xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopVersioning.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 namespace llvm {
51 extern cl::opt<bool> EnableVPlanNativePath;
52 }
53 
54 #define DEBUG_TYPE "vplan"
55 
56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
58   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
59   VPSlotTracker SlotTracker(
60       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
61   V.print(OS, SlotTracker);
62   return OS;
63 }
64 #endif
65 
66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
67                                 const ElementCount &VF) const {
68   switch (LaneKind) {
69   case VPLane::Kind::ScalableLast:
70     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
71     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
72                              Builder.getInt32(VF.getKnownMinValue() - Lane));
73   case VPLane::Kind::First:
74     return Builder.getInt32(Lane);
75   }
76   llvm_unreachable("Unknown lane kind");
77 }
78 
79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
80     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
81   if (Def)
82     Def->addDefinedValue(this);
83 }
84 
85 VPValue::~VPValue() {
86   assert(Users.empty() && "trying to delete a VPValue with remaining users");
87   if (Def)
88     Def->removeDefinedValue(this);
89 }
90 
91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
93   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
94     R->print(OS, "", SlotTracker);
95   else
96     printAsOperand(OS, SlotTracker);
97 }
98 
99 void VPValue::dump() const {
100   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
101   VPSlotTracker SlotTracker(
102       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
103   print(dbgs(), SlotTracker);
104   dbgs() << "\n";
105 }
106 
107 void VPDef::dump() const {
108   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
109   VPSlotTracker SlotTracker(
110       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111   print(dbgs(), "", SlotTracker);
112   dbgs() << "\n";
113 }
114 #endif
115 
116 VPRecipeBase *VPValue::getDefiningRecipe() {
117   return cast_or_null<VPRecipeBase>(Def);
118 }
119 
120 const VPRecipeBase *VPValue::getDefiningRecipe() const {
121   return cast_or_null<VPRecipeBase>(Def);
122 }
123 
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
126 template <typename T> static T *getPlanEntry(T *Start) {
127   T *Next = Start;
128   T *Current = Start;
129   while ((Next = Next->getParent()))
130     Current = Next;
131 
132   SmallSetVector<T *, 8> WorkList;
133   WorkList.insert(Current);
134 
135   for (unsigned i = 0; i < WorkList.size(); i++) {
136     T *Current = WorkList[i];
137     if (Current->getNumPredecessors() == 0)
138       return Current;
139     auto &Predecessors = Current->getPredecessors();
140     WorkList.insert(Predecessors.begin(), Predecessors.end());
141   }
142 
143   llvm_unreachable("VPlan without any entry node without predecessors");
144 }
145 
146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
147 
148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
149 
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152   const VPBlockBase *Block = this;
153   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getEntry();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159   VPBlockBase *Block = this;
160   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166   assert(
167       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
168       "Can only set plan on its entry or preheader block.");
169   Plan = ParentPlan;
170 }
171 
172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
174   const VPBlockBase *Block = this;
175   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
176     Block = Region->getExiting();
177   return cast<VPBasicBlock>(Block);
178 }
179 
180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
181   VPBlockBase *Block = this;
182   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
188   if (!Successors.empty() || !Parent)
189     return this;
190   assert(Parent->getExiting() == this &&
191          "Block w/o successors not the exiting block of its parent.");
192   return Parent->getEnclosingBlockWithSuccessors();
193 }
194 
195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
196   if (!Predecessors.empty() || !Parent)
197     return this;
198   assert(Parent->getEntry() == this &&
199          "Block w/o predecessors not the entry of its parent.");
200   return Parent->getEnclosingBlockWithPredecessors();
201 }
202 
203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
204   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
205     delete Block;
206 }
207 
208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
209   iterator It = begin();
210   while (It != end() && It->isPhi())
211     It++;
212   return It;
213 }
214 
215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
216   if (Def->isLiveIn())
217     return Def->getLiveInIRValue();
218 
219   if (hasScalarValue(Def, Instance)) {
220     return Data
221         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
222   }
223 
224   assert(hasVectorValue(Def, Instance.Part));
225   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
226   if (!VecPart->getType()->isVectorTy()) {
227     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
228     return VecPart;
229   }
230   // TODO: Cache created scalar values.
231   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
232   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
233   // set(Def, Extract, Instance);
234   return Extract;
235 }
236 
237 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
238   // If Values have been set for this Def return the one relevant for \p Part.
239   if (hasVectorValue(Def, Part))
240     return Data.PerPartOutput[Def][Part];
241 
242   auto GetBroadcastInstrs = [this, Def](Value *V) {
243     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
244     if (VF.isScalar())
245       return V;
246     // Place the code for broadcasting invariant variables in the new preheader.
247     IRBuilder<>::InsertPointGuard Guard(Builder);
248     if (SafeToHoist) {
249       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
250           Plan->getVectorLoopRegion()->getSinglePredecessor())];
251       if (LoopVectorPreHeader)
252         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
253     }
254 
255     // Place the code for broadcasting invariant variables in the new preheader.
256     // Broadcast the scalar into all locations in the vector.
257     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
258 
259     return Shuf;
260   };
261 
262   if (!hasScalarValue(Def, {Part, 0})) {
263     assert(Def->isLiveIn() && "expected a live-in");
264     if (Part != 0)
265       return get(Def, 0);
266     Value *IRV = Def->getLiveInIRValue();
267     Value *B = GetBroadcastInstrs(IRV);
268     set(Def, B, Part);
269     return B;
270   }
271 
272   Value *ScalarValue = get(Def, {Part, 0});
273   // If we aren't vectorizing, we can just copy the scalar map values over
274   // to the vector map.
275   if (VF.isScalar()) {
276     set(Def, ScalarValue, Part);
277     return ScalarValue;
278   }
279 
280   bool IsUniform = vputils::isUniformAfterVectorization(Def);
281 
282   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
283   // Check if there is a scalar value for the selected lane.
284   if (!hasScalarValue(Def, {Part, LastLane})) {
285     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
286     // VPExpandSCEVRecipes can also be uniform.
287     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
288             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
289             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
290            "unexpected recipe found to be invariant");
291     IsUniform = true;
292     LastLane = 0;
293   }
294 
295   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
296   // Set the insert point after the last scalarized instruction or after the
297   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
298   // will directly follow the scalar definitions.
299   auto OldIP = Builder.saveIP();
300   auto NewIP =
301       isa<PHINode>(LastInst)
302           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
303           : std::next(BasicBlock::iterator(LastInst));
304   Builder.SetInsertPoint(&*NewIP);
305 
306   // However, if we are vectorizing, we need to construct the vector values.
307   // If the value is known to be uniform after vectorization, we can just
308   // broadcast the scalar value corresponding to lane zero for each unroll
309   // iteration. Otherwise, we construct the vector values using
310   // insertelement instructions. Since the resulting vectors are stored in
311   // State, we will only generate the insertelements once.
312   Value *VectorValue = nullptr;
313   if (IsUniform) {
314     VectorValue = GetBroadcastInstrs(ScalarValue);
315     set(Def, VectorValue, Part);
316   } else {
317     // Initialize packing with insertelements to start from undef.
318     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
319     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
320     set(Def, Undef, Part);
321     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
322       packScalarIntoVectorValue(Def, {Part, Lane});
323     VectorValue = get(Def, Part);
324   }
325   Builder.restoreIP(OldIP);
326   return VectorValue;
327 }
328 
329 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
330   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
331   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
332 }
333 
334 void VPTransformState::addNewMetadata(Instruction *To,
335                                       const Instruction *Orig) {
336   // If the loop was versioned with memchecks, add the corresponding no-alias
337   // metadata.
338   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
339     LVer->annotateInstWithNoAlias(To, Orig);
340 }
341 
342 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
343   // No source instruction to transfer metadata from?
344   if (!From)
345     return;
346 
347   propagateMetadata(To, From);
348   addNewMetadata(To, From);
349 }
350 
351 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
352   // No source instruction to transfer metadata from?
353   if (!From)
354     return;
355 
356   for (Value *V : To) {
357     if (Instruction *I = dyn_cast<Instruction>(V))
358       addMetadata(I, From);
359   }
360 }
361 
362 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
363   const DILocation *DIL = DL;
364   // When a FSDiscriminator is enabled, we don't need to add the multiply
365   // factors to the discriminators.
366   if (DIL &&
367       Builder.GetInsertBlock()
368           ->getParent()
369           ->shouldEmitDebugInfoForProfiling() &&
370       !EnableFSDiscriminator) {
371     // FIXME: For scalable vectors, assume vscale=1.
372     auto NewDIL =
373         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
374     if (NewDIL)
375       Builder.SetCurrentDebugLocation(*NewDIL);
376     else
377       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
378                         << DIL->getFilename() << " Line: " << DIL->getLine());
379   } else
380     Builder.SetCurrentDebugLocation(DIL);
381 }
382 
383 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
384                                                  const VPIteration &Instance) {
385   Value *ScalarInst = get(Def, Instance);
386   Value *VectorValue = get(Def, Instance.Part);
387   VectorValue = Builder.CreateInsertElement(
388       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
389   set(Def, VectorValue, Instance.Part);
390 }
391 
392 BasicBlock *
393 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
394   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
395   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
396   BasicBlock *PrevBB = CFG.PrevBB;
397   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
398                                          PrevBB->getParent(), CFG.ExitBB);
399   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
400 
401   // Hook up the new basic block to its predecessors.
402   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
403     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
404     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
405     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
406 
407     assert(PredBB && "Predecessor basic-block not found building successor.");
408     auto *PredBBTerminator = PredBB->getTerminator();
409     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
410 
411     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
412     if (isa<UnreachableInst>(PredBBTerminator)) {
413       assert(PredVPSuccessors.size() == 1 &&
414              "Predecessor ending w/o branch must have single successor.");
415       DebugLoc DL = PredBBTerminator->getDebugLoc();
416       PredBBTerminator->eraseFromParent();
417       auto *Br = BranchInst::Create(NewBB, PredBB);
418       Br->setDebugLoc(DL);
419     } else if (TermBr && !TermBr->isConditional()) {
420       TermBr->setSuccessor(0, NewBB);
421     } else {
422       // Set each forward successor here when it is created, excluding
423       // backedges. A backward successor is set when the branch is created.
424       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
425       assert(!TermBr->getSuccessor(idx) &&
426              "Trying to reset an existing successor block.");
427       TermBr->setSuccessor(idx, NewBB);
428     }
429   }
430   return NewBB;
431 }
432 
433 void VPBasicBlock::execute(VPTransformState *State) {
434   bool Replica = State->Instance && !State->Instance->isFirstIteration();
435   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
436   VPBlockBase *SingleHPred = nullptr;
437   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
438 
439   auto IsLoopRegion = [](VPBlockBase *BB) {
440     auto *R = dyn_cast<VPRegionBlock>(BB);
441     return R && !R->isReplicator();
442   };
443 
444   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
445   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
446     // ExitBB can be re-used for the exit block of the Plan.
447     NewBB = State->CFG.ExitBB;
448     State->CFG.PrevBB = NewBB;
449 
450     // Update the branch instruction in the predecessor to branch to ExitBB.
451     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
452     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
453     assert(PredVPB->getSingleSuccessor() == this &&
454            "predecessor must have the current block as only successor");
455     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
456     // The Exit block of a loop is always set to be successor 0 of the Exiting
457     // block.
458     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
459   } else if (PrevVPBB && /* A */
460              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
461                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
462                PrevVPBB->getSingleHierarchicalSuccessor() &&
463                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
464                 !IsLoopRegion(SingleHPred))) &&         /* B */
465              !(Replica && getPredecessors().empty())) { /* C */
466     // The last IR basic block is reused, as an optimization, in three cases:
467     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
468     // B. when the current VPBB has a single (hierarchical) predecessor which
469     //    is PrevVPBB and the latter has a single (hierarchical) successor which
470     //    both are in the same non-replicator region; and
471     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
472     //    is the exiting VPBB of this region from a previous instance, or the
473     //    predecessor of this region.
474 
475     NewBB = createEmptyBasicBlock(State->CFG);
476     State->Builder.SetInsertPoint(NewBB);
477     // Temporarily terminate with unreachable until CFG is rewired.
478     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
479     // Register NewBB in its loop. In innermost loops its the same for all
480     // BB's.
481     if (State->CurrentVectorLoop)
482       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
483     State->Builder.SetInsertPoint(Terminator);
484     State->CFG.PrevBB = NewBB;
485   }
486 
487   // 2. Fill the IR basic block with IR instructions.
488   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
489                     << " in BB:" << NewBB->getName() << '\n');
490 
491   State->CFG.VPBB2IRBB[this] = NewBB;
492   State->CFG.PrevVPBB = this;
493 
494   for (VPRecipeBase &Recipe : Recipes)
495     Recipe.execute(*State);
496 
497   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
498 }
499 
500 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
501   for (VPRecipeBase &R : Recipes) {
502     for (auto *Def : R.definedValues())
503       Def->replaceAllUsesWith(NewValue);
504 
505     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
506       R.setOperand(I, NewValue);
507   }
508 }
509 
510 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
511   assert((SplitAt == end() || SplitAt->getParent() == this) &&
512          "can only split at a position in the same block");
513 
514   SmallVector<VPBlockBase *, 2> Succs(successors());
515   // First, disconnect the current block from its successors.
516   for (VPBlockBase *Succ : Succs)
517     VPBlockUtils::disconnectBlocks(this, Succ);
518 
519   // Create new empty block after the block to split.
520   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
521   VPBlockUtils::insertBlockAfter(SplitBlock, this);
522 
523   // Add successors for block to split to new block.
524   for (VPBlockBase *Succ : Succs)
525     VPBlockUtils::connectBlocks(SplitBlock, Succ);
526 
527   // Finally, move the recipes starting at SplitAt to new block.
528   for (VPRecipeBase &ToMove :
529        make_early_inc_range(make_range(SplitAt, this->end())))
530     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
531 
532   return SplitBlock;
533 }
534 
535 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
536   VPRegionBlock *P = getParent();
537   if (P && P->isReplicator()) {
538     P = P->getParent();
539     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
540            "unexpected nested replicate regions");
541   }
542   return P;
543 }
544 
545 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
546   if (VPBB->empty()) {
547     assert(
548         VPBB->getNumSuccessors() < 2 &&
549         "block with multiple successors doesn't have a recipe as terminator");
550     return false;
551   }
552 
553   const VPRecipeBase *R = &VPBB->back();
554   auto *VPI = dyn_cast<VPInstruction>(R);
555   bool IsCondBranch =
556       isa<VPBranchOnMaskRecipe>(R) ||
557       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
558                VPI->getOpcode() == VPInstruction::BranchOnCount));
559   (void)IsCondBranch;
560 
561   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
562     assert(IsCondBranch && "block with multiple successors not terminated by "
563                            "conditional branch recipe");
564 
565     return true;
566   }
567 
568   assert(
569       !IsCondBranch &&
570       "block with 0 or 1 successors terminated by conditional branch recipe");
571   return false;
572 }
573 
574 VPRecipeBase *VPBasicBlock::getTerminator() {
575   if (hasConditionalTerminator(this))
576     return &back();
577   return nullptr;
578 }
579 
580 const VPRecipeBase *VPBasicBlock::getTerminator() const {
581   if (hasConditionalTerminator(this))
582     return &back();
583   return nullptr;
584 }
585 
586 bool VPBasicBlock::isExiting() const {
587   return getParent()->getExitingBasicBlock() == this;
588 }
589 
590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
592   if (getSuccessors().empty()) {
593     O << Indent << "No successors\n";
594   } else {
595     O << Indent << "Successor(s): ";
596     ListSeparator LS;
597     for (auto *Succ : getSuccessors())
598       O << LS << Succ->getName();
599     O << '\n';
600   }
601 }
602 
603 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
604                          VPSlotTracker &SlotTracker) const {
605   O << Indent << getName() << ":\n";
606 
607   auto RecipeIndent = Indent + "  ";
608   for (const VPRecipeBase &Recipe : *this) {
609     Recipe.print(O, RecipeIndent, SlotTracker);
610     O << '\n';
611   }
612 
613   printSuccessors(O, Indent);
614 }
615 #endif
616 
617 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
618   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
619     // Drop all references in VPBasicBlocks and replace all uses with
620     // DummyValue.
621     Block->dropAllReferences(NewValue);
622 }
623 
624 void VPRegionBlock::execute(VPTransformState *State) {
625   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
626       RPOT(Entry);
627 
628   if (!isReplicator()) {
629     // Create and register the new vector loop.
630     Loop *PrevLoop = State->CurrentVectorLoop;
631     State->CurrentVectorLoop = State->LI->AllocateLoop();
632     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
633     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
634 
635     // Insert the new loop into the loop nest and register the new basic blocks
636     // before calling any utilities such as SCEV that require valid LoopInfo.
637     if (ParentLoop)
638       ParentLoop->addChildLoop(State->CurrentVectorLoop);
639     else
640       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
641 
642     // Visit the VPBlocks connected to "this", starting from it.
643     for (VPBlockBase *Block : RPOT) {
644       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
645       Block->execute(State);
646     }
647 
648     State->CurrentVectorLoop = PrevLoop;
649     return;
650   }
651 
652   assert(!State->Instance && "Replicating a Region with non-null instance.");
653 
654   // Enter replicating mode.
655   State->Instance = VPIteration(0, 0);
656 
657   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
658     State->Instance->Part = Part;
659     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
660     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
661          ++Lane) {
662       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
663       // Visit the VPBlocks connected to \p this, starting from it.
664       for (VPBlockBase *Block : RPOT) {
665         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
666         Block->execute(State);
667       }
668     }
669   }
670 
671   // Exit replicating mode.
672   State->Instance.reset();
673 }
674 
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
677                           VPSlotTracker &SlotTracker) const {
678   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
679   auto NewIndent = Indent + "  ";
680   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
681     O << '\n';
682     BlockBase->print(O, NewIndent, SlotTracker);
683   }
684   O << Indent << "}\n";
685 
686   printSuccessors(O, Indent);
687 }
688 #endif
689 
690 VPlan::~VPlan() {
691   for (auto &KV : LiveOuts)
692     delete KV.second;
693   LiveOuts.clear();
694 
695   if (Entry) {
696     VPValue DummyValue;
697     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
698       Block->dropAllReferences(&DummyValue);
699 
700     VPBlockBase::deleteCFG(Entry);
701 
702     Preheader->dropAllReferences(&DummyValue);
703     delete Preheader;
704   }
705   for (VPValue *VPV : VPLiveInsToFree)
706     delete VPV;
707   if (BackedgeTakenCount)
708     delete BackedgeTakenCount;
709 }
710 
711 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
712   VPBasicBlock *Preheader = new VPBasicBlock("ph");
713   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
714   auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
715   Plan->TripCount =
716       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
717   // Create empty VPRegionBlock, to be filled during processing later.
718   auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/);
719   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
720   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
721   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
722   return Plan;
723 }
724 
725 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
726                              Value *CanonicalIVStartValue,
727                              VPTransformState &State) {
728   // Check if the backedge taken count is needed, and if so build it.
729   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
730     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
731     auto *TCMO = Builder.CreateSub(TripCountV,
732                                    ConstantInt::get(TripCountV->getType(), 1),
733                                    "trip.count.minus.1");
734     auto VF = State.VF;
735     Value *VTCMO =
736         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
737     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
738       State.set(BackedgeTakenCount, VTCMO, Part);
739   }
740 
741   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
742     State.set(&VectorTripCount, VectorTripCountV, Part);
743 
744   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
745   // FIXME: Model VF * UF computation completely in VPlan.
746   State.set(&VFxUF,
747             createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF),
748             0);
749 
750   // When vectorizing the epilogue loop, the canonical induction start value
751   // needs to be changed from zero to the value after the main vector loop.
752   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
753   if (CanonicalIVStartValue) {
754     VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue);
755     auto *IV = getCanonicalIV();
756     assert(all_of(IV->users(),
757                   [](const VPUser *U) {
758                     return isa<VPScalarIVStepsRecipe>(U) ||
759                            isa<VPDerivedIVRecipe>(U) ||
760                            cast<VPInstruction>(U)->getOpcode() ==
761                                Instruction::Add;
762                   }) &&
763            "the canonical IV should only be used by its increment or "
764            "ScalarIVSteps when resetting the start value");
765     IV->setOperand(0, VPV);
766   }
767 }
768 
769 /// Generate the code inside the preheader and body of the vectorized loop.
770 /// Assumes a single pre-header basic-block was created for this. Introduce
771 /// additional basic-blocks as needed, and fill them all.
772 void VPlan::execute(VPTransformState *State) {
773   // Set the reverse mapping from VPValues to Values for code generation.
774   for (auto &Entry : Value2VPValue)
775     State->VPValue2Value[Entry.second] = Entry.first;
776 
777   // Initialize CFG state.
778   State->CFG.PrevVPBB = nullptr;
779   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
780   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
781   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
782 
783   // Generate code in the loop pre-header and body.
784   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
785     Block->execute(State);
786 
787   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
788   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
789 
790   // Fix the latch value of canonical, reduction and first-order recurrences
791   // phis in the vector loop.
792   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
793   for (VPRecipeBase &R : Header->phis()) {
794     // Skip phi-like recipes that generate their backedege values themselves.
795     if (isa<VPWidenPHIRecipe>(&R))
796       continue;
797 
798     if (isa<VPWidenPointerInductionRecipe>(&R) ||
799         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
800       PHINode *Phi = nullptr;
801       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
802         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
803       } else {
804         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
805         // TODO: Split off the case that all users of a pointer phi are scalar
806         // from the VPWidenPointerInductionRecipe.
807         if (WidenPhi->onlyScalarsGenerated(State->VF))
808           continue;
809 
810         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
811         Phi = cast<PHINode>(GEP->getPointerOperand());
812       }
813 
814       Phi->setIncomingBlock(1, VectorLatchBB);
815 
816       // Move the last step to the end of the latch block. This ensures
817       // consistent placement of all induction updates.
818       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
819       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
820       continue;
821     }
822 
823     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
824     // For  canonical IV, first-order recurrences and in-order reduction phis,
825     // only a single part is generated, which provides the last part from the
826     // previous iteration. For non-ordered reductions all UF parts are
827     // generated.
828     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
829                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
830                             (isa<VPReductionPHIRecipe>(PhiR) &&
831                              cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
832     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
833 
834     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
835       Value *Phi = State->get(PhiR, Part);
836       Value *Val = State->get(PhiR->getBackedgeValue(),
837                               SinglePartNeeded ? State->UF - 1 : Part);
838       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
839     }
840   }
841 
842   // We do not attempt to preserve DT for outer loop vectorization currently.
843   if (!EnableVPlanNativePath) {
844     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
845     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
846     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
847                         State->CFG.ExitBB);
848   }
849 }
850 
851 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
852 void VPlan::printLiveIns(raw_ostream &O) const {
853   VPSlotTracker SlotTracker(this);
854 
855   if (VFxUF.getNumUsers() > 0) {
856     O << "\nLive-in ";
857     VFxUF.printAsOperand(O, SlotTracker);
858     O << " = VF * UF";
859   }
860 
861   if (VectorTripCount.getNumUsers() > 0) {
862     O << "\nLive-in ";
863     VectorTripCount.printAsOperand(O, SlotTracker);
864     O << " = vector-trip-count";
865   }
866 
867   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
868     O << "\nLive-in ";
869     BackedgeTakenCount->printAsOperand(O, SlotTracker);
870     O << " = backedge-taken count";
871   }
872 
873   O << "\n";
874   if (TripCount->isLiveIn())
875     O << "Live-in ";
876   TripCount->printAsOperand(O, SlotTracker);
877   O << " = original trip-count";
878   O << "\n";
879 }
880 
881 LLVM_DUMP_METHOD
882 void VPlan::print(raw_ostream &O) const {
883   VPSlotTracker SlotTracker(this);
884 
885   O << "VPlan '" << getName() << "' {";
886 
887   printLiveIns(O);
888 
889   if (!getPreheader()->empty()) {
890     O << "\n";
891     getPreheader()->print(O, "", SlotTracker);
892   }
893 
894   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
895     O << '\n';
896     Block->print(O, "", SlotTracker);
897   }
898 
899   if (!LiveOuts.empty())
900     O << "\n";
901   for (const auto &KV : LiveOuts) {
902     KV.second->print(O, SlotTracker);
903   }
904 
905   O << "}\n";
906 }
907 
908 std::string VPlan::getName() const {
909   std::string Out;
910   raw_string_ostream RSO(Out);
911   RSO << Name << " for ";
912   if (!VFs.empty()) {
913     RSO << "VF={" << VFs[0];
914     for (ElementCount VF : drop_begin(VFs))
915       RSO << "," << VF;
916     RSO << "},";
917   }
918 
919   if (UFs.empty()) {
920     RSO << "UF>=1";
921   } else {
922     RSO << "UF={" << UFs[0];
923     for (unsigned UF : drop_begin(UFs))
924       RSO << "," << UF;
925     RSO << "}";
926   }
927 
928   return Out;
929 }
930 
931 LLVM_DUMP_METHOD
932 void VPlan::printDOT(raw_ostream &O) const {
933   VPlanPrinter Printer(O, *this);
934   Printer.dump();
935 }
936 
937 LLVM_DUMP_METHOD
938 void VPlan::dump() const { print(dbgs()); }
939 #endif
940 
941 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
942   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
943   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
944 }
945 
946 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
947                                 BasicBlock *LoopLatchBB,
948                                 BasicBlock *LoopExitBB) {
949   // The vector body may be more than a single basic-block by this point.
950   // Update the dominator tree information inside the vector body by propagating
951   // it from header to latch, expecting only triangular control-flow, if any.
952   BasicBlock *PostDomSucc = nullptr;
953   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
954     // Get the list of successors of this block.
955     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
956     assert(Succs.size() <= 2 &&
957            "Basic block in vector loop has more than 2 successors.");
958     PostDomSucc = Succs[0];
959     if (Succs.size() == 1) {
960       assert(PostDomSucc->getSinglePredecessor() &&
961              "PostDom successor has more than one predecessor.");
962       DT->addNewBlock(PostDomSucc, BB);
963       continue;
964     }
965     BasicBlock *InterimSucc = Succs[1];
966     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
967       PostDomSucc = Succs[1];
968       InterimSucc = Succs[0];
969     }
970     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
971            "One successor of a basic block does not lead to the other.");
972     assert(InterimSucc->getSinglePredecessor() &&
973            "Interim successor has more than one predecessor.");
974     assert(PostDomSucc->hasNPredecessors(2) &&
975            "PostDom successor has more than two predecessors.");
976     DT->addNewBlock(InterimSucc, BB);
977     DT->addNewBlock(PostDomSucc, BB);
978   }
979   // Latch block is a new dominator for the loop exit.
980   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
981   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
982 }
983 
984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
985 
986 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
987   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
988          Twine(getOrCreateBID(Block));
989 }
990 
991 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
992   const std::string &Name = Block->getName();
993   if (!Name.empty())
994     return Name;
995   return "VPB" + Twine(getOrCreateBID(Block));
996 }
997 
998 void VPlanPrinter::dump() {
999   Depth = 1;
1000   bumpIndent(0);
1001   OS << "digraph VPlan {\n";
1002   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1003   if (!Plan.getName().empty())
1004     OS << "\\n" << DOT::EscapeString(Plan.getName());
1005 
1006   {
1007     // Print live-ins.
1008   std::string Str;
1009   raw_string_ostream SS(Str);
1010   Plan.printLiveIns(SS);
1011   SmallVector<StringRef, 0> Lines;
1012   StringRef(Str).rtrim('\n').split(Lines, "\n");
1013   for (auto Line : Lines)
1014     OS << DOT::EscapeString(Line.str()) << "\\n";
1015   }
1016 
1017   OS << "\"]\n";
1018   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1019   OS << "edge [fontname=Courier, fontsize=30]\n";
1020   OS << "compound=true\n";
1021 
1022   dumpBlock(Plan.getPreheader());
1023 
1024   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1025     dumpBlock(Block);
1026 
1027   OS << "}\n";
1028 }
1029 
1030 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1031   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1032     dumpBasicBlock(BasicBlock);
1033   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1034     dumpRegion(Region);
1035   else
1036     llvm_unreachable("Unsupported kind of VPBlock.");
1037 }
1038 
1039 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1040                             bool Hidden, const Twine &Label) {
1041   // Due to "dot" we print an edge between two regions as an edge between the
1042   // exiting basic block and the entry basic of the respective regions.
1043   const VPBlockBase *Tail = From->getExitingBasicBlock();
1044   const VPBlockBase *Head = To->getEntryBasicBlock();
1045   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1046   OS << " [ label=\"" << Label << '\"';
1047   if (Tail != From)
1048     OS << " ltail=" << getUID(From);
1049   if (Head != To)
1050     OS << " lhead=" << getUID(To);
1051   if (Hidden)
1052     OS << "; splines=none";
1053   OS << "]\n";
1054 }
1055 
1056 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1057   auto &Successors = Block->getSuccessors();
1058   if (Successors.size() == 1)
1059     drawEdge(Block, Successors.front(), false, "");
1060   else if (Successors.size() == 2) {
1061     drawEdge(Block, Successors.front(), false, "T");
1062     drawEdge(Block, Successors.back(), false, "F");
1063   } else {
1064     unsigned SuccessorNumber = 0;
1065     for (auto *Successor : Successors)
1066       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1067   }
1068 }
1069 
1070 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1071   // Implement dot-formatted dump by performing plain-text dump into the
1072   // temporary storage followed by some post-processing.
1073   OS << Indent << getUID(BasicBlock) << " [label =\n";
1074   bumpIndent(1);
1075   std::string Str;
1076   raw_string_ostream SS(Str);
1077   // Use no indentation as we need to wrap the lines into quotes ourselves.
1078   BasicBlock->print(SS, "", SlotTracker);
1079 
1080   // We need to process each line of the output separately, so split
1081   // single-string plain-text dump.
1082   SmallVector<StringRef, 0> Lines;
1083   StringRef(Str).rtrim('\n').split(Lines, "\n");
1084 
1085   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1086     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1087   };
1088 
1089   // Don't need the "+" after the last line.
1090   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1091     EmitLine(Line, " +\n");
1092   EmitLine(Lines.back(), "\n");
1093 
1094   bumpIndent(-1);
1095   OS << Indent << "]\n";
1096 
1097   dumpEdges(BasicBlock);
1098 }
1099 
1100 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1101   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1102   bumpIndent(1);
1103   OS << Indent << "fontname=Courier\n"
1104      << Indent << "label=\""
1105      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1106      << DOT::EscapeString(Region->getName()) << "\"\n";
1107   // Dump the blocks of the region.
1108   assert(Region->getEntry() && "Region contains no inner blocks.");
1109   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1110     dumpBlock(Block);
1111   bumpIndent(-1);
1112   OS << Indent << "}\n";
1113   dumpEdges(Region);
1114 }
1115 
1116 void VPlanIngredient::print(raw_ostream &O) const {
1117   if (auto *Inst = dyn_cast<Instruction>(V)) {
1118     if (!Inst->getType()->isVoidTy()) {
1119       Inst->printAsOperand(O, false);
1120       O << " = ";
1121     }
1122     O << Inst->getOpcodeName() << " ";
1123     unsigned E = Inst->getNumOperands();
1124     if (E > 0) {
1125       Inst->getOperand(0)->printAsOperand(O, false);
1126       for (unsigned I = 1; I < E; ++I)
1127         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1128     }
1129   } else // !Inst
1130     V->printAsOperand(O, false);
1131 }
1132 
1133 #endif
1134 
1135 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1136 
1137 void VPValue::replaceAllUsesWith(VPValue *New) {
1138   if (this == New)
1139     return;
1140   for (unsigned J = 0; J < getNumUsers();) {
1141     VPUser *User = Users[J];
1142     bool RemovedUser = false;
1143     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1144       if (User->getOperand(I) == this) {
1145         User->setOperand(I, New);
1146         RemovedUser = true;
1147       }
1148     // If a user got removed after updating the current user, the next user to
1149     // update will be moved to the current position, so we only need to
1150     // increment the index if the number of users did not change.
1151     if (!RemovedUser)
1152       J++;
1153   }
1154 }
1155 
1156 void VPValue::replaceUsesWithIf(
1157     VPValue *New,
1158     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1159   if (this == New)
1160     return;
1161   for (unsigned J = 0; J < getNumUsers();) {
1162     VPUser *User = Users[J];
1163     bool RemovedUser = false;
1164     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1165       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1166         continue;
1167 
1168       RemovedUser = true;
1169       User->setOperand(I, New);
1170     }
1171     // If a user got removed after updating the current user, the next user to
1172     // update will be moved to the current position, so we only need to
1173     // increment the index if the number of users did not change.
1174     if (!RemovedUser)
1175       J++;
1176   }
1177 }
1178 
1179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1180 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1181   if (const Value *UV = getUnderlyingValue()) {
1182     OS << "ir<";
1183     UV->printAsOperand(OS, false);
1184     OS << ">";
1185     return;
1186   }
1187 
1188   unsigned Slot = Tracker.getSlot(this);
1189   if (Slot == unsigned(-1))
1190     OS << "<badref>";
1191   else
1192     OS << "vp<%" << Tracker.getSlot(this) << ">";
1193 }
1194 
1195 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1196   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1197     Op->printAsOperand(O, SlotTracker);
1198   });
1199 }
1200 #endif
1201 
1202 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1203                                           Old2NewTy &Old2New,
1204                                           InterleavedAccessInfo &IAI) {
1205   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1206       RPOT(Region->getEntry());
1207   for (VPBlockBase *Base : RPOT) {
1208     visitBlock(Base, Old2New, IAI);
1209   }
1210 }
1211 
1212 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1213                                          InterleavedAccessInfo &IAI) {
1214   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1215     for (VPRecipeBase &VPI : *VPBB) {
1216       if (isa<VPHeaderPHIRecipe>(&VPI))
1217         continue;
1218       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1219       auto *VPInst = cast<VPInstruction>(&VPI);
1220 
1221       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1222       if (!Inst)
1223         continue;
1224       auto *IG = IAI.getInterleaveGroup(Inst);
1225       if (!IG)
1226         continue;
1227 
1228       auto NewIGIter = Old2New.find(IG);
1229       if (NewIGIter == Old2New.end())
1230         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1231             IG->getFactor(), IG->isReverse(), IG->getAlign());
1232 
1233       if (Inst == IG->getInsertPos())
1234         Old2New[IG]->setInsertPos(VPInst);
1235 
1236       InterleaveGroupMap[VPInst] = Old2New[IG];
1237       InterleaveGroupMap[VPInst]->insertMember(
1238           VPInst, IG->getIndex(Inst),
1239           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1240                                 : IG->getFactor()));
1241     }
1242   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1243     visitRegion(Region, Old2New, IAI);
1244   else
1245     llvm_unreachable("Unsupported kind of VPBlock.");
1246 }
1247 
1248 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1249                                                  InterleavedAccessInfo &IAI) {
1250   Old2NewTy Old2New;
1251   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1252 }
1253 
1254 void VPSlotTracker::assignSlot(const VPValue *V) {
1255   assert(!Slots.contains(V) && "VPValue already has a slot!");
1256   Slots[V] = NextSlot++;
1257 }
1258 
1259 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1260   if (Plan.VFxUF.getNumUsers() > 0)
1261     assignSlot(&Plan.VFxUF);
1262   assignSlot(&Plan.VectorTripCount);
1263   if (Plan.BackedgeTakenCount)
1264     assignSlot(Plan.BackedgeTakenCount);
1265   assignSlots(Plan.getPreheader());
1266 
1267   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1268       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1269   for (const VPBasicBlock *VPBB :
1270        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1271     assignSlots(VPBB);
1272 }
1273 
1274 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1275   for (const VPRecipeBase &Recipe : *VPBB)
1276     for (VPValue *Def : Recipe.definedValues())
1277       assignSlot(Def);
1278 }
1279 
1280 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1281   return all_of(Def->users(),
1282                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1283 }
1284 
1285 bool vputils::onlyFirstPartUsed(VPValue *Def) {
1286   return all_of(Def->users(),
1287                 [Def](VPUser *U) { return U->onlyFirstPartUsed(Def); });
1288 }
1289 
1290 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1291                                                 ScalarEvolution &SE) {
1292   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1293     return Expanded;
1294   VPValue *Expanded = nullptr;
1295   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1296     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1297   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1298     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1299   else {
1300     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1301     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1302   }
1303   Plan.addSCEVExpansion(Expr, Expanded);
1304   return Expanded;
1305 }
1306