1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants (but not 198 /// globals/constant expressions). 199 static bool allConstant(ArrayRef<Value *> VL) { 200 // Constant expressions and globals can't be vectorized like normal integer/FP 201 // constants. 202 for (Value *i : VL) 203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 204 return false; 205 return true; 206 } 207 208 /// \returns True if all of the values in \p VL are identical. 209 static bool isSplat(ArrayRef<Value *> VL) { 210 for (unsigned i = 1, e = VL.size(); i < e; ++i) 211 if (VL[i] != VL[0]) 212 return false; 213 return true; 214 } 215 216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 217 static bool isCommutative(Instruction *I) { 218 if (auto *IC = dyn_cast<CmpInst>(I)) 219 return IC->isCommutative(); 220 return I->isCommutative(); 221 } 222 223 /// Checks if the vector of instructions can be represented as a shuffle, like: 224 /// %x0 = extractelement <4 x i8> %x, i32 0 225 /// %x3 = extractelement <4 x i8> %x, i32 3 226 /// %y1 = extractelement <4 x i8> %y, i32 1 227 /// %y2 = extractelement <4 x i8> %y, i32 2 228 /// %x0x0 = mul i8 %x0, %x0 229 /// %x3x3 = mul i8 %x3, %x3 230 /// %y1y1 = mul i8 %y1, %y1 231 /// %y2y2 = mul i8 %y2, %y2 232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 236 /// ret <4 x i8> %ins4 237 /// can be transformed into: 238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 239 /// i32 6> 240 /// %2 = mul <4 x i8> %1, %1 241 /// ret <4 x i8> %2 242 /// We convert this initially to something like: 243 /// %x0 = extractelement <4 x i8> %x, i32 0 244 /// %x3 = extractelement <4 x i8> %x, i32 3 245 /// %y1 = extractelement <4 x i8> %y, i32 1 246 /// %y2 = extractelement <4 x i8> %y, i32 2 247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 251 /// %5 = mul <4 x i8> %4, %4 252 /// %6 = extractelement <4 x i8> %5, i32 0 253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 254 /// %7 = extractelement <4 x i8> %5, i32 1 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 256 /// %8 = extractelement <4 x i8> %5, i32 2 257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 258 /// %9 = extractelement <4 x i8> %5, i32 3 259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 260 /// ret <4 x i8> %ins4 261 /// InstCombiner transforms this into a shuffle and vector mul 262 /// TODO: Can we split off and reuse the shuffle mask detection from 263 /// TargetTransformInfo::getInstructionThroughput? 264 static Optional<TargetTransformInfo::ShuffleKind> 265 isShuffle(ArrayRef<Value *> VL) { 266 auto *EI0 = cast<ExtractElementInst>(VL[0]); 267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 268 Value *Vec1 = nullptr; 269 Value *Vec2 = nullptr; 270 enum ShuffleMode { Unknown, Select, Permute }; 271 ShuffleMode CommonShuffleMode = Unknown; 272 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 273 auto *EI = cast<ExtractElementInst>(VL[I]); 274 auto *Vec = EI->getVectorOperand(); 275 // All vector operands must have the same number of vector elements. 276 if (Vec->getType()->getVectorNumElements() != Size) 277 return None; 278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 279 if (!Idx) 280 return None; 281 // Undefined behavior if Idx is negative or >= Size. 282 if (Idx->getValue().uge(Size)) 283 continue; 284 unsigned IntIdx = Idx->getValue().getZExtValue(); 285 // We can extractelement from undef vector. 286 if (isa<UndefValue>(Vec)) 287 continue; 288 // For correct shuffling we have to have at most 2 different vector operands 289 // in all extractelement instructions. 290 if (!Vec1 || Vec1 == Vec) 291 Vec1 = Vec; 292 else if (!Vec2 || Vec2 == Vec) 293 Vec2 = Vec; 294 else 295 return None; 296 if (CommonShuffleMode == Permute) 297 continue; 298 // If the extract index is not the same as the operation number, it is a 299 // permutation. 300 if (IntIdx != I) { 301 CommonShuffleMode = Permute; 302 continue; 303 } 304 CommonShuffleMode = Select; 305 } 306 // If we're not crossing lanes in different vectors, consider it as blending. 307 if (CommonShuffleMode == Select && Vec2) 308 return TargetTransformInfo::SK_Select; 309 // If Vec2 was never used, we have a permutation of a single vector, otherwise 310 // we have permutation of 2 vectors. 311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 312 : TargetTransformInfo::SK_PermuteSingleSrc; 313 } 314 315 namespace { 316 317 /// Main data required for vectorization of instructions. 318 struct InstructionsState { 319 /// The very first instruction in the list with the main opcode. 320 Value *OpValue = nullptr; 321 322 /// The main/alternate instruction. 323 Instruction *MainOp = nullptr; 324 Instruction *AltOp = nullptr; 325 326 /// The main/alternate opcodes for the list of instructions. 327 unsigned getOpcode() const { 328 return MainOp ? MainOp->getOpcode() : 0; 329 } 330 331 unsigned getAltOpcode() const { 332 return AltOp ? AltOp->getOpcode() : 0; 333 } 334 335 /// Some of the instructions in the list have alternate opcodes. 336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 337 338 bool isOpcodeOrAlt(Instruction *I) const { 339 unsigned CheckedOpcode = I->getOpcode(); 340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 341 } 342 343 InstructionsState() = delete; 344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 346 }; 347 348 } // end anonymous namespace 349 350 /// Chooses the correct key for scheduling data. If \p Op has the same (or 351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 352 /// OpValue. 353 static Value *isOneOf(const InstructionsState &S, Value *Op) { 354 auto *I = dyn_cast<Instruction>(Op); 355 if (I && S.isOpcodeOrAlt(I)) 356 return Op; 357 return S.OpValue; 358 } 359 360 /// \returns analysis of the Instructions in \p VL described in 361 /// InstructionsState, the Opcode that we suppose the whole list 362 /// could be vectorized even if its structure is diverse. 363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 364 unsigned BaseIndex = 0) { 365 // Make sure these are all Instructions. 366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 367 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 368 369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 372 unsigned AltOpcode = Opcode; 373 unsigned AltIndex = BaseIndex; 374 375 // Check for one alternate opcode from another BinaryOperator. 376 // TODO - generalize to support all operators (types, calls etc.). 377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 380 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 381 continue; 382 if (Opcode == AltOpcode) { 383 AltOpcode = InstOpcode; 384 AltIndex = Cnt; 385 continue; 386 } 387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 390 if (Ty0 == Ty1) { 391 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 392 continue; 393 if (Opcode == AltOpcode) { 394 AltOpcode = InstOpcode; 395 AltIndex = Cnt; 396 continue; 397 } 398 } 399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 400 continue; 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 } 403 404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 405 cast<Instruction>(VL[AltIndex])); 406 } 407 408 /// \returns true if all of the values in \p VL have the same type or false 409 /// otherwise. 410 static bool allSameType(ArrayRef<Value *> VL) { 411 Type *Ty = VL[0]->getType(); 412 for (int i = 1, e = VL.size(); i < e; i++) 413 if (VL[i]->getType() != Ty) 414 return false; 415 416 return true; 417 } 418 419 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 420 static Optional<unsigned> getExtractIndex(Instruction *E) { 421 unsigned Opcode = E->getOpcode(); 422 assert((Opcode == Instruction::ExtractElement || 423 Opcode == Instruction::ExtractValue) && 424 "Expected extractelement or extractvalue instruction."); 425 if (Opcode == Instruction::ExtractElement) { 426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 427 if (!CI) 428 return None; 429 return CI->getZExtValue(); 430 } 431 ExtractValueInst *EI = cast<ExtractValueInst>(E); 432 if (EI->getNumIndices() != 1) 433 return None; 434 return *EI->idx_begin(); 435 } 436 437 /// \returns True if in-tree use also needs extract. This refers to 438 /// possible scalar operand in vectorized instruction. 439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 440 TargetLibraryInfo *TLI) { 441 unsigned Opcode = UserInst->getOpcode(); 442 switch (Opcode) { 443 case Instruction::Load: { 444 LoadInst *LI = cast<LoadInst>(UserInst); 445 return (LI->getPointerOperand() == Scalar); 446 } 447 case Instruction::Store: { 448 StoreInst *SI = cast<StoreInst>(UserInst); 449 return (SI->getPointerOperand() == Scalar); 450 } 451 case Instruction::Call: { 452 CallInst *CI = cast<CallInst>(UserInst); 453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 455 if (hasVectorInstrinsicScalarOpd(ID, i)) 456 return (CI->getArgOperand(i) == Scalar); 457 } 458 LLVM_FALLTHROUGH; 459 } 460 default: 461 return false; 462 } 463 } 464 465 /// \returns the AA location that is being access by the instruction. 466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 468 return MemoryLocation::get(SI); 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return MemoryLocation::get(LI); 471 return MemoryLocation(); 472 } 473 474 /// \returns True if the instruction is not a volatile or atomic load/store. 475 static bool isSimple(Instruction *I) { 476 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 477 return LI->isSimple(); 478 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 479 return SI->isSimple(); 480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 481 return !MI->isVolatile(); 482 return true; 483 } 484 485 namespace llvm { 486 487 namespace slpvectorizer { 488 489 /// Bottom Up SLP Vectorizer. 490 class BoUpSLP { 491 struct TreeEntry; 492 struct ScheduleData; 493 494 public: 495 using ValueList = SmallVector<Value *, 8>; 496 using InstrList = SmallVector<Instruction *, 16>; 497 using ValueSet = SmallPtrSet<Value *, 16>; 498 using StoreList = SmallVector<StoreInst *, 8>; 499 using ExtraValueToDebugLocsMap = 500 MapVector<Value *, SmallVector<Instruction *, 2>>; 501 502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 505 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 508 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 509 // Use the vector register size specified by the target unless overridden 510 // by a command-line option. 511 // TODO: It would be better to limit the vectorization factor based on 512 // data type rather than just register size. For example, x86 AVX has 513 // 256-bit registers, but it does not support integer operations 514 // at that width (that requires AVX2). 515 if (MaxVectorRegSizeOption.getNumOccurrences()) 516 MaxVecRegSize = MaxVectorRegSizeOption; 517 else 518 MaxVecRegSize = TTI->getRegisterBitWidth(true); 519 520 if (MinVectorRegSizeOption.getNumOccurrences()) 521 MinVecRegSize = MinVectorRegSizeOption; 522 else 523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 524 } 525 526 /// Vectorize the tree that starts with the elements in \p VL. 527 /// Returns the vectorized root. 528 Value *vectorizeTree(); 529 530 /// Vectorize the tree but with the list of externally used values \p 531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 532 /// generated extractvalue instructions. 533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 534 535 /// \returns the cost incurred by unwanted spills and fills, caused by 536 /// holding live values over call sites. 537 int getSpillCost() const; 538 539 /// \returns the vectorization cost of the subtree that starts at \p VL. 540 /// A negative number means that this is profitable. 541 int getTreeCost(); 542 543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 545 void buildTree(ArrayRef<Value *> Roots, 546 ArrayRef<Value *> UserIgnoreLst = None); 547 548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 550 /// into account (anf updating it, if required) list of externally used 551 /// values stored in \p ExternallyUsedValues. 552 void buildTree(ArrayRef<Value *> Roots, 553 ExtraValueToDebugLocsMap &ExternallyUsedValues, 554 ArrayRef<Value *> UserIgnoreLst = None); 555 556 /// Clear the internal data structures that are created by 'buildTree'. 557 void deleteTree() { 558 VectorizableTree.clear(); 559 ScalarToTreeEntry.clear(); 560 MustGather.clear(); 561 ExternalUses.clear(); 562 NumOpsWantToKeepOrder.clear(); 563 NumOpsWantToKeepOriginalOrder = 0; 564 for (auto &Iter : BlocksSchedules) { 565 BlockScheduling *BS = Iter.second.get(); 566 BS->clear(); 567 } 568 MinBWs.clear(); 569 } 570 571 unsigned getTreeSize() const { return VectorizableTree.size(); } 572 573 /// Perform LICM and CSE on the newly generated gather sequences. 574 void optimizeGatherSequence(); 575 576 /// \returns The best order of instructions for vectorization. 577 Optional<ArrayRef<unsigned>> bestOrder() const { 578 auto I = std::max_element( 579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 582 return D1.second < D2.second; 583 }); 584 if (I == NumOpsWantToKeepOrder.end() || 585 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 586 return None; 587 588 return makeArrayRef(I->getFirst()); 589 } 590 591 /// \return The vector element size in bits to use when vectorizing the 592 /// expression tree ending at \p V. If V is a store, the size is the width of 593 /// the stored value. Otherwise, the size is the width of the largest loaded 594 /// value reaching V. This method is used by the vectorizer to calculate 595 /// vectorization factors. 596 unsigned getVectorElementSize(Value *V) const; 597 598 /// Compute the minimum type sizes required to represent the entries in a 599 /// vectorizable tree. 600 void computeMinimumValueSizes(); 601 602 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 603 unsigned getMaxVecRegSize() const { 604 return MaxVecRegSize; 605 } 606 607 // \returns minimum vector register size as set by cl::opt. 608 unsigned getMinVecRegSize() const { 609 return MinVecRegSize; 610 } 611 612 /// Check if ArrayType or StructType is isomorphic to some VectorType. 613 /// 614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 615 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 616 617 /// \returns True if the VectorizableTree is both tiny and not fully 618 /// vectorizable. We do not vectorize such trees. 619 bool isTreeTinyAndNotFullyVectorizable() const; 620 621 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 622 /// can be load combined in the backend. Load combining may not be allowed in 623 /// the IR optimizer, so we do not want to alter the pattern. For example, 624 /// partially transforming a scalar bswap() pattern into vector code is 625 /// effectively impossible for the backend to undo. 626 /// TODO: If load combining is allowed in the IR optimizer, this analysis 627 /// may not be necessary. 628 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 629 630 OptimizationRemarkEmitter *getORE() { return ORE; } 631 632 /// This structure holds any data we need about the edges being traversed 633 /// during buildTree_rec(). We keep track of: 634 /// (i) the user TreeEntry index, and 635 /// (ii) the index of the edge. 636 struct EdgeInfo { 637 EdgeInfo() = default; 638 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 639 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 640 /// The user TreeEntry. 641 TreeEntry *UserTE = nullptr; 642 /// The operand index of the use. 643 unsigned EdgeIdx = UINT_MAX; 644 #ifndef NDEBUG 645 friend inline raw_ostream &operator<<(raw_ostream &OS, 646 const BoUpSLP::EdgeInfo &EI) { 647 EI.dump(OS); 648 return OS; 649 } 650 /// Debug print. 651 void dump(raw_ostream &OS) const { 652 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 653 << " EdgeIdx:" << EdgeIdx << "}"; 654 } 655 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 656 #endif 657 }; 658 659 /// A helper data structure to hold the operands of a vector of instructions. 660 /// This supports a fixed vector length for all operand vectors. 661 class VLOperands { 662 /// For each operand we need (i) the value, and (ii) the opcode that it 663 /// would be attached to if the expression was in a left-linearized form. 664 /// This is required to avoid illegal operand reordering. 665 /// For example: 666 /// \verbatim 667 /// 0 Op1 668 /// |/ 669 /// Op1 Op2 Linearized + Op2 670 /// \ / ----------> |/ 671 /// - - 672 /// 673 /// Op1 - Op2 (0 + Op1) - Op2 674 /// \endverbatim 675 /// 676 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 677 /// 678 /// Another way to think of this is to track all the operations across the 679 /// path from the operand all the way to the root of the tree and to 680 /// calculate the operation that corresponds to this path. For example, the 681 /// path from Op2 to the root crosses the RHS of the '-', therefore the 682 /// corresponding operation is a '-' (which matches the one in the 683 /// linearized tree, as shown above). 684 /// 685 /// For lack of a better term, we refer to this operation as Accumulated 686 /// Path Operation (APO). 687 struct OperandData { 688 OperandData() = default; 689 OperandData(Value *V, bool APO, bool IsUsed) 690 : V(V), APO(APO), IsUsed(IsUsed) {} 691 /// The operand value. 692 Value *V = nullptr; 693 /// TreeEntries only allow a single opcode, or an alternate sequence of 694 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 695 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 696 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 697 /// (e.g., Add/Mul) 698 bool APO = false; 699 /// Helper data for the reordering function. 700 bool IsUsed = false; 701 }; 702 703 /// During operand reordering, we are trying to select the operand at lane 704 /// that matches best with the operand at the neighboring lane. Our 705 /// selection is based on the type of value we are looking for. For example, 706 /// if the neighboring lane has a load, we need to look for a load that is 707 /// accessing a consecutive address. These strategies are summarized in the 708 /// 'ReorderingMode' enumerator. 709 enum class ReorderingMode { 710 Load, ///< Matching loads to consecutive memory addresses 711 Opcode, ///< Matching instructions based on opcode (same or alternate) 712 Constant, ///< Matching constants 713 Splat, ///< Matching the same instruction multiple times (broadcast) 714 Failed, ///< We failed to create a vectorizable group 715 }; 716 717 using OperandDataVec = SmallVector<OperandData, 2>; 718 719 /// A vector of operand vectors. 720 SmallVector<OperandDataVec, 4> OpsVec; 721 722 const DataLayout &DL; 723 ScalarEvolution &SE; 724 725 /// \returns the operand data at \p OpIdx and \p Lane. 726 OperandData &getData(unsigned OpIdx, unsigned Lane) { 727 return OpsVec[OpIdx][Lane]; 728 } 729 730 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 731 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 732 return OpsVec[OpIdx][Lane]; 733 } 734 735 /// Clears the used flag for all entries. 736 void clearUsed() { 737 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 738 OpIdx != NumOperands; ++OpIdx) 739 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 740 ++Lane) 741 OpsVec[OpIdx][Lane].IsUsed = false; 742 } 743 744 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 745 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 746 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 747 } 748 749 // Search all operands in Ops[*][Lane] for the one that matches best 750 // Ops[OpIdx][LastLane] and return its opreand index. 751 // If no good match can be found, return None. 752 Optional<unsigned> 753 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 754 ArrayRef<ReorderingMode> ReorderingModes) { 755 unsigned NumOperands = getNumOperands(); 756 757 // The operand of the previous lane at OpIdx. 758 Value *OpLastLane = getData(OpIdx, LastLane).V; 759 760 // Our strategy mode for OpIdx. 761 ReorderingMode RMode = ReorderingModes[OpIdx]; 762 763 // The linearized opcode of the operand at OpIdx, Lane. 764 bool OpIdxAPO = getData(OpIdx, Lane).APO; 765 766 const unsigned BestScore = 2; 767 const unsigned GoodScore = 1; 768 769 // The best operand index and its score. 770 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 771 // are using the score to differentiate between the two. 772 struct BestOpData { 773 Optional<unsigned> Idx = None; 774 unsigned Score = 0; 775 } BestOp; 776 777 // Iterate through all unused operands and look for the best. 778 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 779 // Get the operand at Idx and Lane. 780 OperandData &OpData = getData(Idx, Lane); 781 Value *Op = OpData.V; 782 bool OpAPO = OpData.APO; 783 784 // Skip already selected operands. 785 if (OpData.IsUsed) 786 continue; 787 788 // Skip if we are trying to move the operand to a position with a 789 // different opcode in the linearized tree form. This would break the 790 // semantics. 791 if (OpAPO != OpIdxAPO) 792 continue; 793 794 // Look for an operand that matches the current mode. 795 switch (RMode) { 796 case ReorderingMode::Load: 797 if (isa<LoadInst>(Op)) { 798 // Figure out which is left and right, so that we can check for 799 // consecutive loads 800 bool LeftToRight = Lane > LastLane; 801 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 802 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 803 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 804 cast<LoadInst>(OpRight), DL, SE)) 805 BestOp.Idx = Idx; 806 } 807 break; 808 case ReorderingMode::Opcode: 809 // We accept both Instructions and Undefs, but with different scores. 810 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 811 cast<Instruction>(Op)->getOpcode() == 812 cast<Instruction>(OpLastLane)->getOpcode()) || 813 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 814 isa<UndefValue>(Op)) { 815 // An instruction has a higher score than an undef. 816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 817 if (Score > BestOp.Score) { 818 BestOp.Idx = Idx; 819 BestOp.Score = Score; 820 } 821 } 822 break; 823 case ReorderingMode::Constant: 824 if (isa<Constant>(Op)) { 825 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 826 if (Score > BestOp.Score) { 827 BestOp.Idx = Idx; 828 BestOp.Score = Score; 829 } 830 } 831 break; 832 case ReorderingMode::Splat: 833 if (Op == OpLastLane) 834 BestOp.Idx = Idx; 835 break; 836 case ReorderingMode::Failed: 837 return None; 838 } 839 } 840 841 if (BestOp.Idx) { 842 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 843 return BestOp.Idx; 844 } 845 // If we could not find a good match return None. 846 return None; 847 } 848 849 /// Helper for reorderOperandVecs. \Returns the lane that we should start 850 /// reordering from. This is the one which has the least number of operands 851 /// that can freely move about. 852 unsigned getBestLaneToStartReordering() const { 853 unsigned BestLane = 0; 854 unsigned Min = UINT_MAX; 855 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 856 ++Lane) { 857 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 858 if (NumFreeOps < Min) { 859 Min = NumFreeOps; 860 BestLane = Lane; 861 } 862 } 863 return BestLane; 864 } 865 866 /// \Returns the maximum number of operands that are allowed to be reordered 867 /// for \p Lane. This is used as a heuristic for selecting the first lane to 868 /// start operand reordering. 869 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 870 unsigned CntTrue = 0; 871 unsigned NumOperands = getNumOperands(); 872 // Operands with the same APO can be reordered. We therefore need to count 873 // how many of them we have for each APO, like this: Cnt[APO] = x. 874 // Since we only have two APOs, namely true and false, we can avoid using 875 // a map. Instead we can simply count the number of operands that 876 // correspond to one of them (in this case the 'true' APO), and calculate 877 // the other by subtracting it from the total number of operands. 878 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 879 if (getData(OpIdx, Lane).APO) 880 ++CntTrue; 881 unsigned CntFalse = NumOperands - CntTrue; 882 return std::max(CntTrue, CntFalse); 883 } 884 885 /// Go through the instructions in VL and append their operands. 886 void appendOperandsOfVL(ArrayRef<Value *> VL) { 887 assert(!VL.empty() && "Bad VL"); 888 assert((empty() || VL.size() == getNumLanes()) && 889 "Expected same number of lanes"); 890 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 891 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 892 OpsVec.resize(NumOperands); 893 unsigned NumLanes = VL.size(); 894 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 895 OpsVec[OpIdx].resize(NumLanes); 896 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 897 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 898 // Our tree has just 3 nodes: the root and two operands. 899 // It is therefore trivial to get the APO. We only need to check the 900 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 901 // RHS operand. The LHS operand of both add and sub is never attached 902 // to an inversese operation in the linearized form, therefore its APO 903 // is false. The RHS is true only if VL[Lane] is an inverse operation. 904 905 // Since operand reordering is performed on groups of commutative 906 // operations or alternating sequences (e.g., +, -), we can safely 907 // tell the inverse operations by checking commutativity. 908 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 909 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 910 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 911 APO, false}; 912 } 913 } 914 } 915 916 /// \returns the number of operands. 917 unsigned getNumOperands() const { return OpsVec.size(); } 918 919 /// \returns the number of lanes. 920 unsigned getNumLanes() const { return OpsVec[0].size(); } 921 922 /// \returns the operand value at \p OpIdx and \p Lane. 923 Value *getValue(unsigned OpIdx, unsigned Lane) const { 924 return getData(OpIdx, Lane).V; 925 } 926 927 /// \returns true if the data structure is empty. 928 bool empty() const { return OpsVec.empty(); } 929 930 /// Clears the data. 931 void clear() { OpsVec.clear(); } 932 933 /// \Returns true if there are enough operands identical to \p Op to fill 934 /// the whole vector. 935 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 936 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 937 bool OpAPO = getData(OpIdx, Lane).APO; 938 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 939 if (Ln == Lane) 940 continue; 941 // This is set to true if we found a candidate for broadcast at Lane. 942 bool FoundCandidate = false; 943 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 944 OperandData &Data = getData(OpI, Ln); 945 if (Data.APO != OpAPO || Data.IsUsed) 946 continue; 947 if (Data.V == Op) { 948 FoundCandidate = true; 949 Data.IsUsed = true; 950 break; 951 } 952 } 953 if (!FoundCandidate) 954 return false; 955 } 956 return true; 957 } 958 959 public: 960 /// Initialize with all the operands of the instruction vector \p RootVL. 961 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 962 ScalarEvolution &SE) 963 : DL(DL), SE(SE) { 964 // Append all the operands of RootVL. 965 appendOperandsOfVL(RootVL); 966 } 967 968 /// \Returns a value vector with the operands across all lanes for the 969 /// opearnd at \p OpIdx. 970 ValueList getVL(unsigned OpIdx) const { 971 ValueList OpVL(OpsVec[OpIdx].size()); 972 assert(OpsVec[OpIdx].size() == getNumLanes() && 973 "Expected same num of lanes across all operands"); 974 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 975 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 976 return OpVL; 977 } 978 979 // Performs operand reordering for 2 or more operands. 980 // The original operands are in OrigOps[OpIdx][Lane]. 981 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 982 void reorder() { 983 unsigned NumOperands = getNumOperands(); 984 unsigned NumLanes = getNumLanes(); 985 // Each operand has its own mode. We are using this mode to help us select 986 // the instructions for each lane, so that they match best with the ones 987 // we have selected so far. 988 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 989 990 // This is a greedy single-pass algorithm. We are going over each lane 991 // once and deciding on the best order right away with no back-tracking. 992 // However, in order to increase its effectiveness, we start with the lane 993 // that has operands that can move the least. For example, given the 994 // following lanes: 995 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 996 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 997 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 998 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 999 // we will start at Lane 1, since the operands of the subtraction cannot 1000 // be reordered. Then we will visit the rest of the lanes in a circular 1001 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1002 1003 // Find the first lane that we will start our search from. 1004 unsigned FirstLane = getBestLaneToStartReordering(); 1005 1006 // Initialize the modes. 1007 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1008 Value *OpLane0 = getValue(OpIdx, FirstLane); 1009 // Keep track if we have instructions with all the same opcode on one 1010 // side. 1011 if (isa<LoadInst>(OpLane0)) 1012 ReorderingModes[OpIdx] = ReorderingMode::Load; 1013 else if (isa<Instruction>(OpLane0)) { 1014 // Check if OpLane0 should be broadcast. 1015 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1016 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1017 else 1018 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1019 } 1020 else if (isa<Constant>(OpLane0)) 1021 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1022 else if (isa<Argument>(OpLane0)) 1023 // Our best hope is a Splat. It may save some cost in some cases. 1024 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1025 else 1026 // NOTE: This should be unreachable. 1027 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1028 } 1029 1030 // If the initial strategy fails for any of the operand indexes, then we 1031 // perform reordering again in a second pass. This helps avoid assigning 1032 // high priority to the failed strategy, and should improve reordering for 1033 // the non-failed operand indexes. 1034 for (int Pass = 0; Pass != 2; ++Pass) { 1035 // Skip the second pass if the first pass did not fail. 1036 bool StrategyFailed = false; 1037 // Mark all operand data as free to use. 1038 clearUsed(); 1039 // We keep the original operand order for the FirstLane, so reorder the 1040 // rest of the lanes. We are visiting the nodes in a circular fashion, 1041 // using FirstLane as the center point and increasing the radius 1042 // distance. 1043 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1044 // Visit the lane on the right and then the lane on the left. 1045 for (int Direction : {+1, -1}) { 1046 int Lane = FirstLane + Direction * Distance; 1047 if (Lane < 0 || Lane >= (int)NumLanes) 1048 continue; 1049 int LastLane = Lane - Direction; 1050 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1051 "Out of bounds"); 1052 // Look for a good match for each operand. 1053 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1054 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1055 Optional<unsigned> BestIdx = 1056 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1057 // By not selecting a value, we allow the operands that follow to 1058 // select a better matching value. We will get a non-null value in 1059 // the next run of getBestOperand(). 1060 if (BestIdx) { 1061 // Swap the current operand with the one returned by 1062 // getBestOperand(). 1063 swap(OpIdx, BestIdx.getValue(), Lane); 1064 } else { 1065 // We failed to find a best operand, set mode to 'Failed'. 1066 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1067 // Enable the second pass. 1068 StrategyFailed = true; 1069 } 1070 } 1071 } 1072 } 1073 // Skip second pass if the strategy did not fail. 1074 if (!StrategyFailed) 1075 break; 1076 } 1077 } 1078 1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1080 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1081 switch (RMode) { 1082 case ReorderingMode::Load: 1083 return "Load"; 1084 case ReorderingMode::Opcode: 1085 return "Opcode"; 1086 case ReorderingMode::Constant: 1087 return "Constant"; 1088 case ReorderingMode::Splat: 1089 return "Splat"; 1090 case ReorderingMode::Failed: 1091 return "Failed"; 1092 } 1093 llvm_unreachable("Unimplemented Reordering Type"); 1094 } 1095 1096 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1097 raw_ostream &OS) { 1098 return OS << getModeStr(RMode); 1099 } 1100 1101 /// Debug print. 1102 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1103 printMode(RMode, dbgs()); 1104 } 1105 1106 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1107 return printMode(RMode, OS); 1108 } 1109 1110 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1111 const unsigned Indent = 2; 1112 unsigned Cnt = 0; 1113 for (const OperandDataVec &OpDataVec : OpsVec) { 1114 OS << "Operand " << Cnt++ << "\n"; 1115 for (const OperandData &OpData : OpDataVec) { 1116 OS.indent(Indent) << "{"; 1117 if (Value *V = OpData.V) 1118 OS << *V; 1119 else 1120 OS << "null"; 1121 OS << ", APO:" << OpData.APO << "}\n"; 1122 } 1123 OS << "\n"; 1124 } 1125 return OS; 1126 } 1127 1128 /// Debug print. 1129 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1130 #endif 1131 }; 1132 1133 /// Checks if the instruction is marked for deletion. 1134 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1135 1136 /// Marks values operands for later deletion by replacing them with Undefs. 1137 void eraseInstructions(ArrayRef<Value *> AV); 1138 1139 ~BoUpSLP(); 1140 1141 private: 1142 /// Checks if all users of \p I are the part of the vectorization tree. 1143 bool areAllUsersVectorized(Instruction *I) const; 1144 1145 /// \returns the cost of the vectorizable entry. 1146 int getEntryCost(TreeEntry *E); 1147 1148 /// This is the recursive part of buildTree. 1149 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1150 const EdgeInfo &EI); 1151 1152 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1153 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1154 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1155 /// returns false, setting \p CurrentOrder to either an empty vector or a 1156 /// non-identity permutation that allows to reuse extract instructions. 1157 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1158 SmallVectorImpl<unsigned> &CurrentOrder) const; 1159 1160 /// Vectorize a single entry in the tree. 1161 Value *vectorizeTree(TreeEntry *E); 1162 1163 /// Vectorize a single entry in the tree, starting in \p VL. 1164 Value *vectorizeTree(ArrayRef<Value *> VL); 1165 1166 /// \returns the scalarization cost for this type. Scalarization in this 1167 /// context means the creation of vectors from a group of scalars. 1168 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1169 1170 /// \returns the scalarization cost for this list of values. Assuming that 1171 /// this subtree gets vectorized, we may need to extract the values from the 1172 /// roots. This method calculates the cost of extracting the values. 1173 int getGatherCost(ArrayRef<Value *> VL) const; 1174 1175 /// Set the Builder insert point to one after the last instruction in 1176 /// the bundle 1177 void setInsertPointAfterBundle(TreeEntry *E); 1178 1179 /// \returns a vector from a collection of scalars in \p VL. 1180 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1181 1182 /// \returns whether the VectorizableTree is fully vectorizable and will 1183 /// be beneficial even the tree height is tiny. 1184 bool isFullyVectorizableTinyTree() const; 1185 1186 /// Reorder commutative or alt operands to get better probability of 1187 /// generating vectorized code. 1188 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1189 SmallVectorImpl<Value *> &Left, 1190 SmallVectorImpl<Value *> &Right, 1191 const DataLayout &DL, 1192 ScalarEvolution &SE); 1193 struct TreeEntry { 1194 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1195 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1196 1197 /// \returns true if the scalars in VL are equal to this entry. 1198 bool isSame(ArrayRef<Value *> VL) const { 1199 if (VL.size() == Scalars.size()) 1200 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1201 return VL.size() == ReuseShuffleIndices.size() && 1202 std::equal( 1203 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1204 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1205 } 1206 1207 /// A vector of scalars. 1208 ValueList Scalars; 1209 1210 /// The Scalars are vectorized into this value. It is initialized to Null. 1211 Value *VectorizedValue = nullptr; 1212 1213 /// Do we need to gather this sequence ? 1214 bool NeedToGather = false; 1215 1216 /// Does this sequence require some shuffling? 1217 SmallVector<unsigned, 4> ReuseShuffleIndices; 1218 1219 /// Does this entry require reordering? 1220 ArrayRef<unsigned> ReorderIndices; 1221 1222 /// Points back to the VectorizableTree. 1223 /// 1224 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1225 /// to be a pointer and needs to be able to initialize the child iterator. 1226 /// Thus we need a reference back to the container to translate the indices 1227 /// to entries. 1228 VecTreeTy &Container; 1229 1230 /// The TreeEntry index containing the user of this entry. We can actually 1231 /// have multiple users so the data structure is not truly a tree. 1232 SmallVector<EdgeInfo, 1> UserTreeIndices; 1233 1234 /// The index of this treeEntry in VectorizableTree. 1235 int Idx = -1; 1236 1237 private: 1238 /// The operands of each instruction in each lane Operands[op_index][lane]. 1239 /// Note: This helps avoid the replication of the code that performs the 1240 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1241 SmallVector<ValueList, 2> Operands; 1242 1243 /// The main/alternate instruction. 1244 Instruction *MainOp = nullptr; 1245 Instruction *AltOp = nullptr; 1246 1247 public: 1248 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1249 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1250 if (Operands.size() < OpIdx + 1) 1251 Operands.resize(OpIdx + 1); 1252 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1253 Operands[OpIdx].resize(Scalars.size()); 1254 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1255 Operands[OpIdx][Lane] = OpVL[Lane]; 1256 } 1257 1258 /// Set the operands of this bundle in their original order. 1259 void setOperandsInOrder() { 1260 assert(Operands.empty() && "Already initialized?"); 1261 auto *I0 = cast<Instruction>(Scalars[0]); 1262 Operands.resize(I0->getNumOperands()); 1263 unsigned NumLanes = Scalars.size(); 1264 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1265 OpIdx != NumOperands; ++OpIdx) { 1266 Operands[OpIdx].resize(NumLanes); 1267 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1268 auto *I = cast<Instruction>(Scalars[Lane]); 1269 assert(I->getNumOperands() == NumOperands && 1270 "Expected same number of operands"); 1271 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1272 } 1273 } 1274 } 1275 1276 /// \returns the \p OpIdx operand of this TreeEntry. 1277 ValueList &getOperand(unsigned OpIdx) { 1278 assert(OpIdx < Operands.size() && "Off bounds"); 1279 return Operands[OpIdx]; 1280 } 1281 1282 /// \returns the number of operands. 1283 unsigned getNumOperands() const { return Operands.size(); } 1284 1285 /// \return the single \p OpIdx operand. 1286 Value *getSingleOperand(unsigned OpIdx) const { 1287 assert(OpIdx < Operands.size() && "Off bounds"); 1288 assert(!Operands[OpIdx].empty() && "No operand available"); 1289 return Operands[OpIdx][0]; 1290 } 1291 1292 /// Some of the instructions in the list have alternate opcodes. 1293 bool isAltShuffle() const { 1294 return getOpcode() != getAltOpcode(); 1295 } 1296 1297 bool isOpcodeOrAlt(Instruction *I) const { 1298 unsigned CheckedOpcode = I->getOpcode(); 1299 return (getOpcode() == CheckedOpcode || 1300 getAltOpcode() == CheckedOpcode); 1301 } 1302 1303 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1304 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1305 /// \p OpValue. 1306 Value *isOneOf(Value *Op) const { 1307 auto *I = dyn_cast<Instruction>(Op); 1308 if (I && isOpcodeOrAlt(I)) 1309 return Op; 1310 return MainOp; 1311 } 1312 1313 void setOperations(const InstructionsState &S) { 1314 MainOp = S.MainOp; 1315 AltOp = S.AltOp; 1316 } 1317 1318 Instruction *getMainOp() const { 1319 return MainOp; 1320 } 1321 1322 Instruction *getAltOp() const { 1323 return AltOp; 1324 } 1325 1326 /// The main/alternate opcodes for the list of instructions. 1327 unsigned getOpcode() const { 1328 return MainOp ? MainOp->getOpcode() : 0; 1329 } 1330 1331 unsigned getAltOpcode() const { 1332 return AltOp ? AltOp->getOpcode() : 0; 1333 } 1334 1335 /// Update operations state of this entry if reorder occurred. 1336 bool updateStateIfReorder() { 1337 if (ReorderIndices.empty()) 1338 return false; 1339 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1340 setOperations(S); 1341 return true; 1342 } 1343 1344 #ifndef NDEBUG 1345 /// Debug printer. 1346 LLVM_DUMP_METHOD void dump() const { 1347 dbgs() << Idx << ".\n"; 1348 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1349 dbgs() << "Operand " << OpI << ":\n"; 1350 for (const Value *V : Operands[OpI]) 1351 dbgs().indent(2) << *V << "\n"; 1352 } 1353 dbgs() << "Scalars: \n"; 1354 for (Value *V : Scalars) 1355 dbgs().indent(2) << *V << "\n"; 1356 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1357 dbgs() << "MainOp: " << *MainOp << "\n"; 1358 dbgs() << "AltOp: " << *AltOp << "\n"; 1359 dbgs() << "VectorizedValue: "; 1360 if (VectorizedValue) 1361 dbgs() << *VectorizedValue; 1362 else 1363 dbgs() << "NULL"; 1364 dbgs() << "\n"; 1365 dbgs() << "ReuseShuffleIndices: "; 1366 if (ReuseShuffleIndices.empty()) 1367 dbgs() << "Emtpy"; 1368 else 1369 for (unsigned ReuseIdx : ReuseShuffleIndices) 1370 dbgs() << ReuseIdx << ", "; 1371 dbgs() << "\n"; 1372 dbgs() << "ReorderIndices: "; 1373 for (unsigned ReorderIdx : ReorderIndices) 1374 dbgs() << ReorderIdx << ", "; 1375 dbgs() << "\n"; 1376 dbgs() << "UserTreeIndices: "; 1377 for (const auto &EInfo : UserTreeIndices) 1378 dbgs() << EInfo << ", "; 1379 dbgs() << "\n"; 1380 } 1381 #endif 1382 }; 1383 1384 /// Create a new VectorizableTree entry. 1385 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1386 const InstructionsState &S, 1387 const EdgeInfo &UserTreeIdx, 1388 ArrayRef<unsigned> ReuseShuffleIndices = None, 1389 ArrayRef<unsigned> ReorderIndices = None) { 1390 bool Vectorized = (bool)Bundle; 1391 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1392 TreeEntry *Last = VectorizableTree.back().get(); 1393 Last->Idx = VectorizableTree.size() - 1; 1394 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1395 Last->NeedToGather = !Vectorized; 1396 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1397 ReuseShuffleIndices.end()); 1398 Last->ReorderIndices = ReorderIndices; 1399 Last->setOperations(S); 1400 if (Vectorized) { 1401 for (int i = 0, e = VL.size(); i != e; ++i) { 1402 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1403 ScalarToTreeEntry[VL[i]] = Last; 1404 } 1405 // Update the scheduler bundle to point to this TreeEntry. 1406 unsigned Lane = 0; 1407 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1408 BundleMember = BundleMember->NextInBundle) { 1409 BundleMember->TE = Last; 1410 BundleMember->Lane = Lane; 1411 ++Lane; 1412 } 1413 assert((!Bundle.getValue() || Lane == VL.size()) && 1414 "Bundle and VL out of sync"); 1415 } else { 1416 MustGather.insert(VL.begin(), VL.end()); 1417 } 1418 1419 if (UserTreeIdx.UserTE) 1420 Last->UserTreeIndices.push_back(UserTreeIdx); 1421 1422 return Last; 1423 } 1424 1425 /// -- Vectorization State -- 1426 /// Holds all of the tree entries. 1427 TreeEntry::VecTreeTy VectorizableTree; 1428 1429 #ifndef NDEBUG 1430 /// Debug printer. 1431 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1432 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1433 VectorizableTree[Id]->dump(); 1434 dbgs() << "\n"; 1435 } 1436 } 1437 #endif 1438 1439 TreeEntry *getTreeEntry(Value *V) { 1440 auto I = ScalarToTreeEntry.find(V); 1441 if (I != ScalarToTreeEntry.end()) 1442 return I->second; 1443 return nullptr; 1444 } 1445 1446 const TreeEntry *getTreeEntry(Value *V) const { 1447 auto I = ScalarToTreeEntry.find(V); 1448 if (I != ScalarToTreeEntry.end()) 1449 return I->second; 1450 return nullptr; 1451 } 1452 1453 /// Maps a specific scalar to its tree entry. 1454 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1455 1456 /// A list of scalars that we found that we need to keep as scalars. 1457 ValueSet MustGather; 1458 1459 /// This POD struct describes one external user in the vectorized tree. 1460 struct ExternalUser { 1461 ExternalUser(Value *S, llvm::User *U, int L) 1462 : Scalar(S), User(U), Lane(L) {} 1463 1464 // Which scalar in our function. 1465 Value *Scalar; 1466 1467 // Which user that uses the scalar. 1468 llvm::User *User; 1469 1470 // Which lane does the scalar belong to. 1471 int Lane; 1472 }; 1473 using UserList = SmallVector<ExternalUser, 16>; 1474 1475 /// Checks if two instructions may access the same memory. 1476 /// 1477 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1478 /// is invariant in the calling loop. 1479 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1480 Instruction *Inst2) { 1481 // First check if the result is already in the cache. 1482 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1483 Optional<bool> &result = AliasCache[key]; 1484 if (result.hasValue()) { 1485 return result.getValue(); 1486 } 1487 MemoryLocation Loc2 = getLocation(Inst2, AA); 1488 bool aliased = true; 1489 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1490 // Do the alias check. 1491 aliased = AA->alias(Loc1, Loc2); 1492 } 1493 // Store the result in the cache. 1494 result = aliased; 1495 return aliased; 1496 } 1497 1498 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1499 1500 /// Cache for alias results. 1501 /// TODO: consider moving this to the AliasAnalysis itself. 1502 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1503 1504 /// Removes an instruction from its block and eventually deletes it. 1505 /// It's like Instruction::eraseFromParent() except that the actual deletion 1506 /// is delayed until BoUpSLP is destructed. 1507 /// This is required to ensure that there are no incorrect collisions in the 1508 /// AliasCache, which can happen if a new instruction is allocated at the 1509 /// same address as a previously deleted instruction. 1510 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1511 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1512 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1513 } 1514 1515 /// Temporary store for deleted instructions. Instructions will be deleted 1516 /// eventually when the BoUpSLP is destructed. 1517 DenseMap<Instruction *, bool> DeletedInstructions; 1518 1519 /// A list of values that need to extracted out of the tree. 1520 /// This list holds pairs of (Internal Scalar : External User). External User 1521 /// can be nullptr, it means that this Internal Scalar will be used later, 1522 /// after vectorization. 1523 UserList ExternalUses; 1524 1525 /// Values used only by @llvm.assume calls. 1526 SmallPtrSet<const Value *, 32> EphValues; 1527 1528 /// Holds all of the instructions that we gathered. 1529 SetVector<Instruction *> GatherSeq; 1530 1531 /// A list of blocks that we are going to CSE. 1532 SetVector<BasicBlock *> CSEBlocks; 1533 1534 /// Contains all scheduling relevant data for an instruction. 1535 /// A ScheduleData either represents a single instruction or a member of an 1536 /// instruction bundle (= a group of instructions which is combined into a 1537 /// vector instruction). 1538 struct ScheduleData { 1539 // The initial value for the dependency counters. It means that the 1540 // dependencies are not calculated yet. 1541 enum { InvalidDeps = -1 }; 1542 1543 ScheduleData() = default; 1544 1545 void init(int BlockSchedulingRegionID, Value *OpVal) { 1546 FirstInBundle = this; 1547 NextInBundle = nullptr; 1548 NextLoadStore = nullptr; 1549 IsScheduled = false; 1550 SchedulingRegionID = BlockSchedulingRegionID; 1551 UnscheduledDepsInBundle = UnscheduledDeps; 1552 clearDependencies(); 1553 OpValue = OpVal; 1554 TE = nullptr; 1555 Lane = -1; 1556 } 1557 1558 /// Returns true if the dependency information has been calculated. 1559 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1560 1561 /// Returns true for single instructions and for bundle representatives 1562 /// (= the head of a bundle). 1563 bool isSchedulingEntity() const { return FirstInBundle == this; } 1564 1565 /// Returns true if it represents an instruction bundle and not only a 1566 /// single instruction. 1567 bool isPartOfBundle() const { 1568 return NextInBundle != nullptr || FirstInBundle != this; 1569 } 1570 1571 /// Returns true if it is ready for scheduling, i.e. it has no more 1572 /// unscheduled depending instructions/bundles. 1573 bool isReady() const { 1574 assert(isSchedulingEntity() && 1575 "can't consider non-scheduling entity for ready list"); 1576 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1577 } 1578 1579 /// Modifies the number of unscheduled dependencies, also updating it for 1580 /// the whole bundle. 1581 int incrementUnscheduledDeps(int Incr) { 1582 UnscheduledDeps += Incr; 1583 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1584 } 1585 1586 /// Sets the number of unscheduled dependencies to the number of 1587 /// dependencies. 1588 void resetUnscheduledDeps() { 1589 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1590 } 1591 1592 /// Clears all dependency information. 1593 void clearDependencies() { 1594 Dependencies = InvalidDeps; 1595 resetUnscheduledDeps(); 1596 MemoryDependencies.clear(); 1597 } 1598 1599 void dump(raw_ostream &os) const { 1600 if (!isSchedulingEntity()) { 1601 os << "/ " << *Inst; 1602 } else if (NextInBundle) { 1603 os << '[' << *Inst; 1604 ScheduleData *SD = NextInBundle; 1605 while (SD) { 1606 os << ';' << *SD->Inst; 1607 SD = SD->NextInBundle; 1608 } 1609 os << ']'; 1610 } else { 1611 os << *Inst; 1612 } 1613 } 1614 1615 Instruction *Inst = nullptr; 1616 1617 /// Points to the head in an instruction bundle (and always to this for 1618 /// single instructions). 1619 ScheduleData *FirstInBundle = nullptr; 1620 1621 /// Single linked list of all instructions in a bundle. Null if it is a 1622 /// single instruction. 1623 ScheduleData *NextInBundle = nullptr; 1624 1625 /// Single linked list of all memory instructions (e.g. load, store, call) 1626 /// in the block - until the end of the scheduling region. 1627 ScheduleData *NextLoadStore = nullptr; 1628 1629 /// The dependent memory instructions. 1630 /// This list is derived on demand in calculateDependencies(). 1631 SmallVector<ScheduleData *, 4> MemoryDependencies; 1632 1633 /// This ScheduleData is in the current scheduling region if this matches 1634 /// the current SchedulingRegionID of BlockScheduling. 1635 int SchedulingRegionID = 0; 1636 1637 /// Used for getting a "good" final ordering of instructions. 1638 int SchedulingPriority = 0; 1639 1640 /// The number of dependencies. Constitutes of the number of users of the 1641 /// instruction plus the number of dependent memory instructions (if any). 1642 /// This value is calculated on demand. 1643 /// If InvalidDeps, the number of dependencies is not calculated yet. 1644 int Dependencies = InvalidDeps; 1645 1646 /// The number of dependencies minus the number of dependencies of scheduled 1647 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1648 /// for scheduling. 1649 /// Note that this is negative as long as Dependencies is not calculated. 1650 int UnscheduledDeps = InvalidDeps; 1651 1652 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1653 /// single instructions. 1654 int UnscheduledDepsInBundle = InvalidDeps; 1655 1656 /// True if this instruction is scheduled (or considered as scheduled in the 1657 /// dry-run). 1658 bool IsScheduled = false; 1659 1660 /// Opcode of the current instruction in the schedule data. 1661 Value *OpValue = nullptr; 1662 1663 /// The TreeEntry that this instruction corresponds to. 1664 TreeEntry *TE = nullptr; 1665 1666 /// The lane of this node in the TreeEntry. 1667 int Lane = -1; 1668 }; 1669 1670 #ifndef NDEBUG 1671 friend inline raw_ostream &operator<<(raw_ostream &os, 1672 const BoUpSLP::ScheduleData &SD) { 1673 SD.dump(os); 1674 return os; 1675 } 1676 #endif 1677 1678 friend struct GraphTraits<BoUpSLP *>; 1679 friend struct DOTGraphTraits<BoUpSLP *>; 1680 1681 /// Contains all scheduling data for a basic block. 1682 struct BlockScheduling { 1683 BlockScheduling(BasicBlock *BB) 1684 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1685 1686 void clear() { 1687 ReadyInsts.clear(); 1688 ScheduleStart = nullptr; 1689 ScheduleEnd = nullptr; 1690 FirstLoadStoreInRegion = nullptr; 1691 LastLoadStoreInRegion = nullptr; 1692 1693 // Reduce the maximum schedule region size by the size of the 1694 // previous scheduling run. 1695 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1696 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1697 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1698 ScheduleRegionSize = 0; 1699 1700 // Make a new scheduling region, i.e. all existing ScheduleData is not 1701 // in the new region yet. 1702 ++SchedulingRegionID; 1703 } 1704 1705 ScheduleData *getScheduleData(Value *V) { 1706 ScheduleData *SD = ScheduleDataMap[V]; 1707 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1708 return SD; 1709 return nullptr; 1710 } 1711 1712 ScheduleData *getScheduleData(Value *V, Value *Key) { 1713 if (V == Key) 1714 return getScheduleData(V); 1715 auto I = ExtraScheduleDataMap.find(V); 1716 if (I != ExtraScheduleDataMap.end()) { 1717 ScheduleData *SD = I->second[Key]; 1718 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1719 return SD; 1720 } 1721 return nullptr; 1722 } 1723 1724 bool isInSchedulingRegion(ScheduleData *SD) { 1725 return SD->SchedulingRegionID == SchedulingRegionID; 1726 } 1727 1728 /// Marks an instruction as scheduled and puts all dependent ready 1729 /// instructions into the ready-list. 1730 template <typename ReadyListType> 1731 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1732 SD->IsScheduled = true; 1733 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1734 1735 ScheduleData *BundleMember = SD; 1736 while (BundleMember) { 1737 if (BundleMember->Inst != BundleMember->OpValue) { 1738 BundleMember = BundleMember->NextInBundle; 1739 continue; 1740 } 1741 // Handle the def-use chain dependencies. 1742 1743 // Decrement the unscheduled counter and insert to ready list if ready. 1744 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1745 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1746 if (OpDef && OpDef->hasValidDependencies() && 1747 OpDef->incrementUnscheduledDeps(-1) == 0) { 1748 // There are no more unscheduled dependencies after 1749 // decrementing, so we can put the dependent instruction 1750 // into the ready list. 1751 ScheduleData *DepBundle = OpDef->FirstInBundle; 1752 assert(!DepBundle->IsScheduled && 1753 "already scheduled bundle gets ready"); 1754 ReadyList.insert(DepBundle); 1755 LLVM_DEBUG(dbgs() 1756 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1757 } 1758 }); 1759 }; 1760 1761 // If BundleMember is a vector bundle, its operands may have been 1762 // reordered duiring buildTree(). We therefore need to get its operands 1763 // through the TreeEntry. 1764 if (TreeEntry *TE = BundleMember->TE) { 1765 int Lane = BundleMember->Lane; 1766 assert(Lane >= 0 && "Lane not set"); 1767 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1768 OpIdx != NumOperands; ++OpIdx) 1769 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1770 DecrUnsched(I); 1771 } else { 1772 // If BundleMember is a stand-alone instruction, no operand reordering 1773 // has taken place, so we directly access its operands. 1774 for (Use &U : BundleMember->Inst->operands()) 1775 if (auto *I = dyn_cast<Instruction>(U.get())) 1776 DecrUnsched(I); 1777 } 1778 // Handle the memory dependencies. 1779 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1780 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1781 // There are no more unscheduled dependencies after decrementing, 1782 // so we can put the dependent instruction into the ready list. 1783 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1784 assert(!DepBundle->IsScheduled && 1785 "already scheduled bundle gets ready"); 1786 ReadyList.insert(DepBundle); 1787 LLVM_DEBUG(dbgs() 1788 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1789 } 1790 } 1791 BundleMember = BundleMember->NextInBundle; 1792 } 1793 } 1794 1795 void doForAllOpcodes(Value *V, 1796 function_ref<void(ScheduleData *SD)> Action) { 1797 if (ScheduleData *SD = getScheduleData(V)) 1798 Action(SD); 1799 auto I = ExtraScheduleDataMap.find(V); 1800 if (I != ExtraScheduleDataMap.end()) 1801 for (auto &P : I->second) 1802 if (P.second->SchedulingRegionID == SchedulingRegionID) 1803 Action(P.second); 1804 } 1805 1806 /// Put all instructions into the ReadyList which are ready for scheduling. 1807 template <typename ReadyListType> 1808 void initialFillReadyList(ReadyListType &ReadyList) { 1809 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1810 doForAllOpcodes(I, [&](ScheduleData *SD) { 1811 if (SD->isSchedulingEntity() && SD->isReady()) { 1812 ReadyList.insert(SD); 1813 LLVM_DEBUG(dbgs() 1814 << "SLP: initially in ready list: " << *I << "\n"); 1815 } 1816 }); 1817 } 1818 } 1819 1820 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1821 /// cyclic dependencies. This is only a dry-run, no instructions are 1822 /// actually moved at this stage. 1823 /// \returns the scheduling bundle. The returned Optional value is non-None 1824 /// if \p VL is allowed to be scheduled. 1825 Optional<ScheduleData *> 1826 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1827 const InstructionsState &S); 1828 1829 /// Un-bundles a group of instructions. 1830 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1831 1832 /// Allocates schedule data chunk. 1833 ScheduleData *allocateScheduleDataChunks(); 1834 1835 /// Extends the scheduling region so that V is inside the region. 1836 /// \returns true if the region size is within the limit. 1837 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1838 1839 /// Initialize the ScheduleData structures for new instructions in the 1840 /// scheduling region. 1841 void initScheduleData(Instruction *FromI, Instruction *ToI, 1842 ScheduleData *PrevLoadStore, 1843 ScheduleData *NextLoadStore); 1844 1845 /// Updates the dependency information of a bundle and of all instructions/ 1846 /// bundles which depend on the original bundle. 1847 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1848 BoUpSLP *SLP); 1849 1850 /// Sets all instruction in the scheduling region to un-scheduled. 1851 void resetSchedule(); 1852 1853 BasicBlock *BB; 1854 1855 /// Simple memory allocation for ScheduleData. 1856 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1857 1858 /// The size of a ScheduleData array in ScheduleDataChunks. 1859 int ChunkSize; 1860 1861 /// The allocator position in the current chunk, which is the last entry 1862 /// of ScheduleDataChunks. 1863 int ChunkPos; 1864 1865 /// Attaches ScheduleData to Instruction. 1866 /// Note that the mapping survives during all vectorization iterations, i.e. 1867 /// ScheduleData structures are recycled. 1868 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1869 1870 /// Attaches ScheduleData to Instruction with the leading key. 1871 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1872 ExtraScheduleDataMap; 1873 1874 struct ReadyList : SmallVector<ScheduleData *, 8> { 1875 void insert(ScheduleData *SD) { push_back(SD); } 1876 }; 1877 1878 /// The ready-list for scheduling (only used for the dry-run). 1879 ReadyList ReadyInsts; 1880 1881 /// The first instruction of the scheduling region. 1882 Instruction *ScheduleStart = nullptr; 1883 1884 /// The first instruction _after_ the scheduling region. 1885 Instruction *ScheduleEnd = nullptr; 1886 1887 /// The first memory accessing instruction in the scheduling region 1888 /// (can be null). 1889 ScheduleData *FirstLoadStoreInRegion = nullptr; 1890 1891 /// The last memory accessing instruction in the scheduling region 1892 /// (can be null). 1893 ScheduleData *LastLoadStoreInRegion = nullptr; 1894 1895 /// The current size of the scheduling region. 1896 int ScheduleRegionSize = 0; 1897 1898 /// The maximum size allowed for the scheduling region. 1899 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1900 1901 /// The ID of the scheduling region. For a new vectorization iteration this 1902 /// is incremented which "removes" all ScheduleData from the region. 1903 // Make sure that the initial SchedulingRegionID is greater than the 1904 // initial SchedulingRegionID in ScheduleData (which is 0). 1905 int SchedulingRegionID = 1; 1906 }; 1907 1908 /// Attaches the BlockScheduling structures to basic blocks. 1909 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1910 1911 /// Performs the "real" scheduling. Done before vectorization is actually 1912 /// performed in a basic block. 1913 void scheduleBlock(BlockScheduling *BS); 1914 1915 /// List of users to ignore during scheduling and that don't need extracting. 1916 ArrayRef<Value *> UserIgnoreList; 1917 1918 using OrdersType = SmallVector<unsigned, 4>; 1919 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1920 /// sorted SmallVectors of unsigned. 1921 struct OrdersTypeDenseMapInfo { 1922 static OrdersType getEmptyKey() { 1923 OrdersType V; 1924 V.push_back(~1U); 1925 return V; 1926 } 1927 1928 static OrdersType getTombstoneKey() { 1929 OrdersType V; 1930 V.push_back(~2U); 1931 return V; 1932 } 1933 1934 static unsigned getHashValue(const OrdersType &V) { 1935 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1936 } 1937 1938 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1939 return LHS == RHS; 1940 } 1941 }; 1942 1943 /// Contains orders of operations along with the number of bundles that have 1944 /// operations in this order. It stores only those orders that require 1945 /// reordering, if reordering is not required it is counted using \a 1946 /// NumOpsWantToKeepOriginalOrder. 1947 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1948 /// Number of bundles that do not require reordering. 1949 unsigned NumOpsWantToKeepOriginalOrder = 0; 1950 1951 // Analysis and block reference. 1952 Function *F; 1953 ScalarEvolution *SE; 1954 TargetTransformInfo *TTI; 1955 TargetLibraryInfo *TLI; 1956 AliasAnalysis *AA; 1957 LoopInfo *LI; 1958 DominatorTree *DT; 1959 AssumptionCache *AC; 1960 DemandedBits *DB; 1961 const DataLayout *DL; 1962 OptimizationRemarkEmitter *ORE; 1963 1964 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1965 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1966 1967 /// Instruction builder to construct the vectorized tree. 1968 IRBuilder<> Builder; 1969 1970 /// A map of scalar integer values to the smallest bit width with which they 1971 /// can legally be represented. The values map to (width, signed) pairs, 1972 /// where "width" indicates the minimum bit width and "signed" is True if the 1973 /// value must be signed-extended, rather than zero-extended, back to its 1974 /// original width. 1975 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1976 }; 1977 1978 } // end namespace slpvectorizer 1979 1980 template <> struct GraphTraits<BoUpSLP *> { 1981 using TreeEntry = BoUpSLP::TreeEntry; 1982 1983 /// NodeRef has to be a pointer per the GraphWriter. 1984 using NodeRef = TreeEntry *; 1985 1986 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1987 1988 /// Add the VectorizableTree to the index iterator to be able to return 1989 /// TreeEntry pointers. 1990 struct ChildIteratorType 1991 : public iterator_adaptor_base< 1992 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1993 ContainerTy &VectorizableTree; 1994 1995 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1996 ContainerTy &VT) 1997 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1998 1999 NodeRef operator*() { return I->UserTE; } 2000 }; 2001 2002 static NodeRef getEntryNode(BoUpSLP &R) { 2003 return R.VectorizableTree[0].get(); 2004 } 2005 2006 static ChildIteratorType child_begin(NodeRef N) { 2007 return {N->UserTreeIndices.begin(), N->Container}; 2008 } 2009 2010 static ChildIteratorType child_end(NodeRef N) { 2011 return {N->UserTreeIndices.end(), N->Container}; 2012 } 2013 2014 /// For the node iterator we just need to turn the TreeEntry iterator into a 2015 /// TreeEntry* iterator so that it dereferences to NodeRef. 2016 class nodes_iterator { 2017 using ItTy = ContainerTy::iterator; 2018 ItTy It; 2019 2020 public: 2021 nodes_iterator(const ItTy &It2) : It(It2) {} 2022 NodeRef operator*() { return It->get(); } 2023 nodes_iterator operator++() { 2024 ++It; 2025 return *this; 2026 } 2027 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2028 }; 2029 2030 static nodes_iterator nodes_begin(BoUpSLP *R) { 2031 return nodes_iterator(R->VectorizableTree.begin()); 2032 } 2033 2034 static nodes_iterator nodes_end(BoUpSLP *R) { 2035 return nodes_iterator(R->VectorizableTree.end()); 2036 } 2037 2038 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2039 }; 2040 2041 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2042 using TreeEntry = BoUpSLP::TreeEntry; 2043 2044 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2045 2046 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2047 std::string Str; 2048 raw_string_ostream OS(Str); 2049 if (isSplat(Entry->Scalars)) { 2050 OS << "<splat> " << *Entry->Scalars[0]; 2051 return Str; 2052 } 2053 for (auto V : Entry->Scalars) { 2054 OS << *V; 2055 if (std::any_of( 2056 R->ExternalUses.begin(), R->ExternalUses.end(), 2057 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2058 OS << " <extract>"; 2059 OS << "\n"; 2060 } 2061 return Str; 2062 } 2063 2064 static std::string getNodeAttributes(const TreeEntry *Entry, 2065 const BoUpSLP *) { 2066 if (Entry->NeedToGather) 2067 return "color=red"; 2068 return ""; 2069 } 2070 }; 2071 2072 } // end namespace llvm 2073 2074 BoUpSLP::~BoUpSLP() { 2075 for (const auto &Pair : DeletedInstructions) { 2076 // Replace operands of ignored instructions with Undefs in case if they were 2077 // marked for deletion. 2078 if (Pair.getSecond()) { 2079 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2080 Pair.getFirst()->replaceAllUsesWith(Undef); 2081 } 2082 Pair.getFirst()->dropAllReferences(); 2083 } 2084 for (const auto &Pair : DeletedInstructions) { 2085 assert(Pair.getFirst()->use_empty() && 2086 "trying to erase instruction with users."); 2087 Pair.getFirst()->eraseFromParent(); 2088 } 2089 } 2090 2091 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2092 for (auto *V : AV) { 2093 if (auto *I = dyn_cast<Instruction>(V)) 2094 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2095 }; 2096 } 2097 2098 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2099 ArrayRef<Value *> UserIgnoreLst) { 2100 ExtraValueToDebugLocsMap ExternallyUsedValues; 2101 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2102 } 2103 2104 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2105 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2106 ArrayRef<Value *> UserIgnoreLst) { 2107 deleteTree(); 2108 UserIgnoreList = UserIgnoreLst; 2109 if (!allSameType(Roots)) 2110 return; 2111 buildTree_rec(Roots, 0, EdgeInfo()); 2112 2113 // Collect the values that we need to extract from the tree. 2114 for (auto &TEPtr : VectorizableTree) { 2115 TreeEntry *Entry = TEPtr.get(); 2116 2117 // No need to handle users of gathered values. 2118 if (Entry->NeedToGather) 2119 continue; 2120 2121 // For each lane: 2122 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2123 Value *Scalar = Entry->Scalars[Lane]; 2124 int FoundLane = Lane; 2125 if (!Entry->ReuseShuffleIndices.empty()) { 2126 FoundLane = 2127 std::distance(Entry->ReuseShuffleIndices.begin(), 2128 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2129 } 2130 2131 // Check if the scalar is externally used as an extra arg. 2132 auto ExtI = ExternallyUsedValues.find(Scalar); 2133 if (ExtI != ExternallyUsedValues.end()) { 2134 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2135 << Lane << " from " << *Scalar << ".\n"); 2136 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2137 } 2138 for (User *U : Scalar->users()) { 2139 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2140 2141 Instruction *UserInst = dyn_cast<Instruction>(U); 2142 if (!UserInst) 2143 continue; 2144 2145 // Skip in-tree scalars that become vectors 2146 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2147 Value *UseScalar = UseEntry->Scalars[0]; 2148 // Some in-tree scalars will remain as scalar in vectorized 2149 // instructions. If that is the case, the one in Lane 0 will 2150 // be used. 2151 if (UseScalar != U || 2152 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2153 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2154 << ".\n"); 2155 assert(!UseEntry->NeedToGather && "Bad state"); 2156 continue; 2157 } 2158 } 2159 2160 // Ignore users in the user ignore list. 2161 if (is_contained(UserIgnoreList, UserInst)) 2162 continue; 2163 2164 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2165 << Lane << " from " << *Scalar << ".\n"); 2166 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2167 } 2168 } 2169 } 2170 } 2171 2172 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2173 const EdgeInfo &UserTreeIdx) { 2174 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2175 2176 InstructionsState S = getSameOpcode(VL); 2177 if (Depth == RecursionMaxDepth) { 2178 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2179 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2180 return; 2181 } 2182 2183 // Don't handle vectors. 2184 if (S.OpValue->getType()->isVectorTy()) { 2185 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2186 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2187 return; 2188 } 2189 2190 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2191 if (SI->getValueOperand()->getType()->isVectorTy()) { 2192 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2194 return; 2195 } 2196 2197 // If all of the operands are identical or constant we have a simple solution. 2198 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2199 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2201 return; 2202 } 2203 2204 // We now know that this is a vector of instructions of the same type from 2205 // the same block. 2206 2207 // Don't vectorize ephemeral values. 2208 for (Value *V : VL) { 2209 if (EphValues.count(V)) { 2210 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2211 << ") is ephemeral.\n"); 2212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2213 return; 2214 } 2215 } 2216 2217 // Check if this is a duplicate of another entry. 2218 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2219 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2220 if (!E->isSame(VL)) { 2221 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2222 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2223 return; 2224 } 2225 // Record the reuse of the tree node. FIXME, currently this is only used to 2226 // properly draw the graph rather than for the actual vectorization. 2227 E->UserTreeIndices.push_back(UserTreeIdx); 2228 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2229 << ".\n"); 2230 return; 2231 } 2232 2233 // Check that none of the instructions in the bundle are already in the tree. 2234 for (Value *V : VL) { 2235 auto *I = dyn_cast<Instruction>(V); 2236 if (!I) 2237 continue; 2238 if (getTreeEntry(I)) { 2239 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2240 << ") is already in tree.\n"); 2241 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2242 return; 2243 } 2244 } 2245 2246 // If any of the scalars is marked as a value that needs to stay scalar, then 2247 // we need to gather the scalars. 2248 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2249 for (Value *V : VL) { 2250 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2251 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2252 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2253 return; 2254 } 2255 } 2256 2257 // Check that all of the users of the scalars that we want to vectorize are 2258 // schedulable. 2259 auto *VL0 = cast<Instruction>(S.OpValue); 2260 BasicBlock *BB = VL0->getParent(); 2261 2262 if (!DT->isReachableFromEntry(BB)) { 2263 // Don't go into unreachable blocks. They may contain instructions with 2264 // dependency cycles which confuse the final scheduling. 2265 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2266 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2267 return; 2268 } 2269 2270 // Check that every instruction appears once in this bundle. 2271 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2272 SmallVector<Value *, 4> UniqueValues; 2273 DenseMap<Value *, unsigned> UniquePositions; 2274 for (Value *V : VL) { 2275 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2276 ReuseShuffleIndicies.emplace_back(Res.first->second); 2277 if (Res.second) 2278 UniqueValues.emplace_back(V); 2279 } 2280 size_t NumUniqueScalarValues = UniqueValues.size(); 2281 if (NumUniqueScalarValues == VL.size()) { 2282 ReuseShuffleIndicies.clear(); 2283 } else { 2284 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2285 if (NumUniqueScalarValues <= 1 || 2286 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2287 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2289 return; 2290 } 2291 VL = UniqueValues; 2292 } 2293 2294 auto &BSRef = BlocksSchedules[BB]; 2295 if (!BSRef) 2296 BSRef = std::make_unique<BlockScheduling>(BB); 2297 2298 BlockScheduling &BS = *BSRef.get(); 2299 2300 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2301 if (!Bundle) { 2302 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2303 assert((!BS.getScheduleData(VL0) || 2304 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2305 "tryScheduleBundle should cancelScheduling on failure"); 2306 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2307 ReuseShuffleIndicies); 2308 return; 2309 } 2310 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2311 2312 unsigned ShuffleOrOp = S.isAltShuffle() ? 2313 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2314 switch (ShuffleOrOp) { 2315 case Instruction::PHI: { 2316 auto *PH = cast<PHINode>(VL0); 2317 2318 // Check for terminator values (e.g. invoke). 2319 for (unsigned j = 0; j < VL.size(); ++j) 2320 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2321 Instruction *Term = dyn_cast<Instruction>( 2322 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2323 PH->getIncomingBlock(i))); 2324 if (Term && Term->isTerminator()) { 2325 LLVM_DEBUG(dbgs() 2326 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2327 BS.cancelScheduling(VL, VL0); 2328 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2329 ReuseShuffleIndicies); 2330 return; 2331 } 2332 } 2333 2334 TreeEntry *TE = 2335 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2337 2338 // Keeps the reordered operands to avoid code duplication. 2339 SmallVector<ValueList, 2> OperandsVec; 2340 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2341 ValueList Operands; 2342 // Prepare the operand vector. 2343 for (Value *j : VL) 2344 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2345 PH->getIncomingBlock(i))); 2346 TE->setOperand(i, Operands); 2347 OperandsVec.push_back(Operands); 2348 } 2349 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2350 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2351 return; 2352 } 2353 case Instruction::ExtractValue: 2354 case Instruction::ExtractElement: { 2355 OrdersType CurrentOrder; 2356 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2357 if (Reuse) { 2358 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2359 ++NumOpsWantToKeepOriginalOrder; 2360 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2361 ReuseShuffleIndicies); 2362 // This is a special case, as it does not gather, but at the same time 2363 // we are not extending buildTree_rec() towards the operands. 2364 ValueList Op0; 2365 Op0.assign(VL.size(), VL0->getOperand(0)); 2366 VectorizableTree.back()->setOperand(0, Op0); 2367 return; 2368 } 2369 if (!CurrentOrder.empty()) { 2370 LLVM_DEBUG({ 2371 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2372 "with order"; 2373 for (unsigned Idx : CurrentOrder) 2374 dbgs() << " " << Idx; 2375 dbgs() << "\n"; 2376 }); 2377 // Insert new order with initial value 0, if it does not exist, 2378 // otherwise return the iterator to the existing one. 2379 auto StoredCurrentOrderAndNum = 2380 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2381 ++StoredCurrentOrderAndNum->getSecond(); 2382 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2383 ReuseShuffleIndicies, 2384 StoredCurrentOrderAndNum->getFirst()); 2385 // This is a special case, as it does not gather, but at the same time 2386 // we are not extending buildTree_rec() towards the operands. 2387 ValueList Op0; 2388 Op0.assign(VL.size(), VL0->getOperand(0)); 2389 VectorizableTree.back()->setOperand(0, Op0); 2390 return; 2391 } 2392 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2394 ReuseShuffleIndicies); 2395 BS.cancelScheduling(VL, VL0); 2396 return; 2397 } 2398 case Instruction::Load: { 2399 // Check that a vectorized load would load the same memory as a scalar 2400 // load. For example, we don't want to vectorize loads that are smaller 2401 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2402 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2403 // from such a struct, we read/write packed bits disagreeing with the 2404 // unvectorized version. 2405 Type *ScalarTy = VL0->getType(); 2406 2407 if (DL->getTypeSizeInBits(ScalarTy) != 2408 DL->getTypeAllocSizeInBits(ScalarTy)) { 2409 BS.cancelScheduling(VL, VL0); 2410 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2411 ReuseShuffleIndicies); 2412 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2413 return; 2414 } 2415 2416 // Make sure all loads in the bundle are simple - we can't vectorize 2417 // atomic or volatile loads. 2418 SmallVector<Value *, 4> PointerOps(VL.size()); 2419 auto POIter = PointerOps.begin(); 2420 for (Value *V : VL) { 2421 auto *L = cast<LoadInst>(V); 2422 if (!L->isSimple()) { 2423 BS.cancelScheduling(VL, VL0); 2424 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2425 ReuseShuffleIndicies); 2426 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2427 return; 2428 } 2429 *POIter = L->getPointerOperand(); 2430 ++POIter; 2431 } 2432 2433 OrdersType CurrentOrder; 2434 // Check the order of pointer operands. 2435 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2436 Value *Ptr0; 2437 Value *PtrN; 2438 if (CurrentOrder.empty()) { 2439 Ptr0 = PointerOps.front(); 2440 PtrN = PointerOps.back(); 2441 } else { 2442 Ptr0 = PointerOps[CurrentOrder.front()]; 2443 PtrN = PointerOps[CurrentOrder.back()]; 2444 } 2445 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2446 const SCEV *ScevN = SE->getSCEV(PtrN); 2447 const auto *Diff = 2448 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2449 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2450 // Check that the sorted loads are consecutive. 2451 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2452 if (CurrentOrder.empty()) { 2453 // Original loads are consecutive and does not require reordering. 2454 ++NumOpsWantToKeepOriginalOrder; 2455 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2456 UserTreeIdx, ReuseShuffleIndicies); 2457 TE->setOperandsInOrder(); 2458 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2459 } else { 2460 // Need to reorder. 2461 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2462 ++I->getSecond(); 2463 TreeEntry *TE = 2464 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2465 ReuseShuffleIndicies, I->getFirst()); 2466 TE->setOperandsInOrder(); 2467 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2468 } 2469 return; 2470 } 2471 } 2472 2473 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2474 BS.cancelScheduling(VL, VL0); 2475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2476 ReuseShuffleIndicies); 2477 return; 2478 } 2479 case Instruction::ZExt: 2480 case Instruction::SExt: 2481 case Instruction::FPToUI: 2482 case Instruction::FPToSI: 2483 case Instruction::FPExt: 2484 case Instruction::PtrToInt: 2485 case Instruction::IntToPtr: 2486 case Instruction::SIToFP: 2487 case Instruction::UIToFP: 2488 case Instruction::Trunc: 2489 case Instruction::FPTrunc: 2490 case Instruction::BitCast: { 2491 Type *SrcTy = VL0->getOperand(0)->getType(); 2492 for (Value *V : VL) { 2493 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2494 if (Ty != SrcTy || !isValidElementType(Ty)) { 2495 BS.cancelScheduling(VL, VL0); 2496 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2497 ReuseShuffleIndicies); 2498 LLVM_DEBUG(dbgs() 2499 << "SLP: Gathering casts with different src types.\n"); 2500 return; 2501 } 2502 } 2503 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2504 ReuseShuffleIndicies); 2505 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2506 2507 TE->setOperandsInOrder(); 2508 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2509 ValueList Operands; 2510 // Prepare the operand vector. 2511 for (Value *V : VL) 2512 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2513 2514 buildTree_rec(Operands, Depth + 1, {TE, i}); 2515 } 2516 return; 2517 } 2518 case Instruction::ICmp: 2519 case Instruction::FCmp: { 2520 // Check that all of the compares have the same predicate. 2521 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2522 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2523 Type *ComparedTy = VL0->getOperand(0)->getType(); 2524 for (Value *V : VL) { 2525 CmpInst *Cmp = cast<CmpInst>(V); 2526 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2527 Cmp->getOperand(0)->getType() != ComparedTy) { 2528 BS.cancelScheduling(VL, VL0); 2529 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2530 ReuseShuffleIndicies); 2531 LLVM_DEBUG(dbgs() 2532 << "SLP: Gathering cmp with different predicate.\n"); 2533 return; 2534 } 2535 } 2536 2537 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2538 ReuseShuffleIndicies); 2539 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2540 2541 ValueList Left, Right; 2542 if (cast<CmpInst>(VL0)->isCommutative()) { 2543 // Commutative predicate - collect + sort operands of the instructions 2544 // so that each side is more likely to have the same opcode. 2545 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2546 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2547 } else { 2548 // Collect operands - commute if it uses the swapped predicate. 2549 for (Value *V : VL) { 2550 auto *Cmp = cast<CmpInst>(V); 2551 Value *LHS = Cmp->getOperand(0); 2552 Value *RHS = Cmp->getOperand(1); 2553 if (Cmp->getPredicate() != P0) 2554 std::swap(LHS, RHS); 2555 Left.push_back(LHS); 2556 Right.push_back(RHS); 2557 } 2558 } 2559 TE->setOperand(0, Left); 2560 TE->setOperand(1, Right); 2561 buildTree_rec(Left, Depth + 1, {TE, 0}); 2562 buildTree_rec(Right, Depth + 1, {TE, 1}); 2563 return; 2564 } 2565 case Instruction::Select: 2566 case Instruction::FNeg: 2567 case Instruction::Add: 2568 case Instruction::FAdd: 2569 case Instruction::Sub: 2570 case Instruction::FSub: 2571 case Instruction::Mul: 2572 case Instruction::FMul: 2573 case Instruction::UDiv: 2574 case Instruction::SDiv: 2575 case Instruction::FDiv: 2576 case Instruction::URem: 2577 case Instruction::SRem: 2578 case Instruction::FRem: 2579 case Instruction::Shl: 2580 case Instruction::LShr: 2581 case Instruction::AShr: 2582 case Instruction::And: 2583 case Instruction::Or: 2584 case Instruction::Xor: { 2585 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2586 ReuseShuffleIndicies); 2587 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2588 2589 // Sort operands of the instructions so that each side is more likely to 2590 // have the same opcode. 2591 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2592 ValueList Left, Right; 2593 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2594 TE->setOperand(0, Left); 2595 TE->setOperand(1, Right); 2596 buildTree_rec(Left, Depth + 1, {TE, 0}); 2597 buildTree_rec(Right, Depth + 1, {TE, 1}); 2598 return; 2599 } 2600 2601 TE->setOperandsInOrder(); 2602 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2603 ValueList Operands; 2604 // Prepare the operand vector. 2605 for (Value *j : VL) 2606 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2607 2608 buildTree_rec(Operands, Depth + 1, {TE, i}); 2609 } 2610 return; 2611 } 2612 case Instruction::GetElementPtr: { 2613 // We don't combine GEPs with complicated (nested) indexing. 2614 for (Value *V : VL) { 2615 if (cast<Instruction>(V)->getNumOperands() != 2) { 2616 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2617 BS.cancelScheduling(VL, VL0); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2619 ReuseShuffleIndicies); 2620 return; 2621 } 2622 } 2623 2624 // We can't combine several GEPs into one vector if they operate on 2625 // different types. 2626 Type *Ty0 = VL0->getOperand(0)->getType(); 2627 for (Value *V : VL) { 2628 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2629 if (Ty0 != CurTy) { 2630 LLVM_DEBUG(dbgs() 2631 << "SLP: not-vectorizable GEP (different types).\n"); 2632 BS.cancelScheduling(VL, VL0); 2633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2634 ReuseShuffleIndicies); 2635 return; 2636 } 2637 } 2638 2639 // We don't combine GEPs with non-constant indexes. 2640 for (Value *V : VL) { 2641 auto Op = cast<Instruction>(V)->getOperand(1); 2642 if (!isa<ConstantInt>(Op)) { 2643 LLVM_DEBUG(dbgs() 2644 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2645 BS.cancelScheduling(VL, VL0); 2646 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2647 ReuseShuffleIndicies); 2648 return; 2649 } 2650 } 2651 2652 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2653 ReuseShuffleIndicies); 2654 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2655 TE->setOperandsInOrder(); 2656 for (unsigned i = 0, e = 2; i < e; ++i) { 2657 ValueList Operands; 2658 // Prepare the operand vector. 2659 for (Value *V : VL) 2660 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2661 2662 buildTree_rec(Operands, Depth + 1, {TE, i}); 2663 } 2664 return; 2665 } 2666 case Instruction::Store: { 2667 // Check if the stores are consecutive or if we need to swizzle them. 2668 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2669 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2670 BS.cancelScheduling(VL, VL0); 2671 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2672 ReuseShuffleIndicies); 2673 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2674 return; 2675 } 2676 2677 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2678 ReuseShuffleIndicies); 2679 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2680 2681 ValueList Operands; 2682 for (Value *V : VL) 2683 Operands.push_back(cast<Instruction>(V)->getOperand(0)); 2684 TE->setOperandsInOrder(); 2685 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2686 return; 2687 } 2688 case Instruction::Call: { 2689 // Check if the calls are all to the same vectorizable intrinsic. 2690 CallInst *CI = cast<CallInst>(VL0); 2691 // Check if this is an Intrinsic call or something that can be 2692 // represented by an intrinsic call 2693 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2694 if (!isTriviallyVectorizable(ID)) { 2695 BS.cancelScheduling(VL, VL0); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2697 ReuseShuffleIndicies); 2698 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2699 return; 2700 } 2701 Function *Int = CI->getCalledFunction(); 2702 unsigned NumArgs = CI->getNumArgOperands(); 2703 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2704 for (unsigned j = 0; j != NumArgs; ++j) 2705 if (hasVectorInstrinsicScalarOpd(ID, j)) 2706 ScalarArgs[j] = CI->getArgOperand(j); 2707 for (Value *V : VL) { 2708 CallInst *CI2 = dyn_cast<CallInst>(V); 2709 if (!CI2 || CI2->getCalledFunction() != Int || 2710 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2711 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2712 BS.cancelScheduling(VL, VL0); 2713 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2714 ReuseShuffleIndicies); 2715 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2716 << "\n"); 2717 return; 2718 } 2719 // Some intrinsics have scalar arguments and should be same in order for 2720 // them to be vectorized. 2721 for (unsigned j = 0; j != NumArgs; ++j) { 2722 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2723 Value *A1J = CI2->getArgOperand(j); 2724 if (ScalarArgs[j] != A1J) { 2725 BS.cancelScheduling(VL, VL0); 2726 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2727 ReuseShuffleIndicies); 2728 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2729 << " argument " << ScalarArgs[j] << "!=" << A1J 2730 << "\n"); 2731 return; 2732 } 2733 } 2734 } 2735 // Verify that the bundle operands are identical between the two calls. 2736 if (CI->hasOperandBundles() && 2737 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2738 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2739 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2740 BS.cancelScheduling(VL, VL0); 2741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2742 ReuseShuffleIndicies); 2743 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2744 << *CI << "!=" << *V << '\n'); 2745 return; 2746 } 2747 } 2748 2749 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2750 ReuseShuffleIndicies); 2751 TE->setOperandsInOrder(); 2752 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2753 ValueList Operands; 2754 // Prepare the operand vector. 2755 for (Value *V : VL) { 2756 auto *CI2 = cast<CallInst>(V); 2757 Operands.push_back(CI2->getArgOperand(i)); 2758 } 2759 buildTree_rec(Operands, Depth + 1, {TE, i}); 2760 } 2761 return; 2762 } 2763 case Instruction::ShuffleVector: { 2764 // If this is not an alternate sequence of opcode like add-sub 2765 // then do not vectorize this instruction. 2766 if (!S.isAltShuffle()) { 2767 BS.cancelScheduling(VL, VL0); 2768 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2769 ReuseShuffleIndicies); 2770 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2771 return; 2772 } 2773 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2774 ReuseShuffleIndicies); 2775 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2776 2777 // Reorder operands if reordering would enable vectorization. 2778 if (isa<BinaryOperator>(VL0)) { 2779 ValueList Left, Right; 2780 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2781 TE->setOperand(0, Left); 2782 TE->setOperand(1, Right); 2783 buildTree_rec(Left, Depth + 1, {TE, 0}); 2784 buildTree_rec(Right, Depth + 1, {TE, 1}); 2785 return; 2786 } 2787 2788 TE->setOperandsInOrder(); 2789 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2790 ValueList Operands; 2791 // Prepare the operand vector. 2792 for (Value *V : VL) 2793 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2794 2795 buildTree_rec(Operands, Depth + 1, {TE, i}); 2796 } 2797 return; 2798 } 2799 default: 2800 BS.cancelScheduling(VL, VL0); 2801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2802 ReuseShuffleIndicies); 2803 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2804 return; 2805 } 2806 } 2807 2808 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2809 unsigned N; 2810 Type *EltTy; 2811 auto *ST = dyn_cast<StructType>(T); 2812 if (ST) { 2813 N = ST->getNumElements(); 2814 EltTy = *ST->element_begin(); 2815 } else { 2816 N = cast<ArrayType>(T)->getNumElements(); 2817 EltTy = cast<ArrayType>(T)->getElementType(); 2818 } 2819 if (!isValidElementType(EltTy)) 2820 return 0; 2821 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2822 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2823 return 0; 2824 if (ST) { 2825 // Check that struct is homogeneous. 2826 for (const auto *Ty : ST->elements()) 2827 if (Ty != EltTy) 2828 return 0; 2829 } 2830 return N; 2831 } 2832 2833 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2834 SmallVectorImpl<unsigned> &CurrentOrder) const { 2835 Instruction *E0 = cast<Instruction>(OpValue); 2836 assert(E0->getOpcode() == Instruction::ExtractElement || 2837 E0->getOpcode() == Instruction::ExtractValue); 2838 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2839 // Check if all of the extracts come from the same vector and from the 2840 // correct offset. 2841 Value *Vec = E0->getOperand(0); 2842 2843 CurrentOrder.clear(); 2844 2845 // We have to extract from a vector/aggregate with the same number of elements. 2846 unsigned NElts; 2847 if (E0->getOpcode() == Instruction::ExtractValue) { 2848 const DataLayout &DL = E0->getModule()->getDataLayout(); 2849 NElts = canMapToVector(Vec->getType(), DL); 2850 if (!NElts) 2851 return false; 2852 // Check if load can be rewritten as load of vector. 2853 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2854 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2855 return false; 2856 } else { 2857 NElts = Vec->getType()->getVectorNumElements(); 2858 } 2859 2860 if (NElts != VL.size()) 2861 return false; 2862 2863 // Check that all of the indices extract from the correct offset. 2864 bool ShouldKeepOrder = true; 2865 unsigned E = VL.size(); 2866 // Assign to all items the initial value E + 1 so we can check if the extract 2867 // instruction index was used already. 2868 // Also, later we can check that all the indices are used and we have a 2869 // consecutive access in the extract instructions, by checking that no 2870 // element of CurrentOrder still has value E + 1. 2871 CurrentOrder.assign(E, E + 1); 2872 unsigned I = 0; 2873 for (; I < E; ++I) { 2874 auto *Inst = cast<Instruction>(VL[I]); 2875 if (Inst->getOperand(0) != Vec) 2876 break; 2877 Optional<unsigned> Idx = getExtractIndex(Inst); 2878 if (!Idx) 2879 break; 2880 const unsigned ExtIdx = *Idx; 2881 if (ExtIdx != I) { 2882 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2883 break; 2884 ShouldKeepOrder = false; 2885 CurrentOrder[ExtIdx] = I; 2886 } else { 2887 if (CurrentOrder[I] != E + 1) 2888 break; 2889 CurrentOrder[I] = I; 2890 } 2891 } 2892 if (I < E) { 2893 CurrentOrder.clear(); 2894 return false; 2895 } 2896 2897 return ShouldKeepOrder; 2898 } 2899 2900 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2901 return I->hasOneUse() || 2902 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2903 return ScalarToTreeEntry.count(U) > 0; 2904 }); 2905 } 2906 2907 int BoUpSLP::getEntryCost(TreeEntry *E) { 2908 ArrayRef<Value*> VL = E->Scalars; 2909 2910 Type *ScalarTy = VL[0]->getType(); 2911 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2912 ScalarTy = SI->getValueOperand()->getType(); 2913 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2914 ScalarTy = CI->getOperand(0)->getType(); 2915 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2916 2917 // If we have computed a smaller type for the expression, update VecTy so 2918 // that the costs will be accurate. 2919 if (MinBWs.count(VL[0])) 2920 VecTy = VectorType::get( 2921 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2922 2923 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2924 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2925 int ReuseShuffleCost = 0; 2926 if (NeedToShuffleReuses) { 2927 ReuseShuffleCost = 2928 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2929 } 2930 if (E->NeedToGather) { 2931 if (allConstant(VL)) 2932 return 0; 2933 if (isSplat(VL)) { 2934 return ReuseShuffleCost + 2935 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2936 } 2937 if (E->getOpcode() == Instruction::ExtractElement && 2938 allSameType(VL) && allSameBlock(VL)) { 2939 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2940 if (ShuffleKind.hasValue()) { 2941 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2942 for (auto *V : VL) { 2943 // If all users of instruction are going to be vectorized and this 2944 // instruction itself is not going to be vectorized, consider this 2945 // instruction as dead and remove its cost from the final cost of the 2946 // vectorized tree. 2947 if (areAllUsersVectorized(cast<Instruction>(V)) && 2948 !ScalarToTreeEntry.count(V)) { 2949 auto *IO = cast<ConstantInt>( 2950 cast<ExtractElementInst>(V)->getIndexOperand()); 2951 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2952 IO->getZExtValue()); 2953 } 2954 } 2955 return ReuseShuffleCost + Cost; 2956 } 2957 } 2958 return ReuseShuffleCost + getGatherCost(VL); 2959 } 2960 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2961 Instruction *VL0 = E->getMainOp(); 2962 unsigned ShuffleOrOp = 2963 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2964 switch (ShuffleOrOp) { 2965 case Instruction::PHI: 2966 return 0; 2967 2968 case Instruction::ExtractValue: 2969 case Instruction::ExtractElement: 2970 if (NeedToShuffleReuses) { 2971 unsigned Idx = 0; 2972 for (unsigned I : E->ReuseShuffleIndices) { 2973 if (ShuffleOrOp == Instruction::ExtractElement) { 2974 auto *IO = cast<ConstantInt>( 2975 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2976 Idx = IO->getZExtValue(); 2977 ReuseShuffleCost -= TTI->getVectorInstrCost( 2978 Instruction::ExtractElement, VecTy, Idx); 2979 } else { 2980 ReuseShuffleCost -= TTI->getVectorInstrCost( 2981 Instruction::ExtractElement, VecTy, Idx); 2982 ++Idx; 2983 } 2984 } 2985 Idx = ReuseShuffleNumbers; 2986 for (Value *V : VL) { 2987 if (ShuffleOrOp == Instruction::ExtractElement) { 2988 auto *IO = cast<ConstantInt>( 2989 cast<ExtractElementInst>(V)->getIndexOperand()); 2990 Idx = IO->getZExtValue(); 2991 } else { 2992 --Idx; 2993 } 2994 ReuseShuffleCost += 2995 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2996 } 2997 } 2998 if (!E->NeedToGather) { 2999 int DeadCost = ReuseShuffleCost; 3000 if (!E->ReorderIndices.empty()) { 3001 // TODO: Merge this shuffle with the ReuseShuffleCost. 3002 DeadCost += TTI->getShuffleCost( 3003 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3004 } 3005 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3006 Instruction *E = cast<Instruction>(VL[i]); 3007 // If all users are going to be vectorized, instruction can be 3008 // considered as dead. 3009 // The same, if have only one user, it will be vectorized for sure. 3010 if (areAllUsersVectorized(E)) { 3011 // Take credit for instruction that will become dead. 3012 if (E->hasOneUse()) { 3013 Instruction *Ext = E->user_back(); 3014 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3015 all_of(Ext->users(), 3016 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3017 // Use getExtractWithExtendCost() to calculate the cost of 3018 // extractelement/ext pair. 3019 DeadCost -= TTI->getExtractWithExtendCost( 3020 Ext->getOpcode(), Ext->getType(), VecTy, i); 3021 // Add back the cost of s|zext which is subtracted separately. 3022 DeadCost += TTI->getCastInstrCost( 3023 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3024 continue; 3025 } 3026 } 3027 DeadCost -= 3028 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3029 } 3030 } 3031 return DeadCost; 3032 } 3033 return ReuseShuffleCost + getGatherCost(VL); 3034 3035 case Instruction::ZExt: 3036 case Instruction::SExt: 3037 case Instruction::FPToUI: 3038 case Instruction::FPToSI: 3039 case Instruction::FPExt: 3040 case Instruction::PtrToInt: 3041 case Instruction::IntToPtr: 3042 case Instruction::SIToFP: 3043 case Instruction::UIToFP: 3044 case Instruction::Trunc: 3045 case Instruction::FPTrunc: 3046 case Instruction::BitCast: { 3047 Type *SrcTy = VL0->getOperand(0)->getType(); 3048 int ScalarEltCost = 3049 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3050 if (NeedToShuffleReuses) { 3051 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3052 } 3053 3054 // Calculate the cost of this instruction. 3055 int ScalarCost = VL.size() * ScalarEltCost; 3056 3057 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3058 int VecCost = 0; 3059 // Check if the values are candidates to demote. 3060 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3061 VecCost = ReuseShuffleCost + 3062 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3063 } 3064 return VecCost - ScalarCost; 3065 } 3066 case Instruction::FCmp: 3067 case Instruction::ICmp: 3068 case Instruction::Select: { 3069 // Calculate the cost of this instruction. 3070 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3071 Builder.getInt1Ty(), VL0); 3072 if (NeedToShuffleReuses) { 3073 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3074 } 3075 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3076 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3077 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3078 return ReuseShuffleCost + VecCost - ScalarCost; 3079 } 3080 case Instruction::FNeg: 3081 case Instruction::Add: 3082 case Instruction::FAdd: 3083 case Instruction::Sub: 3084 case Instruction::FSub: 3085 case Instruction::Mul: 3086 case Instruction::FMul: 3087 case Instruction::UDiv: 3088 case Instruction::SDiv: 3089 case Instruction::FDiv: 3090 case Instruction::URem: 3091 case Instruction::SRem: 3092 case Instruction::FRem: 3093 case Instruction::Shl: 3094 case Instruction::LShr: 3095 case Instruction::AShr: 3096 case Instruction::And: 3097 case Instruction::Or: 3098 case Instruction::Xor: { 3099 // Certain instructions can be cheaper to vectorize if they have a 3100 // constant second vector operand. 3101 TargetTransformInfo::OperandValueKind Op1VK = 3102 TargetTransformInfo::OK_AnyValue; 3103 TargetTransformInfo::OperandValueKind Op2VK = 3104 TargetTransformInfo::OK_UniformConstantValue; 3105 TargetTransformInfo::OperandValueProperties Op1VP = 3106 TargetTransformInfo::OP_None; 3107 TargetTransformInfo::OperandValueProperties Op2VP = 3108 TargetTransformInfo::OP_PowerOf2; 3109 3110 // If all operands are exactly the same ConstantInt then set the 3111 // operand kind to OK_UniformConstantValue. 3112 // If instead not all operands are constants, then set the operand kind 3113 // to OK_AnyValue. If all operands are constants but not the same, 3114 // then set the operand kind to OK_NonUniformConstantValue. 3115 ConstantInt *CInt0 = nullptr; 3116 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3117 const Instruction *I = cast<Instruction>(VL[i]); 3118 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3119 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3120 if (!CInt) { 3121 Op2VK = TargetTransformInfo::OK_AnyValue; 3122 Op2VP = TargetTransformInfo::OP_None; 3123 break; 3124 } 3125 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3126 !CInt->getValue().isPowerOf2()) 3127 Op2VP = TargetTransformInfo::OP_None; 3128 if (i == 0) { 3129 CInt0 = CInt; 3130 continue; 3131 } 3132 if (CInt0 != CInt) 3133 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3134 } 3135 3136 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3137 int ScalarEltCost = TTI->getArithmeticInstrCost( 3138 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3139 if (NeedToShuffleReuses) { 3140 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3141 } 3142 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3143 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3144 Op2VK, Op1VP, Op2VP, Operands); 3145 return ReuseShuffleCost + VecCost - ScalarCost; 3146 } 3147 case Instruction::GetElementPtr: { 3148 TargetTransformInfo::OperandValueKind Op1VK = 3149 TargetTransformInfo::OK_AnyValue; 3150 TargetTransformInfo::OperandValueKind Op2VK = 3151 TargetTransformInfo::OK_UniformConstantValue; 3152 3153 int ScalarEltCost = 3154 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3155 if (NeedToShuffleReuses) { 3156 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3157 } 3158 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3159 int VecCost = 3160 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3161 return ReuseShuffleCost + VecCost - ScalarCost; 3162 } 3163 case Instruction::Load: { 3164 // Cost of wide load - cost of scalar loads. 3165 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 3166 int ScalarEltCost = 3167 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3168 if (NeedToShuffleReuses) { 3169 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3170 } 3171 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3172 int VecLdCost = 3173 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3174 if (!E->ReorderIndices.empty()) { 3175 // TODO: Merge this shuffle with the ReuseShuffleCost. 3176 VecLdCost += TTI->getShuffleCost( 3177 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3178 } 3179 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3180 } 3181 case Instruction::Store: { 3182 // We know that we can merge the stores. Calculate the cost. 3183 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 3184 int ScalarEltCost = 3185 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3186 if (NeedToShuffleReuses) { 3187 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3188 } 3189 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3190 int VecStCost = 3191 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3192 return ReuseShuffleCost + VecStCost - ScalarStCost; 3193 } 3194 case Instruction::Call: { 3195 CallInst *CI = cast<CallInst>(VL0); 3196 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3197 3198 // Calculate the cost of the scalar and vector calls. 3199 SmallVector<Type *, 4> ScalarTys; 3200 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3201 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3202 3203 FastMathFlags FMF; 3204 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3205 FMF = FPMO->getFastMathFlags(); 3206 3207 int ScalarEltCost = 3208 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3209 if (NeedToShuffleReuses) { 3210 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3211 } 3212 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3213 3214 SmallVector<Value *, 4> Args(CI->arg_operands()); 3215 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3216 VecTy->getNumElements()); 3217 3218 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3219 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3220 << " for " << *CI << "\n"); 3221 3222 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3223 } 3224 case Instruction::ShuffleVector: { 3225 assert(E->isAltShuffle() && 3226 ((Instruction::isBinaryOp(E->getOpcode()) && 3227 Instruction::isBinaryOp(E->getAltOpcode())) || 3228 (Instruction::isCast(E->getOpcode()) && 3229 Instruction::isCast(E->getAltOpcode()))) && 3230 "Invalid Shuffle Vector Operand"); 3231 int ScalarCost = 0; 3232 if (NeedToShuffleReuses) { 3233 for (unsigned Idx : E->ReuseShuffleIndices) { 3234 Instruction *I = cast<Instruction>(VL[Idx]); 3235 ReuseShuffleCost -= TTI->getInstructionCost( 3236 I, TargetTransformInfo::TCK_RecipThroughput); 3237 } 3238 for (Value *V : VL) { 3239 Instruction *I = cast<Instruction>(V); 3240 ReuseShuffleCost += TTI->getInstructionCost( 3241 I, TargetTransformInfo::TCK_RecipThroughput); 3242 } 3243 } 3244 for (Value *V : VL) { 3245 Instruction *I = cast<Instruction>(V); 3246 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3247 ScalarCost += TTI->getInstructionCost( 3248 I, TargetTransformInfo::TCK_RecipThroughput); 3249 } 3250 // VecCost is equal to sum of the cost of creating 2 vectors 3251 // and the cost of creating shuffle. 3252 int VecCost = 0; 3253 if (Instruction::isBinaryOp(E->getOpcode())) { 3254 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3255 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3256 } else { 3257 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3258 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3259 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3260 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3261 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3262 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3263 } 3264 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3265 return ReuseShuffleCost + VecCost - ScalarCost; 3266 } 3267 default: 3268 llvm_unreachable("Unknown instruction"); 3269 } 3270 } 3271 3272 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3273 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3274 << VectorizableTree.size() << " is fully vectorizable .\n"); 3275 3276 // We only handle trees of heights 1 and 2. 3277 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3278 return true; 3279 3280 if (VectorizableTree.size() != 2) 3281 return false; 3282 3283 // Handle splat and all-constants stores. 3284 if (!VectorizableTree[0]->NeedToGather && 3285 (allConstant(VectorizableTree[1]->Scalars) || 3286 isSplat(VectorizableTree[1]->Scalars))) 3287 return true; 3288 3289 // Gathering cost would be too much for tiny trees. 3290 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3291 return false; 3292 3293 return true; 3294 } 3295 3296 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3297 if (RdxOpcode != Instruction::Or) 3298 return false; 3299 3300 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3301 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3302 3303 // Look past the reduction to find a source value. Arbitrarily follow the 3304 // path through operand 0 of any 'or'. Also, peek through optional 3305 // shift-left-by-constant. 3306 Value *ZextLoad = FirstReduced; 3307 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3308 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3309 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3310 3311 // Check if the input to the reduction is an extended load. 3312 Value *LoadPtr; 3313 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3314 return false; 3315 3316 // Require that the total load bit width is a legal integer type. 3317 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3318 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3319 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3320 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3321 LLVMContext &Context = FirstReduced->getContext(); 3322 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3323 return false; 3324 3325 // Everything matched - assume that we can fold the whole sequence using 3326 // load combining. 3327 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3328 << *(cast<Instruction>(FirstReduced)) << "\n"); 3329 3330 return true; 3331 } 3332 3333 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3334 // We can vectorize the tree if its size is greater than or equal to the 3335 // minimum size specified by the MinTreeSize command line option. 3336 if (VectorizableTree.size() >= MinTreeSize) 3337 return false; 3338 3339 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3340 // can vectorize it if we can prove it fully vectorizable. 3341 if (isFullyVectorizableTinyTree()) 3342 return false; 3343 3344 assert(VectorizableTree.empty() 3345 ? ExternalUses.empty() 3346 : true && "We shouldn't have any external users"); 3347 3348 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3349 // vectorizable. 3350 return true; 3351 } 3352 3353 int BoUpSLP::getSpillCost() const { 3354 // Walk from the bottom of the tree to the top, tracking which values are 3355 // live. When we see a call instruction that is not part of our tree, 3356 // query TTI to see if there is a cost to keeping values live over it 3357 // (for example, if spills and fills are required). 3358 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3359 int Cost = 0; 3360 3361 SmallPtrSet<Instruction*, 4> LiveValues; 3362 Instruction *PrevInst = nullptr; 3363 3364 for (const auto &TEPtr : VectorizableTree) { 3365 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3366 if (!Inst) 3367 continue; 3368 3369 if (!PrevInst) { 3370 PrevInst = Inst; 3371 continue; 3372 } 3373 3374 // Update LiveValues. 3375 LiveValues.erase(PrevInst); 3376 for (auto &J : PrevInst->operands()) { 3377 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3378 LiveValues.insert(cast<Instruction>(&*J)); 3379 } 3380 3381 LLVM_DEBUG({ 3382 dbgs() << "SLP: #LV: " << LiveValues.size(); 3383 for (auto *X : LiveValues) 3384 dbgs() << " " << X->getName(); 3385 dbgs() << ", Looking at "; 3386 Inst->dump(); 3387 }); 3388 3389 // Now find the sequence of instructions between PrevInst and Inst. 3390 unsigned NumCalls = 0; 3391 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3392 PrevInstIt = 3393 PrevInst->getIterator().getReverse(); 3394 while (InstIt != PrevInstIt) { 3395 if (PrevInstIt == PrevInst->getParent()->rend()) { 3396 PrevInstIt = Inst->getParent()->rbegin(); 3397 continue; 3398 } 3399 3400 // Debug informations don't impact spill cost. 3401 if ((isa<CallInst>(&*PrevInstIt) && 3402 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3403 &*PrevInstIt != PrevInst) 3404 NumCalls++; 3405 3406 ++PrevInstIt; 3407 } 3408 3409 if (NumCalls) { 3410 SmallVector<Type*, 4> V; 3411 for (auto *II : LiveValues) 3412 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3413 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3414 } 3415 3416 PrevInst = Inst; 3417 } 3418 3419 return Cost; 3420 } 3421 3422 int BoUpSLP::getTreeCost() { 3423 int Cost = 0; 3424 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3425 << VectorizableTree.size() << ".\n"); 3426 3427 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3428 3429 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3430 TreeEntry &TE = *VectorizableTree[I].get(); 3431 3432 // We create duplicate tree entries for gather sequences that have multiple 3433 // uses. However, we should not compute the cost of duplicate sequences. 3434 // For example, if we have a build vector (i.e., insertelement sequence) 3435 // that is used by more than one vector instruction, we only need to 3436 // compute the cost of the insertelement instructions once. The redundant 3437 // instructions will be eliminated by CSE. 3438 // 3439 // We should consider not creating duplicate tree entries for gather 3440 // sequences, and instead add additional edges to the tree representing 3441 // their uses. Since such an approach results in fewer total entries, 3442 // existing heuristics based on tree size may yield different results. 3443 // 3444 if (TE.NeedToGather && 3445 std::any_of( 3446 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3447 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3448 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3449 })) 3450 continue; 3451 3452 int C = getEntryCost(&TE); 3453 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3454 << " for bundle that starts with " << *TE.Scalars[0] 3455 << ".\n"); 3456 Cost += C; 3457 } 3458 3459 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3460 int ExtractCost = 0; 3461 for (ExternalUser &EU : ExternalUses) { 3462 // We only add extract cost once for the same scalar. 3463 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3464 continue; 3465 3466 // Uses by ephemeral values are free (because the ephemeral value will be 3467 // removed prior to code generation, and so the extraction will be 3468 // removed as well). 3469 if (EphValues.count(EU.User)) 3470 continue; 3471 3472 // If we plan to rewrite the tree in a smaller type, we will need to sign 3473 // extend the extracted value back to the original type. Here, we account 3474 // for the extract and the added cost of the sign extend if needed. 3475 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3476 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3477 if (MinBWs.count(ScalarRoot)) { 3478 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3479 auto Extend = 3480 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3481 VecTy = VectorType::get(MinTy, BundleWidth); 3482 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3483 VecTy, EU.Lane); 3484 } else { 3485 ExtractCost += 3486 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3487 } 3488 } 3489 3490 int SpillCost = getSpillCost(); 3491 Cost += SpillCost + ExtractCost; 3492 3493 std::string Str; 3494 { 3495 raw_string_ostream OS(Str); 3496 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3497 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3498 << "SLP: Total Cost = " << Cost << ".\n"; 3499 } 3500 LLVM_DEBUG(dbgs() << Str); 3501 3502 if (ViewSLPTree) 3503 ViewGraph(this, "SLP" + F->getName(), false, Str); 3504 3505 return Cost; 3506 } 3507 3508 int BoUpSLP::getGatherCost(Type *Ty, 3509 const DenseSet<unsigned> &ShuffledIndices) const { 3510 int Cost = 0; 3511 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3512 if (!ShuffledIndices.count(i)) 3513 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3514 if (!ShuffledIndices.empty()) 3515 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3516 return Cost; 3517 } 3518 3519 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3520 // Find the type of the operands in VL. 3521 Type *ScalarTy = VL[0]->getType(); 3522 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3523 ScalarTy = SI->getValueOperand()->getType(); 3524 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3525 // Find the cost of inserting/extracting values from the vector. 3526 // Check if the same elements are inserted several times and count them as 3527 // shuffle candidates. 3528 DenseSet<unsigned> ShuffledElements; 3529 DenseSet<Value *> UniqueElements; 3530 // Iterate in reverse order to consider insert elements with the high cost. 3531 for (unsigned I = VL.size(); I > 0; --I) { 3532 unsigned Idx = I - 1; 3533 if (!UniqueElements.insert(VL[Idx]).second) 3534 ShuffledElements.insert(Idx); 3535 } 3536 return getGatherCost(VecTy, ShuffledElements); 3537 } 3538 3539 // Perform operand reordering on the instructions in VL and return the reordered 3540 // operands in Left and Right. 3541 void BoUpSLP::reorderInputsAccordingToOpcode( 3542 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3543 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3544 ScalarEvolution &SE) { 3545 if (VL.empty()) 3546 return; 3547 VLOperands Ops(VL, DL, SE); 3548 // Reorder the operands in place. 3549 Ops.reorder(); 3550 Left = Ops.getVL(0); 3551 Right = Ops.getVL(1); 3552 } 3553 3554 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3555 // Get the basic block this bundle is in. All instructions in the bundle 3556 // should be in this block. 3557 auto *Front = E->getMainOp(); 3558 auto *BB = Front->getParent(); 3559 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3560 [=](Value *V) -> bool { 3561 auto *I = cast<Instruction>(V); 3562 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3563 })); 3564 3565 // The last instruction in the bundle in program order. 3566 Instruction *LastInst = nullptr; 3567 3568 // Find the last instruction. The common case should be that BB has been 3569 // scheduled, and the last instruction is VL.back(). So we start with 3570 // VL.back() and iterate over schedule data until we reach the end of the 3571 // bundle. The end of the bundle is marked by null ScheduleData. 3572 if (BlocksSchedules.count(BB)) { 3573 auto *Bundle = 3574 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3575 if (Bundle && Bundle->isPartOfBundle()) 3576 for (; Bundle; Bundle = Bundle->NextInBundle) 3577 if (Bundle->OpValue == Bundle->Inst) 3578 LastInst = Bundle->Inst; 3579 } 3580 3581 // LastInst can still be null at this point if there's either not an entry 3582 // for BB in BlocksSchedules or there's no ScheduleData available for 3583 // VL.back(). This can be the case if buildTree_rec aborts for various 3584 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3585 // size is reached, etc.). ScheduleData is initialized in the scheduling 3586 // "dry-run". 3587 // 3588 // If this happens, we can still find the last instruction by brute force. We 3589 // iterate forwards from Front (inclusive) until we either see all 3590 // instructions in the bundle or reach the end of the block. If Front is the 3591 // last instruction in program order, LastInst will be set to Front, and we 3592 // will visit all the remaining instructions in the block. 3593 // 3594 // One of the reasons we exit early from buildTree_rec is to place an upper 3595 // bound on compile-time. Thus, taking an additional compile-time hit here is 3596 // not ideal. However, this should be exceedingly rare since it requires that 3597 // we both exit early from buildTree_rec and that the bundle be out-of-order 3598 // (causing us to iterate all the way to the end of the block). 3599 if (!LastInst) { 3600 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3601 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3602 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3603 LastInst = &I; 3604 if (Bundle.empty()) 3605 break; 3606 } 3607 } 3608 assert(LastInst && "Failed to find last instruction in bundle"); 3609 3610 // Set the insertion point after the last instruction in the bundle. Set the 3611 // debug location to Front. 3612 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3613 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3614 } 3615 3616 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3617 Value *Vec = UndefValue::get(Ty); 3618 // Generate the 'InsertElement' instruction. 3619 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3620 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3621 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3622 GatherSeq.insert(Insrt); 3623 CSEBlocks.insert(Insrt->getParent()); 3624 3625 // Add to our 'need-to-extract' list. 3626 if (TreeEntry *E = getTreeEntry(VL[i])) { 3627 // Find which lane we need to extract. 3628 int FoundLane = -1; 3629 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3630 // Is this the lane of the scalar that we are looking for ? 3631 if (E->Scalars[Lane] == VL[i]) { 3632 FoundLane = Lane; 3633 break; 3634 } 3635 } 3636 assert(FoundLane >= 0 && "Could not find the correct lane"); 3637 if (!E->ReuseShuffleIndices.empty()) { 3638 FoundLane = 3639 std::distance(E->ReuseShuffleIndices.begin(), 3640 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3641 } 3642 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3643 } 3644 } 3645 } 3646 3647 return Vec; 3648 } 3649 3650 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3651 InstructionsState S = getSameOpcode(VL); 3652 if (S.getOpcode()) { 3653 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3654 if (E->isSame(VL)) { 3655 Value *V = vectorizeTree(E); 3656 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3657 // We need to get the vectorized value but without shuffle. 3658 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3659 V = SV->getOperand(0); 3660 } else { 3661 // Reshuffle to get only unique values. 3662 SmallVector<unsigned, 4> UniqueIdxs; 3663 SmallSet<unsigned, 4> UsedIdxs; 3664 for(unsigned Idx : E->ReuseShuffleIndices) 3665 if (UsedIdxs.insert(Idx).second) 3666 UniqueIdxs.emplace_back(Idx); 3667 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3668 UniqueIdxs); 3669 } 3670 } 3671 return V; 3672 } 3673 } 3674 } 3675 3676 Type *ScalarTy = S.OpValue->getType(); 3677 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3678 ScalarTy = SI->getValueOperand()->getType(); 3679 3680 // Check that every instruction appears once in this bundle. 3681 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3682 SmallVector<Value *, 4> UniqueValues; 3683 if (VL.size() > 2) { 3684 DenseMap<Value *, unsigned> UniquePositions; 3685 for (Value *V : VL) { 3686 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3687 ReuseShuffleIndicies.emplace_back(Res.first->second); 3688 if (Res.second || isa<Constant>(V)) 3689 UniqueValues.emplace_back(V); 3690 } 3691 // Do not shuffle single element or if number of unique values is not power 3692 // of 2. 3693 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3694 !llvm::isPowerOf2_32(UniqueValues.size())) 3695 ReuseShuffleIndicies.clear(); 3696 else 3697 VL = UniqueValues; 3698 } 3699 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3700 3701 Value *V = Gather(VL, VecTy); 3702 if (!ReuseShuffleIndicies.empty()) { 3703 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3704 ReuseShuffleIndicies, "shuffle"); 3705 if (auto *I = dyn_cast<Instruction>(V)) { 3706 GatherSeq.insert(I); 3707 CSEBlocks.insert(I->getParent()); 3708 } 3709 } 3710 return V; 3711 } 3712 3713 static void inversePermutation(ArrayRef<unsigned> Indices, 3714 SmallVectorImpl<unsigned> &Mask) { 3715 Mask.clear(); 3716 const unsigned E = Indices.size(); 3717 Mask.resize(E); 3718 for (unsigned I = 0; I < E; ++I) 3719 Mask[Indices[I]] = I; 3720 } 3721 3722 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3723 IRBuilder<>::InsertPointGuard Guard(Builder); 3724 3725 if (E->VectorizedValue) { 3726 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3727 return E->VectorizedValue; 3728 } 3729 3730 Instruction *VL0 = E->getMainOp(); 3731 Type *ScalarTy = VL0->getType(); 3732 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3733 ScalarTy = SI->getValueOperand()->getType(); 3734 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3735 3736 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3737 3738 if (E->NeedToGather) { 3739 setInsertPointAfterBundle(E); 3740 auto *V = Gather(E->Scalars, VecTy); 3741 if (NeedToShuffleReuses) { 3742 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3743 E->ReuseShuffleIndices, "shuffle"); 3744 if (auto *I = dyn_cast<Instruction>(V)) { 3745 GatherSeq.insert(I); 3746 CSEBlocks.insert(I->getParent()); 3747 } 3748 } 3749 E->VectorizedValue = V; 3750 return V; 3751 } 3752 3753 unsigned ShuffleOrOp = 3754 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3755 switch (ShuffleOrOp) { 3756 case Instruction::PHI: { 3757 auto *PH = cast<PHINode>(VL0); 3758 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3759 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3760 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3761 Value *V = NewPhi; 3762 if (NeedToShuffleReuses) { 3763 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3764 E->ReuseShuffleIndices, "shuffle"); 3765 } 3766 E->VectorizedValue = V; 3767 3768 // PHINodes may have multiple entries from the same block. We want to 3769 // visit every block once. 3770 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3771 3772 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3773 ValueList Operands; 3774 BasicBlock *IBB = PH->getIncomingBlock(i); 3775 3776 if (!VisitedBBs.insert(IBB).second) { 3777 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3778 continue; 3779 } 3780 3781 Builder.SetInsertPoint(IBB->getTerminator()); 3782 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3783 Value *Vec = vectorizeTree(E->getOperand(i)); 3784 NewPhi->addIncoming(Vec, IBB); 3785 } 3786 3787 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3788 "Invalid number of incoming values"); 3789 return V; 3790 } 3791 3792 case Instruction::ExtractElement: { 3793 if (!E->NeedToGather) { 3794 Value *V = E->getSingleOperand(0); 3795 if (!E->ReorderIndices.empty()) { 3796 OrdersType Mask; 3797 inversePermutation(E->ReorderIndices, Mask); 3798 Builder.SetInsertPoint(VL0); 3799 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3800 "reorder_shuffle"); 3801 } 3802 if (NeedToShuffleReuses) { 3803 // TODO: Merge this shuffle with the ReorderShuffleMask. 3804 if (E->ReorderIndices.empty()) 3805 Builder.SetInsertPoint(VL0); 3806 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3807 E->ReuseShuffleIndices, "shuffle"); 3808 } 3809 E->VectorizedValue = V; 3810 return V; 3811 } 3812 setInsertPointAfterBundle(E); 3813 auto *V = Gather(E->Scalars, VecTy); 3814 if (NeedToShuffleReuses) { 3815 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3816 E->ReuseShuffleIndices, "shuffle"); 3817 if (auto *I = dyn_cast<Instruction>(V)) { 3818 GatherSeq.insert(I); 3819 CSEBlocks.insert(I->getParent()); 3820 } 3821 } 3822 E->VectorizedValue = V; 3823 return V; 3824 } 3825 case Instruction::ExtractValue: { 3826 if (!E->NeedToGather) { 3827 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3828 Builder.SetInsertPoint(LI); 3829 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3830 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3831 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3832 Value *NewV = propagateMetadata(V, E->Scalars); 3833 if (!E->ReorderIndices.empty()) { 3834 OrdersType Mask; 3835 inversePermutation(E->ReorderIndices, Mask); 3836 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3837 "reorder_shuffle"); 3838 } 3839 if (NeedToShuffleReuses) { 3840 // TODO: Merge this shuffle with the ReorderShuffleMask. 3841 NewV = Builder.CreateShuffleVector( 3842 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3843 } 3844 E->VectorizedValue = NewV; 3845 return NewV; 3846 } 3847 setInsertPointAfterBundle(E); 3848 auto *V = Gather(E->Scalars, VecTy); 3849 if (NeedToShuffleReuses) { 3850 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3851 E->ReuseShuffleIndices, "shuffle"); 3852 if (auto *I = dyn_cast<Instruction>(V)) { 3853 GatherSeq.insert(I); 3854 CSEBlocks.insert(I->getParent()); 3855 } 3856 } 3857 E->VectorizedValue = V; 3858 return V; 3859 } 3860 case Instruction::ZExt: 3861 case Instruction::SExt: 3862 case Instruction::FPToUI: 3863 case Instruction::FPToSI: 3864 case Instruction::FPExt: 3865 case Instruction::PtrToInt: 3866 case Instruction::IntToPtr: 3867 case Instruction::SIToFP: 3868 case Instruction::UIToFP: 3869 case Instruction::Trunc: 3870 case Instruction::FPTrunc: 3871 case Instruction::BitCast: { 3872 setInsertPointAfterBundle(E); 3873 3874 Value *InVec = vectorizeTree(E->getOperand(0)); 3875 3876 if (E->VectorizedValue) { 3877 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3878 return E->VectorizedValue; 3879 } 3880 3881 auto *CI = cast<CastInst>(VL0); 3882 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3883 if (NeedToShuffleReuses) { 3884 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3885 E->ReuseShuffleIndices, "shuffle"); 3886 } 3887 E->VectorizedValue = V; 3888 ++NumVectorInstructions; 3889 return V; 3890 } 3891 case Instruction::FCmp: 3892 case Instruction::ICmp: { 3893 setInsertPointAfterBundle(E); 3894 3895 Value *L = vectorizeTree(E->getOperand(0)); 3896 Value *R = vectorizeTree(E->getOperand(1)); 3897 3898 if (E->VectorizedValue) { 3899 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3900 return E->VectorizedValue; 3901 } 3902 3903 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3904 Value *V; 3905 if (E->getOpcode() == Instruction::FCmp) 3906 V = Builder.CreateFCmp(P0, L, R); 3907 else 3908 V = Builder.CreateICmp(P0, L, R); 3909 3910 propagateIRFlags(V, E->Scalars, VL0); 3911 if (NeedToShuffleReuses) { 3912 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3913 E->ReuseShuffleIndices, "shuffle"); 3914 } 3915 E->VectorizedValue = V; 3916 ++NumVectorInstructions; 3917 return V; 3918 } 3919 case Instruction::Select: { 3920 setInsertPointAfterBundle(E); 3921 3922 Value *Cond = vectorizeTree(E->getOperand(0)); 3923 Value *True = vectorizeTree(E->getOperand(1)); 3924 Value *False = vectorizeTree(E->getOperand(2)); 3925 3926 if (E->VectorizedValue) { 3927 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3928 return E->VectorizedValue; 3929 } 3930 3931 Value *V = Builder.CreateSelect(Cond, True, False); 3932 if (NeedToShuffleReuses) { 3933 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3934 E->ReuseShuffleIndices, "shuffle"); 3935 } 3936 E->VectorizedValue = V; 3937 ++NumVectorInstructions; 3938 return V; 3939 } 3940 case Instruction::FNeg: { 3941 setInsertPointAfterBundle(E); 3942 3943 Value *Op = vectorizeTree(E->getOperand(0)); 3944 3945 if (E->VectorizedValue) { 3946 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3947 return E->VectorizedValue; 3948 } 3949 3950 Value *V = Builder.CreateUnOp( 3951 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3952 propagateIRFlags(V, E->Scalars, VL0); 3953 if (auto *I = dyn_cast<Instruction>(V)) 3954 V = propagateMetadata(I, E->Scalars); 3955 3956 if (NeedToShuffleReuses) { 3957 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3958 E->ReuseShuffleIndices, "shuffle"); 3959 } 3960 E->VectorizedValue = V; 3961 ++NumVectorInstructions; 3962 3963 return V; 3964 } 3965 case Instruction::Add: 3966 case Instruction::FAdd: 3967 case Instruction::Sub: 3968 case Instruction::FSub: 3969 case Instruction::Mul: 3970 case Instruction::FMul: 3971 case Instruction::UDiv: 3972 case Instruction::SDiv: 3973 case Instruction::FDiv: 3974 case Instruction::URem: 3975 case Instruction::SRem: 3976 case Instruction::FRem: 3977 case Instruction::Shl: 3978 case Instruction::LShr: 3979 case Instruction::AShr: 3980 case Instruction::And: 3981 case Instruction::Or: 3982 case Instruction::Xor: { 3983 setInsertPointAfterBundle(E); 3984 3985 Value *LHS = vectorizeTree(E->getOperand(0)); 3986 Value *RHS = vectorizeTree(E->getOperand(1)); 3987 3988 if (E->VectorizedValue) { 3989 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3990 return E->VectorizedValue; 3991 } 3992 3993 Value *V = Builder.CreateBinOp( 3994 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 3995 RHS); 3996 propagateIRFlags(V, E->Scalars, VL0); 3997 if (auto *I = dyn_cast<Instruction>(V)) 3998 V = propagateMetadata(I, E->Scalars); 3999 4000 if (NeedToShuffleReuses) { 4001 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4002 E->ReuseShuffleIndices, "shuffle"); 4003 } 4004 E->VectorizedValue = V; 4005 ++NumVectorInstructions; 4006 4007 return V; 4008 } 4009 case Instruction::Load: { 4010 // Loads are inserted at the head of the tree because we don't want to 4011 // sink them all the way down past store instructions. 4012 bool IsReorder = E->updateStateIfReorder(); 4013 if (IsReorder) 4014 VL0 = E->getMainOp(); 4015 setInsertPointAfterBundle(E); 4016 4017 LoadInst *LI = cast<LoadInst>(VL0); 4018 Type *ScalarLoadTy = LI->getType(); 4019 unsigned AS = LI->getPointerAddressSpace(); 4020 4021 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4022 VecTy->getPointerTo(AS)); 4023 4024 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4025 // ExternalUses list to make sure that an extract will be generated in the 4026 // future. 4027 Value *PO = LI->getPointerOperand(); 4028 if (getTreeEntry(PO)) 4029 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4030 4031 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4032 LI = Builder.CreateLoad(VecTy, VecPtr); 4033 if (!Alignment) 4034 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4035 LI->setAlignment(Alignment); 4036 Value *V = propagateMetadata(LI, E->Scalars); 4037 if (IsReorder) { 4038 OrdersType Mask; 4039 inversePermutation(E->ReorderIndices, Mask); 4040 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4041 Mask, "reorder_shuffle"); 4042 } 4043 if (NeedToShuffleReuses) { 4044 // TODO: Merge this shuffle with the ReorderShuffleMask. 4045 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4046 E->ReuseShuffleIndices, "shuffle"); 4047 } 4048 E->VectorizedValue = V; 4049 ++NumVectorInstructions; 4050 return V; 4051 } 4052 case Instruction::Store: { 4053 StoreInst *SI = cast<StoreInst>(VL0); 4054 unsigned Alignment = SI->getAlignment(); 4055 unsigned AS = SI->getPointerAddressSpace(); 4056 4057 setInsertPointAfterBundle(E); 4058 4059 Value *VecValue = vectorizeTree(E->getOperand(0)); 4060 Value *ScalarPtr = SI->getPointerOperand(); 4061 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 4062 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4063 4064 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4065 // ExternalUses to make sure that an extract will be generated in the 4066 // future. 4067 if (getTreeEntry(ScalarPtr)) 4068 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4069 4070 if (!Alignment) 4071 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4072 4073 ST->setAlignment(Align(Alignment)); 4074 Value *V = propagateMetadata(ST, E->Scalars); 4075 if (NeedToShuffleReuses) { 4076 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4077 E->ReuseShuffleIndices, "shuffle"); 4078 } 4079 E->VectorizedValue = V; 4080 ++NumVectorInstructions; 4081 return V; 4082 } 4083 case Instruction::GetElementPtr: { 4084 setInsertPointAfterBundle(E); 4085 4086 Value *Op0 = vectorizeTree(E->getOperand(0)); 4087 4088 std::vector<Value *> OpVecs; 4089 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4090 ++j) { 4091 Value *OpVec = vectorizeTree(E->getOperand(j)); 4092 OpVecs.push_back(OpVec); 4093 } 4094 4095 Value *V = Builder.CreateGEP( 4096 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4097 if (Instruction *I = dyn_cast<Instruction>(V)) 4098 V = propagateMetadata(I, E->Scalars); 4099 4100 if (NeedToShuffleReuses) { 4101 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4102 E->ReuseShuffleIndices, "shuffle"); 4103 } 4104 E->VectorizedValue = V; 4105 ++NumVectorInstructions; 4106 4107 return V; 4108 } 4109 case Instruction::Call: { 4110 CallInst *CI = cast<CallInst>(VL0); 4111 setInsertPointAfterBundle(E); 4112 4113 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4114 if (Function *FI = CI->getCalledFunction()) 4115 IID = FI->getIntrinsicID(); 4116 4117 Value *ScalarArg = nullptr; 4118 std::vector<Value *> OpVecs; 4119 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4120 ValueList OpVL; 4121 // Some intrinsics have scalar arguments. This argument should not be 4122 // vectorized. 4123 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4124 CallInst *CEI = cast<CallInst>(VL0); 4125 ScalarArg = CEI->getArgOperand(j); 4126 OpVecs.push_back(CEI->getArgOperand(j)); 4127 continue; 4128 } 4129 4130 Value *OpVec = vectorizeTree(E->getOperand(j)); 4131 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4132 OpVecs.push_back(OpVec); 4133 } 4134 4135 Module *M = F->getParent(); 4136 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4137 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4138 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4139 SmallVector<OperandBundleDef, 1> OpBundles; 4140 CI->getOperandBundlesAsDefs(OpBundles); 4141 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4142 4143 // The scalar argument uses an in-tree scalar so we add the new vectorized 4144 // call to ExternalUses list to make sure that an extract will be 4145 // generated in the future. 4146 if (ScalarArg && getTreeEntry(ScalarArg)) 4147 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4148 4149 propagateIRFlags(V, E->Scalars, VL0); 4150 if (NeedToShuffleReuses) { 4151 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4152 E->ReuseShuffleIndices, "shuffle"); 4153 } 4154 E->VectorizedValue = V; 4155 ++NumVectorInstructions; 4156 return V; 4157 } 4158 case Instruction::ShuffleVector: { 4159 assert(E->isAltShuffle() && 4160 ((Instruction::isBinaryOp(E->getOpcode()) && 4161 Instruction::isBinaryOp(E->getAltOpcode())) || 4162 (Instruction::isCast(E->getOpcode()) && 4163 Instruction::isCast(E->getAltOpcode()))) && 4164 "Invalid Shuffle Vector Operand"); 4165 4166 Value *LHS = nullptr, *RHS = nullptr; 4167 if (Instruction::isBinaryOp(E->getOpcode())) { 4168 setInsertPointAfterBundle(E); 4169 LHS = vectorizeTree(E->getOperand(0)); 4170 RHS = vectorizeTree(E->getOperand(1)); 4171 } else { 4172 setInsertPointAfterBundle(E); 4173 LHS = vectorizeTree(E->getOperand(0)); 4174 } 4175 4176 if (E->VectorizedValue) { 4177 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4178 return E->VectorizedValue; 4179 } 4180 4181 Value *V0, *V1; 4182 if (Instruction::isBinaryOp(E->getOpcode())) { 4183 V0 = Builder.CreateBinOp( 4184 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4185 V1 = Builder.CreateBinOp( 4186 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4187 } else { 4188 V0 = Builder.CreateCast( 4189 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4190 V1 = Builder.CreateCast( 4191 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4192 } 4193 4194 // Create shuffle to take alternate operations from the vector. 4195 // Also, gather up main and alt scalar ops to propagate IR flags to 4196 // each vector operation. 4197 ValueList OpScalars, AltScalars; 4198 unsigned e = E->Scalars.size(); 4199 SmallVector<Constant *, 8> Mask(e); 4200 for (unsigned i = 0; i < e; ++i) { 4201 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4202 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4203 if (OpInst->getOpcode() == E->getAltOpcode()) { 4204 Mask[i] = Builder.getInt32(e + i); 4205 AltScalars.push_back(E->Scalars[i]); 4206 } else { 4207 Mask[i] = Builder.getInt32(i); 4208 OpScalars.push_back(E->Scalars[i]); 4209 } 4210 } 4211 4212 Value *ShuffleMask = ConstantVector::get(Mask); 4213 propagateIRFlags(V0, OpScalars); 4214 propagateIRFlags(V1, AltScalars); 4215 4216 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4217 if (Instruction *I = dyn_cast<Instruction>(V)) 4218 V = propagateMetadata(I, E->Scalars); 4219 if (NeedToShuffleReuses) { 4220 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4221 E->ReuseShuffleIndices, "shuffle"); 4222 } 4223 E->VectorizedValue = V; 4224 ++NumVectorInstructions; 4225 4226 return V; 4227 } 4228 default: 4229 llvm_unreachable("unknown inst"); 4230 } 4231 return nullptr; 4232 } 4233 4234 Value *BoUpSLP::vectorizeTree() { 4235 ExtraValueToDebugLocsMap ExternallyUsedValues; 4236 return vectorizeTree(ExternallyUsedValues); 4237 } 4238 4239 Value * 4240 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4241 // All blocks must be scheduled before any instructions are inserted. 4242 for (auto &BSIter : BlocksSchedules) { 4243 scheduleBlock(BSIter.second.get()); 4244 } 4245 4246 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4247 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4248 4249 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4250 // vectorized root. InstCombine will then rewrite the entire expression. We 4251 // sign extend the extracted values below. 4252 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4253 if (MinBWs.count(ScalarRoot)) { 4254 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4255 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4256 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4257 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4258 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4259 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4260 VectorizableTree[0]->VectorizedValue = Trunc; 4261 } 4262 4263 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4264 << " values .\n"); 4265 4266 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4267 // specified by ScalarType. 4268 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4269 if (!MinBWs.count(ScalarRoot)) 4270 return Ex; 4271 if (MinBWs[ScalarRoot].second) 4272 return Builder.CreateSExt(Ex, ScalarType); 4273 return Builder.CreateZExt(Ex, ScalarType); 4274 }; 4275 4276 // Extract all of the elements with the external uses. 4277 for (const auto &ExternalUse : ExternalUses) { 4278 Value *Scalar = ExternalUse.Scalar; 4279 llvm::User *User = ExternalUse.User; 4280 4281 // Skip users that we already RAUW. This happens when one instruction 4282 // has multiple uses of the same value. 4283 if (User && !is_contained(Scalar->users(), User)) 4284 continue; 4285 TreeEntry *E = getTreeEntry(Scalar); 4286 assert(E && "Invalid scalar"); 4287 assert(!E->NeedToGather && "Extracting from a gather list"); 4288 4289 Value *Vec = E->VectorizedValue; 4290 assert(Vec && "Can't find vectorizable value"); 4291 4292 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4293 // If User == nullptr, the Scalar is used as extra arg. Generate 4294 // ExtractElement instruction and update the record for this scalar in 4295 // ExternallyUsedValues. 4296 if (!User) { 4297 assert(ExternallyUsedValues.count(Scalar) && 4298 "Scalar with nullptr as an external user must be registered in " 4299 "ExternallyUsedValues map"); 4300 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4301 Builder.SetInsertPoint(VecI->getParent(), 4302 std::next(VecI->getIterator())); 4303 } else { 4304 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4305 } 4306 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4307 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4308 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4309 auto &Locs = ExternallyUsedValues[Scalar]; 4310 ExternallyUsedValues.insert({Ex, Locs}); 4311 ExternallyUsedValues.erase(Scalar); 4312 // Required to update internally referenced instructions. 4313 Scalar->replaceAllUsesWith(Ex); 4314 continue; 4315 } 4316 4317 // Generate extracts for out-of-tree users. 4318 // Find the insertion point for the extractelement lane. 4319 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4320 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4321 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4322 if (PH->getIncomingValue(i) == Scalar) { 4323 Instruction *IncomingTerminator = 4324 PH->getIncomingBlock(i)->getTerminator(); 4325 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4326 Builder.SetInsertPoint(VecI->getParent(), 4327 std::next(VecI->getIterator())); 4328 } else { 4329 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4330 } 4331 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4332 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4333 CSEBlocks.insert(PH->getIncomingBlock(i)); 4334 PH->setOperand(i, Ex); 4335 } 4336 } 4337 } else { 4338 Builder.SetInsertPoint(cast<Instruction>(User)); 4339 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4340 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4341 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4342 User->replaceUsesOfWith(Scalar, Ex); 4343 } 4344 } else { 4345 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4346 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4347 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4348 CSEBlocks.insert(&F->getEntryBlock()); 4349 User->replaceUsesOfWith(Scalar, Ex); 4350 } 4351 4352 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4353 } 4354 4355 // For each vectorized value: 4356 for (auto &TEPtr : VectorizableTree) { 4357 TreeEntry *Entry = TEPtr.get(); 4358 4359 // No need to handle users of gathered values. 4360 if (Entry->NeedToGather) 4361 continue; 4362 4363 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4364 4365 // For each lane: 4366 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4367 Value *Scalar = Entry->Scalars[Lane]; 4368 4369 #ifndef NDEBUG 4370 Type *Ty = Scalar->getType(); 4371 if (!Ty->isVoidTy()) { 4372 for (User *U : Scalar->users()) { 4373 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4374 4375 // It is legal to delete users in the ignorelist. 4376 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4377 "Deleting out-of-tree value"); 4378 } 4379 } 4380 #endif 4381 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4382 eraseInstruction(cast<Instruction>(Scalar)); 4383 } 4384 } 4385 4386 Builder.ClearInsertionPoint(); 4387 4388 return VectorizableTree[0]->VectorizedValue; 4389 } 4390 4391 void BoUpSLP::optimizeGatherSequence() { 4392 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4393 << " gather sequences instructions.\n"); 4394 // LICM InsertElementInst sequences. 4395 for (Instruction *I : GatherSeq) { 4396 if (isDeleted(I)) 4397 continue; 4398 4399 // Check if this block is inside a loop. 4400 Loop *L = LI->getLoopFor(I->getParent()); 4401 if (!L) 4402 continue; 4403 4404 // Check if it has a preheader. 4405 BasicBlock *PreHeader = L->getLoopPreheader(); 4406 if (!PreHeader) 4407 continue; 4408 4409 // If the vector or the element that we insert into it are 4410 // instructions that are defined in this basic block then we can't 4411 // hoist this instruction. 4412 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4413 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4414 if (Op0 && L->contains(Op0)) 4415 continue; 4416 if (Op1 && L->contains(Op1)) 4417 continue; 4418 4419 // We can hoist this instruction. Move it to the pre-header. 4420 I->moveBefore(PreHeader->getTerminator()); 4421 } 4422 4423 // Make a list of all reachable blocks in our CSE queue. 4424 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4425 CSEWorkList.reserve(CSEBlocks.size()); 4426 for (BasicBlock *BB : CSEBlocks) 4427 if (DomTreeNode *N = DT->getNode(BB)) { 4428 assert(DT->isReachableFromEntry(N)); 4429 CSEWorkList.push_back(N); 4430 } 4431 4432 // Sort blocks by domination. This ensures we visit a block after all blocks 4433 // dominating it are visited. 4434 llvm::stable_sort(CSEWorkList, 4435 [this](const DomTreeNode *A, const DomTreeNode *B) { 4436 return DT->properlyDominates(A, B); 4437 }); 4438 4439 // Perform O(N^2) search over the gather sequences and merge identical 4440 // instructions. TODO: We can further optimize this scan if we split the 4441 // instructions into different buckets based on the insert lane. 4442 SmallVector<Instruction *, 16> Visited; 4443 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4444 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4445 "Worklist not sorted properly!"); 4446 BasicBlock *BB = (*I)->getBlock(); 4447 // For all instructions in blocks containing gather sequences: 4448 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4449 Instruction *In = &*it++; 4450 if (isDeleted(In)) 4451 continue; 4452 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4453 continue; 4454 4455 // Check if we can replace this instruction with any of the 4456 // visited instructions. 4457 for (Instruction *v : Visited) { 4458 if (In->isIdenticalTo(v) && 4459 DT->dominates(v->getParent(), In->getParent())) { 4460 In->replaceAllUsesWith(v); 4461 eraseInstruction(In); 4462 In = nullptr; 4463 break; 4464 } 4465 } 4466 if (In) { 4467 assert(!is_contained(Visited, In)); 4468 Visited.push_back(In); 4469 } 4470 } 4471 } 4472 CSEBlocks.clear(); 4473 GatherSeq.clear(); 4474 } 4475 4476 // Groups the instructions to a bundle (which is then a single scheduling entity) 4477 // and schedules instructions until the bundle gets ready. 4478 Optional<BoUpSLP::ScheduleData *> 4479 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4480 const InstructionsState &S) { 4481 if (isa<PHINode>(S.OpValue)) 4482 return nullptr; 4483 4484 // Initialize the instruction bundle. 4485 Instruction *OldScheduleEnd = ScheduleEnd; 4486 ScheduleData *PrevInBundle = nullptr; 4487 ScheduleData *Bundle = nullptr; 4488 bool ReSchedule = false; 4489 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4490 4491 // Make sure that the scheduling region contains all 4492 // instructions of the bundle. 4493 for (Value *V : VL) { 4494 if (!extendSchedulingRegion(V, S)) 4495 return None; 4496 } 4497 4498 for (Value *V : VL) { 4499 ScheduleData *BundleMember = getScheduleData(V); 4500 assert(BundleMember && 4501 "no ScheduleData for bundle member (maybe not in same basic block)"); 4502 if (BundleMember->IsScheduled) { 4503 // A bundle member was scheduled as single instruction before and now 4504 // needs to be scheduled as part of the bundle. We just get rid of the 4505 // existing schedule. 4506 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4507 << " was already scheduled\n"); 4508 ReSchedule = true; 4509 } 4510 assert(BundleMember->isSchedulingEntity() && 4511 "bundle member already part of other bundle"); 4512 if (PrevInBundle) { 4513 PrevInBundle->NextInBundle = BundleMember; 4514 } else { 4515 Bundle = BundleMember; 4516 } 4517 BundleMember->UnscheduledDepsInBundle = 0; 4518 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4519 4520 // Group the instructions to a bundle. 4521 BundleMember->FirstInBundle = Bundle; 4522 PrevInBundle = BundleMember; 4523 } 4524 if (ScheduleEnd != OldScheduleEnd) { 4525 // The scheduling region got new instructions at the lower end (or it is a 4526 // new region for the first bundle). This makes it necessary to 4527 // recalculate all dependencies. 4528 // It is seldom that this needs to be done a second time after adding the 4529 // initial bundle to the region. 4530 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4531 doForAllOpcodes(I, [](ScheduleData *SD) { 4532 SD->clearDependencies(); 4533 }); 4534 } 4535 ReSchedule = true; 4536 } 4537 if (ReSchedule) { 4538 resetSchedule(); 4539 initialFillReadyList(ReadyInsts); 4540 } 4541 assert(Bundle && "Failed to find schedule bundle"); 4542 4543 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4544 << BB->getName() << "\n"); 4545 4546 calculateDependencies(Bundle, true, SLP); 4547 4548 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4549 // means that there are no cyclic dependencies and we can schedule it. 4550 // Note that's important that we don't "schedule" the bundle yet (see 4551 // cancelScheduling). 4552 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4553 4554 ScheduleData *pickedSD = ReadyInsts.back(); 4555 ReadyInsts.pop_back(); 4556 4557 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4558 schedule(pickedSD, ReadyInsts); 4559 } 4560 } 4561 if (!Bundle->isReady()) { 4562 cancelScheduling(VL, S.OpValue); 4563 return None; 4564 } 4565 return Bundle; 4566 } 4567 4568 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4569 Value *OpValue) { 4570 if (isa<PHINode>(OpValue)) 4571 return; 4572 4573 ScheduleData *Bundle = getScheduleData(OpValue); 4574 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4575 assert(!Bundle->IsScheduled && 4576 "Can't cancel bundle which is already scheduled"); 4577 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4578 "tried to unbundle something which is not a bundle"); 4579 4580 // Un-bundle: make single instructions out of the bundle. 4581 ScheduleData *BundleMember = Bundle; 4582 while (BundleMember) { 4583 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4584 BundleMember->FirstInBundle = BundleMember; 4585 ScheduleData *Next = BundleMember->NextInBundle; 4586 BundleMember->NextInBundle = nullptr; 4587 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4588 if (BundleMember->UnscheduledDepsInBundle == 0) { 4589 ReadyInsts.insert(BundleMember); 4590 } 4591 BundleMember = Next; 4592 } 4593 } 4594 4595 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4596 // Allocate a new ScheduleData for the instruction. 4597 if (ChunkPos >= ChunkSize) { 4598 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4599 ChunkPos = 0; 4600 } 4601 return &(ScheduleDataChunks.back()[ChunkPos++]); 4602 } 4603 4604 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4605 const InstructionsState &S) { 4606 if (getScheduleData(V, isOneOf(S, V))) 4607 return true; 4608 Instruction *I = dyn_cast<Instruction>(V); 4609 assert(I && "bundle member must be an instruction"); 4610 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4611 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4612 ScheduleData *ISD = getScheduleData(I); 4613 if (!ISD) 4614 return false; 4615 assert(isInSchedulingRegion(ISD) && 4616 "ScheduleData not in scheduling region"); 4617 ScheduleData *SD = allocateScheduleDataChunks(); 4618 SD->Inst = I; 4619 SD->init(SchedulingRegionID, S.OpValue); 4620 ExtraScheduleDataMap[I][S.OpValue] = SD; 4621 return true; 4622 }; 4623 if (CheckSheduleForI(I)) 4624 return true; 4625 if (!ScheduleStart) { 4626 // It's the first instruction in the new region. 4627 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4628 ScheduleStart = I; 4629 ScheduleEnd = I->getNextNode(); 4630 if (isOneOf(S, I) != I) 4631 CheckSheduleForI(I); 4632 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4633 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4634 return true; 4635 } 4636 // Search up and down at the same time, because we don't know if the new 4637 // instruction is above or below the existing scheduling region. 4638 BasicBlock::reverse_iterator UpIter = 4639 ++ScheduleStart->getIterator().getReverse(); 4640 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4641 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4642 BasicBlock::iterator LowerEnd = BB->end(); 4643 while (true) { 4644 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4645 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4646 return false; 4647 } 4648 4649 if (UpIter != UpperEnd) { 4650 if (&*UpIter == I) { 4651 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4652 ScheduleStart = I; 4653 if (isOneOf(S, I) != I) 4654 CheckSheduleForI(I); 4655 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4656 << "\n"); 4657 return true; 4658 } 4659 ++UpIter; 4660 } 4661 if (DownIter != LowerEnd) { 4662 if (&*DownIter == I) { 4663 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4664 nullptr); 4665 ScheduleEnd = I->getNextNode(); 4666 if (isOneOf(S, I) != I) 4667 CheckSheduleForI(I); 4668 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4669 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4670 << "\n"); 4671 return true; 4672 } 4673 ++DownIter; 4674 } 4675 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4676 "instruction not found in block"); 4677 } 4678 return true; 4679 } 4680 4681 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4682 Instruction *ToI, 4683 ScheduleData *PrevLoadStore, 4684 ScheduleData *NextLoadStore) { 4685 ScheduleData *CurrentLoadStore = PrevLoadStore; 4686 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4687 ScheduleData *SD = ScheduleDataMap[I]; 4688 if (!SD) { 4689 SD = allocateScheduleDataChunks(); 4690 ScheduleDataMap[I] = SD; 4691 SD->Inst = I; 4692 } 4693 assert(!isInSchedulingRegion(SD) && 4694 "new ScheduleData already in scheduling region"); 4695 SD->init(SchedulingRegionID, I); 4696 4697 if (I->mayReadOrWriteMemory() && 4698 (!isa<IntrinsicInst>(I) || 4699 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4700 // Update the linked list of memory accessing instructions. 4701 if (CurrentLoadStore) { 4702 CurrentLoadStore->NextLoadStore = SD; 4703 } else { 4704 FirstLoadStoreInRegion = SD; 4705 } 4706 CurrentLoadStore = SD; 4707 } 4708 } 4709 if (NextLoadStore) { 4710 if (CurrentLoadStore) 4711 CurrentLoadStore->NextLoadStore = NextLoadStore; 4712 } else { 4713 LastLoadStoreInRegion = CurrentLoadStore; 4714 } 4715 } 4716 4717 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4718 bool InsertInReadyList, 4719 BoUpSLP *SLP) { 4720 assert(SD->isSchedulingEntity()); 4721 4722 SmallVector<ScheduleData *, 10> WorkList; 4723 WorkList.push_back(SD); 4724 4725 while (!WorkList.empty()) { 4726 ScheduleData *SD = WorkList.back(); 4727 WorkList.pop_back(); 4728 4729 ScheduleData *BundleMember = SD; 4730 while (BundleMember) { 4731 assert(isInSchedulingRegion(BundleMember)); 4732 if (!BundleMember->hasValidDependencies()) { 4733 4734 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4735 << "\n"); 4736 BundleMember->Dependencies = 0; 4737 BundleMember->resetUnscheduledDeps(); 4738 4739 // Handle def-use chain dependencies. 4740 if (BundleMember->OpValue != BundleMember->Inst) { 4741 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4742 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4743 BundleMember->Dependencies++; 4744 ScheduleData *DestBundle = UseSD->FirstInBundle; 4745 if (!DestBundle->IsScheduled) 4746 BundleMember->incrementUnscheduledDeps(1); 4747 if (!DestBundle->hasValidDependencies()) 4748 WorkList.push_back(DestBundle); 4749 } 4750 } else { 4751 for (User *U : BundleMember->Inst->users()) { 4752 if (isa<Instruction>(U)) { 4753 ScheduleData *UseSD = getScheduleData(U); 4754 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4755 BundleMember->Dependencies++; 4756 ScheduleData *DestBundle = UseSD->FirstInBundle; 4757 if (!DestBundle->IsScheduled) 4758 BundleMember->incrementUnscheduledDeps(1); 4759 if (!DestBundle->hasValidDependencies()) 4760 WorkList.push_back(DestBundle); 4761 } 4762 } else { 4763 // I'm not sure if this can ever happen. But we need to be safe. 4764 // This lets the instruction/bundle never be scheduled and 4765 // eventually disable vectorization. 4766 BundleMember->Dependencies++; 4767 BundleMember->incrementUnscheduledDeps(1); 4768 } 4769 } 4770 } 4771 4772 // Handle the memory dependencies. 4773 ScheduleData *DepDest = BundleMember->NextLoadStore; 4774 if (DepDest) { 4775 Instruction *SrcInst = BundleMember->Inst; 4776 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4777 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4778 unsigned numAliased = 0; 4779 unsigned DistToSrc = 1; 4780 4781 while (DepDest) { 4782 assert(isInSchedulingRegion(DepDest)); 4783 4784 // We have two limits to reduce the complexity: 4785 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4786 // SLP->isAliased (which is the expensive part in this loop). 4787 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4788 // the whole loop (even if the loop is fast, it's quadratic). 4789 // It's important for the loop break condition (see below) to 4790 // check this limit even between two read-only instructions. 4791 if (DistToSrc >= MaxMemDepDistance || 4792 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4793 (numAliased >= AliasedCheckLimit || 4794 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4795 4796 // We increment the counter only if the locations are aliased 4797 // (instead of counting all alias checks). This gives a better 4798 // balance between reduced runtime and accurate dependencies. 4799 numAliased++; 4800 4801 DepDest->MemoryDependencies.push_back(BundleMember); 4802 BundleMember->Dependencies++; 4803 ScheduleData *DestBundle = DepDest->FirstInBundle; 4804 if (!DestBundle->IsScheduled) { 4805 BundleMember->incrementUnscheduledDeps(1); 4806 } 4807 if (!DestBundle->hasValidDependencies()) { 4808 WorkList.push_back(DestBundle); 4809 } 4810 } 4811 DepDest = DepDest->NextLoadStore; 4812 4813 // Example, explaining the loop break condition: Let's assume our 4814 // starting instruction is i0 and MaxMemDepDistance = 3. 4815 // 4816 // +--------v--v--v 4817 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4818 // +--------^--^--^ 4819 // 4820 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4821 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4822 // Previously we already added dependencies from i3 to i6,i7,i8 4823 // (because of MaxMemDepDistance). As we added a dependency from 4824 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4825 // and we can abort this loop at i6. 4826 if (DistToSrc >= 2 * MaxMemDepDistance) 4827 break; 4828 DistToSrc++; 4829 } 4830 } 4831 } 4832 BundleMember = BundleMember->NextInBundle; 4833 } 4834 if (InsertInReadyList && SD->isReady()) { 4835 ReadyInsts.push_back(SD); 4836 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4837 << "\n"); 4838 } 4839 } 4840 } 4841 4842 void BoUpSLP::BlockScheduling::resetSchedule() { 4843 assert(ScheduleStart && 4844 "tried to reset schedule on block which has not been scheduled"); 4845 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4846 doForAllOpcodes(I, [&](ScheduleData *SD) { 4847 assert(isInSchedulingRegion(SD) && 4848 "ScheduleData not in scheduling region"); 4849 SD->IsScheduled = false; 4850 SD->resetUnscheduledDeps(); 4851 }); 4852 } 4853 ReadyInsts.clear(); 4854 } 4855 4856 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4857 if (!BS->ScheduleStart) 4858 return; 4859 4860 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4861 4862 BS->resetSchedule(); 4863 4864 // For the real scheduling we use a more sophisticated ready-list: it is 4865 // sorted by the original instruction location. This lets the final schedule 4866 // be as close as possible to the original instruction order. 4867 struct ScheduleDataCompare { 4868 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4869 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4870 } 4871 }; 4872 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4873 4874 // Ensure that all dependency data is updated and fill the ready-list with 4875 // initial instructions. 4876 int Idx = 0; 4877 int NumToSchedule = 0; 4878 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4879 I = I->getNextNode()) { 4880 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4881 assert(SD->isPartOfBundle() == 4882 (getTreeEntry(SD->Inst) != nullptr) && 4883 "scheduler and vectorizer bundle mismatch"); 4884 SD->FirstInBundle->SchedulingPriority = Idx++; 4885 if (SD->isSchedulingEntity()) { 4886 BS->calculateDependencies(SD, false, this); 4887 NumToSchedule++; 4888 } 4889 }); 4890 } 4891 BS->initialFillReadyList(ReadyInsts); 4892 4893 Instruction *LastScheduledInst = BS->ScheduleEnd; 4894 4895 // Do the "real" scheduling. 4896 while (!ReadyInsts.empty()) { 4897 ScheduleData *picked = *ReadyInsts.begin(); 4898 ReadyInsts.erase(ReadyInsts.begin()); 4899 4900 // Move the scheduled instruction(s) to their dedicated places, if not 4901 // there yet. 4902 ScheduleData *BundleMember = picked; 4903 while (BundleMember) { 4904 Instruction *pickedInst = BundleMember->Inst; 4905 if (LastScheduledInst->getNextNode() != pickedInst) { 4906 BS->BB->getInstList().remove(pickedInst); 4907 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4908 pickedInst); 4909 } 4910 LastScheduledInst = pickedInst; 4911 BundleMember = BundleMember->NextInBundle; 4912 } 4913 4914 BS->schedule(picked, ReadyInsts); 4915 NumToSchedule--; 4916 } 4917 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4918 4919 // Avoid duplicate scheduling of the block. 4920 BS->ScheduleStart = nullptr; 4921 } 4922 4923 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4924 // If V is a store, just return the width of the stored value without 4925 // traversing the expression tree. This is the common case. 4926 if (auto *Store = dyn_cast<StoreInst>(V)) 4927 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4928 4929 // If V is not a store, we can traverse the expression tree to find loads 4930 // that feed it. The type of the loaded value may indicate a more suitable 4931 // width than V's type. We want to base the vector element size on the width 4932 // of memory operations where possible. 4933 SmallVector<Instruction *, 16> Worklist; 4934 SmallPtrSet<Instruction *, 16> Visited; 4935 if (auto *I = dyn_cast<Instruction>(V)) 4936 Worklist.push_back(I); 4937 4938 // Traverse the expression tree in bottom-up order looking for loads. If we 4939 // encounter an instruction we don't yet handle, we give up. 4940 auto MaxWidth = 0u; 4941 auto FoundUnknownInst = false; 4942 while (!Worklist.empty() && !FoundUnknownInst) { 4943 auto *I = Worklist.pop_back_val(); 4944 Visited.insert(I); 4945 4946 // We should only be looking at scalar instructions here. If the current 4947 // instruction has a vector type, give up. 4948 auto *Ty = I->getType(); 4949 if (isa<VectorType>(Ty)) 4950 FoundUnknownInst = true; 4951 4952 // If the current instruction is a load, update MaxWidth to reflect the 4953 // width of the loaded value. 4954 else if (isa<LoadInst>(I)) 4955 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4956 4957 // Otherwise, we need to visit the operands of the instruction. We only 4958 // handle the interesting cases from buildTree here. If an operand is an 4959 // instruction we haven't yet visited, we add it to the worklist. 4960 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4961 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4962 for (Use &U : I->operands()) 4963 if (auto *J = dyn_cast<Instruction>(U.get())) 4964 if (!Visited.count(J)) 4965 Worklist.push_back(J); 4966 } 4967 4968 // If we don't yet handle the instruction, give up. 4969 else 4970 FoundUnknownInst = true; 4971 } 4972 4973 // If we didn't encounter a memory access in the expression tree, or if we 4974 // gave up for some reason, just return the width of V. 4975 if (!MaxWidth || FoundUnknownInst) 4976 return DL->getTypeSizeInBits(V->getType()); 4977 4978 // Otherwise, return the maximum width we found. 4979 return MaxWidth; 4980 } 4981 4982 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4983 // smaller type with a truncation. We collect the values that will be demoted 4984 // in ToDemote and additional roots that require investigating in Roots. 4985 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4986 SmallVectorImpl<Value *> &ToDemote, 4987 SmallVectorImpl<Value *> &Roots) { 4988 // We can always demote constants. 4989 if (isa<Constant>(V)) { 4990 ToDemote.push_back(V); 4991 return true; 4992 } 4993 4994 // If the value is not an instruction in the expression with only one use, it 4995 // cannot be demoted. 4996 auto *I = dyn_cast<Instruction>(V); 4997 if (!I || !I->hasOneUse() || !Expr.count(I)) 4998 return false; 4999 5000 switch (I->getOpcode()) { 5001 5002 // We can always demote truncations and extensions. Since truncations can 5003 // seed additional demotion, we save the truncated value. 5004 case Instruction::Trunc: 5005 Roots.push_back(I->getOperand(0)); 5006 break; 5007 case Instruction::ZExt: 5008 case Instruction::SExt: 5009 break; 5010 5011 // We can demote certain binary operations if we can demote both of their 5012 // operands. 5013 case Instruction::Add: 5014 case Instruction::Sub: 5015 case Instruction::Mul: 5016 case Instruction::And: 5017 case Instruction::Or: 5018 case Instruction::Xor: 5019 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5020 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5021 return false; 5022 break; 5023 5024 // We can demote selects if we can demote their true and false values. 5025 case Instruction::Select: { 5026 SelectInst *SI = cast<SelectInst>(I); 5027 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5028 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5029 return false; 5030 break; 5031 } 5032 5033 // We can demote phis if we can demote all their incoming operands. Note that 5034 // we don't need to worry about cycles since we ensure single use above. 5035 case Instruction::PHI: { 5036 PHINode *PN = cast<PHINode>(I); 5037 for (Value *IncValue : PN->incoming_values()) 5038 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5039 return false; 5040 break; 5041 } 5042 5043 // Otherwise, conservatively give up. 5044 default: 5045 return false; 5046 } 5047 5048 // Record the value that we can demote. 5049 ToDemote.push_back(V); 5050 return true; 5051 } 5052 5053 void BoUpSLP::computeMinimumValueSizes() { 5054 // If there are no external uses, the expression tree must be rooted by a 5055 // store. We can't demote in-memory values, so there is nothing to do here. 5056 if (ExternalUses.empty()) 5057 return; 5058 5059 // We only attempt to truncate integer expressions. 5060 auto &TreeRoot = VectorizableTree[0]->Scalars; 5061 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5062 if (!TreeRootIT) 5063 return; 5064 5065 // If the expression is not rooted by a store, these roots should have 5066 // external uses. We will rely on InstCombine to rewrite the expression in 5067 // the narrower type. However, InstCombine only rewrites single-use values. 5068 // This means that if a tree entry other than a root is used externally, it 5069 // must have multiple uses and InstCombine will not rewrite it. The code 5070 // below ensures that only the roots are used externally. 5071 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5072 for (auto &EU : ExternalUses) 5073 if (!Expr.erase(EU.Scalar)) 5074 return; 5075 if (!Expr.empty()) 5076 return; 5077 5078 // Collect the scalar values of the vectorizable expression. We will use this 5079 // context to determine which values can be demoted. If we see a truncation, 5080 // we mark it as seeding another demotion. 5081 for (auto &EntryPtr : VectorizableTree) 5082 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5083 5084 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5085 // have a single external user that is not in the vectorizable tree. 5086 for (auto *Root : TreeRoot) 5087 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5088 return; 5089 5090 // Conservatively determine if we can actually truncate the roots of the 5091 // expression. Collect the values that can be demoted in ToDemote and 5092 // additional roots that require investigating in Roots. 5093 SmallVector<Value *, 32> ToDemote; 5094 SmallVector<Value *, 4> Roots; 5095 for (auto *Root : TreeRoot) 5096 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5097 return; 5098 5099 // The maximum bit width required to represent all the values that can be 5100 // demoted without loss of precision. It would be safe to truncate the roots 5101 // of the expression to this width. 5102 auto MaxBitWidth = 8u; 5103 5104 // We first check if all the bits of the roots are demanded. If they're not, 5105 // we can truncate the roots to this narrower type. 5106 for (auto *Root : TreeRoot) { 5107 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5108 MaxBitWidth = std::max<unsigned>( 5109 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5110 } 5111 5112 // True if the roots can be zero-extended back to their original type, rather 5113 // than sign-extended. We know that if the leading bits are not demanded, we 5114 // can safely zero-extend. So we initialize IsKnownPositive to True. 5115 bool IsKnownPositive = true; 5116 5117 // If all the bits of the roots are demanded, we can try a little harder to 5118 // compute a narrower type. This can happen, for example, if the roots are 5119 // getelementptr indices. InstCombine promotes these indices to the pointer 5120 // width. Thus, all their bits are technically demanded even though the 5121 // address computation might be vectorized in a smaller type. 5122 // 5123 // We start by looking at each entry that can be demoted. We compute the 5124 // maximum bit width required to store the scalar by using ValueTracking to 5125 // compute the number of high-order bits we can truncate. 5126 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5127 llvm::all_of(TreeRoot, [](Value *R) { 5128 assert(R->hasOneUse() && "Root should have only one use!"); 5129 return isa<GetElementPtrInst>(R->user_back()); 5130 })) { 5131 MaxBitWidth = 8u; 5132 5133 // Determine if the sign bit of all the roots is known to be zero. If not, 5134 // IsKnownPositive is set to False. 5135 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5136 KnownBits Known = computeKnownBits(R, *DL); 5137 return Known.isNonNegative(); 5138 }); 5139 5140 // Determine the maximum number of bits required to store the scalar 5141 // values. 5142 for (auto *Scalar : ToDemote) { 5143 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5144 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5145 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5146 } 5147 5148 // If we can't prove that the sign bit is zero, we must add one to the 5149 // maximum bit width to account for the unknown sign bit. This preserves 5150 // the existing sign bit so we can safely sign-extend the root back to the 5151 // original type. Otherwise, if we know the sign bit is zero, we will 5152 // zero-extend the root instead. 5153 // 5154 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5155 // one to the maximum bit width will yield a larger-than-necessary 5156 // type. In general, we need to add an extra bit only if we can't 5157 // prove that the upper bit of the original type is equal to the 5158 // upper bit of the proposed smaller type. If these two bits are the 5159 // same (either zero or one) we know that sign-extending from the 5160 // smaller type will result in the same value. Here, since we can't 5161 // yet prove this, we are just making the proposed smaller type 5162 // larger to ensure correctness. 5163 if (!IsKnownPositive) 5164 ++MaxBitWidth; 5165 } 5166 5167 // Round MaxBitWidth up to the next power-of-two. 5168 if (!isPowerOf2_64(MaxBitWidth)) 5169 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5170 5171 // If the maximum bit width we compute is less than the with of the roots' 5172 // type, we can proceed with the narrowing. Otherwise, do nothing. 5173 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5174 return; 5175 5176 // If we can truncate the root, we must collect additional values that might 5177 // be demoted as a result. That is, those seeded by truncations we will 5178 // modify. 5179 while (!Roots.empty()) 5180 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5181 5182 // Finally, map the values we can demote to the maximum bit with we computed. 5183 for (auto *Scalar : ToDemote) 5184 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5185 } 5186 5187 namespace { 5188 5189 /// The SLPVectorizer Pass. 5190 struct SLPVectorizer : public FunctionPass { 5191 SLPVectorizerPass Impl; 5192 5193 /// Pass identification, replacement for typeid 5194 static char ID; 5195 5196 explicit SLPVectorizer() : FunctionPass(ID) { 5197 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5198 } 5199 5200 bool doInitialization(Module &M) override { 5201 return false; 5202 } 5203 5204 bool runOnFunction(Function &F) override { 5205 if (skipFunction(F)) 5206 return false; 5207 5208 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5209 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5210 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5211 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5212 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5213 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5214 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5215 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5216 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5217 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5218 5219 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5220 } 5221 5222 void getAnalysisUsage(AnalysisUsage &AU) const override { 5223 FunctionPass::getAnalysisUsage(AU); 5224 AU.addRequired<AssumptionCacheTracker>(); 5225 AU.addRequired<ScalarEvolutionWrapperPass>(); 5226 AU.addRequired<AAResultsWrapperPass>(); 5227 AU.addRequired<TargetTransformInfoWrapperPass>(); 5228 AU.addRequired<LoopInfoWrapperPass>(); 5229 AU.addRequired<DominatorTreeWrapperPass>(); 5230 AU.addRequired<DemandedBitsWrapperPass>(); 5231 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5232 AU.addPreserved<LoopInfoWrapperPass>(); 5233 AU.addPreserved<DominatorTreeWrapperPass>(); 5234 AU.addPreserved<AAResultsWrapperPass>(); 5235 AU.addPreserved<GlobalsAAWrapperPass>(); 5236 AU.setPreservesCFG(); 5237 } 5238 }; 5239 5240 } // end anonymous namespace 5241 5242 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5243 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5244 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5245 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5246 auto *AA = &AM.getResult<AAManager>(F); 5247 auto *LI = &AM.getResult<LoopAnalysis>(F); 5248 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5249 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5250 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5251 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5252 5253 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5254 if (!Changed) 5255 return PreservedAnalyses::all(); 5256 5257 PreservedAnalyses PA; 5258 PA.preserveSet<CFGAnalyses>(); 5259 PA.preserve<AAManager>(); 5260 PA.preserve<GlobalsAA>(); 5261 return PA; 5262 } 5263 5264 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5265 TargetTransformInfo *TTI_, 5266 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5267 LoopInfo *LI_, DominatorTree *DT_, 5268 AssumptionCache *AC_, DemandedBits *DB_, 5269 OptimizationRemarkEmitter *ORE_) { 5270 SE = SE_; 5271 TTI = TTI_; 5272 TLI = TLI_; 5273 AA = AA_; 5274 LI = LI_; 5275 DT = DT_; 5276 AC = AC_; 5277 DB = DB_; 5278 DL = &F.getParent()->getDataLayout(); 5279 5280 Stores.clear(); 5281 GEPs.clear(); 5282 bool Changed = false; 5283 5284 // If the target claims to have no vector registers don't attempt 5285 // vectorization. 5286 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5287 return false; 5288 5289 // Don't vectorize when the attribute NoImplicitFloat is used. 5290 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5291 return false; 5292 5293 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5294 5295 // Use the bottom up slp vectorizer to construct chains that start with 5296 // store instructions. 5297 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5298 5299 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5300 // delete instructions. 5301 5302 // Scan the blocks in the function in post order. 5303 for (auto BB : post_order(&F.getEntryBlock())) { 5304 collectSeedInstructions(BB); 5305 5306 // Vectorize trees that end at stores. 5307 if (!Stores.empty()) { 5308 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5309 << " underlying objects.\n"); 5310 Changed |= vectorizeStoreChains(R); 5311 } 5312 5313 // Vectorize trees that end at reductions. 5314 Changed |= vectorizeChainsInBlock(BB, R); 5315 5316 // Vectorize the index computations of getelementptr instructions. This 5317 // is primarily intended to catch gather-like idioms ending at 5318 // non-consecutive loads. 5319 if (!GEPs.empty()) { 5320 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5321 << " underlying objects.\n"); 5322 Changed |= vectorizeGEPIndices(BB, R); 5323 } 5324 } 5325 5326 if (Changed) { 5327 R.optimizeGatherSequence(); 5328 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5329 LLVM_DEBUG(verifyFunction(F)); 5330 } 5331 return Changed; 5332 } 5333 5334 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5335 unsigned VecRegSize) { 5336 const unsigned ChainLen = Chain.size(); 5337 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5338 << "\n"); 5339 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5340 const unsigned VF = VecRegSize / Sz; 5341 5342 if (!isPowerOf2_32(Sz) || VF < 2) 5343 return false; 5344 5345 bool Changed = false; 5346 // Look for profitable vectorizable trees at all offsets, starting at zero. 5347 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5348 5349 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5350 // Check that a previous iteration of this loop did not delete the Value. 5351 if (llvm::any_of(Operands, [&R](Value *V) { 5352 auto *I = dyn_cast<Instruction>(V); 5353 return I && R.isDeleted(I); 5354 })) 5355 continue; 5356 5357 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5358 << "\n"); 5359 5360 R.buildTree(Operands); 5361 if (R.isTreeTinyAndNotFullyVectorizable()) 5362 continue; 5363 5364 R.computeMinimumValueSizes(); 5365 5366 int Cost = R.getTreeCost(); 5367 5368 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5369 << "\n"); 5370 if (Cost < -SLPCostThreshold) { 5371 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5372 5373 using namespace ore; 5374 5375 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5376 cast<StoreInst>(Chain[i])) 5377 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5378 << " and with tree size " 5379 << NV("TreeSize", R.getTreeSize())); 5380 5381 R.vectorizeTree(); 5382 5383 // Move to the next bundle. 5384 i += VF - 1; 5385 Changed = true; 5386 } 5387 } 5388 5389 return Changed; 5390 } 5391 5392 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5393 BoUpSLP &R) { 5394 SetVector<StoreInst *> Heads; 5395 SmallDenseSet<StoreInst *> Tails; 5396 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5397 5398 // We may run into multiple chains that merge into a single chain. We mark the 5399 // stores that we vectorized so that we don't visit the same store twice. 5400 BoUpSLP::ValueSet VectorizedStores; 5401 bool Changed = false; 5402 5403 auto &&FindConsecutiveAccess = 5404 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5405 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5406 return false; 5407 5408 Tails.insert(Stores[Idx]); 5409 Heads.insert(Stores[K]); 5410 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5411 return true; 5412 }; 5413 5414 // Do a quadratic search on all of the given stores in reverse order and find 5415 // all of the pairs of stores that follow each other. 5416 int E = Stores.size(); 5417 for (int Idx = E - 1; Idx >= 0; --Idx) { 5418 // If a store has multiple consecutive store candidates, search according 5419 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5420 // This is because usually pairing with immediate succeeding or preceding 5421 // candidate create the best chance to find slp vectorization opportunity. 5422 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5423 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5424 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5425 break; 5426 } 5427 5428 // For stores that start but don't end a link in the chain: 5429 for (auto *SI : llvm::reverse(Heads)) { 5430 if (Tails.count(SI)) 5431 continue; 5432 5433 // We found a store instr that starts a chain. Now follow the chain and try 5434 // to vectorize it. 5435 BoUpSLP::ValueList Operands; 5436 StoreInst *I = SI; 5437 // Collect the chain into a list. 5438 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5439 Operands.push_back(I); 5440 // Move to the next value in the chain. 5441 I = ConsecutiveChain[I]; 5442 } 5443 5444 // FIXME: Is division-by-2 the correct step? Should we assert that the 5445 // register size is a power-of-2? 5446 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5447 Size /= 2) { 5448 if (vectorizeStoreChain(Operands, R, Size)) { 5449 // Mark the vectorized stores so that we don't vectorize them again. 5450 VectorizedStores.insert(Operands.begin(), Operands.end()); 5451 Changed = true; 5452 break; 5453 } 5454 } 5455 } 5456 5457 return Changed; 5458 } 5459 5460 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5461 // Initialize the collections. We will make a single pass over the block. 5462 Stores.clear(); 5463 GEPs.clear(); 5464 5465 // Visit the store and getelementptr instructions in BB and organize them in 5466 // Stores and GEPs according to the underlying objects of their pointer 5467 // operands. 5468 for (Instruction &I : *BB) { 5469 // Ignore store instructions that are volatile or have a pointer operand 5470 // that doesn't point to a scalar type. 5471 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5472 if (!SI->isSimple()) 5473 continue; 5474 if (!isValidElementType(SI->getValueOperand()->getType())) 5475 continue; 5476 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5477 } 5478 5479 // Ignore getelementptr instructions that have more than one index, a 5480 // constant index, or a pointer operand that doesn't point to a scalar 5481 // type. 5482 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5483 auto Idx = GEP->idx_begin()->get(); 5484 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5485 continue; 5486 if (!isValidElementType(Idx->getType())) 5487 continue; 5488 if (GEP->getType()->isVectorTy()) 5489 continue; 5490 GEPs[GEP->getPointerOperand()].push_back(GEP); 5491 } 5492 } 5493 } 5494 5495 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5496 if (!A || !B) 5497 return false; 5498 Value *VL[] = { A, B }; 5499 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5500 } 5501 5502 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5503 int UserCost, bool AllowReorder) { 5504 if (VL.size() < 2) 5505 return false; 5506 5507 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5508 << VL.size() << ".\n"); 5509 5510 // Check that all of the parts are scalar instructions of the same type, 5511 // we permit an alternate opcode via InstructionsState. 5512 InstructionsState S = getSameOpcode(VL); 5513 if (!S.getOpcode()) 5514 return false; 5515 5516 Instruction *I0 = cast<Instruction>(S.OpValue); 5517 unsigned Sz = R.getVectorElementSize(I0); 5518 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5519 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5520 if (MaxVF < 2) { 5521 R.getORE()->emit([&]() { 5522 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5523 << "Cannot SLP vectorize list: vectorization factor " 5524 << "less than 2 is not supported"; 5525 }); 5526 return false; 5527 } 5528 5529 for (Value *V : VL) { 5530 Type *Ty = V->getType(); 5531 if (!isValidElementType(Ty)) { 5532 // NOTE: the following will give user internal llvm type name, which may 5533 // not be useful. 5534 R.getORE()->emit([&]() { 5535 std::string type_str; 5536 llvm::raw_string_ostream rso(type_str); 5537 Ty->print(rso); 5538 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5539 << "Cannot SLP vectorize list: type " 5540 << rso.str() + " is unsupported by vectorizer"; 5541 }); 5542 return false; 5543 } 5544 } 5545 5546 bool Changed = false; 5547 bool CandidateFound = false; 5548 int MinCost = SLPCostThreshold; 5549 5550 unsigned NextInst = 0, MaxInst = VL.size(); 5551 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5552 // No actual vectorization should happen, if number of parts is the same as 5553 // provided vectorization factor (i.e. the scalar type is used for vector 5554 // code during codegen). 5555 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5556 if (TTI->getNumberOfParts(VecTy) == VF) 5557 continue; 5558 for (unsigned I = NextInst; I < MaxInst; ++I) { 5559 unsigned OpsWidth = 0; 5560 5561 if (I + VF > MaxInst) 5562 OpsWidth = MaxInst - I; 5563 else 5564 OpsWidth = VF; 5565 5566 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5567 break; 5568 5569 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5570 // Check that a previous iteration of this loop did not delete the Value. 5571 if (llvm::any_of(Ops, [&R](Value *V) { 5572 auto *I = dyn_cast<Instruction>(V); 5573 return I && R.isDeleted(I); 5574 })) 5575 continue; 5576 5577 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5578 << "\n"); 5579 5580 R.buildTree(Ops); 5581 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5582 // TODO: check if we can allow reordering for more cases. 5583 if (AllowReorder && Order) { 5584 // TODO: reorder tree nodes without tree rebuilding. 5585 // Conceptually, there is nothing actually preventing us from trying to 5586 // reorder a larger list. In fact, we do exactly this when vectorizing 5587 // reductions. However, at this point, we only expect to get here when 5588 // there are exactly two operations. 5589 assert(Ops.size() == 2); 5590 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5591 R.buildTree(ReorderedOps, None); 5592 } 5593 if (R.isTreeTinyAndNotFullyVectorizable()) 5594 continue; 5595 5596 R.computeMinimumValueSizes(); 5597 int Cost = R.getTreeCost() - UserCost; 5598 CandidateFound = true; 5599 MinCost = std::min(MinCost, Cost); 5600 5601 if (Cost < -SLPCostThreshold) { 5602 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5603 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5604 cast<Instruction>(Ops[0])) 5605 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5606 << " and with tree size " 5607 << ore::NV("TreeSize", R.getTreeSize())); 5608 5609 R.vectorizeTree(); 5610 // Move to the next bundle. 5611 I += VF - 1; 5612 NextInst = I + 1; 5613 Changed = true; 5614 } 5615 } 5616 } 5617 5618 if (!Changed && CandidateFound) { 5619 R.getORE()->emit([&]() { 5620 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5621 << "List vectorization was possible but not beneficial with cost " 5622 << ore::NV("Cost", MinCost) << " >= " 5623 << ore::NV("Treshold", -SLPCostThreshold); 5624 }); 5625 } else if (!Changed) { 5626 R.getORE()->emit([&]() { 5627 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5628 << "Cannot SLP vectorize list: vectorization was impossible" 5629 << " with available vectorization factors"; 5630 }); 5631 } 5632 return Changed; 5633 } 5634 5635 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5636 if (!I) 5637 return false; 5638 5639 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5640 return false; 5641 5642 Value *P = I->getParent(); 5643 5644 // Vectorize in current basic block only. 5645 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5646 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5647 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5648 return false; 5649 5650 // Try to vectorize V. 5651 if (tryToVectorizePair(Op0, Op1, R)) 5652 return true; 5653 5654 auto *A = dyn_cast<BinaryOperator>(Op0); 5655 auto *B = dyn_cast<BinaryOperator>(Op1); 5656 // Try to skip B. 5657 if (B && B->hasOneUse()) { 5658 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5659 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5660 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5661 return true; 5662 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5663 return true; 5664 } 5665 5666 // Try to skip A. 5667 if (A && A->hasOneUse()) { 5668 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5669 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5670 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5671 return true; 5672 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5673 return true; 5674 } 5675 return false; 5676 } 5677 5678 /// Generate a shuffle mask to be used in a reduction tree. 5679 /// 5680 /// \param VecLen The length of the vector to be reduced. 5681 /// \param NumEltsToRdx The number of elements that should be reduced in the 5682 /// vector. 5683 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5684 /// reduction. A pairwise reduction will generate a mask of 5685 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5686 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5687 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5688 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5689 bool IsPairwise, bool IsLeft, 5690 IRBuilder<> &Builder) { 5691 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5692 5693 SmallVector<Constant *, 32> ShuffleMask( 5694 VecLen, UndefValue::get(Builder.getInt32Ty())); 5695 5696 if (IsPairwise) 5697 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5698 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5699 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5700 else 5701 // Move the upper half of the vector to the lower half. 5702 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5703 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5704 5705 return ConstantVector::get(ShuffleMask); 5706 } 5707 5708 namespace { 5709 5710 /// Model horizontal reductions. 5711 /// 5712 /// A horizontal reduction is a tree of reduction operations (currently add and 5713 /// fadd) that has operations that can be put into a vector as its leaf. 5714 /// For example, this tree: 5715 /// 5716 /// mul mul mul mul 5717 /// \ / \ / 5718 /// + + 5719 /// \ / 5720 /// + 5721 /// This tree has "mul" as its reduced values and "+" as its reduction 5722 /// operations. A reduction might be feeding into a store or a binary operation 5723 /// feeding a phi. 5724 /// ... 5725 /// \ / 5726 /// + 5727 /// | 5728 /// phi += 5729 /// 5730 /// Or: 5731 /// ... 5732 /// \ / 5733 /// + 5734 /// | 5735 /// *p = 5736 /// 5737 class HorizontalReduction { 5738 using ReductionOpsType = SmallVector<Value *, 16>; 5739 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5740 ReductionOpsListType ReductionOps; 5741 SmallVector<Value *, 32> ReducedVals; 5742 // Use map vector to make stable output. 5743 MapVector<Instruction *, Value *> ExtraArgs; 5744 5745 /// Kind of the reduction data. 5746 enum ReductionKind { 5747 RK_None, /// Not a reduction. 5748 RK_Arithmetic, /// Binary reduction data. 5749 RK_Min, /// Minimum reduction data. 5750 RK_UMin, /// Unsigned minimum reduction data. 5751 RK_Max, /// Maximum reduction data. 5752 RK_UMax, /// Unsigned maximum reduction data. 5753 }; 5754 5755 /// Contains info about operation, like its opcode, left and right operands. 5756 class OperationData { 5757 /// Opcode of the instruction. 5758 unsigned Opcode = 0; 5759 5760 /// Left operand of the reduction operation. 5761 Value *LHS = nullptr; 5762 5763 /// Right operand of the reduction operation. 5764 Value *RHS = nullptr; 5765 5766 /// Kind of the reduction operation. 5767 ReductionKind Kind = RK_None; 5768 5769 /// True if float point min/max reduction has no NaNs. 5770 bool NoNaN = false; 5771 5772 /// Checks if the reduction operation can be vectorized. 5773 bool isVectorizable() const { 5774 return LHS && RHS && 5775 // We currently only support add/mul/logical && min/max reductions. 5776 ((Kind == RK_Arithmetic && 5777 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5778 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5779 Opcode == Instruction::And || Opcode == Instruction::Or || 5780 Opcode == Instruction::Xor)) || 5781 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5782 (Kind == RK_Min || Kind == RK_Max)) || 5783 (Opcode == Instruction::ICmp && 5784 (Kind == RK_UMin || Kind == RK_UMax))); 5785 } 5786 5787 /// Creates reduction operation with the current opcode. 5788 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5789 assert(isVectorizable() && 5790 "Expected add|fadd or min/max reduction operation."); 5791 Value *Cmp = nullptr; 5792 switch (Kind) { 5793 case RK_Arithmetic: 5794 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5795 Name); 5796 case RK_Min: 5797 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5798 : Builder.CreateFCmpOLT(LHS, RHS); 5799 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5800 case RK_Max: 5801 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5802 : Builder.CreateFCmpOGT(LHS, RHS); 5803 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5804 case RK_UMin: 5805 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5806 Cmp = Builder.CreateICmpULT(LHS, RHS); 5807 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5808 case RK_UMax: 5809 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5810 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5811 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5812 case RK_None: 5813 break; 5814 } 5815 llvm_unreachable("Unknown reduction operation."); 5816 } 5817 5818 public: 5819 explicit OperationData() = default; 5820 5821 /// Construction for reduced values. They are identified by opcode only and 5822 /// don't have associated LHS/RHS values. 5823 explicit OperationData(Value *V) { 5824 if (auto *I = dyn_cast<Instruction>(V)) 5825 Opcode = I->getOpcode(); 5826 } 5827 5828 /// Constructor for reduction operations with opcode and its left and 5829 /// right operands. 5830 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5831 bool NoNaN = false) 5832 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5833 assert(Kind != RK_None && "One of the reduction operations is expected."); 5834 } 5835 5836 explicit operator bool() const { return Opcode; } 5837 5838 /// Get the index of the first operand. 5839 unsigned getFirstOperandIndex() const { 5840 assert(!!*this && "The opcode is not set."); 5841 switch (Kind) { 5842 case RK_Min: 5843 case RK_UMin: 5844 case RK_Max: 5845 case RK_UMax: 5846 return 1; 5847 case RK_Arithmetic: 5848 case RK_None: 5849 break; 5850 } 5851 return 0; 5852 } 5853 5854 /// Total number of operands in the reduction operation. 5855 unsigned getNumberOfOperands() const { 5856 assert(Kind != RK_None && !!*this && LHS && RHS && 5857 "Expected reduction operation."); 5858 switch (Kind) { 5859 case RK_Arithmetic: 5860 return 2; 5861 case RK_Min: 5862 case RK_UMin: 5863 case RK_Max: 5864 case RK_UMax: 5865 return 3; 5866 case RK_None: 5867 break; 5868 } 5869 llvm_unreachable("Reduction kind is not set"); 5870 } 5871 5872 /// Checks if the operation has the same parent as \p P. 5873 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5874 assert(Kind != RK_None && !!*this && LHS && RHS && 5875 "Expected reduction operation."); 5876 if (!IsRedOp) 5877 return I->getParent() == P; 5878 switch (Kind) { 5879 case RK_Arithmetic: 5880 // Arithmetic reduction operation must be used once only. 5881 return I->getParent() == P; 5882 case RK_Min: 5883 case RK_UMin: 5884 case RK_Max: 5885 case RK_UMax: { 5886 // SelectInst must be used twice while the condition op must have single 5887 // use only. 5888 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5889 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5890 } 5891 case RK_None: 5892 break; 5893 } 5894 llvm_unreachable("Reduction kind is not set"); 5895 } 5896 /// Expected number of uses for reduction operations/reduced values. 5897 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5898 assert(Kind != RK_None && !!*this && LHS && RHS && 5899 "Expected reduction operation."); 5900 switch (Kind) { 5901 case RK_Arithmetic: 5902 return I->hasOneUse(); 5903 case RK_Min: 5904 case RK_UMin: 5905 case RK_Max: 5906 case RK_UMax: 5907 return I->hasNUses(2) && 5908 (!IsReductionOp || 5909 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5910 case RK_None: 5911 break; 5912 } 5913 llvm_unreachable("Reduction kind is not set"); 5914 } 5915 5916 /// Initializes the list of reduction operations. 5917 void initReductionOps(ReductionOpsListType &ReductionOps) { 5918 assert(Kind != RK_None && !!*this && LHS && RHS && 5919 "Expected reduction operation."); 5920 switch (Kind) { 5921 case RK_Arithmetic: 5922 ReductionOps.assign(1, ReductionOpsType()); 5923 break; 5924 case RK_Min: 5925 case RK_UMin: 5926 case RK_Max: 5927 case RK_UMax: 5928 ReductionOps.assign(2, ReductionOpsType()); 5929 break; 5930 case RK_None: 5931 llvm_unreachable("Reduction kind is not set"); 5932 } 5933 } 5934 /// Add all reduction operations for the reduction instruction \p I. 5935 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5936 assert(Kind != RK_None && !!*this && LHS && RHS && 5937 "Expected reduction operation."); 5938 switch (Kind) { 5939 case RK_Arithmetic: 5940 ReductionOps[0].emplace_back(I); 5941 break; 5942 case RK_Min: 5943 case RK_UMin: 5944 case RK_Max: 5945 case RK_UMax: 5946 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5947 ReductionOps[1].emplace_back(I); 5948 break; 5949 case RK_None: 5950 llvm_unreachable("Reduction kind is not set"); 5951 } 5952 } 5953 5954 /// Checks if instruction is associative and can be vectorized. 5955 bool isAssociative(Instruction *I) const { 5956 assert(Kind != RK_None && *this && LHS && RHS && 5957 "Expected reduction operation."); 5958 switch (Kind) { 5959 case RK_Arithmetic: 5960 return I->isAssociative(); 5961 case RK_Min: 5962 case RK_Max: 5963 return Opcode == Instruction::ICmp || 5964 cast<Instruction>(I->getOperand(0))->isFast(); 5965 case RK_UMin: 5966 case RK_UMax: 5967 assert(Opcode == Instruction::ICmp && 5968 "Only integer compare operation is expected."); 5969 return true; 5970 case RK_None: 5971 break; 5972 } 5973 llvm_unreachable("Reduction kind is not set"); 5974 } 5975 5976 /// Checks if the reduction operation can be vectorized. 5977 bool isVectorizable(Instruction *I) const { 5978 return isVectorizable() && isAssociative(I); 5979 } 5980 5981 /// Checks if two operation data are both a reduction op or both a reduced 5982 /// value. 5983 bool operator==(const OperationData &OD) { 5984 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5985 "One of the comparing operations is incorrect."); 5986 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5987 } 5988 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5989 void clear() { 5990 Opcode = 0; 5991 LHS = nullptr; 5992 RHS = nullptr; 5993 Kind = RK_None; 5994 NoNaN = false; 5995 } 5996 5997 /// Get the opcode of the reduction operation. 5998 unsigned getOpcode() const { 5999 assert(isVectorizable() && "Expected vectorizable operation."); 6000 return Opcode; 6001 } 6002 6003 /// Get kind of reduction data. 6004 ReductionKind getKind() const { return Kind; } 6005 Value *getLHS() const { return LHS; } 6006 Value *getRHS() const { return RHS; } 6007 Type *getConditionType() const { 6008 switch (Kind) { 6009 case RK_Arithmetic: 6010 return nullptr; 6011 case RK_Min: 6012 case RK_Max: 6013 case RK_UMin: 6014 case RK_UMax: 6015 return CmpInst::makeCmpResultType(LHS->getType()); 6016 case RK_None: 6017 break; 6018 } 6019 llvm_unreachable("Reduction kind is not set"); 6020 } 6021 6022 /// Creates reduction operation with the current opcode with the IR flags 6023 /// from \p ReductionOps. 6024 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6025 const ReductionOpsListType &ReductionOps) const { 6026 assert(isVectorizable() && 6027 "Expected add|fadd or min/max reduction operation."); 6028 auto *Op = createOp(Builder, Name); 6029 switch (Kind) { 6030 case RK_Arithmetic: 6031 propagateIRFlags(Op, ReductionOps[0]); 6032 return Op; 6033 case RK_Min: 6034 case RK_Max: 6035 case RK_UMin: 6036 case RK_UMax: 6037 if (auto *SI = dyn_cast<SelectInst>(Op)) 6038 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6039 propagateIRFlags(Op, ReductionOps[1]); 6040 return Op; 6041 case RK_None: 6042 break; 6043 } 6044 llvm_unreachable("Unknown reduction operation."); 6045 } 6046 /// Creates reduction operation with the current opcode with the IR flags 6047 /// from \p I. 6048 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6049 Instruction *I) const { 6050 assert(isVectorizable() && 6051 "Expected add|fadd or min/max reduction operation."); 6052 auto *Op = createOp(Builder, Name); 6053 switch (Kind) { 6054 case RK_Arithmetic: 6055 propagateIRFlags(Op, I); 6056 return Op; 6057 case RK_Min: 6058 case RK_Max: 6059 case RK_UMin: 6060 case RK_UMax: 6061 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6062 propagateIRFlags(SI->getCondition(), 6063 cast<SelectInst>(I)->getCondition()); 6064 } 6065 propagateIRFlags(Op, I); 6066 return Op; 6067 case RK_None: 6068 break; 6069 } 6070 llvm_unreachable("Unknown reduction operation."); 6071 } 6072 6073 TargetTransformInfo::ReductionFlags getFlags() const { 6074 TargetTransformInfo::ReductionFlags Flags; 6075 Flags.NoNaN = NoNaN; 6076 switch (Kind) { 6077 case RK_Arithmetic: 6078 break; 6079 case RK_Min: 6080 Flags.IsSigned = Opcode == Instruction::ICmp; 6081 Flags.IsMaxOp = false; 6082 break; 6083 case RK_Max: 6084 Flags.IsSigned = Opcode == Instruction::ICmp; 6085 Flags.IsMaxOp = true; 6086 break; 6087 case RK_UMin: 6088 Flags.IsSigned = false; 6089 Flags.IsMaxOp = false; 6090 break; 6091 case RK_UMax: 6092 Flags.IsSigned = false; 6093 Flags.IsMaxOp = true; 6094 break; 6095 case RK_None: 6096 llvm_unreachable("Reduction kind is not set"); 6097 } 6098 return Flags; 6099 } 6100 }; 6101 6102 WeakTrackingVH ReductionRoot; 6103 6104 /// The operation data of the reduction operation. 6105 OperationData ReductionData; 6106 6107 /// The operation data of the values we perform a reduction on. 6108 OperationData ReducedValueData; 6109 6110 /// Should we model this reduction as a pairwise reduction tree or a tree that 6111 /// splits the vector in halves and adds those halves. 6112 bool IsPairwiseReduction = false; 6113 6114 /// Checks if the ParentStackElem.first should be marked as a reduction 6115 /// operation with an extra argument or as extra argument itself. 6116 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6117 Value *ExtraArg) { 6118 if (ExtraArgs.count(ParentStackElem.first)) { 6119 ExtraArgs[ParentStackElem.first] = nullptr; 6120 // We ran into something like: 6121 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6122 // The whole ParentStackElem.first should be considered as an extra value 6123 // in this case. 6124 // Do not perform analysis of remaining operands of ParentStackElem.first 6125 // instruction, this whole instruction is an extra argument. 6126 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6127 } else { 6128 // We ran into something like: 6129 // ParentStackElem.first += ... + ExtraArg + ... 6130 ExtraArgs[ParentStackElem.first] = ExtraArg; 6131 } 6132 } 6133 6134 static OperationData getOperationData(Value *V) { 6135 if (!V) 6136 return OperationData(); 6137 6138 Value *LHS; 6139 Value *RHS; 6140 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6141 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6142 RK_Arithmetic); 6143 } 6144 if (auto *Select = dyn_cast<SelectInst>(V)) { 6145 // Look for a min/max pattern. 6146 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6147 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6148 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6149 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6150 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6151 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6152 return OperationData( 6153 Instruction::FCmp, LHS, RHS, RK_Min, 6154 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6155 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6156 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6157 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6158 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6159 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6160 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6161 return OperationData( 6162 Instruction::FCmp, LHS, RHS, RK_Max, 6163 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6164 } else { 6165 // Try harder: look for min/max pattern based on instructions producing 6166 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6167 // During the intermediate stages of SLP, it's very common to have 6168 // pattern like this (since optimizeGatherSequence is run only once 6169 // at the end): 6170 // %1 = extractelement <2 x i32> %a, i32 0 6171 // %2 = extractelement <2 x i32> %a, i32 1 6172 // %cond = icmp sgt i32 %1, %2 6173 // %3 = extractelement <2 x i32> %a, i32 0 6174 // %4 = extractelement <2 x i32> %a, i32 1 6175 // %select = select i1 %cond, i32 %3, i32 %4 6176 CmpInst::Predicate Pred; 6177 Instruction *L1; 6178 Instruction *L2; 6179 6180 LHS = Select->getTrueValue(); 6181 RHS = Select->getFalseValue(); 6182 Value *Cond = Select->getCondition(); 6183 6184 // TODO: Support inverse predicates. 6185 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6186 if (!isa<ExtractElementInst>(RHS) || 6187 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6188 return OperationData(V); 6189 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6190 if (!isa<ExtractElementInst>(LHS) || 6191 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6192 return OperationData(V); 6193 } else { 6194 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6195 return OperationData(V); 6196 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6197 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6198 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6199 return OperationData(V); 6200 } 6201 switch (Pred) { 6202 default: 6203 return OperationData(V); 6204 6205 case CmpInst::ICMP_ULT: 6206 case CmpInst::ICMP_ULE: 6207 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6208 6209 case CmpInst::ICMP_SLT: 6210 case CmpInst::ICMP_SLE: 6211 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6212 6213 case CmpInst::FCMP_OLT: 6214 case CmpInst::FCMP_OLE: 6215 case CmpInst::FCMP_ULT: 6216 case CmpInst::FCMP_ULE: 6217 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6218 cast<Instruction>(Cond)->hasNoNaNs()); 6219 6220 case CmpInst::ICMP_UGT: 6221 case CmpInst::ICMP_UGE: 6222 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6223 6224 case CmpInst::ICMP_SGT: 6225 case CmpInst::ICMP_SGE: 6226 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6227 6228 case CmpInst::FCMP_OGT: 6229 case CmpInst::FCMP_OGE: 6230 case CmpInst::FCMP_UGT: 6231 case CmpInst::FCMP_UGE: 6232 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6233 cast<Instruction>(Cond)->hasNoNaNs()); 6234 } 6235 } 6236 } 6237 return OperationData(V); 6238 } 6239 6240 public: 6241 HorizontalReduction() = default; 6242 6243 /// Try to find a reduction tree. 6244 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6245 assert((!Phi || is_contained(Phi->operands(), B)) && 6246 "Thi phi needs to use the binary operator"); 6247 6248 ReductionData = getOperationData(B); 6249 6250 // We could have a initial reductions that is not an add. 6251 // r *= v1 + v2 + v3 + v4 6252 // In such a case start looking for a tree rooted in the first '+'. 6253 if (Phi) { 6254 if (ReductionData.getLHS() == Phi) { 6255 Phi = nullptr; 6256 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6257 ReductionData = getOperationData(B); 6258 } else if (ReductionData.getRHS() == Phi) { 6259 Phi = nullptr; 6260 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6261 ReductionData = getOperationData(B); 6262 } 6263 } 6264 6265 if (!ReductionData.isVectorizable(B)) 6266 return false; 6267 6268 Type *Ty = B->getType(); 6269 if (!isValidElementType(Ty)) 6270 return false; 6271 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6272 return false; 6273 6274 ReducedValueData.clear(); 6275 ReductionRoot = B; 6276 6277 // Post order traverse the reduction tree starting at B. We only handle true 6278 // trees containing only binary operators. 6279 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6280 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6281 ReductionData.initReductionOps(ReductionOps); 6282 while (!Stack.empty()) { 6283 Instruction *TreeN = Stack.back().first; 6284 unsigned EdgeToVist = Stack.back().second++; 6285 OperationData OpData = getOperationData(TreeN); 6286 bool IsReducedValue = OpData != ReductionData; 6287 6288 // Postorder vist. 6289 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6290 if (IsReducedValue) 6291 ReducedVals.push_back(TreeN); 6292 else { 6293 auto I = ExtraArgs.find(TreeN); 6294 if (I != ExtraArgs.end() && !I->second) { 6295 // Check if TreeN is an extra argument of its parent operation. 6296 if (Stack.size() <= 1) { 6297 // TreeN can't be an extra argument as it is a root reduction 6298 // operation. 6299 return false; 6300 } 6301 // Yes, TreeN is an extra argument, do not add it to a list of 6302 // reduction operations. 6303 // Stack[Stack.size() - 2] always points to the parent operation. 6304 markExtraArg(Stack[Stack.size() - 2], TreeN); 6305 ExtraArgs.erase(TreeN); 6306 } else 6307 ReductionData.addReductionOps(TreeN, ReductionOps); 6308 } 6309 // Retract. 6310 Stack.pop_back(); 6311 continue; 6312 } 6313 6314 // Visit left or right. 6315 Value *NextV = TreeN->getOperand(EdgeToVist); 6316 if (NextV != Phi) { 6317 auto *I = dyn_cast<Instruction>(NextV); 6318 OpData = getOperationData(I); 6319 // Continue analysis if the next operand is a reduction operation or 6320 // (possibly) a reduced value. If the reduced value opcode is not set, 6321 // the first met operation != reduction operation is considered as the 6322 // reduced value class. 6323 if (I && (!ReducedValueData || OpData == ReducedValueData || 6324 OpData == ReductionData)) { 6325 const bool IsReductionOperation = OpData == ReductionData; 6326 // Only handle trees in the current basic block. 6327 if (!ReductionData.hasSameParent(I, B->getParent(), 6328 IsReductionOperation)) { 6329 // I is an extra argument for TreeN (its parent operation). 6330 markExtraArg(Stack.back(), I); 6331 continue; 6332 } 6333 6334 // Each tree node needs to have minimal number of users except for the 6335 // ultimate reduction. 6336 if (!ReductionData.hasRequiredNumberOfUses(I, 6337 OpData == ReductionData) && 6338 I != B) { 6339 // I is an extra argument for TreeN (its parent operation). 6340 markExtraArg(Stack.back(), I); 6341 continue; 6342 } 6343 6344 if (IsReductionOperation) { 6345 // We need to be able to reassociate the reduction operations. 6346 if (!OpData.isAssociative(I)) { 6347 // I is an extra argument for TreeN (its parent operation). 6348 markExtraArg(Stack.back(), I); 6349 continue; 6350 } 6351 } else if (ReducedValueData && 6352 ReducedValueData != OpData) { 6353 // Make sure that the opcodes of the operations that we are going to 6354 // reduce match. 6355 // I is an extra argument for TreeN (its parent operation). 6356 markExtraArg(Stack.back(), I); 6357 continue; 6358 } else if (!ReducedValueData) 6359 ReducedValueData = OpData; 6360 6361 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6362 continue; 6363 } 6364 } 6365 // NextV is an extra argument for TreeN (its parent operation). 6366 markExtraArg(Stack.back(), NextV); 6367 } 6368 return true; 6369 } 6370 6371 /// Attempt to vectorize the tree found by 6372 /// matchAssociativeReduction. 6373 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6374 if (ReducedVals.empty()) 6375 return false; 6376 6377 // If there is a sufficient number of reduction values, reduce 6378 // to a nearby power-of-2. Can safely generate oversized 6379 // vectors and rely on the backend to split them to legal sizes. 6380 unsigned NumReducedVals = ReducedVals.size(); 6381 if (NumReducedVals < 4) 6382 return false; 6383 6384 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6385 6386 Value *VectorizedTree = nullptr; 6387 6388 // FIXME: Fast-math-flags should be set based on the instructions in the 6389 // reduction (not all of 'fast' are required). 6390 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6391 FastMathFlags Unsafe; 6392 Unsafe.setFast(); 6393 Builder.setFastMathFlags(Unsafe); 6394 unsigned i = 0; 6395 6396 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6397 // The same extra argument may be used several time, so log each attempt 6398 // to use it. 6399 for (auto &Pair : ExtraArgs) { 6400 assert(Pair.first && "DebugLoc must be set."); 6401 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6402 } 6403 // The reduction root is used as the insertion point for new instructions, 6404 // so set it as externally used to prevent it from being deleted. 6405 ExternallyUsedValues[ReductionRoot]; 6406 SmallVector<Value *, 16> IgnoreList; 6407 for (auto &V : ReductionOps) 6408 IgnoreList.append(V.begin(), V.end()); 6409 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6410 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6411 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6412 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6413 // TODO: Handle orders of size less than number of elements in the vector. 6414 if (Order && Order->size() == VL.size()) { 6415 // TODO: reorder tree nodes without tree rebuilding. 6416 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6417 llvm::transform(*Order, ReorderedOps.begin(), 6418 [VL](const unsigned Idx) { return VL[Idx]; }); 6419 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6420 } 6421 if (V.isTreeTinyAndNotFullyVectorizable()) 6422 break; 6423 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6424 break; 6425 6426 V.computeMinimumValueSizes(); 6427 6428 // Estimate cost. 6429 int TreeCost = V.getTreeCost(); 6430 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6431 int Cost = TreeCost + ReductionCost; 6432 if (Cost >= -SLPCostThreshold) { 6433 V.getORE()->emit([&]() { 6434 return OptimizationRemarkMissed( 6435 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6436 << "Vectorizing horizontal reduction is possible" 6437 << "but not beneficial with cost " 6438 << ore::NV("Cost", Cost) << " and threshold " 6439 << ore::NV("Threshold", -SLPCostThreshold); 6440 }); 6441 break; 6442 } 6443 6444 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6445 << Cost << ". (HorRdx)\n"); 6446 V.getORE()->emit([&]() { 6447 return OptimizationRemark( 6448 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6449 << "Vectorized horizontal reduction with cost " 6450 << ore::NV("Cost", Cost) << " and with tree size " 6451 << ore::NV("TreeSize", V.getTreeSize()); 6452 }); 6453 6454 // Vectorize a tree. 6455 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6456 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6457 6458 // Emit a reduction. 6459 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6460 Value *ReducedSubTree = 6461 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6462 if (VectorizedTree) { 6463 Builder.SetCurrentDebugLocation(Loc); 6464 OperationData VectReductionData(ReductionData.getOpcode(), 6465 VectorizedTree, ReducedSubTree, 6466 ReductionData.getKind()); 6467 VectorizedTree = 6468 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6469 } else 6470 VectorizedTree = ReducedSubTree; 6471 i += ReduxWidth; 6472 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6473 } 6474 6475 if (VectorizedTree) { 6476 // Finish the reduction. 6477 for (; i < NumReducedVals; ++i) { 6478 auto *I = cast<Instruction>(ReducedVals[i]); 6479 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6480 OperationData VectReductionData(ReductionData.getOpcode(), 6481 VectorizedTree, I, 6482 ReductionData.getKind()); 6483 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6484 } 6485 for (auto &Pair : ExternallyUsedValues) { 6486 // Add each externally used value to the final reduction. 6487 for (auto *I : Pair.second) { 6488 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6489 OperationData VectReductionData(ReductionData.getOpcode(), 6490 VectorizedTree, Pair.first, 6491 ReductionData.getKind()); 6492 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6493 } 6494 } 6495 // Update users. 6496 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6497 // Mark all scalar reduction ops for deletion, they are replaced by the 6498 // vector reductions. 6499 V.eraseInstructions(IgnoreList); 6500 } 6501 return VectorizedTree != nullptr; 6502 } 6503 6504 unsigned numReductionValues() const { 6505 return ReducedVals.size(); 6506 } 6507 6508 private: 6509 /// Calculate the cost of a reduction. 6510 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6511 unsigned ReduxWidth) { 6512 Type *ScalarTy = FirstReducedVal->getType(); 6513 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6514 6515 int PairwiseRdxCost; 6516 int SplittingRdxCost; 6517 switch (ReductionData.getKind()) { 6518 case RK_Arithmetic: 6519 PairwiseRdxCost = 6520 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6521 /*IsPairwiseForm=*/true); 6522 SplittingRdxCost = 6523 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6524 /*IsPairwiseForm=*/false); 6525 break; 6526 case RK_Min: 6527 case RK_Max: 6528 case RK_UMin: 6529 case RK_UMax: { 6530 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6531 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6532 ReductionData.getKind() == RK_UMax; 6533 PairwiseRdxCost = 6534 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6535 /*IsPairwiseForm=*/true, IsUnsigned); 6536 SplittingRdxCost = 6537 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6538 /*IsPairwiseForm=*/false, IsUnsigned); 6539 break; 6540 } 6541 case RK_None: 6542 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6543 } 6544 6545 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6546 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6547 6548 int ScalarReduxCost = 0; 6549 switch (ReductionData.getKind()) { 6550 case RK_Arithmetic: 6551 ScalarReduxCost = 6552 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6553 break; 6554 case RK_Min: 6555 case RK_Max: 6556 case RK_UMin: 6557 case RK_UMax: 6558 ScalarReduxCost = 6559 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6560 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6561 CmpInst::makeCmpResultType(ScalarTy)); 6562 break; 6563 case RK_None: 6564 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6565 } 6566 ScalarReduxCost *= (ReduxWidth - 1); 6567 6568 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6569 << " for reduction that starts with " << *FirstReducedVal 6570 << " (It is a " 6571 << (IsPairwiseReduction ? "pairwise" : "splitting") 6572 << " reduction)\n"); 6573 6574 return VecReduxCost - ScalarReduxCost; 6575 } 6576 6577 /// Emit a horizontal reduction of the vectorized value. 6578 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6579 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6580 assert(VectorizedValue && "Need to have a vectorized tree node"); 6581 assert(isPowerOf2_32(ReduxWidth) && 6582 "We only handle power-of-two reductions for now"); 6583 6584 if (!IsPairwiseReduction) { 6585 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6586 // to 'fast'. 6587 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6588 return createSimpleTargetReduction( 6589 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6590 ReductionData.getFlags(), ReductionOps.back()); 6591 } 6592 6593 Value *TmpVec = VectorizedValue; 6594 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6595 Value *LeftMask = 6596 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6597 Value *RightMask = 6598 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6599 6600 Value *LeftShuf = Builder.CreateShuffleVector( 6601 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6602 Value *RightShuf = Builder.CreateShuffleVector( 6603 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6604 "rdx.shuf.r"); 6605 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6606 RightShuf, ReductionData.getKind()); 6607 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6608 } 6609 6610 // The result is in the first element of the vector. 6611 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6612 } 6613 }; 6614 6615 } // end anonymous namespace 6616 6617 /// Recognize construction of vectors like 6618 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6619 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6620 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6621 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6622 /// starting from the last insertelement instruction. 6623 /// 6624 /// Returns true if it matches 6625 static bool findBuildVector(InsertElementInst *LastInsertElem, 6626 TargetTransformInfo *TTI, 6627 SmallVectorImpl<Value *> &BuildVectorOpds, 6628 int &UserCost) { 6629 UserCost = 0; 6630 Value *V = nullptr; 6631 do { 6632 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6633 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6634 LastInsertElem->getType(), 6635 CI->getZExtValue()); 6636 } 6637 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6638 V = LastInsertElem->getOperand(0); 6639 if (isa<UndefValue>(V)) 6640 break; 6641 LastInsertElem = dyn_cast<InsertElementInst>(V); 6642 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6643 return false; 6644 } while (true); 6645 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6646 return true; 6647 } 6648 6649 /// Like findBuildVector, but looks for construction of aggregate. 6650 /// 6651 /// \return true if it matches. 6652 static bool findBuildAggregate(InsertValueInst *IV, 6653 SmallVectorImpl<Value *> &BuildVectorOpds) { 6654 do { 6655 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6656 Value *V = IV->getAggregateOperand(); 6657 if (isa<UndefValue>(V)) 6658 break; 6659 IV = dyn_cast<InsertValueInst>(V); 6660 if (!IV || !IV->hasOneUse()) 6661 return false; 6662 } while (true); 6663 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6664 return true; 6665 } 6666 6667 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6668 return V->getType() < V2->getType(); 6669 } 6670 6671 /// Try and get a reduction value from a phi node. 6672 /// 6673 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6674 /// if they come from either \p ParentBB or a containing loop latch. 6675 /// 6676 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6677 /// if not possible. 6678 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6679 BasicBlock *ParentBB, LoopInfo *LI) { 6680 // There are situations where the reduction value is not dominated by the 6681 // reduction phi. Vectorizing such cases has been reported to cause 6682 // miscompiles. See PR25787. 6683 auto DominatedReduxValue = [&](Value *R) { 6684 return isa<Instruction>(R) && 6685 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6686 }; 6687 6688 Value *Rdx = nullptr; 6689 6690 // Return the incoming value if it comes from the same BB as the phi node. 6691 if (P->getIncomingBlock(0) == ParentBB) { 6692 Rdx = P->getIncomingValue(0); 6693 } else if (P->getIncomingBlock(1) == ParentBB) { 6694 Rdx = P->getIncomingValue(1); 6695 } 6696 6697 if (Rdx && DominatedReduxValue(Rdx)) 6698 return Rdx; 6699 6700 // Otherwise, check whether we have a loop latch to look at. 6701 Loop *BBL = LI->getLoopFor(ParentBB); 6702 if (!BBL) 6703 return nullptr; 6704 BasicBlock *BBLatch = BBL->getLoopLatch(); 6705 if (!BBLatch) 6706 return nullptr; 6707 6708 // There is a loop latch, return the incoming value if it comes from 6709 // that. This reduction pattern occasionally turns up. 6710 if (P->getIncomingBlock(0) == BBLatch) { 6711 Rdx = P->getIncomingValue(0); 6712 } else if (P->getIncomingBlock(1) == BBLatch) { 6713 Rdx = P->getIncomingValue(1); 6714 } 6715 6716 if (Rdx && DominatedReduxValue(Rdx)) 6717 return Rdx; 6718 6719 return nullptr; 6720 } 6721 6722 /// Attempt to reduce a horizontal reduction. 6723 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6724 /// with reduction operators \a Root (or one of its operands) in a basic block 6725 /// \a BB, then check if it can be done. If horizontal reduction is not found 6726 /// and root instruction is a binary operation, vectorization of the operands is 6727 /// attempted. 6728 /// \returns true if a horizontal reduction was matched and reduced or operands 6729 /// of one of the binary instruction were vectorized. 6730 /// \returns false if a horizontal reduction was not matched (or not possible) 6731 /// or no vectorization of any binary operation feeding \a Root instruction was 6732 /// performed. 6733 static bool tryToVectorizeHorReductionOrInstOperands( 6734 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6735 TargetTransformInfo *TTI, 6736 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6737 if (!ShouldVectorizeHor) 6738 return false; 6739 6740 if (!Root) 6741 return false; 6742 6743 if (Root->getParent() != BB || isa<PHINode>(Root)) 6744 return false; 6745 // Start analysis starting from Root instruction. If horizontal reduction is 6746 // found, try to vectorize it. If it is not a horizontal reduction or 6747 // vectorization is not possible or not effective, and currently analyzed 6748 // instruction is a binary operation, try to vectorize the operands, using 6749 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6750 // the same procedure considering each operand as a possible root of the 6751 // horizontal reduction. 6752 // Interrupt the process if the Root instruction itself was vectorized or all 6753 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6754 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 6755 SmallPtrSet<Value *, 8> VisitedInstrs; 6756 bool Res = false; 6757 while (!Stack.empty()) { 6758 Instruction *Inst; 6759 unsigned Level; 6760 std::tie(Inst, Level) = Stack.pop_back_val(); 6761 auto *BI = dyn_cast<BinaryOperator>(Inst); 6762 auto *SI = dyn_cast<SelectInst>(Inst); 6763 if (BI || SI) { 6764 HorizontalReduction HorRdx; 6765 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6766 if (HorRdx.tryToReduce(R, TTI)) { 6767 Res = true; 6768 // Set P to nullptr to avoid re-analysis of phi node in 6769 // matchAssociativeReduction function unless this is the root node. 6770 P = nullptr; 6771 continue; 6772 } 6773 } 6774 if (P && BI) { 6775 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6776 if (Inst == P) 6777 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6778 if (!Inst) { 6779 // Set P to nullptr to avoid re-analysis of phi node in 6780 // matchAssociativeReduction function unless this is the root node. 6781 P = nullptr; 6782 continue; 6783 } 6784 } 6785 } 6786 // Set P to nullptr to avoid re-analysis of phi node in 6787 // matchAssociativeReduction function unless this is the root node. 6788 P = nullptr; 6789 if (Vectorize(Inst, R)) { 6790 Res = true; 6791 continue; 6792 } 6793 6794 // Try to vectorize operands. 6795 // Continue analysis for the instruction from the same basic block only to 6796 // save compile time. 6797 if (++Level < RecursionMaxDepth) 6798 for (auto *Op : Inst->operand_values()) 6799 if (VisitedInstrs.insert(Op).second) 6800 if (auto *I = dyn_cast<Instruction>(Op)) 6801 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 6802 Stack.emplace_back(I, Level); 6803 } 6804 return Res; 6805 } 6806 6807 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6808 BasicBlock *BB, BoUpSLP &R, 6809 TargetTransformInfo *TTI) { 6810 if (!V) 6811 return false; 6812 auto *I = dyn_cast<Instruction>(V); 6813 if (!I) 6814 return false; 6815 6816 if (!isa<BinaryOperator>(I)) 6817 P = nullptr; 6818 // Try to match and vectorize a horizontal reduction. 6819 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6820 return tryToVectorize(I, R); 6821 }; 6822 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6823 ExtraVectorization); 6824 } 6825 6826 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6827 BasicBlock *BB, BoUpSLP &R) { 6828 const DataLayout &DL = BB->getModule()->getDataLayout(); 6829 if (!R.canMapToVector(IVI->getType(), DL)) 6830 return false; 6831 6832 SmallVector<Value *, 16> BuildVectorOpds; 6833 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6834 return false; 6835 6836 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6837 // Aggregate value is unlikely to be processed in vector register, we need to 6838 // extract scalars into scalar registers, so NeedExtraction is set true. 6839 return tryToVectorizeList(BuildVectorOpds, R); 6840 } 6841 6842 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6843 BasicBlock *BB, BoUpSLP &R) { 6844 int UserCost; 6845 SmallVector<Value *, 16> BuildVectorOpds; 6846 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6847 (llvm::all_of(BuildVectorOpds, 6848 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6849 isShuffle(BuildVectorOpds))) 6850 return false; 6851 6852 // Vectorize starting with the build vector operands ignoring the BuildVector 6853 // instructions for the purpose of scheduling and user extraction. 6854 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6855 } 6856 6857 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6858 BoUpSLP &R) { 6859 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6860 return true; 6861 6862 bool OpsChanged = false; 6863 for (int Idx = 0; Idx < 2; ++Idx) { 6864 OpsChanged |= 6865 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6866 } 6867 return OpsChanged; 6868 } 6869 6870 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6871 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6872 bool OpsChanged = false; 6873 for (auto *I : reverse(Instructions)) { 6874 if (R.isDeleted(I)) 6875 continue; 6876 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6877 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6878 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6879 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6880 else if (auto *CI = dyn_cast<CmpInst>(I)) 6881 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6882 } 6883 Instructions.clear(); 6884 return OpsChanged; 6885 } 6886 6887 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6888 bool Changed = false; 6889 SmallVector<Value *, 4> Incoming; 6890 SmallPtrSet<Value *, 16> VisitedInstrs; 6891 6892 bool HaveVectorizedPhiNodes = true; 6893 while (HaveVectorizedPhiNodes) { 6894 HaveVectorizedPhiNodes = false; 6895 6896 // Collect the incoming values from the PHIs. 6897 Incoming.clear(); 6898 for (Instruction &I : *BB) { 6899 PHINode *P = dyn_cast<PHINode>(&I); 6900 if (!P) 6901 break; 6902 6903 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 6904 Incoming.push_back(P); 6905 } 6906 6907 // Sort by type. 6908 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6909 6910 // Try to vectorize elements base on their type. 6911 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6912 E = Incoming.end(); 6913 IncIt != E;) { 6914 6915 // Look for the next elements with the same type. 6916 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6917 while (SameTypeIt != E && 6918 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6919 VisitedInstrs.insert(*SameTypeIt); 6920 ++SameTypeIt; 6921 } 6922 6923 // Try to vectorize them. 6924 unsigned NumElts = (SameTypeIt - IncIt); 6925 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6926 << NumElts << ")\n"); 6927 // The order in which the phi nodes appear in the program does not matter. 6928 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6929 // is done when there are exactly two elements since tryToVectorizeList 6930 // asserts that there are only two values when AllowReorder is true. 6931 bool AllowReorder = NumElts == 2; 6932 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6933 /*UserCost=*/0, AllowReorder)) { 6934 // Success start over because instructions might have been changed. 6935 HaveVectorizedPhiNodes = true; 6936 Changed = true; 6937 break; 6938 } 6939 6940 // Start over at the next instruction of a different type (or the end). 6941 IncIt = SameTypeIt; 6942 } 6943 } 6944 6945 VisitedInstrs.clear(); 6946 6947 SmallVector<Instruction *, 8> PostProcessInstructions; 6948 SmallDenseSet<Instruction *, 4> KeyNodes; 6949 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6950 // Skip instructions marked for the deletion. 6951 if (R.isDeleted(&*it)) 6952 continue; 6953 // We may go through BB multiple times so skip the one we have checked. 6954 if (!VisitedInstrs.insert(&*it).second) { 6955 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6956 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6957 // We would like to start over since some instructions are deleted 6958 // and the iterator may become invalid value. 6959 Changed = true; 6960 it = BB->begin(); 6961 e = BB->end(); 6962 } 6963 continue; 6964 } 6965 6966 if (isa<DbgInfoIntrinsic>(it)) 6967 continue; 6968 6969 // Try to vectorize reductions that use PHINodes. 6970 if (PHINode *P = dyn_cast<PHINode>(it)) { 6971 // Check that the PHI is a reduction PHI. 6972 if (P->getNumIncomingValues() != 2) 6973 return Changed; 6974 6975 // Try to match and vectorize a horizontal reduction. 6976 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6977 TTI)) { 6978 Changed = true; 6979 it = BB->begin(); 6980 e = BB->end(); 6981 continue; 6982 } 6983 continue; 6984 } 6985 6986 // Ran into an instruction without users, like terminator, or function call 6987 // with ignored return value, store. Ignore unused instructions (basing on 6988 // instruction type, except for CallInst and InvokeInst). 6989 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6990 isa<InvokeInst>(it))) { 6991 KeyNodes.insert(&*it); 6992 bool OpsChanged = false; 6993 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6994 for (auto *V : it->operand_values()) { 6995 // Try to match and vectorize a horizontal reduction. 6996 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6997 } 6998 } 6999 // Start vectorization of post-process list of instructions from the 7000 // top-tree instructions to try to vectorize as many instructions as 7001 // possible. 7002 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7003 if (OpsChanged) { 7004 // We would like to start over since some instructions are deleted 7005 // and the iterator may become invalid value. 7006 Changed = true; 7007 it = BB->begin(); 7008 e = BB->end(); 7009 continue; 7010 } 7011 } 7012 7013 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7014 isa<InsertValueInst>(it)) 7015 PostProcessInstructions.push_back(&*it); 7016 } 7017 7018 return Changed; 7019 } 7020 7021 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7022 auto Changed = false; 7023 for (auto &Entry : GEPs) { 7024 // If the getelementptr list has fewer than two elements, there's nothing 7025 // to do. 7026 if (Entry.second.size() < 2) 7027 continue; 7028 7029 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7030 << Entry.second.size() << ".\n"); 7031 7032 // Process the GEP list in chunks suitable for the target's supported 7033 // vector size. If a vector register can't hold 1 element, we are done. 7034 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7035 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7036 if (MaxVecRegSize < EltSize) 7037 continue; 7038 7039 unsigned MaxElts = MaxVecRegSize / EltSize; 7040 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7041 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7042 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7043 7044 // Initialize a set a candidate getelementptrs. Note that we use a 7045 // SetVector here to preserve program order. If the index computations 7046 // are vectorizable and begin with loads, we want to minimize the chance 7047 // of having to reorder them later. 7048 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7049 7050 // Some of the candidates may have already been vectorized after we 7051 // initially collected them. If so, they are marked as deleted, so remove 7052 // them from the set of candidates. 7053 Candidates.remove_if( 7054 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7055 7056 // Remove from the set of candidates all pairs of getelementptrs with 7057 // constant differences. Such getelementptrs are likely not good 7058 // candidates for vectorization in a bottom-up phase since one can be 7059 // computed from the other. We also ensure all candidate getelementptr 7060 // indices are unique. 7061 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7062 auto *GEPI = GEPList[I]; 7063 if (!Candidates.count(GEPI)) 7064 continue; 7065 auto *SCEVI = SE->getSCEV(GEPList[I]); 7066 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7067 auto *GEPJ = GEPList[J]; 7068 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7069 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7070 Candidates.remove(GEPI); 7071 Candidates.remove(GEPJ); 7072 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7073 Candidates.remove(GEPJ); 7074 } 7075 } 7076 } 7077 7078 // We break out of the above computation as soon as we know there are 7079 // fewer than two candidates remaining. 7080 if (Candidates.size() < 2) 7081 continue; 7082 7083 // Add the single, non-constant index of each candidate to the bundle. We 7084 // ensured the indices met these constraints when we originally collected 7085 // the getelementptrs. 7086 SmallVector<Value *, 16> Bundle(Candidates.size()); 7087 auto BundleIndex = 0u; 7088 for (auto *V : Candidates) { 7089 auto *GEP = cast<GetElementPtrInst>(V); 7090 auto *GEPIdx = GEP->idx_begin()->get(); 7091 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7092 Bundle[BundleIndex++] = GEPIdx; 7093 } 7094 7095 // Try and vectorize the indices. We are currently only interested in 7096 // gather-like cases of the form: 7097 // 7098 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7099 // 7100 // where the loads of "a", the loads of "b", and the subtractions can be 7101 // performed in parallel. It's likely that detecting this pattern in a 7102 // bottom-up phase will be simpler and less costly than building a 7103 // full-blown top-down phase beginning at the consecutive loads. 7104 Changed |= tryToVectorizeList(Bundle, R); 7105 } 7106 } 7107 return Changed; 7108 } 7109 7110 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7111 bool Changed = false; 7112 // Attempt to sort and vectorize each of the store-groups. 7113 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7114 ++it) { 7115 if (it->second.size() < 2) 7116 continue; 7117 7118 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7119 << it->second.size() << ".\n"); 7120 7121 // Process the stores in chunks of 16. 7122 // TODO: The limit of 16 inhibits greater vectorization factors. 7123 // For example, AVX2 supports v32i8. Increasing this limit, however, 7124 // may cause a significant compile-time increase. 7125 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7126 unsigned Len = std::min<unsigned>(CE - CI, 16); 7127 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7128 } 7129 } 7130 return Changed; 7131 } 7132 7133 char SLPVectorizer::ID = 0; 7134 7135 static const char lv_name[] = "SLP Vectorizer"; 7136 7137 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7139 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7140 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7141 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7142 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7143 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7144 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7145 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7146 7147 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7148