xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VectorCombine.cpp (revision c9ccf3a32da427475985b85d7df023ccfb138c27)
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Vectorize.h"
33 
34 #define DEBUG_TYPE "vector-combine"
35 #include "llvm/Transforms/Utils/InstructionWorklist.h"
36 
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 STATISTIC(NumVecLoad, "Number of vector loads formed");
41 STATISTIC(NumVecCmp, "Number of vector compares formed");
42 STATISTIC(NumVecBO, "Number of vector binops formed");
43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
45 STATISTIC(NumScalarBO, "Number of scalar binops formed");
46 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
47 
48 static cl::opt<bool> DisableVectorCombine(
49     "disable-vector-combine", cl::init(false), cl::Hidden,
50     cl::desc("Disable all vector combine transforms"));
51 
52 static cl::opt<bool> DisableBinopExtractShuffle(
53     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
54     cl::desc("Disable binop extract to shuffle transforms"));
55 
56 static cl::opt<unsigned> MaxInstrsToScan(
57     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
58     cl::desc("Max number of instructions to scan for vector combining."));
59 
60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
61 
62 namespace {
63 class VectorCombine {
64 public:
65   VectorCombine(Function &F, const TargetTransformInfo &TTI,
66                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
67                 bool ScalarizationOnly)
68       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
69         ScalarizationOnly(ScalarizationOnly) {}
70 
71   bool run();
72 
73 private:
74   Function &F;
75   IRBuilder<> Builder;
76   const TargetTransformInfo &TTI;
77   const DominatorTree &DT;
78   AAResults &AA;
79   AssumptionCache &AC;
80 
81   /// If true only perform scalarization combines and do not introduce new
82   /// vector operations.
83   bool ScalarizationOnly;
84 
85   InstructionWorklist Worklist;
86 
87   bool vectorizeLoadInsert(Instruction &I);
88   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
89                                         ExtractElementInst *Ext1,
90                                         unsigned PreferredExtractIndex) const;
91   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
92                              const Instruction &I,
93                              ExtractElementInst *&ConvertToShuffle,
94                              unsigned PreferredExtractIndex);
95   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
96                      Instruction &I);
97   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
98                        Instruction &I);
99   bool foldExtractExtract(Instruction &I);
100   bool foldBitcastShuf(Instruction &I);
101   bool scalarizeBinopOrCmp(Instruction &I);
102   bool foldExtractedCmps(Instruction &I);
103   bool foldSingleElementStore(Instruction &I);
104   bool scalarizeLoadExtract(Instruction &I);
105   bool foldShuffleOfBinops(Instruction &I);
106 
107   void replaceValue(Value &Old, Value &New) {
108     Old.replaceAllUsesWith(&New);
109     New.takeName(&Old);
110     if (auto *NewI = dyn_cast<Instruction>(&New)) {
111       Worklist.pushUsersToWorkList(*NewI);
112       Worklist.pushValue(NewI);
113     }
114     Worklist.pushValue(&Old);
115   }
116 
117   void eraseInstruction(Instruction &I) {
118     for (Value *Op : I.operands())
119       Worklist.pushValue(Op);
120     Worklist.remove(&I);
121     I.eraseFromParent();
122   }
123 };
124 } // namespace
125 
126 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
127   // Match insert into fixed vector of scalar value.
128   // TODO: Handle non-zero insert index.
129   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
130   Value *Scalar;
131   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
132       !Scalar->hasOneUse())
133     return false;
134 
135   // Optionally match an extract from another vector.
136   Value *X;
137   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
138   if (!HasExtract)
139     X = Scalar;
140 
141   // Match source value as load of scalar or vector.
142   // Do not vectorize scalar load (widening) if atomic/volatile or under
143   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
144   // or create data races non-existent in the source.
145   auto *Load = dyn_cast<LoadInst>(X);
146   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
147       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
148       mustSuppressSpeculation(*Load))
149     return false;
150 
151   const DataLayout &DL = I.getModule()->getDataLayout();
152   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
153   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
154 
155   unsigned AS = Load->getPointerAddressSpace();
156 
157   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
158   // sure we have all of our type-based constraints in place for this target.
159   Type *ScalarTy = Scalar->getType();
160   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
161   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
162   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
163       ScalarSize % 8 != 0)
164     return false;
165 
166   // Check safety of replacing the scalar load with a larger vector load.
167   // We use minimal alignment (maximum flexibility) because we only care about
168   // the dereferenceable region. When calculating cost and creating a new op,
169   // we may use a larger value based on alignment attributes.
170   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
171   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
172   unsigned OffsetEltIndex = 0;
173   Align Alignment = Load->getAlign();
174   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
175     // It is not safe to load directly from the pointer, but we can still peek
176     // through gep offsets and check if it safe to load from a base address with
177     // updated alignment. If it is, we can shuffle the element(s) into place
178     // after loading.
179     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
180     APInt Offset(OffsetBitWidth, 0);
181     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
182 
183     // We want to shuffle the result down from a high element of a vector, so
184     // the offset must be positive.
185     if (Offset.isNegative())
186       return false;
187 
188     // The offset must be a multiple of the scalar element to shuffle cleanly
189     // in the element's size.
190     uint64_t ScalarSizeInBytes = ScalarSize / 8;
191     if (Offset.urem(ScalarSizeInBytes) != 0)
192       return false;
193 
194     // If we load MinVecNumElts, will our target element still be loaded?
195     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
196     if (OffsetEltIndex >= MinVecNumElts)
197       return false;
198 
199     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
200       return false;
201 
202     // Update alignment with offset value. Note that the offset could be negated
203     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
204     // negation does not change the result of the alignment calculation.
205     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
206   }
207 
208   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
209   // Use the greater of the alignment on the load or its source pointer.
210   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
211   Type *LoadTy = Load->getType();
212   InstructionCost OldCost =
213       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
214   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
215   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
216                                           /* Insert */ true, HasExtract);
217 
218   // New pattern: load VecPtr
219   InstructionCost NewCost =
220       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
221   // Optionally, we are shuffling the loaded vector element(s) into place.
222   // For the mask set everything but element 0 to undef to prevent poison from
223   // propagating from the extra loaded memory. This will also optionally
224   // shrink/grow the vector from the loaded size to the output size.
225   // We assume this operation has no cost in codegen if there was no offset.
226   // Note that we could use freeze to avoid poison problems, but then we might
227   // still need a shuffle to change the vector size.
228   unsigned OutputNumElts = Ty->getNumElements();
229   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
230   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
231   Mask[0] = OffsetEltIndex;
232   if (OffsetEltIndex)
233     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
234 
235   // We can aggressively convert to the vector form because the backend can
236   // invert this transform if it does not result in a performance win.
237   if (OldCost < NewCost || !NewCost.isValid())
238     return false;
239 
240   // It is safe and potentially profitable to load a vector directly:
241   // inselt undef, load Scalar, 0 --> load VecPtr
242   IRBuilder<> Builder(Load);
243   Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
244       SrcPtr, MinVecTy->getPointerTo(AS));
245   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
246   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
247 
248   replaceValue(I, *VecLd);
249   ++NumVecLoad;
250   return true;
251 }
252 
253 /// Determine which, if any, of the inputs should be replaced by a shuffle
254 /// followed by extract from a different index.
255 ExtractElementInst *VectorCombine::getShuffleExtract(
256     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
257     unsigned PreferredExtractIndex = InvalidIndex) const {
258   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
259          isa<ConstantInt>(Ext1->getIndexOperand()) &&
260          "Expected constant extract indexes");
261 
262   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
263   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
264 
265   // If the extract indexes are identical, no shuffle is needed.
266   if (Index0 == Index1)
267     return nullptr;
268 
269   Type *VecTy = Ext0->getVectorOperand()->getType();
270   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
271   InstructionCost Cost0 =
272       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
273   InstructionCost Cost1 =
274       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
275 
276   // If both costs are invalid no shuffle is needed
277   if (!Cost0.isValid() && !Cost1.isValid())
278     return nullptr;
279 
280   // We are extracting from 2 different indexes, so one operand must be shuffled
281   // before performing a vector operation and/or extract. The more expensive
282   // extract will be replaced by a shuffle.
283   if (Cost0 > Cost1)
284     return Ext0;
285   if (Cost1 > Cost0)
286     return Ext1;
287 
288   // If the costs are equal and there is a preferred extract index, shuffle the
289   // opposite operand.
290   if (PreferredExtractIndex == Index0)
291     return Ext1;
292   if (PreferredExtractIndex == Index1)
293     return Ext0;
294 
295   // Otherwise, replace the extract with the higher index.
296   return Index0 > Index1 ? Ext0 : Ext1;
297 }
298 
299 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
300 /// vector operation(s) followed by extract. Return true if the existing
301 /// instructions are cheaper than a vector alternative. Otherwise, return false
302 /// and if one of the extracts should be transformed to a shufflevector, set
303 /// \p ConvertToShuffle to that extract instruction.
304 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
305                                           ExtractElementInst *Ext1,
306                                           const Instruction &I,
307                                           ExtractElementInst *&ConvertToShuffle,
308                                           unsigned PreferredExtractIndex) {
309   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
310          isa<ConstantInt>(Ext1->getOperand(1)) &&
311          "Expected constant extract indexes");
312   unsigned Opcode = I.getOpcode();
313   Type *ScalarTy = Ext0->getType();
314   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
315   InstructionCost ScalarOpCost, VectorOpCost;
316 
317   // Get cost estimates for scalar and vector versions of the operation.
318   bool IsBinOp = Instruction::isBinaryOp(Opcode);
319   if (IsBinOp) {
320     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
321     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
322   } else {
323     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
324            "Expected a compare");
325     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
326     ScalarOpCost = TTI.getCmpSelInstrCost(
327         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
328     VectorOpCost = TTI.getCmpSelInstrCost(
329         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
330   }
331 
332   // Get cost estimates for the extract elements. These costs will factor into
333   // both sequences.
334   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
335   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
336 
337   InstructionCost Extract0Cost =
338       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
339   InstructionCost Extract1Cost =
340       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
341 
342   // A more expensive extract will always be replaced by a splat shuffle.
343   // For example, if Ext0 is more expensive:
344   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
345   // extelt (opcode (splat V0, Ext0), V1), Ext1
346   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
347   //       check the cost of creating a broadcast shuffle and shuffling both
348   //       operands to element 0.
349   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
350 
351   // Extra uses of the extracts mean that we include those costs in the
352   // vector total because those instructions will not be eliminated.
353   InstructionCost OldCost, NewCost;
354   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
355     // Handle a special case. If the 2 extracts are identical, adjust the
356     // formulas to account for that. The extra use charge allows for either the
357     // CSE'd pattern or an unoptimized form with identical values:
358     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
359     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
360                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
361     OldCost = CheapExtractCost + ScalarOpCost;
362     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
363   } else {
364     // Handle the general case. Each extract is actually a different value:
365     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
366     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
367     NewCost = VectorOpCost + CheapExtractCost +
368               !Ext0->hasOneUse() * Extract0Cost +
369               !Ext1->hasOneUse() * Extract1Cost;
370   }
371 
372   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
373   if (ConvertToShuffle) {
374     if (IsBinOp && DisableBinopExtractShuffle)
375       return true;
376 
377     // If we are extracting from 2 different indexes, then one operand must be
378     // shuffled before performing the vector operation. The shuffle mask is
379     // undefined except for 1 lane that is being translated to the remaining
380     // extraction lane. Therefore, it is a splat shuffle. Ex:
381     // ShufMask = { undef, undef, 0, undef }
382     // TODO: The cost model has an option for a "broadcast" shuffle
383     //       (splat-from-element-0), but no option for a more general splat.
384     NewCost +=
385         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
386   }
387 
388   // Aggressively form a vector op if the cost is equal because the transform
389   // may enable further optimization.
390   // Codegen can reverse this transform (scalarize) if it was not profitable.
391   return OldCost < NewCost;
392 }
393 
394 /// Create a shuffle that translates (shifts) 1 element from the input vector
395 /// to a new element location.
396 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
397                                  unsigned NewIndex, IRBuilder<> &Builder) {
398   // The shuffle mask is undefined except for 1 lane that is being translated
399   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
400   // ShufMask = { 2, undef, undef, undef }
401   auto *VecTy = cast<FixedVectorType>(Vec->getType());
402   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
403   ShufMask[NewIndex] = OldIndex;
404   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
405 }
406 
407 /// Given an extract element instruction with constant index operand, shuffle
408 /// the source vector (shift the scalar element) to a NewIndex for extraction.
409 /// Return null if the input can be constant folded, so that we are not creating
410 /// unnecessary instructions.
411 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
412                                             unsigned NewIndex,
413                                             IRBuilder<> &Builder) {
414   // If the extract can be constant-folded, this code is unsimplified. Defer
415   // to other passes to handle that.
416   Value *X = ExtElt->getVectorOperand();
417   Value *C = ExtElt->getIndexOperand();
418   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
419   if (isa<Constant>(X))
420     return nullptr;
421 
422   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
423                                    NewIndex, Builder);
424   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
425 }
426 
427 /// Try to reduce extract element costs by converting scalar compares to vector
428 /// compares followed by extract.
429 /// cmp (ext0 V0, C), (ext1 V1, C)
430 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
431                                   ExtractElementInst *Ext1, Instruction &I) {
432   assert(isa<CmpInst>(&I) && "Expected a compare");
433   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
434              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
435          "Expected matching constant extract indexes");
436 
437   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
438   ++NumVecCmp;
439   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
440   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
441   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
442   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
443   replaceValue(I, *NewExt);
444 }
445 
446 /// Try to reduce extract element costs by converting scalar binops to vector
447 /// binops followed by extract.
448 /// bo (ext0 V0, C), (ext1 V1, C)
449 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
450                                     ExtractElementInst *Ext1, Instruction &I) {
451   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
452   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
453              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
454          "Expected matching constant extract indexes");
455 
456   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
457   ++NumVecBO;
458   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
459   Value *VecBO =
460       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
461 
462   // All IR flags are safe to back-propagate because any potential poison
463   // created in unused vector elements is discarded by the extract.
464   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
465     VecBOInst->copyIRFlags(&I);
466 
467   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
468   replaceValue(I, *NewExt);
469 }
470 
471 /// Match an instruction with extracted vector operands.
472 bool VectorCombine::foldExtractExtract(Instruction &I) {
473   // It is not safe to transform things like div, urem, etc. because we may
474   // create undefined behavior when executing those on unknown vector elements.
475   if (!isSafeToSpeculativelyExecute(&I))
476     return false;
477 
478   Instruction *I0, *I1;
479   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
480   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
481       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
482     return false;
483 
484   Value *V0, *V1;
485   uint64_t C0, C1;
486   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
487       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
488       V0->getType() != V1->getType())
489     return false;
490 
491   // If the scalar value 'I' is going to be re-inserted into a vector, then try
492   // to create an extract to that same element. The extract/insert can be
493   // reduced to a "select shuffle".
494   // TODO: If we add a larger pattern match that starts from an insert, this
495   //       probably becomes unnecessary.
496   auto *Ext0 = cast<ExtractElementInst>(I0);
497   auto *Ext1 = cast<ExtractElementInst>(I1);
498   uint64_t InsertIndex = InvalidIndex;
499   if (I.hasOneUse())
500     match(I.user_back(),
501           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
502 
503   ExtractElementInst *ExtractToChange;
504   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
505     return false;
506 
507   if (ExtractToChange) {
508     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
509     ExtractElementInst *NewExtract =
510         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
511     if (!NewExtract)
512       return false;
513     if (ExtractToChange == Ext0)
514       Ext0 = NewExtract;
515     else
516       Ext1 = NewExtract;
517   }
518 
519   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
520     foldExtExtCmp(Ext0, Ext1, I);
521   else
522     foldExtExtBinop(Ext0, Ext1, I);
523 
524   Worklist.push(Ext0);
525   Worklist.push(Ext1);
526   return true;
527 }
528 
529 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
530 /// destination type followed by shuffle. This can enable further transforms by
531 /// moving bitcasts or shuffles together.
532 bool VectorCombine::foldBitcastShuf(Instruction &I) {
533   Value *V;
534   ArrayRef<int> Mask;
535   if (!match(&I, m_BitCast(
536                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
537     return false;
538 
539   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
540   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
541   // mask for scalable type is a splat or not.
542   // 2) Disallow non-vector casts and length-changing shuffles.
543   // TODO: We could allow any shuffle.
544   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
545   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
546   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
547     return false;
548 
549   unsigned DestNumElts = DestTy->getNumElements();
550   unsigned SrcNumElts = SrcTy->getNumElements();
551   SmallVector<int, 16> NewMask;
552   if (SrcNumElts <= DestNumElts) {
553     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
554     // always be expanded to the equivalent form choosing narrower elements.
555     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
556     unsigned ScaleFactor = DestNumElts / SrcNumElts;
557     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
558   } else {
559     // The bitcast is from narrow elements to wide elements. The shuffle mask
560     // must choose consecutive elements to allow casting first.
561     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
562     unsigned ScaleFactor = SrcNumElts / DestNumElts;
563     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
564       return false;
565   }
566 
567   // The new shuffle must not cost more than the old shuffle. The bitcast is
568   // moved ahead of the shuffle, so assume that it has the same cost as before.
569   InstructionCost DestCost = TTI.getShuffleCost(
570       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
571   InstructionCost SrcCost =
572       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
573   if (DestCost > SrcCost || !DestCost.isValid())
574     return false;
575 
576   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
577   ++NumShufOfBitcast;
578   Value *CastV = Builder.CreateBitCast(V, DestTy);
579   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
580   replaceValue(I, *Shuf);
581   return true;
582 }
583 
584 /// Match a vector binop or compare instruction with at least one inserted
585 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
586 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
587   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
588   Value *Ins0, *Ins1;
589   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
590       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
591     return false;
592 
593   // Do not convert the vector condition of a vector select into a scalar
594   // condition. That may cause problems for codegen because of differences in
595   // boolean formats and register-file transfers.
596   // TODO: Can we account for that in the cost model?
597   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
598   if (IsCmp)
599     for (User *U : I.users())
600       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
601         return false;
602 
603   // Match against one or both scalar values being inserted into constant
604   // vectors:
605   // vec_op VecC0, (inselt VecC1, V1, Index)
606   // vec_op (inselt VecC0, V0, Index), VecC1
607   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
608   // TODO: Deal with mismatched index constants and variable indexes?
609   Constant *VecC0 = nullptr, *VecC1 = nullptr;
610   Value *V0 = nullptr, *V1 = nullptr;
611   uint64_t Index0 = 0, Index1 = 0;
612   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
613                                m_ConstantInt(Index0))) &&
614       !match(Ins0, m_Constant(VecC0)))
615     return false;
616   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
617                                m_ConstantInt(Index1))) &&
618       !match(Ins1, m_Constant(VecC1)))
619     return false;
620 
621   bool IsConst0 = !V0;
622   bool IsConst1 = !V1;
623   if (IsConst0 && IsConst1)
624     return false;
625   if (!IsConst0 && !IsConst1 && Index0 != Index1)
626     return false;
627 
628   // Bail for single insertion if it is a load.
629   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
630   auto *I0 = dyn_cast_or_null<Instruction>(V0);
631   auto *I1 = dyn_cast_or_null<Instruction>(V1);
632   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
633       (IsConst1 && I0 && I0->mayReadFromMemory()))
634     return false;
635 
636   uint64_t Index = IsConst0 ? Index1 : Index0;
637   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
638   Type *VecTy = I.getType();
639   assert(VecTy->isVectorTy() &&
640          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
641          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
642           ScalarTy->isPointerTy()) &&
643          "Unexpected types for insert element into binop or cmp");
644 
645   unsigned Opcode = I.getOpcode();
646   InstructionCost ScalarOpCost, VectorOpCost;
647   if (IsCmp) {
648     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
649     ScalarOpCost = TTI.getCmpSelInstrCost(
650         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
651     VectorOpCost = TTI.getCmpSelInstrCost(
652         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
653   } else {
654     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
655     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
656   }
657 
658   // Get cost estimate for the insert element. This cost will factor into
659   // both sequences.
660   InstructionCost InsertCost =
661       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
662   InstructionCost OldCost =
663       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
664   InstructionCost NewCost = ScalarOpCost + InsertCost +
665                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
666                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
667 
668   // We want to scalarize unless the vector variant actually has lower cost.
669   if (OldCost < NewCost || !NewCost.isValid())
670     return false;
671 
672   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
673   // inselt NewVecC, (scalar_op V0, V1), Index
674   if (IsCmp)
675     ++NumScalarCmp;
676   else
677     ++NumScalarBO;
678 
679   // For constant cases, extract the scalar element, this should constant fold.
680   if (IsConst0)
681     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
682   if (IsConst1)
683     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
684 
685   Value *Scalar =
686       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
687             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
688 
689   Scalar->setName(I.getName() + ".scalar");
690 
691   // All IR flags are safe to back-propagate. There is no potential for extra
692   // poison to be created by the scalar instruction.
693   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
694     ScalarInst->copyIRFlags(&I);
695 
696   // Fold the vector constants in the original vectors into a new base vector.
697   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
698                             : ConstantExpr::get(Opcode, VecC0, VecC1);
699   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
700   replaceValue(I, *Insert);
701   return true;
702 }
703 
704 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
705 /// a vector into vector operations followed by extract. Note: The SLP pass
706 /// may miss this pattern because of implementation problems.
707 bool VectorCombine::foldExtractedCmps(Instruction &I) {
708   // We are looking for a scalar binop of booleans.
709   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
710   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
711     return false;
712 
713   // The compare predicates should match, and each compare should have a
714   // constant operand.
715   // TODO: Relax the one-use constraints.
716   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
717   Instruction *I0, *I1;
718   Constant *C0, *C1;
719   CmpInst::Predicate P0, P1;
720   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
721       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
722       P0 != P1)
723     return false;
724 
725   // The compare operands must be extracts of the same vector with constant
726   // extract indexes.
727   // TODO: Relax the one-use constraints.
728   Value *X;
729   uint64_t Index0, Index1;
730   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
731       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
732     return false;
733 
734   auto *Ext0 = cast<ExtractElementInst>(I0);
735   auto *Ext1 = cast<ExtractElementInst>(I1);
736   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
737   if (!ConvertToShuf)
738     return false;
739 
740   // The original scalar pattern is:
741   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
742   CmpInst::Predicate Pred = P0;
743   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
744                                                     : Instruction::ICmp;
745   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
746   if (!VecTy)
747     return false;
748 
749   InstructionCost OldCost =
750       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
751   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
752   OldCost +=
753       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
754                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
755       2;
756   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
757 
758   // The proposed vector pattern is:
759   // vcmp = cmp Pred X, VecC
760   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
761   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
762   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
763   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
764   InstructionCost NewCost = TTI.getCmpSelInstrCost(
765       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
766   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
767   ShufMask[CheapIndex] = ExpensiveIndex;
768   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
769                                 ShufMask);
770   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
771   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
772 
773   // Aggressively form vector ops if the cost is equal because the transform
774   // may enable further optimization.
775   // Codegen can reverse this transform (scalarize) if it was not profitable.
776   if (OldCost < NewCost || !NewCost.isValid())
777     return false;
778 
779   // Create a vector constant from the 2 scalar constants.
780   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
781                                    UndefValue::get(VecTy->getElementType()));
782   CmpC[Index0] = C0;
783   CmpC[Index1] = C1;
784   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
785 
786   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
787   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
788                                         VCmp, Shuf);
789   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
790   replaceValue(I, *NewExt);
791   ++NumVecCmpBO;
792   return true;
793 }
794 
795 // Check if memory loc modified between two instrs in the same BB
796 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
797                                  BasicBlock::iterator End,
798                                  const MemoryLocation &Loc, AAResults &AA) {
799   unsigned NumScanned = 0;
800   return std::any_of(Begin, End, [&](const Instruction &Instr) {
801     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
802            ++NumScanned > MaxInstrsToScan;
803   });
804 }
805 
806 /// Helper class to indicate whether a vector index can be safely scalarized and
807 /// if a freeze needs to be inserted.
808 class ScalarizationResult {
809   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
810 
811   StatusTy Status;
812   Value *ToFreeze;
813 
814   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
815       : Status(Status), ToFreeze(ToFreeze) {}
816 
817 public:
818   ScalarizationResult(const ScalarizationResult &Other) = default;
819   ~ScalarizationResult() {
820     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
821   }
822 
823   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
824   static ScalarizationResult safe() { return {StatusTy::Safe}; }
825   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
826     return {StatusTy::SafeWithFreeze, ToFreeze};
827   }
828 
829   /// Returns true if the index can be scalarize without requiring a freeze.
830   bool isSafe() const { return Status == StatusTy::Safe; }
831   /// Returns true if the index cannot be scalarized.
832   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
833   /// Returns true if the index can be scalarize, but requires inserting a
834   /// freeze.
835   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
836 
837   /// Reset the state of Unsafe and clear ToFreze if set.
838   void discard() {
839     ToFreeze = nullptr;
840     Status = StatusTy::Unsafe;
841   }
842 
843   /// Freeze the ToFreeze and update the use in \p User to use it.
844   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
845     assert(isSafeWithFreeze() &&
846            "should only be used when freezing is required");
847     assert(is_contained(ToFreeze->users(), &UserI) &&
848            "UserI must be a user of ToFreeze");
849     IRBuilder<>::InsertPointGuard Guard(Builder);
850     Builder.SetInsertPoint(cast<Instruction>(&UserI));
851     Value *Frozen =
852         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
853     for (Use &U : make_early_inc_range((UserI.operands())))
854       if (U.get() == ToFreeze)
855         U.set(Frozen);
856 
857     ToFreeze = nullptr;
858   }
859 };
860 
861 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
862 /// Idx. \p Idx must access a valid vector element.
863 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
864                                               Value *Idx, Instruction *CtxI,
865                                               AssumptionCache &AC,
866                                               const DominatorTree &DT) {
867   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
868     if (C->getValue().ult(VecTy->getNumElements()))
869       return ScalarizationResult::safe();
870     return ScalarizationResult::unsafe();
871   }
872 
873   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
874   APInt Zero(IntWidth, 0);
875   APInt MaxElts(IntWidth, VecTy->getNumElements());
876   ConstantRange ValidIndices(Zero, MaxElts);
877   ConstantRange IdxRange(IntWidth, true);
878 
879   if (isGuaranteedNotToBePoison(Idx, &AC)) {
880     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
881                                                    true, &AC, CtxI, &DT)))
882       return ScalarizationResult::safe();
883     return ScalarizationResult::unsafe();
884   }
885 
886   // If the index may be poison, check if we can insert a freeze before the
887   // range of the index is restricted.
888   Value *IdxBase;
889   ConstantInt *CI;
890   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
891     IdxRange = IdxRange.binaryAnd(CI->getValue());
892   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
893     IdxRange = IdxRange.urem(CI->getValue());
894   }
895 
896   if (ValidIndices.contains(IdxRange))
897     return ScalarizationResult::safeWithFreeze(IdxBase);
898   return ScalarizationResult::unsafe();
899 }
900 
901 /// The memory operation on a vector of \p ScalarType had alignment of
902 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
903 /// alignment that will be valid for the memory operation on a single scalar
904 /// element of the same type with index \p Idx.
905 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
906                                                 Type *ScalarType, Value *Idx,
907                                                 const DataLayout &DL) {
908   if (auto *C = dyn_cast<ConstantInt>(Idx))
909     return commonAlignment(VectorAlignment,
910                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
911   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
912 }
913 
914 // Combine patterns like:
915 //   %0 = load <4 x i32>, <4 x i32>* %a
916 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
917 //   store <4 x i32> %1, <4 x i32>* %a
918 // to:
919 //   %0 = bitcast <4 x i32>* %a to i32*
920 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
921 //   store i32 %b, i32* %1
922 bool VectorCombine::foldSingleElementStore(Instruction &I) {
923   StoreInst *SI = dyn_cast<StoreInst>(&I);
924   if (!SI || !SI->isSimple() ||
925       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
926     return false;
927 
928   // TODO: Combine more complicated patterns (multiple insert) by referencing
929   // TargetTransformInfo.
930   Instruction *Source;
931   Value *NewElement;
932   Value *Idx;
933   if (!match(SI->getValueOperand(),
934              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
935                          m_Value(Idx))))
936     return false;
937 
938   if (auto *Load = dyn_cast<LoadInst>(Source)) {
939     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
940     const DataLayout &DL = I.getModule()->getDataLayout();
941     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
942     // Don't optimize for atomic/volatile load or store. Ensure memory is not
943     // modified between, vector type matches store size, and index is inbounds.
944     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
945         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
946         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
947       return false;
948 
949     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
950     if (ScalarizableIdx.isUnsafe() ||
951         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
952                              MemoryLocation::get(SI), AA))
953       return false;
954 
955     if (ScalarizableIdx.isSafeWithFreeze())
956       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
957     Value *GEP = Builder.CreateInBoundsGEP(
958         SI->getValueOperand()->getType(), SI->getPointerOperand(),
959         {ConstantInt::get(Idx->getType(), 0), Idx});
960     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
961     NSI->copyMetadata(*SI);
962     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
963         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
964         DL);
965     NSI->setAlignment(ScalarOpAlignment);
966     replaceValue(I, *NSI);
967     eraseInstruction(I);
968     return true;
969   }
970 
971   return false;
972 }
973 
974 /// Try to scalarize vector loads feeding extractelement instructions.
975 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
976   Value *Ptr;
977   if (!match(&I, m_Load(m_Value(Ptr))))
978     return false;
979 
980   auto *LI = cast<LoadInst>(&I);
981   const DataLayout &DL = I.getModule()->getDataLayout();
982   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
983     return false;
984 
985   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
986   if (!FixedVT)
987     return false;
988 
989   InstructionCost OriginalCost =
990       TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
991                           LI->getPointerAddressSpace());
992   InstructionCost ScalarizedCost = 0;
993 
994   Instruction *LastCheckedInst = LI;
995   unsigned NumInstChecked = 0;
996   // Check if all users of the load are extracts with no memory modifications
997   // between the load and the extract. Compute the cost of both the original
998   // code and the scalarized version.
999   for (User *U : LI->users()) {
1000     auto *UI = dyn_cast<ExtractElementInst>(U);
1001     if (!UI || UI->getParent() != LI->getParent())
1002       return false;
1003 
1004     if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
1005       return false;
1006 
1007     // Check if any instruction between the load and the extract may modify
1008     // memory.
1009     if (LastCheckedInst->comesBefore(UI)) {
1010       for (Instruction &I :
1011            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1012         // Bail out if we reached the check limit or the instruction may write
1013         // to memory.
1014         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1015           return false;
1016         NumInstChecked++;
1017       }
1018     }
1019 
1020     if (!LastCheckedInst)
1021       LastCheckedInst = UI;
1022     else if (LastCheckedInst->comesBefore(UI))
1023       LastCheckedInst = UI;
1024 
1025     auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
1026     if (!ScalarIdx.isSafe()) {
1027       // TODO: Freeze index if it is safe to do so.
1028       ScalarIdx.discard();
1029       return false;
1030     }
1031 
1032     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1033     OriginalCost +=
1034         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
1035                                Index ? Index->getZExtValue() : -1);
1036     ScalarizedCost +=
1037         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
1038                             Align(1), LI->getPointerAddressSpace());
1039     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
1040   }
1041 
1042   if (ScalarizedCost >= OriginalCost)
1043     return false;
1044 
1045   // Replace extracts with narrow scalar loads.
1046   for (User *U : LI->users()) {
1047     auto *EI = cast<ExtractElementInst>(U);
1048     Builder.SetInsertPoint(EI);
1049 
1050     Value *Idx = EI->getOperand(1);
1051     Value *GEP =
1052         Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
1053     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1054         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
1055 
1056     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1057         LI->getAlign(), FixedVT->getElementType(), Idx, DL);
1058     NewLoad->setAlignment(ScalarOpAlignment);
1059 
1060     replaceValue(*EI, *NewLoad);
1061   }
1062 
1063   return true;
1064 }
1065 
1066 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
1067 /// "binop (shuffle), (shuffle)".
1068 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1069   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
1070   if (!VecTy)
1071     return false;
1072 
1073   BinaryOperator *B0, *B1;
1074   ArrayRef<int> Mask;
1075   if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
1076                            m_Mask(Mask))) ||
1077       B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
1078     return false;
1079 
1080   // Try to replace a binop with a shuffle if the shuffle is not costly.
1081   // The new shuffle will choose from a single, common operand, so it may be
1082   // cheaper than the existing two-operand shuffle.
1083   SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
1084   Instruction::BinaryOps Opcode = B0->getOpcode();
1085   InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
1086   InstructionCost ShufCost = TTI.getShuffleCost(
1087       TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
1088   if (ShufCost > BinopCost)
1089     return false;
1090 
1091   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1092   Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
1093   Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
1094   if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
1095     std::swap(X, Y);
1096 
1097   Value *Shuf0, *Shuf1;
1098   if (X == Z) {
1099     // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
1100     Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
1101     Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
1102   } else if (Y == W) {
1103     // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
1104     Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
1105     Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
1106   } else {
1107     return false;
1108   }
1109 
1110   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1111   // Intersect flags from the old binops.
1112   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1113     NewInst->copyIRFlags(B0);
1114     NewInst->andIRFlags(B1);
1115   }
1116   replaceValue(I, *NewBO);
1117   return true;
1118 }
1119 
1120 /// This is the entry point for all transforms. Pass manager differences are
1121 /// handled in the callers of this function.
1122 bool VectorCombine::run() {
1123   if (DisableVectorCombine)
1124     return false;
1125 
1126   // Don't attempt vectorization if the target does not support vectors.
1127   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1128     return false;
1129 
1130   bool MadeChange = false;
1131   auto FoldInst = [this, &MadeChange](Instruction &I) {
1132     Builder.SetInsertPoint(&I);
1133     if (!ScalarizationOnly) {
1134       MadeChange |= vectorizeLoadInsert(I);
1135       MadeChange |= foldExtractExtract(I);
1136       MadeChange |= foldBitcastShuf(I);
1137       MadeChange |= foldExtractedCmps(I);
1138       MadeChange |= foldShuffleOfBinops(I);
1139     }
1140     MadeChange |= scalarizeBinopOrCmp(I);
1141     MadeChange |= scalarizeLoadExtract(I);
1142     MadeChange |= foldSingleElementStore(I);
1143   };
1144   for (BasicBlock &BB : F) {
1145     // Ignore unreachable basic blocks.
1146     if (!DT.isReachableFromEntry(&BB))
1147       continue;
1148     // Use early increment range so that we can erase instructions in loop.
1149     for (Instruction &I : make_early_inc_range(BB)) {
1150       if (I.isDebugOrPseudoInst())
1151         continue;
1152       FoldInst(I);
1153     }
1154   }
1155 
1156   while (!Worklist.isEmpty()) {
1157     Instruction *I = Worklist.removeOne();
1158     if (!I)
1159       continue;
1160 
1161     if (isInstructionTriviallyDead(I)) {
1162       eraseInstruction(*I);
1163       continue;
1164     }
1165 
1166     FoldInst(*I);
1167   }
1168 
1169   return MadeChange;
1170 }
1171 
1172 // Pass manager boilerplate below here.
1173 
1174 namespace {
1175 class VectorCombineLegacyPass : public FunctionPass {
1176 public:
1177   static char ID;
1178   VectorCombineLegacyPass() : FunctionPass(ID) {
1179     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
1180   }
1181 
1182   void getAnalysisUsage(AnalysisUsage &AU) const override {
1183     AU.addRequired<AssumptionCacheTracker>();
1184     AU.addRequired<DominatorTreeWrapperPass>();
1185     AU.addRequired<TargetTransformInfoWrapperPass>();
1186     AU.addRequired<AAResultsWrapperPass>();
1187     AU.setPreservesCFG();
1188     AU.addPreserved<DominatorTreeWrapperPass>();
1189     AU.addPreserved<GlobalsAAWrapperPass>();
1190     AU.addPreserved<AAResultsWrapperPass>();
1191     AU.addPreserved<BasicAAWrapperPass>();
1192     FunctionPass::getAnalysisUsage(AU);
1193   }
1194 
1195   bool runOnFunction(Function &F) override {
1196     if (skipFunction(F))
1197       return false;
1198     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1199     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1200     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1201     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1202     VectorCombine Combiner(F, TTI, DT, AA, AC, false);
1203     return Combiner.run();
1204   }
1205 };
1206 } // namespace
1207 
1208 char VectorCombineLegacyPass::ID = 0;
1209 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1210                       "Optimize scalar/vector ops", false,
1211                       false)
1212 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1213 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1214 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1215                     "Optimize scalar/vector ops", false, false)
1216 Pass *llvm::createVectorCombinePass() {
1217   return new VectorCombineLegacyPass();
1218 }
1219 
1220 PreservedAnalyses VectorCombinePass::run(Function &F,
1221                                          FunctionAnalysisManager &FAM) {
1222   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1223   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1224   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1225   AAResults &AA = FAM.getResult<AAManager>(F);
1226   VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
1227   if (!Combiner.run())
1228     return PreservedAnalyses::all();
1229   PreservedAnalyses PA;
1230   PA.preserveSet<CFGAnalyses>();
1231   return PA;
1232 }
1233