into a vector, then try 471 // to create an extract to that same element. The extract/insert can be 472 // reduced to a "select shuffle". 473 // TODO: If we add a larger pattern match that starts from an insert, this 474 // probably becomes unnecessary. 475 auto *Ext0 = cast<ExtractElementInst>(I0); 476 auto *Ext1 = cast<ExtractElementInst>(I1); 477 uint64_t InsertIndex = InvalidIndex; 478 if (I.hasOneUse()) 479 match(I.user_back(), 480 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 481 482 ExtractElementInst *ExtractToChange; 483 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 484 InsertIndex)) 485 return false; 486 487 if (ExtractToChange) { 488 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 489 ExtractElementInst *NewExtract = 490 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 491 if (!NewExtract) 492 return false; 493 if (ExtractToChange == Ext0) 494 Ext0 = NewExtract; 495 else 496 Ext1 = NewExtract; 497 } 498 499 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 500 foldExtExtCmp(Ext0, Ext1, I); 501 else 502 foldExtExtBinop(Ext0, Ext1, I); 503 504 return true; 505 } 506 507 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 508 /// destination type followed by shuffle. This can enable further transforms by 509 /// moving bitcasts or shuffles together. 510 bool VectorCombine::foldBitcastShuf(Instruction &I) { 511 Value *V; 512 ArrayRef<int> Mask; 513 if (!match(&I, m_BitCast( 514 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 515 return false; 516 517 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 518 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 519 // mask for scalable type is a splat or not. 520 // 2) Disallow non-vector casts and length-changing shuffles. 521 // TODO: We could allow any shuffle. 522 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 523 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 524 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 525 return false; 526 527 unsigned DestNumElts = DestTy->getNumElements(); 528 unsigned SrcNumElts = SrcTy->getNumElements(); 529 SmallVector<int, 16> NewMask; 530 if (SrcNumElts <= DestNumElts) { 531 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 532 // always be expanded to the equivalent form choosing narrower elements. 533 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 534 unsigned ScaleFactor = DestNumElts / SrcNumElts; 535 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 536 } else { 537 // The bitcast is from narrow elements to wide elements. The shuffle mask 538 // must choose consecutive elements to allow casting first. 539 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 540 unsigned ScaleFactor = SrcNumElts / DestNumElts; 541 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 542 return false; 543 } 544 545 // The new shuffle must not cost more than the old shuffle. The bitcast is 546 // moved ahead of the shuffle, so assume that it has the same cost as before. 547 InstructionCost DestCost = TTI.getShuffleCost( 548 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 549 InstructionCost SrcCost = 550 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 551 if (DestCost > SrcCost || !DestCost.isValid()) 552 return false; 553 554 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 555 ++NumShufOfBitcast; 556 Value *CastV = Builder.CreateBitCast(V, DestTy); 557 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 558 replaceValue(I, *Shuf); 559 return true; 560 } 561 562 /// Match a vector binop or compare instruction with at least one inserted 563 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 564 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 565 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 566 Value *Ins0, *Ins1; 567 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 568 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 569 return false; 570 571 // Do not convert the vector condition of a vector select into a scalar 572 // condition. That may cause problems for codegen because of differences in 573 // boolean formats and register-file transfers. 574 // TODO: Can we account for that in the cost model? 575 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 576 if (IsCmp) 577 for (User *U : I.users()) 578 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 579 return false; 580 581 // Match against one or both scalar values being inserted into constant 582 // vectors: 583 // vec_op VecC0, (inselt VecC1, V1, Index) 584 // vec_op (inselt VecC0, V0, Index), VecC1 585 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 586 // TODO: Deal with mismatched index constants and variable indexes? 587 Constant *VecC0 = nullptr, *VecC1 = nullptr; 588 Value *V0 = nullptr, *V1 = nullptr; 589 uint64_t Index0 = 0, Index1 = 0; 590 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 591 m_ConstantInt(Index0))) && 592 !match(Ins0, m_Constant(VecC0))) 593 return false; 594 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 595 m_ConstantInt(Index1))) && 596 !match(Ins1, m_Constant(VecC1))) 597 return false; 598 599 bool IsConst0 = !V0; 600 bool IsConst1 = !V1; 601 if (IsConst0 && IsConst1) 602 return false; 603 if (!IsConst0 && !IsConst1 && Index0 != Index1) 604 return false; 605 606 // Bail for single insertion if it is a load. 607 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 608 auto *I0 = dyn_cast_or_null<Instruction>(V0); 609 auto *I1 = dyn_cast_or_null<Instruction>(V1); 610 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 611 (IsConst1 && I0 && I0->mayReadFromMemory())) 612 return false; 613 614 uint64_t Index = IsConst0 ? Index1 : Index0; 615 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 616 Type *VecTy = I.getType(); 617 assert(VecTy->isVectorTy() && 618 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 619 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 620 ScalarTy->isPointerTy()) && 621 "Unexpected types for insert element into binop or cmp"); 622 623 unsigned Opcode = I.getOpcode(); 624 InstructionCost ScalarOpCost, VectorOpCost; 625 if (IsCmp) { 626 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 627 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 628 } else { 629 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 630 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 631 } 632 633 // Get cost estimate for the insert element. This cost will factor into 634 // both sequences. 635 InstructionCost InsertCost = 636 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 637 InstructionCost OldCost = 638 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 639 InstructionCost NewCost = ScalarOpCost + InsertCost + 640 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 641 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 642 643 // We want to scalarize unless the vector variant actually has lower cost. 644 if (OldCost < NewCost || !NewCost.isValid()) 645 return false; 646 647 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 648 // inselt NewVecC, (scalar_op V0, V1), Index 649 if (IsCmp) 650 ++NumScalarCmp; 651 else 652 ++NumScalarBO; 653 654 // For constant cases, extract the scalar element, this should constant fold. 655 if (IsConst0) 656 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 657 if (IsConst1) 658 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 659 660 Value *Scalar = 661 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 662 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 663 664 Scalar->setName(I.getName() + ".scalar"); 665 666 // All IR flags are safe to back-propagate. There is no potential for extra 667 // poison to be created by the scalar instruction. 668 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 669 ScalarInst->copyIRFlags(&I); 670 671 // Fold the vector constants in the original vectors into a new base vector. 672 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 673 : ConstantExpr::get(Opcode, VecC0, VecC1); 674 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 675 replaceValue(I, *Insert); 676 return true; 677 } 678 679 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 680 /// a vector into vector operations followed by extract. Note: The SLP pass 681 /// may miss this pattern because of implementation problems. 682 bool VectorCombine::foldExtractedCmps(Instruction &I) { 683 // We are looking for a scalar binop of booleans. 684 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 685 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 686 return false; 687 688 // The compare predicates should match, and each compare should have a 689 // constant operand. 690 // TODO: Relax the one-use constraints. 691 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 692 Instruction *I0, *I1; 693 Constant *C0, *C1; 694 CmpInst::Predicate P0, P1; 695 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 696 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 697 P0 != P1) 698 return false; 699 700 // The compare operands must be extracts of the same vector with constant 701 // extract indexes. 702 // TODO: Relax the one-use constraints. 703 Value *X; 704 uint64_t Index0, Index1; 705 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 706 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 707 return false; 708 709 auto *Ext0 = cast<ExtractElementInst>(I0); 710 auto *Ext1 = cast<ExtractElementInst>(I1); 711 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 712 if (!ConvertToShuf) 713 return false; 714 715 // The original scalar pattern is: 716 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 717 CmpInst::Predicate Pred = P0; 718 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 719 : Instruction::ICmp; 720 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 721 if (!VecTy) 722 return false; 723 724 InstructionCost OldCost = 725 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 726 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 727 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 728 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 729 730 // The proposed vector pattern is: 731 // vcmp = cmp Pred X, VecC 732 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 733 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 734 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 735 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 736 InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 737 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 738 ShufMask[CheapIndex] = ExpensiveIndex; 739 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 740 ShufMask); 741 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 742 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 743 744 // Aggressively form vector ops if the cost is equal because the transform 745 // may enable further optimization. 746 // Codegen can reverse this transform (scalarize) if it was not profitable. 747 if (OldCost < NewCost || !NewCost.isValid()) 748 return false; 749 750 // Create a vector constant from the 2 scalar constants. 751 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 752 UndefValue::get(VecTy->getElementType())); 753 CmpC[Index0] = C0; 754 CmpC[Index1] = C1; 755 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 756 757 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 758 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 759 VCmp, Shuf); 760 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 761 replaceValue(I, *NewExt); 762 ++NumVecCmpBO; 763 return true; 764 } 765 766 // Check if memory loc modified between two instrs in the same BB 767 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 768 BasicBlock::iterator End, 769 const MemoryLocation &Loc, AAResults &AA) { 770 unsigned NumScanned = 0; 771 return std::any_of(Begin, End, [&](const Instruction &Instr) { 772 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 773 ++NumScanned > MaxInstrsToScan; 774 }); 775 } 776 777 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 778 /// Idx. \p Idx must access a valid vector element. 779 static bool canScalarizeAccess(FixedVectorType *VecTy, Value *Idx, 780 Instruction *CtxI, AssumptionCache &AC) { 781 if (auto *C = dyn_cast<ConstantInt>(Idx)) 782 return C->getValue().ult(VecTy->getNumElements()); 783 784 APInt Zero(Idx->getType()->getScalarSizeInBits(), 0); 785 APInt MaxElts(Idx->getType()->getScalarSizeInBits(), VecTy->getNumElements()); 786 ConstantRange ValidIndices(Zero, MaxElts); 787 ConstantRange IdxRange = computeConstantRange(Idx, true, &AC, CtxI, 0); 788 return ValidIndices.contains(IdxRange); 789 } 790 791 /// The memory operation on a vector of \p ScalarType had alignment of 792 /// \p VectorAlignment. Compute the maximal, but conservatively correct, 793 /// alignment that will be valid for the memory operation on a single scalar 794 /// element of the same type with index \p Idx. 795 static Align computeAlignmentAfterScalarization(Align VectorAlignment, 796 Type *ScalarType, Value *Idx, 797 const DataLayout &DL) { 798 if (auto *C = dyn_cast<ConstantInt>(Idx)) 799 return commonAlignment(VectorAlignment, 800 C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 801 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 802 } 803 804 // Combine patterns like: 805 // %0 = load <4 x i32>, <4 x i32>* %a 806 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 807 // store <4 x i32> %1, <4 x i32>* %a 808 // to: 809 // %0 = bitcast <4 x i32>* %a to i32* 810 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 811 // store i32 %b, i32* %1 812 bool VectorCombine::foldSingleElementStore(Instruction &I) { 813 StoreInst *SI = dyn_cast<StoreInst>(&I); 814 if (!SI || !SI->isSimple() || 815 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 816 return false; 817 818 // TODO: Combine more complicated patterns (multiple insert) by referencing 819 // TargetTransformInfo. 820 Instruction *Source; 821 Value *NewElement; 822 Value *Idx; 823 if (!match(SI->getValueOperand(), 824 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 825 m_Value(Idx)))) 826 return false; 827 828 if (auto *Load = dyn_cast<LoadInst>(Source)) { 829 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 830 const DataLayout &DL = I.getModule()->getDataLayout(); 831 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 832 // Don't optimize for atomic/volatile load or store. Ensure memory is not 833 // modified between, vector type matches store size, and index is inbounds. 834 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 835 !DL.typeSizeEqualsStoreSize(Load->getType()) || 836 !canScalarizeAccess(VecTy, Idx, Load, AC) || 837 SrcAddr != SI->getPointerOperand()->stripPointerCasts() || 838 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 839 MemoryLocation::get(SI), AA)) 840 return false; 841 842 Value *GEP = Builder.CreateInBoundsGEP( 843 SI->getValueOperand()->getType(), SI->getPointerOperand(), 844 {ConstantInt::get(Idx->getType(), 0), Idx}); 845 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 846 NSI->copyMetadata(*SI); 847 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 848 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 849 DL); 850 NSI->setAlignment(ScalarOpAlignment); 851 replaceValue(I, *NSI); 852 // Need erasing the store manually. 853 I.eraseFromParent(); 854 return true; 855 } 856 857 return false; 858 } 859 860 /// Try to scalarize vector loads feeding extractelement instructions. 861 bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 862 Value *Ptr; 863 Value *Idx; 864 if (!match(&I, m_ExtractElt(m_Load(m_Value(Ptr)), m_Value(Idx)))) 865 return false; 866 867 auto *LI = cast<LoadInst>(I.getOperand(0)); 868 const DataLayout &DL = I.getModule()->getDataLayout(); 869 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 870 return false; 871 872 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 873 if (!FixedVT) 874 return false; 875 876 InstructionCost OriginalCost = TTI.getMemoryOpCost( 877 Instruction::Load, LI->getType(), Align(LI->getAlignment()), 878 LI->getPointerAddressSpace()); 879 InstructionCost ScalarizedCost = 0; 880 881 Instruction *LastCheckedInst = LI; 882 unsigned NumInstChecked = 0; 883 // Check if all users of the load are extracts with no memory modifications 884 // between the load and the extract. Compute the cost of both the original 885 // code and the scalarized version. 886 for (User *U : LI->users()) { 887 auto *UI = dyn_cast<ExtractElementInst>(U); 888 if (!UI || UI->getParent() != LI->getParent()) 889 return false; 890 891 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 892 return false; 893 894 // Check if any instruction between the load and the extract may modify 895 // memory. 896 if (LastCheckedInst->comesBefore(UI)) { 897 for (Instruction &I : 898 make_range(std::next(LI->getIterator()), UI->getIterator())) { 899 // Bail out if we reached the check limit or the instruction may write 900 // to memory. 901 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 902 return false; 903 NumInstChecked++; 904 } 905 } 906 907 if (!LastCheckedInst) 908 LastCheckedInst = UI; 909 else if (LastCheckedInst->comesBefore(UI)) 910 LastCheckedInst = UI; 911 912 if (!canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC)) 913 return false; 914 915 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 916 OriginalCost += 917 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 918 Index ? Index->getZExtValue() : -1); 919 ScalarizedCost += 920 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 921 Align(1), LI->getPointerAddressSpace()); 922 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 923 } 924 925 if (ScalarizedCost >= OriginalCost) 926 return false; 927 928 // Replace extracts with narrow scalar loads. 929 for (User *U : LI->users()) { 930 auto *EI = cast<ExtractElementInst>(U); 931 Builder.SetInsertPoint(EI); 932 933 Value *Idx = EI->getOperand(1); 934 Value *GEP = 935 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 936 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 937 FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 938 939 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 940 LI->getAlign(), FixedVT->getElementType(), Idx, DL); 941 NewLoad->setAlignment(ScalarOpAlignment); 942 943 replaceValue(*EI, *NewLoad); 944 } 945 946 return true; 947 } 948 949 /// This is the entry point for all transforms. Pass manager differences are 950 /// handled in the callers of this function. 951 bool VectorCombine::run() { 952 if (DisableVectorCombine) 953 return false; 954 955 // Don't attempt vectorization if the target does not support vectors. 956 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 957 return false; 958 959 bool MadeChange = false; 960 for (BasicBlock &BB : F) { 961 // Ignore unreachable basic blocks. 962 if (!DT.isReachableFromEntry(&BB)) 963 continue; 964 // Use early increment range so that we can erase instructions in loop. 965 for (Instruction &I : make_early_inc_range(BB)) { 966 if (isa<DbgInfoIntrinsic>(I)) 967 continue; 968 Builder.SetInsertPoint(&I); 969 MadeChange |= vectorizeLoadInsert(I); 970 MadeChange |= foldExtractExtract(I); 971 MadeChange |= foldBitcastShuf(I); 972 MadeChange |= scalarizeBinopOrCmp(I); 973 MadeChange |= foldExtractedCmps(I); 974 MadeChange |= scalarizeLoadExtract(I); 975 MadeChange |= foldSingleElementStore(I); 976 } 977 } 978 979 // We're done with transforms, so remove dead instructions. 980 if (MadeChange) 981 for (BasicBlock &BB : F) 982 SimplifyInstructionsInBlock(&BB); 983 984 return MadeChange; 985 } 986 987 // Pass manager boilerplate below here. 988 989 namespace { 990 class VectorCombineLegacyPass : public FunctionPass { 991 public: 992 static char ID; 993 VectorCombineLegacyPass() : FunctionPass(ID) { 994 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 995 } 996 997 void getAnalysisUsage(AnalysisUsage &AU) const override { 998 AU.addRequired<AssumptionCacheTracker>(); 999 AU.addRequired<DominatorTreeWrapperPass>(); 1000 AU.addRequired<TargetTransformInfoWrapperPass>(); 1001 AU.addRequired<AAResultsWrapperPass>(); 1002 AU.setPreservesCFG(); 1003 AU.addPreserved<DominatorTreeWrapperPass>(); 1004 AU.addPreserved<GlobalsAAWrapperPass>(); 1005 AU.addPreserved<AAResultsWrapperPass>(); 1006 AU.addPreserved<BasicAAWrapperPass>(); 1007 FunctionPass::getAnalysisUsage(AU); 1008 } 1009 1010 bool runOnFunction(Function &F) override { 1011 if (skipFunction(F)) 1012 return false; 1013 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1014 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1015 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1016 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1017 VectorCombine Combiner(F, TTI, DT, AA, AC); 1018 return Combiner.run(); 1019 } 1020 }; 1021 } // namespace 1022 1023 char VectorCombineLegacyPass::ID = 0; 1024 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1025 "Optimize scalar/vector ops", false, 1026 false) 1027 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1028 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1029 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1030 "Optimize scalar/vector ops", false, false) 1031 Pass *llvm::createVectorCombinePass() { 1032 return new VectorCombineLegacyPass(); 1033 } 1034 1035 PreservedAnalyses VectorCombinePass::run(Function &F, 1036 FunctionAnalysisManager &FAM) { 1037 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1038 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1039 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1040 AAResults &AA = FAM.getResult<AAManager>(F); 1041 VectorCombine Combiner(F, TTI, DT, AA, AC); 1042 if (!Combiner.run()) 1043 return PreservedAnalyses::all(); 1044 PreservedAnalyses PA; 1045 PA.preserveSet<CFGAnalyses>(); 1046 return PA; 1047 } 1048