1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/LoopVersioning.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 50 namespace llvm { 51 extern cl::opt<bool> EnableVPlanNativePath; 52 } 53 54 #define DEBUG_TYPE "vplan" 55 56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 58 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 59 VPSlotTracker SlotTracker( 60 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 61 V.print(OS, SlotTracker); 62 return OS; 63 } 64 #endif 65 66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 67 const ElementCount &VF) const { 68 switch (LaneKind) { 69 case VPLane::Kind::ScalableLast: 70 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 71 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 72 Builder.getInt32(VF.getKnownMinValue() - Lane)); 73 case VPLane::Kind::First: 74 return Builder.getInt32(Lane); 75 } 76 llvm_unreachable("Unknown lane kind"); 77 } 78 79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 80 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 81 if (Def) 82 Def->addDefinedValue(this); 83 } 84 85 VPValue::~VPValue() { 86 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 87 if (Def) 88 Def->removeDefinedValue(this); 89 } 90 91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 93 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 94 R->print(OS, "", SlotTracker); 95 else 96 printAsOperand(OS, SlotTracker); 97 } 98 99 void VPValue::dump() const { 100 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 101 VPSlotTracker SlotTracker( 102 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 103 print(dbgs(), SlotTracker); 104 dbgs() << "\n"; 105 } 106 107 void VPDef::dump() const { 108 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 109 VPSlotTracker SlotTracker( 110 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 111 print(dbgs(), "", SlotTracker); 112 dbgs() << "\n"; 113 } 114 #endif 115 116 VPRecipeBase *VPValue::getDefiningRecipe() { 117 return cast_or_null<VPRecipeBase>(Def); 118 } 119 120 const VPRecipeBase *VPValue::getDefiningRecipe() const { 121 return cast_or_null<VPRecipeBase>(Def); 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert( 167 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 168 "Can only set plan on its entry or preheader block."); 169 Plan = ParentPlan; 170 } 171 172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 174 const VPBlockBase *Block = this; 175 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 176 Block = Region->getExiting(); 177 return cast<VPBasicBlock>(Block); 178 } 179 180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 181 VPBlockBase *Block = this; 182 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 183 Block = Region->getExiting(); 184 return cast<VPBasicBlock>(Block); 185 } 186 187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 188 if (!Successors.empty() || !Parent) 189 return this; 190 assert(Parent->getExiting() == this && 191 "Block w/o successors not the exiting block of its parent."); 192 return Parent->getEnclosingBlockWithSuccessors(); 193 } 194 195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 196 if (!Predecessors.empty() || !Parent) 197 return this; 198 assert(Parent->getEntry() == this && 199 "Block w/o predecessors not the entry of its parent."); 200 return Parent->getEnclosingBlockWithPredecessors(); 201 } 202 203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 204 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 205 delete Block; 206 } 207 208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 209 iterator It = begin(); 210 while (It != end() && It->isPhi()) 211 It++; 212 return It; 213 } 214 215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 216 if (Def->isLiveIn()) 217 return Def->getLiveInIRValue(); 218 219 if (hasScalarValue(Def, Instance)) { 220 return Data 221 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 222 } 223 224 assert(hasVectorValue(Def, Instance.Part)); 225 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 226 if (!VecPart->getType()->isVectorTy()) { 227 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 228 return VecPart; 229 } 230 // TODO: Cache created scalar values. 231 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 232 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 233 // set(Def, Extract, Instance); 234 return Extract; 235 } 236 237 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 238 // If Values have been set for this Def return the one relevant for \p Part. 239 if (hasVectorValue(Def, Part)) 240 return Data.PerPartOutput[Def][Part]; 241 242 auto GetBroadcastInstrs = [this, Def](Value *V) { 243 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 244 if (VF.isScalar()) 245 return V; 246 // Place the code for broadcasting invariant variables in the new preheader. 247 IRBuilder<>::InsertPointGuard Guard(Builder); 248 if (SafeToHoist) { 249 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 250 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 251 if (LoopVectorPreHeader) 252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 253 } 254 255 // Place the code for broadcasting invariant variables in the new preheader. 256 // Broadcast the scalar into all locations in the vector. 257 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 258 259 return Shuf; 260 }; 261 262 if (!hasScalarValue(Def, {Part, 0})) { 263 assert(Def->isLiveIn() && "expected a live-in"); 264 if (Part != 0) 265 return get(Def, 0); 266 Value *IRV = Def->getLiveInIRValue(); 267 Value *B = GetBroadcastInstrs(IRV); 268 set(Def, B, Part); 269 return B; 270 } 271 272 Value *ScalarValue = get(Def, {Part, 0}); 273 // If we aren't vectorizing, we can just copy the scalar map values over 274 // to the vector map. 275 if (VF.isScalar()) { 276 set(Def, ScalarValue, Part); 277 return ScalarValue; 278 } 279 280 bool IsUniform = vputils::isUniformAfterVectorization(Def); 281 282 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 283 // Check if there is a scalar value for the selected lane. 284 if (!hasScalarValue(Def, {Part, LastLane})) { 285 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 286 // VPExpandSCEVRecipes can also be uniform. 287 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 288 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 289 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 290 "unexpected recipe found to be invariant"); 291 IsUniform = true; 292 LastLane = 0; 293 } 294 295 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 296 // Set the insert point after the last scalarized instruction or after the 297 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 298 // will directly follow the scalar definitions. 299 auto OldIP = Builder.saveIP(); 300 auto NewIP = 301 isa<PHINode>(LastInst) 302 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 303 : std::next(BasicBlock::iterator(LastInst)); 304 Builder.SetInsertPoint(&*NewIP); 305 306 // However, if we are vectorizing, we need to construct the vector values. 307 // If the value is known to be uniform after vectorization, we can just 308 // broadcast the scalar value corresponding to lane zero for each unroll 309 // iteration. Otherwise, we construct the vector values using 310 // insertelement instructions. Since the resulting vectors are stored in 311 // State, we will only generate the insertelements once. 312 Value *VectorValue = nullptr; 313 if (IsUniform) { 314 VectorValue = GetBroadcastInstrs(ScalarValue); 315 set(Def, VectorValue, Part); 316 } else { 317 // Initialize packing with insertelements to start from undef. 318 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 319 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 320 set(Def, Undef, Part); 321 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 322 packScalarIntoVectorValue(Def, {Part, Lane}); 323 VectorValue = get(Def, Part); 324 } 325 Builder.restoreIP(OldIP); 326 return VectorValue; 327 } 328 329 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 330 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 331 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 332 } 333 334 void VPTransformState::addNewMetadata(Instruction *To, 335 const Instruction *Orig) { 336 // If the loop was versioned with memchecks, add the corresponding no-alias 337 // metadata. 338 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 339 LVer->annotateInstWithNoAlias(To, Orig); 340 } 341 342 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 343 // No source instruction to transfer metadata from? 344 if (!From) 345 return; 346 347 propagateMetadata(To, From); 348 addNewMetadata(To, From); 349 } 350 351 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 352 // No source instruction to transfer metadata from? 353 if (!From) 354 return; 355 356 for (Value *V : To) { 357 if (Instruction *I = dyn_cast<Instruction>(V)) 358 addMetadata(I, From); 359 } 360 } 361 362 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 363 const DILocation *DIL = DL; 364 // When a FSDiscriminator is enabled, we don't need to add the multiply 365 // factors to the discriminators. 366 if (DIL && 367 Builder.GetInsertBlock() 368 ->getParent() 369 ->shouldEmitDebugInfoForProfiling() && 370 !EnableFSDiscriminator) { 371 // FIXME: For scalable vectors, assume vscale=1. 372 auto NewDIL = 373 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 374 if (NewDIL) 375 Builder.SetCurrentDebugLocation(*NewDIL); 376 else 377 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 378 << DIL->getFilename() << " Line: " << DIL->getLine()); 379 } else 380 Builder.SetCurrentDebugLocation(DIL); 381 } 382 383 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 384 const VPIteration &Instance) { 385 Value *ScalarInst = get(Def, Instance); 386 Value *VectorValue = get(Def, Instance.Part); 387 VectorValue = Builder.CreateInsertElement( 388 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 389 set(Def, VectorValue, Instance.Part); 390 } 391 392 BasicBlock * 393 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 394 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 395 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 396 BasicBlock *PrevBB = CFG.PrevBB; 397 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 398 PrevBB->getParent(), CFG.ExitBB); 399 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 400 401 // Hook up the new basic block to its predecessors. 402 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 403 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 404 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 405 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 406 407 assert(PredBB && "Predecessor basic-block not found building successor."); 408 auto *PredBBTerminator = PredBB->getTerminator(); 409 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 410 411 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 412 if (isa<UnreachableInst>(PredBBTerminator)) { 413 assert(PredVPSuccessors.size() == 1 && 414 "Predecessor ending w/o branch must have single successor."); 415 DebugLoc DL = PredBBTerminator->getDebugLoc(); 416 PredBBTerminator->eraseFromParent(); 417 auto *Br = BranchInst::Create(NewBB, PredBB); 418 Br->setDebugLoc(DL); 419 } else if (TermBr && !TermBr->isConditional()) { 420 TermBr->setSuccessor(0, NewBB); 421 } else { 422 // Set each forward successor here when it is created, excluding 423 // backedges. A backward successor is set when the branch is created. 424 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 425 assert(!TermBr->getSuccessor(idx) && 426 "Trying to reset an existing successor block."); 427 TermBr->setSuccessor(idx, NewBB); 428 } 429 } 430 return NewBB; 431 } 432 433 void VPBasicBlock::execute(VPTransformState *State) { 434 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 435 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 436 VPBlockBase *SingleHPred = nullptr; 437 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 438 439 auto IsLoopRegion = [](VPBlockBase *BB) { 440 auto *R = dyn_cast<VPRegionBlock>(BB); 441 return R && !R->isReplicator(); 442 }; 443 444 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 445 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 446 // ExitBB can be re-used for the exit block of the Plan. 447 NewBB = State->CFG.ExitBB; 448 State->CFG.PrevBB = NewBB; 449 450 // Update the branch instruction in the predecessor to branch to ExitBB. 451 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 452 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 453 assert(PredVPB->getSingleSuccessor() == this && 454 "predecessor must have the current block as only successor"); 455 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 456 // The Exit block of a loop is always set to be successor 0 of the Exiting 457 // block. 458 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 459 } else if (PrevVPBB && /* A */ 460 !((SingleHPred = getSingleHierarchicalPredecessor()) && 461 SingleHPred->getExitingBasicBlock() == PrevVPBB && 462 PrevVPBB->getSingleHierarchicalSuccessor() && 463 (SingleHPred->getParent() == getEnclosingLoopRegion() && 464 !IsLoopRegion(SingleHPred))) && /* B */ 465 !(Replica && getPredecessors().empty())) { /* C */ 466 // The last IR basic block is reused, as an optimization, in three cases: 467 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 468 // B. when the current VPBB has a single (hierarchical) predecessor which 469 // is PrevVPBB and the latter has a single (hierarchical) successor which 470 // both are in the same non-replicator region; and 471 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 472 // is the exiting VPBB of this region from a previous instance, or the 473 // predecessor of this region. 474 475 NewBB = createEmptyBasicBlock(State->CFG); 476 State->Builder.SetInsertPoint(NewBB); 477 // Temporarily terminate with unreachable until CFG is rewired. 478 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 479 // Register NewBB in its loop. In innermost loops its the same for all 480 // BB's. 481 if (State->CurrentVectorLoop) 482 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 483 State->Builder.SetInsertPoint(Terminator); 484 State->CFG.PrevBB = NewBB; 485 } 486 487 // 2. Fill the IR basic block with IR instructions. 488 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 489 << " in BB:" << NewBB->getName() << '\n'); 490 491 State->CFG.VPBB2IRBB[this] = NewBB; 492 State->CFG.PrevVPBB = this; 493 494 for (VPRecipeBase &Recipe : Recipes) 495 Recipe.execute(*State); 496 497 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 498 } 499 500 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 501 for (VPRecipeBase &R : Recipes) { 502 for (auto *Def : R.definedValues()) 503 Def->replaceAllUsesWith(NewValue); 504 505 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 506 R.setOperand(I, NewValue); 507 } 508 } 509 510 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 511 assert((SplitAt == end() || SplitAt->getParent() == this) && 512 "can only split at a position in the same block"); 513 514 SmallVector<VPBlockBase *, 2> Succs(successors()); 515 // First, disconnect the current block from its successors. 516 for (VPBlockBase *Succ : Succs) 517 VPBlockUtils::disconnectBlocks(this, Succ); 518 519 // Create new empty block after the block to split. 520 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 521 VPBlockUtils::insertBlockAfter(SplitBlock, this); 522 523 // Add successors for block to split to new block. 524 for (VPBlockBase *Succ : Succs) 525 VPBlockUtils::connectBlocks(SplitBlock, Succ); 526 527 // Finally, move the recipes starting at SplitAt to new block. 528 for (VPRecipeBase &ToMove : 529 make_early_inc_range(make_range(SplitAt, this->end()))) 530 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 531 532 return SplitBlock; 533 } 534 535 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 536 VPRegionBlock *P = getParent(); 537 if (P && P->isReplicator()) { 538 P = P->getParent(); 539 assert(!cast<VPRegionBlock>(P)->isReplicator() && 540 "unexpected nested replicate regions"); 541 } 542 return P; 543 } 544 545 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 546 if (VPBB->empty()) { 547 assert( 548 VPBB->getNumSuccessors() < 2 && 549 "block with multiple successors doesn't have a recipe as terminator"); 550 return false; 551 } 552 553 const VPRecipeBase *R = &VPBB->back(); 554 auto *VPI = dyn_cast<VPInstruction>(R); 555 bool IsCondBranch = 556 isa<VPBranchOnMaskRecipe>(R) || 557 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 558 VPI->getOpcode() == VPInstruction::BranchOnCount)); 559 (void)IsCondBranch; 560 561 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 562 assert(IsCondBranch && "block with multiple successors not terminated by " 563 "conditional branch recipe"); 564 565 return true; 566 } 567 568 assert( 569 !IsCondBranch && 570 "block with 0 or 1 successors terminated by conditional branch recipe"); 571 return false; 572 } 573 574 VPRecipeBase *VPBasicBlock::getTerminator() { 575 if (hasConditionalTerminator(this)) 576 return &back(); 577 return nullptr; 578 } 579 580 const VPRecipeBase *VPBasicBlock::getTerminator() const { 581 if (hasConditionalTerminator(this)) 582 return &back(); 583 return nullptr; 584 } 585 586 bool VPBasicBlock::isExiting() const { 587 return getParent()->getExitingBasicBlock() == this; 588 } 589 590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 591 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 592 if (getSuccessors().empty()) { 593 O << Indent << "No successors\n"; 594 } else { 595 O << Indent << "Successor(s): "; 596 ListSeparator LS; 597 for (auto *Succ : getSuccessors()) 598 O << LS << Succ->getName(); 599 O << '\n'; 600 } 601 } 602 603 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 604 VPSlotTracker &SlotTracker) const { 605 O << Indent << getName() << ":\n"; 606 607 auto RecipeIndent = Indent + " "; 608 for (const VPRecipeBase &Recipe : *this) { 609 Recipe.print(O, RecipeIndent, SlotTracker); 610 O << '\n'; 611 } 612 613 printSuccessors(O, Indent); 614 } 615 #endif 616 617 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 618 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 619 // Drop all references in VPBasicBlocks and replace all uses with 620 // DummyValue. 621 Block->dropAllReferences(NewValue); 622 } 623 624 void VPRegionBlock::execute(VPTransformState *State) { 625 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 626 RPOT(Entry); 627 628 if (!isReplicator()) { 629 // Create and register the new vector loop. 630 Loop *PrevLoop = State->CurrentVectorLoop; 631 State->CurrentVectorLoop = State->LI->AllocateLoop(); 632 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 633 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 634 635 // Insert the new loop into the loop nest and register the new basic blocks 636 // before calling any utilities such as SCEV that require valid LoopInfo. 637 if (ParentLoop) 638 ParentLoop->addChildLoop(State->CurrentVectorLoop); 639 else 640 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 641 642 // Visit the VPBlocks connected to "this", starting from it. 643 for (VPBlockBase *Block : RPOT) { 644 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 645 Block->execute(State); 646 } 647 648 State->CurrentVectorLoop = PrevLoop; 649 return; 650 } 651 652 assert(!State->Instance && "Replicating a Region with non-null instance."); 653 654 // Enter replicating mode. 655 State->Instance = VPIteration(0, 0); 656 657 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 658 State->Instance->Part = Part; 659 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 660 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 661 ++Lane) { 662 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 663 // Visit the VPBlocks connected to \p this, starting from it. 664 for (VPBlockBase *Block : RPOT) { 665 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 666 Block->execute(State); 667 } 668 } 669 } 670 671 // Exit replicating mode. 672 State->Instance.reset(); 673 } 674 675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 676 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 677 VPSlotTracker &SlotTracker) const { 678 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 679 auto NewIndent = Indent + " "; 680 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 681 O << '\n'; 682 BlockBase->print(O, NewIndent, SlotTracker); 683 } 684 O << Indent << "}\n"; 685 686 printSuccessors(O, Indent); 687 } 688 #endif 689 690 VPlan::~VPlan() { 691 for (auto &KV : LiveOuts) 692 delete KV.second; 693 LiveOuts.clear(); 694 695 if (Entry) { 696 VPValue DummyValue; 697 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 698 Block->dropAllReferences(&DummyValue); 699 700 VPBlockBase::deleteCFG(Entry); 701 702 Preheader->dropAllReferences(&DummyValue); 703 delete Preheader; 704 } 705 for (VPValue *VPV : VPLiveInsToFree) 706 delete VPV; 707 if (BackedgeTakenCount) 708 delete BackedgeTakenCount; 709 } 710 711 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { 712 VPBasicBlock *Preheader = new VPBasicBlock("ph"); 713 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 714 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); 715 Plan->TripCount = 716 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 717 // Create empty VPRegionBlock, to be filled during processing later. 718 auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/); 719 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 720 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 721 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 722 return Plan; 723 } 724 725 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 726 Value *CanonicalIVStartValue, 727 VPTransformState &State) { 728 // Check if the backedge taken count is needed, and if so build it. 729 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 730 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 731 auto *TCMO = Builder.CreateSub(TripCountV, 732 ConstantInt::get(TripCountV->getType(), 1), 733 "trip.count.minus.1"); 734 auto VF = State.VF; 735 Value *VTCMO = 736 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 737 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 738 State.set(BackedgeTakenCount, VTCMO, Part); 739 } 740 741 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 742 State.set(&VectorTripCount, VectorTripCountV, Part); 743 744 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 745 // FIXME: Model VF * UF computation completely in VPlan. 746 State.set(&VFxUF, 747 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF), 748 0); 749 750 // When vectorizing the epilogue loop, the canonical induction start value 751 // needs to be changed from zero to the value after the main vector loop. 752 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 753 if (CanonicalIVStartValue) { 754 VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue); 755 auto *IV = getCanonicalIV(); 756 assert(all_of(IV->users(), 757 [](const VPUser *U) { 758 return isa<VPScalarIVStepsRecipe>(U) || 759 isa<VPDerivedIVRecipe>(U) || 760 cast<VPInstruction>(U)->getOpcode() == 761 Instruction::Add; 762 }) && 763 "the canonical IV should only be used by its increment or " 764 "ScalarIVSteps when resetting the start value"); 765 IV->setOperand(0, VPV); 766 } 767 } 768 769 /// Generate the code inside the preheader and body of the vectorized loop. 770 /// Assumes a single pre-header basic-block was created for this. Introduce 771 /// additional basic-blocks as needed, and fill them all. 772 void VPlan::execute(VPTransformState *State) { 773 // Set the reverse mapping from VPValues to Values for code generation. 774 for (auto &Entry : Value2VPValue) 775 State->VPValue2Value[Entry.second] = Entry.first; 776 777 // Initialize CFG state. 778 State->CFG.PrevVPBB = nullptr; 779 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 780 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 781 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 782 783 // Generate code in the loop pre-header and body. 784 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 785 Block->execute(State); 786 787 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 788 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 789 790 // Fix the latch value of canonical, reduction and first-order recurrences 791 // phis in the vector loop. 792 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 793 for (VPRecipeBase &R : Header->phis()) { 794 // Skip phi-like recipes that generate their backedege values themselves. 795 if (isa<VPWidenPHIRecipe>(&R)) 796 continue; 797 798 if (isa<VPWidenPointerInductionRecipe>(&R) || 799 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 800 PHINode *Phi = nullptr; 801 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 802 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 803 } else { 804 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 805 // TODO: Split off the case that all users of a pointer phi are scalar 806 // from the VPWidenPointerInductionRecipe. 807 if (WidenPhi->onlyScalarsGenerated(State->VF)) 808 continue; 809 810 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 811 Phi = cast<PHINode>(GEP->getPointerOperand()); 812 } 813 814 Phi->setIncomingBlock(1, VectorLatchBB); 815 816 // Move the last step to the end of the latch block. This ensures 817 // consistent placement of all induction updates. 818 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 819 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 820 continue; 821 } 822 823 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 824 // For canonical IV, first-order recurrences and in-order reduction phis, 825 // only a single part is generated, which provides the last part from the 826 // previous iteration. For non-ordered reductions all UF parts are 827 // generated. 828 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 829 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 830 (isa<VPReductionPHIRecipe>(PhiR) && 831 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 832 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 833 834 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 835 Value *Phi = State->get(PhiR, Part); 836 Value *Val = State->get(PhiR->getBackedgeValue(), 837 SinglePartNeeded ? State->UF - 1 : Part); 838 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 839 } 840 } 841 842 // We do not attempt to preserve DT for outer loop vectorization currently. 843 if (!EnableVPlanNativePath) { 844 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 845 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 846 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 847 State->CFG.ExitBB); 848 } 849 } 850 851 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 852 void VPlan::printLiveIns(raw_ostream &O) const { 853 VPSlotTracker SlotTracker(this); 854 855 if (VFxUF.getNumUsers() > 0) { 856 O << "\nLive-in "; 857 VFxUF.printAsOperand(O, SlotTracker); 858 O << " = VF * UF"; 859 } 860 861 if (VectorTripCount.getNumUsers() > 0) { 862 O << "\nLive-in "; 863 VectorTripCount.printAsOperand(O, SlotTracker); 864 O << " = vector-trip-count"; 865 } 866 867 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 868 O << "\nLive-in "; 869 BackedgeTakenCount->printAsOperand(O, SlotTracker); 870 O << " = backedge-taken count"; 871 } 872 873 O << "\n"; 874 if (TripCount->isLiveIn()) 875 O << "Live-in "; 876 TripCount->printAsOperand(O, SlotTracker); 877 O << " = original trip-count"; 878 O << "\n"; 879 } 880 881 LLVM_DUMP_METHOD 882 void VPlan::print(raw_ostream &O) const { 883 VPSlotTracker SlotTracker(this); 884 885 O << "VPlan '" << getName() << "' {"; 886 887 printLiveIns(O); 888 889 if (!getPreheader()->empty()) { 890 O << "\n"; 891 getPreheader()->print(O, "", SlotTracker); 892 } 893 894 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 895 O << '\n'; 896 Block->print(O, "", SlotTracker); 897 } 898 899 if (!LiveOuts.empty()) 900 O << "\n"; 901 for (const auto &KV : LiveOuts) { 902 KV.second->print(O, SlotTracker); 903 } 904 905 O << "}\n"; 906 } 907 908 std::string VPlan::getName() const { 909 std::string Out; 910 raw_string_ostream RSO(Out); 911 RSO << Name << " for "; 912 if (!VFs.empty()) { 913 RSO << "VF={" << VFs[0]; 914 for (ElementCount VF : drop_begin(VFs)) 915 RSO << "," << VF; 916 RSO << "},"; 917 } 918 919 if (UFs.empty()) { 920 RSO << "UF>=1"; 921 } else { 922 RSO << "UF={" << UFs[0]; 923 for (unsigned UF : drop_begin(UFs)) 924 RSO << "," << UF; 925 RSO << "}"; 926 } 927 928 return Out; 929 } 930 931 LLVM_DUMP_METHOD 932 void VPlan::printDOT(raw_ostream &O) const { 933 VPlanPrinter Printer(O, *this); 934 Printer.dump(); 935 } 936 937 LLVM_DUMP_METHOD 938 void VPlan::dump() const { print(dbgs()); } 939 #endif 940 941 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 942 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 943 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 944 } 945 946 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 947 BasicBlock *LoopLatchBB, 948 BasicBlock *LoopExitBB) { 949 // The vector body may be more than a single basic-block by this point. 950 // Update the dominator tree information inside the vector body by propagating 951 // it from header to latch, expecting only triangular control-flow, if any. 952 BasicBlock *PostDomSucc = nullptr; 953 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 954 // Get the list of successors of this block. 955 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 956 assert(Succs.size() <= 2 && 957 "Basic block in vector loop has more than 2 successors."); 958 PostDomSucc = Succs[0]; 959 if (Succs.size() == 1) { 960 assert(PostDomSucc->getSinglePredecessor() && 961 "PostDom successor has more than one predecessor."); 962 DT->addNewBlock(PostDomSucc, BB); 963 continue; 964 } 965 BasicBlock *InterimSucc = Succs[1]; 966 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 967 PostDomSucc = Succs[1]; 968 InterimSucc = Succs[0]; 969 } 970 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 971 "One successor of a basic block does not lead to the other."); 972 assert(InterimSucc->getSinglePredecessor() && 973 "Interim successor has more than one predecessor."); 974 assert(PostDomSucc->hasNPredecessors(2) && 975 "PostDom successor has more than two predecessors."); 976 DT->addNewBlock(InterimSucc, BB); 977 DT->addNewBlock(PostDomSucc, BB); 978 } 979 // Latch block is a new dominator for the loop exit. 980 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 981 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 982 } 983 984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 985 986 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 987 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 988 Twine(getOrCreateBID(Block)); 989 } 990 991 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 992 const std::string &Name = Block->getName(); 993 if (!Name.empty()) 994 return Name; 995 return "VPB" + Twine(getOrCreateBID(Block)); 996 } 997 998 void VPlanPrinter::dump() { 999 Depth = 1; 1000 bumpIndent(0); 1001 OS << "digraph VPlan {\n"; 1002 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1003 if (!Plan.getName().empty()) 1004 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1005 1006 { 1007 // Print live-ins. 1008 std::string Str; 1009 raw_string_ostream SS(Str); 1010 Plan.printLiveIns(SS); 1011 SmallVector<StringRef, 0> Lines; 1012 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1013 for (auto Line : Lines) 1014 OS << DOT::EscapeString(Line.str()) << "\\n"; 1015 } 1016 1017 OS << "\"]\n"; 1018 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1019 OS << "edge [fontname=Courier, fontsize=30]\n"; 1020 OS << "compound=true\n"; 1021 1022 dumpBlock(Plan.getPreheader()); 1023 1024 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1025 dumpBlock(Block); 1026 1027 OS << "}\n"; 1028 } 1029 1030 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1031 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1032 dumpBasicBlock(BasicBlock); 1033 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1034 dumpRegion(Region); 1035 else 1036 llvm_unreachable("Unsupported kind of VPBlock."); 1037 } 1038 1039 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1040 bool Hidden, const Twine &Label) { 1041 // Due to "dot" we print an edge between two regions as an edge between the 1042 // exiting basic block and the entry basic of the respective regions. 1043 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1044 const VPBlockBase *Head = To->getEntryBasicBlock(); 1045 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1046 OS << " [ label=\"" << Label << '\"'; 1047 if (Tail != From) 1048 OS << " ltail=" << getUID(From); 1049 if (Head != To) 1050 OS << " lhead=" << getUID(To); 1051 if (Hidden) 1052 OS << "; splines=none"; 1053 OS << "]\n"; 1054 } 1055 1056 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1057 auto &Successors = Block->getSuccessors(); 1058 if (Successors.size() == 1) 1059 drawEdge(Block, Successors.front(), false, ""); 1060 else if (Successors.size() == 2) { 1061 drawEdge(Block, Successors.front(), false, "T"); 1062 drawEdge(Block, Successors.back(), false, "F"); 1063 } else { 1064 unsigned SuccessorNumber = 0; 1065 for (auto *Successor : Successors) 1066 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1067 } 1068 } 1069 1070 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1071 // Implement dot-formatted dump by performing plain-text dump into the 1072 // temporary storage followed by some post-processing. 1073 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1074 bumpIndent(1); 1075 std::string Str; 1076 raw_string_ostream SS(Str); 1077 // Use no indentation as we need to wrap the lines into quotes ourselves. 1078 BasicBlock->print(SS, "", SlotTracker); 1079 1080 // We need to process each line of the output separately, so split 1081 // single-string plain-text dump. 1082 SmallVector<StringRef, 0> Lines; 1083 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1084 1085 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1086 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1087 }; 1088 1089 // Don't need the "+" after the last line. 1090 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1091 EmitLine(Line, " +\n"); 1092 EmitLine(Lines.back(), "\n"); 1093 1094 bumpIndent(-1); 1095 OS << Indent << "]\n"; 1096 1097 dumpEdges(BasicBlock); 1098 } 1099 1100 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1101 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1102 bumpIndent(1); 1103 OS << Indent << "fontname=Courier\n" 1104 << Indent << "label=\"" 1105 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1106 << DOT::EscapeString(Region->getName()) << "\"\n"; 1107 // Dump the blocks of the region. 1108 assert(Region->getEntry() && "Region contains no inner blocks."); 1109 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1110 dumpBlock(Block); 1111 bumpIndent(-1); 1112 OS << Indent << "}\n"; 1113 dumpEdges(Region); 1114 } 1115 1116 void VPlanIngredient::print(raw_ostream &O) const { 1117 if (auto *Inst = dyn_cast<Instruction>(V)) { 1118 if (!Inst->getType()->isVoidTy()) { 1119 Inst->printAsOperand(O, false); 1120 O << " = "; 1121 } 1122 O << Inst->getOpcodeName() << " "; 1123 unsigned E = Inst->getNumOperands(); 1124 if (E > 0) { 1125 Inst->getOperand(0)->printAsOperand(O, false); 1126 for (unsigned I = 1; I < E; ++I) 1127 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1128 } 1129 } else // !Inst 1130 V->printAsOperand(O, false); 1131 } 1132 1133 #endif 1134 1135 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1136 1137 void VPValue::replaceAllUsesWith(VPValue *New) { 1138 if (this == New) 1139 return; 1140 for (unsigned J = 0; J < getNumUsers();) { 1141 VPUser *User = Users[J]; 1142 bool RemovedUser = false; 1143 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1144 if (User->getOperand(I) == this) { 1145 User->setOperand(I, New); 1146 RemovedUser = true; 1147 } 1148 // If a user got removed after updating the current user, the next user to 1149 // update will be moved to the current position, so we only need to 1150 // increment the index if the number of users did not change. 1151 if (!RemovedUser) 1152 J++; 1153 } 1154 } 1155 1156 void VPValue::replaceUsesWithIf( 1157 VPValue *New, 1158 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1159 if (this == New) 1160 return; 1161 for (unsigned J = 0; J < getNumUsers();) { 1162 VPUser *User = Users[J]; 1163 bool RemovedUser = false; 1164 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1165 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1166 continue; 1167 1168 RemovedUser = true; 1169 User->setOperand(I, New); 1170 } 1171 // If a user got removed after updating the current user, the next user to 1172 // update will be moved to the current position, so we only need to 1173 // increment the index if the number of users did not change. 1174 if (!RemovedUser) 1175 J++; 1176 } 1177 } 1178 1179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1180 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1181 if (const Value *UV = getUnderlyingValue()) { 1182 OS << "ir<"; 1183 UV->printAsOperand(OS, false); 1184 OS << ">"; 1185 return; 1186 } 1187 1188 unsigned Slot = Tracker.getSlot(this); 1189 if (Slot == unsigned(-1)) 1190 OS << "<badref>"; 1191 else 1192 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1193 } 1194 1195 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1196 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1197 Op->printAsOperand(O, SlotTracker); 1198 }); 1199 } 1200 #endif 1201 1202 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1203 Old2NewTy &Old2New, 1204 InterleavedAccessInfo &IAI) { 1205 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1206 RPOT(Region->getEntry()); 1207 for (VPBlockBase *Base : RPOT) { 1208 visitBlock(Base, Old2New, IAI); 1209 } 1210 } 1211 1212 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1213 InterleavedAccessInfo &IAI) { 1214 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1215 for (VPRecipeBase &VPI : *VPBB) { 1216 if (isa<VPHeaderPHIRecipe>(&VPI)) 1217 continue; 1218 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1219 auto *VPInst = cast<VPInstruction>(&VPI); 1220 1221 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1222 if (!Inst) 1223 continue; 1224 auto *IG = IAI.getInterleaveGroup(Inst); 1225 if (!IG) 1226 continue; 1227 1228 auto NewIGIter = Old2New.find(IG); 1229 if (NewIGIter == Old2New.end()) 1230 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1231 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1232 1233 if (Inst == IG->getInsertPos()) 1234 Old2New[IG]->setInsertPos(VPInst); 1235 1236 InterleaveGroupMap[VPInst] = Old2New[IG]; 1237 InterleaveGroupMap[VPInst]->insertMember( 1238 VPInst, IG->getIndex(Inst), 1239 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1240 : IG->getFactor())); 1241 } 1242 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1243 visitRegion(Region, Old2New, IAI); 1244 else 1245 llvm_unreachable("Unsupported kind of VPBlock."); 1246 } 1247 1248 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1249 InterleavedAccessInfo &IAI) { 1250 Old2NewTy Old2New; 1251 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1252 } 1253 1254 void VPSlotTracker::assignSlot(const VPValue *V) { 1255 assert(!Slots.contains(V) && "VPValue already has a slot!"); 1256 Slots[V] = NextSlot++; 1257 } 1258 1259 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1260 if (Plan.VFxUF.getNumUsers() > 0) 1261 assignSlot(&Plan.VFxUF); 1262 assignSlot(&Plan.VectorTripCount); 1263 if (Plan.BackedgeTakenCount) 1264 assignSlot(Plan.BackedgeTakenCount); 1265 assignSlots(Plan.getPreheader()); 1266 1267 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1268 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1269 for (const VPBasicBlock *VPBB : 1270 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1271 assignSlots(VPBB); 1272 } 1273 1274 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1275 for (const VPRecipeBase &Recipe : *VPBB) 1276 for (VPValue *Def : Recipe.definedValues()) 1277 assignSlot(Def); 1278 } 1279 1280 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1281 return all_of(Def->users(), 1282 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1283 } 1284 1285 bool vputils::onlyFirstPartUsed(VPValue *Def) { 1286 return all_of(Def->users(), 1287 [Def](VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1288 } 1289 1290 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1291 ScalarEvolution &SE) { 1292 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1293 return Expanded; 1294 VPValue *Expanded = nullptr; 1295 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1296 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1297 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1298 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1299 else { 1300 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1301 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1302 } 1303 Plan.addSCEVExpansion(Expr, Expanded); 1304 return Expanded; 1305 } 1306