1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/Support/InstructionCost.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <map> 48 #include <string> 49 50 namespace llvm { 51 52 class BasicBlock; 53 class DominatorTree; 54 class InnerLoopVectorizer; 55 class LoopInfo; 56 class raw_ostream; 57 class RecurrenceDescriptor; 58 class Value; 59 class VPBasicBlock; 60 class VPRegionBlock; 61 class VPlan; 62 class VPReplicateRecipe; 63 class VPlanSlp; 64 65 /// Returns a calculation for the total number of elements for a given \p VF. 66 /// For fixed width vectors this value is a constant, whereas for scalable 67 /// vectors it is an expression determined at runtime. 68 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF); 69 70 /// A range of powers-of-2 vectorization factors with fixed start and 71 /// adjustable end. The range includes start and excludes end, e.g.,: 72 /// [1, 9) = {1, 2, 4, 8} 73 struct VFRange { 74 // A power of 2. 75 const ElementCount Start; 76 77 // Need not be a power of 2. If End <= Start range is empty. 78 ElementCount End; 79 80 bool isEmpty() const { 81 return End.getKnownMinValue() <= Start.getKnownMinValue(); 82 } 83 84 VFRange(const ElementCount &Start, const ElementCount &End) 85 : Start(Start), End(End) { 86 assert(Start.isScalable() == End.isScalable() && 87 "Both Start and End should have the same scalable flag"); 88 assert(isPowerOf2_32(Start.getKnownMinValue()) && 89 "Expected Start to be a power of 2"); 90 } 91 }; 92 93 using VPlanPtr = std::unique_ptr<VPlan>; 94 95 /// In what follows, the term "input IR" refers to code that is fed into the 96 /// vectorizer whereas the term "output IR" refers to code that is generated by 97 /// the vectorizer. 98 99 /// VPLane provides a way to access lanes in both fixed width and scalable 100 /// vectors, where for the latter the lane index sometimes needs calculating 101 /// as a runtime expression. 102 class VPLane { 103 public: 104 /// Kind describes how to interpret Lane. 105 enum class Kind : uint8_t { 106 /// For First, Lane is the index into the first N elements of a 107 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 108 First, 109 /// For ScalableLast, Lane is the offset from the start of the last 110 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 111 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 112 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 113 ScalableLast 114 }; 115 116 private: 117 /// in [0..VF) 118 unsigned Lane; 119 120 /// Indicates how the Lane should be interpreted, as described above. 121 Kind LaneKind; 122 123 public: 124 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 125 126 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 127 128 static VPLane getLastLaneForVF(const ElementCount &VF) { 129 unsigned LaneOffset = VF.getKnownMinValue() - 1; 130 Kind LaneKind; 131 if (VF.isScalable()) 132 // In this case 'LaneOffset' refers to the offset from the start of the 133 // last subvector with VF.getKnownMinValue() elements. 134 LaneKind = VPLane::Kind::ScalableLast; 135 else 136 LaneKind = VPLane::Kind::First; 137 return VPLane(LaneOffset, LaneKind); 138 } 139 140 /// Returns a compile-time known value for the lane index and asserts if the 141 /// lane can only be calculated at runtime. 142 unsigned getKnownLane() const { 143 assert(LaneKind == Kind::First); 144 return Lane; 145 } 146 147 /// Returns an expression describing the lane index that can be used at 148 /// runtime. 149 Value *getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const; 150 151 /// Returns the Kind of lane offset. 152 Kind getKind() const { return LaneKind; } 153 154 /// Returns true if this is the first lane of the whole vector. 155 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 156 157 /// Maps the lane to a cache index based on \p VF. 158 unsigned mapToCacheIndex(const ElementCount &VF) const { 159 switch (LaneKind) { 160 case VPLane::Kind::ScalableLast: 161 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 162 return VF.getKnownMinValue() + Lane; 163 default: 164 assert(Lane < VF.getKnownMinValue()); 165 return Lane; 166 } 167 } 168 169 /// Returns the maxmimum number of lanes that we are able to consider 170 /// caching for \p VF. 171 static unsigned getNumCachedLanes(const ElementCount &VF) { 172 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 173 } 174 }; 175 176 /// VPIteration represents a single point in the iteration space of the output 177 /// (vectorized and/or unrolled) IR loop. 178 struct VPIteration { 179 /// in [0..UF) 180 unsigned Part; 181 182 VPLane Lane; 183 184 VPIteration(unsigned Part, unsigned Lane, 185 VPLane::Kind Kind = VPLane::Kind::First) 186 : Part(Part), Lane(Lane, Kind) {} 187 188 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 189 190 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 191 }; 192 193 /// VPTransformState holds information passed down when "executing" a VPlan, 194 /// needed for generating the output IR. 195 struct VPTransformState { 196 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 197 DominatorTree *DT, IRBuilder<> &Builder, 198 InnerLoopVectorizer *ILV, VPlan *Plan) 199 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ILV(ILV), 200 Plan(Plan) {} 201 202 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 203 ElementCount VF; 204 unsigned UF; 205 206 /// Hold the indices to generate specific scalar instructions. Null indicates 207 /// that all instances are to be generated, using either scalar or vector 208 /// instructions. 209 Optional<VPIteration> Instance; 210 211 struct DataState { 212 /// A type for vectorized values in the new loop. Each value from the 213 /// original loop, when vectorized, is represented by UF vector values in 214 /// the new unrolled loop, where UF is the unroll factor. 215 typedef SmallVector<Value *, 2> PerPartValuesTy; 216 217 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 218 219 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 220 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 221 } Data; 222 223 /// Get the generated Value for a given VPValue and a given Part. Note that 224 /// as some Defs are still created by ILV and managed in its ValueMap, this 225 /// method will delegate the call to ILV in such cases in order to provide 226 /// callers a consistent API. 227 /// \see set. 228 Value *get(VPValue *Def, unsigned Part); 229 230 /// Get the generated Value for a given VPValue and given Part and Lane. 231 Value *get(VPValue *Def, const VPIteration &Instance); 232 233 bool hasVectorValue(VPValue *Def, unsigned Part) { 234 auto I = Data.PerPartOutput.find(Def); 235 return I != Data.PerPartOutput.end() && Part < I->second.size() && 236 I->second[Part]; 237 } 238 239 bool hasAnyVectorValue(VPValue *Def) const { 240 return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end(); 241 } 242 243 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 244 auto I = Data.PerPartScalars.find(Def); 245 if (I == Data.PerPartScalars.end()) 246 return false; 247 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 248 return Instance.Part < I->second.size() && 249 CacheIdx < I->second[Instance.Part].size() && 250 I->second[Instance.Part][CacheIdx]; 251 } 252 253 /// Set the generated Value for a given VPValue and a given Part. 254 void set(VPValue *Def, Value *V, unsigned Part) { 255 if (!Data.PerPartOutput.count(Def)) { 256 DataState::PerPartValuesTy Entry(UF); 257 Data.PerPartOutput[Def] = Entry; 258 } 259 Data.PerPartOutput[Def][Part] = V; 260 } 261 /// Reset an existing vector value for \p Def and a given \p Part. 262 void reset(VPValue *Def, Value *V, unsigned Part) { 263 auto Iter = Data.PerPartOutput.find(Def); 264 assert(Iter != Data.PerPartOutput.end() && 265 "need to overwrite existing value"); 266 Iter->second[Part] = V; 267 } 268 269 /// Set the generated scalar \p V for \p Def and the given \p Instance. 270 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 271 auto Iter = Data.PerPartScalars.insert({Def, {}}); 272 auto &PerPartVec = Iter.first->second; 273 while (PerPartVec.size() <= Instance.Part) 274 PerPartVec.emplace_back(); 275 auto &Scalars = PerPartVec[Instance.Part]; 276 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 277 while (Scalars.size() <= CacheIdx) 278 Scalars.push_back(nullptr); 279 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 280 Scalars[CacheIdx] = V; 281 } 282 283 /// Reset an existing scalar value for \p Def and a given \p Instance. 284 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 285 auto Iter = Data.PerPartScalars.find(Def); 286 assert(Iter != Data.PerPartScalars.end() && 287 "need to overwrite existing value"); 288 assert(Instance.Part < Iter->second.size() && 289 "need to overwrite existing value"); 290 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 291 assert(CacheIdx < Iter->second[Instance.Part].size() && 292 "need to overwrite existing value"); 293 Iter->second[Instance.Part][CacheIdx] = V; 294 } 295 296 /// Hold state information used when constructing the CFG of the output IR, 297 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 298 struct CFGState { 299 /// The previous VPBasicBlock visited. Initially set to null. 300 VPBasicBlock *PrevVPBB = nullptr; 301 302 /// The previous IR BasicBlock created or used. Initially set to the new 303 /// header BasicBlock. 304 BasicBlock *PrevBB = nullptr; 305 306 /// The last IR BasicBlock in the output IR. Set to the new latch 307 /// BasicBlock, used for placing the newly created BasicBlocks. 308 BasicBlock *LastBB = nullptr; 309 310 /// The IR BasicBlock that is the preheader of the vector loop in the output 311 /// IR. 312 /// FIXME: The vector preheader should also be modeled in VPlan, so any code 313 /// that needs to be added to the preheader gets directly generated by 314 /// VPlan. There should be no need to manage a pointer to the IR BasicBlock. 315 BasicBlock *VectorPreHeader = nullptr; 316 317 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 318 /// of replication, maps the BasicBlock of the last replica created. 319 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 320 321 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 322 /// up at the end of vector code generation. 323 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 324 325 CFGState() = default; 326 } CFG; 327 328 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 329 LoopInfo *LI; 330 331 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 332 DominatorTree *DT; 333 334 /// Hold a reference to the IRBuilder used to generate output IR code. 335 IRBuilder<> &Builder; 336 337 VPValue2ValueTy VPValue2Value; 338 339 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 340 Value *CanonicalIV = nullptr; 341 342 /// Hold the trip count of the scalar loop. 343 Value *TripCount = nullptr; 344 345 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 346 InnerLoopVectorizer *ILV; 347 348 /// Pointer to the VPlan code is generated for. 349 VPlan *Plan; 350 351 /// Holds recipes that may generate a poison value that is used after 352 /// vectorization, even when their operands are not poison. 353 SmallPtrSet<VPRecipeBase *, 16> MayGeneratePoisonRecipes; 354 }; 355 356 /// VPUsers instance used by VPBlockBase to manage CondBit and the block 357 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical 358 /// reasons, but in the future the only VPUsers should either be recipes or 359 /// live-outs.VPBlockBase uses. 360 struct VPBlockUser : public VPUser { 361 VPBlockUser() : VPUser({}, VPUserID::Block) {} 362 363 VPValue *getSingleOperandOrNull() { 364 if (getNumOperands() == 1) 365 return getOperand(0); 366 367 return nullptr; 368 } 369 const VPValue *getSingleOperandOrNull() const { 370 if (getNumOperands() == 1) 371 return getOperand(0); 372 373 return nullptr; 374 } 375 376 void resetSingleOpUser(VPValue *NewVal) { 377 assert(getNumOperands() <= 1 && "Didn't expect more than one operand!"); 378 if (!NewVal) { 379 if (getNumOperands() == 1) 380 removeLastOperand(); 381 return; 382 } 383 384 if (getNumOperands() == 1) 385 setOperand(0, NewVal); 386 else 387 addOperand(NewVal); 388 } 389 }; 390 391 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 392 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 393 class VPBlockBase { 394 friend class VPBlockUtils; 395 396 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 397 398 /// An optional name for the block. 399 std::string Name; 400 401 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 402 /// it is a topmost VPBlockBase. 403 VPRegionBlock *Parent = nullptr; 404 405 /// List of predecessor blocks. 406 SmallVector<VPBlockBase *, 1> Predecessors; 407 408 /// List of successor blocks. 409 SmallVector<VPBlockBase *, 1> Successors; 410 411 /// Successor selector managed by a VPUser. For blocks with zero or one 412 /// successors, there is no operand. Otherwise there is exactly one operand 413 /// which is the branch condition. 414 VPBlockUser CondBitUser; 415 416 /// If the block is predicated, its predicate is stored as an operand of this 417 /// VPUser to maintain the def-use relations. Otherwise there is no operand 418 /// here. 419 VPBlockUser PredicateUser; 420 421 /// VPlan containing the block. Can only be set on the entry block of the 422 /// plan. 423 VPlan *Plan = nullptr; 424 425 /// Add \p Successor as the last successor to this block. 426 void appendSuccessor(VPBlockBase *Successor) { 427 assert(Successor && "Cannot add nullptr successor!"); 428 Successors.push_back(Successor); 429 } 430 431 /// Add \p Predecessor as the last predecessor to this block. 432 void appendPredecessor(VPBlockBase *Predecessor) { 433 assert(Predecessor && "Cannot add nullptr predecessor!"); 434 Predecessors.push_back(Predecessor); 435 } 436 437 /// Remove \p Predecessor from the predecessors of this block. 438 void removePredecessor(VPBlockBase *Predecessor) { 439 auto Pos = find(Predecessors, Predecessor); 440 assert(Pos && "Predecessor does not exist"); 441 Predecessors.erase(Pos); 442 } 443 444 /// Remove \p Successor from the successors of this block. 445 void removeSuccessor(VPBlockBase *Successor) { 446 auto Pos = find(Successors, Successor); 447 assert(Pos && "Successor does not exist"); 448 Successors.erase(Pos); 449 } 450 451 protected: 452 VPBlockBase(const unsigned char SC, const std::string &N) 453 : SubclassID(SC), Name(N) {} 454 455 public: 456 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 457 /// that are actually instantiated. Values of this enumeration are kept in the 458 /// SubclassID field of the VPBlockBase objects. They are used for concrete 459 /// type identification. 460 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 461 462 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 463 464 virtual ~VPBlockBase() = default; 465 466 const std::string &getName() const { return Name; } 467 468 void setName(const Twine &newName) { Name = newName.str(); } 469 470 /// \return an ID for the concrete type of this object. 471 /// This is used to implement the classof checks. This should not be used 472 /// for any other purpose, as the values may change as LLVM evolves. 473 unsigned getVPBlockID() const { return SubclassID; } 474 475 VPRegionBlock *getParent() { return Parent; } 476 const VPRegionBlock *getParent() const { return Parent; } 477 478 /// \return A pointer to the plan containing the current block. 479 VPlan *getPlan(); 480 const VPlan *getPlan() const; 481 482 /// Sets the pointer of the plan containing the block. The block must be the 483 /// entry block into the VPlan. 484 void setPlan(VPlan *ParentPlan); 485 486 void setParent(VPRegionBlock *P) { Parent = P; } 487 488 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 489 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 490 /// VPBlockBase is a VPBasicBlock, it is returned. 491 const VPBasicBlock *getEntryBasicBlock() const; 492 VPBasicBlock *getEntryBasicBlock(); 493 494 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 495 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 496 /// VPBlockBase is a VPBasicBlock, it is returned. 497 const VPBasicBlock *getExitBasicBlock() const; 498 VPBasicBlock *getExitBasicBlock(); 499 500 const VPBlocksTy &getSuccessors() const { return Successors; } 501 VPBlocksTy &getSuccessors() { return Successors; } 502 503 const VPBlocksTy &getPredecessors() const { return Predecessors; } 504 VPBlocksTy &getPredecessors() { return Predecessors; } 505 506 /// \return the successor of this VPBlockBase if it has a single successor. 507 /// Otherwise return a null pointer. 508 VPBlockBase *getSingleSuccessor() const { 509 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 510 } 511 512 /// \return the predecessor of this VPBlockBase if it has a single 513 /// predecessor. Otherwise return a null pointer. 514 VPBlockBase *getSinglePredecessor() const { 515 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 516 } 517 518 size_t getNumSuccessors() const { return Successors.size(); } 519 size_t getNumPredecessors() const { return Predecessors.size(); } 520 521 /// An Enclosing Block of a block B is any block containing B, including B 522 /// itself. \return the closest enclosing block starting from "this", which 523 /// has successors. \return the root enclosing block if all enclosing blocks 524 /// have no successors. 525 VPBlockBase *getEnclosingBlockWithSuccessors(); 526 527 /// \return the closest enclosing block starting from "this", which has 528 /// predecessors. \return the root enclosing block if all enclosing blocks 529 /// have no predecessors. 530 VPBlockBase *getEnclosingBlockWithPredecessors(); 531 532 /// \return the successors either attached directly to this VPBlockBase or, if 533 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 534 /// successors of its own, search recursively for the first enclosing 535 /// VPRegionBlock that has successors and return them. If no such 536 /// VPRegionBlock exists, return the (empty) successors of the topmost 537 /// VPBlockBase reached. 538 const VPBlocksTy &getHierarchicalSuccessors() { 539 return getEnclosingBlockWithSuccessors()->getSuccessors(); 540 } 541 542 /// \return the hierarchical successor of this VPBlockBase if it has a single 543 /// hierarchical successor. Otherwise return a null pointer. 544 VPBlockBase *getSingleHierarchicalSuccessor() { 545 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 546 } 547 548 /// \return the predecessors either attached directly to this VPBlockBase or, 549 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 550 /// predecessors of its own, search recursively for the first enclosing 551 /// VPRegionBlock that has predecessors and return them. If no such 552 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 553 /// VPBlockBase reached. 554 const VPBlocksTy &getHierarchicalPredecessors() { 555 return getEnclosingBlockWithPredecessors()->getPredecessors(); 556 } 557 558 /// \return the hierarchical predecessor of this VPBlockBase if it has a 559 /// single hierarchical predecessor. Otherwise return a null pointer. 560 VPBlockBase *getSingleHierarchicalPredecessor() { 561 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 562 } 563 564 /// \return the condition bit selecting the successor. 565 VPValue *getCondBit(); 566 /// \return the condition bit selecting the successor. 567 const VPValue *getCondBit() const; 568 /// Set the condition bit selecting the successor. 569 void setCondBit(VPValue *CV); 570 571 /// \return the block's predicate. 572 VPValue *getPredicate(); 573 /// \return the block's predicate. 574 const VPValue *getPredicate() const; 575 /// Set the block's predicate. 576 void setPredicate(VPValue *Pred); 577 578 /// Set a given VPBlockBase \p Successor as the single successor of this 579 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 580 /// This VPBlockBase must have no successors. 581 void setOneSuccessor(VPBlockBase *Successor) { 582 assert(Successors.empty() && "Setting one successor when others exist."); 583 appendSuccessor(Successor); 584 } 585 586 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 587 /// successors of this VPBlockBase. \p Condition is set as the successor 588 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 589 /// IfFalse. This VPBlockBase must have no successors. 590 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 591 VPValue *Condition) { 592 assert(Successors.empty() && "Setting two successors when others exist."); 593 assert(Condition && "Setting two successors without condition!"); 594 setCondBit(Condition); 595 appendSuccessor(IfTrue); 596 appendSuccessor(IfFalse); 597 } 598 599 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 600 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 601 /// as successor of any VPBasicBlock in \p NewPreds. 602 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 603 assert(Predecessors.empty() && "Block predecessors already set."); 604 for (auto *Pred : NewPreds) 605 appendPredecessor(Pred); 606 } 607 608 /// Remove all the predecessor of this block. 609 void clearPredecessors() { Predecessors.clear(); } 610 611 /// Remove all the successors of this block and set to null its condition bit 612 void clearSuccessors() { 613 Successors.clear(); 614 setCondBit(nullptr); 615 } 616 617 /// The method which generates the output IR that correspond to this 618 /// VPBlockBase, thereby "executing" the VPlan. 619 virtual void execute(struct VPTransformState *State) = 0; 620 621 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 622 static void deleteCFG(VPBlockBase *Entry); 623 624 /// Return true if it is legal to hoist instructions into this block. 625 bool isLegalToHoistInto() { 626 // There are currently no constraints that prevent an instruction to be 627 // hoisted into a VPBlockBase. 628 return true; 629 } 630 631 /// Replace all operands of VPUsers in the block with \p NewValue and also 632 /// replaces all uses of VPValues defined in the block with NewValue. 633 virtual void dropAllReferences(VPValue *NewValue) = 0; 634 635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 636 void printAsOperand(raw_ostream &OS, bool PrintType) const { 637 OS << getName(); 638 } 639 640 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 641 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 642 /// consequtive numbers. 643 /// 644 /// Note that the numbering is applied to the whole VPlan, so printing 645 /// individual blocks is consistent with the whole VPlan printing. 646 virtual void print(raw_ostream &O, const Twine &Indent, 647 VPSlotTracker &SlotTracker) const = 0; 648 649 /// Print plain-text dump of this VPlan to \p O. 650 void print(raw_ostream &O) const { 651 VPSlotTracker SlotTracker(getPlan()); 652 print(O, "", SlotTracker); 653 } 654 655 /// Print the successors of this block to \p O, prefixing all lines with \p 656 /// Indent. 657 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 658 659 /// Dump this VPBlockBase to dbgs(). 660 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 661 #endif 662 }; 663 664 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 665 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef 666 /// and is responsible for deleting its defined values. Single-value 667 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 668 /// VPRecipeBase before VPValue. 669 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 670 public VPDef, 671 public VPUser { 672 friend VPBasicBlock; 673 friend class VPBlockUtils; 674 675 /// Each VPRecipe belongs to a single VPBasicBlock. 676 VPBasicBlock *Parent = nullptr; 677 678 public: 679 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) 680 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 681 682 template <typename IterT> 683 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) 684 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 685 virtual ~VPRecipeBase() = default; 686 687 /// \return the VPBasicBlock which this VPRecipe belongs to. 688 VPBasicBlock *getParent() { return Parent; } 689 const VPBasicBlock *getParent() const { return Parent; } 690 691 /// The method which generates the output IR instructions that correspond to 692 /// this VPRecipe, thereby "executing" the VPlan. 693 virtual void execute(struct VPTransformState &State) = 0; 694 695 /// Insert an unlinked recipe into a basic block immediately before 696 /// the specified recipe. 697 void insertBefore(VPRecipeBase *InsertPos); 698 699 /// Insert an unlinked Recipe into a basic block immediately after 700 /// the specified Recipe. 701 void insertAfter(VPRecipeBase *InsertPos); 702 703 /// Unlink this recipe from its current VPBasicBlock and insert it into 704 /// the VPBasicBlock that MovePos lives in, right after MovePos. 705 void moveAfter(VPRecipeBase *MovePos); 706 707 /// Unlink this recipe and insert into BB before I. 708 /// 709 /// \pre I is a valid iterator into BB. 710 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 711 712 /// This method unlinks 'this' from the containing basic block, but does not 713 /// delete it. 714 void removeFromParent(); 715 716 /// This method unlinks 'this' from the containing basic block and deletes it. 717 /// 718 /// \returns an iterator pointing to the element after the erased one 719 iplist<VPRecipeBase>::iterator eraseFromParent(); 720 721 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 722 /// otherwise. 723 Instruction *getUnderlyingInstr() { 724 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 725 } 726 const Instruction *getUnderlyingInstr() const { 727 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 728 } 729 730 /// Method to support type inquiry through isa, cast, and dyn_cast. 731 static inline bool classof(const VPDef *D) { 732 // All VPDefs are also VPRecipeBases. 733 return true; 734 } 735 736 static inline bool classof(const VPUser *U) { 737 return U->getVPUserID() == VPUser::VPUserID::Recipe; 738 } 739 740 /// Returns true if the recipe may have side-effects. 741 bool mayHaveSideEffects() const; 742 743 /// Returns true for PHI-like recipes. 744 bool isPhi() const { 745 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 746 } 747 748 /// Returns true if the recipe may read from memory. 749 bool mayReadFromMemory() const; 750 751 /// Returns true if the recipe may write to memory. 752 bool mayWriteToMemory() const; 753 754 /// Returns true if the recipe may read from or write to memory. 755 bool mayReadOrWriteMemory() const { 756 return mayReadFromMemory() || mayWriteToMemory(); 757 } 758 }; 759 760 inline bool VPUser::classof(const VPDef *Def) { 761 return Def->getVPDefID() == VPRecipeBase::VPInstructionSC || 762 Def->getVPDefID() == VPRecipeBase::VPWidenSC || 763 Def->getVPDefID() == VPRecipeBase::VPWidenCallSC || 764 Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC || 765 Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 766 Def->getVPDefID() == VPRecipeBase::VPBlendSC || 767 Def->getVPDefID() == VPRecipeBase::VPInterleaveSC || 768 Def->getVPDefID() == VPRecipeBase::VPReplicateSC || 769 Def->getVPDefID() == VPRecipeBase::VPReductionSC || 770 Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC || 771 Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 772 } 773 774 /// This is a concrete Recipe that models a single VPlan-level instruction. 775 /// While as any Recipe it may generate a sequence of IR instructions when 776 /// executed, these instructions would always form a single-def expression as 777 /// the VPInstruction is also a single def-use vertex. 778 class VPInstruction : public VPRecipeBase, public VPValue { 779 friend class VPlanSlp; 780 781 public: 782 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 783 enum { 784 FirstOrderRecurrenceSplice = 785 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 786 // values of a first-order recurrence. 787 Not, 788 ICmpULE, 789 SLPLoad, 790 SLPStore, 791 ActiveLaneMask, 792 }; 793 794 private: 795 typedef unsigned char OpcodeTy; 796 OpcodeTy Opcode; 797 FastMathFlags FMF; 798 799 /// Utility method serving execute(): generates a single instance of the 800 /// modeled instruction. 801 void generateInstruction(VPTransformState &State, unsigned Part); 802 803 protected: 804 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 805 806 public: 807 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) 808 : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands), 809 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {} 810 811 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) 812 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} 813 814 /// Method to support type inquiry through isa, cast, and dyn_cast. 815 static inline bool classof(const VPValue *V) { 816 return V->getVPValueID() == VPValue::VPVInstructionSC; 817 } 818 819 VPInstruction *clone() const { 820 SmallVector<VPValue *, 2> Operands(operands()); 821 return new VPInstruction(Opcode, Operands); 822 } 823 824 /// Method to support type inquiry through isa, cast, and dyn_cast. 825 static inline bool classof(const VPDef *R) { 826 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 827 } 828 829 unsigned getOpcode() const { return Opcode; } 830 831 /// Generate the instruction. 832 /// TODO: We currently execute only per-part unless a specific instance is 833 /// provided. 834 void execute(VPTransformState &State) override; 835 836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 837 /// Print the VPInstruction to \p O. 838 void print(raw_ostream &O, const Twine &Indent, 839 VPSlotTracker &SlotTracker) const override; 840 841 /// Print the VPInstruction to dbgs() (for debugging). 842 LLVM_DUMP_METHOD void dump() const; 843 #endif 844 845 /// Return true if this instruction may modify memory. 846 bool mayWriteToMemory() const { 847 // TODO: we can use attributes of the called function to rule out memory 848 // modifications. 849 return Opcode == Instruction::Store || Opcode == Instruction::Call || 850 Opcode == Instruction::Invoke || Opcode == SLPStore; 851 } 852 853 bool hasResult() const { 854 // CallInst may or may not have a result, depending on the called function. 855 // Conservatively return calls have results for now. 856 switch (getOpcode()) { 857 case Instruction::Ret: 858 case Instruction::Br: 859 case Instruction::Store: 860 case Instruction::Switch: 861 case Instruction::IndirectBr: 862 case Instruction::Resume: 863 case Instruction::CatchRet: 864 case Instruction::Unreachable: 865 case Instruction::Fence: 866 case Instruction::AtomicRMW: 867 return false; 868 default: 869 return true; 870 } 871 } 872 873 /// Set the fast-math flags. 874 void setFastMathFlags(FastMathFlags FMFNew); 875 }; 876 877 /// VPWidenRecipe is a recipe for producing a copy of vector type its 878 /// ingredient. This recipe covers most of the traditional vectorization cases 879 /// where each ingredient transforms into a vectorized version of itself. 880 class VPWidenRecipe : public VPRecipeBase, public VPValue { 881 public: 882 template <typename IterT> 883 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 884 : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands), 885 VPValue(VPValue::VPVWidenSC, &I, this) {} 886 887 ~VPWidenRecipe() override = default; 888 889 /// Method to support type inquiry through isa, cast, and dyn_cast. 890 static inline bool classof(const VPDef *D) { 891 return D->getVPDefID() == VPRecipeBase::VPWidenSC; 892 } 893 static inline bool classof(const VPValue *V) { 894 return V->getVPValueID() == VPValue::VPVWidenSC; 895 } 896 897 /// Produce widened copies of all Ingredients. 898 void execute(VPTransformState &State) override; 899 900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 901 /// Print the recipe. 902 void print(raw_ostream &O, const Twine &Indent, 903 VPSlotTracker &SlotTracker) const override; 904 #endif 905 }; 906 907 /// A recipe for widening Call instructions. 908 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 909 910 public: 911 template <typename IterT> 912 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments) 913 : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments), 914 VPValue(VPValue::VPVWidenCallSC, &I, this) {} 915 916 ~VPWidenCallRecipe() override = default; 917 918 /// Method to support type inquiry through isa, cast, and dyn_cast. 919 static inline bool classof(const VPDef *D) { 920 return D->getVPDefID() == VPRecipeBase::VPWidenCallSC; 921 } 922 923 /// Produce a widened version of the call instruction. 924 void execute(VPTransformState &State) override; 925 926 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 927 /// Print the recipe. 928 void print(raw_ostream &O, const Twine &Indent, 929 VPSlotTracker &SlotTracker) const override; 930 #endif 931 }; 932 933 /// A recipe for widening select instructions. 934 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 935 936 /// Is the condition of the select loop invariant? 937 bool InvariantCond; 938 939 public: 940 template <typename IterT> 941 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands, 942 bool InvariantCond) 943 : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands), 944 VPValue(VPValue::VPVWidenSelectSC, &I, this), 945 InvariantCond(InvariantCond) {} 946 947 ~VPWidenSelectRecipe() override = default; 948 949 /// Method to support type inquiry through isa, cast, and dyn_cast. 950 static inline bool classof(const VPDef *D) { 951 return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC; 952 } 953 954 /// Produce a widened version of the select instruction. 955 void execute(VPTransformState &State) override; 956 957 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 958 /// Print the recipe. 959 void print(raw_ostream &O, const Twine &Indent, 960 VPSlotTracker &SlotTracker) const override; 961 #endif 962 }; 963 964 /// A recipe for handling GEP instructions. 965 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue { 966 bool IsPtrLoopInvariant; 967 SmallBitVector IsIndexLoopInvariant; 968 969 public: 970 template <typename IterT> 971 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 972 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 973 VPValue(VPWidenGEPSC, GEP, this), 974 IsIndexLoopInvariant(GEP->getNumIndices(), false) {} 975 976 template <typename IterT> 977 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands, 978 Loop *OrigLoop) 979 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 980 VPValue(VPValue::VPVWidenGEPSC, GEP, this), 981 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 982 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 983 for (auto Index : enumerate(GEP->indices())) 984 IsIndexLoopInvariant[Index.index()] = 985 OrigLoop->isLoopInvariant(Index.value().get()); 986 } 987 ~VPWidenGEPRecipe() override = default; 988 989 /// Method to support type inquiry through isa, cast, and dyn_cast. 990 static inline bool classof(const VPDef *D) { 991 return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC; 992 } 993 994 /// Generate the gep nodes. 995 void execute(VPTransformState &State) override; 996 997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 998 /// Print the recipe. 999 void print(raw_ostream &O, const Twine &Indent, 1000 VPSlotTracker &SlotTracker) const override; 1001 #endif 1002 }; 1003 1004 /// A recipe for handling phi nodes of integer and floating-point inductions, 1005 /// producing their vector and scalar values. 1006 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 1007 PHINode *IV; 1008 1009 public: 1010 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, Instruction *Cast, 1011 TruncInst *Trunc = nullptr) 1012 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), IV(IV) { 1013 if (Trunc) 1014 new VPValue(Trunc, this); 1015 else 1016 new VPValue(IV, this); 1017 1018 if (Cast) 1019 new VPValue(Cast, this); 1020 } 1021 ~VPWidenIntOrFpInductionRecipe() override = default; 1022 1023 /// Method to support type inquiry through isa, cast, and dyn_cast. 1024 static inline bool classof(const VPDef *D) { 1025 return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 1026 } 1027 1028 /// Generate the vectorized and scalarized versions of the phi node as 1029 /// needed by their users. 1030 void execute(VPTransformState &State) override; 1031 1032 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1033 /// Print the recipe. 1034 void print(raw_ostream &O, const Twine &Indent, 1035 VPSlotTracker &SlotTracker) const override; 1036 #endif 1037 1038 /// Returns the start value of the induction. 1039 VPValue *getStartValue() { return getOperand(0); } 1040 1041 /// Returns the cast VPValue, if one is attached, or nullptr otherwise. 1042 VPValue *getCastValue() { 1043 if (getNumDefinedValues() != 2) 1044 return nullptr; 1045 return getVPValue(1); 1046 } 1047 1048 /// Returns the first defined value as TruncInst, if it is one or nullptr 1049 /// otherwise. 1050 TruncInst *getTruncInst() { 1051 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1052 } 1053 const TruncInst *getTruncInst() const { 1054 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1055 } 1056 }; 1057 1058 /// A recipe for handling first order recurrences and pointer inductions. For 1059 /// first-order recurrences, the start value is the first operand of the recipe 1060 /// and the incoming value from the backedge is the second operand. It also 1061 /// serves as base class for VPReductionPHIRecipe. In the VPlan native path, all 1062 /// incoming VPValues & VPBasicBlock pairs are managed in the recipe directly. 1063 class VPWidenPHIRecipe : public VPRecipeBase, public VPValue { 1064 /// List of incoming blocks. Only used in the VPlan native path. 1065 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1066 1067 protected: 1068 VPWidenPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi, 1069 VPValue *Start = nullptr) 1070 : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) { 1071 if (Start) 1072 addOperand(Start); 1073 } 1074 1075 public: 1076 /// Create a VPWidenPHIRecipe for \p Phi 1077 VPWidenPHIRecipe(PHINode *Phi) 1078 : VPWidenPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) {} 1079 1080 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1081 VPWidenPHIRecipe(PHINode *Phi, VPValue &Start) : VPWidenPHIRecipe(Phi) { 1082 addOperand(&Start); 1083 } 1084 1085 ~VPWidenPHIRecipe() override = default; 1086 1087 /// Method to support type inquiry through isa, cast, and dyn_cast. 1088 static inline bool classof(const VPRecipeBase *B) { 1089 return B->getVPDefID() == VPRecipeBase::VPWidenPHISC || 1090 B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC || 1091 B->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1092 } 1093 static inline bool classof(const VPValue *V) { 1094 return V->getVPValueID() == VPValue::VPVWidenPHISC || 1095 V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC || 1096 V->getVPValueID() == VPValue::VPVReductionPHISC; 1097 } 1098 1099 /// Generate the phi/select nodes. 1100 void execute(VPTransformState &State) override; 1101 1102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1103 /// Print the recipe. 1104 void print(raw_ostream &O, const Twine &Indent, 1105 VPSlotTracker &SlotTracker) const override; 1106 #endif 1107 1108 /// Returns the start value of the phi, if it is a reduction or first-order 1109 /// recurrence. 1110 VPValue *getStartValue() { 1111 return getNumOperands() == 0 ? nullptr : getOperand(0); 1112 } 1113 1114 /// Returns the incoming value from the loop backedge, if it is a reduction or 1115 /// first-order recurrence. 1116 VPValue *getBackedgeValue() { 1117 return getOperand(1); 1118 } 1119 1120 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1121 /// to be a recipe. 1122 VPRecipeBase *getBackedgeRecipe() { 1123 return cast<VPRecipeBase>(getBackedgeValue()->getDef()); 1124 } 1125 1126 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1127 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1128 addOperand(IncomingV); 1129 IncomingBlocks.push_back(IncomingBlock); 1130 } 1131 1132 /// Returns the \p I th incoming VPValue. 1133 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1134 1135 /// Returns the \p I th incoming VPBasicBlock. 1136 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1137 }; 1138 1139 /// A recipe for handling first-order recurrence phis. The start value is the 1140 /// first operand of the recipe and the incoming value from the backedge is the 1141 /// second operand. 1142 struct VPFirstOrderRecurrencePHIRecipe : public VPWidenPHIRecipe { 1143 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1144 : VPWidenPHIRecipe(VPVFirstOrderRecurrencePHISC, 1145 VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1146 1147 /// Method to support type inquiry through isa, cast, and dyn_cast. 1148 static inline bool classof(const VPRecipeBase *R) { 1149 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1150 } 1151 static inline bool classof(const VPWidenPHIRecipe *D) { 1152 return D->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1153 } 1154 static inline bool classof(const VPValue *V) { 1155 return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC; 1156 } 1157 1158 void execute(VPTransformState &State) override; 1159 1160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1161 /// Print the recipe. 1162 void print(raw_ostream &O, const Twine &Indent, 1163 VPSlotTracker &SlotTracker) const override; 1164 #endif 1165 }; 1166 1167 /// A recipe for handling reduction phis. The start value is the first operand 1168 /// of the recipe and the incoming value from the backedge is the second 1169 /// operand. 1170 class VPReductionPHIRecipe : public VPWidenPHIRecipe { 1171 /// Descriptor for the reduction. 1172 RecurrenceDescriptor &RdxDesc; 1173 1174 /// The phi is part of an in-loop reduction. 1175 bool IsInLoop; 1176 1177 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1178 bool IsOrdered; 1179 1180 public: 1181 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1182 /// RdxDesc. 1183 VPReductionPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, 1184 VPValue &Start, bool IsInLoop = false, 1185 bool IsOrdered = false) 1186 : VPWidenPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start), 1187 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1188 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1189 } 1190 1191 ~VPReductionPHIRecipe() override = default; 1192 1193 /// Method to support type inquiry through isa, cast, and dyn_cast. 1194 static inline bool classof(const VPRecipeBase *R) { 1195 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1196 } 1197 static inline bool classof(const VPValue *V) { 1198 return V->getVPValueID() == VPValue::VPVReductionPHISC; 1199 } 1200 static inline bool classof(const VPWidenPHIRecipe *R) { 1201 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1202 } 1203 1204 /// Generate the phi/select nodes. 1205 void execute(VPTransformState &State) override; 1206 1207 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1208 /// Print the recipe. 1209 void print(raw_ostream &O, const Twine &Indent, 1210 VPSlotTracker &SlotTracker) const override; 1211 #endif 1212 1213 RecurrenceDescriptor &getRecurrenceDescriptor() { return RdxDesc; } 1214 1215 /// Returns true, if the phi is part of an ordered reduction. 1216 bool isOrdered() const { return IsOrdered; } 1217 1218 /// Returns true, if the phi is part of an in-loop reduction. 1219 bool isInLoop() const { return IsInLoop; } 1220 }; 1221 1222 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1223 /// instructions. 1224 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1225 PHINode *Phi; 1226 1227 public: 1228 /// The blend operation is a User of the incoming values and of their 1229 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1230 /// might be incoming with a full mask for which there is no VPValue. 1231 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1232 : VPRecipeBase(VPBlendSC, Operands), 1233 VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) { 1234 assert(Operands.size() > 0 && 1235 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1236 "Expected either a single incoming value or a positive even number " 1237 "of operands"); 1238 } 1239 1240 /// Method to support type inquiry through isa, cast, and dyn_cast. 1241 static inline bool classof(const VPDef *D) { 1242 return D->getVPDefID() == VPRecipeBase::VPBlendSC; 1243 } 1244 1245 /// Return the number of incoming values, taking into account that a single 1246 /// incoming value has no mask. 1247 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1248 1249 /// Return incoming value number \p Idx. 1250 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1251 1252 /// Return mask number \p Idx. 1253 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1254 1255 /// Generate the phi/select nodes. 1256 void execute(VPTransformState &State) override; 1257 1258 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1259 /// Print the recipe. 1260 void print(raw_ostream &O, const Twine &Indent, 1261 VPSlotTracker &SlotTracker) const override; 1262 #endif 1263 }; 1264 1265 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1266 /// or stores into one wide load/store and shuffles. The first operand of a 1267 /// VPInterleave recipe is the address, followed by the stored values, followed 1268 /// by an optional mask. 1269 class VPInterleaveRecipe : public VPRecipeBase { 1270 const InterleaveGroup<Instruction> *IG; 1271 1272 bool HasMask = false; 1273 1274 public: 1275 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1276 ArrayRef<VPValue *> StoredValues, VPValue *Mask) 1277 : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) { 1278 for (unsigned i = 0; i < IG->getFactor(); ++i) 1279 if (Instruction *I = IG->getMember(i)) { 1280 if (I->getType()->isVoidTy()) 1281 continue; 1282 new VPValue(I, this); 1283 } 1284 1285 for (auto *SV : StoredValues) 1286 addOperand(SV); 1287 if (Mask) { 1288 HasMask = true; 1289 addOperand(Mask); 1290 } 1291 } 1292 ~VPInterleaveRecipe() override = default; 1293 1294 /// Method to support type inquiry through isa, cast, and dyn_cast. 1295 static inline bool classof(const VPDef *D) { 1296 return D->getVPDefID() == VPRecipeBase::VPInterleaveSC; 1297 } 1298 1299 /// Return the address accessed by this recipe. 1300 VPValue *getAddr() const { 1301 return getOperand(0); // Address is the 1st, mandatory operand. 1302 } 1303 1304 /// Return the mask used by this recipe. Note that a full mask is represented 1305 /// by a nullptr. 1306 VPValue *getMask() const { 1307 // Mask is optional and therefore the last, currently 2nd operand. 1308 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1309 } 1310 1311 /// Return the VPValues stored by this interleave group. If it is a load 1312 /// interleave group, return an empty ArrayRef. 1313 ArrayRef<VPValue *> getStoredValues() const { 1314 // The first operand is the address, followed by the stored values, followed 1315 // by an optional mask. 1316 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1317 .slice(1, getNumStoreOperands()); 1318 } 1319 1320 /// Generate the wide load or store, and shuffles. 1321 void execute(VPTransformState &State) override; 1322 1323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1324 /// Print the recipe. 1325 void print(raw_ostream &O, const Twine &Indent, 1326 VPSlotTracker &SlotTracker) const override; 1327 #endif 1328 1329 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1330 1331 /// Returns the number of stored operands of this interleave group. Returns 0 1332 /// for load interleave groups. 1333 unsigned getNumStoreOperands() const { 1334 return getNumOperands() - (HasMask ? 2 : 1); 1335 } 1336 }; 1337 1338 /// A recipe to represent inloop reduction operations, performing a reduction on 1339 /// a vector operand into a scalar value, and adding the result to a chain. 1340 /// The Operands are {ChainOp, VecOp, [Condition]}. 1341 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1342 /// The recurrence decriptor for the reduction in question. 1343 RecurrenceDescriptor *RdxDesc; 1344 /// Pointer to the TTI, needed to create the target reduction 1345 const TargetTransformInfo *TTI; 1346 1347 public: 1348 VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp, 1349 VPValue *VecOp, VPValue *CondOp, 1350 const TargetTransformInfo *TTI) 1351 : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}), 1352 VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) { 1353 if (CondOp) 1354 addOperand(CondOp); 1355 } 1356 1357 ~VPReductionRecipe() override = default; 1358 1359 /// Method to support type inquiry through isa, cast, and dyn_cast. 1360 static inline bool classof(const VPValue *V) { 1361 return V->getVPValueID() == VPValue::VPVReductionSC; 1362 } 1363 1364 /// Generate the reduction in the loop 1365 void execute(VPTransformState &State) override; 1366 1367 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1368 /// Print the recipe. 1369 void print(raw_ostream &O, const Twine &Indent, 1370 VPSlotTracker &SlotTracker) const override; 1371 #endif 1372 1373 /// The VPValue of the scalar Chain being accumulated. 1374 VPValue *getChainOp() const { return getOperand(0); } 1375 /// The VPValue of the vector value to be reduced. 1376 VPValue *getVecOp() const { return getOperand(1); } 1377 /// The VPValue of the condition for the block. 1378 VPValue *getCondOp() const { 1379 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1380 } 1381 }; 1382 1383 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1384 /// copies of the original scalar type, one per lane, instead of producing a 1385 /// single copy of widened type for all lanes. If the instruction is known to be 1386 /// uniform only one copy, per lane zero, will be generated. 1387 class VPReplicateRecipe : public VPRecipeBase, public VPValue { 1388 /// Indicator if only a single replica per lane is needed. 1389 bool IsUniform; 1390 1391 /// Indicator if the replicas are also predicated. 1392 bool IsPredicated; 1393 1394 /// Indicator if the scalar values should also be packed into a vector. 1395 bool AlsoPack; 1396 1397 public: 1398 template <typename IterT> 1399 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1400 bool IsUniform, bool IsPredicated = false) 1401 : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this), 1402 IsUniform(IsUniform), IsPredicated(IsPredicated) { 1403 // Retain the previous behavior of predicateInstructions(), where an 1404 // insert-element of a predicated instruction got hoisted into the 1405 // predicated basic block iff it was its only user. This is achieved by 1406 // having predicated instructions also pack their values into a vector by 1407 // default unless they have a replicated user which uses their scalar value. 1408 AlsoPack = IsPredicated && !I->use_empty(); 1409 } 1410 1411 ~VPReplicateRecipe() override = default; 1412 1413 /// Method to support type inquiry through isa, cast, and dyn_cast. 1414 static inline bool classof(const VPDef *D) { 1415 return D->getVPDefID() == VPRecipeBase::VPReplicateSC; 1416 } 1417 1418 static inline bool classof(const VPValue *V) { 1419 return V->getVPValueID() == VPValue::VPVReplicateSC; 1420 } 1421 1422 /// Generate replicas of the desired Ingredient. Replicas will be generated 1423 /// for all parts and lanes unless a specific part and lane are specified in 1424 /// the \p State. 1425 void execute(VPTransformState &State) override; 1426 1427 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 1428 1429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1430 /// Print the recipe. 1431 void print(raw_ostream &O, const Twine &Indent, 1432 VPSlotTracker &SlotTracker) const override; 1433 #endif 1434 1435 bool isUniform() const { return IsUniform; } 1436 1437 bool isPacked() const { return AlsoPack; } 1438 1439 bool isPredicated() const { return IsPredicated; } 1440 }; 1441 1442 /// A recipe for generating conditional branches on the bits of a mask. 1443 class VPBranchOnMaskRecipe : public VPRecipeBase { 1444 public: 1445 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1446 : VPRecipeBase(VPBranchOnMaskSC, {}) { 1447 if (BlockInMask) // nullptr means all-one mask. 1448 addOperand(BlockInMask); 1449 } 1450 1451 /// Method to support type inquiry through isa, cast, and dyn_cast. 1452 static inline bool classof(const VPDef *D) { 1453 return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC; 1454 } 1455 1456 /// Generate the extraction of the appropriate bit from the block mask and the 1457 /// conditional branch. 1458 void execute(VPTransformState &State) override; 1459 1460 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1461 /// Print the recipe. 1462 void print(raw_ostream &O, const Twine &Indent, 1463 VPSlotTracker &SlotTracker) const override { 1464 O << Indent << "BRANCH-ON-MASK "; 1465 if (VPValue *Mask = getMask()) 1466 Mask->printAsOperand(O, SlotTracker); 1467 else 1468 O << " All-One"; 1469 } 1470 #endif 1471 1472 /// Return the mask used by this recipe. Note that a full mask is represented 1473 /// by a nullptr. 1474 VPValue *getMask() const { 1475 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1476 // Mask is optional. 1477 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1478 } 1479 }; 1480 1481 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1482 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1483 /// order to merge values that are set under such a branch and feed their uses. 1484 /// The phi nodes can be scalar or vector depending on the users of the value. 1485 /// This recipe works in concert with VPBranchOnMaskRecipe. 1486 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1487 public: 1488 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1489 /// nodes after merging back from a Branch-on-Mask. 1490 VPPredInstPHIRecipe(VPValue *PredV) 1491 : VPRecipeBase(VPPredInstPHISC, PredV), 1492 VPValue(VPValue::VPVPredInstPHI, nullptr, this) {} 1493 ~VPPredInstPHIRecipe() override = default; 1494 1495 /// Method to support type inquiry through isa, cast, and dyn_cast. 1496 static inline bool classof(const VPDef *D) { 1497 return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC; 1498 } 1499 1500 /// Generates phi nodes for live-outs as needed to retain SSA form. 1501 void execute(VPTransformState &State) override; 1502 1503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1504 /// Print the recipe. 1505 void print(raw_ostream &O, const Twine &Indent, 1506 VPSlotTracker &SlotTracker) const override; 1507 #endif 1508 }; 1509 1510 /// A Recipe for widening load/store operations. 1511 /// The recipe uses the following VPValues: 1512 /// - For load: Address, optional mask 1513 /// - For store: Address, stored value, optional mask 1514 /// TODO: We currently execute only per-part unless a specific instance is 1515 /// provided. 1516 class VPWidenMemoryInstructionRecipe : public VPRecipeBase, public VPValue { 1517 Instruction &Ingredient; 1518 1519 // Whether the loaded-from / stored-to addresses are consecutive. 1520 bool Consecutive; 1521 1522 // Whether the consecutive loaded/stored addresses are in reverse order. 1523 bool Reverse; 1524 1525 void setMask(VPValue *Mask) { 1526 if (!Mask) 1527 return; 1528 addOperand(Mask); 1529 } 1530 1531 bool isMasked() const { 1532 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 1533 } 1534 1535 public: 1536 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 1537 bool Consecutive, bool Reverse) 1538 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), 1539 VPValue(VPValue::VPVMemoryInstructionSC, &Load, this), Ingredient(Load), 1540 Consecutive(Consecutive), Reverse(Reverse) { 1541 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1542 setMask(Mask); 1543 } 1544 1545 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 1546 VPValue *StoredValue, VPValue *Mask, 1547 bool Consecutive, bool Reverse) 1548 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}), 1549 VPValue(VPValue::VPVMemoryInstructionSC, &Store, this), 1550 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 1551 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1552 setMask(Mask); 1553 } 1554 1555 /// Method to support type inquiry through isa, cast, and dyn_cast. 1556 static inline bool classof(const VPDef *D) { 1557 return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1558 } 1559 1560 /// Return the address accessed by this recipe. 1561 VPValue *getAddr() const { 1562 return getOperand(0); // Address is the 1st, mandatory operand. 1563 } 1564 1565 /// Return the mask used by this recipe. Note that a full mask is represented 1566 /// by a nullptr. 1567 VPValue *getMask() const { 1568 // Mask is optional and therefore the last operand. 1569 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 1570 } 1571 1572 /// Returns true if this recipe is a store. 1573 bool isStore() const { return isa<StoreInst>(Ingredient); } 1574 1575 /// Return the address accessed by this recipe. 1576 VPValue *getStoredValue() const { 1577 assert(isStore() && "Stored value only available for store instructions"); 1578 return getOperand(1); // Stored value is the 2nd, mandatory operand. 1579 } 1580 1581 // Return whether the loaded-from / stored-to addresses are consecutive. 1582 bool isConsecutive() const { return Consecutive; } 1583 1584 // Return whether the consecutive loaded/stored addresses are in reverse 1585 // order. 1586 bool isReverse() const { return Reverse; } 1587 1588 /// Generate the wide load/store. 1589 void execute(VPTransformState &State) override; 1590 1591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1592 /// Print the recipe. 1593 void print(raw_ostream &O, const Twine &Indent, 1594 VPSlotTracker &SlotTracker) const override; 1595 #endif 1596 }; 1597 1598 /// A Recipe for widening the canonical induction variable of the vector loop. 1599 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 1600 public: 1601 VPWidenCanonicalIVRecipe() 1602 : VPRecipeBase(VPWidenCanonicalIVSC, {}), 1603 VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {} 1604 1605 ~VPWidenCanonicalIVRecipe() override = default; 1606 1607 /// Method to support type inquiry through isa, cast, and dyn_cast. 1608 static inline bool classof(const VPDef *D) { 1609 return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1610 } 1611 1612 /// Generate a canonical vector induction variable of the vector loop, with 1613 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 1614 /// step = <VF*UF, VF*UF, ..., VF*UF>. 1615 void execute(VPTransformState &State) override; 1616 1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1618 /// Print the recipe. 1619 void print(raw_ostream &O, const Twine &Indent, 1620 VPSlotTracker &SlotTracker) const override; 1621 #endif 1622 }; 1623 1624 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1625 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1626 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 1627 class VPBasicBlock : public VPBlockBase { 1628 public: 1629 using RecipeListTy = iplist<VPRecipeBase>; 1630 1631 private: 1632 /// The VPRecipes held in the order of output instructions to generate. 1633 RecipeListTy Recipes; 1634 1635 public: 1636 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1637 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1638 if (Recipe) 1639 appendRecipe(Recipe); 1640 } 1641 1642 ~VPBasicBlock() override { 1643 while (!Recipes.empty()) 1644 Recipes.pop_back(); 1645 } 1646 1647 /// Instruction iterators... 1648 using iterator = RecipeListTy::iterator; 1649 using const_iterator = RecipeListTy::const_iterator; 1650 using reverse_iterator = RecipeListTy::reverse_iterator; 1651 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1652 1653 //===--------------------------------------------------------------------===// 1654 /// Recipe iterator methods 1655 /// 1656 inline iterator begin() { return Recipes.begin(); } 1657 inline const_iterator begin() const { return Recipes.begin(); } 1658 inline iterator end() { return Recipes.end(); } 1659 inline const_iterator end() const { return Recipes.end(); } 1660 1661 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1662 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1663 inline reverse_iterator rend() { return Recipes.rend(); } 1664 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1665 1666 inline size_t size() const { return Recipes.size(); } 1667 inline bool empty() const { return Recipes.empty(); } 1668 inline const VPRecipeBase &front() const { return Recipes.front(); } 1669 inline VPRecipeBase &front() { return Recipes.front(); } 1670 inline const VPRecipeBase &back() const { return Recipes.back(); } 1671 inline VPRecipeBase &back() { return Recipes.back(); } 1672 1673 /// Returns a reference to the list of recipes. 1674 RecipeListTy &getRecipeList() { return Recipes; } 1675 1676 /// Returns a pointer to a member of the recipe list. 1677 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1678 return &VPBasicBlock::Recipes; 1679 } 1680 1681 /// Method to support type inquiry through isa, cast, and dyn_cast. 1682 static inline bool classof(const VPBlockBase *V) { 1683 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1684 } 1685 1686 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1687 assert(Recipe && "No recipe to append."); 1688 assert(!Recipe->Parent && "Recipe already in VPlan"); 1689 Recipe->Parent = this; 1690 Recipes.insert(InsertPt, Recipe); 1691 } 1692 1693 /// Augment the existing recipes of a VPBasicBlock with an additional 1694 /// \p Recipe as the last recipe. 1695 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1696 1697 /// The method which generates the output IR instructions that correspond to 1698 /// this VPBasicBlock, thereby "executing" the VPlan. 1699 void execute(struct VPTransformState *State) override; 1700 1701 /// Return the position of the first non-phi node recipe in the block. 1702 iterator getFirstNonPhi(); 1703 1704 /// Returns an iterator range over the PHI-like recipes in the block. 1705 iterator_range<iterator> phis() { 1706 return make_range(begin(), getFirstNonPhi()); 1707 } 1708 1709 void dropAllReferences(VPValue *NewValue) override; 1710 1711 /// Split current block at \p SplitAt by inserting a new block between the 1712 /// current block and its successors and moving all recipes starting at 1713 /// SplitAt to the new block. Returns the new block. 1714 VPBasicBlock *splitAt(iterator SplitAt); 1715 1716 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1717 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 1718 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 1719 /// 1720 /// Note that the numbering is applied to the whole VPlan, so printing 1721 /// individual blocks is consistent with the whole VPlan printing. 1722 void print(raw_ostream &O, const Twine &Indent, 1723 VPSlotTracker &SlotTracker) const override; 1724 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1725 #endif 1726 1727 private: 1728 /// Create an IR BasicBlock to hold the output instructions generated by this 1729 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1730 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1731 }; 1732 1733 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1734 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1735 /// A VPRegionBlock may indicate that its contents are to be replicated several 1736 /// times. This is designed to support predicated scalarization, in which a 1737 /// scalar if-then code structure needs to be generated VF * UF times. Having 1738 /// this replication indicator helps to keep a single model for multiple 1739 /// candidate VF's. The actual replication takes place only once the desired VF 1740 /// and UF have been determined. 1741 class VPRegionBlock : public VPBlockBase { 1742 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1743 VPBlockBase *Entry; 1744 1745 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1746 VPBlockBase *Exit; 1747 1748 /// An indicator whether this region is to generate multiple replicated 1749 /// instances of output IR corresponding to its VPBlockBases. 1750 bool IsReplicator; 1751 1752 public: 1753 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1754 const std::string &Name = "", bool IsReplicator = false) 1755 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1756 IsReplicator(IsReplicator) { 1757 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1758 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1759 Entry->setParent(this); 1760 Exit->setParent(this); 1761 } 1762 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1763 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1764 IsReplicator(IsReplicator) {} 1765 1766 ~VPRegionBlock() override { 1767 if (Entry) { 1768 VPValue DummyValue; 1769 Entry->dropAllReferences(&DummyValue); 1770 deleteCFG(Entry); 1771 } 1772 } 1773 1774 /// Method to support type inquiry through isa, cast, and dyn_cast. 1775 static inline bool classof(const VPBlockBase *V) { 1776 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1777 } 1778 1779 const VPBlockBase *getEntry() const { return Entry; } 1780 VPBlockBase *getEntry() { return Entry; } 1781 1782 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1783 /// EntryBlock must have no predecessors. 1784 void setEntry(VPBlockBase *EntryBlock) { 1785 assert(EntryBlock->getPredecessors().empty() && 1786 "Entry block cannot have predecessors."); 1787 Entry = EntryBlock; 1788 EntryBlock->setParent(this); 1789 } 1790 1791 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1792 // specific interface of llvm::Function, instead of using 1793 // GraphTraints::getEntryNode. We should add a new template parameter to 1794 // DominatorTreeBase representing the Graph type. 1795 VPBlockBase &front() const { return *Entry; } 1796 1797 const VPBlockBase *getExit() const { return Exit; } 1798 VPBlockBase *getExit() { return Exit; } 1799 1800 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1801 /// ExitBlock must have no successors. 1802 void setExit(VPBlockBase *ExitBlock) { 1803 assert(ExitBlock->getSuccessors().empty() && 1804 "Exit block cannot have successors."); 1805 Exit = ExitBlock; 1806 ExitBlock->setParent(this); 1807 } 1808 1809 /// An indicator whether this region is to generate multiple replicated 1810 /// instances of output IR corresponding to its VPBlockBases. 1811 bool isReplicator() const { return IsReplicator; } 1812 1813 /// The method which generates the output IR instructions that correspond to 1814 /// this VPRegionBlock, thereby "executing" the VPlan. 1815 void execute(struct VPTransformState *State) override; 1816 1817 void dropAllReferences(VPValue *NewValue) override; 1818 1819 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1820 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 1821 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 1822 /// consequtive numbers. 1823 /// 1824 /// Note that the numbering is applied to the whole VPlan, so printing 1825 /// individual regions is consistent with the whole VPlan printing. 1826 void print(raw_ostream &O, const Twine &Indent, 1827 VPSlotTracker &SlotTracker) const override; 1828 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1829 #endif 1830 }; 1831 1832 //===----------------------------------------------------------------------===// 1833 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1834 //===----------------------------------------------------------------------===// 1835 1836 // The following set of template specializations implement GraphTraits to treat 1837 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1838 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1839 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1840 // successors/predecessors but not to the blocks inside the region. 1841 1842 template <> struct GraphTraits<VPBlockBase *> { 1843 using NodeRef = VPBlockBase *; 1844 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1845 1846 static NodeRef getEntryNode(NodeRef N) { return N; } 1847 1848 static inline ChildIteratorType child_begin(NodeRef N) { 1849 return N->getSuccessors().begin(); 1850 } 1851 1852 static inline ChildIteratorType child_end(NodeRef N) { 1853 return N->getSuccessors().end(); 1854 } 1855 }; 1856 1857 template <> struct GraphTraits<const VPBlockBase *> { 1858 using NodeRef = const VPBlockBase *; 1859 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1860 1861 static NodeRef getEntryNode(NodeRef N) { return N; } 1862 1863 static inline ChildIteratorType child_begin(NodeRef N) { 1864 return N->getSuccessors().begin(); 1865 } 1866 1867 static inline ChildIteratorType child_end(NodeRef N) { 1868 return N->getSuccessors().end(); 1869 } 1870 }; 1871 1872 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1873 // of successors for the inverse traversal. 1874 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1875 using NodeRef = VPBlockBase *; 1876 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1877 1878 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1879 1880 static inline ChildIteratorType child_begin(NodeRef N) { 1881 return N->getPredecessors().begin(); 1882 } 1883 1884 static inline ChildIteratorType child_end(NodeRef N) { 1885 return N->getPredecessors().end(); 1886 } 1887 }; 1888 1889 // The following set of template specializations implement GraphTraits to 1890 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1891 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1892 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1893 // there won't be automatic recursion into other VPBlockBases that turn to be 1894 // VPRegionBlocks. 1895 1896 template <> 1897 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1898 using GraphRef = VPRegionBlock *; 1899 using nodes_iterator = df_iterator<NodeRef>; 1900 1901 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1902 1903 static nodes_iterator nodes_begin(GraphRef N) { 1904 return nodes_iterator::begin(N->getEntry()); 1905 } 1906 1907 static nodes_iterator nodes_end(GraphRef N) { 1908 // df_iterator::end() returns an empty iterator so the node used doesn't 1909 // matter. 1910 return nodes_iterator::end(N); 1911 } 1912 }; 1913 1914 template <> 1915 struct GraphTraits<const VPRegionBlock *> 1916 : public GraphTraits<const VPBlockBase *> { 1917 using GraphRef = const VPRegionBlock *; 1918 using nodes_iterator = df_iterator<NodeRef>; 1919 1920 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1921 1922 static nodes_iterator nodes_begin(GraphRef N) { 1923 return nodes_iterator::begin(N->getEntry()); 1924 } 1925 1926 static nodes_iterator nodes_end(GraphRef N) { 1927 // df_iterator::end() returns an empty iterator so the node used doesn't 1928 // matter. 1929 return nodes_iterator::end(N); 1930 } 1931 }; 1932 1933 template <> 1934 struct GraphTraits<Inverse<VPRegionBlock *>> 1935 : public GraphTraits<Inverse<VPBlockBase *>> { 1936 using GraphRef = VPRegionBlock *; 1937 using nodes_iterator = df_iterator<NodeRef>; 1938 1939 static NodeRef getEntryNode(Inverse<GraphRef> N) { 1940 return N.Graph->getExit(); 1941 } 1942 1943 static nodes_iterator nodes_begin(GraphRef N) { 1944 return nodes_iterator::begin(N->getExit()); 1945 } 1946 1947 static nodes_iterator nodes_end(GraphRef N) { 1948 // df_iterator::end() returns an empty iterator so the node used doesn't 1949 // matter. 1950 return nodes_iterator::end(N); 1951 } 1952 }; 1953 1954 /// Iterator to traverse all successors of a VPBlockBase node. This includes the 1955 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their 1956 /// parent region's successors. This ensures all blocks in a region are visited 1957 /// before any blocks in a successor region when doing a reverse post-order 1958 // traversal of the graph. 1959 template <typename BlockPtrTy> 1960 class VPAllSuccessorsIterator 1961 : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>, 1962 std::forward_iterator_tag, VPBlockBase> { 1963 BlockPtrTy Block; 1964 /// Index of the current successor. For VPBasicBlock nodes, this simply is the 1965 /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is 1966 /// used for the region's entry block, and SuccessorIdx - 1 are the indices 1967 /// for the successor array. 1968 size_t SuccessorIdx; 1969 1970 static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) { 1971 while (Current && Current->getNumSuccessors() == 0) 1972 Current = Current->getParent(); 1973 return Current; 1974 } 1975 1976 /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by 1977 /// both the const and non-const operator* implementations. 1978 template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) { 1979 if (auto *R = dyn_cast<VPRegionBlock>(Block)) { 1980 if (SuccIdx == 0) 1981 return R->getEntry(); 1982 SuccIdx--; 1983 } 1984 1985 // For exit blocks, use the next parent region with successors. 1986 return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx]; 1987 } 1988 1989 public: 1990 VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0) 1991 : Block(Block), SuccessorIdx(Idx) {} 1992 VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other) 1993 : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {} 1994 1995 VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) { 1996 Block = R.Block; 1997 SuccessorIdx = R.SuccessorIdx; 1998 return *this; 1999 } 2000 2001 static VPAllSuccessorsIterator end(BlockPtrTy Block) { 2002 BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block); 2003 unsigned NumSuccessors = ParentWithSuccs 2004 ? ParentWithSuccs->getNumSuccessors() 2005 : Block->getNumSuccessors(); 2006 2007 if (auto *R = dyn_cast<VPRegionBlock>(Block)) 2008 return {R, NumSuccessors + 1}; 2009 return {Block, NumSuccessors}; 2010 } 2011 2012 bool operator==(const VPAllSuccessorsIterator &R) const { 2013 return Block == R.Block && SuccessorIdx == R.SuccessorIdx; 2014 } 2015 2016 const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); } 2017 2018 BlockPtrTy operator*() { return deref(Block, SuccessorIdx); } 2019 2020 VPAllSuccessorsIterator &operator++() { 2021 SuccessorIdx++; 2022 return *this; 2023 } 2024 2025 VPAllSuccessorsIterator operator++(int X) { 2026 VPAllSuccessorsIterator Orig = *this; 2027 SuccessorIdx++; 2028 return Orig; 2029 } 2030 }; 2031 2032 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks. 2033 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper { 2034 BlockTy Entry; 2035 2036 public: 2037 VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {} 2038 BlockTy getEntry() { return Entry; } 2039 }; 2040 2041 /// GraphTraits specialization to recursively traverse VPBlockBase nodes, 2042 /// including traversing through VPRegionBlocks. Exit blocks of a region 2043 /// implicitly have their parent region's successors. This ensures all blocks in 2044 /// a region are visited before any blocks in a successor region when doing a 2045 /// reverse post-order traversal of the graph. 2046 template <> 2047 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> { 2048 using NodeRef = VPBlockBase *; 2049 using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>; 2050 2051 static NodeRef 2052 getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) { 2053 return N.getEntry(); 2054 } 2055 2056 static inline ChildIteratorType child_begin(NodeRef N) { 2057 return ChildIteratorType(N); 2058 } 2059 2060 static inline ChildIteratorType child_end(NodeRef N) { 2061 return ChildIteratorType::end(N); 2062 } 2063 }; 2064 2065 template <> 2066 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> { 2067 using NodeRef = const VPBlockBase *; 2068 using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>; 2069 2070 static NodeRef 2071 getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) { 2072 return N.getEntry(); 2073 } 2074 2075 static inline ChildIteratorType child_begin(NodeRef N) { 2076 return ChildIteratorType(N); 2077 } 2078 2079 static inline ChildIteratorType child_end(NodeRef N) { 2080 return ChildIteratorType::end(N); 2081 } 2082 }; 2083 2084 /// VPlan models a candidate for vectorization, encoding various decisions take 2085 /// to produce efficient output IR, including which branches, basic-blocks and 2086 /// output IR instructions to generate, and their cost. VPlan holds a 2087 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2088 /// VPBlock. 2089 class VPlan { 2090 friend class VPlanPrinter; 2091 friend class VPSlotTracker; 2092 2093 /// Hold the single entry to the Hierarchical CFG of the VPlan. 2094 VPBlockBase *Entry; 2095 2096 /// Holds the VFs applicable to this VPlan. 2097 SmallSetVector<ElementCount, 2> VFs; 2098 2099 /// Holds the name of the VPlan, for printing. 2100 std::string Name; 2101 2102 /// Holds all the external definitions created for this VPlan. 2103 // TODO: Introduce a specific representation for external definitions in 2104 // VPlan. External definitions must be immutable and hold a pointer to its 2105 // underlying IR that will be used to implement its structural comparison 2106 // (operators '==' and '<'). 2107 SetVector<VPValue *> VPExternalDefs; 2108 2109 /// Represents the backedge taken count of the original loop, for folding 2110 /// the tail. 2111 VPValue *BackedgeTakenCount = nullptr; 2112 2113 /// Holds a mapping between Values and their corresponding VPValue inside 2114 /// VPlan. 2115 Value2VPValueTy Value2VPValue; 2116 2117 /// Contains all VPValues that been allocated by addVPValue directly and need 2118 /// to be free when the plan's destructor is called. 2119 SmallVector<VPValue *, 16> VPValuesToFree; 2120 2121 /// Holds the VPLoopInfo analysis for this VPlan. 2122 VPLoopInfo VPLInfo; 2123 2124 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2125 /// mapping cannot be used any longer, because it is stale. 2126 bool Value2VPValueEnabled = true; 2127 2128 public: 2129 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { 2130 if (Entry) 2131 Entry->setPlan(this); 2132 } 2133 2134 ~VPlan() { 2135 if (Entry) { 2136 VPValue DummyValue; 2137 for (VPBlockBase *Block : depth_first(Entry)) 2138 Block->dropAllReferences(&DummyValue); 2139 2140 VPBlockBase::deleteCFG(Entry); 2141 } 2142 for (VPValue *VPV : VPValuesToFree) 2143 delete VPV; 2144 if (BackedgeTakenCount) 2145 delete BackedgeTakenCount; 2146 for (VPValue *Def : VPExternalDefs) 2147 delete Def; 2148 } 2149 2150 /// Generate the IR code for this VPlan. 2151 void execute(struct VPTransformState *State); 2152 2153 VPBlockBase *getEntry() { return Entry; } 2154 const VPBlockBase *getEntry() const { return Entry; } 2155 2156 VPBlockBase *setEntry(VPBlockBase *Block) { 2157 Entry = Block; 2158 Block->setPlan(this); 2159 return Entry; 2160 } 2161 2162 /// The backedge taken count of the original loop. 2163 VPValue *getOrCreateBackedgeTakenCount() { 2164 if (!BackedgeTakenCount) 2165 BackedgeTakenCount = new VPValue(); 2166 return BackedgeTakenCount; 2167 } 2168 2169 /// Mark the plan to indicate that using Value2VPValue is not safe any 2170 /// longer, because it may be stale. 2171 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2172 2173 void addVF(ElementCount VF) { VFs.insert(VF); } 2174 2175 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2176 2177 const std::string &getName() const { return Name; } 2178 2179 void setName(const Twine &newName) { Name = newName.str(); } 2180 2181 /// Add \p VPVal to the pool of external definitions if it's not already 2182 /// in the pool. 2183 void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } 2184 2185 void addVPValue(Value *V) { 2186 assert(Value2VPValueEnabled && 2187 "IR value to VPValue mapping may be out of date!"); 2188 assert(V && "Trying to add a null Value to VPlan"); 2189 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2190 VPValue *VPV = new VPValue(V); 2191 Value2VPValue[V] = VPV; 2192 VPValuesToFree.push_back(VPV); 2193 } 2194 2195 void addVPValue(Value *V, VPValue *VPV) { 2196 assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!"); 2197 assert(V && "Trying to add a null Value to VPlan"); 2198 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2199 Value2VPValue[V] = VPV; 2200 } 2201 2202 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2203 /// checking whether it is safe to query VPValues using IR Values. 2204 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2205 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2206 "Value2VPValue mapping may be out of date!"); 2207 assert(V && "Trying to get the VPValue of a null Value"); 2208 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2209 return Value2VPValue[V]; 2210 } 2211 2212 /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p 2213 /// OverrideAllowed can be used to disable checking whether it is safe to 2214 /// query VPValues using IR Values. 2215 VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) { 2216 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2217 "Value2VPValue mapping may be out of date!"); 2218 assert(V && "Trying to get or add the VPValue of a null Value"); 2219 if (!Value2VPValue.count(V)) 2220 addVPValue(V); 2221 return getVPValue(V); 2222 } 2223 2224 void removeVPValueFor(Value *V) { 2225 assert(Value2VPValueEnabled && 2226 "IR value to VPValue mapping may be out of date!"); 2227 Value2VPValue.erase(V); 2228 } 2229 2230 /// Return the VPLoopInfo analysis for this VPlan. 2231 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 2232 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 2233 2234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2235 /// Print this VPlan to \p O. 2236 void print(raw_ostream &O) const; 2237 2238 /// Print this VPlan in DOT format to \p O. 2239 void printDOT(raw_ostream &O) const; 2240 2241 /// Dump the plan to stderr (for debugging). 2242 LLVM_DUMP_METHOD void dump() const; 2243 #endif 2244 2245 /// Returns a range mapping the values the range \p Operands to their 2246 /// corresponding VPValues. 2247 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2248 mapToVPValues(User::op_range Operands) { 2249 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2250 return getOrAddVPValue(Op); 2251 }; 2252 return map_range(Operands, Fn); 2253 } 2254 2255 private: 2256 /// Add to the given dominator tree the header block and every new basic block 2257 /// that was created between it and the latch block, inclusive. 2258 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2259 BasicBlock *LoopPreHeaderBB, 2260 BasicBlock *LoopExitBB); 2261 }; 2262 2263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2264 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2265 /// indented and follows the dot format. 2266 class VPlanPrinter { 2267 raw_ostream &OS; 2268 const VPlan &Plan; 2269 unsigned Depth = 0; 2270 unsigned TabWidth = 2; 2271 std::string Indent; 2272 unsigned BID = 0; 2273 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2274 2275 VPSlotTracker SlotTracker; 2276 2277 /// Handle indentation. 2278 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2279 2280 /// Print a given \p Block of the Plan. 2281 void dumpBlock(const VPBlockBase *Block); 2282 2283 /// Print the information related to the CFG edges going out of a given 2284 /// \p Block, followed by printing the successor blocks themselves. 2285 void dumpEdges(const VPBlockBase *Block); 2286 2287 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2288 /// its successor blocks. 2289 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2290 2291 /// Print a given \p Region of the Plan. 2292 void dumpRegion(const VPRegionBlock *Region); 2293 2294 unsigned getOrCreateBID(const VPBlockBase *Block) { 2295 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2296 } 2297 2298 Twine getOrCreateName(const VPBlockBase *Block); 2299 2300 Twine getUID(const VPBlockBase *Block); 2301 2302 /// Print the information related to a CFG edge between two VPBlockBases. 2303 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2304 const Twine &Label); 2305 2306 public: 2307 VPlanPrinter(raw_ostream &O, const VPlan &P) 2308 : OS(O), Plan(P), SlotTracker(&P) {} 2309 2310 LLVM_DUMP_METHOD void dump(); 2311 }; 2312 2313 struct VPlanIngredient { 2314 const Value *V; 2315 2316 VPlanIngredient(const Value *V) : V(V) {} 2317 2318 void print(raw_ostream &O) const; 2319 }; 2320 2321 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2322 I.print(OS); 2323 return OS; 2324 } 2325 2326 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2327 Plan.print(OS); 2328 return OS; 2329 } 2330 #endif 2331 2332 //===----------------------------------------------------------------------===// 2333 // VPlan Utilities 2334 //===----------------------------------------------------------------------===// 2335 2336 /// Class that provides utilities for VPBlockBases in VPlan. 2337 class VPBlockUtils { 2338 public: 2339 VPBlockUtils() = delete; 2340 2341 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2342 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2343 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr 2344 /// has more than one successor, its conditional bit is propagated to \p 2345 /// NewBlock. \p NewBlock must have neither successors nor predecessors. 2346 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2347 assert(NewBlock->getSuccessors().empty() && 2348 "Can't insert new block with successors."); 2349 // TODO: move successors from BlockPtr to NewBlock when this functionality 2350 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr 2351 // already has successors. 2352 BlockPtr->setOneSuccessor(NewBlock); 2353 NewBlock->setPredecessors({BlockPtr}); 2354 NewBlock->setParent(BlockPtr->getParent()); 2355 } 2356 2357 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2358 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2359 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2360 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 2361 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 2362 /// must have neither successors nor predecessors. 2363 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2364 VPValue *Condition, VPBlockBase *BlockPtr) { 2365 assert(IfTrue->getSuccessors().empty() && 2366 "Can't insert IfTrue with successors."); 2367 assert(IfFalse->getSuccessors().empty() && 2368 "Can't insert IfFalse with successors."); 2369 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 2370 IfTrue->setPredecessors({BlockPtr}); 2371 IfFalse->setPredecessors({BlockPtr}); 2372 IfTrue->setParent(BlockPtr->getParent()); 2373 IfFalse->setParent(BlockPtr->getParent()); 2374 } 2375 2376 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2377 /// the successors of \p From and \p From to the predecessors of \p To. Both 2378 /// VPBlockBases must have the same parent, which can be null. Both 2379 /// VPBlockBases can be already connected to other VPBlockBases. 2380 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2381 assert((From->getParent() == To->getParent()) && 2382 "Can't connect two block with different parents"); 2383 assert(From->getNumSuccessors() < 2 && 2384 "Blocks can't have more than two successors."); 2385 From->appendSuccessor(To); 2386 To->appendPredecessor(From); 2387 } 2388 2389 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2390 /// from the successors of \p From and \p From from the predecessors of \p To. 2391 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2392 assert(To && "Successor to disconnect is null."); 2393 From->removeSuccessor(To); 2394 To->removePredecessor(From); 2395 } 2396 2397 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 2398 static bool isBackEdge(const VPBlockBase *FromBlock, 2399 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 2400 assert(FromBlock->getParent() == ToBlock->getParent() && 2401 FromBlock->getParent() && "Must be in same region"); 2402 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 2403 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 2404 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 2405 return false; 2406 2407 // A back-edge is a branch from the loop latch to its header. 2408 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 2409 } 2410 2411 /// Returns true if \p Block is a loop latch 2412 static bool blockIsLoopLatch(const VPBlockBase *Block, 2413 const VPLoopInfo *VPLInfo) { 2414 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 2415 return ParentVPL->isLoopLatch(Block); 2416 2417 return false; 2418 } 2419 2420 /// Count and return the number of succesors of \p PredBlock excluding any 2421 /// backedges. 2422 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 2423 VPLoopInfo *VPLI) { 2424 unsigned Count = 0; 2425 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 2426 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 2427 Count++; 2428 } 2429 return Count; 2430 } 2431 2432 /// Return an iterator range over \p Range which only includes \p BlockTy 2433 /// blocks. The accesses are casted to \p BlockTy. 2434 template <typename BlockTy, typename T> 2435 static auto blocksOnly(const T &Range) { 2436 // Create BaseTy with correct const-ness based on BlockTy. 2437 using BaseTy = 2438 typename std::conditional<std::is_const<BlockTy>::value, 2439 const VPBlockBase, VPBlockBase>::type; 2440 2441 // We need to first create an iterator range over (const) BlocktTy & instead 2442 // of (const) BlockTy * for filter_range to work properly. 2443 auto Mapped = 2444 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2445 auto Filter = make_filter_range( 2446 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2447 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2448 return cast<BlockTy>(&Block); 2449 }); 2450 } 2451 }; 2452 2453 class VPInterleavedAccessInfo { 2454 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2455 InterleaveGroupMap; 2456 2457 /// Type for mapping of instruction based interleave groups to VPInstruction 2458 /// interleave groups 2459 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2460 InterleaveGroup<VPInstruction> *>; 2461 2462 /// Recursively \p Region and populate VPlan based interleave groups based on 2463 /// \p IAI. 2464 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2465 InterleavedAccessInfo &IAI); 2466 /// Recursively traverse \p Block and populate VPlan based interleave groups 2467 /// based on \p IAI. 2468 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2469 InterleavedAccessInfo &IAI); 2470 2471 public: 2472 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2473 2474 ~VPInterleavedAccessInfo() { 2475 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2476 // Avoid releasing a pointer twice. 2477 for (auto &I : InterleaveGroupMap) 2478 DelSet.insert(I.second); 2479 for (auto *Ptr : DelSet) 2480 delete Ptr; 2481 } 2482 2483 /// Get the interleave group that \p Instr belongs to. 2484 /// 2485 /// \returns nullptr if doesn't have such group. 2486 InterleaveGroup<VPInstruction> * 2487 getInterleaveGroup(VPInstruction *Instr) const { 2488 return InterleaveGroupMap.lookup(Instr); 2489 } 2490 }; 2491 2492 /// Class that maps (parts of) an existing VPlan to trees of combined 2493 /// VPInstructions. 2494 class VPlanSlp { 2495 enum class OpMode { Failed, Load, Opcode }; 2496 2497 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2498 /// DenseMap keys. 2499 struct BundleDenseMapInfo { 2500 static SmallVector<VPValue *, 4> getEmptyKey() { 2501 return {reinterpret_cast<VPValue *>(-1)}; 2502 } 2503 2504 static SmallVector<VPValue *, 4> getTombstoneKey() { 2505 return {reinterpret_cast<VPValue *>(-2)}; 2506 } 2507 2508 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2509 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2510 } 2511 2512 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 2513 const SmallVector<VPValue *, 4> &RHS) { 2514 return LHS == RHS; 2515 } 2516 }; 2517 2518 /// Mapping of values in the original VPlan to a combined VPInstruction. 2519 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 2520 BundleToCombined; 2521 2522 VPInterleavedAccessInfo &IAI; 2523 2524 /// Basic block to operate on. For now, only instructions in a single BB are 2525 /// considered. 2526 const VPBasicBlock &BB; 2527 2528 /// Indicates whether we managed to combine all visited instructions or not. 2529 bool CompletelySLP = true; 2530 2531 /// Width of the widest combined bundle in bits. 2532 unsigned WidestBundleBits = 0; 2533 2534 using MultiNodeOpTy = 2535 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 2536 2537 // Input operand bundles for the current multi node. Each multi node operand 2538 // bundle contains values not matching the multi node's opcode. They will 2539 // be reordered in reorderMultiNodeOps, once we completed building a 2540 // multi node. 2541 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 2542 2543 /// Indicates whether we are building a multi node currently. 2544 bool MultiNodeActive = false; 2545 2546 /// Check if we can vectorize Operands together. 2547 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 2548 2549 /// Add combined instruction \p New for the bundle \p Operands. 2550 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 2551 2552 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 2553 VPInstruction *markFailed(); 2554 2555 /// Reorder operands in the multi node to maximize sequential memory access 2556 /// and commutative operations. 2557 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 2558 2559 /// Choose the best candidate to use for the lane after \p Last. The set of 2560 /// candidates to choose from are values with an opcode matching \p Last's 2561 /// or loads consecutive to \p Last. 2562 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 2563 SmallPtrSetImpl<VPValue *> &Candidates, 2564 VPInterleavedAccessInfo &IAI); 2565 2566 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2567 /// Print bundle \p Values to dbgs(). 2568 void dumpBundle(ArrayRef<VPValue *> Values); 2569 #endif 2570 2571 public: 2572 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 2573 2574 ~VPlanSlp() = default; 2575 2576 /// Tries to build an SLP tree rooted at \p Operands and returns a 2577 /// VPInstruction combining \p Operands, if they can be combined. 2578 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 2579 2580 /// Return the width of the widest combined bundle in bits. 2581 unsigned getWidestBundleBits() const { return WidestBundleBits; } 2582 2583 /// Return true if all visited instruction can be combined. 2584 bool isCompletelySLP() const { return CompletelySLP; } 2585 }; 2586 } // end namespace llvm 2587 2588 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 2589