1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained 14 /// within VPBasicBlocks; 15 /// 3. VPInstruction, a concrete Recipe and VPUser modeling a single planned 16 /// instruction; 17 /// 4. The VPlan class holding a candidate for vectorization; 18 /// 5. The VPlanPrinter class providing a way to print a plan in dot format; 19 /// These are documented in docs/VectorizationPlan.rst. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 24 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 25 26 #include "VPlanAnalysis.h" 27 #include "VPlanValue.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallBitVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/ADT/ilist.h" 35 #include "llvm/ADT/ilist_node.h" 36 #include "llvm/Analysis/IVDescriptors.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/FMF.h" 41 #include "llvm/IR/Operator.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <string> 46 47 namespace llvm { 48 49 class BasicBlock; 50 class DominatorTree; 51 class InnerLoopVectorizer; 52 class IRBuilderBase; 53 class LoopInfo; 54 class raw_ostream; 55 class RecurrenceDescriptor; 56 class SCEV; 57 class Type; 58 class VPBasicBlock; 59 class VPRegionBlock; 60 class VPlan; 61 class VPReplicateRecipe; 62 class VPlanSlp; 63 class Value; 64 class LoopVersioning; 65 66 namespace Intrinsic { 67 typedef unsigned ID; 68 } 69 70 /// Returns a calculation for the total number of elements for a given \p VF. 71 /// For fixed width vectors this value is a constant, whereas for scalable 72 /// vectors it is an expression determined at runtime. 73 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); 74 75 /// Return a value for Step multiplied by VF. 76 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 77 int64_t Step); 78 79 const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE, 80 Loop *CurLoop = nullptr); 81 82 /// A range of powers-of-2 vectorization factors with fixed start and 83 /// adjustable end. The range includes start and excludes end, e.g.,: 84 /// [1, 16) = {1, 2, 4, 8} 85 struct VFRange { 86 // A power of 2. 87 const ElementCount Start; 88 89 // A power of 2. If End <= Start range is empty. 90 ElementCount End; 91 92 bool isEmpty() const { 93 return End.getKnownMinValue() <= Start.getKnownMinValue(); 94 } 95 96 VFRange(const ElementCount &Start, const ElementCount &End) 97 : Start(Start), End(End) { 98 assert(Start.isScalable() == End.isScalable() && 99 "Both Start and End should have the same scalable flag"); 100 assert(isPowerOf2_32(Start.getKnownMinValue()) && 101 "Expected Start to be a power of 2"); 102 assert(isPowerOf2_32(End.getKnownMinValue()) && 103 "Expected End to be a power of 2"); 104 } 105 106 /// Iterator to iterate over vectorization factors in a VFRange. 107 class iterator 108 : public iterator_facade_base<iterator, std::forward_iterator_tag, 109 ElementCount> { 110 ElementCount VF; 111 112 public: 113 iterator(ElementCount VF) : VF(VF) {} 114 115 bool operator==(const iterator &Other) const { return VF == Other.VF; } 116 117 ElementCount operator*() const { return VF; } 118 119 iterator &operator++() { 120 VF *= 2; 121 return *this; 122 } 123 }; 124 125 iterator begin() { return iterator(Start); } 126 iterator end() { 127 assert(isPowerOf2_32(End.getKnownMinValue())); 128 return iterator(End); 129 } 130 }; 131 132 using VPlanPtr = std::unique_ptr<VPlan>; 133 134 /// In what follows, the term "input IR" refers to code that is fed into the 135 /// vectorizer whereas the term "output IR" refers to code that is generated by 136 /// the vectorizer. 137 138 /// VPLane provides a way to access lanes in both fixed width and scalable 139 /// vectors, where for the latter the lane index sometimes needs calculating 140 /// as a runtime expression. 141 class VPLane { 142 public: 143 /// Kind describes how to interpret Lane. 144 enum class Kind : uint8_t { 145 /// For First, Lane is the index into the first N elements of a 146 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 147 First, 148 /// For ScalableLast, Lane is the offset from the start of the last 149 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 150 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 151 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 152 ScalableLast 153 }; 154 155 private: 156 /// in [0..VF) 157 unsigned Lane; 158 159 /// Indicates how the Lane should be interpreted, as described above. 160 Kind LaneKind; 161 162 public: 163 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 164 165 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 166 167 static VPLane getLastLaneForVF(const ElementCount &VF) { 168 unsigned LaneOffset = VF.getKnownMinValue() - 1; 169 Kind LaneKind; 170 if (VF.isScalable()) 171 // In this case 'LaneOffset' refers to the offset from the start of the 172 // last subvector with VF.getKnownMinValue() elements. 173 LaneKind = VPLane::Kind::ScalableLast; 174 else 175 LaneKind = VPLane::Kind::First; 176 return VPLane(LaneOffset, LaneKind); 177 } 178 179 /// Returns a compile-time known value for the lane index and asserts if the 180 /// lane can only be calculated at runtime. 181 unsigned getKnownLane() const { 182 assert(LaneKind == Kind::First); 183 return Lane; 184 } 185 186 /// Returns an expression describing the lane index that can be used at 187 /// runtime. 188 Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; 189 190 /// Returns the Kind of lane offset. 191 Kind getKind() const { return LaneKind; } 192 193 /// Returns true if this is the first lane of the whole vector. 194 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 195 196 /// Maps the lane to a cache index based on \p VF. 197 unsigned mapToCacheIndex(const ElementCount &VF) const { 198 switch (LaneKind) { 199 case VPLane::Kind::ScalableLast: 200 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 201 return VF.getKnownMinValue() + Lane; 202 default: 203 assert(Lane < VF.getKnownMinValue()); 204 return Lane; 205 } 206 } 207 208 /// Returns the maxmimum number of lanes that we are able to consider 209 /// caching for \p VF. 210 static unsigned getNumCachedLanes(const ElementCount &VF) { 211 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 212 } 213 }; 214 215 /// VPIteration represents a single point in the iteration space of the output 216 /// (vectorized and/or unrolled) IR loop. 217 struct VPIteration { 218 /// in [0..UF) 219 unsigned Part; 220 221 VPLane Lane; 222 223 VPIteration(unsigned Part, unsigned Lane, 224 VPLane::Kind Kind = VPLane::Kind::First) 225 : Part(Part), Lane(Lane, Kind) {} 226 227 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 228 229 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 230 }; 231 232 /// VPTransformState holds information passed down when "executing" a VPlan, 233 /// needed for generating the output IR. 234 struct VPTransformState { 235 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 236 DominatorTree *DT, IRBuilderBase &Builder, 237 InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx) 238 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan), 239 LVer(nullptr), TypeAnalysis(Ctx) {} 240 241 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 242 ElementCount VF; 243 unsigned UF; 244 245 /// Hold the indices to generate specific scalar instructions. Null indicates 246 /// that all instances are to be generated, using either scalar or vector 247 /// instructions. 248 std::optional<VPIteration> Instance; 249 250 struct DataState { 251 /// A type for vectorized values in the new loop. Each value from the 252 /// original loop, when vectorized, is represented by UF vector values in 253 /// the new unrolled loop, where UF is the unroll factor. 254 typedef SmallVector<Value *, 2> PerPartValuesTy; 255 256 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 257 258 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 259 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 260 } Data; 261 262 /// Get the generated Value for a given VPValue and a given Part. Note that 263 /// as some Defs are still created by ILV and managed in its ValueMap, this 264 /// method will delegate the call to ILV in such cases in order to provide 265 /// callers a consistent API. 266 /// \see set. 267 Value *get(VPValue *Def, unsigned Part); 268 269 /// Get the generated Value for a given VPValue and given Part and Lane. 270 Value *get(VPValue *Def, const VPIteration &Instance); 271 272 bool hasVectorValue(VPValue *Def, unsigned Part) { 273 auto I = Data.PerPartOutput.find(Def); 274 return I != Data.PerPartOutput.end() && Part < I->second.size() && 275 I->second[Part]; 276 } 277 278 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 279 auto I = Data.PerPartScalars.find(Def); 280 if (I == Data.PerPartScalars.end()) 281 return false; 282 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 283 return Instance.Part < I->second.size() && 284 CacheIdx < I->second[Instance.Part].size() && 285 I->second[Instance.Part][CacheIdx]; 286 } 287 288 /// Set the generated Value for a given VPValue and a given Part. 289 void set(VPValue *Def, Value *V, unsigned Part) { 290 if (!Data.PerPartOutput.count(Def)) { 291 DataState::PerPartValuesTy Entry(UF); 292 Data.PerPartOutput[Def] = Entry; 293 } 294 Data.PerPartOutput[Def][Part] = V; 295 } 296 /// Reset an existing vector value for \p Def and a given \p Part. 297 void reset(VPValue *Def, Value *V, unsigned Part) { 298 auto Iter = Data.PerPartOutput.find(Def); 299 assert(Iter != Data.PerPartOutput.end() && 300 "need to overwrite existing value"); 301 Iter->second[Part] = V; 302 } 303 304 /// Set the generated scalar \p V for \p Def and the given \p Instance. 305 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 306 auto Iter = Data.PerPartScalars.insert({Def, {}}); 307 auto &PerPartVec = Iter.first->second; 308 while (PerPartVec.size() <= Instance.Part) 309 PerPartVec.emplace_back(); 310 auto &Scalars = PerPartVec[Instance.Part]; 311 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 312 while (Scalars.size() <= CacheIdx) 313 Scalars.push_back(nullptr); 314 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 315 Scalars[CacheIdx] = V; 316 } 317 318 /// Reset an existing scalar value for \p Def and a given \p Instance. 319 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 320 auto Iter = Data.PerPartScalars.find(Def); 321 assert(Iter != Data.PerPartScalars.end() && 322 "need to overwrite existing value"); 323 assert(Instance.Part < Iter->second.size() && 324 "need to overwrite existing value"); 325 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 326 assert(CacheIdx < Iter->second[Instance.Part].size() && 327 "need to overwrite existing value"); 328 Iter->second[Instance.Part][CacheIdx] = V; 329 } 330 331 /// Add additional metadata to \p To that was not present on \p Orig. 332 /// 333 /// Currently this is used to add the noalias annotations based on the 334 /// inserted memchecks. Use this for instructions that are *cloned* into the 335 /// vector loop. 336 void addNewMetadata(Instruction *To, const Instruction *Orig); 337 338 /// Add metadata from one instruction to another. 339 /// 340 /// This includes both the original MDs from \p From and additional ones (\see 341 /// addNewMetadata). Use this for *newly created* instructions in the vector 342 /// loop. 343 void addMetadata(Instruction *To, Instruction *From); 344 345 /// Similar to the previous function but it adds the metadata to a 346 /// vector of instructions. 347 void addMetadata(ArrayRef<Value *> To, Instruction *From); 348 349 /// Set the debug location in the builder using the debug location \p DL. 350 void setDebugLocFrom(DebugLoc DL); 351 352 /// Construct the vector value of a scalarized value \p V one lane at a time. 353 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance); 354 355 /// Hold state information used when constructing the CFG of the output IR, 356 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 357 struct CFGState { 358 /// The previous VPBasicBlock visited. Initially set to null. 359 VPBasicBlock *PrevVPBB = nullptr; 360 361 /// The previous IR BasicBlock created or used. Initially set to the new 362 /// header BasicBlock. 363 BasicBlock *PrevBB = nullptr; 364 365 /// The last IR BasicBlock in the output IR. Set to the exit block of the 366 /// vector loop. 367 BasicBlock *ExitBB = nullptr; 368 369 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 370 /// of replication, maps the BasicBlock of the last replica created. 371 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 372 373 CFGState() = default; 374 375 /// Returns the BasicBlock* mapped to the pre-header of the loop region 376 /// containing \p R. 377 BasicBlock *getPreheaderBBFor(VPRecipeBase *R); 378 } CFG; 379 380 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 381 LoopInfo *LI; 382 383 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 384 DominatorTree *DT; 385 386 /// Hold a reference to the IRBuilder used to generate output IR code. 387 IRBuilderBase &Builder; 388 389 VPValue2ValueTy VPValue2Value; 390 391 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 392 Value *CanonicalIV = nullptr; 393 394 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 395 InnerLoopVectorizer *ILV; 396 397 /// Pointer to the VPlan code is generated for. 398 VPlan *Plan; 399 400 /// The loop object for the current parent region, or nullptr. 401 Loop *CurrentVectorLoop = nullptr; 402 403 /// LoopVersioning. It's only set up (non-null) if memchecks were 404 /// used. 405 /// 406 /// This is currently only used to add no-alias metadata based on the 407 /// memchecks. The actually versioning is performed manually. 408 LoopVersioning *LVer = nullptr; 409 410 /// Map SCEVs to their expanded values. Populated when executing 411 /// VPExpandSCEVRecipes. 412 DenseMap<const SCEV *, Value *> ExpandedSCEVs; 413 414 /// VPlan-based type analysis. 415 VPTypeAnalysis TypeAnalysis; 416 }; 417 418 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 419 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 420 class VPBlockBase { 421 friend class VPBlockUtils; 422 423 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 424 425 /// An optional name for the block. 426 std::string Name; 427 428 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 429 /// it is a topmost VPBlockBase. 430 VPRegionBlock *Parent = nullptr; 431 432 /// List of predecessor blocks. 433 SmallVector<VPBlockBase *, 1> Predecessors; 434 435 /// List of successor blocks. 436 SmallVector<VPBlockBase *, 1> Successors; 437 438 /// VPlan containing the block. Can only be set on the entry block of the 439 /// plan. 440 VPlan *Plan = nullptr; 441 442 /// Add \p Successor as the last successor to this block. 443 void appendSuccessor(VPBlockBase *Successor) { 444 assert(Successor && "Cannot add nullptr successor!"); 445 Successors.push_back(Successor); 446 } 447 448 /// Add \p Predecessor as the last predecessor to this block. 449 void appendPredecessor(VPBlockBase *Predecessor) { 450 assert(Predecessor && "Cannot add nullptr predecessor!"); 451 Predecessors.push_back(Predecessor); 452 } 453 454 /// Remove \p Predecessor from the predecessors of this block. 455 void removePredecessor(VPBlockBase *Predecessor) { 456 auto Pos = find(Predecessors, Predecessor); 457 assert(Pos && "Predecessor does not exist"); 458 Predecessors.erase(Pos); 459 } 460 461 /// Remove \p Successor from the successors of this block. 462 void removeSuccessor(VPBlockBase *Successor) { 463 auto Pos = find(Successors, Successor); 464 assert(Pos && "Successor does not exist"); 465 Successors.erase(Pos); 466 } 467 468 protected: 469 VPBlockBase(const unsigned char SC, const std::string &N) 470 : SubclassID(SC), Name(N) {} 471 472 public: 473 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 474 /// that are actually instantiated. Values of this enumeration are kept in the 475 /// SubclassID field of the VPBlockBase objects. They are used for concrete 476 /// type identification. 477 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 478 479 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 480 481 virtual ~VPBlockBase() = default; 482 483 const std::string &getName() const { return Name; } 484 485 void setName(const Twine &newName) { Name = newName.str(); } 486 487 /// \return an ID for the concrete type of this object. 488 /// This is used to implement the classof checks. This should not be used 489 /// for any other purpose, as the values may change as LLVM evolves. 490 unsigned getVPBlockID() const { return SubclassID; } 491 492 VPRegionBlock *getParent() { return Parent; } 493 const VPRegionBlock *getParent() const { return Parent; } 494 495 /// \return A pointer to the plan containing the current block. 496 VPlan *getPlan(); 497 const VPlan *getPlan() const; 498 499 /// Sets the pointer of the plan containing the block. The block must be the 500 /// entry block into the VPlan. 501 void setPlan(VPlan *ParentPlan); 502 503 void setParent(VPRegionBlock *P) { Parent = P; } 504 505 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 506 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 507 /// VPBlockBase is a VPBasicBlock, it is returned. 508 const VPBasicBlock *getEntryBasicBlock() const; 509 VPBasicBlock *getEntryBasicBlock(); 510 511 /// \return the VPBasicBlock that is the exiting this VPBlockBase, 512 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 513 /// VPBlockBase is a VPBasicBlock, it is returned. 514 const VPBasicBlock *getExitingBasicBlock() const; 515 VPBasicBlock *getExitingBasicBlock(); 516 517 const VPBlocksTy &getSuccessors() const { return Successors; } 518 VPBlocksTy &getSuccessors() { return Successors; } 519 520 iterator_range<VPBlockBase **> successors() { return Successors; } 521 522 const VPBlocksTy &getPredecessors() const { return Predecessors; } 523 VPBlocksTy &getPredecessors() { return Predecessors; } 524 525 /// \return the successor of this VPBlockBase if it has a single successor. 526 /// Otherwise return a null pointer. 527 VPBlockBase *getSingleSuccessor() const { 528 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 529 } 530 531 /// \return the predecessor of this VPBlockBase if it has a single 532 /// predecessor. Otherwise return a null pointer. 533 VPBlockBase *getSinglePredecessor() const { 534 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 535 } 536 537 size_t getNumSuccessors() const { return Successors.size(); } 538 size_t getNumPredecessors() const { return Predecessors.size(); } 539 540 /// An Enclosing Block of a block B is any block containing B, including B 541 /// itself. \return the closest enclosing block starting from "this", which 542 /// has successors. \return the root enclosing block if all enclosing blocks 543 /// have no successors. 544 VPBlockBase *getEnclosingBlockWithSuccessors(); 545 546 /// \return the closest enclosing block starting from "this", which has 547 /// predecessors. \return the root enclosing block if all enclosing blocks 548 /// have no predecessors. 549 VPBlockBase *getEnclosingBlockWithPredecessors(); 550 551 /// \return the successors either attached directly to this VPBlockBase or, if 552 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 553 /// successors of its own, search recursively for the first enclosing 554 /// VPRegionBlock that has successors and return them. If no such 555 /// VPRegionBlock exists, return the (empty) successors of the topmost 556 /// VPBlockBase reached. 557 const VPBlocksTy &getHierarchicalSuccessors() { 558 return getEnclosingBlockWithSuccessors()->getSuccessors(); 559 } 560 561 /// \return the hierarchical successor of this VPBlockBase if it has a single 562 /// hierarchical successor. Otherwise return a null pointer. 563 VPBlockBase *getSingleHierarchicalSuccessor() { 564 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 565 } 566 567 /// \return the predecessors either attached directly to this VPBlockBase or, 568 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 569 /// predecessors of its own, search recursively for the first enclosing 570 /// VPRegionBlock that has predecessors and return them. If no such 571 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 572 /// VPBlockBase reached. 573 const VPBlocksTy &getHierarchicalPredecessors() { 574 return getEnclosingBlockWithPredecessors()->getPredecessors(); 575 } 576 577 /// \return the hierarchical predecessor of this VPBlockBase if it has a 578 /// single hierarchical predecessor. Otherwise return a null pointer. 579 VPBlockBase *getSingleHierarchicalPredecessor() { 580 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 581 } 582 583 /// Set a given VPBlockBase \p Successor as the single successor of this 584 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 585 /// This VPBlockBase must have no successors. 586 void setOneSuccessor(VPBlockBase *Successor) { 587 assert(Successors.empty() && "Setting one successor when others exist."); 588 assert(Successor->getParent() == getParent() && 589 "connected blocks must have the same parent"); 590 appendSuccessor(Successor); 591 } 592 593 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 594 /// successors of this VPBlockBase. This VPBlockBase is not added as 595 /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no 596 /// successors. 597 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { 598 assert(Successors.empty() && "Setting two successors when others exist."); 599 appendSuccessor(IfTrue); 600 appendSuccessor(IfFalse); 601 } 602 603 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 604 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 605 /// as successor of any VPBasicBlock in \p NewPreds. 606 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 607 assert(Predecessors.empty() && "Block predecessors already set."); 608 for (auto *Pred : NewPreds) 609 appendPredecessor(Pred); 610 } 611 612 /// Remove all the predecessor of this block. 613 void clearPredecessors() { Predecessors.clear(); } 614 615 /// Remove all the successors of this block. 616 void clearSuccessors() { Successors.clear(); } 617 618 /// The method which generates the output IR that correspond to this 619 /// VPBlockBase, thereby "executing" the VPlan. 620 virtual void execute(VPTransformState *State) = 0; 621 622 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 623 static void deleteCFG(VPBlockBase *Entry); 624 625 /// Return true if it is legal to hoist instructions into this block. 626 bool isLegalToHoistInto() { 627 // There are currently no constraints that prevent an instruction to be 628 // hoisted into a VPBlockBase. 629 return true; 630 } 631 632 /// Replace all operands of VPUsers in the block with \p NewValue and also 633 /// replaces all uses of VPValues defined in the block with NewValue. 634 virtual void dropAllReferences(VPValue *NewValue) = 0; 635 636 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 637 void printAsOperand(raw_ostream &OS, bool PrintType) const { 638 OS << getName(); 639 } 640 641 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 642 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 643 /// consequtive numbers. 644 /// 645 /// Note that the numbering is applied to the whole VPlan, so printing 646 /// individual blocks is consistent with the whole VPlan printing. 647 virtual void print(raw_ostream &O, const Twine &Indent, 648 VPSlotTracker &SlotTracker) const = 0; 649 650 /// Print plain-text dump of this VPlan to \p O. 651 void print(raw_ostream &O) const { 652 VPSlotTracker SlotTracker(getPlan()); 653 print(O, "", SlotTracker); 654 } 655 656 /// Print the successors of this block to \p O, prefixing all lines with \p 657 /// Indent. 658 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 659 660 /// Dump this VPBlockBase to dbgs(). 661 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 662 #endif 663 }; 664 665 /// A value that is used outside the VPlan. The operand of the user needs to be 666 /// added to the associated LCSSA phi node. 667 class VPLiveOut : public VPUser { 668 PHINode *Phi; 669 670 public: 671 VPLiveOut(PHINode *Phi, VPValue *Op) 672 : VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {} 673 674 static inline bool classof(const VPUser *U) { 675 return U->getVPUserID() == VPUser::VPUserID::LiveOut; 676 } 677 678 /// Fixup the wrapped LCSSA phi node in the unique exit block. This simply 679 /// means we need to add the appropriate incoming value from the middle 680 /// block as exiting edges from the scalar epilogue loop (if present) are 681 /// already in place, and we exit the vector loop exclusively to the middle 682 /// block. 683 void fixPhi(VPlan &Plan, VPTransformState &State); 684 685 /// Returns true if the VPLiveOut uses scalars of operand \p Op. 686 bool usesScalars(const VPValue *Op) const override { 687 assert(is_contained(operands(), Op) && 688 "Op must be an operand of the recipe"); 689 return true; 690 } 691 692 PHINode *getPhi() const { return Phi; } 693 694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 695 /// Print the VPLiveOut to \p O. 696 void print(raw_ostream &O, VPSlotTracker &SlotTracker) const; 697 #endif 698 }; 699 700 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 701 /// instructions. VPRecipeBase owns the VPValues it defines through VPDef 702 /// and is responsible for deleting its defined values. Single-value 703 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 704 /// VPRecipeBase before VPValue. 705 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 706 public VPDef, 707 public VPUser { 708 friend VPBasicBlock; 709 friend class VPBlockUtils; 710 711 /// Each VPRecipe belongs to a single VPBasicBlock. 712 VPBasicBlock *Parent = nullptr; 713 714 /// The debug location for the recipe. 715 DebugLoc DL; 716 717 public: 718 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands, 719 DebugLoc DL = {}) 720 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {} 721 722 template <typename IterT> 723 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands, 724 DebugLoc DL = {}) 725 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {} 726 virtual ~VPRecipeBase() = default; 727 728 /// \return the VPBasicBlock which this VPRecipe belongs to. 729 VPBasicBlock *getParent() { return Parent; } 730 const VPBasicBlock *getParent() const { return Parent; } 731 732 /// The method which generates the output IR instructions that correspond to 733 /// this VPRecipe, thereby "executing" the VPlan. 734 virtual void execute(VPTransformState &State) = 0; 735 736 /// Insert an unlinked recipe into a basic block immediately before 737 /// the specified recipe. 738 void insertBefore(VPRecipeBase *InsertPos); 739 /// Insert an unlinked recipe into \p BB immediately before the insertion 740 /// point \p IP; 741 void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); 742 743 /// Insert an unlinked Recipe into a basic block immediately after 744 /// the specified Recipe. 745 void insertAfter(VPRecipeBase *InsertPos); 746 747 /// Unlink this recipe from its current VPBasicBlock and insert it into 748 /// the VPBasicBlock that MovePos lives in, right after MovePos. 749 void moveAfter(VPRecipeBase *MovePos); 750 751 /// Unlink this recipe and insert into BB before I. 752 /// 753 /// \pre I is a valid iterator into BB. 754 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 755 756 /// This method unlinks 'this' from the containing basic block, but does not 757 /// delete it. 758 void removeFromParent(); 759 760 /// This method unlinks 'this' from the containing basic block and deletes it. 761 /// 762 /// \returns an iterator pointing to the element after the erased one 763 iplist<VPRecipeBase>::iterator eraseFromParent(); 764 765 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 766 /// otherwise. 767 Instruction *getUnderlyingInstr() { 768 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 769 } 770 const Instruction *getUnderlyingInstr() const { 771 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 772 } 773 774 /// Method to support type inquiry through isa, cast, and dyn_cast. 775 static inline bool classof(const VPDef *D) { 776 // All VPDefs are also VPRecipeBases. 777 return true; 778 } 779 780 static inline bool classof(const VPUser *U) { 781 return U->getVPUserID() == VPUser::VPUserID::Recipe; 782 } 783 784 /// Returns true if the recipe may have side-effects. 785 bool mayHaveSideEffects() const; 786 787 /// Returns true for PHI-like recipes. 788 bool isPhi() const { 789 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 790 } 791 792 /// Returns true if the recipe may read from memory. 793 bool mayReadFromMemory() const; 794 795 /// Returns true if the recipe may write to memory. 796 bool mayWriteToMemory() const; 797 798 /// Returns true if the recipe may read from or write to memory. 799 bool mayReadOrWriteMemory() const { 800 return mayReadFromMemory() || mayWriteToMemory(); 801 } 802 803 /// Returns the debug location of the recipe. 804 DebugLoc getDebugLoc() const { return DL; } 805 }; 806 807 // Helper macro to define common classof implementations for recipes. 808 #define VP_CLASSOF_IMPL(VPDefID) \ 809 static inline bool classof(const VPDef *D) { \ 810 return D->getVPDefID() == VPDefID; \ 811 } \ 812 static inline bool classof(const VPValue *V) { \ 813 auto *R = V->getDefiningRecipe(); \ 814 return R && R->getVPDefID() == VPDefID; \ 815 } \ 816 static inline bool classof(const VPUser *U) { \ 817 auto *R = dyn_cast<VPRecipeBase>(U); \ 818 return R && R->getVPDefID() == VPDefID; \ 819 } \ 820 static inline bool classof(const VPRecipeBase *R) { \ 821 return R->getVPDefID() == VPDefID; \ 822 } 823 824 /// Class to record LLVM IR flag for a recipe along with it. 825 class VPRecipeWithIRFlags : public VPRecipeBase { 826 enum class OperationType : unsigned char { 827 Cmp, 828 OverflowingBinOp, 829 DisjointOp, 830 PossiblyExactOp, 831 GEPOp, 832 FPMathOp, 833 NonNegOp, 834 Other 835 }; 836 837 public: 838 struct WrapFlagsTy { 839 char HasNUW : 1; 840 char HasNSW : 1; 841 842 WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} 843 }; 844 845 private: 846 struct DisjointFlagsTy { 847 char IsDisjoint : 1; 848 }; 849 struct ExactFlagsTy { 850 char IsExact : 1; 851 }; 852 struct GEPFlagsTy { 853 char IsInBounds : 1; 854 }; 855 struct NonNegFlagsTy { 856 char NonNeg : 1; 857 }; 858 struct FastMathFlagsTy { 859 char AllowReassoc : 1; 860 char NoNaNs : 1; 861 char NoInfs : 1; 862 char NoSignedZeros : 1; 863 char AllowReciprocal : 1; 864 char AllowContract : 1; 865 char ApproxFunc : 1; 866 867 FastMathFlagsTy(const FastMathFlags &FMF); 868 }; 869 870 OperationType OpType; 871 872 union { 873 CmpInst::Predicate CmpPredicate; 874 WrapFlagsTy WrapFlags; 875 DisjointFlagsTy DisjointFlags; 876 ExactFlagsTy ExactFlags; 877 GEPFlagsTy GEPFlags; 878 NonNegFlagsTy NonNegFlags; 879 FastMathFlagsTy FMFs; 880 unsigned AllFlags; 881 }; 882 883 public: 884 template <typename IterT> 885 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {}) 886 : VPRecipeBase(SC, Operands, DL) { 887 OpType = OperationType::Other; 888 AllFlags = 0; 889 } 890 891 template <typename IterT> 892 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I) 893 : VPRecipeWithIRFlags(SC, Operands, I.getDebugLoc()) { 894 if (auto *Op = dyn_cast<CmpInst>(&I)) { 895 OpType = OperationType::Cmp; 896 CmpPredicate = Op->getPredicate(); 897 } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) { 898 OpType = OperationType::DisjointOp; 899 DisjointFlags.IsDisjoint = Op->isDisjoint(); 900 } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) { 901 OpType = OperationType::OverflowingBinOp; 902 WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; 903 } else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) { 904 OpType = OperationType::PossiblyExactOp; 905 ExactFlags.IsExact = Op->isExact(); 906 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 907 OpType = OperationType::GEPOp; 908 GEPFlags.IsInBounds = GEP->isInBounds(); 909 } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) { 910 OpType = OperationType::NonNegOp; 911 NonNegFlags.NonNeg = PNNI->hasNonNeg(); 912 } else if (auto *Op = dyn_cast<FPMathOperator>(&I)) { 913 OpType = OperationType::FPMathOp; 914 FMFs = Op->getFastMathFlags(); 915 } 916 } 917 918 template <typename IterT> 919 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 920 CmpInst::Predicate Pred, DebugLoc DL = {}) 921 : VPRecipeBase(SC, Operands, DL), OpType(OperationType::Cmp), 922 CmpPredicate(Pred) {} 923 924 template <typename IterT> 925 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 926 WrapFlagsTy WrapFlags, DebugLoc DL = {}) 927 : VPRecipeBase(SC, Operands, DL), OpType(OperationType::OverflowingBinOp), 928 WrapFlags(WrapFlags) {} 929 930 template <typename IterT> 931 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 932 FastMathFlags FMFs, DebugLoc DL = {}) 933 : VPRecipeBase(SC, Operands, DL), OpType(OperationType::FPMathOp), 934 FMFs(FMFs) {} 935 936 static inline bool classof(const VPRecipeBase *R) { 937 return R->getVPDefID() == VPRecipeBase::VPInstructionSC || 938 R->getVPDefID() == VPRecipeBase::VPWidenSC || 939 R->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 940 R->getVPDefID() == VPRecipeBase::VPWidenCastSC || 941 R->getVPDefID() == VPRecipeBase::VPReplicateSC; 942 } 943 944 /// Drop all poison-generating flags. 945 void dropPoisonGeneratingFlags() { 946 // NOTE: This needs to be kept in-sync with 947 // Instruction::dropPoisonGeneratingFlags. 948 switch (OpType) { 949 case OperationType::OverflowingBinOp: 950 WrapFlags.HasNUW = false; 951 WrapFlags.HasNSW = false; 952 break; 953 case OperationType::DisjointOp: 954 DisjointFlags.IsDisjoint = false; 955 break; 956 case OperationType::PossiblyExactOp: 957 ExactFlags.IsExact = false; 958 break; 959 case OperationType::GEPOp: 960 GEPFlags.IsInBounds = false; 961 break; 962 case OperationType::FPMathOp: 963 FMFs.NoNaNs = false; 964 FMFs.NoInfs = false; 965 break; 966 case OperationType::NonNegOp: 967 NonNegFlags.NonNeg = false; 968 break; 969 case OperationType::Cmp: 970 case OperationType::Other: 971 break; 972 } 973 } 974 975 /// Set the IR flags for \p I. 976 void setFlags(Instruction *I) const { 977 switch (OpType) { 978 case OperationType::OverflowingBinOp: 979 I->setHasNoUnsignedWrap(WrapFlags.HasNUW); 980 I->setHasNoSignedWrap(WrapFlags.HasNSW); 981 break; 982 case OperationType::DisjointOp: 983 cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint); 984 break; 985 case OperationType::PossiblyExactOp: 986 I->setIsExact(ExactFlags.IsExact); 987 break; 988 case OperationType::GEPOp: 989 cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds); 990 break; 991 case OperationType::FPMathOp: 992 I->setHasAllowReassoc(FMFs.AllowReassoc); 993 I->setHasNoNaNs(FMFs.NoNaNs); 994 I->setHasNoInfs(FMFs.NoInfs); 995 I->setHasNoSignedZeros(FMFs.NoSignedZeros); 996 I->setHasAllowReciprocal(FMFs.AllowReciprocal); 997 I->setHasAllowContract(FMFs.AllowContract); 998 I->setHasApproxFunc(FMFs.ApproxFunc); 999 break; 1000 case OperationType::NonNegOp: 1001 I->setNonNeg(NonNegFlags.NonNeg); 1002 break; 1003 case OperationType::Cmp: 1004 case OperationType::Other: 1005 break; 1006 } 1007 } 1008 1009 CmpInst::Predicate getPredicate() const { 1010 assert(OpType == OperationType::Cmp && 1011 "recipe doesn't have a compare predicate"); 1012 return CmpPredicate; 1013 } 1014 1015 bool isInBounds() const { 1016 assert(OpType == OperationType::GEPOp && 1017 "recipe doesn't have inbounds flag"); 1018 return GEPFlags.IsInBounds; 1019 } 1020 1021 /// Returns true if the recipe has fast-math flags. 1022 bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; } 1023 1024 FastMathFlags getFastMathFlags() const; 1025 1026 bool hasNoUnsignedWrap() const { 1027 assert(OpType == OperationType::OverflowingBinOp && 1028 "recipe doesn't have a NUW flag"); 1029 return WrapFlags.HasNUW; 1030 } 1031 1032 bool hasNoSignedWrap() const { 1033 assert(OpType == OperationType::OverflowingBinOp && 1034 "recipe doesn't have a NSW flag"); 1035 return WrapFlags.HasNSW; 1036 } 1037 1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1039 void printFlags(raw_ostream &O) const; 1040 #endif 1041 }; 1042 1043 /// This is a concrete Recipe that models a single VPlan-level instruction. 1044 /// While as any Recipe it may generate a sequence of IR instructions when 1045 /// executed, these instructions would always form a single-def expression as 1046 /// the VPInstruction is also a single def-use vertex. 1047 class VPInstruction : public VPRecipeWithIRFlags, public VPValue { 1048 friend class VPlanSlp; 1049 1050 public: 1051 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 1052 enum { 1053 FirstOrderRecurrenceSplice = 1054 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 1055 // values of a first-order recurrence. 1056 Not, 1057 SLPLoad, 1058 SLPStore, 1059 ActiveLaneMask, 1060 CalculateTripCountMinusVF, 1061 // Increment the canonical IV separately for each unrolled part. 1062 CanonicalIVIncrementForPart, 1063 BranchOnCount, 1064 BranchOnCond 1065 }; 1066 1067 private: 1068 typedef unsigned char OpcodeTy; 1069 OpcodeTy Opcode; 1070 1071 /// An optional name that can be used for the generated IR instruction. 1072 const std::string Name; 1073 1074 /// Utility method serving execute(): generates a single instance of the 1075 /// modeled instruction. \returns the generated value for \p Part. 1076 /// In some cases an existing value is returned rather than a generated 1077 /// one. 1078 Value *generateInstruction(VPTransformState &State, unsigned Part); 1079 1080 #if !defined(NDEBUG) 1081 /// Return true if the VPInstruction is a floating point math operation, i.e. 1082 /// has fast-math flags. 1083 bool isFPMathOp() const; 1084 #endif 1085 1086 protected: 1087 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 1088 1089 public: 1090 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL, 1091 const Twine &Name = "") 1092 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL), 1093 VPValue(this), Opcode(Opcode), Name(Name.str()) {} 1094 1095 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1096 DebugLoc DL = {}, const Twine &Name = "") 1097 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {} 1098 1099 VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A, 1100 VPValue *B, DebugLoc DL = {}, const Twine &Name = ""); 1101 1102 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1103 WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "") 1104 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL), 1105 VPValue(this), Opcode(Opcode), Name(Name.str()) {} 1106 1107 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1108 FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = ""); 1109 1110 VP_CLASSOF_IMPL(VPDef::VPInstructionSC) 1111 1112 unsigned getOpcode() const { return Opcode; } 1113 1114 /// Generate the instruction. 1115 /// TODO: We currently execute only per-part unless a specific instance is 1116 /// provided. 1117 void execute(VPTransformState &State) override; 1118 1119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1120 /// Print the VPInstruction to \p O. 1121 void print(raw_ostream &O, const Twine &Indent, 1122 VPSlotTracker &SlotTracker) const override; 1123 1124 /// Print the VPInstruction to dbgs() (for debugging). 1125 LLVM_DUMP_METHOD void dump() const; 1126 #endif 1127 1128 /// Return true if this instruction may modify memory. 1129 bool mayWriteToMemory() const { 1130 // TODO: we can use attributes of the called function to rule out memory 1131 // modifications. 1132 return Opcode == Instruction::Store || Opcode == Instruction::Call || 1133 Opcode == Instruction::Invoke || Opcode == SLPStore; 1134 } 1135 1136 bool hasResult() const { 1137 // CallInst may or may not have a result, depending on the called function. 1138 // Conservatively return calls have results for now. 1139 switch (getOpcode()) { 1140 case Instruction::Ret: 1141 case Instruction::Br: 1142 case Instruction::Store: 1143 case Instruction::Switch: 1144 case Instruction::IndirectBr: 1145 case Instruction::Resume: 1146 case Instruction::CatchRet: 1147 case Instruction::Unreachable: 1148 case Instruction::Fence: 1149 case Instruction::AtomicRMW: 1150 case VPInstruction::BranchOnCond: 1151 case VPInstruction::BranchOnCount: 1152 return false; 1153 default: 1154 return true; 1155 } 1156 } 1157 1158 /// Returns true if the recipe only uses the first lane of operand \p Op. 1159 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1160 assert(is_contained(operands(), Op) && 1161 "Op must be an operand of the recipe"); 1162 if (getOperand(0) != Op) 1163 return false; 1164 switch (getOpcode()) { 1165 default: 1166 return false; 1167 case VPInstruction::ActiveLaneMask: 1168 case VPInstruction::CalculateTripCountMinusVF: 1169 case VPInstruction::CanonicalIVIncrementForPart: 1170 case VPInstruction::BranchOnCount: 1171 return true; 1172 }; 1173 llvm_unreachable("switch should return"); 1174 } 1175 1176 /// Returns true if the recipe only uses the first part of operand \p Op. 1177 bool onlyFirstPartUsed(const VPValue *Op) const override { 1178 assert(is_contained(operands(), Op) && 1179 "Op must be an operand of the recipe"); 1180 if (getOperand(0) != Op) 1181 return false; 1182 switch (getOpcode()) { 1183 default: 1184 return false; 1185 case VPInstruction::BranchOnCount: 1186 return true; 1187 }; 1188 llvm_unreachable("switch should return"); 1189 } 1190 }; 1191 1192 /// VPWidenRecipe is a recipe for producing a copy of vector type its 1193 /// ingredient. This recipe covers most of the traditional vectorization cases 1194 /// where each ingredient transforms into a vectorized version of itself. 1195 class VPWidenRecipe : public VPRecipeWithIRFlags, public VPValue { 1196 unsigned Opcode; 1197 1198 public: 1199 template <typename IterT> 1200 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 1201 : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I), VPValue(this, &I), 1202 Opcode(I.getOpcode()) {} 1203 1204 ~VPWidenRecipe() override = default; 1205 1206 VP_CLASSOF_IMPL(VPDef::VPWidenSC) 1207 1208 /// Produce widened copies of all Ingredients. 1209 void execute(VPTransformState &State) override; 1210 1211 unsigned getOpcode() const { return Opcode; } 1212 1213 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1214 /// Print the recipe. 1215 void print(raw_ostream &O, const Twine &Indent, 1216 VPSlotTracker &SlotTracker) const override; 1217 #endif 1218 }; 1219 1220 /// VPWidenCastRecipe is a recipe to create vector cast instructions. 1221 class VPWidenCastRecipe : public VPRecipeWithIRFlags, public VPValue { 1222 /// Cast instruction opcode. 1223 Instruction::CastOps Opcode; 1224 1225 /// Result type for the cast. 1226 Type *ResultTy; 1227 1228 public: 1229 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, 1230 CastInst &UI) 1231 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), VPValue(this, &UI), 1232 Opcode(Opcode), ResultTy(ResultTy) { 1233 assert(UI.getOpcode() == Opcode && 1234 "opcode of underlying cast doesn't match"); 1235 assert(UI.getType() == ResultTy && 1236 "result type of underlying cast doesn't match"); 1237 } 1238 1239 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy) 1240 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), VPValue(this, nullptr), 1241 Opcode(Opcode), ResultTy(ResultTy) {} 1242 1243 ~VPWidenCastRecipe() override = default; 1244 1245 VP_CLASSOF_IMPL(VPDef::VPWidenCastSC) 1246 1247 /// Produce widened copies of the cast. 1248 void execute(VPTransformState &State) override; 1249 1250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1251 /// Print the recipe. 1252 void print(raw_ostream &O, const Twine &Indent, 1253 VPSlotTracker &SlotTracker) const override; 1254 #endif 1255 1256 Instruction::CastOps getOpcode() const { return Opcode; } 1257 1258 /// Returns the result type of the cast. 1259 Type *getResultType() const { return ResultTy; } 1260 }; 1261 1262 /// A recipe for widening Call instructions. 1263 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 1264 /// ID of the vector intrinsic to call when widening the call. If set the 1265 /// Intrinsic::not_intrinsic, a library call will be used instead. 1266 Intrinsic::ID VectorIntrinsicID; 1267 /// If this recipe represents a library call, Variant stores a pointer to 1268 /// the chosen function. There is a 1:1 mapping between a given VF and the 1269 /// chosen vectorized variant, so there will be a different vplan for each 1270 /// VF with a valid variant. 1271 Function *Variant; 1272 1273 public: 1274 template <typename IterT> 1275 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments, 1276 Intrinsic::ID VectorIntrinsicID, 1277 Function *Variant = nullptr) 1278 : VPRecipeBase(VPDef::VPWidenCallSC, CallArguments), VPValue(this, &I), 1279 VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {} 1280 1281 ~VPWidenCallRecipe() override = default; 1282 1283 VP_CLASSOF_IMPL(VPDef::VPWidenCallSC) 1284 1285 /// Produce a widened version of the call instruction. 1286 void execute(VPTransformState &State) override; 1287 1288 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1289 /// Print the recipe. 1290 void print(raw_ostream &O, const Twine &Indent, 1291 VPSlotTracker &SlotTracker) const override; 1292 #endif 1293 }; 1294 1295 /// A recipe for widening select instructions. 1296 struct VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 1297 template <typename IterT> 1298 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands) 1299 : VPRecipeBase(VPDef::VPWidenSelectSC, Operands, I.getDebugLoc()), 1300 VPValue(this, &I) {} 1301 1302 ~VPWidenSelectRecipe() override = default; 1303 1304 VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC) 1305 1306 /// Produce a widened version of the select instruction. 1307 void execute(VPTransformState &State) override; 1308 1309 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1310 /// Print the recipe. 1311 void print(raw_ostream &O, const Twine &Indent, 1312 VPSlotTracker &SlotTracker) const override; 1313 #endif 1314 1315 VPValue *getCond() const { 1316 return getOperand(0); 1317 } 1318 1319 bool isInvariantCond() const { 1320 return getCond()->isDefinedOutsideVectorRegions(); 1321 } 1322 }; 1323 1324 /// A recipe for handling GEP instructions. 1325 class VPWidenGEPRecipe : public VPRecipeWithIRFlags, public VPValue { 1326 bool isPointerLoopInvariant() const { 1327 return getOperand(0)->isDefinedOutsideVectorRegions(); 1328 } 1329 1330 bool isIndexLoopInvariant(unsigned I) const { 1331 return getOperand(I + 1)->isDefinedOutsideVectorRegions(); 1332 } 1333 1334 bool areAllOperandsInvariant() const { 1335 return all_of(operands(), [](VPValue *Op) { 1336 return Op->isDefinedOutsideVectorRegions(); 1337 }); 1338 } 1339 1340 public: 1341 template <typename IterT> 1342 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 1343 : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP), 1344 VPValue(this, GEP) {} 1345 1346 ~VPWidenGEPRecipe() override = default; 1347 1348 VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC) 1349 1350 /// Generate the gep nodes. 1351 void execute(VPTransformState &State) override; 1352 1353 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1354 /// Print the recipe. 1355 void print(raw_ostream &O, const Twine &Indent, 1356 VPSlotTracker &SlotTracker) const override; 1357 #endif 1358 }; 1359 1360 /// A pure virtual base class for all recipes modeling header phis, including 1361 /// phis for first order recurrences, pointer inductions and reductions. The 1362 /// start value is the first operand of the recipe and the incoming value from 1363 /// the backedge is the second operand. 1364 /// 1365 /// Inductions are modeled using the following sub-classes: 1366 /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, 1367 /// starting at a specified value (zero for the main vector loop, the resume 1368 /// value for the epilogue vector loop) and stepping by 1. The induction 1369 /// controls exiting of the vector loop by comparing against the vector trip 1370 /// count. Produces a single scalar PHI for the induction value per 1371 /// iteration. 1372 /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and 1373 /// floating point inductions with arbitrary start and step values. Produces 1374 /// a vector PHI per-part. 1375 /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding 1376 /// value of an IV with different start and step values. Produces a single 1377 /// scalar value per iteration 1378 /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a 1379 /// canonical or derived induction. 1380 /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a 1381 /// pointer induction. Produces either a vector PHI per-part or scalar values 1382 /// per-lane based on the canonical induction. 1383 class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue { 1384 protected: 1385 VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr, 1386 VPValue *Start = nullptr, DebugLoc DL = {}) 1387 : VPRecipeBase(VPDefID, {}, DL), VPValue(this, UnderlyingInstr) { 1388 if (Start) 1389 addOperand(Start); 1390 } 1391 1392 public: 1393 ~VPHeaderPHIRecipe() override = default; 1394 1395 /// Method to support type inquiry through isa, cast, and dyn_cast. 1396 static inline bool classof(const VPRecipeBase *B) { 1397 return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC && 1398 B->getVPDefID() <= VPDef::VPLastHeaderPHISC; 1399 } 1400 static inline bool classof(const VPValue *V) { 1401 auto *B = V->getDefiningRecipe(); 1402 return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC && 1403 B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC; 1404 } 1405 1406 /// Generate the phi nodes. 1407 void execute(VPTransformState &State) override = 0; 1408 1409 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1410 /// Print the recipe. 1411 void print(raw_ostream &O, const Twine &Indent, 1412 VPSlotTracker &SlotTracker) const override = 0; 1413 #endif 1414 1415 /// Returns the start value of the phi, if one is set. 1416 VPValue *getStartValue() { 1417 return getNumOperands() == 0 ? nullptr : getOperand(0); 1418 } 1419 VPValue *getStartValue() const { 1420 return getNumOperands() == 0 ? nullptr : getOperand(0); 1421 } 1422 1423 /// Update the start value of the recipe. 1424 void setStartValue(VPValue *V) { setOperand(0, V); } 1425 1426 /// Returns the incoming value from the loop backedge. 1427 virtual VPValue *getBackedgeValue() { 1428 return getOperand(1); 1429 } 1430 1431 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1432 /// to be a recipe. 1433 virtual VPRecipeBase &getBackedgeRecipe() { 1434 return *getBackedgeValue()->getDefiningRecipe(); 1435 } 1436 }; 1437 1438 /// A recipe for handling phi nodes of integer and floating-point inductions, 1439 /// producing their vector values. 1440 class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe { 1441 PHINode *IV; 1442 TruncInst *Trunc; 1443 const InductionDescriptor &IndDesc; 1444 1445 public: 1446 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, 1447 const InductionDescriptor &IndDesc) 1448 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV), 1449 Trunc(nullptr), IndDesc(IndDesc) { 1450 addOperand(Step); 1451 } 1452 1453 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, 1454 const InductionDescriptor &IndDesc, 1455 TruncInst *Trunc) 1456 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start), 1457 IV(IV), Trunc(Trunc), IndDesc(IndDesc) { 1458 addOperand(Step); 1459 } 1460 1461 ~VPWidenIntOrFpInductionRecipe() override = default; 1462 1463 VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC) 1464 1465 /// Generate the vectorized and scalarized versions of the phi node as 1466 /// needed by their users. 1467 void execute(VPTransformState &State) override; 1468 1469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1470 /// Print the recipe. 1471 void print(raw_ostream &O, const Twine &Indent, 1472 VPSlotTracker &SlotTracker) const override; 1473 #endif 1474 1475 VPValue *getBackedgeValue() override { 1476 // TODO: All operands of base recipe must exist and be at same index in 1477 // derived recipe. 1478 llvm_unreachable( 1479 "VPWidenIntOrFpInductionRecipe generates its own backedge value"); 1480 } 1481 1482 VPRecipeBase &getBackedgeRecipe() override { 1483 // TODO: All operands of base recipe must exist and be at same index in 1484 // derived recipe. 1485 llvm_unreachable( 1486 "VPWidenIntOrFpInductionRecipe generates its own backedge value"); 1487 } 1488 1489 /// Returns the step value of the induction. 1490 VPValue *getStepValue() { return getOperand(1); } 1491 const VPValue *getStepValue() const { return getOperand(1); } 1492 1493 /// Returns the first defined value as TruncInst, if it is one or nullptr 1494 /// otherwise. 1495 TruncInst *getTruncInst() { return Trunc; } 1496 const TruncInst *getTruncInst() const { return Trunc; } 1497 1498 PHINode *getPHINode() { return IV; } 1499 1500 /// Returns the induction descriptor for the recipe. 1501 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1502 1503 /// Returns true if the induction is canonical, i.e. starting at 0 and 1504 /// incremented by UF * VF (= the original IV is incremented by 1). 1505 bool isCanonical() const; 1506 1507 /// Returns the scalar type of the induction. 1508 Type *getScalarType() const { 1509 return Trunc ? Trunc->getType() : IV->getType(); 1510 } 1511 }; 1512 1513 class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe { 1514 const InductionDescriptor &IndDesc; 1515 1516 bool IsScalarAfterVectorization; 1517 1518 public: 1519 /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p 1520 /// Start. 1521 VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, 1522 const InductionDescriptor &IndDesc, 1523 bool IsScalarAfterVectorization) 1524 : VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi), 1525 IndDesc(IndDesc), 1526 IsScalarAfterVectorization(IsScalarAfterVectorization) { 1527 addOperand(Start); 1528 addOperand(Step); 1529 } 1530 1531 ~VPWidenPointerInductionRecipe() override = default; 1532 1533 VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC) 1534 1535 /// Generate vector values for the pointer induction. 1536 void execute(VPTransformState &State) override; 1537 1538 /// Returns true if only scalar values will be generated. 1539 bool onlyScalarsGenerated(ElementCount VF); 1540 1541 /// Returns the induction descriptor for the recipe. 1542 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1543 1544 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1545 /// Print the recipe. 1546 void print(raw_ostream &O, const Twine &Indent, 1547 VPSlotTracker &SlotTracker) const override; 1548 #endif 1549 }; 1550 1551 /// A recipe for handling header phis that are widened in the vector loop. 1552 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are 1553 /// managed in the recipe directly. 1554 class VPWidenPHIRecipe : public VPHeaderPHIRecipe { 1555 /// List of incoming blocks. Only used in the VPlan native path. 1556 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1557 1558 public: 1559 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1560 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) 1561 : VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) { 1562 if (Start) 1563 addOperand(Start); 1564 } 1565 1566 ~VPWidenPHIRecipe() override = default; 1567 1568 VP_CLASSOF_IMPL(VPDef::VPWidenPHISC) 1569 1570 /// Generate the phi/select nodes. 1571 void execute(VPTransformState &State) override; 1572 1573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1574 /// Print the recipe. 1575 void print(raw_ostream &O, const Twine &Indent, 1576 VPSlotTracker &SlotTracker) const override; 1577 #endif 1578 1579 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1580 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1581 addOperand(IncomingV); 1582 IncomingBlocks.push_back(IncomingBlock); 1583 } 1584 1585 /// Returns the \p I th incoming VPBasicBlock. 1586 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1587 1588 /// Returns the \p I th incoming VPValue. 1589 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1590 }; 1591 1592 /// A recipe for handling first-order recurrence phis. The start value is the 1593 /// first operand of the recipe and the incoming value from the backedge is the 1594 /// second operand. 1595 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { 1596 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1597 : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1598 1599 VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC) 1600 1601 static inline bool classof(const VPHeaderPHIRecipe *R) { 1602 return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC; 1603 } 1604 1605 void execute(VPTransformState &State) override; 1606 1607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1608 /// Print the recipe. 1609 void print(raw_ostream &O, const Twine &Indent, 1610 VPSlotTracker &SlotTracker) const override; 1611 #endif 1612 }; 1613 1614 /// A recipe for handling reduction phis. The start value is the first operand 1615 /// of the recipe and the incoming value from the backedge is the second 1616 /// operand. 1617 class VPReductionPHIRecipe : public VPHeaderPHIRecipe { 1618 /// Descriptor for the reduction. 1619 const RecurrenceDescriptor &RdxDesc; 1620 1621 /// The phi is part of an in-loop reduction. 1622 bool IsInLoop; 1623 1624 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1625 bool IsOrdered; 1626 1627 public: 1628 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1629 /// RdxDesc. 1630 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, 1631 VPValue &Start, bool IsInLoop = false, 1632 bool IsOrdered = false) 1633 : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start), 1634 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1635 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1636 } 1637 1638 ~VPReductionPHIRecipe() override = default; 1639 1640 VP_CLASSOF_IMPL(VPDef::VPReductionPHISC) 1641 1642 static inline bool classof(const VPHeaderPHIRecipe *R) { 1643 return R->getVPDefID() == VPDef::VPReductionPHISC; 1644 } 1645 1646 /// Generate the phi/select nodes. 1647 void execute(VPTransformState &State) override; 1648 1649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1650 /// Print the recipe. 1651 void print(raw_ostream &O, const Twine &Indent, 1652 VPSlotTracker &SlotTracker) const override; 1653 #endif 1654 1655 const RecurrenceDescriptor &getRecurrenceDescriptor() const { 1656 return RdxDesc; 1657 } 1658 1659 /// Returns true, if the phi is part of an ordered reduction. 1660 bool isOrdered() const { return IsOrdered; } 1661 1662 /// Returns true, if the phi is part of an in-loop reduction. 1663 bool isInLoop() const { return IsInLoop; } 1664 }; 1665 1666 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1667 /// instructions. 1668 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1669 public: 1670 /// The blend operation is a User of the incoming values and of their 1671 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1672 /// might be incoming with a full mask for which there is no VPValue. 1673 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1674 : VPRecipeBase(VPDef::VPBlendSC, Operands, Phi->getDebugLoc()), 1675 VPValue(this, Phi) { 1676 assert(Operands.size() > 0 && 1677 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1678 "Expected either a single incoming value or a positive even number " 1679 "of operands"); 1680 } 1681 1682 VP_CLASSOF_IMPL(VPDef::VPBlendSC) 1683 1684 /// Return the number of incoming values, taking into account that a single 1685 /// incoming value has no mask. 1686 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1687 1688 /// Return incoming value number \p Idx. 1689 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1690 1691 /// Return mask number \p Idx. 1692 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1693 1694 /// Generate the phi/select nodes. 1695 void execute(VPTransformState &State) override; 1696 1697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1698 /// Print the recipe. 1699 void print(raw_ostream &O, const Twine &Indent, 1700 VPSlotTracker &SlotTracker) const override; 1701 #endif 1702 1703 /// Returns true if the recipe only uses the first lane of operand \p Op. 1704 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1705 assert(is_contained(operands(), Op) && 1706 "Op must be an operand of the recipe"); 1707 // Recursing through Blend recipes only, must terminate at header phi's the 1708 // latest. 1709 return all_of(users(), 1710 [this](VPUser *U) { return U->onlyFirstLaneUsed(this); }); 1711 } 1712 }; 1713 1714 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1715 /// or stores into one wide load/store and shuffles. The first operand of a 1716 /// VPInterleave recipe is the address, followed by the stored values, followed 1717 /// by an optional mask. 1718 class VPInterleaveRecipe : public VPRecipeBase { 1719 const InterleaveGroup<Instruction> *IG; 1720 1721 /// Indicates if the interleave group is in a conditional block and requires a 1722 /// mask. 1723 bool HasMask = false; 1724 1725 /// Indicates if gaps between members of the group need to be masked out or if 1726 /// unusued gaps can be loaded speculatively. 1727 bool NeedsMaskForGaps = false; 1728 1729 public: 1730 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1731 ArrayRef<VPValue *> StoredValues, VPValue *Mask, 1732 bool NeedsMaskForGaps) 1733 : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG), 1734 NeedsMaskForGaps(NeedsMaskForGaps) { 1735 for (unsigned i = 0; i < IG->getFactor(); ++i) 1736 if (Instruction *I = IG->getMember(i)) { 1737 if (I->getType()->isVoidTy()) 1738 continue; 1739 new VPValue(I, this); 1740 } 1741 1742 for (auto *SV : StoredValues) 1743 addOperand(SV); 1744 if (Mask) { 1745 HasMask = true; 1746 addOperand(Mask); 1747 } 1748 } 1749 ~VPInterleaveRecipe() override = default; 1750 1751 VP_CLASSOF_IMPL(VPDef::VPInterleaveSC) 1752 1753 /// Return the address accessed by this recipe. 1754 VPValue *getAddr() const { 1755 return getOperand(0); // Address is the 1st, mandatory operand. 1756 } 1757 1758 /// Return the mask used by this recipe. Note that a full mask is represented 1759 /// by a nullptr. 1760 VPValue *getMask() const { 1761 // Mask is optional and therefore the last, currently 2nd operand. 1762 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1763 } 1764 1765 /// Return the VPValues stored by this interleave group. If it is a load 1766 /// interleave group, return an empty ArrayRef. 1767 ArrayRef<VPValue *> getStoredValues() const { 1768 // The first operand is the address, followed by the stored values, followed 1769 // by an optional mask. 1770 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1771 .slice(1, getNumStoreOperands()); 1772 } 1773 1774 /// Generate the wide load or store, and shuffles. 1775 void execute(VPTransformState &State) override; 1776 1777 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1778 /// Print the recipe. 1779 void print(raw_ostream &O, const Twine &Indent, 1780 VPSlotTracker &SlotTracker) const override; 1781 #endif 1782 1783 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1784 1785 /// Returns the number of stored operands of this interleave group. Returns 0 1786 /// for load interleave groups. 1787 unsigned getNumStoreOperands() const { 1788 return getNumOperands() - (HasMask ? 2 : 1); 1789 } 1790 1791 /// The recipe only uses the first lane of the address. 1792 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1793 assert(is_contained(operands(), Op) && 1794 "Op must be an operand of the recipe"); 1795 return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op); 1796 } 1797 }; 1798 1799 /// A recipe to represent inloop reduction operations, performing a reduction on 1800 /// a vector operand into a scalar value, and adding the result to a chain. 1801 /// The Operands are {ChainOp, VecOp, [Condition]}. 1802 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1803 /// The recurrence decriptor for the reduction in question. 1804 const RecurrenceDescriptor &RdxDesc; 1805 1806 public: 1807 VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I, 1808 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp) 1809 : VPRecipeBase(VPDef::VPReductionSC, {ChainOp, VecOp}), VPValue(this, I), 1810 RdxDesc(R) { 1811 if (CondOp) 1812 addOperand(CondOp); 1813 } 1814 1815 ~VPReductionRecipe() override = default; 1816 1817 VP_CLASSOF_IMPL(VPDef::VPReductionSC) 1818 1819 /// Generate the reduction in the loop 1820 void execute(VPTransformState &State) override; 1821 1822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1823 /// Print the recipe. 1824 void print(raw_ostream &O, const Twine &Indent, 1825 VPSlotTracker &SlotTracker) const override; 1826 #endif 1827 1828 /// The VPValue of the scalar Chain being accumulated. 1829 VPValue *getChainOp() const { return getOperand(0); } 1830 /// The VPValue of the vector value to be reduced. 1831 VPValue *getVecOp() const { return getOperand(1); } 1832 /// The VPValue of the condition for the block. 1833 VPValue *getCondOp() const { 1834 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1835 } 1836 }; 1837 1838 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1839 /// copies of the original scalar type, one per lane, instead of producing a 1840 /// single copy of widened type for all lanes. If the instruction is known to be 1841 /// uniform only one copy, per lane zero, will be generated. 1842 class VPReplicateRecipe : public VPRecipeWithIRFlags, public VPValue { 1843 /// Indicator if only a single replica per lane is needed. 1844 bool IsUniform; 1845 1846 /// Indicator if the replicas are also predicated. 1847 bool IsPredicated; 1848 1849 public: 1850 template <typename IterT> 1851 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1852 bool IsUniform, VPValue *Mask = nullptr) 1853 : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I), 1854 VPValue(this, I), IsUniform(IsUniform), IsPredicated(Mask) { 1855 if (Mask) 1856 addOperand(Mask); 1857 } 1858 1859 ~VPReplicateRecipe() override = default; 1860 1861 VP_CLASSOF_IMPL(VPDef::VPReplicateSC) 1862 1863 /// Generate replicas of the desired Ingredient. Replicas will be generated 1864 /// for all parts and lanes unless a specific part and lane are specified in 1865 /// the \p State. 1866 void execute(VPTransformState &State) override; 1867 1868 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1869 /// Print the recipe. 1870 void print(raw_ostream &O, const Twine &Indent, 1871 VPSlotTracker &SlotTracker) const override; 1872 #endif 1873 1874 bool isUniform() const { return IsUniform; } 1875 1876 bool isPredicated() const { return IsPredicated; } 1877 1878 /// Returns true if the recipe only uses the first lane of operand \p Op. 1879 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1880 assert(is_contained(operands(), Op) && 1881 "Op must be an operand of the recipe"); 1882 return isUniform(); 1883 } 1884 1885 /// Returns true if the recipe uses scalars of operand \p Op. 1886 bool usesScalars(const VPValue *Op) const override { 1887 assert(is_contained(operands(), Op) && 1888 "Op must be an operand of the recipe"); 1889 return true; 1890 } 1891 1892 /// Returns true if the recipe is used by a widened recipe via an intervening 1893 /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed 1894 /// in a vector. 1895 bool shouldPack() const; 1896 1897 /// Return the mask of a predicated VPReplicateRecipe. 1898 VPValue *getMask() { 1899 assert(isPredicated() && "Trying to get the mask of a unpredicated recipe"); 1900 return getOperand(getNumOperands() - 1); 1901 } 1902 }; 1903 1904 /// A recipe for generating conditional branches on the bits of a mask. 1905 class VPBranchOnMaskRecipe : public VPRecipeBase { 1906 public: 1907 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1908 : VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) { 1909 if (BlockInMask) // nullptr means all-one mask. 1910 addOperand(BlockInMask); 1911 } 1912 1913 VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC) 1914 1915 /// Generate the extraction of the appropriate bit from the block mask and the 1916 /// conditional branch. 1917 void execute(VPTransformState &State) override; 1918 1919 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1920 /// Print the recipe. 1921 void print(raw_ostream &O, const Twine &Indent, 1922 VPSlotTracker &SlotTracker) const override { 1923 O << Indent << "BRANCH-ON-MASK "; 1924 if (VPValue *Mask = getMask()) 1925 Mask->printAsOperand(O, SlotTracker); 1926 else 1927 O << " All-One"; 1928 } 1929 #endif 1930 1931 /// Return the mask used by this recipe. Note that a full mask is represented 1932 /// by a nullptr. 1933 VPValue *getMask() const { 1934 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1935 // Mask is optional. 1936 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1937 } 1938 1939 /// Returns true if the recipe uses scalars of operand \p Op. 1940 bool usesScalars(const VPValue *Op) const override { 1941 assert(is_contained(operands(), Op) && 1942 "Op must be an operand of the recipe"); 1943 return true; 1944 } 1945 }; 1946 1947 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1948 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1949 /// order to merge values that are set under such a branch and feed their uses. 1950 /// The phi nodes can be scalar or vector depending on the users of the value. 1951 /// This recipe works in concert with VPBranchOnMaskRecipe. 1952 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1953 public: 1954 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1955 /// nodes after merging back from a Branch-on-Mask. 1956 VPPredInstPHIRecipe(VPValue *PredV) 1957 : VPRecipeBase(VPDef::VPPredInstPHISC, PredV), VPValue(this) {} 1958 ~VPPredInstPHIRecipe() override = default; 1959 1960 VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC) 1961 1962 /// Generates phi nodes for live-outs as needed to retain SSA form. 1963 void execute(VPTransformState &State) override; 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 /// Print the recipe. 1967 void print(raw_ostream &O, const Twine &Indent, 1968 VPSlotTracker &SlotTracker) const override; 1969 #endif 1970 1971 /// Returns true if the recipe uses scalars of operand \p Op. 1972 bool usesScalars(const VPValue *Op) const override { 1973 assert(is_contained(operands(), Op) && 1974 "Op must be an operand of the recipe"); 1975 return true; 1976 } 1977 }; 1978 1979 /// A Recipe for widening load/store operations. 1980 /// The recipe uses the following VPValues: 1981 /// - For load: Address, optional mask 1982 /// - For store: Address, stored value, optional mask 1983 /// TODO: We currently execute only per-part unless a specific instance is 1984 /// provided. 1985 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 1986 Instruction &Ingredient; 1987 1988 // Whether the loaded-from / stored-to addresses are consecutive. 1989 bool Consecutive; 1990 1991 // Whether the consecutive loaded/stored addresses are in reverse order. 1992 bool Reverse; 1993 1994 void setMask(VPValue *Mask) { 1995 if (!Mask) 1996 return; 1997 addOperand(Mask); 1998 } 1999 2000 bool isMasked() const { 2001 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 2002 } 2003 2004 public: 2005 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 2006 bool Consecutive, bool Reverse) 2007 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}), 2008 Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) { 2009 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 2010 new VPValue(this, &Load); 2011 setMask(Mask); 2012 } 2013 2014 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 2015 VPValue *StoredValue, VPValue *Mask, 2016 bool Consecutive, bool Reverse) 2017 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}), 2018 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 2019 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 2020 setMask(Mask); 2021 } 2022 2023 VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC) 2024 2025 /// Return the address accessed by this recipe. 2026 VPValue *getAddr() const { 2027 return getOperand(0); // Address is the 1st, mandatory operand. 2028 } 2029 2030 /// Return the mask used by this recipe. Note that a full mask is represented 2031 /// by a nullptr. 2032 VPValue *getMask() const { 2033 // Mask is optional and therefore the last operand. 2034 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 2035 } 2036 2037 /// Returns true if this recipe is a store. 2038 bool isStore() const { return isa<StoreInst>(Ingredient); } 2039 2040 /// Return the address accessed by this recipe. 2041 VPValue *getStoredValue() const { 2042 assert(isStore() && "Stored value only available for store instructions"); 2043 return getOperand(1); // Stored value is the 2nd, mandatory operand. 2044 } 2045 2046 // Return whether the loaded-from / stored-to addresses are consecutive. 2047 bool isConsecutive() const { return Consecutive; } 2048 2049 // Return whether the consecutive loaded/stored addresses are in reverse 2050 // order. 2051 bool isReverse() const { return Reverse; } 2052 2053 /// Generate the wide load/store. 2054 void execute(VPTransformState &State) override; 2055 2056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2057 /// Print the recipe. 2058 void print(raw_ostream &O, const Twine &Indent, 2059 VPSlotTracker &SlotTracker) const override; 2060 #endif 2061 2062 /// Returns true if the recipe only uses the first lane of operand \p Op. 2063 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2064 assert(is_contained(operands(), Op) && 2065 "Op must be an operand of the recipe"); 2066 2067 // Widened, consecutive memory operations only demand the first lane of 2068 // their address, unless the same operand is also stored. That latter can 2069 // happen with opaque pointers. 2070 return Op == getAddr() && isConsecutive() && 2071 (!isStore() || Op != getStoredValue()); 2072 } 2073 2074 Instruction &getIngredient() const { return Ingredient; } 2075 }; 2076 2077 /// Recipe to expand a SCEV expression. 2078 class VPExpandSCEVRecipe : public VPRecipeBase, public VPValue { 2079 const SCEV *Expr; 2080 ScalarEvolution &SE; 2081 2082 public: 2083 VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) 2084 : VPRecipeBase(VPDef::VPExpandSCEVSC, {}), VPValue(this), Expr(Expr), 2085 SE(SE) {} 2086 2087 ~VPExpandSCEVRecipe() override = default; 2088 2089 VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC) 2090 2091 /// Generate a canonical vector induction variable of the vector loop, with 2092 void execute(VPTransformState &State) override; 2093 2094 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2095 /// Print the recipe. 2096 void print(raw_ostream &O, const Twine &Indent, 2097 VPSlotTracker &SlotTracker) const override; 2098 #endif 2099 2100 const SCEV *getSCEV() const { return Expr; } 2101 }; 2102 2103 /// Canonical scalar induction phi of the vector loop. Starting at the specified 2104 /// start value (either 0 or the resume value when vectorizing the epilogue 2105 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the 2106 /// canonical induction variable. 2107 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { 2108 public: 2109 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) 2110 : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {} 2111 2112 ~VPCanonicalIVPHIRecipe() override = default; 2113 2114 VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC) 2115 2116 static inline bool classof(const VPHeaderPHIRecipe *D) { 2117 return D->getVPDefID() == VPDef::VPCanonicalIVPHISC; 2118 } 2119 2120 /// Generate the canonical scalar induction phi of the vector loop. 2121 void execute(VPTransformState &State) override; 2122 2123 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2124 /// Print the recipe. 2125 void print(raw_ostream &O, const Twine &Indent, 2126 VPSlotTracker &SlotTracker) const override; 2127 #endif 2128 2129 /// Returns the scalar type of the induction. 2130 Type *getScalarType() const { 2131 return getStartValue()->getLiveInIRValue()->getType(); 2132 } 2133 2134 /// Returns true if the recipe only uses the first lane of operand \p Op. 2135 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2136 assert(is_contained(operands(), Op) && 2137 "Op must be an operand of the recipe"); 2138 return true; 2139 } 2140 2141 /// Returns true if the recipe only uses the first part of operand \p Op. 2142 bool onlyFirstPartUsed(const VPValue *Op) const override { 2143 assert(is_contained(operands(), Op) && 2144 "Op must be an operand of the recipe"); 2145 return true; 2146 } 2147 2148 /// Check if the induction described by \p Kind, /p Start and \p Step is 2149 /// canonical, i.e. has the same start, step (of 1), and type as the 2150 /// canonical IV. 2151 bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start, 2152 VPValue *Step, Type *Ty) const; 2153 }; 2154 2155 /// A recipe for generating the active lane mask for the vector loop that is 2156 /// used to predicate the vector operations. 2157 /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and 2158 /// remove VPActiveLaneMaskPHIRecipe. 2159 class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { 2160 public: 2161 VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) 2162 : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask, 2163 DL) {} 2164 2165 ~VPActiveLaneMaskPHIRecipe() override = default; 2166 2167 VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC) 2168 2169 static inline bool classof(const VPHeaderPHIRecipe *D) { 2170 return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC; 2171 } 2172 2173 /// Generate the active lane mask phi of the vector loop. 2174 void execute(VPTransformState &State) override; 2175 2176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2177 /// Print the recipe. 2178 void print(raw_ostream &O, const Twine &Indent, 2179 VPSlotTracker &SlotTracker) const override; 2180 #endif 2181 }; 2182 2183 /// A Recipe for widening the canonical induction variable of the vector loop. 2184 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 2185 public: 2186 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) 2187 : VPRecipeBase(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}), 2188 VPValue(this) {} 2189 2190 ~VPWidenCanonicalIVRecipe() override = default; 2191 2192 VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC) 2193 2194 /// Generate a canonical vector induction variable of the vector loop, with 2195 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 2196 /// step = <VF*UF, VF*UF, ..., VF*UF>. 2197 void execute(VPTransformState &State) override; 2198 2199 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2200 /// Print the recipe. 2201 void print(raw_ostream &O, const Twine &Indent, 2202 VPSlotTracker &SlotTracker) const override; 2203 #endif 2204 2205 /// Returns the scalar type of the induction. 2206 const Type *getScalarType() const { 2207 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe()) 2208 ->getScalarType(); 2209 } 2210 }; 2211 2212 /// A recipe for converting the canonical IV value to the corresponding value of 2213 /// an IV with different start and step values, using Start + CanonicalIV * 2214 /// Step. 2215 class VPDerivedIVRecipe : public VPRecipeBase, public VPValue { 2216 /// If not nullptr, the result of the induction will get truncated to 2217 /// TruncResultTy. 2218 Type *TruncResultTy; 2219 2220 /// Kind of the induction. 2221 const InductionDescriptor::InductionKind Kind; 2222 /// If not nullptr, the floating point induction binary operator. Must be set 2223 /// for floating point inductions. 2224 const FPMathOperator *FPBinOp; 2225 2226 public: 2227 VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start, 2228 VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, 2229 Type *TruncResultTy) 2230 : VPRecipeBase(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}), 2231 VPValue(this), TruncResultTy(TruncResultTy), Kind(IndDesc.getKind()), 2232 FPBinOp(dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())) { 2233 } 2234 2235 ~VPDerivedIVRecipe() override = default; 2236 2237 VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC) 2238 2239 /// Generate the transformed value of the induction at offset StartValue (1. 2240 /// operand) + IV (2. operand) * StepValue (3, operand). 2241 void execute(VPTransformState &State) override; 2242 2243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2244 /// Print the recipe. 2245 void print(raw_ostream &O, const Twine &Indent, 2246 VPSlotTracker &SlotTracker) const override; 2247 #endif 2248 2249 Type *getScalarType() const { 2250 return TruncResultTy ? TruncResultTy 2251 : getStartValue()->getLiveInIRValue()->getType(); 2252 } 2253 2254 VPValue *getStartValue() const { return getOperand(0); } 2255 VPValue *getCanonicalIV() const { return getOperand(1); } 2256 VPValue *getStepValue() const { return getOperand(2); } 2257 2258 /// Returns true if the recipe only uses the first lane of operand \p Op. 2259 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2260 assert(is_contained(operands(), Op) && 2261 "Op must be an operand of the recipe"); 2262 return true; 2263 } 2264 }; 2265 2266 /// A recipe for handling phi nodes of integer and floating-point inductions, 2267 /// producing their scalar values. 2268 class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags, public VPValue { 2269 Instruction::BinaryOps InductionOpcode; 2270 2271 public: 2272 VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, 2273 Instruction::BinaryOps Opcode, FastMathFlags FMFs) 2274 : VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC, 2275 ArrayRef<VPValue *>({IV, Step}), FMFs), 2276 VPValue(this), InductionOpcode(Opcode) {} 2277 2278 VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, 2279 VPValue *Step) 2280 : VPScalarIVStepsRecipe( 2281 IV, Step, IndDesc.getInductionOpcode(), 2282 dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()) 2283 ? IndDesc.getInductionBinOp()->getFastMathFlags() 2284 : FastMathFlags()) {} 2285 2286 ~VPScalarIVStepsRecipe() override = default; 2287 2288 VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC) 2289 2290 /// Generate the scalarized versions of the phi node as needed by their users. 2291 void execute(VPTransformState &State) override; 2292 2293 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2294 /// Print the recipe. 2295 void print(raw_ostream &O, const Twine &Indent, 2296 VPSlotTracker &SlotTracker) const override; 2297 #endif 2298 2299 VPValue *getStepValue() const { return getOperand(1); } 2300 2301 /// Returns true if the recipe only uses the first lane of operand \p Op. 2302 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2303 assert(is_contained(operands(), Op) && 2304 "Op must be an operand of the recipe"); 2305 return true; 2306 } 2307 }; 2308 2309 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 2310 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 2311 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 2312 class VPBasicBlock : public VPBlockBase { 2313 public: 2314 using RecipeListTy = iplist<VPRecipeBase>; 2315 2316 private: 2317 /// The VPRecipes held in the order of output instructions to generate. 2318 RecipeListTy Recipes; 2319 2320 public: 2321 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 2322 : VPBlockBase(VPBasicBlockSC, Name.str()) { 2323 if (Recipe) 2324 appendRecipe(Recipe); 2325 } 2326 2327 ~VPBasicBlock() override { 2328 while (!Recipes.empty()) 2329 Recipes.pop_back(); 2330 } 2331 2332 /// Instruction iterators... 2333 using iterator = RecipeListTy::iterator; 2334 using const_iterator = RecipeListTy::const_iterator; 2335 using reverse_iterator = RecipeListTy::reverse_iterator; 2336 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 2337 2338 //===--------------------------------------------------------------------===// 2339 /// Recipe iterator methods 2340 /// 2341 inline iterator begin() { return Recipes.begin(); } 2342 inline const_iterator begin() const { return Recipes.begin(); } 2343 inline iterator end() { return Recipes.end(); } 2344 inline const_iterator end() const { return Recipes.end(); } 2345 2346 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 2347 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 2348 inline reverse_iterator rend() { return Recipes.rend(); } 2349 inline const_reverse_iterator rend() const { return Recipes.rend(); } 2350 2351 inline size_t size() const { return Recipes.size(); } 2352 inline bool empty() const { return Recipes.empty(); } 2353 inline const VPRecipeBase &front() const { return Recipes.front(); } 2354 inline VPRecipeBase &front() { return Recipes.front(); } 2355 inline const VPRecipeBase &back() const { return Recipes.back(); } 2356 inline VPRecipeBase &back() { return Recipes.back(); } 2357 2358 /// Returns a reference to the list of recipes. 2359 RecipeListTy &getRecipeList() { return Recipes; } 2360 2361 /// Returns a pointer to a member of the recipe list. 2362 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 2363 return &VPBasicBlock::Recipes; 2364 } 2365 2366 /// Method to support type inquiry through isa, cast, and dyn_cast. 2367 static inline bool classof(const VPBlockBase *V) { 2368 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 2369 } 2370 2371 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 2372 assert(Recipe && "No recipe to append."); 2373 assert(!Recipe->Parent && "Recipe already in VPlan"); 2374 Recipe->Parent = this; 2375 Recipes.insert(InsertPt, Recipe); 2376 } 2377 2378 /// Augment the existing recipes of a VPBasicBlock with an additional 2379 /// \p Recipe as the last recipe. 2380 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 2381 2382 /// The method which generates the output IR instructions that correspond to 2383 /// this VPBasicBlock, thereby "executing" the VPlan. 2384 void execute(VPTransformState *State) override; 2385 2386 /// Return the position of the first non-phi node recipe in the block. 2387 iterator getFirstNonPhi(); 2388 2389 /// Returns an iterator range over the PHI-like recipes in the block. 2390 iterator_range<iterator> phis() { 2391 return make_range(begin(), getFirstNonPhi()); 2392 } 2393 2394 void dropAllReferences(VPValue *NewValue) override; 2395 2396 /// Split current block at \p SplitAt by inserting a new block between the 2397 /// current block and its successors and moving all recipes starting at 2398 /// SplitAt to the new block. Returns the new block. 2399 VPBasicBlock *splitAt(iterator SplitAt); 2400 2401 VPRegionBlock *getEnclosingLoopRegion(); 2402 2403 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2404 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 2405 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 2406 /// 2407 /// Note that the numbering is applied to the whole VPlan, so printing 2408 /// individual blocks is consistent with the whole VPlan printing. 2409 void print(raw_ostream &O, const Twine &Indent, 2410 VPSlotTracker &SlotTracker) const override; 2411 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2412 #endif 2413 2414 /// If the block has multiple successors, return the branch recipe terminating 2415 /// the block. If there are no or only a single successor, return nullptr; 2416 VPRecipeBase *getTerminator(); 2417 const VPRecipeBase *getTerminator() const; 2418 2419 /// Returns true if the block is exiting it's parent region. 2420 bool isExiting() const; 2421 2422 private: 2423 /// Create an IR BasicBlock to hold the output instructions generated by this 2424 /// VPBasicBlock, and return it. Update the CFGState accordingly. 2425 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 2426 }; 2427 2428 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 2429 /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. 2430 /// A VPRegionBlock may indicate that its contents are to be replicated several 2431 /// times. This is designed to support predicated scalarization, in which a 2432 /// scalar if-then code structure needs to be generated VF * UF times. Having 2433 /// this replication indicator helps to keep a single model for multiple 2434 /// candidate VF's. The actual replication takes place only once the desired VF 2435 /// and UF have been determined. 2436 class VPRegionBlock : public VPBlockBase { 2437 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 2438 VPBlockBase *Entry; 2439 2440 /// Hold the Single Exiting block of the SESE region modelled by the 2441 /// VPRegionBlock. 2442 VPBlockBase *Exiting; 2443 2444 /// An indicator whether this region is to generate multiple replicated 2445 /// instances of output IR corresponding to its VPBlockBases. 2446 bool IsReplicator; 2447 2448 public: 2449 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, 2450 const std::string &Name = "", bool IsReplicator = false) 2451 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), 2452 IsReplicator(IsReplicator) { 2453 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 2454 assert(Exiting->getSuccessors().empty() && "Exit block has successors."); 2455 Entry->setParent(this); 2456 Exiting->setParent(this); 2457 } 2458 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 2459 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), 2460 IsReplicator(IsReplicator) {} 2461 2462 ~VPRegionBlock() override { 2463 if (Entry) { 2464 VPValue DummyValue; 2465 Entry->dropAllReferences(&DummyValue); 2466 deleteCFG(Entry); 2467 } 2468 } 2469 2470 /// Method to support type inquiry through isa, cast, and dyn_cast. 2471 static inline bool classof(const VPBlockBase *V) { 2472 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 2473 } 2474 2475 const VPBlockBase *getEntry() const { return Entry; } 2476 VPBlockBase *getEntry() { return Entry; } 2477 2478 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 2479 /// EntryBlock must have no predecessors. 2480 void setEntry(VPBlockBase *EntryBlock) { 2481 assert(EntryBlock->getPredecessors().empty() && 2482 "Entry block cannot have predecessors."); 2483 Entry = EntryBlock; 2484 EntryBlock->setParent(this); 2485 } 2486 2487 const VPBlockBase *getExiting() const { return Exiting; } 2488 VPBlockBase *getExiting() { return Exiting; } 2489 2490 /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p 2491 /// ExitingBlock must have no successors. 2492 void setExiting(VPBlockBase *ExitingBlock) { 2493 assert(ExitingBlock->getSuccessors().empty() && 2494 "Exit block cannot have successors."); 2495 Exiting = ExitingBlock; 2496 ExitingBlock->setParent(this); 2497 } 2498 2499 /// Returns the pre-header VPBasicBlock of the loop region. 2500 VPBasicBlock *getPreheaderVPBB() { 2501 assert(!isReplicator() && "should only get pre-header of loop regions"); 2502 return getSinglePredecessor()->getExitingBasicBlock(); 2503 } 2504 2505 /// An indicator whether this region is to generate multiple replicated 2506 /// instances of output IR corresponding to its VPBlockBases. 2507 bool isReplicator() const { return IsReplicator; } 2508 2509 /// The method which generates the output IR instructions that correspond to 2510 /// this VPRegionBlock, thereby "executing" the VPlan. 2511 void execute(VPTransformState *State) override; 2512 2513 void dropAllReferences(VPValue *NewValue) override; 2514 2515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2516 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 2517 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 2518 /// consequtive numbers. 2519 /// 2520 /// Note that the numbering is applied to the whole VPlan, so printing 2521 /// individual regions is consistent with the whole VPlan printing. 2522 void print(raw_ostream &O, const Twine &Indent, 2523 VPSlotTracker &SlotTracker) const override; 2524 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2525 #endif 2526 }; 2527 2528 /// VPlan models a candidate for vectorization, encoding various decisions take 2529 /// to produce efficient output IR, including which branches, basic-blocks and 2530 /// output IR instructions to generate, and their cost. VPlan holds a 2531 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2532 /// VPBasicBlock. 2533 class VPlan { 2534 friend class VPlanPrinter; 2535 friend class VPSlotTracker; 2536 2537 /// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the 2538 /// preheader of the vector loop. 2539 VPBasicBlock *Entry; 2540 2541 /// VPBasicBlock corresponding to the original preheader. Used to place 2542 /// VPExpandSCEV recipes for expressions used during skeleton creation and the 2543 /// rest of VPlan execution. 2544 VPBasicBlock *Preheader; 2545 2546 /// Holds the VFs applicable to this VPlan. 2547 SmallSetVector<ElementCount, 2> VFs; 2548 2549 /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for 2550 /// any UF. 2551 SmallSetVector<unsigned, 2> UFs; 2552 2553 /// Holds the name of the VPlan, for printing. 2554 std::string Name; 2555 2556 /// Represents the trip count of the original loop, for folding 2557 /// the tail. 2558 VPValue *TripCount = nullptr; 2559 2560 /// Represents the backedge taken count of the original loop, for folding 2561 /// the tail. It equals TripCount - 1. 2562 VPValue *BackedgeTakenCount = nullptr; 2563 2564 /// Represents the vector trip count. 2565 VPValue VectorTripCount; 2566 2567 /// Represents the loop-invariant VF * UF of the vector loop region. 2568 VPValue VFxUF; 2569 2570 /// Holds a mapping between Values and their corresponding VPValue inside 2571 /// VPlan. 2572 Value2VPValueTy Value2VPValue; 2573 2574 /// Contains all the external definitions created for this VPlan. External 2575 /// definitions are VPValues that hold a pointer to their underlying IR. 2576 SmallVector<VPValue *, 16> VPLiveInsToFree; 2577 2578 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2579 /// mapping cannot be used any longer, because it is stale. 2580 bool Value2VPValueEnabled = true; 2581 2582 /// Values used outside the plan. 2583 MapVector<PHINode *, VPLiveOut *> LiveOuts; 2584 2585 /// Mapping from SCEVs to the VPValues representing their expansions. 2586 /// NOTE: This mapping is temporary and will be removed once all users have 2587 /// been modeled in VPlan directly. 2588 DenseMap<const SCEV *, VPValue *> SCEVToExpansion; 2589 2590 public: 2591 /// Construct a VPlan with original preheader \p Preheader, trip count \p TC 2592 /// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to 2593 /// be disconnected, as the bypass blocks between them are not yet modeled in 2594 /// VPlan. 2595 VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry) 2596 : VPlan(Preheader, Entry) { 2597 TripCount = TC; 2598 } 2599 2600 /// Construct a VPlan with original preheader \p Preheader and \p Entry to 2601 /// the plan. At the moment, \p Preheader and \p Entry need to be 2602 /// disconnected, as the bypass blocks between them are not yet modeled in 2603 /// VPlan. 2604 VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry) 2605 : Entry(Entry), Preheader(Preheader) { 2606 Entry->setPlan(this); 2607 Preheader->setPlan(this); 2608 assert(Preheader->getNumSuccessors() == 0 && 2609 Preheader->getNumPredecessors() == 0 && 2610 "preheader must be disconnected"); 2611 } 2612 2613 ~VPlan(); 2614 2615 /// Create initial VPlan skeleton, having an "entry" VPBasicBlock (wrapping 2616 /// original scalar pre-header) which contains SCEV expansions that need to 2617 /// happen before the CFG is modified; a VPBasicBlock for the vector 2618 /// pre-header, followed by a region for the vector loop, followed by the 2619 /// middle VPBasicBlock. 2620 static VPlanPtr createInitialVPlan(const SCEV *TripCount, 2621 ScalarEvolution &PSE); 2622 2623 /// Prepare the plan for execution, setting up the required live-in values. 2624 void prepareToExecute(Value *TripCount, Value *VectorTripCount, 2625 Value *CanonicalIVStartValue, VPTransformState &State); 2626 2627 /// Generate the IR code for this VPlan. 2628 void execute(VPTransformState *State); 2629 2630 VPBasicBlock *getEntry() { return Entry; } 2631 const VPBasicBlock *getEntry() const { return Entry; } 2632 2633 /// The trip count of the original loop. 2634 VPValue *getTripCount() const { 2635 assert(TripCount && "trip count needs to be set before accessing it"); 2636 return TripCount; 2637 } 2638 2639 /// The backedge taken count of the original loop. 2640 VPValue *getOrCreateBackedgeTakenCount() { 2641 if (!BackedgeTakenCount) 2642 BackedgeTakenCount = new VPValue(); 2643 return BackedgeTakenCount; 2644 } 2645 2646 /// The vector trip count. 2647 VPValue &getVectorTripCount() { return VectorTripCount; } 2648 2649 /// Returns VF * UF of the vector loop region. 2650 VPValue &getVFxUF() { return VFxUF; } 2651 2652 /// Mark the plan to indicate that using Value2VPValue is not safe any 2653 /// longer, because it may be stale. 2654 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2655 2656 void addVF(ElementCount VF) { VFs.insert(VF); } 2657 2658 void setVF(ElementCount VF) { 2659 assert(hasVF(VF) && "Cannot set VF not already in plan"); 2660 VFs.clear(); 2661 VFs.insert(VF); 2662 } 2663 2664 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2665 2666 bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); } 2667 2668 bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); } 2669 2670 void setUF(unsigned UF) { 2671 assert(hasUF(UF) && "Cannot set the UF not already in plan"); 2672 UFs.clear(); 2673 UFs.insert(UF); 2674 } 2675 2676 /// Return a string with the name of the plan and the applicable VFs and UFs. 2677 std::string getName() const; 2678 2679 void setName(const Twine &newName) { Name = newName.str(); } 2680 2681 void addVPValue(Value *V, VPValue *VPV) { 2682 assert((Value2VPValueEnabled || VPV->isLiveIn()) && 2683 "Value2VPValue mapping may be out of date!"); 2684 assert(V && "Trying to add a null Value to VPlan"); 2685 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2686 Value2VPValue[V] = VPV; 2687 } 2688 2689 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2690 /// /// checking whether it is safe to query VPValues using IR Values. 2691 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2692 assert(V && "Trying to get the VPValue of a null Value"); 2693 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2694 assert((Value2VPValueEnabled || OverrideAllowed || 2695 Value2VPValue[V]->isLiveIn()) && 2696 "Value2VPValue mapping may be out of date!"); 2697 return Value2VPValue[V]; 2698 } 2699 2700 /// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for 2701 /// \p V. 2702 VPValue *getVPValueOrAddLiveIn(Value *V) { 2703 assert(V && "Trying to get or add the VPValue of a null Value"); 2704 if (!Value2VPValue.count(V)) { 2705 VPValue *VPV = new VPValue(V); 2706 VPLiveInsToFree.push_back(VPV); 2707 addVPValue(V, VPV); 2708 } 2709 2710 return getVPValue(V); 2711 } 2712 2713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2714 /// Print the live-ins of this VPlan to \p O. 2715 void printLiveIns(raw_ostream &O) const; 2716 2717 /// Print this VPlan to \p O. 2718 void print(raw_ostream &O) const; 2719 2720 /// Print this VPlan in DOT format to \p O. 2721 void printDOT(raw_ostream &O) const; 2722 2723 /// Dump the plan to stderr (for debugging). 2724 LLVM_DUMP_METHOD void dump() const; 2725 #endif 2726 2727 /// Returns a range mapping the values the range \p Operands to their 2728 /// corresponding VPValues. 2729 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2730 mapToVPValues(User::op_range Operands) { 2731 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2732 return getVPValueOrAddLiveIn(Op); 2733 }; 2734 return map_range(Operands, Fn); 2735 } 2736 2737 /// Returns the VPRegionBlock of the vector loop. 2738 VPRegionBlock *getVectorLoopRegion() { 2739 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); 2740 } 2741 const VPRegionBlock *getVectorLoopRegion() const { 2742 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); 2743 } 2744 2745 /// Returns the canonical induction recipe of the vector loop. 2746 VPCanonicalIVPHIRecipe *getCanonicalIV() { 2747 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); 2748 if (EntryVPBB->empty()) { 2749 // VPlan native path. 2750 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); 2751 } 2752 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); 2753 } 2754 2755 void addLiveOut(PHINode *PN, VPValue *V); 2756 2757 void removeLiveOut(PHINode *PN) { 2758 delete LiveOuts[PN]; 2759 LiveOuts.erase(PN); 2760 } 2761 2762 const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const { 2763 return LiveOuts; 2764 } 2765 2766 VPValue *getSCEVExpansion(const SCEV *S) const { 2767 return SCEVToExpansion.lookup(S); 2768 } 2769 2770 void addSCEVExpansion(const SCEV *S, VPValue *V) { 2771 assert(!SCEVToExpansion.contains(S) && "SCEV already expanded"); 2772 SCEVToExpansion[S] = V; 2773 } 2774 2775 /// \return The block corresponding to the original preheader. 2776 VPBasicBlock *getPreheader() { return Preheader; } 2777 const VPBasicBlock *getPreheader() const { return Preheader; } 2778 2779 private: 2780 /// Add to the given dominator tree the header block and every new basic block 2781 /// that was created between it and the latch block, inclusive. 2782 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2783 BasicBlock *LoopPreHeaderBB, 2784 BasicBlock *LoopExitBB); 2785 }; 2786 2787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2788 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2789 /// indented and follows the dot format. 2790 class VPlanPrinter { 2791 raw_ostream &OS; 2792 const VPlan &Plan; 2793 unsigned Depth = 0; 2794 unsigned TabWidth = 2; 2795 std::string Indent; 2796 unsigned BID = 0; 2797 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2798 2799 VPSlotTracker SlotTracker; 2800 2801 /// Handle indentation. 2802 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2803 2804 /// Print a given \p Block of the Plan. 2805 void dumpBlock(const VPBlockBase *Block); 2806 2807 /// Print the information related to the CFG edges going out of a given 2808 /// \p Block, followed by printing the successor blocks themselves. 2809 void dumpEdges(const VPBlockBase *Block); 2810 2811 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2812 /// its successor blocks. 2813 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2814 2815 /// Print a given \p Region of the Plan. 2816 void dumpRegion(const VPRegionBlock *Region); 2817 2818 unsigned getOrCreateBID(const VPBlockBase *Block) { 2819 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2820 } 2821 2822 Twine getOrCreateName(const VPBlockBase *Block); 2823 2824 Twine getUID(const VPBlockBase *Block); 2825 2826 /// Print the information related to a CFG edge between two VPBlockBases. 2827 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2828 const Twine &Label); 2829 2830 public: 2831 VPlanPrinter(raw_ostream &O, const VPlan &P) 2832 : OS(O), Plan(P), SlotTracker(&P) {} 2833 2834 LLVM_DUMP_METHOD void dump(); 2835 }; 2836 2837 struct VPlanIngredient { 2838 const Value *V; 2839 2840 VPlanIngredient(const Value *V) : V(V) {} 2841 2842 void print(raw_ostream &O) const; 2843 }; 2844 2845 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2846 I.print(OS); 2847 return OS; 2848 } 2849 2850 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2851 Plan.print(OS); 2852 return OS; 2853 } 2854 #endif 2855 2856 //===----------------------------------------------------------------------===// 2857 // VPlan Utilities 2858 //===----------------------------------------------------------------------===// 2859 2860 /// Class that provides utilities for VPBlockBases in VPlan. 2861 class VPBlockUtils { 2862 public: 2863 VPBlockUtils() = delete; 2864 2865 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2866 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2867 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's 2868 /// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must 2869 /// have neither successors nor predecessors. 2870 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2871 assert(NewBlock->getSuccessors().empty() && 2872 NewBlock->getPredecessors().empty() && 2873 "Can't insert new block with predecessors or successors."); 2874 NewBlock->setParent(BlockPtr->getParent()); 2875 SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); 2876 for (VPBlockBase *Succ : Succs) { 2877 disconnectBlocks(BlockPtr, Succ); 2878 connectBlocks(NewBlock, Succ); 2879 } 2880 connectBlocks(BlockPtr, NewBlock); 2881 } 2882 2883 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2884 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2885 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2886 /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors 2887 /// and \p IfTrue and \p IfFalse must have neither successors nor 2888 /// predecessors. 2889 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2890 VPBlockBase *BlockPtr) { 2891 assert(IfTrue->getSuccessors().empty() && 2892 "Can't insert IfTrue with successors."); 2893 assert(IfFalse->getSuccessors().empty() && 2894 "Can't insert IfFalse with successors."); 2895 BlockPtr->setTwoSuccessors(IfTrue, IfFalse); 2896 IfTrue->setPredecessors({BlockPtr}); 2897 IfFalse->setPredecessors({BlockPtr}); 2898 IfTrue->setParent(BlockPtr->getParent()); 2899 IfFalse->setParent(BlockPtr->getParent()); 2900 } 2901 2902 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2903 /// the successors of \p From and \p From to the predecessors of \p To. Both 2904 /// VPBlockBases must have the same parent, which can be null. Both 2905 /// VPBlockBases can be already connected to other VPBlockBases. 2906 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2907 assert((From->getParent() == To->getParent()) && 2908 "Can't connect two block with different parents"); 2909 assert(From->getNumSuccessors() < 2 && 2910 "Blocks can't have more than two successors."); 2911 From->appendSuccessor(To); 2912 To->appendPredecessor(From); 2913 } 2914 2915 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2916 /// from the successors of \p From and \p From from the predecessors of \p To. 2917 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2918 assert(To && "Successor to disconnect is null."); 2919 From->removeSuccessor(To); 2920 To->removePredecessor(From); 2921 } 2922 2923 /// Return an iterator range over \p Range which only includes \p BlockTy 2924 /// blocks. The accesses are casted to \p BlockTy. 2925 template <typename BlockTy, typename T> 2926 static auto blocksOnly(const T &Range) { 2927 // Create BaseTy with correct const-ness based on BlockTy. 2928 using BaseTy = std::conditional_t<std::is_const<BlockTy>::value, 2929 const VPBlockBase, VPBlockBase>; 2930 2931 // We need to first create an iterator range over (const) BlocktTy & instead 2932 // of (const) BlockTy * for filter_range to work properly. 2933 auto Mapped = 2934 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2935 auto Filter = make_filter_range( 2936 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2937 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2938 return cast<BlockTy>(&Block); 2939 }); 2940 } 2941 }; 2942 2943 class VPInterleavedAccessInfo { 2944 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2945 InterleaveGroupMap; 2946 2947 /// Type for mapping of instruction based interleave groups to VPInstruction 2948 /// interleave groups 2949 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2950 InterleaveGroup<VPInstruction> *>; 2951 2952 /// Recursively \p Region and populate VPlan based interleave groups based on 2953 /// \p IAI. 2954 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2955 InterleavedAccessInfo &IAI); 2956 /// Recursively traverse \p Block and populate VPlan based interleave groups 2957 /// based on \p IAI. 2958 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2959 InterleavedAccessInfo &IAI); 2960 2961 public: 2962 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2963 2964 ~VPInterleavedAccessInfo() { 2965 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2966 // Avoid releasing a pointer twice. 2967 for (auto &I : InterleaveGroupMap) 2968 DelSet.insert(I.second); 2969 for (auto *Ptr : DelSet) 2970 delete Ptr; 2971 } 2972 2973 /// Get the interleave group that \p Instr belongs to. 2974 /// 2975 /// \returns nullptr if doesn't have such group. 2976 InterleaveGroup<VPInstruction> * 2977 getInterleaveGroup(VPInstruction *Instr) const { 2978 return InterleaveGroupMap.lookup(Instr); 2979 } 2980 }; 2981 2982 /// Class that maps (parts of) an existing VPlan to trees of combined 2983 /// VPInstructions. 2984 class VPlanSlp { 2985 enum class OpMode { Failed, Load, Opcode }; 2986 2987 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2988 /// DenseMap keys. 2989 struct BundleDenseMapInfo { 2990 static SmallVector<VPValue *, 4> getEmptyKey() { 2991 return {reinterpret_cast<VPValue *>(-1)}; 2992 } 2993 2994 static SmallVector<VPValue *, 4> getTombstoneKey() { 2995 return {reinterpret_cast<VPValue *>(-2)}; 2996 } 2997 2998 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2999 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3000 } 3001 3002 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 3003 const SmallVector<VPValue *, 4> &RHS) { 3004 return LHS == RHS; 3005 } 3006 }; 3007 3008 /// Mapping of values in the original VPlan to a combined VPInstruction. 3009 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 3010 BundleToCombined; 3011 3012 VPInterleavedAccessInfo &IAI; 3013 3014 /// Basic block to operate on. For now, only instructions in a single BB are 3015 /// considered. 3016 const VPBasicBlock &BB; 3017 3018 /// Indicates whether we managed to combine all visited instructions or not. 3019 bool CompletelySLP = true; 3020 3021 /// Width of the widest combined bundle in bits. 3022 unsigned WidestBundleBits = 0; 3023 3024 using MultiNodeOpTy = 3025 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 3026 3027 // Input operand bundles for the current multi node. Each multi node operand 3028 // bundle contains values not matching the multi node's opcode. They will 3029 // be reordered in reorderMultiNodeOps, once we completed building a 3030 // multi node. 3031 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 3032 3033 /// Indicates whether we are building a multi node currently. 3034 bool MultiNodeActive = false; 3035 3036 /// Check if we can vectorize Operands together. 3037 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 3038 3039 /// Add combined instruction \p New for the bundle \p Operands. 3040 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 3041 3042 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 3043 VPInstruction *markFailed(); 3044 3045 /// Reorder operands in the multi node to maximize sequential memory access 3046 /// and commutative operations. 3047 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 3048 3049 /// Choose the best candidate to use for the lane after \p Last. The set of 3050 /// candidates to choose from are values with an opcode matching \p Last's 3051 /// or loads consecutive to \p Last. 3052 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 3053 SmallPtrSetImpl<VPValue *> &Candidates, 3054 VPInterleavedAccessInfo &IAI); 3055 3056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3057 /// Print bundle \p Values to dbgs(). 3058 void dumpBundle(ArrayRef<VPValue *> Values); 3059 #endif 3060 3061 public: 3062 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 3063 3064 ~VPlanSlp() = default; 3065 3066 /// Tries to build an SLP tree rooted at \p Operands and returns a 3067 /// VPInstruction combining \p Operands, if they can be combined. 3068 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 3069 3070 /// Return the width of the widest combined bundle in bits. 3071 unsigned getWidestBundleBits() const { return WidestBundleBits; } 3072 3073 /// Return true if all visited instruction can be combined. 3074 bool isCompletelySLP() const { return CompletelySLP; } 3075 }; 3076 3077 namespace vputils { 3078 3079 /// Returns true if only the first lane of \p Def is used. 3080 bool onlyFirstLaneUsed(VPValue *Def); 3081 3082 /// Returns true if only the first part of \p Def is used. 3083 bool onlyFirstPartUsed(VPValue *Def); 3084 3085 /// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p 3086 /// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in 3087 /// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's 3088 /// pre-header already contains a recipe expanding \p Expr, return it. If not, 3089 /// create a new one. 3090 VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 3091 ScalarEvolution &SE); 3092 3093 /// Returns true if \p VPV is uniform after vectorization. 3094 inline bool isUniformAfterVectorization(VPValue *VPV) { 3095 // A value defined outside the vector region must be uniform after 3096 // vectorization inside a vector region. 3097 if (VPV->isDefinedOutsideVectorRegions()) 3098 return true; 3099 VPRecipeBase *Def = VPV->getDefiningRecipe(); 3100 assert(Def && "Must have definition for value defined inside vector region"); 3101 if (auto Rep = dyn_cast<VPReplicateRecipe>(Def)) 3102 return Rep->isUniform(); 3103 if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def)) 3104 return all_of(GEP->operands(), isUniformAfterVectorization); 3105 return false; 3106 } 3107 } // end namespace vputils 3108 3109 } // end namespace llvm 3110 3111 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 3112