xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.LastBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     // Register NewBB in its loop. In innermost loops its the same for all BB's.
322     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323     L->addBasicBlockToLoop(NewBB, *State->LI);
324     State->CFG.PrevBB = NewBB;
325   }
326 
327   // 2. Fill the IR basic block with IR instructions.
328   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329                     << " in BB:" << NewBB->getName() << '\n');
330 
331   State->CFG.VPBB2IRBB[this] = NewBB;
332   State->CFG.PrevVPBB = this;
333 
334   for (VPRecipeBase &Recipe : Recipes)
335     Recipe.execute(*State);
336 
337   VPValue *CBV;
338   if (EnableVPlanNativePath && (CBV = getCondBit())) {
339     assert(CBV->getUnderlyingValue() &&
340            "Unexpected null underlying value for condition bit");
341 
342     // Condition bit value in a VPBasicBlock is used as the branch selector. In
343     // the VPlan-native path case, since all branches are uniform we generate a
344     // branch instruction using the condition value from vector lane 0 and dummy
345     // successors. The successors are fixed later when the successor blocks are
346     // visited.
347     Value *NewCond = State->get(CBV, {0, 0});
348 
349     // Replace the temporary unreachable terminator with the new conditional
350     // branch.
351     auto *CurrentTerminator = NewBB->getTerminator();
352     assert(isa<UnreachableInst>(CurrentTerminator) &&
353            "Expected to replace unreachable terminator with conditional "
354            "branch.");
355     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356     CondBr->setSuccessor(0, nullptr);
357     ReplaceInstWithInst(CurrentTerminator, CondBr);
358   }
359 
360   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
361 }
362 
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364   for (VPRecipeBase &R : Recipes) {
365     for (auto *Def : R.definedValues())
366       Def->replaceAllUsesWith(NewValue);
367 
368     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369       R.setOperand(I, NewValue);
370   }
371 }
372 
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374   assert((SplitAt == end() || SplitAt->getParent() == this) &&
375          "can only split at a position in the same block");
376 
377   SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(),
378                                       getSuccessors().end());
379   // First, disconnect the current block from its successors.
380   for (VPBlockBase *Succ : Succs)
381     VPBlockUtils::disconnectBlocks(this, Succ);
382 
383   // Create new empty block after the block to split.
384   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
385   VPBlockUtils::insertBlockAfter(SplitBlock, this);
386 
387   // Add successors for block to split to new block.
388   for (VPBlockBase *Succ : Succs)
389     VPBlockUtils::connectBlocks(SplitBlock, Succ);
390 
391   // Finally, move the recipes starting at SplitAt to new block.
392   for (VPRecipeBase &ToMove :
393        make_early_inc_range(make_range(SplitAt, this->end())))
394     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
395 
396   return SplitBlock;
397 }
398 
399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
400 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
401   if (getSuccessors().empty()) {
402     O << Indent << "No successors\n";
403   } else {
404     O << Indent << "Successor(s): ";
405     ListSeparator LS;
406     for (auto *Succ : getSuccessors())
407       O << LS << Succ->getName();
408     O << '\n';
409   }
410 }
411 
412 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
413                          VPSlotTracker &SlotTracker) const {
414   O << Indent << getName() << ":\n";
415   if (const VPValue *Pred = getPredicate()) {
416     O << Indent << "BlockPredicate:";
417     Pred->printAsOperand(O, SlotTracker);
418     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
419       O << " (" << PredInst->getParent()->getName() << ")";
420     O << '\n';
421   }
422 
423   auto RecipeIndent = Indent + "  ";
424   for (const VPRecipeBase &Recipe : *this) {
425     Recipe.print(O, RecipeIndent, SlotTracker);
426     O << '\n';
427   }
428 
429   printSuccessors(O, Indent);
430 
431   if (const VPValue *CBV = getCondBit()) {
432     O << Indent << "CondBit: ";
433     CBV->printAsOperand(O, SlotTracker);
434     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
435       O << " (" << CBI->getParent()->getName() << ")";
436     O << '\n';
437   }
438 }
439 #endif
440 
441 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
442   for (VPBlockBase *Block : depth_first(Entry))
443     // Drop all references in VPBasicBlocks and replace all uses with
444     // DummyValue.
445     Block->dropAllReferences(NewValue);
446 }
447 
448 void VPRegionBlock::execute(VPTransformState *State) {
449   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
450 
451   if (!isReplicator()) {
452     // Visit the VPBlocks connected to "this", starting from it.
453     for (VPBlockBase *Block : RPOT) {
454       if (EnableVPlanNativePath) {
455         // The inner loop vectorization path does not represent loop preheader
456         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
457         // vectorizing loop preheader block. In future, we may replace this
458         // check with the check for loop preheader.
459         if (Block->getNumPredecessors() == 0)
460           continue;
461 
462         // Skip vectorizing loop exit block. In future, we may replace this
463         // check with the check for loop exit.
464         if (Block->getNumSuccessors() == 0)
465           continue;
466       }
467 
468       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
469       Block->execute(State);
470     }
471     return;
472   }
473 
474   assert(!State->Instance && "Replicating a Region with non-null instance.");
475 
476   // Enter replicating mode.
477   State->Instance = VPIteration(0, 0);
478 
479   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
480     State->Instance->Part = Part;
481     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
482     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
483          ++Lane) {
484       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
485       // Visit the VPBlocks connected to \p this, starting from it.
486       for (VPBlockBase *Block : RPOT) {
487         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
488         Block->execute(State);
489       }
490     }
491   }
492 
493   // Exit replicating mode.
494   State->Instance.reset();
495 }
496 
497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
498 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
499                           VPSlotTracker &SlotTracker) const {
500   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
501   auto NewIndent = Indent + "  ";
502   for (auto *BlockBase : depth_first(Entry)) {
503     O << '\n';
504     BlockBase->print(O, NewIndent, SlotTracker);
505   }
506   O << Indent << "}\n";
507 
508   printSuccessors(O, Indent);
509 }
510 #endif
511 
512 bool VPRecipeBase::mayWriteToMemory() const {
513   switch (getVPDefID()) {
514   case VPWidenMemoryInstructionSC: {
515     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
516   }
517   case VPReplicateSC:
518   case VPWidenCallSC:
519     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
520         ->mayWriteToMemory();
521   case VPBranchOnMaskSC:
522     return false;
523   case VPWidenIntOrFpInductionSC:
524   case VPWidenCanonicalIVSC:
525   case VPWidenPHISC:
526   case VPBlendSC:
527   case VPWidenSC:
528   case VPWidenGEPSC:
529   case VPReductionSC:
530   case VPWidenSelectSC: {
531     const Instruction *I =
532         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
533     (void)I;
534     assert((!I || !I->mayWriteToMemory()) &&
535            "underlying instruction may write to memory");
536     return false;
537   }
538   default:
539     return true;
540   }
541 }
542 
543 bool VPRecipeBase::mayReadFromMemory() const {
544   switch (getVPDefID()) {
545   case VPWidenMemoryInstructionSC: {
546     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
547   }
548   case VPReplicateSC:
549   case VPWidenCallSC:
550     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
551         ->mayReadFromMemory();
552   case VPBranchOnMaskSC:
553     return false;
554   case VPWidenIntOrFpInductionSC:
555   case VPWidenCanonicalIVSC:
556   case VPWidenPHISC:
557   case VPBlendSC:
558   case VPWidenSC:
559   case VPWidenGEPSC:
560   case VPReductionSC:
561   case VPWidenSelectSC: {
562     const Instruction *I =
563         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
564     (void)I;
565     assert((!I || !I->mayReadFromMemory()) &&
566            "underlying instruction may read from memory");
567     return false;
568   }
569   default:
570     return true;
571   }
572 }
573 
574 bool VPRecipeBase::mayHaveSideEffects() const {
575   switch (getVPDefID()) {
576   case VPBranchOnMaskSC:
577     return false;
578   case VPWidenIntOrFpInductionSC:
579   case VPWidenCanonicalIVSC:
580   case VPWidenPHISC:
581   case VPBlendSC:
582   case VPWidenSC:
583   case VPWidenGEPSC:
584   case VPReductionSC:
585   case VPWidenSelectSC: {
586     const Instruction *I =
587         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
588     (void)I;
589     assert((!I || !I->mayHaveSideEffects()) &&
590            "underlying instruction has side-effects");
591     return false;
592   }
593   case VPReplicateSC: {
594     auto *R = cast<VPReplicateRecipe>(this);
595     return R->getUnderlyingInstr()->mayHaveSideEffects();
596   }
597   default:
598     return true;
599   }
600 }
601 
602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
603   assert(!Parent && "Recipe already in some VPBasicBlock");
604   assert(InsertPos->getParent() &&
605          "Insertion position not in any VPBasicBlock");
606   Parent = InsertPos->getParent();
607   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
608 }
609 
610 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
611   assert(!Parent && "Recipe already in some VPBasicBlock");
612   assert(InsertPos->getParent() &&
613          "Insertion position not in any VPBasicBlock");
614   Parent = InsertPos->getParent();
615   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
616 }
617 
618 void VPRecipeBase::removeFromParent() {
619   assert(getParent() && "Recipe not in any VPBasicBlock");
620   getParent()->getRecipeList().remove(getIterator());
621   Parent = nullptr;
622 }
623 
624 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
625   assert(getParent() && "Recipe not in any VPBasicBlock");
626   return getParent()->getRecipeList().erase(getIterator());
627 }
628 
629 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
630   removeFromParent();
631   insertAfter(InsertPos);
632 }
633 
634 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
635                               iplist<VPRecipeBase>::iterator I) {
636   assert(I == BB.end() || I->getParent() == &BB);
637   removeFromParent();
638   Parent = &BB;
639   BB.getRecipeList().insert(I, this);
640 }
641 
642 void VPInstruction::generateInstruction(VPTransformState &State,
643                                         unsigned Part) {
644   IRBuilder<> &Builder = State.Builder;
645 
646   if (Instruction::isBinaryOp(getOpcode())) {
647     Value *A = State.get(getOperand(0), Part);
648     Value *B = State.get(getOperand(1), Part);
649     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
650     State.set(this, V, Part);
651     return;
652   }
653 
654   switch (getOpcode()) {
655   case VPInstruction::Not: {
656     Value *A = State.get(getOperand(0), Part);
657     Value *V = Builder.CreateNot(A);
658     State.set(this, V, Part);
659     break;
660   }
661   case VPInstruction::ICmpULE: {
662     Value *IV = State.get(getOperand(0), Part);
663     Value *TC = State.get(getOperand(1), Part);
664     Value *V = Builder.CreateICmpULE(IV, TC);
665     State.set(this, V, Part);
666     break;
667   }
668   case Instruction::Select: {
669     Value *Cond = State.get(getOperand(0), Part);
670     Value *Op1 = State.get(getOperand(1), Part);
671     Value *Op2 = State.get(getOperand(2), Part);
672     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
673     State.set(this, V, Part);
674     break;
675   }
676   case VPInstruction::ActiveLaneMask: {
677     // Get first lane of vector induction variable.
678     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
679     // Get the original loop tripcount.
680     Value *ScalarTC = State.TripCount;
681 
682     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
683     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
684     Instruction *Call = Builder.CreateIntrinsic(
685         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
686         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
687     State.set(this, Call, Part);
688     break;
689   }
690   case VPInstruction::FirstOrderRecurrenceSplice: {
691     // Generate code to combine the previous and current values in vector v3.
692     //
693     //   vector.ph:
694     //     v_init = vector(..., ..., ..., a[-1])
695     //     br vector.body
696     //
697     //   vector.body
698     //     i = phi [0, vector.ph], [i+4, vector.body]
699     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
700     //     v2 = a[i, i+1, i+2, i+3];
701     //     v3 = vector(v1(3), v2(0, 1, 2))
702 
703     // For the first part, use the recurrence phi (v1), otherwise v2.
704     auto *V1 = State.get(getOperand(0), 0);
705     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
706     if (!PartMinus1->getType()->isVectorTy()) {
707       State.set(this, PartMinus1, Part);
708     } else {
709       Value *V2 = State.get(getOperand(1), Part);
710       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
711     }
712     break;
713   }
714   default:
715     llvm_unreachable("Unsupported opcode for instruction");
716   }
717 }
718 
719 void VPInstruction::execute(VPTransformState &State) {
720   assert(!State.Instance && "VPInstruction executing an Instance");
721   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
722   State.Builder.setFastMathFlags(FMF);
723   for (unsigned Part = 0; Part < State.UF; ++Part)
724     generateInstruction(State, Part);
725 }
726 
727 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
728 void VPInstruction::dump() const {
729   VPSlotTracker SlotTracker(getParent()->getPlan());
730   print(dbgs(), "", SlotTracker);
731 }
732 
733 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
734                           VPSlotTracker &SlotTracker) const {
735   O << Indent << "EMIT ";
736 
737   if (hasResult()) {
738     printAsOperand(O, SlotTracker);
739     O << " = ";
740   }
741 
742   switch (getOpcode()) {
743   case VPInstruction::Not:
744     O << "not";
745     break;
746   case VPInstruction::ICmpULE:
747     O << "icmp ule";
748     break;
749   case VPInstruction::SLPLoad:
750     O << "combined load";
751     break;
752   case VPInstruction::SLPStore:
753     O << "combined store";
754     break;
755   case VPInstruction::ActiveLaneMask:
756     O << "active lane mask";
757     break;
758   case VPInstruction::FirstOrderRecurrenceSplice:
759     O << "first-order splice";
760     break;
761   default:
762     O << Instruction::getOpcodeName(getOpcode());
763   }
764 
765   O << FMF;
766 
767   for (const VPValue *Operand : operands()) {
768     O << " ";
769     Operand->printAsOperand(O, SlotTracker);
770   }
771 }
772 #endif
773 
774 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
775   // Make sure the VPInstruction is a floating-point operation.
776   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
777           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
778           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
779           Opcode == Instruction::FCmp) &&
780          "this op can't take fast-math flags");
781   FMF = FMFNew;
782 }
783 
784 /// Generate the code inside the body of the vectorized loop. Assumes a single
785 /// LoopVectorBody basic-block was created for this. Introduce additional
786 /// basic-blocks as needed, and fill them all.
787 void VPlan::execute(VPTransformState *State) {
788   // -1. Check if the backedge taken count is needed, and if so build it.
789   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
790     Value *TC = State->TripCount;
791     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
792     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
793                                    "trip.count.minus.1");
794     auto VF = State->VF;
795     Value *VTCMO =
796         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
797     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
798       State->set(BackedgeTakenCount, VTCMO, Part);
799   }
800 
801   // 0. Set the reverse mapping from VPValues to Values for code generation.
802   for (auto &Entry : Value2VPValue)
803     State->VPValue2Value[Entry.second] = Entry.first;
804 
805   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
806   State->CFG.VectorPreHeader = VectorPreHeaderBB;
807   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
808   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
809 
810   // 1. Make room to generate basic-blocks inside loop body if needed.
811   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
812       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
813   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
814   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
815   // Remove the edge between Header and Latch to allow other connections.
816   // Temporarily terminate with unreachable until CFG is rewired.
817   // Note: this asserts the generated code's assumption that
818   // getFirstInsertionPt() can be dereferenced into an Instruction.
819   VectorHeaderBB->getTerminator()->eraseFromParent();
820   State->Builder.SetInsertPoint(VectorHeaderBB);
821   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
822   State->Builder.SetInsertPoint(Terminator);
823 
824   // 2. Generate code in loop body.
825   State->CFG.PrevVPBB = nullptr;
826   State->CFG.PrevBB = VectorHeaderBB;
827   State->CFG.LastBB = VectorLatchBB;
828 
829   for (VPBlockBase *Block : depth_first(Entry))
830     Block->execute(State);
831 
832   // Fix the latch value of reduction and first-order recurrences phis in the
833   // vector loop.
834   VPBasicBlock *Header = Entry->getEntryBasicBlock();
835   for (VPRecipeBase &R : Header->phis()) {
836     auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
837     if (!PhiR || !(isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
838                    isa<VPReductionPHIRecipe>(&R)))
839       continue;
840     // For first-order recurrences and in-order reduction phis, only a single
841     // part is generated, which provides the last part from the previous
842     // iteration. Otherwise all UF parts are generated.
843     bool SinglePartNeeded = isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
844                             cast<VPReductionPHIRecipe>(&R)->isOrdered();
845     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
846     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
847       Value *VecPhi = State->get(PhiR, Part);
848       Value *Val = State->get(PhiR->getBackedgeValue(),
849                               SinglePartNeeded ? State->UF - 1 : Part);
850       cast<PHINode>(VecPhi)->addIncoming(Val, VectorLatchBB);
851     }
852   }
853 
854   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
855   // VPBB's successors.
856   for (auto VPBB : State->CFG.VPBBsToFix) {
857     assert(EnableVPlanNativePath &&
858            "Unexpected VPBBsToFix in non VPlan-native path");
859     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
860     assert(BB && "Unexpected null basic block for VPBB");
861 
862     unsigned Idx = 0;
863     auto *BBTerminator = BB->getTerminator();
864 
865     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
866       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
867       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
868       ++Idx;
869     }
870   }
871 
872   // 3. Merge the temporary latch created with the last basic-block filled.
873   BasicBlock *LastBB = State->CFG.PrevBB;
874   // Connect LastBB to VectorLatchBB to facilitate their merge.
875   assert((EnableVPlanNativePath ||
876           isa<UnreachableInst>(LastBB->getTerminator())) &&
877          "Expected InnerLoop VPlan CFG to terminate with unreachable");
878   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
879          "Expected VPlan CFG to terminate with branch in NativePath");
880   LastBB->getTerminator()->eraseFromParent();
881   BranchInst::Create(VectorLatchBB, LastBB);
882 
883   // Merge LastBB with Latch.
884   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
885   (void)Merged;
886   assert(Merged && "Could not merge last basic block with latch.");
887   VectorLatchBB = LastBB;
888 
889   // We do not attempt to preserve DT for outer loop vectorization currently.
890   if (!EnableVPlanNativePath)
891     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
892                         L->getExitBlock());
893 }
894 
895 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
896 LLVM_DUMP_METHOD
897 void VPlan::print(raw_ostream &O) const {
898   VPSlotTracker SlotTracker(this);
899 
900   O << "VPlan '" << Name << "' {";
901 
902   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
903     O << "\nLive-in ";
904     BackedgeTakenCount->printAsOperand(O, SlotTracker);
905     O << " = backedge-taken count\n";
906   }
907 
908   for (const VPBlockBase *Block : depth_first(getEntry())) {
909     O << '\n';
910     Block->print(O, "", SlotTracker);
911   }
912   O << "}\n";
913 }
914 
915 LLVM_DUMP_METHOD
916 void VPlan::printDOT(raw_ostream &O) const {
917   VPlanPrinter Printer(O, *this);
918   Printer.dump();
919 }
920 
921 LLVM_DUMP_METHOD
922 void VPlan::dump() const { print(dbgs()); }
923 #endif
924 
925 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
926                                 BasicBlock *LoopLatchBB,
927                                 BasicBlock *LoopExitBB) {
928   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
929   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
930   // The vector body may be more than a single basic-block by this point.
931   // Update the dominator tree information inside the vector body by propagating
932   // it from header to latch, expecting only triangular control-flow, if any.
933   BasicBlock *PostDomSucc = nullptr;
934   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
935     // Get the list of successors of this block.
936     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
937     assert(Succs.size() <= 2 &&
938            "Basic block in vector loop has more than 2 successors.");
939     PostDomSucc = Succs[0];
940     if (Succs.size() == 1) {
941       assert(PostDomSucc->getSinglePredecessor() &&
942              "PostDom successor has more than one predecessor.");
943       DT->addNewBlock(PostDomSucc, BB);
944       continue;
945     }
946     BasicBlock *InterimSucc = Succs[1];
947     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
948       PostDomSucc = Succs[1];
949       InterimSucc = Succs[0];
950     }
951     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
952            "One successor of a basic block does not lead to the other.");
953     assert(InterimSucc->getSinglePredecessor() &&
954            "Interim successor has more than one predecessor.");
955     assert(PostDomSucc->hasNPredecessors(2) &&
956            "PostDom successor has more than two predecessors.");
957     DT->addNewBlock(InterimSucc, BB);
958     DT->addNewBlock(PostDomSucc, BB);
959   }
960   // Latch block is a new dominator for the loop exit.
961   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
962   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
963 }
964 
965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
966 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
967   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
968          Twine(getOrCreateBID(Block));
969 }
970 
971 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
972   const std::string &Name = Block->getName();
973   if (!Name.empty())
974     return Name;
975   return "VPB" + Twine(getOrCreateBID(Block));
976 }
977 
978 void VPlanPrinter::dump() {
979   Depth = 1;
980   bumpIndent(0);
981   OS << "digraph VPlan {\n";
982   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
983   if (!Plan.getName().empty())
984     OS << "\\n" << DOT::EscapeString(Plan.getName());
985   if (Plan.BackedgeTakenCount) {
986     OS << ", where:\\n";
987     Plan.BackedgeTakenCount->print(OS, SlotTracker);
988     OS << " := BackedgeTakenCount";
989   }
990   OS << "\"]\n";
991   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
992   OS << "edge [fontname=Courier, fontsize=30]\n";
993   OS << "compound=true\n";
994 
995   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
996     dumpBlock(Block);
997 
998   OS << "}\n";
999 }
1000 
1001 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1002   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1003     dumpBasicBlock(BasicBlock);
1004   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1005     dumpRegion(Region);
1006   else
1007     llvm_unreachable("Unsupported kind of VPBlock.");
1008 }
1009 
1010 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1011                             bool Hidden, const Twine &Label) {
1012   // Due to "dot" we print an edge between two regions as an edge between the
1013   // exit basic block and the entry basic of the respective regions.
1014   const VPBlockBase *Tail = From->getExitBasicBlock();
1015   const VPBlockBase *Head = To->getEntryBasicBlock();
1016   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1017   OS << " [ label=\"" << Label << '\"';
1018   if (Tail != From)
1019     OS << " ltail=" << getUID(From);
1020   if (Head != To)
1021     OS << " lhead=" << getUID(To);
1022   if (Hidden)
1023     OS << "; splines=none";
1024   OS << "]\n";
1025 }
1026 
1027 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1028   auto &Successors = Block->getSuccessors();
1029   if (Successors.size() == 1)
1030     drawEdge(Block, Successors.front(), false, "");
1031   else if (Successors.size() == 2) {
1032     drawEdge(Block, Successors.front(), false, "T");
1033     drawEdge(Block, Successors.back(), false, "F");
1034   } else {
1035     unsigned SuccessorNumber = 0;
1036     for (auto *Successor : Successors)
1037       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1038   }
1039 }
1040 
1041 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1042   // Implement dot-formatted dump by performing plain-text dump into the
1043   // temporary storage followed by some post-processing.
1044   OS << Indent << getUID(BasicBlock) << " [label =\n";
1045   bumpIndent(1);
1046   std::string Str;
1047   raw_string_ostream SS(Str);
1048   // Use no indentation as we need to wrap the lines into quotes ourselves.
1049   BasicBlock->print(SS, "", SlotTracker);
1050 
1051   // We need to process each line of the output separately, so split
1052   // single-string plain-text dump.
1053   SmallVector<StringRef, 0> Lines;
1054   StringRef(Str).rtrim('\n').split(Lines, "\n");
1055 
1056   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1057     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1058   };
1059 
1060   // Don't need the "+" after the last line.
1061   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1062     EmitLine(Line, " +\n");
1063   EmitLine(Lines.back(), "\n");
1064 
1065   bumpIndent(-1);
1066   OS << Indent << "]\n";
1067 
1068   dumpEdges(BasicBlock);
1069 }
1070 
1071 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1072   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1073   bumpIndent(1);
1074   OS << Indent << "fontname=Courier\n"
1075      << Indent << "label=\""
1076      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1077      << DOT::EscapeString(Region->getName()) << "\"\n";
1078   // Dump the blocks of the region.
1079   assert(Region->getEntry() && "Region contains no inner blocks.");
1080   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1081     dumpBlock(Block);
1082   bumpIndent(-1);
1083   OS << Indent << "}\n";
1084   dumpEdges(Region);
1085 }
1086 
1087 void VPlanIngredient::print(raw_ostream &O) const {
1088   if (auto *Inst = dyn_cast<Instruction>(V)) {
1089     if (!Inst->getType()->isVoidTy()) {
1090       Inst->printAsOperand(O, false);
1091       O << " = ";
1092     }
1093     O << Inst->getOpcodeName() << " ";
1094     unsigned E = Inst->getNumOperands();
1095     if (E > 0) {
1096       Inst->getOperand(0)->printAsOperand(O, false);
1097       for (unsigned I = 1; I < E; ++I)
1098         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1099     }
1100   } else // !Inst
1101     V->printAsOperand(O, false);
1102 }
1103 
1104 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1105                               VPSlotTracker &SlotTracker) const {
1106   O << Indent << "WIDEN-CALL ";
1107 
1108   auto *CI = cast<CallInst>(getUnderlyingInstr());
1109   if (CI->getType()->isVoidTy())
1110     O << "void ";
1111   else {
1112     printAsOperand(O, SlotTracker);
1113     O << " = ";
1114   }
1115 
1116   O << "call @" << CI->getCalledFunction()->getName() << "(";
1117   printOperands(O, SlotTracker);
1118   O << ")";
1119 }
1120 
1121 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1122                                 VPSlotTracker &SlotTracker) const {
1123   O << Indent << "WIDEN-SELECT ";
1124   printAsOperand(O, SlotTracker);
1125   O << " = select ";
1126   getOperand(0)->printAsOperand(O, SlotTracker);
1127   O << ", ";
1128   getOperand(1)->printAsOperand(O, SlotTracker);
1129   O << ", ";
1130   getOperand(2)->printAsOperand(O, SlotTracker);
1131   O << (InvariantCond ? " (condition is loop invariant)" : "");
1132 }
1133 
1134 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1135                           VPSlotTracker &SlotTracker) const {
1136   O << Indent << "WIDEN ";
1137   printAsOperand(O, SlotTracker);
1138   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1139   printOperands(O, SlotTracker);
1140 }
1141 
1142 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1143                                           VPSlotTracker &SlotTracker) const {
1144   O << Indent << "WIDEN-INDUCTION";
1145   if (getTruncInst()) {
1146     O << "\\l\"";
1147     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1148     O << " +\n" << Indent << "\"  ";
1149     getVPValue(0)->printAsOperand(O, SlotTracker);
1150   } else
1151     O << " " << VPlanIngredient(IV);
1152 }
1153 
1154 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1155                              VPSlotTracker &SlotTracker) const {
1156   O << Indent << "WIDEN-GEP ";
1157   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1158   size_t IndicesNumber = IsIndexLoopInvariant.size();
1159   for (size_t I = 0; I < IndicesNumber; ++I)
1160     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1161 
1162   O << " ";
1163   printAsOperand(O, SlotTracker);
1164   O << " = getelementptr ";
1165   printOperands(O, SlotTracker);
1166 }
1167 
1168 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1169                              VPSlotTracker &SlotTracker) const {
1170   O << Indent << "WIDEN-PHI ";
1171 
1172   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1173   // Unless all incoming values are modeled in VPlan  print the original PHI
1174   // directly.
1175   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1176   // values as VPValues.
1177   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1178     O << VPlanIngredient(OriginalPhi);
1179     return;
1180   }
1181 
1182   printAsOperand(O, SlotTracker);
1183   O << " = phi ";
1184   printOperands(O, SlotTracker);
1185 }
1186 
1187 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1188                           VPSlotTracker &SlotTracker) const {
1189   O << Indent << "BLEND ";
1190   Phi->printAsOperand(O, false);
1191   O << " =";
1192   if (getNumIncomingValues() == 1) {
1193     // Not a User of any mask: not really blending, this is a
1194     // single-predecessor phi.
1195     O << " ";
1196     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1197   } else {
1198     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1199       O << " ";
1200       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1201       O << "/";
1202       getMask(I)->printAsOperand(O, SlotTracker);
1203     }
1204   }
1205 }
1206 
1207 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1208                               VPSlotTracker &SlotTracker) const {
1209   O << Indent << "REDUCE ";
1210   printAsOperand(O, SlotTracker);
1211   O << " = ";
1212   getChainOp()->printAsOperand(O, SlotTracker);
1213   O << " +";
1214   if (isa<FPMathOperator>(getUnderlyingInstr()))
1215     O << getUnderlyingInstr()->getFastMathFlags();
1216   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1217   getVecOp()->printAsOperand(O, SlotTracker);
1218   if (getCondOp()) {
1219     O << ", ";
1220     getCondOp()->printAsOperand(O, SlotTracker);
1221   }
1222   O << ")";
1223 }
1224 
1225 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1226                               VPSlotTracker &SlotTracker) const {
1227   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1228 
1229   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1230     printAsOperand(O, SlotTracker);
1231     O << " = ";
1232   }
1233   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1234   printOperands(O, SlotTracker);
1235 
1236   if (AlsoPack)
1237     O << " (S->V)";
1238 }
1239 
1240 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1241                                 VPSlotTracker &SlotTracker) const {
1242   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1243   printAsOperand(O, SlotTracker);
1244   O << " = ";
1245   printOperands(O, SlotTracker);
1246 }
1247 
1248 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1249                                            VPSlotTracker &SlotTracker) const {
1250   O << Indent << "WIDEN ";
1251 
1252   if (!isStore()) {
1253     getVPSingleValue()->printAsOperand(O, SlotTracker);
1254     O << " = ";
1255   }
1256   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1257 
1258   printOperands(O, SlotTracker);
1259 }
1260 #endif
1261 
1262 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1263   Value *CanonicalIV = State.CanonicalIV;
1264   Type *STy = CanonicalIV->getType();
1265   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1266   ElementCount VF = State.VF;
1267   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1268   Value *VStart = VF.isScalar()
1269                       ? CanonicalIV
1270                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1271                                                   CanonicalIV, "broadcast");
1272   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1273     SmallVector<Constant *, 8> Indices;
1274     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1275       Indices.push_back(
1276           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1277     // If VF == 1, there is only one iteration in the loop above, thus the
1278     // element pushed back into Indices is ConstantInt::get(STy, Part)
1279     Constant *VStep =
1280         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1281     // Add the consecutive indices to the vector value.
1282     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1283     State.set(this, CanonicalVectorIV, Part);
1284   }
1285 }
1286 
1287 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1288 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1289                                      VPSlotTracker &SlotTracker) const {
1290   O << Indent << "EMIT ";
1291   printAsOperand(O, SlotTracker);
1292   O << " = WIDEN-CANONICAL-INDUCTION";
1293 }
1294 #endif
1295 
1296 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1297   auto &Builder = State.Builder;
1298   // Create a vector from the initial value.
1299   auto *VectorInit = getStartValue()->getLiveInIRValue();
1300 
1301   Type *VecTy = State.VF.isScalar()
1302                     ? VectorInit->getType()
1303                     : VectorType::get(VectorInit->getType(), State.VF);
1304 
1305   if (State.VF.isVector()) {
1306     auto *IdxTy = Builder.getInt32Ty();
1307     auto *One = ConstantInt::get(IdxTy, 1);
1308     IRBuilder<>::InsertPointGuard Guard(Builder);
1309     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1310     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1311     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1312     VectorInit = Builder.CreateInsertElement(
1313         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1314   }
1315 
1316   // Create a phi node for the new recurrence.
1317   PHINode *EntryPart = PHINode::Create(
1318       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1319   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1320   State.set(this, EntryPart, 0);
1321 }
1322 
1323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1324 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1325                                             VPSlotTracker &SlotTracker) const {
1326   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1327   printAsOperand(O, SlotTracker);
1328   O << " = phi ";
1329   printOperands(O, SlotTracker);
1330 }
1331 #endif
1332 
1333 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1334   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1335   auto &Builder = State.Builder;
1336 
1337   // In order to support recurrences we need to be able to vectorize Phi nodes.
1338   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1339   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1340   // this value when we vectorize all of the instructions that use the PHI.
1341   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1342   Type *VecTy =
1343       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1344 
1345   BasicBlock *HeaderBB = State.CFG.PrevBB;
1346   assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB &&
1347          "recipe must be in the vector loop header");
1348   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1349   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1350     Value *EntryPart =
1351         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1352     State.set(this, EntryPart, Part);
1353   }
1354 
1355   // Reductions do not have to start at zero. They can start with
1356   // any loop invariant values.
1357   VPValue *StartVPV = getStartValue();
1358   Value *StartV = StartVPV->getLiveInIRValue();
1359 
1360   Value *Iden = nullptr;
1361   RecurKind RK = RdxDesc.getRecurrenceKind();
1362   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1363       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1364     // MinMax reduction have the start value as their identify.
1365     if (ScalarPHI) {
1366       Iden = StartV;
1367     } else {
1368       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1369       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1370       StartV = Iden =
1371           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1372     }
1373   } else {
1374     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1375                                          RdxDesc.getFastMathFlags());
1376 
1377     if (!ScalarPHI) {
1378       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1379       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1380       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1381       Constant *Zero = Builder.getInt32(0);
1382       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1383     }
1384   }
1385 
1386   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1387     Value *EntryPart = State.get(this, Part);
1388     // Make sure to add the reduction start value only to the
1389     // first unroll part.
1390     Value *StartVal = (Part == 0) ? StartV : Iden;
1391     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1392   }
1393 }
1394 
1395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1396 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1397                                  VPSlotTracker &SlotTracker) const {
1398   O << Indent << "WIDEN-REDUCTION-PHI ";
1399 
1400   printAsOperand(O, SlotTracker);
1401   O << " = phi ";
1402   printOperands(O, SlotTracker);
1403 }
1404 #endif
1405 
1406 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1407 
1408 void VPValue::replaceAllUsesWith(VPValue *New) {
1409   for (unsigned J = 0; J < getNumUsers();) {
1410     VPUser *User = Users[J];
1411     unsigned NumUsers = getNumUsers();
1412     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1413       if (User->getOperand(I) == this)
1414         User->setOperand(I, New);
1415     // If a user got removed after updating the current user, the next user to
1416     // update will be moved to the current position, so we only need to
1417     // increment the index if the number of users did not change.
1418     if (NumUsers == getNumUsers())
1419       J++;
1420   }
1421 }
1422 
1423 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1424 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1425   if (const Value *UV = getUnderlyingValue()) {
1426     OS << "ir<";
1427     UV->printAsOperand(OS, false);
1428     OS << ">";
1429     return;
1430   }
1431 
1432   unsigned Slot = Tracker.getSlot(this);
1433   if (Slot == unsigned(-1))
1434     OS << "<badref>";
1435   else
1436     OS << "vp<%" << Tracker.getSlot(this) << ">";
1437 }
1438 
1439 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1440   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1441     Op->printAsOperand(O, SlotTracker);
1442   });
1443 }
1444 #endif
1445 
1446 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1447                                           Old2NewTy &Old2New,
1448                                           InterleavedAccessInfo &IAI) {
1449   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1450   for (VPBlockBase *Base : RPOT) {
1451     visitBlock(Base, Old2New, IAI);
1452   }
1453 }
1454 
1455 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1456                                          InterleavedAccessInfo &IAI) {
1457   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1458     for (VPRecipeBase &VPI : *VPBB) {
1459       if (isa<VPWidenPHIRecipe>(&VPI))
1460         continue;
1461       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1462       auto *VPInst = cast<VPInstruction>(&VPI);
1463       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1464       auto *IG = IAI.getInterleaveGroup(Inst);
1465       if (!IG)
1466         continue;
1467 
1468       auto NewIGIter = Old2New.find(IG);
1469       if (NewIGIter == Old2New.end())
1470         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1471             IG->getFactor(), IG->isReverse(), IG->getAlign());
1472 
1473       if (Inst == IG->getInsertPos())
1474         Old2New[IG]->setInsertPos(VPInst);
1475 
1476       InterleaveGroupMap[VPInst] = Old2New[IG];
1477       InterleaveGroupMap[VPInst]->insertMember(
1478           VPInst, IG->getIndex(Inst),
1479           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1480                                 : IG->getFactor()));
1481     }
1482   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1483     visitRegion(Region, Old2New, IAI);
1484   else
1485     llvm_unreachable("Unsupported kind of VPBlock.");
1486 }
1487 
1488 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1489                                                  InterleavedAccessInfo &IAI) {
1490   Old2NewTy Old2New;
1491   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1492 }
1493 
1494 void VPSlotTracker::assignSlot(const VPValue *V) {
1495   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1496   Slots[V] = NextSlot++;
1497 }
1498 
1499 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1500 
1501   for (const VPValue *V : Plan.VPExternalDefs)
1502     assignSlot(V);
1503 
1504   if (Plan.BackedgeTakenCount)
1505     assignSlot(Plan.BackedgeTakenCount);
1506 
1507   ReversePostOrderTraversal<
1508       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1509       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1510           Plan.getEntry()));
1511   for (const VPBasicBlock *VPBB :
1512        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1513     for (const VPRecipeBase &Recipe : *VPBB)
1514       for (VPValue *Def : Recipe.definedValues())
1515         assignSlot(Def);
1516 }
1517