1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.LastBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 assert(CBV->getUnderlyingValue() && 340 "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->get(CBV, {0, 0}); 348 349 // Replace the temporary unreachable terminator with the new conditional 350 // branch. 351 auto *CurrentTerminator = NewBB->getTerminator(); 352 assert(isa<UnreachableInst>(CurrentTerminator) && 353 "Expected to replace unreachable terminator with conditional " 354 "branch."); 355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 356 CondBr->setSuccessor(0, nullptr); 357 ReplaceInstWithInst(CurrentTerminator, CondBr); 358 } 359 360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 361 } 362 363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 364 for (VPRecipeBase &R : Recipes) { 365 for (auto *Def : R.definedValues()) 366 Def->replaceAllUsesWith(NewValue); 367 368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 369 R.setOperand(I, NewValue); 370 } 371 } 372 373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 374 assert((SplitAt == end() || SplitAt->getParent() == this) && 375 "can only split at a position in the same block"); 376 377 SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(), 378 getSuccessors().end()); 379 // First, disconnect the current block from its successors. 380 for (VPBlockBase *Succ : Succs) 381 VPBlockUtils::disconnectBlocks(this, Succ); 382 383 // Create new empty block after the block to split. 384 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 385 VPBlockUtils::insertBlockAfter(SplitBlock, this); 386 387 // Add successors for block to split to new block. 388 for (VPBlockBase *Succ : Succs) 389 VPBlockUtils::connectBlocks(SplitBlock, Succ); 390 391 // Finally, move the recipes starting at SplitAt to new block. 392 for (VPRecipeBase &ToMove : 393 make_early_inc_range(make_range(SplitAt, this->end()))) 394 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 395 396 return SplitBlock; 397 } 398 399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 400 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 401 if (getSuccessors().empty()) { 402 O << Indent << "No successors\n"; 403 } else { 404 O << Indent << "Successor(s): "; 405 ListSeparator LS; 406 for (auto *Succ : getSuccessors()) 407 O << LS << Succ->getName(); 408 O << '\n'; 409 } 410 } 411 412 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 413 VPSlotTracker &SlotTracker) const { 414 O << Indent << getName() << ":\n"; 415 if (const VPValue *Pred = getPredicate()) { 416 O << Indent << "BlockPredicate:"; 417 Pred->printAsOperand(O, SlotTracker); 418 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 419 O << " (" << PredInst->getParent()->getName() << ")"; 420 O << '\n'; 421 } 422 423 auto RecipeIndent = Indent + " "; 424 for (const VPRecipeBase &Recipe : *this) { 425 Recipe.print(O, RecipeIndent, SlotTracker); 426 O << '\n'; 427 } 428 429 printSuccessors(O, Indent); 430 431 if (const VPValue *CBV = getCondBit()) { 432 O << Indent << "CondBit: "; 433 CBV->printAsOperand(O, SlotTracker); 434 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 435 O << " (" << CBI->getParent()->getName() << ")"; 436 O << '\n'; 437 } 438 } 439 #endif 440 441 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 442 for (VPBlockBase *Block : depth_first(Entry)) 443 // Drop all references in VPBasicBlocks and replace all uses with 444 // DummyValue. 445 Block->dropAllReferences(NewValue); 446 } 447 448 void VPRegionBlock::execute(VPTransformState *State) { 449 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 450 451 if (!isReplicator()) { 452 // Visit the VPBlocks connected to "this", starting from it. 453 for (VPBlockBase *Block : RPOT) { 454 if (EnableVPlanNativePath) { 455 // The inner loop vectorization path does not represent loop preheader 456 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 457 // vectorizing loop preheader block. In future, we may replace this 458 // check with the check for loop preheader. 459 if (Block->getNumPredecessors() == 0) 460 continue; 461 462 // Skip vectorizing loop exit block. In future, we may replace this 463 // check with the check for loop exit. 464 if (Block->getNumSuccessors() == 0) 465 continue; 466 } 467 468 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 469 Block->execute(State); 470 } 471 return; 472 } 473 474 assert(!State->Instance && "Replicating a Region with non-null instance."); 475 476 // Enter replicating mode. 477 State->Instance = VPIteration(0, 0); 478 479 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 480 State->Instance->Part = Part; 481 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 482 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 483 ++Lane) { 484 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 485 // Visit the VPBlocks connected to \p this, starting from it. 486 for (VPBlockBase *Block : RPOT) { 487 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 488 Block->execute(State); 489 } 490 } 491 } 492 493 // Exit replicating mode. 494 State->Instance.reset(); 495 } 496 497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 498 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 499 VPSlotTracker &SlotTracker) const { 500 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 501 auto NewIndent = Indent + " "; 502 for (auto *BlockBase : depth_first(Entry)) { 503 O << '\n'; 504 BlockBase->print(O, NewIndent, SlotTracker); 505 } 506 O << Indent << "}\n"; 507 508 printSuccessors(O, Indent); 509 } 510 #endif 511 512 bool VPRecipeBase::mayWriteToMemory() const { 513 switch (getVPDefID()) { 514 case VPWidenMemoryInstructionSC: { 515 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 516 } 517 case VPReplicateSC: 518 case VPWidenCallSC: 519 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 520 ->mayWriteToMemory(); 521 case VPBranchOnMaskSC: 522 return false; 523 case VPWidenIntOrFpInductionSC: 524 case VPWidenCanonicalIVSC: 525 case VPWidenPHISC: 526 case VPBlendSC: 527 case VPWidenSC: 528 case VPWidenGEPSC: 529 case VPReductionSC: 530 case VPWidenSelectSC: { 531 const Instruction *I = 532 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 533 (void)I; 534 assert((!I || !I->mayWriteToMemory()) && 535 "underlying instruction may write to memory"); 536 return false; 537 } 538 default: 539 return true; 540 } 541 } 542 543 bool VPRecipeBase::mayReadFromMemory() const { 544 switch (getVPDefID()) { 545 case VPWidenMemoryInstructionSC: { 546 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 547 } 548 case VPReplicateSC: 549 case VPWidenCallSC: 550 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 551 ->mayReadFromMemory(); 552 case VPBranchOnMaskSC: 553 return false; 554 case VPWidenIntOrFpInductionSC: 555 case VPWidenCanonicalIVSC: 556 case VPWidenPHISC: 557 case VPBlendSC: 558 case VPWidenSC: 559 case VPWidenGEPSC: 560 case VPReductionSC: 561 case VPWidenSelectSC: { 562 const Instruction *I = 563 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 564 (void)I; 565 assert((!I || !I->mayReadFromMemory()) && 566 "underlying instruction may read from memory"); 567 return false; 568 } 569 default: 570 return true; 571 } 572 } 573 574 bool VPRecipeBase::mayHaveSideEffects() const { 575 switch (getVPDefID()) { 576 case VPBranchOnMaskSC: 577 return false; 578 case VPWidenIntOrFpInductionSC: 579 case VPWidenCanonicalIVSC: 580 case VPWidenPHISC: 581 case VPBlendSC: 582 case VPWidenSC: 583 case VPWidenGEPSC: 584 case VPReductionSC: 585 case VPWidenSelectSC: { 586 const Instruction *I = 587 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 588 (void)I; 589 assert((!I || !I->mayHaveSideEffects()) && 590 "underlying instruction has side-effects"); 591 return false; 592 } 593 case VPReplicateSC: { 594 auto *R = cast<VPReplicateRecipe>(this); 595 return R->getUnderlyingInstr()->mayHaveSideEffects(); 596 } 597 default: 598 return true; 599 } 600 } 601 602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 603 assert(!Parent && "Recipe already in some VPBasicBlock"); 604 assert(InsertPos->getParent() && 605 "Insertion position not in any VPBasicBlock"); 606 Parent = InsertPos->getParent(); 607 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 608 } 609 610 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 611 assert(!Parent && "Recipe already in some VPBasicBlock"); 612 assert(InsertPos->getParent() && 613 "Insertion position not in any VPBasicBlock"); 614 Parent = InsertPos->getParent(); 615 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 616 } 617 618 void VPRecipeBase::removeFromParent() { 619 assert(getParent() && "Recipe not in any VPBasicBlock"); 620 getParent()->getRecipeList().remove(getIterator()); 621 Parent = nullptr; 622 } 623 624 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 625 assert(getParent() && "Recipe not in any VPBasicBlock"); 626 return getParent()->getRecipeList().erase(getIterator()); 627 } 628 629 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 630 removeFromParent(); 631 insertAfter(InsertPos); 632 } 633 634 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 635 iplist<VPRecipeBase>::iterator I) { 636 assert(I == BB.end() || I->getParent() == &BB); 637 removeFromParent(); 638 Parent = &BB; 639 BB.getRecipeList().insert(I, this); 640 } 641 642 void VPInstruction::generateInstruction(VPTransformState &State, 643 unsigned Part) { 644 IRBuilder<> &Builder = State.Builder; 645 646 if (Instruction::isBinaryOp(getOpcode())) { 647 Value *A = State.get(getOperand(0), Part); 648 Value *B = State.get(getOperand(1), Part); 649 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 650 State.set(this, V, Part); 651 return; 652 } 653 654 switch (getOpcode()) { 655 case VPInstruction::Not: { 656 Value *A = State.get(getOperand(0), Part); 657 Value *V = Builder.CreateNot(A); 658 State.set(this, V, Part); 659 break; 660 } 661 case VPInstruction::ICmpULE: { 662 Value *IV = State.get(getOperand(0), Part); 663 Value *TC = State.get(getOperand(1), Part); 664 Value *V = Builder.CreateICmpULE(IV, TC); 665 State.set(this, V, Part); 666 break; 667 } 668 case Instruction::Select: { 669 Value *Cond = State.get(getOperand(0), Part); 670 Value *Op1 = State.get(getOperand(1), Part); 671 Value *Op2 = State.get(getOperand(2), Part); 672 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 673 State.set(this, V, Part); 674 break; 675 } 676 case VPInstruction::ActiveLaneMask: { 677 // Get first lane of vector induction variable. 678 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 679 // Get the original loop tripcount. 680 Value *ScalarTC = State.TripCount; 681 682 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 683 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 684 Instruction *Call = Builder.CreateIntrinsic( 685 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 686 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 687 State.set(this, Call, Part); 688 break; 689 } 690 case VPInstruction::FirstOrderRecurrenceSplice: { 691 // Generate code to combine the previous and current values in vector v3. 692 // 693 // vector.ph: 694 // v_init = vector(..., ..., ..., a[-1]) 695 // br vector.body 696 // 697 // vector.body 698 // i = phi [0, vector.ph], [i+4, vector.body] 699 // v1 = phi [v_init, vector.ph], [v2, vector.body] 700 // v2 = a[i, i+1, i+2, i+3]; 701 // v3 = vector(v1(3), v2(0, 1, 2)) 702 703 // For the first part, use the recurrence phi (v1), otherwise v2. 704 auto *V1 = State.get(getOperand(0), 0); 705 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 706 if (!PartMinus1->getType()->isVectorTy()) { 707 State.set(this, PartMinus1, Part); 708 } else { 709 Value *V2 = State.get(getOperand(1), Part); 710 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 711 } 712 break; 713 } 714 default: 715 llvm_unreachable("Unsupported opcode for instruction"); 716 } 717 } 718 719 void VPInstruction::execute(VPTransformState &State) { 720 assert(!State.Instance && "VPInstruction executing an Instance"); 721 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 722 State.Builder.setFastMathFlags(FMF); 723 for (unsigned Part = 0; Part < State.UF; ++Part) 724 generateInstruction(State, Part); 725 } 726 727 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 728 void VPInstruction::dump() const { 729 VPSlotTracker SlotTracker(getParent()->getPlan()); 730 print(dbgs(), "", SlotTracker); 731 } 732 733 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 734 VPSlotTracker &SlotTracker) const { 735 O << Indent << "EMIT "; 736 737 if (hasResult()) { 738 printAsOperand(O, SlotTracker); 739 O << " = "; 740 } 741 742 switch (getOpcode()) { 743 case VPInstruction::Not: 744 O << "not"; 745 break; 746 case VPInstruction::ICmpULE: 747 O << "icmp ule"; 748 break; 749 case VPInstruction::SLPLoad: 750 O << "combined load"; 751 break; 752 case VPInstruction::SLPStore: 753 O << "combined store"; 754 break; 755 case VPInstruction::ActiveLaneMask: 756 O << "active lane mask"; 757 break; 758 case VPInstruction::FirstOrderRecurrenceSplice: 759 O << "first-order splice"; 760 break; 761 default: 762 O << Instruction::getOpcodeName(getOpcode()); 763 } 764 765 O << FMF; 766 767 for (const VPValue *Operand : operands()) { 768 O << " "; 769 Operand->printAsOperand(O, SlotTracker); 770 } 771 } 772 #endif 773 774 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 775 // Make sure the VPInstruction is a floating-point operation. 776 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 777 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 778 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 779 Opcode == Instruction::FCmp) && 780 "this op can't take fast-math flags"); 781 FMF = FMFNew; 782 } 783 784 /// Generate the code inside the body of the vectorized loop. Assumes a single 785 /// LoopVectorBody basic-block was created for this. Introduce additional 786 /// basic-blocks as needed, and fill them all. 787 void VPlan::execute(VPTransformState *State) { 788 // -1. Check if the backedge taken count is needed, and if so build it. 789 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 790 Value *TC = State->TripCount; 791 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 792 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 793 "trip.count.minus.1"); 794 auto VF = State->VF; 795 Value *VTCMO = 796 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 797 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 798 State->set(BackedgeTakenCount, VTCMO, Part); 799 } 800 801 // 0. Set the reverse mapping from VPValues to Values for code generation. 802 for (auto &Entry : Value2VPValue) 803 State->VPValue2Value[Entry.second] = Entry.first; 804 805 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 806 State->CFG.VectorPreHeader = VectorPreHeaderBB; 807 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 808 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 809 810 // 1. Make room to generate basic-blocks inside loop body if needed. 811 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 812 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 813 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 814 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 815 // Remove the edge between Header and Latch to allow other connections. 816 // Temporarily terminate with unreachable until CFG is rewired. 817 // Note: this asserts the generated code's assumption that 818 // getFirstInsertionPt() can be dereferenced into an Instruction. 819 VectorHeaderBB->getTerminator()->eraseFromParent(); 820 State->Builder.SetInsertPoint(VectorHeaderBB); 821 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 822 State->Builder.SetInsertPoint(Terminator); 823 824 // 2. Generate code in loop body. 825 State->CFG.PrevVPBB = nullptr; 826 State->CFG.PrevBB = VectorHeaderBB; 827 State->CFG.LastBB = VectorLatchBB; 828 829 for (VPBlockBase *Block : depth_first(Entry)) 830 Block->execute(State); 831 832 // Fix the latch value of reduction and first-order recurrences phis in the 833 // vector loop. 834 VPBasicBlock *Header = Entry->getEntryBasicBlock(); 835 for (VPRecipeBase &R : Header->phis()) { 836 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 837 if (!PhiR || !(isa<VPFirstOrderRecurrencePHIRecipe>(&R) || 838 isa<VPReductionPHIRecipe>(&R))) 839 continue; 840 // For first-order recurrences and in-order reduction phis, only a single 841 // part is generated, which provides the last part from the previous 842 // iteration. Otherwise all UF parts are generated. 843 bool SinglePartNeeded = isa<VPFirstOrderRecurrencePHIRecipe>(&R) || 844 cast<VPReductionPHIRecipe>(&R)->isOrdered(); 845 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 846 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 847 Value *VecPhi = State->get(PhiR, Part); 848 Value *Val = State->get(PhiR->getBackedgeValue(), 849 SinglePartNeeded ? State->UF - 1 : Part); 850 cast<PHINode>(VecPhi)->addIncoming(Val, VectorLatchBB); 851 } 852 } 853 854 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 855 // VPBB's successors. 856 for (auto VPBB : State->CFG.VPBBsToFix) { 857 assert(EnableVPlanNativePath && 858 "Unexpected VPBBsToFix in non VPlan-native path"); 859 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 860 assert(BB && "Unexpected null basic block for VPBB"); 861 862 unsigned Idx = 0; 863 auto *BBTerminator = BB->getTerminator(); 864 865 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 866 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 867 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 868 ++Idx; 869 } 870 } 871 872 // 3. Merge the temporary latch created with the last basic-block filled. 873 BasicBlock *LastBB = State->CFG.PrevBB; 874 // Connect LastBB to VectorLatchBB to facilitate their merge. 875 assert((EnableVPlanNativePath || 876 isa<UnreachableInst>(LastBB->getTerminator())) && 877 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 878 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 879 "Expected VPlan CFG to terminate with branch in NativePath"); 880 LastBB->getTerminator()->eraseFromParent(); 881 BranchInst::Create(VectorLatchBB, LastBB); 882 883 // Merge LastBB with Latch. 884 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 885 (void)Merged; 886 assert(Merged && "Could not merge last basic block with latch."); 887 VectorLatchBB = LastBB; 888 889 // We do not attempt to preserve DT for outer loop vectorization currently. 890 if (!EnableVPlanNativePath) 891 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 892 L->getExitBlock()); 893 } 894 895 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 896 LLVM_DUMP_METHOD 897 void VPlan::print(raw_ostream &O) const { 898 VPSlotTracker SlotTracker(this); 899 900 O << "VPlan '" << Name << "' {"; 901 902 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 903 O << "\nLive-in "; 904 BackedgeTakenCount->printAsOperand(O, SlotTracker); 905 O << " = backedge-taken count\n"; 906 } 907 908 for (const VPBlockBase *Block : depth_first(getEntry())) { 909 O << '\n'; 910 Block->print(O, "", SlotTracker); 911 } 912 O << "}\n"; 913 } 914 915 LLVM_DUMP_METHOD 916 void VPlan::printDOT(raw_ostream &O) const { 917 VPlanPrinter Printer(O, *this); 918 Printer.dump(); 919 } 920 921 LLVM_DUMP_METHOD 922 void VPlan::dump() const { print(dbgs()); } 923 #endif 924 925 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 926 BasicBlock *LoopLatchBB, 927 BasicBlock *LoopExitBB) { 928 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 929 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 930 // The vector body may be more than a single basic-block by this point. 931 // Update the dominator tree information inside the vector body by propagating 932 // it from header to latch, expecting only triangular control-flow, if any. 933 BasicBlock *PostDomSucc = nullptr; 934 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 935 // Get the list of successors of this block. 936 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 937 assert(Succs.size() <= 2 && 938 "Basic block in vector loop has more than 2 successors."); 939 PostDomSucc = Succs[0]; 940 if (Succs.size() == 1) { 941 assert(PostDomSucc->getSinglePredecessor() && 942 "PostDom successor has more than one predecessor."); 943 DT->addNewBlock(PostDomSucc, BB); 944 continue; 945 } 946 BasicBlock *InterimSucc = Succs[1]; 947 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 948 PostDomSucc = Succs[1]; 949 InterimSucc = Succs[0]; 950 } 951 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 952 "One successor of a basic block does not lead to the other."); 953 assert(InterimSucc->getSinglePredecessor() && 954 "Interim successor has more than one predecessor."); 955 assert(PostDomSucc->hasNPredecessors(2) && 956 "PostDom successor has more than two predecessors."); 957 DT->addNewBlock(InterimSucc, BB); 958 DT->addNewBlock(PostDomSucc, BB); 959 } 960 // Latch block is a new dominator for the loop exit. 961 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 962 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 963 } 964 965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 966 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 967 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 968 Twine(getOrCreateBID(Block)); 969 } 970 971 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 972 const std::string &Name = Block->getName(); 973 if (!Name.empty()) 974 return Name; 975 return "VPB" + Twine(getOrCreateBID(Block)); 976 } 977 978 void VPlanPrinter::dump() { 979 Depth = 1; 980 bumpIndent(0); 981 OS << "digraph VPlan {\n"; 982 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 983 if (!Plan.getName().empty()) 984 OS << "\\n" << DOT::EscapeString(Plan.getName()); 985 if (Plan.BackedgeTakenCount) { 986 OS << ", where:\\n"; 987 Plan.BackedgeTakenCount->print(OS, SlotTracker); 988 OS << " := BackedgeTakenCount"; 989 } 990 OS << "\"]\n"; 991 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 992 OS << "edge [fontname=Courier, fontsize=30]\n"; 993 OS << "compound=true\n"; 994 995 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 996 dumpBlock(Block); 997 998 OS << "}\n"; 999 } 1000 1001 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1002 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1003 dumpBasicBlock(BasicBlock); 1004 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1005 dumpRegion(Region); 1006 else 1007 llvm_unreachable("Unsupported kind of VPBlock."); 1008 } 1009 1010 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1011 bool Hidden, const Twine &Label) { 1012 // Due to "dot" we print an edge between two regions as an edge between the 1013 // exit basic block and the entry basic of the respective regions. 1014 const VPBlockBase *Tail = From->getExitBasicBlock(); 1015 const VPBlockBase *Head = To->getEntryBasicBlock(); 1016 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1017 OS << " [ label=\"" << Label << '\"'; 1018 if (Tail != From) 1019 OS << " ltail=" << getUID(From); 1020 if (Head != To) 1021 OS << " lhead=" << getUID(To); 1022 if (Hidden) 1023 OS << "; splines=none"; 1024 OS << "]\n"; 1025 } 1026 1027 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1028 auto &Successors = Block->getSuccessors(); 1029 if (Successors.size() == 1) 1030 drawEdge(Block, Successors.front(), false, ""); 1031 else if (Successors.size() == 2) { 1032 drawEdge(Block, Successors.front(), false, "T"); 1033 drawEdge(Block, Successors.back(), false, "F"); 1034 } else { 1035 unsigned SuccessorNumber = 0; 1036 for (auto *Successor : Successors) 1037 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1038 } 1039 } 1040 1041 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1042 // Implement dot-formatted dump by performing plain-text dump into the 1043 // temporary storage followed by some post-processing. 1044 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1045 bumpIndent(1); 1046 std::string Str; 1047 raw_string_ostream SS(Str); 1048 // Use no indentation as we need to wrap the lines into quotes ourselves. 1049 BasicBlock->print(SS, "", SlotTracker); 1050 1051 // We need to process each line of the output separately, so split 1052 // single-string plain-text dump. 1053 SmallVector<StringRef, 0> Lines; 1054 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1055 1056 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1057 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1058 }; 1059 1060 // Don't need the "+" after the last line. 1061 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1062 EmitLine(Line, " +\n"); 1063 EmitLine(Lines.back(), "\n"); 1064 1065 bumpIndent(-1); 1066 OS << Indent << "]\n"; 1067 1068 dumpEdges(BasicBlock); 1069 } 1070 1071 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1072 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1073 bumpIndent(1); 1074 OS << Indent << "fontname=Courier\n" 1075 << Indent << "label=\"" 1076 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1077 << DOT::EscapeString(Region->getName()) << "\"\n"; 1078 // Dump the blocks of the region. 1079 assert(Region->getEntry() && "Region contains no inner blocks."); 1080 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1081 dumpBlock(Block); 1082 bumpIndent(-1); 1083 OS << Indent << "}\n"; 1084 dumpEdges(Region); 1085 } 1086 1087 void VPlanIngredient::print(raw_ostream &O) const { 1088 if (auto *Inst = dyn_cast<Instruction>(V)) { 1089 if (!Inst->getType()->isVoidTy()) { 1090 Inst->printAsOperand(O, false); 1091 O << " = "; 1092 } 1093 O << Inst->getOpcodeName() << " "; 1094 unsigned E = Inst->getNumOperands(); 1095 if (E > 0) { 1096 Inst->getOperand(0)->printAsOperand(O, false); 1097 for (unsigned I = 1; I < E; ++I) 1098 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1099 } 1100 } else // !Inst 1101 V->printAsOperand(O, false); 1102 } 1103 1104 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1105 VPSlotTracker &SlotTracker) const { 1106 O << Indent << "WIDEN-CALL "; 1107 1108 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1109 if (CI->getType()->isVoidTy()) 1110 O << "void "; 1111 else { 1112 printAsOperand(O, SlotTracker); 1113 O << " = "; 1114 } 1115 1116 O << "call @" << CI->getCalledFunction()->getName() << "("; 1117 printOperands(O, SlotTracker); 1118 O << ")"; 1119 } 1120 1121 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1122 VPSlotTracker &SlotTracker) const { 1123 O << Indent << "WIDEN-SELECT "; 1124 printAsOperand(O, SlotTracker); 1125 O << " = select "; 1126 getOperand(0)->printAsOperand(O, SlotTracker); 1127 O << ", "; 1128 getOperand(1)->printAsOperand(O, SlotTracker); 1129 O << ", "; 1130 getOperand(2)->printAsOperand(O, SlotTracker); 1131 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1132 } 1133 1134 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1135 VPSlotTracker &SlotTracker) const { 1136 O << Indent << "WIDEN "; 1137 printAsOperand(O, SlotTracker); 1138 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1139 printOperands(O, SlotTracker); 1140 } 1141 1142 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1143 VPSlotTracker &SlotTracker) const { 1144 O << Indent << "WIDEN-INDUCTION"; 1145 if (getTruncInst()) { 1146 O << "\\l\""; 1147 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1148 O << " +\n" << Indent << "\" "; 1149 getVPValue(0)->printAsOperand(O, SlotTracker); 1150 } else 1151 O << " " << VPlanIngredient(IV); 1152 } 1153 1154 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1155 VPSlotTracker &SlotTracker) const { 1156 O << Indent << "WIDEN-GEP "; 1157 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1158 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1159 for (size_t I = 0; I < IndicesNumber; ++I) 1160 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1161 1162 O << " "; 1163 printAsOperand(O, SlotTracker); 1164 O << " = getelementptr "; 1165 printOperands(O, SlotTracker); 1166 } 1167 1168 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1169 VPSlotTracker &SlotTracker) const { 1170 O << Indent << "WIDEN-PHI "; 1171 1172 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1173 // Unless all incoming values are modeled in VPlan print the original PHI 1174 // directly. 1175 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1176 // values as VPValues. 1177 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1178 O << VPlanIngredient(OriginalPhi); 1179 return; 1180 } 1181 1182 printAsOperand(O, SlotTracker); 1183 O << " = phi "; 1184 printOperands(O, SlotTracker); 1185 } 1186 1187 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1188 VPSlotTracker &SlotTracker) const { 1189 O << Indent << "BLEND "; 1190 Phi->printAsOperand(O, false); 1191 O << " ="; 1192 if (getNumIncomingValues() == 1) { 1193 // Not a User of any mask: not really blending, this is a 1194 // single-predecessor phi. 1195 O << " "; 1196 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1197 } else { 1198 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1199 O << " "; 1200 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1201 O << "/"; 1202 getMask(I)->printAsOperand(O, SlotTracker); 1203 } 1204 } 1205 } 1206 1207 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1208 VPSlotTracker &SlotTracker) const { 1209 O << Indent << "REDUCE "; 1210 printAsOperand(O, SlotTracker); 1211 O << " = "; 1212 getChainOp()->printAsOperand(O, SlotTracker); 1213 O << " +"; 1214 if (isa<FPMathOperator>(getUnderlyingInstr())) 1215 O << getUnderlyingInstr()->getFastMathFlags(); 1216 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1217 getVecOp()->printAsOperand(O, SlotTracker); 1218 if (getCondOp()) { 1219 O << ", "; 1220 getCondOp()->printAsOperand(O, SlotTracker); 1221 } 1222 O << ")"; 1223 } 1224 1225 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1226 VPSlotTracker &SlotTracker) const { 1227 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1228 1229 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1230 printAsOperand(O, SlotTracker); 1231 O << " = "; 1232 } 1233 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1234 printOperands(O, SlotTracker); 1235 1236 if (AlsoPack) 1237 O << " (S->V)"; 1238 } 1239 1240 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1241 VPSlotTracker &SlotTracker) const { 1242 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1243 printAsOperand(O, SlotTracker); 1244 O << " = "; 1245 printOperands(O, SlotTracker); 1246 } 1247 1248 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1249 VPSlotTracker &SlotTracker) const { 1250 O << Indent << "WIDEN "; 1251 1252 if (!isStore()) { 1253 getVPSingleValue()->printAsOperand(O, SlotTracker); 1254 O << " = "; 1255 } 1256 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1257 1258 printOperands(O, SlotTracker); 1259 } 1260 #endif 1261 1262 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1263 Value *CanonicalIV = State.CanonicalIV; 1264 Type *STy = CanonicalIV->getType(); 1265 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1266 ElementCount VF = State.VF; 1267 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1268 Value *VStart = VF.isScalar() 1269 ? CanonicalIV 1270 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1271 CanonicalIV, "broadcast"); 1272 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1273 SmallVector<Constant *, 8> Indices; 1274 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1275 Indices.push_back( 1276 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1277 // If VF == 1, there is only one iteration in the loop above, thus the 1278 // element pushed back into Indices is ConstantInt::get(STy, Part) 1279 Constant *VStep = 1280 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1281 // Add the consecutive indices to the vector value. 1282 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1283 State.set(this, CanonicalVectorIV, Part); 1284 } 1285 } 1286 1287 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1288 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1289 VPSlotTracker &SlotTracker) const { 1290 O << Indent << "EMIT "; 1291 printAsOperand(O, SlotTracker); 1292 O << " = WIDEN-CANONICAL-INDUCTION"; 1293 } 1294 #endif 1295 1296 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1297 auto &Builder = State.Builder; 1298 // Create a vector from the initial value. 1299 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1300 1301 Type *VecTy = State.VF.isScalar() 1302 ? VectorInit->getType() 1303 : VectorType::get(VectorInit->getType(), State.VF); 1304 1305 if (State.VF.isVector()) { 1306 auto *IdxTy = Builder.getInt32Ty(); 1307 auto *One = ConstantInt::get(IdxTy, 1); 1308 IRBuilder<>::InsertPointGuard Guard(Builder); 1309 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1310 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1311 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1312 VectorInit = Builder.CreateInsertElement( 1313 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1314 } 1315 1316 // Create a phi node for the new recurrence. 1317 PHINode *EntryPart = PHINode::Create( 1318 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1319 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1320 State.set(this, EntryPart, 0); 1321 } 1322 1323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1324 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1325 VPSlotTracker &SlotTracker) const { 1326 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1327 printAsOperand(O, SlotTracker); 1328 O << " = phi "; 1329 printOperands(O, SlotTracker); 1330 } 1331 #endif 1332 1333 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1334 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1335 auto &Builder = State.Builder; 1336 1337 // In order to support recurrences we need to be able to vectorize Phi nodes. 1338 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1339 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1340 // this value when we vectorize all of the instructions that use the PHI. 1341 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1342 Type *VecTy = 1343 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1344 1345 BasicBlock *HeaderBB = State.CFG.PrevBB; 1346 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && 1347 "recipe must be in the vector loop header"); 1348 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1349 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1350 Value *EntryPart = 1351 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1352 State.set(this, EntryPart, Part); 1353 } 1354 1355 // Reductions do not have to start at zero. They can start with 1356 // any loop invariant values. 1357 VPValue *StartVPV = getStartValue(); 1358 Value *StartV = StartVPV->getLiveInIRValue(); 1359 1360 Value *Iden = nullptr; 1361 RecurKind RK = RdxDesc.getRecurrenceKind(); 1362 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1363 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1364 // MinMax reduction have the start value as their identify. 1365 if (ScalarPHI) { 1366 Iden = StartV; 1367 } else { 1368 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1369 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1370 StartV = Iden = 1371 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1372 } 1373 } else { 1374 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1375 RdxDesc.getFastMathFlags()); 1376 1377 if (!ScalarPHI) { 1378 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1379 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1380 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1381 Constant *Zero = Builder.getInt32(0); 1382 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1383 } 1384 } 1385 1386 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1387 Value *EntryPart = State.get(this, Part); 1388 // Make sure to add the reduction start value only to the 1389 // first unroll part. 1390 Value *StartVal = (Part == 0) ? StartV : Iden; 1391 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1392 } 1393 } 1394 1395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1396 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1397 VPSlotTracker &SlotTracker) const { 1398 O << Indent << "WIDEN-REDUCTION-PHI "; 1399 1400 printAsOperand(O, SlotTracker); 1401 O << " = phi "; 1402 printOperands(O, SlotTracker); 1403 } 1404 #endif 1405 1406 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1407 1408 void VPValue::replaceAllUsesWith(VPValue *New) { 1409 for (unsigned J = 0; J < getNumUsers();) { 1410 VPUser *User = Users[J]; 1411 unsigned NumUsers = getNumUsers(); 1412 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1413 if (User->getOperand(I) == this) 1414 User->setOperand(I, New); 1415 // If a user got removed after updating the current user, the next user to 1416 // update will be moved to the current position, so we only need to 1417 // increment the index if the number of users did not change. 1418 if (NumUsers == getNumUsers()) 1419 J++; 1420 } 1421 } 1422 1423 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1424 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1425 if (const Value *UV = getUnderlyingValue()) { 1426 OS << "ir<"; 1427 UV->printAsOperand(OS, false); 1428 OS << ">"; 1429 return; 1430 } 1431 1432 unsigned Slot = Tracker.getSlot(this); 1433 if (Slot == unsigned(-1)) 1434 OS << "<badref>"; 1435 else 1436 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1437 } 1438 1439 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1440 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1441 Op->printAsOperand(O, SlotTracker); 1442 }); 1443 } 1444 #endif 1445 1446 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1447 Old2NewTy &Old2New, 1448 InterleavedAccessInfo &IAI) { 1449 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1450 for (VPBlockBase *Base : RPOT) { 1451 visitBlock(Base, Old2New, IAI); 1452 } 1453 } 1454 1455 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1456 InterleavedAccessInfo &IAI) { 1457 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1458 for (VPRecipeBase &VPI : *VPBB) { 1459 if (isa<VPWidenPHIRecipe>(&VPI)) 1460 continue; 1461 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1462 auto *VPInst = cast<VPInstruction>(&VPI); 1463 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1464 auto *IG = IAI.getInterleaveGroup(Inst); 1465 if (!IG) 1466 continue; 1467 1468 auto NewIGIter = Old2New.find(IG); 1469 if (NewIGIter == Old2New.end()) 1470 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1471 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1472 1473 if (Inst == IG->getInsertPos()) 1474 Old2New[IG]->setInsertPos(VPInst); 1475 1476 InterleaveGroupMap[VPInst] = Old2New[IG]; 1477 InterleaveGroupMap[VPInst]->insertMember( 1478 VPInst, IG->getIndex(Inst), 1479 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1480 : IG->getFactor())); 1481 } 1482 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1483 visitRegion(Region, Old2New, IAI); 1484 else 1485 llvm_unreachable("Unsupported kind of VPBlock."); 1486 } 1487 1488 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1489 InterleavedAccessInfo &IAI) { 1490 Old2NewTy Old2New; 1491 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1492 } 1493 1494 void VPSlotTracker::assignSlot(const VPValue *V) { 1495 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1496 Slots[V] = NextSlot++; 1497 } 1498 1499 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1500 1501 for (const VPValue *V : Plan.VPExternalDefs) 1502 assignSlot(V); 1503 1504 if (Plan.BackedgeTakenCount) 1505 assignSlot(Plan.BackedgeTakenCount); 1506 1507 ReversePostOrderTraversal< 1508 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1509 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1510 Plan.getEntry())); 1511 for (const VPBasicBlock *VPBB : 1512 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1513 for (const VPRecipeBase &Recipe : *VPBB) 1514 for (VPValue *Def : Recipe.definedValues()) 1515 assignSlot(Def); 1516 } 1517