xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/PriorityQueue.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetOperations.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #ifdef EXPENSIVE_CHECKS
73 #include "llvm/IR/Verifier.h"
74 #endif
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/InstructionCost.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <optional>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
104 
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
107 
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109 
110 static cl::opt<bool>
111     RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                         cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 // NOTE: If AllowHorRdxIdenityOptimization is true, the optimization will run
129 // even if we match a reduction but do not vectorize in the end.
130 static cl::opt<bool> AllowHorRdxIdenityOptimization(
131     "slp-optimize-identity-hor-reduction-ops", cl::init(true), cl::Hidden,
132     cl::desc("Allow optimization of original scalar identity operations on "
133              "matched horizontal reductions."));
134 
135 static cl::opt<int>
136 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
137     cl::desc("Attempt to vectorize for this register size in bits"));
138 
139 static cl::opt<unsigned>
140 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
141     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
142 
143 /// Limits the size of scheduling regions in a block.
144 /// It avoid long compile times for _very_ large blocks where vector
145 /// instructions are spread over a wide range.
146 /// This limit is way higher than needed by real-world functions.
147 static cl::opt<int>
148 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
149     cl::desc("Limit the size of the SLP scheduling region per block"));
150 
151 static cl::opt<int> MinVectorRegSizeOption(
152     "slp-min-reg-size", cl::init(128), cl::Hidden,
153     cl::desc("Attempt to vectorize for this register size in bits"));
154 
155 static cl::opt<unsigned> RecursionMaxDepth(
156     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
157     cl::desc("Limit the recursion depth when building a vectorizable tree"));
158 
159 static cl::opt<unsigned> MinTreeSize(
160     "slp-min-tree-size", cl::init(3), cl::Hidden,
161     cl::desc("Only vectorize small trees if they are fully vectorizable"));
162 
163 // The maximum depth that the look-ahead score heuristic will explore.
164 // The higher this value, the higher the compilation time overhead.
165 static cl::opt<int> LookAheadMaxDepth(
166     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
167     cl::desc("The maximum look-ahead depth for operand reordering scores"));
168 
169 // The maximum depth that the look-ahead score heuristic will explore
170 // when it probing among candidates for vectorization tree roots.
171 // The higher this value, the higher the compilation time overhead but unlike
172 // similar limit for operands ordering this is less frequently used, hence
173 // impact of higher value is less noticeable.
174 static cl::opt<int> RootLookAheadMaxDepth(
175     "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
176     cl::desc("The maximum look-ahead depth for searching best rooting option"));
177 
178 static cl::opt<bool>
179     ViewSLPTree("view-slp-tree", cl::Hidden,
180                 cl::desc("Display the SLP trees with Graphviz"));
181 
182 // Limit the number of alias checks. The limit is chosen so that
183 // it has no negative effect on the llvm benchmarks.
184 static const unsigned AliasedCheckLimit = 10;
185 
186 // Another limit for the alias checks: The maximum distance between load/store
187 // instructions where alias checks are done.
188 // This limit is useful for very large basic blocks.
189 static const unsigned MaxMemDepDistance = 160;
190 
191 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
192 /// regions to be handled.
193 static const int MinScheduleRegionSize = 16;
194 
195 /// Predicate for the element types that the SLP vectorizer supports.
196 ///
197 /// The most important thing to filter here are types which are invalid in LLVM
198 /// vectors. We also filter target specific types which have absolutely no
199 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
200 /// avoids spending time checking the cost model and realizing that they will
201 /// be inevitably scalarized.
202 static bool isValidElementType(Type *Ty) {
203   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
204          !Ty->isPPC_FP128Ty();
205 }
206 
207 /// \returns True if the value is a constant (but not globals/constant
208 /// expressions).
209 static bool isConstant(Value *V) {
210   return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V);
211 }
212 
213 /// Checks if \p V is one of vector-like instructions, i.e. undef,
214 /// insertelement/extractelement with constant indices for fixed vector type or
215 /// extractvalue instruction.
216 static bool isVectorLikeInstWithConstOps(Value *V) {
217   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
218       !isa<ExtractValueInst, UndefValue>(V))
219     return false;
220   auto *I = dyn_cast<Instruction>(V);
221   if (!I || isa<ExtractValueInst>(I))
222     return true;
223   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
224     return false;
225   if (isa<ExtractElementInst>(I))
226     return isConstant(I->getOperand(1));
227   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
228   return isConstant(I->getOperand(2));
229 }
230 
231 #if !defined(NDEBUG)
232 /// Print a short descriptor of the instruction bundle suitable for debug output.
233 static std::string shortBundleName(ArrayRef<Value *> VL) {
234   std::string Result;
235   raw_string_ostream OS(Result);
236   OS << "n=" << VL.size() << " [" << *VL.front() << ", ..]";
237   OS.flush();
238   return Result;
239 }
240 #endif
241 
242 /// \returns true if all of the instructions in \p VL are in the same block or
243 /// false otherwise.
244 static bool allSameBlock(ArrayRef<Value *> VL) {
245   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
246   if (!I0)
247     return false;
248   if (all_of(VL, isVectorLikeInstWithConstOps))
249     return true;
250 
251   BasicBlock *BB = I0->getParent();
252   for (int I = 1, E = VL.size(); I < E; I++) {
253     auto *II = dyn_cast<Instruction>(VL[I]);
254     if (!II)
255       return false;
256 
257     if (BB != II->getParent())
258       return false;
259   }
260   return true;
261 }
262 
263 /// \returns True if all of the values in \p VL are constants (but not
264 /// globals/constant expressions).
265 static bool allConstant(ArrayRef<Value *> VL) {
266   // Constant expressions and globals can't be vectorized like normal integer/FP
267   // constants.
268   return all_of(VL, isConstant);
269 }
270 
271 /// \returns True if all of the values in \p VL are identical or some of them
272 /// are UndefValue.
273 static bool isSplat(ArrayRef<Value *> VL) {
274   Value *FirstNonUndef = nullptr;
275   for (Value *V : VL) {
276     if (isa<UndefValue>(V))
277       continue;
278     if (!FirstNonUndef) {
279       FirstNonUndef = V;
280       continue;
281     }
282     if (V != FirstNonUndef)
283       return false;
284   }
285   return FirstNonUndef != nullptr;
286 }
287 
288 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
289 static bool isCommutative(Instruction *I) {
290   if (auto *Cmp = dyn_cast<CmpInst>(I))
291     return Cmp->isCommutative();
292   if (auto *BO = dyn_cast<BinaryOperator>(I))
293     return BO->isCommutative();
294   // TODO: This should check for generic Instruction::isCommutative(), but
295   //       we need to confirm that the caller code correctly handles Intrinsics
296   //       for example (does not have 2 operands).
297   return false;
298 }
299 
300 /// \returns inserting index of InsertElement or InsertValue instruction,
301 /// using Offset as base offset for index.
302 static std::optional<unsigned> getInsertIndex(const Value *InsertInst,
303                                               unsigned Offset = 0) {
304   int Index = Offset;
305   if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
306     const auto *VT = dyn_cast<FixedVectorType>(IE->getType());
307     if (!VT)
308       return std::nullopt;
309     const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
310     if (!CI)
311       return std::nullopt;
312     if (CI->getValue().uge(VT->getNumElements()))
313       return std::nullopt;
314     Index *= VT->getNumElements();
315     Index += CI->getZExtValue();
316     return Index;
317   }
318 
319   const auto *IV = cast<InsertValueInst>(InsertInst);
320   Type *CurrentType = IV->getType();
321   for (unsigned I : IV->indices()) {
322     if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
323       Index *= ST->getNumElements();
324       CurrentType = ST->getElementType(I);
325     } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
326       Index *= AT->getNumElements();
327       CurrentType = AT->getElementType();
328     } else {
329       return std::nullopt;
330     }
331     Index += I;
332   }
333   return Index;
334 }
335 
336 namespace {
337 /// Specifies the way the mask should be analyzed for undefs/poisonous elements
338 /// in the shuffle mask.
339 enum class UseMask {
340   FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors,
341             ///< check for the mask elements for the first argument (mask
342             ///< indices are in range [0:VF)).
343   SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check
344              ///< for the mask elements for the second argument (mask indices
345              ///< are in range [VF:2*VF))
346   UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for
347                ///< future shuffle elements and mark them as ones as being used
348                ///< in future. Non-undef elements are considered as unused since
349                ///< they're already marked as used in the mask.
350 };
351 } // namespace
352 
353 /// Prepares a use bitset for the given mask either for the first argument or
354 /// for the second.
355 static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask,
356                                    UseMask MaskArg) {
357   SmallBitVector UseMask(VF, true);
358   for (auto [Idx, Value] : enumerate(Mask)) {
359     if (Value == PoisonMaskElem) {
360       if (MaskArg == UseMask::UndefsAsMask)
361         UseMask.reset(Idx);
362       continue;
363     }
364     if (MaskArg == UseMask::FirstArg && Value < VF)
365       UseMask.reset(Value);
366     else if (MaskArg == UseMask::SecondArg && Value >= VF)
367       UseMask.reset(Value - VF);
368   }
369   return UseMask;
370 }
371 
372 /// Checks if the given value is actually an undefined constant vector.
373 /// Also, if the \p UseMask is not empty, tries to check if the non-masked
374 /// elements actually mask the insertelement buildvector, if any.
375 template <bool IsPoisonOnly = false>
376 static SmallBitVector isUndefVector(const Value *V,
377                                     const SmallBitVector &UseMask = {}) {
378   SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true);
379   using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>;
380   if (isa<T>(V))
381     return Res;
382   auto *VecTy = dyn_cast<FixedVectorType>(V->getType());
383   if (!VecTy)
384     return Res.reset();
385   auto *C = dyn_cast<Constant>(V);
386   if (!C) {
387     if (!UseMask.empty()) {
388       const Value *Base = V;
389       while (auto *II = dyn_cast<InsertElementInst>(Base)) {
390         Base = II->getOperand(0);
391         if (isa<T>(II->getOperand(1)))
392           continue;
393         std::optional<unsigned> Idx = getInsertIndex(II);
394         if (!Idx) {
395           Res.reset();
396           return Res;
397         }
398         if (*Idx < UseMask.size() && !UseMask.test(*Idx))
399           Res.reset(*Idx);
400       }
401       // TODO: Add analysis for shuffles here too.
402       if (V == Base) {
403         Res.reset();
404       } else {
405         SmallBitVector SubMask(UseMask.size(), false);
406         Res &= isUndefVector<IsPoisonOnly>(Base, SubMask);
407       }
408     } else {
409       Res.reset();
410     }
411     return Res;
412   }
413   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
414     if (Constant *Elem = C->getAggregateElement(I))
415       if (!isa<T>(Elem) &&
416           (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I))))
417         Res.reset(I);
418   }
419   return Res;
420 }
421 
422 /// Checks if the vector of instructions can be represented as a shuffle, like:
423 /// %x0 = extractelement <4 x i8> %x, i32 0
424 /// %x3 = extractelement <4 x i8> %x, i32 3
425 /// %y1 = extractelement <4 x i8> %y, i32 1
426 /// %y2 = extractelement <4 x i8> %y, i32 2
427 /// %x0x0 = mul i8 %x0, %x0
428 /// %x3x3 = mul i8 %x3, %x3
429 /// %y1y1 = mul i8 %y1, %y1
430 /// %y2y2 = mul i8 %y2, %y2
431 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
432 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
433 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
434 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
435 /// ret <4 x i8> %ins4
436 /// can be transformed into:
437 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
438 ///                                                         i32 6>
439 /// %2 = mul <4 x i8> %1, %1
440 /// ret <4 x i8> %2
441 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
442 /// TODO: Can we split off and reuse the shuffle mask detection from
443 /// ShuffleVectorInst/getShuffleCost?
444 static std::optional<TargetTransformInfo::ShuffleKind>
445 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
446   const auto *It =
447       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
448   if (It == VL.end())
449     return std::nullopt;
450   auto *EI0 = cast<ExtractElementInst>(*It);
451   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
452     return std::nullopt;
453   unsigned Size =
454       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
455   Value *Vec1 = nullptr;
456   Value *Vec2 = nullptr;
457   enum ShuffleMode { Unknown, Select, Permute };
458   ShuffleMode CommonShuffleMode = Unknown;
459   Mask.assign(VL.size(), PoisonMaskElem);
460   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
461     // Undef can be represented as an undef element in a vector.
462     if (isa<UndefValue>(VL[I]))
463       continue;
464     auto *EI = cast<ExtractElementInst>(VL[I]);
465     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
466       return std::nullopt;
467     auto *Vec = EI->getVectorOperand();
468     // We can extractelement from undef or poison vector.
469     if (isUndefVector(Vec).all())
470       continue;
471     // All vector operands must have the same number of vector elements.
472     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
473       return std::nullopt;
474     if (isa<UndefValue>(EI->getIndexOperand()))
475       continue;
476     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
477     if (!Idx)
478       return std::nullopt;
479     // Undefined behavior if Idx is negative or >= Size.
480     if (Idx->getValue().uge(Size))
481       continue;
482     unsigned IntIdx = Idx->getValue().getZExtValue();
483     Mask[I] = IntIdx;
484     // For correct shuffling we have to have at most 2 different vector operands
485     // in all extractelement instructions.
486     if (!Vec1 || Vec1 == Vec) {
487       Vec1 = Vec;
488     } else if (!Vec2 || Vec2 == Vec) {
489       Vec2 = Vec;
490       Mask[I] += Size;
491     } else {
492       return std::nullopt;
493     }
494     if (CommonShuffleMode == Permute)
495       continue;
496     // If the extract index is not the same as the operation number, it is a
497     // permutation.
498     if (IntIdx != I) {
499       CommonShuffleMode = Permute;
500       continue;
501     }
502     CommonShuffleMode = Select;
503   }
504   // If we're not crossing lanes in different vectors, consider it as blending.
505   if (CommonShuffleMode == Select && Vec2)
506     return TargetTransformInfo::SK_Select;
507   // If Vec2 was never used, we have a permutation of a single vector, otherwise
508   // we have permutation of 2 vectors.
509   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
510               : TargetTransformInfo::SK_PermuteSingleSrc;
511 }
512 
513 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
514 static std::optional<unsigned> getExtractIndex(Instruction *E) {
515   unsigned Opcode = E->getOpcode();
516   assert((Opcode == Instruction::ExtractElement ||
517           Opcode == Instruction::ExtractValue) &&
518          "Expected extractelement or extractvalue instruction.");
519   if (Opcode == Instruction::ExtractElement) {
520     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
521     if (!CI)
522       return std::nullopt;
523     return CI->getZExtValue();
524   }
525   auto *EI = cast<ExtractValueInst>(E);
526   if (EI->getNumIndices() != 1)
527     return std::nullopt;
528   return *EI->idx_begin();
529 }
530 
531 namespace {
532 
533 /// Main data required for vectorization of instructions.
534 struct InstructionsState {
535   /// The very first instruction in the list with the main opcode.
536   Value *OpValue = nullptr;
537 
538   /// The main/alternate instruction.
539   Instruction *MainOp = nullptr;
540   Instruction *AltOp = nullptr;
541 
542   /// The main/alternate opcodes for the list of instructions.
543   unsigned getOpcode() const {
544     return MainOp ? MainOp->getOpcode() : 0;
545   }
546 
547   unsigned getAltOpcode() const {
548     return AltOp ? AltOp->getOpcode() : 0;
549   }
550 
551   /// Some of the instructions in the list have alternate opcodes.
552   bool isAltShuffle() const { return AltOp != MainOp; }
553 
554   bool isOpcodeOrAlt(Instruction *I) const {
555     unsigned CheckedOpcode = I->getOpcode();
556     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
557   }
558 
559   InstructionsState() = delete;
560   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
561       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
562 };
563 
564 } // end anonymous namespace
565 
566 /// Chooses the correct key for scheduling data. If \p Op has the same (or
567 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
568 /// OpValue.
569 static Value *isOneOf(const InstructionsState &S, Value *Op) {
570   auto *I = dyn_cast<Instruction>(Op);
571   if (I && S.isOpcodeOrAlt(I))
572     return Op;
573   return S.OpValue;
574 }
575 
576 /// \returns true if \p Opcode is allowed as part of the main/alternate
577 /// instruction for SLP vectorization.
578 ///
579 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
580 /// "shuffled out" lane would result in division by zero.
581 static bool isValidForAlternation(unsigned Opcode) {
582   if (Instruction::isIntDivRem(Opcode))
583     return false;
584 
585   return true;
586 }
587 
588 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
589                                        const TargetLibraryInfo &TLI,
590                                        unsigned BaseIndex = 0);
591 
592 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
593 /// compatible instructions or constants, or just some other regular values.
594 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
595                                 Value *Op1, const TargetLibraryInfo &TLI) {
596   return (isConstant(BaseOp0) && isConstant(Op0)) ||
597          (isConstant(BaseOp1) && isConstant(Op1)) ||
598          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
599           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
600          BaseOp0 == Op0 || BaseOp1 == Op1 ||
601          getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() ||
602          getSameOpcode({BaseOp1, Op1}, TLI).getOpcode();
603 }
604 
605 /// \returns true if a compare instruction \p CI has similar "look" and
606 /// same predicate as \p BaseCI, "as is" or with its operands and predicate
607 /// swapped, false otherwise.
608 static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI,
609                                const TargetLibraryInfo &TLI) {
610   assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() &&
611          "Assessing comparisons of different types?");
612   CmpInst::Predicate BasePred = BaseCI->getPredicate();
613   CmpInst::Predicate Pred = CI->getPredicate();
614   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred);
615 
616   Value *BaseOp0 = BaseCI->getOperand(0);
617   Value *BaseOp1 = BaseCI->getOperand(1);
618   Value *Op0 = CI->getOperand(0);
619   Value *Op1 = CI->getOperand(1);
620 
621   return (BasePred == Pred &&
622           areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) ||
623          (BasePred == SwappedPred &&
624           areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI));
625 }
626 
627 /// \returns analysis of the Instructions in \p VL described in
628 /// InstructionsState, the Opcode that we suppose the whole list
629 /// could be vectorized even if its structure is diverse.
630 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
631                                        const TargetLibraryInfo &TLI,
632                                        unsigned BaseIndex) {
633   // Make sure these are all Instructions.
634   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
635     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
636 
637   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
638   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
639   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
640   CmpInst::Predicate BasePred =
641       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
642               : CmpInst::BAD_ICMP_PREDICATE;
643   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
644   unsigned AltOpcode = Opcode;
645   unsigned AltIndex = BaseIndex;
646 
647   // Check for one alternate opcode from another BinaryOperator.
648   // TODO - generalize to support all operators (types, calls etc.).
649   auto *IBase = cast<Instruction>(VL[BaseIndex]);
650   Intrinsic::ID BaseID = 0;
651   SmallVector<VFInfo> BaseMappings;
652   if (auto *CallBase = dyn_cast<CallInst>(IBase)) {
653     BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI);
654     BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase);
655     if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty())
656       return InstructionsState(VL[BaseIndex], nullptr, nullptr);
657   }
658   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
659     auto *I = cast<Instruction>(VL[Cnt]);
660     unsigned InstOpcode = I->getOpcode();
661     if (IsBinOp && isa<BinaryOperator>(I)) {
662       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
663         continue;
664       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
665           isValidForAlternation(Opcode)) {
666         AltOpcode = InstOpcode;
667         AltIndex = Cnt;
668         continue;
669       }
670     } else if (IsCastOp && isa<CastInst>(I)) {
671       Value *Op0 = IBase->getOperand(0);
672       Type *Ty0 = Op0->getType();
673       Value *Op1 = I->getOperand(0);
674       Type *Ty1 = Op1->getType();
675       if (Ty0 == Ty1) {
676         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
677           continue;
678         if (Opcode == AltOpcode) {
679           assert(isValidForAlternation(Opcode) &&
680                  isValidForAlternation(InstOpcode) &&
681                  "Cast isn't safe for alternation, logic needs to be updated!");
682           AltOpcode = InstOpcode;
683           AltIndex = Cnt;
684           continue;
685         }
686       }
687     } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) {
688       auto *BaseInst = cast<CmpInst>(VL[BaseIndex]);
689       Type *Ty0 = BaseInst->getOperand(0)->getType();
690       Type *Ty1 = Inst->getOperand(0)->getType();
691       if (Ty0 == Ty1) {
692         assert(InstOpcode == Opcode && "Expected same CmpInst opcode.");
693         // Check for compatible operands. If the corresponding operands are not
694         // compatible - need to perform alternate vectorization.
695         CmpInst::Predicate CurrentPred = Inst->getPredicate();
696         CmpInst::Predicate SwappedCurrentPred =
697             CmpInst::getSwappedPredicate(CurrentPred);
698 
699         if (E == 2 &&
700             (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
701           continue;
702 
703         if (isCmpSameOrSwapped(BaseInst, Inst, TLI))
704           continue;
705         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
706         if (AltIndex != BaseIndex) {
707           if (isCmpSameOrSwapped(AltInst, Inst, TLI))
708             continue;
709         } else if (BasePred != CurrentPred) {
710           assert(
711               isValidForAlternation(InstOpcode) &&
712               "CmpInst isn't safe for alternation, logic needs to be updated!");
713           AltIndex = Cnt;
714           continue;
715         }
716         CmpInst::Predicate AltPred = AltInst->getPredicate();
717         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
718             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
719           continue;
720       }
721     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) {
722       if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
723         if (Gep->getNumOperands() != 2 ||
724             Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType())
725           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
726       } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) {
727         if (!isVectorLikeInstWithConstOps(EI))
728           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
729       } else if (auto *LI = dyn_cast<LoadInst>(I)) {
730         auto *BaseLI = cast<LoadInst>(IBase);
731         if (!LI->isSimple() || !BaseLI->isSimple())
732           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
733       } else if (auto *Call = dyn_cast<CallInst>(I)) {
734         auto *CallBase = cast<CallInst>(IBase);
735         if (Call->getCalledFunction() != CallBase->getCalledFunction())
736           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
737         if (Call->hasOperandBundles() &&
738             !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(),
739                         Call->op_begin() + Call->getBundleOperandsEndIndex(),
740                         CallBase->op_begin() +
741                             CallBase->getBundleOperandsStartIndex()))
742           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
743         Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI);
744         if (ID != BaseID)
745           return InstructionsState(VL[BaseIndex], nullptr, nullptr);
746         if (!ID) {
747           SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call);
748           if (Mappings.size() != BaseMappings.size() ||
749               Mappings.front().ISA != BaseMappings.front().ISA ||
750               Mappings.front().ScalarName != BaseMappings.front().ScalarName ||
751               Mappings.front().VectorName != BaseMappings.front().VectorName ||
752               Mappings.front().Shape.VF != BaseMappings.front().Shape.VF ||
753               Mappings.front().Shape.Parameters !=
754                   BaseMappings.front().Shape.Parameters)
755             return InstructionsState(VL[BaseIndex], nullptr, nullptr);
756         }
757       }
758       continue;
759     }
760     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
761   }
762 
763   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
764                            cast<Instruction>(VL[AltIndex]));
765 }
766 
767 /// \returns true if all of the values in \p VL have the same type or false
768 /// otherwise.
769 static bool allSameType(ArrayRef<Value *> VL) {
770   Type *Ty = VL.front()->getType();
771   return all_of(VL.drop_front(), [&](Value *V) { return V->getType() == Ty; });
772 }
773 
774 /// \returns True if in-tree use also needs extract. This refers to
775 /// possible scalar operand in vectorized instruction.
776 static bool doesInTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
777                                         TargetLibraryInfo *TLI) {
778   unsigned Opcode = UserInst->getOpcode();
779   switch (Opcode) {
780   case Instruction::Load: {
781     LoadInst *LI = cast<LoadInst>(UserInst);
782     return (LI->getPointerOperand() == Scalar);
783   }
784   case Instruction::Store: {
785     StoreInst *SI = cast<StoreInst>(UserInst);
786     return (SI->getPointerOperand() == Scalar);
787   }
788   case Instruction::Call: {
789     CallInst *CI = cast<CallInst>(UserInst);
790     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
791     return any_of(enumerate(CI->args()), [&](auto &&Arg) {
792       return isVectorIntrinsicWithScalarOpAtArg(ID, Arg.index()) &&
793              Arg.value().get() == Scalar;
794     });
795   }
796   default:
797     return false;
798   }
799 }
800 
801 /// \returns the AA location that is being access by the instruction.
802 static MemoryLocation getLocation(Instruction *I) {
803   if (StoreInst *SI = dyn_cast<StoreInst>(I))
804     return MemoryLocation::get(SI);
805   if (LoadInst *LI = dyn_cast<LoadInst>(I))
806     return MemoryLocation::get(LI);
807   return MemoryLocation();
808 }
809 
810 /// \returns True if the instruction is not a volatile or atomic load/store.
811 static bool isSimple(Instruction *I) {
812   if (LoadInst *LI = dyn_cast<LoadInst>(I))
813     return LI->isSimple();
814   if (StoreInst *SI = dyn_cast<StoreInst>(I))
815     return SI->isSimple();
816   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
817     return !MI->isVolatile();
818   return true;
819 }
820 
821 /// Shuffles \p Mask in accordance with the given \p SubMask.
822 /// \param ExtendingManyInputs Supports reshuffling of the mask with not only
823 /// one but two input vectors.
824 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask,
825                     bool ExtendingManyInputs = false) {
826   if (SubMask.empty())
827     return;
828   assert(
829       (!ExtendingManyInputs || SubMask.size() > Mask.size() ||
830        // Check if input scalars were extended to match the size of other node.
831        (SubMask.size() == Mask.size() &&
832         std::all_of(std::next(Mask.begin(), Mask.size() / 2), Mask.end(),
833                     [](int Idx) { return Idx == PoisonMaskElem; }))) &&
834       "SubMask with many inputs support must be larger than the mask.");
835   if (Mask.empty()) {
836     Mask.append(SubMask.begin(), SubMask.end());
837     return;
838   }
839   SmallVector<int> NewMask(SubMask.size(), PoisonMaskElem);
840   int TermValue = std::min(Mask.size(), SubMask.size());
841   for (int I = 0, E = SubMask.size(); I < E; ++I) {
842     if (SubMask[I] == PoisonMaskElem ||
843         (!ExtendingManyInputs &&
844          (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue)))
845       continue;
846     NewMask[I] = Mask[SubMask[I]];
847   }
848   Mask.swap(NewMask);
849 }
850 
851 /// Order may have elements assigned special value (size) which is out of
852 /// bounds. Such indices only appear on places which correspond to undef values
853 /// (see canReuseExtract for details) and used in order to avoid undef values
854 /// have effect on operands ordering.
855 /// The first loop below simply finds all unused indices and then the next loop
856 /// nest assigns these indices for undef values positions.
857 /// As an example below Order has two undef positions and they have assigned
858 /// values 3 and 7 respectively:
859 /// before:  6 9 5 4 9 2 1 0
860 /// after:   6 3 5 4 7 2 1 0
861 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
862   const unsigned Sz = Order.size();
863   SmallBitVector UnusedIndices(Sz, /*t=*/true);
864   SmallBitVector MaskedIndices(Sz);
865   for (unsigned I = 0; I < Sz; ++I) {
866     if (Order[I] < Sz)
867       UnusedIndices.reset(Order[I]);
868     else
869       MaskedIndices.set(I);
870   }
871   if (MaskedIndices.none())
872     return;
873   assert(UnusedIndices.count() == MaskedIndices.count() &&
874          "Non-synced masked/available indices.");
875   int Idx = UnusedIndices.find_first();
876   int MIdx = MaskedIndices.find_first();
877   while (MIdx >= 0) {
878     assert(Idx >= 0 && "Indices must be synced.");
879     Order[MIdx] = Idx;
880     Idx = UnusedIndices.find_next(Idx);
881     MIdx = MaskedIndices.find_next(MIdx);
882   }
883 }
884 
885 namespace llvm {
886 
887 static void inversePermutation(ArrayRef<unsigned> Indices,
888                                SmallVectorImpl<int> &Mask) {
889   Mask.clear();
890   const unsigned E = Indices.size();
891   Mask.resize(E, PoisonMaskElem);
892   for (unsigned I = 0; I < E; ++I)
893     Mask[Indices[I]] = I;
894 }
895 
896 /// Reorders the list of scalars in accordance with the given \p Mask.
897 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
898                            ArrayRef<int> Mask) {
899   assert(!Mask.empty() && "Expected non-empty mask.");
900   SmallVector<Value *> Prev(Scalars.size(),
901                             UndefValue::get(Scalars.front()->getType()));
902   Prev.swap(Scalars);
903   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
904     if (Mask[I] != PoisonMaskElem)
905       Scalars[Mask[I]] = Prev[I];
906 }
907 
908 /// Checks if the provided value does not require scheduling. It does not
909 /// require scheduling if this is not an instruction or it is an instruction
910 /// that does not read/write memory and all operands are either not instructions
911 /// or phi nodes or instructions from different blocks.
912 static bool areAllOperandsNonInsts(Value *V) {
913   auto *I = dyn_cast<Instruction>(V);
914   if (!I)
915     return true;
916   return !mayHaveNonDefUseDependency(*I) &&
917     all_of(I->operands(), [I](Value *V) {
918       auto *IO = dyn_cast<Instruction>(V);
919       if (!IO)
920         return true;
921       return isa<PHINode>(IO) || IO->getParent() != I->getParent();
922     });
923 }
924 
925 /// Checks if the provided value does not require scheduling. It does not
926 /// require scheduling if this is not an instruction or it is an instruction
927 /// that does not read/write memory and all users are phi nodes or instructions
928 /// from the different blocks.
929 static bool isUsedOutsideBlock(Value *V) {
930   auto *I = dyn_cast<Instruction>(V);
931   if (!I)
932     return true;
933   // Limits the number of uses to save compile time.
934   constexpr int UsesLimit = 8;
935   return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
936          all_of(I->users(), [I](User *U) {
937            auto *IU = dyn_cast<Instruction>(U);
938            if (!IU)
939              return true;
940            return IU->getParent() != I->getParent() || isa<PHINode>(IU);
941          });
942 }
943 
944 /// Checks if the specified value does not require scheduling. It does not
945 /// require scheduling if all operands and all users do not need to be scheduled
946 /// in the current basic block.
947 static bool doesNotNeedToBeScheduled(Value *V) {
948   return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
949 }
950 
951 /// Checks if the specified array of instructions does not require scheduling.
952 /// It is so if all either instructions have operands that do not require
953 /// scheduling or their users do not require scheduling since they are phis or
954 /// in other basic blocks.
955 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
956   return !VL.empty() &&
957          (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
958 }
959 
960 namespace slpvectorizer {
961 
962 /// Bottom Up SLP Vectorizer.
963 class BoUpSLP {
964   struct TreeEntry;
965   struct ScheduleData;
966   class ShuffleCostEstimator;
967   class ShuffleInstructionBuilder;
968 
969 public:
970   using ValueList = SmallVector<Value *, 8>;
971   using InstrList = SmallVector<Instruction *, 16>;
972   using ValueSet = SmallPtrSet<Value *, 16>;
973   using StoreList = SmallVector<StoreInst *, 8>;
974   using ExtraValueToDebugLocsMap =
975       MapVector<Value *, SmallVector<Instruction *, 2>>;
976   using OrdersType = SmallVector<unsigned, 4>;
977 
978   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
979           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
980           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
981           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
982       : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
983         DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
984     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
985     // Use the vector register size specified by the target unless overridden
986     // by a command-line option.
987     // TODO: It would be better to limit the vectorization factor based on
988     //       data type rather than just register size. For example, x86 AVX has
989     //       256-bit registers, but it does not support integer operations
990     //       at that width (that requires AVX2).
991     if (MaxVectorRegSizeOption.getNumOccurrences())
992       MaxVecRegSize = MaxVectorRegSizeOption;
993     else
994       MaxVecRegSize =
995           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
996               .getFixedValue();
997 
998     if (MinVectorRegSizeOption.getNumOccurrences())
999       MinVecRegSize = MinVectorRegSizeOption;
1000     else
1001       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
1002   }
1003 
1004   /// Vectorize the tree that starts with the elements in \p VL.
1005   /// Returns the vectorized root.
1006   Value *vectorizeTree();
1007 
1008   /// Vectorize the tree but with the list of externally used values \p
1009   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
1010   /// generated extractvalue instructions.
1011   /// \param ReplacedExternals containd list of replaced external values
1012   /// {scalar, replace} after emitting extractelement for external uses.
1013   Value *
1014   vectorizeTree(const ExtraValueToDebugLocsMap &ExternallyUsedValues,
1015                 SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals,
1016                 Instruction *ReductionRoot = nullptr);
1017 
1018   /// \returns the cost incurred by unwanted spills and fills, caused by
1019   /// holding live values over call sites.
1020   InstructionCost getSpillCost() const;
1021 
1022   /// \returns the vectorization cost of the subtree that starts at \p VL.
1023   /// A negative number means that this is profitable.
1024   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt);
1025 
1026   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
1027   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
1028   void buildTree(ArrayRef<Value *> Roots,
1029                  const SmallDenseSet<Value *> &UserIgnoreLst);
1030 
1031   /// Construct a vectorizable tree that starts at \p Roots.
1032   void buildTree(ArrayRef<Value *> Roots);
1033 
1034   /// Returns whether the root node has in-tree uses.
1035   bool doesRootHaveInTreeUses() const {
1036     return !VectorizableTree.empty() &&
1037            !VectorizableTree.front()->UserTreeIndices.empty();
1038   }
1039 
1040   /// Return the scalars of the root node.
1041   ArrayRef<Value *> getRootNodeScalars() const {
1042     assert(!VectorizableTree.empty() && "No graph to get the first node from");
1043     return VectorizableTree.front()->Scalars;
1044   }
1045 
1046   /// Builds external uses of the vectorized scalars, i.e. the list of
1047   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
1048   /// ExternallyUsedValues contains additional list of external uses to handle
1049   /// vectorization of reductions.
1050   void
1051   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
1052 
1053   /// Clear the internal data structures that are created by 'buildTree'.
1054   void deleteTree() {
1055     VectorizableTree.clear();
1056     ScalarToTreeEntry.clear();
1057     MultiNodeScalars.clear();
1058     MustGather.clear();
1059     EntryToLastInstruction.clear();
1060     ExternalUses.clear();
1061     for (auto &Iter : BlocksSchedules) {
1062       BlockScheduling *BS = Iter.second.get();
1063       BS->clear();
1064     }
1065     MinBWs.clear();
1066     InstrElementSize.clear();
1067     UserIgnoreList = nullptr;
1068     PostponedGathers.clear();
1069     ValueToGatherNodes.clear();
1070   }
1071 
1072   unsigned getTreeSize() const { return VectorizableTree.size(); }
1073 
1074   /// Perform LICM and CSE on the newly generated gather sequences.
1075   void optimizeGatherSequence();
1076 
1077   /// Checks if the specified gather tree entry \p TE can be represented as a
1078   /// shuffled vector entry + (possibly) permutation with other gathers. It
1079   /// implements the checks only for possibly ordered scalars (Loads,
1080   /// ExtractElement, ExtractValue), which can be part of the graph.
1081   std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
1082 
1083   /// Sort loads into increasing pointers offsets to allow greater clustering.
1084   std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
1085 
1086   /// Gets reordering data for the given tree entry. If the entry is vectorized
1087   /// - just return ReorderIndices, otherwise check if the scalars can be
1088   /// reordered and return the most optimal order.
1089   /// \return std::nullopt if ordering is not important, empty order, if
1090   /// identity order is important, or the actual order.
1091   /// \param TopToBottom If true, include the order of vectorized stores and
1092   /// insertelement nodes, otherwise skip them.
1093   std::optional<OrdersType> getReorderingData(const TreeEntry &TE,
1094                                               bool TopToBottom);
1095 
1096   /// Reorders the current graph to the most profitable order starting from the
1097   /// root node to the leaf nodes. The best order is chosen only from the nodes
1098   /// of the same size (vectorization factor). Smaller nodes are considered
1099   /// parts of subgraph with smaller VF and they are reordered independently. We
1100   /// can make it because we still need to extend smaller nodes to the wider VF
1101   /// and we can merge reordering shuffles with the widening shuffles.
1102   void reorderTopToBottom();
1103 
1104   /// Reorders the current graph to the most profitable order starting from
1105   /// leaves to the root. It allows to rotate small subgraphs and reduce the
1106   /// number of reshuffles if the leaf nodes use the same order. In this case we
1107   /// can merge the orders and just shuffle user node instead of shuffling its
1108   /// operands. Plus, even the leaf nodes have different orders, it allows to
1109   /// sink reordering in the graph closer to the root node and merge it later
1110   /// during analysis.
1111   void reorderBottomToTop(bool IgnoreReorder = false);
1112 
1113   /// \return The vector element size in bits to use when vectorizing the
1114   /// expression tree ending at \p V. If V is a store, the size is the width of
1115   /// the stored value. Otherwise, the size is the width of the largest loaded
1116   /// value reaching V. This method is used by the vectorizer to calculate
1117   /// vectorization factors.
1118   unsigned getVectorElementSize(Value *V);
1119 
1120   /// Compute the minimum type sizes required to represent the entries in a
1121   /// vectorizable tree.
1122   void computeMinimumValueSizes();
1123 
1124   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
1125   unsigned getMaxVecRegSize() const {
1126     return MaxVecRegSize;
1127   }
1128 
1129   // \returns minimum vector register size as set by cl::opt.
1130   unsigned getMinVecRegSize() const {
1131     return MinVecRegSize;
1132   }
1133 
1134   unsigned getMinVF(unsigned Sz) const {
1135     return std::max(2U, getMinVecRegSize() / Sz);
1136   }
1137 
1138   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
1139     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
1140       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
1141     return MaxVF ? MaxVF : UINT_MAX;
1142   }
1143 
1144   /// Check if homogeneous aggregate is isomorphic to some VectorType.
1145   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
1146   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
1147   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
1148   ///
1149   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1150   unsigned canMapToVector(Type *T) const;
1151 
1152   /// \returns True if the VectorizableTree is both tiny and not fully
1153   /// vectorizable. We do not vectorize such trees.
1154   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1155 
1156   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1157   /// can be load combined in the backend. Load combining may not be allowed in
1158   /// the IR optimizer, so we do not want to alter the pattern. For example,
1159   /// partially transforming a scalar bswap() pattern into vector code is
1160   /// effectively impossible for the backend to undo.
1161   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1162   ///       may not be necessary.
1163   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1164 
1165   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1166   /// can be load combined in the backend. Load combining may not be allowed in
1167   /// the IR optimizer, so we do not want to alter the pattern. For example,
1168   /// partially transforming a scalar bswap() pattern into vector code is
1169   /// effectively impossible for the backend to undo.
1170   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1171   ///       may not be necessary.
1172   bool isLoadCombineCandidate() const;
1173 
1174   OptimizationRemarkEmitter *getORE() { return ORE; }
1175 
1176   /// This structure holds any data we need about the edges being traversed
1177   /// during buildTree_rec(). We keep track of:
1178   /// (i) the user TreeEntry index, and
1179   /// (ii) the index of the edge.
1180   struct EdgeInfo {
1181     EdgeInfo() = default;
1182     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1183         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1184     /// The user TreeEntry.
1185     TreeEntry *UserTE = nullptr;
1186     /// The operand index of the use.
1187     unsigned EdgeIdx = UINT_MAX;
1188 #ifndef NDEBUG
1189     friend inline raw_ostream &operator<<(raw_ostream &OS,
1190                                           const BoUpSLP::EdgeInfo &EI) {
1191       EI.dump(OS);
1192       return OS;
1193     }
1194     /// Debug print.
1195     void dump(raw_ostream &OS) const {
1196       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1197          << " EdgeIdx:" << EdgeIdx << "}";
1198     }
1199     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1200 #endif
1201     bool operator == (const EdgeInfo &Other) const {
1202       return UserTE == Other.UserTE && EdgeIdx == Other.EdgeIdx;
1203     }
1204   };
1205 
1206   /// A helper class used for scoring candidates for two consecutive lanes.
1207   class LookAheadHeuristics {
1208     const TargetLibraryInfo &TLI;
1209     const DataLayout &DL;
1210     ScalarEvolution &SE;
1211     const BoUpSLP &R;
1212     int NumLanes; // Total number of lanes (aka vectorization factor).
1213     int MaxLevel; // The maximum recursion depth for accumulating score.
1214 
1215   public:
1216     LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL,
1217                         ScalarEvolution &SE, const BoUpSLP &R, int NumLanes,
1218                         int MaxLevel)
1219         : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes),
1220           MaxLevel(MaxLevel) {}
1221 
1222     // The hard-coded scores listed here are not very important, though it shall
1223     // be higher for better matches to improve the resulting cost. When
1224     // computing the scores of matching one sub-tree with another, we are
1225     // basically counting the number of values that are matching. So even if all
1226     // scores are set to 1, we would still get a decent matching result.
1227     // However, sometimes we have to break ties. For example we may have to
1228     // choose between matching loads vs matching opcodes. This is what these
1229     // scores are helping us with: they provide the order of preference. Also,
1230     // this is important if the scalar is externally used or used in another
1231     // tree entry node in the different lane.
1232 
1233     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1234     static const int ScoreConsecutiveLoads = 4;
1235     /// The same load multiple times. This should have a better score than
1236     /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1237     /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1238     /// a vector load and 1.0 for a broadcast.
1239     static const int ScoreSplatLoads = 3;
1240     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1241     static const int ScoreReversedLoads = 3;
1242     /// A load candidate for masked gather.
1243     static const int ScoreMaskedGatherCandidate = 1;
1244     /// ExtractElementInst from same vector and consecutive indexes.
1245     static const int ScoreConsecutiveExtracts = 4;
1246     /// ExtractElementInst from same vector and reversed indices.
1247     static const int ScoreReversedExtracts = 3;
1248     /// Constants.
1249     static const int ScoreConstants = 2;
1250     /// Instructions with the same opcode.
1251     static const int ScoreSameOpcode = 2;
1252     /// Instructions with alt opcodes (e.g, add + sub).
1253     static const int ScoreAltOpcodes = 1;
1254     /// Identical instructions (a.k.a. splat or broadcast).
1255     static const int ScoreSplat = 1;
1256     /// Matching with an undef is preferable to failing.
1257     static const int ScoreUndef = 1;
1258     /// Score for failing to find a decent match.
1259     static const int ScoreFail = 0;
1260     /// Score if all users are vectorized.
1261     static const int ScoreAllUserVectorized = 1;
1262 
1263     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1264     /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1265     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1266     /// MainAltOps.
1267     int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1268                         ArrayRef<Value *> MainAltOps) const {
1269       if (!isValidElementType(V1->getType()) ||
1270           !isValidElementType(V2->getType()))
1271         return LookAheadHeuristics::ScoreFail;
1272 
1273       if (V1 == V2) {
1274         if (isa<LoadInst>(V1)) {
1275           // Retruns true if the users of V1 and V2 won't need to be extracted.
1276           auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1277             // Bail out if we have too many uses to save compilation time.
1278             static constexpr unsigned Limit = 8;
1279             if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1280               return false;
1281 
1282             auto AllUsersVectorized = [U1, U2, this](Value *V) {
1283               return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1284                 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1285               });
1286             };
1287             return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1288           };
1289           // A broadcast of a load can be cheaper on some targets.
1290           if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1291                                           ElementCount::getFixed(NumLanes)) &&
1292               ((int)V1->getNumUses() == NumLanes ||
1293                AllUsersAreInternal(V1, V2)))
1294             return LookAheadHeuristics::ScoreSplatLoads;
1295         }
1296         return LookAheadHeuristics::ScoreSplat;
1297       }
1298 
1299       auto *LI1 = dyn_cast<LoadInst>(V1);
1300       auto *LI2 = dyn_cast<LoadInst>(V2);
1301       if (LI1 && LI2) {
1302         if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() ||
1303             !LI2->isSimple())
1304           return LookAheadHeuristics::ScoreFail;
1305 
1306         std::optional<int> Dist = getPointersDiff(
1307             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1308             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1309         if (!Dist || *Dist == 0) {
1310           if (getUnderlyingObject(LI1->getPointerOperand()) ==
1311                   getUnderlyingObject(LI2->getPointerOperand()) &&
1312               R.TTI->isLegalMaskedGather(
1313                   FixedVectorType::get(LI1->getType(), NumLanes),
1314                   LI1->getAlign()))
1315             return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1316           return LookAheadHeuristics::ScoreFail;
1317         }
1318         // The distance is too large - still may be profitable to use masked
1319         // loads/gathers.
1320         if (std::abs(*Dist) > NumLanes / 2)
1321           return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1322         // This still will detect consecutive loads, but we might have "holes"
1323         // in some cases. It is ok for non-power-2 vectorization and may produce
1324         // better results. It should not affect current vectorization.
1325         return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1326                            : LookAheadHeuristics::ScoreReversedLoads;
1327       }
1328 
1329       auto *C1 = dyn_cast<Constant>(V1);
1330       auto *C2 = dyn_cast<Constant>(V2);
1331       if (C1 && C2)
1332         return LookAheadHeuristics::ScoreConstants;
1333 
1334       // Extracts from consecutive indexes of the same vector better score as
1335       // the extracts could be optimized away.
1336       Value *EV1;
1337       ConstantInt *Ex1Idx;
1338       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1339         // Undefs are always profitable for extractelements.
1340         // Compiler can easily combine poison and extractelement <non-poison> or
1341         // undef and extractelement <poison>. But combining undef +
1342         // extractelement <non-poison-but-may-produce-poison> requires some
1343         // extra operations.
1344         if (isa<UndefValue>(V2))
1345           return (isa<PoisonValue>(V2) || isUndefVector(EV1).all())
1346                      ? LookAheadHeuristics::ScoreConsecutiveExtracts
1347                      : LookAheadHeuristics::ScoreSameOpcode;
1348         Value *EV2 = nullptr;
1349         ConstantInt *Ex2Idx = nullptr;
1350         if (match(V2,
1351                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1352                                                          m_Undef())))) {
1353           // Undefs are always profitable for extractelements.
1354           if (!Ex2Idx)
1355             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1356           if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType())
1357             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1358           if (EV2 == EV1) {
1359             int Idx1 = Ex1Idx->getZExtValue();
1360             int Idx2 = Ex2Idx->getZExtValue();
1361             int Dist = Idx2 - Idx1;
1362             // The distance is too large - still may be profitable to use
1363             // shuffles.
1364             if (std::abs(Dist) == 0)
1365               return LookAheadHeuristics::ScoreSplat;
1366             if (std::abs(Dist) > NumLanes / 2)
1367               return LookAheadHeuristics::ScoreSameOpcode;
1368             return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1369                               : LookAheadHeuristics::ScoreReversedExtracts;
1370           }
1371           return LookAheadHeuristics::ScoreAltOpcodes;
1372         }
1373         return LookAheadHeuristics::ScoreFail;
1374       }
1375 
1376       auto *I1 = dyn_cast<Instruction>(V1);
1377       auto *I2 = dyn_cast<Instruction>(V2);
1378       if (I1 && I2) {
1379         if (I1->getParent() != I2->getParent())
1380           return LookAheadHeuristics::ScoreFail;
1381         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1382         Ops.push_back(I1);
1383         Ops.push_back(I2);
1384         InstructionsState S = getSameOpcode(Ops, TLI);
1385         // Note: Only consider instructions with <= 2 operands to avoid
1386         // complexity explosion.
1387         if (S.getOpcode() &&
1388             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1389              !S.isAltShuffle()) &&
1390             all_of(Ops, [&S](Value *V) {
1391               return cast<Instruction>(V)->getNumOperands() ==
1392                      S.MainOp->getNumOperands();
1393             }))
1394           return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1395                                   : LookAheadHeuristics::ScoreSameOpcode;
1396       }
1397 
1398       if (isa<UndefValue>(V2))
1399         return LookAheadHeuristics::ScoreUndef;
1400 
1401       return LookAheadHeuristics::ScoreFail;
1402     }
1403 
1404     /// Go through the operands of \p LHS and \p RHS recursively until
1405     /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1406     /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1407     /// of \p U1 and \p U2), except at the beginning of the recursion where
1408     /// these are set to nullptr.
1409     ///
1410     /// For example:
1411     /// \verbatim
1412     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1413     ///     \ /         \ /         \ /        \ /
1414     ///      +           +           +          +
1415     ///     G1          G2          G3         G4
1416     /// \endverbatim
1417     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1418     /// each level recursively, accumulating the score. It starts from matching
1419     /// the additions at level 0, then moves on to the loads (level 1). The
1420     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1421     /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1422     /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1423     /// Please note that the order of the operands does not matter, as we
1424     /// evaluate the score of all profitable combinations of operands. In
1425     /// other words the score of G1 and G4 is the same as G1 and G2. This
1426     /// heuristic is based on ideas described in:
1427     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1428     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1429     ///   Luís F. W. Góes
1430     int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1431                            Instruction *U2, int CurrLevel,
1432                            ArrayRef<Value *> MainAltOps) const {
1433 
1434       // Get the shallow score of V1 and V2.
1435       int ShallowScoreAtThisLevel =
1436           getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1437 
1438       // If reached MaxLevel,
1439       //  or if V1 and V2 are not instructions,
1440       //  or if they are SPLAT,
1441       //  or if they are not consecutive,
1442       //  or if profitable to vectorize loads or extractelements, early return
1443       //  the current cost.
1444       auto *I1 = dyn_cast<Instruction>(LHS);
1445       auto *I2 = dyn_cast<Instruction>(RHS);
1446       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1447           ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1448           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1449             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1450             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1451            ShallowScoreAtThisLevel))
1452         return ShallowScoreAtThisLevel;
1453       assert(I1 && I2 && "Should have early exited.");
1454 
1455       // Contains the I2 operand indexes that got matched with I1 operands.
1456       SmallSet<unsigned, 4> Op2Used;
1457 
1458       // Recursion towards the operands of I1 and I2. We are trying all possible
1459       // operand pairs, and keeping track of the best score.
1460       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1461            OpIdx1 != NumOperands1; ++OpIdx1) {
1462         // Try to pair op1I with the best operand of I2.
1463         int MaxTmpScore = 0;
1464         unsigned MaxOpIdx2 = 0;
1465         bool FoundBest = false;
1466         // If I2 is commutative try all combinations.
1467         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1468         unsigned ToIdx = isCommutative(I2)
1469                              ? I2->getNumOperands()
1470                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1471         assert(FromIdx <= ToIdx && "Bad index");
1472         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1473           // Skip operands already paired with OpIdx1.
1474           if (Op2Used.count(OpIdx2))
1475             continue;
1476           // Recursively calculate the cost at each level
1477           int TmpScore =
1478               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1479                                  I1, I2, CurrLevel + 1, std::nullopt);
1480           // Look for the best score.
1481           if (TmpScore > LookAheadHeuristics::ScoreFail &&
1482               TmpScore > MaxTmpScore) {
1483             MaxTmpScore = TmpScore;
1484             MaxOpIdx2 = OpIdx2;
1485             FoundBest = true;
1486           }
1487         }
1488         if (FoundBest) {
1489           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1490           Op2Used.insert(MaxOpIdx2);
1491           ShallowScoreAtThisLevel += MaxTmpScore;
1492         }
1493       }
1494       return ShallowScoreAtThisLevel;
1495     }
1496   };
1497   /// A helper data structure to hold the operands of a vector of instructions.
1498   /// This supports a fixed vector length for all operand vectors.
1499   class VLOperands {
1500     /// For each operand we need (i) the value, and (ii) the opcode that it
1501     /// would be attached to if the expression was in a left-linearized form.
1502     /// This is required to avoid illegal operand reordering.
1503     /// For example:
1504     /// \verbatim
1505     ///                         0 Op1
1506     ///                         |/
1507     /// Op1 Op2   Linearized    + Op2
1508     ///   \ /     ---------->   |/
1509     ///    -                    -
1510     ///
1511     /// Op1 - Op2            (0 + Op1) - Op2
1512     /// \endverbatim
1513     ///
1514     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1515     ///
1516     /// Another way to think of this is to track all the operations across the
1517     /// path from the operand all the way to the root of the tree and to
1518     /// calculate the operation that corresponds to this path. For example, the
1519     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1520     /// corresponding operation is a '-' (which matches the one in the
1521     /// linearized tree, as shown above).
1522     ///
1523     /// For lack of a better term, we refer to this operation as Accumulated
1524     /// Path Operation (APO).
1525     struct OperandData {
1526       OperandData() = default;
1527       OperandData(Value *V, bool APO, bool IsUsed)
1528           : V(V), APO(APO), IsUsed(IsUsed) {}
1529       /// The operand value.
1530       Value *V = nullptr;
1531       /// TreeEntries only allow a single opcode, or an alternate sequence of
1532       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1533       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1534       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1535       /// (e.g., Add/Mul)
1536       bool APO = false;
1537       /// Helper data for the reordering function.
1538       bool IsUsed = false;
1539     };
1540 
1541     /// During operand reordering, we are trying to select the operand at lane
1542     /// that matches best with the operand at the neighboring lane. Our
1543     /// selection is based on the type of value we are looking for. For example,
1544     /// if the neighboring lane has a load, we need to look for a load that is
1545     /// accessing a consecutive address. These strategies are summarized in the
1546     /// 'ReorderingMode' enumerator.
1547     enum class ReorderingMode {
1548       Load,     ///< Matching loads to consecutive memory addresses
1549       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1550       Constant, ///< Matching constants
1551       Splat,    ///< Matching the same instruction multiple times (broadcast)
1552       Failed,   ///< We failed to create a vectorizable group
1553     };
1554 
1555     using OperandDataVec = SmallVector<OperandData, 2>;
1556 
1557     /// A vector of operand vectors.
1558     SmallVector<OperandDataVec, 4> OpsVec;
1559 
1560     const TargetLibraryInfo &TLI;
1561     const DataLayout &DL;
1562     ScalarEvolution &SE;
1563     const BoUpSLP &R;
1564 
1565     /// \returns the operand data at \p OpIdx and \p Lane.
1566     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1567       return OpsVec[OpIdx][Lane];
1568     }
1569 
1570     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1571     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1572       return OpsVec[OpIdx][Lane];
1573     }
1574 
1575     /// Clears the used flag for all entries.
1576     void clearUsed() {
1577       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1578            OpIdx != NumOperands; ++OpIdx)
1579         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1580              ++Lane)
1581           OpsVec[OpIdx][Lane].IsUsed = false;
1582     }
1583 
1584     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1585     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1586       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1587     }
1588 
1589     /// \param Lane lane of the operands under analysis.
1590     /// \param OpIdx operand index in \p Lane lane we're looking the best
1591     /// candidate for.
1592     /// \param Idx operand index of the current candidate value.
1593     /// \returns The additional score due to possible broadcasting of the
1594     /// elements in the lane. It is more profitable to have power-of-2 unique
1595     /// elements in the lane, it will be vectorized with higher probability
1596     /// after removing duplicates. Currently the SLP vectorizer supports only
1597     /// vectorization of the power-of-2 number of unique scalars.
1598     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1599       Value *IdxLaneV = getData(Idx, Lane).V;
1600       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1601         return 0;
1602       SmallPtrSet<Value *, 4> Uniques;
1603       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1604         if (Ln == Lane)
1605           continue;
1606         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1607         if (!isa<Instruction>(OpIdxLnV))
1608           return 0;
1609         Uniques.insert(OpIdxLnV);
1610       }
1611       int UniquesCount = Uniques.size();
1612       int UniquesCntWithIdxLaneV =
1613           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1614       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1615       int UniquesCntWithOpIdxLaneV =
1616           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1617       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1618         return 0;
1619       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1620               UniquesCntWithOpIdxLaneV) -
1621              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1622     }
1623 
1624     /// \param Lane lane of the operands under analysis.
1625     /// \param OpIdx operand index in \p Lane lane we're looking the best
1626     /// candidate for.
1627     /// \param Idx operand index of the current candidate value.
1628     /// \returns The additional score for the scalar which users are all
1629     /// vectorized.
1630     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1631       Value *IdxLaneV = getData(Idx, Lane).V;
1632       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1633       // Do not care about number of uses for vector-like instructions
1634       // (extractelement/extractvalue with constant indices), they are extracts
1635       // themselves and already externally used. Vectorization of such
1636       // instructions does not add extra extractelement instruction, just may
1637       // remove it.
1638       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1639           isVectorLikeInstWithConstOps(OpIdxLaneV))
1640         return LookAheadHeuristics::ScoreAllUserVectorized;
1641       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1642       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1643         return 0;
1644       return R.areAllUsersVectorized(IdxLaneI)
1645                  ? LookAheadHeuristics::ScoreAllUserVectorized
1646                  : 0;
1647     }
1648 
1649     /// Score scaling factor for fully compatible instructions but with
1650     /// different number of external uses. Allows better selection of the
1651     /// instructions with less external uses.
1652     static const int ScoreScaleFactor = 10;
1653 
1654     /// \Returns the look-ahead score, which tells us how much the sub-trees
1655     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1656     /// score. This helps break ties in an informed way when we cannot decide on
1657     /// the order of the operands by just considering the immediate
1658     /// predecessors.
1659     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1660                           int Lane, unsigned OpIdx, unsigned Idx,
1661                           bool &IsUsed) {
1662       LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(),
1663                                     LookAheadMaxDepth);
1664       // Keep track of the instruction stack as we recurse into the operands
1665       // during the look-ahead score exploration.
1666       int Score =
1667           LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1668                                        /*CurrLevel=*/1, MainAltOps);
1669       if (Score) {
1670         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1671         if (Score <= -SplatScore) {
1672           // Set the minimum score for splat-like sequence to avoid setting
1673           // failed state.
1674           Score = 1;
1675         } else {
1676           Score += SplatScore;
1677           // Scale score to see the difference between different operands
1678           // and similar operands but all vectorized/not all vectorized
1679           // uses. It does not affect actual selection of the best
1680           // compatible operand in general, just allows to select the
1681           // operand with all vectorized uses.
1682           Score *= ScoreScaleFactor;
1683           Score += getExternalUseScore(Lane, OpIdx, Idx);
1684           IsUsed = true;
1685         }
1686       }
1687       return Score;
1688     }
1689 
1690     /// Best defined scores per lanes between the passes. Used to choose the
1691     /// best operand (with the highest score) between the passes.
1692     /// The key - {Operand Index, Lane}.
1693     /// The value - the best score between the passes for the lane and the
1694     /// operand.
1695     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1696         BestScoresPerLanes;
1697 
1698     // Search all operands in Ops[*][Lane] for the one that matches best
1699     // Ops[OpIdx][LastLane] and return its opreand index.
1700     // If no good match can be found, return std::nullopt.
1701     std::optional<unsigned>
1702     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1703                    ArrayRef<ReorderingMode> ReorderingModes,
1704                    ArrayRef<Value *> MainAltOps) {
1705       unsigned NumOperands = getNumOperands();
1706 
1707       // The operand of the previous lane at OpIdx.
1708       Value *OpLastLane = getData(OpIdx, LastLane).V;
1709 
1710       // Our strategy mode for OpIdx.
1711       ReorderingMode RMode = ReorderingModes[OpIdx];
1712       if (RMode == ReorderingMode::Failed)
1713         return std::nullopt;
1714 
1715       // The linearized opcode of the operand at OpIdx, Lane.
1716       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1717 
1718       // The best operand index and its score.
1719       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1720       // are using the score to differentiate between the two.
1721       struct BestOpData {
1722         std::optional<unsigned> Idx;
1723         unsigned Score = 0;
1724       } BestOp;
1725       BestOp.Score =
1726           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1727               .first->second;
1728 
1729       // Track if the operand must be marked as used. If the operand is set to
1730       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1731       // want to reestimate the operands again on the following iterations).
1732       bool IsUsed =
1733           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1734       // Iterate through all unused operands and look for the best.
1735       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1736         // Get the operand at Idx and Lane.
1737         OperandData &OpData = getData(Idx, Lane);
1738         Value *Op = OpData.V;
1739         bool OpAPO = OpData.APO;
1740 
1741         // Skip already selected operands.
1742         if (OpData.IsUsed)
1743           continue;
1744 
1745         // Skip if we are trying to move the operand to a position with a
1746         // different opcode in the linearized tree form. This would break the
1747         // semantics.
1748         if (OpAPO != OpIdxAPO)
1749           continue;
1750 
1751         // Look for an operand that matches the current mode.
1752         switch (RMode) {
1753         case ReorderingMode::Load:
1754         case ReorderingMode::Constant:
1755         case ReorderingMode::Opcode: {
1756           bool LeftToRight = Lane > LastLane;
1757           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1758           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1759           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1760                                         OpIdx, Idx, IsUsed);
1761           if (Score > static_cast<int>(BestOp.Score)) {
1762             BestOp.Idx = Idx;
1763             BestOp.Score = Score;
1764             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1765           }
1766           break;
1767         }
1768         case ReorderingMode::Splat:
1769           if (Op == OpLastLane)
1770             BestOp.Idx = Idx;
1771           break;
1772         case ReorderingMode::Failed:
1773           llvm_unreachable("Not expected Failed reordering mode.");
1774         }
1775       }
1776 
1777       if (BestOp.Idx) {
1778         getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1779         return BestOp.Idx;
1780       }
1781       // If we could not find a good match return std::nullopt.
1782       return std::nullopt;
1783     }
1784 
1785     /// Helper for reorderOperandVecs.
1786     /// \returns the lane that we should start reordering from. This is the one
1787     /// which has the least number of operands that can freely move about or
1788     /// less profitable because it already has the most optimal set of operands.
1789     unsigned getBestLaneToStartReordering() const {
1790       unsigned Min = UINT_MAX;
1791       unsigned SameOpNumber = 0;
1792       // std::pair<unsigned, unsigned> is used to implement a simple voting
1793       // algorithm and choose the lane with the least number of operands that
1794       // can freely move about or less profitable because it already has the
1795       // most optimal set of operands. The first unsigned is a counter for
1796       // voting, the second unsigned is the counter of lanes with instructions
1797       // with same/alternate opcodes and same parent basic block.
1798       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1799       // Try to be closer to the original results, if we have multiple lanes
1800       // with same cost. If 2 lanes have the same cost, use the one with the
1801       // lowest index.
1802       for (int I = getNumLanes(); I > 0; --I) {
1803         unsigned Lane = I - 1;
1804         OperandsOrderData NumFreeOpsHash =
1805             getMaxNumOperandsThatCanBeReordered(Lane);
1806         // Compare the number of operands that can move and choose the one with
1807         // the least number.
1808         if (NumFreeOpsHash.NumOfAPOs < Min) {
1809           Min = NumFreeOpsHash.NumOfAPOs;
1810           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1811           HashMap.clear();
1812           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1813         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1814                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1815           // Select the most optimal lane in terms of number of operands that
1816           // should be moved around.
1817           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1818           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1819         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1820                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1821           auto *It = HashMap.find(NumFreeOpsHash.Hash);
1822           if (It == HashMap.end())
1823             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1824           else
1825             ++It->second.first;
1826         }
1827       }
1828       // Select the lane with the minimum counter.
1829       unsigned BestLane = 0;
1830       unsigned CntMin = UINT_MAX;
1831       for (const auto &Data : reverse(HashMap)) {
1832         if (Data.second.first < CntMin) {
1833           CntMin = Data.second.first;
1834           BestLane = Data.second.second;
1835         }
1836       }
1837       return BestLane;
1838     }
1839 
1840     /// Data structure that helps to reorder operands.
1841     struct OperandsOrderData {
1842       /// The best number of operands with the same APOs, which can be
1843       /// reordered.
1844       unsigned NumOfAPOs = UINT_MAX;
1845       /// Number of operands with the same/alternate instruction opcode and
1846       /// parent.
1847       unsigned NumOpsWithSameOpcodeParent = 0;
1848       /// Hash for the actual operands ordering.
1849       /// Used to count operands, actually their position id and opcode
1850       /// value. It is used in the voting mechanism to find the lane with the
1851       /// least number of operands that can freely move about or less profitable
1852       /// because it already has the most optimal set of operands. Can be
1853       /// replaced with SmallVector<unsigned> instead but hash code is faster
1854       /// and requires less memory.
1855       unsigned Hash = 0;
1856     };
1857     /// \returns the maximum number of operands that are allowed to be reordered
1858     /// for \p Lane and the number of compatible instructions(with the same
1859     /// parent/opcode). This is used as a heuristic for selecting the first lane
1860     /// to start operand reordering.
1861     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1862       unsigned CntTrue = 0;
1863       unsigned NumOperands = getNumOperands();
1864       // Operands with the same APO can be reordered. We therefore need to count
1865       // how many of them we have for each APO, like this: Cnt[APO] = x.
1866       // Since we only have two APOs, namely true and false, we can avoid using
1867       // a map. Instead we can simply count the number of operands that
1868       // correspond to one of them (in this case the 'true' APO), and calculate
1869       // the other by subtracting it from the total number of operands.
1870       // Operands with the same instruction opcode and parent are more
1871       // profitable since we don't need to move them in many cases, with a high
1872       // probability such lane already can be vectorized effectively.
1873       bool AllUndefs = true;
1874       unsigned NumOpsWithSameOpcodeParent = 0;
1875       Instruction *OpcodeI = nullptr;
1876       BasicBlock *Parent = nullptr;
1877       unsigned Hash = 0;
1878       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1879         const OperandData &OpData = getData(OpIdx, Lane);
1880         if (OpData.APO)
1881           ++CntTrue;
1882         // Use Boyer-Moore majority voting for finding the majority opcode and
1883         // the number of times it occurs.
1884         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1885           if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() ||
1886               I->getParent() != Parent) {
1887             if (NumOpsWithSameOpcodeParent == 0) {
1888               NumOpsWithSameOpcodeParent = 1;
1889               OpcodeI = I;
1890               Parent = I->getParent();
1891             } else {
1892               --NumOpsWithSameOpcodeParent;
1893             }
1894           } else {
1895             ++NumOpsWithSameOpcodeParent;
1896           }
1897         }
1898         Hash = hash_combine(
1899             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1900         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1901       }
1902       if (AllUndefs)
1903         return {};
1904       OperandsOrderData Data;
1905       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1906       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1907       Data.Hash = Hash;
1908       return Data;
1909     }
1910 
1911     /// Go through the instructions in VL and append their operands.
1912     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1913       assert(!VL.empty() && "Bad VL");
1914       assert((empty() || VL.size() == getNumLanes()) &&
1915              "Expected same number of lanes");
1916       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1917       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1918       OpsVec.resize(NumOperands);
1919       unsigned NumLanes = VL.size();
1920       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1921         OpsVec[OpIdx].resize(NumLanes);
1922         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1923           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1924           // Our tree has just 3 nodes: the root and two operands.
1925           // It is therefore trivial to get the APO. We only need to check the
1926           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1927           // RHS operand. The LHS operand of both add and sub is never attached
1928           // to an inversese operation in the linearized form, therefore its APO
1929           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1930 
1931           // Since operand reordering is performed on groups of commutative
1932           // operations or alternating sequences (e.g., +, -), we can safely
1933           // tell the inverse operations by checking commutativity.
1934           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1935           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1936           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1937                                  APO, false};
1938         }
1939       }
1940     }
1941 
1942     /// \returns the number of operands.
1943     unsigned getNumOperands() const { return OpsVec.size(); }
1944 
1945     /// \returns the number of lanes.
1946     unsigned getNumLanes() const { return OpsVec[0].size(); }
1947 
1948     /// \returns the operand value at \p OpIdx and \p Lane.
1949     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1950       return getData(OpIdx, Lane).V;
1951     }
1952 
1953     /// \returns true if the data structure is empty.
1954     bool empty() const { return OpsVec.empty(); }
1955 
1956     /// Clears the data.
1957     void clear() { OpsVec.clear(); }
1958 
1959     /// \Returns true if there are enough operands identical to \p Op to fill
1960     /// the whole vector.
1961     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1962     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1963       bool OpAPO = getData(OpIdx, Lane).APO;
1964       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1965         if (Ln == Lane)
1966           continue;
1967         // This is set to true if we found a candidate for broadcast at Lane.
1968         bool FoundCandidate = false;
1969         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1970           OperandData &Data = getData(OpI, Ln);
1971           if (Data.APO != OpAPO || Data.IsUsed)
1972             continue;
1973           if (Data.V == Op) {
1974             FoundCandidate = true;
1975             Data.IsUsed = true;
1976             break;
1977           }
1978         }
1979         if (!FoundCandidate)
1980           return false;
1981       }
1982       return true;
1983     }
1984 
1985   public:
1986     /// Initialize with all the operands of the instruction vector \p RootVL.
1987     VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI,
1988                const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R)
1989         : TLI(TLI), DL(DL), SE(SE), R(R) {
1990       // Append all the operands of RootVL.
1991       appendOperandsOfVL(RootVL);
1992     }
1993 
1994     /// \Returns a value vector with the operands across all lanes for the
1995     /// opearnd at \p OpIdx.
1996     ValueList getVL(unsigned OpIdx) const {
1997       ValueList OpVL(OpsVec[OpIdx].size());
1998       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1999              "Expected same num of lanes across all operands");
2000       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
2001         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
2002       return OpVL;
2003     }
2004 
2005     // Performs operand reordering for 2 or more operands.
2006     // The original operands are in OrigOps[OpIdx][Lane].
2007     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
2008     void reorder() {
2009       unsigned NumOperands = getNumOperands();
2010       unsigned NumLanes = getNumLanes();
2011       // Each operand has its own mode. We are using this mode to help us select
2012       // the instructions for each lane, so that they match best with the ones
2013       // we have selected so far.
2014       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
2015 
2016       // This is a greedy single-pass algorithm. We are going over each lane
2017       // once and deciding on the best order right away with no back-tracking.
2018       // However, in order to increase its effectiveness, we start with the lane
2019       // that has operands that can move the least. For example, given the
2020       // following lanes:
2021       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
2022       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
2023       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
2024       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
2025       // we will start at Lane 1, since the operands of the subtraction cannot
2026       // be reordered. Then we will visit the rest of the lanes in a circular
2027       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
2028 
2029       // Find the first lane that we will start our search from.
2030       unsigned FirstLane = getBestLaneToStartReordering();
2031 
2032       // Initialize the modes.
2033       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
2034         Value *OpLane0 = getValue(OpIdx, FirstLane);
2035         // Keep track if we have instructions with all the same opcode on one
2036         // side.
2037         if (isa<LoadInst>(OpLane0))
2038           ReorderingModes[OpIdx] = ReorderingMode::Load;
2039         else if (isa<Instruction>(OpLane0)) {
2040           // Check if OpLane0 should be broadcast.
2041           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
2042             ReorderingModes[OpIdx] = ReorderingMode::Splat;
2043           else
2044             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
2045         }
2046         else if (isa<Constant>(OpLane0))
2047           ReorderingModes[OpIdx] = ReorderingMode::Constant;
2048         else if (isa<Argument>(OpLane0))
2049           // Our best hope is a Splat. It may save some cost in some cases.
2050           ReorderingModes[OpIdx] = ReorderingMode::Splat;
2051         else
2052           // NOTE: This should be unreachable.
2053           ReorderingModes[OpIdx] = ReorderingMode::Failed;
2054       }
2055 
2056       // Check that we don't have same operands. No need to reorder if operands
2057       // are just perfect diamond or shuffled diamond match. Do not do it only
2058       // for possible broadcasts or non-power of 2 number of scalars (just for
2059       // now).
2060       auto &&SkipReordering = [this]() {
2061         SmallPtrSet<Value *, 4> UniqueValues;
2062         ArrayRef<OperandData> Op0 = OpsVec.front();
2063         for (const OperandData &Data : Op0)
2064           UniqueValues.insert(Data.V);
2065         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
2066           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
2067                 return !UniqueValues.contains(Data.V);
2068               }))
2069             return false;
2070         }
2071         // TODO: Check if we can remove a check for non-power-2 number of
2072         // scalars after full support of non-power-2 vectorization.
2073         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
2074       };
2075 
2076       // If the initial strategy fails for any of the operand indexes, then we
2077       // perform reordering again in a second pass. This helps avoid assigning
2078       // high priority to the failed strategy, and should improve reordering for
2079       // the non-failed operand indexes.
2080       for (int Pass = 0; Pass != 2; ++Pass) {
2081         // Check if no need to reorder operands since they're are perfect or
2082         // shuffled diamond match.
2083         // Need to do it to avoid extra external use cost counting for
2084         // shuffled matches, which may cause regressions.
2085         if (SkipReordering())
2086           break;
2087         // Skip the second pass if the first pass did not fail.
2088         bool StrategyFailed = false;
2089         // Mark all operand data as free to use.
2090         clearUsed();
2091         // We keep the original operand order for the FirstLane, so reorder the
2092         // rest of the lanes. We are visiting the nodes in a circular fashion,
2093         // using FirstLane as the center point and increasing the radius
2094         // distance.
2095         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
2096         for (unsigned I = 0; I < NumOperands; ++I)
2097           MainAltOps[I].push_back(getData(I, FirstLane).V);
2098 
2099         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
2100           // Visit the lane on the right and then the lane on the left.
2101           for (int Direction : {+1, -1}) {
2102             int Lane = FirstLane + Direction * Distance;
2103             if (Lane < 0 || Lane >= (int)NumLanes)
2104               continue;
2105             int LastLane = Lane - Direction;
2106             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
2107                    "Out of bounds");
2108             // Look for a good match for each operand.
2109             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
2110               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
2111               std::optional<unsigned> BestIdx = getBestOperand(
2112                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
2113               // By not selecting a value, we allow the operands that follow to
2114               // select a better matching value. We will get a non-null value in
2115               // the next run of getBestOperand().
2116               if (BestIdx) {
2117                 // Swap the current operand with the one returned by
2118                 // getBestOperand().
2119                 swap(OpIdx, *BestIdx, Lane);
2120               } else {
2121                 // We failed to find a best operand, set mode to 'Failed'.
2122                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
2123                 // Enable the second pass.
2124                 StrategyFailed = true;
2125               }
2126               // Try to get the alternate opcode and follow it during analysis.
2127               if (MainAltOps[OpIdx].size() != 2) {
2128                 OperandData &AltOp = getData(OpIdx, Lane);
2129                 InstructionsState OpS =
2130                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI);
2131                 if (OpS.getOpcode() && OpS.isAltShuffle())
2132                   MainAltOps[OpIdx].push_back(AltOp.V);
2133               }
2134             }
2135           }
2136         }
2137         // Skip second pass if the strategy did not fail.
2138         if (!StrategyFailed)
2139           break;
2140       }
2141     }
2142 
2143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2144     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
2145       switch (RMode) {
2146       case ReorderingMode::Load:
2147         return "Load";
2148       case ReorderingMode::Opcode:
2149         return "Opcode";
2150       case ReorderingMode::Constant:
2151         return "Constant";
2152       case ReorderingMode::Splat:
2153         return "Splat";
2154       case ReorderingMode::Failed:
2155         return "Failed";
2156       }
2157       llvm_unreachable("Unimplemented Reordering Type");
2158     }
2159 
2160     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
2161                                                    raw_ostream &OS) {
2162       return OS << getModeStr(RMode);
2163     }
2164 
2165     /// Debug print.
2166     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
2167       printMode(RMode, dbgs());
2168     }
2169 
2170     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
2171       return printMode(RMode, OS);
2172     }
2173 
2174     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
2175       const unsigned Indent = 2;
2176       unsigned Cnt = 0;
2177       for (const OperandDataVec &OpDataVec : OpsVec) {
2178         OS << "Operand " << Cnt++ << "\n";
2179         for (const OperandData &OpData : OpDataVec) {
2180           OS.indent(Indent) << "{";
2181           if (Value *V = OpData.V)
2182             OS << *V;
2183           else
2184             OS << "null";
2185           OS << ", APO:" << OpData.APO << "}\n";
2186         }
2187         OS << "\n";
2188       }
2189       return OS;
2190     }
2191 
2192     /// Debug print.
2193     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2194 #endif
2195   };
2196 
2197   /// Evaluate each pair in \p Candidates and return index into \p Candidates
2198   /// for a pair which have highest score deemed to have best chance to form
2199   /// root of profitable tree to vectorize. Return std::nullopt if no candidate
2200   /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit
2201   /// of the cost, considered to be good enough score.
2202   std::optional<int>
2203   findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2204                    int Limit = LookAheadHeuristics::ScoreFail) {
2205     LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2,
2206                                   RootLookAheadMaxDepth);
2207     int BestScore = Limit;
2208     std::optional<int> Index;
2209     for (int I : seq<int>(0, Candidates.size())) {
2210       int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2211                                                Candidates[I].second,
2212                                                /*U1=*/nullptr, /*U2=*/nullptr,
2213                                                /*Level=*/1, std::nullopt);
2214       if (Score > BestScore) {
2215         BestScore = Score;
2216         Index = I;
2217       }
2218     }
2219     return Index;
2220   }
2221 
2222   /// Checks if the instruction is marked for deletion.
2223   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2224 
2225   /// Removes an instruction from its block and eventually deletes it.
2226   /// It's like Instruction::eraseFromParent() except that the actual deletion
2227   /// is delayed until BoUpSLP is destructed.
2228   void eraseInstruction(Instruction *I) {
2229     DeletedInstructions.insert(I);
2230   }
2231 
2232   /// Checks if the instruction was already analyzed for being possible
2233   /// reduction root.
2234   bool isAnalyzedReductionRoot(Instruction *I) const {
2235     return AnalyzedReductionsRoots.count(I);
2236   }
2237   /// Register given instruction as already analyzed for being possible
2238   /// reduction root.
2239   void analyzedReductionRoot(Instruction *I) {
2240     AnalyzedReductionsRoots.insert(I);
2241   }
2242   /// Checks if the provided list of reduced values was checked already for
2243   /// vectorization.
2244   bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const {
2245     return AnalyzedReductionVals.contains(hash_value(VL));
2246   }
2247   /// Adds the list of reduced values to list of already checked values for the
2248   /// vectorization.
2249   void analyzedReductionVals(ArrayRef<Value *> VL) {
2250     AnalyzedReductionVals.insert(hash_value(VL));
2251   }
2252   /// Clear the list of the analyzed reduction root instructions.
2253   void clearReductionData() {
2254     AnalyzedReductionsRoots.clear();
2255     AnalyzedReductionVals.clear();
2256   }
2257   /// Checks if the given value is gathered in one of the nodes.
2258   bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2259     return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2260   }
2261 
2262   /// Check if the value is vectorized in the tree.
2263   bool isVectorized(Value *V) const { return getTreeEntry(V); }
2264 
2265   ~BoUpSLP();
2266 
2267 private:
2268   /// Determine if a vectorized value \p V in can be demoted to
2269   /// a smaller type with a truncation. We collect the values that will be
2270   /// demoted in ToDemote and additional roots that require investigating in
2271   /// Roots.
2272   /// \param DemotedConsts list of Instruction/OperandIndex pairs that are
2273   /// constant and to be demoted. Required to correctly identify constant nodes
2274   /// to be demoted.
2275   bool collectValuesToDemote(
2276       Value *V, SmallVectorImpl<Value *> &ToDemote,
2277       DenseMap<Instruction *, SmallVector<unsigned>> &DemotedConsts,
2278       SmallVectorImpl<Value *> &Roots, DenseSet<Value *> &Visited) const;
2279 
2280   /// Check if the operands on the edges \p Edges of the \p UserTE allows
2281   /// reordering (i.e. the operands can be reordered because they have only one
2282   /// user and reordarable).
2283   /// \param ReorderableGathers List of all gather nodes that require reordering
2284   /// (e.g., gather of extractlements or partially vectorizable loads).
2285   /// \param GatherOps List of gather operand nodes for \p UserTE that require
2286   /// reordering, subset of \p NonVectorized.
2287   bool
2288   canReorderOperands(TreeEntry *UserTE,
2289                      SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2290                      ArrayRef<TreeEntry *> ReorderableGathers,
2291                      SmallVectorImpl<TreeEntry *> &GatherOps);
2292 
2293   /// Checks if the given \p TE is a gather node with clustered reused scalars
2294   /// and reorders it per given \p Mask.
2295   void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const;
2296 
2297   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2298   /// if any. If it is not vectorized (gather node), returns nullptr.
2299   TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2300     ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2301     TreeEntry *TE = nullptr;
2302     const auto *It = find_if(VL, [&](Value *V) {
2303       TE = getTreeEntry(V);
2304       if (TE && is_contained(TE->UserTreeIndices, EdgeInfo(UserTE, OpIdx)))
2305         return true;
2306       auto It = MultiNodeScalars.find(V);
2307       if (It != MultiNodeScalars.end()) {
2308         for (TreeEntry *E : It->second) {
2309           if (is_contained(E->UserTreeIndices, EdgeInfo(UserTE, OpIdx))) {
2310             TE = E;
2311             return true;
2312           }
2313         }
2314       }
2315       return false;
2316     });
2317     if (It != VL.end()) {
2318       assert(TE->isSame(VL) && "Expected same scalars.");
2319       return TE;
2320     }
2321     return nullptr;
2322   }
2323 
2324   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2325   /// if any. If it is not vectorized (gather node), returns nullptr.
2326   const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2327                                         unsigned OpIdx) const {
2328     return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2329         const_cast<TreeEntry *>(UserTE), OpIdx);
2330   }
2331 
2332   /// Checks if all users of \p I are the part of the vectorization tree.
2333   bool areAllUsersVectorized(
2334       Instruction *I,
2335       const SmallDenseSet<Value *> *VectorizedVals = nullptr) const;
2336 
2337   /// Return information about the vector formed for the specified index
2338   /// of a vector of (the same) instruction.
2339   TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> Ops);
2340 
2341   /// \ returns the graph entry for the \p Idx operand of the \p E entry.
2342   const TreeEntry *getOperandEntry(const TreeEntry *E, unsigned Idx) const;
2343 
2344   /// \returns the cost of the vectorizable entry.
2345   InstructionCost getEntryCost(const TreeEntry *E,
2346                                ArrayRef<Value *> VectorizedVals,
2347                                SmallPtrSetImpl<Value *> &CheckedExtracts);
2348 
2349   /// This is the recursive part of buildTree.
2350   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2351                      const EdgeInfo &EI);
2352 
2353   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2354   /// be vectorized to use the original vector (or aggregate "bitcast" to a
2355   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2356   /// returns false, setting \p CurrentOrder to either an empty vector or a
2357   /// non-identity permutation that allows to reuse extract instructions.
2358   /// \param ResizeAllowed indicates whether it is allowed to handle subvector
2359   /// extract order.
2360   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2361                        SmallVectorImpl<unsigned> &CurrentOrder,
2362                        bool ResizeAllowed = false) const;
2363 
2364   /// Vectorize a single entry in the tree.
2365   /// \param PostponedPHIs true, if need to postpone emission of phi nodes to
2366   /// avoid issues with def-use order.
2367   Value *vectorizeTree(TreeEntry *E, bool PostponedPHIs);
2368 
2369   /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry
2370   /// \p E.
2371   /// \param PostponedPHIs true, if need to postpone emission of phi nodes to
2372   /// avoid issues with def-use order.
2373   Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx, bool PostponedPHIs);
2374 
2375   /// Create a new vector from a list of scalar values.  Produces a sequence
2376   /// which exploits values reused across lanes, and arranges the inserts
2377   /// for ease of later optimization.
2378   template <typename BVTy, typename ResTy, typename... Args>
2379   ResTy processBuildVector(const TreeEntry *E, Args &...Params);
2380 
2381   /// Create a new vector from a list of scalar values.  Produces a sequence
2382   /// which exploits values reused across lanes, and arranges the inserts
2383   /// for ease of later optimization.
2384   Value *createBuildVector(const TreeEntry *E);
2385 
2386   /// Returns the instruction in the bundle, which can be used as a base point
2387   /// for scheduling. Usually it is the last instruction in the bundle, except
2388   /// for the case when all operands are external (in this case, it is the first
2389   /// instruction in the list).
2390   Instruction &getLastInstructionInBundle(const TreeEntry *E);
2391 
2392   /// Tries to find extractelement instructions with constant indices from fixed
2393   /// vector type and gather such instructions into a bunch, which highly likely
2394   /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt
2395   /// was successful, the matched scalars are replaced by poison values in \p VL
2396   /// for future analysis.
2397   std::optional<TargetTransformInfo::ShuffleKind>
2398   tryToGatherSingleRegisterExtractElements(MutableArrayRef<Value *> VL,
2399                                            SmallVectorImpl<int> &Mask) const;
2400 
2401   /// Tries to find extractelement instructions with constant indices from fixed
2402   /// vector type and gather such instructions into a bunch, which highly likely
2403   /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt
2404   /// was successful, the matched scalars are replaced by poison values in \p VL
2405   /// for future analysis.
2406   SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
2407   tryToGatherExtractElements(SmallVectorImpl<Value *> &VL,
2408                              SmallVectorImpl<int> &Mask,
2409                              unsigned NumParts) const;
2410 
2411   /// Checks if the gathered \p VL can be represented as a single register
2412   /// shuffle(s) of previous tree entries.
2413   /// \param TE Tree entry checked for permutation.
2414   /// \param VL List of scalars (a subset of the TE scalar), checked for
2415   /// permutations. Must form single-register vector.
2416   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2417   /// previous tree entries. \p Part of \p Mask is filled with the shuffle mask.
2418   std::optional<TargetTransformInfo::ShuffleKind>
2419   isGatherShuffledSingleRegisterEntry(
2420       const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask,
2421       SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part);
2422 
2423   /// Checks if the gathered \p VL can be represented as multi-register
2424   /// shuffle(s) of previous tree entries.
2425   /// \param TE Tree entry checked for permutation.
2426   /// \param VL List of scalars (a subset of the TE scalar), checked for
2427   /// permutations.
2428   /// \returns per-register series of ShuffleKind, if gathered values can be
2429   /// represented as shuffles of previous tree entries. \p Mask is filled with
2430   /// the shuffle mask (also on per-register base).
2431   SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
2432   isGatherShuffledEntry(
2433       const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask,
2434       SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries,
2435       unsigned NumParts);
2436 
2437   /// \returns the scalarization cost for this list of values. Assuming that
2438   /// this subtree gets vectorized, we may need to extract the values from the
2439   /// roots. This method calculates the cost of extracting the values.
2440   /// \param ForPoisonSrc true if initial vector is poison, false otherwise.
2441   InstructionCost getGatherCost(ArrayRef<Value *> VL, bool ForPoisonSrc) const;
2442 
2443   /// Set the Builder insert point to one after the last instruction in
2444   /// the bundle
2445   void setInsertPointAfterBundle(const TreeEntry *E);
2446 
2447   /// \returns a vector from a collection of scalars in \p VL. if \p Root is not
2448   /// specified, the starting vector value is poison.
2449   Value *gather(ArrayRef<Value *> VL, Value *Root);
2450 
2451   /// \returns whether the VectorizableTree is fully vectorizable and will
2452   /// be beneficial even the tree height is tiny.
2453   bool isFullyVectorizableTinyTree(bool ForReduction) const;
2454 
2455   /// Reorder commutative or alt operands to get better probability of
2456   /// generating vectorized code.
2457   static void reorderInputsAccordingToOpcode(
2458       ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
2459       SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
2460       const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R);
2461 
2462   /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2463   /// users of \p TE and collects the stores. It returns the map from the store
2464   /// pointers to the collected stores.
2465   DenseMap<Value *, SmallVector<StoreInst *>>
2466   collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2467 
2468   /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2469   /// stores in \p StoresVec can form a vector instruction. If so it returns
2470   /// true and populates \p ReorderIndices with the shuffle indices of the
2471   /// stores when compared to the sorted vector.
2472   bool canFormVector(ArrayRef<StoreInst *> StoresVec,
2473                      OrdersType &ReorderIndices) const;
2474 
2475   /// Iterates through the users of \p TE, looking for scalar stores that can be
2476   /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2477   /// their order and builds an order index vector for each store bundle. It
2478   /// returns all these order vectors found.
2479   /// We run this after the tree has formed, otherwise we may come across user
2480   /// instructions that are not yet in the tree.
2481   SmallVector<OrdersType, 1>
2482   findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2483 
2484   struct TreeEntry {
2485     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2486     TreeEntry(VecTreeTy &Container) : Container(Container) {}
2487 
2488     /// \returns Common mask for reorder indices and reused scalars.
2489     SmallVector<int> getCommonMask() const {
2490       SmallVector<int> Mask;
2491       inversePermutation(ReorderIndices, Mask);
2492       ::addMask(Mask, ReuseShuffleIndices);
2493       return Mask;
2494     }
2495 
2496     /// \returns true if the scalars in VL are equal to this entry.
2497     bool isSame(ArrayRef<Value *> VL) const {
2498       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2499         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2500           return std::equal(VL.begin(), VL.end(), Scalars.begin());
2501         return VL.size() == Mask.size() &&
2502                std::equal(VL.begin(), VL.end(), Mask.begin(),
2503                           [Scalars](Value *V, int Idx) {
2504                             return (isa<UndefValue>(V) &&
2505                                     Idx == PoisonMaskElem) ||
2506                                    (Idx != PoisonMaskElem && V == Scalars[Idx]);
2507                           });
2508       };
2509       if (!ReorderIndices.empty()) {
2510         // TODO: implement matching if the nodes are just reordered, still can
2511         // treat the vector as the same if the list of scalars matches VL
2512         // directly, without reordering.
2513         SmallVector<int> Mask;
2514         inversePermutation(ReorderIndices, Mask);
2515         if (VL.size() == Scalars.size())
2516           return IsSame(Scalars, Mask);
2517         if (VL.size() == ReuseShuffleIndices.size()) {
2518           ::addMask(Mask, ReuseShuffleIndices);
2519           return IsSame(Scalars, Mask);
2520         }
2521         return false;
2522       }
2523       return IsSame(Scalars, ReuseShuffleIndices);
2524     }
2525 
2526     bool isOperandGatherNode(const EdgeInfo &UserEI) const {
2527       return State == TreeEntry::NeedToGather &&
2528              UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx &&
2529              UserTreeIndices.front().UserTE == UserEI.UserTE;
2530     }
2531 
2532     /// \returns true if current entry has same operands as \p TE.
2533     bool hasEqualOperands(const TreeEntry &TE) const {
2534       if (TE.getNumOperands() != getNumOperands())
2535         return false;
2536       SmallBitVector Used(getNumOperands());
2537       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2538         unsigned PrevCount = Used.count();
2539         for (unsigned K = 0; K < E; ++K) {
2540           if (Used.test(K))
2541             continue;
2542           if (getOperand(K) == TE.getOperand(I)) {
2543             Used.set(K);
2544             break;
2545           }
2546         }
2547         // Check if we actually found the matching operand.
2548         if (PrevCount == Used.count())
2549           return false;
2550       }
2551       return true;
2552     }
2553 
2554     /// \return Final vectorization factor for the node. Defined by the total
2555     /// number of vectorized scalars, including those, used several times in the
2556     /// entry and counted in the \a ReuseShuffleIndices, if any.
2557     unsigned getVectorFactor() const {
2558       if (!ReuseShuffleIndices.empty())
2559         return ReuseShuffleIndices.size();
2560       return Scalars.size();
2561     };
2562 
2563     /// A vector of scalars.
2564     ValueList Scalars;
2565 
2566     /// The Scalars are vectorized into this value. It is initialized to Null.
2567     WeakTrackingVH VectorizedValue = nullptr;
2568 
2569     /// New vector phi instructions emitted for the vectorized phi nodes.
2570     PHINode *PHI = nullptr;
2571 
2572     /// Do we need to gather this sequence or vectorize it
2573     /// (either with vector instruction or with scatter/gather
2574     /// intrinsics for store/load)?
2575     enum EntryState {
2576       Vectorize,
2577       ScatterVectorize,
2578       PossibleStridedVectorize,
2579       NeedToGather
2580     };
2581     EntryState State;
2582 
2583     /// Does this sequence require some shuffling?
2584     SmallVector<int, 4> ReuseShuffleIndices;
2585 
2586     /// Does this entry require reordering?
2587     SmallVector<unsigned, 4> ReorderIndices;
2588 
2589     /// Points back to the VectorizableTree.
2590     ///
2591     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2592     /// to be a pointer and needs to be able to initialize the child iterator.
2593     /// Thus we need a reference back to the container to translate the indices
2594     /// to entries.
2595     VecTreeTy &Container;
2596 
2597     /// The TreeEntry index containing the user of this entry.  We can actually
2598     /// have multiple users so the data structure is not truly a tree.
2599     SmallVector<EdgeInfo, 1> UserTreeIndices;
2600 
2601     /// The index of this treeEntry in VectorizableTree.
2602     int Idx = -1;
2603 
2604   private:
2605     /// The operands of each instruction in each lane Operands[op_index][lane].
2606     /// Note: This helps avoid the replication of the code that performs the
2607     /// reordering of operands during buildTree_rec() and vectorizeTree().
2608     SmallVector<ValueList, 2> Operands;
2609 
2610     /// The main/alternate instruction.
2611     Instruction *MainOp = nullptr;
2612     Instruction *AltOp = nullptr;
2613 
2614   public:
2615     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2616     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2617       if (Operands.size() < OpIdx + 1)
2618         Operands.resize(OpIdx + 1);
2619       assert(Operands[OpIdx].empty() && "Already resized?");
2620       assert(OpVL.size() <= Scalars.size() &&
2621              "Number of operands is greater than the number of scalars.");
2622       Operands[OpIdx].resize(OpVL.size());
2623       copy(OpVL, Operands[OpIdx].begin());
2624     }
2625 
2626     /// Set the operands of this bundle in their original order.
2627     void setOperandsInOrder() {
2628       assert(Operands.empty() && "Already initialized?");
2629       auto *I0 = cast<Instruction>(Scalars[0]);
2630       Operands.resize(I0->getNumOperands());
2631       unsigned NumLanes = Scalars.size();
2632       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2633            OpIdx != NumOperands; ++OpIdx) {
2634         Operands[OpIdx].resize(NumLanes);
2635         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2636           auto *I = cast<Instruction>(Scalars[Lane]);
2637           assert(I->getNumOperands() == NumOperands &&
2638                  "Expected same number of operands");
2639           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2640         }
2641       }
2642     }
2643 
2644     /// Reorders operands of the node to the given mask \p Mask.
2645     void reorderOperands(ArrayRef<int> Mask) {
2646       for (ValueList &Operand : Operands)
2647         reorderScalars(Operand, Mask);
2648     }
2649 
2650     /// \returns the \p OpIdx operand of this TreeEntry.
2651     ValueList &getOperand(unsigned OpIdx) {
2652       assert(OpIdx < Operands.size() && "Off bounds");
2653       return Operands[OpIdx];
2654     }
2655 
2656     /// \returns the \p OpIdx operand of this TreeEntry.
2657     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2658       assert(OpIdx < Operands.size() && "Off bounds");
2659       return Operands[OpIdx];
2660     }
2661 
2662     /// \returns the number of operands.
2663     unsigned getNumOperands() const { return Operands.size(); }
2664 
2665     /// \return the single \p OpIdx operand.
2666     Value *getSingleOperand(unsigned OpIdx) const {
2667       assert(OpIdx < Operands.size() && "Off bounds");
2668       assert(!Operands[OpIdx].empty() && "No operand available");
2669       return Operands[OpIdx][0];
2670     }
2671 
2672     /// Some of the instructions in the list have alternate opcodes.
2673     bool isAltShuffle() const { return MainOp != AltOp; }
2674 
2675     bool isOpcodeOrAlt(Instruction *I) const {
2676       unsigned CheckedOpcode = I->getOpcode();
2677       return (getOpcode() == CheckedOpcode ||
2678               getAltOpcode() == CheckedOpcode);
2679     }
2680 
2681     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2682     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2683     /// \p OpValue.
2684     Value *isOneOf(Value *Op) const {
2685       auto *I = dyn_cast<Instruction>(Op);
2686       if (I && isOpcodeOrAlt(I))
2687         return Op;
2688       return MainOp;
2689     }
2690 
2691     void setOperations(const InstructionsState &S) {
2692       MainOp = S.MainOp;
2693       AltOp = S.AltOp;
2694     }
2695 
2696     Instruction *getMainOp() const {
2697       return MainOp;
2698     }
2699 
2700     Instruction *getAltOp() const {
2701       return AltOp;
2702     }
2703 
2704     /// The main/alternate opcodes for the list of instructions.
2705     unsigned getOpcode() const {
2706       return MainOp ? MainOp->getOpcode() : 0;
2707     }
2708 
2709     unsigned getAltOpcode() const {
2710       return AltOp ? AltOp->getOpcode() : 0;
2711     }
2712 
2713     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2714     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2715     int findLaneForValue(Value *V) const {
2716       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2717       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2718       if (!ReorderIndices.empty())
2719         FoundLane = ReorderIndices[FoundLane];
2720       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2721       if (!ReuseShuffleIndices.empty()) {
2722         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2723                                   find(ReuseShuffleIndices, FoundLane));
2724       }
2725       return FoundLane;
2726     }
2727 
2728     /// Build a shuffle mask for graph entry which represents a merge of main
2729     /// and alternate operations.
2730     void
2731     buildAltOpShuffleMask(const function_ref<bool(Instruction *)> IsAltOp,
2732                           SmallVectorImpl<int> &Mask,
2733                           SmallVectorImpl<Value *> *OpScalars = nullptr,
2734                           SmallVectorImpl<Value *> *AltScalars = nullptr) const;
2735 
2736 #ifndef NDEBUG
2737     /// Debug printer.
2738     LLVM_DUMP_METHOD void dump() const {
2739       dbgs() << Idx << ".\n";
2740       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2741         dbgs() << "Operand " << OpI << ":\n";
2742         for (const Value *V : Operands[OpI])
2743           dbgs().indent(2) << *V << "\n";
2744       }
2745       dbgs() << "Scalars: \n";
2746       for (Value *V : Scalars)
2747         dbgs().indent(2) << *V << "\n";
2748       dbgs() << "State: ";
2749       switch (State) {
2750       case Vectorize:
2751         dbgs() << "Vectorize\n";
2752         break;
2753       case ScatterVectorize:
2754         dbgs() << "ScatterVectorize\n";
2755         break;
2756       case PossibleStridedVectorize:
2757         dbgs() << "PossibleStridedVectorize\n";
2758         break;
2759       case NeedToGather:
2760         dbgs() << "NeedToGather\n";
2761         break;
2762       }
2763       dbgs() << "MainOp: ";
2764       if (MainOp)
2765         dbgs() << *MainOp << "\n";
2766       else
2767         dbgs() << "NULL\n";
2768       dbgs() << "AltOp: ";
2769       if (AltOp)
2770         dbgs() << *AltOp << "\n";
2771       else
2772         dbgs() << "NULL\n";
2773       dbgs() << "VectorizedValue: ";
2774       if (VectorizedValue)
2775         dbgs() << *VectorizedValue << "\n";
2776       else
2777         dbgs() << "NULL\n";
2778       dbgs() << "ReuseShuffleIndices: ";
2779       if (ReuseShuffleIndices.empty())
2780         dbgs() << "Empty";
2781       else
2782         for (int ReuseIdx : ReuseShuffleIndices)
2783           dbgs() << ReuseIdx << ", ";
2784       dbgs() << "\n";
2785       dbgs() << "ReorderIndices: ";
2786       for (unsigned ReorderIdx : ReorderIndices)
2787         dbgs() << ReorderIdx << ", ";
2788       dbgs() << "\n";
2789       dbgs() << "UserTreeIndices: ";
2790       for (const auto &EInfo : UserTreeIndices)
2791         dbgs() << EInfo << ", ";
2792       dbgs() << "\n";
2793     }
2794 #endif
2795   };
2796 
2797 #ifndef NDEBUG
2798   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2799                      InstructionCost VecCost, InstructionCost ScalarCost,
2800                      StringRef Banner) const {
2801     dbgs() << "SLP: " << Banner << ":\n";
2802     E->dump();
2803     dbgs() << "SLP: Costs:\n";
2804     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2805     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2806     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2807     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = "
2808            << ReuseShuffleCost + VecCost - ScalarCost << "\n";
2809   }
2810 #endif
2811 
2812   /// Create a new VectorizableTree entry.
2813   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2814                           std::optional<ScheduleData *> Bundle,
2815                           const InstructionsState &S,
2816                           const EdgeInfo &UserTreeIdx,
2817                           ArrayRef<int> ReuseShuffleIndices = std::nullopt,
2818                           ArrayRef<unsigned> ReorderIndices = std::nullopt) {
2819     TreeEntry::EntryState EntryState =
2820         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2821     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2822                         ReuseShuffleIndices, ReorderIndices);
2823   }
2824 
2825   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2826                           TreeEntry::EntryState EntryState,
2827                           std::optional<ScheduleData *> Bundle,
2828                           const InstructionsState &S,
2829                           const EdgeInfo &UserTreeIdx,
2830                           ArrayRef<int> ReuseShuffleIndices = std::nullopt,
2831                           ArrayRef<unsigned> ReorderIndices = std::nullopt) {
2832     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2833             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2834            "Need to vectorize gather entry?");
2835     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2836     TreeEntry *Last = VectorizableTree.back().get();
2837     Last->Idx = VectorizableTree.size() - 1;
2838     Last->State = EntryState;
2839     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2840                                      ReuseShuffleIndices.end());
2841     if (ReorderIndices.empty()) {
2842       Last->Scalars.assign(VL.begin(), VL.end());
2843       Last->setOperations(S);
2844     } else {
2845       // Reorder scalars and build final mask.
2846       Last->Scalars.assign(VL.size(), nullptr);
2847       transform(ReorderIndices, Last->Scalars.begin(),
2848                 [VL](unsigned Idx) -> Value * {
2849                   if (Idx >= VL.size())
2850                     return UndefValue::get(VL.front()->getType());
2851                   return VL[Idx];
2852                 });
2853       InstructionsState S = getSameOpcode(Last->Scalars, *TLI);
2854       Last->setOperations(S);
2855       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2856     }
2857     if (Last->State != TreeEntry::NeedToGather) {
2858       for (Value *V : VL) {
2859         const TreeEntry *TE = getTreeEntry(V);
2860         assert((!TE || TE == Last || doesNotNeedToBeScheduled(V)) &&
2861                "Scalar already in tree!");
2862         if (TE) {
2863           if (TE != Last)
2864             MultiNodeScalars.try_emplace(V).first->getSecond().push_back(Last);
2865           continue;
2866         }
2867         ScalarToTreeEntry[V] = Last;
2868       }
2869       // Update the scheduler bundle to point to this TreeEntry.
2870       ScheduleData *BundleMember = *Bundle;
2871       assert((BundleMember || isa<PHINode>(S.MainOp) ||
2872               isVectorLikeInstWithConstOps(S.MainOp) ||
2873               doesNotNeedToSchedule(VL)) &&
2874              "Bundle and VL out of sync");
2875       if (BundleMember) {
2876         for (Value *V : VL) {
2877           if (doesNotNeedToBeScheduled(V))
2878             continue;
2879           if (!BundleMember)
2880             continue;
2881           BundleMember->TE = Last;
2882           BundleMember = BundleMember->NextInBundle;
2883         }
2884       }
2885       assert(!BundleMember && "Bundle and VL out of sync");
2886     } else {
2887       MustGather.insert(VL.begin(), VL.end());
2888       // Build a map for gathered scalars to the nodes where they are used.
2889       for (Value *V : VL)
2890         if (!isConstant(V))
2891           ValueToGatherNodes.try_emplace(V).first->getSecond().insert(Last);
2892     }
2893 
2894     if (UserTreeIdx.UserTE)
2895       Last->UserTreeIndices.push_back(UserTreeIdx);
2896 
2897     return Last;
2898   }
2899 
2900   /// -- Vectorization State --
2901   /// Holds all of the tree entries.
2902   TreeEntry::VecTreeTy VectorizableTree;
2903 
2904 #ifndef NDEBUG
2905   /// Debug printer.
2906   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2907     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2908       VectorizableTree[Id]->dump();
2909       dbgs() << "\n";
2910     }
2911   }
2912 #endif
2913 
2914   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2915 
2916   const TreeEntry *getTreeEntry(Value *V) const {
2917     return ScalarToTreeEntry.lookup(V);
2918   }
2919 
2920   /// Checks if the specified list of the instructions/values can be vectorized
2921   /// and fills required data before actual scheduling of the instructions.
2922   TreeEntry::EntryState getScalarsVectorizationState(
2923       InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE,
2924       OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps) const;
2925 
2926   /// Maps a specific scalar to its tree entry.
2927   SmallDenseMap<Value *, TreeEntry *> ScalarToTreeEntry;
2928 
2929   /// List of scalars, used in several vectorize nodes, and the list of the
2930   /// nodes.
2931   SmallDenseMap<Value *, SmallVector<TreeEntry *>> MultiNodeScalars;
2932 
2933   /// Maps a value to the proposed vectorizable size.
2934   SmallDenseMap<Value *, unsigned> InstrElementSize;
2935 
2936   /// A list of scalars that we found that we need to keep as scalars.
2937   ValueSet MustGather;
2938 
2939   /// A map between the vectorized entries and the last instructions in the
2940   /// bundles. The bundles are built in use order, not in the def order of the
2941   /// instructions. So, we cannot rely directly on the last instruction in the
2942   /// bundle being the last instruction in the program order during
2943   /// vectorization process since the basic blocks are affected, need to
2944   /// pre-gather them before.
2945   DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction;
2946 
2947   /// List of gather nodes, depending on other gather/vector nodes, which should
2948   /// be emitted after the vector instruction emission process to correctly
2949   /// handle order of the vector instructions and shuffles.
2950   SetVector<const TreeEntry *> PostponedGathers;
2951 
2952   using ValueToGatherNodesMap =
2953       DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>>;
2954   ValueToGatherNodesMap ValueToGatherNodes;
2955 
2956   /// This POD struct describes one external user in the vectorized tree.
2957   struct ExternalUser {
2958     ExternalUser(Value *S, llvm::User *U, int L)
2959         : Scalar(S), User(U), Lane(L) {}
2960 
2961     // Which scalar in our function.
2962     Value *Scalar;
2963 
2964     // Which user that uses the scalar.
2965     llvm::User *User;
2966 
2967     // Which lane does the scalar belong to.
2968     int Lane;
2969   };
2970   using UserList = SmallVector<ExternalUser, 16>;
2971 
2972   /// Checks if two instructions may access the same memory.
2973   ///
2974   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2975   /// is invariant in the calling loop.
2976   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2977                  Instruction *Inst2) {
2978     if (!Loc1.Ptr || !isSimple(Inst1) || !isSimple(Inst2))
2979       return true;
2980     // First check if the result is already in the cache.
2981     AliasCacheKey Key = std::make_pair(Inst1, Inst2);
2982     auto It = AliasCache.find(Key);
2983     if (It != AliasCache.end())
2984       return It->second;
2985     bool Aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2986     // Store the result in the cache.
2987     AliasCache.try_emplace(Key, Aliased);
2988     AliasCache.try_emplace(std::make_pair(Inst2, Inst1), Aliased);
2989     return Aliased;
2990   }
2991 
2992   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2993 
2994   /// Cache for alias results.
2995   /// TODO: consider moving this to the AliasAnalysis itself.
2996   DenseMap<AliasCacheKey, bool> AliasCache;
2997 
2998   // Cache for pointerMayBeCaptured calls inside AA.  This is preserved
2999   // globally through SLP because we don't perform any action which
3000   // invalidates capture results.
3001   BatchAAResults BatchAA;
3002 
3003   /// Temporary store for deleted instructions. Instructions will be deleted
3004   /// eventually when the BoUpSLP is destructed.  The deferral is required to
3005   /// ensure that there are no incorrect collisions in the AliasCache, which
3006   /// can happen if a new instruction is allocated at the same address as a
3007   /// previously deleted instruction.
3008   DenseSet<Instruction *> DeletedInstructions;
3009 
3010   /// Set of the instruction, being analyzed already for reductions.
3011   SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
3012 
3013   /// Set of hashes for the list of reduction values already being analyzed.
3014   DenseSet<size_t> AnalyzedReductionVals;
3015 
3016   /// A list of values that need to extracted out of the tree.
3017   /// This list holds pairs of (Internal Scalar : External User). External User
3018   /// can be nullptr, it means that this Internal Scalar will be used later,
3019   /// after vectorization.
3020   UserList ExternalUses;
3021 
3022   /// Values used only by @llvm.assume calls.
3023   SmallPtrSet<const Value *, 32> EphValues;
3024 
3025   /// Holds all of the instructions that we gathered, shuffle instructions and
3026   /// extractelements.
3027   SetVector<Instruction *> GatherShuffleExtractSeq;
3028 
3029   /// A list of blocks that we are going to CSE.
3030   DenseSet<BasicBlock *> CSEBlocks;
3031 
3032   /// Contains all scheduling relevant data for an instruction.
3033   /// A ScheduleData either represents a single instruction or a member of an
3034   /// instruction bundle (= a group of instructions which is combined into a
3035   /// vector instruction).
3036   struct ScheduleData {
3037     // The initial value for the dependency counters. It means that the
3038     // dependencies are not calculated yet.
3039     enum { InvalidDeps = -1 };
3040 
3041     ScheduleData() = default;
3042 
3043     void init(int BlockSchedulingRegionID, Value *OpVal) {
3044       FirstInBundle = this;
3045       NextInBundle = nullptr;
3046       NextLoadStore = nullptr;
3047       IsScheduled = false;
3048       SchedulingRegionID = BlockSchedulingRegionID;
3049       clearDependencies();
3050       OpValue = OpVal;
3051       TE = nullptr;
3052     }
3053 
3054     /// Verify basic self consistency properties
3055     void verify() {
3056       if (hasValidDependencies()) {
3057         assert(UnscheduledDeps <= Dependencies && "invariant");
3058       } else {
3059         assert(UnscheduledDeps == Dependencies && "invariant");
3060       }
3061 
3062       if (IsScheduled) {
3063         assert(isSchedulingEntity() &&
3064                 "unexpected scheduled state");
3065         for (const ScheduleData *BundleMember = this; BundleMember;
3066              BundleMember = BundleMember->NextInBundle) {
3067           assert(BundleMember->hasValidDependencies() &&
3068                  BundleMember->UnscheduledDeps == 0 &&
3069                  "unexpected scheduled state");
3070           assert((BundleMember == this || !BundleMember->IsScheduled) &&
3071                  "only bundle is marked scheduled");
3072         }
3073       }
3074 
3075       assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
3076              "all bundle members must be in same basic block");
3077     }
3078 
3079     /// Returns true if the dependency information has been calculated.
3080     /// Note that depenendency validity can vary between instructions within
3081     /// a single bundle.
3082     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
3083 
3084     /// Returns true for single instructions and for bundle representatives
3085     /// (= the head of a bundle).
3086     bool isSchedulingEntity() const { return FirstInBundle == this; }
3087 
3088     /// Returns true if it represents an instruction bundle and not only a
3089     /// single instruction.
3090     bool isPartOfBundle() const {
3091       return NextInBundle != nullptr || FirstInBundle != this || TE;
3092     }
3093 
3094     /// Returns true if it is ready for scheduling, i.e. it has no more
3095     /// unscheduled depending instructions/bundles.
3096     bool isReady() const {
3097       assert(isSchedulingEntity() &&
3098              "can't consider non-scheduling entity for ready list");
3099       return unscheduledDepsInBundle() == 0 && !IsScheduled;
3100     }
3101 
3102     /// Modifies the number of unscheduled dependencies for this instruction,
3103     /// and returns the number of remaining dependencies for the containing
3104     /// bundle.
3105     int incrementUnscheduledDeps(int Incr) {
3106       assert(hasValidDependencies() &&
3107              "increment of unscheduled deps would be meaningless");
3108       UnscheduledDeps += Incr;
3109       return FirstInBundle->unscheduledDepsInBundle();
3110     }
3111 
3112     /// Sets the number of unscheduled dependencies to the number of
3113     /// dependencies.
3114     void resetUnscheduledDeps() {
3115       UnscheduledDeps = Dependencies;
3116     }
3117 
3118     /// Clears all dependency information.
3119     void clearDependencies() {
3120       Dependencies = InvalidDeps;
3121       resetUnscheduledDeps();
3122       MemoryDependencies.clear();
3123       ControlDependencies.clear();
3124     }
3125 
3126     int unscheduledDepsInBundle() const {
3127       assert(isSchedulingEntity() && "only meaningful on the bundle");
3128       int Sum = 0;
3129       for (const ScheduleData *BundleMember = this; BundleMember;
3130            BundleMember = BundleMember->NextInBundle) {
3131         if (BundleMember->UnscheduledDeps == InvalidDeps)
3132           return InvalidDeps;
3133         Sum += BundleMember->UnscheduledDeps;
3134       }
3135       return Sum;
3136     }
3137 
3138     void dump(raw_ostream &os) const {
3139       if (!isSchedulingEntity()) {
3140         os << "/ " << *Inst;
3141       } else if (NextInBundle) {
3142         os << '[' << *Inst;
3143         ScheduleData *SD = NextInBundle;
3144         while (SD) {
3145           os << ';' << *SD->Inst;
3146           SD = SD->NextInBundle;
3147         }
3148         os << ']';
3149       } else {
3150         os << *Inst;
3151       }
3152     }
3153 
3154     Instruction *Inst = nullptr;
3155 
3156     /// Opcode of the current instruction in the schedule data.
3157     Value *OpValue = nullptr;
3158 
3159     /// The TreeEntry that this instruction corresponds to.
3160     TreeEntry *TE = nullptr;
3161 
3162     /// Points to the head in an instruction bundle (and always to this for
3163     /// single instructions).
3164     ScheduleData *FirstInBundle = nullptr;
3165 
3166     /// Single linked list of all instructions in a bundle. Null if it is a
3167     /// single instruction.
3168     ScheduleData *NextInBundle = nullptr;
3169 
3170     /// Single linked list of all memory instructions (e.g. load, store, call)
3171     /// in the block - until the end of the scheduling region.
3172     ScheduleData *NextLoadStore = nullptr;
3173 
3174     /// The dependent memory instructions.
3175     /// This list is derived on demand in calculateDependencies().
3176     SmallVector<ScheduleData *, 4> MemoryDependencies;
3177 
3178     /// List of instructions which this instruction could be control dependent
3179     /// on.  Allowing such nodes to be scheduled below this one could introduce
3180     /// a runtime fault which didn't exist in the original program.
3181     /// ex: this is a load or udiv following a readonly call which inf loops
3182     SmallVector<ScheduleData *, 4> ControlDependencies;
3183 
3184     /// This ScheduleData is in the current scheduling region if this matches
3185     /// the current SchedulingRegionID of BlockScheduling.
3186     int SchedulingRegionID = 0;
3187 
3188     /// Used for getting a "good" final ordering of instructions.
3189     int SchedulingPriority = 0;
3190 
3191     /// The number of dependencies. Constitutes of the number of users of the
3192     /// instruction plus the number of dependent memory instructions (if any).
3193     /// This value is calculated on demand.
3194     /// If InvalidDeps, the number of dependencies is not calculated yet.
3195     int Dependencies = InvalidDeps;
3196 
3197     /// The number of dependencies minus the number of dependencies of scheduled
3198     /// instructions. As soon as this is zero, the instruction/bundle gets ready
3199     /// for scheduling.
3200     /// Note that this is negative as long as Dependencies is not calculated.
3201     int UnscheduledDeps = InvalidDeps;
3202 
3203     /// True if this instruction is scheduled (or considered as scheduled in the
3204     /// dry-run).
3205     bool IsScheduled = false;
3206   };
3207 
3208 #ifndef NDEBUG
3209   friend inline raw_ostream &operator<<(raw_ostream &os,
3210                                         const BoUpSLP::ScheduleData &SD) {
3211     SD.dump(os);
3212     return os;
3213   }
3214 #endif
3215 
3216   friend struct GraphTraits<BoUpSLP *>;
3217   friend struct DOTGraphTraits<BoUpSLP *>;
3218 
3219   /// Contains all scheduling data for a basic block.
3220   /// It does not schedules instructions, which are not memory read/write
3221   /// instructions and their operands are either constants, or arguments, or
3222   /// phis, or instructions from others blocks, or their users are phis or from
3223   /// the other blocks. The resulting vector instructions can be placed at the
3224   /// beginning of the basic block without scheduling (if operands does not need
3225   /// to be scheduled) or at the end of the block (if users are outside of the
3226   /// block). It allows to save some compile time and memory used by the
3227   /// compiler.
3228   /// ScheduleData is assigned for each instruction in between the boundaries of
3229   /// the tree entry, even for those, which are not part of the graph. It is
3230   /// required to correctly follow the dependencies between the instructions and
3231   /// their correct scheduling. The ScheduleData is not allocated for the
3232   /// instructions, which do not require scheduling, like phis, nodes with
3233   /// extractelements/insertelements only or nodes with instructions, with
3234   /// uses/operands outside of the block.
3235   struct BlockScheduling {
3236     BlockScheduling(BasicBlock *BB)
3237         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
3238 
3239     void clear() {
3240       ReadyInsts.clear();
3241       ScheduleStart = nullptr;
3242       ScheduleEnd = nullptr;
3243       FirstLoadStoreInRegion = nullptr;
3244       LastLoadStoreInRegion = nullptr;
3245       RegionHasStackSave = false;
3246 
3247       // Reduce the maximum schedule region size by the size of the
3248       // previous scheduling run.
3249       ScheduleRegionSizeLimit -= ScheduleRegionSize;
3250       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
3251         ScheduleRegionSizeLimit = MinScheduleRegionSize;
3252       ScheduleRegionSize = 0;
3253 
3254       // Make a new scheduling region, i.e. all existing ScheduleData is not
3255       // in the new region yet.
3256       ++SchedulingRegionID;
3257     }
3258 
3259     ScheduleData *getScheduleData(Instruction *I) {
3260       if (BB != I->getParent())
3261         // Avoid lookup if can't possibly be in map.
3262         return nullptr;
3263       ScheduleData *SD = ScheduleDataMap.lookup(I);
3264       if (SD && isInSchedulingRegion(SD))
3265         return SD;
3266       return nullptr;
3267     }
3268 
3269     ScheduleData *getScheduleData(Value *V) {
3270       if (auto *I = dyn_cast<Instruction>(V))
3271         return getScheduleData(I);
3272       return nullptr;
3273     }
3274 
3275     ScheduleData *getScheduleData(Value *V, Value *Key) {
3276       if (V == Key)
3277         return getScheduleData(V);
3278       auto I = ExtraScheduleDataMap.find(V);
3279       if (I != ExtraScheduleDataMap.end()) {
3280         ScheduleData *SD = I->second.lookup(Key);
3281         if (SD && isInSchedulingRegion(SD))
3282           return SD;
3283       }
3284       return nullptr;
3285     }
3286 
3287     bool isInSchedulingRegion(ScheduleData *SD) const {
3288       return SD->SchedulingRegionID == SchedulingRegionID;
3289     }
3290 
3291     /// Marks an instruction as scheduled and puts all dependent ready
3292     /// instructions into the ready-list.
3293     template <typename ReadyListType>
3294     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
3295       SD->IsScheduled = true;
3296       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
3297 
3298       for (ScheduleData *BundleMember = SD; BundleMember;
3299            BundleMember = BundleMember->NextInBundle) {
3300         if (BundleMember->Inst != BundleMember->OpValue)
3301           continue;
3302 
3303         // Handle the def-use chain dependencies.
3304 
3305         // Decrement the unscheduled counter and insert to ready list if ready.
3306         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
3307           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
3308             if (OpDef && OpDef->hasValidDependencies() &&
3309                 OpDef->incrementUnscheduledDeps(-1) == 0) {
3310               // There are no more unscheduled dependencies after
3311               // decrementing, so we can put the dependent instruction
3312               // into the ready list.
3313               ScheduleData *DepBundle = OpDef->FirstInBundle;
3314               assert(!DepBundle->IsScheduled &&
3315                      "already scheduled bundle gets ready");
3316               ReadyList.insert(DepBundle);
3317               LLVM_DEBUG(dbgs()
3318                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
3319             }
3320           });
3321         };
3322 
3323         // If BundleMember is a vector bundle, its operands may have been
3324         // reordered during buildTree(). We therefore need to get its operands
3325         // through the TreeEntry.
3326         if (TreeEntry *TE = BundleMember->TE) {
3327           // Need to search for the lane since the tree entry can be reordered.
3328           int Lane = std::distance(TE->Scalars.begin(),
3329                                    find(TE->Scalars, BundleMember->Inst));
3330           assert(Lane >= 0 && "Lane not set");
3331 
3332           // Since vectorization tree is being built recursively this assertion
3333           // ensures that the tree entry has all operands set before reaching
3334           // this code. Couple of exceptions known at the moment are extracts
3335           // where their second (immediate) operand is not added. Since
3336           // immediates do not affect scheduler behavior this is considered
3337           // okay.
3338           auto *In = BundleMember->Inst;
3339           assert(In &&
3340                  (isa<ExtractValueInst, ExtractElementInst>(In) ||
3341                   In->getNumOperands() == TE->getNumOperands()) &&
3342                  "Missed TreeEntry operands?");
3343           (void)In; // fake use to avoid build failure when assertions disabled
3344 
3345           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3346                OpIdx != NumOperands; ++OpIdx)
3347             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3348               DecrUnsched(I);
3349         } else {
3350           // If BundleMember is a stand-alone instruction, no operand reordering
3351           // has taken place, so we directly access its operands.
3352           for (Use &U : BundleMember->Inst->operands())
3353             if (auto *I = dyn_cast<Instruction>(U.get()))
3354               DecrUnsched(I);
3355         }
3356         // Handle the memory dependencies.
3357         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3358           if (MemoryDepSD->hasValidDependencies() &&
3359               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3360             // There are no more unscheduled dependencies after decrementing,
3361             // so we can put the dependent instruction into the ready list.
3362             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3363             assert(!DepBundle->IsScheduled &&
3364                    "already scheduled bundle gets ready");
3365             ReadyList.insert(DepBundle);
3366             LLVM_DEBUG(dbgs()
3367                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
3368           }
3369         }
3370         // Handle the control dependencies.
3371         for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3372           if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3373             // There are no more unscheduled dependencies after decrementing,
3374             // so we can put the dependent instruction into the ready list.
3375             ScheduleData *DepBundle = DepSD->FirstInBundle;
3376             assert(!DepBundle->IsScheduled &&
3377                    "already scheduled bundle gets ready");
3378             ReadyList.insert(DepBundle);
3379             LLVM_DEBUG(dbgs()
3380                        << "SLP:    gets ready (ctl): " << *DepBundle << "\n");
3381           }
3382         }
3383       }
3384     }
3385 
3386     /// Verify basic self consistency properties of the data structure.
3387     void verify() {
3388       if (!ScheduleStart)
3389         return;
3390 
3391       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3392              ScheduleStart->comesBefore(ScheduleEnd) &&
3393              "Not a valid scheduling region?");
3394 
3395       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3396         auto *SD = getScheduleData(I);
3397         if (!SD)
3398           continue;
3399         assert(isInSchedulingRegion(SD) &&
3400                "primary schedule data not in window?");
3401         assert(isInSchedulingRegion(SD->FirstInBundle) &&
3402                "entire bundle in window!");
3403         (void)SD;
3404         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3405       }
3406 
3407       for (auto *SD : ReadyInsts) {
3408         assert(SD->isSchedulingEntity() && SD->isReady() &&
3409                "item in ready list not ready?");
3410         (void)SD;
3411       }
3412     }
3413 
3414     void doForAllOpcodes(Value *V,
3415                          function_ref<void(ScheduleData *SD)> Action) {
3416       if (ScheduleData *SD = getScheduleData(V))
3417         Action(SD);
3418       auto I = ExtraScheduleDataMap.find(V);
3419       if (I != ExtraScheduleDataMap.end())
3420         for (auto &P : I->second)
3421           if (isInSchedulingRegion(P.second))
3422             Action(P.second);
3423     }
3424 
3425     /// Put all instructions into the ReadyList which are ready for scheduling.
3426     template <typename ReadyListType>
3427     void initialFillReadyList(ReadyListType &ReadyList) {
3428       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3429         doForAllOpcodes(I, [&](ScheduleData *SD) {
3430           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3431               SD->isReady()) {
3432             ReadyList.insert(SD);
3433             LLVM_DEBUG(dbgs()
3434                        << "SLP:    initially in ready list: " << *SD << "\n");
3435           }
3436         });
3437       }
3438     }
3439 
3440     /// Build a bundle from the ScheduleData nodes corresponding to the
3441     /// scalar instruction for each lane.
3442     ScheduleData *buildBundle(ArrayRef<Value *> VL);
3443 
3444     /// Checks if a bundle of instructions can be scheduled, i.e. has no
3445     /// cyclic dependencies. This is only a dry-run, no instructions are
3446     /// actually moved at this stage.
3447     /// \returns the scheduling bundle. The returned Optional value is not
3448     /// std::nullopt if \p VL is allowed to be scheduled.
3449     std::optional<ScheduleData *>
3450     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3451                       const InstructionsState &S);
3452 
3453     /// Un-bundles a group of instructions.
3454     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3455 
3456     /// Allocates schedule data chunk.
3457     ScheduleData *allocateScheduleDataChunks();
3458 
3459     /// Extends the scheduling region so that V is inside the region.
3460     /// \returns true if the region size is within the limit.
3461     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3462 
3463     /// Initialize the ScheduleData structures for new instructions in the
3464     /// scheduling region.
3465     void initScheduleData(Instruction *FromI, Instruction *ToI,
3466                           ScheduleData *PrevLoadStore,
3467                           ScheduleData *NextLoadStore);
3468 
3469     /// Updates the dependency information of a bundle and of all instructions/
3470     /// bundles which depend on the original bundle.
3471     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3472                                BoUpSLP *SLP);
3473 
3474     /// Sets all instruction in the scheduling region to un-scheduled.
3475     void resetSchedule();
3476 
3477     BasicBlock *BB;
3478 
3479     /// Simple memory allocation for ScheduleData.
3480     SmallVector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3481 
3482     /// The size of a ScheduleData array in ScheduleDataChunks.
3483     int ChunkSize;
3484 
3485     /// The allocator position in the current chunk, which is the last entry
3486     /// of ScheduleDataChunks.
3487     int ChunkPos;
3488 
3489     /// Attaches ScheduleData to Instruction.
3490     /// Note that the mapping survives during all vectorization iterations, i.e.
3491     /// ScheduleData structures are recycled.
3492     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3493 
3494     /// Attaches ScheduleData to Instruction with the leading key.
3495     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3496         ExtraScheduleDataMap;
3497 
3498     /// The ready-list for scheduling (only used for the dry-run).
3499     SetVector<ScheduleData *> ReadyInsts;
3500 
3501     /// The first instruction of the scheduling region.
3502     Instruction *ScheduleStart = nullptr;
3503 
3504     /// The first instruction _after_ the scheduling region.
3505     Instruction *ScheduleEnd = nullptr;
3506 
3507     /// The first memory accessing instruction in the scheduling region
3508     /// (can be null).
3509     ScheduleData *FirstLoadStoreInRegion = nullptr;
3510 
3511     /// The last memory accessing instruction in the scheduling region
3512     /// (can be null).
3513     ScheduleData *LastLoadStoreInRegion = nullptr;
3514 
3515     /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3516     /// region?  Used to optimize the dependence calculation for the
3517     /// common case where there isn't.
3518     bool RegionHasStackSave = false;
3519 
3520     /// The current size of the scheduling region.
3521     int ScheduleRegionSize = 0;
3522 
3523     /// The maximum size allowed for the scheduling region.
3524     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3525 
3526     /// The ID of the scheduling region. For a new vectorization iteration this
3527     /// is incremented which "removes" all ScheduleData from the region.
3528     /// Make sure that the initial SchedulingRegionID is greater than the
3529     /// initial SchedulingRegionID in ScheduleData (which is 0).
3530     int SchedulingRegionID = 1;
3531   };
3532 
3533   /// Attaches the BlockScheduling structures to basic blocks.
3534   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3535 
3536   /// Performs the "real" scheduling. Done before vectorization is actually
3537   /// performed in a basic block.
3538   void scheduleBlock(BlockScheduling *BS);
3539 
3540   /// List of users to ignore during scheduling and that don't need extracting.
3541   const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3542 
3543   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3544   /// sorted SmallVectors of unsigned.
3545   struct OrdersTypeDenseMapInfo {
3546     static OrdersType getEmptyKey() {
3547       OrdersType V;
3548       V.push_back(~1U);
3549       return V;
3550     }
3551 
3552     static OrdersType getTombstoneKey() {
3553       OrdersType V;
3554       V.push_back(~2U);
3555       return V;
3556     }
3557 
3558     static unsigned getHashValue(const OrdersType &V) {
3559       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3560     }
3561 
3562     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3563       return LHS == RHS;
3564     }
3565   };
3566 
3567   // Analysis and block reference.
3568   Function *F;
3569   ScalarEvolution *SE;
3570   TargetTransformInfo *TTI;
3571   TargetLibraryInfo *TLI;
3572   LoopInfo *LI;
3573   DominatorTree *DT;
3574   AssumptionCache *AC;
3575   DemandedBits *DB;
3576   const DataLayout *DL;
3577   OptimizationRemarkEmitter *ORE;
3578 
3579   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3580   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3581 
3582   /// Instruction builder to construct the vectorized tree.
3583   IRBuilder<> Builder;
3584 
3585   /// A map of scalar integer values to the smallest bit width with which they
3586   /// can legally be represented. The values map to (width, signed) pairs,
3587   /// where "width" indicates the minimum bit width and "signed" is True if the
3588   /// value must be signed-extended, rather than zero-extended, back to its
3589   /// original width.
3590   DenseMap<const TreeEntry *, std::pair<uint64_t, bool>> MinBWs;
3591 };
3592 
3593 } // end namespace slpvectorizer
3594 
3595 template <> struct GraphTraits<BoUpSLP *> {
3596   using TreeEntry = BoUpSLP::TreeEntry;
3597 
3598   /// NodeRef has to be a pointer per the GraphWriter.
3599   using NodeRef = TreeEntry *;
3600 
3601   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3602 
3603   /// Add the VectorizableTree to the index iterator to be able to return
3604   /// TreeEntry pointers.
3605   struct ChildIteratorType
3606       : public iterator_adaptor_base<
3607             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3608     ContainerTy &VectorizableTree;
3609 
3610     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3611                       ContainerTy &VT)
3612         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3613 
3614     NodeRef operator*() { return I->UserTE; }
3615   };
3616 
3617   static NodeRef getEntryNode(BoUpSLP &R) {
3618     return R.VectorizableTree[0].get();
3619   }
3620 
3621   static ChildIteratorType child_begin(NodeRef N) {
3622     return {N->UserTreeIndices.begin(), N->Container};
3623   }
3624 
3625   static ChildIteratorType child_end(NodeRef N) {
3626     return {N->UserTreeIndices.end(), N->Container};
3627   }
3628 
3629   /// For the node iterator we just need to turn the TreeEntry iterator into a
3630   /// TreeEntry* iterator so that it dereferences to NodeRef.
3631   class nodes_iterator {
3632     using ItTy = ContainerTy::iterator;
3633     ItTy It;
3634 
3635   public:
3636     nodes_iterator(const ItTy &It2) : It(It2) {}
3637     NodeRef operator*() { return It->get(); }
3638     nodes_iterator operator++() {
3639       ++It;
3640       return *this;
3641     }
3642     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3643   };
3644 
3645   static nodes_iterator nodes_begin(BoUpSLP *R) {
3646     return nodes_iterator(R->VectorizableTree.begin());
3647   }
3648 
3649   static nodes_iterator nodes_end(BoUpSLP *R) {
3650     return nodes_iterator(R->VectorizableTree.end());
3651   }
3652 
3653   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3654 };
3655 
3656 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3657   using TreeEntry = BoUpSLP::TreeEntry;
3658 
3659   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
3660 
3661   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3662     std::string Str;
3663     raw_string_ostream OS(Str);
3664     OS << Entry->Idx << ".\n";
3665     if (isSplat(Entry->Scalars))
3666       OS << "<splat> ";
3667     for (auto *V : Entry->Scalars) {
3668       OS << *V;
3669       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3670             return EU.Scalar == V;
3671           }))
3672         OS << " <extract>";
3673       OS << "\n";
3674     }
3675     return Str;
3676   }
3677 
3678   static std::string getNodeAttributes(const TreeEntry *Entry,
3679                                        const BoUpSLP *) {
3680     if (Entry->State == TreeEntry::NeedToGather)
3681       return "color=red";
3682     if (Entry->State == TreeEntry::ScatterVectorize ||
3683         Entry->State == TreeEntry::PossibleStridedVectorize)
3684       return "color=blue";
3685     return "";
3686   }
3687 };
3688 
3689 } // end namespace llvm
3690 
3691 BoUpSLP::~BoUpSLP() {
3692   SmallVector<WeakTrackingVH> DeadInsts;
3693   for (auto *I : DeletedInstructions) {
3694     for (Use &U : I->operands()) {
3695       auto *Op = dyn_cast<Instruction>(U.get());
3696       if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3697           wouldInstructionBeTriviallyDead(Op, TLI))
3698         DeadInsts.emplace_back(Op);
3699     }
3700     I->dropAllReferences();
3701   }
3702   for (auto *I : DeletedInstructions) {
3703     assert(I->use_empty() &&
3704            "trying to erase instruction with users.");
3705     I->eraseFromParent();
3706   }
3707 
3708   // Cleanup any dead scalar code feeding the vectorized instructions
3709   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3710 
3711 #ifdef EXPENSIVE_CHECKS
3712   // If we could guarantee that this call is not extremely slow, we could
3713   // remove the ifdef limitation (see PR47712).
3714   assert(!verifyFunction(*F, &dbgs()));
3715 #endif
3716 }
3717 
3718 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3719 /// contains original mask for the scalars reused in the node. Procedure
3720 /// transform this mask in accordance with the given \p Mask.
3721 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3722   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3723          "Expected non-empty mask.");
3724   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3725   Prev.swap(Reuses);
3726   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3727     if (Mask[I] != PoisonMaskElem)
3728       Reuses[Mask[I]] = Prev[I];
3729 }
3730 
3731 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3732 /// the original order of the scalars. Procedure transforms the provided order
3733 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3734 /// identity order, \p Order is cleared.
3735 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3736   assert(!Mask.empty() && "Expected non-empty mask.");
3737   SmallVector<int> MaskOrder;
3738   if (Order.empty()) {
3739     MaskOrder.resize(Mask.size());
3740     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3741   } else {
3742     inversePermutation(Order, MaskOrder);
3743   }
3744   reorderReuses(MaskOrder, Mask);
3745   if (ShuffleVectorInst::isIdentityMask(MaskOrder, MaskOrder.size())) {
3746     Order.clear();
3747     return;
3748   }
3749   Order.assign(Mask.size(), Mask.size());
3750   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3751     if (MaskOrder[I] != PoisonMaskElem)
3752       Order[MaskOrder[I]] = I;
3753   fixupOrderingIndices(Order);
3754 }
3755 
3756 std::optional<BoUpSLP::OrdersType>
3757 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3758   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3759   unsigned NumScalars = TE.Scalars.size();
3760   OrdersType CurrentOrder(NumScalars, NumScalars);
3761   SmallVector<int> Positions;
3762   SmallBitVector UsedPositions(NumScalars);
3763   const TreeEntry *STE = nullptr;
3764   // Try to find all gathered scalars that are gets vectorized in other
3765   // vectorize node. Here we can have only one single tree vector node to
3766   // correctly identify order of the gathered scalars.
3767   for (unsigned I = 0; I < NumScalars; ++I) {
3768     Value *V = TE.Scalars[I];
3769     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3770       continue;
3771     if (const auto *LocalSTE = getTreeEntry(V)) {
3772       if (!STE)
3773         STE = LocalSTE;
3774       else if (STE != LocalSTE)
3775         // Take the order only from the single vector node.
3776         return std::nullopt;
3777       unsigned Lane =
3778           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3779       if (Lane >= NumScalars)
3780         return std::nullopt;
3781       if (CurrentOrder[Lane] != NumScalars) {
3782         if (Lane != I)
3783           continue;
3784         UsedPositions.reset(CurrentOrder[Lane]);
3785       }
3786       // The partial identity (where only some elements of the gather node are
3787       // in the identity order) is good.
3788       CurrentOrder[Lane] = I;
3789       UsedPositions.set(I);
3790     }
3791   }
3792   // Need to keep the order if we have a vector entry and at least 2 scalars or
3793   // the vectorized entry has just 2 scalars.
3794   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3795     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3796       for (unsigned I = 0; I < NumScalars; ++I)
3797         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3798           return false;
3799       return true;
3800     };
3801     if (IsIdentityOrder(CurrentOrder))
3802       return OrdersType();
3803     auto *It = CurrentOrder.begin();
3804     for (unsigned I = 0; I < NumScalars;) {
3805       if (UsedPositions.test(I)) {
3806         ++I;
3807         continue;
3808       }
3809       if (*It == NumScalars) {
3810         *It = I;
3811         ++I;
3812       }
3813       ++It;
3814     }
3815     return std::move(CurrentOrder);
3816   }
3817   return std::nullopt;
3818 }
3819 
3820 namespace {
3821 /// Tracks the state we can represent the loads in the given sequence.
3822 enum class LoadsState {
3823   Gather,
3824   Vectorize,
3825   ScatterVectorize,
3826   PossibleStridedVectorize
3827 };
3828 } // anonymous namespace
3829 
3830 static bool arePointersCompatible(Value *Ptr1, Value *Ptr2,
3831                                   const TargetLibraryInfo &TLI,
3832                                   bool CompareOpcodes = true) {
3833   if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2))
3834     return false;
3835   auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
3836   if (!GEP1)
3837     return false;
3838   auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
3839   if (!GEP2)
3840     return false;
3841   return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 &&
3842          ((isConstant(GEP1->getOperand(1)) &&
3843            isConstant(GEP2->getOperand(1))) ||
3844           !CompareOpcodes ||
3845           getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI)
3846               .getOpcode());
3847 }
3848 
3849 /// Checks if the given array of loads can be represented as a vectorized,
3850 /// scatter or just simple gather.
3851 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3852                                     const TargetTransformInfo &TTI,
3853                                     const DataLayout &DL, ScalarEvolution &SE,
3854                                     LoopInfo &LI, const TargetLibraryInfo &TLI,
3855                                     SmallVectorImpl<unsigned> &Order,
3856                                     SmallVectorImpl<Value *> &PointerOps) {
3857   // Check that a vectorized load would load the same memory as a scalar
3858   // load. For example, we don't want to vectorize loads that are smaller
3859   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3860   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3861   // from such a struct, we read/write packed bits disagreeing with the
3862   // unvectorized version.
3863   Type *ScalarTy = VL0->getType();
3864 
3865   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3866     return LoadsState::Gather;
3867 
3868   // Make sure all loads in the bundle are simple - we can't vectorize
3869   // atomic or volatile loads.
3870   PointerOps.clear();
3871   PointerOps.resize(VL.size());
3872   auto *POIter = PointerOps.begin();
3873   for (Value *V : VL) {
3874     auto *L = cast<LoadInst>(V);
3875     if (!L->isSimple())
3876       return LoadsState::Gather;
3877     *POIter = L->getPointerOperand();
3878     ++POIter;
3879   }
3880 
3881   Order.clear();
3882   // Check the order of pointer operands or that all pointers are the same.
3883   bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3884   if (IsSorted || all_of(PointerOps, [&](Value *P) {
3885         return arePointersCompatible(P, PointerOps.front(), TLI);
3886       })) {
3887     bool IsPossibleStrided = false;
3888     if (IsSorted) {
3889       Value *Ptr0;
3890       Value *PtrN;
3891       if (Order.empty()) {
3892         Ptr0 = PointerOps.front();
3893         PtrN = PointerOps.back();
3894       } else {
3895         Ptr0 = PointerOps[Order.front()];
3896         PtrN = PointerOps[Order.back()];
3897       }
3898       std::optional<int> Diff =
3899           getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3900       // Check that the sorted loads are consecutive.
3901       if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3902         return LoadsState::Vectorize;
3903       // Simple check if not a strided access - clear order.
3904       IsPossibleStrided = *Diff % (VL.size() - 1) == 0;
3905     }
3906     // TODO: need to improve analysis of the pointers, if not all of them are
3907     // GEPs or have > 2 operands, we end up with a gather node, which just
3908     // increases the cost.
3909     Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3910     bool ProfitableGatherPointers =
3911         static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3912           return L && L->isLoopInvariant(V);
3913         })) <= VL.size() / 2 && VL.size() > 2;
3914     if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3915           auto *GEP = dyn_cast<GetElementPtrInst>(P);
3916           return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3917                  (GEP && GEP->getNumOperands() == 2);
3918         })) {
3919       Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3920       for (Value *V : VL)
3921         CommonAlignment =
3922             std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
3923       auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3924       if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3925           !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3926         return IsPossibleStrided ? LoadsState::PossibleStridedVectorize
3927                                  : LoadsState::ScatterVectorize;
3928     }
3929   }
3930 
3931   return LoadsState::Gather;
3932 }
3933 
3934 static bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3935                                    const DataLayout &DL, ScalarEvolution &SE,
3936                                    SmallVectorImpl<unsigned> &SortedIndices) {
3937   assert(llvm::all_of(
3938              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3939          "Expected list of pointer operands.");
3940   // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3941   // Ptr into, sort and return the sorted indices with values next to one
3942   // another.
3943   MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3944   Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3945 
3946   unsigned Cnt = 1;
3947   for (Value *Ptr : VL.drop_front()) {
3948     bool Found = any_of(Bases, [&](auto &Base) {
3949       std::optional<int> Diff =
3950           getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3951                           /*StrictCheck=*/true);
3952       if (!Diff)
3953         return false;
3954 
3955       Base.second.emplace_back(Ptr, *Diff, Cnt++);
3956       return true;
3957     });
3958 
3959     if (!Found) {
3960       // If we haven't found enough to usefully cluster, return early.
3961       if (Bases.size() > VL.size() / 2 - 1)
3962         return false;
3963 
3964       // Not found already - add a new Base
3965       Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3966     }
3967   }
3968 
3969   // For each of the bases sort the pointers by Offset and check if any of the
3970   // base become consecutively allocated.
3971   bool AnyConsecutive = false;
3972   for (auto &Base : Bases) {
3973     auto &Vec = Base.second;
3974     if (Vec.size() > 1) {
3975       llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3976                                 const std::tuple<Value *, int, unsigned> &Y) {
3977         return std::get<1>(X) < std::get<1>(Y);
3978       });
3979       int InitialOffset = std::get<1>(Vec[0]);
3980       AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](const auto &P) {
3981         return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3982       });
3983     }
3984   }
3985 
3986   // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3987   SortedIndices.clear();
3988   if (!AnyConsecutive)
3989     return false;
3990 
3991   for (auto &Base : Bases) {
3992     for (auto &T : Base.second)
3993       SortedIndices.push_back(std::get<2>(T));
3994   }
3995 
3996   assert(SortedIndices.size() == VL.size() &&
3997          "Expected SortedIndices to be the size of VL");
3998   return true;
3999 }
4000 
4001 std::optional<BoUpSLP::OrdersType>
4002 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
4003   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
4004   Type *ScalarTy = TE.Scalars[0]->getType();
4005 
4006   SmallVector<Value *> Ptrs;
4007   Ptrs.reserve(TE.Scalars.size());
4008   for (Value *V : TE.Scalars) {
4009     auto *L = dyn_cast<LoadInst>(V);
4010     if (!L || !L->isSimple())
4011       return std::nullopt;
4012     Ptrs.push_back(L->getPointerOperand());
4013   }
4014 
4015   BoUpSLP::OrdersType Order;
4016   if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
4017     return std::move(Order);
4018   return std::nullopt;
4019 }
4020 
4021 /// Check if two insertelement instructions are from the same buildvector.
4022 static bool areTwoInsertFromSameBuildVector(
4023     InsertElementInst *VU, InsertElementInst *V,
4024     function_ref<Value *(InsertElementInst *)> GetBaseOperand) {
4025   // Instructions must be from the same basic blocks.
4026   if (VU->getParent() != V->getParent())
4027     return false;
4028   // Checks if 2 insertelements are from the same buildvector.
4029   if (VU->getType() != V->getType())
4030     return false;
4031   // Multiple used inserts are separate nodes.
4032   if (!VU->hasOneUse() && !V->hasOneUse())
4033     return false;
4034   auto *IE1 = VU;
4035   auto *IE2 = V;
4036   std::optional<unsigned> Idx1 = getInsertIndex(IE1);
4037   std::optional<unsigned> Idx2 = getInsertIndex(IE2);
4038   if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4039     return false;
4040   // Go through the vector operand of insertelement instructions trying to find
4041   // either VU as the original vector for IE2 or V as the original vector for
4042   // IE1.
4043   SmallBitVector ReusedIdx(
4044       cast<VectorType>(VU->getType())->getElementCount().getKnownMinValue());
4045   bool IsReusedIdx = false;
4046   do {
4047     if (IE2 == VU && !IE1)
4048       return VU->hasOneUse();
4049     if (IE1 == V && !IE2)
4050       return V->hasOneUse();
4051     if (IE1 && IE1 != V) {
4052       unsigned Idx1 = getInsertIndex(IE1).value_or(*Idx2);
4053       IsReusedIdx |= ReusedIdx.test(Idx1);
4054       ReusedIdx.set(Idx1);
4055       if ((IE1 != VU && !IE1->hasOneUse()) || IsReusedIdx)
4056         IE1 = nullptr;
4057       else
4058         IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1));
4059     }
4060     if (IE2 && IE2 != VU) {
4061       unsigned Idx2 = getInsertIndex(IE2).value_or(*Idx1);
4062       IsReusedIdx |= ReusedIdx.test(Idx2);
4063       ReusedIdx.set(Idx2);
4064       if ((IE2 != V && !IE2->hasOneUse()) || IsReusedIdx)
4065         IE2 = nullptr;
4066       else
4067         IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2));
4068     }
4069   } while (!IsReusedIdx && (IE1 || IE2));
4070   return false;
4071 }
4072 
4073 std::optional<BoUpSLP::OrdersType>
4074 BoUpSLP::getReorderingData(const TreeEntry &TE, bool TopToBottom) {
4075   // No need to reorder if need to shuffle reuses, still need to shuffle the
4076   // node.
4077   if (!TE.ReuseShuffleIndices.empty()) {
4078     // Check if reuse shuffle indices can be improved by reordering.
4079     // For this, check that reuse mask is "clustered", i.e. each scalar values
4080     // is used once in each submask of size <number_of_scalars>.
4081     // Example: 4 scalar values.
4082     // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered.
4083     //                           0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because
4084     //                           element 3 is used twice in the second submask.
4085     unsigned Sz = TE.Scalars.size();
4086     if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
4087                                                      Sz))
4088       return std::nullopt;
4089     unsigned VF = TE.getVectorFactor();
4090     // Try build correct order for extractelement instructions.
4091     SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(),
4092                                 TE.ReuseShuffleIndices.end());
4093     if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() &&
4094         all_of(TE.Scalars, [Sz](Value *V) {
4095           std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V));
4096           return Idx && *Idx < Sz;
4097         })) {
4098       SmallVector<int> ReorderMask(Sz, PoisonMaskElem);
4099       if (TE.ReorderIndices.empty())
4100         std::iota(ReorderMask.begin(), ReorderMask.end(), 0);
4101       else
4102         inversePermutation(TE.ReorderIndices, ReorderMask);
4103       for (unsigned I = 0; I < VF; ++I) {
4104         int &Idx = ReusedMask[I];
4105         if (Idx == PoisonMaskElem)
4106           continue;
4107         Value *V = TE.Scalars[ReorderMask[Idx]];
4108         std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V));
4109         Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI));
4110       }
4111     }
4112     // Build the order of the VF size, need to reorder reuses shuffles, they are
4113     // always of VF size.
4114     OrdersType ResOrder(VF);
4115     std::iota(ResOrder.begin(), ResOrder.end(), 0);
4116     auto *It = ResOrder.begin();
4117     for (unsigned K = 0; K < VF; K += Sz) {
4118       OrdersType CurrentOrder(TE.ReorderIndices);
4119       SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)};
4120       if (SubMask.front() == PoisonMaskElem)
4121         std::iota(SubMask.begin(), SubMask.end(), 0);
4122       reorderOrder(CurrentOrder, SubMask);
4123       transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; });
4124       std::advance(It, Sz);
4125     }
4126     if (all_of(enumerate(ResOrder),
4127                [](const auto &Data) { return Data.index() == Data.value(); }))
4128       return std::nullopt; // No need to reorder.
4129     return std::move(ResOrder);
4130   }
4131   if ((TE.State == TreeEntry::Vectorize ||
4132        TE.State == TreeEntry::PossibleStridedVectorize) &&
4133       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
4134        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
4135       !TE.isAltShuffle())
4136     return TE.ReorderIndices;
4137   if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) {
4138     auto PHICompare = [&](unsigned I1, unsigned I2) {
4139       Value *V1 = TE.Scalars[I1];
4140       Value *V2 = TE.Scalars[I2];
4141       if (V1 == V2)
4142         return false;
4143       if (!V1->hasOneUse() || !V2->hasOneUse())
4144         return false;
4145       auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin());
4146       auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin());
4147       if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1))
4148         if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) {
4149           if (!areTwoInsertFromSameBuildVector(
4150                   IE1, IE2,
4151                   [](InsertElementInst *II) { return II->getOperand(0); }))
4152             return false;
4153           std::optional<unsigned> Idx1 = getInsertIndex(IE1);
4154           std::optional<unsigned> Idx2 = getInsertIndex(IE2);
4155           if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4156             return false;
4157           return *Idx1 < *Idx2;
4158         }
4159       if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1))
4160         if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) {
4161           if (EE1->getOperand(0) != EE2->getOperand(0))
4162             return false;
4163           std::optional<unsigned> Idx1 = getExtractIndex(EE1);
4164           std::optional<unsigned> Idx2 = getExtractIndex(EE2);
4165           if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4166             return false;
4167           return *Idx1 < *Idx2;
4168         }
4169       return false;
4170     };
4171     auto IsIdentityOrder = [](const OrdersType &Order) {
4172       for (unsigned Idx : seq<unsigned>(0, Order.size()))
4173         if (Idx != Order[Idx])
4174           return false;
4175       return true;
4176     };
4177     if (!TE.ReorderIndices.empty())
4178       return TE.ReorderIndices;
4179     DenseMap<unsigned, unsigned> PhiToId;
4180     SmallVector<unsigned> Phis(TE.Scalars.size());
4181     std::iota(Phis.begin(), Phis.end(), 0);
4182     OrdersType ResOrder(TE.Scalars.size());
4183     for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id)
4184       PhiToId[Id] = Id;
4185     stable_sort(Phis, PHICompare);
4186     for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id)
4187       ResOrder[Id] = PhiToId[Phis[Id]];
4188     if (IsIdentityOrder(ResOrder))
4189       return std::nullopt; // No need to reorder.
4190     return std::move(ResOrder);
4191   }
4192   if (TE.State == TreeEntry::NeedToGather) {
4193     // TODO: add analysis of other gather nodes with extractelement
4194     // instructions and other values/instructions, not only undefs.
4195     if (((TE.getOpcode() == Instruction::ExtractElement &&
4196           !TE.isAltShuffle()) ||
4197          (all_of(TE.Scalars,
4198                  [](Value *V) {
4199                    return isa<UndefValue, ExtractElementInst>(V);
4200                  }) &&
4201           any_of(TE.Scalars,
4202                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
4203         all_of(TE.Scalars,
4204                [](Value *V) {
4205                  auto *EE = dyn_cast<ExtractElementInst>(V);
4206                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
4207                }) &&
4208         allSameType(TE.Scalars)) {
4209       // Check that gather of extractelements can be represented as
4210       // just a shuffle of a single vector.
4211       OrdersType CurrentOrder;
4212       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder,
4213                                    /*ResizeAllowed=*/true);
4214       if (Reuse || !CurrentOrder.empty()) {
4215         if (!CurrentOrder.empty())
4216           fixupOrderingIndices(CurrentOrder);
4217         return std::move(CurrentOrder);
4218       }
4219     }
4220     // If the gather node is <undef, v, .., poison> and
4221     // insertelement poison, v, 0 [+ permute]
4222     // is cheaper than
4223     // insertelement poison, v, n - try to reorder.
4224     // If rotating the whole graph, exclude the permute cost, the whole graph
4225     // might be transformed.
4226     int Sz = TE.Scalars.size();
4227     if (isSplat(TE.Scalars) && !allConstant(TE.Scalars) &&
4228         count_if(TE.Scalars, UndefValue::classof) == Sz - 1) {
4229       const auto *It =
4230           find_if(TE.Scalars, [](Value *V) { return !isConstant(V); });
4231       if (It == TE.Scalars.begin())
4232         return OrdersType();
4233       auto *Ty = FixedVectorType::get(TE.Scalars.front()->getType(), Sz);
4234       if (It != TE.Scalars.end()) {
4235         OrdersType Order(Sz, Sz);
4236         unsigned Idx = std::distance(TE.Scalars.begin(), It);
4237         Order[Idx] = 0;
4238         fixupOrderingIndices(Order);
4239         SmallVector<int> Mask;
4240         inversePermutation(Order, Mask);
4241         InstructionCost PermuteCost =
4242             TopToBottom
4243                 ? 0
4244                 : TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, Mask);
4245         InstructionCost InsertFirstCost = TTI->getVectorInstrCost(
4246             Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, 0,
4247             PoisonValue::get(Ty), *It);
4248         InstructionCost InsertIdxCost = TTI->getVectorInstrCost(
4249             Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, Idx,
4250             PoisonValue::get(Ty), *It);
4251         if (InsertFirstCost + PermuteCost < InsertIdxCost)
4252           return std::move(Order);
4253       }
4254     }
4255     if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
4256       return CurrentOrder;
4257     if (TE.Scalars.size() >= 4)
4258       if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
4259         return Order;
4260   }
4261   return std::nullopt;
4262 }
4263 
4264 /// Checks if the given mask is a "clustered" mask with the same clusters of
4265 /// size \p Sz, which are not identity submasks.
4266 static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask,
4267                                                unsigned Sz) {
4268   ArrayRef<int> FirstCluster = Mask.slice(0, Sz);
4269   if (ShuffleVectorInst::isIdentityMask(FirstCluster, Sz))
4270     return false;
4271   for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) {
4272     ArrayRef<int> Cluster = Mask.slice(I, Sz);
4273     if (Cluster != FirstCluster)
4274       return false;
4275   }
4276   return true;
4277 }
4278 
4279 void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const {
4280   // Reorder reuses mask.
4281   reorderReuses(TE.ReuseShuffleIndices, Mask);
4282   const unsigned Sz = TE.Scalars.size();
4283   // For vectorized and non-clustered reused no need to do anything else.
4284   if (TE.State != TreeEntry::NeedToGather ||
4285       !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
4286                                                    Sz) ||
4287       !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz))
4288     return;
4289   SmallVector<int> NewMask;
4290   inversePermutation(TE.ReorderIndices, NewMask);
4291   addMask(NewMask, TE.ReuseShuffleIndices);
4292   // Clear reorder since it is going to be applied to the new mask.
4293   TE.ReorderIndices.clear();
4294   // Try to improve gathered nodes with clustered reuses, if possible.
4295   ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz);
4296   SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end());
4297   inversePermutation(NewOrder, NewMask);
4298   reorderScalars(TE.Scalars, NewMask);
4299   // Fill the reuses mask with the identity submasks.
4300   for (auto *It = TE.ReuseShuffleIndices.begin(),
4301             *End = TE.ReuseShuffleIndices.end();
4302        It != End; std::advance(It, Sz))
4303     std::iota(It, std::next(It, Sz), 0);
4304 }
4305 
4306 void BoUpSLP::reorderTopToBottom() {
4307   // Maps VF to the graph nodes.
4308   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
4309   // ExtractElement gather nodes which can be vectorized and need to handle
4310   // their ordering.
4311   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4312 
4313   // Phi nodes can have preferred ordering based on their result users
4314   DenseMap<const TreeEntry *, OrdersType> PhisToOrders;
4315 
4316   // AltShuffles can also have a preferred ordering that leads to fewer
4317   // instructions, e.g., the addsub instruction in x86.
4318   DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
4319 
4320   // Maps a TreeEntry to the reorder indices of external users.
4321   DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
4322       ExternalUserReorderMap;
4323   // FIXME: Workaround for syntax error reported by MSVC buildbots.
4324   TargetTransformInfo &TTIRef = *TTI;
4325   // Find all reorderable nodes with the given VF.
4326   // Currently the are vectorized stores,loads,extracts + some gathering of
4327   // extracts.
4328   for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
4329                               &GathersToOrders, &ExternalUserReorderMap,
4330                               &AltShufflesToOrders, &PhisToOrders](
4331                                  const std::unique_ptr<TreeEntry> &TE) {
4332     // Look for external users that will probably be vectorized.
4333     SmallVector<OrdersType, 1> ExternalUserReorderIndices =
4334         findExternalStoreUsersReorderIndices(TE.get());
4335     if (!ExternalUserReorderIndices.empty()) {
4336       VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4337       ExternalUserReorderMap.try_emplace(TE.get(),
4338                                          std::move(ExternalUserReorderIndices));
4339     }
4340 
4341     // Patterns like [fadd,fsub] can be combined into a single instruction in
4342     // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
4343     // to take into account their order when looking for the most used order.
4344     if (TE->isAltShuffle()) {
4345       VectorType *VecTy =
4346           FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
4347       unsigned Opcode0 = TE->getOpcode();
4348       unsigned Opcode1 = TE->getAltOpcode();
4349       // The opcode mask selects between the two opcodes.
4350       SmallBitVector OpcodeMask(TE->Scalars.size(), false);
4351       for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
4352         if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
4353           OpcodeMask.set(Lane);
4354       // If this pattern is supported by the target then we consider the order.
4355       if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
4356         VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4357         AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
4358       }
4359       // TODO: Check the reverse order too.
4360     }
4361 
4362     if (std::optional<OrdersType> CurrentOrder =
4363             getReorderingData(*TE, /*TopToBottom=*/true)) {
4364       // Do not include ordering for nodes used in the alt opcode vectorization,
4365       // better to reorder them during bottom-to-top stage. If follow the order
4366       // here, it causes reordering of the whole graph though actually it is
4367       // profitable just to reorder the subgraph that starts from the alternate
4368       // opcode vectorization node. Such nodes already end-up with the shuffle
4369       // instruction and it is just enough to change this shuffle rather than
4370       // rotate the scalars for the whole graph.
4371       unsigned Cnt = 0;
4372       const TreeEntry *UserTE = TE.get();
4373       while (UserTE && Cnt < RecursionMaxDepth) {
4374         if (UserTE->UserTreeIndices.size() != 1)
4375           break;
4376         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
4377               return EI.UserTE->State == TreeEntry::Vectorize &&
4378                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
4379             }))
4380           return;
4381         UserTE = UserTE->UserTreeIndices.back().UserTE;
4382         ++Cnt;
4383       }
4384       VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4385       if (!(TE->State == TreeEntry::Vectorize ||
4386             TE->State == TreeEntry::PossibleStridedVectorize) ||
4387           !TE->ReuseShuffleIndices.empty())
4388         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4389       if (TE->State == TreeEntry::Vectorize &&
4390           TE->getOpcode() == Instruction::PHI)
4391         PhisToOrders.try_emplace(TE.get(), *CurrentOrder);
4392     }
4393   });
4394 
4395   // Reorder the graph nodes according to their vectorization factor.
4396   for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1;
4397        VF /= 2) {
4398     auto It = VFToOrderedEntries.find(VF);
4399     if (It == VFToOrderedEntries.end())
4400       continue;
4401     // Try to find the most profitable order. We just are looking for the most
4402     // used order and reorder scalar elements in the nodes according to this
4403     // mostly used order.
4404     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
4405     // All operands are reordered and used only in this node - propagate the
4406     // most used order to the user node.
4407     MapVector<OrdersType, unsigned,
4408               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4409         OrdersUses;
4410     // Last chance orders - scatter vectorize. Try to use their orders if no
4411     // other orders or the order is counted already.
4412     SmallVector<OrdersType> StridedVectorizeOrders;
4413     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4414     for (const TreeEntry *OpTE : OrderedEntries) {
4415       // No need to reorder this nodes, still need to extend and to use shuffle,
4416       // just need to merge reordering shuffle and the reuse shuffle.
4417       if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4418         continue;
4419       // Count number of orders uses.
4420       const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders,
4421                            &PhisToOrders]() -> const OrdersType & {
4422         if (OpTE->State == TreeEntry::NeedToGather ||
4423             !OpTE->ReuseShuffleIndices.empty()) {
4424           auto It = GathersToOrders.find(OpTE);
4425           if (It != GathersToOrders.end())
4426             return It->second;
4427         }
4428         if (OpTE->isAltShuffle()) {
4429           auto It = AltShufflesToOrders.find(OpTE);
4430           if (It != AltShufflesToOrders.end())
4431             return It->second;
4432         }
4433         if (OpTE->State == TreeEntry::Vectorize &&
4434             OpTE->getOpcode() == Instruction::PHI) {
4435           auto It = PhisToOrders.find(OpTE);
4436           if (It != PhisToOrders.end())
4437             return It->second;
4438         }
4439         return OpTE->ReorderIndices;
4440       }();
4441       // First consider the order of the external scalar users.
4442       auto It = ExternalUserReorderMap.find(OpTE);
4443       if (It != ExternalUserReorderMap.end()) {
4444         const auto &ExternalUserReorderIndices = It->second;
4445         // If the OpTE vector factor != number of scalars - use natural order,
4446         // it is an attempt to reorder node with reused scalars but with
4447         // external uses.
4448         if (OpTE->getVectorFactor() != OpTE->Scalars.size()) {
4449           OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
4450               ExternalUserReorderIndices.size();
4451         } else {
4452           for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
4453             ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
4454         }
4455         // No other useful reorder data in this entry.
4456         if (Order.empty())
4457           continue;
4458       }
4459       // Postpone scatter orders.
4460       if (OpTE->State == TreeEntry::PossibleStridedVectorize) {
4461         StridedVectorizeOrders.push_back(Order);
4462         continue;
4463       }
4464       // Stores actually store the mask, not the order, need to invert.
4465       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4466           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4467         SmallVector<int> Mask;
4468         inversePermutation(Order, Mask);
4469         unsigned E = Order.size();
4470         OrdersType CurrentOrder(E, E);
4471         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4472           return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx);
4473         });
4474         fixupOrderingIndices(CurrentOrder);
4475         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
4476       } else {
4477         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
4478       }
4479     }
4480     // Set order of the user node.
4481     if (OrdersUses.empty()) {
4482       if (StridedVectorizeOrders.empty())
4483         continue;
4484       // Add (potentially!) strided vectorize orders.
4485       for (OrdersType &Order : StridedVectorizeOrders)
4486         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
4487     } else {
4488       // Account (potentially!) strided vectorize orders only if it was used
4489       // already.
4490       for (OrdersType &Order : StridedVectorizeOrders) {
4491         auto *It = OrdersUses.find(Order);
4492         if (It != OrdersUses.end())
4493           ++It->second;
4494       }
4495     }
4496     // Choose the most used order.
4497     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4498     unsigned Cnt = OrdersUses.front().second;
4499     for (const auto &Pair : drop_begin(OrdersUses)) {
4500       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4501         BestOrder = Pair.first;
4502         Cnt = Pair.second;
4503       }
4504     }
4505     // Set order of the user node.
4506     if (BestOrder.empty())
4507       continue;
4508     SmallVector<int> Mask;
4509     inversePermutation(BestOrder, Mask);
4510     SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem);
4511     unsigned E = BestOrder.size();
4512     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4513       return I < E ? static_cast<int>(I) : PoisonMaskElem;
4514     });
4515     // Do an actual reordering, if profitable.
4516     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
4517       // Just do the reordering for the nodes with the given VF.
4518       if (TE->Scalars.size() != VF) {
4519         if (TE->ReuseShuffleIndices.size() == VF) {
4520           // Need to reorder the reuses masks of the operands with smaller VF to
4521           // be able to find the match between the graph nodes and scalar
4522           // operands of the given node during vectorization/cost estimation.
4523           assert(all_of(TE->UserTreeIndices,
4524                         [VF, &TE](const EdgeInfo &EI) {
4525                           return EI.UserTE->Scalars.size() == VF ||
4526                                  EI.UserTE->Scalars.size() ==
4527                                      TE->Scalars.size();
4528                         }) &&
4529                  "All users must be of VF size.");
4530           // Update ordering of the operands with the smaller VF than the given
4531           // one.
4532           reorderNodeWithReuses(*TE, Mask);
4533         }
4534         continue;
4535       }
4536       if ((TE->State == TreeEntry::Vectorize ||
4537            TE->State == TreeEntry::PossibleStridedVectorize) &&
4538           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
4539               InsertElementInst>(TE->getMainOp()) &&
4540           !TE->isAltShuffle()) {
4541         // Build correct orders for extract{element,value}, loads and
4542         // stores.
4543         reorderOrder(TE->ReorderIndices, Mask);
4544         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
4545           TE->reorderOperands(Mask);
4546       } else {
4547         // Reorder the node and its operands.
4548         TE->reorderOperands(Mask);
4549         assert(TE->ReorderIndices.empty() &&
4550                "Expected empty reorder sequence.");
4551         reorderScalars(TE->Scalars, Mask);
4552       }
4553       if (!TE->ReuseShuffleIndices.empty()) {
4554         // Apply reversed order to keep the original ordering of the reused
4555         // elements to avoid extra reorder indices shuffling.
4556         OrdersType CurrentOrder;
4557         reorderOrder(CurrentOrder, MaskOrder);
4558         SmallVector<int> NewReuses;
4559         inversePermutation(CurrentOrder, NewReuses);
4560         addMask(NewReuses, TE->ReuseShuffleIndices);
4561         TE->ReuseShuffleIndices.swap(NewReuses);
4562       }
4563     }
4564   }
4565 }
4566 
4567 bool BoUpSLP::canReorderOperands(
4568     TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
4569     ArrayRef<TreeEntry *> ReorderableGathers,
4570     SmallVectorImpl<TreeEntry *> &GatherOps) {
4571   for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
4572     if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
4573           return OpData.first == I &&
4574                  OpData.second->State == TreeEntry::Vectorize;
4575         }))
4576       continue;
4577     if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
4578       // FIXME: Do not reorder (possible!) strided vectorized nodes, they
4579       // require reordering of the operands, which is not implemented yet.
4580       if (TE->State == TreeEntry::PossibleStridedVectorize)
4581         return false;
4582       // Do not reorder if operand node is used by many user nodes.
4583       if (any_of(TE->UserTreeIndices,
4584                  [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
4585         return false;
4586       // Add the node to the list of the ordered nodes with the identity
4587       // order.
4588       Edges.emplace_back(I, TE);
4589       // Add ScatterVectorize nodes to the list of operands, where just
4590       // reordering of the scalars is required. Similar to the gathers, so
4591       // simply add to the list of gathered ops.
4592       // If there are reused scalars, process this node as a regular vectorize
4593       // node, just reorder reuses mask.
4594       if (TE->State != TreeEntry::Vectorize &&
4595           TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty())
4596         GatherOps.push_back(TE);
4597       continue;
4598     }
4599     TreeEntry *Gather = nullptr;
4600     if (count_if(ReorderableGathers,
4601                  [&Gather, UserTE, I](TreeEntry *TE) {
4602                    assert(TE->State != TreeEntry::Vectorize &&
4603                           "Only non-vectorized nodes are expected.");
4604                    if (any_of(TE->UserTreeIndices,
4605                               [UserTE, I](const EdgeInfo &EI) {
4606                                 return EI.UserTE == UserTE && EI.EdgeIdx == I;
4607                               })) {
4608                      assert(TE->isSame(UserTE->getOperand(I)) &&
4609                             "Operand entry does not match operands.");
4610                      Gather = TE;
4611                      return true;
4612                    }
4613                    return false;
4614                  }) > 1 &&
4615         !allConstant(UserTE->getOperand(I)))
4616       return false;
4617     if (Gather)
4618       GatherOps.push_back(Gather);
4619   }
4620   return true;
4621 }
4622 
4623 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
4624   SetVector<TreeEntry *> OrderedEntries;
4625   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4626   // Find all reorderable leaf nodes with the given VF.
4627   // Currently the are vectorized loads,extracts without alternate operands +
4628   // some gathering of extracts.
4629   SmallVector<TreeEntry *> NonVectorized;
4630   for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
4631     if (TE->State != TreeEntry::Vectorize &&
4632         TE->State != TreeEntry::PossibleStridedVectorize)
4633       NonVectorized.push_back(TE.get());
4634     if (std::optional<OrdersType> CurrentOrder =
4635             getReorderingData(*TE, /*TopToBottom=*/false)) {
4636       OrderedEntries.insert(TE.get());
4637       if (!(TE->State == TreeEntry::Vectorize ||
4638             TE->State == TreeEntry::PossibleStridedVectorize) ||
4639           !TE->ReuseShuffleIndices.empty())
4640         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4641     }
4642   }
4643 
4644   // 1. Propagate order to the graph nodes, which use only reordered nodes.
4645   // I.e., if the node has operands, that are reordered, try to make at least
4646   // one operand order in the natural order and reorder others + reorder the
4647   // user node itself.
4648   SmallPtrSet<const TreeEntry *, 4> Visited;
4649   while (!OrderedEntries.empty()) {
4650     // 1. Filter out only reordered nodes.
4651     // 2. If the entry has multiple uses - skip it and jump to the next node.
4652     DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
4653     SmallVector<TreeEntry *> Filtered;
4654     for (TreeEntry *TE : OrderedEntries) {
4655       if (!(TE->State == TreeEntry::Vectorize ||
4656             TE->State == TreeEntry::PossibleStridedVectorize ||
4657             (TE->State == TreeEntry::NeedToGather &&
4658              GathersToOrders.count(TE))) ||
4659           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4660           !all_of(drop_begin(TE->UserTreeIndices),
4661                   [TE](const EdgeInfo &EI) {
4662                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4663                   }) ||
4664           !Visited.insert(TE).second) {
4665         Filtered.push_back(TE);
4666         continue;
4667       }
4668       // Build a map between user nodes and their operands order to speedup
4669       // search. The graph currently does not provide this dependency directly.
4670       for (EdgeInfo &EI : TE->UserTreeIndices) {
4671         TreeEntry *UserTE = EI.UserTE;
4672         auto It = Users.find(UserTE);
4673         if (It == Users.end())
4674           It = Users.insert({UserTE, {}}).first;
4675         It->second.emplace_back(EI.EdgeIdx, TE);
4676       }
4677     }
4678     // Erase filtered entries.
4679     for (TreeEntry *TE : Filtered)
4680       OrderedEntries.remove(TE);
4681     SmallVector<
4682         std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4683         UsersVec(Users.begin(), Users.end());
4684     sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4685       return Data1.first->Idx > Data2.first->Idx;
4686     });
4687     for (auto &Data : UsersVec) {
4688       // Check that operands are used only in the User node.
4689       SmallVector<TreeEntry *> GatherOps;
4690       if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4691                               GatherOps)) {
4692         for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4693           OrderedEntries.remove(Op.second);
4694         continue;
4695       }
4696       // All operands are reordered and used only in this node - propagate the
4697       // most used order to the user node.
4698       MapVector<OrdersType, unsigned,
4699                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4700           OrdersUses;
4701       // Last chance orders - scatter vectorize. Try to use their orders if no
4702       // other orders or the order is counted already.
4703       SmallVector<std::pair<OrdersType, unsigned>> StridedVectorizeOrders;
4704       // Do the analysis for each tree entry only once, otherwise the order of
4705       // the same node my be considered several times, though might be not
4706       // profitable.
4707       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4708       SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4709       for (const auto &Op : Data.second) {
4710         TreeEntry *OpTE = Op.second;
4711         if (!VisitedOps.insert(OpTE).second)
4712           continue;
4713         if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4714           continue;
4715         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4716           if (OpTE->State == TreeEntry::NeedToGather ||
4717               !OpTE->ReuseShuffleIndices.empty())
4718             return GathersToOrders.find(OpTE)->second;
4719           return OpTE->ReorderIndices;
4720         }();
4721         unsigned NumOps = count_if(
4722             Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4723               return P.second == OpTE;
4724             });
4725         // Postpone scatter orders.
4726         if (OpTE->State == TreeEntry::PossibleStridedVectorize) {
4727           StridedVectorizeOrders.emplace_back(Order, NumOps);
4728           continue;
4729         }
4730         // Stores actually store the mask, not the order, need to invert.
4731         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4732             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4733           SmallVector<int> Mask;
4734           inversePermutation(Order, Mask);
4735           unsigned E = Order.size();
4736           OrdersType CurrentOrder(E, E);
4737           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4738             return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx);
4739           });
4740           fixupOrderingIndices(CurrentOrder);
4741           OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4742               NumOps;
4743         } else {
4744           OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4745         }
4746         auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4747         const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4748                                             const TreeEntry *TE) {
4749           if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4750               (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4751               (IgnoreReorder && TE->Idx == 0))
4752             return true;
4753           if (TE->State == TreeEntry::NeedToGather) {
4754             auto It = GathersToOrders.find(TE);
4755             if (It != GathersToOrders.end())
4756               return !It->second.empty();
4757             return true;
4758           }
4759           return false;
4760         };
4761         for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4762           TreeEntry *UserTE = EI.UserTE;
4763           if (!VisitedUsers.insert(UserTE).second)
4764             continue;
4765           // May reorder user node if it requires reordering, has reused
4766           // scalars, is an alternate op vectorize node or its op nodes require
4767           // reordering.
4768           if (AllowsReordering(UserTE))
4769             continue;
4770           // Check if users allow reordering.
4771           // Currently look up just 1 level of operands to avoid increase of
4772           // the compile time.
4773           // Profitable to reorder if definitely more operands allow
4774           // reordering rather than those with natural order.
4775           ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4776           if (static_cast<unsigned>(count_if(
4777                   Ops, [UserTE, &AllowsReordering](
4778                            const std::pair<unsigned, TreeEntry *> &Op) {
4779                     return AllowsReordering(Op.second) &&
4780                            all_of(Op.second->UserTreeIndices,
4781                                   [UserTE](const EdgeInfo &EI) {
4782                                     return EI.UserTE == UserTE;
4783                                   });
4784                   })) <= Ops.size() / 2)
4785             ++Res.first->second;
4786         }
4787       }
4788       // If no orders - skip current nodes and jump to the next one, if any.
4789       if (OrdersUses.empty()) {
4790         if (StridedVectorizeOrders.empty() ||
4791             (Data.first->ReorderIndices.empty() &&
4792              Data.first->ReuseShuffleIndices.empty() &&
4793              !(IgnoreReorder &&
4794                Data.first == VectorizableTree.front().get()))) {
4795           for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4796             OrderedEntries.remove(Op.second);
4797           continue;
4798         }
4799         // Add (potentially!) strided vectorize orders.
4800         for (std::pair<OrdersType, unsigned> &Pair : StridedVectorizeOrders)
4801           OrdersUses.insert(std::make_pair(Pair.first, 0)).first->second +=
4802               Pair.second;
4803       } else {
4804         // Account (potentially!) strided vectorize orders only if it was used
4805         // already.
4806         for (std::pair<OrdersType, unsigned> &Pair : StridedVectorizeOrders) {
4807           auto *It = OrdersUses.find(Pair.first);
4808           if (It != OrdersUses.end())
4809             It->second += Pair.second;
4810         }
4811       }
4812       // Choose the best order.
4813       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4814       unsigned Cnt = OrdersUses.front().second;
4815       for (const auto &Pair : drop_begin(OrdersUses)) {
4816         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4817           BestOrder = Pair.first;
4818           Cnt = Pair.second;
4819         }
4820       }
4821       // Set order of the user node (reordering of operands and user nodes).
4822       if (BestOrder.empty()) {
4823         for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4824           OrderedEntries.remove(Op.second);
4825         continue;
4826       }
4827       // Erase operands from OrderedEntries list and adjust their orders.
4828       VisitedOps.clear();
4829       SmallVector<int> Mask;
4830       inversePermutation(BestOrder, Mask);
4831       SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem);
4832       unsigned E = BestOrder.size();
4833       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4834         return I < E ? static_cast<int>(I) : PoisonMaskElem;
4835       });
4836       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4837         TreeEntry *TE = Op.second;
4838         OrderedEntries.remove(TE);
4839         if (!VisitedOps.insert(TE).second)
4840           continue;
4841         if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4842           reorderNodeWithReuses(*TE, Mask);
4843           continue;
4844         }
4845         // Gathers are processed separately.
4846         if (TE->State != TreeEntry::Vectorize &&
4847             TE->State != TreeEntry::PossibleStridedVectorize &&
4848             (TE->State != TreeEntry::ScatterVectorize ||
4849              TE->ReorderIndices.empty()))
4850           continue;
4851         assert((BestOrder.size() == TE->ReorderIndices.size() ||
4852                 TE->ReorderIndices.empty()) &&
4853                "Non-matching sizes of user/operand entries.");
4854         reorderOrder(TE->ReorderIndices, Mask);
4855         if (IgnoreReorder && TE == VectorizableTree.front().get())
4856           IgnoreReorder = false;
4857       }
4858       // For gathers just need to reorder its scalars.
4859       for (TreeEntry *Gather : GatherOps) {
4860         assert(Gather->ReorderIndices.empty() &&
4861                "Unexpected reordering of gathers.");
4862         if (!Gather->ReuseShuffleIndices.empty()) {
4863           // Just reorder reuses indices.
4864           reorderReuses(Gather->ReuseShuffleIndices, Mask);
4865           continue;
4866         }
4867         reorderScalars(Gather->Scalars, Mask);
4868         OrderedEntries.remove(Gather);
4869       }
4870       // Reorder operands of the user node and set the ordering for the user
4871       // node itself.
4872       if (Data.first->State != TreeEntry::Vectorize ||
4873           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4874               Data.first->getMainOp()) ||
4875           Data.first->isAltShuffle())
4876         Data.first->reorderOperands(Mask);
4877       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4878           Data.first->isAltShuffle() ||
4879           Data.first->State == TreeEntry::PossibleStridedVectorize) {
4880         reorderScalars(Data.first->Scalars, Mask);
4881         reorderOrder(Data.first->ReorderIndices, MaskOrder);
4882         if (Data.first->ReuseShuffleIndices.empty() &&
4883             !Data.first->ReorderIndices.empty() &&
4884             !Data.first->isAltShuffle()) {
4885           // Insert user node to the list to try to sink reordering deeper in
4886           // the graph.
4887           OrderedEntries.insert(Data.first);
4888         }
4889       } else {
4890         reorderOrder(Data.first->ReorderIndices, Mask);
4891       }
4892     }
4893   }
4894   // If the reordering is unnecessary, just remove the reorder.
4895   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4896       VectorizableTree.front()->ReuseShuffleIndices.empty())
4897     VectorizableTree.front()->ReorderIndices.clear();
4898 }
4899 
4900 void BoUpSLP::buildExternalUses(
4901     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4902   // Collect the values that we need to extract from the tree.
4903   for (auto &TEPtr : VectorizableTree) {
4904     TreeEntry *Entry = TEPtr.get();
4905 
4906     // No need to handle users of gathered values.
4907     if (Entry->State == TreeEntry::NeedToGather)
4908       continue;
4909 
4910     // For each lane:
4911     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4912       Value *Scalar = Entry->Scalars[Lane];
4913       if (!isa<Instruction>(Scalar))
4914         continue;
4915       int FoundLane = Entry->findLaneForValue(Scalar);
4916 
4917       // Check if the scalar is externally used as an extra arg.
4918       const auto *ExtI = ExternallyUsedValues.find(Scalar);
4919       if (ExtI != ExternallyUsedValues.end()) {
4920         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4921                           << Lane << " from " << *Scalar << ".\n");
4922         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4923       }
4924       for (User *U : Scalar->users()) {
4925         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4926 
4927         Instruction *UserInst = dyn_cast<Instruction>(U);
4928         if (!UserInst)
4929           continue;
4930 
4931         if (isDeleted(UserInst))
4932           continue;
4933 
4934         // Skip in-tree scalars that become vectors
4935         if (TreeEntry *UseEntry = getTreeEntry(U)) {
4936           Value *UseScalar = UseEntry->Scalars[0];
4937           // Some in-tree scalars will remain as scalar in vectorized
4938           // instructions. If that is the case, the one in Lane 0 will
4939           // be used.
4940           if (UseScalar != U ||
4941               UseEntry->State == TreeEntry::ScatterVectorize ||
4942               UseEntry->State == TreeEntry::PossibleStridedVectorize ||
4943               !doesInTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4944             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4945                               << ".\n");
4946             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4947             continue;
4948           }
4949         }
4950 
4951         // Ignore users in the user ignore list.
4952         if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4953           continue;
4954 
4955         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
4956                           << Lane << " from " << *Scalar << ".\n");
4957         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4958       }
4959     }
4960   }
4961 }
4962 
4963 DenseMap<Value *, SmallVector<StoreInst *>>
4964 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4965   DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap;
4966   for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4967     Value *V = TE->Scalars[Lane];
4968     // To save compilation time we don't visit if we have too many users.
4969     static constexpr unsigned UsersLimit = 4;
4970     if (V->hasNUsesOrMore(UsersLimit))
4971       break;
4972 
4973     // Collect stores per pointer object.
4974     for (User *U : V->users()) {
4975       auto *SI = dyn_cast<StoreInst>(U);
4976       if (SI == nullptr || !SI->isSimple() ||
4977           !isValidElementType(SI->getValueOperand()->getType()))
4978         continue;
4979       // Skip entry if already
4980       if (getTreeEntry(U))
4981         continue;
4982 
4983       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4984       auto &StoresVec = PtrToStoresMap[Ptr];
4985       // For now just keep one store per pointer object per lane.
4986       // TODO: Extend this to support multiple stores per pointer per lane
4987       if (StoresVec.size() > Lane)
4988         continue;
4989       // Skip if in different BBs.
4990       if (!StoresVec.empty() &&
4991           SI->getParent() != StoresVec.back()->getParent())
4992         continue;
4993       // Make sure that the stores are of the same type.
4994       if (!StoresVec.empty() &&
4995           SI->getValueOperand()->getType() !=
4996               StoresVec.back()->getValueOperand()->getType())
4997         continue;
4998       StoresVec.push_back(SI);
4999     }
5000   }
5001   return PtrToStoresMap;
5002 }
5003 
5004 bool BoUpSLP::canFormVector(ArrayRef<StoreInst *> StoresVec,
5005                             OrdersType &ReorderIndices) const {
5006   // We check whether the stores in StoreVec can form a vector by sorting them
5007   // and checking whether they are consecutive.
5008 
5009   // To avoid calling getPointersDiff() while sorting we create a vector of
5010   // pairs {store, offset from first} and sort this instead.
5011   SmallVector<std::pair<StoreInst *, int>> StoreOffsetVec(StoresVec.size());
5012   StoreInst *S0 = StoresVec[0];
5013   StoreOffsetVec[0] = {S0, 0};
5014   Type *S0Ty = S0->getValueOperand()->getType();
5015   Value *S0Ptr = S0->getPointerOperand();
5016   for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
5017     StoreInst *SI = StoresVec[Idx];
5018     std::optional<int> Diff =
5019         getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
5020                         SI->getPointerOperand(), *DL, *SE,
5021                         /*StrictCheck=*/true);
5022     // We failed to compare the pointers so just abandon this StoresVec.
5023     if (!Diff)
5024       return false;
5025     StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
5026   }
5027 
5028   // Sort the vector based on the pointers. We create a copy because we may
5029   // need the original later for calculating the reorder (shuffle) indices.
5030   stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
5031                                  const std::pair<StoreInst *, int> &Pair2) {
5032     int Offset1 = Pair1.second;
5033     int Offset2 = Pair2.second;
5034     return Offset1 < Offset2;
5035   });
5036 
5037   // Check if the stores are consecutive by checking if their difference is 1.
5038   for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
5039     if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx - 1].second + 1)
5040       return false;
5041 
5042   // Calculate the shuffle indices according to their offset against the sorted
5043   // StoreOffsetVec.
5044   ReorderIndices.reserve(StoresVec.size());
5045   for (StoreInst *SI : StoresVec) {
5046     unsigned Idx = find_if(StoreOffsetVec,
5047                            [SI](const std::pair<StoreInst *, int> &Pair) {
5048                              return Pair.first == SI;
5049                            }) -
5050                    StoreOffsetVec.begin();
5051     ReorderIndices.push_back(Idx);
5052   }
5053   // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
5054   // reorderTopToBottom() and reorderBottomToTop(), so we are following the
5055   // same convention here.
5056   auto IsIdentityOrder = [](const OrdersType &Order) {
5057     for (unsigned Idx : seq<unsigned>(0, Order.size()))
5058       if (Idx != Order[Idx])
5059         return false;
5060     return true;
5061   };
5062   if (IsIdentityOrder(ReorderIndices))
5063     ReorderIndices.clear();
5064 
5065   return true;
5066 }
5067 
5068 #ifndef NDEBUG
5069 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
5070   for (unsigned Idx : Order)
5071     dbgs() << Idx << ", ";
5072   dbgs() << "\n";
5073 }
5074 #endif
5075 
5076 SmallVector<BoUpSLP::OrdersType, 1>
5077 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
5078   unsigned NumLanes = TE->Scalars.size();
5079 
5080   DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap =
5081       collectUserStores(TE);
5082 
5083   // Holds the reorder indices for each candidate store vector that is a user of
5084   // the current TreeEntry.
5085   SmallVector<OrdersType, 1> ExternalReorderIndices;
5086 
5087   // Now inspect the stores collected per pointer and look for vectorization
5088   // candidates. For each candidate calculate the reorder index vector and push
5089   // it into `ExternalReorderIndices`
5090   for (const auto &Pair : PtrToStoresMap) {
5091     auto &StoresVec = Pair.second;
5092     // If we have fewer than NumLanes stores, then we can't form a vector.
5093     if (StoresVec.size() != NumLanes)
5094       continue;
5095 
5096     // If the stores are not consecutive then abandon this StoresVec.
5097     OrdersType ReorderIndices;
5098     if (!canFormVector(StoresVec, ReorderIndices))
5099       continue;
5100 
5101     // We now know that the scalars in StoresVec can form a vector instruction,
5102     // so set the reorder indices.
5103     ExternalReorderIndices.push_back(ReorderIndices);
5104   }
5105   return ExternalReorderIndices;
5106 }
5107 
5108 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
5109                         const SmallDenseSet<Value *> &UserIgnoreLst) {
5110   deleteTree();
5111   UserIgnoreList = &UserIgnoreLst;
5112   if (!allSameType(Roots))
5113     return;
5114   buildTree_rec(Roots, 0, EdgeInfo());
5115 }
5116 
5117 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
5118   deleteTree();
5119   if (!allSameType(Roots))
5120     return;
5121   buildTree_rec(Roots, 0, EdgeInfo());
5122 }
5123 
5124 /// \return true if the specified list of values has only one instruction that
5125 /// requires scheduling, false otherwise.
5126 #ifndef NDEBUG
5127 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
5128   Value *NeedsScheduling = nullptr;
5129   for (Value *V : VL) {
5130     if (doesNotNeedToBeScheduled(V))
5131       continue;
5132     if (!NeedsScheduling) {
5133       NeedsScheduling = V;
5134       continue;
5135     }
5136     return false;
5137   }
5138   return NeedsScheduling;
5139 }
5140 #endif
5141 
5142 /// Generates key/subkey pair for the given value to provide effective sorting
5143 /// of the values and better detection of the vectorizable values sequences. The
5144 /// keys/subkeys can be used for better sorting of the values themselves (keys)
5145 /// and in values subgroups (subkeys).
5146 static std::pair<size_t, size_t> generateKeySubkey(
5147     Value *V, const TargetLibraryInfo *TLI,
5148     function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
5149     bool AllowAlternate) {
5150   hash_code Key = hash_value(V->getValueID() + 2);
5151   hash_code SubKey = hash_value(0);
5152   // Sort the loads by the distance between the pointers.
5153   if (auto *LI = dyn_cast<LoadInst>(V)) {
5154     Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key);
5155     if (LI->isSimple())
5156       SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
5157     else
5158       Key = SubKey = hash_value(LI);
5159   } else if (isVectorLikeInstWithConstOps(V)) {
5160     // Sort extracts by the vector operands.
5161     if (isa<ExtractElementInst, UndefValue>(V))
5162       Key = hash_value(Value::UndefValueVal + 1);
5163     if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
5164       if (!isUndefVector(EI->getVectorOperand()).all() &&
5165           !isa<UndefValue>(EI->getIndexOperand()))
5166         SubKey = hash_value(EI->getVectorOperand());
5167     }
5168   } else if (auto *I = dyn_cast<Instruction>(V)) {
5169     // Sort other instructions just by the opcodes except for CMPInst.
5170     // For CMP also sort by the predicate kind.
5171     if ((isa<BinaryOperator, CastInst>(I)) &&
5172         isValidForAlternation(I->getOpcode())) {
5173       if (AllowAlternate)
5174         Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
5175       else
5176         Key = hash_combine(hash_value(I->getOpcode()), Key);
5177       SubKey = hash_combine(
5178           hash_value(I->getOpcode()), hash_value(I->getType()),
5179           hash_value(isa<BinaryOperator>(I)
5180                          ? I->getType()
5181                          : cast<CastInst>(I)->getOperand(0)->getType()));
5182       // For casts, look through the only operand to improve compile time.
5183       if (isa<CastInst>(I)) {
5184         std::pair<size_t, size_t> OpVals =
5185             generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
5186                               /*AllowAlternate=*/true);
5187         Key = hash_combine(OpVals.first, Key);
5188         SubKey = hash_combine(OpVals.first, SubKey);
5189       }
5190     } else if (auto *CI = dyn_cast<CmpInst>(I)) {
5191       CmpInst::Predicate Pred = CI->getPredicate();
5192       if (CI->isCommutative())
5193         Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
5194       CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
5195       SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
5196                             hash_value(SwapPred),
5197                             hash_value(CI->getOperand(0)->getType()));
5198     } else if (auto *Call = dyn_cast<CallInst>(I)) {
5199       Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
5200       if (isTriviallyVectorizable(ID)) {
5201         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
5202       } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
5203         SubKey = hash_combine(hash_value(I->getOpcode()),
5204                               hash_value(Call->getCalledFunction()));
5205       } else {
5206         Key = hash_combine(hash_value(Call), Key);
5207         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
5208       }
5209       for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
5210         SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
5211                               hash_value(Op.Tag), SubKey);
5212     } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
5213       if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
5214         SubKey = hash_value(Gep->getPointerOperand());
5215       else
5216         SubKey = hash_value(Gep);
5217     } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
5218                !isa<ConstantInt>(I->getOperand(1))) {
5219       // Do not try to vectorize instructions with potentially high cost.
5220       SubKey = hash_value(I);
5221     } else {
5222       SubKey = hash_value(I->getOpcode());
5223     }
5224     Key = hash_combine(hash_value(I->getParent()), Key);
5225   }
5226   return std::make_pair(Key, SubKey);
5227 }
5228 
5229 /// Checks if the specified instruction \p I is an alternate operation for
5230 /// the given \p MainOp and \p AltOp instructions.
5231 static bool isAlternateInstruction(const Instruction *I,
5232                                    const Instruction *MainOp,
5233                                    const Instruction *AltOp,
5234                                    const TargetLibraryInfo &TLI);
5235 
5236 BoUpSLP::TreeEntry::EntryState BoUpSLP::getScalarsVectorizationState(
5237     InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE,
5238     OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps) const {
5239   assert(S.MainOp && "Expected instructions with same/alternate opcodes only.");
5240 
5241   unsigned ShuffleOrOp =
5242       S.isAltShuffle() ? (unsigned)Instruction::ShuffleVector : S.getOpcode();
5243   auto *VL0 = cast<Instruction>(S.OpValue);
5244   switch (ShuffleOrOp) {
5245   case Instruction::PHI: {
5246     // Check for terminator values (e.g. invoke).
5247     for (Value *V : VL)
5248       for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
5249         Instruction *Term = dyn_cast<Instruction>(Incoming);
5250         if (Term && Term->isTerminator()) {
5251           LLVM_DEBUG(dbgs()
5252                      << "SLP: Need to swizzle PHINodes (terminator use).\n");
5253           return TreeEntry::NeedToGather;
5254         }
5255       }
5256 
5257     return TreeEntry::Vectorize;
5258   }
5259   case Instruction::ExtractValue:
5260   case Instruction::ExtractElement: {
5261     bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
5262     if (Reuse || !CurrentOrder.empty())
5263       return TreeEntry::Vectorize;
5264     LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
5265     return TreeEntry::NeedToGather;
5266   }
5267   case Instruction::InsertElement: {
5268     // Check that we have a buildvector and not a shuffle of 2 or more
5269     // different vectors.
5270     ValueSet SourceVectors;
5271     for (Value *V : VL) {
5272       SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
5273       assert(getInsertIndex(V) != std::nullopt &&
5274              "Non-constant or undef index?");
5275     }
5276 
5277     if (count_if(VL, [&SourceVectors](Value *V) {
5278           return !SourceVectors.contains(V);
5279         }) >= 2) {
5280       // Found 2nd source vector - cancel.
5281       LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
5282                            "different source vectors.\n");
5283       return TreeEntry::NeedToGather;
5284     }
5285 
5286     return TreeEntry::Vectorize;
5287   }
5288   case Instruction::Load: {
5289     // Check that a vectorized load would load the same memory as a scalar
5290     // load. For example, we don't want to vectorize loads that are smaller
5291     // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
5292     // treats loading/storing it as an i8 struct. If we vectorize loads/stores
5293     // from such a struct, we read/write packed bits disagreeing with the
5294     // unvectorized version.
5295     switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI, CurrentOrder,
5296                               PointerOps)) {
5297     case LoadsState::Vectorize:
5298       return TreeEntry::Vectorize;
5299     case LoadsState::ScatterVectorize:
5300       return TreeEntry::ScatterVectorize;
5301     case LoadsState::PossibleStridedVectorize:
5302       return TreeEntry::PossibleStridedVectorize;
5303     case LoadsState::Gather:
5304 #ifndef NDEBUG
5305       Type *ScalarTy = VL0->getType();
5306       if (DL->getTypeSizeInBits(ScalarTy) !=
5307           DL->getTypeAllocSizeInBits(ScalarTy))
5308         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
5309       else if (any_of(VL,
5310                       [](Value *V) { return !cast<LoadInst>(V)->isSimple(); }))
5311         LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
5312       else
5313         LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
5314 #endif // NDEBUG
5315       return TreeEntry::NeedToGather;
5316     }
5317     llvm_unreachable("Unexpected state of loads");
5318   }
5319   case Instruction::ZExt:
5320   case Instruction::SExt:
5321   case Instruction::FPToUI:
5322   case Instruction::FPToSI:
5323   case Instruction::FPExt:
5324   case Instruction::PtrToInt:
5325   case Instruction::IntToPtr:
5326   case Instruction::SIToFP:
5327   case Instruction::UIToFP:
5328   case Instruction::Trunc:
5329   case Instruction::FPTrunc:
5330   case Instruction::BitCast: {
5331     Type *SrcTy = VL0->getOperand(0)->getType();
5332     for (Value *V : VL) {
5333       Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5334       if (Ty != SrcTy || !isValidElementType(Ty)) {
5335         LLVM_DEBUG(
5336             dbgs() << "SLP: Gathering casts with different src types.\n");
5337         return TreeEntry::NeedToGather;
5338       }
5339     }
5340     return TreeEntry::Vectorize;
5341   }
5342   case Instruction::ICmp:
5343   case Instruction::FCmp: {
5344     // Check that all of the compares have the same predicate.
5345     CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5346     CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5347     Type *ComparedTy = VL0->getOperand(0)->getType();
5348     for (Value *V : VL) {
5349       CmpInst *Cmp = cast<CmpInst>(V);
5350       if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5351           Cmp->getOperand(0)->getType() != ComparedTy) {
5352         LLVM_DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
5353         return TreeEntry::NeedToGather;
5354       }
5355     }
5356     return TreeEntry::Vectorize;
5357   }
5358   case Instruction::Select:
5359   case Instruction::FNeg:
5360   case Instruction::Add:
5361   case Instruction::FAdd:
5362   case Instruction::Sub:
5363   case Instruction::FSub:
5364   case Instruction::Mul:
5365   case Instruction::FMul:
5366   case Instruction::UDiv:
5367   case Instruction::SDiv:
5368   case Instruction::FDiv:
5369   case Instruction::URem:
5370   case Instruction::SRem:
5371   case Instruction::FRem:
5372   case Instruction::Shl:
5373   case Instruction::LShr:
5374   case Instruction::AShr:
5375   case Instruction::And:
5376   case Instruction::Or:
5377   case Instruction::Xor:
5378     return TreeEntry::Vectorize;
5379   case Instruction::GetElementPtr: {
5380     // We don't combine GEPs with complicated (nested) indexing.
5381     for (Value *V : VL) {
5382       auto *I = dyn_cast<GetElementPtrInst>(V);
5383       if (!I)
5384         continue;
5385       if (I->getNumOperands() != 2) {
5386         LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5387         return TreeEntry::NeedToGather;
5388       }
5389     }
5390 
5391     // We can't combine several GEPs into one vector if they operate on
5392     // different types.
5393     Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5394     for (Value *V : VL) {
5395       auto *GEP = dyn_cast<GEPOperator>(V);
5396       if (!GEP)
5397         continue;
5398       Type *CurTy = GEP->getSourceElementType();
5399       if (Ty0 != CurTy) {
5400         LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
5401         return TreeEntry::NeedToGather;
5402       }
5403     }
5404 
5405     // We don't combine GEPs with non-constant indexes.
5406     Type *Ty1 = VL0->getOperand(1)->getType();
5407     for (Value *V : VL) {
5408       auto *I = dyn_cast<GetElementPtrInst>(V);
5409       if (!I)
5410         continue;
5411       auto *Op = I->getOperand(1);
5412       if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5413           (Op->getType() != Ty1 &&
5414            ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5415             Op->getType()->getScalarSizeInBits() >
5416                 DL->getIndexSizeInBits(
5417                     V->getType()->getPointerAddressSpace())))) {
5418         LLVM_DEBUG(
5419             dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5420         return TreeEntry::NeedToGather;
5421       }
5422     }
5423 
5424     return TreeEntry::Vectorize;
5425   }
5426   case Instruction::Store: {
5427     // Check if the stores are consecutive or if we need to swizzle them.
5428     llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5429     // Avoid types that are padded when being allocated as scalars, while
5430     // being packed together in a vector (such as i1).
5431     if (DL->getTypeSizeInBits(ScalarTy) !=
5432         DL->getTypeAllocSizeInBits(ScalarTy)) {
5433       LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5434       return TreeEntry::NeedToGather;
5435     }
5436     // Make sure all stores in the bundle are simple - we can't vectorize
5437     // atomic or volatile stores.
5438     for (Value *V : VL) {
5439       auto *SI = cast<StoreInst>(V);
5440       if (!SI->isSimple()) {
5441         LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5442         return TreeEntry::NeedToGather;
5443       }
5444       PointerOps.push_back(SI->getPointerOperand());
5445     }
5446 
5447     // Check the order of pointer operands.
5448     if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5449       Value *Ptr0;
5450       Value *PtrN;
5451       if (CurrentOrder.empty()) {
5452         Ptr0 = PointerOps.front();
5453         PtrN = PointerOps.back();
5454       } else {
5455         Ptr0 = PointerOps[CurrentOrder.front()];
5456         PtrN = PointerOps[CurrentOrder.back()];
5457       }
5458       std::optional<int> Dist =
5459           getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5460       // Check that the sorted pointer operands are consecutive.
5461       if (static_cast<unsigned>(*Dist) == VL.size() - 1)
5462         return TreeEntry::Vectorize;
5463     }
5464 
5465     LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5466     return TreeEntry::NeedToGather;
5467   }
5468   case Instruction::Call: {
5469     // Check if the calls are all to the same vectorizable intrinsic or
5470     // library function.
5471     CallInst *CI = cast<CallInst>(VL0);
5472     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5473 
5474     VFShape Shape = VFShape::get(
5475         CI->getFunctionType(),
5476         ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5477         false /*HasGlobalPred*/);
5478     Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5479 
5480     if (!VecFunc && !isTriviallyVectorizable(ID)) {
5481       LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5482       return TreeEntry::NeedToGather;
5483     }
5484     Function *F = CI->getCalledFunction();
5485     unsigned NumArgs = CI->arg_size();
5486     SmallVector<Value *, 4> ScalarArgs(NumArgs, nullptr);
5487     for (unsigned J = 0; J != NumArgs; ++J)
5488       if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
5489         ScalarArgs[J] = CI->getArgOperand(J);
5490     for (Value *V : VL) {
5491       CallInst *CI2 = dyn_cast<CallInst>(V);
5492       if (!CI2 || CI2->getCalledFunction() != F ||
5493           getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5494           (VecFunc &&
5495            VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5496           !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5497         LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5498                           << "\n");
5499         return TreeEntry::NeedToGather;
5500       }
5501       // Some intrinsics have scalar arguments and should be same in order for
5502       // them to be vectorized.
5503       for (unsigned J = 0; J != NumArgs; ++J) {
5504         if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) {
5505           Value *A1J = CI2->getArgOperand(J);
5506           if (ScalarArgs[J] != A1J) {
5507             LLVM_DEBUG(dbgs()
5508                        << "SLP: mismatched arguments in call:" << *CI
5509                        << " argument " << ScalarArgs[J] << "!=" << A1J << "\n");
5510             return TreeEntry::NeedToGather;
5511           }
5512         }
5513       }
5514       // Verify that the bundle operands are identical between the two calls.
5515       if (CI->hasOperandBundles() &&
5516           !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5517                       CI->op_begin() + CI->getBundleOperandsEndIndex(),
5518                       CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5519         LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI
5520                           << "!=" << *V << '\n');
5521         return TreeEntry::NeedToGather;
5522       }
5523     }
5524 
5525     return TreeEntry::Vectorize;
5526   }
5527   case Instruction::ShuffleVector: {
5528     // If this is not an alternate sequence of opcode like add-sub
5529     // then do not vectorize this instruction.
5530     if (!S.isAltShuffle()) {
5531       LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5532       return TreeEntry::NeedToGather;
5533     }
5534     return TreeEntry::Vectorize;
5535   }
5536   default:
5537     LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5538     return TreeEntry::NeedToGather;
5539   }
5540 }
5541 
5542 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
5543                             const EdgeInfo &UserTreeIdx) {
5544   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
5545 
5546   SmallVector<int> ReuseShuffleIndicies;
5547   SmallVector<Value *> UniqueValues;
5548   SmallVector<Value *> NonUniqueValueVL;
5549   auto TryToFindDuplicates = [&](const InstructionsState &S,
5550                                  bool DoNotFail = false) {
5551     // Check that every instruction appears once in this bundle.
5552     DenseMap<Value *, unsigned> UniquePositions(VL.size());
5553     for (Value *V : VL) {
5554       if (isConstant(V)) {
5555         ReuseShuffleIndicies.emplace_back(
5556             isa<UndefValue>(V) ? PoisonMaskElem : UniqueValues.size());
5557         UniqueValues.emplace_back(V);
5558         continue;
5559       }
5560       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5561       ReuseShuffleIndicies.emplace_back(Res.first->second);
5562       if (Res.second)
5563         UniqueValues.emplace_back(V);
5564     }
5565     size_t NumUniqueScalarValues = UniqueValues.size();
5566     if (NumUniqueScalarValues == VL.size()) {
5567       ReuseShuffleIndicies.clear();
5568     } else {
5569       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
5570       if (NumUniqueScalarValues <= 1 ||
5571           (UniquePositions.size() == 1 && all_of(UniqueValues,
5572                                                  [](Value *V) {
5573                                                    return isa<UndefValue>(V) ||
5574                                                           !isConstant(V);
5575                                                  })) ||
5576           !llvm::has_single_bit<uint32_t>(NumUniqueScalarValues)) {
5577         if (DoNotFail && UniquePositions.size() > 1 &&
5578             NumUniqueScalarValues > 1 && S.MainOp->isSafeToRemove() &&
5579             all_of(UniqueValues, [=](Value *V) {
5580               return isa<ExtractElementInst>(V) ||
5581                      areAllUsersVectorized(cast<Instruction>(V),
5582                                            UserIgnoreList);
5583             })) {
5584           unsigned PWSz = PowerOf2Ceil(UniqueValues.size());
5585           if (PWSz == VL.size()) {
5586             ReuseShuffleIndicies.clear();
5587           } else {
5588             NonUniqueValueVL.assign(UniqueValues.begin(), UniqueValues.end());
5589             NonUniqueValueVL.append(PWSz - UniqueValues.size(),
5590                                     UniqueValues.back());
5591             VL = NonUniqueValueVL;
5592           }
5593           return true;
5594         }
5595         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
5596         newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5597         return false;
5598       }
5599       VL = UniqueValues;
5600     }
5601     return true;
5602   };
5603 
5604   InstructionsState S = getSameOpcode(VL, *TLI);
5605 
5606   // Don't vectorize ephemeral values.
5607   if (!EphValues.empty()) {
5608     for (Value *V : VL) {
5609       if (EphValues.count(V)) {
5610         LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
5611                           << ") is ephemeral.\n");
5612         newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5613         return;
5614       }
5615     }
5616   }
5617 
5618   // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of
5619   // a load), in which case peek through to include it in the tree, without
5620   // ballooning over-budget.
5621   if (Depth >= RecursionMaxDepth &&
5622       !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp &&
5623         VL.size() >= 4 &&
5624         (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) {
5625            return match(I,
5626                         m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) &&
5627                   cast<Instruction>(I)->getOpcode() ==
5628                       cast<Instruction>(S.MainOp)->getOpcode();
5629          })))) {
5630     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
5631     if (TryToFindDuplicates(S))
5632       newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5633                    ReuseShuffleIndicies);
5634     return;
5635   }
5636 
5637   // Don't handle scalable vectors
5638   if (S.getOpcode() == Instruction::ExtractElement &&
5639       isa<ScalableVectorType>(
5640           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
5641     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
5642     if (TryToFindDuplicates(S))
5643       newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5644                    ReuseShuffleIndicies);
5645     return;
5646   }
5647 
5648   // Don't handle vectors.
5649   if (S.OpValue->getType()->isVectorTy() &&
5650       !isa<InsertElementInst>(S.OpValue)) {
5651     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
5652     newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5653     return;
5654   }
5655 
5656   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
5657     if (SI->getValueOperand()->getType()->isVectorTy()) {
5658       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
5659       newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5660       return;
5661     }
5662 
5663   // If all of the operands are identical or constant we have a simple solution.
5664   // If we deal with insert/extract instructions, they all must have constant
5665   // indices, otherwise we should gather them, not try to vectorize.
5666   // If alternate op node with 2 elements with gathered operands - do not
5667   // vectorize.
5668   auto &&NotProfitableForVectorization = [&S, this,
5669                                           Depth](ArrayRef<Value *> VL) {
5670     if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
5671       return false;
5672     if (VectorizableTree.size() < MinTreeSize)
5673       return false;
5674     if (Depth >= RecursionMaxDepth - 1)
5675       return true;
5676     // Check if all operands are extracts, part of vector node or can build a
5677     // regular vectorize node.
5678     SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
5679     for (Value *V : VL) {
5680       auto *I = cast<Instruction>(V);
5681       InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
5682         return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
5683       }));
5684     }
5685     bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
5686     if ((IsCommutative &&
5687          std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
5688         (!IsCommutative &&
5689          all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
5690       return true;
5691     assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
5692     SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
5693     auto *I1 = cast<Instruction>(VL.front());
5694     auto *I2 = cast<Instruction>(VL.back());
5695     for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5696       Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5697                                              I2->getOperand(Op));
5698     if (static_cast<unsigned>(count_if(
5699             Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5700               return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5701             })) >= S.MainOp->getNumOperands() / 2)
5702       return false;
5703     if (S.MainOp->getNumOperands() > 2)
5704       return true;
5705     if (IsCommutative) {
5706       // Check permuted operands.
5707       Candidates.clear();
5708       for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5709         Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5710                                                I2->getOperand((Op + 1) % E));
5711       if (any_of(
5712               Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5713                 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5714               }))
5715         return false;
5716     }
5717     return true;
5718   };
5719   SmallVector<unsigned> SortedIndices;
5720   BasicBlock *BB = nullptr;
5721   bool IsScatterVectorizeUserTE =
5722       UserTreeIdx.UserTE &&
5723       (UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize ||
5724        UserTreeIdx.UserTE->State == TreeEntry::PossibleStridedVectorize);
5725   bool AreAllSameInsts =
5726       (S.getOpcode() && allSameBlock(VL)) ||
5727       (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE &&
5728        VL.size() > 2 &&
5729        all_of(VL,
5730               [&BB](Value *V) {
5731                 auto *I = dyn_cast<GetElementPtrInst>(V);
5732                 if (!I)
5733                   return doesNotNeedToBeScheduled(V);
5734                 if (!BB)
5735                   BB = I->getParent();
5736                 return BB == I->getParent() && I->getNumOperands() == 2;
5737               }) &&
5738        BB &&
5739        sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
5740                        SortedIndices));
5741   if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) ||
5742       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
5743            S.OpValue) &&
5744        !all_of(VL, isVectorLikeInstWithConstOps)) ||
5745       NotProfitableForVectorization(VL)) {
5746     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
5747     if (TryToFindDuplicates(S))
5748       newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5749                    ReuseShuffleIndicies);
5750     return;
5751   }
5752 
5753   // We now know that this is a vector of instructions of the same type from
5754   // the same block.
5755 
5756   // Check if this is a duplicate of another entry.
5757   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
5758     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
5759     if (!E->isSame(VL)) {
5760       auto It = MultiNodeScalars.find(S.OpValue);
5761       if (It != MultiNodeScalars.end()) {
5762         auto *TEIt = find_if(It->getSecond(),
5763                              [&](TreeEntry *ME) { return ME->isSame(VL); });
5764         if (TEIt != It->getSecond().end())
5765           E = *TEIt;
5766         else
5767           E = nullptr;
5768       } else {
5769         E = nullptr;
5770       }
5771     }
5772     if (!E) {
5773       if (!doesNotNeedToBeScheduled(S.OpValue)) {
5774         LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
5775         if (TryToFindDuplicates(S))
5776           newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5777                        ReuseShuffleIndicies);
5778         return;
5779       }
5780     } else {
5781       // Record the reuse of the tree node.  FIXME, currently this is only used
5782       // to properly draw the graph rather than for the actual vectorization.
5783       E->UserTreeIndices.push_back(UserTreeIdx);
5784       LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
5785                         << ".\n");
5786       return;
5787     }
5788   }
5789 
5790   // Check that none of the instructions in the bundle are already in the tree.
5791   for (Value *V : VL) {
5792     if ((!IsScatterVectorizeUserTE && !isa<Instruction>(V)) ||
5793         doesNotNeedToBeScheduled(V))
5794       continue;
5795     if (getTreeEntry(V)) {
5796       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
5797                         << ") is already in tree.\n");
5798       if (TryToFindDuplicates(S))
5799         newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5800                      ReuseShuffleIndicies);
5801       return;
5802     }
5803   }
5804 
5805   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
5806   if (UserIgnoreList && !UserIgnoreList->empty()) {
5807     for (Value *V : VL) {
5808       if (UserIgnoreList && UserIgnoreList->contains(V)) {
5809         LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
5810         if (TryToFindDuplicates(S))
5811           newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5812                        ReuseShuffleIndicies);
5813         return;
5814       }
5815     }
5816   }
5817 
5818   // Special processing for sorted pointers for ScatterVectorize node with
5819   // constant indeces only.
5820   if (AreAllSameInsts && UserTreeIdx.UserTE &&
5821       (UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize ||
5822        UserTreeIdx.UserTE->State == TreeEntry::PossibleStridedVectorize) &&
5823       !(S.getOpcode() && allSameBlock(VL))) {
5824     assert(S.OpValue->getType()->isPointerTy() &&
5825            count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
5826                2 &&
5827            "Expected pointers only.");
5828     // Reset S to make it GetElementPtr kind of node.
5829     const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
5830     assert(It != VL.end() && "Expected at least one GEP.");
5831     S = getSameOpcode(*It, *TLI);
5832   }
5833 
5834   // Check that all of the users of the scalars that we want to vectorize are
5835   // schedulable.
5836   auto *VL0 = cast<Instruction>(S.OpValue);
5837   BB = VL0->getParent();
5838 
5839   if (!DT->isReachableFromEntry(BB)) {
5840     // Don't go into unreachable blocks. They may contain instructions with
5841     // dependency cycles which confuse the final scheduling.
5842     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
5843     newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5844     return;
5845   }
5846 
5847   // Don't go into catchswitch blocks, which can happen with PHIs.
5848   // Such blocks can only have PHIs and the catchswitch.  There is no
5849   // place to insert a shuffle if we need to, so just avoid that issue.
5850   if (isa<CatchSwitchInst>(BB->getTerminator())) {
5851     LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n");
5852     newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5853     return;
5854   }
5855 
5856   // Check that every instruction appears once in this bundle.
5857   if (!TryToFindDuplicates(S, /*DoNotFail=*/true))
5858     return;
5859 
5860   // Perform specific checks for each particular instruction kind.
5861   OrdersType CurrentOrder;
5862   SmallVector<Value *> PointerOps;
5863   TreeEntry::EntryState State = getScalarsVectorizationState(
5864       S, VL, IsScatterVectorizeUserTE, CurrentOrder, PointerOps);
5865   if (State == TreeEntry::NeedToGather) {
5866     newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5867                  ReuseShuffleIndicies);
5868     return;
5869   }
5870 
5871   auto &BSRef = BlocksSchedules[BB];
5872   if (!BSRef)
5873     BSRef = std::make_unique<BlockScheduling>(BB);
5874 
5875   BlockScheduling &BS = *BSRef;
5876 
5877   std::optional<ScheduleData *> Bundle =
5878       BS.tryScheduleBundle(UniqueValues, this, S);
5879 #ifdef EXPENSIVE_CHECKS
5880   // Make sure we didn't break any internal invariants
5881   BS.verify();
5882 #endif
5883   if (!Bundle) {
5884     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
5885     assert((!BS.getScheduleData(VL0) ||
5886             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
5887            "tryScheduleBundle should cancelScheduling on failure");
5888     newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5889                  ReuseShuffleIndicies);
5890     return;
5891   }
5892   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
5893 
5894   unsigned ShuffleOrOp = S.isAltShuffle() ?
5895                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
5896   switch (ShuffleOrOp) {
5897     case Instruction::PHI: {
5898       auto *PH = cast<PHINode>(VL0);
5899 
5900       TreeEntry *TE =
5901           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
5902       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
5903 
5904       // Keeps the reordered operands to avoid code duplication.
5905       SmallVector<ValueList, 2> OperandsVec;
5906       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
5907         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
5908           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
5909           TE->setOperand(I, Operands);
5910           OperandsVec.push_back(Operands);
5911           continue;
5912         }
5913         ValueList Operands;
5914         // Prepare the operand vector.
5915         for (Value *V : VL)
5916           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
5917               PH->getIncomingBlock(I)));
5918         TE->setOperand(I, Operands);
5919         OperandsVec.push_back(Operands);
5920       }
5921       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
5922         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
5923       return;
5924     }
5925     case Instruction::ExtractValue:
5926     case Instruction::ExtractElement: {
5927       if (CurrentOrder.empty()) {
5928         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
5929         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5930                      ReuseShuffleIndicies);
5931         // This is a special case, as it does not gather, but at the same time
5932         // we are not extending buildTree_rec() towards the operands.
5933         ValueList Op0;
5934         Op0.assign(VL.size(), VL0->getOperand(0));
5935         VectorizableTree.back()->setOperand(0, Op0);
5936         return;
5937       }
5938       LLVM_DEBUG({
5939         dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
5940                   "with order";
5941         for (unsigned Idx : CurrentOrder)
5942           dbgs() << " " << Idx;
5943         dbgs() << "\n";
5944       });
5945       fixupOrderingIndices(CurrentOrder);
5946       // Insert new order with initial value 0, if it does not exist,
5947       // otherwise return the iterator to the existing one.
5948       newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5949                    ReuseShuffleIndicies, CurrentOrder);
5950       // This is a special case, as it does not gather, but at the same time
5951       // we are not extending buildTree_rec() towards the operands.
5952       ValueList Op0;
5953       Op0.assign(VL.size(), VL0->getOperand(0));
5954       VectorizableTree.back()->setOperand(0, Op0);
5955       return;
5956     }
5957     case Instruction::InsertElement: {
5958       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
5959 
5960       auto OrdCompare = [](const std::pair<int, int> &P1,
5961                            const std::pair<int, int> &P2) {
5962         return P1.first > P2.first;
5963       };
5964       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
5965                     decltype(OrdCompare)>
5966           Indices(OrdCompare);
5967       for (int I = 0, E = VL.size(); I < E; ++I) {
5968         unsigned Idx = *getInsertIndex(VL[I]);
5969         Indices.emplace(Idx, I);
5970       }
5971       OrdersType CurrentOrder(VL.size(), VL.size());
5972       bool IsIdentity = true;
5973       for (int I = 0, E = VL.size(); I < E; ++I) {
5974         CurrentOrder[Indices.top().second] = I;
5975         IsIdentity &= Indices.top().second == I;
5976         Indices.pop();
5977       }
5978       if (IsIdentity)
5979         CurrentOrder.clear();
5980       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5981                                    std::nullopt, CurrentOrder);
5982       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
5983 
5984       constexpr int NumOps = 2;
5985       ValueList VectorOperands[NumOps];
5986       for (int I = 0; I < NumOps; ++I) {
5987         for (Value *V : VL)
5988           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
5989 
5990         TE->setOperand(I, VectorOperands[I]);
5991       }
5992       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
5993       return;
5994     }
5995     case Instruction::Load: {
5996       // Check that a vectorized load would load the same memory as a scalar
5997       // load. For example, we don't want to vectorize loads that are smaller
5998       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
5999       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
6000       // from such a struct, we read/write packed bits disagreeing with the
6001       // unvectorized version.
6002       TreeEntry *TE = nullptr;
6003       fixupOrderingIndices(CurrentOrder);
6004       switch (State) {
6005       case TreeEntry::Vectorize:
6006         if (CurrentOrder.empty()) {
6007           // Original loads are consecutive and does not require reordering.
6008           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6009                             ReuseShuffleIndicies);
6010           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
6011         } else {
6012           // Need to reorder.
6013           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6014                             ReuseShuffleIndicies, CurrentOrder);
6015           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
6016         }
6017         TE->setOperandsInOrder();
6018         break;
6019       case TreeEntry::PossibleStridedVectorize:
6020         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
6021         if (CurrentOrder.empty()) {
6022           TE = newTreeEntry(VL, TreeEntry::PossibleStridedVectorize, Bundle, S,
6023                             UserTreeIdx, ReuseShuffleIndicies);
6024         } else {
6025           TE = newTreeEntry(VL, TreeEntry::PossibleStridedVectorize, Bundle, S,
6026                             UserTreeIdx, ReuseShuffleIndicies, CurrentOrder);
6027         }
6028         TE->setOperandsInOrder();
6029         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
6030         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
6031         break;
6032       case TreeEntry::ScatterVectorize:
6033         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
6034         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
6035                           UserTreeIdx, ReuseShuffleIndicies);
6036         TE->setOperandsInOrder();
6037         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
6038         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
6039         break;
6040       case TreeEntry::NeedToGather:
6041         llvm_unreachable("Unexpected loads state.");
6042       }
6043       return;
6044     }
6045     case Instruction::ZExt:
6046     case Instruction::SExt:
6047     case Instruction::FPToUI:
6048     case Instruction::FPToSI:
6049     case Instruction::FPExt:
6050     case Instruction::PtrToInt:
6051     case Instruction::IntToPtr:
6052     case Instruction::SIToFP:
6053     case Instruction::UIToFP:
6054     case Instruction::Trunc:
6055     case Instruction::FPTrunc:
6056     case Instruction::BitCast: {
6057       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6058                                    ReuseShuffleIndicies);
6059       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
6060 
6061       TE->setOperandsInOrder();
6062       for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6063         ValueList Operands;
6064         // Prepare the operand vector.
6065         for (Value *V : VL)
6066           Operands.push_back(cast<Instruction>(V)->getOperand(I));
6067 
6068         buildTree_rec(Operands, Depth + 1, {TE, I});
6069       }
6070       return;
6071     }
6072     case Instruction::ICmp:
6073     case Instruction::FCmp: {
6074       // Check that all of the compares have the same predicate.
6075       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6076       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6077                                    ReuseShuffleIndicies);
6078       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
6079 
6080       ValueList Left, Right;
6081       if (cast<CmpInst>(VL0)->isCommutative()) {
6082         // Commutative predicate - collect + sort operands of the instructions
6083         // so that each side is more likely to have the same opcode.
6084         assert(P0 == CmpInst::getSwappedPredicate(P0) &&
6085                "Commutative Predicate mismatch");
6086         reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
6087       } else {
6088         // Collect operands - commute if it uses the swapped predicate.
6089         for (Value *V : VL) {
6090           auto *Cmp = cast<CmpInst>(V);
6091           Value *LHS = Cmp->getOperand(0);
6092           Value *RHS = Cmp->getOperand(1);
6093           if (Cmp->getPredicate() != P0)
6094             std::swap(LHS, RHS);
6095           Left.push_back(LHS);
6096           Right.push_back(RHS);
6097         }
6098       }
6099       TE->setOperand(0, Left);
6100       TE->setOperand(1, Right);
6101       buildTree_rec(Left, Depth + 1, {TE, 0});
6102       buildTree_rec(Right, Depth + 1, {TE, 1});
6103       return;
6104     }
6105     case Instruction::Select:
6106     case Instruction::FNeg:
6107     case Instruction::Add:
6108     case Instruction::FAdd:
6109     case Instruction::Sub:
6110     case Instruction::FSub:
6111     case Instruction::Mul:
6112     case Instruction::FMul:
6113     case Instruction::UDiv:
6114     case Instruction::SDiv:
6115     case Instruction::FDiv:
6116     case Instruction::URem:
6117     case Instruction::SRem:
6118     case Instruction::FRem:
6119     case Instruction::Shl:
6120     case Instruction::LShr:
6121     case Instruction::AShr:
6122     case Instruction::And:
6123     case Instruction::Or:
6124     case Instruction::Xor: {
6125       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6126                                    ReuseShuffleIndicies);
6127       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
6128 
6129       // Sort operands of the instructions so that each side is more likely to
6130       // have the same opcode.
6131       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
6132         ValueList Left, Right;
6133         reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
6134         TE->setOperand(0, Left);
6135         TE->setOperand(1, Right);
6136         buildTree_rec(Left, Depth + 1, {TE, 0});
6137         buildTree_rec(Right, Depth + 1, {TE, 1});
6138         return;
6139       }
6140 
6141       TE->setOperandsInOrder();
6142       for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6143         ValueList Operands;
6144         // Prepare the operand vector.
6145         for (Value *V : VL)
6146           Operands.push_back(cast<Instruction>(V)->getOperand(I));
6147 
6148         buildTree_rec(Operands, Depth + 1, {TE, I});
6149       }
6150       return;
6151     }
6152     case Instruction::GetElementPtr: {
6153       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6154                                    ReuseShuffleIndicies);
6155       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
6156       SmallVector<ValueList, 2> Operands(2);
6157       // Prepare the operand vector for pointer operands.
6158       for (Value *V : VL) {
6159         auto *GEP = dyn_cast<GetElementPtrInst>(V);
6160         if (!GEP) {
6161           Operands.front().push_back(V);
6162           continue;
6163         }
6164         Operands.front().push_back(GEP->getPointerOperand());
6165       }
6166       TE->setOperand(0, Operands.front());
6167       // Need to cast all indices to the same type before vectorization to
6168       // avoid crash.
6169       // Required to be able to find correct matches between different gather
6170       // nodes and reuse the vectorized values rather than trying to gather them
6171       // again.
6172       int IndexIdx = 1;
6173       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
6174       Type *Ty = all_of(VL,
6175                         [VL0Ty, IndexIdx](Value *V) {
6176                           auto *GEP = dyn_cast<GetElementPtrInst>(V);
6177                           if (!GEP)
6178                             return true;
6179                           return VL0Ty == GEP->getOperand(IndexIdx)->getType();
6180                         })
6181                      ? VL0Ty
6182                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
6183                                             ->getPointerOperandType()
6184                                             ->getScalarType());
6185       // Prepare the operand vector.
6186       for (Value *V : VL) {
6187         auto *I = dyn_cast<GetElementPtrInst>(V);
6188         if (!I) {
6189           Operands.back().push_back(
6190               ConstantInt::get(Ty, 0, /*isSigned=*/false));
6191           continue;
6192         }
6193         auto *Op = I->getOperand(IndexIdx);
6194         auto *CI = dyn_cast<ConstantInt>(Op);
6195         if (!CI)
6196           Operands.back().push_back(Op);
6197         else
6198           Operands.back().push_back(ConstantFoldIntegerCast(
6199               CI, Ty, CI->getValue().isSignBitSet(), *DL));
6200       }
6201       TE->setOperand(IndexIdx, Operands.back());
6202 
6203       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
6204         buildTree_rec(Operands[I], Depth + 1, {TE, I});
6205       return;
6206     }
6207     case Instruction::Store: {
6208       // Check if the stores are consecutive or if we need to swizzle them.
6209       ValueList Operands(VL.size());
6210       auto *OIter = Operands.begin();
6211       for (Value *V : VL) {
6212         auto *SI = cast<StoreInst>(V);
6213         *OIter = SI->getValueOperand();
6214         ++OIter;
6215       }
6216       // Check that the sorted pointer operands are consecutive.
6217       if (CurrentOrder.empty()) {
6218         // Original stores are consecutive and does not require reordering.
6219         TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6220                                      ReuseShuffleIndicies);
6221         TE->setOperandsInOrder();
6222         buildTree_rec(Operands, Depth + 1, {TE, 0});
6223         LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
6224       } else {
6225         fixupOrderingIndices(CurrentOrder);
6226         TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6227                                      ReuseShuffleIndicies, CurrentOrder);
6228         TE->setOperandsInOrder();
6229         buildTree_rec(Operands, Depth + 1, {TE, 0});
6230         LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
6231       }
6232       return;
6233     }
6234     case Instruction::Call: {
6235       // Check if the calls are all to the same vectorizable intrinsic or
6236       // library function.
6237       CallInst *CI = cast<CallInst>(VL0);
6238       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6239 
6240       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6241                                    ReuseShuffleIndicies);
6242       TE->setOperandsInOrder();
6243       for (unsigned I : seq<unsigned>(0, CI->arg_size())) {
6244         // For scalar operands no need to create an entry since no need to
6245         // vectorize it.
6246         if (isVectorIntrinsicWithScalarOpAtArg(ID, I))
6247           continue;
6248         ValueList Operands;
6249         // Prepare the operand vector.
6250         for (Value *V : VL) {
6251           auto *CI2 = cast<CallInst>(V);
6252           Operands.push_back(CI2->getArgOperand(I));
6253         }
6254         buildTree_rec(Operands, Depth + 1, {TE, I});
6255       }
6256       return;
6257     }
6258     case Instruction::ShuffleVector: {
6259       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6260                                    ReuseShuffleIndicies);
6261       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
6262 
6263       // Reorder operands if reordering would enable vectorization.
6264       auto *CI = dyn_cast<CmpInst>(VL0);
6265       if (isa<BinaryOperator>(VL0) || CI) {
6266         ValueList Left, Right;
6267         if (!CI || all_of(VL, [](Value *V) {
6268               return cast<CmpInst>(V)->isCommutative();
6269             })) {
6270           reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE,
6271                                          *this);
6272         } else {
6273           auto *MainCI = cast<CmpInst>(S.MainOp);
6274           auto *AltCI = cast<CmpInst>(S.AltOp);
6275           CmpInst::Predicate MainP = MainCI->getPredicate();
6276           CmpInst::Predicate AltP = AltCI->getPredicate();
6277           assert(MainP != AltP &&
6278                  "Expected different main/alternate predicates.");
6279           // Collect operands - commute if it uses the swapped predicate or
6280           // alternate operation.
6281           for (Value *V : VL) {
6282             auto *Cmp = cast<CmpInst>(V);
6283             Value *LHS = Cmp->getOperand(0);
6284             Value *RHS = Cmp->getOperand(1);
6285 
6286             if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) {
6287               if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
6288                 std::swap(LHS, RHS);
6289             } else {
6290               if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
6291                 std::swap(LHS, RHS);
6292             }
6293             Left.push_back(LHS);
6294             Right.push_back(RHS);
6295           }
6296         }
6297         TE->setOperand(0, Left);
6298         TE->setOperand(1, Right);
6299         buildTree_rec(Left, Depth + 1, {TE, 0});
6300         buildTree_rec(Right, Depth + 1, {TE, 1});
6301         return;
6302       }
6303 
6304       TE->setOperandsInOrder();
6305       for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6306         ValueList Operands;
6307         // Prepare the operand vector.
6308         for (Value *V : VL)
6309           Operands.push_back(cast<Instruction>(V)->getOperand(I));
6310 
6311         buildTree_rec(Operands, Depth + 1, {TE, I});
6312       }
6313       return;
6314     }
6315     default:
6316       break;
6317   }
6318   llvm_unreachable("Unexpected vectorization of the instructions.");
6319 }
6320 
6321 unsigned BoUpSLP::canMapToVector(Type *T) const {
6322   unsigned N = 1;
6323   Type *EltTy = T;
6324 
6325   while (isa<StructType, ArrayType, FixedVectorType>(EltTy)) {
6326     if (auto *ST = dyn_cast<StructType>(EltTy)) {
6327       // Check that struct is homogeneous.
6328       for (const auto *Ty : ST->elements())
6329         if (Ty != *ST->element_begin())
6330           return 0;
6331       N *= ST->getNumElements();
6332       EltTy = *ST->element_begin();
6333     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
6334       N *= AT->getNumElements();
6335       EltTy = AT->getElementType();
6336     } else {
6337       auto *VT = cast<FixedVectorType>(EltTy);
6338       N *= VT->getNumElements();
6339       EltTy = VT->getElementType();
6340     }
6341   }
6342 
6343   if (!isValidElementType(EltTy))
6344     return 0;
6345   uint64_t VTSize = DL->getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
6346   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize ||
6347       VTSize != DL->getTypeStoreSizeInBits(T))
6348     return 0;
6349   return N;
6350 }
6351 
6352 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
6353                               SmallVectorImpl<unsigned> &CurrentOrder,
6354                               bool ResizeAllowed) const {
6355   const auto *It = find_if(VL, [](Value *V) {
6356     return isa<ExtractElementInst, ExtractValueInst>(V);
6357   });
6358   assert(It != VL.end() && "Expected at least one extract instruction.");
6359   auto *E0 = cast<Instruction>(*It);
6360   assert(all_of(VL,
6361                 [](Value *V) {
6362                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
6363                       V);
6364                 }) &&
6365          "Invalid opcode");
6366   // Check if all of the extracts come from the same vector and from the
6367   // correct offset.
6368   Value *Vec = E0->getOperand(0);
6369 
6370   CurrentOrder.clear();
6371 
6372   // We have to extract from a vector/aggregate with the same number of elements.
6373   unsigned NElts;
6374   if (E0->getOpcode() == Instruction::ExtractValue) {
6375     NElts = canMapToVector(Vec->getType());
6376     if (!NElts)
6377       return false;
6378     // Check if load can be rewritten as load of vector.
6379     LoadInst *LI = dyn_cast<LoadInst>(Vec);
6380     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
6381       return false;
6382   } else {
6383     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
6384   }
6385 
6386   unsigned E = VL.size();
6387   if (!ResizeAllowed && NElts != E)
6388     return false;
6389   SmallVector<int> Indices(E, PoisonMaskElem);
6390   unsigned MinIdx = NElts, MaxIdx = 0;
6391   for (auto [I, V] : enumerate(VL)) {
6392     auto *Inst = dyn_cast<Instruction>(V);
6393     if (!Inst)
6394       continue;
6395     if (Inst->getOperand(0) != Vec)
6396       return false;
6397     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
6398       if (isa<UndefValue>(EE->getIndexOperand()))
6399         continue;
6400     std::optional<unsigned> Idx = getExtractIndex(Inst);
6401     if (!Idx)
6402       return false;
6403     const unsigned ExtIdx = *Idx;
6404     if (ExtIdx >= NElts)
6405       continue;
6406     Indices[I] = ExtIdx;
6407     if (MinIdx > ExtIdx)
6408       MinIdx = ExtIdx;
6409     if (MaxIdx < ExtIdx)
6410       MaxIdx = ExtIdx;
6411   }
6412   if (MaxIdx - MinIdx + 1 > E)
6413     return false;
6414   if (MaxIdx + 1 <= E)
6415     MinIdx = 0;
6416 
6417   // Check that all of the indices extract from the correct offset.
6418   bool ShouldKeepOrder = true;
6419   // Assign to all items the initial value E + 1 so we can check if the extract
6420   // instruction index was used already.
6421   // Also, later we can check that all the indices are used and we have a
6422   // consecutive access in the extract instructions, by checking that no
6423   // element of CurrentOrder still has value E + 1.
6424   CurrentOrder.assign(E, E);
6425   for (unsigned I = 0; I < E; ++I) {
6426     if (Indices[I] == PoisonMaskElem)
6427       continue;
6428     const unsigned ExtIdx = Indices[I] - MinIdx;
6429     if (CurrentOrder[ExtIdx] != E) {
6430       CurrentOrder.clear();
6431       return false;
6432     }
6433     ShouldKeepOrder &= ExtIdx == I;
6434     CurrentOrder[ExtIdx] = I;
6435   }
6436   if (ShouldKeepOrder)
6437     CurrentOrder.clear();
6438 
6439   return ShouldKeepOrder;
6440 }
6441 
6442 bool BoUpSLP::areAllUsersVectorized(
6443     Instruction *I, const SmallDenseSet<Value *> *VectorizedVals) const {
6444   return (I->hasOneUse() && (!VectorizedVals || VectorizedVals->contains(I))) ||
6445          all_of(I->users(), [this](User *U) {
6446            return ScalarToTreeEntry.contains(U) ||
6447                   isVectorLikeInstWithConstOps(U) ||
6448                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
6449          });
6450 }
6451 
6452 static std::pair<InstructionCost, InstructionCost>
6453 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
6454                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
6455   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6456 
6457   // Calculate the cost of the scalar and vector calls.
6458   SmallVector<Type *, 4> VecTys;
6459   for (Use &Arg : CI->args())
6460     VecTys.push_back(
6461         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
6462   FastMathFlags FMF;
6463   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
6464     FMF = FPCI->getFastMathFlags();
6465   SmallVector<const Value *> Arguments(CI->args());
6466   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
6467                                     dyn_cast<IntrinsicInst>(CI));
6468   auto IntrinsicCost =
6469     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
6470 
6471   auto Shape = VFShape::get(CI->getFunctionType(),
6472                             ElementCount::getFixed(VecTy->getNumElements()),
6473                             false /*HasGlobalPred*/);
6474   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
6475   auto LibCost = IntrinsicCost;
6476   if (!CI->isNoBuiltin() && VecFunc) {
6477     // Calculate the cost of the vector library call.
6478     // If the corresponding vector call is cheaper, return its cost.
6479     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
6480                                     TTI::TCK_RecipThroughput);
6481   }
6482   return {IntrinsicCost, LibCost};
6483 }
6484 
6485 void BoUpSLP::TreeEntry::buildAltOpShuffleMask(
6486     const function_ref<bool(Instruction *)> IsAltOp, SmallVectorImpl<int> &Mask,
6487     SmallVectorImpl<Value *> *OpScalars,
6488     SmallVectorImpl<Value *> *AltScalars) const {
6489   unsigned Sz = Scalars.size();
6490   Mask.assign(Sz, PoisonMaskElem);
6491   SmallVector<int> OrderMask;
6492   if (!ReorderIndices.empty())
6493     inversePermutation(ReorderIndices, OrderMask);
6494   for (unsigned I = 0; I < Sz; ++I) {
6495     unsigned Idx = I;
6496     if (!ReorderIndices.empty())
6497       Idx = OrderMask[I];
6498     auto *OpInst = cast<Instruction>(Scalars[Idx]);
6499     if (IsAltOp(OpInst)) {
6500       Mask[I] = Sz + Idx;
6501       if (AltScalars)
6502         AltScalars->push_back(OpInst);
6503     } else {
6504       Mask[I] = Idx;
6505       if (OpScalars)
6506         OpScalars->push_back(OpInst);
6507     }
6508   }
6509   if (!ReuseShuffleIndices.empty()) {
6510     SmallVector<int> NewMask(ReuseShuffleIndices.size(), PoisonMaskElem);
6511     transform(ReuseShuffleIndices, NewMask.begin(), [&Mask](int Idx) {
6512       return Idx != PoisonMaskElem ? Mask[Idx] : PoisonMaskElem;
6513     });
6514     Mask.swap(NewMask);
6515   }
6516 }
6517 
6518 static bool isAlternateInstruction(const Instruction *I,
6519                                    const Instruction *MainOp,
6520                                    const Instruction *AltOp,
6521                                    const TargetLibraryInfo &TLI) {
6522   if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) {
6523     auto *AltCI = cast<CmpInst>(AltOp);
6524     CmpInst::Predicate MainP = MainCI->getPredicate();
6525     CmpInst::Predicate AltP = AltCI->getPredicate();
6526     assert(MainP != AltP && "Expected different main/alternate predicates.");
6527     auto *CI = cast<CmpInst>(I);
6528     if (isCmpSameOrSwapped(MainCI, CI, TLI))
6529       return false;
6530     if (isCmpSameOrSwapped(AltCI, CI, TLI))
6531       return true;
6532     CmpInst::Predicate P = CI->getPredicate();
6533     CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P);
6534 
6535     assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) &&
6536            "CmpInst expected to match either main or alternate predicate or "
6537            "their swap.");
6538     (void)AltP;
6539     return MainP != P && MainP != SwappedP;
6540   }
6541   return I->getOpcode() == AltOp->getOpcode();
6542 }
6543 
6544 TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> Ops) {
6545   assert(!Ops.empty());
6546   const auto *Op0 = Ops.front();
6547 
6548   const bool IsConstant = all_of(Ops, [](Value *V) {
6549     // TODO: We should allow undef elements here
6550     return isConstant(V) && !isa<UndefValue>(V);
6551   });
6552   const bool IsUniform = all_of(Ops, [=](Value *V) {
6553     // TODO: We should allow undef elements here
6554     return V == Op0;
6555   });
6556   const bool IsPowerOfTwo = all_of(Ops, [](Value *V) {
6557     // TODO: We should allow undef elements here
6558     if (auto *CI = dyn_cast<ConstantInt>(V))
6559       return CI->getValue().isPowerOf2();
6560     return false;
6561   });
6562   const bool IsNegatedPowerOfTwo = all_of(Ops, [](Value *V) {
6563     // TODO: We should allow undef elements here
6564     if (auto *CI = dyn_cast<ConstantInt>(V))
6565       return CI->getValue().isNegatedPowerOf2();
6566     return false;
6567   });
6568 
6569   TTI::OperandValueKind VK = TTI::OK_AnyValue;
6570   if (IsConstant && IsUniform)
6571     VK = TTI::OK_UniformConstantValue;
6572   else if (IsConstant)
6573     VK = TTI::OK_NonUniformConstantValue;
6574   else if (IsUniform)
6575     VK = TTI::OK_UniformValue;
6576 
6577   TTI::OperandValueProperties VP = TTI::OP_None;
6578   VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP;
6579   VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP;
6580 
6581   return {VK, VP};
6582 }
6583 
6584 namespace {
6585 /// The base class for shuffle instruction emission and shuffle cost estimation.
6586 class BaseShuffleAnalysis {
6587 protected:
6588   /// Checks if the mask is an identity mask.
6589   /// \param IsStrict if is true the function returns false if mask size does
6590   /// not match vector size.
6591   static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy,
6592                              bool IsStrict) {
6593     int Limit = Mask.size();
6594     int VF = VecTy->getNumElements();
6595     int Index = -1;
6596     if (VF == Limit && ShuffleVectorInst::isIdentityMask(Mask, Limit))
6597       return true;
6598     if (!IsStrict) {
6599       // Consider extract subvector starting from index 0.
6600       if (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) &&
6601           Index == 0)
6602         return true;
6603       // All VF-size submasks are identity (e.g.
6604       // <poison,poison,poison,poison,0,1,2,poison,poison,1,2,3> etc. for VF 4).
6605       if (Limit % VF == 0 && all_of(seq<int>(0, Limit / VF), [=](int Idx) {
6606             ArrayRef<int> Slice = Mask.slice(Idx * VF, VF);
6607             return all_of(Slice, [](int I) { return I == PoisonMaskElem; }) ||
6608                    ShuffleVectorInst::isIdentityMask(Slice, VF);
6609           }))
6610         return true;
6611     }
6612     return false;
6613   }
6614 
6615   /// Tries to combine 2 different masks into single one.
6616   /// \param LocalVF Vector length of the permuted input vector. \p Mask may
6617   /// change the size of the vector, \p LocalVF is the original size of the
6618   /// shuffled vector.
6619   static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask,
6620                            ArrayRef<int> ExtMask) {
6621     unsigned VF = Mask.size();
6622     SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem);
6623     for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
6624       if (ExtMask[I] == PoisonMaskElem)
6625         continue;
6626       int MaskedIdx = Mask[ExtMask[I] % VF];
6627       NewMask[I] =
6628           MaskedIdx == PoisonMaskElem ? PoisonMaskElem : MaskedIdx % LocalVF;
6629     }
6630     Mask.swap(NewMask);
6631   }
6632 
6633   /// Looks through shuffles trying to reduce final number of shuffles in the
6634   /// code. The function looks through the previously emitted shuffle
6635   /// instructions and properly mark indices in mask as undef.
6636   /// For example, given the code
6637   /// \code
6638   /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
6639   /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
6640   /// \endcode
6641   /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
6642   /// look through %s1 and %s2 and select vectors %0 and %1 with mask
6643   /// <0, 1, 2, 3> for the shuffle.
6644   /// If 2 operands are of different size, the smallest one will be resized and
6645   /// the mask recalculated properly.
6646   /// For example, given the code
6647   /// \code
6648   /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
6649   /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
6650   /// \endcode
6651   /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
6652   /// look through %s1 and %s2 and select vectors %0 and %1 with mask
6653   /// <0, 1, 2, 3> for the shuffle.
6654   /// So, it tries to transform permutations to simple vector merge, if
6655   /// possible.
6656   /// \param V The input vector which must be shuffled using the given \p Mask.
6657   /// If the better candidate is found, \p V is set to this best candidate
6658   /// vector.
6659   /// \param Mask The input mask for the shuffle. If the best candidate is found
6660   /// during looking-through-shuffles attempt, it is updated accordingly.
6661   /// \param SinglePermute true if the shuffle operation is originally a
6662   /// single-value-permutation. In this case the look-through-shuffles procedure
6663   /// may look for resizing shuffles as the best candidates.
6664   /// \return true if the shuffle results in the non-resizing identity shuffle
6665   /// (and thus can be ignored), false - otherwise.
6666   static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask,
6667                                   bool SinglePermute) {
6668     Value *Op = V;
6669     ShuffleVectorInst *IdentityOp = nullptr;
6670     SmallVector<int> IdentityMask;
6671     while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) {
6672       // Exit if not a fixed vector type or changing size shuffle.
6673       auto *SVTy = dyn_cast<FixedVectorType>(SV->getType());
6674       if (!SVTy)
6675         break;
6676       // Remember the identity or broadcast mask, if it is not a resizing
6677       // shuffle. If no better candidates are found, this Op and Mask will be
6678       // used in the final shuffle.
6679       if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) {
6680         if (!IdentityOp || !SinglePermute ||
6681             (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) &&
6682              !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask,
6683                                                     IdentityMask.size()))) {
6684           IdentityOp = SV;
6685           // Store current mask in the IdentityMask so later we did not lost
6686           // this info if IdentityOp is selected as the best candidate for the
6687           // permutation.
6688           IdentityMask.assign(Mask);
6689         }
6690       }
6691       // Remember the broadcast mask. If no better candidates are found, this Op
6692       // and Mask will be used in the final shuffle.
6693       // Zero splat can be used as identity too, since it might be used with
6694       // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling.
6695       // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is
6696       // expensive, the analysis founds out, that the source vector is just a
6697       // broadcast, this original mask can be transformed to identity mask <0,
6698       // 1, 2, 3>.
6699       // \code
6700       // %0 = shuffle %v, poison, zeroinitalizer
6701       // %res = shuffle %0, poison, <3, 1, 2, 0>
6702       // \endcode
6703       // may be transformed to
6704       // \code
6705       // %0 = shuffle %v, poison, zeroinitalizer
6706       // %res = shuffle %0, poison, <0, 1, 2, 3>
6707       // \endcode
6708       if (SV->isZeroEltSplat()) {
6709         IdentityOp = SV;
6710         IdentityMask.assign(Mask);
6711       }
6712       int LocalVF = Mask.size();
6713       if (auto *SVOpTy =
6714               dyn_cast<FixedVectorType>(SV->getOperand(0)->getType()))
6715         LocalVF = SVOpTy->getNumElements();
6716       SmallVector<int> ExtMask(Mask.size(), PoisonMaskElem);
6717       for (auto [Idx, I] : enumerate(Mask)) {
6718         if (I == PoisonMaskElem ||
6719             static_cast<unsigned>(I) >= SV->getShuffleMask().size())
6720           continue;
6721         ExtMask[Idx] = SV->getMaskValue(I);
6722       }
6723       bool IsOp1Undef =
6724           isUndefVector(SV->getOperand(0),
6725                         buildUseMask(LocalVF, ExtMask, UseMask::FirstArg))
6726               .all();
6727       bool IsOp2Undef =
6728           isUndefVector(SV->getOperand(1),
6729                         buildUseMask(LocalVF, ExtMask, UseMask::SecondArg))
6730               .all();
6731       if (!IsOp1Undef && !IsOp2Undef) {
6732         // Update mask and mark undef elems.
6733         for (int &I : Mask) {
6734           if (I == PoisonMaskElem)
6735             continue;
6736           if (SV->getMaskValue(I % SV->getShuffleMask().size()) ==
6737               PoisonMaskElem)
6738             I = PoisonMaskElem;
6739         }
6740         break;
6741       }
6742       SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
6743                                    SV->getShuffleMask().end());
6744       combineMasks(LocalVF, ShuffleMask, Mask);
6745       Mask.swap(ShuffleMask);
6746       if (IsOp2Undef)
6747         Op = SV->getOperand(0);
6748       else
6749         Op = SV->getOperand(1);
6750     }
6751     if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType());
6752         !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute) ||
6753         ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size())) {
6754       if (IdentityOp) {
6755         V = IdentityOp;
6756         assert(Mask.size() == IdentityMask.size() &&
6757                "Expected masks of same sizes.");
6758         // Clear known poison elements.
6759         for (auto [I, Idx] : enumerate(Mask))
6760           if (Idx == PoisonMaskElem)
6761             IdentityMask[I] = PoisonMaskElem;
6762         Mask.swap(IdentityMask);
6763         auto *Shuffle = dyn_cast<ShuffleVectorInst>(V);
6764         return SinglePermute &&
6765                (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()),
6766                                /*IsStrict=*/true) ||
6767                 (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() &&
6768                  Shuffle->isZeroEltSplat() &&
6769                  ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size())));
6770       }
6771       V = Op;
6772       return false;
6773     }
6774     V = Op;
6775     return true;
6776   }
6777 
6778   /// Smart shuffle instruction emission, walks through shuffles trees and
6779   /// tries to find the best matching vector for the actual shuffle
6780   /// instruction.
6781   template <typename T, typename ShuffleBuilderTy>
6782   static T createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask,
6783                          ShuffleBuilderTy &Builder) {
6784     assert(V1 && "Expected at least one vector value.");
6785     if (V2)
6786       Builder.resizeToMatch(V1, V2);
6787     int VF = Mask.size();
6788     if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
6789       VF = FTy->getNumElements();
6790     if (V2 &&
6791         !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) {
6792       // Peek through shuffles.
6793       Value *Op1 = V1;
6794       Value *Op2 = V2;
6795       int VF =
6796           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
6797       SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem);
6798       SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem);
6799       for (int I = 0, E = Mask.size(); I < E; ++I) {
6800         if (Mask[I] < VF)
6801           CombinedMask1[I] = Mask[I];
6802         else
6803           CombinedMask2[I] = Mask[I] - VF;
6804       }
6805       Value *PrevOp1;
6806       Value *PrevOp2;
6807       do {
6808         PrevOp1 = Op1;
6809         PrevOp2 = Op2;
6810         (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false);
6811         (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false);
6812         // Check if we have 2 resizing shuffles - need to peek through operands
6813         // again.
6814         if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
6815           if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) {
6816             SmallVector<int> ExtMask1(Mask.size(), PoisonMaskElem);
6817             for (auto [Idx, I] : enumerate(CombinedMask1)) {
6818                 if (I == PoisonMaskElem)
6819                 continue;
6820                 ExtMask1[Idx] = SV1->getMaskValue(I);
6821             }
6822             SmallBitVector UseMask1 = buildUseMask(
6823                 cast<FixedVectorType>(SV1->getOperand(1)->getType())
6824                     ->getNumElements(),
6825                 ExtMask1, UseMask::SecondArg);
6826             SmallVector<int> ExtMask2(CombinedMask2.size(), PoisonMaskElem);
6827             for (auto [Idx, I] : enumerate(CombinedMask2)) {
6828                 if (I == PoisonMaskElem)
6829                 continue;
6830                 ExtMask2[Idx] = SV2->getMaskValue(I);
6831             }
6832             SmallBitVector UseMask2 = buildUseMask(
6833                 cast<FixedVectorType>(SV2->getOperand(1)->getType())
6834                     ->getNumElements(),
6835                 ExtMask2, UseMask::SecondArg);
6836             if (SV1->getOperand(0)->getType() ==
6837                     SV2->getOperand(0)->getType() &&
6838                 SV1->getOperand(0)->getType() != SV1->getType() &&
6839                 isUndefVector(SV1->getOperand(1), UseMask1).all() &&
6840                 isUndefVector(SV2->getOperand(1), UseMask2).all()) {
6841               Op1 = SV1->getOperand(0);
6842               Op2 = SV2->getOperand(0);
6843               SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
6844                                             SV1->getShuffleMask().end());
6845               int LocalVF = ShuffleMask1.size();
6846               if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType()))
6847                 LocalVF = FTy->getNumElements();
6848               combineMasks(LocalVF, ShuffleMask1, CombinedMask1);
6849               CombinedMask1.swap(ShuffleMask1);
6850               SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
6851                                             SV2->getShuffleMask().end());
6852               LocalVF = ShuffleMask2.size();
6853               if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType()))
6854                 LocalVF = FTy->getNumElements();
6855               combineMasks(LocalVF, ShuffleMask2, CombinedMask2);
6856               CombinedMask2.swap(ShuffleMask2);
6857             }
6858           }
6859       } while (PrevOp1 != Op1 || PrevOp2 != Op2);
6860       Builder.resizeToMatch(Op1, Op2);
6861       VF = std::max(cast<VectorType>(Op1->getType())
6862                         ->getElementCount()
6863                         .getKnownMinValue(),
6864                     cast<VectorType>(Op2->getType())
6865                         ->getElementCount()
6866                         .getKnownMinValue());
6867       for (int I = 0, E = Mask.size(); I < E; ++I) {
6868         if (CombinedMask2[I] != PoisonMaskElem) {
6869           assert(CombinedMask1[I] == PoisonMaskElem &&
6870                  "Expected undefined mask element");
6871           CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
6872         }
6873       }
6874       if (Op1 == Op2 &&
6875           (ShuffleVectorInst::isIdentityMask(CombinedMask1, VF) ||
6876            (ShuffleVectorInst::isZeroEltSplatMask(CombinedMask1, VF) &&
6877             isa<ShuffleVectorInst>(Op1) &&
6878             cast<ShuffleVectorInst>(Op1)->getShuffleMask() ==
6879                 ArrayRef(CombinedMask1))))
6880         return Builder.createIdentity(Op1);
6881       return Builder.createShuffleVector(
6882           Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
6883           CombinedMask1);
6884     }
6885     if (isa<PoisonValue>(V1))
6886       return Builder.createPoison(
6887           cast<VectorType>(V1->getType())->getElementType(), Mask.size());
6888     SmallVector<int> NewMask(Mask.begin(), Mask.end());
6889     bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true);
6890     assert(V1 && "Expected non-null value after looking through shuffles.");
6891 
6892     if (!IsIdentity)
6893       return Builder.createShuffleVector(V1, NewMask);
6894     return Builder.createIdentity(V1);
6895   }
6896 };
6897 } // namespace
6898 
6899 /// Merges shuffle masks and emits final shuffle instruction, if required. It
6900 /// supports shuffling of 2 input vectors. It implements lazy shuffles emission,
6901 /// when the actual shuffle instruction is generated only if this is actually
6902 /// required. Otherwise, the shuffle instruction emission is delayed till the
6903 /// end of the process, to reduce the number of emitted instructions and further
6904 /// analysis/transformations.
6905 class BoUpSLP::ShuffleCostEstimator : public BaseShuffleAnalysis {
6906   bool IsFinalized = false;
6907   SmallVector<int> CommonMask;
6908   SmallVector<PointerUnion<Value *, const TreeEntry *>, 2> InVectors;
6909   const TargetTransformInfo &TTI;
6910   InstructionCost Cost = 0;
6911   SmallDenseSet<Value *> VectorizedVals;
6912   BoUpSLP &R;
6913   SmallPtrSetImpl<Value *> &CheckedExtracts;
6914   constexpr static TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6915   /// While set, still trying to estimate the cost for the same nodes and we
6916   /// can delay actual cost estimation (virtual shuffle instruction emission).
6917   /// May help better estimate the cost if same nodes must be permuted + allows
6918   /// to move most of the long shuffles cost estimation to TTI.
6919   bool SameNodesEstimated = true;
6920 
6921   static Constant *getAllOnesValue(const DataLayout &DL, Type *Ty) {
6922     if (Ty->getScalarType()->isPointerTy()) {
6923       Constant *Res = ConstantExpr::getIntToPtr(
6924           ConstantInt::getAllOnesValue(
6925               IntegerType::get(Ty->getContext(),
6926                                DL.getTypeStoreSizeInBits(Ty->getScalarType()))),
6927           Ty->getScalarType());
6928       if (auto *VTy = dyn_cast<VectorType>(Ty))
6929         Res = ConstantVector::getSplat(VTy->getElementCount(), Res);
6930       return Res;
6931     }
6932     return Constant::getAllOnesValue(Ty);
6933   }
6934 
6935   InstructionCost getBuildVectorCost(ArrayRef<Value *> VL, Value *Root) {
6936     if ((!Root && allConstant(VL)) || all_of(VL, UndefValue::classof))
6937       return TTI::TCC_Free;
6938     auto *VecTy = FixedVectorType::get(VL.front()->getType(), VL.size());
6939     InstructionCost GatherCost = 0;
6940     SmallVector<Value *> Gathers(VL.begin(), VL.end());
6941     // Improve gather cost for gather of loads, if we can group some of the
6942     // loads into vector loads.
6943     InstructionsState S = getSameOpcode(VL, *R.TLI);
6944     const unsigned Sz = R.DL->getTypeSizeInBits(VL.front()->getType());
6945     unsigned MinVF = R.getMinVF(2 * Sz);
6946     if (VL.size() > 2 &&
6947         ((S.getOpcode() == Instruction::Load && !S.isAltShuffle()) ||
6948          (InVectors.empty() &&
6949           any_of(seq<unsigned>(0, VL.size() / MinVF),
6950                  [&](unsigned Idx) {
6951                    ArrayRef<Value *> SubVL = VL.slice(Idx * MinVF, MinVF);
6952                    InstructionsState S = getSameOpcode(SubVL, *R.TLI);
6953                    return S.getOpcode() == Instruction::Load &&
6954                           !S.isAltShuffle();
6955                  }))) &&
6956         !all_of(Gathers, [&](Value *V) { return R.getTreeEntry(V); }) &&
6957         !isSplat(Gathers)) {
6958       SetVector<Value *> VectorizedLoads;
6959       SmallVector<LoadInst *> VectorizedStarts;
6960       SmallVector<std::pair<unsigned, unsigned>> ScatterVectorized;
6961       unsigned StartIdx = 0;
6962       unsigned VF = VL.size() / 2;
6963       for (; VF >= MinVF; VF /= 2) {
6964         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
6965              Cnt += VF) {
6966           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
6967           if (S.getOpcode() != Instruction::Load || S.isAltShuffle()) {
6968             InstructionsState SliceS = getSameOpcode(Slice, *R.TLI);
6969             if (SliceS.getOpcode() != Instruction::Load ||
6970                 SliceS.isAltShuffle())
6971               continue;
6972           }
6973           if (!VectorizedLoads.count(Slice.front()) &&
6974               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
6975             SmallVector<Value *> PointerOps;
6976             OrdersType CurrentOrder;
6977             LoadsState LS =
6978                 canVectorizeLoads(Slice, Slice.front(), TTI, *R.DL, *R.SE,
6979                                   *R.LI, *R.TLI, CurrentOrder, PointerOps);
6980             switch (LS) {
6981             case LoadsState::Vectorize:
6982             case LoadsState::ScatterVectorize:
6983             case LoadsState::PossibleStridedVectorize:
6984               // Mark the vectorized loads so that we don't vectorize them
6985               // again.
6986               // TODO: better handling of loads with reorders.
6987               if (LS == LoadsState::Vectorize && CurrentOrder.empty())
6988                 VectorizedStarts.push_back(cast<LoadInst>(Slice.front()));
6989               else
6990                 ScatterVectorized.emplace_back(Cnt, VF);
6991               VectorizedLoads.insert(Slice.begin(), Slice.end());
6992               // If we vectorized initial block, no need to try to vectorize
6993               // it again.
6994               if (Cnt == StartIdx)
6995                 StartIdx += VF;
6996               break;
6997             case LoadsState::Gather:
6998               break;
6999             }
7000           }
7001         }
7002         // Check if the whole array was vectorized already - exit.
7003         if (StartIdx >= VL.size())
7004           break;
7005         // Found vectorizable parts - exit.
7006         if (!VectorizedLoads.empty())
7007           break;
7008       }
7009       if (!VectorizedLoads.empty()) {
7010         unsigned NumParts = TTI.getNumberOfParts(VecTy);
7011         bool NeedInsertSubvectorAnalysis =
7012             !NumParts || (VL.size() / VF) > NumParts;
7013         // Get the cost for gathered loads.
7014         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
7015           if (VectorizedLoads.contains(VL[I]))
7016             continue;
7017           GatherCost += getBuildVectorCost(VL.slice(I, VF), Root);
7018         }
7019         // Exclude potentially vectorized loads from list of gathered
7020         // scalars.
7021         Gathers.assign(Gathers.size(), PoisonValue::get(VL.front()->getType()));
7022         // The cost for vectorized loads.
7023         InstructionCost ScalarsCost = 0;
7024         for (Value *V : VectorizedLoads) {
7025           auto *LI = cast<LoadInst>(V);
7026           ScalarsCost +=
7027               TTI.getMemoryOpCost(Instruction::Load, LI->getType(),
7028                                   LI->getAlign(), LI->getPointerAddressSpace(),
7029                                   CostKind, TTI::OperandValueInfo(), LI);
7030         }
7031         auto *LoadTy = FixedVectorType::get(VL.front()->getType(), VF);
7032         for (LoadInst *LI : VectorizedStarts) {
7033           Align Alignment = LI->getAlign();
7034           GatherCost +=
7035               TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
7036                                   LI->getPointerAddressSpace(), CostKind,
7037                                   TTI::OperandValueInfo(), LI);
7038         }
7039         for (std::pair<unsigned, unsigned> P : ScatterVectorized) {
7040           auto *LI0 = cast<LoadInst>(VL[P.first]);
7041           Align CommonAlignment = LI0->getAlign();
7042           for (Value *V : VL.slice(P.first + 1, VF - 1))
7043             CommonAlignment =
7044                 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
7045           GatherCost += TTI.getGatherScatterOpCost(
7046               Instruction::Load, LoadTy, LI0->getPointerOperand(),
7047               /*VariableMask=*/false, CommonAlignment, CostKind, LI0);
7048         }
7049         if (NeedInsertSubvectorAnalysis) {
7050           // Add the cost for the subvectors insert.
7051           for (int I = VF, E = VL.size(); I < E; I += VF)
7052             GatherCost += TTI.getShuffleCost(TTI::SK_InsertSubvector, VecTy,
7053                                              std::nullopt, CostKind, I, LoadTy);
7054         }
7055         GatherCost -= ScalarsCost;
7056       }
7057     } else if (!Root && isSplat(VL)) {
7058       // Found the broadcasting of the single scalar, calculate the cost as
7059       // the broadcast.
7060       const auto *It =
7061           find_if(VL, [](Value *V) { return !isa<UndefValue>(V); });
7062       assert(It != VL.end() && "Expected at least one non-undef value.");
7063       // Add broadcast for non-identity shuffle only.
7064       bool NeedShuffle =
7065           count(VL, *It) > 1 &&
7066           (VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof));
7067       InstructionCost InsertCost = TTI.getVectorInstrCost(
7068           Instruction::InsertElement, VecTy, CostKind,
7069           NeedShuffle ? 0 : std::distance(VL.begin(), It),
7070           PoisonValue::get(VecTy), *It);
7071       return InsertCost +
7072              (NeedShuffle ? TTI.getShuffleCost(
7073                                 TargetTransformInfo::SK_Broadcast, VecTy,
7074                                 /*Mask=*/std::nullopt, CostKind, /*Index=*/0,
7075                                 /*SubTp=*/nullptr, /*Args=*/*It)
7076                           : TTI::TCC_Free);
7077     }
7078     return GatherCost +
7079            (all_of(Gathers, UndefValue::classof)
7080                 ? TTI::TCC_Free
7081                 : R.getGatherCost(Gathers, !Root && VL.equals(Gathers)));
7082   };
7083 
7084   /// Compute the cost of creating a vector containing the extracted values from
7085   /// \p VL.
7086   InstructionCost
7087   computeExtractCost(ArrayRef<Value *> VL, ArrayRef<int> Mask,
7088                      ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
7089                      unsigned NumParts) {
7090     assert(VL.size() > NumParts && "Unexpected scalarized shuffle.");
7091     unsigned NumElts =
7092         std::accumulate(VL.begin(), VL.end(), 0, [](unsigned Sz, Value *V) {
7093           auto *EE = dyn_cast<ExtractElementInst>(V);
7094           if (!EE)
7095             return Sz;
7096           auto *VecTy = cast<FixedVectorType>(EE->getVectorOperandType());
7097           return std::max(Sz, VecTy->getNumElements());
7098         });
7099     unsigned NumSrcRegs = TTI.getNumberOfParts(
7100         FixedVectorType::get(VL.front()->getType(), NumElts));
7101     if (NumSrcRegs == 0)
7102       NumSrcRegs = 1;
7103     // FIXME: this must be moved to TTI for better estimation.
7104     unsigned EltsPerVector = PowerOf2Ceil(std::max(
7105         divideCeil(VL.size(), NumParts), divideCeil(NumElts, NumSrcRegs)));
7106     auto CheckPerRegistersShuffle =
7107         [&](MutableArrayRef<int> Mask) -> std::optional<TTI::ShuffleKind> {
7108       DenseSet<int> RegIndices;
7109       // Check that if trying to permute same single/2 input vectors.
7110       TTI::ShuffleKind ShuffleKind = TTI::SK_PermuteSingleSrc;
7111       int FirstRegId = -1;
7112       for (int &I : Mask) {
7113         if (I == PoisonMaskElem)
7114           continue;
7115         int RegId = (I / NumElts) * NumParts + (I % NumElts) / EltsPerVector;
7116         if (FirstRegId < 0)
7117           FirstRegId = RegId;
7118         RegIndices.insert(RegId);
7119         if (RegIndices.size() > 2)
7120           return std::nullopt;
7121         if (RegIndices.size() == 2)
7122           ShuffleKind = TTI::SK_PermuteTwoSrc;
7123         I = (I % NumElts) % EltsPerVector +
7124             (RegId == FirstRegId ? 0 : EltsPerVector);
7125       }
7126       return ShuffleKind;
7127     };
7128     InstructionCost Cost = 0;
7129 
7130     // Process extracts in blocks of EltsPerVector to check if the source vector
7131     // operand can be re-used directly. If not, add the cost of creating a
7132     // shuffle to extract the values into a vector register.
7133     for (unsigned Part = 0; Part < NumParts; ++Part) {
7134       if (!ShuffleKinds[Part])
7135         continue;
7136       ArrayRef<int> MaskSlice =
7137           Mask.slice(Part * EltsPerVector,
7138                      (Part == NumParts - 1 && Mask.size() % EltsPerVector != 0)
7139                          ? Mask.size() % EltsPerVector
7140                          : EltsPerVector);
7141       SmallVector<int> SubMask(EltsPerVector, PoisonMaskElem);
7142       copy(MaskSlice, SubMask.begin());
7143       std::optional<TTI::ShuffleKind> RegShuffleKind =
7144           CheckPerRegistersShuffle(SubMask);
7145       if (!RegShuffleKind) {
7146         Cost += TTI.getShuffleCost(
7147             *ShuffleKinds[Part],
7148             FixedVectorType::get(VL.front()->getType(), NumElts), MaskSlice);
7149         continue;
7150       }
7151       if (*RegShuffleKind != TTI::SK_PermuteSingleSrc ||
7152           !ShuffleVectorInst::isIdentityMask(SubMask, EltsPerVector)) {
7153         Cost += TTI.getShuffleCost(
7154             *RegShuffleKind,
7155             FixedVectorType::get(VL.front()->getType(), EltsPerVector),
7156             SubMask);
7157       }
7158     }
7159     return Cost;
7160   }
7161   /// Transforms mask \p CommonMask per given \p Mask to make proper set after
7162   /// shuffle emission.
7163   static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask,
7164                                         ArrayRef<int> Mask) {
7165     for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7166       if (Mask[Idx] != PoisonMaskElem)
7167         CommonMask[Idx] = Idx;
7168   }
7169   /// Adds the cost of reshuffling \p E1 and \p E2 (if present), using given
7170   /// mask \p Mask, register number \p Part, that includes \p SliceSize
7171   /// elements.
7172   void estimateNodesPermuteCost(const TreeEntry &E1, const TreeEntry *E2,
7173                                 ArrayRef<int> Mask, unsigned Part,
7174                                 unsigned SliceSize) {
7175     if (SameNodesEstimated) {
7176       // Delay the cost estimation if the same nodes are reshuffling.
7177       // If we already requested the cost of reshuffling of E1 and E2 before, no
7178       // need to estimate another cost with the sub-Mask, instead include this
7179       // sub-Mask into the CommonMask to estimate it later and avoid double cost
7180       // estimation.
7181       if ((InVectors.size() == 2 &&
7182            InVectors.front().get<const TreeEntry *>() == &E1 &&
7183            InVectors.back().get<const TreeEntry *>() == E2) ||
7184           (!E2 && InVectors.front().get<const TreeEntry *>() == &E1)) {
7185         assert(all_of(ArrayRef(CommonMask).slice(Part * SliceSize, SliceSize),
7186                       [](int Idx) { return Idx == PoisonMaskElem; }) &&
7187                "Expected all poisoned elements.");
7188         ArrayRef<int> SubMask =
7189             ArrayRef(Mask).slice(Part * SliceSize, SliceSize);
7190         copy(SubMask, std::next(CommonMask.begin(), SliceSize * Part));
7191         return;
7192       }
7193       // Found non-matching nodes - need to estimate the cost for the matched
7194       // and transform mask.
7195       Cost += createShuffle(InVectors.front(),
7196                             InVectors.size() == 1 ? nullptr : InVectors.back(),
7197                             CommonMask);
7198       transformMaskAfterShuffle(CommonMask, CommonMask);
7199     }
7200     SameNodesEstimated = false;
7201     Cost += createShuffle(&E1, E2, Mask);
7202     transformMaskAfterShuffle(CommonMask, Mask);
7203   }
7204 
7205   class ShuffleCostBuilder {
7206     const TargetTransformInfo &TTI;
7207 
7208     static bool isEmptyOrIdentity(ArrayRef<int> Mask, unsigned VF) {
7209       int Index = -1;
7210       return Mask.empty() ||
7211              (VF == Mask.size() &&
7212               ShuffleVectorInst::isIdentityMask(Mask, VF)) ||
7213              (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) &&
7214               Index == 0);
7215     }
7216 
7217   public:
7218     ShuffleCostBuilder(const TargetTransformInfo &TTI) : TTI(TTI) {}
7219     ~ShuffleCostBuilder() = default;
7220     InstructionCost createShuffleVector(Value *V1, Value *,
7221                                         ArrayRef<int> Mask) const {
7222       // Empty mask or identity mask are free.
7223       unsigned VF =
7224           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
7225       if (isEmptyOrIdentity(Mask, VF))
7226         return TTI::TCC_Free;
7227       return TTI.getShuffleCost(TTI::SK_PermuteTwoSrc,
7228                                 cast<VectorType>(V1->getType()), Mask);
7229     }
7230     InstructionCost createShuffleVector(Value *V1, ArrayRef<int> Mask) const {
7231       // Empty mask or identity mask are free.
7232       unsigned VF =
7233           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
7234       if (isEmptyOrIdentity(Mask, VF))
7235         return TTI::TCC_Free;
7236       return TTI.getShuffleCost(TTI::SK_PermuteSingleSrc,
7237                                 cast<VectorType>(V1->getType()), Mask);
7238     }
7239     InstructionCost createIdentity(Value *) const { return TTI::TCC_Free; }
7240     InstructionCost createPoison(Type *Ty, unsigned VF) const {
7241       return TTI::TCC_Free;
7242     }
7243     void resizeToMatch(Value *&, Value *&) const {}
7244   };
7245 
7246   /// Smart shuffle instruction emission, walks through shuffles trees and
7247   /// tries to find the best matching vector for the actual shuffle
7248   /// instruction.
7249   InstructionCost
7250   createShuffle(const PointerUnion<Value *, const TreeEntry *> &P1,
7251                 const PointerUnion<Value *, const TreeEntry *> &P2,
7252                 ArrayRef<int> Mask) {
7253     ShuffleCostBuilder Builder(TTI);
7254     SmallVector<int> CommonMask(Mask.begin(), Mask.end());
7255     Value *V1 = P1.dyn_cast<Value *>(), *V2 = P2.dyn_cast<Value *>();
7256     unsigned CommonVF = Mask.size();
7257     if (!V1 && !V2 && !P2.isNull()) {
7258       // Shuffle 2 entry nodes.
7259       const TreeEntry *E = P1.get<const TreeEntry *>();
7260       unsigned VF = E->getVectorFactor();
7261       const TreeEntry *E2 = P2.get<const TreeEntry *>();
7262       CommonVF = std::max(VF, E2->getVectorFactor());
7263       assert(all_of(Mask,
7264                     [=](int Idx) {
7265                       return Idx < 2 * static_cast<int>(CommonVF);
7266                     }) &&
7267              "All elements in mask must be less than 2 * CommonVF.");
7268       if (E->Scalars.size() == E2->Scalars.size()) {
7269         SmallVector<int> EMask = E->getCommonMask();
7270         SmallVector<int> E2Mask = E2->getCommonMask();
7271         if (!EMask.empty() || !E2Mask.empty()) {
7272           for (int &Idx : CommonMask) {
7273             if (Idx == PoisonMaskElem)
7274               continue;
7275             if (Idx < static_cast<int>(CommonVF) && !EMask.empty())
7276               Idx = EMask[Idx];
7277             else if (Idx >= static_cast<int>(CommonVF))
7278               Idx = (E2Mask.empty() ? Idx - CommonVF : E2Mask[Idx - CommonVF]) +
7279                     E->Scalars.size();
7280           }
7281         }
7282         CommonVF = E->Scalars.size();
7283       }
7284       V1 = Constant::getNullValue(
7285           FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7286       V2 = getAllOnesValue(
7287           *R.DL, FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7288     } else if (!V1 && P2.isNull()) {
7289       // Shuffle single entry node.
7290       const TreeEntry *E = P1.get<const TreeEntry *>();
7291       unsigned VF = E->getVectorFactor();
7292       CommonVF = VF;
7293       assert(
7294           all_of(Mask,
7295                  [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) &&
7296           "All elements in mask must be less than CommonVF.");
7297       if (E->Scalars.size() == Mask.size() && VF != Mask.size()) {
7298         SmallVector<int> EMask = E->getCommonMask();
7299         assert(!EMask.empty() && "Expected non-empty common mask.");
7300         for (int &Idx : CommonMask) {
7301           if (Idx != PoisonMaskElem)
7302             Idx = EMask[Idx];
7303         }
7304         CommonVF = E->Scalars.size();
7305       }
7306       V1 = Constant::getNullValue(
7307           FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7308     } else if (V1 && P2.isNull()) {
7309       // Shuffle single vector.
7310       CommonVF = cast<FixedVectorType>(V1->getType())->getNumElements();
7311       assert(
7312           all_of(Mask,
7313                  [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) &&
7314           "All elements in mask must be less than CommonVF.");
7315     } else if (V1 && !V2) {
7316       // Shuffle vector and tree node.
7317       unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7318       const TreeEntry *E2 = P2.get<const TreeEntry *>();
7319       CommonVF = std::max(VF, E2->getVectorFactor());
7320       assert(all_of(Mask,
7321                     [=](int Idx) {
7322                       return Idx < 2 * static_cast<int>(CommonVF);
7323                     }) &&
7324              "All elements in mask must be less than 2 * CommonVF.");
7325       if (E2->Scalars.size() == VF && VF != CommonVF) {
7326         SmallVector<int> E2Mask = E2->getCommonMask();
7327         assert(!E2Mask.empty() && "Expected non-empty common mask.");
7328         for (int &Idx : CommonMask) {
7329           if (Idx == PoisonMaskElem)
7330             continue;
7331           if (Idx >= static_cast<int>(CommonVF))
7332             Idx = E2Mask[Idx - CommonVF] + VF;
7333         }
7334         CommonVF = VF;
7335       }
7336       V1 = Constant::getNullValue(
7337           FixedVectorType::get(E2->Scalars.front()->getType(), CommonVF));
7338       V2 = getAllOnesValue(
7339           *R.DL,
7340           FixedVectorType::get(E2->Scalars.front()->getType(), CommonVF));
7341     } else if (!V1 && V2) {
7342       // Shuffle vector and tree node.
7343       unsigned VF = cast<FixedVectorType>(V2->getType())->getNumElements();
7344       const TreeEntry *E1 = P1.get<const TreeEntry *>();
7345       CommonVF = std::max(VF, E1->getVectorFactor());
7346       assert(all_of(Mask,
7347                     [=](int Idx) {
7348                       return Idx < 2 * static_cast<int>(CommonVF);
7349                     }) &&
7350              "All elements in mask must be less than 2 * CommonVF.");
7351       if (E1->Scalars.size() == VF && VF != CommonVF) {
7352         SmallVector<int> E1Mask = E1->getCommonMask();
7353         assert(!E1Mask.empty() && "Expected non-empty common mask.");
7354         for (int &Idx : CommonMask) {
7355           if (Idx == PoisonMaskElem)
7356             continue;
7357           if (Idx >= static_cast<int>(CommonVF))
7358             Idx = E1Mask[Idx - CommonVF] + VF;
7359         }
7360         CommonVF = VF;
7361       }
7362       V1 = Constant::getNullValue(
7363           FixedVectorType::get(E1->Scalars.front()->getType(), CommonVF));
7364       V2 = getAllOnesValue(
7365           *R.DL,
7366           FixedVectorType::get(E1->Scalars.front()->getType(), CommonVF));
7367     } else {
7368       assert(V1 && V2 && "Expected both vectors.");
7369       unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7370       CommonVF =
7371           std::max(VF, cast<FixedVectorType>(V2->getType())->getNumElements());
7372       assert(all_of(Mask,
7373                     [=](int Idx) {
7374                       return Idx < 2 * static_cast<int>(CommonVF);
7375                     }) &&
7376              "All elements in mask must be less than 2 * CommonVF.");
7377       if (V1->getType() != V2->getType()) {
7378         V1 = Constant::getNullValue(FixedVectorType::get(
7379             cast<FixedVectorType>(V1->getType())->getElementType(), CommonVF));
7380         V2 = getAllOnesValue(
7381             *R.DL, FixedVectorType::get(
7382                        cast<FixedVectorType>(V1->getType())->getElementType(),
7383                        CommonVF));
7384       }
7385     }
7386     InVectors.front() = Constant::getNullValue(FixedVectorType::get(
7387         cast<FixedVectorType>(V1->getType())->getElementType(),
7388         CommonMask.size()));
7389     if (InVectors.size() == 2)
7390       InVectors.pop_back();
7391     return BaseShuffleAnalysis::createShuffle<InstructionCost>(
7392         V1, V2, CommonMask, Builder);
7393   }
7394 
7395 public:
7396   ShuffleCostEstimator(TargetTransformInfo &TTI,
7397                        ArrayRef<Value *> VectorizedVals, BoUpSLP &R,
7398                        SmallPtrSetImpl<Value *> &CheckedExtracts)
7399       : TTI(TTI), VectorizedVals(VectorizedVals.begin(), VectorizedVals.end()),
7400         R(R), CheckedExtracts(CheckedExtracts) {}
7401   Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask,
7402                         ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
7403                         unsigned NumParts, bool &UseVecBaseAsInput) {
7404     UseVecBaseAsInput = false;
7405     if (Mask.empty())
7406       return nullptr;
7407     Value *VecBase = nullptr;
7408     ArrayRef<Value *> VL = E->Scalars;
7409     // If the resulting type is scalarized, do not adjust the cost.
7410     if (NumParts == VL.size())
7411       return nullptr;
7412     // Check if it can be considered reused if same extractelements were
7413     // vectorized already.
7414     bool PrevNodeFound = any_of(
7415         ArrayRef(R.VectorizableTree).take_front(E->Idx),
7416         [&](const std::unique_ptr<TreeEntry> &TE) {
7417           return ((!TE->isAltShuffle() &&
7418                    TE->getOpcode() == Instruction::ExtractElement) ||
7419                   TE->State == TreeEntry::NeedToGather) &&
7420                  all_of(enumerate(TE->Scalars), [&](auto &&Data) {
7421                    return VL.size() > Data.index() &&
7422                           (Mask[Data.index()] == PoisonMaskElem ||
7423                            isa<UndefValue>(VL[Data.index()]) ||
7424                            Data.value() == VL[Data.index()]);
7425                  });
7426         });
7427     SmallPtrSet<Value *, 4> UniqueBases;
7428     unsigned SliceSize = VL.size() / NumParts;
7429     for (unsigned Part = 0; Part < NumParts; ++Part) {
7430       ArrayRef<int> SubMask = Mask.slice(Part * SliceSize, SliceSize);
7431       for (auto [I, V] : enumerate(VL.slice(Part * SliceSize, SliceSize))) {
7432         // Ignore non-extractelement scalars.
7433         if (isa<UndefValue>(V) ||
7434             (!SubMask.empty() && SubMask[I] == PoisonMaskElem))
7435           continue;
7436         // If all users of instruction are going to be vectorized and this
7437         // instruction itself is not going to be vectorized, consider this
7438         // instruction as dead and remove its cost from the final cost of the
7439         // vectorized tree.
7440         // Also, avoid adjusting the cost for extractelements with multiple uses
7441         // in different graph entries.
7442         auto *EE = cast<ExtractElementInst>(V);
7443         VecBase = EE->getVectorOperand();
7444         UniqueBases.insert(VecBase);
7445         const TreeEntry *VE = R.getTreeEntry(V);
7446         if (!CheckedExtracts.insert(V).second ||
7447             !R.areAllUsersVectorized(cast<Instruction>(V), &VectorizedVals) ||
7448             (VE && VE != E))
7449           continue;
7450         std::optional<unsigned> EEIdx = getExtractIndex(EE);
7451         if (!EEIdx)
7452           continue;
7453         unsigned Idx = *EEIdx;
7454         // Take credit for instruction that will become dead.
7455         if (EE->hasOneUse() || !PrevNodeFound) {
7456           Instruction *Ext = EE->user_back();
7457           if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) {
7458                 return isa<GetElementPtrInst>(U);
7459               })) {
7460             // Use getExtractWithExtendCost() to calculate the cost of
7461             // extractelement/ext pair.
7462             Cost -=
7463                 TTI.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
7464                                              EE->getVectorOperandType(), Idx);
7465             // Add back the cost of s|zext which is subtracted separately.
7466             Cost += TTI.getCastInstrCost(
7467                 Ext->getOpcode(), Ext->getType(), EE->getType(),
7468                 TTI::getCastContextHint(Ext), CostKind, Ext);
7469             continue;
7470           }
7471         }
7472         Cost -= TTI.getVectorInstrCost(*EE, EE->getVectorOperandType(),
7473                                        CostKind, Idx);
7474       }
7475     }
7476     // Check that gather of extractelements can be represented as just a
7477     // shuffle of a single/two vectors the scalars are extracted from.
7478     // Found the bunch of extractelement instructions that must be gathered
7479     // into a vector and can be represented as a permutation elements in a
7480     // single input vector or of 2 input vectors.
7481     // Done for reused if same extractelements were vectorized already.
7482     if (!PrevNodeFound)
7483       Cost += computeExtractCost(VL, Mask, ShuffleKinds, NumParts);
7484     InVectors.assign(1, E);
7485     CommonMask.assign(Mask.begin(), Mask.end());
7486     transformMaskAfterShuffle(CommonMask, CommonMask);
7487     SameNodesEstimated = false;
7488     if (NumParts != 1 && UniqueBases.size() != 1) {
7489       UseVecBaseAsInput = true;
7490       VecBase = Constant::getNullValue(
7491           FixedVectorType::get(VL.front()->getType(), CommonMask.size()));
7492     }
7493     return VecBase;
7494   }
7495   /// Checks if the specified entry \p E needs to be delayed because of its
7496   /// dependency nodes.
7497   std::optional<InstructionCost>
7498   needToDelay(const TreeEntry *,
7499               ArrayRef<SmallVector<const TreeEntry *>>) const {
7500     // No need to delay the cost estimation during analysis.
7501     return std::nullopt;
7502   }
7503   void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) {
7504     if (&E1 == &E2) {
7505       assert(all_of(Mask,
7506                     [&](int Idx) {
7507                       return Idx < static_cast<int>(E1.getVectorFactor());
7508                     }) &&
7509              "Expected single vector shuffle mask.");
7510       add(E1, Mask);
7511       return;
7512     }
7513     if (InVectors.empty()) {
7514       CommonMask.assign(Mask.begin(), Mask.end());
7515       InVectors.assign({&E1, &E2});
7516       return;
7517     }
7518     assert(!CommonMask.empty() && "Expected non-empty common mask.");
7519     auto *MaskVecTy =
7520         FixedVectorType::get(E1.Scalars.front()->getType(), Mask.size());
7521     unsigned NumParts = TTI.getNumberOfParts(MaskVecTy);
7522     if (NumParts == 0 || NumParts >= Mask.size())
7523       NumParts = 1;
7524     unsigned SliceSize = Mask.size() / NumParts;
7525     const auto *It =
7526         find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; });
7527     unsigned Part = std::distance(Mask.begin(), It) / SliceSize;
7528     estimateNodesPermuteCost(E1, &E2, Mask, Part, SliceSize);
7529   }
7530   void add(const TreeEntry &E1, ArrayRef<int> Mask) {
7531     if (InVectors.empty()) {
7532       CommonMask.assign(Mask.begin(), Mask.end());
7533       InVectors.assign(1, &E1);
7534       return;
7535     }
7536     assert(!CommonMask.empty() && "Expected non-empty common mask.");
7537     auto *MaskVecTy =
7538         FixedVectorType::get(E1.Scalars.front()->getType(), Mask.size());
7539     unsigned NumParts = TTI.getNumberOfParts(MaskVecTy);
7540     if (NumParts == 0 || NumParts >= Mask.size())
7541       NumParts = 1;
7542     unsigned SliceSize = Mask.size() / NumParts;
7543     const auto *It =
7544         find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; });
7545     unsigned Part = std::distance(Mask.begin(), It) / SliceSize;
7546     estimateNodesPermuteCost(E1, nullptr, Mask, Part, SliceSize);
7547     if (!SameNodesEstimated && InVectors.size() == 1)
7548       InVectors.emplace_back(&E1);
7549   }
7550   /// Adds 2 input vectors and the mask for their shuffling.
7551   void add(Value *V1, Value *V2, ArrayRef<int> Mask) {
7552     // May come only for shuffling of 2 vectors with extractelements, already
7553     // handled in adjustExtracts.
7554     assert(InVectors.size() == 1 &&
7555            all_of(enumerate(CommonMask),
7556                   [&](auto P) {
7557                     if (P.value() == PoisonMaskElem)
7558                       return Mask[P.index()] == PoisonMaskElem;
7559                     auto *EI =
7560                         cast<ExtractElementInst>(InVectors.front()
7561                                                      .get<const TreeEntry *>()
7562                                                      ->Scalars[P.index()]);
7563                     return EI->getVectorOperand() == V1 ||
7564                            EI->getVectorOperand() == V2;
7565                   }) &&
7566            "Expected extractelement vectors.");
7567   }
7568   /// Adds another one input vector and the mask for the shuffling.
7569   void add(Value *V1, ArrayRef<int> Mask, bool ForExtracts = false) {
7570     if (InVectors.empty()) {
7571       assert(CommonMask.empty() && !ForExtracts &&
7572              "Expected empty input mask/vectors.");
7573       CommonMask.assign(Mask.begin(), Mask.end());
7574       InVectors.assign(1, V1);
7575       return;
7576     }
7577     if (ForExtracts) {
7578       // No need to add vectors here, already handled them in adjustExtracts.
7579       assert(InVectors.size() == 1 &&
7580              InVectors.front().is<const TreeEntry *>() && !CommonMask.empty() &&
7581              all_of(enumerate(CommonMask),
7582                     [&](auto P) {
7583                       Value *Scalar = InVectors.front()
7584                                           .get<const TreeEntry *>()
7585                                           ->Scalars[P.index()];
7586                       if (P.value() == PoisonMaskElem)
7587                         return P.value() == Mask[P.index()] ||
7588                                isa<UndefValue>(Scalar);
7589                       if (isa<Constant>(V1))
7590                         return true;
7591                       auto *EI = cast<ExtractElementInst>(Scalar);
7592                       return EI->getVectorOperand() == V1;
7593                     }) &&
7594              "Expected only tree entry for extractelement vectors.");
7595       return;
7596     }
7597     assert(!InVectors.empty() && !CommonMask.empty() &&
7598            "Expected only tree entries from extracts/reused buildvectors.");
7599     unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7600     if (InVectors.size() == 2) {
7601       Cost += createShuffle(InVectors.front(), InVectors.back(), CommonMask);
7602       transformMaskAfterShuffle(CommonMask, CommonMask);
7603       VF = std::max<unsigned>(VF, CommonMask.size());
7604     } else if (const auto *InTE =
7605                    InVectors.front().dyn_cast<const TreeEntry *>()) {
7606       VF = std::max(VF, InTE->getVectorFactor());
7607     } else {
7608       VF = std::max(
7609           VF, cast<FixedVectorType>(InVectors.front().get<Value *>()->getType())
7610                   ->getNumElements());
7611     }
7612     InVectors.push_back(V1);
7613     for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7614       if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem)
7615         CommonMask[Idx] = Mask[Idx] + VF;
7616   }
7617   Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0,
7618                 Value *Root = nullptr) {
7619     Cost += getBuildVectorCost(VL, Root);
7620     if (!Root) {
7621       // FIXME: Need to find a way to avoid use of getNullValue here.
7622       SmallVector<Constant *> Vals;
7623       unsigned VF = VL.size();
7624       if (MaskVF != 0)
7625         VF = std::min(VF, MaskVF);
7626       for (Value *V : VL.take_front(VF)) {
7627         if (isa<UndefValue>(V)) {
7628           Vals.push_back(cast<Constant>(V));
7629           continue;
7630         }
7631         Vals.push_back(Constant::getNullValue(V->getType()));
7632       }
7633       return ConstantVector::get(Vals);
7634     }
7635     return ConstantVector::getSplat(
7636         ElementCount::getFixed(
7637             cast<FixedVectorType>(Root->getType())->getNumElements()),
7638         getAllOnesValue(*R.DL, VL.front()->getType()));
7639   }
7640   InstructionCost createFreeze(InstructionCost Cost) { return Cost; }
7641   /// Finalize emission of the shuffles.
7642   InstructionCost
7643   finalize(ArrayRef<int> ExtMask, unsigned VF = 0,
7644            function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) {
7645     IsFinalized = true;
7646     if (Action) {
7647       const PointerUnion<Value *, const TreeEntry *> &Vec = InVectors.front();
7648       if (InVectors.size() == 2)
7649         Cost += createShuffle(Vec, InVectors.back(), CommonMask);
7650       else
7651         Cost += createShuffle(Vec, nullptr, CommonMask);
7652       for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7653         if (CommonMask[Idx] != PoisonMaskElem)
7654           CommonMask[Idx] = Idx;
7655       assert(VF > 0 &&
7656              "Expected vector length for the final value before action.");
7657       Value *V = Vec.get<Value *>();
7658       Action(V, CommonMask);
7659       InVectors.front() = V;
7660     }
7661     ::addMask(CommonMask, ExtMask, /*ExtendingManyInputs=*/true);
7662     if (CommonMask.empty()) {
7663       assert(InVectors.size() == 1 && "Expected only one vector with no mask");
7664       return Cost;
7665     }
7666     return Cost +
7667            createShuffle(InVectors.front(),
7668                          InVectors.size() == 2 ? InVectors.back() : nullptr,
7669                          CommonMask);
7670   }
7671 
7672   ~ShuffleCostEstimator() {
7673     assert((IsFinalized || CommonMask.empty()) &&
7674            "Shuffle construction must be finalized.");
7675   }
7676 };
7677 
7678 const BoUpSLP::TreeEntry *BoUpSLP::getOperandEntry(const TreeEntry *E,
7679                                                    unsigned Idx) const {
7680   Value *Op = E->getOperand(Idx).front();
7681   if (const TreeEntry *TE = getTreeEntry(Op)) {
7682     if (find_if(E->UserTreeIndices, [&](const EdgeInfo &EI) {
7683           return EI.EdgeIdx == Idx && EI.UserTE == E;
7684         }) != TE->UserTreeIndices.end())
7685       return TE;
7686     auto MIt = MultiNodeScalars.find(Op);
7687     if (MIt != MultiNodeScalars.end()) {
7688       for (const TreeEntry *TE : MIt->second) {
7689         if (find_if(TE->UserTreeIndices, [&](const EdgeInfo &EI) {
7690               return EI.EdgeIdx == Idx && EI.UserTE == E;
7691             }) != TE->UserTreeIndices.end())
7692           return TE;
7693       }
7694     }
7695   }
7696   const auto *It =
7697       find_if(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
7698         return TE->State == TreeEntry::NeedToGather &&
7699                find_if(TE->UserTreeIndices, [&](const EdgeInfo &EI) {
7700                  return EI.EdgeIdx == Idx && EI.UserTE == E;
7701                }) != TE->UserTreeIndices.end();
7702       });
7703   assert(It != VectorizableTree.end() && "Expected vectorizable entry.");
7704   return It->get();
7705 }
7706 
7707 InstructionCost
7708 BoUpSLP::getEntryCost(const TreeEntry *E, ArrayRef<Value *> VectorizedVals,
7709                       SmallPtrSetImpl<Value *> &CheckedExtracts) {
7710   ArrayRef<Value *> VL = E->Scalars;
7711 
7712   Type *ScalarTy = VL[0]->getType();
7713   if (E->State != TreeEntry::NeedToGather) {
7714     if (auto *SI = dyn_cast<StoreInst>(VL[0]))
7715       ScalarTy = SI->getValueOperand()->getType();
7716     else if (auto *CI = dyn_cast<CmpInst>(VL[0]))
7717       ScalarTy = CI->getOperand(0)->getType();
7718     else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7719       ScalarTy = IE->getOperand(1)->getType();
7720   }
7721   if (!FixedVectorType::isValidElementType(ScalarTy))
7722     return InstructionCost::getInvalid();
7723   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7724   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7725 
7726   // If we have computed a smaller type for the expression, update VecTy so
7727   // that the costs will be accurate.
7728   auto It = MinBWs.find(E);
7729   if (It != MinBWs.end()) {
7730     ScalarTy = IntegerType::get(F->getContext(), It->second.first);
7731     VecTy = FixedVectorType::get(ScalarTy, VL.size());
7732   }
7733   unsigned EntryVF = E->getVectorFactor();
7734   auto *FinalVecTy = FixedVectorType::get(ScalarTy, EntryVF);
7735 
7736   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7737   if (E->State == TreeEntry::NeedToGather) {
7738     if (allConstant(VL))
7739       return 0;
7740     if (isa<InsertElementInst>(VL[0]))
7741       return InstructionCost::getInvalid();
7742     return processBuildVector<ShuffleCostEstimator, InstructionCost>(
7743         E, *TTI, VectorizedVals, *this, CheckedExtracts);
7744   }
7745   InstructionCost CommonCost = 0;
7746   SmallVector<int> Mask;
7747   if (!E->ReorderIndices.empty() &&
7748       E->State != TreeEntry::PossibleStridedVectorize) {
7749     SmallVector<int> NewMask;
7750     if (E->getOpcode() == Instruction::Store) {
7751       // For stores the order is actually a mask.
7752       NewMask.resize(E->ReorderIndices.size());
7753       copy(E->ReorderIndices, NewMask.begin());
7754     } else {
7755       inversePermutation(E->ReorderIndices, NewMask);
7756     }
7757     ::addMask(Mask, NewMask);
7758   }
7759   if (NeedToShuffleReuses)
7760     ::addMask(Mask, E->ReuseShuffleIndices);
7761   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
7762     CommonCost =
7763         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
7764   assert((E->State == TreeEntry::Vectorize ||
7765           E->State == TreeEntry::ScatterVectorize ||
7766           E->State == TreeEntry::PossibleStridedVectorize) &&
7767          "Unhandled state");
7768   assert(E->getOpcode() &&
7769          ((allSameType(VL) && allSameBlock(VL)) ||
7770           (E->getOpcode() == Instruction::GetElementPtr &&
7771            E->getMainOp()->getType()->isPointerTy())) &&
7772          "Invalid VL");
7773   Instruction *VL0 = E->getMainOp();
7774   unsigned ShuffleOrOp =
7775       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7776   SetVector<Value *> UniqueValues(VL.begin(), VL.end());
7777   const unsigned Sz = UniqueValues.size();
7778   SmallBitVector UsedScalars(Sz, false);
7779   for (unsigned I = 0; I < Sz; ++I) {
7780     if (getTreeEntry(UniqueValues[I]) == E)
7781       continue;
7782     UsedScalars.set(I);
7783   }
7784   auto GetCastContextHint = [&](Value *V) {
7785     if (const TreeEntry *OpTE = getTreeEntry(V)) {
7786       if (OpTE->State == TreeEntry::ScatterVectorize)
7787         return TTI::CastContextHint::GatherScatter;
7788       if (OpTE->State == TreeEntry::Vectorize &&
7789           OpTE->getOpcode() == Instruction::Load && !OpTE->isAltShuffle()) {
7790         if (OpTE->ReorderIndices.empty())
7791           return TTI::CastContextHint::Normal;
7792         SmallVector<int> Mask;
7793         inversePermutation(OpTE->ReorderIndices, Mask);
7794         if (ShuffleVectorInst::isReverseMask(Mask, Mask.size()))
7795           return TTI::CastContextHint::Reversed;
7796       }
7797     } else {
7798       InstructionsState SrcState = getSameOpcode(E->getOperand(0), *TLI);
7799       if (SrcState.getOpcode() == Instruction::Load && !SrcState.isAltShuffle())
7800         return TTI::CastContextHint::GatherScatter;
7801     }
7802     return TTI::CastContextHint::None;
7803   };
7804   auto GetCostDiff =
7805       [=](function_ref<InstructionCost(unsigned)> ScalarEltCost,
7806           function_ref<InstructionCost(InstructionCost)> VectorCost) {
7807         // Calculate the cost of this instruction.
7808         InstructionCost ScalarCost = 0;
7809         if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) {
7810           // For some of the instructions no need to calculate cost for each
7811           // particular instruction, we can use the cost of the single
7812           // instruction x total number of scalar instructions.
7813           ScalarCost = (Sz - UsedScalars.count()) * ScalarEltCost(0);
7814         } else {
7815           for (unsigned I = 0; I < Sz; ++I) {
7816             if (UsedScalars.test(I))
7817               continue;
7818             ScalarCost += ScalarEltCost(I);
7819           }
7820         }
7821 
7822         InstructionCost VecCost = VectorCost(CommonCost);
7823         // Check if the current node must be resized, if the parent node is not
7824         // resized.
7825         if (!UnaryInstruction::isCast(E->getOpcode()) && E->Idx != 0) {
7826           const EdgeInfo &EI = E->UserTreeIndices.front();
7827           if ((EI.UserTE->getOpcode() != Instruction::Select ||
7828                EI.EdgeIdx != 0) &&
7829               It != MinBWs.end()) {
7830             auto UserBWIt = MinBWs.find(EI.UserTE);
7831             Type *UserScalarTy =
7832                 EI.UserTE->getOperand(EI.EdgeIdx).front()->getType();
7833             if (UserBWIt != MinBWs.end())
7834               UserScalarTy = IntegerType::get(ScalarTy->getContext(),
7835                                               UserBWIt->second.first);
7836             if (ScalarTy != UserScalarTy) {
7837               unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
7838               unsigned SrcBWSz = DL->getTypeSizeInBits(UserScalarTy);
7839               unsigned VecOpcode;
7840               auto *SrcVecTy =
7841                   FixedVectorType::get(UserScalarTy, E->getVectorFactor());
7842               if (BWSz > SrcBWSz)
7843                 VecOpcode = Instruction::Trunc;
7844               else
7845                 VecOpcode =
7846                     It->second.second ? Instruction::SExt : Instruction::ZExt;
7847               TTI::CastContextHint CCH = GetCastContextHint(VL0);
7848               VecCost += TTI->getCastInstrCost(VecOpcode, VecTy, SrcVecTy, CCH,
7849                                                CostKind);
7850               ScalarCost +=
7851                   Sz * TTI->getCastInstrCost(VecOpcode, ScalarTy, UserScalarTy,
7852                                              CCH, CostKind);
7853             }
7854           }
7855         }
7856         LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost - CommonCost,
7857                                  ScalarCost, "Calculated costs for Tree"));
7858         return VecCost - ScalarCost;
7859       };
7860   // Calculate cost difference from vectorizing set of GEPs.
7861   // Negative value means vectorizing is profitable.
7862   auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) {
7863     InstructionCost ScalarCost = 0;
7864     InstructionCost VecCost = 0;
7865     // Here we differentiate two cases: (1) when Ptrs represent a regular
7866     // vectorization tree node (as they are pointer arguments of scattered
7867     // loads) or (2) when Ptrs are the arguments of loads or stores being
7868     // vectorized as plane wide unit-stride load/store since all the
7869     // loads/stores are known to be from/to adjacent locations.
7870     assert(E->State == TreeEntry::Vectorize &&
7871            "Entry state expected to be Vectorize here.");
7872     if (isa<LoadInst, StoreInst>(VL0)) {
7873       // Case 2: estimate costs for pointer related costs when vectorizing to
7874       // a wide load/store.
7875       // Scalar cost is estimated as a set of pointers with known relationship
7876       // between them.
7877       // For vector code we will use BasePtr as argument for the wide load/store
7878       // but we also need to account all the instructions which are going to
7879       // stay in vectorized code due to uses outside of these scalar
7880       // loads/stores.
7881       ScalarCost = TTI->getPointersChainCost(
7882           Ptrs, BasePtr, TTI::PointersChainInfo::getUnitStride(), ScalarTy,
7883           CostKind);
7884 
7885       SmallVector<const Value *> PtrsRetainedInVecCode;
7886       for (Value *V : Ptrs) {
7887         if (V == BasePtr) {
7888           PtrsRetainedInVecCode.push_back(V);
7889           continue;
7890         }
7891         auto *Ptr = dyn_cast<GetElementPtrInst>(V);
7892         // For simplicity assume Ptr to stay in vectorized code if it's not a
7893         // GEP instruction. We don't care since it's cost considered free.
7894         // TODO: We should check for any uses outside of vectorizable tree
7895         // rather than just single use.
7896         if (!Ptr || !Ptr->hasOneUse())
7897           PtrsRetainedInVecCode.push_back(V);
7898       }
7899 
7900       if (PtrsRetainedInVecCode.size() == Ptrs.size()) {
7901         // If all pointers stay in vectorized code then we don't have
7902         // any savings on that.
7903         LLVM_DEBUG(dumpTreeCosts(E, 0, ScalarCost, ScalarCost,
7904                                  "Calculated GEPs cost for Tree"));
7905         return InstructionCost{TTI::TCC_Free};
7906       }
7907       VecCost = TTI->getPointersChainCost(
7908           PtrsRetainedInVecCode, BasePtr,
7909           TTI::PointersChainInfo::getKnownStride(), VecTy, CostKind);
7910     } else {
7911       // Case 1: Ptrs are the arguments of loads that we are going to transform
7912       // into masked gather load intrinsic.
7913       // All the scalar GEPs will be removed as a result of vectorization.
7914       // For any external uses of some lanes extract element instructions will
7915       // be generated (which cost is estimated separately).
7916       TTI::PointersChainInfo PtrsInfo =
7917           all_of(Ptrs,
7918                  [](const Value *V) {
7919                    auto *Ptr = dyn_cast<GetElementPtrInst>(V);
7920                    return Ptr && !Ptr->hasAllConstantIndices();
7921                  })
7922               ? TTI::PointersChainInfo::getUnknownStride()
7923               : TTI::PointersChainInfo::getKnownStride();
7924 
7925       ScalarCost = TTI->getPointersChainCost(Ptrs, BasePtr, PtrsInfo, ScalarTy,
7926                                              CostKind);
7927       if (auto *BaseGEP = dyn_cast<GEPOperator>(BasePtr)) {
7928         SmallVector<const Value *> Indices(BaseGEP->indices());
7929         VecCost = TTI->getGEPCost(BaseGEP->getSourceElementType(),
7930                                   BaseGEP->getPointerOperand(), Indices, VecTy,
7931                                   CostKind);
7932       }
7933     }
7934 
7935     LLVM_DEBUG(dumpTreeCosts(E, 0, VecCost, ScalarCost,
7936                              "Calculated GEPs cost for Tree"));
7937 
7938     return VecCost - ScalarCost;
7939   };
7940 
7941   switch (ShuffleOrOp) {
7942   case Instruction::PHI: {
7943     // Count reused scalars.
7944     InstructionCost ScalarCost = 0;
7945     SmallPtrSet<const TreeEntry *, 4> CountedOps;
7946     for (Value *V : UniqueValues) {
7947       auto *PHI = dyn_cast<PHINode>(V);
7948       if (!PHI)
7949         continue;
7950 
7951       ValueList Operands(PHI->getNumIncomingValues(), nullptr);
7952       for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) {
7953         Value *Op = PHI->getIncomingValue(I);
7954         Operands[I] = Op;
7955       }
7956       if (const TreeEntry *OpTE = getTreeEntry(Operands.front()))
7957         if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second)
7958           if (!OpTE->ReuseShuffleIndices.empty())
7959             ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() -
7960                                             OpTE->Scalars.size());
7961     }
7962 
7963     return CommonCost - ScalarCost;
7964   }
7965   case Instruction::ExtractValue:
7966   case Instruction::ExtractElement: {
7967     auto GetScalarCost = [&](unsigned Idx) {
7968       auto *I = cast<Instruction>(UniqueValues[Idx]);
7969       VectorType *SrcVecTy;
7970       if (ShuffleOrOp == Instruction::ExtractElement) {
7971         auto *EE = cast<ExtractElementInst>(I);
7972         SrcVecTy = EE->getVectorOperandType();
7973       } else {
7974         auto *EV = cast<ExtractValueInst>(I);
7975         Type *AggregateTy = EV->getAggregateOperand()->getType();
7976         unsigned NumElts;
7977         if (auto *ATy = dyn_cast<ArrayType>(AggregateTy))
7978           NumElts = ATy->getNumElements();
7979         else
7980           NumElts = AggregateTy->getStructNumElements();
7981         SrcVecTy = FixedVectorType::get(ScalarTy, NumElts);
7982       }
7983       if (I->hasOneUse()) {
7984         Instruction *Ext = I->user_back();
7985         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
7986             all_of(Ext->users(),
7987                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
7988           // Use getExtractWithExtendCost() to calculate the cost of
7989           // extractelement/ext pair.
7990           InstructionCost Cost = TTI->getExtractWithExtendCost(
7991               Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I));
7992           // Subtract the cost of s|zext which is subtracted separately.
7993           Cost -= TTI->getCastInstrCost(
7994               Ext->getOpcode(), Ext->getType(), I->getType(),
7995               TTI::getCastContextHint(Ext), CostKind, Ext);
7996           return Cost;
7997         }
7998       }
7999       return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy,
8000                                      CostKind, *getExtractIndex(I));
8001     };
8002     auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; };
8003     return GetCostDiff(GetScalarCost, GetVectorCost);
8004   }
8005   case Instruction::InsertElement: {
8006     assert(E->ReuseShuffleIndices.empty() &&
8007            "Unique insertelements only are expected.");
8008     auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
8009     unsigned const NumElts = SrcVecTy->getNumElements();
8010     unsigned const NumScalars = VL.size();
8011 
8012     unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
8013 
8014     SmallVector<int> InsertMask(NumElts, PoisonMaskElem);
8015     unsigned OffsetBeg = *getInsertIndex(VL.front());
8016     unsigned OffsetEnd = OffsetBeg;
8017     InsertMask[OffsetBeg] = 0;
8018     for (auto [I, V] : enumerate(VL.drop_front())) {
8019       unsigned Idx = *getInsertIndex(V);
8020       if (OffsetBeg > Idx)
8021         OffsetBeg = Idx;
8022       else if (OffsetEnd < Idx)
8023         OffsetEnd = Idx;
8024       InsertMask[Idx] = I + 1;
8025     }
8026     unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
8027     if (NumOfParts > 0)
8028       VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
8029     unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
8030                      VecScalarsSz;
8031     unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
8032     unsigned InsertVecSz = std::min<unsigned>(
8033         PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
8034         ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz);
8035     bool IsWholeSubvector =
8036         OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
8037     // Check if we can safely insert a subvector. If it is not possible, just
8038     // generate a whole-sized vector and shuffle the source vector and the new
8039     // subvector.
8040     if (OffsetBeg + InsertVecSz > VecSz) {
8041       // Align OffsetBeg to generate correct mask.
8042       OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
8043       InsertVecSz = VecSz;
8044     }
8045 
8046     APInt DemandedElts = APInt::getZero(NumElts);
8047     // TODO: Add support for Instruction::InsertValue.
8048     SmallVector<int> Mask;
8049     if (!E->ReorderIndices.empty()) {
8050       inversePermutation(E->ReorderIndices, Mask);
8051       Mask.append(InsertVecSz - Mask.size(), PoisonMaskElem);
8052     } else {
8053       Mask.assign(VecSz, PoisonMaskElem);
8054       std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
8055     }
8056     bool IsIdentity = true;
8057     SmallVector<int> PrevMask(InsertVecSz, PoisonMaskElem);
8058     Mask.swap(PrevMask);
8059     for (unsigned I = 0; I < NumScalars; ++I) {
8060       unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
8061       DemandedElts.setBit(InsertIdx);
8062       IsIdentity &= InsertIdx - OffsetBeg == I;
8063       Mask[InsertIdx - OffsetBeg] = I;
8064     }
8065     assert(Offset < NumElts && "Failed to find vector index offset");
8066 
8067     InstructionCost Cost = 0;
8068     Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
8069                                           /*Insert*/ true, /*Extract*/ false,
8070                                           CostKind);
8071 
8072     // First cost - resize to actual vector size if not identity shuffle or
8073     // need to shift the vector.
8074     // Do not calculate the cost if the actual size is the register size and
8075     // we can merge this shuffle with the following SK_Select.
8076     auto *InsertVecTy = FixedVectorType::get(ScalarTy, InsertVecSz);
8077     if (!IsIdentity)
8078       Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
8079                                   InsertVecTy, Mask);
8080     auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
8081       return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
8082     }));
8083     // Second cost - permutation with subvector, if some elements are from the
8084     // initial vector or inserting a subvector.
8085     // TODO: Implement the analysis of the FirstInsert->getOperand(0)
8086     // subvector of ActualVecTy.
8087     SmallBitVector InMask =
8088         isUndefVector(FirstInsert->getOperand(0),
8089                       buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask));
8090     if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) {
8091       if (InsertVecSz != VecSz) {
8092         auto *ActualVecTy = FixedVectorType::get(ScalarTy, VecSz);
8093         Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy,
8094                                     std::nullopt, CostKind, OffsetBeg - Offset,
8095                                     InsertVecTy);
8096       } else {
8097         for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
8098           Mask[I] = InMask.test(I) ? PoisonMaskElem : I;
8099         for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
8100              I <= End; ++I)
8101           if (Mask[I] != PoisonMaskElem)
8102             Mask[I] = I + VecSz;
8103         for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
8104           Mask[I] =
8105               ((I >= InMask.size()) || InMask.test(I)) ? PoisonMaskElem : I;
8106         Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
8107       }
8108     }
8109     return Cost;
8110   }
8111   case Instruction::ZExt:
8112   case Instruction::SExt:
8113   case Instruction::FPToUI:
8114   case Instruction::FPToSI:
8115   case Instruction::FPExt:
8116   case Instruction::PtrToInt:
8117   case Instruction::IntToPtr:
8118   case Instruction::SIToFP:
8119   case Instruction::UIToFP:
8120   case Instruction::Trunc:
8121   case Instruction::FPTrunc:
8122   case Instruction::BitCast: {
8123     auto SrcIt = MinBWs.find(getOperandEntry(E, 0));
8124     Type *SrcScalarTy = VL0->getOperand(0)->getType();
8125     auto *SrcVecTy = FixedVectorType::get(SrcScalarTy, VL.size());
8126     unsigned Opcode = ShuffleOrOp;
8127     unsigned VecOpcode = Opcode;
8128     if (!ScalarTy->isFloatingPointTy() && !SrcScalarTy->isFloatingPointTy() &&
8129         (SrcIt != MinBWs.end() || It != MinBWs.end())) {
8130       // Check if the values are candidates to demote.
8131       unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy);
8132       if (SrcIt != MinBWs.end()) {
8133         SrcBWSz = SrcIt->second.first;
8134         SrcScalarTy = IntegerType::get(F->getContext(), SrcBWSz);
8135         SrcVecTy = FixedVectorType::get(SrcScalarTy, VL.size());
8136       }
8137       unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
8138       if (BWSz == SrcBWSz) {
8139         VecOpcode = Instruction::BitCast;
8140       } else if (BWSz < SrcBWSz) {
8141         VecOpcode = Instruction::Trunc;
8142       } else if (It != MinBWs.end()) {
8143         assert(BWSz > SrcBWSz && "Invalid cast!");
8144         VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt;
8145       }
8146     }
8147     auto GetScalarCost = [&](unsigned Idx) -> InstructionCost {
8148       // Do not count cost here if minimum bitwidth is in effect and it is just
8149       // a bitcast (here it is just a noop).
8150       if (VecOpcode != Opcode && VecOpcode == Instruction::BitCast)
8151         return TTI::TCC_Free;
8152       auto *VI = VL0->getOpcode() == Opcode
8153                      ? cast<Instruction>(UniqueValues[Idx])
8154                      : nullptr;
8155       return TTI->getCastInstrCost(Opcode, VL0->getType(),
8156                                    VL0->getOperand(0)->getType(),
8157                                    TTI::getCastContextHint(VI), CostKind, VI);
8158     };
8159     auto GetVectorCost = [=](InstructionCost CommonCost) {
8160       // Do not count cost here if minimum bitwidth is in effect and it is just
8161       // a bitcast (here it is just a noop).
8162       if (VecOpcode != Opcode && VecOpcode == Instruction::BitCast)
8163         return CommonCost;
8164       auto *VI = VL0->getOpcode() == Opcode ? VL0 : nullptr;
8165       TTI::CastContextHint CCH = GetCastContextHint(VL0->getOperand(0));
8166       return CommonCost +
8167              TTI->getCastInstrCost(VecOpcode, VecTy, SrcVecTy, CCH, CostKind,
8168                                    VecOpcode == Opcode ? VI : nullptr);
8169     };
8170     return GetCostDiff(GetScalarCost, GetVectorCost);
8171   }
8172   case Instruction::FCmp:
8173   case Instruction::ICmp:
8174   case Instruction::Select: {
8175     CmpInst::Predicate VecPred, SwappedVecPred;
8176     auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value());
8177     if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) ||
8178         match(VL0, MatchCmp))
8179       SwappedVecPred = CmpInst::getSwappedPredicate(VecPred);
8180     else
8181       SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy()
8182                                      ? CmpInst::BAD_FCMP_PREDICATE
8183                                      : CmpInst::BAD_ICMP_PREDICATE;
8184     auto GetScalarCost = [&](unsigned Idx) {
8185       auto *VI = cast<Instruction>(UniqueValues[Idx]);
8186       CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy()
8187                                            ? CmpInst::BAD_FCMP_PREDICATE
8188                                            : CmpInst::BAD_ICMP_PREDICATE;
8189       auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
8190       if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) &&
8191            !match(VI, MatchCmp)) ||
8192           (CurrentPred != VecPred && CurrentPred != SwappedVecPred))
8193         VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy()
8194                                        ? CmpInst::BAD_FCMP_PREDICATE
8195                                        : CmpInst::BAD_ICMP_PREDICATE;
8196 
8197       return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
8198                                      Builder.getInt1Ty(), CurrentPred, CostKind,
8199                                      VI);
8200     };
8201     auto GetVectorCost = [&](InstructionCost CommonCost) {
8202       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
8203 
8204       InstructionCost VecCost = TTI->getCmpSelInstrCost(
8205           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
8206       // Check if it is possible and profitable to use min/max for selects
8207       // in VL.
8208       //
8209       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
8210       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
8211         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
8212                                           {VecTy, VecTy});
8213         InstructionCost IntrinsicCost =
8214             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
8215         // If the selects are the only uses of the compares, they will be
8216         // dead and we can adjust the cost by removing their cost.
8217         if (IntrinsicAndUse.second)
8218           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
8219                                                    MaskTy, VecPred, CostKind);
8220         VecCost = std::min(VecCost, IntrinsicCost);
8221       }
8222       return VecCost + CommonCost;
8223     };
8224     return GetCostDiff(GetScalarCost, GetVectorCost);
8225   }
8226   case Instruction::FNeg:
8227   case Instruction::Add:
8228   case Instruction::FAdd:
8229   case Instruction::Sub:
8230   case Instruction::FSub:
8231   case Instruction::Mul:
8232   case Instruction::FMul:
8233   case Instruction::UDiv:
8234   case Instruction::SDiv:
8235   case Instruction::FDiv:
8236   case Instruction::URem:
8237   case Instruction::SRem:
8238   case Instruction::FRem:
8239   case Instruction::Shl:
8240   case Instruction::LShr:
8241   case Instruction::AShr:
8242   case Instruction::And:
8243   case Instruction::Or:
8244   case Instruction::Xor: {
8245     auto GetScalarCost = [&](unsigned Idx) {
8246       auto *VI = cast<Instruction>(UniqueValues[Idx]);
8247       unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1;
8248       TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0));
8249       TTI::OperandValueInfo Op2Info =
8250           TTI::getOperandInfo(VI->getOperand(OpIdx));
8251       SmallVector<const Value *> Operands(VI->operand_values());
8252       return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind,
8253                                          Op1Info, Op2Info, Operands, VI);
8254     };
8255     auto GetVectorCost = [=](InstructionCost CommonCost) {
8256       unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1;
8257       TTI::OperandValueInfo Op1Info = getOperandInfo(E->getOperand(0));
8258       TTI::OperandValueInfo Op2Info = getOperandInfo(E->getOperand(OpIdx));
8259       return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info,
8260                                          Op2Info) +
8261              CommonCost;
8262     };
8263     return GetCostDiff(GetScalarCost, GetVectorCost);
8264   }
8265   case Instruction::GetElementPtr: {
8266     return CommonCost + GetGEPCostDiff(VL, VL0);
8267   }
8268   case Instruction::Load: {
8269     auto GetScalarCost = [&](unsigned Idx) {
8270       auto *VI = cast<LoadInst>(UniqueValues[Idx]);
8271       return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(),
8272                                   VI->getPointerAddressSpace(), CostKind,
8273                                   TTI::OperandValueInfo(), VI);
8274     };
8275     auto *LI0 = cast<LoadInst>(VL0);
8276     auto GetVectorCost = [&](InstructionCost CommonCost) {
8277       InstructionCost VecLdCost;
8278       if (E->State == TreeEntry::Vectorize) {
8279         VecLdCost = TTI->getMemoryOpCost(
8280             Instruction::Load, VecTy, LI0->getAlign(),
8281             LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo());
8282       } else {
8283         assert((E->State == TreeEntry::ScatterVectorize ||
8284                 E->State == TreeEntry::PossibleStridedVectorize) &&
8285                "Unknown EntryState");
8286         Align CommonAlignment = LI0->getAlign();
8287         for (Value *V : UniqueValues)
8288           CommonAlignment =
8289               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
8290         VecLdCost = TTI->getGatherScatterOpCost(
8291             Instruction::Load, VecTy, LI0->getPointerOperand(),
8292             /*VariableMask=*/false, CommonAlignment, CostKind);
8293       }
8294       return VecLdCost + CommonCost;
8295     };
8296 
8297     InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost);
8298     // If this node generates masked gather load then it is not a terminal node.
8299     // Hence address operand cost is estimated separately.
8300     if (E->State == TreeEntry::ScatterVectorize ||
8301         E->State == TreeEntry::PossibleStridedVectorize)
8302       return Cost;
8303 
8304     // Estimate cost of GEPs since this tree node is a terminator.
8305     SmallVector<Value *> PointerOps(VL.size());
8306     for (auto [I, V] : enumerate(VL))
8307       PointerOps[I] = cast<LoadInst>(V)->getPointerOperand();
8308     return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand());
8309   }
8310   case Instruction::Store: {
8311     bool IsReorder = !E->ReorderIndices.empty();
8312     auto GetScalarCost = [=](unsigned Idx) {
8313       auto *VI = cast<StoreInst>(VL[Idx]);
8314       TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(VI->getValueOperand());
8315       return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(),
8316                                   VI->getPointerAddressSpace(), CostKind,
8317                                   OpInfo, VI);
8318     };
8319     auto *BaseSI =
8320         cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
8321     auto GetVectorCost = [=](InstructionCost CommonCost) {
8322       // We know that we can merge the stores. Calculate the cost.
8323       TTI::OperandValueInfo OpInfo = getOperandInfo(E->getOperand(0));
8324       return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(),
8325                                   BaseSI->getPointerAddressSpace(), CostKind,
8326                                   OpInfo) +
8327              CommonCost;
8328     };
8329     SmallVector<Value *> PointerOps(VL.size());
8330     for (auto [I, V] : enumerate(VL)) {
8331       unsigned Idx = IsReorder ? E->ReorderIndices[I] : I;
8332       PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand();
8333     }
8334 
8335     return GetCostDiff(GetScalarCost, GetVectorCost) +
8336            GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand());
8337   }
8338   case Instruction::Call: {
8339     auto GetScalarCost = [&](unsigned Idx) {
8340       auto *CI = cast<CallInst>(UniqueValues[Idx]);
8341       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8342       if (ID != Intrinsic::not_intrinsic) {
8343         IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
8344         return TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
8345       }
8346       return TTI->getCallInstrCost(CI->getCalledFunction(),
8347                                    CI->getFunctionType()->getReturnType(),
8348                                    CI->getFunctionType()->params(), CostKind);
8349     };
8350     auto GetVectorCost = [=](InstructionCost CommonCost) {
8351       auto *CI = cast<CallInst>(VL0);
8352       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8353       return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost;
8354     };
8355     return GetCostDiff(GetScalarCost, GetVectorCost);
8356   }
8357   case Instruction::ShuffleVector: {
8358     assert(E->isAltShuffle() &&
8359            ((Instruction::isBinaryOp(E->getOpcode()) &&
8360              Instruction::isBinaryOp(E->getAltOpcode())) ||
8361             (Instruction::isCast(E->getOpcode()) &&
8362              Instruction::isCast(E->getAltOpcode())) ||
8363             (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8364            "Invalid Shuffle Vector Operand");
8365     // Try to find the previous shuffle node with the same operands and same
8366     // main/alternate ops.
8367     auto TryFindNodeWithEqualOperands = [=]() {
8368       for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
8369         if (TE.get() == E)
8370           break;
8371         if (TE->isAltShuffle() &&
8372             ((TE->getOpcode() == E->getOpcode() &&
8373               TE->getAltOpcode() == E->getAltOpcode()) ||
8374              (TE->getOpcode() == E->getAltOpcode() &&
8375               TE->getAltOpcode() == E->getOpcode())) &&
8376             TE->hasEqualOperands(*E))
8377           return true;
8378       }
8379       return false;
8380     };
8381     auto GetScalarCost = [&](unsigned Idx) {
8382       auto *VI = cast<Instruction>(UniqueValues[Idx]);
8383       assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode");
8384       (void)E;
8385       return TTI->getInstructionCost(VI, CostKind);
8386     };
8387     // Need to clear CommonCost since the final shuffle cost is included into
8388     // vector cost.
8389     auto GetVectorCost = [&](InstructionCost) {
8390       // VecCost is equal to sum of the cost of creating 2 vectors
8391       // and the cost of creating shuffle.
8392       InstructionCost VecCost = 0;
8393       if (TryFindNodeWithEqualOperands()) {
8394         LLVM_DEBUG({
8395           dbgs() << "SLP: diamond match for alternate node found.\n";
8396           E->dump();
8397         });
8398         // No need to add new vector costs here since we're going to reuse
8399         // same main/alternate vector ops, just do different shuffling.
8400       } else if (Instruction::isBinaryOp(E->getOpcode())) {
8401         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
8402         VecCost +=
8403             TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind);
8404       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8405         auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
8406         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
8407                                           CI0->getPredicate(), CostKind, VL0);
8408         VecCost += TTI->getCmpSelInstrCost(
8409             E->getOpcode(), VecTy, MaskTy,
8410             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
8411             E->getAltOp());
8412       } else {
8413         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
8414         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
8415         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
8416         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
8417         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
8418                                         TTI::CastContextHint::None, CostKind);
8419         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
8420                                          TTI::CastContextHint::None, CostKind);
8421       }
8422       SmallVector<int> Mask;
8423       E->buildAltOpShuffleMask(
8424           [E](Instruction *I) {
8425             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8426             return I->getOpcode() == E->getAltOpcode();
8427           },
8428           Mask);
8429       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
8430                                      FinalVecTy, Mask);
8431       return VecCost;
8432     };
8433     return GetCostDiff(GetScalarCost, GetVectorCost);
8434   }
8435   default:
8436     llvm_unreachable("Unknown instruction");
8437   }
8438 }
8439 
8440 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
8441   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
8442                     << VectorizableTree.size() << " is fully vectorizable .\n");
8443 
8444   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
8445     SmallVector<int> Mask;
8446     return TE->State == TreeEntry::NeedToGather &&
8447            !any_of(TE->Scalars,
8448                    [this](Value *V) { return EphValues.contains(V); }) &&
8449            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
8450             TE->Scalars.size() < Limit ||
8451             ((TE->getOpcode() == Instruction::ExtractElement ||
8452               all_of(TE->Scalars,
8453                      [](Value *V) {
8454                        return isa<ExtractElementInst, UndefValue>(V);
8455                      })) &&
8456              isFixedVectorShuffle(TE->Scalars, Mask)) ||
8457             (TE->State == TreeEntry::NeedToGather &&
8458              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
8459   };
8460 
8461   // We only handle trees of heights 1 and 2.
8462   if (VectorizableTree.size() == 1 &&
8463       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
8464        (ForReduction &&
8465         AreVectorizableGathers(VectorizableTree[0].get(),
8466                                VectorizableTree[0]->Scalars.size()) &&
8467         VectorizableTree[0]->getVectorFactor() > 2)))
8468     return true;
8469 
8470   if (VectorizableTree.size() != 2)
8471     return false;
8472 
8473   // Handle splat and all-constants stores. Also try to vectorize tiny trees
8474   // with the second gather nodes if they have less scalar operands rather than
8475   // the initial tree element (may be profitable to shuffle the second gather)
8476   // or they are extractelements, which form shuffle.
8477   SmallVector<int> Mask;
8478   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
8479       AreVectorizableGathers(VectorizableTree[1].get(),
8480                              VectorizableTree[0]->Scalars.size()))
8481     return true;
8482 
8483   // Gathering cost would be too much for tiny trees.
8484   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
8485       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
8486        VectorizableTree[0]->State != TreeEntry::ScatterVectorize &&
8487        VectorizableTree[0]->State != TreeEntry::PossibleStridedVectorize))
8488     return false;
8489 
8490   return true;
8491 }
8492 
8493 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
8494                                        TargetTransformInfo *TTI,
8495                                        bool MustMatchOrInst) {
8496   // Look past the root to find a source value. Arbitrarily follow the
8497   // path through operand 0 of any 'or'. Also, peek through optional
8498   // shift-left-by-multiple-of-8-bits.
8499   Value *ZextLoad = Root;
8500   const APInt *ShAmtC;
8501   bool FoundOr = false;
8502   while (!isa<ConstantExpr>(ZextLoad) &&
8503          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
8504           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
8505            ShAmtC->urem(8) == 0))) {
8506     auto *BinOp = cast<BinaryOperator>(ZextLoad);
8507     ZextLoad = BinOp->getOperand(0);
8508     if (BinOp->getOpcode() == Instruction::Or)
8509       FoundOr = true;
8510   }
8511   // Check if the input is an extended load of the required or/shift expression.
8512   Value *Load;
8513   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
8514       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
8515     return false;
8516 
8517   // Require that the total load bit width is a legal integer type.
8518   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
8519   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
8520   Type *SrcTy = Load->getType();
8521   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
8522   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
8523     return false;
8524 
8525   // Everything matched - assume that we can fold the whole sequence using
8526   // load combining.
8527   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
8528              << *(cast<Instruction>(Root)) << "\n");
8529 
8530   return true;
8531 }
8532 
8533 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
8534   if (RdxKind != RecurKind::Or)
8535     return false;
8536 
8537   unsigned NumElts = VectorizableTree[0]->Scalars.size();
8538   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
8539   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
8540                                     /* MatchOr */ false);
8541 }
8542 
8543 bool BoUpSLP::isLoadCombineCandidate() const {
8544   // Peek through a final sequence of stores and check if all operations are
8545   // likely to be load-combined.
8546   unsigned NumElts = VectorizableTree[0]->Scalars.size();
8547   for (Value *Scalar : VectorizableTree[0]->Scalars) {
8548     Value *X;
8549     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
8550         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
8551       return false;
8552   }
8553   return true;
8554 }
8555 
8556 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
8557   // No need to vectorize inserts of gathered values.
8558   if (VectorizableTree.size() == 2 &&
8559       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
8560       VectorizableTree[1]->State == TreeEntry::NeedToGather &&
8561       (VectorizableTree[1]->getVectorFactor() <= 2 ||
8562        !(isSplat(VectorizableTree[1]->Scalars) ||
8563          allConstant(VectorizableTree[1]->Scalars))))
8564     return true;
8565 
8566   // If the graph includes only PHI nodes and gathers, it is defnitely not
8567   // profitable for the vectorization, we can skip it, if the cost threshold is
8568   // default. The cost of vectorized PHI nodes is almost always 0 + the cost of
8569   // gathers/buildvectors.
8570   constexpr int Limit = 4;
8571   if (!ForReduction && !SLPCostThreshold.getNumOccurrences() &&
8572       !VectorizableTree.empty() &&
8573       all_of(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
8574         return (TE->State == TreeEntry::NeedToGather &&
8575                 TE->getOpcode() != Instruction::ExtractElement &&
8576                 count_if(TE->Scalars,
8577                          [](Value *V) { return isa<ExtractElementInst>(V); }) <=
8578                     Limit) ||
8579                TE->getOpcode() == Instruction::PHI;
8580       }))
8581     return true;
8582 
8583   // We can vectorize the tree if its size is greater than or equal to the
8584   // minimum size specified by the MinTreeSize command line option.
8585   if (VectorizableTree.size() >= MinTreeSize)
8586     return false;
8587 
8588   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
8589   // can vectorize it if we can prove it fully vectorizable.
8590   if (isFullyVectorizableTinyTree(ForReduction))
8591     return false;
8592 
8593   assert(VectorizableTree.empty()
8594              ? ExternalUses.empty()
8595              : true && "We shouldn't have any external users");
8596 
8597   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
8598   // vectorizable.
8599   return true;
8600 }
8601 
8602 InstructionCost BoUpSLP::getSpillCost() const {
8603   // Walk from the bottom of the tree to the top, tracking which values are
8604   // live. When we see a call instruction that is not part of our tree,
8605   // query TTI to see if there is a cost to keeping values live over it
8606   // (for example, if spills and fills are required).
8607   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
8608   InstructionCost Cost = 0;
8609 
8610   SmallPtrSet<Instruction *, 4> LiveValues;
8611   Instruction *PrevInst = nullptr;
8612 
8613   // The entries in VectorizableTree are not necessarily ordered by their
8614   // position in basic blocks. Collect them and order them by dominance so later
8615   // instructions are guaranteed to be visited first. For instructions in
8616   // different basic blocks, we only scan to the beginning of the block, so
8617   // their order does not matter, as long as all instructions in a basic block
8618   // are grouped together. Using dominance ensures a deterministic order.
8619   SmallVector<Instruction *, 16> OrderedScalars;
8620   for (const auto &TEPtr : VectorizableTree) {
8621     if (TEPtr->State != TreeEntry::Vectorize)
8622       continue;
8623     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
8624     if (!Inst)
8625       continue;
8626     OrderedScalars.push_back(Inst);
8627   }
8628   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
8629     auto *NodeA = DT->getNode(A->getParent());
8630     auto *NodeB = DT->getNode(B->getParent());
8631     assert(NodeA && "Should only process reachable instructions");
8632     assert(NodeB && "Should only process reachable instructions");
8633     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
8634            "Different nodes should have different DFS numbers");
8635     if (NodeA != NodeB)
8636       return NodeA->getDFSNumIn() > NodeB->getDFSNumIn();
8637     return B->comesBefore(A);
8638   });
8639 
8640   for (Instruction *Inst : OrderedScalars) {
8641     if (!PrevInst) {
8642       PrevInst = Inst;
8643       continue;
8644     }
8645 
8646     // Update LiveValues.
8647     LiveValues.erase(PrevInst);
8648     for (auto &J : PrevInst->operands()) {
8649       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
8650         LiveValues.insert(cast<Instruction>(&*J));
8651     }
8652 
8653     LLVM_DEBUG({
8654       dbgs() << "SLP: #LV: " << LiveValues.size();
8655       for (auto *X : LiveValues)
8656         dbgs() << " " << X->getName();
8657       dbgs() << ", Looking at ";
8658       Inst->dump();
8659     });
8660 
8661     // Now find the sequence of instructions between PrevInst and Inst.
8662     unsigned NumCalls = 0;
8663     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
8664                                  PrevInstIt =
8665                                      PrevInst->getIterator().getReverse();
8666     while (InstIt != PrevInstIt) {
8667       if (PrevInstIt == PrevInst->getParent()->rend()) {
8668         PrevInstIt = Inst->getParent()->rbegin();
8669         continue;
8670       }
8671 
8672       auto NoCallIntrinsic = [this](Instruction *I) {
8673         if (auto *II = dyn_cast<IntrinsicInst>(I)) {
8674           if (II->isAssumeLikeIntrinsic())
8675             return true;
8676           FastMathFlags FMF;
8677           SmallVector<Type *, 4> Tys;
8678           for (auto &ArgOp : II->args())
8679             Tys.push_back(ArgOp->getType());
8680           if (auto *FPMO = dyn_cast<FPMathOperator>(II))
8681             FMF = FPMO->getFastMathFlags();
8682           IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys,
8683                                       FMF);
8684           InstructionCost IntrCost =
8685               TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput);
8686           InstructionCost CallCost = TTI->getCallInstrCost(
8687               nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput);
8688           if (IntrCost < CallCost)
8689             return true;
8690         }
8691         return false;
8692       };
8693 
8694       // Debug information does not impact spill cost.
8695       if (isa<CallBase>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) &&
8696           &*PrevInstIt != PrevInst)
8697         NumCalls++;
8698 
8699       ++PrevInstIt;
8700     }
8701 
8702     if (NumCalls) {
8703       SmallVector<Type *, 4> V;
8704       for (auto *II : LiveValues) {
8705         auto *ScalarTy = II->getType();
8706         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
8707           ScalarTy = VectorTy->getElementType();
8708         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
8709       }
8710       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
8711     }
8712 
8713     PrevInst = Inst;
8714   }
8715 
8716   return Cost;
8717 }
8718 
8719 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
8720 /// buildvector sequence.
8721 static bool isFirstInsertElement(const InsertElementInst *IE1,
8722                                  const InsertElementInst *IE2) {
8723   if (IE1 == IE2)
8724     return false;
8725   const auto *I1 = IE1;
8726   const auto *I2 = IE2;
8727   const InsertElementInst *PrevI1;
8728   const InsertElementInst *PrevI2;
8729   unsigned Idx1 = *getInsertIndex(IE1);
8730   unsigned Idx2 = *getInsertIndex(IE2);
8731   do {
8732     if (I2 == IE1)
8733       return true;
8734     if (I1 == IE2)
8735       return false;
8736     PrevI1 = I1;
8737     PrevI2 = I2;
8738     if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
8739         getInsertIndex(I1).value_or(Idx2) != Idx2)
8740       I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
8741     if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
8742         getInsertIndex(I2).value_or(Idx1) != Idx1)
8743       I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
8744   } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
8745   llvm_unreachable("Two different buildvectors not expected.");
8746 }
8747 
8748 namespace {
8749 /// Returns incoming Value *, if the requested type is Value * too, or a default
8750 /// value, otherwise.
8751 struct ValueSelect {
8752   template <typename U>
8753   static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) {
8754     return V;
8755   }
8756   template <typename U>
8757   static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) {
8758     return U();
8759   }
8760 };
8761 } // namespace
8762 
8763 /// Does the analysis of the provided shuffle masks and performs the requested
8764 /// actions on the vectors with the given shuffle masks. It tries to do it in
8765 /// several steps.
8766 /// 1. If the Base vector is not undef vector, resizing the very first mask to
8767 /// have common VF and perform action for 2 input vectors (including non-undef
8768 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
8769 /// and processed as a shuffle of 2 elements.
8770 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
8771 /// action only for 1 vector with the given mask, if it is not the identity
8772 /// mask.
8773 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
8774 /// vectors, combing the masks properly between the steps.
8775 template <typename T>
8776 static T *performExtractsShuffleAction(
8777     MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
8778     function_ref<unsigned(T *)> GetVF,
8779     function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction,
8780     function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
8781   assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
8782   SmallVector<int> Mask(ShuffleMask.begin()->second);
8783   auto VMIt = std::next(ShuffleMask.begin());
8784   T *Prev = nullptr;
8785   SmallBitVector UseMask =
8786       buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask);
8787   SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask);
8788   if (!IsBaseUndef.all()) {
8789     // Base is not undef, need to combine it with the next subvectors.
8790     std::pair<T *, bool> Res =
8791         ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false);
8792     SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask);
8793     for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
8794       if (Mask[Idx] == PoisonMaskElem)
8795         Mask[Idx] = IsBasePoison.test(Idx) ? PoisonMaskElem : Idx;
8796       else
8797         Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
8798     }
8799     auto *V = ValueSelect::get<T *>(Base);
8800     (void)V;
8801     assert((!V || GetVF(V) == Mask.size()) &&
8802            "Expected base vector of VF number of elements.");
8803     Prev = Action(Mask, {nullptr, Res.first});
8804   } else if (ShuffleMask.size() == 1) {
8805     // Base is undef and only 1 vector is shuffled - perform the action only for
8806     // single vector, if the mask is not the identity mask.
8807     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask,
8808                                             /*ForSingleMask=*/true);
8809     if (Res.second)
8810       // Identity mask is found.
8811       Prev = Res.first;
8812     else
8813       Prev = Action(Mask, {ShuffleMask.begin()->first});
8814   } else {
8815     // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
8816     // shuffles step by step, combining shuffle between the steps.
8817     unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
8818     unsigned Vec2VF = GetVF(VMIt->first);
8819     if (Vec1VF == Vec2VF) {
8820       // No need to resize the input vectors since they are of the same size, we
8821       // can shuffle them directly.
8822       ArrayRef<int> SecMask = VMIt->second;
8823       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8824         if (SecMask[I] != PoisonMaskElem) {
8825           assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8826           Mask[I] = SecMask[I] + Vec1VF;
8827         }
8828       }
8829       Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
8830     } else {
8831       // Vectors of different sizes - resize and reshuffle.
8832       std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask,
8833                                                /*ForSingleMask=*/false);
8834       std::pair<T *, bool> Res2 =
8835           ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
8836       ArrayRef<int> SecMask = VMIt->second;
8837       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8838         if (Mask[I] != PoisonMaskElem) {
8839           assert(SecMask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8840           if (Res1.second)
8841             Mask[I] = I;
8842         } else if (SecMask[I] != PoisonMaskElem) {
8843           assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8844           Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
8845         }
8846       }
8847       Prev = Action(Mask, {Res1.first, Res2.first});
8848     }
8849     VMIt = std::next(VMIt);
8850   }
8851   bool IsBaseNotUndef = !IsBaseUndef.all();
8852   (void)IsBaseNotUndef;
8853   // Perform requested actions for the remaining masks/vectors.
8854   for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
8855     // Shuffle other input vectors, if any.
8856     std::pair<T *, bool> Res =
8857         ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
8858     ArrayRef<int> SecMask = VMIt->second;
8859     for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8860       if (SecMask[I] != PoisonMaskElem) {
8861         assert((Mask[I] == PoisonMaskElem || IsBaseNotUndef) &&
8862                "Multiple uses of scalars.");
8863         Mask[I] = (Res.second ? I : SecMask[I]) + VF;
8864       } else if (Mask[I] != PoisonMaskElem) {
8865         Mask[I] = I;
8866       }
8867     }
8868     Prev = Action(Mask, {Prev, Res.first});
8869   }
8870   return Prev;
8871 }
8872 
8873 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
8874   InstructionCost Cost = 0;
8875   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
8876                     << VectorizableTree.size() << ".\n");
8877 
8878   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
8879 
8880   SmallPtrSet<Value *, 4> CheckedExtracts;
8881   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
8882     TreeEntry &TE = *VectorizableTree[I];
8883     if (TE.State == TreeEntry::NeedToGather) {
8884       if (const TreeEntry *E = getTreeEntry(TE.getMainOp());
8885           E && E->getVectorFactor() == TE.getVectorFactor() &&
8886           E->isSame(TE.Scalars)) {
8887         // Some gather nodes might be absolutely the same as some vectorizable
8888         // nodes after reordering, need to handle it.
8889         LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle "
8890                           << shortBundleName(TE.Scalars) << ".\n"
8891                           << "SLP: Current total cost = " << Cost << "\n");
8892         continue;
8893       }
8894     }
8895 
8896     InstructionCost C = getEntryCost(&TE, VectorizedVals, CheckedExtracts);
8897     Cost += C;
8898     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle "
8899                       << shortBundleName(TE.Scalars) << ".\n"
8900                       << "SLP: Current total cost = " << Cost << "\n");
8901   }
8902 
8903   SmallPtrSet<Value *, 16> ExtractCostCalculated;
8904   InstructionCost ExtractCost = 0;
8905   SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
8906   SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
8907   SmallVector<APInt> DemandedElts;
8908   SmallDenseSet<Value *, 4> UsedInserts;
8909   DenseSet<Value *> VectorCasts;
8910   for (ExternalUser &EU : ExternalUses) {
8911     // We only add extract cost once for the same scalar.
8912     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
8913         !ExtractCostCalculated.insert(EU.Scalar).second)
8914       continue;
8915 
8916     // Uses by ephemeral values are free (because the ephemeral value will be
8917     // removed prior to code generation, and so the extraction will be
8918     // removed as well).
8919     if (EphValues.count(EU.User))
8920       continue;
8921 
8922     // No extract cost for vector "scalar"
8923     if (isa<FixedVectorType>(EU.Scalar->getType()))
8924       continue;
8925 
8926     // If found user is an insertelement, do not calculate extract cost but try
8927     // to detect it as a final shuffled/identity match.
8928     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
8929       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
8930         if (!UsedInserts.insert(VU).second)
8931           continue;
8932         std::optional<unsigned> InsertIdx = getInsertIndex(VU);
8933         if (InsertIdx) {
8934           const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
8935           auto *It = find_if(
8936               FirstUsers,
8937               [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) {
8938                 return areTwoInsertFromSameBuildVector(
8939                     VU, cast<InsertElementInst>(Pair.first),
8940                     [this](InsertElementInst *II) -> Value * {
8941                       Value *Op0 = II->getOperand(0);
8942                       if (getTreeEntry(II) && !getTreeEntry(Op0))
8943                         return nullptr;
8944                       return Op0;
8945                     });
8946               });
8947           int VecId = -1;
8948           if (It == FirstUsers.end()) {
8949             (void)ShuffleMasks.emplace_back();
8950             SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
8951             if (Mask.empty())
8952               Mask.assign(FTy->getNumElements(), PoisonMaskElem);
8953             // Find the insertvector, vectorized in tree, if any.
8954             Value *Base = VU;
8955             while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
8956               if (IEBase != EU.User &&
8957                   (!IEBase->hasOneUse() ||
8958                    getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
8959                 break;
8960               // Build the mask for the vectorized insertelement instructions.
8961               if (const TreeEntry *E = getTreeEntry(IEBase)) {
8962                 VU = IEBase;
8963                 do {
8964                   IEBase = cast<InsertElementInst>(Base);
8965                   int Idx = *getInsertIndex(IEBase);
8966                   assert(Mask[Idx] == PoisonMaskElem &&
8967                          "InsertElementInstruction used already.");
8968                   Mask[Idx] = Idx;
8969                   Base = IEBase->getOperand(0);
8970                 } while (E == getTreeEntry(Base));
8971                 break;
8972               }
8973               Base = cast<InsertElementInst>(Base)->getOperand(0);
8974             }
8975             FirstUsers.emplace_back(VU, ScalarTE);
8976             DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
8977             VecId = FirstUsers.size() - 1;
8978             auto It = MinBWs.find(ScalarTE);
8979             if (It != MinBWs.end() && VectorCasts.insert(EU.Scalar).second) {
8980               unsigned BWSz = It->second.second;
8981               unsigned SrcBWSz = DL->getTypeSizeInBits(FTy->getElementType());
8982               unsigned VecOpcode;
8983               if (BWSz < SrcBWSz)
8984                 VecOpcode = Instruction::Trunc;
8985               else
8986                 VecOpcode =
8987                     It->second.second ? Instruction::SExt : Instruction::ZExt;
8988               TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
8989               InstructionCost C = TTI->getCastInstrCost(
8990                   VecOpcode, FTy,
8991                   FixedVectorType::get(
8992                       IntegerType::get(FTy->getContext(), It->second.first),
8993                       FTy->getNumElements()),
8994                   TTI::CastContextHint::None, CostKind);
8995               LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
8996                                 << " for extending externally used vector with "
8997                                    "non-equal minimum bitwidth.\n");
8998               Cost += C;
8999             }
9000           } else {
9001             if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
9002               It->first = VU;
9003             VecId = std::distance(FirstUsers.begin(), It);
9004           }
9005           int InIdx = *InsertIdx;
9006           SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
9007           if (Mask.empty())
9008             Mask.assign(FTy->getNumElements(), PoisonMaskElem);
9009           Mask[InIdx] = EU.Lane;
9010           DemandedElts[VecId].setBit(InIdx);
9011           continue;
9012         }
9013       }
9014     }
9015 
9016     // If we plan to rewrite the tree in a smaller type, we will need to sign
9017     // extend the extracted value back to the original type. Here, we account
9018     // for the extract and the added cost of the sign extend if needed.
9019     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
9020     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9021     auto It = MinBWs.find(getTreeEntry(EU.Scalar));
9022     if (It != MinBWs.end()) {
9023       auto *MinTy = IntegerType::get(F->getContext(), It->second.first);
9024       unsigned Extend =
9025           It->second.second ? Instruction::SExt : Instruction::ZExt;
9026       VecTy = FixedVectorType::get(MinTy, BundleWidth);
9027       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
9028                                                    VecTy, EU.Lane);
9029     } else {
9030       ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
9031                                              CostKind, EU.Lane);
9032     }
9033   }
9034   // Add reduced value cost, if resized.
9035   if (!VectorizedVals.empty()) {
9036     auto BWIt = MinBWs.find(VectorizableTree.front().get());
9037     if (BWIt != MinBWs.end()) {
9038       Type *DstTy = VectorizableTree.front()->Scalars.front()->getType();
9039       unsigned OriginalSz = DL->getTypeSizeInBits(DstTy);
9040       unsigned Opcode = Instruction::Trunc;
9041       if (OriginalSz < BWIt->second.first)
9042         Opcode = BWIt->second.second ? Instruction::SExt : Instruction::ZExt;
9043       Type *SrcTy = IntegerType::get(DstTy->getContext(), BWIt->second.first);
9044       Cost += TTI->getCastInstrCost(Opcode, DstTy, SrcTy,
9045                                     TTI::CastContextHint::None,
9046                                     TTI::TCK_RecipThroughput);
9047     }
9048   }
9049 
9050   InstructionCost SpillCost = getSpillCost();
9051   Cost += SpillCost + ExtractCost;
9052   auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask,
9053                                     bool) {
9054     InstructionCost C = 0;
9055     unsigned VF = Mask.size();
9056     unsigned VecVF = TE->getVectorFactor();
9057     if (VF != VecVF &&
9058         (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
9059          !ShuffleVectorInst::isIdentityMask(Mask, VF))) {
9060       SmallVector<int> OrigMask(VecVF, PoisonMaskElem);
9061       std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
9062                 OrigMask.begin());
9063       C = TTI->getShuffleCost(
9064           TTI::SK_PermuteSingleSrc,
9065           FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
9066       LLVM_DEBUG(
9067           dbgs() << "SLP: Adding cost " << C
9068                  << " for final shuffle of insertelement external users.\n";
9069           TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
9070       Cost += C;
9071       return std::make_pair(TE, true);
9072     }
9073     return std::make_pair(TE, false);
9074   };
9075   // Calculate the cost of the reshuffled vectors, if any.
9076   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
9077     Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
9078     auto Vector = ShuffleMasks[I].takeVector();
9079     unsigned VF = 0;
9080     auto EstimateShufflesCost = [&](ArrayRef<int> Mask,
9081                                     ArrayRef<const TreeEntry *> TEs) {
9082       assert((TEs.size() == 1 || TEs.size() == 2) &&
9083              "Expected exactly 1 or 2 tree entries.");
9084       if (TEs.size() == 1) {
9085         if (VF == 0)
9086           VF = TEs.front()->getVectorFactor();
9087         auto *FTy =
9088             FixedVectorType::get(TEs.back()->Scalars.front()->getType(), VF);
9089         if (!ShuffleVectorInst::isIdentityMask(Mask, VF) &&
9090             !all_of(enumerate(Mask), [=](const auto &Data) {
9091               return Data.value() == PoisonMaskElem ||
9092                      (Data.index() < VF &&
9093                       static_cast<int>(Data.index()) == Data.value());
9094             })) {
9095           InstructionCost C =
9096               TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
9097           LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
9098                             << " for final shuffle of insertelement "
9099                                "external users.\n";
9100                      TEs.front()->dump();
9101                      dbgs() << "SLP: Current total cost = " << Cost << "\n");
9102           Cost += C;
9103         }
9104       } else {
9105         if (VF == 0) {
9106           if (TEs.front() &&
9107               TEs.front()->getVectorFactor() == TEs.back()->getVectorFactor())
9108             VF = TEs.front()->getVectorFactor();
9109           else
9110             VF = Mask.size();
9111         }
9112         auto *FTy =
9113             FixedVectorType::get(TEs.back()->Scalars.front()->getType(), VF);
9114         InstructionCost C =
9115             TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
9116         LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
9117                           << " for final shuffle of vector node and external "
9118                              "insertelement users.\n";
9119                    if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
9120                    dbgs() << "SLP: Current total cost = " << Cost << "\n");
9121         Cost += C;
9122       }
9123       VF = Mask.size();
9124       return TEs.back();
9125     };
9126     (void)performExtractsShuffleAction<const TreeEntry>(
9127         MutableArrayRef(Vector.data(), Vector.size()), Base,
9128         [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
9129         EstimateShufflesCost);
9130     InstructionCost InsertCost = TTI->getScalarizationOverhead(
9131         cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
9132         /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput);
9133     Cost -= InsertCost;
9134   }
9135 
9136 #ifndef NDEBUG
9137   SmallString<256> Str;
9138   {
9139     raw_svector_ostream OS(Str);
9140     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
9141        << "SLP: Extract Cost = " << ExtractCost << ".\n"
9142        << "SLP: Total Cost = " << Cost << ".\n";
9143   }
9144   LLVM_DEBUG(dbgs() << Str);
9145   if (ViewSLPTree)
9146     ViewGraph(this, "SLP" + F->getName(), false, Str);
9147 #endif
9148 
9149   return Cost;
9150 }
9151 
9152 /// Tries to find extractelement instructions with constant indices from fixed
9153 /// vector type and gather such instructions into a bunch, which highly likely
9154 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was
9155 /// successful, the matched scalars are replaced by poison values in \p VL for
9156 /// future analysis.
9157 std::optional<TTI::ShuffleKind>
9158 BoUpSLP::tryToGatherSingleRegisterExtractElements(
9159     MutableArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) const {
9160   // Scan list of gathered scalars for extractelements that can be represented
9161   // as shuffles.
9162   MapVector<Value *, SmallVector<int>> VectorOpToIdx;
9163   SmallVector<int> UndefVectorExtracts;
9164   for (int I = 0, E = VL.size(); I < E; ++I) {
9165     auto *EI = dyn_cast<ExtractElementInst>(VL[I]);
9166     if (!EI) {
9167       if (isa<UndefValue>(VL[I]))
9168         UndefVectorExtracts.push_back(I);
9169       continue;
9170     }
9171     auto *VecTy = dyn_cast<FixedVectorType>(EI->getVectorOperandType());
9172     if (!VecTy || !isa<ConstantInt, UndefValue>(EI->getIndexOperand()))
9173       continue;
9174     std::optional<unsigned> Idx = getExtractIndex(EI);
9175     // Undefined index.
9176     if (!Idx) {
9177       UndefVectorExtracts.push_back(I);
9178       continue;
9179     }
9180     SmallBitVector ExtractMask(VecTy->getNumElements(), true);
9181     ExtractMask.reset(*Idx);
9182     if (isUndefVector(EI->getVectorOperand(), ExtractMask).all()) {
9183       UndefVectorExtracts.push_back(I);
9184       continue;
9185     }
9186     VectorOpToIdx[EI->getVectorOperand()].push_back(I);
9187   }
9188   // Sort the vector operands by the maximum number of uses in extractelements.
9189   MapVector<unsigned, SmallVector<Value *>> VFToVector;
9190   for (const auto &Data : VectorOpToIdx)
9191     VFToVector[cast<FixedVectorType>(Data.first->getType())->getNumElements()]
9192         .push_back(Data.first);
9193   for (auto &Data : VFToVector) {
9194     stable_sort(Data.second, [&VectorOpToIdx](Value *V1, Value *V2) {
9195       return VectorOpToIdx.find(V1)->second.size() >
9196              VectorOpToIdx.find(V2)->second.size();
9197     });
9198   }
9199   // Find the best pair of the vectors with the same number of elements or a
9200   // single vector.
9201   const int UndefSz = UndefVectorExtracts.size();
9202   unsigned SingleMax = 0;
9203   Value *SingleVec = nullptr;
9204   unsigned PairMax = 0;
9205   std::pair<Value *, Value *> PairVec(nullptr, nullptr);
9206   for (auto &Data : VFToVector) {
9207     Value *V1 = Data.second.front();
9208     if (SingleMax < VectorOpToIdx[V1].size() + UndefSz) {
9209       SingleMax = VectorOpToIdx[V1].size() + UndefSz;
9210       SingleVec = V1;
9211     }
9212     Value *V2 = nullptr;
9213     if (Data.second.size() > 1)
9214       V2 = *std::next(Data.second.begin());
9215     if (V2 && PairMax < VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() +
9216                             UndefSz) {
9217       PairMax = VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() + UndefSz;
9218       PairVec = std::make_pair(V1, V2);
9219     }
9220   }
9221   if (SingleMax == 0 && PairMax == 0 && UndefSz == 0)
9222     return std::nullopt;
9223   // Check if better to perform a shuffle of 2 vectors or just of a single
9224   // vector.
9225   SmallVector<Value *> SavedVL(VL.begin(), VL.end());
9226   SmallVector<Value *> GatheredExtracts(
9227       VL.size(), PoisonValue::get(VL.front()->getType()));
9228   if (SingleMax >= PairMax && SingleMax) {
9229     for (int Idx : VectorOpToIdx[SingleVec])
9230       std::swap(GatheredExtracts[Idx], VL[Idx]);
9231   } else {
9232     for (Value *V : {PairVec.first, PairVec.second})
9233       for (int Idx : VectorOpToIdx[V])
9234         std::swap(GatheredExtracts[Idx], VL[Idx]);
9235   }
9236   // Add extracts from undefs too.
9237   for (int Idx : UndefVectorExtracts)
9238     std::swap(GatheredExtracts[Idx], VL[Idx]);
9239   // Check that gather of extractelements can be represented as just a
9240   // shuffle of a single/two vectors the scalars are extracted from.
9241   std::optional<TTI::ShuffleKind> Res =
9242       isFixedVectorShuffle(GatheredExtracts, Mask);
9243   if (!Res) {
9244     // TODO: try to check other subsets if possible.
9245     // Restore the original VL if attempt was not successful.
9246     copy(SavedVL, VL.begin());
9247     return std::nullopt;
9248   }
9249   // Restore unused scalars from mask, if some of the extractelements were not
9250   // selected for shuffle.
9251   for (int I = 0, E = GatheredExtracts.size(); I < E; ++I) {
9252     if (Mask[I] == PoisonMaskElem && !isa<PoisonValue>(GatheredExtracts[I]) &&
9253         isa<UndefValue>(GatheredExtracts[I])) {
9254       std::swap(VL[I], GatheredExtracts[I]);
9255       continue;
9256     }
9257     auto *EI = dyn_cast<ExtractElementInst>(VL[I]);
9258     if (!EI || !isa<FixedVectorType>(EI->getVectorOperandType()) ||
9259         !isa<ConstantInt, UndefValue>(EI->getIndexOperand()) ||
9260         is_contained(UndefVectorExtracts, I))
9261       continue;
9262   }
9263   return Res;
9264 }
9265 
9266 /// Tries to find extractelement instructions with constant indices from fixed
9267 /// vector type and gather such instructions into a bunch, which highly likely
9268 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was
9269 /// successful, the matched scalars are replaced by poison values in \p VL for
9270 /// future analysis.
9271 SmallVector<std::optional<TTI::ShuffleKind>>
9272 BoUpSLP::tryToGatherExtractElements(SmallVectorImpl<Value *> &VL,
9273                                     SmallVectorImpl<int> &Mask,
9274                                     unsigned NumParts) const {
9275   assert(NumParts > 0 && "NumParts expected be greater than or equal to 1.");
9276   SmallVector<std::optional<TTI::ShuffleKind>> ShufflesRes(NumParts);
9277   Mask.assign(VL.size(), PoisonMaskElem);
9278   unsigned SliceSize = VL.size() / NumParts;
9279   for (unsigned Part = 0; Part < NumParts; ++Part) {
9280     // Scan list of gathered scalars for extractelements that can be represented
9281     // as shuffles.
9282     MutableArrayRef<Value *> SubVL =
9283         MutableArrayRef(VL).slice(Part * SliceSize, SliceSize);
9284     SmallVector<int> SubMask;
9285     std::optional<TTI::ShuffleKind> Res =
9286         tryToGatherSingleRegisterExtractElements(SubVL, SubMask);
9287     ShufflesRes[Part] = Res;
9288     copy(SubMask, std::next(Mask.begin(), Part * SliceSize));
9289   }
9290   if (none_of(ShufflesRes, [](const std::optional<TTI::ShuffleKind> &Res) {
9291         return Res.has_value();
9292       }))
9293     ShufflesRes.clear();
9294   return ShufflesRes;
9295 }
9296 
9297 std::optional<TargetTransformInfo::ShuffleKind>
9298 BoUpSLP::isGatherShuffledSingleRegisterEntry(
9299     const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask,
9300     SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part) {
9301   Entries.clear();
9302   // TODO: currently checking only for Scalars in the tree entry, need to count
9303   // reused elements too for better cost estimation.
9304   const EdgeInfo &TEUseEI = TE->UserTreeIndices.front();
9305   const Instruction *TEInsertPt = &getLastInstructionInBundle(TEUseEI.UserTE);
9306   const BasicBlock *TEInsertBlock = nullptr;
9307   // Main node of PHI entries keeps the correct order of operands/incoming
9308   // blocks.
9309   if (auto *PHI = dyn_cast<PHINode>(TEUseEI.UserTE->getMainOp())) {
9310     TEInsertBlock = PHI->getIncomingBlock(TEUseEI.EdgeIdx);
9311     TEInsertPt = TEInsertBlock->getTerminator();
9312   } else {
9313     TEInsertBlock = TEInsertPt->getParent();
9314   }
9315   auto *NodeUI = DT->getNode(TEInsertBlock);
9316   assert(NodeUI && "Should only process reachable instructions");
9317   SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end());
9318   auto CheckOrdering = [&](const Instruction *InsertPt) {
9319     // Argument InsertPt is an instruction where vector code for some other
9320     // tree entry (one that shares one or more scalars with TE) is going to be
9321     // generated. This lambda returns true if insertion point of vector code
9322     // for the TE dominates that point (otherwise dependency is the other way
9323     // around). The other node is not limited to be of a gather kind. Gather
9324     // nodes are not scheduled and their vector code is inserted before their
9325     // first user. If user is PHI, that is supposed to be at the end of a
9326     // predecessor block. Otherwise it is the last instruction among scalars of
9327     // the user node. So, instead of checking dependency between instructions
9328     // themselves, we check dependency between their insertion points for vector
9329     // code (since each scalar instruction ends up as a lane of a vector
9330     // instruction).
9331     const BasicBlock *InsertBlock = InsertPt->getParent();
9332     auto *NodeEUI = DT->getNode(InsertBlock);
9333     if (!NodeEUI)
9334       return false;
9335     assert((NodeUI == NodeEUI) ==
9336                (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) &&
9337            "Different nodes should have different DFS numbers");
9338     // Check the order of the gather nodes users.
9339     if (TEInsertPt->getParent() != InsertBlock &&
9340         (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI)))
9341       return false;
9342     if (TEInsertPt->getParent() == InsertBlock &&
9343         TEInsertPt->comesBefore(InsertPt))
9344       return false;
9345     return true;
9346   };
9347   // Find all tree entries used by the gathered values. If no common entries
9348   // found - not a shuffle.
9349   // Here we build a set of tree nodes for each gathered value and trying to
9350   // find the intersection between these sets. If we have at least one common
9351   // tree node for each gathered value - we have just a permutation of the
9352   // single vector. If we have 2 different sets, we're in situation where we
9353   // have a permutation of 2 input vectors.
9354   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
9355   DenseMap<Value *, int> UsedValuesEntry;
9356   for (Value *V : VL) {
9357     if (isConstant(V))
9358       continue;
9359     // Build a list of tree entries where V is used.
9360     SmallPtrSet<const TreeEntry *, 4> VToTEs;
9361     for (const TreeEntry *TEPtr : ValueToGatherNodes.find(V)->second) {
9362       if (TEPtr == TE)
9363         continue;
9364       assert(any_of(TEPtr->Scalars,
9365                     [&](Value *V) { return GatheredScalars.contains(V); }) &&
9366              "Must contain at least single gathered value.");
9367       assert(TEPtr->UserTreeIndices.size() == 1 &&
9368              "Expected only single user of a gather node.");
9369       const EdgeInfo &UseEI = TEPtr->UserTreeIndices.front();
9370 
9371       PHINode *UserPHI = dyn_cast<PHINode>(UseEI.UserTE->getMainOp());
9372       const Instruction *InsertPt =
9373           UserPHI ? UserPHI->getIncomingBlock(UseEI.EdgeIdx)->getTerminator()
9374                   : &getLastInstructionInBundle(UseEI.UserTE);
9375       if (TEInsertPt == InsertPt) {
9376         // If 2 gathers are operands of the same entry (regardless of whether
9377         // user is PHI or else), compare operands indices, use the earlier one
9378         // as the base.
9379         if (TEUseEI.UserTE == UseEI.UserTE && TEUseEI.EdgeIdx < UseEI.EdgeIdx)
9380           continue;
9381         // If the user instruction is used for some reason in different
9382         // vectorized nodes - make it depend on index.
9383         if (TEUseEI.UserTE != UseEI.UserTE &&
9384             TEUseEI.UserTE->Idx < UseEI.UserTE->Idx)
9385           continue;
9386       }
9387 
9388       // Check if the user node of the TE comes after user node of TEPtr,
9389       // otherwise TEPtr depends on TE.
9390       if ((TEInsertBlock != InsertPt->getParent() ||
9391            TEUseEI.EdgeIdx < UseEI.EdgeIdx || TEUseEI.UserTE != UseEI.UserTE) &&
9392           !CheckOrdering(InsertPt))
9393         continue;
9394       VToTEs.insert(TEPtr);
9395     }
9396     if (const TreeEntry *VTE = getTreeEntry(V)) {
9397       Instruction &LastBundleInst = getLastInstructionInBundle(VTE);
9398       if (&LastBundleInst == TEInsertPt || !CheckOrdering(&LastBundleInst))
9399         continue;
9400       auto It = MinBWs.find(VTE);
9401       // If vectorize node is demoted - do not match.
9402       if (It != MinBWs.end() &&
9403           It->second.first != DL->getTypeSizeInBits(V->getType()))
9404         continue;
9405       VToTEs.insert(VTE);
9406     }
9407     if (VToTEs.empty())
9408       continue;
9409     if (UsedTEs.empty()) {
9410       // The first iteration, just insert the list of nodes to vector.
9411       UsedTEs.push_back(VToTEs);
9412       UsedValuesEntry.try_emplace(V, 0);
9413     } else {
9414       // Need to check if there are any previously used tree nodes which use V.
9415       // If there are no such nodes, consider that we have another one input
9416       // vector.
9417       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
9418       unsigned Idx = 0;
9419       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
9420         // Do we have a non-empty intersection of previously listed tree entries
9421         // and tree entries using current V?
9422         set_intersect(VToTEs, Set);
9423         if (!VToTEs.empty()) {
9424           // Yes, write the new subset and continue analysis for the next
9425           // scalar.
9426           Set.swap(VToTEs);
9427           break;
9428         }
9429         VToTEs = SavedVToTEs;
9430         ++Idx;
9431       }
9432       // No non-empty intersection found - need to add a second set of possible
9433       // source vectors.
9434       if (Idx == UsedTEs.size()) {
9435         // If the number of input vectors is greater than 2 - not a permutation,
9436         // fallback to the regular gather.
9437         // TODO: support multiple reshuffled nodes.
9438         if (UsedTEs.size() == 2)
9439           continue;
9440         UsedTEs.push_back(SavedVToTEs);
9441         Idx = UsedTEs.size() - 1;
9442       }
9443       UsedValuesEntry.try_emplace(V, Idx);
9444     }
9445   }
9446 
9447   if (UsedTEs.empty()) {
9448     Entries.clear();
9449     return std::nullopt;
9450   }
9451 
9452   unsigned VF = 0;
9453   if (UsedTEs.size() == 1) {
9454     // Keep the order to avoid non-determinism.
9455     SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(),
9456                                                 UsedTEs.front().end());
9457     sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
9458       return TE1->Idx < TE2->Idx;
9459     });
9460     // Try to find the perfect match in another gather node at first.
9461     auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) {
9462       return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars);
9463     });
9464     if (It != FirstEntries.end() &&
9465         ((*It)->getVectorFactor() == VL.size() ||
9466          ((*It)->getVectorFactor() == TE->Scalars.size() &&
9467           TE->ReuseShuffleIndices.size() == VL.size() &&
9468           (*It)->isSame(TE->Scalars)))) {
9469       Entries.push_back(*It);
9470       if ((*It)->getVectorFactor() == VL.size()) {
9471         std::iota(std::next(Mask.begin(), Part * VL.size()),
9472                   std::next(Mask.begin(), (Part + 1) * VL.size()), 0);
9473       } else {
9474         SmallVector<int> CommonMask = TE->getCommonMask();
9475         copy(CommonMask, Mask.begin());
9476       }
9477       // Clear undef scalars.
9478       for (int I = 0, Sz = VL.size(); I < Sz; ++I)
9479         if (isa<PoisonValue>(VL[I]))
9480           Mask[I] = PoisonMaskElem;
9481       return TargetTransformInfo::SK_PermuteSingleSrc;
9482     }
9483     // No perfect match, just shuffle, so choose the first tree node from the
9484     // tree.
9485     Entries.push_back(FirstEntries.front());
9486   } else {
9487     // Try to find nodes with the same vector factor.
9488     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
9489     // Keep the order of tree nodes to avoid non-determinism.
9490     DenseMap<int, const TreeEntry *> VFToTE;
9491     for (const TreeEntry *TE : UsedTEs.front()) {
9492       unsigned VF = TE->getVectorFactor();
9493       auto It = VFToTE.find(VF);
9494       if (It != VFToTE.end()) {
9495         if (It->second->Idx > TE->Idx)
9496           It->getSecond() = TE;
9497         continue;
9498       }
9499       VFToTE.try_emplace(VF, TE);
9500     }
9501     // Same, keep the order to avoid non-determinism.
9502     SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(),
9503                                                  UsedTEs.back().end());
9504     sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
9505       return TE1->Idx < TE2->Idx;
9506     });
9507     for (const TreeEntry *TE : SecondEntries) {
9508       auto It = VFToTE.find(TE->getVectorFactor());
9509       if (It != VFToTE.end()) {
9510         VF = It->first;
9511         Entries.push_back(It->second);
9512         Entries.push_back(TE);
9513         break;
9514       }
9515     }
9516     // No 2 source vectors with the same vector factor - just choose 2 with max
9517     // index.
9518     if (Entries.empty()) {
9519       Entries.push_back(
9520           *std::max_element(UsedTEs.front().begin(), UsedTEs.front().end(),
9521                             [](const TreeEntry *TE1, const TreeEntry *TE2) {
9522                               return TE1->Idx < TE2->Idx;
9523                             }));
9524       Entries.push_back(SecondEntries.front());
9525       VF = std::max(Entries.front()->getVectorFactor(),
9526                     Entries.back()->getVectorFactor());
9527     }
9528   }
9529 
9530   bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof);
9531   // Checks if the 2 PHIs are compatible in terms of high possibility to be
9532   // vectorized.
9533   auto AreCompatiblePHIs = [&](Value *V, Value *V1) {
9534     auto *PHI = cast<PHINode>(V);
9535     auto *PHI1 = cast<PHINode>(V1);
9536     // Check that all incoming values are compatible/from same parent (if they
9537     // are instructions).
9538     // The incoming values are compatible if they all are constants, or
9539     // instruction with the same/alternate opcodes from the same basic block.
9540     for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
9541       Value *In = PHI->getIncomingValue(I);
9542       Value *In1 = PHI1->getIncomingValue(I);
9543       if (isConstant(In) && isConstant(In1))
9544         continue;
9545       if (!getSameOpcode({In, In1}, *TLI).getOpcode())
9546         return false;
9547       if (cast<Instruction>(In)->getParent() !=
9548           cast<Instruction>(In1)->getParent())
9549         return false;
9550     }
9551     return true;
9552   };
9553   // Check if the value can be ignored during analysis for shuffled gathers.
9554   // We suppose it is better to ignore instruction, which do not form splats,
9555   // are not vectorized/not extractelements (these instructions will be handled
9556   // by extractelements processing) or may form vector node in future.
9557   auto MightBeIgnored = [=](Value *V) {
9558     auto *I = dyn_cast<Instruction>(V);
9559     return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) &&
9560            !isVectorLikeInstWithConstOps(I) &&
9561            !areAllUsersVectorized(I, UserIgnoreList) && isSimple(I);
9562   };
9563   // Check that the neighbor instruction may form a full vector node with the
9564   // current instruction V. It is possible, if they have same/alternate opcode
9565   // and same parent basic block.
9566   auto NeighborMightBeIgnored = [&](Value *V, int Idx) {
9567     Value *V1 = VL[Idx];
9568     bool UsedInSameVTE = false;
9569     auto It = UsedValuesEntry.find(V1);
9570     if (It != UsedValuesEntry.end())
9571       UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second;
9572     return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE &&
9573            getSameOpcode({V, V1}, *TLI).getOpcode() &&
9574            cast<Instruction>(V)->getParent() ==
9575                cast<Instruction>(V1)->getParent() &&
9576            (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1));
9577   };
9578   // Build a shuffle mask for better cost estimation and vector emission.
9579   SmallBitVector UsedIdxs(Entries.size());
9580   SmallVector<std::pair<unsigned, int>> EntryLanes;
9581   for (int I = 0, E = VL.size(); I < E; ++I) {
9582     Value *V = VL[I];
9583     auto It = UsedValuesEntry.find(V);
9584     if (It == UsedValuesEntry.end())
9585       continue;
9586     // Do not try to shuffle scalars, if they are constants, or instructions
9587     // that can be vectorized as a result of the following vector build
9588     // vectorization.
9589     if (isConstant(V) || (MightBeIgnored(V) &&
9590                           ((I > 0 && NeighborMightBeIgnored(V, I - 1)) ||
9591                            (I != E - 1 && NeighborMightBeIgnored(V, I + 1)))))
9592       continue;
9593     unsigned Idx = It->second;
9594     EntryLanes.emplace_back(Idx, I);
9595     UsedIdxs.set(Idx);
9596   }
9597   // Iterate through all shuffled scalars and select entries, which can be used
9598   // for final shuffle.
9599   SmallVector<const TreeEntry *> TempEntries;
9600   for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) {
9601     if (!UsedIdxs.test(I))
9602       continue;
9603     // Fix the entry number for the given scalar. If it is the first entry, set
9604     // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes).
9605     // These indices are used when calculating final shuffle mask as the vector
9606     // offset.
9607     for (std::pair<unsigned, int> &Pair : EntryLanes)
9608       if (Pair.first == I)
9609         Pair.first = TempEntries.size();
9610     TempEntries.push_back(Entries[I]);
9611   }
9612   Entries.swap(TempEntries);
9613   if (EntryLanes.size() == Entries.size() &&
9614       !VL.equals(ArrayRef(TE->Scalars)
9615                      .slice(Part * VL.size(),
9616                             std::min<int>(VL.size(), TE->Scalars.size())))) {
9617     // We may have here 1 or 2 entries only. If the number of scalars is equal
9618     // to the number of entries, no need to do the analysis, it is not very
9619     // profitable. Since VL is not the same as TE->Scalars, it means we already
9620     // have some shuffles before. Cut off not profitable case.
9621     Entries.clear();
9622     return std::nullopt;
9623   }
9624   // Build the final mask, check for the identity shuffle, if possible.
9625   bool IsIdentity = Entries.size() == 1;
9626   // Pair.first is the offset to the vector, while Pair.second is the index of
9627   // scalar in the list.
9628   for (const std::pair<unsigned, int> &Pair : EntryLanes) {
9629     unsigned Idx = Part * VL.size() + Pair.second;
9630     Mask[Idx] = Pair.first * VF +
9631                 Entries[Pair.first]->findLaneForValue(VL[Pair.second]);
9632     IsIdentity &= Mask[Idx] == Pair.second;
9633   }
9634   switch (Entries.size()) {
9635   case 1:
9636     if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2)
9637       return TargetTransformInfo::SK_PermuteSingleSrc;
9638     break;
9639   case 2:
9640     if (EntryLanes.size() > 2 || VL.size() <= 2)
9641       return TargetTransformInfo::SK_PermuteTwoSrc;
9642     break;
9643   default:
9644     break;
9645   }
9646   Entries.clear();
9647   // Clear the corresponding mask elements.
9648   std::fill(std::next(Mask.begin(), Part * VL.size()),
9649             std::next(Mask.begin(), (Part + 1) * VL.size()), PoisonMaskElem);
9650   return std::nullopt;
9651 }
9652 
9653 SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
9654 BoUpSLP::isGatherShuffledEntry(
9655     const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask,
9656     SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries,
9657     unsigned NumParts) {
9658   assert(NumParts > 0 && NumParts < VL.size() &&
9659          "Expected positive number of registers.");
9660   Entries.clear();
9661   // No need to check for the topmost gather node.
9662   if (TE == VectorizableTree.front().get())
9663     return {};
9664   Mask.assign(VL.size(), PoisonMaskElem);
9665   assert(TE->UserTreeIndices.size() == 1 &&
9666          "Expected only single user of the gather node.");
9667   assert(VL.size() % NumParts == 0 &&
9668          "Number of scalars must be divisible by NumParts.");
9669   unsigned SliceSize = VL.size() / NumParts;
9670   SmallVector<std::optional<TTI::ShuffleKind>> Res;
9671   for (unsigned Part = 0; Part < NumParts; ++Part) {
9672     ArrayRef<Value *> SubVL = VL.slice(Part * SliceSize, SliceSize);
9673     SmallVectorImpl<const TreeEntry *> &SubEntries = Entries.emplace_back();
9674     std::optional<TTI::ShuffleKind> SubRes =
9675         isGatherShuffledSingleRegisterEntry(TE, SubVL, Mask, SubEntries, Part);
9676     if (!SubRes)
9677       SubEntries.clear();
9678     Res.push_back(SubRes);
9679     if (SubEntries.size() == 1 && *SubRes == TTI::SK_PermuteSingleSrc &&
9680         SubEntries.front()->getVectorFactor() == VL.size() &&
9681         (SubEntries.front()->isSame(TE->Scalars) ||
9682          SubEntries.front()->isSame(VL))) {
9683       SmallVector<const TreeEntry *> LocalSubEntries;
9684       LocalSubEntries.swap(SubEntries);
9685       Entries.clear();
9686       Res.clear();
9687       std::iota(Mask.begin(), Mask.end(), 0);
9688       // Clear undef scalars.
9689       for (int I = 0, Sz = VL.size(); I < Sz; ++I)
9690         if (isa<PoisonValue>(VL[I]))
9691           Mask[I] = PoisonMaskElem;
9692       Entries.emplace_back(1, LocalSubEntries.front());
9693       Res.push_back(TargetTransformInfo::SK_PermuteSingleSrc);
9694       return Res;
9695     }
9696   }
9697   if (all_of(Res,
9698              [](const std::optional<TTI::ShuffleKind> &SK) { return !SK; })) {
9699     Entries.clear();
9700     return {};
9701   }
9702   return Res;
9703 }
9704 
9705 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL,
9706                                        bool ForPoisonSrc) const {
9707   // Find the type of the operands in VL.
9708   Type *ScalarTy = VL[0]->getType();
9709   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
9710     ScalarTy = SI->getValueOperand()->getType();
9711   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
9712   bool DuplicateNonConst = false;
9713   // Find the cost of inserting/extracting values from the vector.
9714   // Check if the same elements are inserted several times and count them as
9715   // shuffle candidates.
9716   APInt ShuffledElements = APInt::getZero(VL.size());
9717   DenseSet<Value *> UniqueElements;
9718   constexpr TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9719   InstructionCost Cost;
9720   auto EstimateInsertCost = [&](unsigned I, Value *V) {
9721     if (!ForPoisonSrc)
9722       Cost +=
9723           TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind,
9724                                   I, Constant::getNullValue(VecTy), V);
9725   };
9726   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
9727     Value *V = VL[I];
9728     // No need to shuffle duplicates for constants.
9729     if ((ForPoisonSrc && isConstant(V)) || isa<UndefValue>(V)) {
9730       ShuffledElements.setBit(I);
9731       continue;
9732     }
9733     if (!UniqueElements.insert(V).second) {
9734       DuplicateNonConst = true;
9735       ShuffledElements.setBit(I);
9736       continue;
9737     }
9738     EstimateInsertCost(I, V);
9739   }
9740   if (ForPoisonSrc)
9741     Cost =
9742         TTI->getScalarizationOverhead(VecTy, ~ShuffledElements, /*Insert*/ true,
9743                                       /*Extract*/ false, CostKind);
9744   if (DuplicateNonConst)
9745     Cost +=
9746         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
9747   return Cost;
9748 }
9749 
9750 // Perform operand reordering on the instructions in VL and return the reordered
9751 // operands in Left and Right.
9752 void BoUpSLP::reorderInputsAccordingToOpcode(
9753     ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
9754     SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
9755     const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) {
9756   if (VL.empty())
9757     return;
9758   VLOperands Ops(VL, TLI, DL, SE, R);
9759   // Reorder the operands in place.
9760   Ops.reorder();
9761   Left = Ops.getVL(0);
9762   Right = Ops.getVL(1);
9763 }
9764 
9765 Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) {
9766   auto &Res = EntryToLastInstruction.FindAndConstruct(E);
9767   if (Res.second)
9768     return *Res.second;
9769   // Get the basic block this bundle is in. All instructions in the bundle
9770   // should be in this block (except for extractelement-like instructions with
9771   // constant indeces).
9772   auto *Front = E->getMainOp();
9773   auto *BB = Front->getParent();
9774   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
9775     if (E->getOpcode() == Instruction::GetElementPtr &&
9776         !isa<GetElementPtrInst>(V))
9777       return true;
9778     auto *I = cast<Instruction>(V);
9779     return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
9780            isVectorLikeInstWithConstOps(I);
9781   }));
9782 
9783   auto FindLastInst = [&]() {
9784     Instruction *LastInst = Front;
9785     for (Value *V : E->Scalars) {
9786       auto *I = dyn_cast<Instruction>(V);
9787       if (!I)
9788         continue;
9789       if (LastInst->getParent() == I->getParent()) {
9790         if (LastInst->comesBefore(I))
9791           LastInst = I;
9792         continue;
9793       }
9794       assert(((E->getOpcode() == Instruction::GetElementPtr &&
9795                !isa<GetElementPtrInst>(I)) ||
9796               (isVectorLikeInstWithConstOps(LastInst) &&
9797                isVectorLikeInstWithConstOps(I))) &&
9798              "Expected vector-like or non-GEP in GEP node insts only.");
9799       if (!DT->isReachableFromEntry(LastInst->getParent())) {
9800         LastInst = I;
9801         continue;
9802       }
9803       if (!DT->isReachableFromEntry(I->getParent()))
9804         continue;
9805       auto *NodeA = DT->getNode(LastInst->getParent());
9806       auto *NodeB = DT->getNode(I->getParent());
9807       assert(NodeA && "Should only process reachable instructions");
9808       assert(NodeB && "Should only process reachable instructions");
9809       assert((NodeA == NodeB) ==
9810                  (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
9811              "Different nodes should have different DFS numbers");
9812       if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
9813         LastInst = I;
9814     }
9815     BB = LastInst->getParent();
9816     return LastInst;
9817   };
9818 
9819   auto FindFirstInst = [&]() {
9820     Instruction *FirstInst = Front;
9821     for (Value *V : E->Scalars) {
9822       auto *I = dyn_cast<Instruction>(V);
9823       if (!I)
9824         continue;
9825       if (FirstInst->getParent() == I->getParent()) {
9826         if (I->comesBefore(FirstInst))
9827           FirstInst = I;
9828         continue;
9829       }
9830       assert(((E->getOpcode() == Instruction::GetElementPtr &&
9831               !isa<GetElementPtrInst>(I)) ||
9832              (isVectorLikeInstWithConstOps(FirstInst) &&
9833               isVectorLikeInstWithConstOps(I))) &&
9834                  "Expected vector-like or non-GEP in GEP node insts only.");
9835       if (!DT->isReachableFromEntry(FirstInst->getParent())) {
9836         FirstInst = I;
9837         continue;
9838       }
9839       if (!DT->isReachableFromEntry(I->getParent()))
9840         continue;
9841       auto *NodeA = DT->getNode(FirstInst->getParent());
9842       auto *NodeB = DT->getNode(I->getParent());
9843       assert(NodeA && "Should only process reachable instructions");
9844       assert(NodeB && "Should only process reachable instructions");
9845       assert((NodeA == NodeB) ==
9846                  (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
9847              "Different nodes should have different DFS numbers");
9848       if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn())
9849         FirstInst = I;
9850     }
9851     return FirstInst;
9852   };
9853 
9854   // Set the insert point to the beginning of the basic block if the entry
9855   // should not be scheduled.
9856   if (doesNotNeedToSchedule(E->Scalars) ||
9857       (E->State != TreeEntry::NeedToGather &&
9858        all_of(E->Scalars, isVectorLikeInstWithConstOps))) {
9859     if ((E->getOpcode() == Instruction::GetElementPtr &&
9860          any_of(E->Scalars,
9861                 [](Value *V) {
9862                   return !isa<GetElementPtrInst>(V) && isa<Instruction>(V);
9863                 })) ||
9864         all_of(E->Scalars, [](Value *V) {
9865           return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V);
9866         }))
9867       Res.second = FindLastInst();
9868     else
9869       Res.second = FindFirstInst();
9870     return *Res.second;
9871   }
9872 
9873   // Find the last instruction. The common case should be that BB has been
9874   // scheduled, and the last instruction is VL.back(). So we start with
9875   // VL.back() and iterate over schedule data until we reach the end of the
9876   // bundle. The end of the bundle is marked by null ScheduleData.
9877   if (BlocksSchedules.count(BB)) {
9878     Value *V = E->isOneOf(E->Scalars.back());
9879     if (doesNotNeedToBeScheduled(V))
9880       V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
9881     auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
9882     if (Bundle && Bundle->isPartOfBundle())
9883       for (; Bundle; Bundle = Bundle->NextInBundle)
9884         if (Bundle->OpValue == Bundle->Inst)
9885           Res.second = Bundle->Inst;
9886   }
9887 
9888   // LastInst can still be null at this point if there's either not an entry
9889   // for BB in BlocksSchedules or there's no ScheduleData available for
9890   // VL.back(). This can be the case if buildTree_rec aborts for various
9891   // reasons (e.g., the maximum recursion depth is reached, the maximum region
9892   // size is reached, etc.). ScheduleData is initialized in the scheduling
9893   // "dry-run".
9894   //
9895   // If this happens, we can still find the last instruction by brute force. We
9896   // iterate forwards from Front (inclusive) until we either see all
9897   // instructions in the bundle or reach the end of the block. If Front is the
9898   // last instruction in program order, LastInst will be set to Front, and we
9899   // will visit all the remaining instructions in the block.
9900   //
9901   // One of the reasons we exit early from buildTree_rec is to place an upper
9902   // bound on compile-time. Thus, taking an additional compile-time hit here is
9903   // not ideal. However, this should be exceedingly rare since it requires that
9904   // we both exit early from buildTree_rec and that the bundle be out-of-order
9905   // (causing us to iterate all the way to the end of the block).
9906   if (!Res.second)
9907     Res.second = FindLastInst();
9908   assert(Res.second && "Failed to find last instruction in bundle");
9909   return *Res.second;
9910 }
9911 
9912 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
9913   auto *Front = E->getMainOp();
9914   Instruction *LastInst = &getLastInstructionInBundle(E);
9915   assert(LastInst && "Failed to find last instruction in bundle");
9916   BasicBlock::iterator LastInstIt = LastInst->getIterator();
9917   // If the instruction is PHI, set the insert point after all the PHIs.
9918   bool IsPHI = isa<PHINode>(LastInst);
9919   if (IsPHI)
9920     LastInstIt = LastInst->getParent()->getFirstNonPHIIt();
9921   if (IsPHI || (E->State != TreeEntry::NeedToGather &&
9922                 doesNotNeedToSchedule(E->Scalars))) {
9923     Builder.SetInsertPoint(LastInst->getParent(), LastInstIt);
9924   } else {
9925     // Set the insertion point after the last instruction in the bundle. Set the
9926     // debug location to Front.
9927     Builder.SetInsertPoint(
9928         LastInst->getParent(),
9929         LastInst->getNextNonDebugInstruction()->getIterator());
9930   }
9931   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
9932 }
9933 
9934 Value *BoUpSLP::gather(ArrayRef<Value *> VL, Value *Root) {
9935   // List of instructions/lanes from current block and/or the blocks which are
9936   // part of the current loop. These instructions will be inserted at the end to
9937   // make it possible to optimize loops and hoist invariant instructions out of
9938   // the loops body with better chances for success.
9939   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
9940   SmallSet<int, 4> PostponedIndices;
9941   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
9942   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
9943     SmallPtrSet<BasicBlock *, 4> Visited;
9944     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
9945       InsertBB = InsertBB->getSinglePredecessor();
9946     return InsertBB && InsertBB == InstBB;
9947   };
9948   for (int I = 0, E = VL.size(); I < E; ++I) {
9949     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
9950       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
9951            getTreeEntry(Inst) ||
9952            (L && (!Root || L->isLoopInvariant(Root)) && L->contains(Inst))) &&
9953           PostponedIndices.insert(I).second)
9954         PostponedInsts.emplace_back(Inst, I);
9955   }
9956 
9957   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
9958     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
9959     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
9960     if (!InsElt)
9961       return Vec;
9962     GatherShuffleExtractSeq.insert(InsElt);
9963     CSEBlocks.insert(InsElt->getParent());
9964     // Add to our 'need-to-extract' list.
9965     if (isa<Instruction>(V)) {
9966       if (TreeEntry *Entry = getTreeEntry(V)) {
9967         // Find which lane we need to extract.
9968         unsigned FoundLane = Entry->findLaneForValue(V);
9969         ExternalUses.emplace_back(V, InsElt, FoundLane);
9970       }
9971     }
9972     return Vec;
9973   };
9974   Value *Val0 =
9975       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
9976   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
9977   Value *Vec = Root ? Root : PoisonValue::get(VecTy);
9978   SmallVector<int> NonConsts;
9979   // Insert constant values at first.
9980   for (int I = 0, E = VL.size(); I < E; ++I) {
9981     if (PostponedIndices.contains(I))
9982       continue;
9983     if (!isConstant(VL[I])) {
9984       NonConsts.push_back(I);
9985       continue;
9986     }
9987     if (Root) {
9988       if (!isa<UndefValue>(VL[I])) {
9989         NonConsts.push_back(I);
9990         continue;
9991       }
9992       if (isa<PoisonValue>(VL[I]))
9993         continue;
9994       if (auto *SV = dyn_cast<ShuffleVectorInst>(Root)) {
9995         if (SV->getMaskValue(I) == PoisonMaskElem)
9996           continue;
9997       }
9998     }
9999     Vec = CreateInsertElement(Vec, VL[I], I);
10000   }
10001   // Insert non-constant values.
10002   for (int I : NonConsts)
10003     Vec = CreateInsertElement(Vec, VL[I], I);
10004   // Append instructions, which are/may be part of the loop, in the end to make
10005   // it possible to hoist non-loop-based instructions.
10006   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
10007     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
10008 
10009   return Vec;
10010 }
10011 
10012 /// Merges shuffle masks and emits final shuffle instruction, if required. It
10013 /// supports shuffling of 2 input vectors. It implements lazy shuffles emission,
10014 /// when the actual shuffle instruction is generated only if this is actually
10015 /// required. Otherwise, the shuffle instruction emission is delayed till the
10016 /// end of the process, to reduce the number of emitted instructions and further
10017 /// analysis/transformations.
10018 /// The class also will look through the previously emitted shuffle instructions
10019 /// and properly mark indices in mask as undef.
10020 /// For example, given the code
10021 /// \code
10022 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
10023 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
10024 /// \endcode
10025 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
10026 /// look through %s1 and %s2 and emit
10027 /// \code
10028 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
10029 /// \endcode
10030 /// instead.
10031 /// If 2 operands are of different size, the smallest one will be resized and
10032 /// the mask recalculated properly.
10033 /// For example, given the code
10034 /// \code
10035 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
10036 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
10037 /// \endcode
10038 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
10039 /// look through %s1 and %s2 and emit
10040 /// \code
10041 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
10042 /// \endcode
10043 /// instead.
10044 class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis {
10045   bool IsFinalized = false;
10046   /// Combined mask for all applied operands and masks. It is built during
10047   /// analysis and actual emission of shuffle vector instructions.
10048   SmallVector<int> CommonMask;
10049   /// List of operands for the shuffle vector instruction. It hold at max 2
10050   /// operands, if the 3rd is going to be added, the first 2 are combined into
10051   /// shuffle with \p CommonMask mask, the first operand sets to be the
10052   /// resulting shuffle and the second operand sets to be the newly added
10053   /// operand. The \p CommonMask is transformed in the proper way after that.
10054   SmallVector<Value *, 2> InVectors;
10055   IRBuilderBase &Builder;
10056   BoUpSLP &R;
10057 
10058   class ShuffleIRBuilder {
10059     IRBuilderBase &Builder;
10060     /// Holds all of the instructions that we gathered.
10061     SetVector<Instruction *> &GatherShuffleExtractSeq;
10062     /// A list of blocks that we are going to CSE.
10063     DenseSet<BasicBlock *> &CSEBlocks;
10064 
10065   public:
10066     ShuffleIRBuilder(IRBuilderBase &Builder,
10067                      SetVector<Instruction *> &GatherShuffleExtractSeq,
10068                      DenseSet<BasicBlock *> &CSEBlocks)
10069         : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq),
10070           CSEBlocks(CSEBlocks) {}
10071     ~ShuffleIRBuilder() = default;
10072     /// Creates shufflevector for the 2 operands with the given mask.
10073     Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) {
10074       Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask);
10075       if (auto *I = dyn_cast<Instruction>(Vec)) {
10076         GatherShuffleExtractSeq.insert(I);
10077         CSEBlocks.insert(I->getParent());
10078       }
10079       return Vec;
10080     }
10081     /// Creates permutation of the single vector operand with the given mask, if
10082     /// it is not identity mask.
10083     Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) {
10084       if (Mask.empty())
10085         return V1;
10086       unsigned VF = Mask.size();
10087       unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements();
10088       if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask, VF))
10089         return V1;
10090       Value *Vec = Builder.CreateShuffleVector(V1, Mask);
10091       if (auto *I = dyn_cast<Instruction>(Vec)) {
10092         GatherShuffleExtractSeq.insert(I);
10093         CSEBlocks.insert(I->getParent());
10094       }
10095       return Vec;
10096     }
10097     Value *createIdentity(Value *V) { return V; }
10098     Value *createPoison(Type *Ty, unsigned VF) {
10099       return PoisonValue::get(FixedVectorType::get(Ty, VF));
10100     }
10101     /// Resizes 2 input vector to match the sizes, if the they are not equal
10102     /// yet. The smallest vector is resized to the size of the larger vector.
10103     void resizeToMatch(Value *&V1, Value *&V2) {
10104       if (V1->getType() == V2->getType())
10105         return;
10106       int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements();
10107       int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements();
10108       int VF = std::max(V1VF, V2VF);
10109       int MinVF = std::min(V1VF, V2VF);
10110       SmallVector<int> IdentityMask(VF, PoisonMaskElem);
10111       std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF),
10112                 0);
10113       Value *&Op = MinVF == V1VF ? V1 : V2;
10114       Op = Builder.CreateShuffleVector(Op, IdentityMask);
10115       if (auto *I = dyn_cast<Instruction>(Op)) {
10116         GatherShuffleExtractSeq.insert(I);
10117         CSEBlocks.insert(I->getParent());
10118       }
10119       if (MinVF == V1VF)
10120         V1 = Op;
10121       else
10122         V2 = Op;
10123     }
10124   };
10125 
10126   /// Smart shuffle instruction emission, walks through shuffles trees and
10127   /// tries to find the best matching vector for the actual shuffle
10128   /// instruction.
10129   Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) {
10130     assert(V1 && "Expected at least one vector value.");
10131     ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq,
10132                                     R.CSEBlocks);
10133     return BaseShuffleAnalysis::createShuffle<Value *>(V1, V2, Mask,
10134                                                        ShuffleBuilder);
10135   }
10136 
10137   /// Transforms mask \p CommonMask per given \p Mask to make proper set after
10138   /// shuffle emission.
10139   static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask,
10140                                         ArrayRef<int> Mask) {
10141     for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10142       if (Mask[Idx] != PoisonMaskElem)
10143         CommonMask[Idx] = Idx;
10144   }
10145 
10146 public:
10147   ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R)
10148       : Builder(Builder), R(R) {}
10149 
10150   /// Adjusts extractelements after reusing them.
10151   Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask,
10152                         ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
10153                         unsigned NumParts, bool &UseVecBaseAsInput) {
10154     UseVecBaseAsInput = false;
10155     SmallPtrSet<Value *, 4> UniqueBases;
10156     Value *VecBase = nullptr;
10157     for (int I = 0, Sz = Mask.size(); I < Sz; ++I) {
10158       int Idx = Mask[I];
10159       if (Idx == PoisonMaskElem)
10160         continue;
10161       auto *EI = cast<ExtractElementInst>(E->Scalars[I]);
10162       VecBase = EI->getVectorOperand();
10163       if (const TreeEntry *TE = R.getTreeEntry(VecBase))
10164         VecBase = TE->VectorizedValue;
10165       assert(VecBase && "Expected vectorized value.");
10166       UniqueBases.insert(VecBase);
10167       // If the only one use is vectorized - can delete the extractelement
10168       // itself.
10169       if (!EI->hasOneUse() || any_of(EI->users(), [&](User *U) {
10170             return !R.ScalarToTreeEntry.count(U);
10171           }))
10172         continue;
10173       R.eraseInstruction(EI);
10174     }
10175     if (NumParts == 1 || UniqueBases.size() == 1)
10176       return VecBase;
10177     UseVecBaseAsInput = true;
10178     auto TransformToIdentity = [](MutableArrayRef<int> Mask) {
10179       for (auto [I, Idx] : enumerate(Mask))
10180         if (Idx != PoisonMaskElem)
10181           Idx = I;
10182     };
10183     // Perform multi-register vector shuffle, joining them into a single virtual
10184     // long vector.
10185     // Need to shuffle each part independently and then insert all this parts
10186     // into a long virtual vector register, forming the original vector.
10187     Value *Vec = nullptr;
10188     SmallVector<int> VecMask(Mask.size(), PoisonMaskElem);
10189     unsigned SliceSize = E->Scalars.size() / NumParts;
10190     for (unsigned Part = 0; Part < NumParts; ++Part) {
10191       ArrayRef<Value *> VL =
10192           ArrayRef(E->Scalars).slice(Part * SliceSize, SliceSize);
10193       MutableArrayRef<int> SubMask = Mask.slice(Part * SliceSize, SliceSize);
10194       constexpr int MaxBases = 2;
10195       SmallVector<Value *, MaxBases> Bases(MaxBases);
10196 #ifndef NDEBUG
10197       int PrevSize = 0;
10198 #endif // NDEBUG
10199       for (const auto [I, V]: enumerate(VL)) {
10200         if (SubMask[I] == PoisonMaskElem)
10201           continue;
10202         Value *VecOp = cast<ExtractElementInst>(V)->getVectorOperand();
10203         if (const TreeEntry *TE = R.getTreeEntry(VecOp))
10204           VecOp = TE->VectorizedValue;
10205         assert(VecOp && "Expected vectorized value.");
10206         const int Size =
10207             cast<FixedVectorType>(VecOp->getType())->getNumElements();
10208 #ifndef NDEBUG
10209         assert((PrevSize == Size || PrevSize == 0) &&
10210                "Expected vectors of the same size.");
10211         PrevSize = Size;
10212 #endif // NDEBUG
10213         Bases[SubMask[I] < Size ? 0 : 1] = VecOp;
10214       }
10215       if (!Bases.front())
10216         continue;
10217       Value *SubVec;
10218       if (Bases.back()) {
10219         SubVec = createShuffle(Bases.front(), Bases.back(), SubMask);
10220         TransformToIdentity(SubMask);
10221       } else {
10222         SubVec = Bases.front();
10223       }
10224       if (!Vec) {
10225         Vec = SubVec;
10226         assert((Part == 0 || all_of(seq<unsigned>(0, Part),
10227                                     [&](unsigned P) {
10228                                       ArrayRef<int> SubMask =
10229                                           Mask.slice(P * SliceSize, SliceSize);
10230                                       return all_of(SubMask, [](int Idx) {
10231                                         return Idx == PoisonMaskElem;
10232                                       });
10233                                     })) &&
10234                "Expected first part or all previous parts masked.");
10235         copy(SubMask, std::next(VecMask.begin(), Part * SliceSize));
10236       } else {
10237         unsigned VF = cast<FixedVectorType>(Vec->getType())->getNumElements();
10238         if (Vec->getType() != SubVec->getType()) {
10239           unsigned SubVecVF =
10240               cast<FixedVectorType>(SubVec->getType())->getNumElements();
10241           VF = std::max(VF, SubVecVF);
10242         }
10243         // Adjust SubMask.
10244         for (auto [I, Idx] : enumerate(SubMask))
10245           if (Idx != PoisonMaskElem)
10246             Idx += VF;
10247         copy(SubMask, std::next(VecMask.begin(), Part * SliceSize));
10248         Vec = createShuffle(Vec, SubVec, VecMask);
10249         TransformToIdentity(VecMask);
10250       }
10251     }
10252     copy(VecMask, Mask.begin());
10253     return Vec;
10254   }
10255   /// Checks if the specified entry \p E needs to be delayed because of its
10256   /// dependency nodes.
10257   std::optional<Value *>
10258   needToDelay(const TreeEntry *E,
10259               ArrayRef<SmallVector<const TreeEntry *>> Deps) const {
10260     // No need to delay emission if all deps are ready.
10261     if (all_of(Deps, [](ArrayRef<const TreeEntry *> TEs) {
10262           return all_of(
10263               TEs, [](const TreeEntry *TE) { return TE->VectorizedValue; });
10264         }))
10265       return std::nullopt;
10266     // Postpone gather emission, will be emitted after the end of the
10267     // process to keep correct order.
10268     auto *VecTy = FixedVectorType::get(E->Scalars.front()->getType(),
10269                                        E->getVectorFactor());
10270     return Builder.CreateAlignedLoad(
10271         VecTy, PoisonValue::get(PointerType::getUnqual(VecTy->getContext())),
10272         MaybeAlign());
10273   }
10274   /// Adds 2 input vectors (in form of tree entries) and the mask for their
10275   /// shuffling.
10276   void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) {
10277     add(E1.VectorizedValue, E2.VectorizedValue, Mask);
10278   }
10279   /// Adds single input vector (in form of tree entry) and the mask for its
10280   /// shuffling.
10281   void add(const TreeEntry &E1, ArrayRef<int> Mask) {
10282     add(E1.VectorizedValue, Mask);
10283   }
10284   /// Adds 2 input vectors and the mask for their shuffling.
10285   void add(Value *V1, Value *V2, ArrayRef<int> Mask) {
10286     assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors.");
10287     if (InVectors.empty()) {
10288       InVectors.push_back(V1);
10289       InVectors.push_back(V2);
10290       CommonMask.assign(Mask.begin(), Mask.end());
10291       return;
10292     }
10293     Value *Vec = InVectors.front();
10294     if (InVectors.size() == 2) {
10295       Vec = createShuffle(Vec, InVectors.back(), CommonMask);
10296       transformMaskAfterShuffle(CommonMask, CommonMask);
10297     } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() !=
10298                Mask.size()) {
10299       Vec = createShuffle(Vec, nullptr, CommonMask);
10300       transformMaskAfterShuffle(CommonMask, CommonMask);
10301     }
10302     V1 = createShuffle(V1, V2, Mask);
10303     for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10304       if (Mask[Idx] != PoisonMaskElem)
10305         CommonMask[Idx] = Idx + Sz;
10306     InVectors.front() = Vec;
10307     if (InVectors.size() == 2)
10308       InVectors.back() = V1;
10309     else
10310       InVectors.push_back(V1);
10311   }
10312   /// Adds another one input vector and the mask for the shuffling.
10313   void add(Value *V1, ArrayRef<int> Mask, bool = false) {
10314     if (InVectors.empty()) {
10315       if (!isa<FixedVectorType>(V1->getType())) {
10316         V1 = createShuffle(V1, nullptr, CommonMask);
10317         CommonMask.assign(Mask.size(), PoisonMaskElem);
10318         transformMaskAfterShuffle(CommonMask, Mask);
10319       }
10320       InVectors.push_back(V1);
10321       CommonMask.assign(Mask.begin(), Mask.end());
10322       return;
10323     }
10324     const auto *It = find(InVectors, V1);
10325     if (It == InVectors.end()) {
10326       if (InVectors.size() == 2 ||
10327           InVectors.front()->getType() != V1->getType() ||
10328           !isa<FixedVectorType>(V1->getType())) {
10329         Value *V = InVectors.front();
10330         if (InVectors.size() == 2) {
10331           V = createShuffle(InVectors.front(), InVectors.back(), CommonMask);
10332           transformMaskAfterShuffle(CommonMask, CommonMask);
10333         } else if (cast<FixedVectorType>(V->getType())->getNumElements() !=
10334                    CommonMask.size()) {
10335           V = createShuffle(InVectors.front(), nullptr, CommonMask);
10336           transformMaskAfterShuffle(CommonMask, CommonMask);
10337         }
10338         for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10339           if (CommonMask[Idx] == PoisonMaskElem && Mask[Idx] != PoisonMaskElem)
10340             CommonMask[Idx] =
10341                 V->getType() != V1->getType()
10342                     ? Idx + Sz
10343                     : Mask[Idx] + cast<FixedVectorType>(V1->getType())
10344                                       ->getNumElements();
10345         if (V->getType() != V1->getType())
10346           V1 = createShuffle(V1, nullptr, Mask);
10347         InVectors.front() = V;
10348         if (InVectors.size() == 2)
10349           InVectors.back() = V1;
10350         else
10351           InVectors.push_back(V1);
10352         return;
10353       }
10354       // Check if second vector is required if the used elements are already
10355       // used from the first one.
10356       for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10357         if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) {
10358           InVectors.push_back(V1);
10359           break;
10360         }
10361     }
10362     int VF = CommonMask.size();
10363     if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
10364       VF = FTy->getNumElements();
10365     for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10366       if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem)
10367         CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF);
10368   }
10369   /// Adds another one input vector and the mask for the shuffling.
10370   void addOrdered(Value *V1, ArrayRef<unsigned> Order) {
10371     SmallVector<int> NewMask;
10372     inversePermutation(Order, NewMask);
10373     add(V1, NewMask);
10374   }
10375   Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0,
10376                 Value *Root = nullptr) {
10377     return R.gather(VL, Root);
10378   }
10379   Value *createFreeze(Value *V) { return Builder.CreateFreeze(V); }
10380   /// Finalize emission of the shuffles.
10381   /// \param Action the action (if any) to be performed before final applying of
10382   /// the \p ExtMask mask.
10383   Value *
10384   finalize(ArrayRef<int> ExtMask, unsigned VF = 0,
10385            function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) {
10386     IsFinalized = true;
10387     if (Action) {
10388       Value *Vec = InVectors.front();
10389       if (InVectors.size() == 2) {
10390         Vec = createShuffle(Vec, InVectors.back(), CommonMask);
10391         InVectors.pop_back();
10392       } else {
10393         Vec = createShuffle(Vec, nullptr, CommonMask);
10394       }
10395       for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10396         if (CommonMask[Idx] != PoisonMaskElem)
10397           CommonMask[Idx] = Idx;
10398       assert(VF > 0 &&
10399              "Expected vector length for the final value before action.");
10400       unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
10401       if (VecVF < VF) {
10402         SmallVector<int> ResizeMask(VF, PoisonMaskElem);
10403         std::iota(ResizeMask.begin(), std::next(ResizeMask.begin(), VecVF), 0);
10404         Vec = createShuffle(Vec, nullptr, ResizeMask);
10405       }
10406       Action(Vec, CommonMask);
10407       InVectors.front() = Vec;
10408     }
10409     if (!ExtMask.empty()) {
10410       if (CommonMask.empty()) {
10411         CommonMask.assign(ExtMask.begin(), ExtMask.end());
10412       } else {
10413         SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem);
10414         for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
10415           if (ExtMask[I] == PoisonMaskElem)
10416             continue;
10417           NewMask[I] = CommonMask[ExtMask[I]];
10418         }
10419         CommonMask.swap(NewMask);
10420       }
10421     }
10422     if (CommonMask.empty()) {
10423       assert(InVectors.size() == 1 && "Expected only one vector with no mask");
10424       return InVectors.front();
10425     }
10426     if (InVectors.size() == 2)
10427       return createShuffle(InVectors.front(), InVectors.back(), CommonMask);
10428     return createShuffle(InVectors.front(), nullptr, CommonMask);
10429   }
10430 
10431   ~ShuffleInstructionBuilder() {
10432     assert((IsFinalized || CommonMask.empty()) &&
10433            "Shuffle construction must be finalized.");
10434   }
10435 };
10436 
10437 Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx,
10438                                  bool PostponedPHIs) {
10439   ValueList &VL = E->getOperand(NodeIdx);
10440   if (E->State == TreeEntry::PossibleStridedVectorize &&
10441       !E->ReorderIndices.empty()) {
10442     SmallVector<int> Mask(E->ReorderIndices.begin(), E->ReorderIndices.end());
10443     reorderScalars(VL, Mask);
10444   }
10445   const unsigned VF = VL.size();
10446   InstructionsState S = getSameOpcode(VL, *TLI);
10447   // Special processing for GEPs bundle, which may include non-gep values.
10448   if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
10449     const auto *It =
10450         find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
10451     if (It != VL.end())
10452       S = getSameOpcode(*It, *TLI);
10453   }
10454   if (S.getOpcode()) {
10455     auto CheckSameVE = [&](const TreeEntry *VE) {
10456       return VE->isSame(VL) &&
10457              (any_of(VE->UserTreeIndices,
10458                      [E, NodeIdx](const EdgeInfo &EI) {
10459                        return EI.UserTE == E && EI.EdgeIdx == NodeIdx;
10460                      }) ||
10461               any_of(VectorizableTree,
10462                      [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) {
10463                        return TE->isOperandGatherNode({E, NodeIdx}) &&
10464                               VE->isSame(TE->Scalars);
10465                      }));
10466     };
10467     TreeEntry *VE = getTreeEntry(S.OpValue);
10468     bool IsSameVE = VE && CheckSameVE(VE);
10469     if (!IsSameVE) {
10470       auto It = MultiNodeScalars.find(S.OpValue);
10471       if (It != MultiNodeScalars.end()) {
10472         auto *I = find_if(It->getSecond(), [&](const TreeEntry *TE) {
10473           return TE != VE && CheckSameVE(TE);
10474         });
10475         if (I != It->getSecond().end()) {
10476           VE = *I;
10477           IsSameVE = true;
10478         }
10479       }
10480     }
10481     if (IsSameVE) {
10482       auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) {
10483         ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
10484         ShuffleBuilder.add(V, Mask);
10485         return ShuffleBuilder.finalize(std::nullopt);
10486       };
10487       Value *V = vectorizeTree(VE, PostponedPHIs);
10488       if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
10489         if (!VE->ReuseShuffleIndices.empty()) {
10490           // Reshuffle to get only unique values.
10491           // If some of the scalars are duplicated in the vectorization
10492           // tree entry, we do not vectorize them but instead generate a
10493           // mask for the reuses. But if there are several users of the
10494           // same entry, they may have different vectorization factors.
10495           // This is especially important for PHI nodes. In this case, we
10496           // need to adapt the resulting instruction for the user
10497           // vectorization factor and have to reshuffle it again to take
10498           // only unique elements of the vector. Without this code the
10499           // function incorrectly returns reduced vector instruction with
10500           // the same elements, not with the unique ones.
10501 
10502           // block:
10503           // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
10504           // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
10505           // ... (use %2)
10506           // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
10507           // br %block
10508           SmallVector<int> UniqueIdxs(VF, PoisonMaskElem);
10509           SmallSet<int, 4> UsedIdxs;
10510           int Pos = 0;
10511           for (int Idx : VE->ReuseShuffleIndices) {
10512             if (Idx != static_cast<int>(VF) && Idx != PoisonMaskElem &&
10513                 UsedIdxs.insert(Idx).second)
10514               UniqueIdxs[Idx] = Pos;
10515             ++Pos;
10516           }
10517           assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
10518                                           "less than original vector size.");
10519           UniqueIdxs.append(VF - UsedIdxs.size(), PoisonMaskElem);
10520           V = FinalShuffle(V, UniqueIdxs);
10521         } else {
10522           assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
10523                  "Expected vectorization factor less "
10524                  "than original vector size.");
10525           SmallVector<int> UniformMask(VF, 0);
10526           std::iota(UniformMask.begin(), UniformMask.end(), 0);
10527           V = FinalShuffle(V, UniformMask);
10528         }
10529       }
10530       // Need to update the operand gather node, if actually the operand is not a
10531       // vectorized node, but the buildvector/gather node, which matches one of
10532       // the vectorized nodes.
10533       if (find_if(VE->UserTreeIndices, [&](const EdgeInfo &EI) {
10534             return EI.UserTE == E && EI.EdgeIdx == NodeIdx;
10535           }) == VE->UserTreeIndices.end()) {
10536         auto *It = find_if(
10537             VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
10538               return TE->State == TreeEntry::NeedToGather &&
10539                      TE->UserTreeIndices.front().UserTE == E &&
10540                      TE->UserTreeIndices.front().EdgeIdx == NodeIdx;
10541             });
10542         assert(It != VectorizableTree.end() && "Expected gather node operand.");
10543         (*It)->VectorizedValue = V;
10544       }
10545       return V;
10546     }
10547   }
10548 
10549   // Find the corresponding gather entry and vectorize it.
10550   // Allows to be more accurate with tree/graph transformations, checks for the
10551   // correctness of the transformations in many cases.
10552   auto *I = find_if(VectorizableTree,
10553                     [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) {
10554                       return TE->isOperandGatherNode({E, NodeIdx});
10555                     });
10556   assert(I != VectorizableTree.end() && "Gather node is not in the graph.");
10557   assert(I->get()->UserTreeIndices.size() == 1 &&
10558          "Expected only single user for the gather node.");
10559   assert(I->get()->isSame(VL) && "Expected same list of scalars.");
10560   return vectorizeTree(I->get(), PostponedPHIs);
10561 }
10562 
10563 template <typename BVTy, typename ResTy, typename... Args>
10564 ResTy BoUpSLP::processBuildVector(const TreeEntry *E, Args &...Params) {
10565   assert(E->State == TreeEntry::NeedToGather && "Expected gather node.");
10566   unsigned VF = E->getVectorFactor();
10567 
10568   bool NeedFreeze = false;
10569   SmallVector<int> ReuseShuffleIndicies(E->ReuseShuffleIndices.begin(),
10570                                         E->ReuseShuffleIndices.end());
10571   SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end());
10572   // Build a mask out of the reorder indices and reorder scalars per this
10573   // mask.
10574   SmallVector<int> ReorderMask;
10575   inversePermutation(E->ReorderIndices, ReorderMask);
10576   if (!ReorderMask.empty())
10577     reorderScalars(GatheredScalars, ReorderMask);
10578   auto FindReusedSplat = [&](MutableArrayRef<int> Mask, unsigned InputVF) {
10579     if (!isSplat(E->Scalars) || none_of(E->Scalars, [](Value *V) {
10580           return isa<UndefValue>(V) && !isa<PoisonValue>(V);
10581         }))
10582       return false;
10583     TreeEntry *UserTE = E->UserTreeIndices.back().UserTE;
10584     unsigned EdgeIdx = E->UserTreeIndices.back().EdgeIdx;
10585     if (UserTE->getNumOperands() != 2)
10586       return false;
10587     auto *It =
10588         find_if(VectorizableTree, [=](const std::unique_ptr<TreeEntry> &TE) {
10589           return find_if(TE->UserTreeIndices, [=](const EdgeInfo &EI) {
10590                    return EI.UserTE == UserTE && EI.EdgeIdx != EdgeIdx;
10591                  }) != TE->UserTreeIndices.end();
10592         });
10593     if (It == VectorizableTree.end())
10594       return false;
10595     int Idx;
10596     if ((Mask.size() < InputVF &&
10597          ShuffleVectorInst::isExtractSubvectorMask(Mask, InputVF, Idx) &&
10598          Idx == 0) ||
10599         (Mask.size() == InputVF &&
10600          ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))) {
10601       std::iota(Mask.begin(), Mask.end(), 0);
10602     } else {
10603       unsigned I =
10604           *find_if_not(Mask, [](int Idx) { return Idx == PoisonMaskElem; });
10605       std::fill(Mask.begin(), Mask.end(), I);
10606     }
10607     return true;
10608   };
10609   BVTy ShuffleBuilder(Params...);
10610   ResTy Res = ResTy();
10611   SmallVector<int> Mask;
10612   SmallVector<int> ExtractMask(GatheredScalars.size(), PoisonMaskElem);
10613   SmallVector<std::optional<TTI::ShuffleKind>> ExtractShuffles;
10614   Value *ExtractVecBase = nullptr;
10615   bool UseVecBaseAsInput = false;
10616   SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> GatherShuffles;
10617   SmallVector<SmallVector<const TreeEntry *>> Entries;
10618   Type *ScalarTy = GatheredScalars.front()->getType();
10619   auto *VecTy = FixedVectorType::get(ScalarTy, GatheredScalars.size());
10620   unsigned NumParts = TTI->getNumberOfParts(VecTy);
10621   if (NumParts == 0 || NumParts >= GatheredScalars.size())
10622     NumParts = 1;
10623   if (!all_of(GatheredScalars, UndefValue::classof)) {
10624     // Check for gathered extracts.
10625     bool Resized = false;
10626     ExtractShuffles =
10627         tryToGatherExtractElements(GatheredScalars, ExtractMask, NumParts);
10628     if (!ExtractShuffles.empty()) {
10629       SmallVector<const TreeEntry *> ExtractEntries;
10630       for (auto [Idx, I] : enumerate(ExtractMask)) {
10631         if (I == PoisonMaskElem)
10632           continue;
10633         if (const auto *TE = getTreeEntry(
10634                 cast<ExtractElementInst>(E->Scalars[Idx])->getVectorOperand()))
10635           ExtractEntries.push_back(TE);
10636       }
10637       if (std::optional<ResTy> Delayed =
10638               ShuffleBuilder.needToDelay(E, ExtractEntries)) {
10639         // Delay emission of gathers which are not ready yet.
10640         PostponedGathers.insert(E);
10641         // Postpone gather emission, will be emitted after the end of the
10642         // process to keep correct order.
10643         return *Delayed;
10644       }
10645       if (Value *VecBase = ShuffleBuilder.adjustExtracts(
10646               E, ExtractMask, ExtractShuffles, NumParts, UseVecBaseAsInput)) {
10647         ExtractVecBase = VecBase;
10648         if (auto *VecBaseTy = dyn_cast<FixedVectorType>(VecBase->getType()))
10649           if (VF == VecBaseTy->getNumElements() &&
10650               GatheredScalars.size() != VF) {
10651             Resized = true;
10652             GatheredScalars.append(VF - GatheredScalars.size(),
10653                                    PoisonValue::get(ScalarTy));
10654           }
10655       }
10656     }
10657     // Gather extracts after we check for full matched gathers only.
10658     if (!ExtractShuffles.empty() || E->getOpcode() != Instruction::Load ||
10659         E->isAltShuffle() ||
10660         all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) ||
10661         isSplat(E->Scalars) ||
10662         (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) {
10663       GatherShuffles =
10664           isGatherShuffledEntry(E, GatheredScalars, Mask, Entries, NumParts);
10665     }
10666     if (!GatherShuffles.empty()) {
10667       if (std::optional<ResTy> Delayed =
10668               ShuffleBuilder.needToDelay(E, Entries)) {
10669         // Delay emission of gathers which are not ready yet.
10670         PostponedGathers.insert(E);
10671         // Postpone gather emission, will be emitted after the end of the
10672         // process to keep correct order.
10673         return *Delayed;
10674       }
10675       if (GatherShuffles.size() == 1 &&
10676           *GatherShuffles.front() == TTI::SK_PermuteSingleSrc &&
10677           Entries.front().front()->isSame(E->Scalars)) {
10678         // Perfect match in the graph, will reuse the previously vectorized
10679         // node. Cost is 0.
10680         LLVM_DEBUG(
10681             dbgs()
10682             << "SLP: perfect diamond match for gather bundle "
10683             << shortBundleName(E->Scalars) << ".\n");
10684         // Restore the mask for previous partially matched values.
10685         Mask.resize(E->Scalars.size());
10686         const TreeEntry *FrontTE = Entries.front().front();
10687         if (FrontTE->ReorderIndices.empty() &&
10688             ((FrontTE->ReuseShuffleIndices.empty() &&
10689               E->Scalars.size() == FrontTE->Scalars.size()) ||
10690              (E->Scalars.size() == FrontTE->ReuseShuffleIndices.size()))) {
10691           std::iota(Mask.begin(), Mask.end(), 0);
10692         } else {
10693           for (auto [I, V] : enumerate(E->Scalars)) {
10694             if (isa<PoisonValue>(V)) {
10695               Mask[I] = PoisonMaskElem;
10696               continue;
10697             }
10698             Mask[I] = FrontTE->findLaneForValue(V);
10699           }
10700         }
10701         ShuffleBuilder.add(*FrontTE, Mask);
10702         Res = ShuffleBuilder.finalize(E->getCommonMask());
10703         return Res;
10704       }
10705       if (!Resized) {
10706         if (GatheredScalars.size() != VF &&
10707             any_of(Entries, [&](ArrayRef<const TreeEntry *> TEs) {
10708               return any_of(TEs, [&](const TreeEntry *TE) {
10709                 return TE->getVectorFactor() == VF;
10710               });
10711             }))
10712           GatheredScalars.append(VF - GatheredScalars.size(),
10713                                  PoisonValue::get(ScalarTy));
10714       }
10715       // Remove shuffled elements from list of gathers.
10716       for (int I = 0, Sz = Mask.size(); I < Sz; ++I) {
10717         if (Mask[I] != PoisonMaskElem)
10718           GatheredScalars[I] = PoisonValue::get(ScalarTy);
10719       }
10720     }
10721   }
10722   auto TryPackScalars = [&](SmallVectorImpl<Value *> &Scalars,
10723                             SmallVectorImpl<int> &ReuseMask,
10724                             bool IsRootPoison) {
10725     // For splats with can emit broadcasts instead of gathers, so try to find
10726     // such sequences.
10727     bool IsSplat = IsRootPoison && isSplat(Scalars) &&
10728                    (Scalars.size() > 2 || Scalars.front() == Scalars.back());
10729     Scalars.append(VF - Scalars.size(), PoisonValue::get(ScalarTy));
10730     SmallVector<int> UndefPos;
10731     DenseMap<Value *, unsigned> UniquePositions;
10732     // Gather unique non-const values and all constant values.
10733     // For repeated values, just shuffle them.
10734     int NumNonConsts = 0;
10735     int SinglePos = 0;
10736     for (auto [I, V] : enumerate(Scalars)) {
10737       if (isa<UndefValue>(V)) {
10738         if (!isa<PoisonValue>(V)) {
10739           ReuseMask[I] = I;
10740           UndefPos.push_back(I);
10741         }
10742         continue;
10743       }
10744       if (isConstant(V)) {
10745         ReuseMask[I] = I;
10746         continue;
10747       }
10748       ++NumNonConsts;
10749       SinglePos = I;
10750       Value *OrigV = V;
10751       Scalars[I] = PoisonValue::get(ScalarTy);
10752       if (IsSplat) {
10753         Scalars.front() = OrigV;
10754         ReuseMask[I] = 0;
10755       } else {
10756         const auto Res = UniquePositions.try_emplace(OrigV, I);
10757         Scalars[Res.first->second] = OrigV;
10758         ReuseMask[I] = Res.first->second;
10759       }
10760     }
10761     if (NumNonConsts == 1) {
10762       // Restore single insert element.
10763       if (IsSplat) {
10764         ReuseMask.assign(VF, PoisonMaskElem);
10765         std::swap(Scalars.front(), Scalars[SinglePos]);
10766         if (!UndefPos.empty() && UndefPos.front() == 0)
10767           Scalars.front() = UndefValue::get(ScalarTy);
10768       }
10769       ReuseMask[SinglePos] = SinglePos;
10770     } else if (!UndefPos.empty() && IsSplat) {
10771       // For undef values, try to replace them with the simple broadcast.
10772       // We can do it if the broadcasted value is guaranteed to be
10773       // non-poisonous, or by freezing the incoming scalar value first.
10774       auto *It = find_if(Scalars, [this, E](Value *V) {
10775         return !isa<UndefValue>(V) &&
10776                (getTreeEntry(V) || isGuaranteedNotToBePoison(V) ||
10777                 (E->UserTreeIndices.size() == 1 &&
10778                  any_of(V->uses(), [E](const Use &U) {
10779                    // Check if the value already used in the same operation in
10780                    // one of the nodes already.
10781                    return E->UserTreeIndices.front().EdgeIdx !=
10782                               U.getOperandNo() &&
10783                           is_contained(
10784                               E->UserTreeIndices.front().UserTE->Scalars,
10785                               U.getUser());
10786                  })));
10787       });
10788       if (It != Scalars.end()) {
10789         // Replace undefs by the non-poisoned scalars and emit broadcast.
10790         int Pos = std::distance(Scalars.begin(), It);
10791         for (int I : UndefPos) {
10792           // Set the undef position to the non-poisoned scalar.
10793           ReuseMask[I] = Pos;
10794           // Replace the undef by the poison, in the mask it is replaced by
10795           // non-poisoned scalar already.
10796           if (I != Pos)
10797             Scalars[I] = PoisonValue::get(ScalarTy);
10798         }
10799       } else {
10800         // Replace undefs by the poisons, emit broadcast and then emit
10801         // freeze.
10802         for (int I : UndefPos) {
10803           ReuseMask[I] = PoisonMaskElem;
10804           if (isa<UndefValue>(Scalars[I]))
10805             Scalars[I] = PoisonValue::get(ScalarTy);
10806         }
10807         NeedFreeze = true;
10808       }
10809     }
10810   };
10811   if (!ExtractShuffles.empty() || !GatherShuffles.empty()) {
10812     bool IsNonPoisoned = true;
10813     bool IsUsedInExpr = true;
10814     Value *Vec1 = nullptr;
10815     if (!ExtractShuffles.empty()) {
10816       // Gather of extractelements can be represented as just a shuffle of
10817       // a single/two vectors the scalars are extracted from.
10818       // Find input vectors.
10819       Value *Vec2 = nullptr;
10820       for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) {
10821         if (!Mask.empty() && Mask[I] != PoisonMaskElem)
10822           ExtractMask[I] = PoisonMaskElem;
10823       }
10824       if (UseVecBaseAsInput) {
10825         Vec1 = ExtractVecBase;
10826       } else {
10827         for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) {
10828           if (ExtractMask[I] == PoisonMaskElem)
10829             continue;
10830           if (isa<UndefValue>(E->Scalars[I]))
10831             continue;
10832           auto *EI = cast<ExtractElementInst>(E->Scalars[I]);
10833           Value *VecOp = EI->getVectorOperand();
10834           if (const auto *TE = getTreeEntry(VecOp))
10835             if (TE->VectorizedValue)
10836               VecOp = TE->VectorizedValue;
10837           if (!Vec1) {
10838             Vec1 = VecOp;
10839           } else if (Vec1 != EI->getVectorOperand()) {
10840             assert((!Vec2 || Vec2 == EI->getVectorOperand()) &&
10841                    "Expected only 1 or 2 vectors shuffle.");
10842             Vec2 = VecOp;
10843           }
10844         }
10845       }
10846       if (Vec2) {
10847         IsUsedInExpr = false;
10848         IsNonPoisoned &=
10849             isGuaranteedNotToBePoison(Vec1) && isGuaranteedNotToBePoison(Vec2);
10850         ShuffleBuilder.add(Vec1, Vec2, ExtractMask);
10851       } else if (Vec1) {
10852         IsUsedInExpr &= FindReusedSplat(
10853             ExtractMask,
10854             cast<FixedVectorType>(Vec1->getType())->getNumElements());
10855         ShuffleBuilder.add(Vec1, ExtractMask, /*ForExtracts=*/true);
10856         IsNonPoisoned &= isGuaranteedNotToBePoison(Vec1);
10857       } else {
10858         IsUsedInExpr = false;
10859         ShuffleBuilder.add(PoisonValue::get(FixedVectorType::get(
10860                                ScalarTy, GatheredScalars.size())),
10861                            ExtractMask, /*ForExtracts=*/true);
10862       }
10863     }
10864     if (!GatherShuffles.empty()) {
10865       unsigned SliceSize = E->Scalars.size() / NumParts;
10866       SmallVector<int> VecMask(Mask.size(), PoisonMaskElem);
10867       for (const auto [I, TEs] : enumerate(Entries)) {
10868         if (TEs.empty()) {
10869           assert(!GatherShuffles[I] &&
10870                  "No shuffles with empty entries list expected.");
10871           continue;
10872         }
10873         assert((TEs.size() == 1 || TEs.size() == 2) &&
10874                "Expected shuffle of 1 or 2 entries.");
10875         auto SubMask = ArrayRef(Mask).slice(I * SliceSize, SliceSize);
10876         VecMask.assign(VecMask.size(), PoisonMaskElem);
10877         copy(SubMask, std::next(VecMask.begin(), I * SliceSize));
10878         if (TEs.size() == 1) {
10879           IsUsedInExpr &=
10880               FindReusedSplat(VecMask, TEs.front()->getVectorFactor());
10881           ShuffleBuilder.add(*TEs.front(), VecMask);
10882           if (TEs.front()->VectorizedValue)
10883             IsNonPoisoned &=
10884                 isGuaranteedNotToBePoison(TEs.front()->VectorizedValue);
10885         } else {
10886           IsUsedInExpr = false;
10887           ShuffleBuilder.add(*TEs.front(), *TEs.back(), VecMask);
10888           if (TEs.front()->VectorizedValue && TEs.back()->VectorizedValue)
10889             IsNonPoisoned &=
10890                 isGuaranteedNotToBePoison(TEs.front()->VectorizedValue) &&
10891                 isGuaranteedNotToBePoison(TEs.back()->VectorizedValue);
10892         }
10893       }
10894     }
10895     // Try to figure out best way to combine values: build a shuffle and insert
10896     // elements or just build several shuffles.
10897     // Insert non-constant scalars.
10898     SmallVector<Value *> NonConstants(GatheredScalars);
10899     int EMSz = ExtractMask.size();
10900     int MSz = Mask.size();
10901     // Try to build constant vector and shuffle with it only if currently we
10902     // have a single permutation and more than 1 scalar constants.
10903     bool IsSingleShuffle = ExtractShuffles.empty() || GatherShuffles.empty();
10904     bool IsIdentityShuffle =
10905         ((UseVecBaseAsInput ||
10906           all_of(ExtractShuffles,
10907                  [](const std::optional<TTI::ShuffleKind> &SK) {
10908                    return SK.value_or(TTI::SK_PermuteTwoSrc) ==
10909                           TTI::SK_PermuteSingleSrc;
10910                  })) &&
10911          none_of(ExtractMask, [&](int I) { return I >= EMSz; }) &&
10912          ShuffleVectorInst::isIdentityMask(ExtractMask, EMSz)) ||
10913         (!GatherShuffles.empty() &&
10914          all_of(GatherShuffles,
10915                 [](const std::optional<TTI::ShuffleKind> &SK) {
10916                   return SK.value_or(TTI::SK_PermuteTwoSrc) ==
10917                          TTI::SK_PermuteSingleSrc;
10918                 }) &&
10919          none_of(Mask, [&](int I) { return I >= MSz; }) &&
10920          ShuffleVectorInst::isIdentityMask(Mask, MSz));
10921     bool EnoughConstsForShuffle =
10922         IsSingleShuffle &&
10923         (none_of(GatheredScalars,
10924                  [](Value *V) {
10925                    return isa<UndefValue>(V) && !isa<PoisonValue>(V);
10926                  }) ||
10927          any_of(GatheredScalars,
10928                 [](Value *V) {
10929                   return isa<Constant>(V) && !isa<UndefValue>(V);
10930                 })) &&
10931         (!IsIdentityShuffle ||
10932          (GatheredScalars.size() == 2 &&
10933           any_of(GatheredScalars,
10934                  [](Value *V) { return !isa<UndefValue>(V); })) ||
10935          count_if(GatheredScalars, [](Value *V) {
10936            return isa<Constant>(V) && !isa<PoisonValue>(V);
10937          }) > 1);
10938     // NonConstants array contains just non-constant values, GatheredScalars
10939     // contains only constant to build final vector and then shuffle.
10940     for (int I = 0, Sz = GatheredScalars.size(); I < Sz; ++I) {
10941       if (EnoughConstsForShuffle && isa<Constant>(GatheredScalars[I]))
10942         NonConstants[I] = PoisonValue::get(ScalarTy);
10943       else
10944         GatheredScalars[I] = PoisonValue::get(ScalarTy);
10945     }
10946     // Generate constants for final shuffle and build a mask for them.
10947     if (!all_of(GatheredScalars, PoisonValue::classof)) {
10948       SmallVector<int> BVMask(GatheredScalars.size(), PoisonMaskElem);
10949       TryPackScalars(GatheredScalars, BVMask, /*IsRootPoison=*/true);
10950       Value *BV = ShuffleBuilder.gather(GatheredScalars, BVMask.size());
10951       ShuffleBuilder.add(BV, BVMask);
10952     }
10953     if (all_of(NonConstants, [=](Value *V) {
10954           return isa<PoisonValue>(V) ||
10955                  (IsSingleShuffle && ((IsIdentityShuffle &&
10956                   IsNonPoisoned) || IsUsedInExpr) && isa<UndefValue>(V));
10957         }))
10958       Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
10959     else
10960       Res = ShuffleBuilder.finalize(
10961           E->ReuseShuffleIndices, E->Scalars.size(),
10962           [&](Value *&Vec, SmallVectorImpl<int> &Mask) {
10963             TryPackScalars(NonConstants, Mask, /*IsRootPoison=*/false);
10964             Vec = ShuffleBuilder.gather(NonConstants, Mask.size(), Vec);
10965           });
10966   } else if (!allConstant(GatheredScalars)) {
10967     // Gather unique scalars and all constants.
10968     SmallVector<int> ReuseMask(GatheredScalars.size(), PoisonMaskElem);
10969     TryPackScalars(GatheredScalars, ReuseMask, /*IsRootPoison=*/true);
10970     Value *BV = ShuffleBuilder.gather(GatheredScalars, ReuseMask.size());
10971     ShuffleBuilder.add(BV, ReuseMask);
10972     Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
10973   } else {
10974     // Gather all constants.
10975     SmallVector<int> Mask(E->Scalars.size(), PoisonMaskElem);
10976     for (auto [I, V] : enumerate(E->Scalars)) {
10977       if (!isa<PoisonValue>(V))
10978         Mask[I] = I;
10979     }
10980     Value *BV = ShuffleBuilder.gather(E->Scalars);
10981     ShuffleBuilder.add(BV, Mask);
10982     Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
10983   }
10984 
10985   if (NeedFreeze)
10986     Res = ShuffleBuilder.createFreeze(Res);
10987   return Res;
10988 }
10989 
10990 Value *BoUpSLP::createBuildVector(const TreeEntry *E) {
10991   return processBuildVector<ShuffleInstructionBuilder, Value *>(E, Builder,
10992                                                                 *this);
10993 }
10994 
10995 Value *BoUpSLP::vectorizeTree(TreeEntry *E, bool PostponedPHIs) {
10996   IRBuilder<>::InsertPointGuard Guard(Builder);
10997 
10998   if (E->VectorizedValue &&
10999       (E->State != TreeEntry::Vectorize || E->getOpcode() != Instruction::PHI ||
11000        E->isAltShuffle())) {
11001     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
11002     return E->VectorizedValue;
11003   }
11004 
11005   if (E->State == TreeEntry::NeedToGather) {
11006     // Set insert point for non-reduction initial nodes.
11007     if (E->getMainOp() && E->Idx == 0 && !UserIgnoreList)
11008       setInsertPointAfterBundle(E);
11009     Value *Vec = createBuildVector(E);
11010     E->VectorizedValue = Vec;
11011     return Vec;
11012   }
11013 
11014   auto FinalShuffle = [&](Value *V, const TreeEntry *E, VectorType *VecTy,
11015                           bool IsSigned) {
11016     if (V->getType() != VecTy)
11017       V = Builder.CreateIntCast(V, VecTy, IsSigned);
11018     ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
11019     if (E->getOpcode() == Instruction::Store) {
11020       ArrayRef<int> Mask =
11021           ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()),
11022                    E->ReorderIndices.size());
11023       ShuffleBuilder.add(V, Mask);
11024     } else if (E->State == TreeEntry::PossibleStridedVectorize) {
11025       ShuffleBuilder.addOrdered(V, std::nullopt);
11026     } else {
11027       ShuffleBuilder.addOrdered(V, E->ReorderIndices);
11028     }
11029     return ShuffleBuilder.finalize(E->ReuseShuffleIndices);
11030   };
11031 
11032   assert((E->State == TreeEntry::Vectorize ||
11033           E->State == TreeEntry::ScatterVectorize ||
11034           E->State == TreeEntry::PossibleStridedVectorize) &&
11035          "Unhandled state");
11036   unsigned ShuffleOrOp =
11037       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
11038   Instruction *VL0 = E->getMainOp();
11039   Type *ScalarTy = VL0->getType();
11040   if (auto *Store = dyn_cast<StoreInst>(VL0))
11041     ScalarTy = Store->getValueOperand()->getType();
11042   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
11043     ScalarTy = IE->getOperand(1)->getType();
11044   bool IsSigned = false;
11045   auto It = MinBWs.find(E);
11046   if (It != MinBWs.end()) {
11047     ScalarTy = IntegerType::get(F->getContext(), It->second.first);
11048     IsSigned = It->second.second;
11049   }
11050   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
11051   switch (ShuffleOrOp) {
11052     case Instruction::PHI: {
11053       assert((E->ReorderIndices.empty() ||
11054               E != VectorizableTree.front().get() ||
11055               !E->UserTreeIndices.empty()) &&
11056              "PHI reordering is free.");
11057       if (PostponedPHIs && E->VectorizedValue)
11058         return E->VectorizedValue;
11059       auto *PH = cast<PHINode>(VL0);
11060       Builder.SetInsertPoint(PH->getParent(),
11061                              PH->getParent()->getFirstNonPHIIt());
11062       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11063       if (PostponedPHIs || !E->VectorizedValue) {
11064         PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
11065         E->PHI = NewPhi;
11066         Value *V = NewPhi;
11067 
11068         // Adjust insertion point once all PHI's have been generated.
11069         Builder.SetInsertPoint(PH->getParent(),
11070                                PH->getParent()->getFirstInsertionPt());
11071         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11072 
11073         V = FinalShuffle(V, E, VecTy, IsSigned);
11074 
11075         E->VectorizedValue = V;
11076         if (PostponedPHIs)
11077           return V;
11078       }
11079       PHINode *NewPhi = cast<PHINode>(E->PHI);
11080       // If phi node is fully emitted - exit.
11081       if (NewPhi->getNumIncomingValues() != 0)
11082         return NewPhi;
11083 
11084       // PHINodes may have multiple entries from the same block. We want to
11085       // visit every block once.
11086       SmallPtrSet<BasicBlock *, 4> VisitedBBs;
11087 
11088       for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) {
11089         ValueList Operands;
11090         BasicBlock *IBB = PH->getIncomingBlock(I);
11091 
11092         // Stop emission if all incoming values are generated.
11093         if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) {
11094           LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11095           return NewPhi;
11096         }
11097 
11098         if (!VisitedBBs.insert(IBB).second) {
11099           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
11100           continue;
11101         }
11102 
11103         Builder.SetInsertPoint(IBB->getTerminator());
11104         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11105         Value *Vec = vectorizeOperand(E, I, /*PostponedPHIs=*/true);
11106         if (VecTy != Vec->getType()) {
11107           assert(MinBWs.contains(getOperandEntry(E, I)) &&
11108                  "Expected item in MinBWs.");
11109           Vec = Builder.CreateIntCast(Vec, VecTy, It->second.second);
11110         }
11111         NewPhi->addIncoming(Vec, IBB);
11112       }
11113 
11114       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
11115              "Invalid number of incoming values");
11116       return NewPhi;
11117     }
11118 
11119     case Instruction::ExtractElement: {
11120       Value *V = E->getSingleOperand(0);
11121       setInsertPointAfterBundle(E);
11122       V = FinalShuffle(V, E, VecTy, IsSigned);
11123       E->VectorizedValue = V;
11124       return V;
11125     }
11126     case Instruction::ExtractValue: {
11127       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
11128       Builder.SetInsertPoint(LI);
11129       Value *Ptr = LI->getPointerOperand();
11130       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
11131       Value *NewV = propagateMetadata(V, E->Scalars);
11132       NewV = FinalShuffle(NewV, E, VecTy, IsSigned);
11133       E->VectorizedValue = NewV;
11134       return NewV;
11135     }
11136     case Instruction::InsertElement: {
11137       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
11138       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
11139       Value *V = vectorizeOperand(E, 1, PostponedPHIs);
11140       ArrayRef<Value *> Op = E->getOperand(1);
11141       Type *ScalarTy = Op.front()->getType();
11142       if (cast<VectorType>(V->getType())->getElementType() != ScalarTy) {
11143         assert(ScalarTy->isIntegerTy() && "Expected item in MinBWs.");
11144         std::pair<unsigned, bool> Res = MinBWs.lookup(getOperandEntry(E, 1));
11145         assert(Res.first > 0 && "Expected item in MinBWs.");
11146         V = Builder.CreateIntCast(
11147             V,
11148             FixedVectorType::get(
11149                 ScalarTy,
11150                 cast<FixedVectorType>(V->getType())->getNumElements()),
11151             Res.second);
11152       }
11153 
11154       // Create InsertVector shuffle if necessary
11155       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
11156         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
11157       }));
11158       const unsigned NumElts =
11159           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
11160       const unsigned NumScalars = E->Scalars.size();
11161 
11162       unsigned Offset = *getInsertIndex(VL0);
11163       assert(Offset < NumElts && "Failed to find vector index offset");
11164 
11165       // Create shuffle to resize vector
11166       SmallVector<int> Mask;
11167       if (!E->ReorderIndices.empty()) {
11168         inversePermutation(E->ReorderIndices, Mask);
11169         Mask.append(NumElts - NumScalars, PoisonMaskElem);
11170       } else {
11171         Mask.assign(NumElts, PoisonMaskElem);
11172         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
11173       }
11174       // Create InsertVector shuffle if necessary
11175       bool IsIdentity = true;
11176       SmallVector<int> PrevMask(NumElts, PoisonMaskElem);
11177       Mask.swap(PrevMask);
11178       for (unsigned I = 0; I < NumScalars; ++I) {
11179         Value *Scalar = E->Scalars[PrevMask[I]];
11180         unsigned InsertIdx = *getInsertIndex(Scalar);
11181         IsIdentity &= InsertIdx - Offset == I;
11182         Mask[InsertIdx - Offset] = I;
11183       }
11184       if (!IsIdentity || NumElts != NumScalars) {
11185         Value *V2 = nullptr;
11186         bool IsVNonPoisonous = isGuaranteedNotToBePoison(V) && !isConstant(V);
11187         SmallVector<int> InsertMask(Mask);
11188         if (NumElts != NumScalars && Offset == 0) {
11189           // Follow all insert element instructions from the current buildvector
11190           // sequence.
11191           InsertElementInst *Ins = cast<InsertElementInst>(VL0);
11192           do {
11193             std::optional<unsigned> InsertIdx = getInsertIndex(Ins);
11194             if (!InsertIdx)
11195               break;
11196             if (InsertMask[*InsertIdx] == PoisonMaskElem)
11197               InsertMask[*InsertIdx] = *InsertIdx;
11198             if (!Ins->hasOneUse())
11199               break;
11200             Ins = dyn_cast_or_null<InsertElementInst>(
11201                 Ins->getUniqueUndroppableUser());
11202           } while (Ins);
11203           SmallBitVector UseMask =
11204               buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask);
11205           SmallBitVector IsFirstPoison =
11206               isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11207           SmallBitVector IsFirstUndef =
11208               isUndefVector(FirstInsert->getOperand(0), UseMask);
11209           if (!IsFirstPoison.all()) {
11210             unsigned Idx = 0;
11211             for (unsigned I = 0; I < NumElts; I++) {
11212               if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I) &&
11213                   IsFirstUndef.test(I)) {
11214                 if (IsVNonPoisonous) {
11215                   InsertMask[I] = I < NumScalars ? I : 0;
11216                   continue;
11217                 }
11218                 if (!V2)
11219                   V2 = UndefValue::get(V->getType());
11220                 if (Idx >= NumScalars)
11221                   Idx = NumScalars - 1;
11222                 InsertMask[I] = NumScalars + Idx;
11223                 ++Idx;
11224               } else if (InsertMask[I] != PoisonMaskElem &&
11225                          Mask[I] == PoisonMaskElem) {
11226                 InsertMask[I] = PoisonMaskElem;
11227               }
11228             }
11229           } else {
11230             InsertMask = Mask;
11231           }
11232         }
11233         if (!V2)
11234           V2 = PoisonValue::get(V->getType());
11235         V = Builder.CreateShuffleVector(V, V2, InsertMask);
11236         if (auto *I = dyn_cast<Instruction>(V)) {
11237           GatherShuffleExtractSeq.insert(I);
11238           CSEBlocks.insert(I->getParent());
11239         }
11240       }
11241 
11242       SmallVector<int> InsertMask(NumElts, PoisonMaskElem);
11243       for (unsigned I = 0; I < NumElts; I++) {
11244         if (Mask[I] != PoisonMaskElem)
11245           InsertMask[Offset + I] = I;
11246       }
11247       SmallBitVector UseMask =
11248           buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask);
11249       SmallBitVector IsFirstUndef =
11250           isUndefVector(FirstInsert->getOperand(0), UseMask);
11251       if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) &&
11252           NumElts != NumScalars) {
11253         if (IsFirstUndef.all()) {
11254           if (!ShuffleVectorInst::isIdentityMask(InsertMask, NumElts)) {
11255             SmallBitVector IsFirstPoison =
11256                 isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11257             if (!IsFirstPoison.all()) {
11258               for (unsigned I = 0; I < NumElts; I++) {
11259                 if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I))
11260                   InsertMask[I] = I + NumElts;
11261               }
11262             }
11263             V = Builder.CreateShuffleVector(
11264                 V,
11265                 IsFirstPoison.all() ? PoisonValue::get(V->getType())
11266                                     : FirstInsert->getOperand(0),
11267                 InsertMask, cast<Instruction>(E->Scalars.back())->getName());
11268             if (auto *I = dyn_cast<Instruction>(V)) {
11269               GatherShuffleExtractSeq.insert(I);
11270               CSEBlocks.insert(I->getParent());
11271             }
11272           }
11273         } else {
11274           SmallBitVector IsFirstPoison =
11275               isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11276           for (unsigned I = 0; I < NumElts; I++) {
11277             if (InsertMask[I] == PoisonMaskElem)
11278               InsertMask[I] = IsFirstPoison.test(I) ? PoisonMaskElem : I;
11279             else
11280               InsertMask[I] += NumElts;
11281           }
11282           V = Builder.CreateShuffleVector(
11283               FirstInsert->getOperand(0), V, InsertMask,
11284               cast<Instruction>(E->Scalars.back())->getName());
11285           if (auto *I = dyn_cast<Instruction>(V)) {
11286             GatherShuffleExtractSeq.insert(I);
11287             CSEBlocks.insert(I->getParent());
11288           }
11289         }
11290       }
11291 
11292       ++NumVectorInstructions;
11293       E->VectorizedValue = V;
11294       return V;
11295     }
11296     case Instruction::ZExt:
11297     case Instruction::SExt:
11298     case Instruction::FPToUI:
11299     case Instruction::FPToSI:
11300     case Instruction::FPExt:
11301     case Instruction::PtrToInt:
11302     case Instruction::IntToPtr:
11303     case Instruction::SIToFP:
11304     case Instruction::UIToFP:
11305     case Instruction::Trunc:
11306     case Instruction::FPTrunc:
11307     case Instruction::BitCast: {
11308       setInsertPointAfterBundle(E);
11309 
11310       Value *InVec = vectorizeOperand(E, 0, PostponedPHIs);
11311       if (E->VectorizedValue) {
11312         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11313         return E->VectorizedValue;
11314       }
11315 
11316       auto *CI = cast<CastInst>(VL0);
11317       Instruction::CastOps VecOpcode = CI->getOpcode();
11318       Type *SrcScalarTy = VL0->getOperand(0)->getType();
11319       auto SrcIt = MinBWs.find(getOperandEntry(E, 0));
11320       if (!ScalarTy->isFloatingPointTy() && !SrcScalarTy->isFloatingPointTy() &&
11321           (SrcIt != MinBWs.end() || It != MinBWs.end())) {
11322         // Check if the values are candidates to demote.
11323         unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy);
11324         if (SrcIt != MinBWs.end())
11325           SrcBWSz = SrcIt->second.first;
11326         unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
11327         if (BWSz == SrcBWSz) {
11328           VecOpcode = Instruction::BitCast;
11329         } else if (BWSz < SrcBWSz) {
11330           VecOpcode = Instruction::Trunc;
11331         } else if (It != MinBWs.end()) {
11332           assert(BWSz > SrcBWSz && "Invalid cast!");
11333           VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt;
11334         }
11335       }
11336       Value *V = (VecOpcode != ShuffleOrOp && VecOpcode == Instruction::BitCast)
11337                      ? InVec
11338                      : Builder.CreateCast(VecOpcode, InVec, VecTy);
11339       V = FinalShuffle(V, E, VecTy, IsSigned);
11340 
11341       E->VectorizedValue = V;
11342       ++NumVectorInstructions;
11343       return V;
11344     }
11345     case Instruction::FCmp:
11346     case Instruction::ICmp: {
11347       setInsertPointAfterBundle(E);
11348 
11349       Value *L = vectorizeOperand(E, 0, PostponedPHIs);
11350       if (E->VectorizedValue) {
11351         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11352         return E->VectorizedValue;
11353       }
11354       Value *R = vectorizeOperand(E, 1, PostponedPHIs);
11355       if (E->VectorizedValue) {
11356         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11357         return E->VectorizedValue;
11358       }
11359       if (L->getType() != R->getType()) {
11360         assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11361                 MinBWs.contains(getOperandEntry(E, 1))) &&
11362                "Expected item in MinBWs.");
11363         L = Builder.CreateIntCast(L, VecTy, IsSigned);
11364         R = Builder.CreateIntCast(R, VecTy, IsSigned);
11365       }
11366 
11367       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
11368       Value *V = Builder.CreateCmp(P0, L, R);
11369       propagateIRFlags(V, E->Scalars, VL0);
11370       // Do not cast for cmps.
11371       VecTy = cast<FixedVectorType>(V->getType());
11372       V = FinalShuffle(V, E, VecTy, IsSigned);
11373 
11374       E->VectorizedValue = V;
11375       ++NumVectorInstructions;
11376       return V;
11377     }
11378     case Instruction::Select: {
11379       setInsertPointAfterBundle(E);
11380 
11381       Value *Cond = vectorizeOperand(E, 0, PostponedPHIs);
11382       if (E->VectorizedValue) {
11383         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11384         return E->VectorizedValue;
11385       }
11386       Value *True = vectorizeOperand(E, 1, PostponedPHIs);
11387       if (E->VectorizedValue) {
11388         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11389         return E->VectorizedValue;
11390       }
11391       Value *False = vectorizeOperand(E, 2, PostponedPHIs);
11392       if (E->VectorizedValue) {
11393         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11394         return E->VectorizedValue;
11395       }
11396       if (True->getType() != False->getType()) {
11397         assert((MinBWs.contains(getOperandEntry(E, 1)) ||
11398                 MinBWs.contains(getOperandEntry(E, 2))) &&
11399                "Expected item in MinBWs.");
11400         True = Builder.CreateIntCast(True, VecTy, IsSigned);
11401         False = Builder.CreateIntCast(False, VecTy, IsSigned);
11402       }
11403 
11404       Value *V = Builder.CreateSelect(Cond, True, False);
11405       V = FinalShuffle(V, E, VecTy, IsSigned);
11406 
11407       E->VectorizedValue = V;
11408       ++NumVectorInstructions;
11409       return V;
11410     }
11411     case Instruction::FNeg: {
11412       setInsertPointAfterBundle(E);
11413 
11414       Value *Op = vectorizeOperand(E, 0, PostponedPHIs);
11415 
11416       if (E->VectorizedValue) {
11417         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11418         return E->VectorizedValue;
11419       }
11420 
11421       Value *V = Builder.CreateUnOp(
11422           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
11423       propagateIRFlags(V, E->Scalars, VL0);
11424       if (auto *I = dyn_cast<Instruction>(V))
11425         V = propagateMetadata(I, E->Scalars);
11426 
11427       V = FinalShuffle(V, E, VecTy, IsSigned);
11428 
11429       E->VectorizedValue = V;
11430       ++NumVectorInstructions;
11431 
11432       return V;
11433     }
11434     case Instruction::Add:
11435     case Instruction::FAdd:
11436     case Instruction::Sub:
11437     case Instruction::FSub:
11438     case Instruction::Mul:
11439     case Instruction::FMul:
11440     case Instruction::UDiv:
11441     case Instruction::SDiv:
11442     case Instruction::FDiv:
11443     case Instruction::URem:
11444     case Instruction::SRem:
11445     case Instruction::FRem:
11446     case Instruction::Shl:
11447     case Instruction::LShr:
11448     case Instruction::AShr:
11449     case Instruction::And:
11450     case Instruction::Or:
11451     case Instruction::Xor: {
11452       setInsertPointAfterBundle(E);
11453 
11454       Value *LHS = vectorizeOperand(E, 0, PostponedPHIs);
11455       if (E->VectorizedValue) {
11456         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11457         return E->VectorizedValue;
11458       }
11459       Value *RHS = vectorizeOperand(E, 1, PostponedPHIs);
11460       if (E->VectorizedValue) {
11461         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11462         return E->VectorizedValue;
11463       }
11464       if (LHS->getType() != RHS->getType()) {
11465         assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11466                 MinBWs.contains(getOperandEntry(E, 1))) &&
11467                "Expected item in MinBWs.");
11468         LHS = Builder.CreateIntCast(LHS, VecTy, IsSigned);
11469         RHS = Builder.CreateIntCast(RHS, VecTy, IsSigned);
11470       }
11471 
11472       Value *V = Builder.CreateBinOp(
11473           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
11474           RHS);
11475       propagateIRFlags(V, E->Scalars, VL0, !MinBWs.contains(E));
11476       if (auto *I = dyn_cast<Instruction>(V))
11477         V = propagateMetadata(I, E->Scalars);
11478 
11479       V = FinalShuffle(V, E, VecTy, IsSigned);
11480 
11481       E->VectorizedValue = V;
11482       ++NumVectorInstructions;
11483 
11484       return V;
11485     }
11486     case Instruction::Load: {
11487       // Loads are inserted at the head of the tree because we don't want to
11488       // sink them all the way down past store instructions.
11489       setInsertPointAfterBundle(E);
11490 
11491       LoadInst *LI = cast<LoadInst>(VL0);
11492       Instruction *NewLI;
11493       Value *PO = LI->getPointerOperand();
11494       if (E->State == TreeEntry::Vectorize) {
11495         NewLI = Builder.CreateAlignedLoad(VecTy, PO, LI->getAlign());
11496 
11497         // The pointer operand uses an in-tree scalar so we add the new
11498         // LoadInst to ExternalUses list to make sure that an extract will
11499         // be generated in the future.
11500         if (isa<Instruction>(PO)) {
11501           if (TreeEntry *Entry = getTreeEntry(PO)) {
11502             // Find which lane we need to extract.
11503             unsigned FoundLane = Entry->findLaneForValue(PO);
11504             ExternalUses.emplace_back(PO, NewLI, FoundLane);
11505           }
11506         }
11507       } else {
11508         assert((E->State == TreeEntry::ScatterVectorize ||
11509                 E->State == TreeEntry::PossibleStridedVectorize) &&
11510                "Unhandled state");
11511         Value *VecPtr = vectorizeOperand(E, 0, PostponedPHIs);
11512         if (E->VectorizedValue) {
11513           LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11514           return E->VectorizedValue;
11515         }
11516         // Use the minimum alignment of the gathered loads.
11517         Align CommonAlignment = LI->getAlign();
11518         for (Value *V : E->Scalars)
11519           CommonAlignment =
11520               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
11521         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
11522       }
11523       Value *V = propagateMetadata(NewLI, E->Scalars);
11524 
11525       V = FinalShuffle(V, E, VecTy, IsSigned);
11526       E->VectorizedValue = V;
11527       ++NumVectorInstructions;
11528       return V;
11529     }
11530     case Instruction::Store: {
11531       auto *SI = cast<StoreInst>(VL0);
11532 
11533       setInsertPointAfterBundle(E);
11534 
11535       Value *VecValue = vectorizeOperand(E, 0, PostponedPHIs);
11536       VecValue = FinalShuffle(VecValue, E, VecTy, IsSigned);
11537 
11538       Value *Ptr = SI->getPointerOperand();
11539       StoreInst *ST =
11540           Builder.CreateAlignedStore(VecValue, Ptr, SI->getAlign());
11541 
11542       // The pointer operand uses an in-tree scalar, so add the new StoreInst to
11543       // ExternalUses to make sure that an extract will be generated in the
11544       // future.
11545       if (isa<Instruction>(Ptr)) {
11546         if (TreeEntry *Entry = getTreeEntry(Ptr)) {
11547           // Find which lane we need to extract.
11548           unsigned FoundLane = Entry->findLaneForValue(Ptr);
11549           ExternalUses.push_back(ExternalUser(Ptr, ST, FoundLane));
11550         }
11551       }
11552 
11553       Value *V = propagateMetadata(ST, E->Scalars);
11554 
11555       E->VectorizedValue = V;
11556       ++NumVectorInstructions;
11557       return V;
11558     }
11559     case Instruction::GetElementPtr: {
11560       auto *GEP0 = cast<GetElementPtrInst>(VL0);
11561       setInsertPointAfterBundle(E);
11562 
11563       Value *Op0 = vectorizeOperand(E, 0, PostponedPHIs);
11564       if (E->VectorizedValue) {
11565         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11566         return E->VectorizedValue;
11567       }
11568 
11569       SmallVector<Value *> OpVecs;
11570       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
11571         Value *OpVec = vectorizeOperand(E, J, PostponedPHIs);
11572         if (E->VectorizedValue) {
11573           LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11574           return E->VectorizedValue;
11575         }
11576         OpVecs.push_back(OpVec);
11577       }
11578 
11579       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
11580       if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
11581         SmallVector<Value *> GEPs;
11582         for (Value *V : E->Scalars) {
11583           if (isa<GetElementPtrInst>(V))
11584             GEPs.push_back(V);
11585         }
11586         V = propagateMetadata(I, GEPs);
11587       }
11588 
11589       V = FinalShuffle(V, E, VecTy, IsSigned);
11590 
11591       E->VectorizedValue = V;
11592       ++NumVectorInstructions;
11593 
11594       return V;
11595     }
11596     case Instruction::Call: {
11597       CallInst *CI = cast<CallInst>(VL0);
11598       setInsertPointAfterBundle(E);
11599 
11600       Intrinsic::ID IID = Intrinsic::not_intrinsic;
11601       if (Function *FI = CI->getCalledFunction())
11602         IID = FI->getIntrinsicID();
11603 
11604       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
11605 
11606       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
11607       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
11608                           VecCallCosts.first <= VecCallCosts.second;
11609 
11610       Value *ScalarArg = nullptr;
11611       SmallVector<Value *> OpVecs;
11612       SmallVector<Type *, 2> TysForDecl;
11613       // Add return type if intrinsic is overloaded on it.
11614       if (isVectorIntrinsicWithOverloadTypeAtArg(IID, -1))
11615         TysForDecl.push_back(
11616             FixedVectorType::get(CI->getType(), E->Scalars.size()));
11617       for (unsigned I : seq<unsigned>(0, CI->arg_size())) {
11618         ValueList OpVL;
11619         // Some intrinsics have scalar arguments. This argument should not be
11620         // vectorized.
11621         if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, I)) {
11622           CallInst *CEI = cast<CallInst>(VL0);
11623           ScalarArg = CEI->getArgOperand(I);
11624           OpVecs.push_back(CEI->getArgOperand(I));
11625           if (isVectorIntrinsicWithOverloadTypeAtArg(IID, I))
11626             TysForDecl.push_back(ScalarArg->getType());
11627           continue;
11628         }
11629 
11630         Value *OpVec = vectorizeOperand(E, I, PostponedPHIs);
11631         if (E->VectorizedValue) {
11632           LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11633           return E->VectorizedValue;
11634         }
11635         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << I << "]: " << *OpVec << "\n");
11636         OpVecs.push_back(OpVec);
11637         if (isVectorIntrinsicWithOverloadTypeAtArg(IID, I))
11638           TysForDecl.push_back(OpVec->getType());
11639       }
11640 
11641       Function *CF;
11642       if (!UseIntrinsic) {
11643         VFShape Shape =
11644             VFShape::get(CI->getFunctionType(),
11645                          ElementCount::getFixed(
11646                              static_cast<unsigned>(VecTy->getNumElements())),
11647                          false /*HasGlobalPred*/);
11648         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
11649       } else {
11650         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
11651       }
11652 
11653       SmallVector<OperandBundleDef, 1> OpBundles;
11654       CI->getOperandBundlesAsDefs(OpBundles);
11655       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
11656 
11657       // The scalar argument uses an in-tree scalar so we add the new vectorized
11658       // call to ExternalUses list to make sure that an extract will be
11659       // generated in the future.
11660       if (isa_and_present<Instruction>(ScalarArg)) {
11661         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
11662           // Find which lane we need to extract.
11663           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
11664           ExternalUses.push_back(
11665               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
11666         }
11667       }
11668 
11669       propagateIRFlags(V, E->Scalars, VL0);
11670       V = FinalShuffle(V, E, VecTy, IsSigned);
11671 
11672       E->VectorizedValue = V;
11673       ++NumVectorInstructions;
11674       return V;
11675     }
11676     case Instruction::ShuffleVector: {
11677       assert(E->isAltShuffle() &&
11678              ((Instruction::isBinaryOp(E->getOpcode()) &&
11679                Instruction::isBinaryOp(E->getAltOpcode())) ||
11680               (Instruction::isCast(E->getOpcode()) &&
11681                Instruction::isCast(E->getAltOpcode())) ||
11682               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
11683              "Invalid Shuffle Vector Operand");
11684 
11685       Value *LHS = nullptr, *RHS = nullptr;
11686       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
11687         setInsertPointAfterBundle(E);
11688         LHS = vectorizeOperand(E, 0, PostponedPHIs);
11689         if (E->VectorizedValue) {
11690           LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11691           return E->VectorizedValue;
11692         }
11693         RHS = vectorizeOperand(E, 1, PostponedPHIs);
11694       } else {
11695         setInsertPointAfterBundle(E);
11696         LHS = vectorizeOperand(E, 0, PostponedPHIs);
11697       }
11698       if (E->VectorizedValue) {
11699         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11700         return E->VectorizedValue;
11701       }
11702       if (LHS && RHS && LHS->getType() != RHS->getType()) {
11703         assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11704                 MinBWs.contains(getOperandEntry(E, 1))) &&
11705                "Expected item in MinBWs.");
11706         LHS = Builder.CreateIntCast(LHS, VecTy, IsSigned);
11707         RHS = Builder.CreateIntCast(RHS, VecTy, IsSigned);
11708       }
11709 
11710       Value *V0, *V1;
11711       if (Instruction::isBinaryOp(E->getOpcode())) {
11712         V0 = Builder.CreateBinOp(
11713             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
11714         V1 = Builder.CreateBinOp(
11715             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
11716       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
11717         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
11718         auto *AltCI = cast<CmpInst>(E->getAltOp());
11719         CmpInst::Predicate AltPred = AltCI->getPredicate();
11720         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
11721       } else {
11722         V0 = Builder.CreateCast(
11723             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
11724         V1 = Builder.CreateCast(
11725             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
11726       }
11727       // Add V0 and V1 to later analysis to try to find and remove matching
11728       // instruction, if any.
11729       for (Value *V : {V0, V1}) {
11730         if (auto *I = dyn_cast<Instruction>(V)) {
11731           GatherShuffleExtractSeq.insert(I);
11732           CSEBlocks.insert(I->getParent());
11733         }
11734       }
11735 
11736       // Create shuffle to take alternate operations from the vector.
11737       // Also, gather up main and alt scalar ops to propagate IR flags to
11738       // each vector operation.
11739       ValueList OpScalars, AltScalars;
11740       SmallVector<int> Mask;
11741       E->buildAltOpShuffleMask(
11742           [E, this](Instruction *I) {
11743             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
11744             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(),
11745                                           *TLI);
11746           },
11747           Mask, &OpScalars, &AltScalars);
11748 
11749       propagateIRFlags(V0, OpScalars);
11750       propagateIRFlags(V1, AltScalars);
11751 
11752       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
11753       if (auto *I = dyn_cast<Instruction>(V)) {
11754         V = propagateMetadata(I, E->Scalars);
11755         GatherShuffleExtractSeq.insert(I);
11756         CSEBlocks.insert(I->getParent());
11757       }
11758 
11759       if (V->getType() != VecTy && !isa<CmpInst>(VL0))
11760         V = Builder.CreateIntCast(
11761             V, FixedVectorType::get(ScalarTy, E->getVectorFactor()), IsSigned);
11762       E->VectorizedValue = V;
11763       ++NumVectorInstructions;
11764 
11765       return V;
11766     }
11767     default:
11768       llvm_unreachable("unknown inst");
11769   }
11770   return nullptr;
11771 }
11772 
11773 Value *BoUpSLP::vectorizeTree() {
11774   ExtraValueToDebugLocsMap ExternallyUsedValues;
11775   SmallVector<std::pair<Value *, Value *>> ReplacedExternals;
11776   return vectorizeTree(ExternallyUsedValues, ReplacedExternals);
11777 }
11778 
11779 namespace {
11780 /// Data type for handling buildvector sequences with the reused scalars from
11781 /// other tree entries.
11782 struct ShuffledInsertData {
11783   /// List of insertelements to be replaced by shuffles.
11784   SmallVector<InsertElementInst *> InsertElements;
11785   /// The parent vectors and shuffle mask for the given list of inserts.
11786   MapVector<Value *, SmallVector<int>> ValueMasks;
11787 };
11788 } // namespace
11789 
11790 Value *BoUpSLP::vectorizeTree(
11791     const ExtraValueToDebugLocsMap &ExternallyUsedValues,
11792     SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals,
11793     Instruction *ReductionRoot) {
11794   // All blocks must be scheduled before any instructions are inserted.
11795   for (auto &BSIter : BlocksSchedules) {
11796     scheduleBlock(BSIter.second.get());
11797   }
11798   // Clean Entry-to-LastInstruction table. It can be affected after scheduling,
11799   // need to rebuild it.
11800   EntryToLastInstruction.clear();
11801 
11802   if (ReductionRoot)
11803     Builder.SetInsertPoint(ReductionRoot->getParent(),
11804                            ReductionRoot->getIterator());
11805   else
11806     Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
11807 
11808   // Postpone emission of PHIs operands to avoid cyclic dependencies issues.
11809   (void)vectorizeTree(VectorizableTree[0].get(), /*PostponedPHIs=*/true);
11810   for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree)
11811     if (TE->State == TreeEntry::Vectorize &&
11812         TE->getOpcode() == Instruction::PHI && !TE->isAltShuffle() &&
11813         TE->VectorizedValue)
11814       (void)vectorizeTree(TE.get(), /*PostponedPHIs=*/false);
11815   // Run through the list of postponed gathers and emit them, replacing the temp
11816   // emitted allocas with actual vector instructions.
11817   ArrayRef<const TreeEntry *> PostponedNodes = PostponedGathers.getArrayRef();
11818   DenseMap<Value *, SmallVector<TreeEntry *>> PostponedValues;
11819   for (const TreeEntry *E : PostponedNodes) {
11820     auto *TE = const_cast<TreeEntry *>(E);
11821     if (auto *VecTE = getTreeEntry(TE->Scalars.front()))
11822       if (VecTE->isSame(TE->UserTreeIndices.front().UserTE->getOperand(
11823               TE->UserTreeIndices.front().EdgeIdx)))
11824         // Found gather node which is absolutely the same as one of the
11825         // vectorized nodes. It may happen after reordering.
11826         continue;
11827     auto *PrevVec = cast<Instruction>(TE->VectorizedValue);
11828     TE->VectorizedValue = nullptr;
11829     auto *UserI =
11830         cast<Instruction>(TE->UserTreeIndices.front().UserTE->VectorizedValue);
11831     // If user is a PHI node, its vector code have to be inserted right before
11832     // block terminator. Since the node was delayed, there were some unresolved
11833     // dependencies at the moment when stab instruction was emitted. In a case
11834     // when any of these dependencies turn out an operand of another PHI, coming
11835     // from this same block, position of a stab instruction will become invalid.
11836     // The is because source vector that supposed to feed this gather node was
11837     // inserted at the end of the block [after stab instruction]. So we need
11838     // to adjust insertion point again to the end of block.
11839     if (isa<PHINode>(UserI)) {
11840       // Insert before all users.
11841       Instruction *InsertPt = PrevVec->getParent()->getTerminator();
11842       for (User *U : PrevVec->users()) {
11843         if (U == UserI)
11844           continue;
11845         auto *UI = dyn_cast<Instruction>(U);
11846         if (!UI || isa<PHINode>(UI) || UI->getParent() != InsertPt->getParent())
11847           continue;
11848         if (UI->comesBefore(InsertPt))
11849           InsertPt = UI;
11850       }
11851       Builder.SetInsertPoint(InsertPt);
11852     } else {
11853       Builder.SetInsertPoint(PrevVec);
11854     }
11855     Builder.SetCurrentDebugLocation(UserI->getDebugLoc());
11856     Value *Vec = vectorizeTree(TE, /*PostponedPHIs=*/false);
11857     PrevVec->replaceAllUsesWith(Vec);
11858     PostponedValues.try_emplace(Vec).first->second.push_back(TE);
11859     // Replace the stub vector node, if it was used before for one of the
11860     // buildvector nodes already.
11861     auto It = PostponedValues.find(PrevVec);
11862     if (It != PostponedValues.end()) {
11863       for (TreeEntry *VTE : It->getSecond())
11864         VTE->VectorizedValue = Vec;
11865     }
11866     eraseInstruction(PrevVec);
11867   }
11868 
11869   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
11870                     << " values .\n");
11871 
11872   SmallVector<ShuffledInsertData> ShuffledInserts;
11873   // Maps vector instruction to original insertelement instruction
11874   DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
11875   // Maps extract Scalar to the corresponding extractelement instruction in the
11876   // basic block. Only one extractelement per block should be emitted.
11877   DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs;
11878   SmallDenseSet<Value *, 4> UsedInserts;
11879   DenseMap<Value *, Value *> VectorCasts;
11880   // Extract all of the elements with the external uses.
11881   for (const auto &ExternalUse : ExternalUses) {
11882     Value *Scalar = ExternalUse.Scalar;
11883     llvm::User *User = ExternalUse.User;
11884 
11885     // Skip users that we already RAUW. This happens when one instruction
11886     // has multiple uses of the same value.
11887     if (User && !is_contained(Scalar->users(), User))
11888       continue;
11889     TreeEntry *E = getTreeEntry(Scalar);
11890     assert(E && "Invalid scalar");
11891     assert(E->State != TreeEntry::NeedToGather &&
11892            "Extracting from a gather list");
11893     // Non-instruction pointers are not deleted, just skip them.
11894     if (E->getOpcode() == Instruction::GetElementPtr &&
11895         !isa<GetElementPtrInst>(Scalar))
11896       continue;
11897 
11898     Value *Vec = E->VectorizedValue;
11899     assert(Vec && "Can't find vectorizable value");
11900 
11901     Value *Lane = Builder.getInt32(ExternalUse.Lane);
11902     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
11903       if (Scalar->getType() != Vec->getType()) {
11904         Value *Ex = nullptr;
11905         auto It = ScalarToEEs.find(Scalar);
11906         if (It != ScalarToEEs.end()) {
11907           // No need to emit many extracts, just move the only one in the
11908           // current block.
11909           auto EEIt = It->second.find(Builder.GetInsertBlock());
11910           if (EEIt != It->second.end()) {
11911             Instruction *I = EEIt->second;
11912             if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() &&
11913                 Builder.GetInsertPoint()->comesBefore(I))
11914               I->moveBefore(*Builder.GetInsertPoint()->getParent(),
11915                             Builder.GetInsertPoint());
11916             Ex = I;
11917           }
11918         }
11919         if (!Ex) {
11920           // "Reuse" the existing extract to improve final codegen.
11921           if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
11922             Ex = Builder.CreateExtractElement(ES->getOperand(0),
11923                                               ES->getOperand(1));
11924           } else {
11925             Ex = Builder.CreateExtractElement(Vec, Lane);
11926           }
11927           if (auto *I = dyn_cast<Instruction>(Ex))
11928             ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I);
11929         }
11930         // The then branch of the previous if may produce constants, since 0
11931         // operand might be a constant.
11932         if (auto *ExI = dyn_cast<Instruction>(Ex)) {
11933           GatherShuffleExtractSeq.insert(ExI);
11934           CSEBlocks.insert(ExI->getParent());
11935         }
11936         // If necessary, sign-extend or zero-extend ScalarRoot
11937         // to the larger type.
11938         if (Scalar->getType() != Ex->getType())
11939           return Builder.CreateIntCast(Ex, Scalar->getType(),
11940                                        MinBWs.find(E)->second.second);
11941         return Ex;
11942       }
11943       assert(isa<FixedVectorType>(Scalar->getType()) &&
11944              isa<InsertElementInst>(Scalar) &&
11945              "In-tree scalar of vector type is not insertelement?");
11946       auto *IE = cast<InsertElementInst>(Scalar);
11947       VectorToInsertElement.try_emplace(Vec, IE);
11948       return Vec;
11949     };
11950     // If User == nullptr, the Scalar is used as extra arg. Generate
11951     // ExtractElement instruction and update the record for this scalar in
11952     // ExternallyUsedValues.
11953     if (!User) {
11954       assert(ExternallyUsedValues.count(Scalar) &&
11955              "Scalar with nullptr as an external user must be registered in "
11956              "ExternallyUsedValues map");
11957       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
11958         if (auto *PHI = dyn_cast<PHINode>(VecI))
11959           Builder.SetInsertPoint(PHI->getParent(),
11960                                  PHI->getParent()->getFirstNonPHIIt());
11961         else
11962           Builder.SetInsertPoint(VecI->getParent(),
11963                                  std::next(VecI->getIterator()));
11964       } else {
11965         Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
11966       }
11967       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
11968       // Required to update internally referenced instructions.
11969       Scalar->replaceAllUsesWith(NewInst);
11970       ReplacedExternals.emplace_back(Scalar, NewInst);
11971       continue;
11972     }
11973 
11974     if (auto *VU = dyn_cast<InsertElementInst>(User)) {
11975       // Skip if the scalar is another vector op or Vec is not an instruction.
11976       if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
11977         if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
11978           if (!UsedInserts.insert(VU).second)
11979             continue;
11980           // Need to use original vector, if the root is truncated.
11981           auto BWIt = MinBWs.find(E);
11982           if (BWIt != MinBWs.end() && Vec->getType() != VU->getType()) {
11983             auto VecIt = VectorCasts.find(Scalar);
11984             if (VecIt == VectorCasts.end()) {
11985               IRBuilder<>::InsertPointGuard Guard(Builder);
11986               if (auto *IVec = dyn_cast<Instruction>(Vec))
11987                 Builder.SetInsertPoint(IVec->getNextNonDebugInstruction());
11988               Vec = Builder.CreateIntCast(Vec, VU->getType(),
11989                                           BWIt->second.second);
11990               VectorCasts.try_emplace(Scalar, Vec);
11991             } else {
11992               Vec = VecIt->second;
11993             }
11994           }
11995 
11996           std::optional<unsigned> InsertIdx = getInsertIndex(VU);
11997           if (InsertIdx) {
11998             auto *It =
11999                 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
12000                   // Checks if 2 insertelements are from the same buildvector.
12001                   InsertElementInst *VecInsert = Data.InsertElements.front();
12002                   return areTwoInsertFromSameBuildVector(
12003                       VU, VecInsert,
12004                       [](InsertElementInst *II) { return II->getOperand(0); });
12005                 });
12006             unsigned Idx = *InsertIdx;
12007             if (It == ShuffledInserts.end()) {
12008               (void)ShuffledInserts.emplace_back();
12009               It = std::next(ShuffledInserts.begin(),
12010                              ShuffledInserts.size() - 1);
12011               SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
12012               if (Mask.empty())
12013                 Mask.assign(FTy->getNumElements(), PoisonMaskElem);
12014               // Find the insertvector, vectorized in tree, if any.
12015               Value *Base = VU;
12016               while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
12017                 if (IEBase != User &&
12018                     (!IEBase->hasOneUse() ||
12019                      getInsertIndex(IEBase).value_or(Idx) == Idx))
12020                   break;
12021                 // Build the mask for the vectorized insertelement instructions.
12022                 if (const TreeEntry *E = getTreeEntry(IEBase)) {
12023                   do {
12024                     IEBase = cast<InsertElementInst>(Base);
12025                     int IEIdx = *getInsertIndex(IEBase);
12026                     assert(Mask[Idx] == PoisonMaskElem &&
12027                            "InsertElementInstruction used already.");
12028                     Mask[IEIdx] = IEIdx;
12029                     Base = IEBase->getOperand(0);
12030                   } while (E == getTreeEntry(Base));
12031                   break;
12032                 }
12033                 Base = cast<InsertElementInst>(Base)->getOperand(0);
12034                 // After the vectorization the def-use chain has changed, need
12035                 // to look through original insertelement instructions, if they
12036                 // get replaced by vector instructions.
12037                 auto It = VectorToInsertElement.find(Base);
12038                 if (It != VectorToInsertElement.end())
12039                   Base = It->second;
12040               }
12041             }
12042             SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
12043             if (Mask.empty())
12044               Mask.assign(FTy->getNumElements(), PoisonMaskElem);
12045             Mask[Idx] = ExternalUse.Lane;
12046             It->InsertElements.push_back(cast<InsertElementInst>(User));
12047             continue;
12048           }
12049         }
12050       }
12051     }
12052 
12053     // Generate extracts for out-of-tree users.
12054     // Find the insertion point for the extractelement lane.
12055     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
12056       if (PHINode *PH = dyn_cast<PHINode>(User)) {
12057         for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) {
12058           if (PH->getIncomingValue(I) == Scalar) {
12059             Instruction *IncomingTerminator =
12060                 PH->getIncomingBlock(I)->getTerminator();
12061             if (isa<CatchSwitchInst>(IncomingTerminator)) {
12062               Builder.SetInsertPoint(VecI->getParent(),
12063                                      std::next(VecI->getIterator()));
12064             } else {
12065               Builder.SetInsertPoint(PH->getIncomingBlock(I)->getTerminator());
12066             }
12067             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12068             PH->setOperand(I, NewInst);
12069           }
12070         }
12071       } else {
12072         Builder.SetInsertPoint(cast<Instruction>(User));
12073         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12074         User->replaceUsesOfWith(Scalar, NewInst);
12075       }
12076     } else {
12077       Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
12078       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12079       User->replaceUsesOfWith(Scalar, NewInst);
12080     }
12081 
12082     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
12083   }
12084 
12085   auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) {
12086     SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem);
12087     SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem);
12088     int VF = cast<FixedVectorType>(V1->getType())->getNumElements();
12089     for (int I = 0, E = Mask.size(); I < E; ++I) {
12090       if (Mask[I] < VF)
12091         CombinedMask1[I] = Mask[I];
12092       else
12093         CombinedMask2[I] = Mask[I] - VF;
12094     }
12095     ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
12096     ShuffleBuilder.add(V1, CombinedMask1);
12097     if (V2)
12098       ShuffleBuilder.add(V2, CombinedMask2);
12099     return ShuffleBuilder.finalize(std::nullopt);
12100   };
12101 
12102   auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask,
12103                                        bool ForSingleMask) {
12104     unsigned VF = Mask.size();
12105     unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
12106     if (VF != VecVF) {
12107       if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
12108         Vec = CreateShuffle(Vec, nullptr, Mask);
12109         return std::make_pair(Vec, true);
12110       }
12111       if (!ForSingleMask) {
12112         SmallVector<int> ResizeMask(VF, PoisonMaskElem);
12113         for (unsigned I = 0; I < VF; ++I) {
12114           if (Mask[I] != PoisonMaskElem)
12115             ResizeMask[Mask[I]] = Mask[I];
12116         }
12117         Vec = CreateShuffle(Vec, nullptr, ResizeMask);
12118       }
12119     }
12120 
12121     return std::make_pair(Vec, false);
12122   };
12123   // Perform shuffling of the vectorize tree entries for better handling of
12124   // external extracts.
12125   for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
12126     // Find the first and the last instruction in the list of insertelements.
12127     sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
12128     InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
12129     InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
12130     Builder.SetInsertPoint(LastInsert);
12131     auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
12132     Value *NewInst = performExtractsShuffleAction<Value>(
12133         MutableArrayRef(Vector.data(), Vector.size()),
12134         FirstInsert->getOperand(0),
12135         [](Value *Vec) {
12136           return cast<VectorType>(Vec->getType())
12137               ->getElementCount()
12138               .getKnownMinValue();
12139         },
12140         ResizeToVF,
12141         [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
12142                                       ArrayRef<Value *> Vals) {
12143           assert((Vals.size() == 1 || Vals.size() == 2) &&
12144                  "Expected exactly 1 or 2 input values.");
12145           if (Vals.size() == 1) {
12146             // Do not create shuffle if the mask is a simple identity
12147             // non-resizing mask.
12148             if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
12149                                    ->getNumElements() ||
12150                 !ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
12151               return CreateShuffle(Vals.front(), nullptr, Mask);
12152             return Vals.front();
12153           }
12154           return CreateShuffle(Vals.front() ? Vals.front()
12155                                             : FirstInsert->getOperand(0),
12156                                Vals.back(), Mask);
12157         });
12158     auto It = ShuffledInserts[I].InsertElements.rbegin();
12159     // Rebuild buildvector chain.
12160     InsertElementInst *II = nullptr;
12161     if (It != ShuffledInserts[I].InsertElements.rend())
12162       II = *It;
12163     SmallVector<Instruction *> Inserts;
12164     while (It != ShuffledInserts[I].InsertElements.rend()) {
12165       assert(II && "Must be an insertelement instruction.");
12166       if (*It == II)
12167         ++It;
12168       else
12169         Inserts.push_back(cast<Instruction>(II));
12170       II = dyn_cast<InsertElementInst>(II->getOperand(0));
12171     }
12172     for (Instruction *II : reverse(Inserts)) {
12173       II->replaceUsesOfWith(II->getOperand(0), NewInst);
12174       if (auto *NewI = dyn_cast<Instruction>(NewInst))
12175         if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
12176           II->moveAfter(NewI);
12177       NewInst = II;
12178     }
12179     LastInsert->replaceAllUsesWith(NewInst);
12180     for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
12181       IE->replaceUsesOfWith(IE->getOperand(0),
12182                             PoisonValue::get(IE->getOperand(0)->getType()));
12183       IE->replaceUsesOfWith(IE->getOperand(1),
12184                             PoisonValue::get(IE->getOperand(1)->getType()));
12185       eraseInstruction(IE);
12186     }
12187     CSEBlocks.insert(LastInsert->getParent());
12188   }
12189 
12190   SmallVector<Instruction *> RemovedInsts;
12191   // For each vectorized value:
12192   for (auto &TEPtr : VectorizableTree) {
12193     TreeEntry *Entry = TEPtr.get();
12194 
12195     // No need to handle users of gathered values.
12196     if (Entry->State == TreeEntry::NeedToGather)
12197       continue;
12198 
12199     assert(Entry->VectorizedValue && "Can't find vectorizable value");
12200 
12201     // For each lane:
12202     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
12203       Value *Scalar = Entry->Scalars[Lane];
12204 
12205       if (Entry->getOpcode() == Instruction::GetElementPtr &&
12206           !isa<GetElementPtrInst>(Scalar))
12207         continue;
12208 #ifndef NDEBUG
12209       Type *Ty = Scalar->getType();
12210       if (!Ty->isVoidTy()) {
12211         for (User *U : Scalar->users()) {
12212           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
12213 
12214           // It is legal to delete users in the ignorelist.
12215           assert((getTreeEntry(U) ||
12216                   (UserIgnoreList && UserIgnoreList->contains(U)) ||
12217                   (isa_and_nonnull<Instruction>(U) &&
12218                    isDeleted(cast<Instruction>(U)))) &&
12219                  "Deleting out-of-tree value");
12220         }
12221       }
12222 #endif
12223       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
12224       eraseInstruction(cast<Instruction>(Scalar));
12225       // Retain to-be-deleted instructions for some debug-info
12226       // bookkeeping. NOTE: eraseInstruction only marks the instruction for
12227       // deletion - instructions are not deleted until later.
12228       RemovedInsts.push_back(cast<Instruction>(Scalar));
12229     }
12230   }
12231 
12232   // Merge the DIAssignIDs from the about-to-be-deleted instructions into the
12233   // new vector instruction.
12234   if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue))
12235     V->mergeDIAssignID(RemovedInsts);
12236 
12237   Builder.ClearInsertionPoint();
12238   InstrElementSize.clear();
12239 
12240   return VectorizableTree[0]->VectorizedValue;
12241 }
12242 
12243 void BoUpSLP::optimizeGatherSequence() {
12244   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size()
12245                     << " gather sequences instructions.\n");
12246   // LICM InsertElementInst sequences.
12247   for (Instruction *I : GatherShuffleExtractSeq) {
12248     if (isDeleted(I))
12249       continue;
12250 
12251     // Check if this block is inside a loop.
12252     Loop *L = LI->getLoopFor(I->getParent());
12253     if (!L)
12254       continue;
12255 
12256     // Check if it has a preheader.
12257     BasicBlock *PreHeader = L->getLoopPreheader();
12258     if (!PreHeader)
12259       continue;
12260 
12261     // If the vector or the element that we insert into it are
12262     // instructions that are defined in this basic block then we can't
12263     // hoist this instruction.
12264     if (any_of(I->operands(), [L](Value *V) {
12265           auto *OpI = dyn_cast<Instruction>(V);
12266           return OpI && L->contains(OpI);
12267         }))
12268       continue;
12269 
12270     // We can hoist this instruction. Move it to the pre-header.
12271     I->moveBefore(PreHeader->getTerminator());
12272     CSEBlocks.insert(PreHeader);
12273   }
12274 
12275   // Make a list of all reachable blocks in our CSE queue.
12276   SmallVector<const DomTreeNode *, 8> CSEWorkList;
12277   CSEWorkList.reserve(CSEBlocks.size());
12278   for (BasicBlock *BB : CSEBlocks)
12279     if (DomTreeNode *N = DT->getNode(BB)) {
12280       assert(DT->isReachableFromEntry(N));
12281       CSEWorkList.push_back(N);
12282     }
12283 
12284   // Sort blocks by domination. This ensures we visit a block after all blocks
12285   // dominating it are visited.
12286   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
12287     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
12288            "Different nodes should have different DFS numbers");
12289     return A->getDFSNumIn() < B->getDFSNumIn();
12290   });
12291 
12292   // Less defined shuffles can be replaced by the more defined copies.
12293   // Between two shuffles one is less defined if it has the same vector operands
12294   // and its mask indeces are the same as in the first one or undefs. E.g.
12295   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
12296   // poison, <0, 0, 0, 0>.
12297   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
12298                                            SmallVectorImpl<int> &NewMask) {
12299     if (I1->getType() != I2->getType())
12300       return false;
12301     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
12302     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
12303     if (!SI1 || !SI2)
12304       return I1->isIdenticalTo(I2);
12305     if (SI1->isIdenticalTo(SI2))
12306       return true;
12307     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
12308       if (SI1->getOperand(I) != SI2->getOperand(I))
12309         return false;
12310     // Check if the second instruction is more defined than the first one.
12311     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
12312     ArrayRef<int> SM1 = SI1->getShuffleMask();
12313     // Count trailing undefs in the mask to check the final number of used
12314     // registers.
12315     unsigned LastUndefsCnt = 0;
12316     for (int I = 0, E = NewMask.size(); I < E; ++I) {
12317       if (SM1[I] == PoisonMaskElem)
12318         ++LastUndefsCnt;
12319       else
12320         LastUndefsCnt = 0;
12321       if (NewMask[I] != PoisonMaskElem && SM1[I] != PoisonMaskElem &&
12322           NewMask[I] != SM1[I])
12323         return false;
12324       if (NewMask[I] == PoisonMaskElem)
12325         NewMask[I] = SM1[I];
12326     }
12327     // Check if the last undefs actually change the final number of used vector
12328     // registers.
12329     return SM1.size() - LastUndefsCnt > 1 &&
12330            TTI->getNumberOfParts(SI1->getType()) ==
12331                TTI->getNumberOfParts(
12332                    FixedVectorType::get(SI1->getType()->getElementType(),
12333                                         SM1.size() - LastUndefsCnt));
12334   };
12335   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
12336   // instructions. TODO: We can further optimize this scan if we split the
12337   // instructions into different buckets based on the insert lane.
12338   SmallVector<Instruction *, 16> Visited;
12339   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
12340     assert(*I &&
12341            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
12342            "Worklist not sorted properly!");
12343     BasicBlock *BB = (*I)->getBlock();
12344     // For all instructions in blocks containing gather sequences:
12345     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
12346       if (isDeleted(&In))
12347         continue;
12348       if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) &&
12349           !GatherShuffleExtractSeq.contains(&In))
12350         continue;
12351 
12352       // Check if we can replace this instruction with any of the
12353       // visited instructions.
12354       bool Replaced = false;
12355       for (Instruction *&V : Visited) {
12356         SmallVector<int> NewMask;
12357         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
12358             DT->dominates(V->getParent(), In.getParent())) {
12359           In.replaceAllUsesWith(V);
12360           eraseInstruction(&In);
12361           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
12362             if (!NewMask.empty())
12363               SI->setShuffleMask(NewMask);
12364           Replaced = true;
12365           break;
12366         }
12367         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
12368             GatherShuffleExtractSeq.contains(V) &&
12369             IsIdenticalOrLessDefined(V, &In, NewMask) &&
12370             DT->dominates(In.getParent(), V->getParent())) {
12371           In.moveAfter(V);
12372           V->replaceAllUsesWith(&In);
12373           eraseInstruction(V);
12374           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
12375             if (!NewMask.empty())
12376               SI->setShuffleMask(NewMask);
12377           V = &In;
12378           Replaced = true;
12379           break;
12380         }
12381       }
12382       if (!Replaced) {
12383         assert(!is_contained(Visited, &In));
12384         Visited.push_back(&In);
12385       }
12386     }
12387   }
12388   CSEBlocks.clear();
12389   GatherShuffleExtractSeq.clear();
12390 }
12391 
12392 BoUpSLP::ScheduleData *
12393 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
12394   ScheduleData *Bundle = nullptr;
12395   ScheduleData *PrevInBundle = nullptr;
12396   for (Value *V : VL) {
12397     if (doesNotNeedToBeScheduled(V))
12398       continue;
12399     ScheduleData *BundleMember = getScheduleData(V);
12400     assert(BundleMember &&
12401            "no ScheduleData for bundle member "
12402            "(maybe not in same basic block)");
12403     assert(BundleMember->isSchedulingEntity() &&
12404            "bundle member already part of other bundle");
12405     if (PrevInBundle) {
12406       PrevInBundle->NextInBundle = BundleMember;
12407     } else {
12408       Bundle = BundleMember;
12409     }
12410 
12411     // Group the instructions to a bundle.
12412     BundleMember->FirstInBundle = Bundle;
12413     PrevInBundle = BundleMember;
12414   }
12415   assert(Bundle && "Failed to find schedule bundle");
12416   return Bundle;
12417 }
12418 
12419 // Groups the instructions to a bundle (which is then a single scheduling entity)
12420 // and schedules instructions until the bundle gets ready.
12421 std::optional<BoUpSLP::ScheduleData *>
12422 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
12423                                             const InstructionsState &S) {
12424   // No need to schedule PHIs, insertelement, extractelement and extractvalue
12425   // instructions.
12426   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
12427       doesNotNeedToSchedule(VL))
12428     return nullptr;
12429 
12430   // Initialize the instruction bundle.
12431   Instruction *OldScheduleEnd = ScheduleEnd;
12432   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
12433 
12434   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
12435                                                          ScheduleData *Bundle) {
12436     // The scheduling region got new instructions at the lower end (or it is a
12437     // new region for the first bundle). This makes it necessary to
12438     // recalculate all dependencies.
12439     // It is seldom that this needs to be done a second time after adding the
12440     // initial bundle to the region.
12441     if (ScheduleEnd != OldScheduleEnd) {
12442       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
12443         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
12444       ReSchedule = true;
12445     }
12446     if (Bundle) {
12447       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
12448                         << " in block " << BB->getName() << "\n");
12449       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
12450     }
12451 
12452     if (ReSchedule) {
12453       resetSchedule();
12454       initialFillReadyList(ReadyInsts);
12455     }
12456 
12457     // Now try to schedule the new bundle or (if no bundle) just calculate
12458     // dependencies. As soon as the bundle is "ready" it means that there are no
12459     // cyclic dependencies and we can schedule it. Note that's important that we
12460     // don't "schedule" the bundle yet (see cancelScheduling).
12461     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
12462            !ReadyInsts.empty()) {
12463       ScheduleData *Picked = ReadyInsts.pop_back_val();
12464       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
12465              "must be ready to schedule");
12466       schedule(Picked, ReadyInsts);
12467     }
12468   };
12469 
12470   // Make sure that the scheduling region contains all
12471   // instructions of the bundle.
12472   for (Value *V : VL) {
12473     if (doesNotNeedToBeScheduled(V))
12474       continue;
12475     if (!extendSchedulingRegion(V, S)) {
12476       // If the scheduling region got new instructions at the lower end (or it
12477       // is a new region for the first bundle). This makes it necessary to
12478       // recalculate all dependencies.
12479       // Otherwise the compiler may crash trying to incorrectly calculate
12480       // dependencies and emit instruction in the wrong order at the actual
12481       // scheduling.
12482       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
12483       return std::nullopt;
12484     }
12485   }
12486 
12487   bool ReSchedule = false;
12488   for (Value *V : VL) {
12489     if (doesNotNeedToBeScheduled(V))
12490       continue;
12491     ScheduleData *BundleMember = getScheduleData(V);
12492     assert(BundleMember &&
12493            "no ScheduleData for bundle member (maybe not in same basic block)");
12494 
12495     // Make sure we don't leave the pieces of the bundle in the ready list when
12496     // whole bundle might not be ready.
12497     ReadyInsts.remove(BundleMember);
12498 
12499     if (!BundleMember->IsScheduled)
12500       continue;
12501     // A bundle member was scheduled as single instruction before and now
12502     // needs to be scheduled as part of the bundle. We just get rid of the
12503     // existing schedule.
12504     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
12505                       << " was already scheduled\n");
12506     ReSchedule = true;
12507   }
12508 
12509   auto *Bundle = buildBundle(VL);
12510   TryScheduleBundleImpl(ReSchedule, Bundle);
12511   if (!Bundle->isReady()) {
12512     cancelScheduling(VL, S.OpValue);
12513     return std::nullopt;
12514   }
12515   return Bundle;
12516 }
12517 
12518 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
12519                                                 Value *OpValue) {
12520   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
12521       doesNotNeedToSchedule(VL))
12522     return;
12523 
12524   if (doesNotNeedToBeScheduled(OpValue))
12525     OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
12526   ScheduleData *Bundle = getScheduleData(OpValue);
12527   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
12528   assert(!Bundle->IsScheduled &&
12529          "Can't cancel bundle which is already scheduled");
12530   assert(Bundle->isSchedulingEntity() &&
12531          (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
12532          "tried to unbundle something which is not a bundle");
12533 
12534   // Remove the bundle from the ready list.
12535   if (Bundle->isReady())
12536     ReadyInsts.remove(Bundle);
12537 
12538   // Un-bundle: make single instructions out of the bundle.
12539   ScheduleData *BundleMember = Bundle;
12540   while (BundleMember) {
12541     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
12542     BundleMember->FirstInBundle = BundleMember;
12543     ScheduleData *Next = BundleMember->NextInBundle;
12544     BundleMember->NextInBundle = nullptr;
12545     BundleMember->TE = nullptr;
12546     if (BundleMember->unscheduledDepsInBundle() == 0) {
12547       ReadyInsts.insert(BundleMember);
12548     }
12549     BundleMember = Next;
12550   }
12551 }
12552 
12553 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
12554   // Allocate a new ScheduleData for the instruction.
12555   if (ChunkPos >= ChunkSize) {
12556     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
12557     ChunkPos = 0;
12558   }
12559   return &(ScheduleDataChunks.back()[ChunkPos++]);
12560 }
12561 
12562 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
12563                                                       const InstructionsState &S) {
12564   if (getScheduleData(V, isOneOf(S, V)))
12565     return true;
12566   Instruction *I = dyn_cast<Instruction>(V);
12567   assert(I && "bundle member must be an instruction");
12568   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
12569          !doesNotNeedToBeScheduled(I) &&
12570          "phi nodes/insertelements/extractelements/extractvalues don't need to "
12571          "be scheduled");
12572   auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
12573     ScheduleData *ISD = getScheduleData(I);
12574     if (!ISD)
12575       return false;
12576     assert(isInSchedulingRegion(ISD) &&
12577            "ScheduleData not in scheduling region");
12578     ScheduleData *SD = allocateScheduleDataChunks();
12579     SD->Inst = I;
12580     SD->init(SchedulingRegionID, S.OpValue);
12581     ExtraScheduleDataMap[I][S.OpValue] = SD;
12582     return true;
12583   };
12584   if (CheckScheduleForI(I))
12585     return true;
12586   if (!ScheduleStart) {
12587     // It's the first instruction in the new region.
12588     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
12589     ScheduleStart = I;
12590     ScheduleEnd = I->getNextNode();
12591     if (isOneOf(S, I) != I)
12592       CheckScheduleForI(I);
12593     assert(ScheduleEnd && "tried to vectorize a terminator?");
12594     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
12595     return true;
12596   }
12597   // Search up and down at the same time, because we don't know if the new
12598   // instruction is above or below the existing scheduling region.
12599   // Ignore debug info (and other "AssumeLike" intrinsics) so that's not counted
12600   // against the budget. Otherwise debug info could affect codegen.
12601   BasicBlock::reverse_iterator UpIter =
12602       ++ScheduleStart->getIterator().getReverse();
12603   BasicBlock::reverse_iterator UpperEnd = BB->rend();
12604   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
12605   BasicBlock::iterator LowerEnd = BB->end();
12606   auto IsAssumeLikeIntr = [](const Instruction &I) {
12607     if (auto *II = dyn_cast<IntrinsicInst>(&I))
12608       return II->isAssumeLikeIntrinsic();
12609     return false;
12610   };
12611   UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr);
12612   DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr);
12613   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
12614          &*DownIter != I) {
12615     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
12616       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
12617       return false;
12618     }
12619 
12620     ++UpIter;
12621     ++DownIter;
12622 
12623     UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr);
12624     DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr);
12625   }
12626   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
12627     assert(I->getParent() == ScheduleStart->getParent() &&
12628            "Instruction is in wrong basic block.");
12629     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
12630     ScheduleStart = I;
12631     if (isOneOf(S, I) != I)
12632       CheckScheduleForI(I);
12633     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
12634                       << "\n");
12635     return true;
12636   }
12637   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
12638          "Expected to reach top of the basic block or instruction down the "
12639          "lower end.");
12640   assert(I->getParent() == ScheduleEnd->getParent() &&
12641          "Instruction is in wrong basic block.");
12642   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
12643                    nullptr);
12644   ScheduleEnd = I->getNextNode();
12645   if (isOneOf(S, I) != I)
12646     CheckScheduleForI(I);
12647   assert(ScheduleEnd && "tried to vectorize a terminator?");
12648   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
12649   return true;
12650 }
12651 
12652 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
12653                                                 Instruction *ToI,
12654                                                 ScheduleData *PrevLoadStore,
12655                                                 ScheduleData *NextLoadStore) {
12656   ScheduleData *CurrentLoadStore = PrevLoadStore;
12657   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
12658     // No need to allocate data for non-schedulable instructions.
12659     if (doesNotNeedToBeScheduled(I))
12660       continue;
12661     ScheduleData *SD = ScheduleDataMap.lookup(I);
12662     if (!SD) {
12663       SD = allocateScheduleDataChunks();
12664       ScheduleDataMap[I] = SD;
12665       SD->Inst = I;
12666     }
12667     assert(!isInSchedulingRegion(SD) &&
12668            "new ScheduleData already in scheduling region");
12669     SD->init(SchedulingRegionID, I);
12670 
12671     if (I->mayReadOrWriteMemory() &&
12672         (!isa<IntrinsicInst>(I) ||
12673          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
12674           cast<IntrinsicInst>(I)->getIntrinsicID() !=
12675               Intrinsic::pseudoprobe))) {
12676       // Update the linked list of memory accessing instructions.
12677       if (CurrentLoadStore) {
12678         CurrentLoadStore->NextLoadStore = SD;
12679       } else {
12680         FirstLoadStoreInRegion = SD;
12681       }
12682       CurrentLoadStore = SD;
12683     }
12684 
12685     if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
12686         match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12687       RegionHasStackSave = true;
12688   }
12689   if (NextLoadStore) {
12690     if (CurrentLoadStore)
12691       CurrentLoadStore->NextLoadStore = NextLoadStore;
12692   } else {
12693     LastLoadStoreInRegion = CurrentLoadStore;
12694   }
12695 }
12696 
12697 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
12698                                                      bool InsertInReadyList,
12699                                                      BoUpSLP *SLP) {
12700   assert(SD->isSchedulingEntity());
12701 
12702   SmallVector<ScheduleData *, 10> WorkList;
12703   WorkList.push_back(SD);
12704 
12705   while (!WorkList.empty()) {
12706     ScheduleData *SD = WorkList.pop_back_val();
12707     for (ScheduleData *BundleMember = SD; BundleMember;
12708          BundleMember = BundleMember->NextInBundle) {
12709       assert(isInSchedulingRegion(BundleMember));
12710       if (BundleMember->hasValidDependencies())
12711         continue;
12712 
12713       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
12714                  << "\n");
12715       BundleMember->Dependencies = 0;
12716       BundleMember->resetUnscheduledDeps();
12717 
12718       // Handle def-use chain dependencies.
12719       if (BundleMember->OpValue != BundleMember->Inst) {
12720         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
12721           BundleMember->Dependencies++;
12722           ScheduleData *DestBundle = UseSD->FirstInBundle;
12723           if (!DestBundle->IsScheduled)
12724             BundleMember->incrementUnscheduledDeps(1);
12725           if (!DestBundle->hasValidDependencies())
12726             WorkList.push_back(DestBundle);
12727         }
12728       } else {
12729         for (User *U : BundleMember->Inst->users()) {
12730           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
12731             BundleMember->Dependencies++;
12732             ScheduleData *DestBundle = UseSD->FirstInBundle;
12733             if (!DestBundle->IsScheduled)
12734               BundleMember->incrementUnscheduledDeps(1);
12735             if (!DestBundle->hasValidDependencies())
12736               WorkList.push_back(DestBundle);
12737           }
12738         }
12739       }
12740 
12741       auto MakeControlDependent = [&](Instruction *I) {
12742         auto *DepDest = getScheduleData(I);
12743         assert(DepDest && "must be in schedule window");
12744         DepDest->ControlDependencies.push_back(BundleMember);
12745         BundleMember->Dependencies++;
12746         ScheduleData *DestBundle = DepDest->FirstInBundle;
12747         if (!DestBundle->IsScheduled)
12748           BundleMember->incrementUnscheduledDeps(1);
12749         if (!DestBundle->hasValidDependencies())
12750           WorkList.push_back(DestBundle);
12751       };
12752 
12753       // Any instruction which isn't safe to speculate at the beginning of the
12754       // block is control dependend on any early exit or non-willreturn call
12755       // which proceeds it.
12756       if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
12757         for (Instruction *I = BundleMember->Inst->getNextNode();
12758              I != ScheduleEnd; I = I->getNextNode()) {
12759           if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC))
12760             continue;
12761 
12762           // Add the dependency
12763           MakeControlDependent(I);
12764 
12765           if (!isGuaranteedToTransferExecutionToSuccessor(I))
12766             // Everything past here must be control dependent on I.
12767             break;
12768         }
12769       }
12770 
12771       if (RegionHasStackSave) {
12772         // If we have an inalloc alloca instruction, it needs to be scheduled
12773         // after any preceeding stacksave.  We also need to prevent any alloca
12774         // from reordering above a preceeding stackrestore.
12775         if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
12776             match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
12777           for (Instruction *I = BundleMember->Inst->getNextNode();
12778                I != ScheduleEnd; I = I->getNextNode()) {
12779             if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
12780                 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12781               // Any allocas past here must be control dependent on I, and I
12782               // must be memory dependend on BundleMember->Inst.
12783               break;
12784 
12785             if (!isa<AllocaInst>(I))
12786               continue;
12787 
12788             // Add the dependency
12789             MakeControlDependent(I);
12790           }
12791         }
12792 
12793         // In addition to the cases handle just above, we need to prevent
12794         // allocas and loads/stores from moving below a stacksave or a
12795         // stackrestore. Avoiding moving allocas below stackrestore is currently
12796         // thought to be conservatism. Moving loads/stores below a stackrestore
12797         // can lead to incorrect code.
12798         if (isa<AllocaInst>(BundleMember->Inst) ||
12799             BundleMember->Inst->mayReadOrWriteMemory()) {
12800           for (Instruction *I = BundleMember->Inst->getNextNode();
12801                I != ScheduleEnd; I = I->getNextNode()) {
12802             if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
12803                 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12804               continue;
12805 
12806             // Add the dependency
12807             MakeControlDependent(I);
12808             break;
12809           }
12810         }
12811       }
12812 
12813       // Handle the memory dependencies (if any).
12814       ScheduleData *DepDest = BundleMember->NextLoadStore;
12815       if (!DepDest)
12816         continue;
12817       Instruction *SrcInst = BundleMember->Inst;
12818       assert(SrcInst->mayReadOrWriteMemory() &&
12819              "NextLoadStore list for non memory effecting bundle?");
12820       MemoryLocation SrcLoc = getLocation(SrcInst);
12821       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
12822       unsigned NumAliased = 0;
12823       unsigned DistToSrc = 1;
12824 
12825       for (; DepDest; DepDest = DepDest->NextLoadStore) {
12826         assert(isInSchedulingRegion(DepDest));
12827 
12828         // We have two limits to reduce the complexity:
12829         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
12830         //    SLP->isAliased (which is the expensive part in this loop).
12831         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
12832         //    the whole loop (even if the loop is fast, it's quadratic).
12833         //    It's important for the loop break condition (see below) to
12834         //    check this limit even between two read-only instructions.
12835         if (DistToSrc >= MaxMemDepDistance ||
12836             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
12837              (NumAliased >= AliasedCheckLimit ||
12838               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
12839 
12840           // We increment the counter only if the locations are aliased
12841           // (instead of counting all alias checks). This gives a better
12842           // balance between reduced runtime and accurate dependencies.
12843           NumAliased++;
12844 
12845           DepDest->MemoryDependencies.push_back(BundleMember);
12846           BundleMember->Dependencies++;
12847           ScheduleData *DestBundle = DepDest->FirstInBundle;
12848           if (!DestBundle->IsScheduled) {
12849             BundleMember->incrementUnscheduledDeps(1);
12850           }
12851           if (!DestBundle->hasValidDependencies()) {
12852             WorkList.push_back(DestBundle);
12853           }
12854         }
12855 
12856         // Example, explaining the loop break condition: Let's assume our
12857         // starting instruction is i0 and MaxMemDepDistance = 3.
12858         //
12859         //                      +--------v--v--v
12860         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
12861         //             +--------^--^--^
12862         //
12863         // MaxMemDepDistance let us stop alias-checking at i3 and we add
12864         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
12865         // Previously we already added dependencies from i3 to i6,i7,i8
12866         // (because of MaxMemDepDistance). As we added a dependency from
12867         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
12868         // and we can abort this loop at i6.
12869         if (DistToSrc >= 2 * MaxMemDepDistance)
12870           break;
12871         DistToSrc++;
12872       }
12873     }
12874     if (InsertInReadyList && SD->isReady()) {
12875       ReadyInsts.insert(SD);
12876       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
12877                         << "\n");
12878     }
12879   }
12880 }
12881 
12882 void BoUpSLP::BlockScheduling::resetSchedule() {
12883   assert(ScheduleStart &&
12884          "tried to reset schedule on block which has not been scheduled");
12885   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
12886     doForAllOpcodes(I, [&](ScheduleData *SD) {
12887       assert(isInSchedulingRegion(SD) &&
12888              "ScheduleData not in scheduling region");
12889       SD->IsScheduled = false;
12890       SD->resetUnscheduledDeps();
12891     });
12892   }
12893   ReadyInsts.clear();
12894 }
12895 
12896 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
12897   if (!BS->ScheduleStart)
12898     return;
12899 
12900   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
12901 
12902   // A key point - if we got here, pre-scheduling was able to find a valid
12903   // scheduling of the sub-graph of the scheduling window which consists
12904   // of all vector bundles and their transitive users.  As such, we do not
12905   // need to reschedule anything *outside of* that subgraph.
12906 
12907   BS->resetSchedule();
12908 
12909   // For the real scheduling we use a more sophisticated ready-list: it is
12910   // sorted by the original instruction location. This lets the final schedule
12911   // be as  close as possible to the original instruction order.
12912   // WARNING: If changing this order causes a correctness issue, that means
12913   // there is some missing dependence edge in the schedule data graph.
12914   struct ScheduleDataCompare {
12915     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
12916       return SD2->SchedulingPriority < SD1->SchedulingPriority;
12917     }
12918   };
12919   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
12920 
12921   // Ensure that all dependency data is updated (for nodes in the sub-graph)
12922   // and fill the ready-list with initial instructions.
12923   int Idx = 0;
12924   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
12925        I = I->getNextNode()) {
12926     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
12927       TreeEntry *SDTE = getTreeEntry(SD->Inst);
12928       (void)SDTE;
12929       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
12930               SD->isPartOfBundle() ==
12931                   (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
12932              "scheduler and vectorizer bundle mismatch");
12933       SD->FirstInBundle->SchedulingPriority = Idx++;
12934 
12935       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
12936         BS->calculateDependencies(SD, false, this);
12937     });
12938   }
12939   BS->initialFillReadyList(ReadyInsts);
12940 
12941   Instruction *LastScheduledInst = BS->ScheduleEnd;
12942 
12943   // Do the "real" scheduling.
12944   while (!ReadyInsts.empty()) {
12945     ScheduleData *Picked = *ReadyInsts.begin();
12946     ReadyInsts.erase(ReadyInsts.begin());
12947 
12948     // Move the scheduled instruction(s) to their dedicated places, if not
12949     // there yet.
12950     for (ScheduleData *BundleMember = Picked; BundleMember;
12951          BundleMember = BundleMember->NextInBundle) {
12952       Instruction *PickedInst = BundleMember->Inst;
12953       if (PickedInst->getNextNode() != LastScheduledInst)
12954         PickedInst->moveBefore(LastScheduledInst);
12955       LastScheduledInst = PickedInst;
12956     }
12957 
12958     BS->schedule(Picked, ReadyInsts);
12959   }
12960 
12961   // Check that we didn't break any of our invariants.
12962 #ifdef EXPENSIVE_CHECKS
12963   BS->verify();
12964 #endif
12965 
12966 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
12967   // Check that all schedulable entities got scheduled
12968   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
12969     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
12970       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
12971         assert(SD->IsScheduled && "must be scheduled at this point");
12972       }
12973     });
12974   }
12975 #endif
12976 
12977   // Avoid duplicate scheduling of the block.
12978   BS->ScheduleStart = nullptr;
12979 }
12980 
12981 unsigned BoUpSLP::getVectorElementSize(Value *V) {
12982   // If V is a store, just return the width of the stored value (or value
12983   // truncated just before storing) without traversing the expression tree.
12984   // This is the common case.
12985   if (auto *Store = dyn_cast<StoreInst>(V))
12986     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
12987 
12988   if (auto *IEI = dyn_cast<InsertElementInst>(V))
12989     return getVectorElementSize(IEI->getOperand(1));
12990 
12991   auto E = InstrElementSize.find(V);
12992   if (E != InstrElementSize.end())
12993     return E->second;
12994 
12995   // If V is not a store, we can traverse the expression tree to find loads
12996   // that feed it. The type of the loaded value may indicate a more suitable
12997   // width than V's type. We want to base the vector element size on the width
12998   // of memory operations where possible.
12999   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
13000   SmallPtrSet<Instruction *, 16> Visited;
13001   if (auto *I = dyn_cast<Instruction>(V)) {
13002     Worklist.emplace_back(I, I->getParent());
13003     Visited.insert(I);
13004   }
13005 
13006   // Traverse the expression tree in bottom-up order looking for loads. If we
13007   // encounter an instruction we don't yet handle, we give up.
13008   auto Width = 0u;
13009   while (!Worklist.empty()) {
13010     Instruction *I;
13011     BasicBlock *Parent;
13012     std::tie(I, Parent) = Worklist.pop_back_val();
13013 
13014     // We should only be looking at scalar instructions here. If the current
13015     // instruction has a vector type, skip.
13016     auto *Ty = I->getType();
13017     if (isa<VectorType>(Ty))
13018       continue;
13019 
13020     // If the current instruction is a load, update MaxWidth to reflect the
13021     // width of the loaded value.
13022     if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I))
13023       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
13024 
13025     // Otherwise, we need to visit the operands of the instruction. We only
13026     // handle the interesting cases from buildTree here. If an operand is an
13027     // instruction we haven't yet visited and from the same basic block as the
13028     // user or the use is a PHI node, we add it to the worklist.
13029     else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst,
13030                  BinaryOperator, UnaryOperator>(I)) {
13031       for (Use &U : I->operands())
13032         if (auto *J = dyn_cast<Instruction>(U.get()))
13033           if (Visited.insert(J).second &&
13034               (isa<PHINode>(I) || J->getParent() == Parent))
13035             Worklist.emplace_back(J, J->getParent());
13036     } else {
13037       break;
13038     }
13039   }
13040 
13041   // If we didn't encounter a memory access in the expression tree, or if we
13042   // gave up for some reason, just return the width of V. Otherwise, return the
13043   // maximum width we found.
13044   if (!Width) {
13045     if (auto *CI = dyn_cast<CmpInst>(V))
13046       V = CI->getOperand(0);
13047     Width = DL->getTypeSizeInBits(V->getType());
13048   }
13049 
13050   for (Instruction *I : Visited)
13051     InstrElementSize[I] = Width;
13052 
13053   return Width;
13054 }
13055 
13056 // Determine if a value V in a vectorizable expression Expr can be demoted to a
13057 // smaller type with a truncation. We collect the values that will be demoted
13058 // in ToDemote and additional roots that require investigating in Roots.
13059 bool BoUpSLP::collectValuesToDemote(
13060     Value *V, SmallVectorImpl<Value *> &ToDemote,
13061     DenseMap<Instruction *, SmallVector<unsigned>> &DemotedConsts,
13062     SmallVectorImpl<Value *> &Roots, DenseSet<Value *> &Visited) const {
13063   // We can always demote constants.
13064   if (isa<Constant>(V))
13065     return true;
13066 
13067   // If the value is not a vectorized instruction in the expression with only
13068   // one use, it cannot be demoted.
13069   auto *I = dyn_cast<Instruction>(V);
13070   if (!I || !I->hasOneUse() || !getTreeEntry(I) || !Visited.insert(I).second)
13071     return false;
13072 
13073   unsigned Start = 0;
13074   unsigned End = I->getNumOperands();
13075   switch (I->getOpcode()) {
13076 
13077   // We can always demote truncations and extensions. Since truncations can
13078   // seed additional demotion, we save the truncated value.
13079   case Instruction::Trunc:
13080     Roots.push_back(I->getOperand(0));
13081     break;
13082   case Instruction::ZExt:
13083   case Instruction::SExt:
13084     if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0)))
13085       return false;
13086     break;
13087 
13088   // We can demote certain binary operations if we can demote both of their
13089   // operands.
13090   case Instruction::Add:
13091   case Instruction::Sub:
13092   case Instruction::Mul:
13093   case Instruction::And:
13094   case Instruction::Or:
13095   case Instruction::Xor:
13096     if (!collectValuesToDemote(I->getOperand(0), ToDemote, DemotedConsts, Roots,
13097                                Visited) ||
13098         !collectValuesToDemote(I->getOperand(1), ToDemote, DemotedConsts, Roots,
13099                                Visited))
13100       return false;
13101     break;
13102 
13103   // We can demote selects if we can demote their true and false values.
13104   case Instruction::Select: {
13105     Start = 1;
13106     SelectInst *SI = cast<SelectInst>(I);
13107     if (!collectValuesToDemote(SI->getTrueValue(), ToDemote, DemotedConsts,
13108                                Roots, Visited) ||
13109         !collectValuesToDemote(SI->getFalseValue(), ToDemote, DemotedConsts,
13110                                Roots, Visited))
13111       return false;
13112     break;
13113   }
13114 
13115   // We can demote phis if we can demote all their incoming operands. Note that
13116   // we don't need to worry about cycles since we ensure single use above.
13117   case Instruction::PHI: {
13118     PHINode *PN = cast<PHINode>(I);
13119     for (Value *IncValue : PN->incoming_values())
13120       if (!collectValuesToDemote(IncValue, ToDemote, DemotedConsts, Roots,
13121                                  Visited))
13122         return false;
13123     break;
13124   }
13125 
13126   // Otherwise, conservatively give up.
13127   default:
13128     return false;
13129   }
13130 
13131   // Gather demoted constant operands.
13132   for (unsigned Idx : seq<unsigned>(Start, End))
13133     if (isa<Constant>(I->getOperand(Idx)))
13134       DemotedConsts.try_emplace(I).first->getSecond().push_back(Idx);
13135   // Record the value that we can demote.
13136   ToDemote.push_back(V);
13137   return true;
13138 }
13139 
13140 void BoUpSLP::computeMinimumValueSizes() {
13141   // If there are no external uses, the expression tree must be rooted by a
13142   // store. We can't demote in-memory values, so there is nothing to do here.
13143   if (ExternalUses.empty())
13144     return;
13145 
13146   // We only attempt to truncate integer expressions.
13147   auto &TreeRoot = VectorizableTree[0]->Scalars;
13148   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
13149   if (!TreeRootIT)
13150     return;
13151 
13152   // Ensure the roots of the vectorizable tree don't form a cycle.
13153   if (!VectorizableTree.front()->UserTreeIndices.empty())
13154     return;
13155 
13156   // Conservatively determine if we can actually truncate the roots of the
13157   // expression. Collect the values that can be demoted in ToDemote and
13158   // additional roots that require investigating in Roots.
13159   SmallVector<Value *, 32> ToDemote;
13160   DenseMap<Instruction *, SmallVector<unsigned>> DemotedConsts;
13161   SmallVector<Value *, 4> Roots;
13162   for (auto *Root : TreeRoot) {
13163     DenseSet<Value *> Visited;
13164     if (!collectValuesToDemote(Root, ToDemote, DemotedConsts, Roots, Visited))
13165       return;
13166   }
13167 
13168   // The maximum bit width required to represent all the values that can be
13169   // demoted without loss of precision. It would be safe to truncate the roots
13170   // of the expression to this width.
13171   auto MaxBitWidth = 1u;
13172 
13173   // We first check if all the bits of the roots are demanded. If they're not,
13174   // we can truncate the roots to this narrower type.
13175   for (auto *Root : TreeRoot) {
13176     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
13177     MaxBitWidth = std::max<unsigned>(Mask.getBitWidth() - Mask.countl_zero(),
13178                                      MaxBitWidth);
13179   }
13180 
13181   // True if the roots can be zero-extended back to their original type, rather
13182   // than sign-extended. We know that if the leading bits are not demanded, we
13183   // can safely zero-extend. So we initialize IsKnownPositive to True.
13184   bool IsKnownPositive = true;
13185 
13186   // If all the bits of the roots are demanded, we can try a little harder to
13187   // compute a narrower type. This can happen, for example, if the roots are
13188   // getelementptr indices. InstCombine promotes these indices to the pointer
13189   // width. Thus, all their bits are technically demanded even though the
13190   // address computation might be vectorized in a smaller type.
13191   //
13192   // We start by looking at each entry that can be demoted. We compute the
13193   // maximum bit width required to store the scalar by using ValueTracking to
13194   // compute the number of high-order bits we can truncate.
13195   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
13196       all_of(TreeRoot, [](Value *V) {
13197         return all_of(V->users(),
13198                       [](User *U) { return isa<GetElementPtrInst>(U); });
13199       })) {
13200     MaxBitWidth = 8u;
13201 
13202     // Determine if the sign bit of all the roots is known to be zero. If not,
13203     // IsKnownPositive is set to False.
13204     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
13205       KnownBits Known = computeKnownBits(R, *DL);
13206       return Known.isNonNegative();
13207     });
13208 
13209     // Determine the maximum number of bits required to store the scalar
13210     // values.
13211     for (auto *Scalar : ToDemote) {
13212       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
13213       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
13214       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
13215     }
13216 
13217     // If we can't prove that the sign bit is zero, we must add one to the
13218     // maximum bit width to account for the unknown sign bit. This preserves
13219     // the existing sign bit so we can safely sign-extend the root back to the
13220     // original type. Otherwise, if we know the sign bit is zero, we will
13221     // zero-extend the root instead.
13222     //
13223     // FIXME: This is somewhat suboptimal, as there will be cases where adding
13224     //        one to the maximum bit width will yield a larger-than-necessary
13225     //        type. In general, we need to add an extra bit only if we can't
13226     //        prove that the upper bit of the original type is equal to the
13227     //        upper bit of the proposed smaller type. If these two bits are the
13228     //        same (either zero or one) we know that sign-extending from the
13229     //        smaller type will result in the same value. Here, since we can't
13230     //        yet prove this, we are just making the proposed smaller type
13231     //        larger to ensure correctness.
13232     if (!IsKnownPositive)
13233       ++MaxBitWidth;
13234   }
13235 
13236   // Round MaxBitWidth up to the next power-of-two.
13237   MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
13238 
13239   // If the maximum bit width we compute is less than the with of the roots'
13240   // type, we can proceed with the narrowing. Otherwise, do nothing.
13241   if (MaxBitWidth >= TreeRootIT->getBitWidth())
13242     return;
13243 
13244   // If we can truncate the root, we must collect additional values that might
13245   // be demoted as a result. That is, those seeded by truncations we will
13246   // modify.
13247   while (!Roots.empty()) {
13248     DenseSet<Value *> Visited;
13249     collectValuesToDemote(Roots.pop_back_val(), ToDemote, DemotedConsts, Roots,
13250                           Visited);
13251   }
13252 
13253   // Finally, map the values we can demote to the maximum bit with we computed.
13254   for (auto *Scalar : ToDemote) {
13255     auto *TE = getTreeEntry(Scalar);
13256     assert(TE && "Expected vectorized scalar.");
13257     if (MinBWs.contains(TE))
13258       continue;
13259     bool IsSigned = any_of(TE->Scalars, [&](Value *R) {
13260       KnownBits Known = computeKnownBits(R, *DL);
13261       return !Known.isNonNegative();
13262     });
13263     MinBWs.try_emplace(TE, MaxBitWidth, IsSigned);
13264     const auto *I = cast<Instruction>(Scalar);
13265     auto DCIt = DemotedConsts.find(I);
13266     if (DCIt != DemotedConsts.end()) {
13267       for (unsigned Idx : DCIt->getSecond()) {
13268         // Check that all instructions operands are demoted.
13269         if (all_of(TE->Scalars, [&](Value *V) {
13270               auto SIt = DemotedConsts.find(cast<Instruction>(V));
13271               return SIt != DemotedConsts.end() &&
13272                      is_contained(SIt->getSecond(), Idx);
13273             })) {
13274           const TreeEntry *CTE = getOperandEntry(TE, Idx);
13275           MinBWs.try_emplace(CTE, MaxBitWidth, IsSigned);
13276         }
13277       }
13278     }
13279   }
13280 }
13281 
13282 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
13283   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
13284   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
13285   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
13286   auto *AA = &AM.getResult<AAManager>(F);
13287   auto *LI = &AM.getResult<LoopAnalysis>(F);
13288   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
13289   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
13290   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
13291   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
13292 
13293   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
13294   if (!Changed)
13295     return PreservedAnalyses::all();
13296 
13297   PreservedAnalyses PA;
13298   PA.preserveSet<CFGAnalyses>();
13299   return PA;
13300 }
13301 
13302 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
13303                                 TargetTransformInfo *TTI_,
13304                                 TargetLibraryInfo *TLI_, AAResults *AA_,
13305                                 LoopInfo *LI_, DominatorTree *DT_,
13306                                 AssumptionCache *AC_, DemandedBits *DB_,
13307                                 OptimizationRemarkEmitter *ORE_) {
13308   if (!RunSLPVectorization)
13309     return false;
13310   SE = SE_;
13311   TTI = TTI_;
13312   TLI = TLI_;
13313   AA = AA_;
13314   LI = LI_;
13315   DT = DT_;
13316   AC = AC_;
13317   DB = DB_;
13318   DL = &F.getParent()->getDataLayout();
13319 
13320   Stores.clear();
13321   GEPs.clear();
13322   bool Changed = false;
13323 
13324   // If the target claims to have no vector registers don't attempt
13325   // vectorization.
13326   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
13327     LLVM_DEBUG(
13328         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
13329     return false;
13330   }
13331 
13332   // Don't vectorize when the attribute NoImplicitFloat is used.
13333   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
13334     return false;
13335 
13336   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
13337 
13338   // Use the bottom up slp vectorizer to construct chains that start with
13339   // store instructions.
13340   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
13341 
13342   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
13343   // delete instructions.
13344 
13345   // Update DFS numbers now so that we can use them for ordering.
13346   DT->updateDFSNumbers();
13347 
13348   // Scan the blocks in the function in post order.
13349   for (auto *BB : post_order(&F.getEntryBlock())) {
13350     // Start new block - clear the list of reduction roots.
13351     R.clearReductionData();
13352     collectSeedInstructions(BB);
13353 
13354     // Vectorize trees that end at stores.
13355     if (!Stores.empty()) {
13356       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
13357                         << " underlying objects.\n");
13358       Changed |= vectorizeStoreChains(R);
13359     }
13360 
13361     // Vectorize trees that end at reductions.
13362     Changed |= vectorizeChainsInBlock(BB, R);
13363 
13364     // Vectorize the index computations of getelementptr instructions. This
13365     // is primarily intended to catch gather-like idioms ending at
13366     // non-consecutive loads.
13367     if (!GEPs.empty()) {
13368       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
13369                         << " underlying objects.\n");
13370       Changed |= vectorizeGEPIndices(BB, R);
13371     }
13372   }
13373 
13374   if (Changed) {
13375     R.optimizeGatherSequence();
13376     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
13377   }
13378   return Changed;
13379 }
13380 
13381 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
13382                                             unsigned Idx, unsigned MinVF) {
13383   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
13384                     << "\n");
13385   const unsigned Sz = R.getVectorElementSize(Chain[0]);
13386   unsigned VF = Chain.size();
13387 
13388   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
13389     return false;
13390 
13391   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
13392                     << "\n");
13393 
13394   R.buildTree(Chain);
13395   if (R.isTreeTinyAndNotFullyVectorizable())
13396     return false;
13397   if (R.isLoadCombineCandidate())
13398     return false;
13399   R.reorderTopToBottom();
13400   R.reorderBottomToTop();
13401   R.buildExternalUses();
13402 
13403   R.computeMinimumValueSizes();
13404 
13405   InstructionCost Cost = R.getTreeCost();
13406 
13407   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n");
13408   if (Cost < -SLPCostThreshold) {
13409     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
13410 
13411     using namespace ore;
13412 
13413     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
13414                                         cast<StoreInst>(Chain[0]))
13415                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
13416                      << " and with tree size "
13417                      << NV("TreeSize", R.getTreeSize()));
13418 
13419     R.vectorizeTree();
13420     return true;
13421   }
13422 
13423   return false;
13424 }
13425 
13426 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
13427                                         BoUpSLP &R) {
13428   // We may run into multiple chains that merge into a single chain. We mark the
13429   // stores that we vectorized so that we don't visit the same store twice.
13430   BoUpSLP::ValueSet VectorizedStores;
13431   bool Changed = false;
13432 
13433   // Stores the pair of stores (first_store, last_store) in a range, that were
13434   // already tried to be vectorized. Allows to skip the store ranges that were
13435   // already tried to be vectorized but the attempts were unsuccessful.
13436   DenseSet<std::pair<Value *, Value *>> TriedSequences;
13437   struct StoreDistCompare {
13438     bool operator()(const std::pair<unsigned, int> &Op1,
13439                     const std::pair<unsigned, int> &Op2) const {
13440       return Op1.second < Op2.second;
13441     }
13442   };
13443   // A set of pairs (index of store in Stores array ref, Distance of the store
13444   // address relative to base store address in units).
13445   using StoreIndexToDistSet =
13446       std::set<std::pair<unsigned, int>, StoreDistCompare>;
13447   auto TryToVectorize = [&](const StoreIndexToDistSet &Set) {
13448     int PrevDist = -1;
13449     BoUpSLP::ValueList Operands;
13450     // Collect the chain into a list.
13451     for (auto [Idx, Data] : enumerate(Set)) {
13452       if (Operands.empty() || Data.second - PrevDist == 1) {
13453         Operands.push_back(Stores[Data.first]);
13454         PrevDist = Data.second;
13455         if (Idx != Set.size() - 1)
13456           continue;
13457       }
13458       if (Operands.size() <= 1) {
13459         Operands.clear();
13460         Operands.push_back(Stores[Data.first]);
13461         PrevDist = Data.second;
13462         continue;
13463       }
13464 
13465       unsigned MaxVecRegSize = R.getMaxVecRegSize();
13466       unsigned EltSize = R.getVectorElementSize(Operands[0]);
13467       unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize);
13468 
13469       unsigned MaxVF =
13470           std::min(R.getMaximumVF(EltSize, Instruction::Store), MaxElts);
13471       auto *Store = cast<StoreInst>(Operands[0]);
13472       Type *StoreTy = Store->getValueOperand()->getType();
13473       Type *ValueTy = StoreTy;
13474       if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
13475         ValueTy = Trunc->getSrcTy();
13476       unsigned MinVF = TTI->getStoreMinimumVF(
13477           R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
13478 
13479       if (MaxVF <= MinVF) {
13480         LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF
13481                           << ") <= "
13482                           << "MinVF (" << MinVF << ")\n");
13483       }
13484 
13485       // FIXME: Is division-by-2 the correct step? Should we assert that the
13486       // register size is a power-of-2?
13487       unsigned StartIdx = 0;
13488       for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
13489         for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
13490           ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size);
13491           assert(
13492               all_of(
13493                   Slice,
13494                   [&](Value *V) {
13495                     return cast<StoreInst>(V)->getValueOperand()->getType() ==
13496                            cast<StoreInst>(Slice.front())
13497                                ->getValueOperand()
13498                                ->getType();
13499                   }) &&
13500               "Expected all operands of same type.");
13501           if (!VectorizedStores.count(Slice.front()) &&
13502               !VectorizedStores.count(Slice.back()) &&
13503               TriedSequences.insert(std::make_pair(Slice.front(), Slice.back()))
13504                   .second &&
13505               vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
13506             // Mark the vectorized stores so that we don't vectorize them again.
13507             VectorizedStores.insert(Slice.begin(), Slice.end());
13508             Changed = true;
13509             // If we vectorized initial block, no need to try to vectorize it
13510             // again.
13511             if (Cnt == StartIdx)
13512               StartIdx += Size;
13513             Cnt += Size;
13514             continue;
13515           }
13516           ++Cnt;
13517         }
13518         // Check if the whole array was vectorized already - exit.
13519         if (StartIdx >= Operands.size())
13520           break;
13521       }
13522       Operands.clear();
13523       Operands.push_back(Stores[Data.first]);
13524       PrevDist = Data.second;
13525     }
13526   };
13527 
13528   // Stores pair (first: index of the store into Stores array ref, address of
13529   // which taken as base, second: sorted set of pairs {index, dist}, which are
13530   // indices of stores in the set and their store location distances relative to
13531   // the base address).
13532 
13533   // Need to store the index of the very first store separately, since the set
13534   // may be reordered after the insertion and the first store may be moved. This
13535   // container allows to reduce number of calls of getPointersDiff() function.
13536   SmallVector<std::pair<unsigned, StoreIndexToDistSet>> SortedStores;
13537   // Inserts the specified store SI with the given index Idx to the set of the
13538   // stores. If the store with the same distance is found already - stop
13539   // insertion, try to vectorize already found stores. If some stores from this
13540   // sequence were not vectorized - try to vectorize them with the new store
13541   // later. But this logic is applied only to the stores, that come before the
13542   // previous store with the same distance.
13543   // Example:
13544   // 1. store x, %p
13545   // 2. store y, %p+1
13546   // 3. store z, %p+2
13547   // 4. store a, %p
13548   // 5. store b, %p+3
13549   // - Scan this from the last to first store. The very first bunch of stores is
13550   // {5, {{4, -3}, {2, -2}, {3, -1}, {5, 0}}} (the element in SortedStores
13551   // vector).
13552   // - The next store in the list - #1 - has the same distance from store #5 as
13553   // the store #4.
13554   // - Try to vectorize sequence of stores 4,2,3,5.
13555   // - If all these stores are vectorized - just drop them.
13556   // - If some of them are not vectorized (say, #3 and #5), do extra analysis.
13557   // - Start new stores sequence.
13558   // The new bunch of stores is {1, {1, 0}}.
13559   // - Add the stores from previous sequence, that were not vectorized.
13560   // Here we consider the stores in the reversed order, rather they are used in
13561   // the IR (Stores are reversed already, see vectorizeStoreChains() function).
13562   // Store #3 can be added -> comes after store #4 with the same distance as
13563   // store #1.
13564   // Store #5 cannot be added - comes before store #4.
13565   // This logic allows to improve the compile time, we assume that the stores
13566   // after previous store with the same distance most likely have memory
13567   // dependencies and no need to waste compile time to try to vectorize them.
13568   // - Try to vectorize the sequence {1, {1, 0}, {3, 2}}.
13569   auto FillStoresSet = [&](unsigned Idx, StoreInst *SI) {
13570     for (std::pair<unsigned, StoreIndexToDistSet> &Set : SortedStores) {
13571       std::optional<int> Diff = getPointersDiff(
13572           Stores[Set.first]->getValueOperand()->getType(),
13573           Stores[Set.first]->getPointerOperand(),
13574           SI->getValueOperand()->getType(), SI->getPointerOperand(), *DL, *SE,
13575           /*StrictCheck=*/true);
13576       if (!Diff)
13577         continue;
13578       auto It = Set.second.find(std::make_pair(Idx, *Diff));
13579       if (It == Set.second.end()) {
13580         Set.second.emplace(Idx, *Diff);
13581         return;
13582       }
13583       // Try to vectorize the first found set to avoid duplicate analysis.
13584       TryToVectorize(Set.second);
13585       StoreIndexToDistSet PrevSet;
13586       PrevSet.swap(Set.second);
13587       Set.first = Idx;
13588       Set.second.emplace(Idx, 0);
13589       // Insert stores that followed previous match to try to vectorize them
13590       // with this store.
13591       unsigned StartIdx = It->first + 1;
13592       SmallBitVector UsedStores(Idx - StartIdx);
13593       // Distances to previously found dup store (or this store, since they
13594       // store to the same addresses).
13595       SmallVector<int> Dists(Idx - StartIdx, 0);
13596       for (const std::pair<unsigned, int> &Pair : reverse(PrevSet)) {
13597         // Do not try to vectorize sequences, we already tried.
13598         if (Pair.first <= It->first ||
13599             VectorizedStores.contains(Stores[Pair.first]))
13600           break;
13601         unsigned BI = Pair.first - StartIdx;
13602         UsedStores.set(BI);
13603         Dists[BI] = Pair.second - It->second;
13604       }
13605       for (unsigned I = StartIdx; I < Idx; ++I) {
13606         unsigned BI = I - StartIdx;
13607         if (UsedStores.test(BI))
13608           Set.second.emplace(I, Dists[BI]);
13609       }
13610       return;
13611     }
13612     auto &Res = SortedStores.emplace_back();
13613     Res.first = Idx;
13614     Res.second.emplace(Idx, 0);
13615   };
13616   StoreInst *PrevStore = Stores.front();
13617   for (auto [I, SI] : enumerate(Stores)) {
13618     // Check that we do not try to vectorize stores of different types.
13619     if (PrevStore->getValueOperand()->getType() !=
13620         SI->getValueOperand()->getType()) {
13621       for (auto &Set : SortedStores)
13622         TryToVectorize(Set.second);
13623       SortedStores.clear();
13624       PrevStore = SI;
13625     }
13626     FillStoresSet(I, SI);
13627   }
13628 
13629   // Final vectorization attempt.
13630   for (auto &Set : SortedStores)
13631     TryToVectorize(Set.second);
13632 
13633   return Changed;
13634 }
13635 
13636 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
13637   // Initialize the collections. We will make a single pass over the block.
13638   Stores.clear();
13639   GEPs.clear();
13640 
13641   // Visit the store and getelementptr instructions in BB and organize them in
13642   // Stores and GEPs according to the underlying objects of their pointer
13643   // operands.
13644   for (Instruction &I : *BB) {
13645     // Ignore store instructions that are volatile or have a pointer operand
13646     // that doesn't point to a scalar type.
13647     if (auto *SI = dyn_cast<StoreInst>(&I)) {
13648       if (!SI->isSimple())
13649         continue;
13650       if (!isValidElementType(SI->getValueOperand()->getType()))
13651         continue;
13652       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
13653     }
13654 
13655     // Ignore getelementptr instructions that have more than one index, a
13656     // constant index, or a pointer operand that doesn't point to a scalar
13657     // type.
13658     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
13659       if (GEP->getNumIndices() != 1)
13660         continue;
13661       Value *Idx = GEP->idx_begin()->get();
13662       if (isa<Constant>(Idx))
13663         continue;
13664       if (!isValidElementType(Idx->getType()))
13665         continue;
13666       if (GEP->getType()->isVectorTy())
13667         continue;
13668       GEPs[GEP->getPointerOperand()].push_back(GEP);
13669     }
13670   }
13671 }
13672 
13673 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
13674                                            bool MaxVFOnly) {
13675   if (VL.size() < 2)
13676     return false;
13677 
13678   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
13679                     << VL.size() << ".\n");
13680 
13681   // Check that all of the parts are instructions of the same type,
13682   // we permit an alternate opcode via InstructionsState.
13683   InstructionsState S = getSameOpcode(VL, *TLI);
13684   if (!S.getOpcode())
13685     return false;
13686 
13687   Instruction *I0 = cast<Instruction>(S.OpValue);
13688   // Make sure invalid types (including vector type) are rejected before
13689   // determining vectorization factor for scalar instructions.
13690   for (Value *V : VL) {
13691     Type *Ty = V->getType();
13692     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
13693       // NOTE: the following will give user internal llvm type name, which may
13694       // not be useful.
13695       R.getORE()->emit([&]() {
13696         std::string TypeStr;
13697         llvm::raw_string_ostream rso(TypeStr);
13698         Ty->print(rso);
13699         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
13700                << "Cannot SLP vectorize list: type "
13701                << rso.str() + " is unsupported by vectorizer";
13702       });
13703       return false;
13704     }
13705   }
13706 
13707   unsigned Sz = R.getVectorElementSize(I0);
13708   unsigned MinVF = R.getMinVF(Sz);
13709   unsigned MaxVF = std::max<unsigned>(llvm::bit_floor(VL.size()), MinVF);
13710   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
13711   if (MaxVF < 2) {
13712     R.getORE()->emit([&]() {
13713       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
13714              << "Cannot SLP vectorize list: vectorization factor "
13715              << "less than 2 is not supported";
13716     });
13717     return false;
13718   }
13719 
13720   bool Changed = false;
13721   bool CandidateFound = false;
13722   InstructionCost MinCost = SLPCostThreshold.getValue();
13723   Type *ScalarTy = VL[0]->getType();
13724   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
13725     ScalarTy = IE->getOperand(1)->getType();
13726 
13727   unsigned NextInst = 0, MaxInst = VL.size();
13728   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
13729     // No actual vectorization should happen, if number of parts is the same as
13730     // provided vectorization factor (i.e. the scalar type is used for vector
13731     // code during codegen).
13732     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
13733     if (TTI->getNumberOfParts(VecTy) == VF)
13734       continue;
13735     for (unsigned I = NextInst; I < MaxInst; ++I) {
13736       unsigned ActualVF = std::min(MaxInst - I, VF);
13737 
13738       if (!isPowerOf2_32(ActualVF))
13739         continue;
13740 
13741       if (MaxVFOnly && ActualVF < MaxVF)
13742         break;
13743       if ((VF > MinVF && ActualVF <= VF / 2) || (VF == MinVF && ActualVF < 2))
13744         break;
13745 
13746       ArrayRef<Value *> Ops = VL.slice(I, ActualVF);
13747       // Check that a previous iteration of this loop did not delete the Value.
13748       if (llvm::any_of(Ops, [&R](Value *V) {
13749             auto *I = dyn_cast<Instruction>(V);
13750             return I && R.isDeleted(I);
13751           }))
13752         continue;
13753 
13754       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << ActualVF << " operations "
13755                         << "\n");
13756 
13757       R.buildTree(Ops);
13758       if (R.isTreeTinyAndNotFullyVectorizable())
13759         continue;
13760       R.reorderTopToBottom();
13761       R.reorderBottomToTop(
13762           /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) &&
13763           !R.doesRootHaveInTreeUses());
13764       R.buildExternalUses();
13765 
13766       R.computeMinimumValueSizes();
13767       InstructionCost Cost = R.getTreeCost();
13768       CandidateFound = true;
13769       MinCost = std::min(MinCost, Cost);
13770 
13771       LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
13772                         << " for VF=" << ActualVF << "\n");
13773       if (Cost < -SLPCostThreshold) {
13774         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
13775         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
13776                                                     cast<Instruction>(Ops[0]))
13777                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
13778                                  << " and with tree size "
13779                                  << ore::NV("TreeSize", R.getTreeSize()));
13780 
13781         R.vectorizeTree();
13782         // Move to the next bundle.
13783         I += VF - 1;
13784         NextInst = I + 1;
13785         Changed = true;
13786       }
13787     }
13788   }
13789 
13790   if (!Changed && CandidateFound) {
13791     R.getORE()->emit([&]() {
13792       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
13793              << "List vectorization was possible but not beneficial with cost "
13794              << ore::NV("Cost", MinCost) << " >= "
13795              << ore::NV("Treshold", -SLPCostThreshold);
13796     });
13797   } else if (!Changed) {
13798     R.getORE()->emit([&]() {
13799       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
13800              << "Cannot SLP vectorize list: vectorization was impossible"
13801              << " with available vectorization factors";
13802     });
13803   }
13804   return Changed;
13805 }
13806 
13807 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
13808   if (!I)
13809     return false;
13810 
13811   if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType()))
13812     return false;
13813 
13814   Value *P = I->getParent();
13815 
13816   // Vectorize in current basic block only.
13817   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
13818   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
13819   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
13820     return false;
13821 
13822   // First collect all possible candidates
13823   SmallVector<std::pair<Value *, Value *>, 4> Candidates;
13824   Candidates.emplace_back(Op0, Op1);
13825 
13826   auto *A = dyn_cast<BinaryOperator>(Op0);
13827   auto *B = dyn_cast<BinaryOperator>(Op1);
13828   // Try to skip B.
13829   if (A && B && B->hasOneUse()) {
13830     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
13831     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
13832     if (B0 && B0->getParent() == P)
13833       Candidates.emplace_back(A, B0);
13834     if (B1 && B1->getParent() == P)
13835       Candidates.emplace_back(A, B1);
13836   }
13837   // Try to skip A.
13838   if (B && A && A->hasOneUse()) {
13839     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
13840     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
13841     if (A0 && A0->getParent() == P)
13842       Candidates.emplace_back(A0, B);
13843     if (A1 && A1->getParent() == P)
13844       Candidates.emplace_back(A1, B);
13845   }
13846 
13847   if (Candidates.size() == 1)
13848     return tryToVectorizeList({Op0, Op1}, R);
13849 
13850   // We have multiple options. Try to pick the single best.
13851   std::optional<int> BestCandidate = R.findBestRootPair(Candidates);
13852   if (!BestCandidate)
13853     return false;
13854   return tryToVectorizeList(
13855       {Candidates[*BestCandidate].first, Candidates[*BestCandidate].second}, R);
13856 }
13857 
13858 namespace {
13859 
13860 /// Model horizontal reductions.
13861 ///
13862 /// A horizontal reduction is a tree of reduction instructions that has values
13863 /// that can be put into a vector as its leaves. For example:
13864 ///
13865 /// mul mul mul mul
13866 ///  \  /    \  /
13867 ///   +       +
13868 ///    \     /
13869 ///       +
13870 /// This tree has "mul" as its leaf values and "+" as its reduction
13871 /// instructions. A reduction can feed into a store or a binary operation
13872 /// feeding a phi.
13873 ///    ...
13874 ///    \  /
13875 ///     +
13876 ///     |
13877 ///  phi +=
13878 ///
13879 ///  Or:
13880 ///    ...
13881 ///    \  /
13882 ///     +
13883 ///     |
13884 ///   *p =
13885 ///
13886 class HorizontalReduction {
13887   using ReductionOpsType = SmallVector<Value *, 16>;
13888   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
13889   ReductionOpsListType ReductionOps;
13890   /// List of possibly reduced values.
13891   SmallVector<SmallVector<Value *>> ReducedVals;
13892   /// Maps reduced value to the corresponding reduction operation.
13893   DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
13894   // Use map vector to make stable output.
13895   MapVector<Instruction *, Value *> ExtraArgs;
13896   WeakTrackingVH ReductionRoot;
13897   /// The type of reduction operation.
13898   RecurKind RdxKind;
13899   /// Checks if the optimization of original scalar identity operations on
13900   /// matched horizontal reductions is enabled and allowed.
13901   bool IsSupportedHorRdxIdentityOp = false;
13902 
13903   static bool isCmpSelMinMax(Instruction *I) {
13904     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
13905            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
13906   }
13907 
13908   // And/or are potentially poison-safe logical patterns like:
13909   // select x, y, false
13910   // select x, true, y
13911   static bool isBoolLogicOp(Instruction *I) {
13912     return isa<SelectInst>(I) &&
13913            (match(I, m_LogicalAnd()) || match(I, m_LogicalOr()));
13914   }
13915 
13916   /// Checks if instruction is associative and can be vectorized.
13917   static bool isVectorizable(RecurKind Kind, Instruction *I) {
13918     if (Kind == RecurKind::None)
13919       return false;
13920 
13921     // Integer ops that map to select instructions or intrinsics are fine.
13922     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
13923         isBoolLogicOp(I))
13924       return true;
13925 
13926     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
13927       // FP min/max are associative except for NaN and -0.0. We do not
13928       // have to rule out -0.0 here because the intrinsic semantics do not
13929       // specify a fixed result for it.
13930       return I->getFastMathFlags().noNaNs();
13931     }
13932 
13933     if (Kind == RecurKind::FMaximum || Kind == RecurKind::FMinimum)
13934       return true;
13935 
13936     return I->isAssociative();
13937   }
13938 
13939   static Value *getRdxOperand(Instruction *I, unsigned Index) {
13940     // Poison-safe 'or' takes the form: select X, true, Y
13941     // To make that work with the normal operand processing, we skip the
13942     // true value operand.
13943     // TODO: Change the code and data structures to handle this without a hack.
13944     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
13945       return I->getOperand(2);
13946     return I->getOperand(Index);
13947   }
13948 
13949   /// Creates reduction operation with the current opcode.
13950   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
13951                          Value *RHS, const Twine &Name, bool UseSelect) {
13952     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
13953     bool IsConstant = isConstant(LHS) && isConstant(RHS);
13954     switch (Kind) {
13955     case RecurKind::Or:
13956       if (UseSelect &&
13957           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
13958         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
13959       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
13960                                  Name);
13961     case RecurKind::And:
13962       if (UseSelect &&
13963           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
13964         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
13965       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
13966                                  Name);
13967     case RecurKind::Add:
13968     case RecurKind::Mul:
13969     case RecurKind::Xor:
13970     case RecurKind::FAdd:
13971     case RecurKind::FMul:
13972       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
13973                                  Name);
13974     case RecurKind::FMax:
13975       if (IsConstant)
13976         return ConstantFP::get(LHS->getType(),
13977                                maxnum(cast<ConstantFP>(LHS)->getValueAPF(),
13978                                       cast<ConstantFP>(RHS)->getValueAPF()));
13979       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
13980     case RecurKind::FMin:
13981       if (IsConstant)
13982         return ConstantFP::get(LHS->getType(),
13983                                minnum(cast<ConstantFP>(LHS)->getValueAPF(),
13984                                       cast<ConstantFP>(RHS)->getValueAPF()));
13985       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
13986     case RecurKind::FMaximum:
13987       if (IsConstant)
13988         return ConstantFP::get(LHS->getType(),
13989                                maximum(cast<ConstantFP>(LHS)->getValueAPF(),
13990                                       cast<ConstantFP>(RHS)->getValueAPF()));
13991       return Builder.CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS);
13992     case RecurKind::FMinimum:
13993       if (IsConstant)
13994         return ConstantFP::get(LHS->getType(),
13995                                minimum(cast<ConstantFP>(LHS)->getValueAPF(),
13996                                       cast<ConstantFP>(RHS)->getValueAPF()));
13997       return Builder.CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS);
13998     case RecurKind::SMax:
13999       if (IsConstant || UseSelect) {
14000         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
14001         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14002       }
14003       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
14004     case RecurKind::SMin:
14005       if (IsConstant || UseSelect) {
14006         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
14007         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14008       }
14009       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
14010     case RecurKind::UMax:
14011       if (IsConstant || UseSelect) {
14012         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
14013         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14014       }
14015       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
14016     case RecurKind::UMin:
14017       if (IsConstant || UseSelect) {
14018         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
14019         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14020       }
14021       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
14022     default:
14023       llvm_unreachable("Unknown reduction operation.");
14024     }
14025   }
14026 
14027   /// Creates reduction operation with the current opcode with the IR flags
14028   /// from \p ReductionOps, dropping nuw/nsw flags.
14029   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
14030                          Value *RHS, const Twine &Name,
14031                          const ReductionOpsListType &ReductionOps) {
14032     bool UseSelect =
14033         ReductionOps.size() == 2 ||
14034         // Logical or/and.
14035         (ReductionOps.size() == 1 && any_of(ReductionOps.front(), [](Value *V) {
14036            return isa<SelectInst>(V);
14037          }));
14038     assert((!UseSelect || ReductionOps.size() != 2 ||
14039             isa<SelectInst>(ReductionOps[1][0])) &&
14040            "Expected cmp + select pairs for reduction");
14041     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
14042     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
14043       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
14044         propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
14045                          /*IncludeWrapFlags=*/false);
14046         propagateIRFlags(Op, ReductionOps[1], nullptr,
14047                          /*IncludeWrapFlags=*/false);
14048         return Op;
14049       }
14050     }
14051     propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
14052     return Op;
14053   }
14054 
14055 public:
14056   static RecurKind getRdxKind(Value *V) {
14057     auto *I = dyn_cast<Instruction>(V);
14058     if (!I)
14059       return RecurKind::None;
14060     if (match(I, m_Add(m_Value(), m_Value())))
14061       return RecurKind::Add;
14062     if (match(I, m_Mul(m_Value(), m_Value())))
14063       return RecurKind::Mul;
14064     if (match(I, m_And(m_Value(), m_Value())) ||
14065         match(I, m_LogicalAnd(m_Value(), m_Value())))
14066       return RecurKind::And;
14067     if (match(I, m_Or(m_Value(), m_Value())) ||
14068         match(I, m_LogicalOr(m_Value(), m_Value())))
14069       return RecurKind::Or;
14070     if (match(I, m_Xor(m_Value(), m_Value())))
14071       return RecurKind::Xor;
14072     if (match(I, m_FAdd(m_Value(), m_Value())))
14073       return RecurKind::FAdd;
14074     if (match(I, m_FMul(m_Value(), m_Value())))
14075       return RecurKind::FMul;
14076 
14077     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
14078       return RecurKind::FMax;
14079     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
14080       return RecurKind::FMin;
14081 
14082     if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
14083       return RecurKind::FMaximum;
14084     if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
14085       return RecurKind::FMinimum;
14086     // This matches either cmp+select or intrinsics. SLP is expected to handle
14087     // either form.
14088     // TODO: If we are canonicalizing to intrinsics, we can remove several
14089     //       special-case paths that deal with selects.
14090     if (match(I, m_SMax(m_Value(), m_Value())))
14091       return RecurKind::SMax;
14092     if (match(I, m_SMin(m_Value(), m_Value())))
14093       return RecurKind::SMin;
14094     if (match(I, m_UMax(m_Value(), m_Value())))
14095       return RecurKind::UMax;
14096     if (match(I, m_UMin(m_Value(), m_Value())))
14097       return RecurKind::UMin;
14098 
14099     if (auto *Select = dyn_cast<SelectInst>(I)) {
14100       // Try harder: look for min/max pattern based on instructions producing
14101       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
14102       // During the intermediate stages of SLP, it's very common to have
14103       // pattern like this (since optimizeGatherSequence is run only once
14104       // at the end):
14105       // %1 = extractelement <2 x i32> %a, i32 0
14106       // %2 = extractelement <2 x i32> %a, i32 1
14107       // %cond = icmp sgt i32 %1, %2
14108       // %3 = extractelement <2 x i32> %a, i32 0
14109       // %4 = extractelement <2 x i32> %a, i32 1
14110       // %select = select i1 %cond, i32 %3, i32 %4
14111       CmpInst::Predicate Pred;
14112       Instruction *L1;
14113       Instruction *L2;
14114 
14115       Value *LHS = Select->getTrueValue();
14116       Value *RHS = Select->getFalseValue();
14117       Value *Cond = Select->getCondition();
14118 
14119       // TODO: Support inverse predicates.
14120       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
14121         if (!isa<ExtractElementInst>(RHS) ||
14122             !L2->isIdenticalTo(cast<Instruction>(RHS)))
14123           return RecurKind::None;
14124       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
14125         if (!isa<ExtractElementInst>(LHS) ||
14126             !L1->isIdenticalTo(cast<Instruction>(LHS)))
14127           return RecurKind::None;
14128       } else {
14129         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
14130           return RecurKind::None;
14131         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
14132             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
14133             !L2->isIdenticalTo(cast<Instruction>(RHS)))
14134           return RecurKind::None;
14135       }
14136 
14137       switch (Pred) {
14138       default:
14139         return RecurKind::None;
14140       case CmpInst::ICMP_SGT:
14141       case CmpInst::ICMP_SGE:
14142         return RecurKind::SMax;
14143       case CmpInst::ICMP_SLT:
14144       case CmpInst::ICMP_SLE:
14145         return RecurKind::SMin;
14146       case CmpInst::ICMP_UGT:
14147       case CmpInst::ICMP_UGE:
14148         return RecurKind::UMax;
14149       case CmpInst::ICMP_ULT:
14150       case CmpInst::ICMP_ULE:
14151         return RecurKind::UMin;
14152       }
14153     }
14154     return RecurKind::None;
14155   }
14156 
14157   /// Get the index of the first operand.
14158   static unsigned getFirstOperandIndex(Instruction *I) {
14159     return isCmpSelMinMax(I) ? 1 : 0;
14160   }
14161 
14162 private:
14163   /// Total number of operands in the reduction operation.
14164   static unsigned getNumberOfOperands(Instruction *I) {
14165     return isCmpSelMinMax(I) ? 3 : 2;
14166   }
14167 
14168   /// Checks if the instruction is in basic block \p BB.
14169   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
14170   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
14171     if (isCmpSelMinMax(I) || isBoolLogicOp(I)) {
14172       auto *Sel = cast<SelectInst>(I);
14173       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
14174       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
14175     }
14176     return I->getParent() == BB;
14177   }
14178 
14179   /// Expected number of uses for reduction operations/reduced values.
14180   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
14181     if (IsCmpSelMinMax) {
14182       // SelectInst must be used twice while the condition op must have single
14183       // use only.
14184       if (auto *Sel = dyn_cast<SelectInst>(I))
14185         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
14186       return I->hasNUses(2);
14187     }
14188 
14189     // Arithmetic reduction operation must be used once only.
14190     return I->hasOneUse();
14191   }
14192 
14193   /// Initializes the list of reduction operations.
14194   void initReductionOps(Instruction *I) {
14195     if (isCmpSelMinMax(I))
14196       ReductionOps.assign(2, ReductionOpsType());
14197     else
14198       ReductionOps.assign(1, ReductionOpsType());
14199   }
14200 
14201   /// Add all reduction operations for the reduction instruction \p I.
14202   void addReductionOps(Instruction *I) {
14203     if (isCmpSelMinMax(I)) {
14204       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
14205       ReductionOps[1].emplace_back(I);
14206     } else {
14207       ReductionOps[0].emplace_back(I);
14208     }
14209   }
14210 
14211   static bool isGoodForReduction(ArrayRef<Value *> Data) {
14212     int Sz = Data.size();
14213     auto *I = dyn_cast<Instruction>(Data.front());
14214     return Sz > 1 || isConstant(Data.front()) ||
14215            (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode()));
14216   }
14217 
14218 public:
14219   HorizontalReduction() = default;
14220 
14221   /// Try to find a reduction tree.
14222   bool matchAssociativeReduction(BoUpSLP &R, Instruction *Root,
14223                                  ScalarEvolution &SE, const DataLayout &DL,
14224                                  const TargetLibraryInfo &TLI) {
14225     RdxKind = HorizontalReduction::getRdxKind(Root);
14226     if (!isVectorizable(RdxKind, Root))
14227       return false;
14228 
14229     // Analyze "regular" integer/FP types for reductions - no target-specific
14230     // types or pointers.
14231     Type *Ty = Root->getType();
14232     if (!isValidElementType(Ty) || Ty->isPointerTy())
14233       return false;
14234 
14235     // Though the ultimate reduction may have multiple uses, its condition must
14236     // have only single use.
14237     if (auto *Sel = dyn_cast<SelectInst>(Root))
14238       if (!Sel->getCondition()->hasOneUse())
14239         return false;
14240 
14241     ReductionRoot = Root;
14242 
14243     // Iterate through all the operands of the possible reduction tree and
14244     // gather all the reduced values, sorting them by their value id.
14245     BasicBlock *BB = Root->getParent();
14246     bool IsCmpSelMinMax = isCmpSelMinMax(Root);
14247     SmallVector<Instruction *> Worklist(1, Root);
14248     // Checks if the operands of the \p TreeN instruction are also reduction
14249     // operations or should be treated as reduced values or an extra argument,
14250     // which is not part of the reduction.
14251     auto CheckOperands = [&](Instruction *TreeN,
14252                              SmallVectorImpl<Value *> &ExtraArgs,
14253                              SmallVectorImpl<Value *> &PossibleReducedVals,
14254                              SmallVectorImpl<Instruction *> &ReductionOps) {
14255       for (int I = getFirstOperandIndex(TreeN),
14256                End = getNumberOfOperands(TreeN);
14257            I < End; ++I) {
14258         Value *EdgeVal = getRdxOperand(TreeN, I);
14259         ReducedValsToOps[EdgeVal].push_back(TreeN);
14260         auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
14261         // Edge has wrong parent - mark as an extra argument.
14262         if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
14263             !hasSameParent(EdgeInst, BB)) {
14264           ExtraArgs.push_back(EdgeVal);
14265           continue;
14266         }
14267         // If the edge is not an instruction, or it is different from the main
14268         // reduction opcode or has too many uses - possible reduced value.
14269         // Also, do not try to reduce const values, if the operation is not
14270         // foldable.
14271         if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
14272             IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
14273             !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
14274             !isVectorizable(RdxKind, EdgeInst) ||
14275             (R.isAnalyzedReductionRoot(EdgeInst) &&
14276              all_of(EdgeInst->operands(), Constant::classof))) {
14277           PossibleReducedVals.push_back(EdgeVal);
14278           continue;
14279         }
14280         ReductionOps.push_back(EdgeInst);
14281       }
14282     };
14283     // Try to regroup reduced values so that it gets more profitable to try to
14284     // reduce them. Values are grouped by their value ids, instructions - by
14285     // instruction op id and/or alternate op id, plus do extra analysis for
14286     // loads (grouping them by the distabce between pointers) and cmp
14287     // instructions (grouping them by the predicate).
14288     MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
14289         PossibleReducedVals;
14290     initReductionOps(Root);
14291     DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap;
14292     SmallSet<size_t, 2> LoadKeyUsed;
14293     SmallPtrSet<Value *, 4> DoNotReverseVals;
14294 
14295     auto GenerateLoadsSubkey = [&](size_t Key, LoadInst *LI) {
14296       Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
14297       if (LoadKeyUsed.contains(Key)) {
14298         auto LIt = LoadsMap.find(Ptr);
14299         if (LIt != LoadsMap.end()) {
14300           for (LoadInst *RLI : LIt->second) {
14301             if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
14302                                 LI->getType(), LI->getPointerOperand(), DL, SE,
14303                                 /*StrictCheck=*/true))
14304               return hash_value(RLI->getPointerOperand());
14305           }
14306           for (LoadInst *RLI : LIt->second) {
14307             if (arePointersCompatible(RLI->getPointerOperand(),
14308                                       LI->getPointerOperand(), TLI)) {
14309               hash_code SubKey = hash_value(RLI->getPointerOperand());
14310               DoNotReverseVals.insert(RLI);
14311               return SubKey;
14312             }
14313           }
14314           if (LIt->second.size() > 2) {
14315             hash_code SubKey =
14316                 hash_value(LIt->second.back()->getPointerOperand());
14317             DoNotReverseVals.insert(LIt->second.back());
14318             return SubKey;
14319           }
14320         }
14321       }
14322       LoadKeyUsed.insert(Key);
14323       LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
14324       return hash_value(LI->getPointerOperand());
14325     };
14326 
14327     while (!Worklist.empty()) {
14328       Instruction *TreeN = Worklist.pop_back_val();
14329       SmallVector<Value *> Args;
14330       SmallVector<Value *> PossibleRedVals;
14331       SmallVector<Instruction *> PossibleReductionOps;
14332       CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
14333       // If too many extra args - mark the instruction itself as a reduction
14334       // value, not a reduction operation.
14335       if (Args.size() < 2) {
14336         addReductionOps(TreeN);
14337         // Add extra args.
14338         if (!Args.empty()) {
14339           assert(Args.size() == 1 && "Expected only single argument.");
14340           ExtraArgs[TreeN] = Args.front();
14341         }
14342         // Add reduction values. The values are sorted for better vectorization
14343         // results.
14344         for (Value *V : PossibleRedVals) {
14345           size_t Key, Idx;
14346           std::tie(Key, Idx) = generateKeySubkey(V, &TLI, GenerateLoadsSubkey,
14347                                                  /*AllowAlternate=*/false);
14348           ++PossibleReducedVals[Key][Idx]
14349                 .insert(std::make_pair(V, 0))
14350                 .first->second;
14351         }
14352         Worklist.append(PossibleReductionOps.rbegin(),
14353                         PossibleReductionOps.rend());
14354       } else {
14355         size_t Key, Idx;
14356         std::tie(Key, Idx) = generateKeySubkey(TreeN, &TLI, GenerateLoadsSubkey,
14357                                                /*AllowAlternate=*/false);
14358         ++PossibleReducedVals[Key][Idx]
14359               .insert(std::make_pair(TreeN, 0))
14360               .first->second;
14361       }
14362     }
14363     auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
14364     // Sort values by the total number of values kinds to start the reduction
14365     // from the longest possible reduced values sequences.
14366     for (auto &PossibleReducedVals : PossibleReducedValsVect) {
14367       auto PossibleRedVals = PossibleReducedVals.second.takeVector();
14368       SmallVector<SmallVector<Value *>> PossibleRedValsVect;
14369       for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
14370            It != E; ++It) {
14371         PossibleRedValsVect.emplace_back();
14372         auto RedValsVect = It->second.takeVector();
14373         stable_sort(RedValsVect, llvm::less_second());
14374         for (const std::pair<Value *, unsigned> &Data : RedValsVect)
14375           PossibleRedValsVect.back().append(Data.second, Data.first);
14376       }
14377       stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
14378         return P1.size() > P2.size();
14379       });
14380       int NewIdx = -1;
14381       for (ArrayRef<Value *> Data : PossibleRedValsVect) {
14382         if (isGoodForReduction(Data) ||
14383             (isa<LoadInst>(Data.front()) && NewIdx >= 0 &&
14384              isa<LoadInst>(ReducedVals[NewIdx].front()) &&
14385              getUnderlyingObject(
14386                  cast<LoadInst>(Data.front())->getPointerOperand()) ==
14387                  getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front())
14388                                          ->getPointerOperand()))) {
14389           if (NewIdx < 0) {
14390             NewIdx = ReducedVals.size();
14391             ReducedVals.emplace_back();
14392           }
14393           if (DoNotReverseVals.contains(Data.front()))
14394             ReducedVals[NewIdx].append(Data.begin(), Data.end());
14395           else
14396             ReducedVals[NewIdx].append(Data.rbegin(), Data.rend());
14397         } else {
14398           ReducedVals.emplace_back().append(Data.rbegin(), Data.rend());
14399         }
14400       }
14401     }
14402     // Sort the reduced values by number of same/alternate opcode and/or pointer
14403     // operand.
14404     stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
14405       return P1.size() > P2.size();
14406     });
14407     return true;
14408   }
14409 
14410   /// Attempt to vectorize the tree found by matchAssociativeReduction.
14411   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI,
14412                      const TargetLibraryInfo &TLI) {
14413     constexpr int ReductionLimit = 4;
14414     constexpr unsigned RegMaxNumber = 4;
14415     constexpr unsigned RedValsMaxNumber = 128;
14416     // If there are a sufficient number of reduction values, reduce
14417     // to a nearby power-of-2. We can safely generate oversized
14418     // vectors and rely on the backend to split them to legal sizes.
14419     unsigned NumReducedVals =
14420         std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0,
14421                         [](unsigned Num, ArrayRef<Value *> Vals) -> unsigned {
14422                           if (!isGoodForReduction(Vals))
14423                             return Num;
14424                           return Num + Vals.size();
14425                         });
14426     if (NumReducedVals < ReductionLimit &&
14427         (!AllowHorRdxIdenityOptimization ||
14428          all_of(ReducedVals, [](ArrayRef<Value *> RedV) {
14429            return RedV.size() < 2 || !allConstant(RedV) || !isSplat(RedV);
14430          }))) {
14431       for (ReductionOpsType &RdxOps : ReductionOps)
14432         for (Value *RdxOp : RdxOps)
14433           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
14434       return nullptr;
14435     }
14436 
14437     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
14438 
14439     // Track the reduced values in case if they are replaced by extractelement
14440     // because of the vectorization.
14441     DenseMap<Value *, WeakTrackingVH> TrackedVals(
14442         ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size());
14443     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
14444     SmallVector<std::pair<Value *, Value *>> ReplacedExternals;
14445     ExternallyUsedValues.reserve(ExtraArgs.size() + 1);
14446     // The same extra argument may be used several times, so log each attempt
14447     // to use it.
14448     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
14449       assert(Pair.first && "DebugLoc must be set.");
14450       ExternallyUsedValues[Pair.second].push_back(Pair.first);
14451       TrackedVals.try_emplace(Pair.second, Pair.second);
14452     }
14453 
14454     // The compare instruction of a min/max is the insertion point for new
14455     // instructions and may be replaced with a new compare instruction.
14456     auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
14457       assert(isa<SelectInst>(RdxRootInst) &&
14458              "Expected min/max reduction to have select root instruction");
14459       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
14460       assert(isa<Instruction>(ScalarCond) &&
14461              "Expected min/max reduction to have compare condition");
14462       return cast<Instruction>(ScalarCond);
14463     };
14464 
14465     // Return new VectorizedTree, based on previous value.
14466     auto GetNewVectorizedTree = [&](Value *VectorizedTree, Value *Res) {
14467       if (VectorizedTree) {
14468         // Update the final value in the reduction.
14469         Builder.SetCurrentDebugLocation(
14470             cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
14471         if ((isa<PoisonValue>(VectorizedTree) && !isa<PoisonValue>(Res)) ||
14472             (isGuaranteedNotToBePoison(Res) &&
14473              !isGuaranteedNotToBePoison(VectorizedTree))) {
14474           auto It = ReducedValsToOps.find(Res);
14475           if (It != ReducedValsToOps.end() &&
14476               any_of(It->getSecond(),
14477                      [](Instruction *I) { return isBoolLogicOp(I); }))
14478             std::swap(VectorizedTree, Res);
14479         }
14480 
14481         return createOp(Builder, RdxKind, VectorizedTree, Res, "op.rdx",
14482                         ReductionOps);
14483       }
14484       // Initialize the final value in the reduction.
14485       return Res;
14486     };
14487     bool AnyBoolLogicOp =
14488         any_of(ReductionOps.back(), [](Value *V) {
14489           return isBoolLogicOp(cast<Instruction>(V));
14490         });
14491     // The reduction root is used as the insertion point for new instructions,
14492     // so set it as externally used to prevent it from being deleted.
14493     ExternallyUsedValues[ReductionRoot];
14494     SmallDenseSet<Value *> IgnoreList(ReductionOps.size() *
14495                                       ReductionOps.front().size());
14496     for (ReductionOpsType &RdxOps : ReductionOps)
14497       for (Value *RdxOp : RdxOps) {
14498         if (!RdxOp)
14499           continue;
14500         IgnoreList.insert(RdxOp);
14501       }
14502     // Intersect the fast-math-flags from all reduction operations.
14503     FastMathFlags RdxFMF;
14504     RdxFMF.set();
14505     for (Value *U : IgnoreList)
14506       if (auto *FPMO = dyn_cast<FPMathOperator>(U))
14507         RdxFMF &= FPMO->getFastMathFlags();
14508     bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
14509 
14510     // Need to track reduced vals, they may be changed during vectorization of
14511     // subvectors.
14512     for (ArrayRef<Value *> Candidates : ReducedVals)
14513       for (Value *V : Candidates)
14514         TrackedVals.try_emplace(V, V);
14515 
14516     DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size());
14517     // List of the values that were reduced in other trees as part of gather
14518     // nodes and thus requiring extract if fully vectorized in other trees.
14519     SmallPtrSet<Value *, 4> RequiredExtract;
14520     Value *VectorizedTree = nullptr;
14521     bool CheckForReusedReductionOps = false;
14522     // Try to vectorize elements based on their type.
14523     for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
14524       ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
14525       InstructionsState S = getSameOpcode(OrigReducedVals, TLI);
14526       SmallVector<Value *> Candidates;
14527       Candidates.reserve(2 * OrigReducedVals.size());
14528       DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size());
14529       for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
14530         Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
14531         // Check if the reduction value was not overriden by the extractelement
14532         // instruction because of the vectorization and exclude it, if it is not
14533         // compatible with other values.
14534         // Also check if the instruction was folded to constant/other value.
14535         auto *Inst = dyn_cast<Instruction>(RdxVal);
14536         if ((Inst && isVectorLikeInstWithConstOps(Inst) &&
14537              (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) ||
14538             (S.getOpcode() && !Inst))
14539           continue;
14540         Candidates.push_back(RdxVal);
14541         TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
14542       }
14543       bool ShuffledExtracts = false;
14544       // Try to handle shuffled extractelements.
14545       if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
14546           I + 1 < E) {
14547         InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI);
14548         if (NextS.getOpcode() == Instruction::ExtractElement &&
14549             !NextS.isAltShuffle()) {
14550           SmallVector<Value *> CommonCandidates(Candidates);
14551           for (Value *RV : ReducedVals[I + 1]) {
14552             Value *RdxVal = TrackedVals.find(RV)->second;
14553             // Check if the reduction value was not overriden by the
14554             // extractelement instruction because of the vectorization and
14555             // exclude it, if it is not compatible with other values.
14556             if (auto *Inst = dyn_cast<Instruction>(RdxVal))
14557               if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
14558                 continue;
14559             CommonCandidates.push_back(RdxVal);
14560             TrackedToOrig.try_emplace(RdxVal, RV);
14561           }
14562           SmallVector<int> Mask;
14563           if (isFixedVectorShuffle(CommonCandidates, Mask)) {
14564             ++I;
14565             Candidates.swap(CommonCandidates);
14566             ShuffledExtracts = true;
14567           }
14568         }
14569       }
14570 
14571       // Emit code for constant values.
14572       if (AllowHorRdxIdenityOptimization && Candidates.size() > 1 &&
14573           allConstant(Candidates)) {
14574         Value *Res = Candidates.front();
14575         ++VectorizedVals.try_emplace(Candidates.front(), 0).first->getSecond();
14576         for (Value *VC : ArrayRef(Candidates).drop_front()) {
14577           Res = createOp(Builder, RdxKind, Res, VC, "const.rdx", ReductionOps);
14578           ++VectorizedVals.try_emplace(VC, 0).first->getSecond();
14579           if (auto *ResI = dyn_cast<Instruction>(Res))
14580             V.analyzedReductionRoot(ResI);
14581         }
14582         VectorizedTree = GetNewVectorizedTree(VectorizedTree, Res);
14583         continue;
14584       }
14585 
14586       unsigned NumReducedVals = Candidates.size();
14587       if (NumReducedVals < ReductionLimit &&
14588           (NumReducedVals < 2 || !AllowHorRdxIdenityOptimization ||
14589            !isSplat(Candidates)))
14590         continue;
14591 
14592       // Check if we support repeated scalar values processing (optimization of
14593       // original scalar identity operations on matched horizontal reductions).
14594       IsSupportedHorRdxIdentityOp =
14595           AllowHorRdxIdenityOptimization && RdxKind != RecurKind::Mul &&
14596           RdxKind != RecurKind::FMul && RdxKind != RecurKind::FMulAdd;
14597       // Gather same values.
14598       MapVector<Value *, unsigned> SameValuesCounter;
14599       if (IsSupportedHorRdxIdentityOp)
14600         for (Value *V : Candidates)
14601           ++SameValuesCounter.insert(std::make_pair(V, 0)).first->second;
14602       // Used to check if the reduced values used same number of times. In this
14603       // case the compiler may produce better code. E.g. if reduced values are
14604       // aabbccdd (8 x values), then the first node of the tree will have a node
14605       // for 4 x abcd + shuffle <4 x abcd>, <0, 0, 1, 1, 2, 2, 3, 3>.
14606       // Plus, the final reduction will be performed on <8 x aabbccdd>.
14607       // Instead compiler may build <4 x abcd> tree immediately, + reduction (4
14608       // x abcd) * 2.
14609       // Currently it only handles add/fadd/xor. and/or/min/max do not require
14610       // this analysis, other operations may require an extra estimation of
14611       // the profitability.
14612       bool SameScaleFactor = false;
14613       bool OptReusedScalars = IsSupportedHorRdxIdentityOp &&
14614                               SameValuesCounter.size() != Candidates.size();
14615       if (OptReusedScalars) {
14616         SameScaleFactor =
14617             (RdxKind == RecurKind::Add || RdxKind == RecurKind::FAdd ||
14618              RdxKind == RecurKind::Xor) &&
14619             all_of(drop_begin(SameValuesCounter),
14620                    [&SameValuesCounter](const std::pair<Value *, unsigned> &P) {
14621                      return P.second == SameValuesCounter.front().second;
14622                    });
14623         Candidates.resize(SameValuesCounter.size());
14624         transform(SameValuesCounter, Candidates.begin(),
14625                   [](const auto &P) { return P.first; });
14626         NumReducedVals = Candidates.size();
14627         // Have a reduction of the same element.
14628         if (NumReducedVals == 1) {
14629           Value *OrigV = TrackedToOrig.find(Candidates.front())->second;
14630           unsigned Cnt = SameValuesCounter.lookup(OrigV);
14631           Value *RedVal =
14632               emitScaleForReusedOps(Candidates.front(), Builder, Cnt);
14633           VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal);
14634           VectorizedVals.try_emplace(OrigV, Cnt);
14635           continue;
14636         }
14637       }
14638 
14639       unsigned MaxVecRegSize = V.getMaxVecRegSize();
14640       unsigned EltSize = V.getVectorElementSize(Candidates[0]);
14641       unsigned MaxElts =
14642           RegMaxNumber * llvm::bit_floor(MaxVecRegSize / EltSize);
14643 
14644       unsigned ReduxWidth = std::min<unsigned>(
14645           llvm::bit_floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
14646       unsigned Start = 0;
14647       unsigned Pos = Start;
14648       // Restarts vectorization attempt with lower vector factor.
14649       unsigned PrevReduxWidth = ReduxWidth;
14650       bool CheckForReusedReductionOpsLocal = false;
14651       auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
14652                                   &CheckForReusedReductionOpsLocal,
14653                                   &PrevReduxWidth, &V,
14654                                   &IgnoreList](bool IgnoreVL = false) {
14655         bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
14656         if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
14657           // Check if any of the reduction ops are gathered. If so, worth
14658           // trying again with less number of reduction ops.
14659           CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
14660         }
14661         ++Pos;
14662         if (Pos < NumReducedVals - ReduxWidth + 1)
14663           return IsAnyRedOpGathered;
14664         Pos = Start;
14665         ReduxWidth /= 2;
14666         return IsAnyRedOpGathered;
14667       };
14668       bool AnyVectorized = false;
14669       while (Pos < NumReducedVals - ReduxWidth + 1 &&
14670              ReduxWidth >= ReductionLimit) {
14671         // Dependency in tree of the reduction ops - drop this attempt, try
14672         // later.
14673         if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
14674             Start == 0) {
14675           CheckForReusedReductionOps = true;
14676           break;
14677         }
14678         PrevReduxWidth = ReduxWidth;
14679         ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
14680         // Beeing analyzed already - skip.
14681         if (V.areAnalyzedReductionVals(VL)) {
14682           (void)AdjustReducedVals(/*IgnoreVL=*/true);
14683           continue;
14684         }
14685         // Early exit if any of the reduction values were deleted during
14686         // previous vectorization attempts.
14687         if (any_of(VL, [&V](Value *RedVal) {
14688               auto *RedValI = dyn_cast<Instruction>(RedVal);
14689               if (!RedValI)
14690                 return false;
14691               return V.isDeleted(RedValI);
14692             }))
14693           break;
14694         V.buildTree(VL, IgnoreList);
14695         if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
14696           if (!AdjustReducedVals())
14697             V.analyzedReductionVals(VL);
14698           continue;
14699         }
14700         if (V.isLoadCombineReductionCandidate(RdxKind)) {
14701           if (!AdjustReducedVals())
14702             V.analyzedReductionVals(VL);
14703           continue;
14704         }
14705         V.reorderTopToBottom();
14706         // No need to reorder the root node at all.
14707         V.reorderBottomToTop(/*IgnoreReorder=*/true);
14708         // Keep extracted other reduction values, if they are used in the
14709         // vectorization trees.
14710         BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
14711             ExternallyUsedValues);
14712         for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
14713           if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
14714             continue;
14715           for (Value *V : ReducedVals[Cnt])
14716             if (isa<Instruction>(V))
14717               LocalExternallyUsedValues[TrackedVals[V]];
14718         }
14719         if (!IsSupportedHorRdxIdentityOp) {
14720           // Number of uses of the candidates in the vector of values.
14721           assert(SameValuesCounter.empty() &&
14722                  "Reused values counter map is not empty");
14723           for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) {
14724             if (Cnt >= Pos && Cnt < Pos + ReduxWidth)
14725               continue;
14726             Value *V = Candidates[Cnt];
14727             Value *OrigV = TrackedToOrig.find(V)->second;
14728             ++SameValuesCounter[OrigV];
14729           }
14730         }
14731         SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end());
14732         // Gather externally used values.
14733         SmallPtrSet<Value *, 4> Visited;
14734         for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) {
14735           if (Cnt >= Pos && Cnt < Pos + ReduxWidth)
14736             continue;
14737           Value *RdxVal = Candidates[Cnt];
14738           if (!Visited.insert(RdxVal).second)
14739             continue;
14740           // Check if the scalar was vectorized as part of the vectorization
14741           // tree but not the top node.
14742           if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) {
14743             LocalExternallyUsedValues[RdxVal];
14744             continue;
14745           }
14746           Value *OrigV = TrackedToOrig.find(RdxVal)->second;
14747           unsigned NumOps =
14748               VectorizedVals.lookup(RdxVal) + SameValuesCounter[OrigV];
14749           if (NumOps != ReducedValsToOps.find(OrigV)->second.size())
14750             LocalExternallyUsedValues[RdxVal];
14751         }
14752         // Do not need the list of reused scalars in regular mode anymore.
14753         if (!IsSupportedHorRdxIdentityOp)
14754           SameValuesCounter.clear();
14755         for (Value *RdxVal : VL)
14756           if (RequiredExtract.contains(RdxVal))
14757             LocalExternallyUsedValues[RdxVal];
14758         // Update LocalExternallyUsedValues for the scalar, replaced by
14759         // extractelement instructions.
14760         for (const std::pair<Value *, Value *> &Pair : ReplacedExternals) {
14761           auto *It = ExternallyUsedValues.find(Pair.first);
14762           if (It == ExternallyUsedValues.end())
14763             continue;
14764           LocalExternallyUsedValues[Pair.second].append(It->second);
14765         }
14766         V.buildExternalUses(LocalExternallyUsedValues);
14767 
14768         V.computeMinimumValueSizes();
14769 
14770         // Estimate cost.
14771         InstructionCost TreeCost = V.getTreeCost(VL);
14772         InstructionCost ReductionCost =
14773             getReductionCost(TTI, VL, IsCmpSelMinMax, ReduxWidth, RdxFMF);
14774         InstructionCost Cost = TreeCost + ReductionCost;
14775         LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
14776                           << " for reduction\n");
14777         if (!Cost.isValid())
14778           return nullptr;
14779         if (Cost >= -SLPCostThreshold) {
14780           V.getORE()->emit([&]() {
14781             return OptimizationRemarkMissed(
14782                        SV_NAME, "HorSLPNotBeneficial",
14783                        ReducedValsToOps.find(VL[0])->second.front())
14784                    << "Vectorizing horizontal reduction is possible "
14785                    << "but not beneficial with cost " << ore::NV("Cost", Cost)
14786                    << " and threshold "
14787                    << ore::NV("Threshold", -SLPCostThreshold);
14788           });
14789           if (!AdjustReducedVals())
14790             V.analyzedReductionVals(VL);
14791           continue;
14792         }
14793 
14794         LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
14795                           << Cost << ". (HorRdx)\n");
14796         V.getORE()->emit([&]() {
14797           return OptimizationRemark(
14798                      SV_NAME, "VectorizedHorizontalReduction",
14799                      ReducedValsToOps.find(VL[0])->second.front())
14800                  << "Vectorized horizontal reduction with cost "
14801                  << ore::NV("Cost", Cost) << " and with tree size "
14802                  << ore::NV("TreeSize", V.getTreeSize());
14803         });
14804 
14805         Builder.setFastMathFlags(RdxFMF);
14806 
14807         // Emit a reduction. If the root is a select (min/max idiom), the insert
14808         // point is the compare condition of that select.
14809         Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
14810         Instruction *InsertPt = RdxRootInst;
14811         if (IsCmpSelMinMax)
14812           InsertPt = GetCmpForMinMaxReduction(RdxRootInst);
14813 
14814         // Vectorize a tree.
14815         Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues,
14816                                                 ReplacedExternals, InsertPt);
14817 
14818         Builder.SetInsertPoint(InsertPt);
14819 
14820         // To prevent poison from leaking across what used to be sequential,
14821         // safe, scalar boolean logic operations, the reduction operand must be
14822         // frozen.
14823         if ((isBoolLogicOp(RdxRootInst) ||
14824              (AnyBoolLogicOp && VL.size() != TrackedVals.size())) &&
14825             !isGuaranteedNotToBePoison(VectorizedRoot))
14826           VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
14827 
14828         // Emit code to correctly handle reused reduced values, if required.
14829         if (OptReusedScalars && !SameScaleFactor) {
14830           VectorizedRoot =
14831               emitReusedOps(VectorizedRoot, Builder, V.getRootNodeScalars(),
14832                             SameValuesCounter, TrackedToOrig);
14833         }
14834 
14835         Value *ReducedSubTree =
14836             emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
14837         if (ReducedSubTree->getType() != VL.front()->getType()) {
14838           ReducedSubTree = Builder.CreateIntCast(
14839               ReducedSubTree, VL.front()->getType(), any_of(VL, [&](Value *R) {
14840                 KnownBits Known = computeKnownBits(
14841                     R, cast<Instruction>(ReductionOps.front().front())
14842                            ->getModule()
14843                            ->getDataLayout());
14844                 return !Known.isNonNegative();
14845               }));
14846         }
14847 
14848         // Improved analysis for add/fadd/xor reductions with same scale factor
14849         // for all operands of reductions. We can emit scalar ops for them
14850         // instead.
14851         if (OptReusedScalars && SameScaleFactor)
14852           ReducedSubTree = emitScaleForReusedOps(
14853               ReducedSubTree, Builder, SameValuesCounter.front().second);
14854 
14855         VectorizedTree = GetNewVectorizedTree(VectorizedTree, ReducedSubTree);
14856         // Count vectorized reduced values to exclude them from final reduction.
14857         for (Value *RdxVal : VL) {
14858           Value *OrigV = TrackedToOrig.find(RdxVal)->second;
14859           if (IsSupportedHorRdxIdentityOp) {
14860             VectorizedVals.try_emplace(OrigV, SameValuesCounter[RdxVal]);
14861             continue;
14862           }
14863           ++VectorizedVals.try_emplace(OrigV, 0).first->getSecond();
14864           if (!V.isVectorized(RdxVal))
14865             RequiredExtract.insert(RdxVal);
14866         }
14867         Pos += ReduxWidth;
14868         Start = Pos;
14869         ReduxWidth = llvm::bit_floor(NumReducedVals - Pos);
14870         AnyVectorized = true;
14871       }
14872       if (OptReusedScalars && !AnyVectorized) {
14873         for (const std::pair<Value *, unsigned> &P : SameValuesCounter) {
14874           Value *RedVal = emitScaleForReusedOps(P.first, Builder, P.second);
14875           VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal);
14876           Value *OrigV = TrackedToOrig.find(P.first)->second;
14877           VectorizedVals.try_emplace(OrigV, P.second);
14878         }
14879         continue;
14880       }
14881     }
14882     if (VectorizedTree) {
14883       // Reorder operands of bool logical op in the natural order to avoid
14884       // possible problem with poison propagation. If not possible to reorder
14885       // (both operands are originally RHS), emit an extra freeze instruction
14886       // for the LHS operand.
14887       // I.e., if we have original code like this:
14888       // RedOp1 = select i1 ?, i1 LHS, i1 false
14889       // RedOp2 = select i1 RHS, i1 ?, i1 false
14890 
14891       // Then, we swap LHS/RHS to create a new op that matches the poison
14892       // semantics of the original code.
14893 
14894       // If we have original code like this and both values could be poison:
14895       // RedOp1 = select i1 ?, i1 LHS, i1 false
14896       // RedOp2 = select i1 ?, i1 RHS, i1 false
14897 
14898       // Then, we must freeze LHS in the new op.
14899       auto FixBoolLogicalOps = [&, VectorizedTree](Value *&LHS, Value *&RHS,
14900                                                    Instruction *RedOp1,
14901                                                    Instruction *RedOp2,
14902                                                    bool InitStep) {
14903         if (!AnyBoolLogicOp)
14904           return;
14905         if (isBoolLogicOp(RedOp1) &&
14906             ((!InitStep && LHS == VectorizedTree) ||
14907              getRdxOperand(RedOp1, 0) == LHS || isGuaranteedNotToBePoison(LHS)))
14908           return;
14909         if (isBoolLogicOp(RedOp2) && ((!InitStep && RHS == VectorizedTree) ||
14910                                       getRdxOperand(RedOp2, 0) == RHS ||
14911                                       isGuaranteedNotToBePoison(RHS))) {
14912           std::swap(LHS, RHS);
14913           return;
14914         }
14915         if (LHS != VectorizedTree)
14916           LHS = Builder.CreateFreeze(LHS);
14917       };
14918       // Finish the reduction.
14919       // Need to add extra arguments and not vectorized possible reduction
14920       // values.
14921       // Try to avoid dependencies between the scalar remainders after
14922       // reductions.
14923       auto FinalGen =
14924           [&](ArrayRef<std::pair<Instruction *, Value *>> InstVals,
14925               bool InitStep) {
14926             unsigned Sz = InstVals.size();
14927             SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
14928                                                                      Sz % 2);
14929             for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
14930               Instruction *RedOp = InstVals[I + 1].first;
14931               Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
14932               Value *RdxVal1 = InstVals[I].second;
14933               Value *StableRdxVal1 = RdxVal1;
14934               auto It1 = TrackedVals.find(RdxVal1);
14935               if (It1 != TrackedVals.end())
14936                 StableRdxVal1 = It1->second;
14937               Value *RdxVal2 = InstVals[I + 1].second;
14938               Value *StableRdxVal2 = RdxVal2;
14939               auto It2 = TrackedVals.find(RdxVal2);
14940               if (It2 != TrackedVals.end())
14941                 StableRdxVal2 = It2->second;
14942               // To prevent poison from leaking across what used to be
14943               // sequential, safe, scalar boolean logic operations, the
14944               // reduction operand must be frozen.
14945               FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first,
14946                                 RedOp, InitStep);
14947               Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
14948                                          StableRdxVal2, "op.rdx", ReductionOps);
14949               ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
14950             }
14951             if (Sz % 2 == 1)
14952               ExtraReds[Sz / 2] = InstVals.back();
14953             return ExtraReds;
14954           };
14955       SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
14956       ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot),
14957                                    VectorizedTree);
14958       SmallPtrSet<Value *, 8> Visited;
14959       for (ArrayRef<Value *> Candidates : ReducedVals) {
14960         for (Value *RdxVal : Candidates) {
14961           if (!Visited.insert(RdxVal).second)
14962             continue;
14963           unsigned NumOps = VectorizedVals.lookup(RdxVal);
14964           for (Instruction *RedOp :
14965                ArrayRef(ReducedValsToOps.find(RdxVal)->second)
14966                    .drop_back(NumOps))
14967             ExtraReductions.emplace_back(RedOp, RdxVal);
14968         }
14969       }
14970       for (auto &Pair : ExternallyUsedValues) {
14971         // Add each externally used value to the final reduction.
14972         for (auto *I : Pair.second)
14973           ExtraReductions.emplace_back(I, Pair.first);
14974       }
14975       // Iterate through all not-vectorized reduction values/extra arguments.
14976       bool InitStep = true;
14977       while (ExtraReductions.size() > 1) {
14978         VectorizedTree = ExtraReductions.front().second;
14979         SmallVector<std::pair<Instruction *, Value *>> NewReds =
14980             FinalGen(ExtraReductions, InitStep);
14981         ExtraReductions.swap(NewReds);
14982         InitStep = false;
14983       }
14984       VectorizedTree = ExtraReductions.front().second;
14985 
14986       ReductionRoot->replaceAllUsesWith(VectorizedTree);
14987 
14988       // The original scalar reduction is expected to have no remaining
14989       // uses outside the reduction tree itself.  Assert that we got this
14990       // correct, replace internal uses with undef, and mark for eventual
14991       // deletion.
14992 #ifndef NDEBUG
14993       SmallSet<Value *, 4> IgnoreSet;
14994       for (ArrayRef<Value *> RdxOps : ReductionOps)
14995         IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
14996 #endif
14997       for (ArrayRef<Value *> RdxOps : ReductionOps) {
14998         for (Value *Ignore : RdxOps) {
14999           if (!Ignore)
15000             continue;
15001 #ifndef NDEBUG
15002           for (auto *U : Ignore->users()) {
15003             assert(IgnoreSet.count(U) &&
15004                    "All users must be either in the reduction ops list.");
15005           }
15006 #endif
15007           if (!Ignore->use_empty()) {
15008             Value *Undef = UndefValue::get(Ignore->getType());
15009             Ignore->replaceAllUsesWith(Undef);
15010           }
15011           V.eraseInstruction(cast<Instruction>(Ignore));
15012         }
15013       }
15014     } else if (!CheckForReusedReductionOps) {
15015       for (ReductionOpsType &RdxOps : ReductionOps)
15016         for (Value *RdxOp : RdxOps)
15017           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
15018     }
15019     return VectorizedTree;
15020   }
15021 
15022 private:
15023   /// Calculate the cost of a reduction.
15024   InstructionCost getReductionCost(TargetTransformInfo *TTI,
15025                                    ArrayRef<Value *> ReducedVals,
15026                                    bool IsCmpSelMinMax, unsigned ReduxWidth,
15027                                    FastMathFlags FMF) {
15028     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
15029     Type *ScalarTy = ReducedVals.front()->getType();
15030     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
15031     InstructionCost VectorCost = 0, ScalarCost;
15032     // If all of the reduced values are constant, the vector cost is 0, since
15033     // the reduction value can be calculated at the compile time.
15034     bool AllConsts = allConstant(ReducedVals);
15035     auto EvaluateScalarCost = [&](function_ref<InstructionCost()> GenCostFn) {
15036       InstructionCost Cost = 0;
15037       // Scalar cost is repeated for N-1 elements.
15038       int Cnt = ReducedVals.size();
15039       for (Value *RdxVal : ReducedVals) {
15040         if (Cnt == 1)
15041           break;
15042         --Cnt;
15043         if (RdxVal->hasNUsesOrMore(IsCmpSelMinMax ? 3 : 2)) {
15044           Cost += GenCostFn();
15045           continue;
15046         }
15047         InstructionCost ScalarCost = 0;
15048         for (User *U : RdxVal->users()) {
15049           auto *RdxOp = cast<Instruction>(U);
15050           if (hasRequiredNumberOfUses(IsCmpSelMinMax, RdxOp)) {
15051             ScalarCost += TTI->getInstructionCost(RdxOp, CostKind);
15052             continue;
15053           }
15054           ScalarCost = InstructionCost::getInvalid();
15055           break;
15056         }
15057         if (ScalarCost.isValid())
15058           Cost += ScalarCost;
15059         else
15060           Cost += GenCostFn();
15061       }
15062       return Cost;
15063     };
15064     switch (RdxKind) {
15065     case RecurKind::Add:
15066     case RecurKind::Mul:
15067     case RecurKind::Or:
15068     case RecurKind::And:
15069     case RecurKind::Xor:
15070     case RecurKind::FAdd:
15071     case RecurKind::FMul: {
15072       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
15073       if (!AllConsts)
15074         VectorCost =
15075             TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
15076       ScalarCost = EvaluateScalarCost([&]() {
15077         return TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
15078       });
15079       break;
15080     }
15081     case RecurKind::FMax:
15082     case RecurKind::FMin:
15083     case RecurKind::FMaximum:
15084     case RecurKind::FMinimum:
15085     case RecurKind::SMax:
15086     case RecurKind::SMin:
15087     case RecurKind::UMax:
15088     case RecurKind::UMin: {
15089       Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RdxKind);
15090       if (!AllConsts)
15091         VectorCost = TTI->getMinMaxReductionCost(Id, VectorTy, FMF, CostKind);
15092       ScalarCost = EvaluateScalarCost([&]() {
15093         IntrinsicCostAttributes ICA(Id, ScalarTy, {ScalarTy, ScalarTy}, FMF);
15094         return TTI->getIntrinsicInstrCost(ICA, CostKind);
15095       });
15096       break;
15097     }
15098     default:
15099       llvm_unreachable("Expected arithmetic or min/max reduction operation");
15100     }
15101 
15102     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
15103                       << " for reduction of " << shortBundleName(ReducedVals)
15104                       << " (It is a splitting reduction)\n");
15105     return VectorCost - ScalarCost;
15106   }
15107 
15108   /// Emit a horizontal reduction of the vectorized value.
15109   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
15110                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
15111     assert(VectorizedValue && "Need to have a vectorized tree node");
15112     assert(isPowerOf2_32(ReduxWidth) &&
15113            "We only handle power-of-two reductions for now");
15114     assert(RdxKind != RecurKind::FMulAdd &&
15115            "A call to the llvm.fmuladd intrinsic is not handled yet");
15116 
15117     ++NumVectorInstructions;
15118     return createSimpleTargetReduction(Builder, VectorizedValue, RdxKind);
15119   }
15120 
15121   /// Emits optimized code for unique scalar value reused \p Cnt times.
15122   Value *emitScaleForReusedOps(Value *VectorizedValue, IRBuilderBase &Builder,
15123                                unsigned Cnt) {
15124     assert(IsSupportedHorRdxIdentityOp &&
15125            "The optimization of matched scalar identity horizontal reductions "
15126            "must be supported.");
15127     switch (RdxKind) {
15128     case RecurKind::Add: {
15129       // res = mul vv, n
15130       Value *Scale = ConstantInt::get(VectorizedValue->getType(), Cnt);
15131       LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Cnt << "of "
15132                         << VectorizedValue << ". (HorRdx)\n");
15133       return Builder.CreateMul(VectorizedValue, Scale);
15134     }
15135     case RecurKind::Xor: {
15136       // res = n % 2 ? 0 : vv
15137       LLVM_DEBUG(dbgs() << "SLP: Xor " << Cnt << "of " << VectorizedValue
15138                         << ". (HorRdx)\n");
15139       if (Cnt % 2 == 0)
15140         return Constant::getNullValue(VectorizedValue->getType());
15141       return VectorizedValue;
15142     }
15143     case RecurKind::FAdd: {
15144       // res = fmul v, n
15145       Value *Scale = ConstantFP::get(VectorizedValue->getType(), Cnt);
15146       LLVM_DEBUG(dbgs() << "SLP: FAdd (to-fmul) " << Cnt << "of "
15147                         << VectorizedValue << ". (HorRdx)\n");
15148       return Builder.CreateFMul(VectorizedValue, Scale);
15149     }
15150     case RecurKind::And:
15151     case RecurKind::Or:
15152     case RecurKind::SMax:
15153     case RecurKind::SMin:
15154     case RecurKind::UMax:
15155     case RecurKind::UMin:
15156     case RecurKind::FMax:
15157     case RecurKind::FMin:
15158     case RecurKind::FMaximum:
15159     case RecurKind::FMinimum:
15160       // res = vv
15161       return VectorizedValue;
15162     case RecurKind::Mul:
15163     case RecurKind::FMul:
15164     case RecurKind::FMulAdd:
15165     case RecurKind::IAnyOf:
15166     case RecurKind::FAnyOf:
15167     case RecurKind::None:
15168       llvm_unreachable("Unexpected reduction kind for repeated scalar.");
15169     }
15170     return nullptr;
15171   }
15172 
15173   /// Emits actual operation for the scalar identity values, found during
15174   /// horizontal reduction analysis.
15175   Value *emitReusedOps(Value *VectorizedValue, IRBuilderBase &Builder,
15176                        ArrayRef<Value *> VL,
15177                        const MapVector<Value *, unsigned> &SameValuesCounter,
15178                        const DenseMap<Value *, Value *> &TrackedToOrig) {
15179     assert(IsSupportedHorRdxIdentityOp &&
15180            "The optimization of matched scalar identity horizontal reductions "
15181            "must be supported.");
15182     switch (RdxKind) {
15183     case RecurKind::Add: {
15184       // root = mul prev_root, <1, 1, n, 1>
15185       SmallVector<Constant *> Vals;
15186       for (Value *V : VL) {
15187         unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15188         Vals.push_back(ConstantInt::get(V->getType(), Cnt, /*IsSigned=*/false));
15189       }
15190       auto *Scale = ConstantVector::get(Vals);
15191       LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Scale << "of "
15192                         << VectorizedValue << ". (HorRdx)\n");
15193       return Builder.CreateMul(VectorizedValue, Scale);
15194     }
15195     case RecurKind::And:
15196     case RecurKind::Or:
15197       // No need for multiple or/and(s).
15198       LLVM_DEBUG(dbgs() << "SLP: And/or of same " << VectorizedValue
15199                         << ". (HorRdx)\n");
15200       return VectorizedValue;
15201     case RecurKind::SMax:
15202     case RecurKind::SMin:
15203     case RecurKind::UMax:
15204     case RecurKind::UMin:
15205     case RecurKind::FMax:
15206     case RecurKind::FMin:
15207     case RecurKind::FMaximum:
15208     case RecurKind::FMinimum:
15209       // No need for multiple min/max(s) of the same value.
15210       LLVM_DEBUG(dbgs() << "SLP: Max/min of same " << VectorizedValue
15211                         << ". (HorRdx)\n");
15212       return VectorizedValue;
15213     case RecurKind::Xor: {
15214       // Replace values with even number of repeats with 0, since
15215       // x xor x = 0.
15216       // root = shuffle prev_root, zeroinitalizer, <0, 1, 2, vf, 4, vf, 5, 6,
15217       // 7>, if elements 4th and 6th elements have even number of repeats.
15218       SmallVector<int> Mask(
15219           cast<FixedVectorType>(VectorizedValue->getType())->getNumElements(),
15220           PoisonMaskElem);
15221       std::iota(Mask.begin(), Mask.end(), 0);
15222       bool NeedShuffle = false;
15223       for (unsigned I = 0, VF = VL.size(); I < VF; ++I) {
15224         Value *V = VL[I];
15225         unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15226         if (Cnt % 2 == 0) {
15227           Mask[I] = VF;
15228           NeedShuffle = true;
15229         }
15230       }
15231       LLVM_DEBUG(dbgs() << "SLP: Xor <"; for (int I
15232                                               : Mask) dbgs()
15233                                          << I << " ";
15234                  dbgs() << "> of " << VectorizedValue << ". (HorRdx)\n");
15235       if (NeedShuffle)
15236         VectorizedValue = Builder.CreateShuffleVector(
15237             VectorizedValue,
15238             ConstantVector::getNullValue(VectorizedValue->getType()), Mask);
15239       return VectorizedValue;
15240     }
15241     case RecurKind::FAdd: {
15242       // root = fmul prev_root, <1.0, 1.0, n.0, 1.0>
15243       SmallVector<Constant *> Vals;
15244       for (Value *V : VL) {
15245         unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15246         Vals.push_back(ConstantFP::get(V->getType(), Cnt));
15247       }
15248       auto *Scale = ConstantVector::get(Vals);
15249       return Builder.CreateFMul(VectorizedValue, Scale);
15250     }
15251     case RecurKind::Mul:
15252     case RecurKind::FMul:
15253     case RecurKind::FMulAdd:
15254     case RecurKind::IAnyOf:
15255     case RecurKind::FAnyOf:
15256     case RecurKind::None:
15257       llvm_unreachable("Unexpected reduction kind for reused scalars.");
15258     }
15259     return nullptr;
15260   }
15261 };
15262 } // end anonymous namespace
15263 
15264 static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) {
15265   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
15266     return cast<FixedVectorType>(IE->getType())->getNumElements();
15267 
15268   unsigned AggregateSize = 1;
15269   auto *IV = cast<InsertValueInst>(InsertInst);
15270   Type *CurrentType = IV->getType();
15271   do {
15272     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
15273       for (auto *Elt : ST->elements())
15274         if (Elt != ST->getElementType(0)) // check homogeneity
15275           return std::nullopt;
15276       AggregateSize *= ST->getNumElements();
15277       CurrentType = ST->getElementType(0);
15278     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
15279       AggregateSize *= AT->getNumElements();
15280       CurrentType = AT->getElementType();
15281     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
15282       AggregateSize *= VT->getNumElements();
15283       return AggregateSize;
15284     } else if (CurrentType->isSingleValueType()) {
15285       return AggregateSize;
15286     } else {
15287       return std::nullopt;
15288     }
15289   } while (true);
15290 }
15291 
15292 static void findBuildAggregate_rec(Instruction *LastInsertInst,
15293                                    TargetTransformInfo *TTI,
15294                                    SmallVectorImpl<Value *> &BuildVectorOpds,
15295                                    SmallVectorImpl<Value *> &InsertElts,
15296                                    unsigned OperandOffset) {
15297   do {
15298     Value *InsertedOperand = LastInsertInst->getOperand(1);
15299     std::optional<unsigned> OperandIndex =
15300         getInsertIndex(LastInsertInst, OperandOffset);
15301     if (!OperandIndex)
15302       return;
15303     if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) {
15304       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
15305                              BuildVectorOpds, InsertElts, *OperandIndex);
15306 
15307     } else {
15308       BuildVectorOpds[*OperandIndex] = InsertedOperand;
15309       InsertElts[*OperandIndex] = LastInsertInst;
15310     }
15311     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
15312   } while (LastInsertInst != nullptr &&
15313            isa<InsertValueInst, InsertElementInst>(LastInsertInst) &&
15314            LastInsertInst->hasOneUse());
15315 }
15316 
15317 /// Recognize construction of vectors like
15318 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
15319 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
15320 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
15321 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
15322 ///  starting from the last insertelement or insertvalue instruction.
15323 ///
15324 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
15325 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
15326 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
15327 ///
15328 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
15329 ///
15330 /// \return true if it matches.
15331 static bool findBuildAggregate(Instruction *LastInsertInst,
15332                                TargetTransformInfo *TTI,
15333                                SmallVectorImpl<Value *> &BuildVectorOpds,
15334                                SmallVectorImpl<Value *> &InsertElts) {
15335 
15336   assert((isa<InsertElementInst>(LastInsertInst) ||
15337           isa<InsertValueInst>(LastInsertInst)) &&
15338          "Expected insertelement or insertvalue instruction!");
15339 
15340   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
15341          "Expected empty result vectors!");
15342 
15343   std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
15344   if (!AggregateSize)
15345     return false;
15346   BuildVectorOpds.resize(*AggregateSize);
15347   InsertElts.resize(*AggregateSize);
15348 
15349   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
15350   llvm::erase(BuildVectorOpds, nullptr);
15351   llvm::erase(InsertElts, nullptr);
15352   if (BuildVectorOpds.size() >= 2)
15353     return true;
15354 
15355   return false;
15356 }
15357 
15358 /// Try and get a reduction instruction from a phi node.
15359 ///
15360 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
15361 /// if they come from either \p ParentBB or a containing loop latch.
15362 ///
15363 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
15364 /// if not possible.
15365 static Instruction *getReductionInstr(const DominatorTree *DT, PHINode *P,
15366                                       BasicBlock *ParentBB, LoopInfo *LI) {
15367   // There are situations where the reduction value is not dominated by the
15368   // reduction phi. Vectorizing such cases has been reported to cause
15369   // miscompiles. See PR25787.
15370   auto DominatedReduxValue = [&](Value *R) {
15371     return isa<Instruction>(R) &&
15372            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
15373   };
15374 
15375   Instruction *Rdx = nullptr;
15376 
15377   // Return the incoming value if it comes from the same BB as the phi node.
15378   if (P->getIncomingBlock(0) == ParentBB) {
15379     Rdx = dyn_cast<Instruction>(P->getIncomingValue(0));
15380   } else if (P->getIncomingBlock(1) == ParentBB) {
15381     Rdx = dyn_cast<Instruction>(P->getIncomingValue(1));
15382   }
15383 
15384   if (Rdx && DominatedReduxValue(Rdx))
15385     return Rdx;
15386 
15387   // Otherwise, check whether we have a loop latch to look at.
15388   Loop *BBL = LI->getLoopFor(ParentBB);
15389   if (!BBL)
15390     return nullptr;
15391   BasicBlock *BBLatch = BBL->getLoopLatch();
15392   if (!BBLatch)
15393     return nullptr;
15394 
15395   // There is a loop latch, return the incoming value if it comes from
15396   // that. This reduction pattern occasionally turns up.
15397   if (P->getIncomingBlock(0) == BBLatch) {
15398     Rdx = dyn_cast<Instruction>(P->getIncomingValue(0));
15399   } else if (P->getIncomingBlock(1) == BBLatch) {
15400     Rdx = dyn_cast<Instruction>(P->getIncomingValue(1));
15401   }
15402 
15403   if (Rdx && DominatedReduxValue(Rdx))
15404     return Rdx;
15405 
15406   return nullptr;
15407 }
15408 
15409 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
15410   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
15411     return true;
15412   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
15413     return true;
15414   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
15415     return true;
15416   if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(V0), m_Value(V1))))
15417     return true;
15418   if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(V0), m_Value(V1))))
15419     return true;
15420   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
15421     return true;
15422   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
15423     return true;
15424   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
15425     return true;
15426   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
15427     return true;
15428   return false;
15429 }
15430 
15431 /// We could have an initial reduction that is not an add.
15432 ///  r *= v1 + v2 + v3 + v4
15433 /// In such a case start looking for a tree rooted in the first '+'.
15434 /// \Returns the new root if found, which may be nullptr if not an instruction.
15435 static Instruction *tryGetSecondaryReductionRoot(PHINode *Phi,
15436                                                  Instruction *Root) {
15437   assert((isa<BinaryOperator>(Root) || isa<SelectInst>(Root) ||
15438           isa<IntrinsicInst>(Root)) &&
15439          "Expected binop, select, or intrinsic for reduction matching");
15440   Value *LHS =
15441       Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root));
15442   Value *RHS =
15443       Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root) + 1);
15444   if (LHS == Phi)
15445     return dyn_cast<Instruction>(RHS);
15446   if (RHS == Phi)
15447     return dyn_cast<Instruction>(LHS);
15448   return nullptr;
15449 }
15450 
15451 /// \p Returns the first operand of \p I that does not match \p Phi. If
15452 /// operand is not an instruction it returns nullptr.
15453 static Instruction *getNonPhiOperand(Instruction *I, PHINode *Phi) {
15454   Value *Op0 = nullptr;
15455   Value *Op1 = nullptr;
15456   if (!matchRdxBop(I, Op0, Op1))
15457     return nullptr;
15458   return dyn_cast<Instruction>(Op0 == Phi ? Op1 : Op0);
15459 }
15460 
15461 /// \Returns true if \p I is a candidate instruction for reduction vectorization.
15462 static bool isReductionCandidate(Instruction *I) {
15463   bool IsSelect = match(I, m_Select(m_Value(), m_Value(), m_Value()));
15464   Value *B0 = nullptr, *B1 = nullptr;
15465   bool IsBinop = matchRdxBop(I, B0, B1);
15466   return IsBinop || IsSelect;
15467 }
15468 
15469 bool SLPVectorizerPass::vectorizeHorReduction(
15470     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI,
15471     SmallVectorImpl<WeakTrackingVH> &PostponedInsts) {
15472   if (!ShouldVectorizeHor)
15473     return false;
15474   bool TryOperandsAsNewSeeds = P && isa<BinaryOperator>(Root);
15475 
15476   if (Root->getParent() != BB || isa<PHINode>(Root))
15477     return false;
15478 
15479   // If we can find a secondary reduction root, use that instead.
15480   auto SelectRoot = [&]() {
15481     if (TryOperandsAsNewSeeds && isReductionCandidate(Root) &&
15482         HorizontalReduction::getRdxKind(Root) != RecurKind::None)
15483       if (Instruction *NewRoot = tryGetSecondaryReductionRoot(P, Root))
15484         return NewRoot;
15485     return Root;
15486   };
15487 
15488   // Start analysis starting from Root instruction. If horizontal reduction is
15489   // found, try to vectorize it. If it is not a horizontal reduction or
15490   // vectorization is not possible or not effective, and currently analyzed
15491   // instruction is a binary operation, try to vectorize the operands, using
15492   // pre-order DFS traversal order. If the operands were not vectorized, repeat
15493   // the same procedure considering each operand as a possible root of the
15494   // horizontal reduction.
15495   // Interrupt the process if the Root instruction itself was vectorized or all
15496   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
15497   // If a horizintal reduction was not matched or vectorized we collect
15498   // instructions for possible later attempts for vectorization.
15499   std::queue<std::pair<Instruction *, unsigned>> Stack;
15500   Stack.emplace(SelectRoot(), 0);
15501   SmallPtrSet<Value *, 8> VisitedInstrs;
15502   bool Res = false;
15503   auto &&TryToReduce = [this, TTI, &R](Instruction *Inst) -> Value * {
15504     if (R.isAnalyzedReductionRoot(Inst))
15505       return nullptr;
15506     if (!isReductionCandidate(Inst))
15507       return nullptr;
15508     HorizontalReduction HorRdx;
15509     if (!HorRdx.matchAssociativeReduction(R, Inst, *SE, *DL, *TLI))
15510       return nullptr;
15511     return HorRdx.tryToReduce(R, TTI, *TLI);
15512   };
15513   auto TryAppendToPostponedInsts = [&](Instruction *FutureSeed) {
15514     if (TryOperandsAsNewSeeds && FutureSeed == Root) {
15515       FutureSeed = getNonPhiOperand(Root, P);
15516       if (!FutureSeed)
15517         return false;
15518     }
15519     // Do not collect CmpInst or InsertElementInst/InsertValueInst as their
15520     // analysis is done separately.
15521     if (!isa<CmpInst, InsertElementInst, InsertValueInst>(FutureSeed))
15522       PostponedInsts.push_back(FutureSeed);
15523     return true;
15524   };
15525 
15526   while (!Stack.empty()) {
15527     Instruction *Inst;
15528     unsigned Level;
15529     std::tie(Inst, Level) = Stack.front();
15530     Stack.pop();
15531     // Do not try to analyze instruction that has already been vectorized.
15532     // This may happen when we vectorize instruction operands on a previous
15533     // iteration while stack was populated before that happened.
15534     if (R.isDeleted(Inst))
15535       continue;
15536     if (Value *VectorizedV = TryToReduce(Inst)) {
15537       Res = true;
15538       if (auto *I = dyn_cast<Instruction>(VectorizedV)) {
15539         // Try to find another reduction.
15540         Stack.emplace(I, Level);
15541         continue;
15542       }
15543     } else {
15544       // We could not vectorize `Inst` so try to use it as a future seed.
15545       if (!TryAppendToPostponedInsts(Inst)) {
15546         assert(Stack.empty() && "Expected empty stack");
15547         break;
15548       }
15549     }
15550 
15551     // Try to vectorize operands.
15552     // Continue analysis for the instruction from the same basic block only to
15553     // save compile time.
15554     if (++Level < RecursionMaxDepth)
15555       for (auto *Op : Inst->operand_values())
15556         if (VisitedInstrs.insert(Op).second)
15557           if (auto *I = dyn_cast<Instruction>(Op))
15558             // Do not try to vectorize CmpInst operands,  this is done
15559             // separately.
15560             if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
15561                 !R.isDeleted(I) && I->getParent() == BB)
15562               Stack.emplace(I, Level);
15563   }
15564   return Res;
15565 }
15566 
15567 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Instruction *Root,
15568                                                  BasicBlock *BB, BoUpSLP &R,
15569                                                  TargetTransformInfo *TTI) {
15570   SmallVector<WeakTrackingVH> PostponedInsts;
15571   bool Res = vectorizeHorReduction(P, Root, BB, R, TTI, PostponedInsts);
15572   Res |= tryToVectorize(PostponedInsts, R);
15573   return Res;
15574 }
15575 
15576 bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts,
15577                                        BoUpSLP &R) {
15578   bool Res = false;
15579   for (Value *V : Insts)
15580     if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst))
15581       Res |= tryToVectorize(Inst, R);
15582   return Res;
15583 }
15584 
15585 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
15586                                                  BasicBlock *BB, BoUpSLP &R) {
15587   if (!R.canMapToVector(IVI->getType()))
15588     return false;
15589 
15590   SmallVector<Value *, 16> BuildVectorOpds;
15591   SmallVector<Value *, 16> BuildVectorInsts;
15592   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
15593     return false;
15594 
15595   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
15596   // Aggregate value is unlikely to be processed in vector register.
15597   return tryToVectorizeList(BuildVectorOpds, R);
15598 }
15599 
15600 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
15601                                                    BasicBlock *BB, BoUpSLP &R) {
15602   SmallVector<Value *, 16> BuildVectorInsts;
15603   SmallVector<Value *, 16> BuildVectorOpds;
15604   SmallVector<int> Mask;
15605   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
15606       (llvm::all_of(
15607            BuildVectorOpds,
15608            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
15609        isFixedVectorShuffle(BuildVectorOpds, Mask)))
15610     return false;
15611 
15612   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
15613   return tryToVectorizeList(BuildVectorInsts, R);
15614 }
15615 
15616 template <typename T>
15617 static bool tryToVectorizeSequence(
15618     SmallVectorImpl<T *> &Incoming, function_ref<bool(T *, T *)> Comparator,
15619     function_ref<bool(T *, T *)> AreCompatible,
15620     function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
15621     bool MaxVFOnly, BoUpSLP &R) {
15622   bool Changed = false;
15623   // Sort by type, parent, operands.
15624   stable_sort(Incoming, Comparator);
15625 
15626   // Try to vectorize elements base on their type.
15627   SmallVector<T *> Candidates;
15628   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
15629     // Look for the next elements with the same type, parent and operand
15630     // kinds.
15631     auto *SameTypeIt = IncIt;
15632     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
15633       ++SameTypeIt;
15634 
15635     // Try to vectorize them.
15636     unsigned NumElts = (SameTypeIt - IncIt);
15637     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
15638                       << NumElts << ")\n");
15639     // The vectorization is a 3-state attempt:
15640     // 1. Try to vectorize instructions with the same/alternate opcodes with the
15641     // size of maximal register at first.
15642     // 2. Try to vectorize remaining instructions with the same type, if
15643     // possible. This may result in the better vectorization results rather than
15644     // if we try just to vectorize instructions with the same/alternate opcodes.
15645     // 3. Final attempt to try to vectorize all instructions with the
15646     // same/alternate ops only, this may result in some extra final
15647     // vectorization.
15648     if (NumElts > 1 &&
15649         TryToVectorizeHelper(ArrayRef(IncIt, NumElts), MaxVFOnly)) {
15650       // Success start over because instructions might have been changed.
15651       Changed = true;
15652     } else {
15653       /// \Returns the minimum number of elements that we will attempt to
15654       /// vectorize.
15655       auto GetMinNumElements = [&R](Value *V) {
15656         unsigned EltSize = R.getVectorElementSize(V);
15657         return std::max(2U, R.getMaxVecRegSize() / EltSize);
15658       };
15659       if (NumElts < GetMinNumElements(*IncIt) &&
15660           (Candidates.empty() ||
15661            Candidates.front()->getType() == (*IncIt)->getType())) {
15662         Candidates.append(IncIt, std::next(IncIt, NumElts));
15663       }
15664     }
15665     // Final attempt to vectorize instructions with the same types.
15666     if (Candidates.size() > 1 &&
15667         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
15668       if (TryToVectorizeHelper(Candidates, /*MaxVFOnly=*/false)) {
15669         // Success start over because instructions might have been changed.
15670         Changed = true;
15671       } else if (MaxVFOnly) {
15672         // Try to vectorize using small vectors.
15673         for (auto *It = Candidates.begin(), *End = Candidates.end();
15674              It != End;) {
15675           auto *SameTypeIt = It;
15676           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
15677             ++SameTypeIt;
15678           unsigned NumElts = (SameTypeIt - It);
15679           if (NumElts > 1 && TryToVectorizeHelper(ArrayRef(It, NumElts),
15680                                                   /*MaxVFOnly=*/false))
15681             Changed = true;
15682           It = SameTypeIt;
15683         }
15684       }
15685       Candidates.clear();
15686     }
15687 
15688     // Start over at the next instruction of a different type (or the end).
15689     IncIt = SameTypeIt;
15690   }
15691   return Changed;
15692 }
15693 
15694 /// Compare two cmp instructions. If IsCompatibility is true, function returns
15695 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
15696 /// operands. If IsCompatibility is false, function implements strict weak
15697 /// ordering relation between two cmp instructions, returning true if the first
15698 /// instruction is "less" than the second, i.e. its predicate is less than the
15699 /// predicate of the second or the operands IDs are less than the operands IDs
15700 /// of the second cmp instruction.
15701 template <bool IsCompatibility>
15702 static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI,
15703                        const DominatorTree &DT) {
15704   assert(isValidElementType(V->getType()) &&
15705          isValidElementType(V2->getType()) &&
15706          "Expected valid element types only.");
15707   if (V == V2)
15708     return IsCompatibility;
15709   auto *CI1 = cast<CmpInst>(V);
15710   auto *CI2 = cast<CmpInst>(V2);
15711   if (CI1->getOperand(0)->getType()->getTypeID() <
15712       CI2->getOperand(0)->getType()->getTypeID())
15713     return !IsCompatibility;
15714   if (CI1->getOperand(0)->getType()->getTypeID() >
15715       CI2->getOperand(0)->getType()->getTypeID())
15716     return false;
15717   CmpInst::Predicate Pred1 = CI1->getPredicate();
15718   CmpInst::Predicate Pred2 = CI2->getPredicate();
15719   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
15720   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
15721   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
15722   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
15723   if (BasePred1 < BasePred2)
15724     return !IsCompatibility;
15725   if (BasePred1 > BasePred2)
15726     return false;
15727   // Compare operands.
15728   bool CI1Preds = Pred1 == BasePred1;
15729   bool CI2Preds = Pred2 == BasePred1;
15730   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
15731     auto *Op1 = CI1->getOperand(CI1Preds ? I : E - I - 1);
15732     auto *Op2 = CI2->getOperand(CI2Preds ? I : E - I - 1);
15733     if (Op1 == Op2)
15734       continue;
15735     if (Op1->getValueID() < Op2->getValueID())
15736       return !IsCompatibility;
15737     if (Op1->getValueID() > Op2->getValueID())
15738       return false;
15739     if (auto *I1 = dyn_cast<Instruction>(Op1))
15740       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
15741         if (IsCompatibility) {
15742           if (I1->getParent() != I2->getParent())
15743             return false;
15744         } else {
15745           // Try to compare nodes with same parent.
15746           DomTreeNodeBase<BasicBlock> *NodeI1 = DT.getNode(I1->getParent());
15747           DomTreeNodeBase<BasicBlock> *NodeI2 = DT.getNode(I2->getParent());
15748           if (!NodeI1)
15749             return NodeI2 != nullptr;
15750           if (!NodeI2)
15751             return false;
15752           assert((NodeI1 == NodeI2) ==
15753                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
15754                  "Different nodes should have different DFS numbers");
15755           if (NodeI1 != NodeI2)
15756             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
15757         }
15758         InstructionsState S = getSameOpcode({I1, I2}, TLI);
15759         if (S.getOpcode() && (IsCompatibility || !S.isAltShuffle()))
15760           continue;
15761         if (IsCompatibility)
15762           return false;
15763         if (I1->getOpcode() != I2->getOpcode())
15764           return I1->getOpcode() < I2->getOpcode();
15765       }
15766   }
15767   return IsCompatibility;
15768 }
15769 
15770 template <typename ItT>
15771 bool SLPVectorizerPass::vectorizeCmpInsts(iterator_range<ItT> CmpInsts,
15772                                           BasicBlock *BB, BoUpSLP &R) {
15773   bool Changed = false;
15774   // Try to find reductions first.
15775   for (CmpInst *I : CmpInsts) {
15776     if (R.isDeleted(I))
15777       continue;
15778     for (Value *Op : I->operands())
15779       if (auto *RootOp = dyn_cast<Instruction>(Op))
15780         Changed |= vectorizeRootInstruction(nullptr, RootOp, BB, R, TTI);
15781   }
15782   // Try to vectorize operands as vector bundles.
15783   for (CmpInst *I : CmpInsts) {
15784     if (R.isDeleted(I))
15785       continue;
15786     Changed |= tryToVectorize(I, R);
15787   }
15788   // Try to vectorize list of compares.
15789   // Sort by type, compare predicate, etc.
15790   auto CompareSorter = [&](Value *V, Value *V2) {
15791     if (V == V2)
15792       return false;
15793     return compareCmp<false>(V, V2, *TLI, *DT);
15794   };
15795 
15796   auto AreCompatibleCompares = [&](Value *V1, Value *V2) {
15797     if (V1 == V2)
15798       return true;
15799     return compareCmp<true>(V1, V2, *TLI, *DT);
15800   };
15801 
15802   SmallVector<Value *> Vals;
15803   for (Instruction *V : CmpInsts)
15804     if (!R.isDeleted(V) && isValidElementType(V->getType()))
15805       Vals.push_back(V);
15806   if (Vals.size() <= 1)
15807     return Changed;
15808   Changed |= tryToVectorizeSequence<Value>(
15809       Vals, CompareSorter, AreCompatibleCompares,
15810       [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) {
15811         // Exclude possible reductions from other blocks.
15812         bool ArePossiblyReducedInOtherBlock = any_of(Candidates, [](Value *V) {
15813           return any_of(V->users(), [V](User *U) {
15814             auto *Select = dyn_cast<SelectInst>(U);
15815             return Select &&
15816                    Select->getParent() != cast<Instruction>(V)->getParent();
15817           });
15818         });
15819         if (ArePossiblyReducedInOtherBlock)
15820           return false;
15821         return tryToVectorizeList(Candidates, R, MaxVFOnly);
15822       },
15823       /*MaxVFOnly=*/true, R);
15824   return Changed;
15825 }
15826 
15827 bool SLPVectorizerPass::vectorizeInserts(InstSetVector &Instructions,
15828                                          BasicBlock *BB, BoUpSLP &R) {
15829   assert(all_of(Instructions,
15830                 [](auto *I) {
15831                   return isa<InsertElementInst, InsertValueInst>(I);
15832                 }) &&
15833          "This function only accepts Insert instructions");
15834   bool OpsChanged = false;
15835   SmallVector<WeakTrackingVH> PostponedInsts;
15836   // pass1 - try to vectorize reductions only
15837   for (auto *I : reverse(Instructions)) {
15838     if (R.isDeleted(I))
15839       continue;
15840     OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts);
15841   }
15842   // pass2 - try to match and vectorize a buildvector sequence.
15843   for (auto *I : reverse(Instructions)) {
15844     if (R.isDeleted(I) || isa<CmpInst>(I))
15845       continue;
15846     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
15847       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
15848     } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
15849       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
15850     }
15851   }
15852   // Now try to vectorize postponed instructions.
15853   OpsChanged |= tryToVectorize(PostponedInsts, R);
15854 
15855   Instructions.clear();
15856   return OpsChanged;
15857 }
15858 
15859 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
15860   bool Changed = false;
15861   SmallVector<Value *, 4> Incoming;
15862   SmallPtrSet<Value *, 16> VisitedInstrs;
15863   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
15864   // node. Allows better to identify the chains that can be vectorized in the
15865   // better way.
15866   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
15867   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
15868     assert(isValidElementType(V1->getType()) &&
15869            isValidElementType(V2->getType()) &&
15870            "Expected vectorizable types only.");
15871     // It is fine to compare type IDs here, since we expect only vectorizable
15872     // types, like ints, floats and pointers, we don't care about other type.
15873     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
15874       return true;
15875     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
15876       return false;
15877     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
15878     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
15879     if (Opcodes1.size() < Opcodes2.size())
15880       return true;
15881     if (Opcodes1.size() > Opcodes2.size())
15882       return false;
15883     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
15884       // Undefs are compatible with any other value.
15885       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
15886         if (isa<Instruction>(Opcodes1[I]))
15887           return true;
15888         if (isa<Instruction>(Opcodes2[I]))
15889           return false;
15890         if (isa<Constant>(Opcodes1[I]) && !isa<UndefValue>(Opcodes1[I]))
15891           return true;
15892         if (isa<Constant>(Opcodes2[I]) && !isa<UndefValue>(Opcodes2[I]))
15893           return false;
15894         if (isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]))
15895           continue;
15896         return isa<UndefValue>(Opcodes2[I]);
15897       }
15898       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
15899         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
15900           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
15901           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
15902           if (!NodeI1)
15903             return NodeI2 != nullptr;
15904           if (!NodeI2)
15905             return false;
15906           assert((NodeI1 == NodeI2) ==
15907                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
15908                  "Different nodes should have different DFS numbers");
15909           if (NodeI1 != NodeI2)
15910             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
15911           InstructionsState S = getSameOpcode({I1, I2}, *TLI);
15912           if (S.getOpcode() && !S.isAltShuffle())
15913             continue;
15914           return I1->getOpcode() < I2->getOpcode();
15915         }
15916       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
15917         return Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
15918       if (isa<Instruction>(Opcodes1[I]))
15919         return true;
15920       if (isa<Instruction>(Opcodes2[I]))
15921         return false;
15922       if (isa<Constant>(Opcodes1[I]))
15923         return true;
15924       if (isa<Constant>(Opcodes2[I]))
15925         return false;
15926       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
15927         return true;
15928       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
15929         return false;
15930     }
15931     return false;
15932   };
15933   auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) {
15934     if (V1 == V2)
15935       return true;
15936     if (V1->getType() != V2->getType())
15937       return false;
15938     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
15939     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
15940     if (Opcodes1.size() != Opcodes2.size())
15941       return false;
15942     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
15943       // Undefs are compatible with any other value.
15944       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
15945         continue;
15946       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
15947         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
15948           if (I1->getParent() != I2->getParent())
15949             return false;
15950           InstructionsState S = getSameOpcode({I1, I2}, *TLI);
15951           if (S.getOpcode())
15952             continue;
15953           return false;
15954         }
15955       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
15956         continue;
15957       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
15958         return false;
15959     }
15960     return true;
15961   };
15962 
15963   bool HaveVectorizedPhiNodes = false;
15964   do {
15965     // Collect the incoming values from the PHIs.
15966     Incoming.clear();
15967     for (Instruction &I : *BB) {
15968       PHINode *P = dyn_cast<PHINode>(&I);
15969       if (!P)
15970         break;
15971 
15972       // No need to analyze deleted, vectorized and non-vectorizable
15973       // instructions.
15974       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
15975           isValidElementType(P->getType()))
15976         Incoming.push_back(P);
15977     }
15978 
15979     if (Incoming.size() <= 1)
15980       break;
15981 
15982     // Find the corresponding non-phi nodes for better matching when trying to
15983     // build the tree.
15984     for (Value *V : Incoming) {
15985       SmallVectorImpl<Value *> &Opcodes =
15986           PHIToOpcodes.try_emplace(V).first->getSecond();
15987       if (!Opcodes.empty())
15988         continue;
15989       SmallVector<Value *, 4> Nodes(1, V);
15990       SmallPtrSet<Value *, 4> Visited;
15991       while (!Nodes.empty()) {
15992         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
15993         if (!Visited.insert(PHI).second)
15994           continue;
15995         for (Value *V : PHI->incoming_values()) {
15996           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
15997             Nodes.push_back(PHI1);
15998             continue;
15999           }
16000           Opcodes.emplace_back(V);
16001         }
16002       }
16003     }
16004 
16005     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
16006         Incoming, PHICompare, AreCompatiblePHIs,
16007         [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) {
16008           return tryToVectorizeList(Candidates, R, MaxVFOnly);
16009         },
16010         /*MaxVFOnly=*/true, R);
16011     Changed |= HaveVectorizedPhiNodes;
16012     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
16013   } while (HaveVectorizedPhiNodes);
16014 
16015   VisitedInstrs.clear();
16016 
16017   InstSetVector PostProcessInserts;
16018   SmallSetVector<CmpInst *, 8> PostProcessCmps;
16019   // Vectorizes Inserts in `PostProcessInserts` and if `VecctorizeCmps` is true
16020   // also vectorizes `PostProcessCmps`.
16021   auto VectorizeInsertsAndCmps = [&](bool VectorizeCmps) {
16022     bool Changed = vectorizeInserts(PostProcessInserts, BB, R);
16023     if (VectorizeCmps) {
16024       Changed |= vectorizeCmpInsts(reverse(PostProcessCmps), BB, R);
16025       PostProcessCmps.clear();
16026     }
16027     PostProcessInserts.clear();
16028     return Changed;
16029   };
16030   // Returns true if `I` is in `PostProcessInserts` or `PostProcessCmps`.
16031   auto IsInPostProcessInstrs = [&](Instruction *I) {
16032     if (auto *Cmp = dyn_cast<CmpInst>(I))
16033       return PostProcessCmps.contains(Cmp);
16034     return isa<InsertElementInst, InsertValueInst>(I) &&
16035            PostProcessInserts.contains(I);
16036   };
16037   // Returns true if `I` is an instruction without users, like terminator, or
16038   // function call with ignored return value, store. Ignore unused instructions
16039   // (basing on instruction type, except for CallInst and InvokeInst).
16040   auto HasNoUsers = [](Instruction *I) {
16041     return I->use_empty() &&
16042            (I->getType()->isVoidTy() || isa<CallInst, InvokeInst>(I));
16043   };
16044   for (BasicBlock::iterator It = BB->begin(), E = BB->end(); It != E; ++It) {
16045     // Skip instructions with scalable type. The num of elements is unknown at
16046     // compile-time for scalable type.
16047     if (isa<ScalableVectorType>(It->getType()))
16048       continue;
16049 
16050     // Skip instructions marked for the deletion.
16051     if (R.isDeleted(&*It))
16052       continue;
16053     // We may go through BB multiple times so skip the one we have checked.
16054     if (!VisitedInstrs.insert(&*It).second) {
16055       if (HasNoUsers(&*It) &&
16056           VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator())) {
16057         // We would like to start over since some instructions are deleted
16058         // and the iterator may become invalid value.
16059         Changed = true;
16060         It = BB->begin();
16061         E = BB->end();
16062       }
16063       continue;
16064     }
16065 
16066     if (isa<DbgInfoIntrinsic>(It))
16067       continue;
16068 
16069     // Try to vectorize reductions that use PHINodes.
16070     if (PHINode *P = dyn_cast<PHINode>(It)) {
16071       // Check that the PHI is a reduction PHI.
16072       if (P->getNumIncomingValues() == 2) {
16073         // Try to match and vectorize a horizontal reduction.
16074         Instruction *Root = getReductionInstr(DT, P, BB, LI);
16075         if (Root && vectorizeRootInstruction(P, Root, BB, R, TTI)) {
16076           Changed = true;
16077           It = BB->begin();
16078           E = BB->end();
16079           continue;
16080         }
16081       }
16082       // Try to vectorize the incoming values of the PHI, to catch reductions
16083       // that feed into PHIs.
16084       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
16085         // Skip if the incoming block is the current BB for now. Also, bypass
16086         // unreachable IR for efficiency and to avoid crashing.
16087         // TODO: Collect the skipped incoming values and try to vectorize them
16088         // after processing BB.
16089         if (BB == P->getIncomingBlock(I) ||
16090             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
16091           continue;
16092 
16093         // Postponed instructions should not be vectorized here, delay their
16094         // vectorization.
16095         if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I));
16096             PI && !IsInPostProcessInstrs(PI))
16097           Changed |= vectorizeRootInstruction(nullptr, PI,
16098                                               P->getIncomingBlock(I), R, TTI);
16099       }
16100       continue;
16101     }
16102 
16103     if (HasNoUsers(&*It)) {
16104       bool OpsChanged = false;
16105       auto *SI = dyn_cast<StoreInst>(It);
16106       bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI;
16107       if (SI) {
16108         auto *I = Stores.find(getUnderlyingObject(SI->getPointerOperand()));
16109         // Try to vectorize chain in store, if this is the only store to the
16110         // address in the block.
16111         // TODO: This is just a temporarily solution to save compile time. Need
16112         // to investigate if we can safely turn on slp-vectorize-hor-store
16113         // instead to allow lookup for reduction chains in all non-vectorized
16114         // stores (need to check side effects and compile time).
16115         TryToVectorizeRoot |= (I == Stores.end() || I->second.size() == 1) &&
16116                               SI->getValueOperand()->hasOneUse();
16117       }
16118       if (TryToVectorizeRoot) {
16119         for (auto *V : It->operand_values()) {
16120           // Postponed instructions should not be vectorized here, delay their
16121           // vectorization.
16122           if (auto *VI = dyn_cast<Instruction>(V);
16123               VI && !IsInPostProcessInstrs(VI))
16124             // Try to match and vectorize a horizontal reduction.
16125             OpsChanged |= vectorizeRootInstruction(nullptr, VI, BB, R, TTI);
16126         }
16127       }
16128       // Start vectorization of post-process list of instructions from the
16129       // top-tree instructions to try to vectorize as many instructions as
16130       // possible.
16131       OpsChanged |=
16132           VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator());
16133       if (OpsChanged) {
16134         // We would like to start over since some instructions are deleted
16135         // and the iterator may become invalid value.
16136         Changed = true;
16137         It = BB->begin();
16138         E = BB->end();
16139         continue;
16140       }
16141     }
16142 
16143     if (isa<InsertElementInst, InsertValueInst>(It))
16144       PostProcessInserts.insert(&*It);
16145     else if (isa<CmpInst>(It))
16146       PostProcessCmps.insert(cast<CmpInst>(&*It));
16147   }
16148 
16149   return Changed;
16150 }
16151 
16152 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
16153   auto Changed = false;
16154   for (auto &Entry : GEPs) {
16155     // If the getelementptr list has fewer than two elements, there's nothing
16156     // to do.
16157     if (Entry.second.size() < 2)
16158       continue;
16159 
16160     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
16161                       << Entry.second.size() << ".\n");
16162 
16163     // Process the GEP list in chunks suitable for the target's supported
16164     // vector size. If a vector register can't hold 1 element, we are done. We
16165     // are trying to vectorize the index computations, so the maximum number of
16166     // elements is based on the size of the index expression, rather than the
16167     // size of the GEP itself (the target's pointer size).
16168     unsigned MaxVecRegSize = R.getMaxVecRegSize();
16169     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
16170     if (MaxVecRegSize < EltSize)
16171       continue;
16172 
16173     unsigned MaxElts = MaxVecRegSize / EltSize;
16174     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
16175       auto Len = std::min<unsigned>(BE - BI, MaxElts);
16176       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
16177 
16178       // Initialize a set a candidate getelementptrs. Note that we use a
16179       // SetVector here to preserve program order. If the index computations
16180       // are vectorizable and begin with loads, we want to minimize the chance
16181       // of having to reorder them later.
16182       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
16183 
16184       // Some of the candidates may have already been vectorized after we
16185       // initially collected them. If so, they are marked as deleted, so remove
16186       // them from the set of candidates.
16187       Candidates.remove_if(
16188           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
16189 
16190       // Remove from the set of candidates all pairs of getelementptrs with
16191       // constant differences. Such getelementptrs are likely not good
16192       // candidates for vectorization in a bottom-up phase since one can be
16193       // computed from the other. We also ensure all candidate getelementptr
16194       // indices are unique.
16195       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
16196         auto *GEPI = GEPList[I];
16197         if (!Candidates.count(GEPI))
16198           continue;
16199         auto *SCEVI = SE->getSCEV(GEPList[I]);
16200         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
16201           auto *GEPJ = GEPList[J];
16202           auto *SCEVJ = SE->getSCEV(GEPList[J]);
16203           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
16204             Candidates.remove(GEPI);
16205             Candidates.remove(GEPJ);
16206           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
16207             Candidates.remove(GEPJ);
16208           }
16209         }
16210       }
16211 
16212       // We break out of the above computation as soon as we know there are
16213       // fewer than two candidates remaining.
16214       if (Candidates.size() < 2)
16215         continue;
16216 
16217       // Add the single, non-constant index of each candidate to the bundle. We
16218       // ensured the indices met these constraints when we originally collected
16219       // the getelementptrs.
16220       SmallVector<Value *, 16> Bundle(Candidates.size());
16221       auto BundleIndex = 0u;
16222       for (auto *V : Candidates) {
16223         auto *GEP = cast<GetElementPtrInst>(V);
16224         auto *GEPIdx = GEP->idx_begin()->get();
16225         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
16226         Bundle[BundleIndex++] = GEPIdx;
16227       }
16228 
16229       // Try and vectorize the indices. We are currently only interested in
16230       // gather-like cases of the form:
16231       //
16232       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
16233       //
16234       // where the loads of "a", the loads of "b", and the subtractions can be
16235       // performed in parallel. It's likely that detecting this pattern in a
16236       // bottom-up phase will be simpler and less costly than building a
16237       // full-blown top-down phase beginning at the consecutive loads.
16238       Changed |= tryToVectorizeList(Bundle, R);
16239     }
16240   }
16241   return Changed;
16242 }
16243 
16244 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
16245   bool Changed = false;
16246   // Sort by type, base pointers and values operand. Value operands must be
16247   // compatible (have the same opcode, same parent), otherwise it is
16248   // definitely not profitable to try to vectorize them.
16249   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
16250     if (V->getValueOperand()->getType()->getTypeID() <
16251         V2->getValueOperand()->getType()->getTypeID())
16252       return true;
16253     if (V->getValueOperand()->getType()->getTypeID() >
16254         V2->getValueOperand()->getType()->getTypeID())
16255       return false;
16256     if (V->getPointerOperandType()->getTypeID() <
16257         V2->getPointerOperandType()->getTypeID())
16258       return true;
16259     if (V->getPointerOperandType()->getTypeID() >
16260         V2->getPointerOperandType()->getTypeID())
16261       return false;
16262     // UndefValues are compatible with all other values.
16263     if (isa<UndefValue>(V->getValueOperand()) ||
16264         isa<UndefValue>(V2->getValueOperand()))
16265       return false;
16266     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
16267       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
16268         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
16269             DT->getNode(I1->getParent());
16270         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
16271             DT->getNode(I2->getParent());
16272         assert(NodeI1 && "Should only process reachable instructions");
16273         assert(NodeI2 && "Should only process reachable instructions");
16274         assert((NodeI1 == NodeI2) ==
16275                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
16276                "Different nodes should have different DFS numbers");
16277         if (NodeI1 != NodeI2)
16278           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
16279         InstructionsState S = getSameOpcode({I1, I2}, *TLI);
16280         if (S.getOpcode())
16281           return false;
16282         return I1->getOpcode() < I2->getOpcode();
16283       }
16284     if (isa<Constant>(V->getValueOperand()) &&
16285         isa<Constant>(V2->getValueOperand()))
16286       return false;
16287     return V->getValueOperand()->getValueID() <
16288            V2->getValueOperand()->getValueID();
16289   };
16290 
16291   auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) {
16292     if (V1 == V2)
16293       return true;
16294     if (V1->getValueOperand()->getType() != V2->getValueOperand()->getType())
16295       return false;
16296     if (V1->getPointerOperandType() != V2->getPointerOperandType())
16297       return false;
16298     // Undefs are compatible with any other value.
16299     if (isa<UndefValue>(V1->getValueOperand()) ||
16300         isa<UndefValue>(V2->getValueOperand()))
16301       return true;
16302     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
16303       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
16304         if (I1->getParent() != I2->getParent())
16305           return false;
16306         InstructionsState S = getSameOpcode({I1, I2}, *TLI);
16307         return S.getOpcode() > 0;
16308       }
16309     if (isa<Constant>(V1->getValueOperand()) &&
16310         isa<Constant>(V2->getValueOperand()))
16311       return true;
16312     return V1->getValueOperand()->getValueID() ==
16313            V2->getValueOperand()->getValueID();
16314   };
16315 
16316   // Attempt to sort and vectorize each of the store-groups.
16317   for (auto &Pair : Stores) {
16318     if (Pair.second.size() < 2)
16319       continue;
16320 
16321     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
16322                       << Pair.second.size() << ".\n");
16323 
16324     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
16325       continue;
16326 
16327     // Reverse stores to do bottom-to-top analysis. This is important if the
16328     // values are stores to the same addresses several times, in this case need
16329     // to follow the stores order (reversed to meet the memory dependecies).
16330     SmallVector<StoreInst *> ReversedStores(Pair.second.rbegin(),
16331                                             Pair.second.rend());
16332     Changed |= tryToVectorizeSequence<StoreInst>(
16333         ReversedStores, StoreSorter, AreCompatibleStores,
16334         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
16335           return vectorizeStores(Candidates, R);
16336         },
16337         /*MaxVFOnly=*/false, R);
16338   }
16339   return Changed;
16340 }
16341