1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/Support/InstructionCost.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <map> 48 #include <string> 49 50 namespace llvm { 51 52 class BasicBlock; 53 class DominatorTree; 54 class InnerLoopVectorizer; 55 class LoopInfo; 56 class raw_ostream; 57 class RecurrenceDescriptor; 58 class Value; 59 class VPBasicBlock; 60 class VPRegionBlock; 61 class VPlan; 62 class VPlanSlp; 63 64 /// Returns a calculation for the total number of elements for a given \p VF. 65 /// For fixed width vectors this value is a constant, whereas for scalable 66 /// vectors it is an expression determined at runtime. 67 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF); 68 69 /// A range of powers-of-2 vectorization factors with fixed start and 70 /// adjustable end. The range includes start and excludes end, e.g.,: 71 /// [1, 9) = {1, 2, 4, 8} 72 struct VFRange { 73 // A power of 2. 74 const ElementCount Start; 75 76 // Need not be a power of 2. If End <= Start range is empty. 77 ElementCount End; 78 79 bool isEmpty() const { 80 return End.getKnownMinValue() <= Start.getKnownMinValue(); 81 } 82 83 VFRange(const ElementCount &Start, const ElementCount &End) 84 : Start(Start), End(End) { 85 assert(Start.isScalable() == End.isScalable() && 86 "Both Start and End should have the same scalable flag"); 87 assert(isPowerOf2_32(Start.getKnownMinValue()) && 88 "Expected Start to be a power of 2"); 89 } 90 }; 91 92 using VPlanPtr = std::unique_ptr<VPlan>; 93 94 /// In what follows, the term "input IR" refers to code that is fed into the 95 /// vectorizer whereas the term "output IR" refers to code that is generated by 96 /// the vectorizer. 97 98 /// VPLane provides a way to access lanes in both fixed width and scalable 99 /// vectors, where for the latter the lane index sometimes needs calculating 100 /// as a runtime expression. 101 class VPLane { 102 public: 103 /// Kind describes how to interpret Lane. 104 enum class Kind : uint8_t { 105 /// For First, Lane is the index into the first N elements of a 106 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 107 First, 108 /// For ScalableLast, Lane is the offset from the start of the last 109 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 110 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 111 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 112 ScalableLast 113 }; 114 115 private: 116 /// in [0..VF) 117 unsigned Lane; 118 119 /// Indicates how the Lane should be interpreted, as described above. 120 Kind LaneKind; 121 122 public: 123 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 124 125 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 126 127 static VPLane getLastLaneForVF(const ElementCount &VF) { 128 unsigned LaneOffset = VF.getKnownMinValue() - 1; 129 Kind LaneKind; 130 if (VF.isScalable()) 131 // In this case 'LaneOffset' refers to the offset from the start of the 132 // last subvector with VF.getKnownMinValue() elements. 133 LaneKind = VPLane::Kind::ScalableLast; 134 else 135 LaneKind = VPLane::Kind::First; 136 return VPLane(LaneOffset, LaneKind); 137 } 138 139 /// Returns a compile-time known value for the lane index and asserts if the 140 /// lane can only be calculated at runtime. 141 unsigned getKnownLane() const { 142 assert(LaneKind == Kind::First); 143 return Lane; 144 } 145 146 /// Returns an expression describing the lane index that can be used at 147 /// runtime. 148 Value *getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const; 149 150 /// Returns the Kind of lane offset. 151 Kind getKind() const { return LaneKind; } 152 153 /// Returns true if this is the first lane of the whole vector. 154 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 155 156 /// Maps the lane to a cache index based on \p VF. 157 unsigned mapToCacheIndex(const ElementCount &VF) const { 158 switch (LaneKind) { 159 case VPLane::Kind::ScalableLast: 160 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 161 return VF.getKnownMinValue() + Lane; 162 default: 163 assert(Lane < VF.getKnownMinValue()); 164 return Lane; 165 } 166 } 167 168 /// Returns the maxmimum number of lanes that we are able to consider 169 /// caching for \p VF. 170 static unsigned getNumCachedLanes(const ElementCount &VF) { 171 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 172 } 173 }; 174 175 /// VPIteration represents a single point in the iteration space of the output 176 /// (vectorized and/or unrolled) IR loop. 177 struct VPIteration { 178 /// in [0..UF) 179 unsigned Part; 180 181 VPLane Lane; 182 183 VPIteration(unsigned Part, unsigned Lane, 184 VPLane::Kind Kind = VPLane::Kind::First) 185 : Part(Part), Lane(Lane, Kind) {} 186 187 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 188 189 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 190 }; 191 192 /// VPTransformState holds information passed down when "executing" a VPlan, 193 /// needed for generating the output IR. 194 struct VPTransformState { 195 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 196 DominatorTree *DT, IRBuilder<> &Builder, 197 InnerLoopVectorizer *ILV, VPlan *Plan) 198 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ILV(ILV), 199 Plan(Plan) {} 200 201 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 202 ElementCount VF; 203 unsigned UF; 204 205 /// Hold the indices to generate specific scalar instructions. Null indicates 206 /// that all instances are to be generated, using either scalar or vector 207 /// instructions. 208 Optional<VPIteration> Instance; 209 210 struct DataState { 211 /// A type for vectorized values in the new loop. Each value from the 212 /// original loop, when vectorized, is represented by UF vector values in 213 /// the new unrolled loop, where UF is the unroll factor. 214 typedef SmallVector<Value *, 2> PerPartValuesTy; 215 216 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 217 218 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 219 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 220 } Data; 221 222 /// Get the generated Value for a given VPValue and a given Part. Note that 223 /// as some Defs are still created by ILV and managed in its ValueMap, this 224 /// method will delegate the call to ILV in such cases in order to provide 225 /// callers a consistent API. 226 /// \see set. 227 Value *get(VPValue *Def, unsigned Part); 228 229 /// Get the generated Value for a given VPValue and given Part and Lane. 230 Value *get(VPValue *Def, const VPIteration &Instance); 231 232 bool hasVectorValue(VPValue *Def, unsigned Part) { 233 auto I = Data.PerPartOutput.find(Def); 234 return I != Data.PerPartOutput.end() && Part < I->second.size() && 235 I->second[Part]; 236 } 237 238 bool hasAnyVectorValue(VPValue *Def) const { 239 return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end(); 240 } 241 242 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 243 auto I = Data.PerPartScalars.find(Def); 244 if (I == Data.PerPartScalars.end()) 245 return false; 246 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 247 return Instance.Part < I->second.size() && 248 CacheIdx < I->second[Instance.Part].size() && 249 I->second[Instance.Part][CacheIdx]; 250 } 251 252 /// Set the generated Value for a given VPValue and a given Part. 253 void set(VPValue *Def, Value *V, unsigned Part) { 254 if (!Data.PerPartOutput.count(Def)) { 255 DataState::PerPartValuesTy Entry(UF); 256 Data.PerPartOutput[Def] = Entry; 257 } 258 Data.PerPartOutput[Def][Part] = V; 259 } 260 /// Reset an existing vector value for \p Def and a given \p Part. 261 void reset(VPValue *Def, Value *V, unsigned Part) { 262 auto Iter = Data.PerPartOutput.find(Def); 263 assert(Iter != Data.PerPartOutput.end() && 264 "need to overwrite existing value"); 265 Iter->second[Part] = V; 266 } 267 268 /// Set the generated scalar \p V for \p Def and the given \p Instance. 269 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 270 auto Iter = Data.PerPartScalars.insert({Def, {}}); 271 auto &PerPartVec = Iter.first->second; 272 while (PerPartVec.size() <= Instance.Part) 273 PerPartVec.emplace_back(); 274 auto &Scalars = PerPartVec[Instance.Part]; 275 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 276 while (Scalars.size() <= CacheIdx) 277 Scalars.push_back(nullptr); 278 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 279 Scalars[CacheIdx] = V; 280 } 281 282 /// Reset an existing scalar value for \p Def and a given \p Instance. 283 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 284 auto Iter = Data.PerPartScalars.find(Def); 285 assert(Iter != Data.PerPartScalars.end() && 286 "need to overwrite existing value"); 287 assert(Instance.Part < Iter->second.size() && 288 "need to overwrite existing value"); 289 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 290 assert(CacheIdx < Iter->second[Instance.Part].size() && 291 "need to overwrite existing value"); 292 Iter->second[Instance.Part][CacheIdx] = V; 293 } 294 295 /// Hold state information used when constructing the CFG of the output IR, 296 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 297 struct CFGState { 298 /// The previous VPBasicBlock visited. Initially set to null. 299 VPBasicBlock *PrevVPBB = nullptr; 300 301 /// The previous IR BasicBlock created or used. Initially set to the new 302 /// header BasicBlock. 303 BasicBlock *PrevBB = nullptr; 304 305 /// The last IR BasicBlock in the output IR. Set to the new latch 306 /// BasicBlock, used for placing the newly created BasicBlocks. 307 BasicBlock *LastBB = nullptr; 308 309 /// The IR BasicBlock that is the preheader of the vector loop in the output 310 /// IR. 311 /// FIXME: The vector preheader should also be modeled in VPlan, so any code 312 /// that needs to be added to the preheader gets directly generated by 313 /// VPlan. There should be no need to manage a pointer to the IR BasicBlock. 314 BasicBlock *VectorPreHeader = nullptr; 315 316 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 317 /// of replication, maps the BasicBlock of the last replica created. 318 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 319 320 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 321 /// up at the end of vector code generation. 322 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 323 324 CFGState() = default; 325 } CFG; 326 327 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 328 LoopInfo *LI; 329 330 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 331 DominatorTree *DT; 332 333 /// Hold a reference to the IRBuilder used to generate output IR code. 334 IRBuilder<> &Builder; 335 336 VPValue2ValueTy VPValue2Value; 337 338 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 339 Value *CanonicalIV = nullptr; 340 341 /// Hold the trip count of the scalar loop. 342 Value *TripCount = nullptr; 343 344 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 345 InnerLoopVectorizer *ILV; 346 347 /// Pointer to the VPlan code is generated for. 348 VPlan *Plan; 349 }; 350 351 /// VPUsers instance used by VPBlockBase to manage CondBit and the block 352 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical 353 /// reasons, but in the future the only VPUsers should either be recipes or 354 /// live-outs.VPBlockBase uses. 355 struct VPBlockUser : public VPUser { 356 VPBlockUser() : VPUser({}, VPUserID::Block) {} 357 358 VPValue *getSingleOperandOrNull() { 359 if (getNumOperands() == 1) 360 return getOperand(0); 361 362 return nullptr; 363 } 364 const VPValue *getSingleOperandOrNull() const { 365 if (getNumOperands() == 1) 366 return getOperand(0); 367 368 return nullptr; 369 } 370 371 void resetSingleOpUser(VPValue *NewVal) { 372 assert(getNumOperands() <= 1 && "Didn't expect more than one operand!"); 373 if (!NewVal) { 374 if (getNumOperands() == 1) 375 removeLastOperand(); 376 return; 377 } 378 379 if (getNumOperands() == 1) 380 setOperand(0, NewVal); 381 else 382 addOperand(NewVal); 383 } 384 }; 385 386 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 387 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 388 class VPBlockBase { 389 friend class VPBlockUtils; 390 391 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 392 393 /// An optional name for the block. 394 std::string Name; 395 396 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 397 /// it is a topmost VPBlockBase. 398 VPRegionBlock *Parent = nullptr; 399 400 /// List of predecessor blocks. 401 SmallVector<VPBlockBase *, 1> Predecessors; 402 403 /// List of successor blocks. 404 SmallVector<VPBlockBase *, 1> Successors; 405 406 /// Successor selector managed by a VPUser. For blocks with zero or one 407 /// successors, there is no operand. Otherwise there is exactly one operand 408 /// which is the branch condition. 409 VPBlockUser CondBitUser; 410 411 /// If the block is predicated, its predicate is stored as an operand of this 412 /// VPUser to maintain the def-use relations. Otherwise there is no operand 413 /// here. 414 VPBlockUser PredicateUser; 415 416 /// VPlan containing the block. Can only be set on the entry block of the 417 /// plan. 418 VPlan *Plan = nullptr; 419 420 /// Add \p Successor as the last successor to this block. 421 void appendSuccessor(VPBlockBase *Successor) { 422 assert(Successor && "Cannot add nullptr successor!"); 423 Successors.push_back(Successor); 424 } 425 426 /// Add \p Predecessor as the last predecessor to this block. 427 void appendPredecessor(VPBlockBase *Predecessor) { 428 assert(Predecessor && "Cannot add nullptr predecessor!"); 429 Predecessors.push_back(Predecessor); 430 } 431 432 /// Remove \p Predecessor from the predecessors of this block. 433 void removePredecessor(VPBlockBase *Predecessor) { 434 auto Pos = find(Predecessors, Predecessor); 435 assert(Pos && "Predecessor does not exist"); 436 Predecessors.erase(Pos); 437 } 438 439 /// Remove \p Successor from the successors of this block. 440 void removeSuccessor(VPBlockBase *Successor) { 441 auto Pos = find(Successors, Successor); 442 assert(Pos && "Successor does not exist"); 443 Successors.erase(Pos); 444 } 445 446 protected: 447 VPBlockBase(const unsigned char SC, const std::string &N) 448 : SubclassID(SC), Name(N) {} 449 450 public: 451 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 452 /// that are actually instantiated. Values of this enumeration are kept in the 453 /// SubclassID field of the VPBlockBase objects. They are used for concrete 454 /// type identification. 455 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 456 457 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 458 459 virtual ~VPBlockBase() = default; 460 461 const std::string &getName() const { return Name; } 462 463 void setName(const Twine &newName) { Name = newName.str(); } 464 465 /// \return an ID for the concrete type of this object. 466 /// This is used to implement the classof checks. This should not be used 467 /// for any other purpose, as the values may change as LLVM evolves. 468 unsigned getVPBlockID() const { return SubclassID; } 469 470 VPRegionBlock *getParent() { return Parent; } 471 const VPRegionBlock *getParent() const { return Parent; } 472 473 /// \return A pointer to the plan containing the current block. 474 VPlan *getPlan(); 475 const VPlan *getPlan() const; 476 477 /// Sets the pointer of the plan containing the block. The block must be the 478 /// entry block into the VPlan. 479 void setPlan(VPlan *ParentPlan); 480 481 void setParent(VPRegionBlock *P) { Parent = P; } 482 483 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 484 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 485 /// VPBlockBase is a VPBasicBlock, it is returned. 486 const VPBasicBlock *getEntryBasicBlock() const; 487 VPBasicBlock *getEntryBasicBlock(); 488 489 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 490 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 491 /// VPBlockBase is a VPBasicBlock, it is returned. 492 const VPBasicBlock *getExitBasicBlock() const; 493 VPBasicBlock *getExitBasicBlock(); 494 495 const VPBlocksTy &getSuccessors() const { return Successors; } 496 VPBlocksTy &getSuccessors() { return Successors; } 497 498 const VPBlocksTy &getPredecessors() const { return Predecessors; } 499 VPBlocksTy &getPredecessors() { return Predecessors; } 500 501 /// \return the successor of this VPBlockBase if it has a single successor. 502 /// Otherwise return a null pointer. 503 VPBlockBase *getSingleSuccessor() const { 504 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 505 } 506 507 /// \return the predecessor of this VPBlockBase if it has a single 508 /// predecessor. Otherwise return a null pointer. 509 VPBlockBase *getSinglePredecessor() const { 510 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 511 } 512 513 size_t getNumSuccessors() const { return Successors.size(); } 514 size_t getNumPredecessors() const { return Predecessors.size(); } 515 516 /// An Enclosing Block of a block B is any block containing B, including B 517 /// itself. \return the closest enclosing block starting from "this", which 518 /// has successors. \return the root enclosing block if all enclosing blocks 519 /// have no successors. 520 VPBlockBase *getEnclosingBlockWithSuccessors(); 521 522 /// \return the closest enclosing block starting from "this", which has 523 /// predecessors. \return the root enclosing block if all enclosing blocks 524 /// have no predecessors. 525 VPBlockBase *getEnclosingBlockWithPredecessors(); 526 527 /// \return the successors either attached directly to this VPBlockBase or, if 528 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 529 /// successors of its own, search recursively for the first enclosing 530 /// VPRegionBlock that has successors and return them. If no such 531 /// VPRegionBlock exists, return the (empty) successors of the topmost 532 /// VPBlockBase reached. 533 const VPBlocksTy &getHierarchicalSuccessors() { 534 return getEnclosingBlockWithSuccessors()->getSuccessors(); 535 } 536 537 /// \return the hierarchical successor of this VPBlockBase if it has a single 538 /// hierarchical successor. Otherwise return a null pointer. 539 VPBlockBase *getSingleHierarchicalSuccessor() { 540 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 541 } 542 543 /// \return the predecessors either attached directly to this VPBlockBase or, 544 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 545 /// predecessors of its own, search recursively for the first enclosing 546 /// VPRegionBlock that has predecessors and return them. If no such 547 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 548 /// VPBlockBase reached. 549 const VPBlocksTy &getHierarchicalPredecessors() { 550 return getEnclosingBlockWithPredecessors()->getPredecessors(); 551 } 552 553 /// \return the hierarchical predecessor of this VPBlockBase if it has a 554 /// single hierarchical predecessor. Otherwise return a null pointer. 555 VPBlockBase *getSingleHierarchicalPredecessor() { 556 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 557 } 558 559 /// \return the condition bit selecting the successor. 560 VPValue *getCondBit(); 561 /// \return the condition bit selecting the successor. 562 const VPValue *getCondBit() const; 563 /// Set the condition bit selecting the successor. 564 void setCondBit(VPValue *CV); 565 566 /// \return the block's predicate. 567 VPValue *getPredicate(); 568 /// \return the block's predicate. 569 const VPValue *getPredicate() const; 570 /// Set the block's predicate. 571 void setPredicate(VPValue *Pred); 572 573 /// Set a given VPBlockBase \p Successor as the single successor of this 574 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 575 /// This VPBlockBase must have no successors. 576 void setOneSuccessor(VPBlockBase *Successor) { 577 assert(Successors.empty() && "Setting one successor when others exist."); 578 appendSuccessor(Successor); 579 } 580 581 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 582 /// successors of this VPBlockBase. \p Condition is set as the successor 583 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 584 /// IfFalse. This VPBlockBase must have no successors. 585 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 586 VPValue *Condition) { 587 assert(Successors.empty() && "Setting two successors when others exist."); 588 assert(Condition && "Setting two successors without condition!"); 589 setCondBit(Condition); 590 appendSuccessor(IfTrue); 591 appendSuccessor(IfFalse); 592 } 593 594 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 595 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 596 /// as successor of any VPBasicBlock in \p NewPreds. 597 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 598 assert(Predecessors.empty() && "Block predecessors already set."); 599 for (auto *Pred : NewPreds) 600 appendPredecessor(Pred); 601 } 602 603 /// Remove all the predecessor of this block. 604 void clearPredecessors() { Predecessors.clear(); } 605 606 /// Remove all the successors of this block and set to null its condition bit 607 void clearSuccessors() { 608 Successors.clear(); 609 setCondBit(nullptr); 610 } 611 612 /// The method which generates the output IR that correspond to this 613 /// VPBlockBase, thereby "executing" the VPlan. 614 virtual void execute(struct VPTransformState *State) = 0; 615 616 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 617 static void deleteCFG(VPBlockBase *Entry); 618 619 /// Return true if it is legal to hoist instructions into this block. 620 bool isLegalToHoistInto() { 621 // There are currently no constraints that prevent an instruction to be 622 // hoisted into a VPBlockBase. 623 return true; 624 } 625 626 /// Replace all operands of VPUsers in the block with \p NewValue and also 627 /// replaces all uses of VPValues defined in the block with NewValue. 628 virtual void dropAllReferences(VPValue *NewValue) = 0; 629 630 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 631 void printAsOperand(raw_ostream &OS, bool PrintType) const { 632 OS << getName(); 633 } 634 635 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 636 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 637 /// consequtive numbers. 638 /// 639 /// Note that the numbering is applied to the whole VPlan, so printing 640 /// individual blocks is consistent with the whole VPlan printing. 641 virtual void print(raw_ostream &O, const Twine &Indent, 642 VPSlotTracker &SlotTracker) const = 0; 643 644 /// Print plain-text dump of this VPlan to \p O. 645 void print(raw_ostream &O) const { 646 VPSlotTracker SlotTracker(getPlan()); 647 print(O, "", SlotTracker); 648 } 649 650 /// Print the successors of this block to \p O, prefixing all lines with \p 651 /// Indent. 652 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 653 654 /// Dump this VPBlockBase to dbgs(). 655 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 656 #endif 657 }; 658 659 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 660 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef 661 /// and is responsible for deleting its defined values. Single-value 662 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 663 /// VPRecipeBase before VPValue. 664 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 665 public VPDef, 666 public VPUser { 667 friend VPBasicBlock; 668 friend class VPBlockUtils; 669 670 /// Each VPRecipe belongs to a single VPBasicBlock. 671 VPBasicBlock *Parent = nullptr; 672 673 public: 674 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) 675 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 676 677 template <typename IterT> 678 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) 679 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 680 virtual ~VPRecipeBase() = default; 681 682 /// \return the VPBasicBlock which this VPRecipe belongs to. 683 VPBasicBlock *getParent() { return Parent; } 684 const VPBasicBlock *getParent() const { return Parent; } 685 686 /// The method which generates the output IR instructions that correspond to 687 /// this VPRecipe, thereby "executing" the VPlan. 688 virtual void execute(struct VPTransformState &State) = 0; 689 690 /// Insert an unlinked recipe into a basic block immediately before 691 /// the specified recipe. 692 void insertBefore(VPRecipeBase *InsertPos); 693 694 /// Insert an unlinked Recipe into a basic block immediately after 695 /// the specified Recipe. 696 void insertAfter(VPRecipeBase *InsertPos); 697 698 /// Unlink this recipe from its current VPBasicBlock and insert it into 699 /// the VPBasicBlock that MovePos lives in, right after MovePos. 700 void moveAfter(VPRecipeBase *MovePos); 701 702 /// Unlink this recipe and insert into BB before I. 703 /// 704 /// \pre I is a valid iterator into BB. 705 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 706 707 /// This method unlinks 'this' from the containing basic block, but does not 708 /// delete it. 709 void removeFromParent(); 710 711 /// This method unlinks 'this' from the containing basic block and deletes it. 712 /// 713 /// \returns an iterator pointing to the element after the erased one 714 iplist<VPRecipeBase>::iterator eraseFromParent(); 715 716 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 717 /// otherwise. 718 Instruction *getUnderlyingInstr() { 719 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 720 } 721 const Instruction *getUnderlyingInstr() const { 722 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 723 } 724 725 /// Method to support type inquiry through isa, cast, and dyn_cast. 726 static inline bool classof(const VPDef *D) { 727 // All VPDefs are also VPRecipeBases. 728 return true; 729 } 730 731 static inline bool classof(const VPUser *U) { 732 return U->getVPUserID() == VPUser::VPUserID::Recipe; 733 } 734 735 /// Returns true if the recipe may have side-effects. 736 bool mayHaveSideEffects() const; 737 738 /// Returns true for PHI-like recipes. 739 bool isPhi() const { 740 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 741 } 742 743 /// Returns true if the recipe may read from memory. 744 bool mayReadFromMemory() const; 745 746 /// Returns true if the recipe may write to memory. 747 bool mayWriteToMemory() const; 748 749 /// Returns true if the recipe may read from or write to memory. 750 bool mayReadOrWriteMemory() const { 751 return mayReadFromMemory() || mayWriteToMemory(); 752 } 753 }; 754 755 inline bool VPUser::classof(const VPDef *Def) { 756 return Def->getVPDefID() == VPRecipeBase::VPInstructionSC || 757 Def->getVPDefID() == VPRecipeBase::VPWidenSC || 758 Def->getVPDefID() == VPRecipeBase::VPWidenCallSC || 759 Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC || 760 Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 761 Def->getVPDefID() == VPRecipeBase::VPBlendSC || 762 Def->getVPDefID() == VPRecipeBase::VPInterleaveSC || 763 Def->getVPDefID() == VPRecipeBase::VPReplicateSC || 764 Def->getVPDefID() == VPRecipeBase::VPReductionSC || 765 Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC || 766 Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 767 } 768 769 /// This is a concrete Recipe that models a single VPlan-level instruction. 770 /// While as any Recipe it may generate a sequence of IR instructions when 771 /// executed, these instructions would always form a single-def expression as 772 /// the VPInstruction is also a single def-use vertex. 773 class VPInstruction : public VPRecipeBase, public VPValue { 774 friend class VPlanSlp; 775 776 public: 777 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 778 enum { 779 FirstOrderRecurrenceSplice = 780 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 781 // values of a first-order recurrence. 782 Not, 783 ICmpULE, 784 SLPLoad, 785 SLPStore, 786 ActiveLaneMask, 787 }; 788 789 private: 790 typedef unsigned char OpcodeTy; 791 OpcodeTy Opcode; 792 793 /// Utility method serving execute(): generates a single instance of the 794 /// modeled instruction. 795 void generateInstruction(VPTransformState &State, unsigned Part); 796 797 protected: 798 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 799 800 public: 801 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) 802 : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands), 803 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {} 804 805 VPInstruction(unsigned Opcode, ArrayRef<VPInstruction *> Operands) 806 : VPRecipeBase(VPRecipeBase::VPInstructionSC, {}), 807 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) { 808 for (auto *I : Operands) 809 addOperand(I->getVPSingleValue()); 810 } 811 812 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) 813 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} 814 815 /// Method to support type inquiry through isa, cast, and dyn_cast. 816 static inline bool classof(const VPValue *V) { 817 return V->getVPValueID() == VPValue::VPVInstructionSC; 818 } 819 820 VPInstruction *clone() const { 821 SmallVector<VPValue *, 2> Operands(operands()); 822 return new VPInstruction(Opcode, Operands); 823 } 824 825 /// Method to support type inquiry through isa, cast, and dyn_cast. 826 static inline bool classof(const VPDef *R) { 827 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 828 } 829 830 unsigned getOpcode() const { return Opcode; } 831 832 /// Generate the instruction. 833 /// TODO: We currently execute only per-part unless a specific instance is 834 /// provided. 835 void execute(VPTransformState &State) override; 836 837 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 838 /// Print the VPInstruction to \p O. 839 void print(raw_ostream &O, const Twine &Indent, 840 VPSlotTracker &SlotTracker) const override; 841 842 /// Print the VPInstruction to dbgs() (for debugging). 843 LLVM_DUMP_METHOD void dump() const; 844 #endif 845 846 /// Return true if this instruction may modify memory. 847 bool mayWriteToMemory() const { 848 // TODO: we can use attributes of the called function to rule out memory 849 // modifications. 850 return Opcode == Instruction::Store || Opcode == Instruction::Call || 851 Opcode == Instruction::Invoke || Opcode == SLPStore; 852 } 853 854 bool hasResult() const { 855 // CallInst may or may not have a result, depending on the called function. 856 // Conservatively return calls have results for now. 857 switch (getOpcode()) { 858 case Instruction::Ret: 859 case Instruction::Br: 860 case Instruction::Store: 861 case Instruction::Switch: 862 case Instruction::IndirectBr: 863 case Instruction::Resume: 864 case Instruction::CatchRet: 865 case Instruction::Unreachable: 866 case Instruction::Fence: 867 case Instruction::AtomicRMW: 868 return false; 869 default: 870 return true; 871 } 872 } 873 }; 874 875 /// VPWidenRecipe is a recipe for producing a copy of vector type its 876 /// ingredient. This recipe covers most of the traditional vectorization cases 877 /// where each ingredient transforms into a vectorized version of itself. 878 class VPWidenRecipe : public VPRecipeBase, public VPValue { 879 public: 880 template <typename IterT> 881 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 882 : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands), 883 VPValue(VPValue::VPVWidenSC, &I, this) {} 884 885 ~VPWidenRecipe() override = default; 886 887 /// Method to support type inquiry through isa, cast, and dyn_cast. 888 static inline bool classof(const VPDef *D) { 889 return D->getVPDefID() == VPRecipeBase::VPWidenSC; 890 } 891 static inline bool classof(const VPValue *V) { 892 return V->getVPValueID() == VPValue::VPVWidenSC; 893 } 894 895 /// Produce widened copies of all Ingredients. 896 void execute(VPTransformState &State) override; 897 898 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 899 /// Print the recipe. 900 void print(raw_ostream &O, const Twine &Indent, 901 VPSlotTracker &SlotTracker) const override; 902 #endif 903 }; 904 905 /// A recipe for widening Call instructions. 906 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 907 908 public: 909 template <typename IterT> 910 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments) 911 : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments), 912 VPValue(VPValue::VPVWidenCallSC, &I, this) {} 913 914 ~VPWidenCallRecipe() override = default; 915 916 /// Method to support type inquiry through isa, cast, and dyn_cast. 917 static inline bool classof(const VPDef *D) { 918 return D->getVPDefID() == VPRecipeBase::VPWidenCallSC; 919 } 920 921 /// Produce a widened version of the call instruction. 922 void execute(VPTransformState &State) override; 923 924 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 925 /// Print the recipe. 926 void print(raw_ostream &O, const Twine &Indent, 927 VPSlotTracker &SlotTracker) const override; 928 #endif 929 }; 930 931 /// A recipe for widening select instructions. 932 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 933 934 /// Is the condition of the select loop invariant? 935 bool InvariantCond; 936 937 public: 938 template <typename IterT> 939 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands, 940 bool InvariantCond) 941 : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands), 942 VPValue(VPValue::VPVWidenSelectSC, &I, this), 943 InvariantCond(InvariantCond) {} 944 945 ~VPWidenSelectRecipe() override = default; 946 947 /// Method to support type inquiry through isa, cast, and dyn_cast. 948 static inline bool classof(const VPDef *D) { 949 return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC; 950 } 951 952 /// Produce a widened version of the select instruction. 953 void execute(VPTransformState &State) override; 954 955 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 956 /// Print the recipe. 957 void print(raw_ostream &O, const Twine &Indent, 958 VPSlotTracker &SlotTracker) const override; 959 #endif 960 }; 961 962 /// A recipe for handling GEP instructions. 963 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue { 964 bool IsPtrLoopInvariant; 965 SmallBitVector IsIndexLoopInvariant; 966 967 public: 968 template <typename IterT> 969 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 970 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 971 VPValue(VPWidenGEPSC, GEP, this), 972 IsIndexLoopInvariant(GEP->getNumIndices(), false) {} 973 974 template <typename IterT> 975 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands, 976 Loop *OrigLoop) 977 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 978 VPValue(VPValue::VPVWidenGEPSC, GEP, this), 979 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 980 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 981 for (auto Index : enumerate(GEP->indices())) 982 IsIndexLoopInvariant[Index.index()] = 983 OrigLoop->isLoopInvariant(Index.value().get()); 984 } 985 ~VPWidenGEPRecipe() override = default; 986 987 /// Method to support type inquiry through isa, cast, and dyn_cast. 988 static inline bool classof(const VPDef *D) { 989 return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC; 990 } 991 992 /// Generate the gep nodes. 993 void execute(VPTransformState &State) override; 994 995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 996 /// Print the recipe. 997 void print(raw_ostream &O, const Twine &Indent, 998 VPSlotTracker &SlotTracker) const override; 999 #endif 1000 }; 1001 1002 /// A recipe for handling phi nodes of integer and floating-point inductions, 1003 /// producing their vector and scalar values. 1004 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 1005 PHINode *IV; 1006 1007 public: 1008 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, Instruction *Cast, 1009 TruncInst *Trunc = nullptr) 1010 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), IV(IV) { 1011 if (Trunc) 1012 new VPValue(Trunc, this); 1013 else 1014 new VPValue(IV, this); 1015 1016 if (Cast) 1017 new VPValue(Cast, this); 1018 } 1019 ~VPWidenIntOrFpInductionRecipe() override = default; 1020 1021 /// Method to support type inquiry through isa, cast, and dyn_cast. 1022 static inline bool classof(const VPDef *D) { 1023 return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 1024 } 1025 1026 /// Generate the vectorized and scalarized versions of the phi node as 1027 /// needed by their users. 1028 void execute(VPTransformState &State) override; 1029 1030 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1031 /// Print the recipe. 1032 void print(raw_ostream &O, const Twine &Indent, 1033 VPSlotTracker &SlotTracker) const override; 1034 #endif 1035 1036 /// Returns the start value of the induction. 1037 VPValue *getStartValue() { return getOperand(0); } 1038 1039 /// Returns the cast VPValue, if one is attached, or nullptr otherwise. 1040 VPValue *getCastValue() { 1041 if (getNumDefinedValues() != 2) 1042 return nullptr; 1043 return getVPValue(1); 1044 } 1045 1046 /// Returns the first defined value as TruncInst, if it is one or nullptr 1047 /// otherwise. 1048 TruncInst *getTruncInst() { 1049 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1050 } 1051 const TruncInst *getTruncInst() const { 1052 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1053 } 1054 }; 1055 1056 /// A recipe for handling first order recurrences and pointer inductions. For 1057 /// first-order recurrences, the start value is the first operand of the recipe 1058 /// and the incoming value from the backedge is the second operand. It also 1059 /// serves as base class for VPReductionPHIRecipe. In the VPlan native path, all 1060 /// incoming VPValues & VPBasicBlock pairs are managed in the recipe directly. 1061 class VPWidenPHIRecipe : public VPRecipeBase, public VPValue { 1062 /// List of incoming blocks. Only used in the VPlan native path. 1063 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1064 1065 protected: 1066 VPWidenPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi, 1067 VPValue *Start = nullptr) 1068 : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) { 1069 if (Start) 1070 addOperand(Start); 1071 } 1072 1073 public: 1074 /// Create a VPWidenPHIRecipe for \p Phi 1075 VPWidenPHIRecipe(PHINode *Phi) 1076 : VPWidenPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) {} 1077 1078 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1079 VPWidenPHIRecipe(PHINode *Phi, VPValue &Start) : VPWidenPHIRecipe(Phi) { 1080 addOperand(&Start); 1081 } 1082 1083 ~VPWidenPHIRecipe() override = default; 1084 1085 /// Method to support type inquiry through isa, cast, and dyn_cast. 1086 static inline bool classof(const VPRecipeBase *B) { 1087 return B->getVPDefID() == VPRecipeBase::VPWidenPHISC || 1088 B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC || 1089 B->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1090 } 1091 static inline bool classof(const VPValue *V) { 1092 return V->getVPValueID() == VPValue::VPVWidenPHISC || 1093 V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC || 1094 V->getVPValueID() == VPValue::VPVReductionPHISC; 1095 } 1096 1097 /// Generate the phi/select nodes. 1098 void execute(VPTransformState &State) override; 1099 1100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1101 /// Print the recipe. 1102 void print(raw_ostream &O, const Twine &Indent, 1103 VPSlotTracker &SlotTracker) const override; 1104 #endif 1105 1106 /// Returns the start value of the phi, if it is a reduction or first-order 1107 /// recurrence. 1108 VPValue *getStartValue() { 1109 return getNumOperands() == 0 ? nullptr : getOperand(0); 1110 } 1111 1112 /// Returns the incoming value from the loop backedge, if it is a reduction or 1113 /// first-order recurrence. 1114 VPValue *getBackedgeValue() { 1115 return getOperand(1); 1116 } 1117 1118 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1119 /// to be a recipe. 1120 VPRecipeBase *getBackedgeRecipe() { 1121 return cast<VPRecipeBase>(getBackedgeValue()->getDef()); 1122 } 1123 1124 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1125 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1126 addOperand(IncomingV); 1127 IncomingBlocks.push_back(IncomingBlock); 1128 } 1129 1130 /// Returns the \p I th incoming VPValue. 1131 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1132 1133 /// Returns the \p I th incoming VPBasicBlock. 1134 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1135 }; 1136 1137 /// A recipe for handling first-order recurrence phis. The start value is the 1138 /// first operand of the recipe and the incoming value from the backedge is the 1139 /// second operand. 1140 struct VPFirstOrderRecurrencePHIRecipe : public VPWidenPHIRecipe { 1141 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1142 : VPWidenPHIRecipe(VPVFirstOrderRecurrencePHISC, 1143 VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1144 1145 /// Method to support type inquiry through isa, cast, and dyn_cast. 1146 static inline bool classof(const VPRecipeBase *R) { 1147 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1148 } 1149 static inline bool classof(const VPWidenPHIRecipe *D) { 1150 return D->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1151 } 1152 static inline bool classof(const VPValue *V) { 1153 return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC; 1154 } 1155 1156 void execute(VPTransformState &State) override; 1157 1158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1159 /// Print the recipe. 1160 void print(raw_ostream &O, const Twine &Indent, 1161 VPSlotTracker &SlotTracker) const override; 1162 #endif 1163 }; 1164 1165 /// A recipe for handling reduction phis. The start value is the first operand 1166 /// of the recipe and the incoming value from the backedge is the second 1167 /// operand. 1168 class VPReductionPHIRecipe : public VPWidenPHIRecipe { 1169 /// Descriptor for the reduction. 1170 RecurrenceDescriptor &RdxDesc; 1171 1172 /// The phi is part of an in-loop reduction. 1173 bool IsInLoop; 1174 1175 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1176 bool IsOrdered; 1177 1178 public: 1179 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1180 /// RdxDesc. 1181 VPReductionPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, 1182 VPValue &Start, bool IsInLoop = false, 1183 bool IsOrdered = false) 1184 : VPWidenPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start), 1185 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1186 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1187 } 1188 1189 ~VPReductionPHIRecipe() override = default; 1190 1191 /// Method to support type inquiry through isa, cast, and dyn_cast. 1192 static inline bool classof(const VPRecipeBase *R) { 1193 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1194 } 1195 static inline bool classof(const VPValue *V) { 1196 return V->getVPValueID() == VPValue::VPVReductionPHISC; 1197 } 1198 static inline bool classof(const VPWidenPHIRecipe *R) { 1199 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1200 } 1201 1202 /// Generate the phi/select nodes. 1203 void execute(VPTransformState &State) override; 1204 1205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1206 /// Print the recipe. 1207 void print(raw_ostream &O, const Twine &Indent, 1208 VPSlotTracker &SlotTracker) const override; 1209 #endif 1210 1211 RecurrenceDescriptor &getRecurrenceDescriptor() { return RdxDesc; } 1212 1213 /// Returns true, if the phi is part of an ordered reduction. 1214 bool isOrdered() const { return IsOrdered; } 1215 1216 /// Returns true, if the phi is part of an in-loop reduction. 1217 bool isInLoop() const { return IsInLoop; } 1218 }; 1219 1220 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1221 /// instructions. 1222 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1223 PHINode *Phi; 1224 1225 public: 1226 /// The blend operation is a User of the incoming values and of their 1227 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1228 /// might be incoming with a full mask for which there is no VPValue. 1229 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1230 : VPRecipeBase(VPBlendSC, Operands), 1231 VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) { 1232 assert(Operands.size() > 0 && 1233 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1234 "Expected either a single incoming value or a positive even number " 1235 "of operands"); 1236 } 1237 1238 /// Method to support type inquiry through isa, cast, and dyn_cast. 1239 static inline bool classof(const VPDef *D) { 1240 return D->getVPDefID() == VPRecipeBase::VPBlendSC; 1241 } 1242 1243 /// Return the number of incoming values, taking into account that a single 1244 /// incoming value has no mask. 1245 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1246 1247 /// Return incoming value number \p Idx. 1248 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1249 1250 /// Return mask number \p Idx. 1251 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1252 1253 /// Generate the phi/select nodes. 1254 void execute(VPTransformState &State) override; 1255 1256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1257 /// Print the recipe. 1258 void print(raw_ostream &O, const Twine &Indent, 1259 VPSlotTracker &SlotTracker) const override; 1260 #endif 1261 }; 1262 1263 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1264 /// or stores into one wide load/store and shuffles. The first operand of a 1265 /// VPInterleave recipe is the address, followed by the stored values, followed 1266 /// by an optional mask. 1267 class VPInterleaveRecipe : public VPRecipeBase { 1268 const InterleaveGroup<Instruction> *IG; 1269 1270 bool HasMask = false; 1271 1272 public: 1273 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1274 ArrayRef<VPValue *> StoredValues, VPValue *Mask) 1275 : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) { 1276 for (unsigned i = 0; i < IG->getFactor(); ++i) 1277 if (Instruction *I = IG->getMember(i)) { 1278 if (I->getType()->isVoidTy()) 1279 continue; 1280 new VPValue(I, this); 1281 } 1282 1283 for (auto *SV : StoredValues) 1284 addOperand(SV); 1285 if (Mask) { 1286 HasMask = true; 1287 addOperand(Mask); 1288 } 1289 } 1290 ~VPInterleaveRecipe() override = default; 1291 1292 /// Method to support type inquiry through isa, cast, and dyn_cast. 1293 static inline bool classof(const VPDef *D) { 1294 return D->getVPDefID() == VPRecipeBase::VPInterleaveSC; 1295 } 1296 1297 /// Return the address accessed by this recipe. 1298 VPValue *getAddr() const { 1299 return getOperand(0); // Address is the 1st, mandatory operand. 1300 } 1301 1302 /// Return the mask used by this recipe. Note that a full mask is represented 1303 /// by a nullptr. 1304 VPValue *getMask() const { 1305 // Mask is optional and therefore the last, currently 2nd operand. 1306 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1307 } 1308 1309 /// Return the VPValues stored by this interleave group. If it is a load 1310 /// interleave group, return an empty ArrayRef. 1311 ArrayRef<VPValue *> getStoredValues() const { 1312 // The first operand is the address, followed by the stored values, followed 1313 // by an optional mask. 1314 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1315 .slice(1, getNumStoreOperands()); 1316 } 1317 1318 /// Generate the wide load or store, and shuffles. 1319 void execute(VPTransformState &State) override; 1320 1321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1322 /// Print the recipe. 1323 void print(raw_ostream &O, const Twine &Indent, 1324 VPSlotTracker &SlotTracker) const override; 1325 #endif 1326 1327 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1328 1329 /// Returns the number of stored operands of this interleave group. Returns 0 1330 /// for load interleave groups. 1331 unsigned getNumStoreOperands() const { 1332 return getNumOperands() - (HasMask ? 2 : 1); 1333 } 1334 }; 1335 1336 /// A recipe to represent inloop reduction operations, performing a reduction on 1337 /// a vector operand into a scalar value, and adding the result to a chain. 1338 /// The Operands are {ChainOp, VecOp, [Condition]}. 1339 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1340 /// The recurrence decriptor for the reduction in question. 1341 RecurrenceDescriptor *RdxDesc; 1342 /// Pointer to the TTI, needed to create the target reduction 1343 const TargetTransformInfo *TTI; 1344 1345 public: 1346 VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp, 1347 VPValue *VecOp, VPValue *CondOp, 1348 const TargetTransformInfo *TTI) 1349 : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}), 1350 VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) { 1351 if (CondOp) 1352 addOperand(CondOp); 1353 } 1354 1355 ~VPReductionRecipe() override = default; 1356 1357 /// Method to support type inquiry through isa, cast, and dyn_cast. 1358 static inline bool classof(const VPValue *V) { 1359 return V->getVPValueID() == VPValue::VPVReductionSC; 1360 } 1361 1362 /// Generate the reduction in the loop 1363 void execute(VPTransformState &State) override; 1364 1365 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1366 /// Print the recipe. 1367 void print(raw_ostream &O, const Twine &Indent, 1368 VPSlotTracker &SlotTracker) const override; 1369 #endif 1370 1371 /// The VPValue of the scalar Chain being accumulated. 1372 VPValue *getChainOp() const { return getOperand(0); } 1373 /// The VPValue of the vector value to be reduced. 1374 VPValue *getVecOp() const { return getOperand(1); } 1375 /// The VPValue of the condition for the block. 1376 VPValue *getCondOp() const { 1377 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1378 } 1379 }; 1380 1381 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1382 /// copies of the original scalar type, one per lane, instead of producing a 1383 /// single copy of widened type for all lanes. If the instruction is known to be 1384 /// uniform only one copy, per lane zero, will be generated. 1385 class VPReplicateRecipe : public VPRecipeBase, public VPValue { 1386 /// Indicator if only a single replica per lane is needed. 1387 bool IsUniform; 1388 1389 /// Indicator if the replicas are also predicated. 1390 bool IsPredicated; 1391 1392 /// Indicator if the scalar values should also be packed into a vector. 1393 bool AlsoPack; 1394 1395 public: 1396 template <typename IterT> 1397 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1398 bool IsUniform, bool IsPredicated = false) 1399 : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this), 1400 IsUniform(IsUniform), IsPredicated(IsPredicated) { 1401 // Retain the previous behavior of predicateInstructions(), where an 1402 // insert-element of a predicated instruction got hoisted into the 1403 // predicated basic block iff it was its only user. This is achieved by 1404 // having predicated instructions also pack their values into a vector by 1405 // default unless they have a replicated user which uses their scalar value. 1406 AlsoPack = IsPredicated && !I->use_empty(); 1407 } 1408 1409 ~VPReplicateRecipe() override = default; 1410 1411 /// Method to support type inquiry through isa, cast, and dyn_cast. 1412 static inline bool classof(const VPDef *D) { 1413 return D->getVPDefID() == VPRecipeBase::VPReplicateSC; 1414 } 1415 1416 static inline bool classof(const VPValue *V) { 1417 return V->getVPValueID() == VPValue::VPVReplicateSC; 1418 } 1419 1420 /// Generate replicas of the desired Ingredient. Replicas will be generated 1421 /// for all parts and lanes unless a specific part and lane are specified in 1422 /// the \p State. 1423 void execute(VPTransformState &State) override; 1424 1425 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 1426 1427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1428 /// Print the recipe. 1429 void print(raw_ostream &O, const Twine &Indent, 1430 VPSlotTracker &SlotTracker) const override; 1431 #endif 1432 1433 bool isUniform() const { return IsUniform; } 1434 1435 bool isPacked() const { return AlsoPack; } 1436 1437 bool isPredicated() const { return IsPredicated; } 1438 }; 1439 1440 /// A recipe for generating conditional branches on the bits of a mask. 1441 class VPBranchOnMaskRecipe : public VPRecipeBase { 1442 public: 1443 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1444 : VPRecipeBase(VPBranchOnMaskSC, {}) { 1445 if (BlockInMask) // nullptr means all-one mask. 1446 addOperand(BlockInMask); 1447 } 1448 1449 /// Method to support type inquiry through isa, cast, and dyn_cast. 1450 static inline bool classof(const VPDef *D) { 1451 return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC; 1452 } 1453 1454 /// Generate the extraction of the appropriate bit from the block mask and the 1455 /// conditional branch. 1456 void execute(VPTransformState &State) override; 1457 1458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1459 /// Print the recipe. 1460 void print(raw_ostream &O, const Twine &Indent, 1461 VPSlotTracker &SlotTracker) const override { 1462 O << Indent << "BRANCH-ON-MASK "; 1463 if (VPValue *Mask = getMask()) 1464 Mask->printAsOperand(O, SlotTracker); 1465 else 1466 O << " All-One"; 1467 } 1468 #endif 1469 1470 /// Return the mask used by this recipe. Note that a full mask is represented 1471 /// by a nullptr. 1472 VPValue *getMask() const { 1473 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1474 // Mask is optional. 1475 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1476 } 1477 }; 1478 1479 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1480 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1481 /// order to merge values that are set under such a branch and feed their uses. 1482 /// The phi nodes can be scalar or vector depending on the users of the value. 1483 /// This recipe works in concert with VPBranchOnMaskRecipe. 1484 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1485 public: 1486 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1487 /// nodes after merging back from a Branch-on-Mask. 1488 VPPredInstPHIRecipe(VPValue *PredV) 1489 : VPRecipeBase(VPPredInstPHISC, PredV), 1490 VPValue(VPValue::VPVPredInstPHI, nullptr, this) {} 1491 ~VPPredInstPHIRecipe() override = default; 1492 1493 /// Method to support type inquiry through isa, cast, and dyn_cast. 1494 static inline bool classof(const VPDef *D) { 1495 return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC; 1496 } 1497 1498 /// Generates phi nodes for live-outs as needed to retain SSA form. 1499 void execute(VPTransformState &State) override; 1500 1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1502 /// Print the recipe. 1503 void print(raw_ostream &O, const Twine &Indent, 1504 VPSlotTracker &SlotTracker) const override; 1505 #endif 1506 }; 1507 1508 /// A Recipe for widening load/store operations. 1509 /// The recipe uses the following VPValues: 1510 /// - For load: Address, optional mask 1511 /// - For store: Address, stored value, optional mask 1512 /// TODO: We currently execute only per-part unless a specific instance is 1513 /// provided. 1514 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 1515 Instruction &Ingredient; 1516 1517 // Whether the loaded-from / stored-to addresses are consecutive. 1518 bool Consecutive; 1519 1520 // Whether the consecutive loaded/stored addresses are in reverse order. 1521 bool Reverse; 1522 1523 void setMask(VPValue *Mask) { 1524 if (!Mask) 1525 return; 1526 addOperand(Mask); 1527 } 1528 1529 bool isMasked() const { 1530 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 1531 } 1532 1533 public: 1534 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 1535 bool Consecutive, bool Reverse) 1536 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), Ingredient(Load), 1537 Consecutive(Consecutive), Reverse(Reverse) { 1538 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1539 new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this); 1540 setMask(Mask); 1541 } 1542 1543 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 1544 VPValue *StoredValue, VPValue *Mask, 1545 bool Consecutive, bool Reverse) 1546 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}), 1547 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 1548 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1549 setMask(Mask); 1550 } 1551 1552 /// Method to support type inquiry through isa, cast, and dyn_cast. 1553 static inline bool classof(const VPDef *D) { 1554 return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1555 } 1556 1557 /// Return the address accessed by this recipe. 1558 VPValue *getAddr() const { 1559 return getOperand(0); // Address is the 1st, mandatory operand. 1560 } 1561 1562 /// Return the mask used by this recipe. Note that a full mask is represented 1563 /// by a nullptr. 1564 VPValue *getMask() const { 1565 // Mask is optional and therefore the last operand. 1566 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 1567 } 1568 1569 /// Returns true if this recipe is a store. 1570 bool isStore() const { return isa<StoreInst>(Ingredient); } 1571 1572 /// Return the address accessed by this recipe. 1573 VPValue *getStoredValue() const { 1574 assert(isStore() && "Stored value only available for store instructions"); 1575 return getOperand(1); // Stored value is the 2nd, mandatory operand. 1576 } 1577 1578 // Return whether the loaded-from / stored-to addresses are consecutive. 1579 bool isConsecutive() const { return Consecutive; } 1580 1581 // Return whether the consecutive loaded/stored addresses are in reverse 1582 // order. 1583 bool isReverse() const { return Reverse; } 1584 1585 /// Generate the wide load/store. 1586 void execute(VPTransformState &State) override; 1587 1588 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1589 /// Print the recipe. 1590 void print(raw_ostream &O, const Twine &Indent, 1591 VPSlotTracker &SlotTracker) const override; 1592 #endif 1593 }; 1594 1595 /// A Recipe for widening the canonical induction variable of the vector loop. 1596 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 1597 public: 1598 VPWidenCanonicalIVRecipe() 1599 : VPRecipeBase(VPWidenCanonicalIVSC, {}), 1600 VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {} 1601 1602 ~VPWidenCanonicalIVRecipe() override = default; 1603 1604 /// Method to support type inquiry through isa, cast, and dyn_cast. 1605 static inline bool classof(const VPDef *D) { 1606 return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1607 } 1608 1609 /// Generate a canonical vector induction variable of the vector loop, with 1610 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 1611 /// step = <VF*UF, VF*UF, ..., VF*UF>. 1612 void execute(VPTransformState &State) override; 1613 1614 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1615 /// Print the recipe. 1616 void print(raw_ostream &O, const Twine &Indent, 1617 VPSlotTracker &SlotTracker) const override; 1618 #endif 1619 }; 1620 1621 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1622 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1623 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 1624 class VPBasicBlock : public VPBlockBase { 1625 public: 1626 using RecipeListTy = iplist<VPRecipeBase>; 1627 1628 private: 1629 /// The VPRecipes held in the order of output instructions to generate. 1630 RecipeListTy Recipes; 1631 1632 public: 1633 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1634 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1635 if (Recipe) 1636 appendRecipe(Recipe); 1637 } 1638 1639 ~VPBasicBlock() override { 1640 while (!Recipes.empty()) 1641 Recipes.pop_back(); 1642 } 1643 1644 /// Instruction iterators... 1645 using iterator = RecipeListTy::iterator; 1646 using const_iterator = RecipeListTy::const_iterator; 1647 using reverse_iterator = RecipeListTy::reverse_iterator; 1648 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1649 1650 //===--------------------------------------------------------------------===// 1651 /// Recipe iterator methods 1652 /// 1653 inline iterator begin() { return Recipes.begin(); } 1654 inline const_iterator begin() const { return Recipes.begin(); } 1655 inline iterator end() { return Recipes.end(); } 1656 inline const_iterator end() const { return Recipes.end(); } 1657 1658 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1659 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1660 inline reverse_iterator rend() { return Recipes.rend(); } 1661 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1662 1663 inline size_t size() const { return Recipes.size(); } 1664 inline bool empty() const { return Recipes.empty(); } 1665 inline const VPRecipeBase &front() const { return Recipes.front(); } 1666 inline VPRecipeBase &front() { return Recipes.front(); } 1667 inline const VPRecipeBase &back() const { return Recipes.back(); } 1668 inline VPRecipeBase &back() { return Recipes.back(); } 1669 1670 /// Returns a reference to the list of recipes. 1671 RecipeListTy &getRecipeList() { return Recipes; } 1672 1673 /// Returns a pointer to a member of the recipe list. 1674 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1675 return &VPBasicBlock::Recipes; 1676 } 1677 1678 /// Method to support type inquiry through isa, cast, and dyn_cast. 1679 static inline bool classof(const VPBlockBase *V) { 1680 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1681 } 1682 1683 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1684 assert(Recipe && "No recipe to append."); 1685 assert(!Recipe->Parent && "Recipe already in VPlan"); 1686 Recipe->Parent = this; 1687 Recipes.insert(InsertPt, Recipe); 1688 } 1689 1690 /// Augment the existing recipes of a VPBasicBlock with an additional 1691 /// \p Recipe as the last recipe. 1692 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1693 1694 /// The method which generates the output IR instructions that correspond to 1695 /// this VPBasicBlock, thereby "executing" the VPlan. 1696 void execute(struct VPTransformState *State) override; 1697 1698 /// Return the position of the first non-phi node recipe in the block. 1699 iterator getFirstNonPhi(); 1700 1701 /// Returns an iterator range over the PHI-like recipes in the block. 1702 iterator_range<iterator> phis() { 1703 return make_range(begin(), getFirstNonPhi()); 1704 } 1705 1706 void dropAllReferences(VPValue *NewValue) override; 1707 1708 /// Split current block at \p SplitAt by inserting a new block between the 1709 /// current block and its successors and moving all recipes starting at 1710 /// SplitAt to the new block. Returns the new block. 1711 VPBasicBlock *splitAt(iterator SplitAt); 1712 1713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1714 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 1715 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 1716 /// 1717 /// Note that the numbering is applied to the whole VPlan, so printing 1718 /// individual blocks is consistent with the whole VPlan printing. 1719 void print(raw_ostream &O, const Twine &Indent, 1720 VPSlotTracker &SlotTracker) const override; 1721 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1722 #endif 1723 1724 private: 1725 /// Create an IR BasicBlock to hold the output instructions generated by this 1726 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1727 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1728 }; 1729 1730 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1731 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1732 /// A VPRegionBlock may indicate that its contents are to be replicated several 1733 /// times. This is designed to support predicated scalarization, in which a 1734 /// scalar if-then code structure needs to be generated VF * UF times. Having 1735 /// this replication indicator helps to keep a single model for multiple 1736 /// candidate VF's. The actual replication takes place only once the desired VF 1737 /// and UF have been determined. 1738 class VPRegionBlock : public VPBlockBase { 1739 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1740 VPBlockBase *Entry; 1741 1742 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1743 VPBlockBase *Exit; 1744 1745 /// An indicator whether this region is to generate multiple replicated 1746 /// instances of output IR corresponding to its VPBlockBases. 1747 bool IsReplicator; 1748 1749 public: 1750 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1751 const std::string &Name = "", bool IsReplicator = false) 1752 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1753 IsReplicator(IsReplicator) { 1754 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1755 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1756 Entry->setParent(this); 1757 Exit->setParent(this); 1758 } 1759 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1760 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1761 IsReplicator(IsReplicator) {} 1762 1763 ~VPRegionBlock() override { 1764 if (Entry) { 1765 VPValue DummyValue; 1766 Entry->dropAllReferences(&DummyValue); 1767 deleteCFG(Entry); 1768 } 1769 } 1770 1771 /// Method to support type inquiry through isa, cast, and dyn_cast. 1772 static inline bool classof(const VPBlockBase *V) { 1773 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1774 } 1775 1776 const VPBlockBase *getEntry() const { return Entry; } 1777 VPBlockBase *getEntry() { return Entry; } 1778 1779 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1780 /// EntryBlock must have no predecessors. 1781 void setEntry(VPBlockBase *EntryBlock) { 1782 assert(EntryBlock->getPredecessors().empty() && 1783 "Entry block cannot have predecessors."); 1784 Entry = EntryBlock; 1785 EntryBlock->setParent(this); 1786 } 1787 1788 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1789 // specific interface of llvm::Function, instead of using 1790 // GraphTraints::getEntryNode. We should add a new template parameter to 1791 // DominatorTreeBase representing the Graph type. 1792 VPBlockBase &front() const { return *Entry; } 1793 1794 const VPBlockBase *getExit() const { return Exit; } 1795 VPBlockBase *getExit() { return Exit; } 1796 1797 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1798 /// ExitBlock must have no successors. 1799 void setExit(VPBlockBase *ExitBlock) { 1800 assert(ExitBlock->getSuccessors().empty() && 1801 "Exit block cannot have successors."); 1802 Exit = ExitBlock; 1803 ExitBlock->setParent(this); 1804 } 1805 1806 /// An indicator whether this region is to generate multiple replicated 1807 /// instances of output IR corresponding to its VPBlockBases. 1808 bool isReplicator() const { return IsReplicator; } 1809 1810 /// The method which generates the output IR instructions that correspond to 1811 /// this VPRegionBlock, thereby "executing" the VPlan. 1812 void execute(struct VPTransformState *State) override; 1813 1814 void dropAllReferences(VPValue *NewValue) override; 1815 1816 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1817 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 1818 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 1819 /// consequtive numbers. 1820 /// 1821 /// Note that the numbering is applied to the whole VPlan, so printing 1822 /// individual regions is consistent with the whole VPlan printing. 1823 void print(raw_ostream &O, const Twine &Indent, 1824 VPSlotTracker &SlotTracker) const override; 1825 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1826 #endif 1827 }; 1828 1829 //===----------------------------------------------------------------------===// 1830 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1831 //===----------------------------------------------------------------------===// 1832 1833 // The following set of template specializations implement GraphTraits to treat 1834 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1835 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1836 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1837 // successors/predecessors but not to the blocks inside the region. 1838 1839 template <> struct GraphTraits<VPBlockBase *> { 1840 using NodeRef = VPBlockBase *; 1841 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1842 1843 static NodeRef getEntryNode(NodeRef N) { return N; } 1844 1845 static inline ChildIteratorType child_begin(NodeRef N) { 1846 return N->getSuccessors().begin(); 1847 } 1848 1849 static inline ChildIteratorType child_end(NodeRef N) { 1850 return N->getSuccessors().end(); 1851 } 1852 }; 1853 1854 template <> struct GraphTraits<const VPBlockBase *> { 1855 using NodeRef = const VPBlockBase *; 1856 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1857 1858 static NodeRef getEntryNode(NodeRef N) { return N; } 1859 1860 static inline ChildIteratorType child_begin(NodeRef N) { 1861 return N->getSuccessors().begin(); 1862 } 1863 1864 static inline ChildIteratorType child_end(NodeRef N) { 1865 return N->getSuccessors().end(); 1866 } 1867 }; 1868 1869 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1870 // of successors for the inverse traversal. 1871 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1872 using NodeRef = VPBlockBase *; 1873 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1874 1875 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1876 1877 static inline ChildIteratorType child_begin(NodeRef N) { 1878 return N->getPredecessors().begin(); 1879 } 1880 1881 static inline ChildIteratorType child_end(NodeRef N) { 1882 return N->getPredecessors().end(); 1883 } 1884 }; 1885 1886 // The following set of template specializations implement GraphTraits to 1887 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1888 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1889 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1890 // there won't be automatic recursion into other VPBlockBases that turn to be 1891 // VPRegionBlocks. 1892 1893 template <> 1894 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1895 using GraphRef = VPRegionBlock *; 1896 using nodes_iterator = df_iterator<NodeRef>; 1897 1898 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1899 1900 static nodes_iterator nodes_begin(GraphRef N) { 1901 return nodes_iterator::begin(N->getEntry()); 1902 } 1903 1904 static nodes_iterator nodes_end(GraphRef N) { 1905 // df_iterator::end() returns an empty iterator so the node used doesn't 1906 // matter. 1907 return nodes_iterator::end(N); 1908 } 1909 }; 1910 1911 template <> 1912 struct GraphTraits<const VPRegionBlock *> 1913 : public GraphTraits<const VPBlockBase *> { 1914 using GraphRef = const VPRegionBlock *; 1915 using nodes_iterator = df_iterator<NodeRef>; 1916 1917 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1918 1919 static nodes_iterator nodes_begin(GraphRef N) { 1920 return nodes_iterator::begin(N->getEntry()); 1921 } 1922 1923 static nodes_iterator nodes_end(GraphRef N) { 1924 // df_iterator::end() returns an empty iterator so the node used doesn't 1925 // matter. 1926 return nodes_iterator::end(N); 1927 } 1928 }; 1929 1930 template <> 1931 struct GraphTraits<Inverse<VPRegionBlock *>> 1932 : public GraphTraits<Inverse<VPBlockBase *>> { 1933 using GraphRef = VPRegionBlock *; 1934 using nodes_iterator = df_iterator<NodeRef>; 1935 1936 static NodeRef getEntryNode(Inverse<GraphRef> N) { 1937 return N.Graph->getExit(); 1938 } 1939 1940 static nodes_iterator nodes_begin(GraphRef N) { 1941 return nodes_iterator::begin(N->getExit()); 1942 } 1943 1944 static nodes_iterator nodes_end(GraphRef N) { 1945 // df_iterator::end() returns an empty iterator so the node used doesn't 1946 // matter. 1947 return nodes_iterator::end(N); 1948 } 1949 }; 1950 1951 /// Iterator to traverse all successors of a VPBlockBase node. This includes the 1952 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their 1953 /// parent region's successors. This ensures all blocks in a region are visited 1954 /// before any blocks in a successor region when doing a reverse post-order 1955 // traversal of the graph. 1956 template <typename BlockPtrTy> 1957 class VPAllSuccessorsIterator 1958 : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>, 1959 std::forward_iterator_tag, VPBlockBase> { 1960 BlockPtrTy Block; 1961 /// Index of the current successor. For VPBasicBlock nodes, this simply is the 1962 /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is 1963 /// used for the region's entry block, and SuccessorIdx - 1 are the indices 1964 /// for the successor array. 1965 size_t SuccessorIdx; 1966 1967 static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) { 1968 while (Current && Current->getNumSuccessors() == 0) 1969 Current = Current->getParent(); 1970 return Current; 1971 } 1972 1973 /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by 1974 /// both the const and non-const operator* implementations. 1975 template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) { 1976 if (auto *R = dyn_cast<VPRegionBlock>(Block)) { 1977 if (SuccIdx == 0) 1978 return R->getEntry(); 1979 SuccIdx--; 1980 } 1981 1982 // For exit blocks, use the next parent region with successors. 1983 return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx]; 1984 } 1985 1986 public: 1987 VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0) 1988 : Block(Block), SuccessorIdx(Idx) {} 1989 VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other) 1990 : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {} 1991 1992 VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) { 1993 Block = R.Block; 1994 SuccessorIdx = R.SuccessorIdx; 1995 return *this; 1996 } 1997 1998 static VPAllSuccessorsIterator end(BlockPtrTy Block) { 1999 BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block); 2000 unsigned NumSuccessors = ParentWithSuccs 2001 ? ParentWithSuccs->getNumSuccessors() 2002 : Block->getNumSuccessors(); 2003 2004 if (auto *R = dyn_cast<VPRegionBlock>(Block)) 2005 return {R, NumSuccessors + 1}; 2006 return {Block, NumSuccessors}; 2007 } 2008 2009 bool operator==(const VPAllSuccessorsIterator &R) const { 2010 return Block == R.Block && SuccessorIdx == R.SuccessorIdx; 2011 } 2012 2013 const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); } 2014 2015 BlockPtrTy operator*() { return deref(Block, SuccessorIdx); } 2016 2017 VPAllSuccessorsIterator &operator++() { 2018 SuccessorIdx++; 2019 return *this; 2020 } 2021 2022 VPAllSuccessorsIterator operator++(int X) { 2023 VPAllSuccessorsIterator Orig = *this; 2024 SuccessorIdx++; 2025 return Orig; 2026 } 2027 }; 2028 2029 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks. 2030 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper { 2031 BlockTy Entry; 2032 2033 public: 2034 VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {} 2035 BlockTy getEntry() { return Entry; } 2036 }; 2037 2038 /// GraphTraits specialization to recursively traverse VPBlockBase nodes, 2039 /// including traversing through VPRegionBlocks. Exit blocks of a region 2040 /// implicitly have their parent region's successors. This ensures all blocks in 2041 /// a region are visited before any blocks in a successor region when doing a 2042 /// reverse post-order traversal of the graph. 2043 template <> 2044 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> { 2045 using NodeRef = VPBlockBase *; 2046 using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>; 2047 2048 static NodeRef 2049 getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) { 2050 return N.getEntry(); 2051 } 2052 2053 static inline ChildIteratorType child_begin(NodeRef N) { 2054 return ChildIteratorType(N); 2055 } 2056 2057 static inline ChildIteratorType child_end(NodeRef N) { 2058 return ChildIteratorType::end(N); 2059 } 2060 }; 2061 2062 template <> 2063 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> { 2064 using NodeRef = const VPBlockBase *; 2065 using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>; 2066 2067 static NodeRef 2068 getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) { 2069 return N.getEntry(); 2070 } 2071 2072 static inline ChildIteratorType child_begin(NodeRef N) { 2073 return ChildIteratorType(N); 2074 } 2075 2076 static inline ChildIteratorType child_end(NodeRef N) { 2077 return ChildIteratorType::end(N); 2078 } 2079 }; 2080 2081 /// VPlan models a candidate for vectorization, encoding various decisions take 2082 /// to produce efficient output IR, including which branches, basic-blocks and 2083 /// output IR instructions to generate, and their cost. VPlan holds a 2084 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2085 /// VPBlock. 2086 class VPlan { 2087 friend class VPlanPrinter; 2088 friend class VPSlotTracker; 2089 2090 /// Hold the single entry to the Hierarchical CFG of the VPlan. 2091 VPBlockBase *Entry; 2092 2093 /// Holds the VFs applicable to this VPlan. 2094 SmallSetVector<ElementCount, 2> VFs; 2095 2096 /// Holds the name of the VPlan, for printing. 2097 std::string Name; 2098 2099 /// Holds all the external definitions created for this VPlan. 2100 // TODO: Introduce a specific representation for external definitions in 2101 // VPlan. External definitions must be immutable and hold a pointer to its 2102 // underlying IR that will be used to implement its structural comparison 2103 // (operators '==' and '<'). 2104 SetVector<VPValue *> VPExternalDefs; 2105 2106 /// Represents the backedge taken count of the original loop, for folding 2107 /// the tail. 2108 VPValue *BackedgeTakenCount = nullptr; 2109 2110 /// Holds a mapping between Values and their corresponding VPValue inside 2111 /// VPlan. 2112 Value2VPValueTy Value2VPValue; 2113 2114 /// Contains all VPValues that been allocated by addVPValue directly and need 2115 /// to be free when the plan's destructor is called. 2116 SmallVector<VPValue *, 16> VPValuesToFree; 2117 2118 /// Holds the VPLoopInfo analysis for this VPlan. 2119 VPLoopInfo VPLInfo; 2120 2121 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2122 /// mapping cannot be used any longer, because it is stale. 2123 bool Value2VPValueEnabled = true; 2124 2125 public: 2126 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { 2127 if (Entry) 2128 Entry->setPlan(this); 2129 } 2130 2131 ~VPlan() { 2132 if (Entry) { 2133 VPValue DummyValue; 2134 for (VPBlockBase *Block : depth_first(Entry)) 2135 Block->dropAllReferences(&DummyValue); 2136 2137 VPBlockBase::deleteCFG(Entry); 2138 } 2139 for (VPValue *VPV : VPValuesToFree) 2140 delete VPV; 2141 if (BackedgeTakenCount) 2142 delete BackedgeTakenCount; 2143 for (VPValue *Def : VPExternalDefs) 2144 delete Def; 2145 } 2146 2147 /// Generate the IR code for this VPlan. 2148 void execute(struct VPTransformState *State); 2149 2150 VPBlockBase *getEntry() { return Entry; } 2151 const VPBlockBase *getEntry() const { return Entry; } 2152 2153 VPBlockBase *setEntry(VPBlockBase *Block) { 2154 Entry = Block; 2155 Block->setPlan(this); 2156 return Entry; 2157 } 2158 2159 /// The backedge taken count of the original loop. 2160 VPValue *getOrCreateBackedgeTakenCount() { 2161 if (!BackedgeTakenCount) 2162 BackedgeTakenCount = new VPValue(); 2163 return BackedgeTakenCount; 2164 } 2165 2166 /// Mark the plan to indicate that using Value2VPValue is not safe any 2167 /// longer, because it may be stale. 2168 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2169 2170 void addVF(ElementCount VF) { VFs.insert(VF); } 2171 2172 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2173 2174 const std::string &getName() const { return Name; } 2175 2176 void setName(const Twine &newName) { Name = newName.str(); } 2177 2178 /// Add \p VPVal to the pool of external definitions if it's not already 2179 /// in the pool. 2180 void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } 2181 2182 void addVPValue(Value *V) { 2183 assert(Value2VPValueEnabled && 2184 "IR value to VPValue mapping may be out of date!"); 2185 assert(V && "Trying to add a null Value to VPlan"); 2186 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2187 VPValue *VPV = new VPValue(V); 2188 Value2VPValue[V] = VPV; 2189 VPValuesToFree.push_back(VPV); 2190 } 2191 2192 void addVPValue(Value *V, VPValue *VPV) { 2193 assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!"); 2194 assert(V && "Trying to add a null Value to VPlan"); 2195 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2196 Value2VPValue[V] = VPV; 2197 } 2198 2199 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2200 /// checking whether it is safe to query VPValues using IR Values. 2201 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2202 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2203 "Value2VPValue mapping may be out of date!"); 2204 assert(V && "Trying to get the VPValue of a null Value"); 2205 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2206 return Value2VPValue[V]; 2207 } 2208 2209 /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p 2210 /// OverrideAllowed can be used to disable checking whether it is safe to 2211 /// query VPValues using IR Values. 2212 VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) { 2213 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2214 "Value2VPValue mapping may be out of date!"); 2215 assert(V && "Trying to get or add the VPValue of a null Value"); 2216 if (!Value2VPValue.count(V)) 2217 addVPValue(V); 2218 return getVPValue(V); 2219 } 2220 2221 void removeVPValueFor(Value *V) { 2222 assert(Value2VPValueEnabled && 2223 "IR value to VPValue mapping may be out of date!"); 2224 Value2VPValue.erase(V); 2225 } 2226 2227 /// Return the VPLoopInfo analysis for this VPlan. 2228 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 2229 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 2230 2231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2232 /// Print this VPlan to \p O. 2233 void print(raw_ostream &O) const; 2234 2235 /// Print this VPlan in DOT format to \p O. 2236 void printDOT(raw_ostream &O) const; 2237 2238 /// Dump the plan to stderr (for debugging). 2239 LLVM_DUMP_METHOD void dump() const; 2240 #endif 2241 2242 /// Returns a range mapping the values the range \p Operands to their 2243 /// corresponding VPValues. 2244 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2245 mapToVPValues(User::op_range Operands) { 2246 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2247 return getOrAddVPValue(Op); 2248 }; 2249 return map_range(Operands, Fn); 2250 } 2251 2252 private: 2253 /// Add to the given dominator tree the header block and every new basic block 2254 /// that was created between it and the latch block, inclusive. 2255 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2256 BasicBlock *LoopPreHeaderBB, 2257 BasicBlock *LoopExitBB); 2258 }; 2259 2260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2261 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2262 /// indented and follows the dot format. 2263 class VPlanPrinter { 2264 raw_ostream &OS; 2265 const VPlan &Plan; 2266 unsigned Depth = 0; 2267 unsigned TabWidth = 2; 2268 std::string Indent; 2269 unsigned BID = 0; 2270 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2271 2272 VPSlotTracker SlotTracker; 2273 2274 /// Handle indentation. 2275 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2276 2277 /// Print a given \p Block of the Plan. 2278 void dumpBlock(const VPBlockBase *Block); 2279 2280 /// Print the information related to the CFG edges going out of a given 2281 /// \p Block, followed by printing the successor blocks themselves. 2282 void dumpEdges(const VPBlockBase *Block); 2283 2284 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2285 /// its successor blocks. 2286 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2287 2288 /// Print a given \p Region of the Plan. 2289 void dumpRegion(const VPRegionBlock *Region); 2290 2291 unsigned getOrCreateBID(const VPBlockBase *Block) { 2292 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2293 } 2294 2295 Twine getOrCreateName(const VPBlockBase *Block); 2296 2297 Twine getUID(const VPBlockBase *Block); 2298 2299 /// Print the information related to a CFG edge between two VPBlockBases. 2300 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2301 const Twine &Label); 2302 2303 public: 2304 VPlanPrinter(raw_ostream &O, const VPlan &P) 2305 : OS(O), Plan(P), SlotTracker(&P) {} 2306 2307 LLVM_DUMP_METHOD void dump(); 2308 }; 2309 2310 struct VPlanIngredient { 2311 const Value *V; 2312 2313 VPlanIngredient(const Value *V) : V(V) {} 2314 2315 void print(raw_ostream &O) const; 2316 }; 2317 2318 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2319 I.print(OS); 2320 return OS; 2321 } 2322 2323 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2324 Plan.print(OS); 2325 return OS; 2326 } 2327 #endif 2328 2329 //===----------------------------------------------------------------------===// 2330 // VPlan Utilities 2331 //===----------------------------------------------------------------------===// 2332 2333 /// Class that provides utilities for VPBlockBases in VPlan. 2334 class VPBlockUtils { 2335 public: 2336 VPBlockUtils() = delete; 2337 2338 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2339 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2340 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr 2341 /// has more than one successor, its conditional bit is propagated to \p 2342 /// NewBlock. \p NewBlock must have neither successors nor predecessors. 2343 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2344 assert(NewBlock->getSuccessors().empty() && 2345 "Can't insert new block with successors."); 2346 // TODO: move successors from BlockPtr to NewBlock when this functionality 2347 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr 2348 // already has successors. 2349 BlockPtr->setOneSuccessor(NewBlock); 2350 NewBlock->setPredecessors({BlockPtr}); 2351 NewBlock->setParent(BlockPtr->getParent()); 2352 } 2353 2354 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2355 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2356 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2357 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 2358 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 2359 /// must have neither successors nor predecessors. 2360 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2361 VPValue *Condition, VPBlockBase *BlockPtr) { 2362 assert(IfTrue->getSuccessors().empty() && 2363 "Can't insert IfTrue with successors."); 2364 assert(IfFalse->getSuccessors().empty() && 2365 "Can't insert IfFalse with successors."); 2366 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 2367 IfTrue->setPredecessors({BlockPtr}); 2368 IfFalse->setPredecessors({BlockPtr}); 2369 IfTrue->setParent(BlockPtr->getParent()); 2370 IfFalse->setParent(BlockPtr->getParent()); 2371 } 2372 2373 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2374 /// the successors of \p From and \p From to the predecessors of \p To. Both 2375 /// VPBlockBases must have the same parent, which can be null. Both 2376 /// VPBlockBases can be already connected to other VPBlockBases. 2377 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2378 assert((From->getParent() == To->getParent()) && 2379 "Can't connect two block with different parents"); 2380 assert(From->getNumSuccessors() < 2 && 2381 "Blocks can't have more than two successors."); 2382 From->appendSuccessor(To); 2383 To->appendPredecessor(From); 2384 } 2385 2386 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2387 /// from the successors of \p From and \p From from the predecessors of \p To. 2388 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2389 assert(To && "Successor to disconnect is null."); 2390 From->removeSuccessor(To); 2391 To->removePredecessor(From); 2392 } 2393 2394 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 2395 static bool isBackEdge(const VPBlockBase *FromBlock, 2396 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 2397 assert(FromBlock->getParent() == ToBlock->getParent() && 2398 FromBlock->getParent() && "Must be in same region"); 2399 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 2400 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 2401 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 2402 return false; 2403 2404 // A back-edge is a branch from the loop latch to its header. 2405 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 2406 } 2407 2408 /// Returns true if \p Block is a loop latch 2409 static bool blockIsLoopLatch(const VPBlockBase *Block, 2410 const VPLoopInfo *VPLInfo) { 2411 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 2412 return ParentVPL->isLoopLatch(Block); 2413 2414 return false; 2415 } 2416 2417 /// Count and return the number of succesors of \p PredBlock excluding any 2418 /// backedges. 2419 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 2420 VPLoopInfo *VPLI) { 2421 unsigned Count = 0; 2422 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 2423 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 2424 Count++; 2425 } 2426 return Count; 2427 } 2428 2429 /// Return an iterator range over \p Range which only includes \p BlockTy 2430 /// blocks. The accesses are casted to \p BlockTy. 2431 template <typename BlockTy, typename T> 2432 static auto blocksOnly(const T &Range) { 2433 // Create BaseTy with correct const-ness based on BlockTy. 2434 using BaseTy = 2435 typename std::conditional<std::is_const<BlockTy>::value, 2436 const VPBlockBase, VPBlockBase>::type; 2437 2438 // We need to first create an iterator range over (const) BlocktTy & instead 2439 // of (const) BlockTy * for filter_range to work properly. 2440 auto Mapped = 2441 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2442 auto Filter = make_filter_range( 2443 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2444 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2445 return cast<BlockTy>(&Block); 2446 }); 2447 } 2448 }; 2449 2450 class VPInterleavedAccessInfo { 2451 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2452 InterleaveGroupMap; 2453 2454 /// Type for mapping of instruction based interleave groups to VPInstruction 2455 /// interleave groups 2456 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2457 InterleaveGroup<VPInstruction> *>; 2458 2459 /// Recursively \p Region and populate VPlan based interleave groups based on 2460 /// \p IAI. 2461 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2462 InterleavedAccessInfo &IAI); 2463 /// Recursively traverse \p Block and populate VPlan based interleave groups 2464 /// based on \p IAI. 2465 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2466 InterleavedAccessInfo &IAI); 2467 2468 public: 2469 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2470 2471 ~VPInterleavedAccessInfo() { 2472 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2473 // Avoid releasing a pointer twice. 2474 for (auto &I : InterleaveGroupMap) 2475 DelSet.insert(I.second); 2476 for (auto *Ptr : DelSet) 2477 delete Ptr; 2478 } 2479 2480 /// Get the interleave group that \p Instr belongs to. 2481 /// 2482 /// \returns nullptr if doesn't have such group. 2483 InterleaveGroup<VPInstruction> * 2484 getInterleaveGroup(VPInstruction *Instr) const { 2485 return InterleaveGroupMap.lookup(Instr); 2486 } 2487 }; 2488 2489 /// Class that maps (parts of) an existing VPlan to trees of combined 2490 /// VPInstructions. 2491 class VPlanSlp { 2492 enum class OpMode { Failed, Load, Opcode }; 2493 2494 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2495 /// DenseMap keys. 2496 struct BundleDenseMapInfo { 2497 static SmallVector<VPValue *, 4> getEmptyKey() { 2498 return {reinterpret_cast<VPValue *>(-1)}; 2499 } 2500 2501 static SmallVector<VPValue *, 4> getTombstoneKey() { 2502 return {reinterpret_cast<VPValue *>(-2)}; 2503 } 2504 2505 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2506 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2507 } 2508 2509 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 2510 const SmallVector<VPValue *, 4> &RHS) { 2511 return LHS == RHS; 2512 } 2513 }; 2514 2515 /// Mapping of values in the original VPlan to a combined VPInstruction. 2516 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 2517 BundleToCombined; 2518 2519 VPInterleavedAccessInfo &IAI; 2520 2521 /// Basic block to operate on. For now, only instructions in a single BB are 2522 /// considered. 2523 const VPBasicBlock &BB; 2524 2525 /// Indicates whether we managed to combine all visited instructions or not. 2526 bool CompletelySLP = true; 2527 2528 /// Width of the widest combined bundle in bits. 2529 unsigned WidestBundleBits = 0; 2530 2531 using MultiNodeOpTy = 2532 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 2533 2534 // Input operand bundles for the current multi node. Each multi node operand 2535 // bundle contains values not matching the multi node's opcode. They will 2536 // be reordered in reorderMultiNodeOps, once we completed building a 2537 // multi node. 2538 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 2539 2540 /// Indicates whether we are building a multi node currently. 2541 bool MultiNodeActive = false; 2542 2543 /// Check if we can vectorize Operands together. 2544 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 2545 2546 /// Add combined instruction \p New for the bundle \p Operands. 2547 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 2548 2549 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 2550 VPInstruction *markFailed(); 2551 2552 /// Reorder operands in the multi node to maximize sequential memory access 2553 /// and commutative operations. 2554 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 2555 2556 /// Choose the best candidate to use for the lane after \p Last. The set of 2557 /// candidates to choose from are values with an opcode matching \p Last's 2558 /// or loads consecutive to \p Last. 2559 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 2560 SmallPtrSetImpl<VPValue *> &Candidates, 2561 VPInterleavedAccessInfo &IAI); 2562 2563 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2564 /// Print bundle \p Values to dbgs(). 2565 void dumpBundle(ArrayRef<VPValue *> Values); 2566 #endif 2567 2568 public: 2569 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 2570 2571 ~VPlanSlp() = default; 2572 2573 /// Tries to build an SLP tree rooted at \p Operands and returns a 2574 /// VPInstruction combining \p Operands, if they can be combined. 2575 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 2576 2577 /// Return the width of the widest combined bundle in bits. 2578 unsigned getWidestBundleBits() const { return WidestBundleBits; } 2579 2580 /// Return true if all visited instruction can be combined. 2581 bool isCompletelySLP() const { return CompletelySLP; } 2582 }; 2583 } // end namespace llvm 2584 2585 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 2586