1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return AltOp != MainOp; } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 auto It = HashMap.find(NumFreeOpsHash.Hash); 1421 if (It == HashMap.end()) 1422 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1423 else 1424 ++It->second.first; 1425 } 1426 } 1427 // Select the lane with the minimum counter. 1428 unsigned BestLane = 0; 1429 unsigned CntMin = UINT_MAX; 1430 for (const auto &Data : reverse(HashMap)) { 1431 if (Data.second.first < CntMin) { 1432 CntMin = Data.second.first; 1433 BestLane = Data.second.second; 1434 } 1435 } 1436 return BestLane; 1437 } 1438 1439 /// Data structure that helps to reorder operands. 1440 struct OperandsOrderData { 1441 /// The best number of operands with the same APOs, which can be 1442 /// reordered. 1443 unsigned NumOfAPOs = UINT_MAX; 1444 /// Number of operands with the same/alternate instruction opcode and 1445 /// parent. 1446 unsigned NumOpsWithSameOpcodeParent = 0; 1447 /// Hash for the actual operands ordering. 1448 /// Used to count operands, actually their position id and opcode 1449 /// value. It is used in the voting mechanism to find the lane with the 1450 /// least number of operands that can freely move about or less profitable 1451 /// because it already has the most optimal set of operands. Can be 1452 /// replaced with SmallVector<unsigned> instead but hash code is faster 1453 /// and requires less memory. 1454 unsigned Hash = 0; 1455 }; 1456 /// \returns the maximum number of operands that are allowed to be reordered 1457 /// for \p Lane and the number of compatible instructions(with the same 1458 /// parent/opcode). This is used as a heuristic for selecting the first lane 1459 /// to start operand reordering. 1460 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1461 unsigned CntTrue = 0; 1462 unsigned NumOperands = getNumOperands(); 1463 // Operands with the same APO can be reordered. We therefore need to count 1464 // how many of them we have for each APO, like this: Cnt[APO] = x. 1465 // Since we only have two APOs, namely true and false, we can avoid using 1466 // a map. Instead we can simply count the number of operands that 1467 // correspond to one of them (in this case the 'true' APO), and calculate 1468 // the other by subtracting it from the total number of operands. 1469 // Operands with the same instruction opcode and parent are more 1470 // profitable since we don't need to move them in many cases, with a high 1471 // probability such lane already can be vectorized effectively. 1472 bool AllUndefs = true; 1473 unsigned NumOpsWithSameOpcodeParent = 0; 1474 Instruction *OpcodeI = nullptr; 1475 BasicBlock *Parent = nullptr; 1476 unsigned Hash = 0; 1477 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1478 const OperandData &OpData = getData(OpIdx, Lane); 1479 if (OpData.APO) 1480 ++CntTrue; 1481 // Use Boyer-Moore majority voting for finding the majority opcode and 1482 // the number of times it occurs. 1483 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1484 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1485 I->getParent() != Parent) { 1486 if (NumOpsWithSameOpcodeParent == 0) { 1487 NumOpsWithSameOpcodeParent = 1; 1488 OpcodeI = I; 1489 Parent = I->getParent(); 1490 } else { 1491 --NumOpsWithSameOpcodeParent; 1492 } 1493 } else { 1494 ++NumOpsWithSameOpcodeParent; 1495 } 1496 } 1497 Hash = hash_combine( 1498 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1499 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1500 } 1501 if (AllUndefs) 1502 return {}; 1503 OperandsOrderData Data; 1504 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1505 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1506 Data.Hash = Hash; 1507 return Data; 1508 } 1509 1510 /// Go through the instructions in VL and append their operands. 1511 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1512 assert(!VL.empty() && "Bad VL"); 1513 assert((empty() || VL.size() == getNumLanes()) && 1514 "Expected same number of lanes"); 1515 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1516 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1517 OpsVec.resize(NumOperands); 1518 unsigned NumLanes = VL.size(); 1519 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1520 OpsVec[OpIdx].resize(NumLanes); 1521 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1522 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1523 // Our tree has just 3 nodes: the root and two operands. 1524 // It is therefore trivial to get the APO. We only need to check the 1525 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1526 // RHS operand. The LHS operand of both add and sub is never attached 1527 // to an inversese operation in the linearized form, therefore its APO 1528 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1529 1530 // Since operand reordering is performed on groups of commutative 1531 // operations or alternating sequences (e.g., +, -), we can safely 1532 // tell the inverse operations by checking commutativity. 1533 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1534 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1535 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1536 APO, false}; 1537 } 1538 } 1539 } 1540 1541 /// \returns the number of operands. 1542 unsigned getNumOperands() const { return OpsVec.size(); } 1543 1544 /// \returns the number of lanes. 1545 unsigned getNumLanes() const { return OpsVec[0].size(); } 1546 1547 /// \returns the operand value at \p OpIdx and \p Lane. 1548 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1549 return getData(OpIdx, Lane).V; 1550 } 1551 1552 /// \returns true if the data structure is empty. 1553 bool empty() const { return OpsVec.empty(); } 1554 1555 /// Clears the data. 1556 void clear() { OpsVec.clear(); } 1557 1558 /// \Returns true if there are enough operands identical to \p Op to fill 1559 /// the whole vector. 1560 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1561 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1562 bool OpAPO = getData(OpIdx, Lane).APO; 1563 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1564 if (Ln == Lane) 1565 continue; 1566 // This is set to true if we found a candidate for broadcast at Lane. 1567 bool FoundCandidate = false; 1568 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1569 OperandData &Data = getData(OpI, Ln); 1570 if (Data.APO != OpAPO || Data.IsUsed) 1571 continue; 1572 if (Data.V == Op) { 1573 FoundCandidate = true; 1574 Data.IsUsed = true; 1575 break; 1576 } 1577 } 1578 if (!FoundCandidate) 1579 return false; 1580 } 1581 return true; 1582 } 1583 1584 public: 1585 /// Initialize with all the operands of the instruction vector \p RootVL. 1586 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1587 ScalarEvolution &SE, const BoUpSLP &R) 1588 : DL(DL), SE(SE), R(R) { 1589 // Append all the operands of RootVL. 1590 appendOperandsOfVL(RootVL); 1591 } 1592 1593 /// \Returns a value vector with the operands across all lanes for the 1594 /// opearnd at \p OpIdx. 1595 ValueList getVL(unsigned OpIdx) const { 1596 ValueList OpVL(OpsVec[OpIdx].size()); 1597 assert(OpsVec[OpIdx].size() == getNumLanes() && 1598 "Expected same num of lanes across all operands"); 1599 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1600 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1601 return OpVL; 1602 } 1603 1604 // Performs operand reordering for 2 or more operands. 1605 // The original operands are in OrigOps[OpIdx][Lane]. 1606 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1607 void reorder() { 1608 unsigned NumOperands = getNumOperands(); 1609 unsigned NumLanes = getNumLanes(); 1610 // Each operand has its own mode. We are using this mode to help us select 1611 // the instructions for each lane, so that they match best with the ones 1612 // we have selected so far. 1613 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1614 1615 // This is a greedy single-pass algorithm. We are going over each lane 1616 // once and deciding on the best order right away with no back-tracking. 1617 // However, in order to increase its effectiveness, we start with the lane 1618 // that has operands that can move the least. For example, given the 1619 // following lanes: 1620 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1621 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1622 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1623 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1624 // we will start at Lane 1, since the operands of the subtraction cannot 1625 // be reordered. Then we will visit the rest of the lanes in a circular 1626 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1627 1628 // Find the first lane that we will start our search from. 1629 unsigned FirstLane = getBestLaneToStartReordering(); 1630 1631 // Initialize the modes. 1632 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1633 Value *OpLane0 = getValue(OpIdx, FirstLane); 1634 // Keep track if we have instructions with all the same opcode on one 1635 // side. 1636 if (isa<LoadInst>(OpLane0)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Load; 1638 else if (isa<Instruction>(OpLane0)) { 1639 // Check if OpLane0 should be broadcast. 1640 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1641 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1642 else 1643 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1644 } 1645 else if (isa<Constant>(OpLane0)) 1646 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1647 else if (isa<Argument>(OpLane0)) 1648 // Our best hope is a Splat. It may save some cost in some cases. 1649 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1650 else 1651 // NOTE: This should be unreachable. 1652 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1653 } 1654 1655 // Check that we don't have same operands. No need to reorder if operands 1656 // are just perfect diamond or shuffled diamond match. Do not do it only 1657 // for possible broadcasts or non-power of 2 number of scalars (just for 1658 // now). 1659 auto &&SkipReordering = [this]() { 1660 SmallPtrSet<Value *, 4> UniqueValues; 1661 ArrayRef<OperandData> Op0 = OpsVec.front(); 1662 for (const OperandData &Data : Op0) 1663 UniqueValues.insert(Data.V); 1664 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1665 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1666 return !UniqueValues.contains(Data.V); 1667 })) 1668 return false; 1669 } 1670 // TODO: Check if we can remove a check for non-power-2 number of 1671 // scalars after full support of non-power-2 vectorization. 1672 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1673 }; 1674 1675 // If the initial strategy fails for any of the operand indexes, then we 1676 // perform reordering again in a second pass. This helps avoid assigning 1677 // high priority to the failed strategy, and should improve reordering for 1678 // the non-failed operand indexes. 1679 for (int Pass = 0; Pass != 2; ++Pass) { 1680 // Check if no need to reorder operands since they're are perfect or 1681 // shuffled diamond match. 1682 // Need to to do it to avoid extra external use cost counting for 1683 // shuffled matches, which may cause regressions. 1684 if (SkipReordering()) 1685 break; 1686 // Skip the second pass if the first pass did not fail. 1687 bool StrategyFailed = false; 1688 // Mark all operand data as free to use. 1689 clearUsed(); 1690 // We keep the original operand order for the FirstLane, so reorder the 1691 // rest of the lanes. We are visiting the nodes in a circular fashion, 1692 // using FirstLane as the center point and increasing the radius 1693 // distance. 1694 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1695 // Visit the lane on the right and then the lane on the left. 1696 for (int Direction : {+1, -1}) { 1697 int Lane = FirstLane + Direction * Distance; 1698 if (Lane < 0 || Lane >= (int)NumLanes) 1699 continue; 1700 int LastLane = Lane - Direction; 1701 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1702 "Out of bounds"); 1703 // Look for a good match for each operand. 1704 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1705 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1706 Optional<unsigned> BestIdx = 1707 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1708 // By not selecting a value, we allow the operands that follow to 1709 // select a better matching value. We will get a non-null value in 1710 // the next run of getBestOperand(). 1711 if (BestIdx) { 1712 // Swap the current operand with the one returned by 1713 // getBestOperand(). 1714 swap(OpIdx, BestIdx.getValue(), Lane); 1715 } else { 1716 // We failed to find a best operand, set mode to 'Failed'. 1717 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1718 // Enable the second pass. 1719 StrategyFailed = true; 1720 } 1721 } 1722 } 1723 } 1724 // Skip second pass if the strategy did not fail. 1725 if (!StrategyFailed) 1726 break; 1727 } 1728 } 1729 1730 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1731 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1732 switch (RMode) { 1733 case ReorderingMode::Load: 1734 return "Load"; 1735 case ReorderingMode::Opcode: 1736 return "Opcode"; 1737 case ReorderingMode::Constant: 1738 return "Constant"; 1739 case ReorderingMode::Splat: 1740 return "Splat"; 1741 case ReorderingMode::Failed: 1742 return "Failed"; 1743 } 1744 llvm_unreachable("Unimplemented Reordering Type"); 1745 } 1746 1747 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1748 raw_ostream &OS) { 1749 return OS << getModeStr(RMode); 1750 } 1751 1752 /// Debug print. 1753 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1754 printMode(RMode, dbgs()); 1755 } 1756 1757 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1758 return printMode(RMode, OS); 1759 } 1760 1761 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1762 const unsigned Indent = 2; 1763 unsigned Cnt = 0; 1764 for (const OperandDataVec &OpDataVec : OpsVec) { 1765 OS << "Operand " << Cnt++ << "\n"; 1766 for (const OperandData &OpData : OpDataVec) { 1767 OS.indent(Indent) << "{"; 1768 if (Value *V = OpData.V) 1769 OS << *V; 1770 else 1771 OS << "null"; 1772 OS << ", APO:" << OpData.APO << "}\n"; 1773 } 1774 OS << "\n"; 1775 } 1776 return OS; 1777 } 1778 1779 /// Debug print. 1780 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1781 #endif 1782 }; 1783 1784 /// Checks if the instruction is marked for deletion. 1785 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1786 1787 /// Marks values operands for later deletion by replacing them with Undefs. 1788 void eraseInstructions(ArrayRef<Value *> AV); 1789 1790 ~BoUpSLP(); 1791 1792 private: 1793 /// Checks if all users of \p I are the part of the vectorization tree. 1794 bool areAllUsersVectorized(Instruction *I, 1795 ArrayRef<Value *> VectorizedVals) const; 1796 1797 /// \returns the cost of the vectorizable entry. 1798 InstructionCost getEntryCost(const TreeEntry *E, 1799 ArrayRef<Value *> VectorizedVals); 1800 1801 /// This is the recursive part of buildTree. 1802 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1803 const EdgeInfo &EI); 1804 1805 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1806 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1807 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1808 /// returns false, setting \p CurrentOrder to either an empty vector or a 1809 /// non-identity permutation that allows to reuse extract instructions. 1810 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1811 SmallVectorImpl<unsigned> &CurrentOrder) const; 1812 1813 /// Vectorize a single entry in the tree. 1814 Value *vectorizeTree(TreeEntry *E); 1815 1816 /// Vectorize a single entry in the tree, starting in \p VL. 1817 Value *vectorizeTree(ArrayRef<Value *> VL); 1818 1819 /// \returns the scalarization cost for this type. Scalarization in this 1820 /// context means the creation of vectors from a group of scalars. If \p 1821 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1822 /// vector elements. 1823 InstructionCost getGatherCost(FixedVectorType *Ty, 1824 const DenseSet<unsigned> &ShuffledIndices, 1825 bool NeedToShuffle) const; 1826 1827 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1828 /// tree entries. 1829 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1830 /// previous tree entries. \p Mask is filled with the shuffle mask. 1831 Optional<TargetTransformInfo::ShuffleKind> 1832 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1833 SmallVectorImpl<const TreeEntry *> &Entries); 1834 1835 /// \returns the scalarization cost for this list of values. Assuming that 1836 /// this subtree gets vectorized, we may need to extract the values from the 1837 /// roots. This method calculates the cost of extracting the values. 1838 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1839 1840 /// Set the Builder insert point to one after the last instruction in 1841 /// the bundle 1842 void setInsertPointAfterBundle(const TreeEntry *E); 1843 1844 /// \returns a vector from a collection of scalars in \p VL. 1845 Value *gather(ArrayRef<Value *> VL); 1846 1847 /// \returns whether the VectorizableTree is fully vectorizable and will 1848 /// be beneficial even the tree height is tiny. 1849 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1850 1851 /// Reorder commutative or alt operands to get better probability of 1852 /// generating vectorized code. 1853 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1854 SmallVectorImpl<Value *> &Left, 1855 SmallVectorImpl<Value *> &Right, 1856 const DataLayout &DL, 1857 ScalarEvolution &SE, 1858 const BoUpSLP &R); 1859 struct TreeEntry { 1860 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1861 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1862 1863 /// \returns true if the scalars in VL are equal to this entry. 1864 bool isSame(ArrayRef<Value *> VL) const { 1865 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1866 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1867 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1868 return VL.size() == Mask.size() && 1869 std::equal(VL.begin(), VL.end(), Mask.begin(), 1870 [Scalars](Value *V, int Idx) { 1871 return (isa<UndefValue>(V) && 1872 Idx == UndefMaskElem) || 1873 (Idx != UndefMaskElem && V == Scalars[Idx]); 1874 }); 1875 }; 1876 if (!ReorderIndices.empty()) { 1877 // TODO: implement matching if the nodes are just reordered, still can 1878 // treat the vector as the same if the list of scalars matches VL 1879 // directly, without reordering. 1880 SmallVector<int> Mask; 1881 inversePermutation(ReorderIndices, Mask); 1882 if (VL.size() == Scalars.size()) 1883 return IsSame(Scalars, Mask); 1884 if (VL.size() == ReuseShuffleIndices.size()) { 1885 ::addMask(Mask, ReuseShuffleIndices); 1886 return IsSame(Scalars, Mask); 1887 } 1888 return false; 1889 } 1890 return IsSame(Scalars, ReuseShuffleIndices); 1891 } 1892 1893 /// \returns true if current entry has same operands as \p TE. 1894 bool hasEqualOperands(const TreeEntry &TE) const { 1895 if (TE.getNumOperands() != getNumOperands()) 1896 return false; 1897 SmallBitVector Used(getNumOperands()); 1898 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1899 unsigned PrevCount = Used.count(); 1900 for (unsigned K = 0; K < E; ++K) { 1901 if (Used.test(K)) 1902 continue; 1903 if (getOperand(K) == TE.getOperand(I)) { 1904 Used.set(K); 1905 break; 1906 } 1907 } 1908 // Check if we actually found the matching operand. 1909 if (PrevCount == Used.count()) 1910 return false; 1911 } 1912 return true; 1913 } 1914 1915 /// \return Final vectorization factor for the node. Defined by the total 1916 /// number of vectorized scalars, including those, used several times in the 1917 /// entry and counted in the \a ReuseShuffleIndices, if any. 1918 unsigned getVectorFactor() const { 1919 if (!ReuseShuffleIndices.empty()) 1920 return ReuseShuffleIndices.size(); 1921 return Scalars.size(); 1922 }; 1923 1924 /// A vector of scalars. 1925 ValueList Scalars; 1926 1927 /// The Scalars are vectorized into this value. It is initialized to Null. 1928 Value *VectorizedValue = nullptr; 1929 1930 /// Do we need to gather this sequence or vectorize it 1931 /// (either with vector instruction or with scatter/gather 1932 /// intrinsics for store/load)? 1933 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1934 EntryState State; 1935 1936 /// Does this sequence require some shuffling? 1937 SmallVector<int, 4> ReuseShuffleIndices; 1938 1939 /// Does this entry require reordering? 1940 SmallVector<unsigned, 4> ReorderIndices; 1941 1942 /// Points back to the VectorizableTree. 1943 /// 1944 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1945 /// to be a pointer and needs to be able to initialize the child iterator. 1946 /// Thus we need a reference back to the container to translate the indices 1947 /// to entries. 1948 VecTreeTy &Container; 1949 1950 /// The TreeEntry index containing the user of this entry. We can actually 1951 /// have multiple users so the data structure is not truly a tree. 1952 SmallVector<EdgeInfo, 1> UserTreeIndices; 1953 1954 /// The index of this treeEntry in VectorizableTree. 1955 int Idx = -1; 1956 1957 private: 1958 /// The operands of each instruction in each lane Operands[op_index][lane]. 1959 /// Note: This helps avoid the replication of the code that performs the 1960 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1961 SmallVector<ValueList, 2> Operands; 1962 1963 /// The main/alternate instruction. 1964 Instruction *MainOp = nullptr; 1965 Instruction *AltOp = nullptr; 1966 1967 public: 1968 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1969 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1970 if (Operands.size() < OpIdx + 1) 1971 Operands.resize(OpIdx + 1); 1972 assert(Operands[OpIdx].empty() && "Already resized?"); 1973 assert(OpVL.size() <= Scalars.size() && 1974 "Number of operands is greater than the number of scalars."); 1975 Operands[OpIdx].resize(OpVL.size()); 1976 copy(OpVL, Operands[OpIdx].begin()); 1977 } 1978 1979 /// Set the operands of this bundle in their original order. 1980 void setOperandsInOrder() { 1981 assert(Operands.empty() && "Already initialized?"); 1982 auto *I0 = cast<Instruction>(Scalars[0]); 1983 Operands.resize(I0->getNumOperands()); 1984 unsigned NumLanes = Scalars.size(); 1985 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1986 OpIdx != NumOperands; ++OpIdx) { 1987 Operands[OpIdx].resize(NumLanes); 1988 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1989 auto *I = cast<Instruction>(Scalars[Lane]); 1990 assert(I->getNumOperands() == NumOperands && 1991 "Expected same number of operands"); 1992 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1993 } 1994 } 1995 } 1996 1997 /// Reorders operands of the node to the given mask \p Mask. 1998 void reorderOperands(ArrayRef<int> Mask) { 1999 for (ValueList &Operand : Operands) 2000 reorderScalars(Operand, Mask); 2001 } 2002 2003 /// \returns the \p OpIdx operand of this TreeEntry. 2004 ValueList &getOperand(unsigned OpIdx) { 2005 assert(OpIdx < Operands.size() && "Off bounds"); 2006 return Operands[OpIdx]; 2007 } 2008 2009 /// \returns the \p OpIdx operand of this TreeEntry. 2010 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2011 assert(OpIdx < Operands.size() && "Off bounds"); 2012 return Operands[OpIdx]; 2013 } 2014 2015 /// \returns the number of operands. 2016 unsigned getNumOperands() const { return Operands.size(); } 2017 2018 /// \return the single \p OpIdx operand. 2019 Value *getSingleOperand(unsigned OpIdx) const { 2020 assert(OpIdx < Operands.size() && "Off bounds"); 2021 assert(!Operands[OpIdx].empty() && "No operand available"); 2022 return Operands[OpIdx][0]; 2023 } 2024 2025 /// Some of the instructions in the list have alternate opcodes. 2026 bool isAltShuffle() const { return MainOp != AltOp; } 2027 2028 bool isOpcodeOrAlt(Instruction *I) const { 2029 unsigned CheckedOpcode = I->getOpcode(); 2030 return (getOpcode() == CheckedOpcode || 2031 getAltOpcode() == CheckedOpcode); 2032 } 2033 2034 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2035 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2036 /// \p OpValue. 2037 Value *isOneOf(Value *Op) const { 2038 auto *I = dyn_cast<Instruction>(Op); 2039 if (I && isOpcodeOrAlt(I)) 2040 return Op; 2041 return MainOp; 2042 } 2043 2044 void setOperations(const InstructionsState &S) { 2045 MainOp = S.MainOp; 2046 AltOp = S.AltOp; 2047 } 2048 2049 Instruction *getMainOp() const { 2050 return MainOp; 2051 } 2052 2053 Instruction *getAltOp() const { 2054 return AltOp; 2055 } 2056 2057 /// The main/alternate opcodes for the list of instructions. 2058 unsigned getOpcode() const { 2059 return MainOp ? MainOp->getOpcode() : 0; 2060 } 2061 2062 unsigned getAltOpcode() const { 2063 return AltOp ? AltOp->getOpcode() : 0; 2064 } 2065 2066 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2067 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2068 int findLaneForValue(Value *V) const { 2069 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2070 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2071 if (!ReorderIndices.empty()) 2072 FoundLane = ReorderIndices[FoundLane]; 2073 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2074 if (!ReuseShuffleIndices.empty()) { 2075 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2076 find(ReuseShuffleIndices, FoundLane)); 2077 } 2078 return FoundLane; 2079 } 2080 2081 #ifndef NDEBUG 2082 /// Debug printer. 2083 LLVM_DUMP_METHOD void dump() const { 2084 dbgs() << Idx << ".\n"; 2085 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2086 dbgs() << "Operand " << OpI << ":\n"; 2087 for (const Value *V : Operands[OpI]) 2088 dbgs().indent(2) << *V << "\n"; 2089 } 2090 dbgs() << "Scalars: \n"; 2091 for (Value *V : Scalars) 2092 dbgs().indent(2) << *V << "\n"; 2093 dbgs() << "State: "; 2094 switch (State) { 2095 case Vectorize: 2096 dbgs() << "Vectorize\n"; 2097 break; 2098 case ScatterVectorize: 2099 dbgs() << "ScatterVectorize\n"; 2100 break; 2101 case NeedToGather: 2102 dbgs() << "NeedToGather\n"; 2103 break; 2104 } 2105 dbgs() << "MainOp: "; 2106 if (MainOp) 2107 dbgs() << *MainOp << "\n"; 2108 else 2109 dbgs() << "NULL\n"; 2110 dbgs() << "AltOp: "; 2111 if (AltOp) 2112 dbgs() << *AltOp << "\n"; 2113 else 2114 dbgs() << "NULL\n"; 2115 dbgs() << "VectorizedValue: "; 2116 if (VectorizedValue) 2117 dbgs() << *VectorizedValue << "\n"; 2118 else 2119 dbgs() << "NULL\n"; 2120 dbgs() << "ReuseShuffleIndices: "; 2121 if (ReuseShuffleIndices.empty()) 2122 dbgs() << "Empty"; 2123 else 2124 for (int ReuseIdx : ReuseShuffleIndices) 2125 dbgs() << ReuseIdx << ", "; 2126 dbgs() << "\n"; 2127 dbgs() << "ReorderIndices: "; 2128 for (unsigned ReorderIdx : ReorderIndices) 2129 dbgs() << ReorderIdx << ", "; 2130 dbgs() << "\n"; 2131 dbgs() << "UserTreeIndices: "; 2132 for (const auto &EInfo : UserTreeIndices) 2133 dbgs() << EInfo << ", "; 2134 dbgs() << "\n"; 2135 } 2136 #endif 2137 }; 2138 2139 #ifndef NDEBUG 2140 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2141 InstructionCost VecCost, 2142 InstructionCost ScalarCost) const { 2143 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2144 dbgs() << "SLP: Costs:\n"; 2145 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2146 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2147 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2148 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2149 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2150 } 2151 #endif 2152 2153 /// Create a new VectorizableTree entry. 2154 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2155 const InstructionsState &S, 2156 const EdgeInfo &UserTreeIdx, 2157 ArrayRef<int> ReuseShuffleIndices = None, 2158 ArrayRef<unsigned> ReorderIndices = None) { 2159 TreeEntry::EntryState EntryState = 2160 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2161 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2162 ReuseShuffleIndices, ReorderIndices); 2163 } 2164 2165 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2166 TreeEntry::EntryState EntryState, 2167 Optional<ScheduleData *> Bundle, 2168 const InstructionsState &S, 2169 const EdgeInfo &UserTreeIdx, 2170 ArrayRef<int> ReuseShuffleIndices = None, 2171 ArrayRef<unsigned> ReorderIndices = None) { 2172 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2173 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2174 "Need to vectorize gather entry?"); 2175 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2176 TreeEntry *Last = VectorizableTree.back().get(); 2177 Last->Idx = VectorizableTree.size() - 1; 2178 Last->State = EntryState; 2179 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2180 ReuseShuffleIndices.end()); 2181 if (ReorderIndices.empty()) { 2182 Last->Scalars.assign(VL.begin(), VL.end()); 2183 Last->setOperations(S); 2184 } else { 2185 // Reorder scalars and build final mask. 2186 Last->Scalars.assign(VL.size(), nullptr); 2187 transform(ReorderIndices, Last->Scalars.begin(), 2188 [VL](unsigned Idx) -> Value * { 2189 if (Idx >= VL.size()) 2190 return UndefValue::get(VL.front()->getType()); 2191 return VL[Idx]; 2192 }); 2193 InstructionsState S = getSameOpcode(Last->Scalars); 2194 Last->setOperations(S); 2195 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2196 } 2197 if (Last->State != TreeEntry::NeedToGather) { 2198 for (Value *V : VL) { 2199 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2200 ScalarToTreeEntry[V] = Last; 2201 } 2202 // Update the scheduler bundle to point to this TreeEntry. 2203 unsigned Lane = 0; 2204 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2205 BundleMember = BundleMember->NextInBundle) { 2206 BundleMember->TE = Last; 2207 BundleMember->Lane = Lane; 2208 ++Lane; 2209 } 2210 assert((!Bundle.getValue() || Lane == VL.size()) && 2211 "Bundle and VL out of sync"); 2212 } else { 2213 MustGather.insert(VL.begin(), VL.end()); 2214 } 2215 2216 if (UserTreeIdx.UserTE) 2217 Last->UserTreeIndices.push_back(UserTreeIdx); 2218 2219 return Last; 2220 } 2221 2222 /// -- Vectorization State -- 2223 /// Holds all of the tree entries. 2224 TreeEntry::VecTreeTy VectorizableTree; 2225 2226 #ifndef NDEBUG 2227 /// Debug printer. 2228 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2229 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2230 VectorizableTree[Id]->dump(); 2231 dbgs() << "\n"; 2232 } 2233 } 2234 #endif 2235 2236 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2237 2238 const TreeEntry *getTreeEntry(Value *V) const { 2239 return ScalarToTreeEntry.lookup(V); 2240 } 2241 2242 /// Maps a specific scalar to its tree entry. 2243 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2244 2245 /// Maps a value to the proposed vectorizable size. 2246 SmallDenseMap<Value *, unsigned> InstrElementSize; 2247 2248 /// A list of scalars that we found that we need to keep as scalars. 2249 ValueSet MustGather; 2250 2251 /// This POD struct describes one external user in the vectorized tree. 2252 struct ExternalUser { 2253 ExternalUser(Value *S, llvm::User *U, int L) 2254 : Scalar(S), User(U), Lane(L) {} 2255 2256 // Which scalar in our function. 2257 Value *Scalar; 2258 2259 // Which user that uses the scalar. 2260 llvm::User *User; 2261 2262 // Which lane does the scalar belong to. 2263 int Lane; 2264 }; 2265 using UserList = SmallVector<ExternalUser, 16>; 2266 2267 /// Checks if two instructions may access the same memory. 2268 /// 2269 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2270 /// is invariant in the calling loop. 2271 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2272 Instruction *Inst2) { 2273 // First check if the result is already in the cache. 2274 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2275 Optional<bool> &result = AliasCache[key]; 2276 if (result.hasValue()) { 2277 return result.getValue(); 2278 } 2279 bool aliased = true; 2280 if (Loc1.Ptr && isSimple(Inst1)) 2281 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2282 // Store the result in the cache. 2283 result = aliased; 2284 return aliased; 2285 } 2286 2287 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2288 2289 /// Cache for alias results. 2290 /// TODO: consider moving this to the AliasAnalysis itself. 2291 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2292 2293 /// Removes an instruction from its block and eventually deletes it. 2294 /// It's like Instruction::eraseFromParent() except that the actual deletion 2295 /// is delayed until BoUpSLP is destructed. 2296 /// This is required to ensure that there are no incorrect collisions in the 2297 /// AliasCache, which can happen if a new instruction is allocated at the 2298 /// same address as a previously deleted instruction. 2299 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2300 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2301 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2302 } 2303 2304 /// Temporary store for deleted instructions. Instructions will be deleted 2305 /// eventually when the BoUpSLP is destructed. 2306 DenseMap<Instruction *, bool> DeletedInstructions; 2307 2308 /// A list of values that need to extracted out of the tree. 2309 /// This list holds pairs of (Internal Scalar : External User). External User 2310 /// can be nullptr, it means that this Internal Scalar will be used later, 2311 /// after vectorization. 2312 UserList ExternalUses; 2313 2314 /// Values used only by @llvm.assume calls. 2315 SmallPtrSet<const Value *, 32> EphValues; 2316 2317 /// Holds all of the instructions that we gathered. 2318 SetVector<Instruction *> GatherShuffleSeq; 2319 2320 /// A list of blocks that we are going to CSE. 2321 SetVector<BasicBlock *> CSEBlocks; 2322 2323 /// Contains all scheduling relevant data for an instruction. 2324 /// A ScheduleData either represents a single instruction or a member of an 2325 /// instruction bundle (= a group of instructions which is combined into a 2326 /// vector instruction). 2327 struct ScheduleData { 2328 // The initial value for the dependency counters. It means that the 2329 // dependencies are not calculated yet. 2330 enum { InvalidDeps = -1 }; 2331 2332 ScheduleData() = default; 2333 2334 void init(int BlockSchedulingRegionID, Value *OpVal) { 2335 FirstInBundle = this; 2336 NextInBundle = nullptr; 2337 NextLoadStore = nullptr; 2338 IsScheduled = false; 2339 SchedulingRegionID = BlockSchedulingRegionID; 2340 UnscheduledDepsInBundle = UnscheduledDeps; 2341 clearDependencies(); 2342 OpValue = OpVal; 2343 TE = nullptr; 2344 Lane = -1; 2345 } 2346 2347 /// Returns true if the dependency information has been calculated. 2348 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2349 2350 /// Returns true for single instructions and for bundle representatives 2351 /// (= the head of a bundle). 2352 bool isSchedulingEntity() const { return FirstInBundle == this; } 2353 2354 /// Returns true if it represents an instruction bundle and not only a 2355 /// single instruction. 2356 bool isPartOfBundle() const { 2357 return NextInBundle != nullptr || FirstInBundle != this; 2358 } 2359 2360 /// Returns true if it is ready for scheduling, i.e. it has no more 2361 /// unscheduled depending instructions/bundles. 2362 bool isReady() const { 2363 assert(isSchedulingEntity() && 2364 "can't consider non-scheduling entity for ready list"); 2365 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2366 } 2367 2368 /// Modifies the number of unscheduled dependencies, also updating it for 2369 /// the whole bundle. 2370 int incrementUnscheduledDeps(int Incr) { 2371 UnscheduledDeps += Incr; 2372 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2373 } 2374 2375 /// Sets the number of unscheduled dependencies to the number of 2376 /// dependencies. 2377 void resetUnscheduledDeps() { 2378 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2379 } 2380 2381 /// Clears all dependency information. 2382 void clearDependencies() { 2383 Dependencies = InvalidDeps; 2384 resetUnscheduledDeps(); 2385 MemoryDependencies.clear(); 2386 } 2387 2388 void dump(raw_ostream &os) const { 2389 if (!isSchedulingEntity()) { 2390 os << "/ " << *Inst; 2391 } else if (NextInBundle) { 2392 os << '[' << *Inst; 2393 ScheduleData *SD = NextInBundle; 2394 while (SD) { 2395 os << ';' << *SD->Inst; 2396 SD = SD->NextInBundle; 2397 } 2398 os << ']'; 2399 } else { 2400 os << *Inst; 2401 } 2402 } 2403 2404 Instruction *Inst = nullptr; 2405 2406 /// Points to the head in an instruction bundle (and always to this for 2407 /// single instructions). 2408 ScheduleData *FirstInBundle = nullptr; 2409 2410 /// Single linked list of all instructions in a bundle. Null if it is a 2411 /// single instruction. 2412 ScheduleData *NextInBundle = nullptr; 2413 2414 /// Single linked list of all memory instructions (e.g. load, store, call) 2415 /// in the block - until the end of the scheduling region. 2416 ScheduleData *NextLoadStore = nullptr; 2417 2418 /// The dependent memory instructions. 2419 /// This list is derived on demand in calculateDependencies(). 2420 SmallVector<ScheduleData *, 4> MemoryDependencies; 2421 2422 /// This ScheduleData is in the current scheduling region if this matches 2423 /// the current SchedulingRegionID of BlockScheduling. 2424 int SchedulingRegionID = 0; 2425 2426 /// Used for getting a "good" final ordering of instructions. 2427 int SchedulingPriority = 0; 2428 2429 /// The number of dependencies. Constitutes of the number of users of the 2430 /// instruction plus the number of dependent memory instructions (if any). 2431 /// This value is calculated on demand. 2432 /// If InvalidDeps, the number of dependencies is not calculated yet. 2433 int Dependencies = InvalidDeps; 2434 2435 /// The number of dependencies minus the number of dependencies of scheduled 2436 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2437 /// for scheduling. 2438 /// Note that this is negative as long as Dependencies is not calculated. 2439 int UnscheduledDeps = InvalidDeps; 2440 2441 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2442 /// single instructions. 2443 int UnscheduledDepsInBundle = InvalidDeps; 2444 2445 /// True if this instruction is scheduled (or considered as scheduled in the 2446 /// dry-run). 2447 bool IsScheduled = false; 2448 2449 /// Opcode of the current instruction in the schedule data. 2450 Value *OpValue = nullptr; 2451 2452 /// The TreeEntry that this instruction corresponds to. 2453 TreeEntry *TE = nullptr; 2454 2455 /// The lane of this node in the TreeEntry. 2456 int Lane = -1; 2457 }; 2458 2459 #ifndef NDEBUG 2460 friend inline raw_ostream &operator<<(raw_ostream &os, 2461 const BoUpSLP::ScheduleData &SD) { 2462 SD.dump(os); 2463 return os; 2464 } 2465 #endif 2466 2467 friend struct GraphTraits<BoUpSLP *>; 2468 friend struct DOTGraphTraits<BoUpSLP *>; 2469 2470 /// Contains all scheduling data for a basic block. 2471 struct BlockScheduling { 2472 BlockScheduling(BasicBlock *BB) 2473 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2474 2475 void clear() { 2476 ReadyInsts.clear(); 2477 ScheduleStart = nullptr; 2478 ScheduleEnd = nullptr; 2479 FirstLoadStoreInRegion = nullptr; 2480 LastLoadStoreInRegion = nullptr; 2481 2482 // Reduce the maximum schedule region size by the size of the 2483 // previous scheduling run. 2484 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2485 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2486 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2487 ScheduleRegionSize = 0; 2488 2489 // Make a new scheduling region, i.e. all existing ScheduleData is not 2490 // in the new region yet. 2491 ++SchedulingRegionID; 2492 } 2493 2494 ScheduleData *getScheduleData(Value *V) { 2495 ScheduleData *SD = ScheduleDataMap[V]; 2496 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2497 return SD; 2498 return nullptr; 2499 } 2500 2501 ScheduleData *getScheduleData(Value *V, Value *Key) { 2502 if (V == Key) 2503 return getScheduleData(V); 2504 auto I = ExtraScheduleDataMap.find(V); 2505 if (I != ExtraScheduleDataMap.end()) { 2506 ScheduleData *SD = I->second[Key]; 2507 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2508 return SD; 2509 } 2510 return nullptr; 2511 } 2512 2513 bool isInSchedulingRegion(ScheduleData *SD) const { 2514 return SD->SchedulingRegionID == SchedulingRegionID; 2515 } 2516 2517 /// Marks an instruction as scheduled and puts all dependent ready 2518 /// instructions into the ready-list. 2519 template <typename ReadyListType> 2520 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2521 SD->IsScheduled = true; 2522 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2523 2524 for (ScheduleData *BundleMember = SD; BundleMember; 2525 BundleMember = BundleMember->NextInBundle) { 2526 if (BundleMember->Inst != BundleMember->OpValue) 2527 continue; 2528 2529 // Handle the def-use chain dependencies. 2530 2531 // Decrement the unscheduled counter and insert to ready list if ready. 2532 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2533 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2534 if (OpDef && OpDef->hasValidDependencies() && 2535 OpDef->incrementUnscheduledDeps(-1) == 0) { 2536 // There are no more unscheduled dependencies after 2537 // decrementing, so we can put the dependent instruction 2538 // into the ready list. 2539 ScheduleData *DepBundle = OpDef->FirstInBundle; 2540 assert(!DepBundle->IsScheduled && 2541 "already scheduled bundle gets ready"); 2542 ReadyList.insert(DepBundle); 2543 LLVM_DEBUG(dbgs() 2544 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2545 } 2546 }); 2547 }; 2548 2549 // If BundleMember is a vector bundle, its operands may have been 2550 // reordered duiring buildTree(). We therefore need to get its operands 2551 // through the TreeEntry. 2552 if (TreeEntry *TE = BundleMember->TE) { 2553 int Lane = BundleMember->Lane; 2554 assert(Lane >= 0 && "Lane not set"); 2555 2556 // Since vectorization tree is being built recursively this assertion 2557 // ensures that the tree entry has all operands set before reaching 2558 // this code. Couple of exceptions known at the moment are extracts 2559 // where their second (immediate) operand is not added. Since 2560 // immediates do not affect scheduler behavior this is considered 2561 // okay. 2562 auto *In = TE->getMainOp(); 2563 assert(In && 2564 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2565 In->getNumOperands() == TE->getNumOperands()) && 2566 "Missed TreeEntry operands?"); 2567 (void)In; // fake use to avoid build failure when assertions disabled 2568 2569 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2570 OpIdx != NumOperands; ++OpIdx) 2571 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2572 DecrUnsched(I); 2573 } else { 2574 // If BundleMember is a stand-alone instruction, no operand reordering 2575 // has taken place, so we directly access its operands. 2576 for (Use &U : BundleMember->Inst->operands()) 2577 if (auto *I = dyn_cast<Instruction>(U.get())) 2578 DecrUnsched(I); 2579 } 2580 // Handle the memory dependencies. 2581 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2582 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2583 // There are no more unscheduled dependencies after decrementing, 2584 // so we can put the dependent instruction into the ready list. 2585 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2586 assert(!DepBundle->IsScheduled && 2587 "already scheduled bundle gets ready"); 2588 ReadyList.insert(DepBundle); 2589 LLVM_DEBUG(dbgs() 2590 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2591 } 2592 } 2593 } 2594 } 2595 2596 void doForAllOpcodes(Value *V, 2597 function_ref<void(ScheduleData *SD)> Action) { 2598 if (ScheduleData *SD = getScheduleData(V)) 2599 Action(SD); 2600 auto I = ExtraScheduleDataMap.find(V); 2601 if (I != ExtraScheduleDataMap.end()) 2602 for (auto &P : I->second) 2603 if (P.second->SchedulingRegionID == SchedulingRegionID) 2604 Action(P.second); 2605 } 2606 2607 /// Put all instructions into the ReadyList which are ready for scheduling. 2608 template <typename ReadyListType> 2609 void initialFillReadyList(ReadyListType &ReadyList) { 2610 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2611 doForAllOpcodes(I, [&](ScheduleData *SD) { 2612 if (SD->isSchedulingEntity() && SD->isReady()) { 2613 ReadyList.insert(SD); 2614 LLVM_DEBUG(dbgs() 2615 << "SLP: initially in ready list: " << *I << "\n"); 2616 } 2617 }); 2618 } 2619 } 2620 2621 /// Build a bundle from the ScheduleData nodes corresponding to the 2622 /// scalar instruction for each lane. 2623 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2624 2625 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2626 /// cyclic dependencies. This is only a dry-run, no instructions are 2627 /// actually moved at this stage. 2628 /// \returns the scheduling bundle. The returned Optional value is non-None 2629 /// if \p VL is allowed to be scheduled. 2630 Optional<ScheduleData *> 2631 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2632 const InstructionsState &S); 2633 2634 /// Un-bundles a group of instructions. 2635 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2636 2637 /// Allocates schedule data chunk. 2638 ScheduleData *allocateScheduleDataChunks(); 2639 2640 /// Extends the scheduling region so that V is inside the region. 2641 /// \returns true if the region size is within the limit. 2642 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2643 2644 /// Initialize the ScheduleData structures for new instructions in the 2645 /// scheduling region. 2646 void initScheduleData(Instruction *FromI, Instruction *ToI, 2647 ScheduleData *PrevLoadStore, 2648 ScheduleData *NextLoadStore); 2649 2650 /// Updates the dependency information of a bundle and of all instructions/ 2651 /// bundles which depend on the original bundle. 2652 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2653 BoUpSLP *SLP); 2654 2655 /// Sets all instruction in the scheduling region to un-scheduled. 2656 void resetSchedule(); 2657 2658 BasicBlock *BB; 2659 2660 /// Simple memory allocation for ScheduleData. 2661 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2662 2663 /// The size of a ScheduleData array in ScheduleDataChunks. 2664 int ChunkSize; 2665 2666 /// The allocator position in the current chunk, which is the last entry 2667 /// of ScheduleDataChunks. 2668 int ChunkPos; 2669 2670 /// Attaches ScheduleData to Instruction. 2671 /// Note that the mapping survives during all vectorization iterations, i.e. 2672 /// ScheduleData structures are recycled. 2673 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2674 2675 /// Attaches ScheduleData to Instruction with the leading key. 2676 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2677 ExtraScheduleDataMap; 2678 2679 struct ReadyList : SmallVector<ScheduleData *, 8> { 2680 void insert(ScheduleData *SD) { push_back(SD); } 2681 }; 2682 2683 /// The ready-list for scheduling (only used for the dry-run). 2684 ReadyList ReadyInsts; 2685 2686 /// The first instruction of the scheduling region. 2687 Instruction *ScheduleStart = nullptr; 2688 2689 /// The first instruction _after_ the scheduling region. 2690 Instruction *ScheduleEnd = nullptr; 2691 2692 /// The first memory accessing instruction in the scheduling region 2693 /// (can be null). 2694 ScheduleData *FirstLoadStoreInRegion = nullptr; 2695 2696 /// The last memory accessing instruction in the scheduling region 2697 /// (can be null). 2698 ScheduleData *LastLoadStoreInRegion = nullptr; 2699 2700 /// The current size of the scheduling region. 2701 int ScheduleRegionSize = 0; 2702 2703 /// The maximum size allowed for the scheduling region. 2704 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2705 2706 /// The ID of the scheduling region. For a new vectorization iteration this 2707 /// is incremented which "removes" all ScheduleData from the region. 2708 // Make sure that the initial SchedulingRegionID is greater than the 2709 // initial SchedulingRegionID in ScheduleData (which is 0). 2710 int SchedulingRegionID = 1; 2711 }; 2712 2713 /// Attaches the BlockScheduling structures to basic blocks. 2714 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2715 2716 /// Performs the "real" scheduling. Done before vectorization is actually 2717 /// performed in a basic block. 2718 void scheduleBlock(BlockScheduling *BS); 2719 2720 /// List of users to ignore during scheduling and that don't need extracting. 2721 ArrayRef<Value *> UserIgnoreList; 2722 2723 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2724 /// sorted SmallVectors of unsigned. 2725 struct OrdersTypeDenseMapInfo { 2726 static OrdersType getEmptyKey() { 2727 OrdersType V; 2728 V.push_back(~1U); 2729 return V; 2730 } 2731 2732 static OrdersType getTombstoneKey() { 2733 OrdersType V; 2734 V.push_back(~2U); 2735 return V; 2736 } 2737 2738 static unsigned getHashValue(const OrdersType &V) { 2739 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2740 } 2741 2742 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2743 return LHS == RHS; 2744 } 2745 }; 2746 2747 // Analysis and block reference. 2748 Function *F; 2749 ScalarEvolution *SE; 2750 TargetTransformInfo *TTI; 2751 TargetLibraryInfo *TLI; 2752 AAResults *AA; 2753 LoopInfo *LI; 2754 DominatorTree *DT; 2755 AssumptionCache *AC; 2756 DemandedBits *DB; 2757 const DataLayout *DL; 2758 OptimizationRemarkEmitter *ORE; 2759 2760 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2761 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2762 2763 /// Instruction builder to construct the vectorized tree. 2764 IRBuilder<> Builder; 2765 2766 /// A map of scalar integer values to the smallest bit width with which they 2767 /// can legally be represented. The values map to (width, signed) pairs, 2768 /// where "width" indicates the minimum bit width and "signed" is True if the 2769 /// value must be signed-extended, rather than zero-extended, back to its 2770 /// original width. 2771 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2772 }; 2773 2774 } // end namespace slpvectorizer 2775 2776 template <> struct GraphTraits<BoUpSLP *> { 2777 using TreeEntry = BoUpSLP::TreeEntry; 2778 2779 /// NodeRef has to be a pointer per the GraphWriter. 2780 using NodeRef = TreeEntry *; 2781 2782 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2783 2784 /// Add the VectorizableTree to the index iterator to be able to return 2785 /// TreeEntry pointers. 2786 struct ChildIteratorType 2787 : public iterator_adaptor_base< 2788 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2789 ContainerTy &VectorizableTree; 2790 2791 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2792 ContainerTy &VT) 2793 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2794 2795 NodeRef operator*() { return I->UserTE; } 2796 }; 2797 2798 static NodeRef getEntryNode(BoUpSLP &R) { 2799 return R.VectorizableTree[0].get(); 2800 } 2801 2802 static ChildIteratorType child_begin(NodeRef N) { 2803 return {N->UserTreeIndices.begin(), N->Container}; 2804 } 2805 2806 static ChildIteratorType child_end(NodeRef N) { 2807 return {N->UserTreeIndices.end(), N->Container}; 2808 } 2809 2810 /// For the node iterator we just need to turn the TreeEntry iterator into a 2811 /// TreeEntry* iterator so that it dereferences to NodeRef. 2812 class nodes_iterator { 2813 using ItTy = ContainerTy::iterator; 2814 ItTy It; 2815 2816 public: 2817 nodes_iterator(const ItTy &It2) : It(It2) {} 2818 NodeRef operator*() { return It->get(); } 2819 nodes_iterator operator++() { 2820 ++It; 2821 return *this; 2822 } 2823 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2824 }; 2825 2826 static nodes_iterator nodes_begin(BoUpSLP *R) { 2827 return nodes_iterator(R->VectorizableTree.begin()); 2828 } 2829 2830 static nodes_iterator nodes_end(BoUpSLP *R) { 2831 return nodes_iterator(R->VectorizableTree.end()); 2832 } 2833 2834 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2835 }; 2836 2837 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2838 using TreeEntry = BoUpSLP::TreeEntry; 2839 2840 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2841 2842 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2843 std::string Str; 2844 raw_string_ostream OS(Str); 2845 if (isSplat(Entry->Scalars)) 2846 OS << "<splat> "; 2847 for (auto V : Entry->Scalars) { 2848 OS << *V; 2849 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2850 return EU.Scalar == V; 2851 })) 2852 OS << " <extract>"; 2853 OS << "\n"; 2854 } 2855 return Str; 2856 } 2857 2858 static std::string getNodeAttributes(const TreeEntry *Entry, 2859 const BoUpSLP *) { 2860 if (Entry->State == TreeEntry::NeedToGather) 2861 return "color=red"; 2862 return ""; 2863 } 2864 }; 2865 2866 } // end namespace llvm 2867 2868 BoUpSLP::~BoUpSLP() { 2869 for (const auto &Pair : DeletedInstructions) { 2870 // Replace operands of ignored instructions with Undefs in case if they were 2871 // marked for deletion. 2872 if (Pair.getSecond()) { 2873 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2874 Pair.getFirst()->replaceAllUsesWith(Undef); 2875 } 2876 Pair.getFirst()->dropAllReferences(); 2877 } 2878 for (const auto &Pair : DeletedInstructions) { 2879 assert(Pair.getFirst()->use_empty() && 2880 "trying to erase instruction with users."); 2881 Pair.getFirst()->eraseFromParent(); 2882 } 2883 #ifdef EXPENSIVE_CHECKS 2884 // If we could guarantee that this call is not extremely slow, we could 2885 // remove the ifdef limitation (see PR47712). 2886 assert(!verifyFunction(*F, &dbgs())); 2887 #endif 2888 } 2889 2890 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2891 for (auto *V : AV) { 2892 if (auto *I = dyn_cast<Instruction>(V)) 2893 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2894 }; 2895 } 2896 2897 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2898 /// contains original mask for the scalars reused in the node. Procedure 2899 /// transform this mask in accordance with the given \p Mask. 2900 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2901 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2902 "Expected non-empty mask."); 2903 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2904 Prev.swap(Reuses); 2905 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2906 if (Mask[I] != UndefMaskElem) 2907 Reuses[Mask[I]] = Prev[I]; 2908 } 2909 2910 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2911 /// the original order of the scalars. Procedure transforms the provided order 2912 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2913 /// identity order, \p Order is cleared. 2914 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2915 assert(!Mask.empty() && "Expected non-empty mask."); 2916 SmallVector<int> MaskOrder; 2917 if (Order.empty()) { 2918 MaskOrder.resize(Mask.size()); 2919 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2920 } else { 2921 inversePermutation(Order, MaskOrder); 2922 } 2923 reorderReuses(MaskOrder, Mask); 2924 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2925 Order.clear(); 2926 return; 2927 } 2928 Order.assign(Mask.size(), Mask.size()); 2929 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2930 if (MaskOrder[I] != UndefMaskElem) 2931 Order[MaskOrder[I]] = I; 2932 fixupOrderingIndices(Order); 2933 } 2934 2935 Optional<BoUpSLP::OrdersType> 2936 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2937 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2938 unsigned NumScalars = TE.Scalars.size(); 2939 OrdersType CurrentOrder(NumScalars, NumScalars); 2940 SmallVector<int> Positions; 2941 SmallBitVector UsedPositions(NumScalars); 2942 const TreeEntry *STE = nullptr; 2943 // Try to find all gathered scalars that are gets vectorized in other 2944 // vectorize node. Here we can have only one single tree vector node to 2945 // correctly identify order of the gathered scalars. 2946 for (unsigned I = 0; I < NumScalars; ++I) { 2947 Value *V = TE.Scalars[I]; 2948 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2949 continue; 2950 if (const auto *LocalSTE = getTreeEntry(V)) { 2951 if (!STE) 2952 STE = LocalSTE; 2953 else if (STE != LocalSTE) 2954 // Take the order only from the single vector node. 2955 return None; 2956 unsigned Lane = 2957 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2958 if (Lane >= NumScalars) 2959 return None; 2960 if (CurrentOrder[Lane] != NumScalars) { 2961 if (Lane != I) 2962 continue; 2963 UsedPositions.reset(CurrentOrder[Lane]); 2964 } 2965 // The partial identity (where only some elements of the gather node are 2966 // in the identity order) is good. 2967 CurrentOrder[Lane] = I; 2968 UsedPositions.set(I); 2969 } 2970 } 2971 // Need to keep the order if we have a vector entry and at least 2 scalars or 2972 // the vectorized entry has just 2 scalars. 2973 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2974 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2975 for (unsigned I = 0; I < NumScalars; ++I) 2976 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2977 return false; 2978 return true; 2979 }; 2980 if (IsIdentityOrder(CurrentOrder)) { 2981 CurrentOrder.clear(); 2982 return CurrentOrder; 2983 } 2984 auto *It = CurrentOrder.begin(); 2985 for (unsigned I = 0; I < NumScalars;) { 2986 if (UsedPositions.test(I)) { 2987 ++I; 2988 continue; 2989 } 2990 if (*It == NumScalars) { 2991 *It = I; 2992 ++I; 2993 } 2994 ++It; 2995 } 2996 return CurrentOrder; 2997 } 2998 return None; 2999 } 3000 3001 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3002 bool TopToBottom) { 3003 // No need to reorder if need to shuffle reuses, still need to shuffle the 3004 // node. 3005 if (!TE.ReuseShuffleIndices.empty()) 3006 return None; 3007 if (TE.State == TreeEntry::Vectorize && 3008 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3009 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3010 !TE.isAltShuffle()) 3011 return TE.ReorderIndices; 3012 if (TE.State == TreeEntry::NeedToGather) { 3013 // TODO: add analysis of other gather nodes with extractelement 3014 // instructions and other values/instructions, not only undefs. 3015 if (((TE.getOpcode() == Instruction::ExtractElement && 3016 !TE.isAltShuffle()) || 3017 (all_of(TE.Scalars, 3018 [](Value *V) { 3019 return isa<UndefValue, ExtractElementInst>(V); 3020 }) && 3021 any_of(TE.Scalars, 3022 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3023 all_of(TE.Scalars, 3024 [](Value *V) { 3025 auto *EE = dyn_cast<ExtractElementInst>(V); 3026 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3027 }) && 3028 allSameType(TE.Scalars)) { 3029 // Check that gather of extractelements can be represented as 3030 // just a shuffle of a single vector. 3031 OrdersType CurrentOrder; 3032 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3033 if (Reuse || !CurrentOrder.empty()) { 3034 if (!CurrentOrder.empty()) 3035 fixupOrderingIndices(CurrentOrder); 3036 return CurrentOrder; 3037 } 3038 } 3039 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3040 return CurrentOrder; 3041 } 3042 return None; 3043 } 3044 3045 void BoUpSLP::reorderTopToBottom() { 3046 // Maps VF to the graph nodes. 3047 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3048 // ExtractElement gather nodes which can be vectorized and need to handle 3049 // their ordering. 3050 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3051 // Find all reorderable nodes with the given VF. 3052 // Currently the are vectorized stores,loads,extracts + some gathering of 3053 // extracts. 3054 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3055 const std::unique_ptr<TreeEntry> &TE) { 3056 if (Optional<OrdersType> CurrentOrder = 3057 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3058 // Do not include ordering for nodes used in the alt opcode vectorization, 3059 // better to reorder them during bottom-to-top stage. If follow the order 3060 // here, it causes reordering of the whole graph though actually it is 3061 // profitable just to reorder the subgraph that starts from the alternate 3062 // opcode vectorization node. Such nodes already end-up with the shuffle 3063 // instruction and it is just enough to change this shuffle rather than 3064 // rotate the scalars for the whole graph. 3065 unsigned Cnt = 0; 3066 const TreeEntry *UserTE = TE.get(); 3067 while (UserTE && Cnt < RecursionMaxDepth) { 3068 if (UserTE->UserTreeIndices.size() != 1) 3069 break; 3070 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3071 return EI.UserTE->State == TreeEntry::Vectorize && 3072 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3073 })) 3074 return; 3075 if (UserTE->UserTreeIndices.empty()) 3076 UserTE = nullptr; 3077 else 3078 UserTE = UserTE->UserTreeIndices.back().UserTE; 3079 ++Cnt; 3080 } 3081 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3082 if (TE->State != TreeEntry::Vectorize) 3083 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3084 } 3085 }); 3086 3087 // Reorder the graph nodes according to their vectorization factor. 3088 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3089 VF /= 2) { 3090 auto It = VFToOrderedEntries.find(VF); 3091 if (It == VFToOrderedEntries.end()) 3092 continue; 3093 // Try to find the most profitable order. We just are looking for the most 3094 // used order and reorder scalar elements in the nodes according to this 3095 // mostly used order. 3096 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3097 // All operands are reordered and used only in this node - propagate the 3098 // most used order to the user node. 3099 MapVector<OrdersType, unsigned, 3100 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3101 OrdersUses; 3102 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3103 for (const TreeEntry *OpTE : OrderedEntries) { 3104 // No need to reorder this nodes, still need to extend and to use shuffle, 3105 // just need to merge reordering shuffle and the reuse shuffle. 3106 if (!OpTE->ReuseShuffleIndices.empty()) 3107 continue; 3108 // Count number of orders uses. 3109 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3110 if (OpTE->State == TreeEntry::NeedToGather) 3111 return GathersToOrders.find(OpTE)->second; 3112 return OpTE->ReorderIndices; 3113 }(); 3114 // Stores actually store the mask, not the order, need to invert. 3115 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3116 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3117 SmallVector<int> Mask; 3118 inversePermutation(Order, Mask); 3119 unsigned E = Order.size(); 3120 OrdersType CurrentOrder(E, E); 3121 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3122 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3123 }); 3124 fixupOrderingIndices(CurrentOrder); 3125 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3126 } else { 3127 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3128 } 3129 } 3130 // Set order of the user node. 3131 if (OrdersUses.empty()) 3132 continue; 3133 // Choose the most used order. 3134 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3135 unsigned Cnt = OrdersUses.front().second; 3136 for (const auto &Pair : drop_begin(OrdersUses)) { 3137 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3138 BestOrder = Pair.first; 3139 Cnt = Pair.second; 3140 } 3141 } 3142 // Set order of the user node. 3143 if (BestOrder.empty()) 3144 continue; 3145 SmallVector<int> Mask; 3146 inversePermutation(BestOrder, Mask); 3147 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3148 unsigned E = BestOrder.size(); 3149 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3150 return I < E ? static_cast<int>(I) : UndefMaskElem; 3151 }); 3152 // Do an actual reordering, if profitable. 3153 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3154 // Just do the reordering for the nodes with the given VF. 3155 if (TE->Scalars.size() != VF) { 3156 if (TE->ReuseShuffleIndices.size() == VF) { 3157 // Need to reorder the reuses masks of the operands with smaller VF to 3158 // be able to find the match between the graph nodes and scalar 3159 // operands of the given node during vectorization/cost estimation. 3160 assert(all_of(TE->UserTreeIndices, 3161 [VF, &TE](const EdgeInfo &EI) { 3162 return EI.UserTE->Scalars.size() == VF || 3163 EI.UserTE->Scalars.size() == 3164 TE->Scalars.size(); 3165 }) && 3166 "All users must be of VF size."); 3167 // Update ordering of the operands with the smaller VF than the given 3168 // one. 3169 reorderReuses(TE->ReuseShuffleIndices, Mask); 3170 } 3171 continue; 3172 } 3173 if (TE->State == TreeEntry::Vectorize && 3174 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3175 InsertElementInst>(TE->getMainOp()) && 3176 !TE->isAltShuffle()) { 3177 // Build correct orders for extract{element,value}, loads and 3178 // stores. 3179 reorderOrder(TE->ReorderIndices, Mask); 3180 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3181 TE->reorderOperands(Mask); 3182 } else { 3183 // Reorder the node and its operands. 3184 TE->reorderOperands(Mask); 3185 assert(TE->ReorderIndices.empty() && 3186 "Expected empty reorder sequence."); 3187 reorderScalars(TE->Scalars, Mask); 3188 } 3189 if (!TE->ReuseShuffleIndices.empty()) { 3190 // Apply reversed order to keep the original ordering of the reused 3191 // elements to avoid extra reorder indices shuffling. 3192 OrdersType CurrentOrder; 3193 reorderOrder(CurrentOrder, MaskOrder); 3194 SmallVector<int> NewReuses; 3195 inversePermutation(CurrentOrder, NewReuses); 3196 addMask(NewReuses, TE->ReuseShuffleIndices); 3197 TE->ReuseShuffleIndices.swap(NewReuses); 3198 } 3199 } 3200 } 3201 } 3202 3203 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3204 SetVector<TreeEntry *> OrderedEntries; 3205 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3206 // Find all reorderable leaf nodes with the given VF. 3207 // Currently the are vectorized loads,extracts without alternate operands + 3208 // some gathering of extracts. 3209 SmallVector<TreeEntry *> NonVectorized; 3210 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3211 &NonVectorized]( 3212 const std::unique_ptr<TreeEntry> &TE) { 3213 if (TE->State != TreeEntry::Vectorize) 3214 NonVectorized.push_back(TE.get()); 3215 if (Optional<OrdersType> CurrentOrder = 3216 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3217 OrderedEntries.insert(TE.get()); 3218 if (TE->State != TreeEntry::Vectorize) 3219 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3220 } 3221 }); 3222 3223 // Checks if the operands of the users are reordarable and have only single 3224 // use. 3225 auto &&CheckOperands = 3226 [this, &NonVectorized](const auto &Data, 3227 SmallVectorImpl<TreeEntry *> &GatherOps) { 3228 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3229 if (any_of(Data.second, 3230 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3231 return OpData.first == I && 3232 OpData.second->State == TreeEntry::Vectorize; 3233 })) 3234 continue; 3235 ArrayRef<Value *> VL = Data.first->getOperand(I); 3236 const TreeEntry *TE = nullptr; 3237 const auto *It = find_if(VL, [this, &TE](Value *V) { 3238 TE = getTreeEntry(V); 3239 return TE; 3240 }); 3241 if (It != VL.end() && TE->isSame(VL)) 3242 return false; 3243 TreeEntry *Gather = nullptr; 3244 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3245 assert(TE->State != TreeEntry::Vectorize && 3246 "Only non-vectorized nodes are expected."); 3247 if (TE->isSame(VL)) { 3248 Gather = TE; 3249 return true; 3250 } 3251 return false; 3252 }) > 1) 3253 return false; 3254 if (Gather) 3255 GatherOps.push_back(Gather); 3256 } 3257 return true; 3258 }; 3259 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3260 // I.e., if the node has operands, that are reordered, try to make at least 3261 // one operand order in the natural order and reorder others + reorder the 3262 // user node itself. 3263 SmallPtrSet<const TreeEntry *, 4> Visited; 3264 while (!OrderedEntries.empty()) { 3265 // 1. Filter out only reordered nodes. 3266 // 2. If the entry has multiple uses - skip it and jump to the next node. 3267 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3268 SmallVector<TreeEntry *> Filtered; 3269 for (TreeEntry *TE : OrderedEntries) { 3270 if (!(TE->State == TreeEntry::Vectorize || 3271 (TE->State == TreeEntry::NeedToGather && 3272 GathersToOrders.count(TE))) || 3273 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3274 !all_of(drop_begin(TE->UserTreeIndices), 3275 [TE](const EdgeInfo &EI) { 3276 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3277 }) || 3278 !Visited.insert(TE).second) { 3279 Filtered.push_back(TE); 3280 continue; 3281 } 3282 // Build a map between user nodes and their operands order to speedup 3283 // search. The graph currently does not provide this dependency directly. 3284 for (EdgeInfo &EI : TE->UserTreeIndices) { 3285 TreeEntry *UserTE = EI.UserTE; 3286 auto It = Users.find(UserTE); 3287 if (It == Users.end()) 3288 It = Users.insert({UserTE, {}}).first; 3289 It->second.emplace_back(EI.EdgeIdx, TE); 3290 } 3291 } 3292 // Erase filtered entries. 3293 for_each(Filtered, 3294 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3295 for (const auto &Data : Users) { 3296 // Check that operands are used only in the User node. 3297 SmallVector<TreeEntry *> GatherOps; 3298 if (!CheckOperands(Data, GatherOps)) { 3299 for_each(Data.second, 3300 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3301 OrderedEntries.remove(Op.second); 3302 }); 3303 continue; 3304 } 3305 // All operands are reordered and used only in this node - propagate the 3306 // most used order to the user node. 3307 MapVector<OrdersType, unsigned, 3308 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3309 OrdersUses; 3310 // Do the analysis for each tree entry only once, otherwise the order of 3311 // the same node my be considered several times, though might be not 3312 // profitable. 3313 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3314 for (const auto &Op : Data.second) { 3315 TreeEntry *OpTE = Op.second; 3316 if (!VisitedOps.insert(OpTE).second) 3317 continue; 3318 if (!OpTE->ReuseShuffleIndices.empty() || 3319 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3320 continue; 3321 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3322 if (OpTE->State == TreeEntry::NeedToGather) 3323 return GathersToOrders.find(OpTE)->second; 3324 return OpTE->ReorderIndices; 3325 }(); 3326 // Stores actually store the mask, not the order, need to invert. 3327 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3328 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3329 SmallVector<int> Mask; 3330 inversePermutation(Order, Mask); 3331 unsigned E = Order.size(); 3332 OrdersType CurrentOrder(E, E); 3333 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3334 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3335 }); 3336 fixupOrderingIndices(CurrentOrder); 3337 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3338 } else { 3339 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3340 } 3341 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3342 OpTE->UserTreeIndices.size(); 3343 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3344 --OrdersUses[{}]; 3345 } 3346 // If no orders - skip current nodes and jump to the next one, if any. 3347 if (OrdersUses.empty()) { 3348 for_each(Data.second, 3349 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3350 OrderedEntries.remove(Op.second); 3351 }); 3352 continue; 3353 } 3354 // Choose the best order. 3355 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3356 unsigned Cnt = OrdersUses.front().second; 3357 for (const auto &Pair : drop_begin(OrdersUses)) { 3358 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3359 BestOrder = Pair.first; 3360 Cnt = Pair.second; 3361 } 3362 } 3363 // Set order of the user node (reordering of operands and user nodes). 3364 if (BestOrder.empty()) { 3365 for_each(Data.second, 3366 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3367 OrderedEntries.remove(Op.second); 3368 }); 3369 continue; 3370 } 3371 // Erase operands from OrderedEntries list and adjust their orders. 3372 VisitedOps.clear(); 3373 SmallVector<int> Mask; 3374 inversePermutation(BestOrder, Mask); 3375 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3376 unsigned E = BestOrder.size(); 3377 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3378 return I < E ? static_cast<int>(I) : UndefMaskElem; 3379 }); 3380 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3381 TreeEntry *TE = Op.second; 3382 OrderedEntries.remove(TE); 3383 if (!VisitedOps.insert(TE).second) 3384 continue; 3385 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3386 // Just reorder reuses indices. 3387 reorderReuses(TE->ReuseShuffleIndices, Mask); 3388 continue; 3389 } 3390 // Gathers are processed separately. 3391 if (TE->State != TreeEntry::Vectorize) 3392 continue; 3393 assert((BestOrder.size() == TE->ReorderIndices.size() || 3394 TE->ReorderIndices.empty()) && 3395 "Non-matching sizes of user/operand entries."); 3396 reorderOrder(TE->ReorderIndices, Mask); 3397 } 3398 // For gathers just need to reorder its scalars. 3399 for (TreeEntry *Gather : GatherOps) { 3400 assert(Gather->ReorderIndices.empty() && 3401 "Unexpected reordering of gathers."); 3402 if (!Gather->ReuseShuffleIndices.empty()) { 3403 // Just reorder reuses indices. 3404 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3405 continue; 3406 } 3407 reorderScalars(Gather->Scalars, Mask); 3408 OrderedEntries.remove(Gather); 3409 } 3410 // Reorder operands of the user node and set the ordering for the user 3411 // node itself. 3412 if (Data.first->State != TreeEntry::Vectorize || 3413 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3414 Data.first->getMainOp()) || 3415 Data.first->isAltShuffle()) 3416 Data.first->reorderOperands(Mask); 3417 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3418 Data.first->isAltShuffle()) { 3419 reorderScalars(Data.first->Scalars, Mask); 3420 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3421 if (Data.first->ReuseShuffleIndices.empty() && 3422 !Data.first->ReorderIndices.empty() && 3423 !Data.first->isAltShuffle()) { 3424 // Insert user node to the list to try to sink reordering deeper in 3425 // the graph. 3426 OrderedEntries.insert(Data.first); 3427 } 3428 } else { 3429 reorderOrder(Data.first->ReorderIndices, Mask); 3430 } 3431 } 3432 } 3433 // If the reordering is unnecessary, just remove the reorder. 3434 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3435 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3436 VectorizableTree.front()->ReorderIndices.clear(); 3437 } 3438 3439 void BoUpSLP::buildExternalUses( 3440 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3441 // Collect the values that we need to extract from the tree. 3442 for (auto &TEPtr : VectorizableTree) { 3443 TreeEntry *Entry = TEPtr.get(); 3444 3445 // No need to handle users of gathered values. 3446 if (Entry->State == TreeEntry::NeedToGather) 3447 continue; 3448 3449 // For each lane: 3450 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3451 Value *Scalar = Entry->Scalars[Lane]; 3452 int FoundLane = Entry->findLaneForValue(Scalar); 3453 3454 // Check if the scalar is externally used as an extra arg. 3455 auto ExtI = ExternallyUsedValues.find(Scalar); 3456 if (ExtI != ExternallyUsedValues.end()) { 3457 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3458 << Lane << " from " << *Scalar << ".\n"); 3459 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3460 } 3461 for (User *U : Scalar->users()) { 3462 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3463 3464 Instruction *UserInst = dyn_cast<Instruction>(U); 3465 if (!UserInst) 3466 continue; 3467 3468 if (isDeleted(UserInst)) 3469 continue; 3470 3471 // Skip in-tree scalars that become vectors 3472 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3473 Value *UseScalar = UseEntry->Scalars[0]; 3474 // Some in-tree scalars will remain as scalar in vectorized 3475 // instructions. If that is the case, the one in Lane 0 will 3476 // be used. 3477 if (UseScalar != U || 3478 UseEntry->State == TreeEntry::ScatterVectorize || 3479 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3480 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3481 << ".\n"); 3482 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3483 continue; 3484 } 3485 } 3486 3487 // Ignore users in the user ignore list. 3488 if (is_contained(UserIgnoreList, UserInst)) 3489 continue; 3490 3491 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3492 << Lane << " from " << *Scalar << ".\n"); 3493 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3494 } 3495 } 3496 } 3497 } 3498 3499 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3500 ArrayRef<Value *> UserIgnoreLst) { 3501 deleteTree(); 3502 UserIgnoreList = UserIgnoreLst; 3503 if (!allSameType(Roots)) 3504 return; 3505 buildTree_rec(Roots, 0, EdgeInfo()); 3506 } 3507 3508 namespace { 3509 /// Tracks the state we can represent the loads in the given sequence. 3510 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3511 } // anonymous namespace 3512 3513 /// Checks if the given array of loads can be represented as a vectorized, 3514 /// scatter or just simple gather. 3515 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3516 const TargetTransformInfo &TTI, 3517 const DataLayout &DL, ScalarEvolution &SE, 3518 SmallVectorImpl<unsigned> &Order, 3519 SmallVectorImpl<Value *> &PointerOps) { 3520 // Check that a vectorized load would load the same memory as a scalar 3521 // load. For example, we don't want to vectorize loads that are smaller 3522 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3523 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3524 // from such a struct, we read/write packed bits disagreeing with the 3525 // unvectorized version. 3526 Type *ScalarTy = VL0->getType(); 3527 3528 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3529 return LoadsState::Gather; 3530 3531 // Make sure all loads in the bundle are simple - we can't vectorize 3532 // atomic or volatile loads. 3533 PointerOps.clear(); 3534 PointerOps.resize(VL.size()); 3535 auto *POIter = PointerOps.begin(); 3536 for (Value *V : VL) { 3537 auto *L = cast<LoadInst>(V); 3538 if (!L->isSimple()) 3539 return LoadsState::Gather; 3540 *POIter = L->getPointerOperand(); 3541 ++POIter; 3542 } 3543 3544 Order.clear(); 3545 // Check the order of pointer operands. 3546 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3547 Value *Ptr0; 3548 Value *PtrN; 3549 if (Order.empty()) { 3550 Ptr0 = PointerOps.front(); 3551 PtrN = PointerOps.back(); 3552 } else { 3553 Ptr0 = PointerOps[Order.front()]; 3554 PtrN = PointerOps[Order.back()]; 3555 } 3556 Optional<int> Diff = 3557 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3558 // Check that the sorted loads are consecutive. 3559 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3560 return LoadsState::Vectorize; 3561 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3562 for (Value *V : VL) 3563 CommonAlignment = 3564 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3565 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3566 CommonAlignment)) 3567 return LoadsState::ScatterVectorize; 3568 } 3569 3570 return LoadsState::Gather; 3571 } 3572 3573 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3574 const EdgeInfo &UserTreeIdx) { 3575 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3576 3577 SmallVector<int> ReuseShuffleIndicies; 3578 SmallVector<Value *> UniqueValues; 3579 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3580 &UserTreeIdx, 3581 this](const InstructionsState &S) { 3582 // Check that every instruction appears once in this bundle. 3583 DenseMap<Value *, unsigned> UniquePositions; 3584 for (Value *V : VL) { 3585 if (isConstant(V)) { 3586 ReuseShuffleIndicies.emplace_back( 3587 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3588 UniqueValues.emplace_back(V); 3589 continue; 3590 } 3591 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3592 ReuseShuffleIndicies.emplace_back(Res.first->second); 3593 if (Res.second) 3594 UniqueValues.emplace_back(V); 3595 } 3596 size_t NumUniqueScalarValues = UniqueValues.size(); 3597 if (NumUniqueScalarValues == VL.size()) { 3598 ReuseShuffleIndicies.clear(); 3599 } else { 3600 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3601 if (NumUniqueScalarValues <= 1 || 3602 (UniquePositions.size() == 1 && all_of(UniqueValues, 3603 [](Value *V) { 3604 return isa<UndefValue>(V) || 3605 !isConstant(V); 3606 })) || 3607 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3608 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3610 return false; 3611 } 3612 VL = UniqueValues; 3613 } 3614 return true; 3615 }; 3616 3617 InstructionsState S = getSameOpcode(VL); 3618 if (Depth == RecursionMaxDepth) { 3619 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3620 if (TryToFindDuplicates(S)) 3621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3622 ReuseShuffleIndicies); 3623 return; 3624 } 3625 3626 // Don't handle scalable vectors 3627 if (S.getOpcode() == Instruction::ExtractElement && 3628 isa<ScalableVectorType>( 3629 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3630 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3631 if (TryToFindDuplicates(S)) 3632 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3633 ReuseShuffleIndicies); 3634 return; 3635 } 3636 3637 // Don't handle vectors. 3638 if (S.OpValue->getType()->isVectorTy() && 3639 !isa<InsertElementInst>(S.OpValue)) { 3640 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3642 return; 3643 } 3644 3645 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3646 if (SI->getValueOperand()->getType()->isVectorTy()) { 3647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3649 return; 3650 } 3651 3652 // If all of the operands are identical or constant we have a simple solution. 3653 // If we deal with insert/extract instructions, they all must have constant 3654 // indices, otherwise we should gather them, not try to vectorize. 3655 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3656 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3657 !all_of(VL, isVectorLikeInstWithConstOps))) { 3658 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3659 if (TryToFindDuplicates(S)) 3660 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3661 ReuseShuffleIndicies); 3662 return; 3663 } 3664 3665 // We now know that this is a vector of instructions of the same type from 3666 // the same block. 3667 3668 // Don't vectorize ephemeral values. 3669 for (Value *V : VL) { 3670 if (EphValues.count(V)) { 3671 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3672 << ") is ephemeral.\n"); 3673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3674 return; 3675 } 3676 } 3677 3678 // Check if this is a duplicate of another entry. 3679 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3680 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3681 if (!E->isSame(VL)) { 3682 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3683 if (TryToFindDuplicates(S)) 3684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3685 ReuseShuffleIndicies); 3686 return; 3687 } 3688 // Record the reuse of the tree node. FIXME, currently this is only used to 3689 // properly draw the graph rather than for the actual vectorization. 3690 E->UserTreeIndices.push_back(UserTreeIdx); 3691 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3692 << ".\n"); 3693 return; 3694 } 3695 3696 // Check that none of the instructions in the bundle are already in the tree. 3697 for (Value *V : VL) { 3698 auto *I = dyn_cast<Instruction>(V); 3699 if (!I) 3700 continue; 3701 if (getTreeEntry(I)) { 3702 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3703 << ") is already in tree.\n"); 3704 if (TryToFindDuplicates(S)) 3705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3706 ReuseShuffleIndicies); 3707 return; 3708 } 3709 } 3710 3711 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3712 for (Value *V : VL) { 3713 if (is_contained(UserIgnoreList, V)) { 3714 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3715 if (TryToFindDuplicates(S)) 3716 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3717 ReuseShuffleIndicies); 3718 return; 3719 } 3720 } 3721 3722 // Check that all of the users of the scalars that we want to vectorize are 3723 // schedulable. 3724 auto *VL0 = cast<Instruction>(S.OpValue); 3725 BasicBlock *BB = VL0->getParent(); 3726 3727 if (!DT->isReachableFromEntry(BB)) { 3728 // Don't go into unreachable blocks. They may contain instructions with 3729 // dependency cycles which confuse the final scheduling. 3730 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3731 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3732 return; 3733 } 3734 3735 // Check that every instruction appears once in this bundle. 3736 if (!TryToFindDuplicates(S)) 3737 return; 3738 3739 auto &BSRef = BlocksSchedules[BB]; 3740 if (!BSRef) 3741 BSRef = std::make_unique<BlockScheduling>(BB); 3742 3743 BlockScheduling &BS = *BSRef.get(); 3744 3745 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3746 if (!Bundle) { 3747 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3748 assert((!BS.getScheduleData(VL0) || 3749 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3750 "tryScheduleBundle should cancelScheduling on failure"); 3751 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3752 ReuseShuffleIndicies); 3753 return; 3754 } 3755 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3756 3757 unsigned ShuffleOrOp = S.isAltShuffle() ? 3758 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3759 switch (ShuffleOrOp) { 3760 case Instruction::PHI: { 3761 auto *PH = cast<PHINode>(VL0); 3762 3763 // Check for terminator values (e.g. invoke). 3764 for (Value *V : VL) 3765 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3766 Instruction *Term = dyn_cast<Instruction>( 3767 cast<PHINode>(V)->getIncomingValueForBlock( 3768 PH->getIncomingBlock(I))); 3769 if (Term && Term->isTerminator()) { 3770 LLVM_DEBUG(dbgs() 3771 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3772 BS.cancelScheduling(VL, VL0); 3773 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3774 ReuseShuffleIndicies); 3775 return; 3776 } 3777 } 3778 3779 TreeEntry *TE = 3780 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3781 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3782 3783 // Keeps the reordered operands to avoid code duplication. 3784 SmallVector<ValueList, 2> OperandsVec; 3785 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3786 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3787 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3788 TE->setOperand(I, Operands); 3789 OperandsVec.push_back(Operands); 3790 continue; 3791 } 3792 ValueList Operands; 3793 // Prepare the operand vector. 3794 for (Value *V : VL) 3795 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3796 PH->getIncomingBlock(I))); 3797 TE->setOperand(I, Operands); 3798 OperandsVec.push_back(Operands); 3799 } 3800 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3801 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3802 return; 3803 } 3804 case Instruction::ExtractValue: 3805 case Instruction::ExtractElement: { 3806 OrdersType CurrentOrder; 3807 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3808 if (Reuse) { 3809 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3810 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3811 ReuseShuffleIndicies); 3812 // This is a special case, as it does not gather, but at the same time 3813 // we are not extending buildTree_rec() towards the operands. 3814 ValueList Op0; 3815 Op0.assign(VL.size(), VL0->getOperand(0)); 3816 VectorizableTree.back()->setOperand(0, Op0); 3817 return; 3818 } 3819 if (!CurrentOrder.empty()) { 3820 LLVM_DEBUG({ 3821 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3822 "with order"; 3823 for (unsigned Idx : CurrentOrder) 3824 dbgs() << " " << Idx; 3825 dbgs() << "\n"; 3826 }); 3827 fixupOrderingIndices(CurrentOrder); 3828 // Insert new order with initial value 0, if it does not exist, 3829 // otherwise return the iterator to the existing one. 3830 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3831 ReuseShuffleIndicies, CurrentOrder); 3832 // This is a special case, as it does not gather, but at the same time 3833 // we are not extending buildTree_rec() towards the operands. 3834 ValueList Op0; 3835 Op0.assign(VL.size(), VL0->getOperand(0)); 3836 VectorizableTree.back()->setOperand(0, Op0); 3837 return; 3838 } 3839 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3840 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3841 ReuseShuffleIndicies); 3842 BS.cancelScheduling(VL, VL0); 3843 return; 3844 } 3845 case Instruction::InsertElement: { 3846 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3847 3848 // Check that we have a buildvector and not a shuffle of 2 or more 3849 // different vectors. 3850 ValueSet SourceVectors; 3851 int MinIdx = std::numeric_limits<int>::max(); 3852 for (Value *V : VL) { 3853 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3854 Optional<int> Idx = *getInsertIndex(V, 0); 3855 if (!Idx || *Idx == UndefMaskElem) 3856 continue; 3857 MinIdx = std::min(MinIdx, *Idx); 3858 } 3859 3860 if (count_if(VL, [&SourceVectors](Value *V) { 3861 return !SourceVectors.contains(V); 3862 }) >= 2) { 3863 // Found 2nd source vector - cancel. 3864 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3865 "different source vectors.\n"); 3866 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3867 BS.cancelScheduling(VL, VL0); 3868 return; 3869 } 3870 3871 auto OrdCompare = [](const std::pair<int, int> &P1, 3872 const std::pair<int, int> &P2) { 3873 return P1.first > P2.first; 3874 }; 3875 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3876 decltype(OrdCompare)> 3877 Indices(OrdCompare); 3878 for (int I = 0, E = VL.size(); I < E; ++I) { 3879 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3880 if (!Idx || *Idx == UndefMaskElem) 3881 continue; 3882 Indices.emplace(*Idx, I); 3883 } 3884 OrdersType CurrentOrder(VL.size(), VL.size()); 3885 bool IsIdentity = true; 3886 for (int I = 0, E = VL.size(); I < E; ++I) { 3887 CurrentOrder[Indices.top().second] = I; 3888 IsIdentity &= Indices.top().second == I; 3889 Indices.pop(); 3890 } 3891 if (IsIdentity) 3892 CurrentOrder.clear(); 3893 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3894 None, CurrentOrder); 3895 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3896 3897 constexpr int NumOps = 2; 3898 ValueList VectorOperands[NumOps]; 3899 for (int I = 0; I < NumOps; ++I) { 3900 for (Value *V : VL) 3901 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3902 3903 TE->setOperand(I, VectorOperands[I]); 3904 } 3905 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3906 return; 3907 } 3908 case Instruction::Load: { 3909 // Check that a vectorized load would load the same memory as a scalar 3910 // load. For example, we don't want to vectorize loads that are smaller 3911 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3912 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3913 // from such a struct, we read/write packed bits disagreeing with the 3914 // unvectorized version. 3915 SmallVector<Value *> PointerOps; 3916 OrdersType CurrentOrder; 3917 TreeEntry *TE = nullptr; 3918 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3919 PointerOps)) { 3920 case LoadsState::Vectorize: 3921 if (CurrentOrder.empty()) { 3922 // Original loads are consecutive and does not require reordering. 3923 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3924 ReuseShuffleIndicies); 3925 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3926 } else { 3927 fixupOrderingIndices(CurrentOrder); 3928 // Need to reorder. 3929 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3930 ReuseShuffleIndicies, CurrentOrder); 3931 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3932 } 3933 TE->setOperandsInOrder(); 3934 break; 3935 case LoadsState::ScatterVectorize: 3936 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3937 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3938 UserTreeIdx, ReuseShuffleIndicies); 3939 TE->setOperandsInOrder(); 3940 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3941 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3942 break; 3943 case LoadsState::Gather: 3944 BS.cancelScheduling(VL, VL0); 3945 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3946 ReuseShuffleIndicies); 3947 #ifndef NDEBUG 3948 Type *ScalarTy = VL0->getType(); 3949 if (DL->getTypeSizeInBits(ScalarTy) != 3950 DL->getTypeAllocSizeInBits(ScalarTy)) 3951 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3952 else if (any_of(VL, [](Value *V) { 3953 return !cast<LoadInst>(V)->isSimple(); 3954 })) 3955 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3956 else 3957 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3958 #endif // NDEBUG 3959 break; 3960 } 3961 return; 3962 } 3963 case Instruction::ZExt: 3964 case Instruction::SExt: 3965 case Instruction::FPToUI: 3966 case Instruction::FPToSI: 3967 case Instruction::FPExt: 3968 case Instruction::PtrToInt: 3969 case Instruction::IntToPtr: 3970 case Instruction::SIToFP: 3971 case Instruction::UIToFP: 3972 case Instruction::Trunc: 3973 case Instruction::FPTrunc: 3974 case Instruction::BitCast: { 3975 Type *SrcTy = VL0->getOperand(0)->getType(); 3976 for (Value *V : VL) { 3977 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3978 if (Ty != SrcTy || !isValidElementType(Ty)) { 3979 BS.cancelScheduling(VL, VL0); 3980 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3981 ReuseShuffleIndicies); 3982 LLVM_DEBUG(dbgs() 3983 << "SLP: Gathering casts with different src types.\n"); 3984 return; 3985 } 3986 } 3987 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3988 ReuseShuffleIndicies); 3989 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3990 3991 TE->setOperandsInOrder(); 3992 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3993 ValueList Operands; 3994 // Prepare the operand vector. 3995 for (Value *V : VL) 3996 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3997 3998 buildTree_rec(Operands, Depth + 1, {TE, i}); 3999 } 4000 return; 4001 } 4002 case Instruction::ICmp: 4003 case Instruction::FCmp: { 4004 // Check that all of the compares have the same predicate. 4005 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4006 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4007 Type *ComparedTy = VL0->getOperand(0)->getType(); 4008 for (Value *V : VL) { 4009 CmpInst *Cmp = cast<CmpInst>(V); 4010 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4011 Cmp->getOperand(0)->getType() != ComparedTy) { 4012 BS.cancelScheduling(VL, VL0); 4013 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4014 ReuseShuffleIndicies); 4015 LLVM_DEBUG(dbgs() 4016 << "SLP: Gathering cmp with different predicate.\n"); 4017 return; 4018 } 4019 } 4020 4021 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4022 ReuseShuffleIndicies); 4023 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4024 4025 ValueList Left, Right; 4026 if (cast<CmpInst>(VL0)->isCommutative()) { 4027 // Commutative predicate - collect + sort operands of the instructions 4028 // so that each side is more likely to have the same opcode. 4029 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4030 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4031 } else { 4032 // Collect operands - commute if it uses the swapped predicate. 4033 for (Value *V : VL) { 4034 auto *Cmp = cast<CmpInst>(V); 4035 Value *LHS = Cmp->getOperand(0); 4036 Value *RHS = Cmp->getOperand(1); 4037 if (Cmp->getPredicate() != P0) 4038 std::swap(LHS, RHS); 4039 Left.push_back(LHS); 4040 Right.push_back(RHS); 4041 } 4042 } 4043 TE->setOperand(0, Left); 4044 TE->setOperand(1, Right); 4045 buildTree_rec(Left, Depth + 1, {TE, 0}); 4046 buildTree_rec(Right, Depth + 1, {TE, 1}); 4047 return; 4048 } 4049 case Instruction::Select: 4050 case Instruction::FNeg: 4051 case Instruction::Add: 4052 case Instruction::FAdd: 4053 case Instruction::Sub: 4054 case Instruction::FSub: 4055 case Instruction::Mul: 4056 case Instruction::FMul: 4057 case Instruction::UDiv: 4058 case Instruction::SDiv: 4059 case Instruction::FDiv: 4060 case Instruction::URem: 4061 case Instruction::SRem: 4062 case Instruction::FRem: 4063 case Instruction::Shl: 4064 case Instruction::LShr: 4065 case Instruction::AShr: 4066 case Instruction::And: 4067 case Instruction::Or: 4068 case Instruction::Xor: { 4069 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4070 ReuseShuffleIndicies); 4071 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4072 4073 // Sort operands of the instructions so that each side is more likely to 4074 // have the same opcode. 4075 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4076 ValueList Left, Right; 4077 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4078 TE->setOperand(0, Left); 4079 TE->setOperand(1, Right); 4080 buildTree_rec(Left, Depth + 1, {TE, 0}); 4081 buildTree_rec(Right, Depth + 1, {TE, 1}); 4082 return; 4083 } 4084 4085 TE->setOperandsInOrder(); 4086 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4087 ValueList Operands; 4088 // Prepare the operand vector. 4089 for (Value *V : VL) 4090 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4091 4092 buildTree_rec(Operands, Depth + 1, {TE, i}); 4093 } 4094 return; 4095 } 4096 case Instruction::GetElementPtr: { 4097 // We don't combine GEPs with complicated (nested) indexing. 4098 for (Value *V : VL) { 4099 if (cast<Instruction>(V)->getNumOperands() != 2) { 4100 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4101 BS.cancelScheduling(VL, VL0); 4102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4103 ReuseShuffleIndicies); 4104 return; 4105 } 4106 } 4107 4108 // We can't combine several GEPs into one vector if they operate on 4109 // different types. 4110 Type *Ty0 = VL0->getOperand(0)->getType(); 4111 for (Value *V : VL) { 4112 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4113 if (Ty0 != CurTy) { 4114 LLVM_DEBUG(dbgs() 4115 << "SLP: not-vectorizable GEP (different types).\n"); 4116 BS.cancelScheduling(VL, VL0); 4117 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4118 ReuseShuffleIndicies); 4119 return; 4120 } 4121 } 4122 4123 // We don't combine GEPs with non-constant indexes. 4124 Type *Ty1 = VL0->getOperand(1)->getType(); 4125 for (Value *V : VL) { 4126 auto Op = cast<Instruction>(V)->getOperand(1); 4127 if (!isa<ConstantInt>(Op) || 4128 (Op->getType() != Ty1 && 4129 Op->getType()->getScalarSizeInBits() > 4130 DL->getIndexSizeInBits( 4131 V->getType()->getPointerAddressSpace()))) { 4132 LLVM_DEBUG(dbgs() 4133 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4134 BS.cancelScheduling(VL, VL0); 4135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4136 ReuseShuffleIndicies); 4137 return; 4138 } 4139 } 4140 4141 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4142 ReuseShuffleIndicies); 4143 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4144 SmallVector<ValueList, 2> Operands(2); 4145 // Prepare the operand vector for pointer operands. 4146 for (Value *V : VL) 4147 Operands.front().push_back( 4148 cast<GetElementPtrInst>(V)->getPointerOperand()); 4149 TE->setOperand(0, Operands.front()); 4150 // Need to cast all indices to the same type before vectorization to 4151 // avoid crash. 4152 // Required to be able to find correct matches between different gather 4153 // nodes and reuse the vectorized values rather than trying to gather them 4154 // again. 4155 int IndexIdx = 1; 4156 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4157 Type *Ty = all_of(VL, 4158 [VL0Ty, IndexIdx](Value *V) { 4159 return VL0Ty == cast<GetElementPtrInst>(V) 4160 ->getOperand(IndexIdx) 4161 ->getType(); 4162 }) 4163 ? VL0Ty 4164 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4165 ->getPointerOperandType() 4166 ->getScalarType()); 4167 // Prepare the operand vector. 4168 for (Value *V : VL) { 4169 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4170 auto *CI = cast<ConstantInt>(Op); 4171 Operands.back().push_back(ConstantExpr::getIntegerCast( 4172 CI, Ty, CI->getValue().isSignBitSet())); 4173 } 4174 TE->setOperand(IndexIdx, Operands.back()); 4175 4176 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4177 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4178 return; 4179 } 4180 case Instruction::Store: { 4181 // Check if the stores are consecutive or if we need to swizzle them. 4182 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4183 // Avoid types that are padded when being allocated as scalars, while 4184 // being packed together in a vector (such as i1). 4185 if (DL->getTypeSizeInBits(ScalarTy) != 4186 DL->getTypeAllocSizeInBits(ScalarTy)) { 4187 BS.cancelScheduling(VL, VL0); 4188 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4189 ReuseShuffleIndicies); 4190 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4191 return; 4192 } 4193 // Make sure all stores in the bundle are simple - we can't vectorize 4194 // atomic or volatile stores. 4195 SmallVector<Value *, 4> PointerOps(VL.size()); 4196 ValueList Operands(VL.size()); 4197 auto POIter = PointerOps.begin(); 4198 auto OIter = Operands.begin(); 4199 for (Value *V : VL) { 4200 auto *SI = cast<StoreInst>(V); 4201 if (!SI->isSimple()) { 4202 BS.cancelScheduling(VL, VL0); 4203 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4204 ReuseShuffleIndicies); 4205 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4206 return; 4207 } 4208 *POIter = SI->getPointerOperand(); 4209 *OIter = SI->getValueOperand(); 4210 ++POIter; 4211 ++OIter; 4212 } 4213 4214 OrdersType CurrentOrder; 4215 // Check the order of pointer operands. 4216 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4217 Value *Ptr0; 4218 Value *PtrN; 4219 if (CurrentOrder.empty()) { 4220 Ptr0 = PointerOps.front(); 4221 PtrN = PointerOps.back(); 4222 } else { 4223 Ptr0 = PointerOps[CurrentOrder.front()]; 4224 PtrN = PointerOps[CurrentOrder.back()]; 4225 } 4226 Optional<int> Dist = 4227 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4228 // Check that the sorted pointer operands are consecutive. 4229 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4230 if (CurrentOrder.empty()) { 4231 // Original stores are consecutive and does not require reordering. 4232 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4233 UserTreeIdx, ReuseShuffleIndicies); 4234 TE->setOperandsInOrder(); 4235 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4236 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4237 } else { 4238 fixupOrderingIndices(CurrentOrder); 4239 TreeEntry *TE = 4240 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4241 ReuseShuffleIndicies, CurrentOrder); 4242 TE->setOperandsInOrder(); 4243 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4244 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4245 } 4246 return; 4247 } 4248 } 4249 4250 BS.cancelScheduling(VL, VL0); 4251 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4252 ReuseShuffleIndicies); 4253 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4254 return; 4255 } 4256 case Instruction::Call: { 4257 // Check if the calls are all to the same vectorizable intrinsic or 4258 // library function. 4259 CallInst *CI = cast<CallInst>(VL0); 4260 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4261 4262 VFShape Shape = VFShape::get( 4263 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4264 false /*HasGlobalPred*/); 4265 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4266 4267 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4268 BS.cancelScheduling(VL, VL0); 4269 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4270 ReuseShuffleIndicies); 4271 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4272 return; 4273 } 4274 Function *F = CI->getCalledFunction(); 4275 unsigned NumArgs = CI->arg_size(); 4276 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4277 for (unsigned j = 0; j != NumArgs; ++j) 4278 if (hasVectorInstrinsicScalarOpd(ID, j)) 4279 ScalarArgs[j] = CI->getArgOperand(j); 4280 for (Value *V : VL) { 4281 CallInst *CI2 = dyn_cast<CallInst>(V); 4282 if (!CI2 || CI2->getCalledFunction() != F || 4283 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4284 (VecFunc && 4285 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4286 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4287 BS.cancelScheduling(VL, VL0); 4288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4289 ReuseShuffleIndicies); 4290 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4291 << "\n"); 4292 return; 4293 } 4294 // Some intrinsics have scalar arguments and should be same in order for 4295 // them to be vectorized. 4296 for (unsigned j = 0; j != NumArgs; ++j) { 4297 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4298 Value *A1J = CI2->getArgOperand(j); 4299 if (ScalarArgs[j] != A1J) { 4300 BS.cancelScheduling(VL, VL0); 4301 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4302 ReuseShuffleIndicies); 4303 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4304 << " argument " << ScalarArgs[j] << "!=" << A1J 4305 << "\n"); 4306 return; 4307 } 4308 } 4309 } 4310 // Verify that the bundle operands are identical between the two calls. 4311 if (CI->hasOperandBundles() && 4312 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4313 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4314 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4315 BS.cancelScheduling(VL, VL0); 4316 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4317 ReuseShuffleIndicies); 4318 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4319 << *CI << "!=" << *V << '\n'); 4320 return; 4321 } 4322 } 4323 4324 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4325 ReuseShuffleIndicies); 4326 TE->setOperandsInOrder(); 4327 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4328 // For scalar operands no need to to create an entry since no need to 4329 // vectorize it. 4330 if (hasVectorInstrinsicScalarOpd(ID, i)) 4331 continue; 4332 ValueList Operands; 4333 // Prepare the operand vector. 4334 for (Value *V : VL) { 4335 auto *CI2 = cast<CallInst>(V); 4336 Operands.push_back(CI2->getArgOperand(i)); 4337 } 4338 buildTree_rec(Operands, Depth + 1, {TE, i}); 4339 } 4340 return; 4341 } 4342 case Instruction::ShuffleVector: { 4343 // If this is not an alternate sequence of opcode like add-sub 4344 // then do not vectorize this instruction. 4345 if (!S.isAltShuffle()) { 4346 BS.cancelScheduling(VL, VL0); 4347 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4348 ReuseShuffleIndicies); 4349 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4350 return; 4351 } 4352 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4353 ReuseShuffleIndicies); 4354 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4355 4356 // Reorder operands if reordering would enable vectorization. 4357 if (isa<BinaryOperator>(VL0)) { 4358 ValueList Left, Right; 4359 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4360 TE->setOperand(0, Left); 4361 TE->setOperand(1, Right); 4362 buildTree_rec(Left, Depth + 1, {TE, 0}); 4363 buildTree_rec(Right, Depth + 1, {TE, 1}); 4364 return; 4365 } 4366 4367 TE->setOperandsInOrder(); 4368 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4369 ValueList Operands; 4370 // Prepare the operand vector. 4371 for (Value *V : VL) 4372 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4373 4374 buildTree_rec(Operands, Depth + 1, {TE, i}); 4375 } 4376 return; 4377 } 4378 default: 4379 BS.cancelScheduling(VL, VL0); 4380 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4381 ReuseShuffleIndicies); 4382 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4383 return; 4384 } 4385 } 4386 4387 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4388 unsigned N = 1; 4389 Type *EltTy = T; 4390 4391 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4392 isa<VectorType>(EltTy)) { 4393 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4394 // Check that struct is homogeneous. 4395 for (const auto *Ty : ST->elements()) 4396 if (Ty != *ST->element_begin()) 4397 return 0; 4398 N *= ST->getNumElements(); 4399 EltTy = *ST->element_begin(); 4400 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4401 N *= AT->getNumElements(); 4402 EltTy = AT->getElementType(); 4403 } else { 4404 auto *VT = cast<FixedVectorType>(EltTy); 4405 N *= VT->getNumElements(); 4406 EltTy = VT->getElementType(); 4407 } 4408 } 4409 4410 if (!isValidElementType(EltTy)) 4411 return 0; 4412 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4413 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4414 return 0; 4415 return N; 4416 } 4417 4418 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4419 SmallVectorImpl<unsigned> &CurrentOrder) const { 4420 const auto *It = find_if(VL, [](Value *V) { 4421 return isa<ExtractElementInst, ExtractValueInst>(V); 4422 }); 4423 assert(It != VL.end() && "Expected at least one extract instruction."); 4424 auto *E0 = cast<Instruction>(*It); 4425 assert(all_of(VL, 4426 [](Value *V) { 4427 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4428 V); 4429 }) && 4430 "Invalid opcode"); 4431 // Check if all of the extracts come from the same vector and from the 4432 // correct offset. 4433 Value *Vec = E0->getOperand(0); 4434 4435 CurrentOrder.clear(); 4436 4437 // We have to extract from a vector/aggregate with the same number of elements. 4438 unsigned NElts; 4439 if (E0->getOpcode() == Instruction::ExtractValue) { 4440 const DataLayout &DL = E0->getModule()->getDataLayout(); 4441 NElts = canMapToVector(Vec->getType(), DL); 4442 if (!NElts) 4443 return false; 4444 // Check if load can be rewritten as load of vector. 4445 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4446 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4447 return false; 4448 } else { 4449 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4450 } 4451 4452 if (NElts != VL.size()) 4453 return false; 4454 4455 // Check that all of the indices extract from the correct offset. 4456 bool ShouldKeepOrder = true; 4457 unsigned E = VL.size(); 4458 // Assign to all items the initial value E + 1 so we can check if the extract 4459 // instruction index was used already. 4460 // Also, later we can check that all the indices are used and we have a 4461 // consecutive access in the extract instructions, by checking that no 4462 // element of CurrentOrder still has value E + 1. 4463 CurrentOrder.assign(E, E); 4464 unsigned I = 0; 4465 for (; I < E; ++I) { 4466 auto *Inst = dyn_cast<Instruction>(VL[I]); 4467 if (!Inst) 4468 continue; 4469 if (Inst->getOperand(0) != Vec) 4470 break; 4471 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4472 if (isa<UndefValue>(EE->getIndexOperand())) 4473 continue; 4474 Optional<unsigned> Idx = getExtractIndex(Inst); 4475 if (!Idx) 4476 break; 4477 const unsigned ExtIdx = *Idx; 4478 if (ExtIdx != I) { 4479 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4480 break; 4481 ShouldKeepOrder = false; 4482 CurrentOrder[ExtIdx] = I; 4483 } else { 4484 if (CurrentOrder[I] != E) 4485 break; 4486 CurrentOrder[I] = I; 4487 } 4488 } 4489 if (I < E) { 4490 CurrentOrder.clear(); 4491 return false; 4492 } 4493 if (ShouldKeepOrder) 4494 CurrentOrder.clear(); 4495 4496 return ShouldKeepOrder; 4497 } 4498 4499 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4500 ArrayRef<Value *> VectorizedVals) const { 4501 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4502 all_of(I->users(), [this](User *U) { 4503 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4504 }); 4505 } 4506 4507 static std::pair<InstructionCost, InstructionCost> 4508 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4509 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4510 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4511 4512 // Calculate the cost of the scalar and vector calls. 4513 SmallVector<Type *, 4> VecTys; 4514 for (Use &Arg : CI->args()) 4515 VecTys.push_back( 4516 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4517 FastMathFlags FMF; 4518 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4519 FMF = FPCI->getFastMathFlags(); 4520 SmallVector<const Value *> Arguments(CI->args()); 4521 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4522 dyn_cast<IntrinsicInst>(CI)); 4523 auto IntrinsicCost = 4524 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4525 4526 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4527 VecTy->getNumElements())), 4528 false /*HasGlobalPred*/); 4529 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4530 auto LibCost = IntrinsicCost; 4531 if (!CI->isNoBuiltin() && VecFunc) { 4532 // Calculate the cost of the vector library call. 4533 // If the corresponding vector call is cheaper, return its cost. 4534 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4535 TTI::TCK_RecipThroughput); 4536 } 4537 return {IntrinsicCost, LibCost}; 4538 } 4539 4540 /// Compute the cost of creating a vector of type \p VecTy containing the 4541 /// extracted values from \p VL. 4542 static InstructionCost 4543 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4544 TargetTransformInfo::ShuffleKind ShuffleKind, 4545 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4546 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4547 4548 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4549 VecTy->getNumElements() < NumOfParts) 4550 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4551 4552 bool AllConsecutive = true; 4553 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4554 unsigned Idx = -1; 4555 InstructionCost Cost = 0; 4556 4557 // Process extracts in blocks of EltsPerVector to check if the source vector 4558 // operand can be re-used directly. If not, add the cost of creating a shuffle 4559 // to extract the values into a vector register. 4560 for (auto *V : VL) { 4561 ++Idx; 4562 4563 // Need to exclude undefs from analysis. 4564 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4565 continue; 4566 4567 // Reached the start of a new vector registers. 4568 if (Idx % EltsPerVector == 0) { 4569 AllConsecutive = true; 4570 continue; 4571 } 4572 4573 // Check all extracts for a vector register on the target directly 4574 // extract values in order. 4575 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4576 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4577 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4578 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4579 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4580 } 4581 4582 if (AllConsecutive) 4583 continue; 4584 4585 // Skip all indices, except for the last index per vector block. 4586 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4587 continue; 4588 4589 // If we have a series of extracts which are not consecutive and hence 4590 // cannot re-use the source vector register directly, compute the shuffle 4591 // cost to extract the a vector with EltsPerVector elements. 4592 Cost += TTI.getShuffleCost( 4593 TargetTransformInfo::SK_PermuteSingleSrc, 4594 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4595 } 4596 return Cost; 4597 } 4598 4599 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4600 /// operations operands. 4601 static void 4602 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4603 ArrayRef<int> ReusesIndices, 4604 const function_ref<bool(Instruction *)> IsAltOp, 4605 SmallVectorImpl<int> &Mask, 4606 SmallVectorImpl<Value *> *OpScalars = nullptr, 4607 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4608 unsigned Sz = VL.size(); 4609 Mask.assign(Sz, UndefMaskElem); 4610 SmallVector<int> OrderMask; 4611 if (!ReorderIndices.empty()) 4612 inversePermutation(ReorderIndices, OrderMask); 4613 for (unsigned I = 0; I < Sz; ++I) { 4614 unsigned Idx = I; 4615 if (!ReorderIndices.empty()) 4616 Idx = OrderMask[I]; 4617 auto *OpInst = cast<Instruction>(VL[Idx]); 4618 if (IsAltOp(OpInst)) { 4619 Mask[I] = Sz + Idx; 4620 if (AltScalars) 4621 AltScalars->push_back(OpInst); 4622 } else { 4623 Mask[I] = Idx; 4624 if (OpScalars) 4625 OpScalars->push_back(OpInst); 4626 } 4627 } 4628 if (!ReusesIndices.empty()) { 4629 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4630 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4631 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4632 }); 4633 Mask.swap(NewMask); 4634 } 4635 } 4636 4637 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4638 ArrayRef<Value *> VectorizedVals) { 4639 ArrayRef<Value*> VL = E->Scalars; 4640 4641 Type *ScalarTy = VL[0]->getType(); 4642 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4643 ScalarTy = SI->getValueOperand()->getType(); 4644 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4645 ScalarTy = CI->getOperand(0)->getType(); 4646 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4647 ScalarTy = IE->getOperand(1)->getType(); 4648 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4649 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4650 4651 // If we have computed a smaller type for the expression, update VecTy so 4652 // that the costs will be accurate. 4653 if (MinBWs.count(VL[0])) 4654 VecTy = FixedVectorType::get( 4655 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4656 unsigned EntryVF = E->getVectorFactor(); 4657 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4658 4659 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4660 // FIXME: it tries to fix a problem with MSVC buildbots. 4661 TargetTransformInfo &TTIRef = *TTI; 4662 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4663 VectorizedVals, E](InstructionCost &Cost) { 4664 DenseMap<Value *, int> ExtractVectorsTys; 4665 SmallPtrSet<Value *, 4> CheckedExtracts; 4666 for (auto *V : VL) { 4667 if (isa<UndefValue>(V)) 4668 continue; 4669 // If all users of instruction are going to be vectorized and this 4670 // instruction itself is not going to be vectorized, consider this 4671 // instruction as dead and remove its cost from the final cost of the 4672 // vectorized tree. 4673 // Also, avoid adjusting the cost for extractelements with multiple uses 4674 // in different graph entries. 4675 const TreeEntry *VE = getTreeEntry(V); 4676 if (!CheckedExtracts.insert(V).second || 4677 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4678 (VE && VE != E)) 4679 continue; 4680 auto *EE = cast<ExtractElementInst>(V); 4681 Optional<unsigned> EEIdx = getExtractIndex(EE); 4682 if (!EEIdx) 4683 continue; 4684 unsigned Idx = *EEIdx; 4685 if (TTIRef.getNumberOfParts(VecTy) != 4686 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4687 auto It = 4688 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4689 It->getSecond() = std::min<int>(It->second, Idx); 4690 } 4691 // Take credit for instruction that will become dead. 4692 if (EE->hasOneUse()) { 4693 Instruction *Ext = EE->user_back(); 4694 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4695 all_of(Ext->users(), 4696 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4697 // Use getExtractWithExtendCost() to calculate the cost of 4698 // extractelement/ext pair. 4699 Cost -= 4700 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4701 EE->getVectorOperandType(), Idx); 4702 // Add back the cost of s|zext which is subtracted separately. 4703 Cost += TTIRef.getCastInstrCost( 4704 Ext->getOpcode(), Ext->getType(), EE->getType(), 4705 TTI::getCastContextHint(Ext), CostKind, Ext); 4706 continue; 4707 } 4708 } 4709 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4710 EE->getVectorOperandType(), Idx); 4711 } 4712 // Add a cost for subvector extracts/inserts if required. 4713 for (const auto &Data : ExtractVectorsTys) { 4714 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4715 unsigned NumElts = VecTy->getNumElements(); 4716 if (Data.second % NumElts == 0) 4717 continue; 4718 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4719 unsigned Idx = (Data.second / NumElts) * NumElts; 4720 unsigned EENumElts = EEVTy->getNumElements(); 4721 if (Idx + NumElts <= EENumElts) { 4722 Cost += 4723 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4724 EEVTy, None, Idx, VecTy); 4725 } else { 4726 // Need to round up the subvector type vectorization factor to avoid a 4727 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4728 // <= EENumElts. 4729 auto *SubVT = 4730 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4731 Cost += 4732 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4733 EEVTy, None, Idx, SubVT); 4734 } 4735 } else { 4736 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4737 VecTy, None, 0, EEVTy); 4738 } 4739 } 4740 }; 4741 if (E->State == TreeEntry::NeedToGather) { 4742 if (allConstant(VL)) 4743 return 0; 4744 if (isa<InsertElementInst>(VL[0])) 4745 return InstructionCost::getInvalid(); 4746 SmallVector<int> Mask; 4747 SmallVector<const TreeEntry *> Entries; 4748 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4749 isGatherShuffledEntry(E, Mask, Entries); 4750 if (Shuffle.hasValue()) { 4751 InstructionCost GatherCost = 0; 4752 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4753 // Perfect match in the graph, will reuse the previously vectorized 4754 // node. Cost is 0. 4755 LLVM_DEBUG( 4756 dbgs() 4757 << "SLP: perfect diamond match for gather bundle that starts with " 4758 << *VL.front() << ".\n"); 4759 if (NeedToShuffleReuses) 4760 GatherCost = 4761 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4762 FinalVecTy, E->ReuseShuffleIndices); 4763 } else { 4764 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4765 << " entries for bundle that starts with " 4766 << *VL.front() << ".\n"); 4767 // Detected that instead of gather we can emit a shuffle of single/two 4768 // previously vectorized nodes. Add the cost of the permutation rather 4769 // than gather. 4770 ::addMask(Mask, E->ReuseShuffleIndices); 4771 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4772 } 4773 return GatherCost; 4774 } 4775 if ((E->getOpcode() == Instruction::ExtractElement || 4776 all_of(E->Scalars, 4777 [](Value *V) { 4778 return isa<ExtractElementInst, UndefValue>(V); 4779 })) && 4780 allSameType(VL)) { 4781 // Check that gather of extractelements can be represented as just a 4782 // shuffle of a single/two vectors the scalars are extracted from. 4783 SmallVector<int> Mask; 4784 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4785 isFixedVectorShuffle(VL, Mask); 4786 if (ShuffleKind.hasValue()) { 4787 // Found the bunch of extractelement instructions that must be gathered 4788 // into a vector and can be represented as a permutation elements in a 4789 // single input vector or of 2 input vectors. 4790 InstructionCost Cost = 4791 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4792 AdjustExtractsCost(Cost); 4793 if (NeedToShuffleReuses) 4794 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4795 FinalVecTy, E->ReuseShuffleIndices); 4796 return Cost; 4797 } 4798 } 4799 if (isSplat(VL)) { 4800 // Found the broadcasting of the single scalar, calculate the cost as the 4801 // broadcast. 4802 assert(VecTy == FinalVecTy && 4803 "No reused scalars expected for broadcast."); 4804 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4805 } 4806 InstructionCost ReuseShuffleCost = 0; 4807 if (NeedToShuffleReuses) 4808 ReuseShuffleCost = TTI->getShuffleCost( 4809 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4810 // Improve gather cost for gather of loads, if we can group some of the 4811 // loads into vector loads. 4812 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4813 !E->isAltShuffle()) { 4814 BoUpSLP::ValueSet VectorizedLoads; 4815 unsigned StartIdx = 0; 4816 unsigned VF = VL.size() / 2; 4817 unsigned VectorizedCnt = 0; 4818 unsigned ScatterVectorizeCnt = 0; 4819 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4820 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4821 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4822 Cnt += VF) { 4823 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4824 if (!VectorizedLoads.count(Slice.front()) && 4825 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4826 SmallVector<Value *> PointerOps; 4827 OrdersType CurrentOrder; 4828 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4829 *SE, CurrentOrder, PointerOps); 4830 switch (LS) { 4831 case LoadsState::Vectorize: 4832 case LoadsState::ScatterVectorize: 4833 // Mark the vectorized loads so that we don't vectorize them 4834 // again. 4835 if (LS == LoadsState::Vectorize) 4836 ++VectorizedCnt; 4837 else 4838 ++ScatterVectorizeCnt; 4839 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4840 // If we vectorized initial block, no need to try to vectorize it 4841 // again. 4842 if (Cnt == StartIdx) 4843 StartIdx += VF; 4844 break; 4845 case LoadsState::Gather: 4846 break; 4847 } 4848 } 4849 } 4850 // Check if the whole array was vectorized already - exit. 4851 if (StartIdx >= VL.size()) 4852 break; 4853 // Found vectorizable parts - exit. 4854 if (!VectorizedLoads.empty()) 4855 break; 4856 } 4857 if (!VectorizedLoads.empty()) { 4858 InstructionCost GatherCost = 0; 4859 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4860 bool NeedInsertSubvectorAnalysis = 4861 !NumParts || (VL.size() / VF) > NumParts; 4862 // Get the cost for gathered loads. 4863 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4864 if (VectorizedLoads.contains(VL[I])) 4865 continue; 4866 GatherCost += getGatherCost(VL.slice(I, VF)); 4867 } 4868 // The cost for vectorized loads. 4869 InstructionCost ScalarsCost = 0; 4870 for (Value *V : VectorizedLoads) { 4871 auto *LI = cast<LoadInst>(V); 4872 ScalarsCost += TTI->getMemoryOpCost( 4873 Instruction::Load, LI->getType(), LI->getAlign(), 4874 LI->getPointerAddressSpace(), CostKind, LI); 4875 } 4876 auto *LI = cast<LoadInst>(E->getMainOp()); 4877 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4878 Align Alignment = LI->getAlign(); 4879 GatherCost += 4880 VectorizedCnt * 4881 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4882 LI->getPointerAddressSpace(), CostKind, LI); 4883 GatherCost += ScatterVectorizeCnt * 4884 TTI->getGatherScatterOpCost( 4885 Instruction::Load, LoadTy, LI->getPointerOperand(), 4886 /*VariableMask=*/false, Alignment, CostKind, LI); 4887 if (NeedInsertSubvectorAnalysis) { 4888 // Add the cost for the subvectors insert. 4889 for (int I = VF, E = VL.size(); I < E; I += VF) 4890 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4891 None, I, LoadTy); 4892 } 4893 return ReuseShuffleCost + GatherCost - ScalarsCost; 4894 } 4895 } 4896 return ReuseShuffleCost + getGatherCost(VL); 4897 } 4898 InstructionCost CommonCost = 0; 4899 SmallVector<int> Mask; 4900 if (!E->ReorderIndices.empty()) { 4901 SmallVector<int> NewMask; 4902 if (E->getOpcode() == Instruction::Store) { 4903 // For stores the order is actually a mask. 4904 NewMask.resize(E->ReorderIndices.size()); 4905 copy(E->ReorderIndices, NewMask.begin()); 4906 } else { 4907 inversePermutation(E->ReorderIndices, NewMask); 4908 } 4909 ::addMask(Mask, NewMask); 4910 } 4911 if (NeedToShuffleReuses) 4912 ::addMask(Mask, E->ReuseShuffleIndices); 4913 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4914 CommonCost = 4915 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4916 assert((E->State == TreeEntry::Vectorize || 4917 E->State == TreeEntry::ScatterVectorize) && 4918 "Unhandled state"); 4919 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4920 Instruction *VL0 = E->getMainOp(); 4921 unsigned ShuffleOrOp = 4922 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4923 switch (ShuffleOrOp) { 4924 case Instruction::PHI: 4925 return 0; 4926 4927 case Instruction::ExtractValue: 4928 case Instruction::ExtractElement: { 4929 // The common cost of removal ExtractElement/ExtractValue instructions + 4930 // the cost of shuffles, if required to resuffle the original vector. 4931 if (NeedToShuffleReuses) { 4932 unsigned Idx = 0; 4933 for (unsigned I : E->ReuseShuffleIndices) { 4934 if (ShuffleOrOp == Instruction::ExtractElement) { 4935 auto *EE = cast<ExtractElementInst>(VL[I]); 4936 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4937 EE->getVectorOperandType(), 4938 *getExtractIndex(EE)); 4939 } else { 4940 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4941 VecTy, Idx); 4942 ++Idx; 4943 } 4944 } 4945 Idx = EntryVF; 4946 for (Value *V : VL) { 4947 if (ShuffleOrOp == Instruction::ExtractElement) { 4948 auto *EE = cast<ExtractElementInst>(V); 4949 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4950 EE->getVectorOperandType(), 4951 *getExtractIndex(EE)); 4952 } else { 4953 --Idx; 4954 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4955 VecTy, Idx); 4956 } 4957 } 4958 } 4959 if (ShuffleOrOp == Instruction::ExtractValue) { 4960 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4961 auto *EI = cast<Instruction>(VL[I]); 4962 // Take credit for instruction that will become dead. 4963 if (EI->hasOneUse()) { 4964 Instruction *Ext = EI->user_back(); 4965 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4966 all_of(Ext->users(), 4967 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4968 // Use getExtractWithExtendCost() to calculate the cost of 4969 // extractelement/ext pair. 4970 CommonCost -= TTI->getExtractWithExtendCost( 4971 Ext->getOpcode(), Ext->getType(), VecTy, I); 4972 // Add back the cost of s|zext which is subtracted separately. 4973 CommonCost += TTI->getCastInstrCost( 4974 Ext->getOpcode(), Ext->getType(), EI->getType(), 4975 TTI::getCastContextHint(Ext), CostKind, Ext); 4976 continue; 4977 } 4978 } 4979 CommonCost -= 4980 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4981 } 4982 } else { 4983 AdjustExtractsCost(CommonCost); 4984 } 4985 return CommonCost; 4986 } 4987 case Instruction::InsertElement: { 4988 assert(E->ReuseShuffleIndices.empty() && 4989 "Unique insertelements only are expected."); 4990 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4991 4992 unsigned const NumElts = SrcVecTy->getNumElements(); 4993 unsigned const NumScalars = VL.size(); 4994 APInt DemandedElts = APInt::getZero(NumElts); 4995 // TODO: Add support for Instruction::InsertValue. 4996 SmallVector<int> Mask; 4997 if (!E->ReorderIndices.empty()) { 4998 inversePermutation(E->ReorderIndices, Mask); 4999 Mask.append(NumElts - NumScalars, UndefMaskElem); 5000 } else { 5001 Mask.assign(NumElts, UndefMaskElem); 5002 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5003 } 5004 unsigned Offset = *getInsertIndex(VL0, 0); 5005 bool IsIdentity = true; 5006 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5007 Mask.swap(PrevMask); 5008 for (unsigned I = 0; I < NumScalars; ++I) { 5009 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5010 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5011 continue; 5012 DemandedElts.setBit(*InsertIdx); 5013 IsIdentity &= *InsertIdx - Offset == I; 5014 Mask[*InsertIdx - Offset] = I; 5015 } 5016 assert(Offset < NumElts && "Failed to find vector index offset"); 5017 5018 InstructionCost Cost = 0; 5019 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5020 /*Insert*/ true, /*Extract*/ false); 5021 5022 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5023 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5024 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5025 Cost += TTI->getShuffleCost( 5026 TargetTransformInfo::SK_PermuteSingleSrc, 5027 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5028 } else if (!IsIdentity) { 5029 auto *FirstInsert = 5030 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5031 return !is_contained(E->Scalars, 5032 cast<Instruction>(V)->getOperand(0)); 5033 })); 5034 if (isUndefVector(FirstInsert->getOperand(0))) { 5035 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5036 } else { 5037 SmallVector<int> InsertMask(NumElts); 5038 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5039 for (unsigned I = 0; I < NumElts; I++) { 5040 if (Mask[I] != UndefMaskElem) 5041 InsertMask[Offset + I] = NumElts + I; 5042 } 5043 Cost += 5044 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5045 } 5046 } 5047 5048 return Cost; 5049 } 5050 case Instruction::ZExt: 5051 case Instruction::SExt: 5052 case Instruction::FPToUI: 5053 case Instruction::FPToSI: 5054 case Instruction::FPExt: 5055 case Instruction::PtrToInt: 5056 case Instruction::IntToPtr: 5057 case Instruction::SIToFP: 5058 case Instruction::UIToFP: 5059 case Instruction::Trunc: 5060 case Instruction::FPTrunc: 5061 case Instruction::BitCast: { 5062 Type *SrcTy = VL0->getOperand(0)->getType(); 5063 InstructionCost ScalarEltCost = 5064 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5065 TTI::getCastContextHint(VL0), CostKind, VL0); 5066 if (NeedToShuffleReuses) { 5067 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5068 } 5069 5070 // Calculate the cost of this instruction. 5071 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5072 5073 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5074 InstructionCost VecCost = 0; 5075 // Check if the values are candidates to demote. 5076 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5077 VecCost = CommonCost + TTI->getCastInstrCost( 5078 E->getOpcode(), VecTy, SrcVecTy, 5079 TTI::getCastContextHint(VL0), CostKind, VL0); 5080 } 5081 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5082 return VecCost - ScalarCost; 5083 } 5084 case Instruction::FCmp: 5085 case Instruction::ICmp: 5086 case Instruction::Select: { 5087 // Calculate the cost of this instruction. 5088 InstructionCost ScalarEltCost = 5089 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5090 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5091 if (NeedToShuffleReuses) { 5092 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5093 } 5094 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5095 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5096 5097 // Check if all entries in VL are either compares or selects with compares 5098 // as condition that have the same predicates. 5099 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5100 bool First = true; 5101 for (auto *V : VL) { 5102 CmpInst::Predicate CurrentPred; 5103 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5104 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5105 !match(V, MatchCmp)) || 5106 (!First && VecPred != CurrentPred)) { 5107 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5108 break; 5109 } 5110 First = false; 5111 VecPred = CurrentPred; 5112 } 5113 5114 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5115 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5116 // Check if it is possible and profitable to use min/max for selects in 5117 // VL. 5118 // 5119 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5120 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5121 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5122 {VecTy, VecTy}); 5123 InstructionCost IntrinsicCost = 5124 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5125 // If the selects are the only uses of the compares, they will be dead 5126 // and we can adjust the cost by removing their cost. 5127 if (IntrinsicAndUse.second) 5128 IntrinsicCost -= 5129 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5130 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5131 VecCost = std::min(VecCost, IntrinsicCost); 5132 } 5133 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5134 return CommonCost + VecCost - ScalarCost; 5135 } 5136 case Instruction::FNeg: 5137 case Instruction::Add: 5138 case Instruction::FAdd: 5139 case Instruction::Sub: 5140 case Instruction::FSub: 5141 case Instruction::Mul: 5142 case Instruction::FMul: 5143 case Instruction::UDiv: 5144 case Instruction::SDiv: 5145 case Instruction::FDiv: 5146 case Instruction::URem: 5147 case Instruction::SRem: 5148 case Instruction::FRem: 5149 case Instruction::Shl: 5150 case Instruction::LShr: 5151 case Instruction::AShr: 5152 case Instruction::And: 5153 case Instruction::Or: 5154 case Instruction::Xor: { 5155 // Certain instructions can be cheaper to vectorize if they have a 5156 // constant second vector operand. 5157 TargetTransformInfo::OperandValueKind Op1VK = 5158 TargetTransformInfo::OK_AnyValue; 5159 TargetTransformInfo::OperandValueKind Op2VK = 5160 TargetTransformInfo::OK_UniformConstantValue; 5161 TargetTransformInfo::OperandValueProperties Op1VP = 5162 TargetTransformInfo::OP_None; 5163 TargetTransformInfo::OperandValueProperties Op2VP = 5164 TargetTransformInfo::OP_PowerOf2; 5165 5166 // If all operands are exactly the same ConstantInt then set the 5167 // operand kind to OK_UniformConstantValue. 5168 // If instead not all operands are constants, then set the operand kind 5169 // to OK_AnyValue. If all operands are constants but not the same, 5170 // then set the operand kind to OK_NonUniformConstantValue. 5171 ConstantInt *CInt0 = nullptr; 5172 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5173 const Instruction *I = cast<Instruction>(VL[i]); 5174 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5175 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5176 if (!CInt) { 5177 Op2VK = TargetTransformInfo::OK_AnyValue; 5178 Op2VP = TargetTransformInfo::OP_None; 5179 break; 5180 } 5181 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5182 !CInt->getValue().isPowerOf2()) 5183 Op2VP = TargetTransformInfo::OP_None; 5184 if (i == 0) { 5185 CInt0 = CInt; 5186 continue; 5187 } 5188 if (CInt0 != CInt) 5189 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5190 } 5191 5192 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5193 InstructionCost ScalarEltCost = 5194 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5195 Op2VK, Op1VP, Op2VP, Operands, VL0); 5196 if (NeedToShuffleReuses) { 5197 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5198 } 5199 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5200 InstructionCost VecCost = 5201 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5202 Op2VK, Op1VP, Op2VP, Operands, VL0); 5203 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5204 return CommonCost + VecCost - ScalarCost; 5205 } 5206 case Instruction::GetElementPtr: { 5207 TargetTransformInfo::OperandValueKind Op1VK = 5208 TargetTransformInfo::OK_AnyValue; 5209 TargetTransformInfo::OperandValueKind Op2VK = 5210 TargetTransformInfo::OK_UniformConstantValue; 5211 5212 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5213 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5214 if (NeedToShuffleReuses) { 5215 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5216 } 5217 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5218 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5219 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5220 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5221 return CommonCost + VecCost - ScalarCost; 5222 } 5223 case Instruction::Load: { 5224 // Cost of wide load - cost of scalar loads. 5225 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5226 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5227 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5228 if (NeedToShuffleReuses) { 5229 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5230 } 5231 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5232 InstructionCost VecLdCost; 5233 if (E->State == TreeEntry::Vectorize) { 5234 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5235 CostKind, VL0); 5236 } else { 5237 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5238 Align CommonAlignment = Alignment; 5239 for (Value *V : VL) 5240 CommonAlignment = 5241 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5242 VecLdCost = TTI->getGatherScatterOpCost( 5243 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5244 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5245 } 5246 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5247 return CommonCost + VecLdCost - ScalarLdCost; 5248 } 5249 case Instruction::Store: { 5250 // We know that we can merge the stores. Calculate the cost. 5251 bool IsReorder = !E->ReorderIndices.empty(); 5252 auto *SI = 5253 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5254 Align Alignment = SI->getAlign(); 5255 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5256 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5257 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5258 InstructionCost VecStCost = TTI->getMemoryOpCost( 5259 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5260 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5261 return CommonCost + VecStCost - ScalarStCost; 5262 } 5263 case Instruction::Call: { 5264 CallInst *CI = cast<CallInst>(VL0); 5265 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5266 5267 // Calculate the cost of the scalar and vector calls. 5268 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5269 InstructionCost ScalarEltCost = 5270 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5271 if (NeedToShuffleReuses) { 5272 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5273 } 5274 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5275 5276 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5277 InstructionCost VecCallCost = 5278 std::min(VecCallCosts.first, VecCallCosts.second); 5279 5280 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5281 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5282 << " for " << *CI << "\n"); 5283 5284 return CommonCost + VecCallCost - ScalarCallCost; 5285 } 5286 case Instruction::ShuffleVector: { 5287 assert(E->isAltShuffle() && 5288 ((Instruction::isBinaryOp(E->getOpcode()) && 5289 Instruction::isBinaryOp(E->getAltOpcode())) || 5290 (Instruction::isCast(E->getOpcode()) && 5291 Instruction::isCast(E->getAltOpcode()))) && 5292 "Invalid Shuffle Vector Operand"); 5293 InstructionCost ScalarCost = 0; 5294 if (NeedToShuffleReuses) { 5295 for (unsigned Idx : E->ReuseShuffleIndices) { 5296 Instruction *I = cast<Instruction>(VL[Idx]); 5297 CommonCost -= TTI->getInstructionCost(I, CostKind); 5298 } 5299 for (Value *V : VL) { 5300 Instruction *I = cast<Instruction>(V); 5301 CommonCost += TTI->getInstructionCost(I, CostKind); 5302 } 5303 } 5304 for (Value *V : VL) { 5305 Instruction *I = cast<Instruction>(V); 5306 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5307 ScalarCost += TTI->getInstructionCost(I, CostKind); 5308 } 5309 // VecCost is equal to sum of the cost of creating 2 vectors 5310 // and the cost of creating shuffle. 5311 InstructionCost VecCost = 0; 5312 // Try to find the previous shuffle node with the same operands and same 5313 // main/alternate ops. 5314 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5315 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5316 if (TE.get() == E) 5317 break; 5318 if (TE->isAltShuffle() && 5319 ((TE->getOpcode() == E->getOpcode() && 5320 TE->getAltOpcode() == E->getAltOpcode()) || 5321 (TE->getOpcode() == E->getAltOpcode() && 5322 TE->getAltOpcode() == E->getOpcode())) && 5323 TE->hasEqualOperands(*E)) 5324 return true; 5325 } 5326 return false; 5327 }; 5328 if (TryFindNodeWithEqualOperands()) { 5329 LLVM_DEBUG({ 5330 dbgs() << "SLP: diamond match for alternate node found.\n"; 5331 E->dump(); 5332 }); 5333 // No need to add new vector costs here since we're going to reuse 5334 // same main/alternate vector ops, just do different shuffling. 5335 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5336 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5337 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5338 CostKind); 5339 } else { 5340 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5341 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5342 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5343 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5344 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5345 TTI::CastContextHint::None, CostKind); 5346 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5347 TTI::CastContextHint::None, CostKind); 5348 } 5349 5350 SmallVector<int> Mask; 5351 buildSuffleEntryMask( 5352 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5353 [E](Instruction *I) { 5354 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5355 return I->getOpcode() == E->getAltOpcode(); 5356 }, 5357 Mask); 5358 CommonCost = 5359 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5360 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5361 return CommonCost + VecCost - ScalarCost; 5362 } 5363 default: 5364 llvm_unreachable("Unknown instruction"); 5365 } 5366 } 5367 5368 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5369 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5370 << VectorizableTree.size() << " is fully vectorizable .\n"); 5371 5372 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5373 SmallVector<int> Mask; 5374 return TE->State == TreeEntry::NeedToGather && 5375 !any_of(TE->Scalars, 5376 [this](Value *V) { return EphValues.contains(V); }) && 5377 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5378 TE->Scalars.size() < Limit || 5379 ((TE->getOpcode() == Instruction::ExtractElement || 5380 all_of(TE->Scalars, 5381 [](Value *V) { 5382 return isa<ExtractElementInst, UndefValue>(V); 5383 })) && 5384 isFixedVectorShuffle(TE->Scalars, Mask)) || 5385 (TE->State == TreeEntry::NeedToGather && 5386 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5387 }; 5388 5389 // We only handle trees of heights 1 and 2. 5390 if (VectorizableTree.size() == 1 && 5391 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5392 (ForReduction && 5393 AreVectorizableGathers(VectorizableTree[0].get(), 5394 VectorizableTree[0]->Scalars.size()) && 5395 VectorizableTree[0]->getVectorFactor() > 2))) 5396 return true; 5397 5398 if (VectorizableTree.size() != 2) 5399 return false; 5400 5401 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5402 // with the second gather nodes if they have less scalar operands rather than 5403 // the initial tree element (may be profitable to shuffle the second gather) 5404 // or they are extractelements, which form shuffle. 5405 SmallVector<int> Mask; 5406 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5407 AreVectorizableGathers(VectorizableTree[1].get(), 5408 VectorizableTree[0]->Scalars.size())) 5409 return true; 5410 5411 // Gathering cost would be too much for tiny trees. 5412 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5413 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5414 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5415 return false; 5416 5417 return true; 5418 } 5419 5420 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5421 TargetTransformInfo *TTI, 5422 bool MustMatchOrInst) { 5423 // Look past the root to find a source value. Arbitrarily follow the 5424 // path through operand 0 of any 'or'. Also, peek through optional 5425 // shift-left-by-multiple-of-8-bits. 5426 Value *ZextLoad = Root; 5427 const APInt *ShAmtC; 5428 bool FoundOr = false; 5429 while (!isa<ConstantExpr>(ZextLoad) && 5430 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5431 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5432 ShAmtC->urem(8) == 0))) { 5433 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5434 ZextLoad = BinOp->getOperand(0); 5435 if (BinOp->getOpcode() == Instruction::Or) 5436 FoundOr = true; 5437 } 5438 // Check if the input is an extended load of the required or/shift expression. 5439 Value *Load; 5440 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5441 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5442 return false; 5443 5444 // Require that the total load bit width is a legal integer type. 5445 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5446 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5447 Type *SrcTy = Load->getType(); 5448 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5449 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5450 return false; 5451 5452 // Everything matched - assume that we can fold the whole sequence using 5453 // load combining. 5454 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5455 << *(cast<Instruction>(Root)) << "\n"); 5456 5457 return true; 5458 } 5459 5460 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5461 if (RdxKind != RecurKind::Or) 5462 return false; 5463 5464 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5465 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5466 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5467 /* MatchOr */ false); 5468 } 5469 5470 bool BoUpSLP::isLoadCombineCandidate() const { 5471 // Peek through a final sequence of stores and check if all operations are 5472 // likely to be load-combined. 5473 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5474 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5475 Value *X; 5476 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5477 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5478 return false; 5479 } 5480 return true; 5481 } 5482 5483 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5484 // No need to vectorize inserts of gathered values. 5485 if (VectorizableTree.size() == 2 && 5486 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5487 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5488 return true; 5489 5490 // We can vectorize the tree if its size is greater than or equal to the 5491 // minimum size specified by the MinTreeSize command line option. 5492 if (VectorizableTree.size() >= MinTreeSize) 5493 return false; 5494 5495 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5496 // can vectorize it if we can prove it fully vectorizable. 5497 if (isFullyVectorizableTinyTree(ForReduction)) 5498 return false; 5499 5500 assert(VectorizableTree.empty() 5501 ? ExternalUses.empty() 5502 : true && "We shouldn't have any external users"); 5503 5504 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5505 // vectorizable. 5506 return true; 5507 } 5508 5509 InstructionCost BoUpSLP::getSpillCost() const { 5510 // Walk from the bottom of the tree to the top, tracking which values are 5511 // live. When we see a call instruction that is not part of our tree, 5512 // query TTI to see if there is a cost to keeping values live over it 5513 // (for example, if spills and fills are required). 5514 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5515 InstructionCost Cost = 0; 5516 5517 SmallPtrSet<Instruction*, 4> LiveValues; 5518 Instruction *PrevInst = nullptr; 5519 5520 // The entries in VectorizableTree are not necessarily ordered by their 5521 // position in basic blocks. Collect them and order them by dominance so later 5522 // instructions are guaranteed to be visited first. For instructions in 5523 // different basic blocks, we only scan to the beginning of the block, so 5524 // their order does not matter, as long as all instructions in a basic block 5525 // are grouped together. Using dominance ensures a deterministic order. 5526 SmallVector<Instruction *, 16> OrderedScalars; 5527 for (const auto &TEPtr : VectorizableTree) { 5528 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5529 if (!Inst) 5530 continue; 5531 OrderedScalars.push_back(Inst); 5532 } 5533 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5534 auto *NodeA = DT->getNode(A->getParent()); 5535 auto *NodeB = DT->getNode(B->getParent()); 5536 assert(NodeA && "Should only process reachable instructions"); 5537 assert(NodeB && "Should only process reachable instructions"); 5538 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5539 "Different nodes should have different DFS numbers"); 5540 if (NodeA != NodeB) 5541 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5542 return B->comesBefore(A); 5543 }); 5544 5545 for (Instruction *Inst : OrderedScalars) { 5546 if (!PrevInst) { 5547 PrevInst = Inst; 5548 continue; 5549 } 5550 5551 // Update LiveValues. 5552 LiveValues.erase(PrevInst); 5553 for (auto &J : PrevInst->operands()) { 5554 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5555 LiveValues.insert(cast<Instruction>(&*J)); 5556 } 5557 5558 LLVM_DEBUG({ 5559 dbgs() << "SLP: #LV: " << LiveValues.size(); 5560 for (auto *X : LiveValues) 5561 dbgs() << " " << X->getName(); 5562 dbgs() << ", Looking at "; 5563 Inst->dump(); 5564 }); 5565 5566 // Now find the sequence of instructions between PrevInst and Inst. 5567 unsigned NumCalls = 0; 5568 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5569 PrevInstIt = 5570 PrevInst->getIterator().getReverse(); 5571 while (InstIt != PrevInstIt) { 5572 if (PrevInstIt == PrevInst->getParent()->rend()) { 5573 PrevInstIt = Inst->getParent()->rbegin(); 5574 continue; 5575 } 5576 5577 // Debug information does not impact spill cost. 5578 if ((isa<CallInst>(&*PrevInstIt) && 5579 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5580 &*PrevInstIt != PrevInst) 5581 NumCalls++; 5582 5583 ++PrevInstIt; 5584 } 5585 5586 if (NumCalls) { 5587 SmallVector<Type*, 4> V; 5588 for (auto *II : LiveValues) { 5589 auto *ScalarTy = II->getType(); 5590 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5591 ScalarTy = VectorTy->getElementType(); 5592 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5593 } 5594 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5595 } 5596 5597 PrevInst = Inst; 5598 } 5599 5600 return Cost; 5601 } 5602 5603 /// Check if two insertelement instructions are from the same buildvector. 5604 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5605 InsertElementInst *V) { 5606 // Instructions must be from the same basic blocks. 5607 if (VU->getParent() != V->getParent()) 5608 return false; 5609 // Checks if 2 insertelements are from the same buildvector. 5610 if (VU->getType() != V->getType()) 5611 return false; 5612 // Multiple used inserts are separate nodes. 5613 if (!VU->hasOneUse() && !V->hasOneUse()) 5614 return false; 5615 auto *IE1 = VU; 5616 auto *IE2 = V; 5617 // Go through the vector operand of insertelement instructions trying to find 5618 // either VU as the original vector for IE2 or V as the original vector for 5619 // IE1. 5620 do { 5621 if (IE2 == VU || IE1 == V) 5622 return true; 5623 if (IE1) { 5624 if (IE1 != VU && !IE1->hasOneUse()) 5625 IE1 = nullptr; 5626 else 5627 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5628 } 5629 if (IE2) { 5630 if (IE2 != V && !IE2->hasOneUse()) 5631 IE2 = nullptr; 5632 else 5633 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5634 } 5635 } while (IE1 || IE2); 5636 return false; 5637 } 5638 5639 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5640 InstructionCost Cost = 0; 5641 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5642 << VectorizableTree.size() << ".\n"); 5643 5644 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5645 5646 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5647 TreeEntry &TE = *VectorizableTree[I].get(); 5648 5649 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5650 Cost += C; 5651 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5652 << " for bundle that starts with " << *TE.Scalars[0] 5653 << ".\n" 5654 << "SLP: Current total cost = " << Cost << "\n"); 5655 } 5656 5657 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5658 InstructionCost ExtractCost = 0; 5659 SmallVector<unsigned> VF; 5660 SmallVector<SmallVector<int>> ShuffleMask; 5661 SmallVector<Value *> FirstUsers; 5662 SmallVector<APInt> DemandedElts; 5663 for (ExternalUser &EU : ExternalUses) { 5664 // We only add extract cost once for the same scalar. 5665 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5666 !ExtractCostCalculated.insert(EU.Scalar).second) 5667 continue; 5668 5669 // Uses by ephemeral values are free (because the ephemeral value will be 5670 // removed prior to code generation, and so the extraction will be 5671 // removed as well). 5672 if (EphValues.count(EU.User)) 5673 continue; 5674 5675 // No extract cost for vector "scalar" 5676 if (isa<FixedVectorType>(EU.Scalar->getType())) 5677 continue; 5678 5679 // Already counted the cost for external uses when tried to adjust the cost 5680 // for extractelements, no need to add it again. 5681 if (isa<ExtractElementInst>(EU.Scalar)) 5682 continue; 5683 5684 // If found user is an insertelement, do not calculate extract cost but try 5685 // to detect it as a final shuffled/identity match. 5686 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5687 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5688 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5689 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5690 continue; 5691 auto *It = find_if(FirstUsers, [VU](Value *V) { 5692 return areTwoInsertFromSameBuildVector(VU, 5693 cast<InsertElementInst>(V)); 5694 }); 5695 int VecId = -1; 5696 if (It == FirstUsers.end()) { 5697 VF.push_back(FTy->getNumElements()); 5698 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5699 // Find the insertvector, vectorized in tree, if any. 5700 Value *Base = VU; 5701 while (isa<InsertElementInst>(Base)) { 5702 // Build the mask for the vectorized insertelement instructions. 5703 if (const TreeEntry *E = getTreeEntry(Base)) { 5704 VU = cast<InsertElementInst>(Base); 5705 do { 5706 int Idx = E->findLaneForValue(Base); 5707 ShuffleMask.back()[Idx] = Idx; 5708 Base = cast<InsertElementInst>(Base)->getOperand(0); 5709 } while (E == getTreeEntry(Base)); 5710 break; 5711 } 5712 Base = cast<InsertElementInst>(Base)->getOperand(0); 5713 } 5714 FirstUsers.push_back(VU); 5715 DemandedElts.push_back(APInt::getZero(VF.back())); 5716 VecId = FirstUsers.size() - 1; 5717 } else { 5718 VecId = std::distance(FirstUsers.begin(), It); 5719 } 5720 int Idx = *InsertIdx; 5721 ShuffleMask[VecId][Idx] = EU.Lane; 5722 DemandedElts[VecId].setBit(Idx); 5723 continue; 5724 } 5725 } 5726 5727 // If we plan to rewrite the tree in a smaller type, we will need to sign 5728 // extend the extracted value back to the original type. Here, we account 5729 // for the extract and the added cost of the sign extend if needed. 5730 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5731 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5732 if (MinBWs.count(ScalarRoot)) { 5733 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5734 auto Extend = 5735 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5736 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5737 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5738 VecTy, EU.Lane); 5739 } else { 5740 ExtractCost += 5741 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5742 } 5743 } 5744 5745 InstructionCost SpillCost = getSpillCost(); 5746 Cost += SpillCost + ExtractCost; 5747 if (FirstUsers.size() == 1) { 5748 int Limit = ShuffleMask.front().size() * 2; 5749 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5750 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5751 InstructionCost C = TTI->getShuffleCost( 5752 TTI::SK_PermuteSingleSrc, 5753 cast<FixedVectorType>(FirstUsers.front()->getType()), 5754 ShuffleMask.front()); 5755 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5756 << " for final shuffle of insertelement external users " 5757 << *VectorizableTree.front()->Scalars.front() << ".\n" 5758 << "SLP: Current total cost = " << Cost << "\n"); 5759 Cost += C; 5760 } 5761 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5762 cast<FixedVectorType>(FirstUsers.front()->getType()), 5763 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5764 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5765 << " for insertelements gather.\n" 5766 << "SLP: Current total cost = " << Cost << "\n"); 5767 Cost -= InsertCost; 5768 } else if (FirstUsers.size() >= 2) { 5769 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5770 // Combined masks of the first 2 vectors. 5771 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5772 copy(ShuffleMask.front(), CombinedMask.begin()); 5773 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5774 auto *VecTy = FixedVectorType::get( 5775 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5776 MaxVF); 5777 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5778 if (ShuffleMask[1][I] != UndefMaskElem) { 5779 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5780 CombinedDemandedElts.setBit(I); 5781 } 5782 } 5783 InstructionCost C = 5784 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5785 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5786 << " for final shuffle of vector node and external " 5787 "insertelement users " 5788 << *VectorizableTree.front()->Scalars.front() << ".\n" 5789 << "SLP: Current total cost = " << Cost << "\n"); 5790 Cost += C; 5791 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5792 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5793 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5794 << " for insertelements gather.\n" 5795 << "SLP: Current total cost = " << Cost << "\n"); 5796 Cost -= InsertCost; 5797 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5798 // Other elements - permutation of 2 vectors (the initial one and the 5799 // next Ith incoming vector). 5800 unsigned VF = ShuffleMask[I].size(); 5801 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5802 int Mask = ShuffleMask[I][Idx]; 5803 if (Mask != UndefMaskElem) 5804 CombinedMask[Idx] = MaxVF + Mask; 5805 else if (CombinedMask[Idx] != UndefMaskElem) 5806 CombinedMask[Idx] = Idx; 5807 } 5808 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5809 if (CombinedMask[Idx] != UndefMaskElem) 5810 CombinedMask[Idx] = Idx; 5811 InstructionCost C = 5812 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5813 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5814 << " for final shuffle of vector node and external " 5815 "insertelement users " 5816 << *VectorizableTree.front()->Scalars.front() << ".\n" 5817 << "SLP: Current total cost = " << Cost << "\n"); 5818 Cost += C; 5819 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5820 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5821 /*Insert*/ true, /*Extract*/ false); 5822 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5823 << " for insertelements gather.\n" 5824 << "SLP: Current total cost = " << Cost << "\n"); 5825 Cost -= InsertCost; 5826 } 5827 } 5828 5829 #ifndef NDEBUG 5830 SmallString<256> Str; 5831 { 5832 raw_svector_ostream OS(Str); 5833 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5834 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5835 << "SLP: Total Cost = " << Cost << ".\n"; 5836 } 5837 LLVM_DEBUG(dbgs() << Str); 5838 if (ViewSLPTree) 5839 ViewGraph(this, "SLP" + F->getName(), false, Str); 5840 #endif 5841 5842 return Cost; 5843 } 5844 5845 Optional<TargetTransformInfo::ShuffleKind> 5846 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5847 SmallVectorImpl<const TreeEntry *> &Entries) { 5848 // TODO: currently checking only for Scalars in the tree entry, need to count 5849 // reused elements too for better cost estimation. 5850 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5851 Entries.clear(); 5852 // Build a lists of values to tree entries. 5853 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5854 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5855 if (EntryPtr.get() == TE) 5856 break; 5857 if (EntryPtr->State != TreeEntry::NeedToGather) 5858 continue; 5859 for (Value *V : EntryPtr->Scalars) 5860 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5861 } 5862 // Find all tree entries used by the gathered values. If no common entries 5863 // found - not a shuffle. 5864 // Here we build a set of tree nodes for each gathered value and trying to 5865 // find the intersection between these sets. If we have at least one common 5866 // tree node for each gathered value - we have just a permutation of the 5867 // single vector. If we have 2 different sets, we're in situation where we 5868 // have a permutation of 2 input vectors. 5869 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5870 DenseMap<Value *, int> UsedValuesEntry; 5871 for (Value *V : TE->Scalars) { 5872 if (isa<UndefValue>(V)) 5873 continue; 5874 // Build a list of tree entries where V is used. 5875 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5876 auto It = ValueToTEs.find(V); 5877 if (It != ValueToTEs.end()) 5878 VToTEs = It->second; 5879 if (const TreeEntry *VTE = getTreeEntry(V)) 5880 VToTEs.insert(VTE); 5881 if (VToTEs.empty()) 5882 return None; 5883 if (UsedTEs.empty()) { 5884 // The first iteration, just insert the list of nodes to vector. 5885 UsedTEs.push_back(VToTEs); 5886 } else { 5887 // Need to check if there are any previously used tree nodes which use V. 5888 // If there are no such nodes, consider that we have another one input 5889 // vector. 5890 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5891 unsigned Idx = 0; 5892 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5893 // Do we have a non-empty intersection of previously listed tree entries 5894 // and tree entries using current V? 5895 set_intersect(VToTEs, Set); 5896 if (!VToTEs.empty()) { 5897 // Yes, write the new subset and continue analysis for the next 5898 // scalar. 5899 Set.swap(VToTEs); 5900 break; 5901 } 5902 VToTEs = SavedVToTEs; 5903 ++Idx; 5904 } 5905 // No non-empty intersection found - need to add a second set of possible 5906 // source vectors. 5907 if (Idx == UsedTEs.size()) { 5908 // If the number of input vectors is greater than 2 - not a permutation, 5909 // fallback to the regular gather. 5910 if (UsedTEs.size() == 2) 5911 return None; 5912 UsedTEs.push_back(SavedVToTEs); 5913 Idx = UsedTEs.size() - 1; 5914 } 5915 UsedValuesEntry.try_emplace(V, Idx); 5916 } 5917 } 5918 5919 unsigned VF = 0; 5920 if (UsedTEs.size() == 1) { 5921 // Try to find the perfect match in another gather node at first. 5922 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5923 return EntryPtr->isSame(TE->Scalars); 5924 }); 5925 if (It != UsedTEs.front().end()) { 5926 Entries.push_back(*It); 5927 std::iota(Mask.begin(), Mask.end(), 0); 5928 return TargetTransformInfo::SK_PermuteSingleSrc; 5929 } 5930 // No perfect match, just shuffle, so choose the first tree node. 5931 Entries.push_back(*UsedTEs.front().begin()); 5932 } else { 5933 // Try to find nodes with the same vector factor. 5934 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5935 DenseMap<int, const TreeEntry *> VFToTE; 5936 for (const TreeEntry *TE : UsedTEs.front()) 5937 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5938 for (const TreeEntry *TE : UsedTEs.back()) { 5939 auto It = VFToTE.find(TE->getVectorFactor()); 5940 if (It != VFToTE.end()) { 5941 VF = It->first; 5942 Entries.push_back(It->second); 5943 Entries.push_back(TE); 5944 break; 5945 } 5946 } 5947 // No 2 source vectors with the same vector factor - give up and do regular 5948 // gather. 5949 if (Entries.empty()) 5950 return None; 5951 } 5952 5953 // Build a shuffle mask for better cost estimation and vector emission. 5954 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5955 Value *V = TE->Scalars[I]; 5956 if (isa<UndefValue>(V)) 5957 continue; 5958 unsigned Idx = UsedValuesEntry.lookup(V); 5959 const TreeEntry *VTE = Entries[Idx]; 5960 int FoundLane = VTE->findLaneForValue(V); 5961 Mask[I] = Idx * VF + FoundLane; 5962 // Extra check required by isSingleSourceMaskImpl function (called by 5963 // ShuffleVectorInst::isSingleSourceMask). 5964 if (Mask[I] >= 2 * E) 5965 return None; 5966 } 5967 switch (Entries.size()) { 5968 case 1: 5969 return TargetTransformInfo::SK_PermuteSingleSrc; 5970 case 2: 5971 return TargetTransformInfo::SK_PermuteTwoSrc; 5972 default: 5973 break; 5974 } 5975 return None; 5976 } 5977 5978 InstructionCost 5979 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5980 const DenseSet<unsigned> &ShuffledIndices, 5981 bool NeedToShuffle) const { 5982 unsigned NumElts = Ty->getNumElements(); 5983 APInt DemandedElts = APInt::getZero(NumElts); 5984 for (unsigned I = 0; I < NumElts; ++I) 5985 if (!ShuffledIndices.count(I)) 5986 DemandedElts.setBit(I); 5987 InstructionCost Cost = 5988 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5989 /*Extract*/ false); 5990 if (NeedToShuffle) 5991 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5992 return Cost; 5993 } 5994 5995 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5996 // Find the type of the operands in VL. 5997 Type *ScalarTy = VL[0]->getType(); 5998 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5999 ScalarTy = SI->getValueOperand()->getType(); 6000 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6001 bool DuplicateNonConst = false; 6002 // Find the cost of inserting/extracting values from the vector. 6003 // Check if the same elements are inserted several times and count them as 6004 // shuffle candidates. 6005 DenseSet<unsigned> ShuffledElements; 6006 DenseSet<Value *> UniqueElements; 6007 // Iterate in reverse order to consider insert elements with the high cost. 6008 for (unsigned I = VL.size(); I > 0; --I) { 6009 unsigned Idx = I - 1; 6010 // No need to shuffle duplicates for constants. 6011 if (isConstant(VL[Idx])) { 6012 ShuffledElements.insert(Idx); 6013 continue; 6014 } 6015 if (!UniqueElements.insert(VL[Idx]).second) { 6016 DuplicateNonConst = true; 6017 ShuffledElements.insert(Idx); 6018 } 6019 } 6020 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6021 } 6022 6023 // Perform operand reordering on the instructions in VL and return the reordered 6024 // operands in Left and Right. 6025 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6026 SmallVectorImpl<Value *> &Left, 6027 SmallVectorImpl<Value *> &Right, 6028 const DataLayout &DL, 6029 ScalarEvolution &SE, 6030 const BoUpSLP &R) { 6031 if (VL.empty()) 6032 return; 6033 VLOperands Ops(VL, DL, SE, R); 6034 // Reorder the operands in place. 6035 Ops.reorder(); 6036 Left = Ops.getVL(0); 6037 Right = Ops.getVL(1); 6038 } 6039 6040 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6041 // Get the basic block this bundle is in. All instructions in the bundle 6042 // should be in this block. 6043 auto *Front = E->getMainOp(); 6044 auto *BB = Front->getParent(); 6045 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6046 auto *I = cast<Instruction>(V); 6047 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6048 })); 6049 6050 // The last instruction in the bundle in program order. 6051 Instruction *LastInst = nullptr; 6052 6053 // Find the last instruction. The common case should be that BB has been 6054 // scheduled, and the last instruction is VL.back(). So we start with 6055 // VL.back() and iterate over schedule data until we reach the end of the 6056 // bundle. The end of the bundle is marked by null ScheduleData. 6057 if (BlocksSchedules.count(BB)) { 6058 auto *Bundle = 6059 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6060 if (Bundle && Bundle->isPartOfBundle()) 6061 for (; Bundle; Bundle = Bundle->NextInBundle) 6062 if (Bundle->OpValue == Bundle->Inst) 6063 LastInst = Bundle->Inst; 6064 } 6065 6066 // LastInst can still be null at this point if there's either not an entry 6067 // for BB in BlocksSchedules or there's no ScheduleData available for 6068 // VL.back(). This can be the case if buildTree_rec aborts for various 6069 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6070 // size is reached, etc.). ScheduleData is initialized in the scheduling 6071 // "dry-run". 6072 // 6073 // If this happens, we can still find the last instruction by brute force. We 6074 // iterate forwards from Front (inclusive) until we either see all 6075 // instructions in the bundle or reach the end of the block. If Front is the 6076 // last instruction in program order, LastInst will be set to Front, and we 6077 // will visit all the remaining instructions in the block. 6078 // 6079 // One of the reasons we exit early from buildTree_rec is to place an upper 6080 // bound on compile-time. Thus, taking an additional compile-time hit here is 6081 // not ideal. However, this should be exceedingly rare since it requires that 6082 // we both exit early from buildTree_rec and that the bundle be out-of-order 6083 // (causing us to iterate all the way to the end of the block). 6084 if (!LastInst) { 6085 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6086 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6087 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6088 LastInst = &I; 6089 if (Bundle.empty()) 6090 break; 6091 } 6092 } 6093 assert(LastInst && "Failed to find last instruction in bundle"); 6094 6095 // Set the insertion point after the last instruction in the bundle. Set the 6096 // debug location to Front. 6097 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6098 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6099 } 6100 6101 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6102 // List of instructions/lanes from current block and/or the blocks which are 6103 // part of the current loop. These instructions will be inserted at the end to 6104 // make it possible to optimize loops and hoist invariant instructions out of 6105 // the loops body with better chances for success. 6106 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6107 SmallSet<int, 4> PostponedIndices; 6108 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6109 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6110 SmallPtrSet<BasicBlock *, 4> Visited; 6111 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6112 InsertBB = InsertBB->getSinglePredecessor(); 6113 return InsertBB && InsertBB == InstBB; 6114 }; 6115 for (int I = 0, E = VL.size(); I < E; ++I) { 6116 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6117 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6118 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6119 PostponedIndices.insert(I).second) 6120 PostponedInsts.emplace_back(Inst, I); 6121 } 6122 6123 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6124 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6125 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6126 if (!InsElt) 6127 return Vec; 6128 GatherShuffleSeq.insert(InsElt); 6129 CSEBlocks.insert(InsElt->getParent()); 6130 // Add to our 'need-to-extract' list. 6131 if (TreeEntry *Entry = getTreeEntry(V)) { 6132 // Find which lane we need to extract. 6133 unsigned FoundLane = Entry->findLaneForValue(V); 6134 ExternalUses.emplace_back(V, InsElt, FoundLane); 6135 } 6136 return Vec; 6137 }; 6138 Value *Val0 = 6139 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6140 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6141 Value *Vec = PoisonValue::get(VecTy); 6142 SmallVector<int> NonConsts; 6143 // Insert constant values at first. 6144 for (int I = 0, E = VL.size(); I < E; ++I) { 6145 if (PostponedIndices.contains(I)) 6146 continue; 6147 if (!isConstant(VL[I])) { 6148 NonConsts.push_back(I); 6149 continue; 6150 } 6151 Vec = CreateInsertElement(Vec, VL[I], I); 6152 } 6153 // Insert non-constant values. 6154 for (int I : NonConsts) 6155 Vec = CreateInsertElement(Vec, VL[I], I); 6156 // Append instructions, which are/may be part of the loop, in the end to make 6157 // it possible to hoist non-loop-based instructions. 6158 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6159 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6160 6161 return Vec; 6162 } 6163 6164 namespace { 6165 /// Merges shuffle masks and emits final shuffle instruction, if required. 6166 class ShuffleInstructionBuilder { 6167 IRBuilderBase &Builder; 6168 const unsigned VF = 0; 6169 bool IsFinalized = false; 6170 SmallVector<int, 4> Mask; 6171 /// Holds all of the instructions that we gathered. 6172 SetVector<Instruction *> &GatherShuffleSeq; 6173 /// A list of blocks that we are going to CSE. 6174 SetVector<BasicBlock *> &CSEBlocks; 6175 6176 public: 6177 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6178 SetVector<Instruction *> &GatherShuffleSeq, 6179 SetVector<BasicBlock *> &CSEBlocks) 6180 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6181 CSEBlocks(CSEBlocks) {} 6182 6183 /// Adds a mask, inverting it before applying. 6184 void addInversedMask(ArrayRef<unsigned> SubMask) { 6185 if (SubMask.empty()) 6186 return; 6187 SmallVector<int, 4> NewMask; 6188 inversePermutation(SubMask, NewMask); 6189 addMask(NewMask); 6190 } 6191 6192 /// Functions adds masks, merging them into single one. 6193 void addMask(ArrayRef<unsigned> SubMask) { 6194 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6195 addMask(NewMask); 6196 } 6197 6198 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6199 6200 Value *finalize(Value *V) { 6201 IsFinalized = true; 6202 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6203 if (VF == ValueVF && Mask.empty()) 6204 return V; 6205 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6206 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6207 addMask(NormalizedMask); 6208 6209 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6210 return V; 6211 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6212 if (auto *I = dyn_cast<Instruction>(Vec)) { 6213 GatherShuffleSeq.insert(I); 6214 CSEBlocks.insert(I->getParent()); 6215 } 6216 return Vec; 6217 } 6218 6219 ~ShuffleInstructionBuilder() { 6220 assert((IsFinalized || Mask.empty()) && 6221 "Shuffle construction must be finalized."); 6222 } 6223 }; 6224 } // namespace 6225 6226 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6227 unsigned VF = VL.size(); 6228 InstructionsState S = getSameOpcode(VL); 6229 if (S.getOpcode()) { 6230 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6231 if (E->isSame(VL)) { 6232 Value *V = vectorizeTree(E); 6233 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6234 if (!E->ReuseShuffleIndices.empty()) { 6235 // Reshuffle to get only unique values. 6236 // If some of the scalars are duplicated in the vectorization tree 6237 // entry, we do not vectorize them but instead generate a mask for 6238 // the reuses. But if there are several users of the same entry, 6239 // they may have different vectorization factors. This is especially 6240 // important for PHI nodes. In this case, we need to adapt the 6241 // resulting instruction for the user vectorization factor and have 6242 // to reshuffle it again to take only unique elements of the vector. 6243 // Without this code the function incorrectly returns reduced vector 6244 // instruction with the same elements, not with the unique ones. 6245 6246 // block: 6247 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6248 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6249 // ... (use %2) 6250 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6251 // br %block 6252 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6253 SmallSet<int, 4> UsedIdxs; 6254 int Pos = 0; 6255 int Sz = VL.size(); 6256 for (int Idx : E->ReuseShuffleIndices) { 6257 if (Idx != Sz && Idx != UndefMaskElem && 6258 UsedIdxs.insert(Idx).second) 6259 UniqueIdxs[Idx] = Pos; 6260 ++Pos; 6261 } 6262 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6263 "less than original vector size."); 6264 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6265 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6266 } else { 6267 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6268 "Expected vectorization factor less " 6269 "than original vector size."); 6270 SmallVector<int> UniformMask(VF, 0); 6271 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6272 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6273 } 6274 if (auto *I = dyn_cast<Instruction>(V)) { 6275 GatherShuffleSeq.insert(I); 6276 CSEBlocks.insert(I->getParent()); 6277 } 6278 } 6279 return V; 6280 } 6281 } 6282 6283 // Check that every instruction appears once in this bundle. 6284 SmallVector<int> ReuseShuffleIndicies; 6285 SmallVector<Value *> UniqueValues; 6286 if (VL.size() > 2) { 6287 DenseMap<Value *, unsigned> UniquePositions; 6288 unsigned NumValues = 6289 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6290 return !isa<UndefValue>(V); 6291 }).base()); 6292 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6293 int UniqueVals = 0; 6294 for (Value *V : VL.drop_back(VL.size() - VF)) { 6295 if (isa<UndefValue>(V)) { 6296 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6297 continue; 6298 } 6299 if (isConstant(V)) { 6300 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6301 UniqueValues.emplace_back(V); 6302 continue; 6303 } 6304 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6305 ReuseShuffleIndicies.emplace_back(Res.first->second); 6306 if (Res.second) { 6307 UniqueValues.emplace_back(V); 6308 ++UniqueVals; 6309 } 6310 } 6311 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6312 // Emit pure splat vector. 6313 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6314 UndefMaskElem); 6315 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6316 ReuseShuffleIndicies.clear(); 6317 UniqueValues.clear(); 6318 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6319 } 6320 UniqueValues.append(VF - UniqueValues.size(), 6321 PoisonValue::get(VL[0]->getType())); 6322 VL = UniqueValues; 6323 } 6324 6325 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6326 CSEBlocks); 6327 Value *Vec = gather(VL); 6328 if (!ReuseShuffleIndicies.empty()) { 6329 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6330 Vec = ShuffleBuilder.finalize(Vec); 6331 } 6332 return Vec; 6333 } 6334 6335 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6336 IRBuilder<>::InsertPointGuard Guard(Builder); 6337 6338 if (E->VectorizedValue) { 6339 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6340 return E->VectorizedValue; 6341 } 6342 6343 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6344 unsigned VF = E->getVectorFactor(); 6345 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6346 CSEBlocks); 6347 if (E->State == TreeEntry::NeedToGather) { 6348 if (E->getMainOp()) 6349 setInsertPointAfterBundle(E); 6350 Value *Vec; 6351 SmallVector<int> Mask; 6352 SmallVector<const TreeEntry *> Entries; 6353 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6354 isGatherShuffledEntry(E, Mask, Entries); 6355 if (Shuffle.hasValue()) { 6356 assert((Entries.size() == 1 || Entries.size() == 2) && 6357 "Expected shuffle of 1 or 2 entries."); 6358 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6359 Entries.back()->VectorizedValue, Mask); 6360 if (auto *I = dyn_cast<Instruction>(Vec)) { 6361 GatherShuffleSeq.insert(I); 6362 CSEBlocks.insert(I->getParent()); 6363 } 6364 } else { 6365 Vec = gather(E->Scalars); 6366 } 6367 if (NeedToShuffleReuses) { 6368 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6369 Vec = ShuffleBuilder.finalize(Vec); 6370 } 6371 E->VectorizedValue = Vec; 6372 return Vec; 6373 } 6374 6375 assert((E->State == TreeEntry::Vectorize || 6376 E->State == TreeEntry::ScatterVectorize) && 6377 "Unhandled state"); 6378 unsigned ShuffleOrOp = 6379 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6380 Instruction *VL0 = E->getMainOp(); 6381 Type *ScalarTy = VL0->getType(); 6382 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6383 ScalarTy = Store->getValueOperand()->getType(); 6384 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6385 ScalarTy = IE->getOperand(1)->getType(); 6386 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6387 switch (ShuffleOrOp) { 6388 case Instruction::PHI: { 6389 assert( 6390 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6391 "PHI reordering is free."); 6392 auto *PH = cast<PHINode>(VL0); 6393 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6394 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6395 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6396 Value *V = NewPhi; 6397 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6398 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6399 V = ShuffleBuilder.finalize(V); 6400 6401 E->VectorizedValue = V; 6402 6403 // PHINodes may have multiple entries from the same block. We want to 6404 // visit every block once. 6405 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6406 6407 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6408 ValueList Operands; 6409 BasicBlock *IBB = PH->getIncomingBlock(i); 6410 6411 if (!VisitedBBs.insert(IBB).second) { 6412 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6413 continue; 6414 } 6415 6416 Builder.SetInsertPoint(IBB->getTerminator()); 6417 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6418 Value *Vec = vectorizeTree(E->getOperand(i)); 6419 NewPhi->addIncoming(Vec, IBB); 6420 } 6421 6422 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6423 "Invalid number of incoming values"); 6424 return V; 6425 } 6426 6427 case Instruction::ExtractElement: { 6428 Value *V = E->getSingleOperand(0); 6429 Builder.SetInsertPoint(VL0); 6430 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6431 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6432 V = ShuffleBuilder.finalize(V); 6433 E->VectorizedValue = V; 6434 return V; 6435 } 6436 case Instruction::ExtractValue: { 6437 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6438 Builder.SetInsertPoint(LI); 6439 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6440 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6441 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6442 Value *NewV = propagateMetadata(V, E->Scalars); 6443 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6444 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6445 NewV = ShuffleBuilder.finalize(NewV); 6446 E->VectorizedValue = NewV; 6447 return NewV; 6448 } 6449 case Instruction::InsertElement: { 6450 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6451 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6452 Value *V = vectorizeTree(E->getOperand(1)); 6453 6454 // Create InsertVector shuffle if necessary 6455 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6456 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6457 })); 6458 const unsigned NumElts = 6459 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6460 const unsigned NumScalars = E->Scalars.size(); 6461 6462 unsigned Offset = *getInsertIndex(VL0, 0); 6463 assert(Offset < NumElts && "Failed to find vector index offset"); 6464 6465 // Create shuffle to resize vector 6466 SmallVector<int> Mask; 6467 if (!E->ReorderIndices.empty()) { 6468 inversePermutation(E->ReorderIndices, Mask); 6469 Mask.append(NumElts - NumScalars, UndefMaskElem); 6470 } else { 6471 Mask.assign(NumElts, UndefMaskElem); 6472 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6473 } 6474 // Create InsertVector shuffle if necessary 6475 bool IsIdentity = true; 6476 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6477 Mask.swap(PrevMask); 6478 for (unsigned I = 0; I < NumScalars; ++I) { 6479 Value *Scalar = E->Scalars[PrevMask[I]]; 6480 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6481 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6482 continue; 6483 IsIdentity &= *InsertIdx - Offset == I; 6484 Mask[*InsertIdx - Offset] = I; 6485 } 6486 if (!IsIdentity || NumElts != NumScalars) { 6487 V = Builder.CreateShuffleVector(V, Mask); 6488 if (auto *I = dyn_cast<Instruction>(V)) { 6489 GatherShuffleSeq.insert(I); 6490 CSEBlocks.insert(I->getParent()); 6491 } 6492 } 6493 6494 if ((!IsIdentity || Offset != 0 || 6495 !isUndefVector(FirstInsert->getOperand(0))) && 6496 NumElts != NumScalars) { 6497 SmallVector<int> InsertMask(NumElts); 6498 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6499 for (unsigned I = 0; I < NumElts; I++) { 6500 if (Mask[I] != UndefMaskElem) 6501 InsertMask[Offset + I] = NumElts + I; 6502 } 6503 6504 V = Builder.CreateShuffleVector( 6505 FirstInsert->getOperand(0), V, InsertMask, 6506 cast<Instruction>(E->Scalars.back())->getName()); 6507 if (auto *I = dyn_cast<Instruction>(V)) { 6508 GatherShuffleSeq.insert(I); 6509 CSEBlocks.insert(I->getParent()); 6510 } 6511 } 6512 6513 ++NumVectorInstructions; 6514 E->VectorizedValue = V; 6515 return V; 6516 } 6517 case Instruction::ZExt: 6518 case Instruction::SExt: 6519 case Instruction::FPToUI: 6520 case Instruction::FPToSI: 6521 case Instruction::FPExt: 6522 case Instruction::PtrToInt: 6523 case Instruction::IntToPtr: 6524 case Instruction::SIToFP: 6525 case Instruction::UIToFP: 6526 case Instruction::Trunc: 6527 case Instruction::FPTrunc: 6528 case Instruction::BitCast: { 6529 setInsertPointAfterBundle(E); 6530 6531 Value *InVec = vectorizeTree(E->getOperand(0)); 6532 6533 if (E->VectorizedValue) { 6534 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6535 return E->VectorizedValue; 6536 } 6537 6538 auto *CI = cast<CastInst>(VL0); 6539 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6540 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6541 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6542 V = ShuffleBuilder.finalize(V); 6543 6544 E->VectorizedValue = V; 6545 ++NumVectorInstructions; 6546 return V; 6547 } 6548 case Instruction::FCmp: 6549 case Instruction::ICmp: { 6550 setInsertPointAfterBundle(E); 6551 6552 Value *L = vectorizeTree(E->getOperand(0)); 6553 Value *R = vectorizeTree(E->getOperand(1)); 6554 6555 if (E->VectorizedValue) { 6556 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6557 return E->VectorizedValue; 6558 } 6559 6560 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6561 Value *V = Builder.CreateCmp(P0, L, R); 6562 propagateIRFlags(V, E->Scalars, VL0); 6563 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6564 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6565 V = ShuffleBuilder.finalize(V); 6566 6567 E->VectorizedValue = V; 6568 ++NumVectorInstructions; 6569 return V; 6570 } 6571 case Instruction::Select: { 6572 setInsertPointAfterBundle(E); 6573 6574 Value *Cond = vectorizeTree(E->getOperand(0)); 6575 Value *True = vectorizeTree(E->getOperand(1)); 6576 Value *False = vectorizeTree(E->getOperand(2)); 6577 6578 if (E->VectorizedValue) { 6579 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6580 return E->VectorizedValue; 6581 } 6582 6583 Value *V = Builder.CreateSelect(Cond, True, False); 6584 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6585 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6586 V = ShuffleBuilder.finalize(V); 6587 6588 E->VectorizedValue = V; 6589 ++NumVectorInstructions; 6590 return V; 6591 } 6592 case Instruction::FNeg: { 6593 setInsertPointAfterBundle(E); 6594 6595 Value *Op = vectorizeTree(E->getOperand(0)); 6596 6597 if (E->VectorizedValue) { 6598 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6599 return E->VectorizedValue; 6600 } 6601 6602 Value *V = Builder.CreateUnOp( 6603 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6604 propagateIRFlags(V, E->Scalars, VL0); 6605 if (auto *I = dyn_cast<Instruction>(V)) 6606 V = propagateMetadata(I, E->Scalars); 6607 6608 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6609 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6610 V = ShuffleBuilder.finalize(V); 6611 6612 E->VectorizedValue = V; 6613 ++NumVectorInstructions; 6614 6615 return V; 6616 } 6617 case Instruction::Add: 6618 case Instruction::FAdd: 6619 case Instruction::Sub: 6620 case Instruction::FSub: 6621 case Instruction::Mul: 6622 case Instruction::FMul: 6623 case Instruction::UDiv: 6624 case Instruction::SDiv: 6625 case Instruction::FDiv: 6626 case Instruction::URem: 6627 case Instruction::SRem: 6628 case Instruction::FRem: 6629 case Instruction::Shl: 6630 case Instruction::LShr: 6631 case Instruction::AShr: 6632 case Instruction::And: 6633 case Instruction::Or: 6634 case Instruction::Xor: { 6635 setInsertPointAfterBundle(E); 6636 6637 Value *LHS = vectorizeTree(E->getOperand(0)); 6638 Value *RHS = vectorizeTree(E->getOperand(1)); 6639 6640 if (E->VectorizedValue) { 6641 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6642 return E->VectorizedValue; 6643 } 6644 6645 Value *V = Builder.CreateBinOp( 6646 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6647 RHS); 6648 propagateIRFlags(V, E->Scalars, VL0); 6649 if (auto *I = dyn_cast<Instruction>(V)) 6650 V = propagateMetadata(I, E->Scalars); 6651 6652 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6653 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6654 V = ShuffleBuilder.finalize(V); 6655 6656 E->VectorizedValue = V; 6657 ++NumVectorInstructions; 6658 6659 return V; 6660 } 6661 case Instruction::Load: { 6662 // Loads are inserted at the head of the tree because we don't want to 6663 // sink them all the way down past store instructions. 6664 setInsertPointAfterBundle(E); 6665 6666 LoadInst *LI = cast<LoadInst>(VL0); 6667 Instruction *NewLI; 6668 unsigned AS = LI->getPointerAddressSpace(); 6669 Value *PO = LI->getPointerOperand(); 6670 if (E->State == TreeEntry::Vectorize) { 6671 6672 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6673 6674 // The pointer operand uses an in-tree scalar so we add the new BitCast 6675 // to ExternalUses list to make sure that an extract will be generated 6676 // in the future. 6677 if (TreeEntry *Entry = getTreeEntry(PO)) { 6678 // Find which lane we need to extract. 6679 unsigned FoundLane = Entry->findLaneForValue(PO); 6680 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6681 } 6682 6683 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6684 } else { 6685 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6686 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6687 // Use the minimum alignment of the gathered loads. 6688 Align CommonAlignment = LI->getAlign(); 6689 for (Value *V : E->Scalars) 6690 CommonAlignment = 6691 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6692 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6693 } 6694 Value *V = propagateMetadata(NewLI, E->Scalars); 6695 6696 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6697 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6698 V = ShuffleBuilder.finalize(V); 6699 E->VectorizedValue = V; 6700 ++NumVectorInstructions; 6701 return V; 6702 } 6703 case Instruction::Store: { 6704 auto *SI = cast<StoreInst>(VL0); 6705 unsigned AS = SI->getPointerAddressSpace(); 6706 6707 setInsertPointAfterBundle(E); 6708 6709 Value *VecValue = vectorizeTree(E->getOperand(0)); 6710 ShuffleBuilder.addMask(E->ReorderIndices); 6711 VecValue = ShuffleBuilder.finalize(VecValue); 6712 6713 Value *ScalarPtr = SI->getPointerOperand(); 6714 Value *VecPtr = Builder.CreateBitCast( 6715 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6716 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6717 SI->getAlign()); 6718 6719 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6720 // ExternalUses to make sure that an extract will be generated in the 6721 // future. 6722 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6723 // Find which lane we need to extract. 6724 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6725 ExternalUses.push_back( 6726 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6727 } 6728 6729 Value *V = propagateMetadata(ST, E->Scalars); 6730 6731 E->VectorizedValue = V; 6732 ++NumVectorInstructions; 6733 return V; 6734 } 6735 case Instruction::GetElementPtr: { 6736 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6737 setInsertPointAfterBundle(E); 6738 6739 Value *Op0 = vectorizeTree(E->getOperand(0)); 6740 6741 SmallVector<Value *> OpVecs; 6742 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6743 Value *OpVec = vectorizeTree(E->getOperand(J)); 6744 OpVecs.push_back(OpVec); 6745 } 6746 6747 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6748 if (Instruction *I = dyn_cast<Instruction>(V)) 6749 V = propagateMetadata(I, E->Scalars); 6750 6751 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6752 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6753 V = ShuffleBuilder.finalize(V); 6754 6755 E->VectorizedValue = V; 6756 ++NumVectorInstructions; 6757 6758 return V; 6759 } 6760 case Instruction::Call: { 6761 CallInst *CI = cast<CallInst>(VL0); 6762 setInsertPointAfterBundle(E); 6763 6764 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6765 if (Function *FI = CI->getCalledFunction()) 6766 IID = FI->getIntrinsicID(); 6767 6768 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6769 6770 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6771 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6772 VecCallCosts.first <= VecCallCosts.second; 6773 6774 Value *ScalarArg = nullptr; 6775 std::vector<Value *> OpVecs; 6776 SmallVector<Type *, 2> TysForDecl = 6777 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6778 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6779 ValueList OpVL; 6780 // Some intrinsics have scalar arguments. This argument should not be 6781 // vectorized. 6782 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6783 CallInst *CEI = cast<CallInst>(VL0); 6784 ScalarArg = CEI->getArgOperand(j); 6785 OpVecs.push_back(CEI->getArgOperand(j)); 6786 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6787 TysForDecl.push_back(ScalarArg->getType()); 6788 continue; 6789 } 6790 6791 Value *OpVec = vectorizeTree(E->getOperand(j)); 6792 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6793 OpVecs.push_back(OpVec); 6794 } 6795 6796 Function *CF; 6797 if (!UseIntrinsic) { 6798 VFShape Shape = 6799 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6800 VecTy->getNumElements())), 6801 false /*HasGlobalPred*/); 6802 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6803 } else { 6804 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6805 } 6806 6807 SmallVector<OperandBundleDef, 1> OpBundles; 6808 CI->getOperandBundlesAsDefs(OpBundles); 6809 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6810 6811 // The scalar argument uses an in-tree scalar so we add the new vectorized 6812 // call to ExternalUses list to make sure that an extract will be 6813 // generated in the future. 6814 if (ScalarArg) { 6815 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6816 // Find which lane we need to extract. 6817 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6818 ExternalUses.push_back( 6819 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6820 } 6821 } 6822 6823 propagateIRFlags(V, E->Scalars, VL0); 6824 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6825 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6826 V = ShuffleBuilder.finalize(V); 6827 6828 E->VectorizedValue = V; 6829 ++NumVectorInstructions; 6830 return V; 6831 } 6832 case Instruction::ShuffleVector: { 6833 assert(E->isAltShuffle() && 6834 ((Instruction::isBinaryOp(E->getOpcode()) && 6835 Instruction::isBinaryOp(E->getAltOpcode())) || 6836 (Instruction::isCast(E->getOpcode()) && 6837 Instruction::isCast(E->getAltOpcode()))) && 6838 "Invalid Shuffle Vector Operand"); 6839 6840 Value *LHS = nullptr, *RHS = nullptr; 6841 if (Instruction::isBinaryOp(E->getOpcode())) { 6842 setInsertPointAfterBundle(E); 6843 LHS = vectorizeTree(E->getOperand(0)); 6844 RHS = vectorizeTree(E->getOperand(1)); 6845 } else { 6846 setInsertPointAfterBundle(E); 6847 LHS = vectorizeTree(E->getOperand(0)); 6848 } 6849 6850 if (E->VectorizedValue) { 6851 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6852 return E->VectorizedValue; 6853 } 6854 6855 Value *V0, *V1; 6856 if (Instruction::isBinaryOp(E->getOpcode())) { 6857 V0 = Builder.CreateBinOp( 6858 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6859 V1 = Builder.CreateBinOp( 6860 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6861 } else { 6862 V0 = Builder.CreateCast( 6863 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6864 V1 = Builder.CreateCast( 6865 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6866 } 6867 // Add V0 and V1 to later analysis to try to find and remove matching 6868 // instruction, if any. 6869 for (Value *V : {V0, V1}) { 6870 if (auto *I = dyn_cast<Instruction>(V)) { 6871 GatherShuffleSeq.insert(I); 6872 CSEBlocks.insert(I->getParent()); 6873 } 6874 } 6875 6876 // Create shuffle to take alternate operations from the vector. 6877 // Also, gather up main and alt scalar ops to propagate IR flags to 6878 // each vector operation. 6879 ValueList OpScalars, AltScalars; 6880 SmallVector<int> Mask; 6881 buildSuffleEntryMask( 6882 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6883 [E](Instruction *I) { 6884 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6885 return I->getOpcode() == E->getAltOpcode(); 6886 }, 6887 Mask, &OpScalars, &AltScalars); 6888 6889 propagateIRFlags(V0, OpScalars); 6890 propagateIRFlags(V1, AltScalars); 6891 6892 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6893 if (auto *I = dyn_cast<Instruction>(V)) { 6894 V = propagateMetadata(I, E->Scalars); 6895 GatherShuffleSeq.insert(I); 6896 CSEBlocks.insert(I->getParent()); 6897 } 6898 V = ShuffleBuilder.finalize(V); 6899 6900 E->VectorizedValue = V; 6901 ++NumVectorInstructions; 6902 6903 return V; 6904 } 6905 default: 6906 llvm_unreachable("unknown inst"); 6907 } 6908 return nullptr; 6909 } 6910 6911 Value *BoUpSLP::vectorizeTree() { 6912 ExtraValueToDebugLocsMap ExternallyUsedValues; 6913 return vectorizeTree(ExternallyUsedValues); 6914 } 6915 6916 Value * 6917 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6918 // All blocks must be scheduled before any instructions are inserted. 6919 for (auto &BSIter : BlocksSchedules) { 6920 scheduleBlock(BSIter.second.get()); 6921 } 6922 6923 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6924 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6925 6926 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6927 // vectorized root. InstCombine will then rewrite the entire expression. We 6928 // sign extend the extracted values below. 6929 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6930 if (MinBWs.count(ScalarRoot)) { 6931 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6932 // If current instr is a phi and not the last phi, insert it after the 6933 // last phi node. 6934 if (isa<PHINode>(I)) 6935 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6936 else 6937 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6938 } 6939 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6940 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6941 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6942 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6943 VectorizableTree[0]->VectorizedValue = Trunc; 6944 } 6945 6946 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6947 << " values .\n"); 6948 6949 // Extract all of the elements with the external uses. 6950 for (const auto &ExternalUse : ExternalUses) { 6951 Value *Scalar = ExternalUse.Scalar; 6952 llvm::User *User = ExternalUse.User; 6953 6954 // Skip users that we already RAUW. This happens when one instruction 6955 // has multiple uses of the same value. 6956 if (User && !is_contained(Scalar->users(), User)) 6957 continue; 6958 TreeEntry *E = getTreeEntry(Scalar); 6959 assert(E && "Invalid scalar"); 6960 assert(E->State != TreeEntry::NeedToGather && 6961 "Extracting from a gather list"); 6962 6963 Value *Vec = E->VectorizedValue; 6964 assert(Vec && "Can't find vectorizable value"); 6965 6966 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6967 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6968 if (Scalar->getType() != Vec->getType()) { 6969 Value *Ex; 6970 // "Reuse" the existing extract to improve final codegen. 6971 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6972 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6973 ES->getOperand(1)); 6974 } else { 6975 Ex = Builder.CreateExtractElement(Vec, Lane); 6976 } 6977 // If necessary, sign-extend or zero-extend ScalarRoot 6978 // to the larger type. 6979 if (!MinBWs.count(ScalarRoot)) 6980 return Ex; 6981 if (MinBWs[ScalarRoot].second) 6982 return Builder.CreateSExt(Ex, Scalar->getType()); 6983 return Builder.CreateZExt(Ex, Scalar->getType()); 6984 } 6985 assert(isa<FixedVectorType>(Scalar->getType()) && 6986 isa<InsertElementInst>(Scalar) && 6987 "In-tree scalar of vector type is not insertelement?"); 6988 return Vec; 6989 }; 6990 // If User == nullptr, the Scalar is used as extra arg. Generate 6991 // ExtractElement instruction and update the record for this scalar in 6992 // ExternallyUsedValues. 6993 if (!User) { 6994 assert(ExternallyUsedValues.count(Scalar) && 6995 "Scalar with nullptr as an external user must be registered in " 6996 "ExternallyUsedValues map"); 6997 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6998 Builder.SetInsertPoint(VecI->getParent(), 6999 std::next(VecI->getIterator())); 7000 } else { 7001 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7002 } 7003 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7004 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7005 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7006 auto It = ExternallyUsedValues.find(Scalar); 7007 assert(It != ExternallyUsedValues.end() && 7008 "Externally used scalar is not found in ExternallyUsedValues"); 7009 NewInstLocs.append(It->second); 7010 ExternallyUsedValues.erase(Scalar); 7011 // Required to update internally referenced instructions. 7012 Scalar->replaceAllUsesWith(NewInst); 7013 continue; 7014 } 7015 7016 // Generate extracts for out-of-tree users. 7017 // Find the insertion point for the extractelement lane. 7018 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7019 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7020 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7021 if (PH->getIncomingValue(i) == Scalar) { 7022 Instruction *IncomingTerminator = 7023 PH->getIncomingBlock(i)->getTerminator(); 7024 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7025 Builder.SetInsertPoint(VecI->getParent(), 7026 std::next(VecI->getIterator())); 7027 } else { 7028 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7029 } 7030 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7031 CSEBlocks.insert(PH->getIncomingBlock(i)); 7032 PH->setOperand(i, NewInst); 7033 } 7034 } 7035 } else { 7036 Builder.SetInsertPoint(cast<Instruction>(User)); 7037 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7038 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7039 User->replaceUsesOfWith(Scalar, NewInst); 7040 } 7041 } else { 7042 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7043 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7044 CSEBlocks.insert(&F->getEntryBlock()); 7045 User->replaceUsesOfWith(Scalar, NewInst); 7046 } 7047 7048 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7049 } 7050 7051 // For each vectorized value: 7052 for (auto &TEPtr : VectorizableTree) { 7053 TreeEntry *Entry = TEPtr.get(); 7054 7055 // No need to handle users of gathered values. 7056 if (Entry->State == TreeEntry::NeedToGather) 7057 continue; 7058 7059 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7060 7061 // For each lane: 7062 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7063 Value *Scalar = Entry->Scalars[Lane]; 7064 7065 #ifndef NDEBUG 7066 Type *Ty = Scalar->getType(); 7067 if (!Ty->isVoidTy()) { 7068 for (User *U : Scalar->users()) { 7069 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7070 7071 // It is legal to delete users in the ignorelist. 7072 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7073 (isa_and_nonnull<Instruction>(U) && 7074 isDeleted(cast<Instruction>(U)))) && 7075 "Deleting out-of-tree value"); 7076 } 7077 } 7078 #endif 7079 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7080 eraseInstruction(cast<Instruction>(Scalar)); 7081 } 7082 } 7083 7084 Builder.ClearInsertionPoint(); 7085 InstrElementSize.clear(); 7086 7087 return VectorizableTree[0]->VectorizedValue; 7088 } 7089 7090 void BoUpSLP::optimizeGatherSequence() { 7091 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7092 << " gather sequences instructions.\n"); 7093 // LICM InsertElementInst sequences. 7094 for (Instruction *I : GatherShuffleSeq) { 7095 if (isDeleted(I)) 7096 continue; 7097 7098 // Check if this block is inside a loop. 7099 Loop *L = LI->getLoopFor(I->getParent()); 7100 if (!L) 7101 continue; 7102 7103 // Check if it has a preheader. 7104 BasicBlock *PreHeader = L->getLoopPreheader(); 7105 if (!PreHeader) 7106 continue; 7107 7108 // If the vector or the element that we insert into it are 7109 // instructions that are defined in this basic block then we can't 7110 // hoist this instruction. 7111 if (any_of(I->operands(), [L](Value *V) { 7112 auto *OpI = dyn_cast<Instruction>(V); 7113 return OpI && L->contains(OpI); 7114 })) 7115 continue; 7116 7117 // We can hoist this instruction. Move it to the pre-header. 7118 I->moveBefore(PreHeader->getTerminator()); 7119 } 7120 7121 // Make a list of all reachable blocks in our CSE queue. 7122 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7123 CSEWorkList.reserve(CSEBlocks.size()); 7124 for (BasicBlock *BB : CSEBlocks) 7125 if (DomTreeNode *N = DT->getNode(BB)) { 7126 assert(DT->isReachableFromEntry(N)); 7127 CSEWorkList.push_back(N); 7128 } 7129 7130 // Sort blocks by domination. This ensures we visit a block after all blocks 7131 // dominating it are visited. 7132 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7133 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7134 "Different nodes should have different DFS numbers"); 7135 return A->getDFSNumIn() < B->getDFSNumIn(); 7136 }); 7137 7138 // Less defined shuffles can be replaced by the more defined copies. 7139 // Between two shuffles one is less defined if it has the same vector operands 7140 // and its mask indeces are the same as in the first one or undefs. E.g. 7141 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7142 // poison, <0, 0, 0, 0>. 7143 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7144 SmallVectorImpl<int> &NewMask) { 7145 if (I1->getType() != I2->getType()) 7146 return false; 7147 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7148 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7149 if (!SI1 || !SI2) 7150 return I1->isIdenticalTo(I2); 7151 if (SI1->isIdenticalTo(SI2)) 7152 return true; 7153 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7154 if (SI1->getOperand(I) != SI2->getOperand(I)) 7155 return false; 7156 // Check if the second instruction is more defined than the first one. 7157 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7158 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7159 // Count trailing undefs in the mask to check the final number of used 7160 // registers. 7161 unsigned LastUndefsCnt = 0; 7162 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7163 if (SM1[I] == UndefMaskElem) 7164 ++LastUndefsCnt; 7165 else 7166 LastUndefsCnt = 0; 7167 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7168 NewMask[I] != SM1[I]) 7169 return false; 7170 if (NewMask[I] == UndefMaskElem) 7171 NewMask[I] = SM1[I]; 7172 } 7173 // Check if the last undefs actually change the final number of used vector 7174 // registers. 7175 return SM1.size() - LastUndefsCnt > 1 && 7176 TTI->getNumberOfParts(SI1->getType()) == 7177 TTI->getNumberOfParts( 7178 FixedVectorType::get(SI1->getType()->getElementType(), 7179 SM1.size() - LastUndefsCnt)); 7180 }; 7181 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7182 // instructions. TODO: We can further optimize this scan if we split the 7183 // instructions into different buckets based on the insert lane. 7184 SmallVector<Instruction *, 16> Visited; 7185 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7186 assert(*I && 7187 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7188 "Worklist not sorted properly!"); 7189 BasicBlock *BB = (*I)->getBlock(); 7190 // For all instructions in blocks containing gather sequences: 7191 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7192 if (isDeleted(&In)) 7193 continue; 7194 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7195 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7196 continue; 7197 7198 // Check if we can replace this instruction with any of the 7199 // visited instructions. 7200 bool Replaced = false; 7201 for (Instruction *&V : Visited) { 7202 SmallVector<int> NewMask; 7203 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7204 DT->dominates(V->getParent(), In.getParent())) { 7205 In.replaceAllUsesWith(V); 7206 eraseInstruction(&In); 7207 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7208 if (!NewMask.empty()) 7209 SI->setShuffleMask(NewMask); 7210 Replaced = true; 7211 break; 7212 } 7213 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7214 GatherShuffleSeq.contains(V) && 7215 IsIdenticalOrLessDefined(V, &In, NewMask) && 7216 DT->dominates(In.getParent(), V->getParent())) { 7217 In.moveAfter(V); 7218 V->replaceAllUsesWith(&In); 7219 eraseInstruction(V); 7220 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7221 if (!NewMask.empty()) 7222 SI->setShuffleMask(NewMask); 7223 V = &In; 7224 Replaced = true; 7225 break; 7226 } 7227 } 7228 if (!Replaced) { 7229 assert(!is_contained(Visited, &In)); 7230 Visited.push_back(&In); 7231 } 7232 } 7233 } 7234 CSEBlocks.clear(); 7235 GatherShuffleSeq.clear(); 7236 } 7237 7238 BoUpSLP::ScheduleData * 7239 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7240 ScheduleData *Bundle = nullptr; 7241 ScheduleData *PrevInBundle = nullptr; 7242 for (Value *V : VL) { 7243 ScheduleData *BundleMember = getScheduleData(V); 7244 assert(BundleMember && 7245 "no ScheduleData for bundle member " 7246 "(maybe not in same basic block)"); 7247 assert(BundleMember->isSchedulingEntity() && 7248 "bundle member already part of other bundle"); 7249 if (PrevInBundle) { 7250 PrevInBundle->NextInBundle = BundleMember; 7251 } else { 7252 Bundle = BundleMember; 7253 } 7254 BundleMember->UnscheduledDepsInBundle = 0; 7255 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7256 7257 // Group the instructions to a bundle. 7258 BundleMember->FirstInBundle = Bundle; 7259 PrevInBundle = BundleMember; 7260 } 7261 assert(Bundle && "Failed to find schedule bundle"); 7262 return Bundle; 7263 } 7264 7265 // Groups the instructions to a bundle (which is then a single scheduling entity) 7266 // and schedules instructions until the bundle gets ready. 7267 Optional<BoUpSLP::ScheduleData *> 7268 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7269 const InstructionsState &S) { 7270 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7271 // instructions. 7272 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7273 return nullptr; 7274 7275 // Initialize the instruction bundle. 7276 Instruction *OldScheduleEnd = ScheduleEnd; 7277 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7278 7279 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7280 ScheduleData *Bundle) { 7281 // The scheduling region got new instructions at the lower end (or it is a 7282 // new region for the first bundle). This makes it necessary to 7283 // recalculate all dependencies. 7284 // It is seldom that this needs to be done a second time after adding the 7285 // initial bundle to the region. 7286 if (ScheduleEnd != OldScheduleEnd) { 7287 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7288 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7289 ReSchedule = true; 7290 } 7291 if (ReSchedule) { 7292 resetSchedule(); 7293 initialFillReadyList(ReadyInsts); 7294 } 7295 if (Bundle) { 7296 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7297 << " in block " << BB->getName() << "\n"); 7298 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7299 } 7300 7301 // Now try to schedule the new bundle or (if no bundle) just calculate 7302 // dependencies. As soon as the bundle is "ready" it means that there are no 7303 // cyclic dependencies and we can schedule it. Note that's important that we 7304 // don't "schedule" the bundle yet (see cancelScheduling). 7305 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7306 !ReadyInsts.empty()) { 7307 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7308 if (Picked->isSchedulingEntity() && Picked->isReady()) 7309 schedule(Picked, ReadyInsts); 7310 } 7311 }; 7312 7313 // Make sure that the scheduling region contains all 7314 // instructions of the bundle. 7315 for (Value *V : VL) { 7316 if (!extendSchedulingRegion(V, S)) { 7317 // If the scheduling region got new instructions at the lower end (or it 7318 // is a new region for the first bundle). This makes it necessary to 7319 // recalculate all dependencies. 7320 // Otherwise the compiler may crash trying to incorrectly calculate 7321 // dependencies and emit instruction in the wrong order at the actual 7322 // scheduling. 7323 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7324 return None; 7325 } 7326 } 7327 7328 bool ReSchedule = false; 7329 for (Value *V : VL) { 7330 ScheduleData *BundleMember = getScheduleData(V); 7331 assert(BundleMember && 7332 "no ScheduleData for bundle member (maybe not in same basic block)"); 7333 if (!BundleMember->IsScheduled) 7334 continue; 7335 // A bundle member was scheduled as single instruction before and now 7336 // needs to be scheduled as part of the bundle. We just get rid of the 7337 // existing schedule. 7338 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7339 << " was already scheduled\n"); 7340 ReSchedule = true; 7341 } 7342 7343 auto *Bundle = buildBundle(VL); 7344 TryScheduleBundleImpl(ReSchedule, Bundle); 7345 if (!Bundle->isReady()) { 7346 cancelScheduling(VL, S.OpValue); 7347 return None; 7348 } 7349 return Bundle; 7350 } 7351 7352 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7353 Value *OpValue) { 7354 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7355 return; 7356 7357 ScheduleData *Bundle = getScheduleData(OpValue); 7358 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7359 assert(!Bundle->IsScheduled && 7360 "Can't cancel bundle which is already scheduled"); 7361 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7362 "tried to unbundle something which is not a bundle"); 7363 7364 // Un-bundle: make single instructions out of the bundle. 7365 ScheduleData *BundleMember = Bundle; 7366 while (BundleMember) { 7367 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7368 BundleMember->FirstInBundle = BundleMember; 7369 ScheduleData *Next = BundleMember->NextInBundle; 7370 BundleMember->NextInBundle = nullptr; 7371 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7372 if (BundleMember->UnscheduledDepsInBundle == 0) { 7373 ReadyInsts.insert(BundleMember); 7374 } 7375 BundleMember = Next; 7376 } 7377 } 7378 7379 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7380 // Allocate a new ScheduleData for the instruction. 7381 if (ChunkPos >= ChunkSize) { 7382 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7383 ChunkPos = 0; 7384 } 7385 return &(ScheduleDataChunks.back()[ChunkPos++]); 7386 } 7387 7388 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7389 const InstructionsState &S) { 7390 if (getScheduleData(V, isOneOf(S, V))) 7391 return true; 7392 Instruction *I = dyn_cast<Instruction>(V); 7393 assert(I && "bundle member must be an instruction"); 7394 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7395 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7396 "be scheduled"); 7397 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7398 ScheduleData *ISD = getScheduleData(I); 7399 if (!ISD) 7400 return false; 7401 assert(isInSchedulingRegion(ISD) && 7402 "ScheduleData not in scheduling region"); 7403 ScheduleData *SD = allocateScheduleDataChunks(); 7404 SD->Inst = I; 7405 SD->init(SchedulingRegionID, S.OpValue); 7406 ExtraScheduleDataMap[I][S.OpValue] = SD; 7407 return true; 7408 }; 7409 if (CheckSheduleForI(I)) 7410 return true; 7411 if (!ScheduleStart) { 7412 // It's the first instruction in the new region. 7413 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7414 ScheduleStart = I; 7415 ScheduleEnd = I->getNextNode(); 7416 if (isOneOf(S, I) != I) 7417 CheckSheduleForI(I); 7418 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7419 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7420 return true; 7421 } 7422 // Search up and down at the same time, because we don't know if the new 7423 // instruction is above or below the existing scheduling region. 7424 BasicBlock::reverse_iterator UpIter = 7425 ++ScheduleStart->getIterator().getReverse(); 7426 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7427 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7428 BasicBlock::iterator LowerEnd = BB->end(); 7429 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7430 &*DownIter != I) { 7431 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7432 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7433 return false; 7434 } 7435 7436 ++UpIter; 7437 ++DownIter; 7438 } 7439 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7440 assert(I->getParent() == ScheduleStart->getParent() && 7441 "Instruction is in wrong basic block."); 7442 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7443 ScheduleStart = I; 7444 if (isOneOf(S, I) != I) 7445 CheckSheduleForI(I); 7446 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7447 << "\n"); 7448 return true; 7449 } 7450 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7451 "Expected to reach top of the basic block or instruction down the " 7452 "lower end."); 7453 assert(I->getParent() == ScheduleEnd->getParent() && 7454 "Instruction is in wrong basic block."); 7455 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7456 nullptr); 7457 ScheduleEnd = I->getNextNode(); 7458 if (isOneOf(S, I) != I) 7459 CheckSheduleForI(I); 7460 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7461 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7462 return true; 7463 } 7464 7465 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7466 Instruction *ToI, 7467 ScheduleData *PrevLoadStore, 7468 ScheduleData *NextLoadStore) { 7469 ScheduleData *CurrentLoadStore = PrevLoadStore; 7470 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7471 ScheduleData *SD = ScheduleDataMap[I]; 7472 if (!SD) { 7473 SD = allocateScheduleDataChunks(); 7474 ScheduleDataMap[I] = SD; 7475 SD->Inst = I; 7476 } 7477 assert(!isInSchedulingRegion(SD) && 7478 "new ScheduleData already in scheduling region"); 7479 SD->init(SchedulingRegionID, I); 7480 7481 if (I->mayReadOrWriteMemory() && 7482 (!isa<IntrinsicInst>(I) || 7483 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7484 cast<IntrinsicInst>(I)->getIntrinsicID() != 7485 Intrinsic::pseudoprobe))) { 7486 // Update the linked list of memory accessing instructions. 7487 if (CurrentLoadStore) { 7488 CurrentLoadStore->NextLoadStore = SD; 7489 } else { 7490 FirstLoadStoreInRegion = SD; 7491 } 7492 CurrentLoadStore = SD; 7493 } 7494 } 7495 if (NextLoadStore) { 7496 if (CurrentLoadStore) 7497 CurrentLoadStore->NextLoadStore = NextLoadStore; 7498 } else { 7499 LastLoadStoreInRegion = CurrentLoadStore; 7500 } 7501 } 7502 7503 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7504 bool InsertInReadyList, 7505 BoUpSLP *SLP) { 7506 assert(SD->isSchedulingEntity()); 7507 7508 SmallVector<ScheduleData *, 10> WorkList; 7509 WorkList.push_back(SD); 7510 7511 while (!WorkList.empty()) { 7512 ScheduleData *SD = WorkList.pop_back_val(); 7513 for (ScheduleData *BundleMember = SD; BundleMember; 7514 BundleMember = BundleMember->NextInBundle) { 7515 assert(isInSchedulingRegion(BundleMember)); 7516 if (BundleMember->hasValidDependencies()) 7517 continue; 7518 7519 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7520 << "\n"); 7521 BundleMember->Dependencies = 0; 7522 BundleMember->resetUnscheduledDeps(); 7523 7524 // Handle def-use chain dependencies. 7525 if (BundleMember->OpValue != BundleMember->Inst) { 7526 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7527 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7528 BundleMember->Dependencies++; 7529 ScheduleData *DestBundle = UseSD->FirstInBundle; 7530 if (!DestBundle->IsScheduled) 7531 BundleMember->incrementUnscheduledDeps(1); 7532 if (!DestBundle->hasValidDependencies()) 7533 WorkList.push_back(DestBundle); 7534 } 7535 } else { 7536 for (User *U : BundleMember->Inst->users()) { 7537 assert(isa<Instruction>(U) && 7538 "user of instruction must be instruction"); 7539 ScheduleData *UseSD = getScheduleData(U); 7540 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7541 BundleMember->Dependencies++; 7542 ScheduleData *DestBundle = UseSD->FirstInBundle; 7543 if (!DestBundle->IsScheduled) 7544 BundleMember->incrementUnscheduledDeps(1); 7545 if (!DestBundle->hasValidDependencies()) 7546 WorkList.push_back(DestBundle); 7547 } 7548 } 7549 } 7550 7551 // Handle the memory dependencies (if any). 7552 ScheduleData *DepDest = BundleMember->NextLoadStore; 7553 if (!DepDest) 7554 continue; 7555 Instruction *SrcInst = BundleMember->Inst; 7556 assert(SrcInst->mayReadOrWriteMemory() && 7557 "NextLoadStore list for non memory effecting bundle?"); 7558 MemoryLocation SrcLoc = getLocation(SrcInst); 7559 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7560 unsigned numAliased = 0; 7561 unsigned DistToSrc = 1; 7562 7563 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7564 assert(isInSchedulingRegion(DepDest)); 7565 7566 // We have two limits to reduce the complexity: 7567 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7568 // SLP->isAliased (which is the expensive part in this loop). 7569 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7570 // the whole loop (even if the loop is fast, it's quadratic). 7571 // It's important for the loop break condition (see below) to 7572 // check this limit even between two read-only instructions. 7573 if (DistToSrc >= MaxMemDepDistance || 7574 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7575 (numAliased >= AliasedCheckLimit || 7576 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7577 7578 // We increment the counter only if the locations are aliased 7579 // (instead of counting all alias checks). This gives a better 7580 // balance between reduced runtime and accurate dependencies. 7581 numAliased++; 7582 7583 DepDest->MemoryDependencies.push_back(BundleMember); 7584 BundleMember->Dependencies++; 7585 ScheduleData *DestBundle = DepDest->FirstInBundle; 7586 if (!DestBundle->IsScheduled) { 7587 BundleMember->incrementUnscheduledDeps(1); 7588 } 7589 if (!DestBundle->hasValidDependencies()) { 7590 WorkList.push_back(DestBundle); 7591 } 7592 } 7593 7594 // Example, explaining the loop break condition: Let's assume our 7595 // starting instruction is i0 and MaxMemDepDistance = 3. 7596 // 7597 // +--------v--v--v 7598 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7599 // +--------^--^--^ 7600 // 7601 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7602 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7603 // Previously we already added dependencies from i3 to i6,i7,i8 7604 // (because of MaxMemDepDistance). As we added a dependency from 7605 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7606 // and we can abort this loop at i6. 7607 if (DistToSrc >= 2 * MaxMemDepDistance) 7608 break; 7609 DistToSrc++; 7610 } 7611 } 7612 if (InsertInReadyList && SD->isReady()) { 7613 ReadyInsts.push_back(SD); 7614 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7615 << "\n"); 7616 } 7617 } 7618 } 7619 7620 void BoUpSLP::BlockScheduling::resetSchedule() { 7621 assert(ScheduleStart && 7622 "tried to reset schedule on block which has not been scheduled"); 7623 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7624 doForAllOpcodes(I, [&](ScheduleData *SD) { 7625 assert(isInSchedulingRegion(SD) && 7626 "ScheduleData not in scheduling region"); 7627 SD->IsScheduled = false; 7628 SD->resetUnscheduledDeps(); 7629 }); 7630 } 7631 ReadyInsts.clear(); 7632 } 7633 7634 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7635 if (!BS->ScheduleStart) 7636 return; 7637 7638 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7639 7640 BS->resetSchedule(); 7641 7642 // For the real scheduling we use a more sophisticated ready-list: it is 7643 // sorted by the original instruction location. This lets the final schedule 7644 // be as close as possible to the original instruction order. 7645 struct ScheduleDataCompare { 7646 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7647 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7648 } 7649 }; 7650 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7651 7652 // Ensure that all dependency data is updated and fill the ready-list with 7653 // initial instructions. 7654 int Idx = 0; 7655 int NumToSchedule = 0; 7656 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7657 I = I->getNextNode()) { 7658 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7659 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7660 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7661 "scheduler and vectorizer bundle mismatch"); 7662 SD->FirstInBundle->SchedulingPriority = Idx++; 7663 if (SD->isSchedulingEntity()) { 7664 BS->calculateDependencies(SD, false, this); 7665 NumToSchedule++; 7666 } 7667 }); 7668 } 7669 BS->initialFillReadyList(ReadyInsts); 7670 7671 Instruction *LastScheduledInst = BS->ScheduleEnd; 7672 7673 // Do the "real" scheduling. 7674 while (!ReadyInsts.empty()) { 7675 ScheduleData *picked = *ReadyInsts.begin(); 7676 ReadyInsts.erase(ReadyInsts.begin()); 7677 7678 // Move the scheduled instruction(s) to their dedicated places, if not 7679 // there yet. 7680 for (ScheduleData *BundleMember = picked; BundleMember; 7681 BundleMember = BundleMember->NextInBundle) { 7682 Instruction *pickedInst = BundleMember->Inst; 7683 if (pickedInst->getNextNode() != LastScheduledInst) 7684 pickedInst->moveBefore(LastScheduledInst); 7685 LastScheduledInst = pickedInst; 7686 } 7687 7688 BS->schedule(picked, ReadyInsts); 7689 NumToSchedule--; 7690 } 7691 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7692 7693 // Avoid duplicate scheduling of the block. 7694 BS->ScheduleStart = nullptr; 7695 } 7696 7697 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7698 // If V is a store, just return the width of the stored value (or value 7699 // truncated just before storing) without traversing the expression tree. 7700 // This is the common case. 7701 if (auto *Store = dyn_cast<StoreInst>(V)) { 7702 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7703 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7704 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7705 } 7706 7707 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7708 return getVectorElementSize(IEI->getOperand(1)); 7709 7710 auto E = InstrElementSize.find(V); 7711 if (E != InstrElementSize.end()) 7712 return E->second; 7713 7714 // If V is not a store, we can traverse the expression tree to find loads 7715 // that feed it. The type of the loaded value may indicate a more suitable 7716 // width than V's type. We want to base the vector element size on the width 7717 // of memory operations where possible. 7718 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7719 SmallPtrSet<Instruction *, 16> Visited; 7720 if (auto *I = dyn_cast<Instruction>(V)) { 7721 Worklist.emplace_back(I, I->getParent()); 7722 Visited.insert(I); 7723 } 7724 7725 // Traverse the expression tree in bottom-up order looking for loads. If we 7726 // encounter an instruction we don't yet handle, we give up. 7727 auto Width = 0u; 7728 while (!Worklist.empty()) { 7729 Instruction *I; 7730 BasicBlock *Parent; 7731 std::tie(I, Parent) = Worklist.pop_back_val(); 7732 7733 // We should only be looking at scalar instructions here. If the current 7734 // instruction has a vector type, skip. 7735 auto *Ty = I->getType(); 7736 if (isa<VectorType>(Ty)) 7737 continue; 7738 7739 // If the current instruction is a load, update MaxWidth to reflect the 7740 // width of the loaded value. 7741 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7742 isa<ExtractValueInst>(I)) 7743 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7744 7745 // Otherwise, we need to visit the operands of the instruction. We only 7746 // handle the interesting cases from buildTree here. If an operand is an 7747 // instruction we haven't yet visited and from the same basic block as the 7748 // user or the use is a PHI node, we add it to the worklist. 7749 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7750 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7751 isa<UnaryOperator>(I)) { 7752 for (Use &U : I->operands()) 7753 if (auto *J = dyn_cast<Instruction>(U.get())) 7754 if (Visited.insert(J).second && 7755 (isa<PHINode>(I) || J->getParent() == Parent)) 7756 Worklist.emplace_back(J, J->getParent()); 7757 } else { 7758 break; 7759 } 7760 } 7761 7762 // If we didn't encounter a memory access in the expression tree, or if we 7763 // gave up for some reason, just return the width of V. Otherwise, return the 7764 // maximum width we found. 7765 if (!Width) { 7766 if (auto *CI = dyn_cast<CmpInst>(V)) 7767 V = CI->getOperand(0); 7768 Width = DL->getTypeSizeInBits(V->getType()); 7769 } 7770 7771 for (Instruction *I : Visited) 7772 InstrElementSize[I] = Width; 7773 7774 return Width; 7775 } 7776 7777 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7778 // smaller type with a truncation. We collect the values that will be demoted 7779 // in ToDemote and additional roots that require investigating in Roots. 7780 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7781 SmallVectorImpl<Value *> &ToDemote, 7782 SmallVectorImpl<Value *> &Roots) { 7783 // We can always demote constants. 7784 if (isa<Constant>(V)) { 7785 ToDemote.push_back(V); 7786 return true; 7787 } 7788 7789 // If the value is not an instruction in the expression with only one use, it 7790 // cannot be demoted. 7791 auto *I = dyn_cast<Instruction>(V); 7792 if (!I || !I->hasOneUse() || !Expr.count(I)) 7793 return false; 7794 7795 switch (I->getOpcode()) { 7796 7797 // We can always demote truncations and extensions. Since truncations can 7798 // seed additional demotion, we save the truncated value. 7799 case Instruction::Trunc: 7800 Roots.push_back(I->getOperand(0)); 7801 break; 7802 case Instruction::ZExt: 7803 case Instruction::SExt: 7804 if (isa<ExtractElementInst>(I->getOperand(0)) || 7805 isa<InsertElementInst>(I->getOperand(0))) 7806 return false; 7807 break; 7808 7809 // We can demote certain binary operations if we can demote both of their 7810 // operands. 7811 case Instruction::Add: 7812 case Instruction::Sub: 7813 case Instruction::Mul: 7814 case Instruction::And: 7815 case Instruction::Or: 7816 case Instruction::Xor: 7817 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7818 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7819 return false; 7820 break; 7821 7822 // We can demote selects if we can demote their true and false values. 7823 case Instruction::Select: { 7824 SelectInst *SI = cast<SelectInst>(I); 7825 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7826 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7827 return false; 7828 break; 7829 } 7830 7831 // We can demote phis if we can demote all their incoming operands. Note that 7832 // we don't need to worry about cycles since we ensure single use above. 7833 case Instruction::PHI: { 7834 PHINode *PN = cast<PHINode>(I); 7835 for (Value *IncValue : PN->incoming_values()) 7836 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7837 return false; 7838 break; 7839 } 7840 7841 // Otherwise, conservatively give up. 7842 default: 7843 return false; 7844 } 7845 7846 // Record the value that we can demote. 7847 ToDemote.push_back(V); 7848 return true; 7849 } 7850 7851 void BoUpSLP::computeMinimumValueSizes() { 7852 // If there are no external uses, the expression tree must be rooted by a 7853 // store. We can't demote in-memory values, so there is nothing to do here. 7854 if (ExternalUses.empty()) 7855 return; 7856 7857 // We only attempt to truncate integer expressions. 7858 auto &TreeRoot = VectorizableTree[0]->Scalars; 7859 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7860 if (!TreeRootIT) 7861 return; 7862 7863 // If the expression is not rooted by a store, these roots should have 7864 // external uses. We will rely on InstCombine to rewrite the expression in 7865 // the narrower type. However, InstCombine only rewrites single-use values. 7866 // This means that if a tree entry other than a root is used externally, it 7867 // must have multiple uses and InstCombine will not rewrite it. The code 7868 // below ensures that only the roots are used externally. 7869 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7870 for (auto &EU : ExternalUses) 7871 if (!Expr.erase(EU.Scalar)) 7872 return; 7873 if (!Expr.empty()) 7874 return; 7875 7876 // Collect the scalar values of the vectorizable expression. We will use this 7877 // context to determine which values can be demoted. If we see a truncation, 7878 // we mark it as seeding another demotion. 7879 for (auto &EntryPtr : VectorizableTree) 7880 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7881 7882 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7883 // have a single external user that is not in the vectorizable tree. 7884 for (auto *Root : TreeRoot) 7885 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7886 return; 7887 7888 // Conservatively determine if we can actually truncate the roots of the 7889 // expression. Collect the values that can be demoted in ToDemote and 7890 // additional roots that require investigating in Roots. 7891 SmallVector<Value *, 32> ToDemote; 7892 SmallVector<Value *, 4> Roots; 7893 for (auto *Root : TreeRoot) 7894 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7895 return; 7896 7897 // The maximum bit width required to represent all the values that can be 7898 // demoted without loss of precision. It would be safe to truncate the roots 7899 // of the expression to this width. 7900 auto MaxBitWidth = 8u; 7901 7902 // We first check if all the bits of the roots are demanded. If they're not, 7903 // we can truncate the roots to this narrower type. 7904 for (auto *Root : TreeRoot) { 7905 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7906 MaxBitWidth = std::max<unsigned>( 7907 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7908 } 7909 7910 // True if the roots can be zero-extended back to their original type, rather 7911 // than sign-extended. We know that if the leading bits are not demanded, we 7912 // can safely zero-extend. So we initialize IsKnownPositive to True. 7913 bool IsKnownPositive = true; 7914 7915 // If all the bits of the roots are demanded, we can try a little harder to 7916 // compute a narrower type. This can happen, for example, if the roots are 7917 // getelementptr indices. InstCombine promotes these indices to the pointer 7918 // width. Thus, all their bits are technically demanded even though the 7919 // address computation might be vectorized in a smaller type. 7920 // 7921 // We start by looking at each entry that can be demoted. We compute the 7922 // maximum bit width required to store the scalar by using ValueTracking to 7923 // compute the number of high-order bits we can truncate. 7924 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7925 llvm::all_of(TreeRoot, [](Value *R) { 7926 assert(R->hasOneUse() && "Root should have only one use!"); 7927 return isa<GetElementPtrInst>(R->user_back()); 7928 })) { 7929 MaxBitWidth = 8u; 7930 7931 // Determine if the sign bit of all the roots is known to be zero. If not, 7932 // IsKnownPositive is set to False. 7933 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7934 KnownBits Known = computeKnownBits(R, *DL); 7935 return Known.isNonNegative(); 7936 }); 7937 7938 // Determine the maximum number of bits required to store the scalar 7939 // values. 7940 for (auto *Scalar : ToDemote) { 7941 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7942 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7943 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7944 } 7945 7946 // If we can't prove that the sign bit is zero, we must add one to the 7947 // maximum bit width to account for the unknown sign bit. This preserves 7948 // the existing sign bit so we can safely sign-extend the root back to the 7949 // original type. Otherwise, if we know the sign bit is zero, we will 7950 // zero-extend the root instead. 7951 // 7952 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7953 // one to the maximum bit width will yield a larger-than-necessary 7954 // type. In general, we need to add an extra bit only if we can't 7955 // prove that the upper bit of the original type is equal to the 7956 // upper bit of the proposed smaller type. If these two bits are the 7957 // same (either zero or one) we know that sign-extending from the 7958 // smaller type will result in the same value. Here, since we can't 7959 // yet prove this, we are just making the proposed smaller type 7960 // larger to ensure correctness. 7961 if (!IsKnownPositive) 7962 ++MaxBitWidth; 7963 } 7964 7965 // Round MaxBitWidth up to the next power-of-two. 7966 if (!isPowerOf2_64(MaxBitWidth)) 7967 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7968 7969 // If the maximum bit width we compute is less than the with of the roots' 7970 // type, we can proceed with the narrowing. Otherwise, do nothing. 7971 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7972 return; 7973 7974 // If we can truncate the root, we must collect additional values that might 7975 // be demoted as a result. That is, those seeded by truncations we will 7976 // modify. 7977 while (!Roots.empty()) 7978 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7979 7980 // Finally, map the values we can demote to the maximum bit with we computed. 7981 for (auto *Scalar : ToDemote) 7982 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7983 } 7984 7985 namespace { 7986 7987 /// The SLPVectorizer Pass. 7988 struct SLPVectorizer : public FunctionPass { 7989 SLPVectorizerPass Impl; 7990 7991 /// Pass identification, replacement for typeid 7992 static char ID; 7993 7994 explicit SLPVectorizer() : FunctionPass(ID) { 7995 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7996 } 7997 7998 bool doInitialization(Module &M) override { return false; } 7999 8000 bool runOnFunction(Function &F) override { 8001 if (skipFunction(F)) 8002 return false; 8003 8004 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8005 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8006 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8007 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8008 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8009 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8010 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8011 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8012 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8013 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8014 8015 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8016 } 8017 8018 void getAnalysisUsage(AnalysisUsage &AU) const override { 8019 FunctionPass::getAnalysisUsage(AU); 8020 AU.addRequired<AssumptionCacheTracker>(); 8021 AU.addRequired<ScalarEvolutionWrapperPass>(); 8022 AU.addRequired<AAResultsWrapperPass>(); 8023 AU.addRequired<TargetTransformInfoWrapperPass>(); 8024 AU.addRequired<LoopInfoWrapperPass>(); 8025 AU.addRequired<DominatorTreeWrapperPass>(); 8026 AU.addRequired<DemandedBitsWrapperPass>(); 8027 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8028 AU.addRequired<InjectTLIMappingsLegacy>(); 8029 AU.addPreserved<LoopInfoWrapperPass>(); 8030 AU.addPreserved<DominatorTreeWrapperPass>(); 8031 AU.addPreserved<AAResultsWrapperPass>(); 8032 AU.addPreserved<GlobalsAAWrapperPass>(); 8033 AU.setPreservesCFG(); 8034 } 8035 }; 8036 8037 } // end anonymous namespace 8038 8039 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8040 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8041 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8042 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8043 auto *AA = &AM.getResult<AAManager>(F); 8044 auto *LI = &AM.getResult<LoopAnalysis>(F); 8045 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8046 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8047 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8048 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8049 8050 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8051 if (!Changed) 8052 return PreservedAnalyses::all(); 8053 8054 PreservedAnalyses PA; 8055 PA.preserveSet<CFGAnalyses>(); 8056 return PA; 8057 } 8058 8059 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8060 TargetTransformInfo *TTI_, 8061 TargetLibraryInfo *TLI_, AAResults *AA_, 8062 LoopInfo *LI_, DominatorTree *DT_, 8063 AssumptionCache *AC_, DemandedBits *DB_, 8064 OptimizationRemarkEmitter *ORE_) { 8065 if (!RunSLPVectorization) 8066 return false; 8067 SE = SE_; 8068 TTI = TTI_; 8069 TLI = TLI_; 8070 AA = AA_; 8071 LI = LI_; 8072 DT = DT_; 8073 AC = AC_; 8074 DB = DB_; 8075 DL = &F.getParent()->getDataLayout(); 8076 8077 Stores.clear(); 8078 GEPs.clear(); 8079 bool Changed = false; 8080 8081 // If the target claims to have no vector registers don't attempt 8082 // vectorization. 8083 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8084 LLVM_DEBUG( 8085 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8086 return false; 8087 } 8088 8089 // Don't vectorize when the attribute NoImplicitFloat is used. 8090 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8091 return false; 8092 8093 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8094 8095 // Use the bottom up slp vectorizer to construct chains that start with 8096 // store instructions. 8097 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8098 8099 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8100 // delete instructions. 8101 8102 // Update DFS numbers now so that we can use them for ordering. 8103 DT->updateDFSNumbers(); 8104 8105 // Scan the blocks in the function in post order. 8106 for (auto BB : post_order(&F.getEntryBlock())) { 8107 collectSeedInstructions(BB); 8108 8109 // Vectorize trees that end at stores. 8110 if (!Stores.empty()) { 8111 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8112 << " underlying objects.\n"); 8113 Changed |= vectorizeStoreChains(R); 8114 } 8115 8116 // Vectorize trees that end at reductions. 8117 Changed |= vectorizeChainsInBlock(BB, R); 8118 8119 // Vectorize the index computations of getelementptr instructions. This 8120 // is primarily intended to catch gather-like idioms ending at 8121 // non-consecutive loads. 8122 if (!GEPs.empty()) { 8123 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8124 << " underlying objects.\n"); 8125 Changed |= vectorizeGEPIndices(BB, R); 8126 } 8127 } 8128 8129 if (Changed) { 8130 R.optimizeGatherSequence(); 8131 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8132 } 8133 return Changed; 8134 } 8135 8136 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8137 unsigned Idx) { 8138 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8139 << "\n"); 8140 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8141 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8142 unsigned VF = Chain.size(); 8143 8144 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8145 return false; 8146 8147 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8148 << "\n"); 8149 8150 R.buildTree(Chain); 8151 if (R.isTreeTinyAndNotFullyVectorizable()) 8152 return false; 8153 if (R.isLoadCombineCandidate()) 8154 return false; 8155 R.reorderTopToBottom(); 8156 R.reorderBottomToTop(); 8157 R.buildExternalUses(); 8158 8159 R.computeMinimumValueSizes(); 8160 8161 InstructionCost Cost = R.getTreeCost(); 8162 8163 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8164 if (Cost < -SLPCostThreshold) { 8165 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8166 8167 using namespace ore; 8168 8169 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8170 cast<StoreInst>(Chain[0])) 8171 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8172 << " and with tree size " 8173 << NV("TreeSize", R.getTreeSize())); 8174 8175 R.vectorizeTree(); 8176 return true; 8177 } 8178 8179 return false; 8180 } 8181 8182 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8183 BoUpSLP &R) { 8184 // We may run into multiple chains that merge into a single chain. We mark the 8185 // stores that we vectorized so that we don't visit the same store twice. 8186 BoUpSLP::ValueSet VectorizedStores; 8187 bool Changed = false; 8188 8189 int E = Stores.size(); 8190 SmallBitVector Tails(E, false); 8191 int MaxIter = MaxStoreLookup.getValue(); 8192 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8193 E, std::make_pair(E, INT_MAX)); 8194 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8195 int IterCnt; 8196 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8197 &CheckedPairs, 8198 &ConsecutiveChain](int K, int Idx) { 8199 if (IterCnt >= MaxIter) 8200 return true; 8201 if (CheckedPairs[Idx].test(K)) 8202 return ConsecutiveChain[K].second == 1 && 8203 ConsecutiveChain[K].first == Idx; 8204 ++IterCnt; 8205 CheckedPairs[Idx].set(K); 8206 CheckedPairs[K].set(Idx); 8207 Optional<int> Diff = getPointersDiff( 8208 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8209 Stores[Idx]->getValueOperand()->getType(), 8210 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8211 if (!Diff || *Diff == 0) 8212 return false; 8213 int Val = *Diff; 8214 if (Val < 0) { 8215 if (ConsecutiveChain[Idx].second > -Val) { 8216 Tails.set(K); 8217 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8218 } 8219 return false; 8220 } 8221 if (ConsecutiveChain[K].second <= Val) 8222 return false; 8223 8224 Tails.set(Idx); 8225 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8226 return Val == 1; 8227 }; 8228 // Do a quadratic search on all of the given stores in reverse order and find 8229 // all of the pairs of stores that follow each other. 8230 for (int Idx = E - 1; Idx >= 0; --Idx) { 8231 // If a store has multiple consecutive store candidates, search according 8232 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8233 // This is because usually pairing with immediate succeeding or preceding 8234 // candidate create the best chance to find slp vectorization opportunity. 8235 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8236 IterCnt = 0; 8237 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8238 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8239 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8240 break; 8241 } 8242 8243 // Tracks if we tried to vectorize stores starting from the given tail 8244 // already. 8245 SmallBitVector TriedTails(E, false); 8246 // For stores that start but don't end a link in the chain: 8247 for (int Cnt = E; Cnt > 0; --Cnt) { 8248 int I = Cnt - 1; 8249 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8250 continue; 8251 // We found a store instr that starts a chain. Now follow the chain and try 8252 // to vectorize it. 8253 BoUpSLP::ValueList Operands; 8254 // Collect the chain into a list. 8255 while (I != E && !VectorizedStores.count(Stores[I])) { 8256 Operands.push_back(Stores[I]); 8257 Tails.set(I); 8258 if (ConsecutiveChain[I].second != 1) { 8259 // Mark the new end in the chain and go back, if required. It might be 8260 // required if the original stores come in reversed order, for example. 8261 if (ConsecutiveChain[I].first != E && 8262 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8263 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8264 TriedTails.set(I); 8265 Tails.reset(ConsecutiveChain[I].first); 8266 if (Cnt < ConsecutiveChain[I].first + 2) 8267 Cnt = ConsecutiveChain[I].first + 2; 8268 } 8269 break; 8270 } 8271 // Move to the next value in the chain. 8272 I = ConsecutiveChain[I].first; 8273 } 8274 assert(!Operands.empty() && "Expected non-empty list of stores."); 8275 8276 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8277 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8278 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8279 8280 unsigned MinVF = R.getMinVF(EltSize); 8281 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8282 MaxElts); 8283 8284 // FIXME: Is division-by-2 the correct step? Should we assert that the 8285 // register size is a power-of-2? 8286 unsigned StartIdx = 0; 8287 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8288 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8289 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8290 if (!VectorizedStores.count(Slice.front()) && 8291 !VectorizedStores.count(Slice.back()) && 8292 vectorizeStoreChain(Slice, R, Cnt)) { 8293 // Mark the vectorized stores so that we don't vectorize them again. 8294 VectorizedStores.insert(Slice.begin(), Slice.end()); 8295 Changed = true; 8296 // If we vectorized initial block, no need to try to vectorize it 8297 // again. 8298 if (Cnt == StartIdx) 8299 StartIdx += Size; 8300 Cnt += Size; 8301 continue; 8302 } 8303 ++Cnt; 8304 } 8305 // Check if the whole array was vectorized already - exit. 8306 if (StartIdx >= Operands.size()) 8307 break; 8308 } 8309 } 8310 8311 return Changed; 8312 } 8313 8314 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8315 // Initialize the collections. We will make a single pass over the block. 8316 Stores.clear(); 8317 GEPs.clear(); 8318 8319 // Visit the store and getelementptr instructions in BB and organize them in 8320 // Stores and GEPs according to the underlying objects of their pointer 8321 // operands. 8322 for (Instruction &I : *BB) { 8323 // Ignore store instructions that are volatile or have a pointer operand 8324 // that doesn't point to a scalar type. 8325 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8326 if (!SI->isSimple()) 8327 continue; 8328 if (!isValidElementType(SI->getValueOperand()->getType())) 8329 continue; 8330 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8331 } 8332 8333 // Ignore getelementptr instructions that have more than one index, a 8334 // constant index, or a pointer operand that doesn't point to a scalar 8335 // type. 8336 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8337 auto Idx = GEP->idx_begin()->get(); 8338 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8339 continue; 8340 if (!isValidElementType(Idx->getType())) 8341 continue; 8342 if (GEP->getType()->isVectorTy()) 8343 continue; 8344 GEPs[GEP->getPointerOperand()].push_back(GEP); 8345 } 8346 } 8347 } 8348 8349 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8350 if (!A || !B) 8351 return false; 8352 Value *VL[] = {A, B}; 8353 return tryToVectorizeList(VL, R); 8354 } 8355 8356 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8357 bool LimitForRegisterSize) { 8358 if (VL.size() < 2) 8359 return false; 8360 8361 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8362 << VL.size() << ".\n"); 8363 8364 // Check that all of the parts are instructions of the same type, 8365 // we permit an alternate opcode via InstructionsState. 8366 InstructionsState S = getSameOpcode(VL); 8367 if (!S.getOpcode()) 8368 return false; 8369 8370 Instruction *I0 = cast<Instruction>(S.OpValue); 8371 // Make sure invalid types (including vector type) are rejected before 8372 // determining vectorization factor for scalar instructions. 8373 for (Value *V : VL) { 8374 Type *Ty = V->getType(); 8375 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8376 // NOTE: the following will give user internal llvm type name, which may 8377 // not be useful. 8378 R.getORE()->emit([&]() { 8379 std::string type_str; 8380 llvm::raw_string_ostream rso(type_str); 8381 Ty->print(rso); 8382 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8383 << "Cannot SLP vectorize list: type " 8384 << rso.str() + " is unsupported by vectorizer"; 8385 }); 8386 return false; 8387 } 8388 } 8389 8390 unsigned Sz = R.getVectorElementSize(I0); 8391 unsigned MinVF = R.getMinVF(Sz); 8392 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8393 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8394 if (MaxVF < 2) { 8395 R.getORE()->emit([&]() { 8396 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8397 << "Cannot SLP vectorize list: vectorization factor " 8398 << "less than 2 is not supported"; 8399 }); 8400 return false; 8401 } 8402 8403 bool Changed = false; 8404 bool CandidateFound = false; 8405 InstructionCost MinCost = SLPCostThreshold.getValue(); 8406 Type *ScalarTy = VL[0]->getType(); 8407 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8408 ScalarTy = IE->getOperand(1)->getType(); 8409 8410 unsigned NextInst = 0, MaxInst = VL.size(); 8411 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8412 // No actual vectorization should happen, if number of parts is the same as 8413 // provided vectorization factor (i.e. the scalar type is used for vector 8414 // code during codegen). 8415 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8416 if (TTI->getNumberOfParts(VecTy) == VF) 8417 continue; 8418 for (unsigned I = NextInst; I < MaxInst; ++I) { 8419 unsigned OpsWidth = 0; 8420 8421 if (I + VF > MaxInst) 8422 OpsWidth = MaxInst - I; 8423 else 8424 OpsWidth = VF; 8425 8426 if (!isPowerOf2_32(OpsWidth)) 8427 continue; 8428 8429 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8430 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8431 break; 8432 8433 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8434 // Check that a previous iteration of this loop did not delete the Value. 8435 if (llvm::any_of(Ops, [&R](Value *V) { 8436 auto *I = dyn_cast<Instruction>(V); 8437 return I && R.isDeleted(I); 8438 })) 8439 continue; 8440 8441 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8442 << "\n"); 8443 8444 R.buildTree(Ops); 8445 if (R.isTreeTinyAndNotFullyVectorizable()) 8446 continue; 8447 R.reorderTopToBottom(); 8448 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8449 R.buildExternalUses(); 8450 8451 R.computeMinimumValueSizes(); 8452 InstructionCost Cost = R.getTreeCost(); 8453 CandidateFound = true; 8454 MinCost = std::min(MinCost, Cost); 8455 8456 if (Cost < -SLPCostThreshold) { 8457 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8458 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8459 cast<Instruction>(Ops[0])) 8460 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8461 << " and with tree size " 8462 << ore::NV("TreeSize", R.getTreeSize())); 8463 8464 R.vectorizeTree(); 8465 // Move to the next bundle. 8466 I += VF - 1; 8467 NextInst = I + 1; 8468 Changed = true; 8469 } 8470 } 8471 } 8472 8473 if (!Changed && CandidateFound) { 8474 R.getORE()->emit([&]() { 8475 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8476 << "List vectorization was possible but not beneficial with cost " 8477 << ore::NV("Cost", MinCost) << " >= " 8478 << ore::NV("Treshold", -SLPCostThreshold); 8479 }); 8480 } else if (!Changed) { 8481 R.getORE()->emit([&]() { 8482 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8483 << "Cannot SLP vectorize list: vectorization was impossible" 8484 << " with available vectorization factors"; 8485 }); 8486 } 8487 return Changed; 8488 } 8489 8490 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8491 if (!I) 8492 return false; 8493 8494 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8495 return false; 8496 8497 Value *P = I->getParent(); 8498 8499 // Vectorize in current basic block only. 8500 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8501 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8502 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8503 return false; 8504 8505 // Try to vectorize V. 8506 if (tryToVectorizePair(Op0, Op1, R)) 8507 return true; 8508 8509 auto *A = dyn_cast<BinaryOperator>(Op0); 8510 auto *B = dyn_cast<BinaryOperator>(Op1); 8511 // Try to skip B. 8512 if (B && B->hasOneUse()) { 8513 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8514 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8515 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8516 return true; 8517 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8518 return true; 8519 } 8520 8521 // Try to skip A. 8522 if (A && A->hasOneUse()) { 8523 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8524 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8525 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8526 return true; 8527 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8528 return true; 8529 } 8530 return false; 8531 } 8532 8533 namespace { 8534 8535 /// Model horizontal reductions. 8536 /// 8537 /// A horizontal reduction is a tree of reduction instructions that has values 8538 /// that can be put into a vector as its leaves. For example: 8539 /// 8540 /// mul mul mul mul 8541 /// \ / \ / 8542 /// + + 8543 /// \ / 8544 /// + 8545 /// This tree has "mul" as its leaf values and "+" as its reduction 8546 /// instructions. A reduction can feed into a store or a binary operation 8547 /// feeding a phi. 8548 /// ... 8549 /// \ / 8550 /// + 8551 /// | 8552 /// phi += 8553 /// 8554 /// Or: 8555 /// ... 8556 /// \ / 8557 /// + 8558 /// | 8559 /// *p = 8560 /// 8561 class HorizontalReduction { 8562 using ReductionOpsType = SmallVector<Value *, 16>; 8563 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8564 ReductionOpsListType ReductionOps; 8565 SmallVector<Value *, 32> ReducedVals; 8566 // Use map vector to make stable output. 8567 MapVector<Instruction *, Value *> ExtraArgs; 8568 WeakTrackingVH ReductionRoot; 8569 /// The type of reduction operation. 8570 RecurKind RdxKind; 8571 8572 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8573 8574 static bool isCmpSelMinMax(Instruction *I) { 8575 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8576 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8577 } 8578 8579 // And/or are potentially poison-safe logical patterns like: 8580 // select x, y, false 8581 // select x, true, y 8582 static bool isBoolLogicOp(Instruction *I) { 8583 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8584 match(I, m_LogicalOr(m_Value(), m_Value())); 8585 } 8586 8587 /// Checks if instruction is associative and can be vectorized. 8588 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8589 if (Kind == RecurKind::None) 8590 return false; 8591 8592 // Integer ops that map to select instructions or intrinsics are fine. 8593 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8594 isBoolLogicOp(I)) 8595 return true; 8596 8597 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8598 // FP min/max are associative except for NaN and -0.0. We do not 8599 // have to rule out -0.0 here because the intrinsic semantics do not 8600 // specify a fixed result for it. 8601 return I->getFastMathFlags().noNaNs(); 8602 } 8603 8604 return I->isAssociative(); 8605 } 8606 8607 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8608 // Poison-safe 'or' takes the form: select X, true, Y 8609 // To make that work with the normal operand processing, we skip the 8610 // true value operand. 8611 // TODO: Change the code and data structures to handle this without a hack. 8612 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8613 return I->getOperand(2); 8614 return I->getOperand(Index); 8615 } 8616 8617 /// Checks if the ParentStackElem.first should be marked as a reduction 8618 /// operation with an extra argument or as extra argument itself. 8619 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8620 Value *ExtraArg) { 8621 if (ExtraArgs.count(ParentStackElem.first)) { 8622 ExtraArgs[ParentStackElem.first] = nullptr; 8623 // We ran into something like: 8624 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8625 // The whole ParentStackElem.first should be considered as an extra value 8626 // in this case. 8627 // Do not perform analysis of remaining operands of ParentStackElem.first 8628 // instruction, this whole instruction is an extra argument. 8629 ParentStackElem.second = INVALID_OPERAND_INDEX; 8630 } else { 8631 // We ran into something like: 8632 // ParentStackElem.first += ... + ExtraArg + ... 8633 ExtraArgs[ParentStackElem.first] = ExtraArg; 8634 } 8635 } 8636 8637 /// Creates reduction operation with the current opcode. 8638 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8639 Value *RHS, const Twine &Name, bool UseSelect) { 8640 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8641 switch (Kind) { 8642 case RecurKind::Or: 8643 if (UseSelect && 8644 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8645 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8646 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8647 Name); 8648 case RecurKind::And: 8649 if (UseSelect && 8650 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8651 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8652 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8653 Name); 8654 case RecurKind::Add: 8655 case RecurKind::Mul: 8656 case RecurKind::Xor: 8657 case RecurKind::FAdd: 8658 case RecurKind::FMul: 8659 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8660 Name); 8661 case RecurKind::FMax: 8662 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8663 case RecurKind::FMin: 8664 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8665 case RecurKind::SMax: 8666 if (UseSelect) { 8667 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8668 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8669 } 8670 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8671 case RecurKind::SMin: 8672 if (UseSelect) { 8673 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8674 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8675 } 8676 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8677 case RecurKind::UMax: 8678 if (UseSelect) { 8679 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8680 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8681 } 8682 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8683 case RecurKind::UMin: 8684 if (UseSelect) { 8685 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8686 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8687 } 8688 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8689 default: 8690 llvm_unreachable("Unknown reduction operation."); 8691 } 8692 } 8693 8694 /// Creates reduction operation with the current opcode with the IR flags 8695 /// from \p ReductionOps. 8696 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8697 Value *RHS, const Twine &Name, 8698 const ReductionOpsListType &ReductionOps) { 8699 bool UseSelect = ReductionOps.size() == 2 || 8700 // Logical or/and. 8701 (ReductionOps.size() == 1 && 8702 isa<SelectInst>(ReductionOps.front().front())); 8703 assert((!UseSelect || ReductionOps.size() != 2 || 8704 isa<SelectInst>(ReductionOps[1][0])) && 8705 "Expected cmp + select pairs for reduction"); 8706 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8707 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8708 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8709 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8710 propagateIRFlags(Op, ReductionOps[1]); 8711 return Op; 8712 } 8713 } 8714 propagateIRFlags(Op, ReductionOps[0]); 8715 return Op; 8716 } 8717 8718 /// Creates reduction operation with the current opcode with the IR flags 8719 /// from \p I. 8720 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8721 Value *RHS, const Twine &Name, Instruction *I) { 8722 auto *SelI = dyn_cast<SelectInst>(I); 8723 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8724 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8725 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8726 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8727 } 8728 propagateIRFlags(Op, I); 8729 return Op; 8730 } 8731 8732 static RecurKind getRdxKind(Instruction *I) { 8733 assert(I && "Expected instruction for reduction matching"); 8734 if (match(I, m_Add(m_Value(), m_Value()))) 8735 return RecurKind::Add; 8736 if (match(I, m_Mul(m_Value(), m_Value()))) 8737 return RecurKind::Mul; 8738 if (match(I, m_And(m_Value(), m_Value())) || 8739 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8740 return RecurKind::And; 8741 if (match(I, m_Or(m_Value(), m_Value())) || 8742 match(I, m_LogicalOr(m_Value(), m_Value()))) 8743 return RecurKind::Or; 8744 if (match(I, m_Xor(m_Value(), m_Value()))) 8745 return RecurKind::Xor; 8746 if (match(I, m_FAdd(m_Value(), m_Value()))) 8747 return RecurKind::FAdd; 8748 if (match(I, m_FMul(m_Value(), m_Value()))) 8749 return RecurKind::FMul; 8750 8751 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8752 return RecurKind::FMax; 8753 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8754 return RecurKind::FMin; 8755 8756 // This matches either cmp+select or intrinsics. SLP is expected to handle 8757 // either form. 8758 // TODO: If we are canonicalizing to intrinsics, we can remove several 8759 // special-case paths that deal with selects. 8760 if (match(I, m_SMax(m_Value(), m_Value()))) 8761 return RecurKind::SMax; 8762 if (match(I, m_SMin(m_Value(), m_Value()))) 8763 return RecurKind::SMin; 8764 if (match(I, m_UMax(m_Value(), m_Value()))) 8765 return RecurKind::UMax; 8766 if (match(I, m_UMin(m_Value(), m_Value()))) 8767 return RecurKind::UMin; 8768 8769 if (auto *Select = dyn_cast<SelectInst>(I)) { 8770 // Try harder: look for min/max pattern based on instructions producing 8771 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8772 // During the intermediate stages of SLP, it's very common to have 8773 // pattern like this (since optimizeGatherSequence is run only once 8774 // at the end): 8775 // %1 = extractelement <2 x i32> %a, i32 0 8776 // %2 = extractelement <2 x i32> %a, i32 1 8777 // %cond = icmp sgt i32 %1, %2 8778 // %3 = extractelement <2 x i32> %a, i32 0 8779 // %4 = extractelement <2 x i32> %a, i32 1 8780 // %select = select i1 %cond, i32 %3, i32 %4 8781 CmpInst::Predicate Pred; 8782 Instruction *L1; 8783 Instruction *L2; 8784 8785 Value *LHS = Select->getTrueValue(); 8786 Value *RHS = Select->getFalseValue(); 8787 Value *Cond = Select->getCondition(); 8788 8789 // TODO: Support inverse predicates. 8790 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8791 if (!isa<ExtractElementInst>(RHS) || 8792 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8793 return RecurKind::None; 8794 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8795 if (!isa<ExtractElementInst>(LHS) || 8796 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8797 return RecurKind::None; 8798 } else { 8799 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8800 return RecurKind::None; 8801 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8802 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8803 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8804 return RecurKind::None; 8805 } 8806 8807 switch (Pred) { 8808 default: 8809 return RecurKind::None; 8810 case CmpInst::ICMP_SGT: 8811 case CmpInst::ICMP_SGE: 8812 return RecurKind::SMax; 8813 case CmpInst::ICMP_SLT: 8814 case CmpInst::ICMP_SLE: 8815 return RecurKind::SMin; 8816 case CmpInst::ICMP_UGT: 8817 case CmpInst::ICMP_UGE: 8818 return RecurKind::UMax; 8819 case CmpInst::ICMP_ULT: 8820 case CmpInst::ICMP_ULE: 8821 return RecurKind::UMin; 8822 } 8823 } 8824 return RecurKind::None; 8825 } 8826 8827 /// Get the index of the first operand. 8828 static unsigned getFirstOperandIndex(Instruction *I) { 8829 return isCmpSelMinMax(I) ? 1 : 0; 8830 } 8831 8832 /// Total number of operands in the reduction operation. 8833 static unsigned getNumberOfOperands(Instruction *I) { 8834 return isCmpSelMinMax(I) ? 3 : 2; 8835 } 8836 8837 /// Checks if the instruction is in basic block \p BB. 8838 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8839 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8840 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8841 auto *Sel = cast<SelectInst>(I); 8842 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8843 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8844 } 8845 return I->getParent() == BB; 8846 } 8847 8848 /// Expected number of uses for reduction operations/reduced values. 8849 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8850 if (IsCmpSelMinMax) { 8851 // SelectInst must be used twice while the condition op must have single 8852 // use only. 8853 if (auto *Sel = dyn_cast<SelectInst>(I)) 8854 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8855 return I->hasNUses(2); 8856 } 8857 8858 // Arithmetic reduction operation must be used once only. 8859 return I->hasOneUse(); 8860 } 8861 8862 /// Initializes the list of reduction operations. 8863 void initReductionOps(Instruction *I) { 8864 if (isCmpSelMinMax(I)) 8865 ReductionOps.assign(2, ReductionOpsType()); 8866 else 8867 ReductionOps.assign(1, ReductionOpsType()); 8868 } 8869 8870 /// Add all reduction operations for the reduction instruction \p I. 8871 void addReductionOps(Instruction *I) { 8872 if (isCmpSelMinMax(I)) { 8873 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8874 ReductionOps[1].emplace_back(I); 8875 } else { 8876 ReductionOps[0].emplace_back(I); 8877 } 8878 } 8879 8880 static Value *getLHS(RecurKind Kind, Instruction *I) { 8881 if (Kind == RecurKind::None) 8882 return nullptr; 8883 return I->getOperand(getFirstOperandIndex(I)); 8884 } 8885 static Value *getRHS(RecurKind Kind, Instruction *I) { 8886 if (Kind == RecurKind::None) 8887 return nullptr; 8888 return I->getOperand(getFirstOperandIndex(I) + 1); 8889 } 8890 8891 public: 8892 HorizontalReduction() = default; 8893 8894 /// Try to find a reduction tree. 8895 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8896 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8897 "Phi needs to use the binary operator"); 8898 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8899 isa<IntrinsicInst>(Inst)) && 8900 "Expected binop, select, or intrinsic for reduction matching"); 8901 RdxKind = getRdxKind(Inst); 8902 8903 // We could have a initial reductions that is not an add. 8904 // r *= v1 + v2 + v3 + v4 8905 // In such a case start looking for a tree rooted in the first '+'. 8906 if (Phi) { 8907 if (getLHS(RdxKind, Inst) == Phi) { 8908 Phi = nullptr; 8909 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8910 if (!Inst) 8911 return false; 8912 RdxKind = getRdxKind(Inst); 8913 } else if (getRHS(RdxKind, Inst) == Phi) { 8914 Phi = nullptr; 8915 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8916 if (!Inst) 8917 return false; 8918 RdxKind = getRdxKind(Inst); 8919 } 8920 } 8921 8922 if (!isVectorizable(RdxKind, Inst)) 8923 return false; 8924 8925 // Analyze "regular" integer/FP types for reductions - no target-specific 8926 // types or pointers. 8927 Type *Ty = Inst->getType(); 8928 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8929 return false; 8930 8931 // Though the ultimate reduction may have multiple uses, its condition must 8932 // have only single use. 8933 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8934 if (!Sel->getCondition()->hasOneUse()) 8935 return false; 8936 8937 ReductionRoot = Inst; 8938 8939 // The opcode for leaf values that we perform a reduction on. 8940 // For example: load(x) + load(y) + load(z) + fptoui(w) 8941 // The leaf opcode for 'w' does not match, so we don't include it as a 8942 // potential candidate for the reduction. 8943 unsigned LeafOpcode = 0; 8944 8945 // Post-order traverse the reduction tree starting at Inst. We only handle 8946 // true trees containing binary operators or selects. 8947 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8948 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8949 initReductionOps(Inst); 8950 while (!Stack.empty()) { 8951 Instruction *TreeN = Stack.back().first; 8952 unsigned EdgeToVisit = Stack.back().second++; 8953 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8954 bool IsReducedValue = TreeRdxKind != RdxKind; 8955 8956 // Postorder visit. 8957 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8958 if (IsReducedValue) 8959 ReducedVals.push_back(TreeN); 8960 else { 8961 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8962 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8963 // Check if TreeN is an extra argument of its parent operation. 8964 if (Stack.size() <= 1) { 8965 // TreeN can't be an extra argument as it is a root reduction 8966 // operation. 8967 return false; 8968 } 8969 // Yes, TreeN is an extra argument, do not add it to a list of 8970 // reduction operations. 8971 // Stack[Stack.size() - 2] always points to the parent operation. 8972 markExtraArg(Stack[Stack.size() - 2], TreeN); 8973 ExtraArgs.erase(TreeN); 8974 } else 8975 addReductionOps(TreeN); 8976 } 8977 // Retract. 8978 Stack.pop_back(); 8979 continue; 8980 } 8981 8982 // Visit operands. 8983 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8984 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8985 if (!EdgeInst) { 8986 // Edge value is not a reduction instruction or a leaf instruction. 8987 // (It may be a constant, function argument, or something else.) 8988 markExtraArg(Stack.back(), EdgeVal); 8989 continue; 8990 } 8991 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8992 // Continue analysis if the next operand is a reduction operation or 8993 // (possibly) a leaf value. If the leaf value opcode is not set, 8994 // the first met operation != reduction operation is considered as the 8995 // leaf opcode. 8996 // Only handle trees in the current basic block. 8997 // Each tree node needs to have minimal number of users except for the 8998 // ultimate reduction. 8999 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9000 if (EdgeInst != Phi && EdgeInst != Inst && 9001 hasSameParent(EdgeInst, Inst->getParent()) && 9002 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9003 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9004 if (IsRdxInst) { 9005 // We need to be able to reassociate the reduction operations. 9006 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9007 // I is an extra argument for TreeN (its parent operation). 9008 markExtraArg(Stack.back(), EdgeInst); 9009 continue; 9010 } 9011 } else if (!LeafOpcode) { 9012 LeafOpcode = EdgeInst->getOpcode(); 9013 } 9014 Stack.push_back( 9015 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9016 continue; 9017 } 9018 // I is an extra argument for TreeN (its parent operation). 9019 markExtraArg(Stack.back(), EdgeInst); 9020 } 9021 return true; 9022 } 9023 9024 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9025 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9026 // If there are a sufficient number of reduction values, reduce 9027 // to a nearby power-of-2. We can safely generate oversized 9028 // vectors and rely on the backend to split them to legal sizes. 9029 unsigned NumReducedVals = ReducedVals.size(); 9030 if (NumReducedVals < 4) 9031 return nullptr; 9032 9033 // Intersect the fast-math-flags from all reduction operations. 9034 FastMathFlags RdxFMF; 9035 RdxFMF.set(); 9036 for (ReductionOpsType &RdxOp : ReductionOps) { 9037 for (Value *RdxVal : RdxOp) { 9038 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9039 RdxFMF &= FPMO->getFastMathFlags(); 9040 } 9041 } 9042 9043 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9044 Builder.setFastMathFlags(RdxFMF); 9045 9046 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9047 // The same extra argument may be used several times, so log each attempt 9048 // to use it. 9049 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9050 assert(Pair.first && "DebugLoc must be set."); 9051 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9052 } 9053 9054 // The compare instruction of a min/max is the insertion point for new 9055 // instructions and may be replaced with a new compare instruction. 9056 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9057 assert(isa<SelectInst>(RdxRootInst) && 9058 "Expected min/max reduction to have select root instruction"); 9059 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9060 assert(isa<Instruction>(ScalarCond) && 9061 "Expected min/max reduction to have compare condition"); 9062 return cast<Instruction>(ScalarCond); 9063 }; 9064 9065 // The reduction root is used as the insertion point for new instructions, 9066 // so set it as externally used to prevent it from being deleted. 9067 ExternallyUsedValues[ReductionRoot]; 9068 SmallVector<Value *, 16> IgnoreList; 9069 for (ReductionOpsType &RdxOp : ReductionOps) 9070 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9071 9072 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9073 if (NumReducedVals > ReduxWidth) { 9074 // In the loop below, we are building a tree based on a window of 9075 // 'ReduxWidth' values. 9076 // If the operands of those values have common traits (compare predicate, 9077 // constant operand, etc), then we want to group those together to 9078 // minimize the cost of the reduction. 9079 9080 // TODO: This should be extended to count common operands for 9081 // compares and binops. 9082 9083 // Step 1: Count the number of times each compare predicate occurs. 9084 SmallDenseMap<unsigned, unsigned> PredCountMap; 9085 for (Value *RdxVal : ReducedVals) { 9086 CmpInst::Predicate Pred; 9087 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9088 ++PredCountMap[Pred]; 9089 } 9090 // Step 2: Sort the values so the most common predicates come first. 9091 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9092 CmpInst::Predicate PredA, PredB; 9093 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9094 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9095 return PredCountMap[PredA] > PredCountMap[PredB]; 9096 } 9097 return false; 9098 }); 9099 } 9100 9101 Value *VectorizedTree = nullptr; 9102 unsigned i = 0; 9103 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9104 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9105 V.buildTree(VL, IgnoreList); 9106 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9107 break; 9108 if (V.isLoadCombineReductionCandidate(RdxKind)) 9109 break; 9110 V.reorderTopToBottom(); 9111 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9112 V.buildExternalUses(ExternallyUsedValues); 9113 9114 // For a poison-safe boolean logic reduction, do not replace select 9115 // instructions with logic ops. All reduced values will be frozen (see 9116 // below) to prevent leaking poison. 9117 if (isa<SelectInst>(ReductionRoot) && 9118 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9119 NumReducedVals != ReduxWidth) 9120 break; 9121 9122 V.computeMinimumValueSizes(); 9123 9124 // Estimate cost. 9125 InstructionCost TreeCost = 9126 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9127 InstructionCost ReductionCost = 9128 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9129 InstructionCost Cost = TreeCost + ReductionCost; 9130 if (!Cost.isValid()) { 9131 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9132 return nullptr; 9133 } 9134 if (Cost >= -SLPCostThreshold) { 9135 V.getORE()->emit([&]() { 9136 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9137 cast<Instruction>(VL[0])) 9138 << "Vectorizing horizontal reduction is possible" 9139 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9140 << " and threshold " 9141 << ore::NV("Threshold", -SLPCostThreshold); 9142 }); 9143 break; 9144 } 9145 9146 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9147 << Cost << ". (HorRdx)\n"); 9148 V.getORE()->emit([&]() { 9149 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9150 cast<Instruction>(VL[0])) 9151 << "Vectorized horizontal reduction with cost " 9152 << ore::NV("Cost", Cost) << " and with tree size " 9153 << ore::NV("TreeSize", V.getTreeSize()); 9154 }); 9155 9156 // Vectorize a tree. 9157 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9158 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9159 9160 // Emit a reduction. If the root is a select (min/max idiom), the insert 9161 // point is the compare condition of that select. 9162 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9163 if (isCmpSelMinMax(RdxRootInst)) 9164 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9165 else 9166 Builder.SetInsertPoint(RdxRootInst); 9167 9168 // To prevent poison from leaking across what used to be sequential, safe, 9169 // scalar boolean logic operations, the reduction operand must be frozen. 9170 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9171 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9172 9173 Value *ReducedSubTree = 9174 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9175 9176 if (!VectorizedTree) { 9177 // Initialize the final value in the reduction. 9178 VectorizedTree = ReducedSubTree; 9179 } else { 9180 // Update the final value in the reduction. 9181 Builder.SetCurrentDebugLocation(Loc); 9182 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9183 ReducedSubTree, "op.rdx", ReductionOps); 9184 } 9185 i += ReduxWidth; 9186 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9187 } 9188 9189 if (VectorizedTree) { 9190 // Finish the reduction. 9191 for (; i < NumReducedVals; ++i) { 9192 auto *I = cast<Instruction>(ReducedVals[i]); 9193 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9194 VectorizedTree = 9195 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9196 } 9197 for (auto &Pair : ExternallyUsedValues) { 9198 // Add each externally used value to the final reduction. 9199 for (auto *I : Pair.second) { 9200 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9201 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9202 Pair.first, "op.extra", I); 9203 } 9204 } 9205 9206 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9207 9208 // Mark all scalar reduction ops for deletion, they are replaced by the 9209 // vector reductions. 9210 V.eraseInstructions(IgnoreList); 9211 } 9212 return VectorizedTree; 9213 } 9214 9215 unsigned numReductionValues() const { return ReducedVals.size(); } 9216 9217 private: 9218 /// Calculate the cost of a reduction. 9219 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9220 Value *FirstReducedVal, unsigned ReduxWidth, 9221 FastMathFlags FMF) { 9222 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9223 Type *ScalarTy = FirstReducedVal->getType(); 9224 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9225 InstructionCost VectorCost, ScalarCost; 9226 switch (RdxKind) { 9227 case RecurKind::Add: 9228 case RecurKind::Mul: 9229 case RecurKind::Or: 9230 case RecurKind::And: 9231 case RecurKind::Xor: 9232 case RecurKind::FAdd: 9233 case RecurKind::FMul: { 9234 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9235 VectorCost = 9236 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9237 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9238 break; 9239 } 9240 case RecurKind::FMax: 9241 case RecurKind::FMin: { 9242 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9243 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9244 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9245 /*IsUnsigned=*/false, CostKind); 9246 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9247 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9248 SclCondTy, RdxPred, CostKind) + 9249 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9250 SclCondTy, RdxPred, CostKind); 9251 break; 9252 } 9253 case RecurKind::SMax: 9254 case RecurKind::SMin: 9255 case RecurKind::UMax: 9256 case RecurKind::UMin: { 9257 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9258 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9259 bool IsUnsigned = 9260 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9261 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9262 CostKind); 9263 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9264 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9265 SclCondTy, RdxPred, CostKind) + 9266 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9267 SclCondTy, RdxPred, CostKind); 9268 break; 9269 } 9270 default: 9271 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9272 } 9273 9274 // Scalar cost is repeated for N-1 elements. 9275 ScalarCost *= (ReduxWidth - 1); 9276 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9277 << " for reduction that starts with " << *FirstReducedVal 9278 << " (It is a splitting reduction)\n"); 9279 return VectorCost - ScalarCost; 9280 } 9281 9282 /// Emit a horizontal reduction of the vectorized value. 9283 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9284 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9285 assert(VectorizedValue && "Need to have a vectorized tree node"); 9286 assert(isPowerOf2_32(ReduxWidth) && 9287 "We only handle power-of-two reductions for now"); 9288 assert(RdxKind != RecurKind::FMulAdd && 9289 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9290 9291 ++NumVectorInstructions; 9292 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9293 } 9294 }; 9295 9296 } // end anonymous namespace 9297 9298 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9299 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9300 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9301 9302 unsigned AggregateSize = 1; 9303 auto *IV = cast<InsertValueInst>(InsertInst); 9304 Type *CurrentType = IV->getType(); 9305 do { 9306 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9307 for (auto *Elt : ST->elements()) 9308 if (Elt != ST->getElementType(0)) // check homogeneity 9309 return None; 9310 AggregateSize *= ST->getNumElements(); 9311 CurrentType = ST->getElementType(0); 9312 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9313 AggregateSize *= AT->getNumElements(); 9314 CurrentType = AT->getElementType(); 9315 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9316 AggregateSize *= VT->getNumElements(); 9317 return AggregateSize; 9318 } else if (CurrentType->isSingleValueType()) { 9319 return AggregateSize; 9320 } else { 9321 return None; 9322 } 9323 } while (true); 9324 } 9325 9326 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9327 TargetTransformInfo *TTI, 9328 SmallVectorImpl<Value *> &BuildVectorOpds, 9329 SmallVectorImpl<Value *> &InsertElts, 9330 unsigned OperandOffset) { 9331 do { 9332 Value *InsertedOperand = LastInsertInst->getOperand(1); 9333 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9334 if (!OperandIndex) 9335 return false; 9336 if (isa<InsertElementInst>(InsertedOperand) || 9337 isa<InsertValueInst>(InsertedOperand)) { 9338 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9339 BuildVectorOpds, InsertElts, *OperandIndex)) 9340 return false; 9341 } else { 9342 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9343 InsertElts[*OperandIndex] = LastInsertInst; 9344 } 9345 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9346 } while (LastInsertInst != nullptr && 9347 (isa<InsertValueInst>(LastInsertInst) || 9348 isa<InsertElementInst>(LastInsertInst)) && 9349 LastInsertInst->hasOneUse()); 9350 return true; 9351 } 9352 9353 /// Recognize construction of vectors like 9354 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9355 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9356 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9357 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9358 /// starting from the last insertelement or insertvalue instruction. 9359 /// 9360 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9361 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9362 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9363 /// 9364 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9365 /// 9366 /// \return true if it matches. 9367 static bool findBuildAggregate(Instruction *LastInsertInst, 9368 TargetTransformInfo *TTI, 9369 SmallVectorImpl<Value *> &BuildVectorOpds, 9370 SmallVectorImpl<Value *> &InsertElts) { 9371 9372 assert((isa<InsertElementInst>(LastInsertInst) || 9373 isa<InsertValueInst>(LastInsertInst)) && 9374 "Expected insertelement or insertvalue instruction!"); 9375 9376 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9377 "Expected empty result vectors!"); 9378 9379 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9380 if (!AggregateSize) 9381 return false; 9382 BuildVectorOpds.resize(*AggregateSize); 9383 InsertElts.resize(*AggregateSize); 9384 9385 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9386 0)) { 9387 llvm::erase_value(BuildVectorOpds, nullptr); 9388 llvm::erase_value(InsertElts, nullptr); 9389 if (BuildVectorOpds.size() >= 2) 9390 return true; 9391 } 9392 9393 return false; 9394 } 9395 9396 /// Try and get a reduction value from a phi node. 9397 /// 9398 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9399 /// if they come from either \p ParentBB or a containing loop latch. 9400 /// 9401 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9402 /// if not possible. 9403 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9404 BasicBlock *ParentBB, LoopInfo *LI) { 9405 // There are situations where the reduction value is not dominated by the 9406 // reduction phi. Vectorizing such cases has been reported to cause 9407 // miscompiles. See PR25787. 9408 auto DominatedReduxValue = [&](Value *R) { 9409 return isa<Instruction>(R) && 9410 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9411 }; 9412 9413 Value *Rdx = nullptr; 9414 9415 // Return the incoming value if it comes from the same BB as the phi node. 9416 if (P->getIncomingBlock(0) == ParentBB) { 9417 Rdx = P->getIncomingValue(0); 9418 } else if (P->getIncomingBlock(1) == ParentBB) { 9419 Rdx = P->getIncomingValue(1); 9420 } 9421 9422 if (Rdx && DominatedReduxValue(Rdx)) 9423 return Rdx; 9424 9425 // Otherwise, check whether we have a loop latch to look at. 9426 Loop *BBL = LI->getLoopFor(ParentBB); 9427 if (!BBL) 9428 return nullptr; 9429 BasicBlock *BBLatch = BBL->getLoopLatch(); 9430 if (!BBLatch) 9431 return nullptr; 9432 9433 // There is a loop latch, return the incoming value if it comes from 9434 // that. This reduction pattern occasionally turns up. 9435 if (P->getIncomingBlock(0) == BBLatch) { 9436 Rdx = P->getIncomingValue(0); 9437 } else if (P->getIncomingBlock(1) == BBLatch) { 9438 Rdx = P->getIncomingValue(1); 9439 } 9440 9441 if (Rdx && DominatedReduxValue(Rdx)) 9442 return Rdx; 9443 9444 return nullptr; 9445 } 9446 9447 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9448 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9449 return true; 9450 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9451 return true; 9452 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9453 return true; 9454 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9455 return true; 9456 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9457 return true; 9458 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9459 return true; 9460 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9461 return true; 9462 return false; 9463 } 9464 9465 /// Attempt to reduce a horizontal reduction. 9466 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9467 /// with reduction operators \a Root (or one of its operands) in a basic block 9468 /// \a BB, then check if it can be done. If horizontal reduction is not found 9469 /// and root instruction is a binary operation, vectorization of the operands is 9470 /// attempted. 9471 /// \returns true if a horizontal reduction was matched and reduced or operands 9472 /// of one of the binary instruction were vectorized. 9473 /// \returns false if a horizontal reduction was not matched (or not possible) 9474 /// or no vectorization of any binary operation feeding \a Root instruction was 9475 /// performed. 9476 static bool tryToVectorizeHorReductionOrInstOperands( 9477 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9478 TargetTransformInfo *TTI, 9479 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9480 if (!ShouldVectorizeHor) 9481 return false; 9482 9483 if (!Root) 9484 return false; 9485 9486 if (Root->getParent() != BB || isa<PHINode>(Root)) 9487 return false; 9488 // Start analysis starting from Root instruction. If horizontal reduction is 9489 // found, try to vectorize it. If it is not a horizontal reduction or 9490 // vectorization is not possible or not effective, and currently analyzed 9491 // instruction is a binary operation, try to vectorize the operands, using 9492 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9493 // the same procedure considering each operand as a possible root of the 9494 // horizontal reduction. 9495 // Interrupt the process if the Root instruction itself was vectorized or all 9496 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9497 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9498 // CmpInsts so we can skip extra attempts in 9499 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9500 std::queue<std::pair<Instruction *, unsigned>> Stack; 9501 Stack.emplace(Root, 0); 9502 SmallPtrSet<Value *, 8> VisitedInstrs; 9503 SmallVector<WeakTrackingVH> PostponedInsts; 9504 bool Res = false; 9505 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9506 Value *&B1) -> Value * { 9507 bool IsBinop = matchRdxBop(Inst, B0, B1); 9508 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9509 if (IsBinop || IsSelect) { 9510 HorizontalReduction HorRdx; 9511 if (HorRdx.matchAssociativeReduction(P, Inst)) 9512 return HorRdx.tryToReduce(R, TTI); 9513 } 9514 return nullptr; 9515 }; 9516 while (!Stack.empty()) { 9517 Instruction *Inst; 9518 unsigned Level; 9519 std::tie(Inst, Level) = Stack.front(); 9520 Stack.pop(); 9521 // Do not try to analyze instruction that has already been vectorized. 9522 // This may happen when we vectorize instruction operands on a previous 9523 // iteration while stack was populated before that happened. 9524 if (R.isDeleted(Inst)) 9525 continue; 9526 Value *B0 = nullptr, *B1 = nullptr; 9527 if (Value *V = TryToReduce(Inst, B0, B1)) { 9528 Res = true; 9529 // Set P to nullptr to avoid re-analysis of phi node in 9530 // matchAssociativeReduction function unless this is the root node. 9531 P = nullptr; 9532 if (auto *I = dyn_cast<Instruction>(V)) { 9533 // Try to find another reduction. 9534 Stack.emplace(I, Level); 9535 continue; 9536 } 9537 } else { 9538 bool IsBinop = B0 && B1; 9539 if (P && IsBinop) { 9540 Inst = dyn_cast<Instruction>(B0); 9541 if (Inst == P) 9542 Inst = dyn_cast<Instruction>(B1); 9543 if (!Inst) { 9544 // Set P to nullptr to avoid re-analysis of phi node in 9545 // matchAssociativeReduction function unless this is the root node. 9546 P = nullptr; 9547 continue; 9548 } 9549 } 9550 // Set P to nullptr to avoid re-analysis of phi node in 9551 // matchAssociativeReduction function unless this is the root node. 9552 P = nullptr; 9553 // Do not try to vectorize CmpInst operands, this is done separately. 9554 // Final attempt for binop args vectorization should happen after the loop 9555 // to try to find reductions. 9556 if (!isa<CmpInst>(Inst)) 9557 PostponedInsts.push_back(Inst); 9558 } 9559 9560 // Try to vectorize operands. 9561 // Continue analysis for the instruction from the same basic block only to 9562 // save compile time. 9563 if (++Level < RecursionMaxDepth) 9564 for (auto *Op : Inst->operand_values()) 9565 if (VisitedInstrs.insert(Op).second) 9566 if (auto *I = dyn_cast<Instruction>(Op)) 9567 // Do not try to vectorize CmpInst operands, this is done 9568 // separately. 9569 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9570 I->getParent() == BB) 9571 Stack.emplace(I, Level); 9572 } 9573 // Try to vectorized binops where reductions were not found. 9574 for (Value *V : PostponedInsts) 9575 if (auto *Inst = dyn_cast<Instruction>(V)) 9576 if (!R.isDeleted(Inst)) 9577 Res |= Vectorize(Inst, R); 9578 return Res; 9579 } 9580 9581 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9582 BasicBlock *BB, BoUpSLP &R, 9583 TargetTransformInfo *TTI) { 9584 auto *I = dyn_cast_or_null<Instruction>(V); 9585 if (!I) 9586 return false; 9587 9588 if (!isa<BinaryOperator>(I)) 9589 P = nullptr; 9590 // Try to match and vectorize a horizontal reduction. 9591 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9592 return tryToVectorize(I, R); 9593 }; 9594 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9595 ExtraVectorization); 9596 } 9597 9598 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9599 BasicBlock *BB, BoUpSLP &R) { 9600 const DataLayout &DL = BB->getModule()->getDataLayout(); 9601 if (!R.canMapToVector(IVI->getType(), DL)) 9602 return false; 9603 9604 SmallVector<Value *, 16> BuildVectorOpds; 9605 SmallVector<Value *, 16> BuildVectorInsts; 9606 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9607 return false; 9608 9609 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9610 // Aggregate value is unlikely to be processed in vector register. 9611 return tryToVectorizeList(BuildVectorOpds, R); 9612 } 9613 9614 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9615 BasicBlock *BB, BoUpSLP &R) { 9616 SmallVector<Value *, 16> BuildVectorInsts; 9617 SmallVector<Value *, 16> BuildVectorOpds; 9618 SmallVector<int> Mask; 9619 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9620 (llvm::all_of( 9621 BuildVectorOpds, 9622 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9623 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9624 return false; 9625 9626 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9627 return tryToVectorizeList(BuildVectorInsts, R); 9628 } 9629 9630 template <typename T> 9631 static bool 9632 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9633 function_ref<unsigned(T *)> Limit, 9634 function_ref<bool(T *, T *)> Comparator, 9635 function_ref<bool(T *, T *)> AreCompatible, 9636 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9637 bool LimitForRegisterSize) { 9638 bool Changed = false; 9639 // Sort by type, parent, operands. 9640 stable_sort(Incoming, Comparator); 9641 9642 // Try to vectorize elements base on their type. 9643 SmallVector<T *> Candidates; 9644 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9645 // Look for the next elements with the same type, parent and operand 9646 // kinds. 9647 auto *SameTypeIt = IncIt; 9648 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9649 ++SameTypeIt; 9650 9651 // Try to vectorize them. 9652 unsigned NumElts = (SameTypeIt - IncIt); 9653 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9654 << NumElts << ")\n"); 9655 // The vectorization is a 3-state attempt: 9656 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9657 // size of maximal register at first. 9658 // 2. Try to vectorize remaining instructions with the same type, if 9659 // possible. This may result in the better vectorization results rather than 9660 // if we try just to vectorize instructions with the same/alternate opcodes. 9661 // 3. Final attempt to try to vectorize all instructions with the 9662 // same/alternate ops only, this may result in some extra final 9663 // vectorization. 9664 if (NumElts > 1 && 9665 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9666 // Success start over because instructions might have been changed. 9667 Changed = true; 9668 } else if (NumElts < Limit(*IncIt) && 9669 (Candidates.empty() || 9670 Candidates.front()->getType() == (*IncIt)->getType())) { 9671 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9672 } 9673 // Final attempt to vectorize instructions with the same types. 9674 if (Candidates.size() > 1 && 9675 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9676 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9677 // Success start over because instructions might have been changed. 9678 Changed = true; 9679 } else if (LimitForRegisterSize) { 9680 // Try to vectorize using small vectors. 9681 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9682 It != End;) { 9683 auto *SameTypeIt = It; 9684 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9685 ++SameTypeIt; 9686 unsigned NumElts = (SameTypeIt - It); 9687 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9688 /*LimitForRegisterSize=*/false)) 9689 Changed = true; 9690 It = SameTypeIt; 9691 } 9692 } 9693 Candidates.clear(); 9694 } 9695 9696 // Start over at the next instruction of a different type (or the end). 9697 IncIt = SameTypeIt; 9698 } 9699 return Changed; 9700 } 9701 9702 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9703 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9704 /// operands. If IsCompatibility is false, function implements strict weak 9705 /// ordering relation between two cmp instructions, returning true if the first 9706 /// instruction is "less" than the second, i.e. its predicate is less than the 9707 /// predicate of the second or the operands IDs are less than the operands IDs 9708 /// of the second cmp instruction. 9709 template <bool IsCompatibility> 9710 static bool compareCmp(Value *V, Value *V2, 9711 function_ref<bool(Instruction *)> IsDeleted) { 9712 auto *CI1 = cast<CmpInst>(V); 9713 auto *CI2 = cast<CmpInst>(V2); 9714 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9715 return false; 9716 if (CI1->getOperand(0)->getType()->getTypeID() < 9717 CI2->getOperand(0)->getType()->getTypeID()) 9718 return !IsCompatibility; 9719 if (CI1->getOperand(0)->getType()->getTypeID() > 9720 CI2->getOperand(0)->getType()->getTypeID()) 9721 return false; 9722 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9723 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9724 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9725 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9726 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9727 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9728 if (BasePred1 < BasePred2) 9729 return !IsCompatibility; 9730 if (BasePred1 > BasePred2) 9731 return false; 9732 // Compare operands. 9733 bool LEPreds = Pred1 <= Pred2; 9734 bool GEPreds = Pred1 >= Pred2; 9735 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9736 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9737 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9738 if (Op1->getValueID() < Op2->getValueID()) 9739 return !IsCompatibility; 9740 if (Op1->getValueID() > Op2->getValueID()) 9741 return false; 9742 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9743 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9744 if (I1->getParent() != I2->getParent()) 9745 return false; 9746 InstructionsState S = getSameOpcode({I1, I2}); 9747 if (S.getOpcode()) 9748 continue; 9749 return false; 9750 } 9751 } 9752 return IsCompatibility; 9753 } 9754 9755 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9756 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9757 bool AtTerminator) { 9758 bool OpsChanged = false; 9759 SmallVector<Instruction *, 4> PostponedCmps; 9760 for (auto *I : reverse(Instructions)) { 9761 if (R.isDeleted(I)) 9762 continue; 9763 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9764 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9765 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9766 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9767 else if (isa<CmpInst>(I)) 9768 PostponedCmps.push_back(I); 9769 } 9770 if (AtTerminator) { 9771 // Try to find reductions first. 9772 for (Instruction *I : PostponedCmps) { 9773 if (R.isDeleted(I)) 9774 continue; 9775 for (Value *Op : I->operands()) 9776 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9777 } 9778 // Try to vectorize operands as vector bundles. 9779 for (Instruction *I : PostponedCmps) { 9780 if (R.isDeleted(I)) 9781 continue; 9782 OpsChanged |= tryToVectorize(I, R); 9783 } 9784 // Try to vectorize list of compares. 9785 // Sort by type, compare predicate, etc. 9786 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9787 return compareCmp<false>(V, V2, 9788 [&R](Instruction *I) { return R.isDeleted(I); }); 9789 }; 9790 9791 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9792 if (V1 == V2) 9793 return true; 9794 return compareCmp<true>(V1, V2, 9795 [&R](Instruction *I) { return R.isDeleted(I); }); 9796 }; 9797 auto Limit = [&R](Value *V) { 9798 unsigned EltSize = R.getVectorElementSize(V); 9799 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9800 }; 9801 9802 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9803 OpsChanged |= tryToVectorizeSequence<Value>( 9804 Vals, Limit, CompareSorter, AreCompatibleCompares, 9805 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9806 // Exclude possible reductions from other blocks. 9807 bool ArePossiblyReducedInOtherBlock = 9808 any_of(Candidates, [](Value *V) { 9809 return any_of(V->users(), [V](User *U) { 9810 return isa<SelectInst>(U) && 9811 cast<SelectInst>(U)->getParent() != 9812 cast<Instruction>(V)->getParent(); 9813 }); 9814 }); 9815 if (ArePossiblyReducedInOtherBlock) 9816 return false; 9817 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9818 }, 9819 /*LimitForRegisterSize=*/true); 9820 Instructions.clear(); 9821 } else { 9822 // Insert in reverse order since the PostponedCmps vector was filled in 9823 // reverse order. 9824 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9825 } 9826 return OpsChanged; 9827 } 9828 9829 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9830 bool Changed = false; 9831 SmallVector<Value *, 4> Incoming; 9832 SmallPtrSet<Value *, 16> VisitedInstrs; 9833 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9834 // node. Allows better to identify the chains that can be vectorized in the 9835 // better way. 9836 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9837 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9838 assert(isValidElementType(V1->getType()) && 9839 isValidElementType(V2->getType()) && 9840 "Expected vectorizable types only."); 9841 // It is fine to compare type IDs here, since we expect only vectorizable 9842 // types, like ints, floats and pointers, we don't care about other type. 9843 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9844 return true; 9845 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9846 return false; 9847 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9848 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9849 if (Opcodes1.size() < Opcodes2.size()) 9850 return true; 9851 if (Opcodes1.size() > Opcodes2.size()) 9852 return false; 9853 Optional<bool> ConstOrder; 9854 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9855 // Undefs are compatible with any other value. 9856 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 9857 if (!ConstOrder) 9858 ConstOrder = 9859 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 9860 continue; 9861 } 9862 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9863 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9864 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9865 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9866 if (!NodeI1) 9867 return NodeI2 != nullptr; 9868 if (!NodeI2) 9869 return false; 9870 assert((NodeI1 == NodeI2) == 9871 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9872 "Different nodes should have different DFS numbers"); 9873 if (NodeI1 != NodeI2) 9874 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9875 InstructionsState S = getSameOpcode({I1, I2}); 9876 if (S.getOpcode()) 9877 continue; 9878 return I1->getOpcode() < I2->getOpcode(); 9879 } 9880 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 9881 if (!ConstOrder) 9882 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 9883 continue; 9884 } 9885 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9886 return true; 9887 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9888 return false; 9889 } 9890 return ConstOrder && *ConstOrder; 9891 }; 9892 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9893 if (V1 == V2) 9894 return true; 9895 if (V1->getType() != V2->getType()) 9896 return false; 9897 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9898 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9899 if (Opcodes1.size() != Opcodes2.size()) 9900 return false; 9901 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9902 // Undefs are compatible with any other value. 9903 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9904 continue; 9905 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9906 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9907 if (I1->getParent() != I2->getParent()) 9908 return false; 9909 InstructionsState S = getSameOpcode({I1, I2}); 9910 if (S.getOpcode()) 9911 continue; 9912 return false; 9913 } 9914 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9915 continue; 9916 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9917 return false; 9918 } 9919 return true; 9920 }; 9921 auto Limit = [&R](Value *V) { 9922 unsigned EltSize = R.getVectorElementSize(V); 9923 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9924 }; 9925 9926 bool HaveVectorizedPhiNodes = false; 9927 do { 9928 // Collect the incoming values from the PHIs. 9929 Incoming.clear(); 9930 for (Instruction &I : *BB) { 9931 PHINode *P = dyn_cast<PHINode>(&I); 9932 if (!P) 9933 break; 9934 9935 // No need to analyze deleted, vectorized and non-vectorizable 9936 // instructions. 9937 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9938 isValidElementType(P->getType())) 9939 Incoming.push_back(P); 9940 } 9941 9942 // Find the corresponding non-phi nodes for better matching when trying to 9943 // build the tree. 9944 for (Value *V : Incoming) { 9945 SmallVectorImpl<Value *> &Opcodes = 9946 PHIToOpcodes.try_emplace(V).first->getSecond(); 9947 if (!Opcodes.empty()) 9948 continue; 9949 SmallVector<Value *, 4> Nodes(1, V); 9950 SmallPtrSet<Value *, 4> Visited; 9951 while (!Nodes.empty()) { 9952 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9953 if (!Visited.insert(PHI).second) 9954 continue; 9955 for (Value *V : PHI->incoming_values()) { 9956 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9957 Nodes.push_back(PHI1); 9958 continue; 9959 } 9960 Opcodes.emplace_back(V); 9961 } 9962 } 9963 } 9964 9965 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9966 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9967 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9968 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9969 }, 9970 /*LimitForRegisterSize=*/true); 9971 Changed |= HaveVectorizedPhiNodes; 9972 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9973 } while (HaveVectorizedPhiNodes); 9974 9975 VisitedInstrs.clear(); 9976 9977 SmallVector<Instruction *, 8> PostProcessInstructions; 9978 SmallDenseSet<Instruction *, 4> KeyNodes; 9979 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9980 // Skip instructions with scalable type. The num of elements is unknown at 9981 // compile-time for scalable type. 9982 if (isa<ScalableVectorType>(it->getType())) 9983 continue; 9984 9985 // Skip instructions marked for the deletion. 9986 if (R.isDeleted(&*it)) 9987 continue; 9988 // We may go through BB multiple times so skip the one we have checked. 9989 if (!VisitedInstrs.insert(&*it).second) { 9990 if (it->use_empty() && KeyNodes.contains(&*it) && 9991 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9992 it->isTerminator())) { 9993 // We would like to start over since some instructions are deleted 9994 // and the iterator may become invalid value. 9995 Changed = true; 9996 it = BB->begin(); 9997 e = BB->end(); 9998 } 9999 continue; 10000 } 10001 10002 if (isa<DbgInfoIntrinsic>(it)) 10003 continue; 10004 10005 // Try to vectorize reductions that use PHINodes. 10006 if (PHINode *P = dyn_cast<PHINode>(it)) { 10007 // Check that the PHI is a reduction PHI. 10008 if (P->getNumIncomingValues() == 2) { 10009 // Try to match and vectorize a horizontal reduction. 10010 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10011 TTI)) { 10012 Changed = true; 10013 it = BB->begin(); 10014 e = BB->end(); 10015 continue; 10016 } 10017 } 10018 // Try to vectorize the incoming values of the PHI, to catch reductions 10019 // that feed into PHIs. 10020 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10021 // Skip if the incoming block is the current BB for now. Also, bypass 10022 // unreachable IR for efficiency and to avoid crashing. 10023 // TODO: Collect the skipped incoming values and try to vectorize them 10024 // after processing BB. 10025 if (BB == P->getIncomingBlock(I) || 10026 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10027 continue; 10028 10029 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10030 P->getIncomingBlock(I), R, TTI); 10031 } 10032 continue; 10033 } 10034 10035 // Ran into an instruction without users, like terminator, or function call 10036 // with ignored return value, store. Ignore unused instructions (basing on 10037 // instruction type, except for CallInst and InvokeInst). 10038 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10039 isa<InvokeInst>(it))) { 10040 KeyNodes.insert(&*it); 10041 bool OpsChanged = false; 10042 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10043 for (auto *V : it->operand_values()) { 10044 // Try to match and vectorize a horizontal reduction. 10045 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10046 } 10047 } 10048 // Start vectorization of post-process list of instructions from the 10049 // top-tree instructions to try to vectorize as many instructions as 10050 // possible. 10051 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10052 it->isTerminator()); 10053 if (OpsChanged) { 10054 // We would like to start over since some instructions are deleted 10055 // and the iterator may become invalid value. 10056 Changed = true; 10057 it = BB->begin(); 10058 e = BB->end(); 10059 continue; 10060 } 10061 } 10062 10063 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10064 isa<InsertValueInst>(it)) 10065 PostProcessInstructions.push_back(&*it); 10066 } 10067 10068 return Changed; 10069 } 10070 10071 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10072 auto Changed = false; 10073 for (auto &Entry : GEPs) { 10074 // If the getelementptr list has fewer than two elements, there's nothing 10075 // to do. 10076 if (Entry.second.size() < 2) 10077 continue; 10078 10079 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10080 << Entry.second.size() << ".\n"); 10081 10082 // Process the GEP list in chunks suitable for the target's supported 10083 // vector size. If a vector register can't hold 1 element, we are done. We 10084 // are trying to vectorize the index computations, so the maximum number of 10085 // elements is based on the size of the index expression, rather than the 10086 // size of the GEP itself (the target's pointer size). 10087 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10088 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10089 if (MaxVecRegSize < EltSize) 10090 continue; 10091 10092 unsigned MaxElts = MaxVecRegSize / EltSize; 10093 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10094 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10095 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10096 10097 // Initialize a set a candidate getelementptrs. Note that we use a 10098 // SetVector here to preserve program order. If the index computations 10099 // are vectorizable and begin with loads, we want to minimize the chance 10100 // of having to reorder them later. 10101 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10102 10103 // Some of the candidates may have already been vectorized after we 10104 // initially collected them. If so, they are marked as deleted, so remove 10105 // them from the set of candidates. 10106 Candidates.remove_if( 10107 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10108 10109 // Remove from the set of candidates all pairs of getelementptrs with 10110 // constant differences. Such getelementptrs are likely not good 10111 // candidates for vectorization in a bottom-up phase since one can be 10112 // computed from the other. We also ensure all candidate getelementptr 10113 // indices are unique. 10114 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10115 auto *GEPI = GEPList[I]; 10116 if (!Candidates.count(GEPI)) 10117 continue; 10118 auto *SCEVI = SE->getSCEV(GEPList[I]); 10119 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10120 auto *GEPJ = GEPList[J]; 10121 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10122 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10123 Candidates.remove(GEPI); 10124 Candidates.remove(GEPJ); 10125 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10126 Candidates.remove(GEPJ); 10127 } 10128 } 10129 } 10130 10131 // We break out of the above computation as soon as we know there are 10132 // fewer than two candidates remaining. 10133 if (Candidates.size() < 2) 10134 continue; 10135 10136 // Add the single, non-constant index of each candidate to the bundle. We 10137 // ensured the indices met these constraints when we originally collected 10138 // the getelementptrs. 10139 SmallVector<Value *, 16> Bundle(Candidates.size()); 10140 auto BundleIndex = 0u; 10141 for (auto *V : Candidates) { 10142 auto *GEP = cast<GetElementPtrInst>(V); 10143 auto *GEPIdx = GEP->idx_begin()->get(); 10144 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10145 Bundle[BundleIndex++] = GEPIdx; 10146 } 10147 10148 // Try and vectorize the indices. We are currently only interested in 10149 // gather-like cases of the form: 10150 // 10151 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10152 // 10153 // where the loads of "a", the loads of "b", and the subtractions can be 10154 // performed in parallel. It's likely that detecting this pattern in a 10155 // bottom-up phase will be simpler and less costly than building a 10156 // full-blown top-down phase beginning at the consecutive loads. 10157 Changed |= tryToVectorizeList(Bundle, R); 10158 } 10159 } 10160 return Changed; 10161 } 10162 10163 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10164 bool Changed = false; 10165 // Sort by type, base pointers and values operand. Value operands must be 10166 // compatible (have the same opcode, same parent), otherwise it is 10167 // definitely not profitable to try to vectorize them. 10168 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10169 if (V->getPointerOperandType()->getTypeID() < 10170 V2->getPointerOperandType()->getTypeID()) 10171 return true; 10172 if (V->getPointerOperandType()->getTypeID() > 10173 V2->getPointerOperandType()->getTypeID()) 10174 return false; 10175 // UndefValues are compatible with all other values. 10176 if (isa<UndefValue>(V->getValueOperand()) || 10177 isa<UndefValue>(V2->getValueOperand())) 10178 return false; 10179 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10180 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10181 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10182 DT->getNode(I1->getParent()); 10183 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10184 DT->getNode(I2->getParent()); 10185 assert(NodeI1 && "Should only process reachable instructions"); 10186 assert(NodeI1 && "Should only process reachable instructions"); 10187 assert((NodeI1 == NodeI2) == 10188 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10189 "Different nodes should have different DFS numbers"); 10190 if (NodeI1 != NodeI2) 10191 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10192 InstructionsState S = getSameOpcode({I1, I2}); 10193 if (S.getOpcode()) 10194 return false; 10195 return I1->getOpcode() < I2->getOpcode(); 10196 } 10197 if (isa<Constant>(V->getValueOperand()) && 10198 isa<Constant>(V2->getValueOperand())) 10199 return false; 10200 return V->getValueOperand()->getValueID() < 10201 V2->getValueOperand()->getValueID(); 10202 }; 10203 10204 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10205 if (V1 == V2) 10206 return true; 10207 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10208 return false; 10209 // Undefs are compatible with any other value. 10210 if (isa<UndefValue>(V1->getValueOperand()) || 10211 isa<UndefValue>(V2->getValueOperand())) 10212 return true; 10213 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10214 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10215 if (I1->getParent() != I2->getParent()) 10216 return false; 10217 InstructionsState S = getSameOpcode({I1, I2}); 10218 return S.getOpcode() > 0; 10219 } 10220 if (isa<Constant>(V1->getValueOperand()) && 10221 isa<Constant>(V2->getValueOperand())) 10222 return true; 10223 return V1->getValueOperand()->getValueID() == 10224 V2->getValueOperand()->getValueID(); 10225 }; 10226 auto Limit = [&R, this](StoreInst *SI) { 10227 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10228 return R.getMinVF(EltSize); 10229 }; 10230 10231 // Attempt to sort and vectorize each of the store-groups. 10232 for (auto &Pair : Stores) { 10233 if (Pair.second.size() < 2) 10234 continue; 10235 10236 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10237 << Pair.second.size() << ".\n"); 10238 10239 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10240 continue; 10241 10242 Changed |= tryToVectorizeSequence<StoreInst>( 10243 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10244 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10245 return vectorizeStores(Candidates, R); 10246 }, 10247 /*LimitForRegisterSize=*/false); 10248 } 10249 return Changed; 10250 } 10251 10252 char SLPVectorizer::ID = 0; 10253 10254 static const char lv_name[] = "SLP Vectorizer"; 10255 10256 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10257 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10258 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10259 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10260 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10261 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10262 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10263 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10264 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10265 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10266 10267 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10268