xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.LastBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     // Register NewBB in its loop. In innermost loops its the same for all BB's.
322     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323     L->addBasicBlockToLoop(NewBB, *State->LI);
324     State->CFG.PrevBB = NewBB;
325   }
326 
327   // 2. Fill the IR basic block with IR instructions.
328   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329                     << " in BB:" << NewBB->getName() << '\n');
330 
331   State->CFG.VPBB2IRBB[this] = NewBB;
332   State->CFG.PrevVPBB = this;
333 
334   for (VPRecipeBase &Recipe : Recipes)
335     Recipe.execute(*State);
336 
337   VPValue *CBV;
338   if (EnableVPlanNativePath && (CBV = getCondBit())) {
339     assert(CBV->getUnderlyingValue() &&
340            "Unexpected null underlying value for condition bit");
341 
342     // Condition bit value in a VPBasicBlock is used as the branch selector. In
343     // the VPlan-native path case, since all branches are uniform we generate a
344     // branch instruction using the condition value from vector lane 0 and dummy
345     // successors. The successors are fixed later when the successor blocks are
346     // visited.
347     Value *NewCond = State->get(CBV, {0, 0});
348 
349     // Replace the temporary unreachable terminator with the new conditional
350     // branch.
351     auto *CurrentTerminator = NewBB->getTerminator();
352     assert(isa<UnreachableInst>(CurrentTerminator) &&
353            "Expected to replace unreachable terminator with conditional "
354            "branch.");
355     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356     CondBr->setSuccessor(0, nullptr);
357     ReplaceInstWithInst(CurrentTerminator, CondBr);
358   }
359 
360   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
361 }
362 
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364   for (VPRecipeBase &R : Recipes) {
365     for (auto *Def : R.definedValues())
366       Def->replaceAllUsesWith(NewValue);
367 
368     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369       R.setOperand(I, NewValue);
370   }
371 }
372 
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374   assert((SplitAt == end() || SplitAt->getParent() == this) &&
375          "can only split at a position in the same block");
376 
377   SmallVector<VPBlockBase *, 2> Succs(successors());
378   // First, disconnect the current block from its successors.
379   for (VPBlockBase *Succ : Succs)
380     VPBlockUtils::disconnectBlocks(this, Succ);
381 
382   // Create new empty block after the block to split.
383   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
384   VPBlockUtils::insertBlockAfter(SplitBlock, this);
385 
386   // Add successors for block to split to new block.
387   for (VPBlockBase *Succ : Succs)
388     VPBlockUtils::connectBlocks(SplitBlock, Succ);
389 
390   // Finally, move the recipes starting at SplitAt to new block.
391   for (VPRecipeBase &ToMove :
392        make_early_inc_range(make_range(SplitAt, this->end())))
393     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
394 
395   return SplitBlock;
396 }
397 
398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
400   if (getSuccessors().empty()) {
401     O << Indent << "No successors\n";
402   } else {
403     O << Indent << "Successor(s): ";
404     ListSeparator LS;
405     for (auto *Succ : getSuccessors())
406       O << LS << Succ->getName();
407     O << '\n';
408   }
409 }
410 
411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
412                          VPSlotTracker &SlotTracker) const {
413   O << Indent << getName() << ":\n";
414   if (const VPValue *Pred = getPredicate()) {
415     O << Indent << "BlockPredicate:";
416     Pred->printAsOperand(O, SlotTracker);
417     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
418       O << " (" << PredInst->getParent()->getName() << ")";
419     O << '\n';
420   }
421 
422   auto RecipeIndent = Indent + "  ";
423   for (const VPRecipeBase &Recipe : *this) {
424     Recipe.print(O, RecipeIndent, SlotTracker);
425     O << '\n';
426   }
427 
428   printSuccessors(O, Indent);
429 
430   if (const VPValue *CBV = getCondBit()) {
431     O << Indent << "CondBit: ";
432     CBV->printAsOperand(O, SlotTracker);
433     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
434       O << " (" << CBI->getParent()->getName() << ")";
435     O << '\n';
436   }
437 }
438 #endif
439 
440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
441   for (VPBlockBase *Block : depth_first(Entry))
442     // Drop all references in VPBasicBlocks and replace all uses with
443     // DummyValue.
444     Block->dropAllReferences(NewValue);
445 }
446 
447 void VPRegionBlock::execute(VPTransformState *State) {
448   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
449 
450   if (!isReplicator()) {
451     // Visit the VPBlocks connected to "this", starting from it.
452     for (VPBlockBase *Block : RPOT) {
453       if (EnableVPlanNativePath) {
454         // The inner loop vectorization path does not represent loop preheader
455         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
456         // vectorizing loop preheader block. In future, we may replace this
457         // check with the check for loop preheader.
458         if (Block->getNumPredecessors() == 0)
459           continue;
460 
461         // Skip vectorizing loop exit block. In future, we may replace this
462         // check with the check for loop exit.
463         if (Block->getNumSuccessors() == 0)
464           continue;
465       }
466 
467       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
468       Block->execute(State);
469     }
470     return;
471   }
472 
473   assert(!State->Instance && "Replicating a Region with non-null instance.");
474 
475   // Enter replicating mode.
476   State->Instance = VPIteration(0, 0);
477 
478   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
479     State->Instance->Part = Part;
480     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
481     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
482          ++Lane) {
483       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
484       // Visit the VPBlocks connected to \p this, starting from it.
485       for (VPBlockBase *Block : RPOT) {
486         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
487         Block->execute(State);
488       }
489     }
490   }
491 
492   // Exit replicating mode.
493   State->Instance.reset();
494 }
495 
496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
498                           VPSlotTracker &SlotTracker) const {
499   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
500   auto NewIndent = Indent + "  ";
501   for (auto *BlockBase : depth_first(Entry)) {
502     O << '\n';
503     BlockBase->print(O, NewIndent, SlotTracker);
504   }
505   O << Indent << "}\n";
506 
507   printSuccessors(O, Indent);
508 }
509 #endif
510 
511 bool VPRecipeBase::mayWriteToMemory() const {
512   switch (getVPDefID()) {
513   case VPWidenMemoryInstructionSC: {
514     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
515   }
516   case VPReplicateSC:
517   case VPWidenCallSC:
518     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
519         ->mayWriteToMemory();
520   case VPBranchOnMaskSC:
521     return false;
522   case VPWidenIntOrFpInductionSC:
523   case VPWidenCanonicalIVSC:
524   case VPWidenPHISC:
525   case VPBlendSC:
526   case VPWidenSC:
527   case VPWidenGEPSC:
528   case VPReductionSC:
529   case VPWidenSelectSC: {
530     const Instruction *I =
531         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
532     (void)I;
533     assert((!I || !I->mayWriteToMemory()) &&
534            "underlying instruction may write to memory");
535     return false;
536   }
537   default:
538     return true;
539   }
540 }
541 
542 bool VPRecipeBase::mayReadFromMemory() const {
543   switch (getVPDefID()) {
544   case VPWidenMemoryInstructionSC: {
545     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
546   }
547   case VPReplicateSC:
548   case VPWidenCallSC:
549     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
550         ->mayReadFromMemory();
551   case VPBranchOnMaskSC:
552     return false;
553   case VPWidenIntOrFpInductionSC:
554   case VPWidenCanonicalIVSC:
555   case VPWidenPHISC:
556   case VPBlendSC:
557   case VPWidenSC:
558   case VPWidenGEPSC:
559   case VPReductionSC:
560   case VPWidenSelectSC: {
561     const Instruction *I =
562         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
563     (void)I;
564     assert((!I || !I->mayReadFromMemory()) &&
565            "underlying instruction may read from memory");
566     return false;
567   }
568   default:
569     return true;
570   }
571 }
572 
573 bool VPRecipeBase::mayHaveSideEffects() const {
574   switch (getVPDefID()) {
575   case VPBranchOnMaskSC:
576     return false;
577   case VPWidenIntOrFpInductionSC:
578   case VPWidenCanonicalIVSC:
579   case VPWidenPHISC:
580   case VPBlendSC:
581   case VPWidenSC:
582   case VPWidenGEPSC:
583   case VPReductionSC:
584   case VPWidenSelectSC: {
585     const Instruction *I =
586         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
587     (void)I;
588     assert((!I || !I->mayHaveSideEffects()) &&
589            "underlying instruction has side-effects");
590     return false;
591   }
592   case VPReplicateSC: {
593     auto *R = cast<VPReplicateRecipe>(this);
594     return R->getUnderlyingInstr()->mayHaveSideEffects();
595   }
596   default:
597     return true;
598   }
599 }
600 
601 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
602   assert(!Parent && "Recipe already in some VPBasicBlock");
603   assert(InsertPos->getParent() &&
604          "Insertion position not in any VPBasicBlock");
605   Parent = InsertPos->getParent();
606   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
607 }
608 
609 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
610   assert(!Parent && "Recipe already in some VPBasicBlock");
611   assert(InsertPos->getParent() &&
612          "Insertion position not in any VPBasicBlock");
613   Parent = InsertPos->getParent();
614   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
615 }
616 
617 void VPRecipeBase::removeFromParent() {
618   assert(getParent() && "Recipe not in any VPBasicBlock");
619   getParent()->getRecipeList().remove(getIterator());
620   Parent = nullptr;
621 }
622 
623 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
624   assert(getParent() && "Recipe not in any VPBasicBlock");
625   return getParent()->getRecipeList().erase(getIterator());
626 }
627 
628 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
629   removeFromParent();
630   insertAfter(InsertPos);
631 }
632 
633 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
634                               iplist<VPRecipeBase>::iterator I) {
635   assert(I == BB.end() || I->getParent() == &BB);
636   removeFromParent();
637   Parent = &BB;
638   BB.getRecipeList().insert(I, this);
639 }
640 
641 void VPInstruction::generateInstruction(VPTransformState &State,
642                                         unsigned Part) {
643   IRBuilder<> &Builder = State.Builder;
644   Builder.SetCurrentDebugLocation(DL);
645 
646   if (Instruction::isBinaryOp(getOpcode())) {
647     Value *A = State.get(getOperand(0), Part);
648     Value *B = State.get(getOperand(1), Part);
649     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
650     State.set(this, V, Part);
651     return;
652   }
653 
654   switch (getOpcode()) {
655   case VPInstruction::Not: {
656     Value *A = State.get(getOperand(0), Part);
657     Value *V = Builder.CreateNot(A);
658     State.set(this, V, Part);
659     break;
660   }
661   case VPInstruction::ICmpULE: {
662     Value *IV = State.get(getOperand(0), Part);
663     Value *TC = State.get(getOperand(1), Part);
664     Value *V = Builder.CreateICmpULE(IV, TC);
665     State.set(this, V, Part);
666     break;
667   }
668   case Instruction::Select: {
669     Value *Cond = State.get(getOperand(0), Part);
670     Value *Op1 = State.get(getOperand(1), Part);
671     Value *Op2 = State.get(getOperand(2), Part);
672     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
673     State.set(this, V, Part);
674     break;
675   }
676   case VPInstruction::ActiveLaneMask: {
677     // Get first lane of vector induction variable.
678     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
679     // Get the original loop tripcount.
680     Value *ScalarTC = State.TripCount;
681 
682     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
683     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
684     Instruction *Call = Builder.CreateIntrinsic(
685         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
686         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
687     State.set(this, Call, Part);
688     break;
689   }
690   case VPInstruction::FirstOrderRecurrenceSplice: {
691     // Generate code to combine the previous and current values in vector v3.
692     //
693     //   vector.ph:
694     //     v_init = vector(..., ..., ..., a[-1])
695     //     br vector.body
696     //
697     //   vector.body
698     //     i = phi [0, vector.ph], [i+4, vector.body]
699     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
700     //     v2 = a[i, i+1, i+2, i+3];
701     //     v3 = vector(v1(3), v2(0, 1, 2))
702 
703     // For the first part, use the recurrence phi (v1), otherwise v2.
704     auto *V1 = State.get(getOperand(0), 0);
705     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
706     if (!PartMinus1->getType()->isVectorTy()) {
707       State.set(this, PartMinus1, Part);
708     } else {
709       Value *V2 = State.get(getOperand(1), Part);
710       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
711     }
712     break;
713   }
714   default:
715     llvm_unreachable("Unsupported opcode for instruction");
716   }
717 }
718 
719 void VPInstruction::execute(VPTransformState &State) {
720   assert(!State.Instance && "VPInstruction executing an Instance");
721   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
722   State.Builder.setFastMathFlags(FMF);
723   for (unsigned Part = 0; Part < State.UF; ++Part)
724     generateInstruction(State, Part);
725 }
726 
727 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
728 void VPInstruction::dump() const {
729   VPSlotTracker SlotTracker(getParent()->getPlan());
730   print(dbgs(), "", SlotTracker);
731 }
732 
733 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
734                           VPSlotTracker &SlotTracker) const {
735   O << Indent << "EMIT ";
736 
737   if (hasResult()) {
738     printAsOperand(O, SlotTracker);
739     O << " = ";
740   }
741 
742   switch (getOpcode()) {
743   case VPInstruction::Not:
744     O << "not";
745     break;
746   case VPInstruction::ICmpULE:
747     O << "icmp ule";
748     break;
749   case VPInstruction::SLPLoad:
750     O << "combined load";
751     break;
752   case VPInstruction::SLPStore:
753     O << "combined store";
754     break;
755   case VPInstruction::ActiveLaneMask:
756     O << "active lane mask";
757     break;
758   case VPInstruction::FirstOrderRecurrenceSplice:
759     O << "first-order splice";
760     break;
761   default:
762     O << Instruction::getOpcodeName(getOpcode());
763   }
764 
765   O << FMF;
766 
767   for (const VPValue *Operand : operands()) {
768     O << " ";
769     Operand->printAsOperand(O, SlotTracker);
770   }
771 
772   if (DL) {
773     O << ", !dbg ";
774     DL.print(O);
775   }
776 }
777 #endif
778 
779 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
780   // Make sure the VPInstruction is a floating-point operation.
781   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
782           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
783           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
784           Opcode == Instruction::FCmp) &&
785          "this op can't take fast-math flags");
786   FMF = FMFNew;
787 }
788 
789 /// Generate the code inside the body of the vectorized loop. Assumes a single
790 /// LoopVectorBody basic-block was created for this. Introduce additional
791 /// basic-blocks as needed, and fill them all.
792 void VPlan::execute(VPTransformState *State) {
793   // -1. Check if the backedge taken count is needed, and if so build it.
794   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
795     Value *TC = State->TripCount;
796     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
797     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
798                                    "trip.count.minus.1");
799     auto VF = State->VF;
800     Value *VTCMO =
801         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
802     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
803       State->set(BackedgeTakenCount, VTCMO, Part);
804   }
805 
806   // 0. Set the reverse mapping from VPValues to Values for code generation.
807   for (auto &Entry : Value2VPValue)
808     State->VPValue2Value[Entry.second] = Entry.first;
809 
810   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
811   State->CFG.VectorPreHeader = VectorPreHeaderBB;
812   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
813   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
814 
815   // 1. Make room to generate basic-blocks inside loop body if needed.
816   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
817       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
818   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
819   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
820   // Remove the edge between Header and Latch to allow other connections.
821   // Temporarily terminate with unreachable until CFG is rewired.
822   // Note: this asserts the generated code's assumption that
823   // getFirstInsertionPt() can be dereferenced into an Instruction.
824   VectorHeaderBB->getTerminator()->eraseFromParent();
825   State->Builder.SetInsertPoint(VectorHeaderBB);
826   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
827   State->Builder.SetInsertPoint(Terminator);
828 
829   // 2. Generate code in loop body.
830   State->CFG.PrevVPBB = nullptr;
831   State->CFG.PrevBB = VectorHeaderBB;
832   State->CFG.LastBB = VectorLatchBB;
833 
834   for (VPBlockBase *Block : depth_first(Entry))
835     Block->execute(State);
836 
837   // Fix the latch value of reduction and first-order recurrences phis in the
838   // vector loop.
839   VPBasicBlock *Header = Entry->getEntryBasicBlock();
840   for (VPRecipeBase &R : Header->phis()) {
841     auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
842     if (!PhiR || !(isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
843                    isa<VPReductionPHIRecipe>(&R)))
844       continue;
845     // For first-order recurrences and in-order reduction phis, only a single
846     // part is generated, which provides the last part from the previous
847     // iteration. Otherwise all UF parts are generated.
848     bool SinglePartNeeded = isa<VPFirstOrderRecurrencePHIRecipe>(&R) ||
849                             cast<VPReductionPHIRecipe>(&R)->isOrdered();
850     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
851     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
852       Value *VecPhi = State->get(PhiR, Part);
853       Value *Val = State->get(PhiR->getBackedgeValue(),
854                               SinglePartNeeded ? State->UF - 1 : Part);
855       cast<PHINode>(VecPhi)->addIncoming(Val, VectorLatchBB);
856     }
857   }
858 
859   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
860   // VPBB's successors.
861   for (auto VPBB : State->CFG.VPBBsToFix) {
862     assert(EnableVPlanNativePath &&
863            "Unexpected VPBBsToFix in non VPlan-native path");
864     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
865     assert(BB && "Unexpected null basic block for VPBB");
866 
867     unsigned Idx = 0;
868     auto *BBTerminator = BB->getTerminator();
869 
870     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
871       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
872       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
873       ++Idx;
874     }
875   }
876 
877   // 3. Merge the temporary latch created with the last basic-block filled.
878   BasicBlock *LastBB = State->CFG.PrevBB;
879   // Connect LastBB to VectorLatchBB to facilitate their merge.
880   assert((EnableVPlanNativePath ||
881           isa<UnreachableInst>(LastBB->getTerminator())) &&
882          "Expected InnerLoop VPlan CFG to terminate with unreachable");
883   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
884          "Expected VPlan CFG to terminate with branch in NativePath");
885   LastBB->getTerminator()->eraseFromParent();
886   BranchInst::Create(VectorLatchBB, LastBB);
887 
888   // Merge LastBB with Latch.
889   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
890   (void)Merged;
891   assert(Merged && "Could not merge last basic block with latch.");
892   VectorLatchBB = LastBB;
893 
894   // We do not attempt to preserve DT for outer loop vectorization currently.
895   if (!EnableVPlanNativePath)
896     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
897                         L->getExitBlock());
898 }
899 
900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
901 LLVM_DUMP_METHOD
902 void VPlan::print(raw_ostream &O) const {
903   VPSlotTracker SlotTracker(this);
904 
905   O << "VPlan '" << Name << "' {";
906 
907   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
908     O << "\nLive-in ";
909     BackedgeTakenCount->printAsOperand(O, SlotTracker);
910     O << " = backedge-taken count\n";
911   }
912 
913   for (const VPBlockBase *Block : depth_first(getEntry())) {
914     O << '\n';
915     Block->print(O, "", SlotTracker);
916   }
917   O << "}\n";
918 }
919 
920 LLVM_DUMP_METHOD
921 void VPlan::printDOT(raw_ostream &O) const {
922   VPlanPrinter Printer(O, *this);
923   Printer.dump();
924 }
925 
926 LLVM_DUMP_METHOD
927 void VPlan::dump() const { print(dbgs()); }
928 #endif
929 
930 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
931                                 BasicBlock *LoopLatchBB,
932                                 BasicBlock *LoopExitBB) {
933   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
934   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
935   // The vector body may be more than a single basic-block by this point.
936   // Update the dominator tree information inside the vector body by propagating
937   // it from header to latch, expecting only triangular control-flow, if any.
938   BasicBlock *PostDomSucc = nullptr;
939   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
940     // Get the list of successors of this block.
941     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
942     assert(Succs.size() <= 2 &&
943            "Basic block in vector loop has more than 2 successors.");
944     PostDomSucc = Succs[0];
945     if (Succs.size() == 1) {
946       assert(PostDomSucc->getSinglePredecessor() &&
947              "PostDom successor has more than one predecessor.");
948       DT->addNewBlock(PostDomSucc, BB);
949       continue;
950     }
951     BasicBlock *InterimSucc = Succs[1];
952     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
953       PostDomSucc = Succs[1];
954       InterimSucc = Succs[0];
955     }
956     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
957            "One successor of a basic block does not lead to the other.");
958     assert(InterimSucc->getSinglePredecessor() &&
959            "Interim successor has more than one predecessor.");
960     assert(PostDomSucc->hasNPredecessors(2) &&
961            "PostDom successor has more than two predecessors.");
962     DT->addNewBlock(InterimSucc, BB);
963     DT->addNewBlock(PostDomSucc, BB);
964   }
965   // Latch block is a new dominator for the loop exit.
966   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
967   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
968 }
969 
970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
971 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
972   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
973          Twine(getOrCreateBID(Block));
974 }
975 
976 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
977   const std::string &Name = Block->getName();
978   if (!Name.empty())
979     return Name;
980   return "VPB" + Twine(getOrCreateBID(Block));
981 }
982 
983 void VPlanPrinter::dump() {
984   Depth = 1;
985   bumpIndent(0);
986   OS << "digraph VPlan {\n";
987   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
988   if (!Plan.getName().empty())
989     OS << "\\n" << DOT::EscapeString(Plan.getName());
990   if (Plan.BackedgeTakenCount) {
991     OS << ", where:\\n";
992     Plan.BackedgeTakenCount->print(OS, SlotTracker);
993     OS << " := BackedgeTakenCount";
994   }
995   OS << "\"]\n";
996   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
997   OS << "edge [fontname=Courier, fontsize=30]\n";
998   OS << "compound=true\n";
999 
1000   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1001     dumpBlock(Block);
1002 
1003   OS << "}\n";
1004 }
1005 
1006 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1007   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1008     dumpBasicBlock(BasicBlock);
1009   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1010     dumpRegion(Region);
1011   else
1012     llvm_unreachable("Unsupported kind of VPBlock.");
1013 }
1014 
1015 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1016                             bool Hidden, const Twine &Label) {
1017   // Due to "dot" we print an edge between two regions as an edge between the
1018   // exit basic block and the entry basic of the respective regions.
1019   const VPBlockBase *Tail = From->getExitBasicBlock();
1020   const VPBlockBase *Head = To->getEntryBasicBlock();
1021   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1022   OS << " [ label=\"" << Label << '\"';
1023   if (Tail != From)
1024     OS << " ltail=" << getUID(From);
1025   if (Head != To)
1026     OS << " lhead=" << getUID(To);
1027   if (Hidden)
1028     OS << "; splines=none";
1029   OS << "]\n";
1030 }
1031 
1032 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1033   auto &Successors = Block->getSuccessors();
1034   if (Successors.size() == 1)
1035     drawEdge(Block, Successors.front(), false, "");
1036   else if (Successors.size() == 2) {
1037     drawEdge(Block, Successors.front(), false, "T");
1038     drawEdge(Block, Successors.back(), false, "F");
1039   } else {
1040     unsigned SuccessorNumber = 0;
1041     for (auto *Successor : Successors)
1042       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1043   }
1044 }
1045 
1046 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1047   // Implement dot-formatted dump by performing plain-text dump into the
1048   // temporary storage followed by some post-processing.
1049   OS << Indent << getUID(BasicBlock) << " [label =\n";
1050   bumpIndent(1);
1051   std::string Str;
1052   raw_string_ostream SS(Str);
1053   // Use no indentation as we need to wrap the lines into quotes ourselves.
1054   BasicBlock->print(SS, "", SlotTracker);
1055 
1056   // We need to process each line of the output separately, so split
1057   // single-string plain-text dump.
1058   SmallVector<StringRef, 0> Lines;
1059   StringRef(Str).rtrim('\n').split(Lines, "\n");
1060 
1061   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1062     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1063   };
1064 
1065   // Don't need the "+" after the last line.
1066   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1067     EmitLine(Line, " +\n");
1068   EmitLine(Lines.back(), "\n");
1069 
1070   bumpIndent(-1);
1071   OS << Indent << "]\n";
1072 
1073   dumpEdges(BasicBlock);
1074 }
1075 
1076 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1077   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1078   bumpIndent(1);
1079   OS << Indent << "fontname=Courier\n"
1080      << Indent << "label=\""
1081      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1082      << DOT::EscapeString(Region->getName()) << "\"\n";
1083   // Dump the blocks of the region.
1084   assert(Region->getEntry() && "Region contains no inner blocks.");
1085   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1086     dumpBlock(Block);
1087   bumpIndent(-1);
1088   OS << Indent << "}\n";
1089   dumpEdges(Region);
1090 }
1091 
1092 void VPlanIngredient::print(raw_ostream &O) const {
1093   if (auto *Inst = dyn_cast<Instruction>(V)) {
1094     if (!Inst->getType()->isVoidTy()) {
1095       Inst->printAsOperand(O, false);
1096       O << " = ";
1097     }
1098     O << Inst->getOpcodeName() << " ";
1099     unsigned E = Inst->getNumOperands();
1100     if (E > 0) {
1101       Inst->getOperand(0)->printAsOperand(O, false);
1102       for (unsigned I = 1; I < E; ++I)
1103         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1104     }
1105   } else // !Inst
1106     V->printAsOperand(O, false);
1107 }
1108 
1109 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1110                               VPSlotTracker &SlotTracker) const {
1111   O << Indent << "WIDEN-CALL ";
1112 
1113   auto *CI = cast<CallInst>(getUnderlyingInstr());
1114   if (CI->getType()->isVoidTy())
1115     O << "void ";
1116   else {
1117     printAsOperand(O, SlotTracker);
1118     O << " = ";
1119   }
1120 
1121   O << "call @" << CI->getCalledFunction()->getName() << "(";
1122   printOperands(O, SlotTracker);
1123   O << ")";
1124 }
1125 
1126 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1127                                 VPSlotTracker &SlotTracker) const {
1128   O << Indent << "WIDEN-SELECT ";
1129   printAsOperand(O, SlotTracker);
1130   O << " = select ";
1131   getOperand(0)->printAsOperand(O, SlotTracker);
1132   O << ", ";
1133   getOperand(1)->printAsOperand(O, SlotTracker);
1134   O << ", ";
1135   getOperand(2)->printAsOperand(O, SlotTracker);
1136   O << (InvariantCond ? " (condition is loop invariant)" : "");
1137 }
1138 
1139 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1140                           VPSlotTracker &SlotTracker) const {
1141   O << Indent << "WIDEN ";
1142   printAsOperand(O, SlotTracker);
1143   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1144   printOperands(O, SlotTracker);
1145 }
1146 
1147 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1148                                           VPSlotTracker &SlotTracker) const {
1149   O << Indent << "WIDEN-INDUCTION";
1150   if (getTruncInst()) {
1151     O << "\\l\"";
1152     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1153     O << " +\n" << Indent << "\"  ";
1154     getVPValue(0)->printAsOperand(O, SlotTracker);
1155   } else
1156     O << " " << VPlanIngredient(IV);
1157 }
1158 
1159 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1160                              VPSlotTracker &SlotTracker) const {
1161   O << Indent << "WIDEN-GEP ";
1162   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1163   size_t IndicesNumber = IsIndexLoopInvariant.size();
1164   for (size_t I = 0; I < IndicesNumber; ++I)
1165     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1166 
1167   O << " ";
1168   printAsOperand(O, SlotTracker);
1169   O << " = getelementptr ";
1170   printOperands(O, SlotTracker);
1171 }
1172 
1173 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1174                              VPSlotTracker &SlotTracker) const {
1175   O << Indent << "WIDEN-PHI ";
1176 
1177   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1178   // Unless all incoming values are modeled in VPlan  print the original PHI
1179   // directly.
1180   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1181   // values as VPValues.
1182   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1183     O << VPlanIngredient(OriginalPhi);
1184     return;
1185   }
1186 
1187   printAsOperand(O, SlotTracker);
1188   O << " = phi ";
1189   printOperands(O, SlotTracker);
1190 }
1191 
1192 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1193                           VPSlotTracker &SlotTracker) const {
1194   O << Indent << "BLEND ";
1195   Phi->printAsOperand(O, false);
1196   O << " =";
1197   if (getNumIncomingValues() == 1) {
1198     // Not a User of any mask: not really blending, this is a
1199     // single-predecessor phi.
1200     O << " ";
1201     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1202   } else {
1203     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1204       O << " ";
1205       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1206       O << "/";
1207       getMask(I)->printAsOperand(O, SlotTracker);
1208     }
1209   }
1210 }
1211 
1212 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1213                               VPSlotTracker &SlotTracker) const {
1214   O << Indent << "REDUCE ";
1215   printAsOperand(O, SlotTracker);
1216   O << " = ";
1217   getChainOp()->printAsOperand(O, SlotTracker);
1218   O << " +";
1219   if (isa<FPMathOperator>(getUnderlyingInstr()))
1220     O << getUnderlyingInstr()->getFastMathFlags();
1221   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1222   getVecOp()->printAsOperand(O, SlotTracker);
1223   if (getCondOp()) {
1224     O << ", ";
1225     getCondOp()->printAsOperand(O, SlotTracker);
1226   }
1227   O << ")";
1228 }
1229 
1230 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1231                               VPSlotTracker &SlotTracker) const {
1232   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1233 
1234   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1235     printAsOperand(O, SlotTracker);
1236     O << " = ";
1237   }
1238   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1239   printOperands(O, SlotTracker);
1240 
1241   if (AlsoPack)
1242     O << " (S->V)";
1243 }
1244 
1245 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1246                                 VPSlotTracker &SlotTracker) const {
1247   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1248   printAsOperand(O, SlotTracker);
1249   O << " = ";
1250   printOperands(O, SlotTracker);
1251 }
1252 
1253 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1254                                            VPSlotTracker &SlotTracker) const {
1255   O << Indent << "WIDEN ";
1256 
1257   if (!isStore()) {
1258     getVPSingleValue()->printAsOperand(O, SlotTracker);
1259     O << " = ";
1260   }
1261   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1262 
1263   printOperands(O, SlotTracker);
1264 }
1265 #endif
1266 
1267 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1268   Value *CanonicalIV = State.CanonicalIV;
1269   Type *STy = CanonicalIV->getType();
1270   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1271   ElementCount VF = State.VF;
1272   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1273   Value *VStart = VF.isScalar()
1274                       ? CanonicalIV
1275                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1276                                                   CanonicalIV, "broadcast");
1277   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1278     SmallVector<Constant *, 8> Indices;
1279     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1280       Indices.push_back(
1281           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1282     // If VF == 1, there is only one iteration in the loop above, thus the
1283     // element pushed back into Indices is ConstantInt::get(STy, Part)
1284     Constant *VStep =
1285         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1286     // Add the consecutive indices to the vector value.
1287     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1288     State.set(this, CanonicalVectorIV, Part);
1289   }
1290 }
1291 
1292 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1293 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1294                                      VPSlotTracker &SlotTracker) const {
1295   O << Indent << "EMIT ";
1296   printAsOperand(O, SlotTracker);
1297   O << " = WIDEN-CANONICAL-INDUCTION";
1298 }
1299 #endif
1300 
1301 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1302   auto &Builder = State.Builder;
1303   // Create a vector from the initial value.
1304   auto *VectorInit = getStartValue()->getLiveInIRValue();
1305 
1306   Type *VecTy = State.VF.isScalar()
1307                     ? VectorInit->getType()
1308                     : VectorType::get(VectorInit->getType(), State.VF);
1309 
1310   if (State.VF.isVector()) {
1311     auto *IdxTy = Builder.getInt32Ty();
1312     auto *One = ConstantInt::get(IdxTy, 1);
1313     IRBuilder<>::InsertPointGuard Guard(Builder);
1314     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1315     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1316     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1317     VectorInit = Builder.CreateInsertElement(
1318         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1319   }
1320 
1321   // Create a phi node for the new recurrence.
1322   PHINode *EntryPart = PHINode::Create(
1323       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1324   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1325   State.set(this, EntryPart, 0);
1326 }
1327 
1328 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1329 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1330                                             VPSlotTracker &SlotTracker) const {
1331   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1332   printAsOperand(O, SlotTracker);
1333   O << " = phi ";
1334   printOperands(O, SlotTracker);
1335 }
1336 #endif
1337 
1338 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1339   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1340   auto &Builder = State.Builder;
1341 
1342   // In order to support recurrences we need to be able to vectorize Phi nodes.
1343   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1344   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1345   // this value when we vectorize all of the instructions that use the PHI.
1346   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1347   Type *VecTy =
1348       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1349 
1350   BasicBlock *HeaderBB = State.CFG.PrevBB;
1351   assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB &&
1352          "recipe must be in the vector loop header");
1353   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1354   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1355     Value *EntryPart =
1356         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1357     State.set(this, EntryPart, Part);
1358   }
1359 
1360   // Reductions do not have to start at zero. They can start with
1361   // any loop invariant values.
1362   VPValue *StartVPV = getStartValue();
1363   Value *StartV = StartVPV->getLiveInIRValue();
1364 
1365   Value *Iden = nullptr;
1366   RecurKind RK = RdxDesc.getRecurrenceKind();
1367   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1368       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1369     // MinMax reduction have the start value as their identify.
1370     if (ScalarPHI) {
1371       Iden = StartV;
1372     } else {
1373       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1374       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1375       StartV = Iden =
1376           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1377     }
1378   } else {
1379     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1380                                          RdxDesc.getFastMathFlags());
1381 
1382     if (!ScalarPHI) {
1383       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1384       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1385       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1386       Constant *Zero = Builder.getInt32(0);
1387       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1388     }
1389   }
1390 
1391   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1392     Value *EntryPart = State.get(this, Part);
1393     // Make sure to add the reduction start value only to the
1394     // first unroll part.
1395     Value *StartVal = (Part == 0) ? StartV : Iden;
1396     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1397   }
1398 }
1399 
1400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1401 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1402                                  VPSlotTracker &SlotTracker) const {
1403   O << Indent << "WIDEN-REDUCTION-PHI ";
1404 
1405   printAsOperand(O, SlotTracker);
1406   O << " = phi ";
1407   printOperands(O, SlotTracker);
1408 }
1409 #endif
1410 
1411 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1412 
1413 void VPValue::replaceAllUsesWith(VPValue *New) {
1414   for (unsigned J = 0; J < getNumUsers();) {
1415     VPUser *User = Users[J];
1416     unsigned NumUsers = getNumUsers();
1417     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1418       if (User->getOperand(I) == this)
1419         User->setOperand(I, New);
1420     // If a user got removed after updating the current user, the next user to
1421     // update will be moved to the current position, so we only need to
1422     // increment the index if the number of users did not change.
1423     if (NumUsers == getNumUsers())
1424       J++;
1425   }
1426 }
1427 
1428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1429 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1430   if (const Value *UV = getUnderlyingValue()) {
1431     OS << "ir<";
1432     UV->printAsOperand(OS, false);
1433     OS << ">";
1434     return;
1435   }
1436 
1437   unsigned Slot = Tracker.getSlot(this);
1438   if (Slot == unsigned(-1))
1439     OS << "<badref>";
1440   else
1441     OS << "vp<%" << Tracker.getSlot(this) << ">";
1442 }
1443 
1444 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1445   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1446     Op->printAsOperand(O, SlotTracker);
1447   });
1448 }
1449 #endif
1450 
1451 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1452                                           Old2NewTy &Old2New,
1453                                           InterleavedAccessInfo &IAI) {
1454   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1455   for (VPBlockBase *Base : RPOT) {
1456     visitBlock(Base, Old2New, IAI);
1457   }
1458 }
1459 
1460 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1461                                          InterleavedAccessInfo &IAI) {
1462   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1463     for (VPRecipeBase &VPI : *VPBB) {
1464       if (isa<VPWidenPHIRecipe>(&VPI))
1465         continue;
1466       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1467       auto *VPInst = cast<VPInstruction>(&VPI);
1468       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1469       auto *IG = IAI.getInterleaveGroup(Inst);
1470       if (!IG)
1471         continue;
1472 
1473       auto NewIGIter = Old2New.find(IG);
1474       if (NewIGIter == Old2New.end())
1475         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1476             IG->getFactor(), IG->isReverse(), IG->getAlign());
1477 
1478       if (Inst == IG->getInsertPos())
1479         Old2New[IG]->setInsertPos(VPInst);
1480 
1481       InterleaveGroupMap[VPInst] = Old2New[IG];
1482       InterleaveGroupMap[VPInst]->insertMember(
1483           VPInst, IG->getIndex(Inst),
1484           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1485                                 : IG->getFactor()));
1486     }
1487   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1488     visitRegion(Region, Old2New, IAI);
1489   else
1490     llvm_unreachable("Unsupported kind of VPBlock.");
1491 }
1492 
1493 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1494                                                  InterleavedAccessInfo &IAI) {
1495   Old2NewTy Old2New;
1496   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1497 }
1498 
1499 void VPSlotTracker::assignSlot(const VPValue *V) {
1500   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1501   Slots[V] = NextSlot++;
1502 }
1503 
1504 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1505 
1506   for (const VPValue *V : Plan.VPExternalDefs)
1507     assignSlot(V);
1508 
1509   if (Plan.BackedgeTakenCount)
1510     assignSlot(Plan.BackedgeTakenCount);
1511 
1512   ReversePostOrderTraversal<
1513       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1514       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1515           Plan.getEntry()));
1516   for (const VPBasicBlock *VPBB :
1517        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1518     for (const VPRecipeBase &Recipe : *VPBB)
1519       for (VPValue *Def : Recipe.definedValues())
1520         assignSlot(Def);
1521 }
1522