1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/PriorityQueue.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #ifdef EXPENSIVE_CHECKS 73 #include "llvm/IR/Verifier.h" 74 #endif 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <optional> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// \returns inserting index of InsertElement or InsertValue instruction, 288 /// using Offset as base offset for index. 289 static std::optional<unsigned> getInsertIndex(const Value *InsertInst, 290 unsigned Offset = 0) { 291 int Index = Offset; 292 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 293 const auto *VT = dyn_cast<FixedVectorType>(IE->getType()); 294 if (!VT) 295 return std::nullopt; 296 const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 297 if (!CI) 298 return std::nullopt; 299 if (CI->getValue().uge(VT->getNumElements())) 300 return std::nullopt; 301 Index *= VT->getNumElements(); 302 Index += CI->getZExtValue(); 303 return Index; 304 } 305 306 const auto *IV = cast<InsertValueInst>(InsertInst); 307 Type *CurrentType = IV->getType(); 308 for (unsigned I : IV->indices()) { 309 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 310 Index *= ST->getNumElements(); 311 CurrentType = ST->getElementType(I); 312 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 313 Index *= AT->getNumElements(); 314 CurrentType = AT->getElementType(); 315 } else { 316 return std::nullopt; 317 } 318 Index += I; 319 } 320 return Index; 321 } 322 323 namespace { 324 /// Specifies the way the mask should be analyzed for undefs/poisonous elements 325 /// in the shuffle mask. 326 enum class UseMask { 327 FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors, 328 ///< check for the mask elements for the first argument (mask 329 ///< indices are in range [0:VF)). 330 SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check 331 ///< for the mask elements for the second argument (mask indices 332 ///< are in range [VF:2*VF)) 333 UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for 334 ///< future shuffle elements and mark them as ones as being used 335 ///< in future. Non-undef elements are considered as unused since 336 ///< they're already marked as used in the mask. 337 }; 338 } // namespace 339 340 /// Prepares a use bitset for the given mask either for the first argument or 341 /// for the second. 342 static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask, 343 UseMask MaskArg) { 344 SmallBitVector UseMask(VF, true); 345 for (auto P : enumerate(Mask)) { 346 if (P.value() == UndefMaskElem) { 347 if (MaskArg == UseMask::UndefsAsMask) 348 UseMask.reset(P.index()); 349 continue; 350 } 351 if (MaskArg == UseMask::FirstArg && P.value() < VF) 352 UseMask.reset(P.value()); 353 else if (MaskArg == UseMask::SecondArg && P.value() >= VF) 354 UseMask.reset(P.value() - VF); 355 } 356 return UseMask; 357 } 358 359 /// Checks if the given value is actually an undefined constant vector. 360 /// Also, if the \p UseMask is not empty, tries to check if the non-masked 361 /// elements actually mask the insertelement buildvector, if any. 362 template <bool IsPoisonOnly = false> 363 static SmallBitVector isUndefVector(const Value *V, 364 const SmallBitVector &UseMask = {}) { 365 SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true); 366 using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>; 367 if (isa<T>(V)) 368 return Res; 369 auto *VecTy = dyn_cast<FixedVectorType>(V->getType()); 370 if (!VecTy) 371 return Res.reset(); 372 auto *C = dyn_cast<Constant>(V); 373 if (!C) { 374 if (!UseMask.empty()) { 375 const Value *Base = V; 376 while (auto *II = dyn_cast<InsertElementInst>(Base)) { 377 if (isa<T>(II->getOperand(1))) 378 continue; 379 Base = II->getOperand(0); 380 std::optional<unsigned> Idx = getInsertIndex(II); 381 if (!Idx) 382 continue; 383 if (*Idx < UseMask.size() && !UseMask.test(*Idx)) 384 Res.reset(*Idx); 385 } 386 // TODO: Add analysis for shuffles here too. 387 if (V == Base) { 388 Res.reset(); 389 } else { 390 SmallBitVector SubMask(UseMask.size(), false); 391 Res &= isUndefVector<IsPoisonOnly>(Base, SubMask); 392 } 393 } else { 394 Res.reset(); 395 } 396 return Res; 397 } 398 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 399 if (Constant *Elem = C->getAggregateElement(I)) 400 if (!isa<T>(Elem) && 401 (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I)))) 402 Res.reset(I); 403 } 404 return Res; 405 } 406 407 /// Checks if the vector of instructions can be represented as a shuffle, like: 408 /// %x0 = extractelement <4 x i8> %x, i32 0 409 /// %x3 = extractelement <4 x i8> %x, i32 3 410 /// %y1 = extractelement <4 x i8> %y, i32 1 411 /// %y2 = extractelement <4 x i8> %y, i32 2 412 /// %x0x0 = mul i8 %x0, %x0 413 /// %x3x3 = mul i8 %x3, %x3 414 /// %y1y1 = mul i8 %y1, %y1 415 /// %y2y2 = mul i8 %y2, %y2 416 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 417 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 418 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 419 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 420 /// ret <4 x i8> %ins4 421 /// can be transformed into: 422 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 423 /// i32 6> 424 /// %2 = mul <4 x i8> %1, %1 425 /// ret <4 x i8> %2 426 /// We convert this initially to something like: 427 /// %x0 = extractelement <4 x i8> %x, i32 0 428 /// %x3 = extractelement <4 x i8> %x, i32 3 429 /// %y1 = extractelement <4 x i8> %y, i32 1 430 /// %y2 = extractelement <4 x i8> %y, i32 2 431 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 432 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 433 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 434 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 435 /// %5 = mul <4 x i8> %4, %4 436 /// %6 = extractelement <4 x i8> %5, i32 0 437 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 438 /// %7 = extractelement <4 x i8> %5, i32 1 439 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 440 /// %8 = extractelement <4 x i8> %5, i32 2 441 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 442 /// %9 = extractelement <4 x i8> %5, i32 3 443 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 444 /// ret <4 x i8> %ins4 445 /// InstCombiner transforms this into a shuffle and vector mul 446 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 447 /// TODO: Can we split off and reuse the shuffle mask detection from 448 /// ShuffleVectorInst/getShuffleCost? 449 static std::optional<TargetTransformInfo::ShuffleKind> 450 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 451 const auto *It = 452 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 453 if (It == VL.end()) 454 return std::nullopt; 455 auto *EI0 = cast<ExtractElementInst>(*It); 456 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 457 return std::nullopt; 458 unsigned Size = 459 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 460 Value *Vec1 = nullptr; 461 Value *Vec2 = nullptr; 462 enum ShuffleMode { Unknown, Select, Permute }; 463 ShuffleMode CommonShuffleMode = Unknown; 464 Mask.assign(VL.size(), UndefMaskElem); 465 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 466 // Undef can be represented as an undef element in a vector. 467 if (isa<UndefValue>(VL[I])) 468 continue; 469 auto *EI = cast<ExtractElementInst>(VL[I]); 470 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 471 return std::nullopt; 472 auto *Vec = EI->getVectorOperand(); 473 // We can extractelement from undef or poison vector. 474 if (isUndefVector(Vec).all()) 475 continue; 476 // All vector operands must have the same number of vector elements. 477 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 478 return std::nullopt; 479 if (isa<UndefValue>(EI->getIndexOperand())) 480 continue; 481 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 482 if (!Idx) 483 return std::nullopt; 484 // Undefined behavior if Idx is negative or >= Size. 485 if (Idx->getValue().uge(Size)) 486 continue; 487 unsigned IntIdx = Idx->getValue().getZExtValue(); 488 Mask[I] = IntIdx; 489 // For correct shuffling we have to have at most 2 different vector operands 490 // in all extractelement instructions. 491 if (!Vec1 || Vec1 == Vec) { 492 Vec1 = Vec; 493 } else if (!Vec2 || Vec2 == Vec) { 494 Vec2 = Vec; 495 Mask[I] += Size; 496 } else { 497 return std::nullopt; 498 } 499 if (CommonShuffleMode == Permute) 500 continue; 501 // If the extract index is not the same as the operation number, it is a 502 // permutation. 503 if (IntIdx != I) { 504 CommonShuffleMode = Permute; 505 continue; 506 } 507 CommonShuffleMode = Select; 508 } 509 // If we're not crossing lanes in different vectors, consider it as blending. 510 if (CommonShuffleMode == Select && Vec2) 511 return TargetTransformInfo::SK_Select; 512 // If Vec2 was never used, we have a permutation of a single vector, otherwise 513 // we have permutation of 2 vectors. 514 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 515 : TargetTransformInfo::SK_PermuteSingleSrc; 516 } 517 518 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 519 static std::optional<unsigned> getExtractIndex(Instruction *E) { 520 unsigned Opcode = E->getOpcode(); 521 assert((Opcode == Instruction::ExtractElement || 522 Opcode == Instruction::ExtractValue) && 523 "Expected extractelement or extractvalue instruction."); 524 if (Opcode == Instruction::ExtractElement) { 525 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 526 if (!CI) 527 return std::nullopt; 528 return CI->getZExtValue(); 529 } 530 auto *EI = cast<ExtractValueInst>(E); 531 if (EI->getNumIndices() != 1) 532 return std::nullopt; 533 return *EI->idx_begin(); 534 } 535 536 namespace { 537 538 /// Main data required for vectorization of instructions. 539 struct InstructionsState { 540 /// The very first instruction in the list with the main opcode. 541 Value *OpValue = nullptr; 542 543 /// The main/alternate instruction. 544 Instruction *MainOp = nullptr; 545 Instruction *AltOp = nullptr; 546 547 /// The main/alternate opcodes for the list of instructions. 548 unsigned getOpcode() const { 549 return MainOp ? MainOp->getOpcode() : 0; 550 } 551 552 unsigned getAltOpcode() const { 553 return AltOp ? AltOp->getOpcode() : 0; 554 } 555 556 /// Some of the instructions in the list have alternate opcodes. 557 bool isAltShuffle() const { return AltOp != MainOp; } 558 559 bool isOpcodeOrAlt(Instruction *I) const { 560 unsigned CheckedOpcode = I->getOpcode(); 561 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 562 } 563 564 InstructionsState() = delete; 565 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 566 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 567 }; 568 569 } // end anonymous namespace 570 571 /// Chooses the correct key for scheduling data. If \p Op has the same (or 572 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 573 /// OpValue. 574 static Value *isOneOf(const InstructionsState &S, Value *Op) { 575 auto *I = dyn_cast<Instruction>(Op); 576 if (I && S.isOpcodeOrAlt(I)) 577 return Op; 578 return S.OpValue; 579 } 580 581 /// \returns true if \p Opcode is allowed as part of of the main/alternate 582 /// instruction for SLP vectorization. 583 /// 584 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 585 /// "shuffled out" lane would result in division by zero. 586 static bool isValidForAlternation(unsigned Opcode) { 587 if (Instruction::isIntDivRem(Opcode)) 588 return false; 589 590 return true; 591 } 592 593 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 594 const TargetLibraryInfo &TLI, 595 unsigned BaseIndex = 0); 596 597 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 598 /// compatible instructions or constants, or just some other regular values. 599 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 600 Value *Op1, const TargetLibraryInfo &TLI) { 601 return (isConstant(BaseOp0) && isConstant(Op0)) || 602 (isConstant(BaseOp1) && isConstant(Op1)) || 603 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 604 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 605 BaseOp0 == Op0 || BaseOp1 == Op1 || 606 getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() || 607 getSameOpcode({BaseOp1, Op1}, TLI).getOpcode(); 608 } 609 610 /// \returns true if a compare instruction \p CI has similar "look" and 611 /// same predicate as \p BaseCI, "as is" or with its operands and predicate 612 /// swapped, false otherwise. 613 static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI, 614 const TargetLibraryInfo &TLI) { 615 assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && 616 "Assessing comparisons of different types?"); 617 CmpInst::Predicate BasePred = BaseCI->getPredicate(); 618 CmpInst::Predicate Pred = CI->getPredicate(); 619 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred); 620 621 Value *BaseOp0 = BaseCI->getOperand(0); 622 Value *BaseOp1 = BaseCI->getOperand(1); 623 Value *Op0 = CI->getOperand(0); 624 Value *Op1 = CI->getOperand(1); 625 626 return (BasePred == Pred && 627 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) || 628 (BasePred == SwappedPred && 629 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI)); 630 } 631 632 /// \returns analysis of the Instructions in \p VL described in 633 /// InstructionsState, the Opcode that we suppose the whole list 634 /// could be vectorized even if its structure is diverse. 635 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 636 const TargetLibraryInfo &TLI, 637 unsigned BaseIndex) { 638 // Make sure these are all Instructions. 639 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 640 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 641 642 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 643 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 644 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 645 CmpInst::Predicate BasePred = 646 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 647 : CmpInst::BAD_ICMP_PREDICATE; 648 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 649 unsigned AltOpcode = Opcode; 650 unsigned AltIndex = BaseIndex; 651 652 // Check for one alternate opcode from another BinaryOperator. 653 // TODO - generalize to support all operators (types, calls etc.). 654 auto *IBase = cast<Instruction>(VL[BaseIndex]); 655 Intrinsic::ID BaseID = 0; 656 SmallVector<VFInfo> BaseMappings; 657 if (auto *CallBase = dyn_cast<CallInst>(IBase)) { 658 BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI); 659 BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase); 660 if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty()) 661 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 662 } 663 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 664 auto *I = cast<Instruction>(VL[Cnt]); 665 unsigned InstOpcode = I->getOpcode(); 666 if (IsBinOp && isa<BinaryOperator>(I)) { 667 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 668 continue; 669 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 670 isValidForAlternation(Opcode)) { 671 AltOpcode = InstOpcode; 672 AltIndex = Cnt; 673 continue; 674 } 675 } else if (IsCastOp && isa<CastInst>(I)) { 676 Value *Op0 = IBase->getOperand(0); 677 Type *Ty0 = Op0->getType(); 678 Value *Op1 = I->getOperand(0); 679 Type *Ty1 = Op1->getType(); 680 if (Ty0 == Ty1) { 681 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 682 continue; 683 if (Opcode == AltOpcode) { 684 assert(isValidForAlternation(Opcode) && 685 isValidForAlternation(InstOpcode) && 686 "Cast isn't safe for alternation, logic needs to be updated!"); 687 AltOpcode = InstOpcode; 688 AltIndex = Cnt; 689 continue; 690 } 691 } 692 } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) { 693 auto *BaseInst = cast<CmpInst>(VL[BaseIndex]); 694 Type *Ty0 = BaseInst->getOperand(0)->getType(); 695 Type *Ty1 = Inst->getOperand(0)->getType(); 696 if (Ty0 == Ty1) { 697 assert(InstOpcode == Opcode && "Expected same CmpInst opcode."); 698 // Check for compatible operands. If the corresponding operands are not 699 // compatible - need to perform alternate vectorization. 700 CmpInst::Predicate CurrentPred = Inst->getPredicate(); 701 CmpInst::Predicate SwappedCurrentPred = 702 CmpInst::getSwappedPredicate(CurrentPred); 703 704 if (E == 2 && 705 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 706 continue; 707 708 if (isCmpSameOrSwapped(BaseInst, Inst, TLI)) 709 continue; 710 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 711 if (AltIndex != BaseIndex) { 712 if (isCmpSameOrSwapped(AltInst, Inst, TLI)) 713 continue; 714 } else if (BasePred != CurrentPred) { 715 assert( 716 isValidForAlternation(InstOpcode) && 717 "CmpInst isn't safe for alternation, logic needs to be updated!"); 718 AltIndex = Cnt; 719 continue; 720 } 721 CmpInst::Predicate AltPred = AltInst->getPredicate(); 722 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 723 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 724 continue; 725 } 726 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) { 727 if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 728 if (Gep->getNumOperands() != 2 || 729 Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType()) 730 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 731 } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) { 732 if (!isVectorLikeInstWithConstOps(EI)) 733 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 734 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 735 auto *BaseLI = cast<LoadInst>(IBase); 736 if (!LI->isSimple() || !BaseLI->isSimple()) 737 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 738 } else if (auto *Call = dyn_cast<CallInst>(I)) { 739 auto *CallBase = cast<CallInst>(IBase); 740 if (Call->getCalledFunction() != CallBase->getCalledFunction()) 741 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 742 if (Call->hasOperandBundles() && 743 !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(), 744 Call->op_begin() + Call->getBundleOperandsEndIndex(), 745 CallBase->op_begin() + 746 CallBase->getBundleOperandsStartIndex())) 747 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 748 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI); 749 if (ID != BaseID) 750 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 751 if (!ID) { 752 SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call); 753 if (Mappings.size() != BaseMappings.size() || 754 Mappings.front().ISA != BaseMappings.front().ISA || 755 Mappings.front().ScalarName != BaseMappings.front().ScalarName || 756 Mappings.front().VectorName != BaseMappings.front().VectorName || 757 Mappings.front().Shape.VF != BaseMappings.front().Shape.VF || 758 Mappings.front().Shape.Parameters != 759 BaseMappings.front().Shape.Parameters) 760 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 761 } 762 } 763 continue; 764 } 765 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 766 } 767 768 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 769 cast<Instruction>(VL[AltIndex])); 770 } 771 772 /// \returns true if all of the values in \p VL have the same type or false 773 /// otherwise. 774 static bool allSameType(ArrayRef<Value *> VL) { 775 Type *Ty = VL[0]->getType(); 776 for (int i = 1, e = VL.size(); i < e; i++) 777 if (VL[i]->getType() != Ty) 778 return false; 779 780 return true; 781 } 782 783 /// \returns True if in-tree use also needs extract. This refers to 784 /// possible scalar operand in vectorized instruction. 785 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 786 TargetLibraryInfo *TLI) { 787 unsigned Opcode = UserInst->getOpcode(); 788 switch (Opcode) { 789 case Instruction::Load: { 790 LoadInst *LI = cast<LoadInst>(UserInst); 791 return (LI->getPointerOperand() == Scalar); 792 } 793 case Instruction::Store: { 794 StoreInst *SI = cast<StoreInst>(UserInst); 795 return (SI->getPointerOperand() == Scalar); 796 } 797 case Instruction::Call: { 798 CallInst *CI = cast<CallInst>(UserInst); 799 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 800 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 801 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 802 return (CI->getArgOperand(i) == Scalar); 803 } 804 [[fallthrough]]; 805 } 806 default: 807 return false; 808 } 809 } 810 811 /// \returns the AA location that is being access by the instruction. 812 static MemoryLocation getLocation(Instruction *I) { 813 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 814 return MemoryLocation::get(SI); 815 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 816 return MemoryLocation::get(LI); 817 return MemoryLocation(); 818 } 819 820 /// \returns True if the instruction is not a volatile or atomic load/store. 821 static bool isSimple(Instruction *I) { 822 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 823 return LI->isSimple(); 824 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 825 return SI->isSimple(); 826 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 827 return !MI->isVolatile(); 828 return true; 829 } 830 831 /// Shuffles \p Mask in accordance with the given \p SubMask. 832 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 833 if (SubMask.empty()) 834 return; 835 if (Mask.empty()) { 836 Mask.append(SubMask.begin(), SubMask.end()); 837 return; 838 } 839 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 840 int TermValue = std::min(Mask.size(), SubMask.size()); 841 for (int I = 0, E = SubMask.size(); I < E; ++I) { 842 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 843 Mask[SubMask[I]] >= TermValue) 844 continue; 845 NewMask[I] = Mask[SubMask[I]]; 846 } 847 Mask.swap(NewMask); 848 } 849 850 /// Order may have elements assigned special value (size) which is out of 851 /// bounds. Such indices only appear on places which correspond to undef values 852 /// (see canReuseExtract for details) and used in order to avoid undef values 853 /// have effect on operands ordering. 854 /// The first loop below simply finds all unused indices and then the next loop 855 /// nest assigns these indices for undef values positions. 856 /// As an example below Order has two undef positions and they have assigned 857 /// values 3 and 7 respectively: 858 /// before: 6 9 5 4 9 2 1 0 859 /// after: 6 3 5 4 7 2 1 0 860 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 861 const unsigned Sz = Order.size(); 862 SmallBitVector UnusedIndices(Sz, /*t=*/true); 863 SmallBitVector MaskedIndices(Sz); 864 for (unsigned I = 0; I < Sz; ++I) { 865 if (Order[I] < Sz) 866 UnusedIndices.reset(Order[I]); 867 else 868 MaskedIndices.set(I); 869 } 870 if (MaskedIndices.none()) 871 return; 872 assert(UnusedIndices.count() == MaskedIndices.count() && 873 "Non-synced masked/available indices."); 874 int Idx = UnusedIndices.find_first(); 875 int MIdx = MaskedIndices.find_first(); 876 while (MIdx >= 0) { 877 assert(Idx >= 0 && "Indices must be synced."); 878 Order[MIdx] = Idx; 879 Idx = UnusedIndices.find_next(Idx); 880 MIdx = MaskedIndices.find_next(MIdx); 881 } 882 } 883 884 namespace llvm { 885 886 static void inversePermutation(ArrayRef<unsigned> Indices, 887 SmallVectorImpl<int> &Mask) { 888 Mask.clear(); 889 const unsigned E = Indices.size(); 890 Mask.resize(E, UndefMaskElem); 891 for (unsigned I = 0; I < E; ++I) 892 Mask[Indices[I]] = I; 893 } 894 895 /// Reorders the list of scalars in accordance with the given \p Mask. 896 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 897 ArrayRef<int> Mask) { 898 assert(!Mask.empty() && "Expected non-empty mask."); 899 SmallVector<Value *> Prev(Scalars.size(), 900 UndefValue::get(Scalars.front()->getType())); 901 Prev.swap(Scalars); 902 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 903 if (Mask[I] != UndefMaskElem) 904 Scalars[Mask[I]] = Prev[I]; 905 } 906 907 /// Checks if the provided value does not require scheduling. It does not 908 /// require scheduling if this is not an instruction or it is an instruction 909 /// that does not read/write memory and all operands are either not instructions 910 /// or phi nodes or instructions from different blocks. 911 static bool areAllOperandsNonInsts(Value *V) { 912 auto *I = dyn_cast<Instruction>(V); 913 if (!I) 914 return true; 915 return !mayHaveNonDefUseDependency(*I) && 916 all_of(I->operands(), [I](Value *V) { 917 auto *IO = dyn_cast<Instruction>(V); 918 if (!IO) 919 return true; 920 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 921 }); 922 } 923 924 /// Checks if the provided value does not require scheduling. It does not 925 /// require scheduling if this is not an instruction or it is an instruction 926 /// that does not read/write memory and all users are phi nodes or instructions 927 /// from the different blocks. 928 static bool isUsedOutsideBlock(Value *V) { 929 auto *I = dyn_cast<Instruction>(V); 930 if (!I) 931 return true; 932 // Limits the number of uses to save compile time. 933 constexpr int UsesLimit = 8; 934 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 935 all_of(I->users(), [I](User *U) { 936 auto *IU = dyn_cast<Instruction>(U); 937 if (!IU) 938 return true; 939 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 940 }); 941 } 942 943 /// Checks if the specified value does not require scheduling. It does not 944 /// require scheduling if all operands and all users do not need to be scheduled 945 /// in the current basic block. 946 static bool doesNotNeedToBeScheduled(Value *V) { 947 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 948 } 949 950 /// Checks if the specified array of instructions does not require scheduling. 951 /// It is so if all either instructions have operands that do not require 952 /// scheduling or their users do not require scheduling since they are phis or 953 /// in other basic blocks. 954 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 955 return !VL.empty() && 956 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 957 } 958 959 namespace slpvectorizer { 960 961 /// Bottom Up SLP Vectorizer. 962 class BoUpSLP { 963 struct TreeEntry; 964 struct ScheduleData; 965 class ShuffleInstructionBuilder; 966 967 public: 968 using ValueList = SmallVector<Value *, 8>; 969 using InstrList = SmallVector<Instruction *, 16>; 970 using ValueSet = SmallPtrSet<Value *, 16>; 971 using StoreList = SmallVector<StoreInst *, 8>; 972 using ExtraValueToDebugLocsMap = 973 MapVector<Value *, SmallVector<Instruction *, 2>>; 974 using OrdersType = SmallVector<unsigned, 4>; 975 976 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 977 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 978 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 979 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 980 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 981 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 982 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 983 // Use the vector register size specified by the target unless overridden 984 // by a command-line option. 985 // TODO: It would be better to limit the vectorization factor based on 986 // data type rather than just register size. For example, x86 AVX has 987 // 256-bit registers, but it does not support integer operations 988 // at that width (that requires AVX2). 989 if (MaxVectorRegSizeOption.getNumOccurrences()) 990 MaxVecRegSize = MaxVectorRegSizeOption; 991 else 992 MaxVecRegSize = 993 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 994 .getFixedValue(); 995 996 if (MinVectorRegSizeOption.getNumOccurrences()) 997 MinVecRegSize = MinVectorRegSizeOption; 998 else 999 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 1000 } 1001 1002 /// Vectorize the tree that starts with the elements in \p VL. 1003 /// Returns the vectorized root. 1004 Value *vectorizeTree(); 1005 1006 /// Vectorize the tree but with the list of externally used values \p 1007 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 1008 /// generated extractvalue instructions. 1009 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues, 1010 Instruction *ReductionRoot = nullptr); 1011 1012 /// \returns the cost incurred by unwanted spills and fills, caused by 1013 /// holding live values over call sites. 1014 InstructionCost getSpillCost() const; 1015 1016 /// \returns the vectorization cost of the subtree that starts at \p VL. 1017 /// A negative number means that this is profitable. 1018 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt); 1019 1020 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 1021 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 1022 void buildTree(ArrayRef<Value *> Roots, 1023 const SmallDenseSet<Value *> &UserIgnoreLst); 1024 1025 /// Construct a vectorizable tree that starts at \p Roots. 1026 void buildTree(ArrayRef<Value *> Roots); 1027 1028 /// Checks if the very first tree node is going to be vectorized. 1029 bool isVectorizedFirstNode() const { 1030 return !VectorizableTree.empty() && 1031 VectorizableTree.front()->State == TreeEntry::Vectorize; 1032 } 1033 1034 /// Returns the main instruction for the very first node. 1035 Instruction *getFirstNodeMainOp() const { 1036 assert(!VectorizableTree.empty() && "No tree to get the first node from"); 1037 return VectorizableTree.front()->getMainOp(); 1038 } 1039 1040 /// Returns whether the root node has in-tree uses. 1041 bool doesRootHaveInTreeUses() const { 1042 return !VectorizableTree.empty() && 1043 !VectorizableTree.front()->UserTreeIndices.empty(); 1044 } 1045 1046 /// Builds external uses of the vectorized scalars, i.e. the list of 1047 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 1048 /// ExternallyUsedValues contains additional list of external uses to handle 1049 /// vectorization of reductions. 1050 void 1051 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 1052 1053 /// Clear the internal data structures that are created by 'buildTree'. 1054 void deleteTree() { 1055 VectorizableTree.clear(); 1056 ScalarToTreeEntry.clear(); 1057 MustGather.clear(); 1058 EntryToLastInstruction.clear(); 1059 ExternalUses.clear(); 1060 for (auto &Iter : BlocksSchedules) { 1061 BlockScheduling *BS = Iter.second.get(); 1062 BS->clear(); 1063 } 1064 MinBWs.clear(); 1065 InstrElementSize.clear(); 1066 UserIgnoreList = nullptr; 1067 } 1068 1069 unsigned getTreeSize() const { return VectorizableTree.size(); } 1070 1071 /// Perform LICM and CSE on the newly generated gather sequences. 1072 void optimizeGatherSequence(); 1073 1074 /// Checks if the specified gather tree entry \p TE can be represented as a 1075 /// shuffled vector entry + (possibly) permutation with other gathers. It 1076 /// implements the checks only for possibly ordered scalars (Loads, 1077 /// ExtractElement, ExtractValue), which can be part of the graph. 1078 std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 1079 1080 /// Sort loads into increasing pointers offsets to allow greater clustering. 1081 std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 1082 1083 /// Gets reordering data for the given tree entry. If the entry is vectorized 1084 /// - just return ReorderIndices, otherwise check if the scalars can be 1085 /// reordered and return the most optimal order. 1086 /// \param TopToBottom If true, include the order of vectorized stores and 1087 /// insertelement nodes, otherwise skip them. 1088 std::optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 1089 1090 /// Reorders the current graph to the most profitable order starting from the 1091 /// root node to the leaf nodes. The best order is chosen only from the nodes 1092 /// of the same size (vectorization factor). Smaller nodes are considered 1093 /// parts of subgraph with smaller VF and they are reordered independently. We 1094 /// can make it because we still need to extend smaller nodes to the wider VF 1095 /// and we can merge reordering shuffles with the widening shuffles. 1096 void reorderTopToBottom(); 1097 1098 /// Reorders the current graph to the most profitable order starting from 1099 /// leaves to the root. It allows to rotate small subgraphs and reduce the 1100 /// number of reshuffles if the leaf nodes use the same order. In this case we 1101 /// can merge the orders and just shuffle user node instead of shuffling its 1102 /// operands. Plus, even the leaf nodes have different orders, it allows to 1103 /// sink reordering in the graph closer to the root node and merge it later 1104 /// during analysis. 1105 void reorderBottomToTop(bool IgnoreReorder = false); 1106 1107 /// \return The vector element size in bits to use when vectorizing the 1108 /// expression tree ending at \p V. If V is a store, the size is the width of 1109 /// the stored value. Otherwise, the size is the width of the largest loaded 1110 /// value reaching V. This method is used by the vectorizer to calculate 1111 /// vectorization factors. 1112 unsigned getVectorElementSize(Value *V); 1113 1114 /// Compute the minimum type sizes required to represent the entries in a 1115 /// vectorizable tree. 1116 void computeMinimumValueSizes(); 1117 1118 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 1119 unsigned getMaxVecRegSize() const { 1120 return MaxVecRegSize; 1121 } 1122 1123 // \returns minimum vector register size as set by cl::opt. 1124 unsigned getMinVecRegSize() const { 1125 return MinVecRegSize; 1126 } 1127 1128 unsigned getMinVF(unsigned Sz) const { 1129 return std::max(2U, getMinVecRegSize() / Sz); 1130 } 1131 1132 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 1133 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 1134 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 1135 return MaxVF ? MaxVF : UINT_MAX; 1136 } 1137 1138 /// Check if homogeneous aggregate is isomorphic to some VectorType. 1139 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 1140 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 1141 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 1142 /// 1143 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 1144 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 1145 1146 /// \returns True if the VectorizableTree is both tiny and not fully 1147 /// vectorizable. We do not vectorize such trees. 1148 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1149 1150 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1151 /// can be load combined in the backend. Load combining may not be allowed in 1152 /// the IR optimizer, so we do not want to alter the pattern. For example, 1153 /// partially transforming a scalar bswap() pattern into vector code is 1154 /// effectively impossible for the backend to undo. 1155 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1156 /// may not be necessary. 1157 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1158 1159 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1160 /// can be load combined in the backend. Load combining may not be allowed in 1161 /// the IR optimizer, so we do not want to alter the pattern. For example, 1162 /// partially transforming a scalar bswap() pattern into vector code is 1163 /// effectively impossible for the backend to undo. 1164 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1165 /// may not be necessary. 1166 bool isLoadCombineCandidate() const; 1167 1168 OptimizationRemarkEmitter *getORE() { return ORE; } 1169 1170 /// This structure holds any data we need about the edges being traversed 1171 /// during buildTree_rec(). We keep track of: 1172 /// (i) the user TreeEntry index, and 1173 /// (ii) the index of the edge. 1174 struct EdgeInfo { 1175 EdgeInfo() = default; 1176 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1177 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1178 /// The user TreeEntry. 1179 TreeEntry *UserTE = nullptr; 1180 /// The operand index of the use. 1181 unsigned EdgeIdx = UINT_MAX; 1182 #ifndef NDEBUG 1183 friend inline raw_ostream &operator<<(raw_ostream &OS, 1184 const BoUpSLP::EdgeInfo &EI) { 1185 EI.dump(OS); 1186 return OS; 1187 } 1188 /// Debug print. 1189 void dump(raw_ostream &OS) const { 1190 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1191 << " EdgeIdx:" << EdgeIdx << "}"; 1192 } 1193 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1194 #endif 1195 }; 1196 1197 /// A helper class used for scoring candidates for two consecutive lanes. 1198 class LookAheadHeuristics { 1199 const TargetLibraryInfo &TLI; 1200 const DataLayout &DL; 1201 ScalarEvolution &SE; 1202 const BoUpSLP &R; 1203 int NumLanes; // Total number of lanes (aka vectorization factor). 1204 int MaxLevel; // The maximum recursion depth for accumulating score. 1205 1206 public: 1207 LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL, 1208 ScalarEvolution &SE, const BoUpSLP &R, int NumLanes, 1209 int MaxLevel) 1210 : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes), 1211 MaxLevel(MaxLevel) {} 1212 1213 // The hard-coded scores listed here are not very important, though it shall 1214 // be higher for better matches to improve the resulting cost. When 1215 // computing the scores of matching one sub-tree with another, we are 1216 // basically counting the number of values that are matching. So even if all 1217 // scores are set to 1, we would still get a decent matching result. 1218 // However, sometimes we have to break ties. For example we may have to 1219 // choose between matching loads vs matching opcodes. This is what these 1220 // scores are helping us with: they provide the order of preference. Also, 1221 // this is important if the scalar is externally used or used in another 1222 // tree entry node in the different lane. 1223 1224 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1225 static const int ScoreConsecutiveLoads = 4; 1226 /// The same load multiple times. This should have a better score than 1227 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1228 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1229 /// a vector load and 1.0 for a broadcast. 1230 static const int ScoreSplatLoads = 3; 1231 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1232 static const int ScoreReversedLoads = 3; 1233 /// A load candidate for masked gather. 1234 static const int ScoreMaskedGatherCandidate = 1; 1235 /// ExtractElementInst from same vector and consecutive indexes. 1236 static const int ScoreConsecutiveExtracts = 4; 1237 /// ExtractElementInst from same vector and reversed indices. 1238 static const int ScoreReversedExtracts = 3; 1239 /// Constants. 1240 static const int ScoreConstants = 2; 1241 /// Instructions with the same opcode. 1242 static const int ScoreSameOpcode = 2; 1243 /// Instructions with alt opcodes (e.g, add + sub). 1244 static const int ScoreAltOpcodes = 1; 1245 /// Identical instructions (a.k.a. splat or broadcast). 1246 static const int ScoreSplat = 1; 1247 /// Matching with an undef is preferable to failing. 1248 static const int ScoreUndef = 1; 1249 /// Score for failing to find a decent match. 1250 static const int ScoreFail = 0; 1251 /// Score if all users are vectorized. 1252 static const int ScoreAllUserVectorized = 1; 1253 1254 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1255 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1256 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1257 /// MainAltOps. 1258 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1259 ArrayRef<Value *> MainAltOps) const { 1260 if (!isValidElementType(V1->getType()) || 1261 !isValidElementType(V2->getType())) 1262 return LookAheadHeuristics::ScoreFail; 1263 1264 if (V1 == V2) { 1265 if (isa<LoadInst>(V1)) { 1266 // Retruns true if the users of V1 and V2 won't need to be extracted. 1267 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1268 // Bail out if we have too many uses to save compilation time. 1269 static constexpr unsigned Limit = 8; 1270 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1271 return false; 1272 1273 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1274 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1275 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1276 }); 1277 }; 1278 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1279 }; 1280 // A broadcast of a load can be cheaper on some targets. 1281 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1282 ElementCount::getFixed(NumLanes)) && 1283 ((int)V1->getNumUses() == NumLanes || 1284 AllUsersAreInternal(V1, V2))) 1285 return LookAheadHeuristics::ScoreSplatLoads; 1286 } 1287 return LookAheadHeuristics::ScoreSplat; 1288 } 1289 1290 auto *LI1 = dyn_cast<LoadInst>(V1); 1291 auto *LI2 = dyn_cast<LoadInst>(V2); 1292 if (LI1 && LI2) { 1293 if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() || 1294 !LI2->isSimple()) 1295 return LookAheadHeuristics::ScoreFail; 1296 1297 std::optional<int> Dist = getPointersDiff( 1298 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1299 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1300 if (!Dist || *Dist == 0) { 1301 if (getUnderlyingObject(LI1->getPointerOperand()) == 1302 getUnderlyingObject(LI2->getPointerOperand()) && 1303 R.TTI->isLegalMaskedGather( 1304 FixedVectorType::get(LI1->getType(), NumLanes), 1305 LI1->getAlign())) 1306 return LookAheadHeuristics::ScoreMaskedGatherCandidate; 1307 return LookAheadHeuristics::ScoreFail; 1308 } 1309 // The distance is too large - still may be profitable to use masked 1310 // loads/gathers. 1311 if (std::abs(*Dist) > NumLanes / 2) 1312 return LookAheadHeuristics::ScoreMaskedGatherCandidate; 1313 // This still will detect consecutive loads, but we might have "holes" 1314 // in some cases. It is ok for non-power-2 vectorization and may produce 1315 // better results. It should not affect current vectorization. 1316 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1317 : LookAheadHeuristics::ScoreReversedLoads; 1318 } 1319 1320 auto *C1 = dyn_cast<Constant>(V1); 1321 auto *C2 = dyn_cast<Constant>(V2); 1322 if (C1 && C2) 1323 return LookAheadHeuristics::ScoreConstants; 1324 1325 // Extracts from consecutive indexes of the same vector better score as 1326 // the extracts could be optimized away. 1327 Value *EV1; 1328 ConstantInt *Ex1Idx; 1329 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1330 // Undefs are always profitable for extractelements. 1331 if (isa<UndefValue>(V2)) 1332 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1333 Value *EV2 = nullptr; 1334 ConstantInt *Ex2Idx = nullptr; 1335 if (match(V2, 1336 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1337 m_Undef())))) { 1338 // Undefs are always profitable for extractelements. 1339 if (!Ex2Idx) 1340 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1341 if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType()) 1342 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1343 if (EV2 == EV1) { 1344 int Idx1 = Ex1Idx->getZExtValue(); 1345 int Idx2 = Ex2Idx->getZExtValue(); 1346 int Dist = Idx2 - Idx1; 1347 // The distance is too large - still may be profitable to use 1348 // shuffles. 1349 if (std::abs(Dist) == 0) 1350 return LookAheadHeuristics::ScoreSplat; 1351 if (std::abs(Dist) > NumLanes / 2) 1352 return LookAheadHeuristics::ScoreSameOpcode; 1353 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1354 : LookAheadHeuristics::ScoreReversedExtracts; 1355 } 1356 return LookAheadHeuristics::ScoreAltOpcodes; 1357 } 1358 return LookAheadHeuristics::ScoreFail; 1359 } 1360 1361 auto *I1 = dyn_cast<Instruction>(V1); 1362 auto *I2 = dyn_cast<Instruction>(V2); 1363 if (I1 && I2) { 1364 if (I1->getParent() != I2->getParent()) 1365 return LookAheadHeuristics::ScoreFail; 1366 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1367 Ops.push_back(I1); 1368 Ops.push_back(I2); 1369 InstructionsState S = getSameOpcode(Ops, TLI); 1370 // Note: Only consider instructions with <= 2 operands to avoid 1371 // complexity explosion. 1372 if (S.getOpcode() && 1373 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1374 !S.isAltShuffle()) && 1375 all_of(Ops, [&S](Value *V) { 1376 return cast<Instruction>(V)->getNumOperands() == 1377 S.MainOp->getNumOperands(); 1378 })) 1379 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1380 : LookAheadHeuristics::ScoreSameOpcode; 1381 } 1382 1383 if (isa<UndefValue>(V2)) 1384 return LookAheadHeuristics::ScoreUndef; 1385 1386 return LookAheadHeuristics::ScoreFail; 1387 } 1388 1389 /// Go through the operands of \p LHS and \p RHS recursively until 1390 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1391 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1392 /// of \p U1 and \p U2), except at the beginning of the recursion where 1393 /// these are set to nullptr. 1394 /// 1395 /// For example: 1396 /// \verbatim 1397 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1398 /// \ / \ / \ / \ / 1399 /// + + + + 1400 /// G1 G2 G3 G4 1401 /// \endverbatim 1402 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1403 /// each level recursively, accumulating the score. It starts from matching 1404 /// the additions at level 0, then moves on to the loads (level 1). The 1405 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1406 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1407 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1408 /// Please note that the order of the operands does not matter, as we 1409 /// evaluate the score of all profitable combinations of operands. In 1410 /// other words the score of G1 and G4 is the same as G1 and G2. This 1411 /// heuristic is based on ideas described in: 1412 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1413 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1414 /// Luís F. W. Góes 1415 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1416 Instruction *U2, int CurrLevel, 1417 ArrayRef<Value *> MainAltOps) const { 1418 1419 // Get the shallow score of V1 and V2. 1420 int ShallowScoreAtThisLevel = 1421 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1422 1423 // If reached MaxLevel, 1424 // or if V1 and V2 are not instructions, 1425 // or if they are SPLAT, 1426 // or if they are not consecutive, 1427 // or if profitable to vectorize loads or extractelements, early return 1428 // the current cost. 1429 auto *I1 = dyn_cast<Instruction>(LHS); 1430 auto *I2 = dyn_cast<Instruction>(RHS); 1431 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1432 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1433 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1434 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1435 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1436 ShallowScoreAtThisLevel)) 1437 return ShallowScoreAtThisLevel; 1438 assert(I1 && I2 && "Should have early exited."); 1439 1440 // Contains the I2 operand indexes that got matched with I1 operands. 1441 SmallSet<unsigned, 4> Op2Used; 1442 1443 // Recursion towards the operands of I1 and I2. We are trying all possible 1444 // operand pairs, and keeping track of the best score. 1445 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1446 OpIdx1 != NumOperands1; ++OpIdx1) { 1447 // Try to pair op1I with the best operand of I2. 1448 int MaxTmpScore = 0; 1449 unsigned MaxOpIdx2 = 0; 1450 bool FoundBest = false; 1451 // If I2 is commutative try all combinations. 1452 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1453 unsigned ToIdx = isCommutative(I2) 1454 ? I2->getNumOperands() 1455 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1456 assert(FromIdx <= ToIdx && "Bad index"); 1457 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1458 // Skip operands already paired with OpIdx1. 1459 if (Op2Used.count(OpIdx2)) 1460 continue; 1461 // Recursively calculate the cost at each level 1462 int TmpScore = 1463 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1464 I1, I2, CurrLevel + 1, std::nullopt); 1465 // Look for the best score. 1466 if (TmpScore > LookAheadHeuristics::ScoreFail && 1467 TmpScore > MaxTmpScore) { 1468 MaxTmpScore = TmpScore; 1469 MaxOpIdx2 = OpIdx2; 1470 FoundBest = true; 1471 } 1472 } 1473 if (FoundBest) { 1474 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1475 Op2Used.insert(MaxOpIdx2); 1476 ShallowScoreAtThisLevel += MaxTmpScore; 1477 } 1478 } 1479 return ShallowScoreAtThisLevel; 1480 } 1481 }; 1482 /// A helper data structure to hold the operands of a vector of instructions. 1483 /// This supports a fixed vector length for all operand vectors. 1484 class VLOperands { 1485 /// For each operand we need (i) the value, and (ii) the opcode that it 1486 /// would be attached to if the expression was in a left-linearized form. 1487 /// This is required to avoid illegal operand reordering. 1488 /// For example: 1489 /// \verbatim 1490 /// 0 Op1 1491 /// |/ 1492 /// Op1 Op2 Linearized + Op2 1493 /// \ / ----------> |/ 1494 /// - - 1495 /// 1496 /// Op1 - Op2 (0 + Op1) - Op2 1497 /// \endverbatim 1498 /// 1499 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1500 /// 1501 /// Another way to think of this is to track all the operations across the 1502 /// path from the operand all the way to the root of the tree and to 1503 /// calculate the operation that corresponds to this path. For example, the 1504 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1505 /// corresponding operation is a '-' (which matches the one in the 1506 /// linearized tree, as shown above). 1507 /// 1508 /// For lack of a better term, we refer to this operation as Accumulated 1509 /// Path Operation (APO). 1510 struct OperandData { 1511 OperandData() = default; 1512 OperandData(Value *V, bool APO, bool IsUsed) 1513 : V(V), APO(APO), IsUsed(IsUsed) {} 1514 /// The operand value. 1515 Value *V = nullptr; 1516 /// TreeEntries only allow a single opcode, or an alternate sequence of 1517 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1518 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1519 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1520 /// (e.g., Add/Mul) 1521 bool APO = false; 1522 /// Helper data for the reordering function. 1523 bool IsUsed = false; 1524 }; 1525 1526 /// During operand reordering, we are trying to select the operand at lane 1527 /// that matches best with the operand at the neighboring lane. Our 1528 /// selection is based on the type of value we are looking for. For example, 1529 /// if the neighboring lane has a load, we need to look for a load that is 1530 /// accessing a consecutive address. These strategies are summarized in the 1531 /// 'ReorderingMode' enumerator. 1532 enum class ReorderingMode { 1533 Load, ///< Matching loads to consecutive memory addresses 1534 Opcode, ///< Matching instructions based on opcode (same or alternate) 1535 Constant, ///< Matching constants 1536 Splat, ///< Matching the same instruction multiple times (broadcast) 1537 Failed, ///< We failed to create a vectorizable group 1538 }; 1539 1540 using OperandDataVec = SmallVector<OperandData, 2>; 1541 1542 /// A vector of operand vectors. 1543 SmallVector<OperandDataVec, 4> OpsVec; 1544 1545 const TargetLibraryInfo &TLI; 1546 const DataLayout &DL; 1547 ScalarEvolution &SE; 1548 const BoUpSLP &R; 1549 1550 /// \returns the operand data at \p OpIdx and \p Lane. 1551 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1552 return OpsVec[OpIdx][Lane]; 1553 } 1554 1555 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1556 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1557 return OpsVec[OpIdx][Lane]; 1558 } 1559 1560 /// Clears the used flag for all entries. 1561 void clearUsed() { 1562 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1563 OpIdx != NumOperands; ++OpIdx) 1564 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1565 ++Lane) 1566 OpsVec[OpIdx][Lane].IsUsed = false; 1567 } 1568 1569 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1570 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1571 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1572 } 1573 1574 /// \param Lane lane of the operands under analysis. 1575 /// \param OpIdx operand index in \p Lane lane we're looking the best 1576 /// candidate for. 1577 /// \param Idx operand index of the current candidate value. 1578 /// \returns The additional score due to possible broadcasting of the 1579 /// elements in the lane. It is more profitable to have power-of-2 unique 1580 /// elements in the lane, it will be vectorized with higher probability 1581 /// after removing duplicates. Currently the SLP vectorizer supports only 1582 /// vectorization of the power-of-2 number of unique scalars. 1583 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1584 Value *IdxLaneV = getData(Idx, Lane).V; 1585 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1586 return 0; 1587 SmallPtrSet<Value *, 4> Uniques; 1588 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1589 if (Ln == Lane) 1590 continue; 1591 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1592 if (!isa<Instruction>(OpIdxLnV)) 1593 return 0; 1594 Uniques.insert(OpIdxLnV); 1595 } 1596 int UniquesCount = Uniques.size(); 1597 int UniquesCntWithIdxLaneV = 1598 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1599 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1600 int UniquesCntWithOpIdxLaneV = 1601 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1602 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1603 return 0; 1604 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1605 UniquesCntWithOpIdxLaneV) - 1606 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1607 } 1608 1609 /// \param Lane lane of the operands under analysis. 1610 /// \param OpIdx operand index in \p Lane lane we're looking the best 1611 /// candidate for. 1612 /// \param Idx operand index of the current candidate value. 1613 /// \returns The additional score for the scalar which users are all 1614 /// vectorized. 1615 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1616 Value *IdxLaneV = getData(Idx, Lane).V; 1617 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1618 // Do not care about number of uses for vector-like instructions 1619 // (extractelement/extractvalue with constant indices), they are extracts 1620 // themselves and already externally used. Vectorization of such 1621 // instructions does not add extra extractelement instruction, just may 1622 // remove it. 1623 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1624 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1625 return LookAheadHeuristics::ScoreAllUserVectorized; 1626 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1627 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1628 return 0; 1629 return R.areAllUsersVectorized(IdxLaneI, std::nullopt) 1630 ? LookAheadHeuristics::ScoreAllUserVectorized 1631 : 0; 1632 } 1633 1634 /// Score scaling factor for fully compatible instructions but with 1635 /// different number of external uses. Allows better selection of the 1636 /// instructions with less external uses. 1637 static const int ScoreScaleFactor = 10; 1638 1639 /// \Returns the look-ahead score, which tells us how much the sub-trees 1640 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1641 /// score. This helps break ties in an informed way when we cannot decide on 1642 /// the order of the operands by just considering the immediate 1643 /// predecessors. 1644 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1645 int Lane, unsigned OpIdx, unsigned Idx, 1646 bool &IsUsed) { 1647 LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(), 1648 LookAheadMaxDepth); 1649 // Keep track of the instruction stack as we recurse into the operands 1650 // during the look-ahead score exploration. 1651 int Score = 1652 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1653 /*CurrLevel=*/1, MainAltOps); 1654 if (Score) { 1655 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1656 if (Score <= -SplatScore) { 1657 // Set the minimum score for splat-like sequence to avoid setting 1658 // failed state. 1659 Score = 1; 1660 } else { 1661 Score += SplatScore; 1662 // Scale score to see the difference between different operands 1663 // and similar operands but all vectorized/not all vectorized 1664 // uses. It does not affect actual selection of the best 1665 // compatible operand in general, just allows to select the 1666 // operand with all vectorized uses. 1667 Score *= ScoreScaleFactor; 1668 Score += getExternalUseScore(Lane, OpIdx, Idx); 1669 IsUsed = true; 1670 } 1671 } 1672 return Score; 1673 } 1674 1675 /// Best defined scores per lanes between the passes. Used to choose the 1676 /// best operand (with the highest score) between the passes. 1677 /// The key - {Operand Index, Lane}. 1678 /// The value - the best score between the passes for the lane and the 1679 /// operand. 1680 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1681 BestScoresPerLanes; 1682 1683 // Search all operands in Ops[*][Lane] for the one that matches best 1684 // Ops[OpIdx][LastLane] and return its opreand index. 1685 // If no good match can be found, return std::nullopt. 1686 std::optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1687 ArrayRef<ReorderingMode> ReorderingModes, 1688 ArrayRef<Value *> MainAltOps) { 1689 unsigned NumOperands = getNumOperands(); 1690 1691 // The operand of the previous lane at OpIdx. 1692 Value *OpLastLane = getData(OpIdx, LastLane).V; 1693 1694 // Our strategy mode for OpIdx. 1695 ReorderingMode RMode = ReorderingModes[OpIdx]; 1696 if (RMode == ReorderingMode::Failed) 1697 return std::nullopt; 1698 1699 // The linearized opcode of the operand at OpIdx, Lane. 1700 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1701 1702 // The best operand index and its score. 1703 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1704 // are using the score to differentiate between the two. 1705 struct BestOpData { 1706 std::optional<unsigned> Idx; 1707 unsigned Score = 0; 1708 } BestOp; 1709 BestOp.Score = 1710 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1711 .first->second; 1712 1713 // Track if the operand must be marked as used. If the operand is set to 1714 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1715 // want to reestimate the operands again on the following iterations). 1716 bool IsUsed = 1717 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1718 // Iterate through all unused operands and look for the best. 1719 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1720 // Get the operand at Idx and Lane. 1721 OperandData &OpData = getData(Idx, Lane); 1722 Value *Op = OpData.V; 1723 bool OpAPO = OpData.APO; 1724 1725 // Skip already selected operands. 1726 if (OpData.IsUsed) 1727 continue; 1728 1729 // Skip if we are trying to move the operand to a position with a 1730 // different opcode in the linearized tree form. This would break the 1731 // semantics. 1732 if (OpAPO != OpIdxAPO) 1733 continue; 1734 1735 // Look for an operand that matches the current mode. 1736 switch (RMode) { 1737 case ReorderingMode::Load: 1738 case ReorderingMode::Constant: 1739 case ReorderingMode::Opcode: { 1740 bool LeftToRight = Lane > LastLane; 1741 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1742 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1743 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1744 OpIdx, Idx, IsUsed); 1745 if (Score > static_cast<int>(BestOp.Score)) { 1746 BestOp.Idx = Idx; 1747 BestOp.Score = Score; 1748 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1749 } 1750 break; 1751 } 1752 case ReorderingMode::Splat: 1753 if (Op == OpLastLane) 1754 BestOp.Idx = Idx; 1755 break; 1756 case ReorderingMode::Failed: 1757 llvm_unreachable("Not expected Failed reordering mode."); 1758 } 1759 } 1760 1761 if (BestOp.Idx) { 1762 getData(*BestOp.Idx, Lane).IsUsed = IsUsed; 1763 return BestOp.Idx; 1764 } 1765 // If we could not find a good match return std::nullopt. 1766 return std::nullopt; 1767 } 1768 1769 /// Helper for reorderOperandVecs. 1770 /// \returns the lane that we should start reordering from. This is the one 1771 /// which has the least number of operands that can freely move about or 1772 /// less profitable because it already has the most optimal set of operands. 1773 unsigned getBestLaneToStartReordering() const { 1774 unsigned Min = UINT_MAX; 1775 unsigned SameOpNumber = 0; 1776 // std::pair<unsigned, unsigned> is used to implement a simple voting 1777 // algorithm and choose the lane with the least number of operands that 1778 // can freely move about or less profitable because it already has the 1779 // most optimal set of operands. The first unsigned is a counter for 1780 // voting, the second unsigned is the counter of lanes with instructions 1781 // with same/alternate opcodes and same parent basic block. 1782 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1783 // Try to be closer to the original results, if we have multiple lanes 1784 // with same cost. If 2 lanes have the same cost, use the one with the 1785 // lowest index. 1786 for (int I = getNumLanes(); I > 0; --I) { 1787 unsigned Lane = I - 1; 1788 OperandsOrderData NumFreeOpsHash = 1789 getMaxNumOperandsThatCanBeReordered(Lane); 1790 // Compare the number of operands that can move and choose the one with 1791 // the least number. 1792 if (NumFreeOpsHash.NumOfAPOs < Min) { 1793 Min = NumFreeOpsHash.NumOfAPOs; 1794 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1795 HashMap.clear(); 1796 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1797 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1798 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1799 // Select the most optimal lane in terms of number of operands that 1800 // should be moved around. 1801 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1802 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1803 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1804 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1805 auto It = HashMap.find(NumFreeOpsHash.Hash); 1806 if (It == HashMap.end()) 1807 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1808 else 1809 ++It->second.first; 1810 } 1811 } 1812 // Select the lane with the minimum counter. 1813 unsigned BestLane = 0; 1814 unsigned CntMin = UINT_MAX; 1815 for (const auto &Data : reverse(HashMap)) { 1816 if (Data.second.first < CntMin) { 1817 CntMin = Data.second.first; 1818 BestLane = Data.second.second; 1819 } 1820 } 1821 return BestLane; 1822 } 1823 1824 /// Data structure that helps to reorder operands. 1825 struct OperandsOrderData { 1826 /// The best number of operands with the same APOs, which can be 1827 /// reordered. 1828 unsigned NumOfAPOs = UINT_MAX; 1829 /// Number of operands with the same/alternate instruction opcode and 1830 /// parent. 1831 unsigned NumOpsWithSameOpcodeParent = 0; 1832 /// Hash for the actual operands ordering. 1833 /// Used to count operands, actually their position id and opcode 1834 /// value. It is used in the voting mechanism to find the lane with the 1835 /// least number of operands that can freely move about or less profitable 1836 /// because it already has the most optimal set of operands. Can be 1837 /// replaced with SmallVector<unsigned> instead but hash code is faster 1838 /// and requires less memory. 1839 unsigned Hash = 0; 1840 }; 1841 /// \returns the maximum number of operands that are allowed to be reordered 1842 /// for \p Lane and the number of compatible instructions(with the same 1843 /// parent/opcode). This is used as a heuristic for selecting the first lane 1844 /// to start operand reordering. 1845 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1846 unsigned CntTrue = 0; 1847 unsigned NumOperands = getNumOperands(); 1848 // Operands with the same APO can be reordered. We therefore need to count 1849 // how many of them we have for each APO, like this: Cnt[APO] = x. 1850 // Since we only have two APOs, namely true and false, we can avoid using 1851 // a map. Instead we can simply count the number of operands that 1852 // correspond to one of them (in this case the 'true' APO), and calculate 1853 // the other by subtracting it from the total number of operands. 1854 // Operands with the same instruction opcode and parent are more 1855 // profitable since we don't need to move them in many cases, with a high 1856 // probability such lane already can be vectorized effectively. 1857 bool AllUndefs = true; 1858 unsigned NumOpsWithSameOpcodeParent = 0; 1859 Instruction *OpcodeI = nullptr; 1860 BasicBlock *Parent = nullptr; 1861 unsigned Hash = 0; 1862 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1863 const OperandData &OpData = getData(OpIdx, Lane); 1864 if (OpData.APO) 1865 ++CntTrue; 1866 // Use Boyer-Moore majority voting for finding the majority opcode and 1867 // the number of times it occurs. 1868 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1869 if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() || 1870 I->getParent() != Parent) { 1871 if (NumOpsWithSameOpcodeParent == 0) { 1872 NumOpsWithSameOpcodeParent = 1; 1873 OpcodeI = I; 1874 Parent = I->getParent(); 1875 } else { 1876 --NumOpsWithSameOpcodeParent; 1877 } 1878 } else { 1879 ++NumOpsWithSameOpcodeParent; 1880 } 1881 } 1882 Hash = hash_combine( 1883 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1884 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1885 } 1886 if (AllUndefs) 1887 return {}; 1888 OperandsOrderData Data; 1889 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1890 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1891 Data.Hash = Hash; 1892 return Data; 1893 } 1894 1895 /// Go through the instructions in VL and append their operands. 1896 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1897 assert(!VL.empty() && "Bad VL"); 1898 assert((empty() || VL.size() == getNumLanes()) && 1899 "Expected same number of lanes"); 1900 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1901 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1902 OpsVec.resize(NumOperands); 1903 unsigned NumLanes = VL.size(); 1904 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1905 OpsVec[OpIdx].resize(NumLanes); 1906 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1907 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1908 // Our tree has just 3 nodes: the root and two operands. 1909 // It is therefore trivial to get the APO. We only need to check the 1910 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1911 // RHS operand. The LHS operand of both add and sub is never attached 1912 // to an inversese operation in the linearized form, therefore its APO 1913 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1914 1915 // Since operand reordering is performed on groups of commutative 1916 // operations or alternating sequences (e.g., +, -), we can safely 1917 // tell the inverse operations by checking commutativity. 1918 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1919 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1920 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1921 APO, false}; 1922 } 1923 } 1924 } 1925 1926 /// \returns the number of operands. 1927 unsigned getNumOperands() const { return OpsVec.size(); } 1928 1929 /// \returns the number of lanes. 1930 unsigned getNumLanes() const { return OpsVec[0].size(); } 1931 1932 /// \returns the operand value at \p OpIdx and \p Lane. 1933 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1934 return getData(OpIdx, Lane).V; 1935 } 1936 1937 /// \returns true if the data structure is empty. 1938 bool empty() const { return OpsVec.empty(); } 1939 1940 /// Clears the data. 1941 void clear() { OpsVec.clear(); } 1942 1943 /// \Returns true if there are enough operands identical to \p Op to fill 1944 /// the whole vector. 1945 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1946 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1947 bool OpAPO = getData(OpIdx, Lane).APO; 1948 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1949 if (Ln == Lane) 1950 continue; 1951 // This is set to true if we found a candidate for broadcast at Lane. 1952 bool FoundCandidate = false; 1953 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1954 OperandData &Data = getData(OpI, Ln); 1955 if (Data.APO != OpAPO || Data.IsUsed) 1956 continue; 1957 if (Data.V == Op) { 1958 FoundCandidate = true; 1959 Data.IsUsed = true; 1960 break; 1961 } 1962 } 1963 if (!FoundCandidate) 1964 return false; 1965 } 1966 return true; 1967 } 1968 1969 public: 1970 /// Initialize with all the operands of the instruction vector \p RootVL. 1971 VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI, 1972 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) 1973 : TLI(TLI), DL(DL), SE(SE), R(R) { 1974 // Append all the operands of RootVL. 1975 appendOperandsOfVL(RootVL); 1976 } 1977 1978 /// \Returns a value vector with the operands across all lanes for the 1979 /// opearnd at \p OpIdx. 1980 ValueList getVL(unsigned OpIdx) const { 1981 ValueList OpVL(OpsVec[OpIdx].size()); 1982 assert(OpsVec[OpIdx].size() == getNumLanes() && 1983 "Expected same num of lanes across all operands"); 1984 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1985 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1986 return OpVL; 1987 } 1988 1989 // Performs operand reordering for 2 or more operands. 1990 // The original operands are in OrigOps[OpIdx][Lane]. 1991 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1992 void reorder() { 1993 unsigned NumOperands = getNumOperands(); 1994 unsigned NumLanes = getNumLanes(); 1995 // Each operand has its own mode. We are using this mode to help us select 1996 // the instructions for each lane, so that they match best with the ones 1997 // we have selected so far. 1998 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1999 2000 // This is a greedy single-pass algorithm. We are going over each lane 2001 // once and deciding on the best order right away with no back-tracking. 2002 // However, in order to increase its effectiveness, we start with the lane 2003 // that has operands that can move the least. For example, given the 2004 // following lanes: 2005 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 2006 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 2007 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 2008 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 2009 // we will start at Lane 1, since the operands of the subtraction cannot 2010 // be reordered. Then we will visit the rest of the lanes in a circular 2011 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 2012 2013 // Find the first lane that we will start our search from. 2014 unsigned FirstLane = getBestLaneToStartReordering(); 2015 2016 // Initialize the modes. 2017 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 2018 Value *OpLane0 = getValue(OpIdx, FirstLane); 2019 // Keep track if we have instructions with all the same opcode on one 2020 // side. 2021 if (isa<LoadInst>(OpLane0)) 2022 ReorderingModes[OpIdx] = ReorderingMode::Load; 2023 else if (isa<Instruction>(OpLane0)) { 2024 // Check if OpLane0 should be broadcast. 2025 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 2026 ReorderingModes[OpIdx] = ReorderingMode::Splat; 2027 else 2028 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 2029 } 2030 else if (isa<Constant>(OpLane0)) 2031 ReorderingModes[OpIdx] = ReorderingMode::Constant; 2032 else if (isa<Argument>(OpLane0)) 2033 // Our best hope is a Splat. It may save some cost in some cases. 2034 ReorderingModes[OpIdx] = ReorderingMode::Splat; 2035 else 2036 // NOTE: This should be unreachable. 2037 ReorderingModes[OpIdx] = ReorderingMode::Failed; 2038 } 2039 2040 // Check that we don't have same operands. No need to reorder if operands 2041 // are just perfect diamond or shuffled diamond match. Do not do it only 2042 // for possible broadcasts or non-power of 2 number of scalars (just for 2043 // now). 2044 auto &&SkipReordering = [this]() { 2045 SmallPtrSet<Value *, 4> UniqueValues; 2046 ArrayRef<OperandData> Op0 = OpsVec.front(); 2047 for (const OperandData &Data : Op0) 2048 UniqueValues.insert(Data.V); 2049 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 2050 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 2051 return !UniqueValues.contains(Data.V); 2052 })) 2053 return false; 2054 } 2055 // TODO: Check if we can remove a check for non-power-2 number of 2056 // scalars after full support of non-power-2 vectorization. 2057 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 2058 }; 2059 2060 // If the initial strategy fails for any of the operand indexes, then we 2061 // perform reordering again in a second pass. This helps avoid assigning 2062 // high priority to the failed strategy, and should improve reordering for 2063 // the non-failed operand indexes. 2064 for (int Pass = 0; Pass != 2; ++Pass) { 2065 // Check if no need to reorder operands since they're are perfect or 2066 // shuffled diamond match. 2067 // Need to to do it to avoid extra external use cost counting for 2068 // shuffled matches, which may cause regressions. 2069 if (SkipReordering()) 2070 break; 2071 // Skip the second pass if the first pass did not fail. 2072 bool StrategyFailed = false; 2073 // Mark all operand data as free to use. 2074 clearUsed(); 2075 // We keep the original operand order for the FirstLane, so reorder the 2076 // rest of the lanes. We are visiting the nodes in a circular fashion, 2077 // using FirstLane as the center point and increasing the radius 2078 // distance. 2079 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 2080 for (unsigned I = 0; I < NumOperands; ++I) 2081 MainAltOps[I].push_back(getData(I, FirstLane).V); 2082 2083 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 2084 // Visit the lane on the right and then the lane on the left. 2085 for (int Direction : {+1, -1}) { 2086 int Lane = FirstLane + Direction * Distance; 2087 if (Lane < 0 || Lane >= (int)NumLanes) 2088 continue; 2089 int LastLane = Lane - Direction; 2090 assert(LastLane >= 0 && LastLane < (int)NumLanes && 2091 "Out of bounds"); 2092 // Look for a good match for each operand. 2093 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 2094 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 2095 std::optional<unsigned> BestIdx = getBestOperand( 2096 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 2097 // By not selecting a value, we allow the operands that follow to 2098 // select a better matching value. We will get a non-null value in 2099 // the next run of getBestOperand(). 2100 if (BestIdx) { 2101 // Swap the current operand with the one returned by 2102 // getBestOperand(). 2103 swap(OpIdx, *BestIdx, Lane); 2104 } else { 2105 // We failed to find a best operand, set mode to 'Failed'. 2106 ReorderingModes[OpIdx] = ReorderingMode::Failed; 2107 // Enable the second pass. 2108 StrategyFailed = true; 2109 } 2110 // Try to get the alternate opcode and follow it during analysis. 2111 if (MainAltOps[OpIdx].size() != 2) { 2112 OperandData &AltOp = getData(OpIdx, Lane); 2113 InstructionsState OpS = 2114 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI); 2115 if (OpS.getOpcode() && OpS.isAltShuffle()) 2116 MainAltOps[OpIdx].push_back(AltOp.V); 2117 } 2118 } 2119 } 2120 } 2121 // Skip second pass if the strategy did not fail. 2122 if (!StrategyFailed) 2123 break; 2124 } 2125 } 2126 2127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2128 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 2129 switch (RMode) { 2130 case ReorderingMode::Load: 2131 return "Load"; 2132 case ReorderingMode::Opcode: 2133 return "Opcode"; 2134 case ReorderingMode::Constant: 2135 return "Constant"; 2136 case ReorderingMode::Splat: 2137 return "Splat"; 2138 case ReorderingMode::Failed: 2139 return "Failed"; 2140 } 2141 llvm_unreachable("Unimplemented Reordering Type"); 2142 } 2143 2144 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 2145 raw_ostream &OS) { 2146 return OS << getModeStr(RMode); 2147 } 2148 2149 /// Debug print. 2150 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 2151 printMode(RMode, dbgs()); 2152 } 2153 2154 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 2155 return printMode(RMode, OS); 2156 } 2157 2158 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 2159 const unsigned Indent = 2; 2160 unsigned Cnt = 0; 2161 for (const OperandDataVec &OpDataVec : OpsVec) { 2162 OS << "Operand " << Cnt++ << "\n"; 2163 for (const OperandData &OpData : OpDataVec) { 2164 OS.indent(Indent) << "{"; 2165 if (Value *V = OpData.V) 2166 OS << *V; 2167 else 2168 OS << "null"; 2169 OS << ", APO:" << OpData.APO << "}\n"; 2170 } 2171 OS << "\n"; 2172 } 2173 return OS; 2174 } 2175 2176 /// Debug print. 2177 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2178 #endif 2179 }; 2180 2181 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2182 /// for a pair which have highest score deemed to have best chance to form 2183 /// root of profitable tree to vectorize. Return std::nullopt if no candidate 2184 /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit 2185 /// of the cost, considered to be good enough score. 2186 std::optional<int> 2187 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2188 int Limit = LookAheadHeuristics::ScoreFail) { 2189 LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2, 2190 RootLookAheadMaxDepth); 2191 int BestScore = Limit; 2192 std::optional<int> Index; 2193 for (int I : seq<int>(0, Candidates.size())) { 2194 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2195 Candidates[I].second, 2196 /*U1=*/nullptr, /*U2=*/nullptr, 2197 /*Level=*/1, std::nullopt); 2198 if (Score > BestScore) { 2199 BestScore = Score; 2200 Index = I; 2201 } 2202 } 2203 return Index; 2204 } 2205 2206 /// Checks if the instruction is marked for deletion. 2207 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2208 2209 /// Removes an instruction from its block and eventually deletes it. 2210 /// It's like Instruction::eraseFromParent() except that the actual deletion 2211 /// is delayed until BoUpSLP is destructed. 2212 void eraseInstruction(Instruction *I) { 2213 DeletedInstructions.insert(I); 2214 } 2215 2216 /// Checks if the instruction was already analyzed for being possible 2217 /// reduction root. 2218 bool isAnalyzedReductionRoot(Instruction *I) const { 2219 return AnalyzedReductionsRoots.count(I); 2220 } 2221 /// Register given instruction as already analyzed for being possible 2222 /// reduction root. 2223 void analyzedReductionRoot(Instruction *I) { 2224 AnalyzedReductionsRoots.insert(I); 2225 } 2226 /// Checks if the provided list of reduced values was checked already for 2227 /// vectorization. 2228 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const { 2229 return AnalyzedReductionVals.contains(hash_value(VL)); 2230 } 2231 /// Adds the list of reduced values to list of already checked values for the 2232 /// vectorization. 2233 void analyzedReductionVals(ArrayRef<Value *> VL) { 2234 AnalyzedReductionVals.insert(hash_value(VL)); 2235 } 2236 /// Clear the list of the analyzed reduction root instructions. 2237 void clearReductionData() { 2238 AnalyzedReductionsRoots.clear(); 2239 AnalyzedReductionVals.clear(); 2240 } 2241 /// Checks if the given value is gathered in one of the nodes. 2242 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { 2243 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); 2244 } 2245 2246 /// Check if the value is vectorized in the tree. 2247 bool isVectorized(Value *V) const { return getTreeEntry(V); } 2248 2249 ~BoUpSLP(); 2250 2251 private: 2252 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2253 /// reordering (i.e. the operands can be reordered because they have only one 2254 /// user and reordarable). 2255 /// \param ReorderableGathers List of all gather nodes that require reordering 2256 /// (e.g., gather of extractlements or partially vectorizable loads). 2257 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2258 /// reordering, subset of \p NonVectorized. 2259 bool 2260 canReorderOperands(TreeEntry *UserTE, 2261 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2262 ArrayRef<TreeEntry *> ReorderableGathers, 2263 SmallVectorImpl<TreeEntry *> &GatherOps); 2264 2265 /// Checks if the given \p TE is a gather node with clustered reused scalars 2266 /// and reorders it per given \p Mask. 2267 void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const; 2268 2269 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2270 /// if any. If it is not vectorized (gather node), returns nullptr. 2271 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2272 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2273 TreeEntry *TE = nullptr; 2274 const auto *It = find_if(VL, [this, &TE](Value *V) { 2275 TE = getTreeEntry(V); 2276 return TE; 2277 }); 2278 if (It != VL.end() && TE->isSame(VL)) 2279 return TE; 2280 return nullptr; 2281 } 2282 2283 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2284 /// if any. If it is not vectorized (gather node), returns nullptr. 2285 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2286 unsigned OpIdx) const { 2287 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2288 const_cast<TreeEntry *>(UserTE), OpIdx); 2289 } 2290 2291 /// Checks if all users of \p I are the part of the vectorization tree. 2292 bool areAllUsersVectorized(Instruction *I, 2293 ArrayRef<Value *> VectorizedVals) const; 2294 2295 /// Return information about the vector formed for the specified index 2296 /// of a vector of (the same) instruction. 2297 TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> VL, 2298 unsigned OpIdx); 2299 2300 /// \returns the cost of the vectorizable entry. 2301 InstructionCost getEntryCost(const TreeEntry *E, 2302 ArrayRef<Value *> VectorizedVals); 2303 2304 /// This is the recursive part of buildTree. 2305 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2306 const EdgeInfo &EI); 2307 2308 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2309 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2310 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2311 /// returns false, setting \p CurrentOrder to either an empty vector or a 2312 /// non-identity permutation that allows to reuse extract instructions. 2313 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2314 SmallVectorImpl<unsigned> &CurrentOrder) const; 2315 2316 /// Vectorize a single entry in the tree. 2317 Value *vectorizeTree(TreeEntry *E); 2318 2319 /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry 2320 /// \p E. 2321 Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx); 2322 2323 /// Create a new vector from a list of scalar values. Produces a sequence 2324 /// which exploits values reused across lanes, and arranges the inserts 2325 /// for ease of later optimization. 2326 Value *createBuildVector(const TreeEntry *E); 2327 2328 /// \returns the scalarization cost for this type. Scalarization in this 2329 /// context means the creation of vectors from a group of scalars. If \p 2330 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2331 /// vector elements. 2332 InstructionCost getGatherCost(FixedVectorType *Ty, 2333 const APInt &ShuffledIndices, 2334 bool NeedToShuffle) const; 2335 2336 /// Returns the instruction in the bundle, which can be used as a base point 2337 /// for scheduling. Usually it is the last instruction in the bundle, except 2338 /// for the case when all operands are external (in this case, it is the first 2339 /// instruction in the list). 2340 Instruction &getLastInstructionInBundle(const TreeEntry *E); 2341 2342 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2343 /// tree entries. 2344 /// \param TE Tree entry checked for permutation. 2345 /// \param VL List of scalars (a subset of the TE scalar), checked for 2346 /// permutations. 2347 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2348 /// previous tree entries. \p Mask is filled with the shuffle mask. 2349 std::optional<TargetTransformInfo::ShuffleKind> 2350 isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, 2351 SmallVectorImpl<int> &Mask, 2352 SmallVectorImpl<const TreeEntry *> &Entries); 2353 2354 /// \returns the scalarization cost for this list of values. Assuming that 2355 /// this subtree gets vectorized, we may need to extract the values from the 2356 /// roots. This method calculates the cost of extracting the values. 2357 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2358 2359 /// Set the Builder insert point to one after the last instruction in 2360 /// the bundle 2361 void setInsertPointAfterBundle(const TreeEntry *E); 2362 2363 /// \returns a vector from a collection of scalars in \p VL. 2364 Value *gather(ArrayRef<Value *> VL); 2365 2366 /// \returns whether the VectorizableTree is fully vectorizable and will 2367 /// be beneficial even the tree height is tiny. 2368 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2369 2370 /// Reorder commutative or alt operands to get better probability of 2371 /// generating vectorized code. 2372 static void reorderInputsAccordingToOpcode( 2373 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 2374 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, 2375 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R); 2376 2377 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2378 /// users of \p TE and collects the stores. It returns the map from the store 2379 /// pointers to the collected stores. 2380 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2381 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2382 2383 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2384 /// stores in \p StoresVec can form a vector instruction. If so it returns true 2385 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2386 /// when compared to the sorted vector. 2387 bool canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2388 OrdersType &ReorderIndices) const; 2389 2390 /// Iterates through the users of \p TE, looking for scalar stores that can be 2391 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2392 /// their order and builds an order index vector for each store bundle. It 2393 /// returns all these order vectors found. 2394 /// We run this after the tree has formed, otherwise we may come across user 2395 /// instructions that are not yet in the tree. 2396 SmallVector<OrdersType, 1> 2397 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2398 2399 struct TreeEntry { 2400 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2401 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2402 2403 /// \returns true if the scalars in VL are equal to this entry. 2404 bool isSame(ArrayRef<Value *> VL) const { 2405 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2406 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2407 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2408 return VL.size() == Mask.size() && 2409 std::equal(VL.begin(), VL.end(), Mask.begin(), 2410 [Scalars](Value *V, int Idx) { 2411 return (isa<UndefValue>(V) && 2412 Idx == UndefMaskElem) || 2413 (Idx != UndefMaskElem && V == Scalars[Idx]); 2414 }); 2415 }; 2416 if (!ReorderIndices.empty()) { 2417 // TODO: implement matching if the nodes are just reordered, still can 2418 // treat the vector as the same if the list of scalars matches VL 2419 // directly, without reordering. 2420 SmallVector<int> Mask; 2421 inversePermutation(ReorderIndices, Mask); 2422 if (VL.size() == Scalars.size()) 2423 return IsSame(Scalars, Mask); 2424 if (VL.size() == ReuseShuffleIndices.size()) { 2425 ::addMask(Mask, ReuseShuffleIndices); 2426 return IsSame(Scalars, Mask); 2427 } 2428 return false; 2429 } 2430 return IsSame(Scalars, ReuseShuffleIndices); 2431 } 2432 2433 bool isOperandGatherNode(const EdgeInfo &UserEI) const { 2434 return State == TreeEntry::NeedToGather && 2435 UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx && 2436 UserTreeIndices.front().UserTE == UserEI.UserTE; 2437 } 2438 2439 /// \returns true if current entry has same operands as \p TE. 2440 bool hasEqualOperands(const TreeEntry &TE) const { 2441 if (TE.getNumOperands() != getNumOperands()) 2442 return false; 2443 SmallBitVector Used(getNumOperands()); 2444 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2445 unsigned PrevCount = Used.count(); 2446 for (unsigned K = 0; K < E; ++K) { 2447 if (Used.test(K)) 2448 continue; 2449 if (getOperand(K) == TE.getOperand(I)) { 2450 Used.set(K); 2451 break; 2452 } 2453 } 2454 // Check if we actually found the matching operand. 2455 if (PrevCount == Used.count()) 2456 return false; 2457 } 2458 return true; 2459 } 2460 2461 /// \return Final vectorization factor for the node. Defined by the total 2462 /// number of vectorized scalars, including those, used several times in the 2463 /// entry and counted in the \a ReuseShuffleIndices, if any. 2464 unsigned getVectorFactor() const { 2465 if (!ReuseShuffleIndices.empty()) 2466 return ReuseShuffleIndices.size(); 2467 return Scalars.size(); 2468 }; 2469 2470 /// A vector of scalars. 2471 ValueList Scalars; 2472 2473 /// The Scalars are vectorized into this value. It is initialized to Null. 2474 Value *VectorizedValue = nullptr; 2475 2476 /// Do we need to gather this sequence or vectorize it 2477 /// (either with vector instruction or with scatter/gather 2478 /// intrinsics for store/load)? 2479 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2480 EntryState State; 2481 2482 /// Does this sequence require some shuffling? 2483 SmallVector<int, 4> ReuseShuffleIndices; 2484 2485 /// Does this entry require reordering? 2486 SmallVector<unsigned, 4> ReorderIndices; 2487 2488 /// Points back to the VectorizableTree. 2489 /// 2490 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2491 /// to be a pointer and needs to be able to initialize the child iterator. 2492 /// Thus we need a reference back to the container to translate the indices 2493 /// to entries. 2494 VecTreeTy &Container; 2495 2496 /// The TreeEntry index containing the user of this entry. We can actually 2497 /// have multiple users so the data structure is not truly a tree. 2498 SmallVector<EdgeInfo, 1> UserTreeIndices; 2499 2500 /// The index of this treeEntry in VectorizableTree. 2501 int Idx = -1; 2502 2503 private: 2504 /// The operands of each instruction in each lane Operands[op_index][lane]. 2505 /// Note: This helps avoid the replication of the code that performs the 2506 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2507 SmallVector<ValueList, 2> Operands; 2508 2509 /// The main/alternate instruction. 2510 Instruction *MainOp = nullptr; 2511 Instruction *AltOp = nullptr; 2512 2513 public: 2514 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2515 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2516 if (Operands.size() < OpIdx + 1) 2517 Operands.resize(OpIdx + 1); 2518 assert(Operands[OpIdx].empty() && "Already resized?"); 2519 assert(OpVL.size() <= Scalars.size() && 2520 "Number of operands is greater than the number of scalars."); 2521 Operands[OpIdx].resize(OpVL.size()); 2522 copy(OpVL, Operands[OpIdx].begin()); 2523 } 2524 2525 /// Set the operands of this bundle in their original order. 2526 void setOperandsInOrder() { 2527 assert(Operands.empty() && "Already initialized?"); 2528 auto *I0 = cast<Instruction>(Scalars[0]); 2529 Operands.resize(I0->getNumOperands()); 2530 unsigned NumLanes = Scalars.size(); 2531 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2532 OpIdx != NumOperands; ++OpIdx) { 2533 Operands[OpIdx].resize(NumLanes); 2534 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2535 auto *I = cast<Instruction>(Scalars[Lane]); 2536 assert(I->getNumOperands() == NumOperands && 2537 "Expected same number of operands"); 2538 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2539 } 2540 } 2541 } 2542 2543 /// Reorders operands of the node to the given mask \p Mask. 2544 void reorderOperands(ArrayRef<int> Mask) { 2545 for (ValueList &Operand : Operands) 2546 reorderScalars(Operand, Mask); 2547 } 2548 2549 /// \returns the \p OpIdx operand of this TreeEntry. 2550 ValueList &getOperand(unsigned OpIdx) { 2551 assert(OpIdx < Operands.size() && "Off bounds"); 2552 return Operands[OpIdx]; 2553 } 2554 2555 /// \returns the \p OpIdx operand of this TreeEntry. 2556 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2557 assert(OpIdx < Operands.size() && "Off bounds"); 2558 return Operands[OpIdx]; 2559 } 2560 2561 /// \returns the number of operands. 2562 unsigned getNumOperands() const { return Operands.size(); } 2563 2564 /// \return the single \p OpIdx operand. 2565 Value *getSingleOperand(unsigned OpIdx) const { 2566 assert(OpIdx < Operands.size() && "Off bounds"); 2567 assert(!Operands[OpIdx].empty() && "No operand available"); 2568 return Operands[OpIdx][0]; 2569 } 2570 2571 /// Some of the instructions in the list have alternate opcodes. 2572 bool isAltShuffle() const { return MainOp != AltOp; } 2573 2574 bool isOpcodeOrAlt(Instruction *I) const { 2575 unsigned CheckedOpcode = I->getOpcode(); 2576 return (getOpcode() == CheckedOpcode || 2577 getAltOpcode() == CheckedOpcode); 2578 } 2579 2580 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2581 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2582 /// \p OpValue. 2583 Value *isOneOf(Value *Op) const { 2584 auto *I = dyn_cast<Instruction>(Op); 2585 if (I && isOpcodeOrAlt(I)) 2586 return Op; 2587 return MainOp; 2588 } 2589 2590 void setOperations(const InstructionsState &S) { 2591 MainOp = S.MainOp; 2592 AltOp = S.AltOp; 2593 } 2594 2595 Instruction *getMainOp() const { 2596 return MainOp; 2597 } 2598 2599 Instruction *getAltOp() const { 2600 return AltOp; 2601 } 2602 2603 /// The main/alternate opcodes for the list of instructions. 2604 unsigned getOpcode() const { 2605 return MainOp ? MainOp->getOpcode() : 0; 2606 } 2607 2608 unsigned getAltOpcode() const { 2609 return AltOp ? AltOp->getOpcode() : 0; 2610 } 2611 2612 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2613 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2614 int findLaneForValue(Value *V) const { 2615 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2616 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2617 if (!ReorderIndices.empty()) 2618 FoundLane = ReorderIndices[FoundLane]; 2619 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2620 if (!ReuseShuffleIndices.empty()) { 2621 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2622 find(ReuseShuffleIndices, FoundLane)); 2623 } 2624 return FoundLane; 2625 } 2626 2627 #ifndef NDEBUG 2628 /// Debug printer. 2629 LLVM_DUMP_METHOD void dump() const { 2630 dbgs() << Idx << ".\n"; 2631 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2632 dbgs() << "Operand " << OpI << ":\n"; 2633 for (const Value *V : Operands[OpI]) 2634 dbgs().indent(2) << *V << "\n"; 2635 } 2636 dbgs() << "Scalars: \n"; 2637 for (Value *V : Scalars) 2638 dbgs().indent(2) << *V << "\n"; 2639 dbgs() << "State: "; 2640 switch (State) { 2641 case Vectorize: 2642 dbgs() << "Vectorize\n"; 2643 break; 2644 case ScatterVectorize: 2645 dbgs() << "ScatterVectorize\n"; 2646 break; 2647 case NeedToGather: 2648 dbgs() << "NeedToGather\n"; 2649 break; 2650 } 2651 dbgs() << "MainOp: "; 2652 if (MainOp) 2653 dbgs() << *MainOp << "\n"; 2654 else 2655 dbgs() << "NULL\n"; 2656 dbgs() << "AltOp: "; 2657 if (AltOp) 2658 dbgs() << *AltOp << "\n"; 2659 else 2660 dbgs() << "NULL\n"; 2661 dbgs() << "VectorizedValue: "; 2662 if (VectorizedValue) 2663 dbgs() << *VectorizedValue << "\n"; 2664 else 2665 dbgs() << "NULL\n"; 2666 dbgs() << "ReuseShuffleIndices: "; 2667 if (ReuseShuffleIndices.empty()) 2668 dbgs() << "Empty"; 2669 else 2670 for (int ReuseIdx : ReuseShuffleIndices) 2671 dbgs() << ReuseIdx << ", "; 2672 dbgs() << "\n"; 2673 dbgs() << "ReorderIndices: "; 2674 for (unsigned ReorderIdx : ReorderIndices) 2675 dbgs() << ReorderIdx << ", "; 2676 dbgs() << "\n"; 2677 dbgs() << "UserTreeIndices: "; 2678 for (const auto &EInfo : UserTreeIndices) 2679 dbgs() << EInfo << ", "; 2680 dbgs() << "\n"; 2681 } 2682 #endif 2683 }; 2684 2685 #ifndef NDEBUG 2686 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2687 InstructionCost VecCost, 2688 InstructionCost ScalarCost) const { 2689 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2690 dbgs() << "SLP: Costs:\n"; 2691 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2692 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2693 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2694 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2695 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2696 } 2697 #endif 2698 2699 /// Create a new VectorizableTree entry. 2700 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, std::optional<ScheduleData *> Bundle, 2701 const InstructionsState &S, 2702 const EdgeInfo &UserTreeIdx, 2703 ArrayRef<int> ReuseShuffleIndices = std::nullopt, 2704 ArrayRef<unsigned> ReorderIndices = std::nullopt) { 2705 TreeEntry::EntryState EntryState = 2706 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2707 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2708 ReuseShuffleIndices, ReorderIndices); 2709 } 2710 2711 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2712 TreeEntry::EntryState EntryState, 2713 std::optional<ScheduleData *> Bundle, 2714 const InstructionsState &S, 2715 const EdgeInfo &UserTreeIdx, 2716 ArrayRef<int> ReuseShuffleIndices = std::nullopt, 2717 ArrayRef<unsigned> ReorderIndices = std::nullopt) { 2718 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2719 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2720 "Need to vectorize gather entry?"); 2721 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2722 TreeEntry *Last = VectorizableTree.back().get(); 2723 Last->Idx = VectorizableTree.size() - 1; 2724 Last->State = EntryState; 2725 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2726 ReuseShuffleIndices.end()); 2727 if (ReorderIndices.empty()) { 2728 Last->Scalars.assign(VL.begin(), VL.end()); 2729 Last->setOperations(S); 2730 } else { 2731 // Reorder scalars and build final mask. 2732 Last->Scalars.assign(VL.size(), nullptr); 2733 transform(ReorderIndices, Last->Scalars.begin(), 2734 [VL](unsigned Idx) -> Value * { 2735 if (Idx >= VL.size()) 2736 return UndefValue::get(VL.front()->getType()); 2737 return VL[Idx]; 2738 }); 2739 InstructionsState S = getSameOpcode(Last->Scalars, *TLI); 2740 Last->setOperations(S); 2741 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2742 } 2743 if (Last->State != TreeEntry::NeedToGather) { 2744 for (Value *V : VL) { 2745 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2746 ScalarToTreeEntry[V] = Last; 2747 } 2748 // Update the scheduler bundle to point to this TreeEntry. 2749 ScheduleData *BundleMember = *Bundle; 2750 assert((BundleMember || isa<PHINode>(S.MainOp) || 2751 isVectorLikeInstWithConstOps(S.MainOp) || 2752 doesNotNeedToSchedule(VL)) && 2753 "Bundle and VL out of sync"); 2754 if (BundleMember) { 2755 for (Value *V : VL) { 2756 if (doesNotNeedToBeScheduled(V)) 2757 continue; 2758 assert(BundleMember && "Unexpected end of bundle."); 2759 BundleMember->TE = Last; 2760 BundleMember = BundleMember->NextInBundle; 2761 } 2762 } 2763 assert(!BundleMember && "Bundle and VL out of sync"); 2764 } else { 2765 MustGather.insert(VL.begin(), VL.end()); 2766 } 2767 2768 if (UserTreeIdx.UserTE) 2769 Last->UserTreeIndices.push_back(UserTreeIdx); 2770 2771 return Last; 2772 } 2773 2774 /// -- Vectorization State -- 2775 /// Holds all of the tree entries. 2776 TreeEntry::VecTreeTy VectorizableTree; 2777 2778 #ifndef NDEBUG 2779 /// Debug printer. 2780 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2781 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2782 VectorizableTree[Id]->dump(); 2783 dbgs() << "\n"; 2784 } 2785 } 2786 #endif 2787 2788 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2789 2790 const TreeEntry *getTreeEntry(Value *V) const { 2791 return ScalarToTreeEntry.lookup(V); 2792 } 2793 2794 /// Maps a specific scalar to its tree entry. 2795 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2796 2797 /// Maps a value to the proposed vectorizable size. 2798 SmallDenseMap<Value *, unsigned> InstrElementSize; 2799 2800 /// A list of scalars that we found that we need to keep as scalars. 2801 ValueSet MustGather; 2802 2803 /// A map between the vectorized entries and the last instructions in the 2804 /// bundles. The bundles are built in use order, not in the def order of the 2805 /// instructions. So, we cannot rely directly on the last instruction in the 2806 /// bundle being the last instruction in the program order during 2807 /// vectorization process since the basic blocks are affected, need to 2808 /// pre-gather them before. 2809 DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction; 2810 2811 /// This POD struct describes one external user in the vectorized tree. 2812 struct ExternalUser { 2813 ExternalUser(Value *S, llvm::User *U, int L) 2814 : Scalar(S), User(U), Lane(L) {} 2815 2816 // Which scalar in our function. 2817 Value *Scalar; 2818 2819 // Which user that uses the scalar. 2820 llvm::User *User; 2821 2822 // Which lane does the scalar belong to. 2823 int Lane; 2824 }; 2825 using UserList = SmallVector<ExternalUser, 16>; 2826 2827 /// Checks if two instructions may access the same memory. 2828 /// 2829 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2830 /// is invariant in the calling loop. 2831 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2832 Instruction *Inst2) { 2833 // First check if the result is already in the cache. 2834 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2835 std::optional<bool> &result = AliasCache[key]; 2836 if (result) { 2837 return *result; 2838 } 2839 bool aliased = true; 2840 if (Loc1.Ptr && isSimple(Inst1)) 2841 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2842 // Store the result in the cache. 2843 result = aliased; 2844 return aliased; 2845 } 2846 2847 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2848 2849 /// Cache for alias results. 2850 /// TODO: consider moving this to the AliasAnalysis itself. 2851 DenseMap<AliasCacheKey, std::optional<bool>> AliasCache; 2852 2853 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2854 // globally through SLP because we don't perform any action which 2855 // invalidates capture results. 2856 BatchAAResults BatchAA; 2857 2858 /// Temporary store for deleted instructions. Instructions will be deleted 2859 /// eventually when the BoUpSLP is destructed. The deferral is required to 2860 /// ensure that there are no incorrect collisions in the AliasCache, which 2861 /// can happen if a new instruction is allocated at the same address as a 2862 /// previously deleted instruction. 2863 DenseSet<Instruction *> DeletedInstructions; 2864 2865 /// Set of the instruction, being analyzed already for reductions. 2866 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2867 2868 /// Set of hashes for the list of reduction values already being analyzed. 2869 DenseSet<size_t> AnalyzedReductionVals; 2870 2871 /// A list of values that need to extracted out of the tree. 2872 /// This list holds pairs of (Internal Scalar : External User). External User 2873 /// can be nullptr, it means that this Internal Scalar will be used later, 2874 /// after vectorization. 2875 UserList ExternalUses; 2876 2877 /// Values used only by @llvm.assume calls. 2878 SmallPtrSet<const Value *, 32> EphValues; 2879 2880 /// Holds all of the instructions that we gathered, shuffle instructions and 2881 /// extractelements. 2882 SetVector<Instruction *> GatherShuffleExtractSeq; 2883 2884 /// A list of blocks that we are going to CSE. 2885 SetVector<BasicBlock *> CSEBlocks; 2886 2887 /// Contains all scheduling relevant data for an instruction. 2888 /// A ScheduleData either represents a single instruction or a member of an 2889 /// instruction bundle (= a group of instructions which is combined into a 2890 /// vector instruction). 2891 struct ScheduleData { 2892 // The initial value for the dependency counters. It means that the 2893 // dependencies are not calculated yet. 2894 enum { InvalidDeps = -1 }; 2895 2896 ScheduleData() = default; 2897 2898 void init(int BlockSchedulingRegionID, Value *OpVal) { 2899 FirstInBundle = this; 2900 NextInBundle = nullptr; 2901 NextLoadStore = nullptr; 2902 IsScheduled = false; 2903 SchedulingRegionID = BlockSchedulingRegionID; 2904 clearDependencies(); 2905 OpValue = OpVal; 2906 TE = nullptr; 2907 } 2908 2909 /// Verify basic self consistency properties 2910 void verify() { 2911 if (hasValidDependencies()) { 2912 assert(UnscheduledDeps <= Dependencies && "invariant"); 2913 } else { 2914 assert(UnscheduledDeps == Dependencies && "invariant"); 2915 } 2916 2917 if (IsScheduled) { 2918 assert(isSchedulingEntity() && 2919 "unexpected scheduled state"); 2920 for (const ScheduleData *BundleMember = this; BundleMember; 2921 BundleMember = BundleMember->NextInBundle) { 2922 assert(BundleMember->hasValidDependencies() && 2923 BundleMember->UnscheduledDeps == 0 && 2924 "unexpected scheduled state"); 2925 assert((BundleMember == this || !BundleMember->IsScheduled) && 2926 "only bundle is marked scheduled"); 2927 } 2928 } 2929 2930 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2931 "all bundle members must be in same basic block"); 2932 } 2933 2934 /// Returns true if the dependency information has been calculated. 2935 /// Note that depenendency validity can vary between instructions within 2936 /// a single bundle. 2937 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2938 2939 /// Returns true for single instructions and for bundle representatives 2940 /// (= the head of a bundle). 2941 bool isSchedulingEntity() const { return FirstInBundle == this; } 2942 2943 /// Returns true if it represents an instruction bundle and not only a 2944 /// single instruction. 2945 bool isPartOfBundle() const { 2946 return NextInBundle != nullptr || FirstInBundle != this || TE; 2947 } 2948 2949 /// Returns true if it is ready for scheduling, i.e. it has no more 2950 /// unscheduled depending instructions/bundles. 2951 bool isReady() const { 2952 assert(isSchedulingEntity() && 2953 "can't consider non-scheduling entity for ready list"); 2954 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2955 } 2956 2957 /// Modifies the number of unscheduled dependencies for this instruction, 2958 /// and returns the number of remaining dependencies for the containing 2959 /// bundle. 2960 int incrementUnscheduledDeps(int Incr) { 2961 assert(hasValidDependencies() && 2962 "increment of unscheduled deps would be meaningless"); 2963 UnscheduledDeps += Incr; 2964 return FirstInBundle->unscheduledDepsInBundle(); 2965 } 2966 2967 /// Sets the number of unscheduled dependencies to the number of 2968 /// dependencies. 2969 void resetUnscheduledDeps() { 2970 UnscheduledDeps = Dependencies; 2971 } 2972 2973 /// Clears all dependency information. 2974 void clearDependencies() { 2975 Dependencies = InvalidDeps; 2976 resetUnscheduledDeps(); 2977 MemoryDependencies.clear(); 2978 ControlDependencies.clear(); 2979 } 2980 2981 int unscheduledDepsInBundle() const { 2982 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2983 int Sum = 0; 2984 for (const ScheduleData *BundleMember = this; BundleMember; 2985 BundleMember = BundleMember->NextInBundle) { 2986 if (BundleMember->UnscheduledDeps == InvalidDeps) 2987 return InvalidDeps; 2988 Sum += BundleMember->UnscheduledDeps; 2989 } 2990 return Sum; 2991 } 2992 2993 void dump(raw_ostream &os) const { 2994 if (!isSchedulingEntity()) { 2995 os << "/ " << *Inst; 2996 } else if (NextInBundle) { 2997 os << '[' << *Inst; 2998 ScheduleData *SD = NextInBundle; 2999 while (SD) { 3000 os << ';' << *SD->Inst; 3001 SD = SD->NextInBundle; 3002 } 3003 os << ']'; 3004 } else { 3005 os << *Inst; 3006 } 3007 } 3008 3009 Instruction *Inst = nullptr; 3010 3011 /// Opcode of the current instruction in the schedule data. 3012 Value *OpValue = nullptr; 3013 3014 /// The TreeEntry that this instruction corresponds to. 3015 TreeEntry *TE = nullptr; 3016 3017 /// Points to the head in an instruction bundle (and always to this for 3018 /// single instructions). 3019 ScheduleData *FirstInBundle = nullptr; 3020 3021 /// Single linked list of all instructions in a bundle. Null if it is a 3022 /// single instruction. 3023 ScheduleData *NextInBundle = nullptr; 3024 3025 /// Single linked list of all memory instructions (e.g. load, store, call) 3026 /// in the block - until the end of the scheduling region. 3027 ScheduleData *NextLoadStore = nullptr; 3028 3029 /// The dependent memory instructions. 3030 /// This list is derived on demand in calculateDependencies(). 3031 SmallVector<ScheduleData *, 4> MemoryDependencies; 3032 3033 /// List of instructions which this instruction could be control dependent 3034 /// on. Allowing such nodes to be scheduled below this one could introduce 3035 /// a runtime fault which didn't exist in the original program. 3036 /// ex: this is a load or udiv following a readonly call which inf loops 3037 SmallVector<ScheduleData *, 4> ControlDependencies; 3038 3039 /// This ScheduleData is in the current scheduling region if this matches 3040 /// the current SchedulingRegionID of BlockScheduling. 3041 int SchedulingRegionID = 0; 3042 3043 /// Used for getting a "good" final ordering of instructions. 3044 int SchedulingPriority = 0; 3045 3046 /// The number of dependencies. Constitutes of the number of users of the 3047 /// instruction plus the number of dependent memory instructions (if any). 3048 /// This value is calculated on demand. 3049 /// If InvalidDeps, the number of dependencies is not calculated yet. 3050 int Dependencies = InvalidDeps; 3051 3052 /// The number of dependencies minus the number of dependencies of scheduled 3053 /// instructions. As soon as this is zero, the instruction/bundle gets ready 3054 /// for scheduling. 3055 /// Note that this is negative as long as Dependencies is not calculated. 3056 int UnscheduledDeps = InvalidDeps; 3057 3058 /// True if this instruction is scheduled (or considered as scheduled in the 3059 /// dry-run). 3060 bool IsScheduled = false; 3061 }; 3062 3063 #ifndef NDEBUG 3064 friend inline raw_ostream &operator<<(raw_ostream &os, 3065 const BoUpSLP::ScheduleData &SD) { 3066 SD.dump(os); 3067 return os; 3068 } 3069 #endif 3070 3071 friend struct GraphTraits<BoUpSLP *>; 3072 friend struct DOTGraphTraits<BoUpSLP *>; 3073 3074 /// Contains all scheduling data for a basic block. 3075 /// It does not schedules instructions, which are not memory read/write 3076 /// instructions and their operands are either constants, or arguments, or 3077 /// phis, or instructions from others blocks, or their users are phis or from 3078 /// the other blocks. The resulting vector instructions can be placed at the 3079 /// beginning of the basic block without scheduling (if operands does not need 3080 /// to be scheduled) or at the end of the block (if users are outside of the 3081 /// block). It allows to save some compile time and memory used by the 3082 /// compiler. 3083 /// ScheduleData is assigned for each instruction in between the boundaries of 3084 /// the tree entry, even for those, which are not part of the graph. It is 3085 /// required to correctly follow the dependencies between the instructions and 3086 /// their correct scheduling. The ScheduleData is not allocated for the 3087 /// instructions, which do not require scheduling, like phis, nodes with 3088 /// extractelements/insertelements only or nodes with instructions, with 3089 /// uses/operands outside of the block. 3090 struct BlockScheduling { 3091 BlockScheduling(BasicBlock *BB) 3092 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 3093 3094 void clear() { 3095 ReadyInsts.clear(); 3096 ScheduleStart = nullptr; 3097 ScheduleEnd = nullptr; 3098 FirstLoadStoreInRegion = nullptr; 3099 LastLoadStoreInRegion = nullptr; 3100 RegionHasStackSave = false; 3101 3102 // Reduce the maximum schedule region size by the size of the 3103 // previous scheduling run. 3104 ScheduleRegionSizeLimit -= ScheduleRegionSize; 3105 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 3106 ScheduleRegionSizeLimit = MinScheduleRegionSize; 3107 ScheduleRegionSize = 0; 3108 3109 // Make a new scheduling region, i.e. all existing ScheduleData is not 3110 // in the new region yet. 3111 ++SchedulingRegionID; 3112 } 3113 3114 ScheduleData *getScheduleData(Instruction *I) { 3115 if (BB != I->getParent()) 3116 // Avoid lookup if can't possibly be in map. 3117 return nullptr; 3118 ScheduleData *SD = ScheduleDataMap.lookup(I); 3119 if (SD && isInSchedulingRegion(SD)) 3120 return SD; 3121 return nullptr; 3122 } 3123 3124 ScheduleData *getScheduleData(Value *V) { 3125 if (auto *I = dyn_cast<Instruction>(V)) 3126 return getScheduleData(I); 3127 return nullptr; 3128 } 3129 3130 ScheduleData *getScheduleData(Value *V, Value *Key) { 3131 if (V == Key) 3132 return getScheduleData(V); 3133 auto I = ExtraScheduleDataMap.find(V); 3134 if (I != ExtraScheduleDataMap.end()) { 3135 ScheduleData *SD = I->second.lookup(Key); 3136 if (SD && isInSchedulingRegion(SD)) 3137 return SD; 3138 } 3139 return nullptr; 3140 } 3141 3142 bool isInSchedulingRegion(ScheduleData *SD) const { 3143 return SD->SchedulingRegionID == SchedulingRegionID; 3144 } 3145 3146 /// Marks an instruction as scheduled and puts all dependent ready 3147 /// instructions into the ready-list. 3148 template <typename ReadyListType> 3149 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 3150 SD->IsScheduled = true; 3151 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 3152 3153 for (ScheduleData *BundleMember = SD; BundleMember; 3154 BundleMember = BundleMember->NextInBundle) { 3155 if (BundleMember->Inst != BundleMember->OpValue) 3156 continue; 3157 3158 // Handle the def-use chain dependencies. 3159 3160 // Decrement the unscheduled counter and insert to ready list if ready. 3161 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 3162 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 3163 if (OpDef && OpDef->hasValidDependencies() && 3164 OpDef->incrementUnscheduledDeps(-1) == 0) { 3165 // There are no more unscheduled dependencies after 3166 // decrementing, so we can put the dependent instruction 3167 // into the ready list. 3168 ScheduleData *DepBundle = OpDef->FirstInBundle; 3169 assert(!DepBundle->IsScheduled && 3170 "already scheduled bundle gets ready"); 3171 ReadyList.insert(DepBundle); 3172 LLVM_DEBUG(dbgs() 3173 << "SLP: gets ready (def): " << *DepBundle << "\n"); 3174 } 3175 }); 3176 }; 3177 3178 // If BundleMember is a vector bundle, its operands may have been 3179 // reordered during buildTree(). We therefore need to get its operands 3180 // through the TreeEntry. 3181 if (TreeEntry *TE = BundleMember->TE) { 3182 // Need to search for the lane since the tree entry can be reordered. 3183 int Lane = std::distance(TE->Scalars.begin(), 3184 find(TE->Scalars, BundleMember->Inst)); 3185 assert(Lane >= 0 && "Lane not set"); 3186 3187 // Since vectorization tree is being built recursively this assertion 3188 // ensures that the tree entry has all operands set before reaching 3189 // this code. Couple of exceptions known at the moment are extracts 3190 // where their second (immediate) operand is not added. Since 3191 // immediates do not affect scheduler behavior this is considered 3192 // okay. 3193 auto *In = BundleMember->Inst; 3194 assert(In && 3195 (isa<ExtractValueInst, ExtractElementInst>(In) || 3196 In->getNumOperands() == TE->getNumOperands()) && 3197 "Missed TreeEntry operands?"); 3198 (void)In; // fake use to avoid build failure when assertions disabled 3199 3200 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 3201 OpIdx != NumOperands; ++OpIdx) 3202 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3203 DecrUnsched(I); 3204 } else { 3205 // If BundleMember is a stand-alone instruction, no operand reordering 3206 // has taken place, so we directly access its operands. 3207 for (Use &U : BundleMember->Inst->operands()) 3208 if (auto *I = dyn_cast<Instruction>(U.get())) 3209 DecrUnsched(I); 3210 } 3211 // Handle the memory dependencies. 3212 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3213 if (MemoryDepSD->hasValidDependencies() && 3214 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3215 // There are no more unscheduled dependencies after decrementing, 3216 // so we can put the dependent instruction into the ready list. 3217 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3218 assert(!DepBundle->IsScheduled && 3219 "already scheduled bundle gets ready"); 3220 ReadyList.insert(DepBundle); 3221 LLVM_DEBUG(dbgs() 3222 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3223 } 3224 } 3225 // Handle the control dependencies. 3226 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3227 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3228 // There are no more unscheduled dependencies after decrementing, 3229 // so we can put the dependent instruction into the ready list. 3230 ScheduleData *DepBundle = DepSD->FirstInBundle; 3231 assert(!DepBundle->IsScheduled && 3232 "already scheduled bundle gets ready"); 3233 ReadyList.insert(DepBundle); 3234 LLVM_DEBUG(dbgs() 3235 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3236 } 3237 } 3238 3239 } 3240 } 3241 3242 /// Verify basic self consistency properties of the data structure. 3243 void verify() { 3244 if (!ScheduleStart) 3245 return; 3246 3247 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3248 ScheduleStart->comesBefore(ScheduleEnd) && 3249 "Not a valid scheduling region?"); 3250 3251 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3252 auto *SD = getScheduleData(I); 3253 if (!SD) 3254 continue; 3255 assert(isInSchedulingRegion(SD) && 3256 "primary schedule data not in window?"); 3257 assert(isInSchedulingRegion(SD->FirstInBundle) && 3258 "entire bundle in window!"); 3259 (void)SD; 3260 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3261 } 3262 3263 for (auto *SD : ReadyInsts) { 3264 assert(SD->isSchedulingEntity() && SD->isReady() && 3265 "item in ready list not ready?"); 3266 (void)SD; 3267 } 3268 } 3269 3270 void doForAllOpcodes(Value *V, 3271 function_ref<void(ScheduleData *SD)> Action) { 3272 if (ScheduleData *SD = getScheduleData(V)) 3273 Action(SD); 3274 auto I = ExtraScheduleDataMap.find(V); 3275 if (I != ExtraScheduleDataMap.end()) 3276 for (auto &P : I->second) 3277 if (isInSchedulingRegion(P.second)) 3278 Action(P.second); 3279 } 3280 3281 /// Put all instructions into the ReadyList which are ready for scheduling. 3282 template <typename ReadyListType> 3283 void initialFillReadyList(ReadyListType &ReadyList) { 3284 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3285 doForAllOpcodes(I, [&](ScheduleData *SD) { 3286 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3287 SD->isReady()) { 3288 ReadyList.insert(SD); 3289 LLVM_DEBUG(dbgs() 3290 << "SLP: initially in ready list: " << *SD << "\n"); 3291 } 3292 }); 3293 } 3294 } 3295 3296 /// Build a bundle from the ScheduleData nodes corresponding to the 3297 /// scalar instruction for each lane. 3298 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3299 3300 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3301 /// cyclic dependencies. This is only a dry-run, no instructions are 3302 /// actually moved at this stage. 3303 /// \returns the scheduling bundle. The returned Optional value is not 3304 /// std::nullopt if \p VL is allowed to be scheduled. 3305 std::optional<ScheduleData *> 3306 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3307 const InstructionsState &S); 3308 3309 /// Un-bundles a group of instructions. 3310 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3311 3312 /// Allocates schedule data chunk. 3313 ScheduleData *allocateScheduleDataChunks(); 3314 3315 /// Extends the scheduling region so that V is inside the region. 3316 /// \returns true if the region size is within the limit. 3317 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3318 3319 /// Initialize the ScheduleData structures for new instructions in the 3320 /// scheduling region. 3321 void initScheduleData(Instruction *FromI, Instruction *ToI, 3322 ScheduleData *PrevLoadStore, 3323 ScheduleData *NextLoadStore); 3324 3325 /// Updates the dependency information of a bundle and of all instructions/ 3326 /// bundles which depend on the original bundle. 3327 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3328 BoUpSLP *SLP); 3329 3330 /// Sets all instruction in the scheduling region to un-scheduled. 3331 void resetSchedule(); 3332 3333 BasicBlock *BB; 3334 3335 /// Simple memory allocation for ScheduleData. 3336 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3337 3338 /// The size of a ScheduleData array in ScheduleDataChunks. 3339 int ChunkSize; 3340 3341 /// The allocator position in the current chunk, which is the last entry 3342 /// of ScheduleDataChunks. 3343 int ChunkPos; 3344 3345 /// Attaches ScheduleData to Instruction. 3346 /// Note that the mapping survives during all vectorization iterations, i.e. 3347 /// ScheduleData structures are recycled. 3348 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3349 3350 /// Attaches ScheduleData to Instruction with the leading key. 3351 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3352 ExtraScheduleDataMap; 3353 3354 /// The ready-list for scheduling (only used for the dry-run). 3355 SetVector<ScheduleData *> ReadyInsts; 3356 3357 /// The first instruction of the scheduling region. 3358 Instruction *ScheduleStart = nullptr; 3359 3360 /// The first instruction _after_ the scheduling region. 3361 Instruction *ScheduleEnd = nullptr; 3362 3363 /// The first memory accessing instruction in the scheduling region 3364 /// (can be null). 3365 ScheduleData *FirstLoadStoreInRegion = nullptr; 3366 3367 /// The last memory accessing instruction in the scheduling region 3368 /// (can be null). 3369 ScheduleData *LastLoadStoreInRegion = nullptr; 3370 3371 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3372 /// region? Used to optimize the dependence calculation for the 3373 /// common case where there isn't. 3374 bool RegionHasStackSave = false; 3375 3376 /// The current size of the scheduling region. 3377 int ScheduleRegionSize = 0; 3378 3379 /// The maximum size allowed for the scheduling region. 3380 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3381 3382 /// The ID of the scheduling region. For a new vectorization iteration this 3383 /// is incremented which "removes" all ScheduleData from the region. 3384 /// Make sure that the initial SchedulingRegionID is greater than the 3385 /// initial SchedulingRegionID in ScheduleData (which is 0). 3386 int SchedulingRegionID = 1; 3387 }; 3388 3389 /// Attaches the BlockScheduling structures to basic blocks. 3390 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3391 3392 /// Performs the "real" scheduling. Done before vectorization is actually 3393 /// performed in a basic block. 3394 void scheduleBlock(BlockScheduling *BS); 3395 3396 /// List of users to ignore during scheduling and that don't need extracting. 3397 const SmallDenseSet<Value *> *UserIgnoreList = nullptr; 3398 3399 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3400 /// sorted SmallVectors of unsigned. 3401 struct OrdersTypeDenseMapInfo { 3402 static OrdersType getEmptyKey() { 3403 OrdersType V; 3404 V.push_back(~1U); 3405 return V; 3406 } 3407 3408 static OrdersType getTombstoneKey() { 3409 OrdersType V; 3410 V.push_back(~2U); 3411 return V; 3412 } 3413 3414 static unsigned getHashValue(const OrdersType &V) { 3415 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3416 } 3417 3418 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3419 return LHS == RHS; 3420 } 3421 }; 3422 3423 // Analysis and block reference. 3424 Function *F; 3425 ScalarEvolution *SE; 3426 TargetTransformInfo *TTI; 3427 TargetLibraryInfo *TLI; 3428 LoopInfo *LI; 3429 DominatorTree *DT; 3430 AssumptionCache *AC; 3431 DemandedBits *DB; 3432 const DataLayout *DL; 3433 OptimizationRemarkEmitter *ORE; 3434 3435 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3436 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3437 3438 /// Instruction builder to construct the vectorized tree. 3439 IRBuilder<> Builder; 3440 3441 /// A map of scalar integer values to the smallest bit width with which they 3442 /// can legally be represented. The values map to (width, signed) pairs, 3443 /// where "width" indicates the minimum bit width and "signed" is True if the 3444 /// value must be signed-extended, rather than zero-extended, back to its 3445 /// original width. 3446 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3447 }; 3448 3449 } // end namespace slpvectorizer 3450 3451 template <> struct GraphTraits<BoUpSLP *> { 3452 using TreeEntry = BoUpSLP::TreeEntry; 3453 3454 /// NodeRef has to be a pointer per the GraphWriter. 3455 using NodeRef = TreeEntry *; 3456 3457 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3458 3459 /// Add the VectorizableTree to the index iterator to be able to return 3460 /// TreeEntry pointers. 3461 struct ChildIteratorType 3462 : public iterator_adaptor_base< 3463 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3464 ContainerTy &VectorizableTree; 3465 3466 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3467 ContainerTy &VT) 3468 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3469 3470 NodeRef operator*() { return I->UserTE; } 3471 }; 3472 3473 static NodeRef getEntryNode(BoUpSLP &R) { 3474 return R.VectorizableTree[0].get(); 3475 } 3476 3477 static ChildIteratorType child_begin(NodeRef N) { 3478 return {N->UserTreeIndices.begin(), N->Container}; 3479 } 3480 3481 static ChildIteratorType child_end(NodeRef N) { 3482 return {N->UserTreeIndices.end(), N->Container}; 3483 } 3484 3485 /// For the node iterator we just need to turn the TreeEntry iterator into a 3486 /// TreeEntry* iterator so that it dereferences to NodeRef. 3487 class nodes_iterator { 3488 using ItTy = ContainerTy::iterator; 3489 ItTy It; 3490 3491 public: 3492 nodes_iterator(const ItTy &It2) : It(It2) {} 3493 NodeRef operator*() { return It->get(); } 3494 nodes_iterator operator++() { 3495 ++It; 3496 return *this; 3497 } 3498 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3499 }; 3500 3501 static nodes_iterator nodes_begin(BoUpSLP *R) { 3502 return nodes_iterator(R->VectorizableTree.begin()); 3503 } 3504 3505 static nodes_iterator nodes_end(BoUpSLP *R) { 3506 return nodes_iterator(R->VectorizableTree.end()); 3507 } 3508 3509 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3510 }; 3511 3512 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3513 using TreeEntry = BoUpSLP::TreeEntry; 3514 3515 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3516 3517 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3518 std::string Str; 3519 raw_string_ostream OS(Str); 3520 OS << Entry->Idx << ".\n"; 3521 if (isSplat(Entry->Scalars)) 3522 OS << "<splat> "; 3523 for (auto *V : Entry->Scalars) { 3524 OS << *V; 3525 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3526 return EU.Scalar == V; 3527 })) 3528 OS << " <extract>"; 3529 OS << "\n"; 3530 } 3531 return Str; 3532 } 3533 3534 static std::string getNodeAttributes(const TreeEntry *Entry, 3535 const BoUpSLP *) { 3536 if (Entry->State == TreeEntry::NeedToGather) 3537 return "color=red"; 3538 if (Entry->State == TreeEntry::ScatterVectorize) 3539 return "color=blue"; 3540 return ""; 3541 } 3542 }; 3543 3544 } // end namespace llvm 3545 3546 BoUpSLP::~BoUpSLP() { 3547 SmallVector<WeakTrackingVH> DeadInsts; 3548 for (auto *I : DeletedInstructions) { 3549 for (Use &U : I->operands()) { 3550 auto *Op = dyn_cast<Instruction>(U.get()); 3551 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3552 wouldInstructionBeTriviallyDead(Op, TLI)) 3553 DeadInsts.emplace_back(Op); 3554 } 3555 I->dropAllReferences(); 3556 } 3557 for (auto *I : DeletedInstructions) { 3558 assert(I->use_empty() && 3559 "trying to erase instruction with users."); 3560 I->eraseFromParent(); 3561 } 3562 3563 // Cleanup any dead scalar code feeding the vectorized instructions 3564 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3565 3566 #ifdef EXPENSIVE_CHECKS 3567 // If we could guarantee that this call is not extremely slow, we could 3568 // remove the ifdef limitation (see PR47712). 3569 assert(!verifyFunction(*F, &dbgs())); 3570 #endif 3571 } 3572 3573 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3574 /// contains original mask for the scalars reused in the node. Procedure 3575 /// transform this mask in accordance with the given \p Mask. 3576 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3577 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3578 "Expected non-empty mask."); 3579 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3580 Prev.swap(Reuses); 3581 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3582 if (Mask[I] != UndefMaskElem) 3583 Reuses[Mask[I]] = Prev[I]; 3584 } 3585 3586 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3587 /// the original order of the scalars. Procedure transforms the provided order 3588 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3589 /// identity order, \p Order is cleared. 3590 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3591 assert(!Mask.empty() && "Expected non-empty mask."); 3592 SmallVector<int> MaskOrder; 3593 if (Order.empty()) { 3594 MaskOrder.resize(Mask.size()); 3595 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3596 } else { 3597 inversePermutation(Order, MaskOrder); 3598 } 3599 reorderReuses(MaskOrder, Mask); 3600 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3601 Order.clear(); 3602 return; 3603 } 3604 Order.assign(Mask.size(), Mask.size()); 3605 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3606 if (MaskOrder[I] != UndefMaskElem) 3607 Order[MaskOrder[I]] = I; 3608 fixupOrderingIndices(Order); 3609 } 3610 3611 std::optional<BoUpSLP::OrdersType> 3612 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3613 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3614 unsigned NumScalars = TE.Scalars.size(); 3615 OrdersType CurrentOrder(NumScalars, NumScalars); 3616 SmallVector<int> Positions; 3617 SmallBitVector UsedPositions(NumScalars); 3618 const TreeEntry *STE = nullptr; 3619 // Try to find all gathered scalars that are gets vectorized in other 3620 // vectorize node. Here we can have only one single tree vector node to 3621 // correctly identify order of the gathered scalars. 3622 for (unsigned I = 0; I < NumScalars; ++I) { 3623 Value *V = TE.Scalars[I]; 3624 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3625 continue; 3626 if (const auto *LocalSTE = getTreeEntry(V)) { 3627 if (!STE) 3628 STE = LocalSTE; 3629 else if (STE != LocalSTE) 3630 // Take the order only from the single vector node. 3631 return std::nullopt; 3632 unsigned Lane = 3633 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3634 if (Lane >= NumScalars) 3635 return std::nullopt; 3636 if (CurrentOrder[Lane] != NumScalars) { 3637 if (Lane != I) 3638 continue; 3639 UsedPositions.reset(CurrentOrder[Lane]); 3640 } 3641 // The partial identity (where only some elements of the gather node are 3642 // in the identity order) is good. 3643 CurrentOrder[Lane] = I; 3644 UsedPositions.set(I); 3645 } 3646 } 3647 // Need to keep the order if we have a vector entry and at least 2 scalars or 3648 // the vectorized entry has just 2 scalars. 3649 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3650 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3651 for (unsigned I = 0; I < NumScalars; ++I) 3652 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3653 return false; 3654 return true; 3655 }; 3656 if (IsIdentityOrder(CurrentOrder)) { 3657 CurrentOrder.clear(); 3658 return CurrentOrder; 3659 } 3660 auto *It = CurrentOrder.begin(); 3661 for (unsigned I = 0; I < NumScalars;) { 3662 if (UsedPositions.test(I)) { 3663 ++I; 3664 continue; 3665 } 3666 if (*It == NumScalars) { 3667 *It = I; 3668 ++I; 3669 } 3670 ++It; 3671 } 3672 return CurrentOrder; 3673 } 3674 return std::nullopt; 3675 } 3676 3677 namespace { 3678 /// Tracks the state we can represent the loads in the given sequence. 3679 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3680 } // anonymous namespace 3681 3682 static bool arePointersCompatible(Value *Ptr1, Value *Ptr2, 3683 const TargetLibraryInfo &TLI, 3684 bool CompareOpcodes = true) { 3685 if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2)) 3686 return false; 3687 auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); 3688 if (!GEP1) 3689 return false; 3690 auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); 3691 if (!GEP2) 3692 return false; 3693 return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 && 3694 ((isConstant(GEP1->getOperand(1)) && 3695 isConstant(GEP2->getOperand(1))) || 3696 !CompareOpcodes || 3697 getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI) 3698 .getOpcode()); 3699 } 3700 3701 /// Checks if the given array of loads can be represented as a vectorized, 3702 /// scatter or just simple gather. 3703 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3704 const TargetTransformInfo &TTI, 3705 const DataLayout &DL, ScalarEvolution &SE, 3706 LoopInfo &LI, const TargetLibraryInfo &TLI, 3707 SmallVectorImpl<unsigned> &Order, 3708 SmallVectorImpl<Value *> &PointerOps) { 3709 // Check that a vectorized load would load the same memory as a scalar 3710 // load. For example, we don't want to vectorize loads that are smaller 3711 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3712 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3713 // from such a struct, we read/write packed bits disagreeing with the 3714 // unvectorized version. 3715 Type *ScalarTy = VL0->getType(); 3716 3717 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3718 return LoadsState::Gather; 3719 3720 // Make sure all loads in the bundle are simple - we can't vectorize 3721 // atomic or volatile loads. 3722 PointerOps.clear(); 3723 PointerOps.resize(VL.size()); 3724 auto *POIter = PointerOps.begin(); 3725 for (Value *V : VL) { 3726 auto *L = cast<LoadInst>(V); 3727 if (!L->isSimple()) 3728 return LoadsState::Gather; 3729 *POIter = L->getPointerOperand(); 3730 ++POIter; 3731 } 3732 3733 Order.clear(); 3734 // Check the order of pointer operands or that all pointers are the same. 3735 bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order); 3736 if (IsSorted || all_of(PointerOps, [&](Value *P) { 3737 return arePointersCompatible(P, PointerOps.front(), TLI); 3738 })) { 3739 if (IsSorted) { 3740 Value *Ptr0; 3741 Value *PtrN; 3742 if (Order.empty()) { 3743 Ptr0 = PointerOps.front(); 3744 PtrN = PointerOps.back(); 3745 } else { 3746 Ptr0 = PointerOps[Order.front()]; 3747 PtrN = PointerOps[Order.back()]; 3748 } 3749 std::optional<int> Diff = 3750 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3751 // Check that the sorted loads are consecutive. 3752 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3753 return LoadsState::Vectorize; 3754 } 3755 // TODO: need to improve analysis of the pointers, if not all of them are 3756 // GEPs or have > 2 operands, we end up with a gather node, which just 3757 // increases the cost. 3758 Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent()); 3759 bool ProfitableGatherPointers = 3760 static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { 3761 return L && L->isLoopInvariant(V); 3762 })) <= VL.size() / 2 && VL.size() > 2; 3763 if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { 3764 auto *GEP = dyn_cast<GetElementPtrInst>(P); 3765 return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || 3766 (GEP && GEP->getNumOperands() == 2); 3767 })) { 3768 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3769 for (Value *V : VL) 3770 CommonAlignment = 3771 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3772 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3773 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && 3774 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) 3775 return LoadsState::ScatterVectorize; 3776 } 3777 } 3778 3779 return LoadsState::Gather; 3780 } 3781 3782 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3783 const DataLayout &DL, ScalarEvolution &SE, 3784 SmallVectorImpl<unsigned> &SortedIndices) { 3785 assert(llvm::all_of( 3786 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3787 "Expected list of pointer operands."); 3788 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3789 // Ptr into, sort and return the sorted indices with values next to one 3790 // another. 3791 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3792 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3793 3794 unsigned Cnt = 1; 3795 for (Value *Ptr : VL.drop_front()) { 3796 bool Found = any_of(Bases, [&](auto &Base) { 3797 std::optional<int> Diff = 3798 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3799 /*StrictCheck=*/true); 3800 if (!Diff) 3801 return false; 3802 3803 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3804 return true; 3805 }); 3806 3807 if (!Found) { 3808 // If we haven't found enough to usefully cluster, return early. 3809 if (Bases.size() > VL.size() / 2 - 1) 3810 return false; 3811 3812 // Not found already - add a new Base 3813 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3814 } 3815 } 3816 3817 // For each of the bases sort the pointers by Offset and check if any of the 3818 // base become consecutively allocated. 3819 bool AnyConsecutive = false; 3820 for (auto &Base : Bases) { 3821 auto &Vec = Base.second; 3822 if (Vec.size() > 1) { 3823 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3824 const std::tuple<Value *, int, unsigned> &Y) { 3825 return std::get<1>(X) < std::get<1>(Y); 3826 }); 3827 int InitialOffset = std::get<1>(Vec[0]); 3828 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3829 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3830 }); 3831 } 3832 } 3833 3834 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3835 SortedIndices.clear(); 3836 if (!AnyConsecutive) 3837 return false; 3838 3839 for (auto &Base : Bases) { 3840 for (auto &T : Base.second) 3841 SortedIndices.push_back(std::get<2>(T)); 3842 } 3843 3844 assert(SortedIndices.size() == VL.size() && 3845 "Expected SortedIndices to be the size of VL"); 3846 return true; 3847 } 3848 3849 std::optional<BoUpSLP::OrdersType> 3850 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3851 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3852 Type *ScalarTy = TE.Scalars[0]->getType(); 3853 3854 SmallVector<Value *> Ptrs; 3855 Ptrs.reserve(TE.Scalars.size()); 3856 for (Value *V : TE.Scalars) { 3857 auto *L = dyn_cast<LoadInst>(V); 3858 if (!L || !L->isSimple()) 3859 return std::nullopt; 3860 Ptrs.push_back(L->getPointerOperand()); 3861 } 3862 3863 BoUpSLP::OrdersType Order; 3864 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3865 return Order; 3866 return std::nullopt; 3867 } 3868 3869 /// Check if two insertelement instructions are from the same buildvector. 3870 static bool areTwoInsertFromSameBuildVector( 3871 InsertElementInst *VU, InsertElementInst *V, 3872 function_ref<Value *(InsertElementInst *)> GetBaseOperand) { 3873 // Instructions must be from the same basic blocks. 3874 if (VU->getParent() != V->getParent()) 3875 return false; 3876 // Checks if 2 insertelements are from the same buildvector. 3877 if (VU->getType() != V->getType()) 3878 return false; 3879 // Multiple used inserts are separate nodes. 3880 if (!VU->hasOneUse() && !V->hasOneUse()) 3881 return false; 3882 auto *IE1 = VU; 3883 auto *IE2 = V; 3884 std::optional<unsigned> Idx1 = getInsertIndex(IE1); 3885 std::optional<unsigned> Idx2 = getInsertIndex(IE2); 3886 if (Idx1 == std::nullopt || Idx2 == std::nullopt) 3887 return false; 3888 // Go through the vector operand of insertelement instructions trying to find 3889 // either VU as the original vector for IE2 or V as the original vector for 3890 // IE1. 3891 do { 3892 if (IE2 == VU) 3893 return VU->hasOneUse(); 3894 if (IE1 == V) 3895 return V->hasOneUse(); 3896 if (IE1) { 3897 if ((IE1 != VU && !IE1->hasOneUse()) || 3898 getInsertIndex(IE1).value_or(*Idx2) == *Idx2) 3899 IE1 = nullptr; 3900 else 3901 IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1)); 3902 } 3903 if (IE2) { 3904 if ((IE2 != V && !IE2->hasOneUse()) || 3905 getInsertIndex(IE2).value_or(*Idx1) == *Idx1) 3906 IE2 = nullptr; 3907 else 3908 IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2)); 3909 } 3910 } while (IE1 || IE2); 3911 return false; 3912 } 3913 3914 std::optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3915 bool TopToBottom) { 3916 // No need to reorder if need to shuffle reuses, still need to shuffle the 3917 // node. 3918 if (!TE.ReuseShuffleIndices.empty()) { 3919 // Check if reuse shuffle indices can be improved by reordering. 3920 // For this, check that reuse mask is "clustered", i.e. each scalar values 3921 // is used once in each submask of size <number_of_scalars>. 3922 // Example: 4 scalar values. 3923 // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered. 3924 // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because 3925 // element 3 is used twice in the second submask. 3926 unsigned Sz = TE.Scalars.size(); 3927 if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, 3928 Sz)) 3929 return std::nullopt; 3930 unsigned VF = TE.getVectorFactor(); 3931 // Try build correct order for extractelement instructions. 3932 SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(), 3933 TE.ReuseShuffleIndices.end()); 3934 if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() && 3935 all_of(TE.Scalars, [Sz](Value *V) { 3936 std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V)); 3937 return Idx && *Idx < Sz; 3938 })) { 3939 SmallVector<int> ReorderMask(Sz, UndefMaskElem); 3940 if (TE.ReorderIndices.empty()) 3941 std::iota(ReorderMask.begin(), ReorderMask.end(), 0); 3942 else 3943 inversePermutation(TE.ReorderIndices, ReorderMask); 3944 for (unsigned I = 0; I < VF; ++I) { 3945 int &Idx = ReusedMask[I]; 3946 if (Idx == UndefMaskElem) 3947 continue; 3948 Value *V = TE.Scalars[ReorderMask[Idx]]; 3949 std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V)); 3950 Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI)); 3951 } 3952 } 3953 // Build the order of the VF size, need to reorder reuses shuffles, they are 3954 // always of VF size. 3955 OrdersType ResOrder(VF); 3956 std::iota(ResOrder.begin(), ResOrder.end(), 0); 3957 auto *It = ResOrder.begin(); 3958 for (unsigned K = 0; K < VF; K += Sz) { 3959 OrdersType CurrentOrder(TE.ReorderIndices); 3960 SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)}; 3961 if (SubMask.front() == UndefMaskElem) 3962 std::iota(SubMask.begin(), SubMask.end(), 0); 3963 reorderOrder(CurrentOrder, SubMask); 3964 transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; }); 3965 std::advance(It, Sz); 3966 } 3967 if (all_of(enumerate(ResOrder), 3968 [](const auto &Data) { return Data.index() == Data.value(); })) 3969 return {}; // Use identity order. 3970 return ResOrder; 3971 } 3972 if (TE.State == TreeEntry::Vectorize && 3973 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3974 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3975 !TE.isAltShuffle()) 3976 return TE.ReorderIndices; 3977 if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) { 3978 auto PHICompare = [](llvm::Value *V1, llvm::Value *V2) { 3979 if (!V1->hasOneUse() || !V2->hasOneUse()) 3980 return false; 3981 auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin()); 3982 auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin()); 3983 if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1)) 3984 if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) { 3985 if (!areTwoInsertFromSameBuildVector( 3986 IE1, IE2, 3987 [](InsertElementInst *II) { return II->getOperand(0); })) 3988 return false; 3989 std::optional<unsigned> Idx1 = getInsertIndex(IE1); 3990 std::optional<unsigned> Idx2 = getInsertIndex(IE2); 3991 if (Idx1 == std::nullopt || Idx2 == std::nullopt) 3992 return false; 3993 return *Idx1 < *Idx2; 3994 } 3995 if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1)) 3996 if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) { 3997 if (EE1->getOperand(0) != EE2->getOperand(0)) 3998 return false; 3999 std::optional<unsigned> Idx1 = getExtractIndex(EE1); 4000 std::optional<unsigned> Idx2 = getExtractIndex(EE2); 4001 if (Idx1 == std::nullopt || Idx2 == std::nullopt) 4002 return false; 4003 return *Idx1 < *Idx2; 4004 } 4005 return false; 4006 }; 4007 auto IsIdentityOrder = [](const OrdersType &Order) { 4008 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4009 if (Idx != Order[Idx]) 4010 return false; 4011 return true; 4012 }; 4013 if (!TE.ReorderIndices.empty()) 4014 return TE.ReorderIndices; 4015 DenseMap<Value *, unsigned> PhiToId; 4016 SmallVector<Value *, 4> Phis; 4017 OrdersType ResOrder(TE.Scalars.size()); 4018 for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) { 4019 PhiToId[TE.Scalars[Id]] = Id; 4020 Phis.push_back(TE.Scalars[Id]); 4021 } 4022 llvm::stable_sort(Phis, PHICompare); 4023 for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id) 4024 ResOrder[Id] = PhiToId[Phis[Id]]; 4025 if (IsIdentityOrder(ResOrder)) 4026 return {}; 4027 return ResOrder; 4028 } 4029 if (TE.State == TreeEntry::NeedToGather) { 4030 // TODO: add analysis of other gather nodes with extractelement 4031 // instructions and other values/instructions, not only undefs. 4032 if (((TE.getOpcode() == Instruction::ExtractElement && 4033 !TE.isAltShuffle()) || 4034 (all_of(TE.Scalars, 4035 [](Value *V) { 4036 return isa<UndefValue, ExtractElementInst>(V); 4037 }) && 4038 any_of(TE.Scalars, 4039 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 4040 all_of(TE.Scalars, 4041 [](Value *V) { 4042 auto *EE = dyn_cast<ExtractElementInst>(V); 4043 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 4044 }) && 4045 allSameType(TE.Scalars)) { 4046 // Check that gather of extractelements can be represented as 4047 // just a shuffle of a single vector. 4048 OrdersType CurrentOrder; 4049 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 4050 if (Reuse || !CurrentOrder.empty()) { 4051 if (!CurrentOrder.empty()) 4052 fixupOrderingIndices(CurrentOrder); 4053 return CurrentOrder; 4054 } 4055 } 4056 if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 4057 return CurrentOrder; 4058 if (TE.Scalars.size() >= 4) 4059 if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 4060 return Order; 4061 } 4062 return std::nullopt; 4063 } 4064 4065 /// Checks if the given mask is a "clustered" mask with the same clusters of 4066 /// size \p Sz, which are not identity submasks. 4067 static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask, 4068 unsigned Sz) { 4069 ArrayRef<int> FirstCluster = Mask.slice(0, Sz); 4070 if (ShuffleVectorInst::isIdentityMask(FirstCluster)) 4071 return false; 4072 for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) { 4073 ArrayRef<int> Cluster = Mask.slice(I, Sz); 4074 if (Cluster != FirstCluster) 4075 return false; 4076 } 4077 return true; 4078 } 4079 4080 void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const { 4081 // Reorder reuses mask. 4082 reorderReuses(TE.ReuseShuffleIndices, Mask); 4083 const unsigned Sz = TE.Scalars.size(); 4084 // For vectorized and non-clustered reused no need to do anything else. 4085 if (TE.State != TreeEntry::NeedToGather || 4086 !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, 4087 Sz) || 4088 !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz)) 4089 return; 4090 SmallVector<int> NewMask; 4091 inversePermutation(TE.ReorderIndices, NewMask); 4092 addMask(NewMask, TE.ReuseShuffleIndices); 4093 // Clear reorder since it is going to be applied to the new mask. 4094 TE.ReorderIndices.clear(); 4095 // Try to improve gathered nodes with clustered reuses, if possible. 4096 ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz); 4097 SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end()); 4098 inversePermutation(NewOrder, NewMask); 4099 reorderScalars(TE.Scalars, NewMask); 4100 // Fill the reuses mask with the identity submasks. 4101 for (auto *It = TE.ReuseShuffleIndices.begin(), 4102 *End = TE.ReuseShuffleIndices.end(); 4103 It != End; std::advance(It, Sz)) 4104 std::iota(It, std::next(It, Sz), 0); 4105 } 4106 4107 void BoUpSLP::reorderTopToBottom() { 4108 // Maps VF to the graph nodes. 4109 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 4110 // ExtractElement gather nodes which can be vectorized and need to handle 4111 // their ordering. 4112 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 4113 4114 // Phi nodes can have preferred ordering based on their result users 4115 DenseMap<const TreeEntry *, OrdersType> PhisToOrders; 4116 4117 // AltShuffles can also have a preferred ordering that leads to fewer 4118 // instructions, e.g., the addsub instruction in x86. 4119 DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; 4120 4121 // Maps a TreeEntry to the reorder indices of external users. 4122 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 4123 ExternalUserReorderMap; 4124 // FIXME: Workaround for syntax error reported by MSVC buildbots. 4125 TargetTransformInfo &TTIRef = *TTI; 4126 // Find all reorderable nodes with the given VF. 4127 // Currently the are vectorized stores,loads,extracts + some gathering of 4128 // extracts. 4129 for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries, 4130 &GathersToOrders, &ExternalUserReorderMap, 4131 &AltShufflesToOrders, &PhisToOrders]( 4132 const std::unique_ptr<TreeEntry> &TE) { 4133 // Look for external users that will probably be vectorized. 4134 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 4135 findExternalStoreUsersReorderIndices(TE.get()); 4136 if (!ExternalUserReorderIndices.empty()) { 4137 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); 4138 ExternalUserReorderMap.try_emplace(TE.get(), 4139 std::move(ExternalUserReorderIndices)); 4140 } 4141 4142 // Patterns like [fadd,fsub] can be combined into a single instruction in 4143 // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need 4144 // to take into account their order when looking for the most used order. 4145 if (TE->isAltShuffle()) { 4146 VectorType *VecTy = 4147 FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size()); 4148 unsigned Opcode0 = TE->getOpcode(); 4149 unsigned Opcode1 = TE->getAltOpcode(); 4150 // The opcode mask selects between the two opcodes. 4151 SmallBitVector OpcodeMask(TE->Scalars.size(), false); 4152 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) 4153 if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1) 4154 OpcodeMask.set(Lane); 4155 // If this pattern is supported by the target then we consider the order. 4156 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { 4157 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); 4158 AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); 4159 } 4160 // TODO: Check the reverse order too. 4161 } 4162 4163 if (std::optional<OrdersType> CurrentOrder = 4164 getReorderingData(*TE, /*TopToBottom=*/true)) { 4165 // Do not include ordering for nodes used in the alt opcode vectorization, 4166 // better to reorder them during bottom-to-top stage. If follow the order 4167 // here, it causes reordering of the whole graph though actually it is 4168 // profitable just to reorder the subgraph that starts from the alternate 4169 // opcode vectorization node. Such nodes already end-up with the shuffle 4170 // instruction and it is just enough to change this shuffle rather than 4171 // rotate the scalars for the whole graph. 4172 unsigned Cnt = 0; 4173 const TreeEntry *UserTE = TE.get(); 4174 while (UserTE && Cnt < RecursionMaxDepth) { 4175 if (UserTE->UserTreeIndices.size() != 1) 4176 break; 4177 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 4178 return EI.UserTE->State == TreeEntry::Vectorize && 4179 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 4180 })) 4181 return; 4182 UserTE = UserTE->UserTreeIndices.back().UserTE; 4183 ++Cnt; 4184 } 4185 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); 4186 if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) 4187 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 4188 if (TE->State == TreeEntry::Vectorize && 4189 TE->getOpcode() == Instruction::PHI) 4190 PhisToOrders.try_emplace(TE.get(), *CurrentOrder); 4191 } 4192 }); 4193 4194 // Reorder the graph nodes according to their vectorization factor. 4195 for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1; 4196 VF /= 2) { 4197 auto It = VFToOrderedEntries.find(VF); 4198 if (It == VFToOrderedEntries.end()) 4199 continue; 4200 // Try to find the most profitable order. We just are looking for the most 4201 // used order and reorder scalar elements in the nodes according to this 4202 // mostly used order. 4203 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 4204 // All operands are reordered and used only in this node - propagate the 4205 // most used order to the user node. 4206 MapVector<OrdersType, unsigned, 4207 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 4208 OrdersUses; 4209 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 4210 for (const TreeEntry *OpTE : OrderedEntries) { 4211 // No need to reorder this nodes, still need to extend and to use shuffle, 4212 // just need to merge reordering shuffle and the reuse shuffle. 4213 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) 4214 continue; 4215 // Count number of orders uses. 4216 const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders, 4217 &PhisToOrders]() -> const OrdersType & { 4218 if (OpTE->State == TreeEntry::NeedToGather || 4219 !OpTE->ReuseShuffleIndices.empty()) { 4220 auto It = GathersToOrders.find(OpTE); 4221 if (It != GathersToOrders.end()) 4222 return It->second; 4223 } 4224 if (OpTE->isAltShuffle()) { 4225 auto It = AltShufflesToOrders.find(OpTE); 4226 if (It != AltShufflesToOrders.end()) 4227 return It->second; 4228 } 4229 if (OpTE->State == TreeEntry::Vectorize && 4230 OpTE->getOpcode() == Instruction::PHI) { 4231 auto It = PhisToOrders.find(OpTE); 4232 if (It != PhisToOrders.end()) 4233 return It->second; 4234 } 4235 return OpTE->ReorderIndices; 4236 }(); 4237 // First consider the order of the external scalar users. 4238 auto It = ExternalUserReorderMap.find(OpTE); 4239 if (It != ExternalUserReorderMap.end()) { 4240 const auto &ExternalUserReorderIndices = It->second; 4241 // If the OpTE vector factor != number of scalars - use natural order, 4242 // it is an attempt to reorder node with reused scalars but with 4243 // external uses. 4244 if (OpTE->getVectorFactor() != OpTE->Scalars.size()) { 4245 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 4246 ExternalUserReorderIndices.size(); 4247 } else { 4248 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 4249 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 4250 } 4251 // No other useful reorder data in this entry. 4252 if (Order.empty()) 4253 continue; 4254 } 4255 // Stores actually store the mask, not the order, need to invert. 4256 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 4257 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 4258 SmallVector<int> Mask; 4259 inversePermutation(Order, Mask); 4260 unsigned E = Order.size(); 4261 OrdersType CurrentOrder(E, E); 4262 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 4263 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 4264 }); 4265 fixupOrderingIndices(CurrentOrder); 4266 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 4267 } else { 4268 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 4269 } 4270 } 4271 // Set order of the user node. 4272 if (OrdersUses.empty()) 4273 continue; 4274 // Choose the most used order. 4275 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4276 unsigned Cnt = OrdersUses.front().second; 4277 for (const auto &Pair : drop_begin(OrdersUses)) { 4278 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4279 BestOrder = Pair.first; 4280 Cnt = Pair.second; 4281 } 4282 } 4283 // Set order of the user node. 4284 if (BestOrder.empty()) 4285 continue; 4286 SmallVector<int> Mask; 4287 inversePermutation(BestOrder, Mask); 4288 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4289 unsigned E = BestOrder.size(); 4290 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4291 return I < E ? static_cast<int>(I) : UndefMaskElem; 4292 }); 4293 // Do an actual reordering, if profitable. 4294 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 4295 // Just do the reordering for the nodes with the given VF. 4296 if (TE->Scalars.size() != VF) { 4297 if (TE->ReuseShuffleIndices.size() == VF) { 4298 // Need to reorder the reuses masks of the operands with smaller VF to 4299 // be able to find the match between the graph nodes and scalar 4300 // operands of the given node during vectorization/cost estimation. 4301 assert(all_of(TE->UserTreeIndices, 4302 [VF, &TE](const EdgeInfo &EI) { 4303 return EI.UserTE->Scalars.size() == VF || 4304 EI.UserTE->Scalars.size() == 4305 TE->Scalars.size(); 4306 }) && 4307 "All users must be of VF size."); 4308 // Update ordering of the operands with the smaller VF than the given 4309 // one. 4310 reorderNodeWithReuses(*TE, Mask); 4311 } 4312 continue; 4313 } 4314 if (TE->State == TreeEntry::Vectorize && 4315 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 4316 InsertElementInst>(TE->getMainOp()) && 4317 !TE->isAltShuffle()) { 4318 // Build correct orders for extract{element,value}, loads and 4319 // stores. 4320 reorderOrder(TE->ReorderIndices, Mask); 4321 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 4322 TE->reorderOperands(Mask); 4323 } else { 4324 // Reorder the node and its operands. 4325 TE->reorderOperands(Mask); 4326 assert(TE->ReorderIndices.empty() && 4327 "Expected empty reorder sequence."); 4328 reorderScalars(TE->Scalars, Mask); 4329 } 4330 if (!TE->ReuseShuffleIndices.empty()) { 4331 // Apply reversed order to keep the original ordering of the reused 4332 // elements to avoid extra reorder indices shuffling. 4333 OrdersType CurrentOrder; 4334 reorderOrder(CurrentOrder, MaskOrder); 4335 SmallVector<int> NewReuses; 4336 inversePermutation(CurrentOrder, NewReuses); 4337 addMask(NewReuses, TE->ReuseShuffleIndices); 4338 TE->ReuseShuffleIndices.swap(NewReuses); 4339 } 4340 } 4341 } 4342 } 4343 4344 bool BoUpSLP::canReorderOperands( 4345 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 4346 ArrayRef<TreeEntry *> ReorderableGathers, 4347 SmallVectorImpl<TreeEntry *> &GatherOps) { 4348 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 4349 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 4350 return OpData.first == I && 4351 OpData.second->State == TreeEntry::Vectorize; 4352 })) 4353 continue; 4354 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 4355 // Do not reorder if operand node is used by many user nodes. 4356 if (any_of(TE->UserTreeIndices, 4357 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 4358 return false; 4359 // Add the node to the list of the ordered nodes with the identity 4360 // order. 4361 Edges.emplace_back(I, TE); 4362 // Add ScatterVectorize nodes to the list of operands, where just 4363 // reordering of the scalars is required. Similar to the gathers, so 4364 // simply add to the list of gathered ops. 4365 // If there are reused scalars, process this node as a regular vectorize 4366 // node, just reorder reuses mask. 4367 if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty()) 4368 GatherOps.push_back(TE); 4369 continue; 4370 } 4371 TreeEntry *Gather = nullptr; 4372 if (count_if(ReorderableGathers, 4373 [&Gather, UserTE, I](TreeEntry *TE) { 4374 assert(TE->State != TreeEntry::Vectorize && 4375 "Only non-vectorized nodes are expected."); 4376 if (any_of(TE->UserTreeIndices, 4377 [UserTE, I](const EdgeInfo &EI) { 4378 return EI.UserTE == UserTE && EI.EdgeIdx == I; 4379 })) { 4380 assert(TE->isSame(UserTE->getOperand(I)) && 4381 "Operand entry does not match operands."); 4382 Gather = TE; 4383 return true; 4384 } 4385 return false; 4386 }) > 1 && 4387 !all_of(UserTE->getOperand(I), isConstant)) 4388 return false; 4389 if (Gather) 4390 GatherOps.push_back(Gather); 4391 } 4392 return true; 4393 } 4394 4395 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 4396 SetVector<TreeEntry *> OrderedEntries; 4397 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 4398 // Find all reorderable leaf nodes with the given VF. 4399 // Currently the are vectorized loads,extracts without alternate operands + 4400 // some gathering of extracts. 4401 SmallVector<TreeEntry *> NonVectorized; 4402 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 4403 &NonVectorized]( 4404 const std::unique_ptr<TreeEntry> &TE) { 4405 if (TE->State != TreeEntry::Vectorize) 4406 NonVectorized.push_back(TE.get()); 4407 if (std::optional<OrdersType> CurrentOrder = 4408 getReorderingData(*TE, /*TopToBottom=*/false)) { 4409 OrderedEntries.insert(TE.get()); 4410 if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) 4411 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 4412 } 4413 }); 4414 4415 // 1. Propagate order to the graph nodes, which use only reordered nodes. 4416 // I.e., if the node has operands, that are reordered, try to make at least 4417 // one operand order in the natural order and reorder others + reorder the 4418 // user node itself. 4419 SmallPtrSet<const TreeEntry *, 4> Visited; 4420 while (!OrderedEntries.empty()) { 4421 // 1. Filter out only reordered nodes. 4422 // 2. If the entry has multiple uses - skip it and jump to the next node. 4423 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 4424 SmallVector<TreeEntry *> Filtered; 4425 for (TreeEntry *TE : OrderedEntries) { 4426 if (!(TE->State == TreeEntry::Vectorize || 4427 (TE->State == TreeEntry::NeedToGather && 4428 GathersToOrders.count(TE))) || 4429 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4430 !all_of(drop_begin(TE->UserTreeIndices), 4431 [TE](const EdgeInfo &EI) { 4432 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 4433 }) || 4434 !Visited.insert(TE).second) { 4435 Filtered.push_back(TE); 4436 continue; 4437 } 4438 // Build a map between user nodes and their operands order to speedup 4439 // search. The graph currently does not provide this dependency directly. 4440 for (EdgeInfo &EI : TE->UserTreeIndices) { 4441 TreeEntry *UserTE = EI.UserTE; 4442 auto It = Users.find(UserTE); 4443 if (It == Users.end()) 4444 It = Users.insert({UserTE, {}}).first; 4445 It->second.emplace_back(EI.EdgeIdx, TE); 4446 } 4447 } 4448 // Erase filtered entries. 4449 for_each(Filtered, 4450 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 4451 SmallVector< 4452 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> 4453 UsersVec(Users.begin(), Users.end()); 4454 sort(UsersVec, [](const auto &Data1, const auto &Data2) { 4455 return Data1.first->Idx > Data2.first->Idx; 4456 }); 4457 for (auto &Data : UsersVec) { 4458 // Check that operands are used only in the User node. 4459 SmallVector<TreeEntry *> GatherOps; 4460 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 4461 GatherOps)) { 4462 for_each(Data.second, 4463 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4464 OrderedEntries.remove(Op.second); 4465 }); 4466 continue; 4467 } 4468 // All operands are reordered and used only in this node - propagate the 4469 // most used order to the user node. 4470 MapVector<OrdersType, unsigned, 4471 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 4472 OrdersUses; 4473 // Do the analysis for each tree entry only once, otherwise the order of 4474 // the same node my be considered several times, though might be not 4475 // profitable. 4476 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 4477 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 4478 for (const auto &Op : Data.second) { 4479 TreeEntry *OpTE = Op.second; 4480 if (!VisitedOps.insert(OpTE).second) 4481 continue; 4482 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) 4483 continue; 4484 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 4485 if (OpTE->State == TreeEntry::NeedToGather || 4486 !OpTE->ReuseShuffleIndices.empty()) 4487 return GathersToOrders.find(OpTE)->second; 4488 return OpTE->ReorderIndices; 4489 }(); 4490 unsigned NumOps = count_if( 4491 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 4492 return P.second == OpTE; 4493 }); 4494 // Stores actually store the mask, not the order, need to invert. 4495 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 4496 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 4497 SmallVector<int> Mask; 4498 inversePermutation(Order, Mask); 4499 unsigned E = Order.size(); 4500 OrdersType CurrentOrder(E, E); 4501 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 4502 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 4503 }); 4504 fixupOrderingIndices(CurrentOrder); 4505 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 4506 NumOps; 4507 } else { 4508 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 4509 } 4510 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 4511 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 4512 const TreeEntry *TE) { 4513 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4514 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 4515 (IgnoreReorder && TE->Idx == 0)) 4516 return true; 4517 if (TE->State == TreeEntry::NeedToGather) { 4518 auto It = GathersToOrders.find(TE); 4519 if (It != GathersToOrders.end()) 4520 return !It->second.empty(); 4521 return true; 4522 } 4523 return false; 4524 }; 4525 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 4526 TreeEntry *UserTE = EI.UserTE; 4527 if (!VisitedUsers.insert(UserTE).second) 4528 continue; 4529 // May reorder user node if it requires reordering, has reused 4530 // scalars, is an alternate op vectorize node or its op nodes require 4531 // reordering. 4532 if (AllowsReordering(UserTE)) 4533 continue; 4534 // Check if users allow reordering. 4535 // Currently look up just 1 level of operands to avoid increase of 4536 // the compile time. 4537 // Profitable to reorder if definitely more operands allow 4538 // reordering rather than those with natural order. 4539 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 4540 if (static_cast<unsigned>(count_if( 4541 Ops, [UserTE, &AllowsReordering]( 4542 const std::pair<unsigned, TreeEntry *> &Op) { 4543 return AllowsReordering(Op.second) && 4544 all_of(Op.second->UserTreeIndices, 4545 [UserTE](const EdgeInfo &EI) { 4546 return EI.UserTE == UserTE; 4547 }); 4548 })) <= Ops.size() / 2) 4549 ++Res.first->second; 4550 } 4551 } 4552 // If no orders - skip current nodes and jump to the next one, if any. 4553 if (OrdersUses.empty()) { 4554 for_each(Data.second, 4555 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4556 OrderedEntries.remove(Op.second); 4557 }); 4558 continue; 4559 } 4560 // Choose the best order. 4561 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4562 unsigned Cnt = OrdersUses.front().second; 4563 for (const auto &Pair : drop_begin(OrdersUses)) { 4564 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4565 BestOrder = Pair.first; 4566 Cnt = Pair.second; 4567 } 4568 } 4569 // Set order of the user node (reordering of operands and user nodes). 4570 if (BestOrder.empty()) { 4571 for_each(Data.second, 4572 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4573 OrderedEntries.remove(Op.second); 4574 }); 4575 continue; 4576 } 4577 // Erase operands from OrderedEntries list and adjust their orders. 4578 VisitedOps.clear(); 4579 SmallVector<int> Mask; 4580 inversePermutation(BestOrder, Mask); 4581 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4582 unsigned E = BestOrder.size(); 4583 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4584 return I < E ? static_cast<int>(I) : UndefMaskElem; 4585 }); 4586 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4587 TreeEntry *TE = Op.second; 4588 OrderedEntries.remove(TE); 4589 if (!VisitedOps.insert(TE).second) 4590 continue; 4591 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4592 reorderNodeWithReuses(*TE, Mask); 4593 continue; 4594 } 4595 // Gathers are processed separately. 4596 if (TE->State != TreeEntry::Vectorize) 4597 continue; 4598 assert((BestOrder.size() == TE->ReorderIndices.size() || 4599 TE->ReorderIndices.empty()) && 4600 "Non-matching sizes of user/operand entries."); 4601 reorderOrder(TE->ReorderIndices, Mask); 4602 if (IgnoreReorder && TE == VectorizableTree.front().get()) 4603 IgnoreReorder = false; 4604 } 4605 // For gathers just need to reorder its scalars. 4606 for (TreeEntry *Gather : GatherOps) { 4607 assert(Gather->ReorderIndices.empty() && 4608 "Unexpected reordering of gathers."); 4609 if (!Gather->ReuseShuffleIndices.empty()) { 4610 // Just reorder reuses indices. 4611 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4612 continue; 4613 } 4614 reorderScalars(Gather->Scalars, Mask); 4615 OrderedEntries.remove(Gather); 4616 } 4617 // Reorder operands of the user node and set the ordering for the user 4618 // node itself. 4619 if (Data.first->State != TreeEntry::Vectorize || 4620 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4621 Data.first->getMainOp()) || 4622 Data.first->isAltShuffle()) 4623 Data.first->reorderOperands(Mask); 4624 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4625 Data.first->isAltShuffle()) { 4626 reorderScalars(Data.first->Scalars, Mask); 4627 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4628 if (Data.first->ReuseShuffleIndices.empty() && 4629 !Data.first->ReorderIndices.empty() && 4630 !Data.first->isAltShuffle()) { 4631 // Insert user node to the list to try to sink reordering deeper in 4632 // the graph. 4633 OrderedEntries.insert(Data.first); 4634 } 4635 } else { 4636 reorderOrder(Data.first->ReorderIndices, Mask); 4637 } 4638 } 4639 } 4640 // If the reordering is unnecessary, just remove the reorder. 4641 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4642 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4643 VectorizableTree.front()->ReorderIndices.clear(); 4644 } 4645 4646 void BoUpSLP::buildExternalUses( 4647 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4648 // Collect the values that we need to extract from the tree. 4649 for (auto &TEPtr : VectorizableTree) { 4650 TreeEntry *Entry = TEPtr.get(); 4651 4652 // No need to handle users of gathered values. 4653 if (Entry->State == TreeEntry::NeedToGather) 4654 continue; 4655 4656 // For each lane: 4657 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4658 Value *Scalar = Entry->Scalars[Lane]; 4659 int FoundLane = Entry->findLaneForValue(Scalar); 4660 4661 // Check if the scalar is externally used as an extra arg. 4662 auto ExtI = ExternallyUsedValues.find(Scalar); 4663 if (ExtI != ExternallyUsedValues.end()) { 4664 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4665 << Lane << " from " << *Scalar << ".\n"); 4666 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4667 } 4668 for (User *U : Scalar->users()) { 4669 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4670 4671 Instruction *UserInst = dyn_cast<Instruction>(U); 4672 if (!UserInst) 4673 continue; 4674 4675 if (isDeleted(UserInst)) 4676 continue; 4677 4678 // Skip in-tree scalars that become vectors 4679 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4680 Value *UseScalar = UseEntry->Scalars[0]; 4681 // Some in-tree scalars will remain as scalar in vectorized 4682 // instructions. If that is the case, the one in Lane 0 will 4683 // be used. 4684 if (UseScalar != U || 4685 UseEntry->State == TreeEntry::ScatterVectorize || 4686 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4687 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4688 << ".\n"); 4689 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4690 continue; 4691 } 4692 } 4693 4694 // Ignore users in the user ignore list. 4695 if (UserIgnoreList && UserIgnoreList->contains(UserInst)) 4696 continue; 4697 4698 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4699 << Lane << " from " << *Scalar << ".\n"); 4700 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4701 } 4702 } 4703 } 4704 } 4705 4706 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4707 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4708 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4709 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4710 Value *V = TE->Scalars[Lane]; 4711 // To save compilation time we don't visit if we have too many users. 4712 static constexpr unsigned UsersLimit = 4; 4713 if (V->hasNUsesOrMore(UsersLimit)) 4714 break; 4715 4716 // Collect stores per pointer object. 4717 for (User *U : V->users()) { 4718 auto *SI = dyn_cast<StoreInst>(U); 4719 if (SI == nullptr || !SI->isSimple() || 4720 !isValidElementType(SI->getValueOperand()->getType())) 4721 continue; 4722 // Skip entry if already 4723 if (getTreeEntry(U)) 4724 continue; 4725 4726 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4727 auto &StoresVec = PtrToStoresMap[Ptr]; 4728 // For now just keep one store per pointer object per lane. 4729 // TODO: Extend this to support multiple stores per pointer per lane 4730 if (StoresVec.size() > Lane) 4731 continue; 4732 // Skip if in different BBs. 4733 if (!StoresVec.empty() && 4734 SI->getParent() != StoresVec.back()->getParent()) 4735 continue; 4736 // Make sure that the stores are of the same type. 4737 if (!StoresVec.empty() && 4738 SI->getValueOperand()->getType() != 4739 StoresVec.back()->getValueOperand()->getType()) 4740 continue; 4741 StoresVec.push_back(SI); 4742 } 4743 } 4744 return PtrToStoresMap; 4745 } 4746 4747 bool BoUpSLP::canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4748 OrdersType &ReorderIndices) const { 4749 // We check whether the stores in StoreVec can form a vector by sorting them 4750 // and checking whether they are consecutive. 4751 4752 // To avoid calling getPointersDiff() while sorting we create a vector of 4753 // pairs {store, offset from first} and sort this instead. 4754 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4755 StoreInst *S0 = StoresVec[0]; 4756 StoreOffsetVec[0] = {S0, 0}; 4757 Type *S0Ty = S0->getValueOperand()->getType(); 4758 Value *S0Ptr = S0->getPointerOperand(); 4759 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4760 StoreInst *SI = StoresVec[Idx]; 4761 std::optional<int> Diff = 4762 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4763 SI->getPointerOperand(), *DL, *SE, 4764 /*StrictCheck=*/true); 4765 // We failed to compare the pointers so just abandon this StoresVec. 4766 if (!Diff) 4767 return false; 4768 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4769 } 4770 4771 // Sort the vector based on the pointers. We create a copy because we may 4772 // need the original later for calculating the reorder (shuffle) indices. 4773 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4774 const std::pair<StoreInst *, int> &Pair2) { 4775 int Offset1 = Pair1.second; 4776 int Offset2 = Pair2.second; 4777 return Offset1 < Offset2; 4778 }); 4779 4780 // Check if the stores are consecutive by checking if their difference is 1. 4781 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4782 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4783 return false; 4784 4785 // Calculate the shuffle indices according to their offset against the sorted 4786 // StoreOffsetVec. 4787 ReorderIndices.reserve(StoresVec.size()); 4788 for (StoreInst *SI : StoresVec) { 4789 unsigned Idx = find_if(StoreOffsetVec, 4790 [SI](const std::pair<StoreInst *, int> &Pair) { 4791 return Pair.first == SI; 4792 }) - 4793 StoreOffsetVec.begin(); 4794 ReorderIndices.push_back(Idx); 4795 } 4796 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4797 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4798 // same convention here. 4799 auto IsIdentityOrder = [](const OrdersType &Order) { 4800 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4801 if (Idx != Order[Idx]) 4802 return false; 4803 return true; 4804 }; 4805 if (IsIdentityOrder(ReorderIndices)) 4806 ReorderIndices.clear(); 4807 4808 return true; 4809 } 4810 4811 #ifndef NDEBUG 4812 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4813 for (unsigned Idx : Order) 4814 dbgs() << Idx << ", "; 4815 dbgs() << "\n"; 4816 } 4817 #endif 4818 4819 SmallVector<BoUpSLP::OrdersType, 1> 4820 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4821 unsigned NumLanes = TE->Scalars.size(); 4822 4823 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4824 collectUserStores(TE); 4825 4826 // Holds the reorder indices for each candidate store vector that is a user of 4827 // the current TreeEntry. 4828 SmallVector<OrdersType, 1> ExternalReorderIndices; 4829 4830 // Now inspect the stores collected per pointer and look for vectorization 4831 // candidates. For each candidate calculate the reorder index vector and push 4832 // it into `ExternalReorderIndices` 4833 for (const auto &Pair : PtrToStoresMap) { 4834 auto &StoresVec = Pair.second; 4835 // If we have fewer than NumLanes stores, then we can't form a vector. 4836 if (StoresVec.size() != NumLanes) 4837 continue; 4838 4839 // If the stores are not consecutive then abandon this StoresVec. 4840 OrdersType ReorderIndices; 4841 if (!canFormVector(StoresVec, ReorderIndices)) 4842 continue; 4843 4844 // We now know that the scalars in StoresVec can form a vector instruction, 4845 // so set the reorder indices. 4846 ExternalReorderIndices.push_back(ReorderIndices); 4847 } 4848 return ExternalReorderIndices; 4849 } 4850 4851 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4852 const SmallDenseSet<Value *> &UserIgnoreLst) { 4853 deleteTree(); 4854 UserIgnoreList = &UserIgnoreLst; 4855 if (!allSameType(Roots)) 4856 return; 4857 buildTree_rec(Roots, 0, EdgeInfo()); 4858 } 4859 4860 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 4861 deleteTree(); 4862 if (!allSameType(Roots)) 4863 return; 4864 buildTree_rec(Roots, 0, EdgeInfo()); 4865 } 4866 4867 /// \return true if the specified list of values has only one instruction that 4868 /// requires scheduling, false otherwise. 4869 #ifndef NDEBUG 4870 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4871 Value *NeedsScheduling = nullptr; 4872 for (Value *V : VL) { 4873 if (doesNotNeedToBeScheduled(V)) 4874 continue; 4875 if (!NeedsScheduling) { 4876 NeedsScheduling = V; 4877 continue; 4878 } 4879 return false; 4880 } 4881 return NeedsScheduling; 4882 } 4883 #endif 4884 4885 /// Generates key/subkey pair for the given value to provide effective sorting 4886 /// of the values and better detection of the vectorizable values sequences. The 4887 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4888 /// and in values subgroups (subkeys). 4889 static std::pair<size_t, size_t> generateKeySubkey( 4890 Value *V, const TargetLibraryInfo *TLI, 4891 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4892 bool AllowAlternate) { 4893 hash_code Key = hash_value(V->getValueID() + 2); 4894 hash_code SubKey = hash_value(0); 4895 // Sort the loads by the distance between the pointers. 4896 if (auto *LI = dyn_cast<LoadInst>(V)) { 4897 Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key); 4898 if (LI->isSimple()) 4899 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4900 else 4901 Key = SubKey = hash_value(LI); 4902 } else if (isVectorLikeInstWithConstOps(V)) { 4903 // Sort extracts by the vector operands. 4904 if (isa<ExtractElementInst, UndefValue>(V)) 4905 Key = hash_value(Value::UndefValueVal + 1); 4906 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4907 if (!isUndefVector(EI->getVectorOperand()).all() && 4908 !isa<UndefValue>(EI->getIndexOperand())) 4909 SubKey = hash_value(EI->getVectorOperand()); 4910 } 4911 } else if (auto *I = dyn_cast<Instruction>(V)) { 4912 // Sort other instructions just by the opcodes except for CMPInst. 4913 // For CMP also sort by the predicate kind. 4914 if ((isa<BinaryOperator, CastInst>(I)) && 4915 isValidForAlternation(I->getOpcode())) { 4916 if (AllowAlternate) 4917 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4918 else 4919 Key = hash_combine(hash_value(I->getOpcode()), Key); 4920 SubKey = hash_combine( 4921 hash_value(I->getOpcode()), hash_value(I->getType()), 4922 hash_value(isa<BinaryOperator>(I) 4923 ? I->getType() 4924 : cast<CastInst>(I)->getOperand(0)->getType())); 4925 // For casts, look through the only operand to improve compile time. 4926 if (isa<CastInst>(I)) { 4927 std::pair<size_t, size_t> OpVals = 4928 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, 4929 /*AllowAlternate=*/true); 4930 Key = hash_combine(OpVals.first, Key); 4931 SubKey = hash_combine(OpVals.first, SubKey); 4932 } 4933 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4934 CmpInst::Predicate Pred = CI->getPredicate(); 4935 if (CI->isCommutative()) 4936 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4937 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4938 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4939 hash_value(SwapPred), 4940 hash_value(CI->getOperand(0)->getType())); 4941 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4942 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4943 if (isTriviallyVectorizable(ID)) { 4944 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4945 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { 4946 SubKey = hash_combine(hash_value(I->getOpcode()), 4947 hash_value(Call->getCalledFunction())); 4948 } else { 4949 Key = hash_combine(hash_value(Call), Key); 4950 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4951 } 4952 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4953 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4954 hash_value(Op.Tag), SubKey); 4955 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4956 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4957 SubKey = hash_value(Gep->getPointerOperand()); 4958 else 4959 SubKey = hash_value(Gep); 4960 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4961 !isa<ConstantInt>(I->getOperand(1))) { 4962 // Do not try to vectorize instructions with potentially high cost. 4963 SubKey = hash_value(I); 4964 } else { 4965 SubKey = hash_value(I->getOpcode()); 4966 } 4967 Key = hash_combine(hash_value(I->getParent()), Key); 4968 } 4969 return std::make_pair(Key, SubKey); 4970 } 4971 4972 /// Checks if the specified instruction \p I is an alternate operation for 4973 /// the given \p MainOp and \p AltOp instructions. 4974 static bool isAlternateInstruction(const Instruction *I, 4975 const Instruction *MainOp, 4976 const Instruction *AltOp, 4977 const TargetLibraryInfo &TLI); 4978 4979 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4980 const EdgeInfo &UserTreeIdx) { 4981 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4982 4983 SmallVector<int> ReuseShuffleIndicies; 4984 SmallVector<Value *> UniqueValues; 4985 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4986 &UserTreeIdx, 4987 this](const InstructionsState &S) { 4988 // Check that every instruction appears once in this bundle. 4989 DenseMap<Value *, unsigned> UniquePositions(VL.size()); 4990 for (Value *V : VL) { 4991 if (isConstant(V)) { 4992 ReuseShuffleIndicies.emplace_back( 4993 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4994 UniqueValues.emplace_back(V); 4995 continue; 4996 } 4997 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4998 ReuseShuffleIndicies.emplace_back(Res.first->second); 4999 if (Res.second) 5000 UniqueValues.emplace_back(V); 5001 } 5002 size_t NumUniqueScalarValues = UniqueValues.size(); 5003 if (NumUniqueScalarValues == VL.size()) { 5004 ReuseShuffleIndicies.clear(); 5005 } else { 5006 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 5007 if (NumUniqueScalarValues <= 1 || 5008 (UniquePositions.size() == 1 && all_of(UniqueValues, 5009 [](Value *V) { 5010 return isa<UndefValue>(V) || 5011 !isConstant(V); 5012 })) || 5013 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 5014 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 5015 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5016 return false; 5017 } 5018 VL = UniqueValues; 5019 } 5020 return true; 5021 }; 5022 5023 InstructionsState S = getSameOpcode(VL, *TLI); 5024 5025 // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of 5026 // a load), in which case peek through to include it in the tree, without 5027 // ballooning over-budget. 5028 if (Depth >= RecursionMaxDepth && 5029 !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp && 5030 VL.size() >= 4 && 5031 (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) { 5032 return match(I, 5033 m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) && 5034 cast<Instruction>(I)->getOpcode() == 5035 cast<Instruction>(S.MainOp)->getOpcode(); 5036 })))) { 5037 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 5038 if (TryToFindDuplicates(S)) 5039 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5040 ReuseShuffleIndicies); 5041 return; 5042 } 5043 5044 // Don't handle scalable vectors 5045 if (S.getOpcode() == Instruction::ExtractElement && 5046 isa<ScalableVectorType>( 5047 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 5048 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 5049 if (TryToFindDuplicates(S)) 5050 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5051 ReuseShuffleIndicies); 5052 return; 5053 } 5054 5055 // Don't handle vectors. 5056 if (S.OpValue->getType()->isVectorTy() && 5057 !isa<InsertElementInst>(S.OpValue)) { 5058 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 5059 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5060 return; 5061 } 5062 5063 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 5064 if (SI->getValueOperand()->getType()->isVectorTy()) { 5065 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 5066 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5067 return; 5068 } 5069 5070 // If all of the operands are identical or constant we have a simple solution. 5071 // If we deal with insert/extract instructions, they all must have constant 5072 // indices, otherwise we should gather them, not try to vectorize. 5073 // If alternate op node with 2 elements with gathered operands - do not 5074 // vectorize. 5075 auto &&NotProfitableForVectorization = [&S, this, 5076 Depth](ArrayRef<Value *> VL) { 5077 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 5078 return false; 5079 if (VectorizableTree.size() < MinTreeSize) 5080 return false; 5081 if (Depth >= RecursionMaxDepth - 1) 5082 return true; 5083 // Check if all operands are extracts, part of vector node or can build a 5084 // regular vectorize node. 5085 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 5086 for (Value *V : VL) { 5087 auto *I = cast<Instruction>(V); 5088 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 5089 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 5090 })); 5091 } 5092 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 5093 if ((IsCommutative && 5094 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 5095 (!IsCommutative && 5096 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 5097 return true; 5098 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 5099 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 5100 auto *I1 = cast<Instruction>(VL.front()); 5101 auto *I2 = cast<Instruction>(VL.back()); 5102 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 5103 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 5104 I2->getOperand(Op)); 5105 if (static_cast<unsigned>(count_if( 5106 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 5107 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 5108 })) >= S.MainOp->getNumOperands() / 2) 5109 return false; 5110 if (S.MainOp->getNumOperands() > 2) 5111 return true; 5112 if (IsCommutative) { 5113 // Check permuted operands. 5114 Candidates.clear(); 5115 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 5116 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 5117 I2->getOperand((Op + 1) % E)); 5118 if (any_of( 5119 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 5120 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 5121 })) 5122 return false; 5123 } 5124 return true; 5125 }; 5126 SmallVector<unsigned> SortedIndices; 5127 BasicBlock *BB = nullptr; 5128 bool IsScatterVectorizeUserTE = 5129 UserTreeIdx.UserTE && 5130 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; 5131 bool AreAllSameInsts = 5132 (S.getOpcode() && allSameBlock(VL)) || 5133 (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE && 5134 VL.size() > 2 && 5135 all_of(VL, 5136 [&BB](Value *V) { 5137 auto *I = dyn_cast<GetElementPtrInst>(V); 5138 if (!I) 5139 return doesNotNeedToBeScheduled(V); 5140 if (!BB) 5141 BB = I->getParent(); 5142 return BB == I->getParent() && I->getNumOperands() == 2; 5143 }) && 5144 BB && 5145 sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, 5146 SortedIndices)); 5147 if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) || 5148 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( 5149 S.OpValue) && 5150 !all_of(VL, isVectorLikeInstWithConstOps)) || 5151 NotProfitableForVectorization(VL)) { 5152 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 5153 if (TryToFindDuplicates(S)) 5154 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5155 ReuseShuffleIndicies); 5156 return; 5157 } 5158 5159 // We now know that this is a vector of instructions of the same type from 5160 // the same block. 5161 5162 // Don't vectorize ephemeral values. 5163 if (!EphValues.empty()) { 5164 for (Value *V : VL) { 5165 if (EphValues.count(V)) { 5166 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 5167 << ") is ephemeral.\n"); 5168 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5169 return; 5170 } 5171 } 5172 } 5173 5174 // Check if this is a duplicate of another entry. 5175 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 5176 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 5177 if (!E->isSame(VL)) { 5178 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 5179 if (TryToFindDuplicates(S)) 5180 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5181 ReuseShuffleIndicies); 5182 return; 5183 } 5184 // Record the reuse of the tree node. FIXME, currently this is only used to 5185 // properly draw the graph rather than for the actual vectorization. 5186 E->UserTreeIndices.push_back(UserTreeIdx); 5187 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 5188 << ".\n"); 5189 return; 5190 } 5191 5192 // Check that none of the instructions in the bundle are already in the tree. 5193 for (Value *V : VL) { 5194 if (!IsScatterVectorizeUserTE && !isa<Instruction>(V)) 5195 continue; 5196 if (getTreeEntry(V)) { 5197 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 5198 << ") is already in tree.\n"); 5199 if (TryToFindDuplicates(S)) 5200 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5201 ReuseShuffleIndicies); 5202 return; 5203 } 5204 } 5205 5206 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 5207 if (UserIgnoreList && !UserIgnoreList->empty()) { 5208 for (Value *V : VL) { 5209 if (UserIgnoreList && UserIgnoreList->contains(V)) { 5210 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 5211 if (TryToFindDuplicates(S)) 5212 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5213 ReuseShuffleIndicies); 5214 return; 5215 } 5216 } 5217 } 5218 5219 // Special processing for sorted pointers for ScatterVectorize node with 5220 // constant indeces only. 5221 if (AreAllSameInsts && UserTreeIdx.UserTE && 5222 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize && 5223 !(S.getOpcode() && allSameBlock(VL))) { 5224 assert(S.OpValue->getType()->isPointerTy() && 5225 count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 5226 2 && 5227 "Expected pointers only."); 5228 // Reset S to make it GetElementPtr kind of node. 5229 const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 5230 assert(It != VL.end() && "Expected at least one GEP."); 5231 S = getSameOpcode(*It, *TLI); 5232 } 5233 5234 // Check that all of the users of the scalars that we want to vectorize are 5235 // schedulable. 5236 auto *VL0 = cast<Instruction>(S.OpValue); 5237 BB = VL0->getParent(); 5238 5239 if (!DT->isReachableFromEntry(BB)) { 5240 // Don't go into unreachable blocks. They may contain instructions with 5241 // dependency cycles which confuse the final scheduling. 5242 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 5243 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5244 return; 5245 } 5246 5247 // Don't go into catchswitch blocks, which can happen with PHIs. 5248 // Such blocks can only have PHIs and the catchswitch. There is no 5249 // place to insert a shuffle if we need to, so just avoid that issue. 5250 if (isa<CatchSwitchInst>(BB->getTerminator())) { 5251 LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n"); 5252 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5253 return; 5254 } 5255 5256 // Check that every instruction appears once in this bundle. 5257 if (!TryToFindDuplicates(S)) 5258 return; 5259 5260 auto &BSRef = BlocksSchedules[BB]; 5261 if (!BSRef) 5262 BSRef = std::make_unique<BlockScheduling>(BB); 5263 5264 BlockScheduling &BS = *BSRef; 5265 5266 std::optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 5267 #ifdef EXPENSIVE_CHECKS 5268 // Make sure we didn't break any internal invariants 5269 BS.verify(); 5270 #endif 5271 if (!Bundle) { 5272 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 5273 assert((!BS.getScheduleData(VL0) || 5274 !BS.getScheduleData(VL0)->isPartOfBundle()) && 5275 "tryScheduleBundle should cancelScheduling on failure"); 5276 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5277 ReuseShuffleIndicies); 5278 return; 5279 } 5280 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 5281 5282 unsigned ShuffleOrOp = S.isAltShuffle() ? 5283 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 5284 switch (ShuffleOrOp) { 5285 case Instruction::PHI: { 5286 auto *PH = cast<PHINode>(VL0); 5287 5288 // Check for terminator values (e.g. invoke). 5289 for (Value *V : VL) 5290 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 5291 Instruction *Term = dyn_cast<Instruction>(Incoming); 5292 if (Term && Term->isTerminator()) { 5293 LLVM_DEBUG(dbgs() 5294 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 5295 BS.cancelScheduling(VL, VL0); 5296 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5297 ReuseShuffleIndicies); 5298 return; 5299 } 5300 } 5301 5302 TreeEntry *TE = 5303 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 5304 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 5305 5306 // Keeps the reordered operands to avoid code duplication. 5307 SmallVector<ValueList, 2> OperandsVec; 5308 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 5309 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 5310 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 5311 TE->setOperand(I, Operands); 5312 OperandsVec.push_back(Operands); 5313 continue; 5314 } 5315 ValueList Operands; 5316 // Prepare the operand vector. 5317 for (Value *V : VL) 5318 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 5319 PH->getIncomingBlock(I))); 5320 TE->setOperand(I, Operands); 5321 OperandsVec.push_back(Operands); 5322 } 5323 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 5324 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 5325 return; 5326 } 5327 case Instruction::ExtractValue: 5328 case Instruction::ExtractElement: { 5329 OrdersType CurrentOrder; 5330 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 5331 if (Reuse) { 5332 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 5333 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5334 ReuseShuffleIndicies); 5335 // This is a special case, as it does not gather, but at the same time 5336 // we are not extending buildTree_rec() towards the operands. 5337 ValueList Op0; 5338 Op0.assign(VL.size(), VL0->getOperand(0)); 5339 VectorizableTree.back()->setOperand(0, Op0); 5340 return; 5341 } 5342 if (!CurrentOrder.empty()) { 5343 LLVM_DEBUG({ 5344 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 5345 "with order"; 5346 for (unsigned Idx : CurrentOrder) 5347 dbgs() << " " << Idx; 5348 dbgs() << "\n"; 5349 }); 5350 fixupOrderingIndices(CurrentOrder); 5351 // Insert new order with initial value 0, if it does not exist, 5352 // otherwise return the iterator to the existing one. 5353 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5354 ReuseShuffleIndicies, CurrentOrder); 5355 // This is a special case, as it does not gather, but at the same time 5356 // we are not extending buildTree_rec() towards the operands. 5357 ValueList Op0; 5358 Op0.assign(VL.size(), VL0->getOperand(0)); 5359 VectorizableTree.back()->setOperand(0, Op0); 5360 return; 5361 } 5362 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 5363 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5364 ReuseShuffleIndicies); 5365 BS.cancelScheduling(VL, VL0); 5366 return; 5367 } 5368 case Instruction::InsertElement: { 5369 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 5370 5371 // Check that we have a buildvector and not a shuffle of 2 or more 5372 // different vectors. 5373 ValueSet SourceVectors; 5374 for (Value *V : VL) { 5375 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 5376 assert(getInsertIndex(V) != std::nullopt && 5377 "Non-constant or undef index?"); 5378 } 5379 5380 if (count_if(VL, [&SourceVectors](Value *V) { 5381 return !SourceVectors.contains(V); 5382 }) >= 2) { 5383 // Found 2nd source vector - cancel. 5384 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 5385 "different source vectors.\n"); 5386 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); 5387 BS.cancelScheduling(VL, VL0); 5388 return; 5389 } 5390 5391 auto OrdCompare = [](const std::pair<int, int> &P1, 5392 const std::pair<int, int> &P2) { 5393 return P1.first > P2.first; 5394 }; 5395 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 5396 decltype(OrdCompare)> 5397 Indices(OrdCompare); 5398 for (int I = 0, E = VL.size(); I < E; ++I) { 5399 unsigned Idx = *getInsertIndex(VL[I]); 5400 Indices.emplace(Idx, I); 5401 } 5402 OrdersType CurrentOrder(VL.size(), VL.size()); 5403 bool IsIdentity = true; 5404 for (int I = 0, E = VL.size(); I < E; ++I) { 5405 CurrentOrder[Indices.top().second] = I; 5406 IsIdentity &= Indices.top().second == I; 5407 Indices.pop(); 5408 } 5409 if (IsIdentity) 5410 CurrentOrder.clear(); 5411 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5412 std::nullopt, CurrentOrder); 5413 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 5414 5415 constexpr int NumOps = 2; 5416 ValueList VectorOperands[NumOps]; 5417 for (int I = 0; I < NumOps; ++I) { 5418 for (Value *V : VL) 5419 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 5420 5421 TE->setOperand(I, VectorOperands[I]); 5422 } 5423 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 5424 return; 5425 } 5426 case Instruction::Load: { 5427 // Check that a vectorized load would load the same memory as a scalar 5428 // load. For example, we don't want to vectorize loads that are smaller 5429 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 5430 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 5431 // from such a struct, we read/write packed bits disagreeing with the 5432 // unvectorized version. 5433 SmallVector<Value *> PointerOps; 5434 OrdersType CurrentOrder; 5435 TreeEntry *TE = nullptr; 5436 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI, 5437 CurrentOrder, PointerOps)) { 5438 case LoadsState::Vectorize: 5439 if (CurrentOrder.empty()) { 5440 // Original loads are consecutive and does not require reordering. 5441 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5442 ReuseShuffleIndicies); 5443 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 5444 } else { 5445 fixupOrderingIndices(CurrentOrder); 5446 // Need to reorder. 5447 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5448 ReuseShuffleIndicies, CurrentOrder); 5449 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 5450 } 5451 TE->setOperandsInOrder(); 5452 break; 5453 case LoadsState::ScatterVectorize: 5454 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 5455 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 5456 UserTreeIdx, ReuseShuffleIndicies); 5457 TE->setOperandsInOrder(); 5458 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 5459 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 5460 break; 5461 case LoadsState::Gather: 5462 BS.cancelScheduling(VL, VL0); 5463 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5464 ReuseShuffleIndicies); 5465 #ifndef NDEBUG 5466 Type *ScalarTy = VL0->getType(); 5467 if (DL->getTypeSizeInBits(ScalarTy) != 5468 DL->getTypeAllocSizeInBits(ScalarTy)) 5469 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 5470 else if (any_of(VL, [](Value *V) { 5471 return !cast<LoadInst>(V)->isSimple(); 5472 })) 5473 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 5474 else 5475 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 5476 #endif // NDEBUG 5477 break; 5478 } 5479 return; 5480 } 5481 case Instruction::ZExt: 5482 case Instruction::SExt: 5483 case Instruction::FPToUI: 5484 case Instruction::FPToSI: 5485 case Instruction::FPExt: 5486 case Instruction::PtrToInt: 5487 case Instruction::IntToPtr: 5488 case Instruction::SIToFP: 5489 case Instruction::UIToFP: 5490 case Instruction::Trunc: 5491 case Instruction::FPTrunc: 5492 case Instruction::BitCast: { 5493 Type *SrcTy = VL0->getOperand(0)->getType(); 5494 for (Value *V : VL) { 5495 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 5496 if (Ty != SrcTy || !isValidElementType(Ty)) { 5497 BS.cancelScheduling(VL, VL0); 5498 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5499 ReuseShuffleIndicies); 5500 LLVM_DEBUG(dbgs() 5501 << "SLP: Gathering casts with different src types.\n"); 5502 return; 5503 } 5504 } 5505 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5506 ReuseShuffleIndicies); 5507 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 5508 5509 TE->setOperandsInOrder(); 5510 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5511 ValueList Operands; 5512 // Prepare the operand vector. 5513 for (Value *V : VL) 5514 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5515 5516 buildTree_rec(Operands, Depth + 1, {TE, i}); 5517 } 5518 return; 5519 } 5520 case Instruction::ICmp: 5521 case Instruction::FCmp: { 5522 // Check that all of the compares have the same predicate. 5523 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5524 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 5525 Type *ComparedTy = VL0->getOperand(0)->getType(); 5526 for (Value *V : VL) { 5527 CmpInst *Cmp = cast<CmpInst>(V); 5528 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 5529 Cmp->getOperand(0)->getType() != ComparedTy) { 5530 BS.cancelScheduling(VL, VL0); 5531 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5532 ReuseShuffleIndicies); 5533 LLVM_DEBUG(dbgs() 5534 << "SLP: Gathering cmp with different predicate.\n"); 5535 return; 5536 } 5537 } 5538 5539 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5540 ReuseShuffleIndicies); 5541 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 5542 5543 ValueList Left, Right; 5544 if (cast<CmpInst>(VL0)->isCommutative()) { 5545 // Commutative predicate - collect + sort operands of the instructions 5546 // so that each side is more likely to have the same opcode. 5547 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 5548 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); 5549 } else { 5550 // Collect operands - commute if it uses the swapped predicate. 5551 for (Value *V : VL) { 5552 auto *Cmp = cast<CmpInst>(V); 5553 Value *LHS = Cmp->getOperand(0); 5554 Value *RHS = Cmp->getOperand(1); 5555 if (Cmp->getPredicate() != P0) 5556 std::swap(LHS, RHS); 5557 Left.push_back(LHS); 5558 Right.push_back(RHS); 5559 } 5560 } 5561 TE->setOperand(0, Left); 5562 TE->setOperand(1, Right); 5563 buildTree_rec(Left, Depth + 1, {TE, 0}); 5564 buildTree_rec(Right, Depth + 1, {TE, 1}); 5565 return; 5566 } 5567 case Instruction::Select: 5568 case Instruction::FNeg: 5569 case Instruction::Add: 5570 case Instruction::FAdd: 5571 case Instruction::Sub: 5572 case Instruction::FSub: 5573 case Instruction::Mul: 5574 case Instruction::FMul: 5575 case Instruction::UDiv: 5576 case Instruction::SDiv: 5577 case Instruction::FDiv: 5578 case Instruction::URem: 5579 case Instruction::SRem: 5580 case Instruction::FRem: 5581 case Instruction::Shl: 5582 case Instruction::LShr: 5583 case Instruction::AShr: 5584 case Instruction::And: 5585 case Instruction::Or: 5586 case Instruction::Xor: { 5587 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5588 ReuseShuffleIndicies); 5589 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 5590 5591 // Sort operands of the instructions so that each side is more likely to 5592 // have the same opcode. 5593 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5594 ValueList Left, Right; 5595 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); 5596 TE->setOperand(0, Left); 5597 TE->setOperand(1, Right); 5598 buildTree_rec(Left, Depth + 1, {TE, 0}); 5599 buildTree_rec(Right, Depth + 1, {TE, 1}); 5600 return; 5601 } 5602 5603 TE->setOperandsInOrder(); 5604 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5605 ValueList Operands; 5606 // Prepare the operand vector. 5607 for (Value *V : VL) 5608 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5609 5610 buildTree_rec(Operands, Depth + 1, {TE, i}); 5611 } 5612 return; 5613 } 5614 case Instruction::GetElementPtr: { 5615 // We don't combine GEPs with complicated (nested) indexing. 5616 for (Value *V : VL) { 5617 auto *I = dyn_cast<GetElementPtrInst>(V); 5618 if (!I) 5619 continue; 5620 if (I->getNumOperands() != 2) { 5621 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5622 BS.cancelScheduling(VL, VL0); 5623 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5624 ReuseShuffleIndicies); 5625 return; 5626 } 5627 } 5628 5629 // We can't combine several GEPs into one vector if they operate on 5630 // different types. 5631 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5632 for (Value *V : VL) { 5633 auto *GEP = dyn_cast<GEPOperator>(V); 5634 if (!GEP) 5635 continue; 5636 Type *CurTy = GEP->getSourceElementType(); 5637 if (Ty0 != CurTy) { 5638 LLVM_DEBUG(dbgs() 5639 << "SLP: not-vectorizable GEP (different types).\n"); 5640 BS.cancelScheduling(VL, VL0); 5641 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5642 ReuseShuffleIndicies); 5643 return; 5644 } 5645 } 5646 5647 // We don't combine GEPs with non-constant indexes. 5648 Type *Ty1 = VL0->getOperand(1)->getType(); 5649 for (Value *V : VL) { 5650 auto *I = dyn_cast<GetElementPtrInst>(V); 5651 if (!I) 5652 continue; 5653 auto *Op = I->getOperand(1); 5654 if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || 5655 (Op->getType() != Ty1 && 5656 ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || 5657 Op->getType()->getScalarSizeInBits() > 5658 DL->getIndexSizeInBits( 5659 V->getType()->getPointerAddressSpace())))) { 5660 LLVM_DEBUG(dbgs() 5661 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5662 BS.cancelScheduling(VL, VL0); 5663 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5664 ReuseShuffleIndicies); 5665 return; 5666 } 5667 } 5668 5669 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5670 ReuseShuffleIndicies); 5671 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5672 SmallVector<ValueList, 2> Operands(2); 5673 // Prepare the operand vector for pointer operands. 5674 for (Value *V : VL) { 5675 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5676 if (!GEP) { 5677 Operands.front().push_back(V); 5678 continue; 5679 } 5680 Operands.front().push_back(GEP->getPointerOperand()); 5681 } 5682 TE->setOperand(0, Operands.front()); 5683 // Need to cast all indices to the same type before vectorization to 5684 // avoid crash. 5685 // Required to be able to find correct matches between different gather 5686 // nodes and reuse the vectorized values rather than trying to gather them 5687 // again. 5688 int IndexIdx = 1; 5689 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5690 Type *Ty = all_of(VL, 5691 [VL0Ty, IndexIdx](Value *V) { 5692 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5693 if (!GEP) 5694 return true; 5695 return VL0Ty == GEP->getOperand(IndexIdx)->getType(); 5696 }) 5697 ? VL0Ty 5698 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5699 ->getPointerOperandType() 5700 ->getScalarType()); 5701 // Prepare the operand vector. 5702 for (Value *V : VL) { 5703 auto *I = dyn_cast<GetElementPtrInst>(V); 5704 if (!I) { 5705 Operands.back().push_back( 5706 ConstantInt::get(Ty, 0, /*isSigned=*/false)); 5707 continue; 5708 } 5709 auto *Op = I->getOperand(IndexIdx); 5710 auto *CI = dyn_cast<ConstantInt>(Op); 5711 if (!CI) 5712 Operands.back().push_back(Op); 5713 else 5714 Operands.back().push_back(ConstantExpr::getIntegerCast( 5715 CI, Ty, CI->getValue().isSignBitSet())); 5716 } 5717 TE->setOperand(IndexIdx, Operands.back()); 5718 5719 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5720 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5721 return; 5722 } 5723 case Instruction::Store: { 5724 // Check if the stores are consecutive or if we need to swizzle them. 5725 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5726 // Avoid types that are padded when being allocated as scalars, while 5727 // being packed together in a vector (such as i1). 5728 if (DL->getTypeSizeInBits(ScalarTy) != 5729 DL->getTypeAllocSizeInBits(ScalarTy)) { 5730 BS.cancelScheduling(VL, VL0); 5731 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5732 ReuseShuffleIndicies); 5733 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5734 return; 5735 } 5736 // Make sure all stores in the bundle are simple - we can't vectorize 5737 // atomic or volatile stores. 5738 SmallVector<Value *, 4> PointerOps(VL.size()); 5739 ValueList Operands(VL.size()); 5740 auto POIter = PointerOps.begin(); 5741 auto OIter = Operands.begin(); 5742 for (Value *V : VL) { 5743 auto *SI = cast<StoreInst>(V); 5744 if (!SI->isSimple()) { 5745 BS.cancelScheduling(VL, VL0); 5746 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5747 ReuseShuffleIndicies); 5748 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5749 return; 5750 } 5751 *POIter = SI->getPointerOperand(); 5752 *OIter = SI->getValueOperand(); 5753 ++POIter; 5754 ++OIter; 5755 } 5756 5757 OrdersType CurrentOrder; 5758 // Check the order of pointer operands. 5759 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5760 Value *Ptr0; 5761 Value *PtrN; 5762 if (CurrentOrder.empty()) { 5763 Ptr0 = PointerOps.front(); 5764 PtrN = PointerOps.back(); 5765 } else { 5766 Ptr0 = PointerOps[CurrentOrder.front()]; 5767 PtrN = PointerOps[CurrentOrder.back()]; 5768 } 5769 std::optional<int> Dist = 5770 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5771 // Check that the sorted pointer operands are consecutive. 5772 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5773 if (CurrentOrder.empty()) { 5774 // Original stores are consecutive and does not require reordering. 5775 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5776 UserTreeIdx, ReuseShuffleIndicies); 5777 TE->setOperandsInOrder(); 5778 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5779 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5780 } else { 5781 fixupOrderingIndices(CurrentOrder); 5782 TreeEntry *TE = 5783 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5784 ReuseShuffleIndicies, CurrentOrder); 5785 TE->setOperandsInOrder(); 5786 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5787 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5788 } 5789 return; 5790 } 5791 } 5792 5793 BS.cancelScheduling(VL, VL0); 5794 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5795 ReuseShuffleIndicies); 5796 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5797 return; 5798 } 5799 case Instruction::Call: { 5800 // Check if the calls are all to the same vectorizable intrinsic or 5801 // library function. 5802 CallInst *CI = cast<CallInst>(VL0); 5803 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5804 5805 VFShape Shape = VFShape::get( 5806 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5807 false /*HasGlobalPred*/); 5808 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5809 5810 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5811 BS.cancelScheduling(VL, VL0); 5812 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5813 ReuseShuffleIndicies); 5814 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5815 return; 5816 } 5817 Function *F = CI->getCalledFunction(); 5818 unsigned NumArgs = CI->arg_size(); 5819 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5820 for (unsigned j = 0; j != NumArgs; ++j) 5821 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5822 ScalarArgs[j] = CI->getArgOperand(j); 5823 for (Value *V : VL) { 5824 CallInst *CI2 = dyn_cast<CallInst>(V); 5825 if (!CI2 || CI2->getCalledFunction() != F || 5826 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5827 (VecFunc && 5828 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5829 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5830 BS.cancelScheduling(VL, VL0); 5831 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5832 ReuseShuffleIndicies); 5833 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5834 << "\n"); 5835 return; 5836 } 5837 // Some intrinsics have scalar arguments and should be same in order for 5838 // them to be vectorized. 5839 for (unsigned j = 0; j != NumArgs; ++j) { 5840 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5841 Value *A1J = CI2->getArgOperand(j); 5842 if (ScalarArgs[j] != A1J) { 5843 BS.cancelScheduling(VL, VL0); 5844 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5845 ReuseShuffleIndicies); 5846 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5847 << " argument " << ScalarArgs[j] << "!=" << A1J 5848 << "\n"); 5849 return; 5850 } 5851 } 5852 } 5853 // Verify that the bundle operands are identical between the two calls. 5854 if (CI->hasOperandBundles() && 5855 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5856 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5857 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5858 BS.cancelScheduling(VL, VL0); 5859 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5860 ReuseShuffleIndicies); 5861 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5862 << *CI << "!=" << *V << '\n'); 5863 return; 5864 } 5865 } 5866 5867 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5868 ReuseShuffleIndicies); 5869 TE->setOperandsInOrder(); 5870 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5871 // For scalar operands no need to to create an entry since no need to 5872 // vectorize it. 5873 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5874 continue; 5875 ValueList Operands; 5876 // Prepare the operand vector. 5877 for (Value *V : VL) { 5878 auto *CI2 = cast<CallInst>(V); 5879 Operands.push_back(CI2->getArgOperand(i)); 5880 } 5881 buildTree_rec(Operands, Depth + 1, {TE, i}); 5882 } 5883 return; 5884 } 5885 case Instruction::ShuffleVector: { 5886 // If this is not an alternate sequence of opcode like add-sub 5887 // then do not vectorize this instruction. 5888 if (!S.isAltShuffle()) { 5889 BS.cancelScheduling(VL, VL0); 5890 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5891 ReuseShuffleIndicies); 5892 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5893 return; 5894 } 5895 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5896 ReuseShuffleIndicies); 5897 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5898 5899 // Reorder operands if reordering would enable vectorization. 5900 auto *CI = dyn_cast<CmpInst>(VL0); 5901 if (isa<BinaryOperator>(VL0) || CI) { 5902 ValueList Left, Right; 5903 if (!CI || all_of(VL, [](Value *V) { 5904 return cast<CmpInst>(V)->isCommutative(); 5905 })) { 5906 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, 5907 *this); 5908 } else { 5909 auto *MainCI = cast<CmpInst>(S.MainOp); 5910 auto *AltCI = cast<CmpInst>(S.AltOp); 5911 CmpInst::Predicate MainP = MainCI->getPredicate(); 5912 CmpInst::Predicate AltP = AltCI->getPredicate(); 5913 assert(MainP != AltP && 5914 "Expected different main/alternate predicates."); 5915 // Collect operands - commute if it uses the swapped predicate or 5916 // alternate operation. 5917 for (Value *V : VL) { 5918 auto *Cmp = cast<CmpInst>(V); 5919 Value *LHS = Cmp->getOperand(0); 5920 Value *RHS = Cmp->getOperand(1); 5921 5922 if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) { 5923 if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) 5924 std::swap(LHS, RHS); 5925 } else { 5926 if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) 5927 std::swap(LHS, RHS); 5928 } 5929 Left.push_back(LHS); 5930 Right.push_back(RHS); 5931 } 5932 } 5933 TE->setOperand(0, Left); 5934 TE->setOperand(1, Right); 5935 buildTree_rec(Left, Depth + 1, {TE, 0}); 5936 buildTree_rec(Right, Depth + 1, {TE, 1}); 5937 return; 5938 } 5939 5940 TE->setOperandsInOrder(); 5941 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5942 ValueList Operands; 5943 // Prepare the operand vector. 5944 for (Value *V : VL) 5945 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5946 5947 buildTree_rec(Operands, Depth + 1, {TE, i}); 5948 } 5949 return; 5950 } 5951 default: 5952 BS.cancelScheduling(VL, VL0); 5953 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, 5954 ReuseShuffleIndicies); 5955 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5956 return; 5957 } 5958 } 5959 5960 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5961 unsigned N = 1; 5962 Type *EltTy = T; 5963 5964 while (isa<StructType, ArrayType, VectorType>(EltTy)) { 5965 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5966 // Check that struct is homogeneous. 5967 for (const auto *Ty : ST->elements()) 5968 if (Ty != *ST->element_begin()) 5969 return 0; 5970 N *= ST->getNumElements(); 5971 EltTy = *ST->element_begin(); 5972 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5973 N *= AT->getNumElements(); 5974 EltTy = AT->getElementType(); 5975 } else { 5976 auto *VT = cast<FixedVectorType>(EltTy); 5977 N *= VT->getNumElements(); 5978 EltTy = VT->getElementType(); 5979 } 5980 } 5981 5982 if (!isValidElementType(EltTy)) 5983 return 0; 5984 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5985 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5986 return 0; 5987 return N; 5988 } 5989 5990 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5991 SmallVectorImpl<unsigned> &CurrentOrder) const { 5992 const auto *It = find_if(VL, [](Value *V) { 5993 return isa<ExtractElementInst, ExtractValueInst>(V); 5994 }); 5995 assert(It != VL.end() && "Expected at least one extract instruction."); 5996 auto *E0 = cast<Instruction>(*It); 5997 assert(all_of(VL, 5998 [](Value *V) { 5999 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 6000 V); 6001 }) && 6002 "Invalid opcode"); 6003 // Check if all of the extracts come from the same vector and from the 6004 // correct offset. 6005 Value *Vec = E0->getOperand(0); 6006 6007 CurrentOrder.clear(); 6008 6009 // We have to extract from a vector/aggregate with the same number of elements. 6010 unsigned NElts; 6011 if (E0->getOpcode() == Instruction::ExtractValue) { 6012 const DataLayout &DL = E0->getModule()->getDataLayout(); 6013 NElts = canMapToVector(Vec->getType(), DL); 6014 if (!NElts) 6015 return false; 6016 // Check if load can be rewritten as load of vector. 6017 LoadInst *LI = dyn_cast<LoadInst>(Vec); 6018 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 6019 return false; 6020 } else { 6021 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 6022 } 6023 6024 if (NElts != VL.size()) 6025 return false; 6026 6027 // Check that all of the indices extract from the correct offset. 6028 bool ShouldKeepOrder = true; 6029 unsigned E = VL.size(); 6030 // Assign to all items the initial value E + 1 so we can check if the extract 6031 // instruction index was used already. 6032 // Also, later we can check that all the indices are used and we have a 6033 // consecutive access in the extract instructions, by checking that no 6034 // element of CurrentOrder still has value E + 1. 6035 CurrentOrder.assign(E, E); 6036 unsigned I = 0; 6037 for (; I < E; ++I) { 6038 auto *Inst = dyn_cast<Instruction>(VL[I]); 6039 if (!Inst) 6040 continue; 6041 if (Inst->getOperand(0) != Vec) 6042 break; 6043 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 6044 if (isa<UndefValue>(EE->getIndexOperand())) 6045 continue; 6046 std::optional<unsigned> Idx = getExtractIndex(Inst); 6047 if (!Idx) 6048 break; 6049 const unsigned ExtIdx = *Idx; 6050 if (ExtIdx != I) { 6051 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 6052 break; 6053 ShouldKeepOrder = false; 6054 CurrentOrder[ExtIdx] = I; 6055 } else { 6056 if (CurrentOrder[I] != E) 6057 break; 6058 CurrentOrder[I] = I; 6059 } 6060 } 6061 if (I < E) { 6062 CurrentOrder.clear(); 6063 return false; 6064 } 6065 if (ShouldKeepOrder) 6066 CurrentOrder.clear(); 6067 6068 return ShouldKeepOrder; 6069 } 6070 6071 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 6072 ArrayRef<Value *> VectorizedVals) const { 6073 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 6074 all_of(I->users(), [this](User *U) { 6075 return ScalarToTreeEntry.count(U) > 0 || 6076 isVectorLikeInstWithConstOps(U) || 6077 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 6078 }); 6079 } 6080 6081 static std::pair<InstructionCost, InstructionCost> 6082 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 6083 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 6084 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6085 6086 // Calculate the cost of the scalar and vector calls. 6087 SmallVector<Type *, 4> VecTys; 6088 for (Use &Arg : CI->args()) 6089 VecTys.push_back( 6090 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 6091 FastMathFlags FMF; 6092 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 6093 FMF = FPCI->getFastMathFlags(); 6094 SmallVector<const Value *> Arguments(CI->args()); 6095 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 6096 dyn_cast<IntrinsicInst>(CI)); 6097 auto IntrinsicCost = 6098 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 6099 6100 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6101 VecTy->getNumElements())), 6102 false /*HasGlobalPred*/); 6103 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 6104 auto LibCost = IntrinsicCost; 6105 if (!CI->isNoBuiltin() && VecFunc) { 6106 // Calculate the cost of the vector library call. 6107 // If the corresponding vector call is cheaper, return its cost. 6108 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 6109 TTI::TCK_RecipThroughput); 6110 } 6111 return {IntrinsicCost, LibCost}; 6112 } 6113 6114 /// Compute the cost of creating a vector of type \p VecTy containing the 6115 /// extracted values from \p VL. 6116 static InstructionCost 6117 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 6118 TargetTransformInfo::ShuffleKind ShuffleKind, 6119 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 6120 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 6121 6122 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 6123 VecTy->getNumElements() < NumOfParts) 6124 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 6125 6126 bool AllConsecutive = true; 6127 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 6128 unsigned Idx = -1; 6129 InstructionCost Cost = 0; 6130 6131 // Process extracts in blocks of EltsPerVector to check if the source vector 6132 // operand can be re-used directly. If not, add the cost of creating a shuffle 6133 // to extract the values into a vector register. 6134 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 6135 for (auto *V : VL) { 6136 ++Idx; 6137 6138 // Reached the start of a new vector registers. 6139 if (Idx % EltsPerVector == 0) { 6140 RegMask.assign(EltsPerVector, UndefMaskElem); 6141 AllConsecutive = true; 6142 continue; 6143 } 6144 6145 // Need to exclude undefs from analysis. 6146 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 6147 continue; 6148 6149 // Check all extracts for a vector register on the target directly 6150 // extract values in order. 6151 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 6152 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 6153 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 6154 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 6155 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 6156 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 6157 } 6158 6159 if (AllConsecutive) 6160 continue; 6161 6162 // Skip all indices, except for the last index per vector block. 6163 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 6164 continue; 6165 6166 // If we have a series of extracts which are not consecutive and hence 6167 // cannot re-use the source vector register directly, compute the shuffle 6168 // cost to extract the vector with EltsPerVector elements. 6169 Cost += TTI.getShuffleCost( 6170 TargetTransformInfo::SK_PermuteSingleSrc, 6171 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 6172 } 6173 return Cost; 6174 } 6175 6176 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 6177 /// operations operands. 6178 static void 6179 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 6180 ArrayRef<int> ReusesIndices, 6181 const function_ref<bool(Instruction *)> IsAltOp, 6182 SmallVectorImpl<int> &Mask, 6183 SmallVectorImpl<Value *> *OpScalars = nullptr, 6184 SmallVectorImpl<Value *> *AltScalars = nullptr) { 6185 unsigned Sz = VL.size(); 6186 Mask.assign(Sz, UndefMaskElem); 6187 SmallVector<int> OrderMask; 6188 if (!ReorderIndices.empty()) 6189 inversePermutation(ReorderIndices, OrderMask); 6190 for (unsigned I = 0; I < Sz; ++I) { 6191 unsigned Idx = I; 6192 if (!ReorderIndices.empty()) 6193 Idx = OrderMask[I]; 6194 auto *OpInst = cast<Instruction>(VL[Idx]); 6195 if (IsAltOp(OpInst)) { 6196 Mask[I] = Sz + Idx; 6197 if (AltScalars) 6198 AltScalars->push_back(OpInst); 6199 } else { 6200 Mask[I] = Idx; 6201 if (OpScalars) 6202 OpScalars->push_back(OpInst); 6203 } 6204 } 6205 if (!ReusesIndices.empty()) { 6206 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 6207 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 6208 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 6209 }); 6210 Mask.swap(NewMask); 6211 } 6212 } 6213 6214 static bool isAlternateInstruction(const Instruction *I, 6215 const Instruction *MainOp, 6216 const Instruction *AltOp, 6217 const TargetLibraryInfo &TLI) { 6218 if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) { 6219 auto *AltCI = cast<CmpInst>(AltOp); 6220 CmpInst::Predicate MainP = MainCI->getPredicate(); 6221 CmpInst::Predicate AltP = AltCI->getPredicate(); 6222 assert(MainP != AltP && "Expected different main/alternate predicates."); 6223 auto *CI = cast<CmpInst>(I); 6224 if (isCmpSameOrSwapped(MainCI, CI, TLI)) 6225 return false; 6226 if (isCmpSameOrSwapped(AltCI, CI, TLI)) 6227 return true; 6228 CmpInst::Predicate P = CI->getPredicate(); 6229 CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P); 6230 6231 assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && 6232 "CmpInst expected to match either main or alternate predicate or " 6233 "their swap."); 6234 (void)AltP; 6235 return MainP != P && MainP != SwappedP; 6236 } 6237 return I->getOpcode() == AltOp->getOpcode(); 6238 } 6239 6240 TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> VL, 6241 unsigned OpIdx) { 6242 assert(!VL.empty()); 6243 const auto *I0 = cast<Instruction>(*find_if(VL, Instruction::classof)); 6244 const auto *Op0 = I0->getOperand(OpIdx); 6245 6246 const bool IsConstant = all_of(VL, [&](Value *V) { 6247 // TODO: We should allow undef elements here 6248 const auto *I = dyn_cast<Instruction>(V); 6249 if (!I) 6250 return true; 6251 auto *Op = I->getOperand(OpIdx); 6252 return isConstant(Op) && !isa<UndefValue>(Op); 6253 }); 6254 const bool IsUniform = all_of(VL, [&](Value *V) { 6255 // TODO: We should allow undef elements here 6256 const auto *I = dyn_cast<Instruction>(V); 6257 if (!I) 6258 return false; 6259 return I->getOperand(OpIdx) == Op0; 6260 }); 6261 const bool IsPowerOfTwo = all_of(VL, [&](Value *V) { 6262 // TODO: We should allow undef elements here 6263 const auto *I = dyn_cast<Instruction>(V); 6264 if (!I) { 6265 assert((isa<UndefValue>(V) || 6266 I0->getOpcode() == Instruction::GetElementPtr) && 6267 "Expected undef or GEP."); 6268 return true; 6269 } 6270 auto *Op = I->getOperand(OpIdx); 6271 if (auto *CI = dyn_cast<ConstantInt>(Op)) 6272 return CI->getValue().isPowerOf2(); 6273 return false; 6274 }); 6275 const bool IsNegatedPowerOfTwo = all_of(VL, [&](Value *V) { 6276 // TODO: We should allow undef elements here 6277 const auto *I = dyn_cast<Instruction>(V); 6278 if (!I) { 6279 assert((isa<UndefValue>(V) || 6280 I0->getOpcode() == Instruction::GetElementPtr) && 6281 "Expected undef or GEP."); 6282 return true; 6283 } 6284 const auto *Op = I->getOperand(OpIdx); 6285 if (auto *CI = dyn_cast<ConstantInt>(Op)) 6286 return CI->getValue().isNegatedPowerOf2(); 6287 return false; 6288 }); 6289 6290 TTI::OperandValueKind VK = TTI::OK_AnyValue; 6291 if (IsConstant && IsUniform) 6292 VK = TTI::OK_UniformConstantValue; 6293 else if (IsConstant) 6294 VK = TTI::OK_NonUniformConstantValue; 6295 else if (IsUniform) 6296 VK = TTI::OK_UniformValue; 6297 6298 TTI::OperandValueProperties VP = TTI::OP_None; 6299 VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP; 6300 VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP; 6301 6302 return {VK, VP}; 6303 } 6304 6305 namespace { 6306 /// The base class for shuffle instruction emission and shuffle cost estimation. 6307 class BaseShuffleAnalysis { 6308 protected: 6309 /// Checks if the mask is an identity mask. 6310 /// \param IsStrict if is true the function returns false if mask size does 6311 /// not match vector size. 6312 static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy, 6313 bool IsStrict) { 6314 int Limit = Mask.size(); 6315 int VF = VecTy->getNumElements(); 6316 return (VF == Limit || !IsStrict) && 6317 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 6318 ShuffleVectorInst::isIdentityMask(Mask); 6319 } 6320 6321 /// Tries to combine 2 different masks into single one. 6322 /// \param LocalVF Vector length of the permuted input vector. \p Mask may 6323 /// change the size of the vector, \p LocalVF is the original size of the 6324 /// shuffled vector. 6325 static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask, 6326 ArrayRef<int> ExtMask) { 6327 unsigned VF = Mask.size(); 6328 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 6329 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 6330 if (ExtMask[I] == UndefMaskElem) 6331 continue; 6332 int MaskedIdx = Mask[ExtMask[I] % VF]; 6333 NewMask[I] = 6334 MaskedIdx == UndefMaskElem ? UndefMaskElem : MaskedIdx % LocalVF; 6335 } 6336 Mask.swap(NewMask); 6337 } 6338 6339 /// Looks through shuffles trying to reduce final number of shuffles in the 6340 /// code. The function looks through the previously emitted shuffle 6341 /// instructions and properly mark indices in mask as undef. 6342 /// For example, given the code 6343 /// \code 6344 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> 6345 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> 6346 /// \endcode 6347 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will 6348 /// look through %s1 and %s2 and select vectors %0 and %1 with mask 6349 /// <0, 1, 2, 3> for the shuffle. 6350 /// If 2 operands are of different size, the smallest one will be resized and 6351 /// the mask recalculated properly. 6352 /// For example, given the code 6353 /// \code 6354 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> 6355 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> 6356 /// \endcode 6357 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will 6358 /// look through %s1 and %s2 and select vectors %0 and %1 with mask 6359 /// <0, 1, 2, 3> for the shuffle. 6360 /// So, it tries to transform permutations to simple vector merge, if 6361 /// possible. 6362 /// \param V The input vector which must be shuffled using the given \p Mask. 6363 /// If the better candidate is found, \p V is set to this best candidate 6364 /// vector. 6365 /// \param Mask The input mask for the shuffle. If the best candidate is found 6366 /// during looking-through-shuffles attempt, it is updated accordingly. 6367 /// \param SinglePermute true if the shuffle operation is originally a 6368 /// single-value-permutation. In this case the look-through-shuffles procedure 6369 /// may look for resizing shuffles as the best candidates. 6370 /// \return true if the shuffle results in the non-resizing identity shuffle 6371 /// (and thus can be ignored), false - otherwise. 6372 static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask, 6373 bool SinglePermute) { 6374 Value *Op = V; 6375 ShuffleVectorInst *IdentityOp = nullptr; 6376 SmallVector<int> IdentityMask; 6377 while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) { 6378 // Exit if not a fixed vector type or changing size shuffle. 6379 auto *SVTy = dyn_cast<FixedVectorType>(SV->getType()); 6380 if (!SVTy) 6381 break; 6382 // Remember the identity or broadcast mask, if it is not a resizing 6383 // shuffle. If no better candidates are found, this Op and Mask will be 6384 // used in the final shuffle. 6385 if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) { 6386 if (!IdentityOp || !SinglePermute || 6387 (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) && 6388 !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask))) { 6389 IdentityOp = SV; 6390 // Store current mask in the IdentityMask so later we did not lost 6391 // this info if IdentityOp is selected as the best candidate for the 6392 // permutation. 6393 IdentityMask.assign(Mask); 6394 } 6395 } 6396 // Remember the broadcast mask. If no better candidates are found, this Op 6397 // and Mask will be used in the final shuffle. 6398 // Zero splat can be used as identity too, since it might be used with 6399 // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling. 6400 // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is 6401 // expensive, the analysis founds out, that the source vector is just a 6402 // broadcast, this original mask can be transformed to identity mask <0, 6403 // 1, 2, 3>. 6404 // \code 6405 // %0 = shuffle %v, poison, zeroinitalizer 6406 // %res = shuffle %0, poison, <3, 1, 2, 0> 6407 // \endcode 6408 // may be transformed to 6409 // \code 6410 // %0 = shuffle %v, poison, zeroinitalizer 6411 // %res = shuffle %0, poison, <0, 1, 2, 3> 6412 // \endcode 6413 if (SV->isZeroEltSplat()) { 6414 IdentityOp = SV; 6415 IdentityMask.assign(Mask); 6416 } 6417 int LocalVF = Mask.size(); 6418 if (auto *SVOpTy = 6419 dyn_cast<FixedVectorType>(SV->getOperand(0)->getType())) 6420 LocalVF = SVOpTy->getNumElements(); 6421 SmallVector<int> ExtMask(Mask.size(), UndefMaskElem); 6422 for (auto [Idx, I] : enumerate(Mask)) { 6423 if (I == UndefMaskElem) 6424 continue; 6425 ExtMask[Idx] = SV->getMaskValue(I); 6426 } 6427 bool IsOp1Undef = 6428 isUndefVector(SV->getOperand(0), 6429 buildUseMask(LocalVF, ExtMask, UseMask::FirstArg)) 6430 .all(); 6431 bool IsOp2Undef = 6432 isUndefVector(SV->getOperand(1), 6433 buildUseMask(LocalVF, ExtMask, UseMask::SecondArg)) 6434 .all(); 6435 if (!IsOp1Undef && !IsOp2Undef) { 6436 // Update mask and mark undef elems. 6437 for (int &I : Mask) { 6438 if (I == UndefMaskElem) 6439 continue; 6440 if (SV->getMaskValue(I % SV->getShuffleMask().size()) == 6441 UndefMaskElem) 6442 I = UndefMaskElem; 6443 } 6444 break; 6445 } 6446 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 6447 SV->getShuffleMask().end()); 6448 combineMasks(LocalVF, ShuffleMask, Mask); 6449 Mask.swap(ShuffleMask); 6450 if (IsOp2Undef) 6451 Op = SV->getOperand(0); 6452 else 6453 Op = SV->getOperand(1); 6454 } 6455 if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType()); 6456 !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute)) { 6457 if (IdentityOp) { 6458 V = IdentityOp; 6459 assert(Mask.size() == IdentityMask.size() && 6460 "Expected masks of same sizes."); 6461 // Clear known poison elements. 6462 for (auto [I, Idx] : enumerate(Mask)) 6463 if (Idx == UndefMaskElem) 6464 IdentityMask[I] = UndefMaskElem; 6465 Mask.swap(IdentityMask); 6466 auto *Shuffle = dyn_cast<ShuffleVectorInst>(V); 6467 return SinglePermute && 6468 (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()), 6469 /*IsStrict=*/true) || 6470 (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() && 6471 Shuffle->isZeroEltSplat() && 6472 ShuffleVectorInst::isZeroEltSplatMask(Mask))); 6473 } 6474 V = Op; 6475 return false; 6476 } 6477 V = Op; 6478 return true; 6479 } 6480 6481 /// Smart shuffle instruction emission, walks through shuffles trees and 6482 /// tries to find the best matching vector for the actual shuffle 6483 /// instruction. 6484 template <typename ShuffleBuilderTy> 6485 static Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask, 6486 ShuffleBuilderTy &Builder) { 6487 assert(V1 && "Expected at least one vector value."); 6488 int VF = Mask.size(); 6489 if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) 6490 VF = FTy->getNumElements(); 6491 if (V2 && 6492 !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) { 6493 // Peek through shuffles. 6494 Value *Op1 = V1; 6495 Value *Op2 = V2; 6496 int VF = 6497 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 6498 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 6499 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 6500 for (int I = 0, E = Mask.size(); I < E; ++I) { 6501 if (Mask[I] < VF) 6502 CombinedMask1[I] = Mask[I]; 6503 else 6504 CombinedMask2[I] = Mask[I] - VF; 6505 } 6506 Value *PrevOp1; 6507 Value *PrevOp2; 6508 do { 6509 PrevOp1 = Op1; 6510 PrevOp2 = Op2; 6511 (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false); 6512 (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false); 6513 // Check if we have 2 resizing shuffles - need to peek through operands 6514 // again. 6515 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 6516 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) { 6517 SmallVector<int> ExtMask1(Mask.size(), UndefMaskElem); 6518 for (auto [Idx, I] : enumerate(CombinedMask1)) { 6519 if (I == UndefMaskElem) 6520 continue; 6521 ExtMask1[Idx] = SV1->getMaskValue(I); 6522 } 6523 SmallBitVector UseMask1 = buildUseMask( 6524 cast<FixedVectorType>(SV1->getOperand(1)->getType()) 6525 ->getNumElements(), 6526 ExtMask1, UseMask::SecondArg); 6527 SmallVector<int> ExtMask2(CombinedMask2.size(), UndefMaskElem); 6528 for (auto [Idx, I] : enumerate(CombinedMask2)) { 6529 if (I == UndefMaskElem) 6530 continue; 6531 ExtMask2[Idx] = SV2->getMaskValue(I); 6532 } 6533 SmallBitVector UseMask2 = buildUseMask( 6534 cast<FixedVectorType>(SV2->getOperand(1)->getType()) 6535 ->getNumElements(), 6536 ExtMask2, UseMask::SecondArg); 6537 if (SV1->getOperand(0)->getType() == 6538 SV2->getOperand(0)->getType() && 6539 SV1->getOperand(0)->getType() != SV1->getType() && 6540 isUndefVector(SV1->getOperand(1), UseMask1).all() && 6541 isUndefVector(SV2->getOperand(1), UseMask2).all()) { 6542 Op1 = SV1->getOperand(0); 6543 Op2 = SV2->getOperand(0); 6544 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 6545 SV1->getShuffleMask().end()); 6546 int LocalVF = ShuffleMask1.size(); 6547 if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType())) 6548 LocalVF = FTy->getNumElements(); 6549 combineMasks(LocalVF, ShuffleMask1, CombinedMask1); 6550 CombinedMask1.swap(ShuffleMask1); 6551 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 6552 SV2->getShuffleMask().end()); 6553 LocalVF = ShuffleMask2.size(); 6554 if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType())) 6555 LocalVF = FTy->getNumElements(); 6556 combineMasks(LocalVF, ShuffleMask2, CombinedMask2); 6557 CombinedMask2.swap(ShuffleMask2); 6558 } 6559 } 6560 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 6561 Builder.resizeToMatch(Op1, Op2); 6562 VF = std::max(cast<VectorType>(Op1->getType()) 6563 ->getElementCount() 6564 .getKnownMinValue(), 6565 cast<VectorType>(Op2->getType()) 6566 ->getElementCount() 6567 .getKnownMinValue()); 6568 for (int I = 0, E = Mask.size(); I < E; ++I) { 6569 if (CombinedMask2[I] != UndefMaskElem) { 6570 assert(CombinedMask1[I] == UndefMaskElem && 6571 "Expected undefined mask element"); 6572 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 6573 } 6574 } 6575 return Builder.createShuffleVector( 6576 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 6577 CombinedMask1); 6578 } 6579 if (isa<PoisonValue>(V1)) 6580 return PoisonValue::get(FixedVectorType::get( 6581 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 6582 SmallVector<int> NewMask(Mask.begin(), Mask.end()); 6583 bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true); 6584 assert(V1 && "Expected non-null value after looking through shuffles."); 6585 6586 if (!IsIdentity) 6587 return Builder.createShuffleVector(V1, NewMask); 6588 return V1; 6589 } 6590 }; 6591 } // namespace 6592 6593 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 6594 ArrayRef<Value *> VectorizedVals) { 6595 ArrayRef<Value *> VL = E->Scalars; 6596 6597 Type *ScalarTy = VL[0]->getType(); 6598 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6599 ScalarTy = SI->getValueOperand()->getType(); 6600 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 6601 ScalarTy = CI->getOperand(0)->getType(); 6602 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 6603 ScalarTy = IE->getOperand(1)->getType(); 6604 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6605 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6606 6607 // If we have computed a smaller type for the expression, update VecTy so 6608 // that the costs will be accurate. 6609 if (MinBWs.count(VL[0])) 6610 VecTy = FixedVectorType::get( 6611 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 6612 unsigned EntryVF = E->getVectorFactor(); 6613 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 6614 6615 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6616 // FIXME: it tries to fix a problem with MSVC buildbots. 6617 TargetTransformInfo *TTI = this->TTI; 6618 auto AdjustExtractsCost = [=](InstructionCost &Cost) { 6619 // If the resulting type is scalarized, do not adjust the cost. 6620 unsigned VecNumParts = TTI->getNumberOfParts(VecTy); 6621 if (VecNumParts == VecTy->getNumElements()) 6622 return; 6623 DenseMap<Value *, int> ExtractVectorsTys; 6624 SmallPtrSet<Value *, 4> CheckedExtracts; 6625 for (auto *V : VL) { 6626 if (isa<UndefValue>(V)) 6627 continue; 6628 // If all users of instruction are going to be vectorized and this 6629 // instruction itself is not going to be vectorized, consider this 6630 // instruction as dead and remove its cost from the final cost of the 6631 // vectorized tree. 6632 // Also, avoid adjusting the cost for extractelements with multiple uses 6633 // in different graph entries. 6634 const TreeEntry *VE = getTreeEntry(V); 6635 if (!CheckedExtracts.insert(V).second || 6636 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 6637 (VE && VE != E)) 6638 continue; 6639 auto *EE = cast<ExtractElementInst>(V); 6640 std::optional<unsigned> EEIdx = getExtractIndex(EE); 6641 if (!EEIdx) 6642 continue; 6643 unsigned Idx = *EEIdx; 6644 if (VecNumParts != TTI->getNumberOfParts(EE->getVectorOperandType())) { 6645 auto It = 6646 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 6647 It->getSecond() = std::min<int>(It->second, Idx); 6648 } 6649 // Take credit for instruction that will become dead. 6650 if (EE->hasOneUse()) { 6651 Instruction *Ext = EE->user_back(); 6652 if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) { 6653 return isa<GetElementPtrInst>(U); 6654 })) { 6655 // Use getExtractWithExtendCost() to calculate the cost of 6656 // extractelement/ext pair. 6657 Cost -= 6658 TTI->getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 6659 EE->getVectorOperandType(), Idx); 6660 // Add back the cost of s|zext which is subtracted separately. 6661 Cost += TTI->getCastInstrCost( 6662 Ext->getOpcode(), Ext->getType(), EE->getType(), 6663 TTI::getCastContextHint(Ext), CostKind, Ext); 6664 continue; 6665 } 6666 } 6667 Cost -= TTI->getVectorInstrCost(*EE, EE->getVectorOperandType(), CostKind, 6668 Idx); 6669 } 6670 // Add a cost for subvector extracts/inserts if required. 6671 for (const auto &Data : ExtractVectorsTys) { 6672 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 6673 unsigned NumElts = VecTy->getNumElements(); 6674 if (Data.second % NumElts == 0) 6675 continue; 6676 if (TTI->getNumberOfParts(EEVTy) > VecNumParts) { 6677 unsigned Idx = (Data.second / NumElts) * NumElts; 6678 unsigned EENumElts = EEVTy->getNumElements(); 6679 if (Idx + NumElts <= EENumElts) { 6680 Cost += 6681 TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6682 EEVTy, std::nullopt, CostKind, Idx, VecTy); 6683 } else { 6684 // Need to round up the subvector type vectorization factor to avoid a 6685 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 6686 // <= EENumElts. 6687 auto *SubVT = 6688 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 6689 Cost += 6690 TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6691 EEVTy, std::nullopt, CostKind, Idx, SubVT); 6692 } 6693 } else { 6694 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 6695 VecTy, std::nullopt, CostKind, 0, EEVTy); 6696 } 6697 } 6698 }; 6699 if (E->State == TreeEntry::NeedToGather) { 6700 if (allConstant(VL)) 6701 return 0; 6702 if (isa<InsertElementInst>(VL[0])) 6703 return InstructionCost::getInvalid(); 6704 SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); 6705 // Build a mask out of the reorder indices and reorder scalars per this 6706 // mask. 6707 SmallVector<int> ReorderMask; 6708 inversePermutation(E->ReorderIndices, ReorderMask); 6709 if (!ReorderMask.empty()) 6710 reorderScalars(GatheredScalars, ReorderMask); 6711 SmallVector<int> Mask; 6712 std::optional<TargetTransformInfo::ShuffleKind> GatherShuffle; 6713 SmallVector<const TreeEntry *> Entries; 6714 // Do not try to look for reshuffled loads for gathered loads (they will be 6715 // handled later), for vectorized scalars, and cases, which are definitely 6716 // not profitable (splats and small gather nodes.) 6717 if (E->getOpcode() != Instruction::Load || E->isAltShuffle() || 6718 all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) || 6719 isSplat(E->Scalars) || 6720 (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) 6721 GatherShuffle = isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); 6722 if (GatherShuffle) { 6723 // Remove shuffled elements from list of gathers. 6724 for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { 6725 if (Mask[I] != UndefMaskElem) 6726 GatheredScalars[I] = PoisonValue::get(ScalarTy); 6727 } 6728 assert((Entries.size() == 1 || Entries.size() == 2) && 6729 "Expected shuffle of 1 or 2 entries."); 6730 InstructionCost GatherCost = 0; 6731 int Limit = Mask.size() * 2; 6732 if (all_of(Mask, [=](int Idx) { return Idx < Limit; }) && 6733 ShuffleVectorInst::isIdentityMask(Mask)) { 6734 // Perfect match in the graph, will reuse the previously vectorized 6735 // node. Cost is 0. 6736 LLVM_DEBUG( 6737 dbgs() 6738 << "SLP: perfect diamond match for gather bundle that starts with " 6739 << *VL.front() << ".\n"); 6740 if (NeedToShuffleReuses) 6741 GatherCost = 6742 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 6743 FinalVecTy, E->ReuseShuffleIndices); 6744 } else { 6745 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 6746 << " entries for bundle that starts with " 6747 << *VL.front() << ".\n"); 6748 // Detected that instead of gather we can emit a shuffle of single/two 6749 // previously vectorized nodes. Add the cost of the permutation rather 6750 // than gather. 6751 ::addMask(Mask, E->ReuseShuffleIndices); 6752 GatherCost = TTI->getShuffleCost(*GatherShuffle, FinalVecTy, Mask); 6753 } 6754 if (!all_of(GatheredScalars, UndefValue::classof)) 6755 GatherCost += getGatherCost(GatheredScalars); 6756 return GatherCost; 6757 } 6758 if ((E->getOpcode() == Instruction::ExtractElement || 6759 all_of(E->Scalars, 6760 [](Value *V) { 6761 return isa<ExtractElementInst, UndefValue>(V); 6762 })) && 6763 allSameType(VL)) { 6764 // Check that gather of extractelements can be represented as just a 6765 // shuffle of a single/two vectors the scalars are extracted from. 6766 SmallVector<int> Mask; 6767 std::optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 6768 isFixedVectorShuffle(VL, Mask); 6769 if (ShuffleKind) { 6770 // Found the bunch of extractelement instructions that must be gathered 6771 // into a vector and can be represented as a permutation elements in a 6772 // single input vector or of 2 input vectors. 6773 InstructionCost Cost = 6774 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 6775 AdjustExtractsCost(Cost); 6776 if (NeedToShuffleReuses) 6777 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 6778 FinalVecTy, E->ReuseShuffleIndices); 6779 return Cost; 6780 } 6781 } 6782 if (isSplat(VL)) { 6783 // Found the broadcasting of the single scalar, calculate the cost as the 6784 // broadcast. 6785 assert(VecTy == FinalVecTy && 6786 "No reused scalars expected for broadcast."); 6787 const auto *It = 6788 find_if(VL, [](Value *V) { return !isa<UndefValue>(V); }); 6789 // If all values are undefs - consider cost free. 6790 if (It == VL.end()) 6791 return TTI::TCC_Free; 6792 // Add broadcast for non-identity shuffle only. 6793 bool NeedShuffle = 6794 VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof); 6795 InstructionCost InsertCost = 6796 TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 6797 /*Index=*/0, PoisonValue::get(VecTy), *It); 6798 return InsertCost + (NeedShuffle 6799 ? TTI->getShuffleCost( 6800 TargetTransformInfo::SK_Broadcast, VecTy, 6801 /*Mask=*/std::nullopt, CostKind, 6802 /*Index=*/0, 6803 /*SubTp=*/nullptr, /*Args=*/VL[0]) 6804 : TTI::TCC_Free); 6805 } 6806 InstructionCost ReuseShuffleCost = 0; 6807 if (NeedToShuffleReuses) 6808 ReuseShuffleCost = TTI->getShuffleCost( 6809 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 6810 // Improve gather cost for gather of loads, if we can group some of the 6811 // loads into vector loads. 6812 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 6813 !E->isAltShuffle()) { 6814 BoUpSLP::ValueSet VectorizedLoads; 6815 unsigned StartIdx = 0; 6816 unsigned VF = VL.size() / 2; 6817 unsigned VectorizedCnt = 0; 6818 unsigned ScatterVectorizeCnt = 0; 6819 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 6820 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 6821 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 6822 Cnt += VF) { 6823 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 6824 if (!VectorizedLoads.count(Slice.front()) && 6825 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 6826 SmallVector<Value *> PointerOps; 6827 OrdersType CurrentOrder; 6828 LoadsState LS = 6829 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI, 6830 *TLI, CurrentOrder, PointerOps); 6831 switch (LS) { 6832 case LoadsState::Vectorize: 6833 case LoadsState::ScatterVectorize: 6834 // Mark the vectorized loads so that we don't vectorize them 6835 // again. 6836 if (LS == LoadsState::Vectorize) 6837 ++VectorizedCnt; 6838 else 6839 ++ScatterVectorizeCnt; 6840 VectorizedLoads.insert(Slice.begin(), Slice.end()); 6841 // If we vectorized initial block, no need to try to vectorize it 6842 // again. 6843 if (Cnt == StartIdx) 6844 StartIdx += VF; 6845 break; 6846 case LoadsState::Gather: 6847 break; 6848 } 6849 } 6850 } 6851 // Check if the whole array was vectorized already - exit. 6852 if (StartIdx >= VL.size()) 6853 break; 6854 // Found vectorizable parts - exit. 6855 if (!VectorizedLoads.empty()) 6856 break; 6857 } 6858 if (!VectorizedLoads.empty()) { 6859 InstructionCost GatherCost = 0; 6860 unsigned NumParts = TTI->getNumberOfParts(VecTy); 6861 bool NeedInsertSubvectorAnalysis = 6862 !NumParts || (VL.size() / VF) > NumParts; 6863 // Get the cost for gathered loads. 6864 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 6865 if (VectorizedLoads.contains(VL[I])) 6866 continue; 6867 GatherCost += getGatherCost(VL.slice(I, VF)); 6868 } 6869 // The cost for vectorized loads. 6870 InstructionCost ScalarsCost = 0; 6871 for (Value *V : VectorizedLoads) { 6872 auto *LI = cast<LoadInst>(V); 6873 ScalarsCost += 6874 TTI->getMemoryOpCost(Instruction::Load, LI->getType(), 6875 LI->getAlign(), LI->getPointerAddressSpace(), 6876 CostKind, TTI::OperandValueInfo(), LI); 6877 } 6878 auto *LI = cast<LoadInst>(E->getMainOp()); 6879 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 6880 Align Alignment = LI->getAlign(); 6881 GatherCost += 6882 VectorizedCnt * 6883 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 6884 LI->getPointerAddressSpace(), CostKind, 6885 TTI::OperandValueInfo(), LI); 6886 GatherCost += ScatterVectorizeCnt * 6887 TTI->getGatherScatterOpCost( 6888 Instruction::Load, LoadTy, LI->getPointerOperand(), 6889 /*VariableMask=*/false, Alignment, CostKind, LI); 6890 if (NeedInsertSubvectorAnalysis) { 6891 // Add the cost for the subvectors insert. 6892 for (int I = VF, E = VL.size(); I < E; I += VF) 6893 GatherCost += 6894 TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 6895 std::nullopt, CostKind, I, LoadTy); 6896 } 6897 return ReuseShuffleCost + GatherCost - ScalarsCost; 6898 } 6899 } 6900 return ReuseShuffleCost + getGatherCost(VL); 6901 } 6902 InstructionCost CommonCost = 0; 6903 SmallVector<int> Mask; 6904 if (!E->ReorderIndices.empty()) { 6905 SmallVector<int> NewMask; 6906 if (E->getOpcode() == Instruction::Store) { 6907 // For stores the order is actually a mask. 6908 NewMask.resize(E->ReorderIndices.size()); 6909 copy(E->ReorderIndices, NewMask.begin()); 6910 } else { 6911 inversePermutation(E->ReorderIndices, NewMask); 6912 } 6913 ::addMask(Mask, NewMask); 6914 } 6915 if (NeedToShuffleReuses) 6916 ::addMask(Mask, E->ReuseShuffleIndices); 6917 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 6918 CommonCost = 6919 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 6920 assert((E->State == TreeEntry::Vectorize || 6921 E->State == TreeEntry::ScatterVectorize) && 6922 "Unhandled state"); 6923 assert(E->getOpcode() && 6924 ((allSameType(VL) && allSameBlock(VL)) || 6925 (E->getOpcode() == Instruction::GetElementPtr && 6926 E->getMainOp()->getType()->isPointerTy())) && 6927 "Invalid VL"); 6928 Instruction *VL0 = E->getMainOp(); 6929 unsigned ShuffleOrOp = 6930 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6931 const unsigned Sz = VL.size(); 6932 auto GetCostDiff = 6933 [=](function_ref<InstructionCost(unsigned)> ScalarEltCost, 6934 function_ref<InstructionCost(InstructionCost)> VectorCost) { 6935 // Calculate the cost of this instruction. 6936 InstructionCost ScalarCost = 0; 6937 if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) { 6938 // For some of the instructions no need to calculate cost for each 6939 // particular instruction, we can use the cost of the single 6940 // instruction x total number of scalar instructions. 6941 ScalarCost = Sz * ScalarEltCost(0); 6942 } else { 6943 for (unsigned I = 0; I < Sz; ++I) 6944 ScalarCost += ScalarEltCost(I); 6945 } 6946 6947 InstructionCost VecCost = VectorCost(CommonCost); 6948 LLVM_DEBUG( 6949 dumpTreeCosts(E, CommonCost, VecCost - CommonCost, ScalarCost)); 6950 // Disable warnings for `this` and `E` are unused. Required for 6951 // `dumpTreeCosts`. 6952 (void)this; 6953 (void)E; 6954 return VecCost - ScalarCost; 6955 }; 6956 // Calculate cost difference from vectorizing set of GEPs. 6957 // Negative value means vectorizing is profitable. 6958 auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) { 6959 InstructionCost CostSavings = 0; 6960 for (Value *V : Ptrs) { 6961 if (V == BasePtr) 6962 continue; 6963 auto *Ptr = dyn_cast<GetElementPtrInst>(V); 6964 // GEPs may contain just addresses without instructions, considered free. 6965 // GEPs with all constant indices also considered to have zero cost. 6966 if (!Ptr || Ptr->hasAllConstantIndices()) 6967 continue; 6968 6969 // Here we differentiate two cases: when GEPs represent a regular 6970 // vectorization tree node (and hence vectorized) and when the set is 6971 // arguments of a set of loads or stores being vectorized. In the former 6972 // case all the scalar GEPs will be removed as a result of vectorization. 6973 // For any external uses of some lanes extract element instructions will 6974 // be generated (which cost is estimated separately). For the latter case 6975 // since the set of GEPs itself is not vectorized those used more than 6976 // once will remain staying in vectorized code as well. So we should not 6977 // count them as savings. 6978 if (!Ptr->hasOneUse() && isa<LoadInst, StoreInst>(VL0)) 6979 continue; 6980 6981 // TODO: it is target dependent, so need to implement and then use a TTI 6982 // interface. 6983 CostSavings += TTI->getArithmeticInstrCost(Instruction::Add, 6984 Ptr->getType(), CostKind); 6985 } 6986 LLVM_DEBUG(dbgs() << "SLP: Calculated GEPs cost savings or Tree:\n"; 6987 E->dump()); 6988 LLVM_DEBUG(dbgs() << "SLP: GEP cost saving = " << CostSavings << "\n"); 6989 return InstructionCost() - CostSavings; 6990 }; 6991 6992 switch (ShuffleOrOp) { 6993 case Instruction::PHI: { 6994 // Count reused scalars. 6995 InstructionCost ScalarCost = 0; 6996 SmallPtrSet<const TreeEntry *, 4> CountedOps; 6997 for (Value *V : VL) { 6998 auto *PHI = dyn_cast<PHINode>(V); 6999 if (!PHI) 7000 continue; 7001 7002 ValueList Operands(PHI->getNumIncomingValues(), nullptr); 7003 for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) { 7004 Value *Op = PHI->getIncomingValue(I); 7005 Operands[I] = Op; 7006 } 7007 if (const TreeEntry *OpTE = getTreeEntry(Operands.front())) 7008 if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second) 7009 if (!OpTE->ReuseShuffleIndices.empty()) 7010 ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() - 7011 OpTE->Scalars.size()); 7012 } 7013 7014 return CommonCost - ScalarCost; 7015 } 7016 case Instruction::ExtractValue: 7017 case Instruction::ExtractElement: { 7018 auto GetScalarCost = [=](unsigned Idx) { 7019 auto *I = cast<Instruction>(VL[Idx]); 7020 VectorType *SrcVecTy; 7021 if (ShuffleOrOp == Instruction::ExtractElement) { 7022 auto *EE = cast<ExtractElementInst>(I); 7023 SrcVecTy = EE->getVectorOperandType(); 7024 } else { 7025 auto *EV = cast<ExtractValueInst>(I); 7026 Type *AggregateTy = EV->getAggregateOperand()->getType(); 7027 unsigned NumElts; 7028 if (auto *ATy = dyn_cast<ArrayType>(AggregateTy)) 7029 NumElts = ATy->getNumElements(); 7030 else 7031 NumElts = AggregateTy->getStructNumElements(); 7032 SrcVecTy = FixedVectorType::get(ScalarTy, NumElts); 7033 } 7034 if (I->hasOneUse()) { 7035 Instruction *Ext = I->user_back(); 7036 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 7037 all_of(Ext->users(), 7038 [](User *U) { return isa<GetElementPtrInst>(U); })) { 7039 // Use getExtractWithExtendCost() to calculate the cost of 7040 // extractelement/ext pair. 7041 InstructionCost Cost = TTI->getExtractWithExtendCost( 7042 Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I)); 7043 // Subtract the cost of s|zext which is subtracted separately. 7044 Cost -= TTI->getCastInstrCost( 7045 Ext->getOpcode(), Ext->getType(), I->getType(), 7046 TTI::getCastContextHint(Ext), CostKind, Ext); 7047 return Cost; 7048 } 7049 } 7050 return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy, 7051 CostKind, *getExtractIndex(I)); 7052 }; 7053 auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; }; 7054 return GetCostDiff(GetScalarCost, GetVectorCost); 7055 } 7056 case Instruction::InsertElement: { 7057 assert(E->ReuseShuffleIndices.empty() && 7058 "Unique insertelements only are expected."); 7059 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 7060 unsigned const NumElts = SrcVecTy->getNumElements(); 7061 unsigned const NumScalars = VL.size(); 7062 7063 unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); 7064 7065 SmallVector<int> InsertMask(NumElts, UndefMaskElem); 7066 unsigned OffsetBeg = *getInsertIndex(VL.front()); 7067 unsigned OffsetEnd = OffsetBeg; 7068 InsertMask[OffsetBeg] = 0; 7069 for (auto [I, V] : enumerate(VL.drop_front())) { 7070 unsigned Idx = *getInsertIndex(V); 7071 if (OffsetBeg > Idx) 7072 OffsetBeg = Idx; 7073 else if (OffsetEnd < Idx) 7074 OffsetEnd = Idx; 7075 InsertMask[Idx] = I + 1; 7076 } 7077 unsigned VecScalarsSz = PowerOf2Ceil(NumElts); 7078 if (NumOfParts > 0) 7079 VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); 7080 unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * 7081 VecScalarsSz; 7082 unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); 7083 unsigned InsertVecSz = std::min<unsigned>( 7084 PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), 7085 ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz); 7086 bool IsWholeSubvector = 7087 OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); 7088 // Check if we can safely insert a subvector. If it is not possible, just 7089 // generate a whole-sized vector and shuffle the source vector and the new 7090 // subvector. 7091 if (OffsetBeg + InsertVecSz > VecSz) { 7092 // Align OffsetBeg to generate correct mask. 7093 OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); 7094 InsertVecSz = VecSz; 7095 } 7096 7097 APInt DemandedElts = APInt::getZero(NumElts); 7098 // TODO: Add support for Instruction::InsertValue. 7099 SmallVector<int> Mask; 7100 if (!E->ReorderIndices.empty()) { 7101 inversePermutation(E->ReorderIndices, Mask); 7102 Mask.append(InsertVecSz - Mask.size(), UndefMaskElem); 7103 } else { 7104 Mask.assign(VecSz, UndefMaskElem); 7105 std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); 7106 } 7107 bool IsIdentity = true; 7108 SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem); 7109 Mask.swap(PrevMask); 7110 for (unsigned I = 0; I < NumScalars; ++I) { 7111 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 7112 DemandedElts.setBit(InsertIdx); 7113 IsIdentity &= InsertIdx - OffsetBeg == I; 7114 Mask[InsertIdx - OffsetBeg] = I; 7115 } 7116 assert(Offset < NumElts && "Failed to find vector index offset"); 7117 7118 InstructionCost Cost = 0; 7119 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 7120 /*Insert*/ true, /*Extract*/ false, 7121 CostKind); 7122 7123 // First cost - resize to actual vector size if not identity shuffle or 7124 // need to shift the vector. 7125 // Do not calculate the cost if the actual size is the register size and 7126 // we can merge this shuffle with the following SK_Select. 7127 auto *InsertVecTy = 7128 FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz); 7129 if (!IsIdentity) 7130 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 7131 InsertVecTy, Mask); 7132 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7133 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7134 })); 7135 // Second cost - permutation with subvector, if some elements are from the 7136 // initial vector or inserting a subvector. 7137 // TODO: Implement the analysis of the FirstInsert->getOperand(0) 7138 // subvector of ActualVecTy. 7139 SmallBitVector InMask = 7140 isUndefVector(FirstInsert->getOperand(0), 7141 buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask)); 7142 if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) { 7143 if (InsertVecSz != VecSz) { 7144 auto *ActualVecTy = 7145 FixedVectorType::get(SrcVecTy->getElementType(), VecSz); 7146 Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, 7147 std::nullopt, CostKind, OffsetBeg - Offset, 7148 InsertVecTy); 7149 } else { 7150 for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) 7151 Mask[I] = InMask.test(I) ? UndefMaskElem : I; 7152 for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; 7153 I <= End; ++I) 7154 if (Mask[I] != UndefMaskElem) 7155 Mask[I] = I + VecSz; 7156 for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) 7157 Mask[I] = 7158 ((I >= InMask.size()) || InMask.test(I)) ? UndefMaskElem : I; 7159 Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); 7160 } 7161 } 7162 return Cost; 7163 } 7164 case Instruction::ZExt: 7165 case Instruction::SExt: 7166 case Instruction::FPToUI: 7167 case Instruction::FPToSI: 7168 case Instruction::FPExt: 7169 case Instruction::PtrToInt: 7170 case Instruction::IntToPtr: 7171 case Instruction::SIToFP: 7172 case Instruction::UIToFP: 7173 case Instruction::Trunc: 7174 case Instruction::FPTrunc: 7175 case Instruction::BitCast: { 7176 auto GetScalarCost = [=](unsigned Idx) { 7177 auto *VI = cast<Instruction>(VL[Idx]); 7178 return TTI->getCastInstrCost(E->getOpcode(), ScalarTy, 7179 VI->getOperand(0)->getType(), 7180 TTI::getCastContextHint(VI), CostKind, VI); 7181 }; 7182 auto GetVectorCost = [=](InstructionCost CommonCost) { 7183 Type *SrcTy = VL0->getOperand(0)->getType(); 7184 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 7185 InstructionCost VecCost = CommonCost; 7186 // Check if the values are candidates to demote. 7187 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) 7188 VecCost += 7189 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 7190 TTI::getCastContextHint(VL0), CostKind, VL0); 7191 return VecCost; 7192 }; 7193 return GetCostDiff(GetScalarCost, GetVectorCost); 7194 } 7195 case Instruction::FCmp: 7196 case Instruction::ICmp: 7197 case Instruction::Select: { 7198 CmpInst::Predicate VecPred, SwappedVecPred; 7199 auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value()); 7200 if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) || 7201 match(VL0, MatchCmp)) 7202 SwappedVecPred = CmpInst::getSwappedPredicate(VecPred); 7203 else 7204 SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy() 7205 ? CmpInst::BAD_FCMP_PREDICATE 7206 : CmpInst::BAD_ICMP_PREDICATE; 7207 auto GetScalarCost = [&](unsigned Idx) { 7208 auto *VI = cast<Instruction>(VL[Idx]); 7209 CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy() 7210 ? CmpInst::BAD_FCMP_PREDICATE 7211 : CmpInst::BAD_ICMP_PREDICATE; 7212 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 7213 if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) && 7214 !match(VI, MatchCmp)) || 7215 (CurrentPred != VecPred && CurrentPred != SwappedVecPred)) 7216 VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy() 7217 ? CmpInst::BAD_FCMP_PREDICATE 7218 : CmpInst::BAD_ICMP_PREDICATE; 7219 7220 return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 7221 Builder.getInt1Ty(), CurrentPred, CostKind, 7222 VI); 7223 }; 7224 auto GetVectorCost = [&](InstructionCost CommonCost) { 7225 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 7226 7227 InstructionCost VecCost = TTI->getCmpSelInstrCost( 7228 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 7229 // Check if it is possible and profitable to use min/max for selects 7230 // in VL. 7231 // 7232 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 7233 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 7234 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 7235 {VecTy, VecTy}); 7236 InstructionCost IntrinsicCost = 7237 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 7238 // If the selects are the only uses of the compares, they will be 7239 // dead and we can adjust the cost by removing their cost. 7240 if (IntrinsicAndUse.second) 7241 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 7242 MaskTy, VecPred, CostKind); 7243 VecCost = std::min(VecCost, IntrinsicCost); 7244 } 7245 return VecCost + CommonCost; 7246 }; 7247 return GetCostDiff(GetScalarCost, GetVectorCost); 7248 } 7249 case Instruction::FNeg: 7250 case Instruction::Add: 7251 case Instruction::FAdd: 7252 case Instruction::Sub: 7253 case Instruction::FSub: 7254 case Instruction::Mul: 7255 case Instruction::FMul: 7256 case Instruction::UDiv: 7257 case Instruction::SDiv: 7258 case Instruction::FDiv: 7259 case Instruction::URem: 7260 case Instruction::SRem: 7261 case Instruction::FRem: 7262 case Instruction::Shl: 7263 case Instruction::LShr: 7264 case Instruction::AShr: 7265 case Instruction::And: 7266 case Instruction::Or: 7267 case Instruction::Xor: { 7268 auto GetScalarCost = [=](unsigned Idx) { 7269 auto *VI = cast<Instruction>(VL[Idx]); 7270 unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1; 7271 TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0)); 7272 TTI::OperandValueInfo Op2Info = 7273 TTI::getOperandInfo(VI->getOperand(OpIdx)); 7274 SmallVector<const Value *> Operands(VI->operand_values()); 7275 return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind, 7276 Op1Info, Op2Info, Operands, VI); 7277 }; 7278 auto GetVectorCost = [=](InstructionCost CommonCost) { 7279 unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1; 7280 TTI::OperandValueInfo Op1Info = getOperandInfo(VL, 0); 7281 TTI::OperandValueInfo Op2Info = getOperandInfo(VL, OpIdx); 7282 return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info, 7283 Op2Info) + 7284 CommonCost; 7285 }; 7286 return GetCostDiff(GetScalarCost, GetVectorCost); 7287 } 7288 case Instruction::GetElementPtr: { 7289 return CommonCost + GetGEPCostDiff(VL, VL0); 7290 } 7291 case Instruction::Load: { 7292 auto GetScalarCost = [=](unsigned Idx) { 7293 auto *VI = cast<LoadInst>(VL[Idx]); 7294 return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(), 7295 VI->getPointerAddressSpace(), CostKind, 7296 TTI::OperandValueInfo(), VI); 7297 }; 7298 auto *LI0 = cast<LoadInst>(VL0); 7299 auto GetVectorCost = [=](InstructionCost CommonCost) { 7300 InstructionCost VecLdCost; 7301 if (E->State == TreeEntry::Vectorize) { 7302 VecLdCost = TTI->getMemoryOpCost( 7303 Instruction::Load, VecTy, LI0->getAlign(), 7304 LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo()); 7305 } else { 7306 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 7307 Align CommonAlignment = LI0->getAlign(); 7308 for (Value *V : VL) 7309 CommonAlignment = 7310 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7311 VecLdCost = TTI->getGatherScatterOpCost( 7312 Instruction::Load, VecTy, LI0->getPointerOperand(), 7313 /*VariableMask=*/false, CommonAlignment, CostKind); 7314 } 7315 return VecLdCost + CommonCost; 7316 }; 7317 7318 InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost); 7319 // If this node generates masked gather load then it is not a terminal node. 7320 // Hence address operand cost is estimated separately. 7321 if (E->State == TreeEntry::ScatterVectorize) 7322 return Cost; 7323 7324 // Estimate cost of GEPs since this tree node is a terminator. 7325 SmallVector<Value *> PointerOps(VL.size()); 7326 for (auto [I, V] : enumerate(VL)) 7327 PointerOps[I] = cast<LoadInst>(V)->getPointerOperand(); 7328 return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand()); 7329 } 7330 case Instruction::Store: { 7331 bool IsReorder = !E->ReorderIndices.empty(); 7332 auto GetScalarCost = [=](unsigned Idx) { 7333 auto *VI = cast<StoreInst>(VL[Idx]); 7334 TTI::OperandValueInfo OpInfo = getOperandInfo(VI, 0); 7335 return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(), 7336 VI->getPointerAddressSpace(), CostKind, 7337 OpInfo, VI); 7338 }; 7339 auto *BaseSI = 7340 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 7341 auto GetVectorCost = [=](InstructionCost CommonCost) { 7342 // We know that we can merge the stores. Calculate the cost. 7343 TTI::OperandValueInfo OpInfo = getOperandInfo(VL, 0); 7344 return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(), 7345 BaseSI->getPointerAddressSpace(), CostKind, 7346 OpInfo) + 7347 CommonCost; 7348 }; 7349 SmallVector<Value *> PointerOps(VL.size()); 7350 for (auto [I, V] : enumerate(VL)) { 7351 unsigned Idx = IsReorder ? E->ReorderIndices[I] : I; 7352 PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand(); 7353 } 7354 7355 return GetCostDiff(GetScalarCost, GetVectorCost) + 7356 GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand()); 7357 } 7358 case Instruction::Call: { 7359 auto GetScalarCost = [=](unsigned Idx) { 7360 auto *CI = cast<CallInst>(VL[Idx]); 7361 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7362 if (ID != Intrinsic::not_intrinsic) { 7363 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 7364 return TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 7365 } 7366 return TTI->getCallInstrCost(CI->getCalledFunction(), 7367 CI->getFunctionType()->getReturnType(), 7368 CI->getFunctionType()->params(), CostKind); 7369 }; 7370 auto GetVectorCost = [=](InstructionCost CommonCost) { 7371 auto *CI = cast<CallInst>(VL0); 7372 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7373 return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost; 7374 }; 7375 return GetCostDiff(GetScalarCost, GetVectorCost); 7376 } 7377 case Instruction::ShuffleVector: { 7378 assert(E->isAltShuffle() && 7379 ((Instruction::isBinaryOp(E->getOpcode()) && 7380 Instruction::isBinaryOp(E->getAltOpcode())) || 7381 (Instruction::isCast(E->getOpcode()) && 7382 Instruction::isCast(E->getAltOpcode())) || 7383 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7384 "Invalid Shuffle Vector Operand"); 7385 // Try to find the previous shuffle node with the same operands and same 7386 // main/alternate ops. 7387 auto TryFindNodeWithEqualOperands = [=]() { 7388 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 7389 if (TE.get() == E) 7390 break; 7391 if (TE->isAltShuffle() && 7392 ((TE->getOpcode() == E->getOpcode() && 7393 TE->getAltOpcode() == E->getAltOpcode()) || 7394 (TE->getOpcode() == E->getAltOpcode() && 7395 TE->getAltOpcode() == E->getOpcode())) && 7396 TE->hasEqualOperands(*E)) 7397 return true; 7398 } 7399 return false; 7400 }; 7401 auto GetScalarCost = [=](unsigned Idx) { 7402 auto *VI = cast<Instruction>(VL[Idx]); 7403 assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode"); 7404 (void)E; 7405 return TTI->getInstructionCost(VI, CostKind); 7406 }; 7407 // Need to clear CommonCost since the final shuffle cost is included into 7408 // vector cost. 7409 auto GetVectorCost = [&](InstructionCost) { 7410 // VecCost is equal to sum of the cost of creating 2 vectors 7411 // and the cost of creating shuffle. 7412 InstructionCost VecCost = 0; 7413 if (TryFindNodeWithEqualOperands()) { 7414 LLVM_DEBUG({ 7415 dbgs() << "SLP: diamond match for alternate node found.\n"; 7416 E->dump(); 7417 }); 7418 // No need to add new vector costs here since we're going to reuse 7419 // same main/alternate vector ops, just do different shuffling. 7420 } else if (Instruction::isBinaryOp(E->getOpcode())) { 7421 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 7422 VecCost += 7423 TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind); 7424 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7425 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 7426 Builder.getInt1Ty(), 7427 CI0->getPredicate(), CostKind, VL0); 7428 VecCost += TTI->getCmpSelInstrCost( 7429 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 7430 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 7431 E->getAltOp()); 7432 } else { 7433 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 7434 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 7435 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 7436 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 7437 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 7438 TTI::CastContextHint::None, CostKind); 7439 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 7440 TTI::CastContextHint::None, CostKind); 7441 } 7442 if (E->ReuseShuffleIndices.empty()) { 7443 VecCost += 7444 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 7445 } else { 7446 SmallVector<int> Mask; 7447 buildShuffleEntryMask( 7448 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7449 [E](Instruction *I) { 7450 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7451 return I->getOpcode() == E->getAltOpcode(); 7452 }, 7453 Mask); 7454 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 7455 FinalVecTy, Mask); 7456 } 7457 return VecCost; 7458 }; 7459 return GetCostDiff(GetScalarCost, GetVectorCost); 7460 } 7461 default: 7462 llvm_unreachable("Unknown instruction"); 7463 } 7464 } 7465 7466 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 7467 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 7468 << VectorizableTree.size() << " is fully vectorizable .\n"); 7469 7470 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 7471 SmallVector<int> Mask; 7472 return TE->State == TreeEntry::NeedToGather && 7473 !any_of(TE->Scalars, 7474 [this](Value *V) { return EphValues.contains(V); }) && 7475 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 7476 TE->Scalars.size() < Limit || 7477 ((TE->getOpcode() == Instruction::ExtractElement || 7478 all_of(TE->Scalars, 7479 [](Value *V) { 7480 return isa<ExtractElementInst, UndefValue>(V); 7481 })) && 7482 isFixedVectorShuffle(TE->Scalars, Mask)) || 7483 (TE->State == TreeEntry::NeedToGather && 7484 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 7485 }; 7486 7487 // We only handle trees of heights 1 and 2. 7488 if (VectorizableTree.size() == 1 && 7489 (VectorizableTree[0]->State == TreeEntry::Vectorize || 7490 (ForReduction && 7491 AreVectorizableGathers(VectorizableTree[0].get(), 7492 VectorizableTree[0]->Scalars.size()) && 7493 VectorizableTree[0]->getVectorFactor() > 2))) 7494 return true; 7495 7496 if (VectorizableTree.size() != 2) 7497 return false; 7498 7499 // Handle splat and all-constants stores. Also try to vectorize tiny trees 7500 // with the second gather nodes if they have less scalar operands rather than 7501 // the initial tree element (may be profitable to shuffle the second gather) 7502 // or they are extractelements, which form shuffle. 7503 SmallVector<int> Mask; 7504 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 7505 AreVectorizableGathers(VectorizableTree[1].get(), 7506 VectorizableTree[0]->Scalars.size())) 7507 return true; 7508 7509 // Gathering cost would be too much for tiny trees. 7510 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 7511 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 7512 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 7513 return false; 7514 7515 return true; 7516 } 7517 7518 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 7519 TargetTransformInfo *TTI, 7520 bool MustMatchOrInst) { 7521 // Look past the root to find a source value. Arbitrarily follow the 7522 // path through operand 0 of any 'or'. Also, peek through optional 7523 // shift-left-by-multiple-of-8-bits. 7524 Value *ZextLoad = Root; 7525 const APInt *ShAmtC; 7526 bool FoundOr = false; 7527 while (!isa<ConstantExpr>(ZextLoad) && 7528 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 7529 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 7530 ShAmtC->urem(8) == 0))) { 7531 auto *BinOp = cast<BinaryOperator>(ZextLoad); 7532 ZextLoad = BinOp->getOperand(0); 7533 if (BinOp->getOpcode() == Instruction::Or) 7534 FoundOr = true; 7535 } 7536 // Check if the input is an extended load of the required or/shift expression. 7537 Value *Load; 7538 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 7539 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 7540 return false; 7541 7542 // Require that the total load bit width is a legal integer type. 7543 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 7544 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 7545 Type *SrcTy = Load->getType(); 7546 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 7547 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 7548 return false; 7549 7550 // Everything matched - assume that we can fold the whole sequence using 7551 // load combining. 7552 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 7553 << *(cast<Instruction>(Root)) << "\n"); 7554 7555 return true; 7556 } 7557 7558 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 7559 if (RdxKind != RecurKind::Or) 7560 return false; 7561 7562 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 7563 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 7564 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 7565 /* MatchOr */ false); 7566 } 7567 7568 bool BoUpSLP::isLoadCombineCandidate() const { 7569 // Peek through a final sequence of stores and check if all operations are 7570 // likely to be load-combined. 7571 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 7572 for (Value *Scalar : VectorizableTree[0]->Scalars) { 7573 Value *X; 7574 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 7575 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 7576 return false; 7577 } 7578 return true; 7579 } 7580 7581 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 7582 // No need to vectorize inserts of gathered values. 7583 if (VectorizableTree.size() == 2 && 7584 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 7585 VectorizableTree[1]->State == TreeEntry::NeedToGather && 7586 (VectorizableTree[1]->getVectorFactor() <= 2 || 7587 !(isSplat(VectorizableTree[1]->Scalars) || 7588 allConstant(VectorizableTree[1]->Scalars)))) 7589 return true; 7590 7591 // We can vectorize the tree if its size is greater than or equal to the 7592 // minimum size specified by the MinTreeSize command line option. 7593 if (VectorizableTree.size() >= MinTreeSize) 7594 return false; 7595 7596 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 7597 // can vectorize it if we can prove it fully vectorizable. 7598 if (isFullyVectorizableTinyTree(ForReduction)) 7599 return false; 7600 7601 assert(VectorizableTree.empty() 7602 ? ExternalUses.empty() 7603 : true && "We shouldn't have any external users"); 7604 7605 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 7606 // vectorizable. 7607 return true; 7608 } 7609 7610 InstructionCost BoUpSLP::getSpillCost() const { 7611 // Walk from the bottom of the tree to the top, tracking which values are 7612 // live. When we see a call instruction that is not part of our tree, 7613 // query TTI to see if there is a cost to keeping values live over it 7614 // (for example, if spills and fills are required). 7615 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 7616 InstructionCost Cost = 0; 7617 7618 SmallPtrSet<Instruction*, 4> LiveValues; 7619 Instruction *PrevInst = nullptr; 7620 7621 // The entries in VectorizableTree are not necessarily ordered by their 7622 // position in basic blocks. Collect them and order them by dominance so later 7623 // instructions are guaranteed to be visited first. For instructions in 7624 // different basic blocks, we only scan to the beginning of the block, so 7625 // their order does not matter, as long as all instructions in a basic block 7626 // are grouped together. Using dominance ensures a deterministic order. 7627 SmallVector<Instruction *, 16> OrderedScalars; 7628 for (const auto &TEPtr : VectorizableTree) { 7629 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 7630 if (!Inst) 7631 continue; 7632 OrderedScalars.push_back(Inst); 7633 } 7634 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 7635 auto *NodeA = DT->getNode(A->getParent()); 7636 auto *NodeB = DT->getNode(B->getParent()); 7637 assert(NodeA && "Should only process reachable instructions"); 7638 assert(NodeB && "Should only process reachable instructions"); 7639 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 7640 "Different nodes should have different DFS numbers"); 7641 if (NodeA != NodeB) 7642 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 7643 return B->comesBefore(A); 7644 }); 7645 7646 for (Instruction *Inst : OrderedScalars) { 7647 if (!PrevInst) { 7648 PrevInst = Inst; 7649 continue; 7650 } 7651 7652 // Update LiveValues. 7653 LiveValues.erase(PrevInst); 7654 for (auto &J : PrevInst->operands()) { 7655 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 7656 LiveValues.insert(cast<Instruction>(&*J)); 7657 } 7658 7659 LLVM_DEBUG({ 7660 dbgs() << "SLP: #LV: " << LiveValues.size(); 7661 for (auto *X : LiveValues) 7662 dbgs() << " " << X->getName(); 7663 dbgs() << ", Looking at "; 7664 Inst->dump(); 7665 }); 7666 7667 // Now find the sequence of instructions between PrevInst and Inst. 7668 unsigned NumCalls = 0; 7669 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 7670 PrevInstIt = 7671 PrevInst->getIterator().getReverse(); 7672 while (InstIt != PrevInstIt) { 7673 if (PrevInstIt == PrevInst->getParent()->rend()) { 7674 PrevInstIt = Inst->getParent()->rbegin(); 7675 continue; 7676 } 7677 7678 auto NoCallIntrinsic = [this](Instruction *I) { 7679 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 7680 if (II->isAssumeLikeIntrinsic()) 7681 return true; 7682 FastMathFlags FMF; 7683 SmallVector<Type *, 4> Tys; 7684 for (auto &ArgOp : II->args()) 7685 Tys.push_back(ArgOp->getType()); 7686 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 7687 FMF = FPMO->getFastMathFlags(); 7688 IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys, 7689 FMF); 7690 InstructionCost IntrCost = 7691 TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput); 7692 InstructionCost CallCost = TTI->getCallInstrCost( 7693 nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput); 7694 if (IntrCost < CallCost) 7695 return true; 7696 } 7697 return false; 7698 }; 7699 7700 // Debug information does not impact spill cost. 7701 if (isa<CallInst>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) && 7702 &*PrevInstIt != PrevInst) 7703 NumCalls++; 7704 7705 ++PrevInstIt; 7706 } 7707 7708 if (NumCalls) { 7709 SmallVector<Type*, 4> V; 7710 for (auto *II : LiveValues) { 7711 auto *ScalarTy = II->getType(); 7712 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 7713 ScalarTy = VectorTy->getElementType(); 7714 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 7715 } 7716 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 7717 } 7718 7719 PrevInst = Inst; 7720 } 7721 7722 return Cost; 7723 } 7724 7725 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 7726 /// buildvector sequence. 7727 static bool isFirstInsertElement(const InsertElementInst *IE1, 7728 const InsertElementInst *IE2) { 7729 if (IE1 == IE2) 7730 return false; 7731 const auto *I1 = IE1; 7732 const auto *I2 = IE2; 7733 const InsertElementInst *PrevI1; 7734 const InsertElementInst *PrevI2; 7735 unsigned Idx1 = *getInsertIndex(IE1); 7736 unsigned Idx2 = *getInsertIndex(IE2); 7737 do { 7738 if (I2 == IE1) 7739 return true; 7740 if (I1 == IE2) 7741 return false; 7742 PrevI1 = I1; 7743 PrevI2 = I2; 7744 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 7745 getInsertIndex(I1).value_or(Idx2) != Idx2) 7746 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 7747 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 7748 getInsertIndex(I2).value_or(Idx1) != Idx1) 7749 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 7750 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 7751 llvm_unreachable("Two different buildvectors not expected."); 7752 } 7753 7754 namespace { 7755 /// Returns incoming Value *, if the requested type is Value * too, or a default 7756 /// value, otherwise. 7757 struct ValueSelect { 7758 template <typename U> 7759 static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) { 7760 return V; 7761 } 7762 template <typename U> 7763 static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) { 7764 return U(); 7765 } 7766 }; 7767 } // namespace 7768 7769 /// Does the analysis of the provided shuffle masks and performs the requested 7770 /// actions on the vectors with the given shuffle masks. It tries to do it in 7771 /// several steps. 7772 /// 1. If the Base vector is not undef vector, resizing the very first mask to 7773 /// have common VF and perform action for 2 input vectors (including non-undef 7774 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 7775 /// and processed as a shuffle of 2 elements. 7776 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 7777 /// action only for 1 vector with the given mask, if it is not the identity 7778 /// mask. 7779 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 7780 /// vectors, combing the masks properly between the steps. 7781 template <typename T> 7782 static T *performExtractsShuffleAction( 7783 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 7784 function_ref<unsigned(T *)> GetVF, 7785 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction, 7786 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 7787 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 7788 SmallVector<int> Mask(ShuffleMask.begin()->second); 7789 auto VMIt = std::next(ShuffleMask.begin()); 7790 T *Prev = nullptr; 7791 SmallBitVector UseMask = 7792 buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask); 7793 SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask); 7794 if (!IsBaseUndef.all()) { 7795 // Base is not undef, need to combine it with the next subvectors. 7796 std::pair<T *, bool> Res = 7797 ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false); 7798 SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask); 7799 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 7800 if (Mask[Idx] == UndefMaskElem) 7801 Mask[Idx] = IsBasePoison.test(Idx) ? UndefMaskElem : Idx; 7802 else 7803 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 7804 } 7805 auto *V = ValueSelect::get<T *>(Base); 7806 (void)V; 7807 assert((!V || GetVF(V) == Mask.size()) && 7808 "Expected base vector of VF number of elements."); 7809 Prev = Action(Mask, {nullptr, Res.first}); 7810 } else if (ShuffleMask.size() == 1) { 7811 // Base is undef and only 1 vector is shuffled - perform the action only for 7812 // single vector, if the mask is not the identity mask. 7813 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask, 7814 /*ForSingleMask=*/true); 7815 if (Res.second) 7816 // Identity mask is found. 7817 Prev = Res.first; 7818 else 7819 Prev = Action(Mask, {ShuffleMask.begin()->first}); 7820 } else { 7821 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 7822 // shuffles step by step, combining shuffle between the steps. 7823 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 7824 unsigned Vec2VF = GetVF(VMIt->first); 7825 if (Vec1VF == Vec2VF) { 7826 // No need to resize the input vectors since they are of the same size, we 7827 // can shuffle them directly. 7828 ArrayRef<int> SecMask = VMIt->second; 7829 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 7830 if (SecMask[I] != UndefMaskElem) { 7831 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 7832 Mask[I] = SecMask[I] + Vec1VF; 7833 } 7834 } 7835 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 7836 } else { 7837 // Vectors of different sizes - resize and reshuffle. 7838 std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask, 7839 /*ForSingleMask=*/false); 7840 std::pair<T *, bool> Res2 = 7841 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); 7842 ArrayRef<int> SecMask = VMIt->second; 7843 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 7844 if (Mask[I] != UndefMaskElem) { 7845 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 7846 if (Res1.second) 7847 Mask[I] = I; 7848 } else if (SecMask[I] != UndefMaskElem) { 7849 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 7850 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 7851 } 7852 } 7853 Prev = Action(Mask, {Res1.first, Res2.first}); 7854 } 7855 VMIt = std::next(VMIt); 7856 } 7857 bool IsBaseNotUndef = !IsBaseUndef.all(); 7858 (void)IsBaseNotUndef; 7859 // Perform requested actions for the remaining masks/vectors. 7860 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 7861 // Shuffle other input vectors, if any. 7862 std::pair<T *, bool> Res = 7863 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); 7864 ArrayRef<int> SecMask = VMIt->second; 7865 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 7866 if (SecMask[I] != UndefMaskElem) { 7867 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 7868 "Multiple uses of scalars."); 7869 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 7870 } else if (Mask[I] != UndefMaskElem) { 7871 Mask[I] = I; 7872 } 7873 } 7874 Prev = Action(Mask, {Prev, Res.first}); 7875 } 7876 return Prev; 7877 } 7878 7879 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 7880 InstructionCost Cost = 0; 7881 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 7882 << VectorizableTree.size() << ".\n"); 7883 7884 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 7885 7886 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 7887 TreeEntry &TE = *VectorizableTree[I]; 7888 if (TE.State == TreeEntry::NeedToGather) { 7889 if (const TreeEntry *E = getTreeEntry(TE.getMainOp()); 7890 E && E->getVectorFactor() == TE.getVectorFactor() && 7891 E->isSame(TE.Scalars)) { 7892 // Some gather nodes might be absolutely the same as some vectorizable 7893 // nodes after reordering, need to handle it. 7894 LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle that starts with " 7895 << *TE.Scalars[0] << ".\n" 7896 << "SLP: Current total cost = " << Cost << "\n"); 7897 continue; 7898 } 7899 } 7900 7901 InstructionCost C = getEntryCost(&TE, VectorizedVals); 7902 Cost += C; 7903 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7904 << " for bundle that starts with " << *TE.Scalars[0] 7905 << ".\n" 7906 << "SLP: Current total cost = " << Cost << "\n"); 7907 } 7908 7909 SmallPtrSet<Value *, 16> ExtractCostCalculated; 7910 InstructionCost ExtractCost = 0; 7911 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 7912 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 7913 SmallVector<APInt> DemandedElts; 7914 for (ExternalUser &EU : ExternalUses) { 7915 // We only add extract cost once for the same scalar. 7916 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 7917 !ExtractCostCalculated.insert(EU.Scalar).second) 7918 continue; 7919 7920 // Uses by ephemeral values are free (because the ephemeral value will be 7921 // removed prior to code generation, and so the extraction will be 7922 // removed as well). 7923 if (EphValues.count(EU.User)) 7924 continue; 7925 7926 // No extract cost for vector "scalar" 7927 if (isa<FixedVectorType>(EU.Scalar->getType())) 7928 continue; 7929 7930 // If found user is an insertelement, do not calculate extract cost but try 7931 // to detect it as a final shuffled/identity match. 7932 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 7933 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 7934 std::optional<unsigned> InsertIdx = getInsertIndex(VU); 7935 if (InsertIdx) { 7936 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 7937 auto *It = find_if( 7938 FirstUsers, 7939 [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) { 7940 return areTwoInsertFromSameBuildVector( 7941 VU, cast<InsertElementInst>(Pair.first), 7942 [this](InsertElementInst *II) -> Value * { 7943 Value *Op0 = II->getOperand(0); 7944 if (getTreeEntry(II) && !getTreeEntry(Op0)) 7945 return nullptr; 7946 return Op0; 7947 }); 7948 }); 7949 int VecId = -1; 7950 if (It == FirstUsers.end()) { 7951 (void)ShuffleMasks.emplace_back(); 7952 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 7953 if (Mask.empty()) 7954 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7955 // Find the insertvector, vectorized in tree, if any. 7956 Value *Base = VU; 7957 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 7958 if (IEBase != EU.User && 7959 (!IEBase->hasOneUse() || 7960 getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx)) 7961 break; 7962 // Build the mask for the vectorized insertelement instructions. 7963 if (const TreeEntry *E = getTreeEntry(IEBase)) { 7964 VU = IEBase; 7965 do { 7966 IEBase = cast<InsertElementInst>(Base); 7967 int Idx = *getInsertIndex(IEBase); 7968 assert(Mask[Idx] == UndefMaskElem && 7969 "InsertElementInstruction used already."); 7970 Mask[Idx] = Idx; 7971 Base = IEBase->getOperand(0); 7972 } while (E == getTreeEntry(Base)); 7973 break; 7974 } 7975 Base = cast<InsertElementInst>(Base)->getOperand(0); 7976 } 7977 FirstUsers.emplace_back(VU, ScalarTE); 7978 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 7979 VecId = FirstUsers.size() - 1; 7980 } else { 7981 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 7982 It->first = VU; 7983 VecId = std::distance(FirstUsers.begin(), It); 7984 } 7985 int InIdx = *InsertIdx; 7986 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 7987 if (Mask.empty()) 7988 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7989 Mask[InIdx] = EU.Lane; 7990 DemandedElts[VecId].setBit(InIdx); 7991 continue; 7992 } 7993 } 7994 } 7995 7996 // If we plan to rewrite the tree in a smaller type, we will need to sign 7997 // extend the extracted value back to the original type. Here, we account 7998 // for the extract and the added cost of the sign extend if needed. 7999 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 8000 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8001 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8002 if (MinBWs.count(ScalarRoot)) { 8003 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8004 auto Extend = 8005 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 8006 VecTy = FixedVectorType::get(MinTy, BundleWidth); 8007 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 8008 VecTy, EU.Lane); 8009 } else { 8010 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 8011 CostKind, EU.Lane); 8012 } 8013 } 8014 8015 InstructionCost SpillCost = getSpillCost(); 8016 Cost += SpillCost + ExtractCost; 8017 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask, 8018 bool) { 8019 InstructionCost C = 0; 8020 unsigned VF = Mask.size(); 8021 unsigned VecVF = TE->getVectorFactor(); 8022 if (VF != VecVF && 8023 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 8024 (all_of(Mask, 8025 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 8026 !ShuffleVectorInst::isIdentityMask(Mask)))) { 8027 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 8028 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 8029 OrigMask.begin()); 8030 C = TTI->getShuffleCost( 8031 TTI::SK_PermuteSingleSrc, 8032 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 8033 LLVM_DEBUG( 8034 dbgs() << "SLP: Adding cost " << C 8035 << " for final shuffle of insertelement external users.\n"; 8036 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 8037 Cost += C; 8038 return std::make_pair(TE, true); 8039 } 8040 return std::make_pair(TE, false); 8041 }; 8042 // Calculate the cost of the reshuffled vectors, if any. 8043 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 8044 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 8045 unsigned VF = ShuffleMasks[I].begin()->second.size(); 8046 auto *FTy = FixedVectorType::get( 8047 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 8048 auto Vector = ShuffleMasks[I].takeVector(); 8049 auto &&EstimateShufflesCost = [this, FTy, 8050 &Cost](ArrayRef<int> Mask, 8051 ArrayRef<const TreeEntry *> TEs) { 8052 assert((TEs.size() == 1 || TEs.size() == 2) && 8053 "Expected exactly 1 or 2 tree entries."); 8054 if (TEs.size() == 1) { 8055 int Limit = 2 * Mask.size(); 8056 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 8057 !ShuffleVectorInst::isIdentityMask(Mask)) { 8058 InstructionCost C = 8059 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 8060 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 8061 << " for final shuffle of insertelement " 8062 "external users.\n"; 8063 TEs.front()->dump(); 8064 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 8065 Cost += C; 8066 } 8067 } else { 8068 InstructionCost C = 8069 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 8070 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 8071 << " for final shuffle of vector node and external " 8072 "insertelement users.\n"; 8073 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 8074 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 8075 Cost += C; 8076 } 8077 return TEs.back(); 8078 }; 8079 (void)performExtractsShuffleAction<const TreeEntry>( 8080 MutableArrayRef(Vector.data(), Vector.size()), Base, 8081 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 8082 EstimateShufflesCost); 8083 InstructionCost InsertCost = TTI->getScalarizationOverhead( 8084 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 8085 /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput); 8086 Cost -= InsertCost; 8087 } 8088 8089 #ifndef NDEBUG 8090 SmallString<256> Str; 8091 { 8092 raw_svector_ostream OS(Str); 8093 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 8094 << "SLP: Extract Cost = " << ExtractCost << ".\n" 8095 << "SLP: Total Cost = " << Cost << ".\n"; 8096 } 8097 LLVM_DEBUG(dbgs() << Str); 8098 if (ViewSLPTree) 8099 ViewGraph(this, "SLP" + F->getName(), false, Str); 8100 #endif 8101 8102 return Cost; 8103 } 8104 8105 std::optional<TargetTransformInfo::ShuffleKind> 8106 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, 8107 SmallVectorImpl<int> &Mask, 8108 SmallVectorImpl<const TreeEntry *> &Entries) { 8109 Entries.clear(); 8110 // No need to check for the topmost gather node. 8111 if (TE == VectorizableTree.front().get()) 8112 return std::nullopt; 8113 Mask.assign(VL.size(), UndefMaskElem); 8114 assert(TE->UserTreeIndices.size() == 1 && 8115 "Expected only single user of the gather node."); 8116 // TODO: currently checking only for Scalars in the tree entry, need to count 8117 // reused elements too for better cost estimation. 8118 Instruction &UserInst = 8119 getLastInstructionInBundle(TE->UserTreeIndices.front().UserTE); 8120 auto *PHI = dyn_cast<PHINode>(&UserInst); 8121 auto *NodeUI = DT->getNode( 8122 PHI ? PHI->getIncomingBlock(TE->UserTreeIndices.front().EdgeIdx) 8123 : UserInst.getParent()); 8124 assert(NodeUI && "Should only process reachable instructions"); 8125 SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end()); 8126 auto CheckOrdering = [&](Instruction *LastEI) { 8127 // Check if the user node of the TE comes after user node of EntryPtr, 8128 // otherwise EntryPtr depends on TE. 8129 // Gather nodes usually are not scheduled and inserted before their first 8130 // user node. So, instead of checking dependency between the gather nodes 8131 // themselves, we check the dependency between their user nodes. 8132 // If one user node comes before the second one, we cannot use the second 8133 // gather node as the source vector for the first gather node, because in 8134 // the list of instructions it will be emitted later. 8135 auto *EntryParent = LastEI->getParent(); 8136 auto *NodeEUI = DT->getNode(EntryParent); 8137 if (!NodeEUI) 8138 return false; 8139 assert((NodeUI == NodeEUI) == 8140 (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) && 8141 "Different nodes should have different DFS numbers"); 8142 // Check the order of the gather nodes users. 8143 if (UserInst.getParent() != EntryParent && 8144 (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI))) 8145 return false; 8146 if (UserInst.getParent() == EntryParent && UserInst.comesBefore(LastEI)) 8147 return false; 8148 return true; 8149 }; 8150 // Build a lists of values to tree entries. 8151 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 8152 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 8153 if (EntryPtr.get() == TE) 8154 continue; 8155 if (EntryPtr->State != TreeEntry::NeedToGather) 8156 continue; 8157 if (!any_of(EntryPtr->Scalars, [&GatheredScalars](Value *V) { 8158 return GatheredScalars.contains(V); 8159 })) 8160 continue; 8161 assert(EntryPtr->UserTreeIndices.size() == 1 && 8162 "Expected only single user of the gather node."); 8163 Instruction &EntryUserInst = 8164 getLastInstructionInBundle(EntryPtr->UserTreeIndices.front().UserTE); 8165 if (&UserInst == &EntryUserInst) { 8166 // If 2 gathers are operands of the same entry, compare operands indices, 8167 // use the earlier one as the base. 8168 if (TE->UserTreeIndices.front().UserTE == 8169 EntryPtr->UserTreeIndices.front().UserTE && 8170 TE->UserTreeIndices.front().EdgeIdx < 8171 EntryPtr->UserTreeIndices.front().EdgeIdx) 8172 continue; 8173 } 8174 // Check if the user node of the TE comes after user node of EntryPtr, 8175 // otherwise EntryPtr depends on TE. 8176 auto *EntryPHI = dyn_cast<PHINode>(&EntryUserInst); 8177 auto *EntryI = 8178 EntryPHI 8179 ? EntryPHI 8180 ->getIncomingBlock(EntryPtr->UserTreeIndices.front().EdgeIdx) 8181 ->getTerminator() 8182 : &EntryUserInst; 8183 if (!CheckOrdering(EntryI)) 8184 continue; 8185 for (Value *V : EntryPtr->Scalars) 8186 if (!isConstant(V)) 8187 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 8188 } 8189 // Find all tree entries used by the gathered values. If no common entries 8190 // found - not a shuffle. 8191 // Here we build a set of tree nodes for each gathered value and trying to 8192 // find the intersection between these sets. If we have at least one common 8193 // tree node for each gathered value - we have just a permutation of the 8194 // single vector. If we have 2 different sets, we're in situation where we 8195 // have a permutation of 2 input vectors. 8196 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 8197 DenseMap<Value *, int> UsedValuesEntry; 8198 for (Value *V : TE->Scalars) { 8199 if (isConstant(V)) 8200 continue; 8201 // Build a list of tree entries where V is used. 8202 SmallPtrSet<const TreeEntry *, 4> VToTEs; 8203 auto It = ValueToTEs.find(V); 8204 if (It != ValueToTEs.end()) 8205 VToTEs = It->second; 8206 if (const TreeEntry *VTE = getTreeEntry(V)) 8207 VToTEs.insert(VTE); 8208 if (VToTEs.empty()) 8209 continue; 8210 if (UsedTEs.empty()) { 8211 // The first iteration, just insert the list of nodes to vector. 8212 UsedTEs.push_back(VToTEs); 8213 UsedValuesEntry.try_emplace(V, 0); 8214 } else { 8215 // Need to check if there are any previously used tree nodes which use V. 8216 // If there are no such nodes, consider that we have another one input 8217 // vector. 8218 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 8219 unsigned Idx = 0; 8220 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 8221 // Do we have a non-empty intersection of previously listed tree entries 8222 // and tree entries using current V? 8223 set_intersect(VToTEs, Set); 8224 if (!VToTEs.empty()) { 8225 // Yes, write the new subset and continue analysis for the next 8226 // scalar. 8227 Set.swap(VToTEs); 8228 break; 8229 } 8230 VToTEs = SavedVToTEs; 8231 ++Idx; 8232 } 8233 // No non-empty intersection found - need to add a second set of possible 8234 // source vectors. 8235 if (Idx == UsedTEs.size()) { 8236 // If the number of input vectors is greater than 2 - not a permutation, 8237 // fallback to the regular gather. 8238 // TODO: support multiple reshuffled nodes. 8239 if (UsedTEs.size() == 2) 8240 continue; 8241 UsedTEs.push_back(SavedVToTEs); 8242 Idx = UsedTEs.size() - 1; 8243 } 8244 UsedValuesEntry.try_emplace(V, Idx); 8245 } 8246 } 8247 8248 if (UsedTEs.empty()) 8249 return std::nullopt; 8250 8251 unsigned VF = 0; 8252 if (UsedTEs.size() == 1) { 8253 // Keep the order to avoid non-determinism. 8254 SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(), 8255 UsedTEs.front().end()); 8256 sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { 8257 return TE1->Idx < TE2->Idx; 8258 }); 8259 // Try to find the perfect match in another gather node at first. 8260 auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) { 8261 return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars); 8262 }); 8263 if (It != FirstEntries.end()) { 8264 Entries.push_back(*It); 8265 std::iota(Mask.begin(), Mask.end(), 0); 8266 // Clear undef scalars. 8267 for (int I = 0, Sz = VL.size(); I < Sz; ++I) 8268 if (isa<PoisonValue>(TE->Scalars[I])) 8269 Mask[I] = UndefMaskElem; 8270 return TargetTransformInfo::SK_PermuteSingleSrc; 8271 } 8272 // No perfect match, just shuffle, so choose the first tree node from the 8273 // tree. 8274 Entries.push_back(FirstEntries.front()); 8275 } else { 8276 // Try to find nodes with the same vector factor. 8277 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 8278 // Keep the order of tree nodes to avoid non-determinism. 8279 DenseMap<int, const TreeEntry *> VFToTE; 8280 for (const TreeEntry *TE : UsedTEs.front()) { 8281 unsigned VF = TE->getVectorFactor(); 8282 auto It = VFToTE.find(VF); 8283 if (It != VFToTE.end()) { 8284 if (It->second->Idx > TE->Idx) 8285 It->getSecond() = TE; 8286 continue; 8287 } 8288 VFToTE.try_emplace(VF, TE); 8289 } 8290 // Same, keep the order to avoid non-determinism. 8291 SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(), 8292 UsedTEs.back().end()); 8293 sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { 8294 return TE1->Idx < TE2->Idx; 8295 }); 8296 for (const TreeEntry *TE : SecondEntries) { 8297 auto It = VFToTE.find(TE->getVectorFactor()); 8298 if (It != VFToTE.end()) { 8299 VF = It->first; 8300 Entries.push_back(It->second); 8301 Entries.push_back(TE); 8302 break; 8303 } 8304 } 8305 // No 2 source vectors with the same vector factor - give up and do regular 8306 // gather. 8307 if (Entries.empty()) 8308 return std::nullopt; 8309 } 8310 8311 bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof); 8312 // Checks if the 2 PHIs are compatible in terms of high possibility to be 8313 // vectorized. 8314 auto AreCompatiblePHIs = [&](Value *V, Value *V1) { 8315 auto *PHI = cast<PHINode>(V); 8316 auto *PHI1 = cast<PHINode>(V1); 8317 // Check that all incoming values are compatible/from same parent (if they 8318 // are instructions). 8319 // The incoming values are compatible if they all are constants, or 8320 // instruction with the same/alternate opcodes from the same basic block. 8321 for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 8322 Value *In = PHI->getIncomingValue(I); 8323 Value *In1 = PHI1->getIncomingValue(I); 8324 if (isConstant(In) && isConstant(In1)) 8325 continue; 8326 if (!getSameOpcode({In, In1}, *TLI).getOpcode()) 8327 return false; 8328 if (cast<Instruction>(In)->getParent() != 8329 cast<Instruction>(In1)->getParent()) 8330 return false; 8331 } 8332 return true; 8333 }; 8334 // Check if the value can be ignored during analysis for shuffled gathers. 8335 // We suppose it is better to ignore instruction, which do not form splats, 8336 // are not vectorized/not extractelements (these instructions will be handled 8337 // by extractelements processing) or may form vector node in future. 8338 auto MightBeIgnored = [=](Value *V) { 8339 auto *I = dyn_cast<Instruction>(V); 8340 SmallVector<Value *> IgnoredVals; 8341 if (UserIgnoreList) 8342 IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end()); 8343 return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) && 8344 !isVectorLikeInstWithConstOps(I) && 8345 !areAllUsersVectorized(I, IgnoredVals) && isSimple(I); 8346 }; 8347 // Check that the neighbor instruction may form a full vector node with the 8348 // current instruction V. It is possible, if they have same/alternate opcode 8349 // and same parent basic block. 8350 auto NeighborMightBeIgnored = [&](Value *V, int Idx) { 8351 Value *V1 = VL[Idx]; 8352 bool UsedInSameVTE = false; 8353 auto It = UsedValuesEntry.find(V1); 8354 if (It != UsedValuesEntry.end()) 8355 UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second; 8356 return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE && 8357 getSameOpcode({V, V1}, *TLI).getOpcode() && 8358 cast<Instruction>(V)->getParent() == 8359 cast<Instruction>(V1)->getParent() && 8360 (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1)); 8361 }; 8362 // Build a shuffle mask for better cost estimation and vector emission. 8363 SmallBitVector UsedIdxs(Entries.size()); 8364 SmallVector<std::pair<unsigned, int>> EntryLanes; 8365 for (int I = 0, E = VL.size(); I < E; ++I) { 8366 Value *V = VL[I]; 8367 auto It = UsedValuesEntry.find(V); 8368 if (It == UsedValuesEntry.end()) 8369 continue; 8370 // Do not try to shuffle scalars, if they are constants, or instructions 8371 // that can be vectorized as a result of the following vector build 8372 // vectorization. 8373 if (isConstant(V) || (MightBeIgnored(V) && 8374 ((I > 0 && NeighborMightBeIgnored(V, I - 1)) || 8375 (I != E - 1 && NeighborMightBeIgnored(V, I + 1))))) 8376 continue; 8377 unsigned Idx = It->second; 8378 EntryLanes.emplace_back(Idx, I); 8379 UsedIdxs.set(Idx); 8380 } 8381 // Iterate through all shuffled scalars and select entries, which can be used 8382 // for final shuffle. 8383 SmallVector<const TreeEntry *> TempEntries; 8384 for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) { 8385 if (!UsedIdxs.test(I)) 8386 continue; 8387 // Fix the entry number for the given scalar. If it is the first entry, set 8388 // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes). 8389 // These indices are used when calculating final shuffle mask as the vector 8390 // offset. 8391 for (std::pair<unsigned, int> &Pair : EntryLanes) 8392 if (Pair.first == I) 8393 Pair.first = TempEntries.size(); 8394 TempEntries.push_back(Entries[I]); 8395 } 8396 Entries.swap(TempEntries); 8397 if (EntryLanes.size() == Entries.size() && !VL.equals(TE->Scalars)) { 8398 // We may have here 1 or 2 entries only. If the number of scalars is equal 8399 // to the number of entries, no need to do the analysis, it is not very 8400 // profitable. Since VL is not the same as TE->Scalars, it means we already 8401 // have some shuffles before. Cut off not profitable case. 8402 Entries.clear(); 8403 return std::nullopt; 8404 } 8405 // Build the final mask, check for the identity shuffle, if possible. 8406 bool IsIdentity = Entries.size() == 1; 8407 // Pair.first is the offset to the vector, while Pair.second is the index of 8408 // scalar in the list. 8409 for (const std::pair<unsigned, int> &Pair : EntryLanes) { 8410 Mask[Pair.second] = Pair.first * VF + 8411 Entries[Pair.first]->findLaneForValue(VL[Pair.second]); 8412 IsIdentity &= Mask[Pair.second] == Pair.second; 8413 } 8414 switch (Entries.size()) { 8415 case 1: 8416 if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2) 8417 return TargetTransformInfo::SK_PermuteSingleSrc; 8418 break; 8419 case 2: 8420 if (EntryLanes.size() > 2 || VL.size() <= 2) 8421 return TargetTransformInfo::SK_PermuteTwoSrc; 8422 break; 8423 default: 8424 break; 8425 } 8426 Entries.clear(); 8427 return std::nullopt; 8428 } 8429 8430 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 8431 const APInt &ShuffledIndices, 8432 bool NeedToShuffle) const { 8433 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8434 InstructionCost Cost = 8435 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 8436 /*Extract*/ false, CostKind); 8437 if (NeedToShuffle) 8438 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 8439 return Cost; 8440 } 8441 8442 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 8443 // Find the type of the operands in VL. 8444 Type *ScalarTy = VL[0]->getType(); 8445 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 8446 ScalarTy = SI->getValueOperand()->getType(); 8447 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 8448 bool DuplicateNonConst = false; 8449 // Find the cost of inserting/extracting values from the vector. 8450 // Check if the same elements are inserted several times and count them as 8451 // shuffle candidates. 8452 APInt ShuffledElements = APInt::getZero(VL.size()); 8453 DenseSet<Value *> UniqueElements; 8454 // Iterate in reverse order to consider insert elements with the high cost. 8455 for (unsigned I = VL.size(); I > 0; --I) { 8456 unsigned Idx = I - 1; 8457 // No need to shuffle duplicates for constants. 8458 if (isConstant(VL[Idx])) { 8459 ShuffledElements.setBit(Idx); 8460 continue; 8461 } 8462 if (!UniqueElements.insert(VL[Idx]).second) { 8463 DuplicateNonConst = true; 8464 ShuffledElements.setBit(Idx); 8465 } 8466 } 8467 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 8468 } 8469 8470 // Perform operand reordering on the instructions in VL and return the reordered 8471 // operands in Left and Right. 8472 void BoUpSLP::reorderInputsAccordingToOpcode( 8473 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 8474 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, 8475 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) { 8476 if (VL.empty()) 8477 return; 8478 VLOperands Ops(VL, TLI, DL, SE, R); 8479 // Reorder the operands in place. 8480 Ops.reorder(); 8481 Left = Ops.getVL(0); 8482 Right = Ops.getVL(1); 8483 } 8484 8485 Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) { 8486 // Get the basic block this bundle is in. All instructions in the bundle 8487 // should be in this block (except for extractelement-like instructions with 8488 // constant indeces). 8489 auto *Front = E->getMainOp(); 8490 auto *BB = Front->getParent(); 8491 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 8492 if (E->getOpcode() == Instruction::GetElementPtr && 8493 !isa<GetElementPtrInst>(V)) 8494 return true; 8495 auto *I = cast<Instruction>(V); 8496 return !E->isOpcodeOrAlt(I) || I->getParent() == BB || 8497 isVectorLikeInstWithConstOps(I); 8498 })); 8499 8500 auto &&FindLastInst = [E, Front, this, &BB]() { 8501 Instruction *LastInst = Front; 8502 for (Value *V : E->Scalars) { 8503 auto *I = dyn_cast<Instruction>(V); 8504 if (!I) 8505 continue; 8506 if (LastInst->getParent() == I->getParent()) { 8507 if (LastInst->comesBefore(I)) 8508 LastInst = I; 8509 continue; 8510 } 8511 assert(isVectorLikeInstWithConstOps(LastInst) && 8512 isVectorLikeInstWithConstOps(I) && 8513 "Expected vector-like insts only."); 8514 if (!DT->isReachableFromEntry(LastInst->getParent())) { 8515 LastInst = I; 8516 continue; 8517 } 8518 if (!DT->isReachableFromEntry(I->getParent())) 8519 continue; 8520 auto *NodeA = DT->getNode(LastInst->getParent()); 8521 auto *NodeB = DT->getNode(I->getParent()); 8522 assert(NodeA && "Should only process reachable instructions"); 8523 assert(NodeB && "Should only process reachable instructions"); 8524 assert((NodeA == NodeB) == 8525 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 8526 "Different nodes should have different DFS numbers"); 8527 if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) 8528 LastInst = I; 8529 } 8530 BB = LastInst->getParent(); 8531 return LastInst; 8532 }; 8533 8534 auto &&FindFirstInst = [E, Front, this]() { 8535 Instruction *FirstInst = Front; 8536 for (Value *V : E->Scalars) { 8537 auto *I = dyn_cast<Instruction>(V); 8538 if (!I) 8539 continue; 8540 if (FirstInst->getParent() == I->getParent()) { 8541 if (I->comesBefore(FirstInst)) 8542 FirstInst = I; 8543 continue; 8544 } 8545 assert(isVectorLikeInstWithConstOps(FirstInst) && 8546 isVectorLikeInstWithConstOps(I) && 8547 "Expected vector-like insts only."); 8548 if (!DT->isReachableFromEntry(FirstInst->getParent())) { 8549 FirstInst = I; 8550 continue; 8551 } 8552 if (!DT->isReachableFromEntry(I->getParent())) 8553 continue; 8554 auto *NodeA = DT->getNode(FirstInst->getParent()); 8555 auto *NodeB = DT->getNode(I->getParent()); 8556 assert(NodeA && "Should only process reachable instructions"); 8557 assert(NodeB && "Should only process reachable instructions"); 8558 assert((NodeA == NodeB) == 8559 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 8560 "Different nodes should have different DFS numbers"); 8561 if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn()) 8562 FirstInst = I; 8563 } 8564 return FirstInst; 8565 }; 8566 8567 // Set the insert point to the beginning of the basic block if the entry 8568 // should not be scheduled. 8569 if (E->State != TreeEntry::NeedToGather && 8570 (doesNotNeedToSchedule(E->Scalars) || 8571 all_of(E->Scalars, isVectorLikeInstWithConstOps))) { 8572 Instruction *InsertInst; 8573 if (all_of(E->Scalars, [](Value *V) { 8574 return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V); 8575 })) 8576 InsertInst = FindLastInst(); 8577 else 8578 InsertInst = FindFirstInst(); 8579 return *InsertInst; 8580 } 8581 8582 // The last instruction in the bundle in program order. 8583 Instruction *LastInst = nullptr; 8584 8585 // Find the last instruction. The common case should be that BB has been 8586 // scheduled, and the last instruction is VL.back(). So we start with 8587 // VL.back() and iterate over schedule data until we reach the end of the 8588 // bundle. The end of the bundle is marked by null ScheduleData. 8589 if (BlocksSchedules.count(BB)) { 8590 Value *V = E->isOneOf(E->Scalars.back()); 8591 if (doesNotNeedToBeScheduled(V)) 8592 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 8593 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 8594 if (Bundle && Bundle->isPartOfBundle()) 8595 for (; Bundle; Bundle = Bundle->NextInBundle) 8596 if (Bundle->OpValue == Bundle->Inst) 8597 LastInst = Bundle->Inst; 8598 } 8599 8600 // LastInst can still be null at this point if there's either not an entry 8601 // for BB in BlocksSchedules or there's no ScheduleData available for 8602 // VL.back(). This can be the case if buildTree_rec aborts for various 8603 // reasons (e.g., the maximum recursion depth is reached, the maximum region 8604 // size is reached, etc.). ScheduleData is initialized in the scheduling 8605 // "dry-run". 8606 // 8607 // If this happens, we can still find the last instruction by brute force. We 8608 // iterate forwards from Front (inclusive) until we either see all 8609 // instructions in the bundle or reach the end of the block. If Front is the 8610 // last instruction in program order, LastInst will be set to Front, and we 8611 // will visit all the remaining instructions in the block. 8612 // 8613 // One of the reasons we exit early from buildTree_rec is to place an upper 8614 // bound on compile-time. Thus, taking an additional compile-time hit here is 8615 // not ideal. However, this should be exceedingly rare since it requires that 8616 // we both exit early from buildTree_rec and that the bundle be out-of-order 8617 // (causing us to iterate all the way to the end of the block). 8618 if (!LastInst) 8619 LastInst = FindLastInst(); 8620 assert(LastInst && "Failed to find last instruction in bundle"); 8621 return *LastInst; 8622 } 8623 8624 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 8625 auto *Front = E->getMainOp(); 8626 Instruction *LastInst = EntryToLastInstruction.lookup(E); 8627 assert(LastInst && "Failed to find last instruction in bundle"); 8628 // If the instruction is PHI, set the insert point after all the PHIs. 8629 bool IsPHI = isa<PHINode>(LastInst); 8630 if (IsPHI) 8631 LastInst = LastInst->getParent()->getFirstNonPHI(); 8632 if (IsPHI || (E->State != TreeEntry::NeedToGather && 8633 doesNotNeedToSchedule(E->Scalars))) { 8634 Builder.SetInsertPoint(LastInst); 8635 } else { 8636 // Set the insertion point after the last instruction in the bundle. Set the 8637 // debug location to Front. 8638 Builder.SetInsertPoint(LastInst->getParent(), 8639 std::next(LastInst->getIterator())); 8640 } 8641 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 8642 } 8643 8644 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 8645 // List of instructions/lanes from current block and/or the blocks which are 8646 // part of the current loop. These instructions will be inserted at the end to 8647 // make it possible to optimize loops and hoist invariant instructions out of 8648 // the loops body with better chances for success. 8649 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 8650 SmallSet<int, 4> PostponedIndices; 8651 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 8652 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 8653 SmallPtrSet<BasicBlock *, 4> Visited; 8654 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 8655 InsertBB = InsertBB->getSinglePredecessor(); 8656 return InsertBB && InsertBB == InstBB; 8657 }; 8658 for (int I = 0, E = VL.size(); I < E; ++I) { 8659 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 8660 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 8661 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 8662 PostponedIndices.insert(I).second) 8663 PostponedInsts.emplace_back(Inst, I); 8664 } 8665 8666 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 8667 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 8668 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 8669 if (!InsElt) 8670 return Vec; 8671 GatherShuffleExtractSeq.insert(InsElt); 8672 CSEBlocks.insert(InsElt->getParent()); 8673 // Add to our 'need-to-extract' list. 8674 if (TreeEntry *Entry = getTreeEntry(V)) { 8675 // Find which lane we need to extract. 8676 unsigned FoundLane = Entry->findLaneForValue(V); 8677 ExternalUses.emplace_back(V, InsElt, FoundLane); 8678 } 8679 return Vec; 8680 }; 8681 Value *Val0 = 8682 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 8683 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 8684 Value *Vec = PoisonValue::get(VecTy); 8685 SmallVector<int> NonConsts; 8686 // Insert constant values at first. 8687 for (int I = 0, E = VL.size(); I < E; ++I) { 8688 if (PostponedIndices.contains(I)) 8689 continue; 8690 if (!isConstant(VL[I])) { 8691 NonConsts.push_back(I); 8692 continue; 8693 } 8694 Vec = CreateInsertElement(Vec, VL[I], I); 8695 } 8696 // Insert non-constant values. 8697 for (int I : NonConsts) 8698 Vec = CreateInsertElement(Vec, VL[I], I); 8699 // Append instructions, which are/may be part of the loop, in the end to make 8700 // it possible to hoist non-loop-based instructions. 8701 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 8702 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 8703 8704 return Vec; 8705 } 8706 8707 /// Merges shuffle masks and emits final shuffle instruction, if required. It 8708 /// supports shuffling of 2 input vectors. It implements lazy shuffles emission, 8709 /// when the actual shuffle instruction is generated only if this is actually 8710 /// required. Otherwise, the shuffle instruction emission is delayed till the 8711 /// end of the process, to reduce the number of emitted instructions and further 8712 /// analysis/transformations. 8713 /// The class also will look through the previously emitted shuffle instructions 8714 /// and properly mark indices in mask as undef. 8715 /// For example, given the code 8716 /// \code 8717 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> 8718 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> 8719 /// \endcode 8720 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will 8721 /// look through %s1 and %s2 and emit 8722 /// \code 8723 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> 8724 /// \endcode 8725 /// instead. 8726 /// If 2 operands are of different size, the smallest one will be resized and 8727 /// the mask recalculated properly. 8728 /// For example, given the code 8729 /// \code 8730 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> 8731 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> 8732 /// \endcode 8733 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will 8734 /// look through %s1 and %s2 and emit 8735 /// \code 8736 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> 8737 /// \endcode 8738 /// instead. 8739 class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis { 8740 bool IsFinalized = false; 8741 /// Combined mask for all applied operands and masks. It is built during 8742 /// analysis and actual emission of shuffle vector instructions. 8743 SmallVector<int> CommonMask; 8744 /// List of operands for the shuffle vector instruction. It hold at max 2 8745 /// operands, if the 3rd is going to be added, the first 2 are combined into 8746 /// shuffle with \p CommonMask mask, the first operand sets to be the 8747 /// resulting shuffle and the second operand sets to be the newly added 8748 /// operand. The \p CommonMask is transformed in the proper way after that. 8749 SmallVector<Value *, 2> InVectors; 8750 IRBuilderBase &Builder; 8751 BoUpSLP &R; 8752 8753 class ShuffleIRBuilder { 8754 IRBuilderBase &Builder; 8755 /// Holds all of the instructions that we gathered. 8756 SetVector<Instruction *> &GatherShuffleExtractSeq; 8757 /// A list of blocks that we are going to CSE. 8758 SetVector<BasicBlock *> &CSEBlocks; 8759 8760 public: 8761 ShuffleIRBuilder(IRBuilderBase &Builder, 8762 SetVector<Instruction *> &GatherShuffleExtractSeq, 8763 SetVector<BasicBlock *> &CSEBlocks) 8764 : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq), 8765 CSEBlocks(CSEBlocks) {} 8766 ~ShuffleIRBuilder() = default; 8767 /// Creates shufflevector for the 2 operands with the given mask. 8768 Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) { 8769 Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask); 8770 if (auto *I = dyn_cast<Instruction>(Vec)) { 8771 GatherShuffleExtractSeq.insert(I); 8772 CSEBlocks.insert(I->getParent()); 8773 } 8774 return Vec; 8775 } 8776 /// Creates permutation of the single vector operand with the given mask, if 8777 /// it is not identity mask. 8778 Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) { 8779 if (Mask.empty()) 8780 return V1; 8781 unsigned VF = Mask.size(); 8782 unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements(); 8783 if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask)) 8784 return V1; 8785 Value *Vec = Builder.CreateShuffleVector(V1, Mask); 8786 if (auto *I = dyn_cast<Instruction>(Vec)) { 8787 GatherShuffleExtractSeq.insert(I); 8788 CSEBlocks.insert(I->getParent()); 8789 } 8790 return Vec; 8791 } 8792 /// Resizes 2 input vector to match the sizes, if the they are not equal 8793 /// yet. The smallest vector is resized to the size of the larger vector. 8794 void resizeToMatch(Value *&V1, Value *&V2) { 8795 if (V1->getType() == V2->getType()) 8796 return; 8797 int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements(); 8798 int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements(); 8799 int VF = std::max(V1VF, V2VF); 8800 int MinVF = std::min(V1VF, V2VF); 8801 SmallVector<int> IdentityMask(VF, UndefMaskElem); 8802 std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF), 8803 0); 8804 Value *&Op = MinVF == V1VF ? V1 : V2; 8805 Op = Builder.CreateShuffleVector(Op, IdentityMask); 8806 if (auto *I = dyn_cast<Instruction>(Op)) { 8807 GatherShuffleExtractSeq.insert(I); 8808 CSEBlocks.insert(I->getParent()); 8809 } 8810 if (MinVF == V1VF) 8811 V1 = Op; 8812 else 8813 V2 = Op; 8814 } 8815 }; 8816 8817 /// Smart shuffle instruction emission, walks through shuffles trees and 8818 /// tries to find the best matching vector for the actual shuffle 8819 /// instruction. 8820 Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) { 8821 assert(V1 && "Expected at least one vector value."); 8822 ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq, 8823 R.CSEBlocks); 8824 return BaseShuffleAnalysis::createShuffle(V1, V2, Mask, ShuffleBuilder); 8825 } 8826 8827 /// Transforms mask \p CommonMask per given \p Mask to make proper set after 8828 /// shuffle emission. 8829 static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask, 8830 ArrayRef<int> Mask) { 8831 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) 8832 if (Mask[Idx] != UndefMaskElem) 8833 CommonMask[Idx] = Idx; 8834 } 8835 8836 public: 8837 ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R) 8838 : Builder(Builder), R(R) {} 8839 8840 /// Adds 2 input vectors and the mask for their shuffling. 8841 void add(Value *V1, Value *V2, ArrayRef<int> Mask) { 8842 assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors."); 8843 if (InVectors.empty()) { 8844 InVectors.push_back(V1); 8845 InVectors.push_back(V2); 8846 CommonMask.assign(Mask.begin(), Mask.end()); 8847 return; 8848 } 8849 Value *Vec = InVectors.front(); 8850 if (InVectors.size() == 2) { 8851 Vec = createShuffle(Vec, InVectors.back(), CommonMask); 8852 transformMaskAfterShuffle(CommonMask, Mask); 8853 } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() != 8854 Mask.size()) { 8855 Vec = createShuffle(Vec, nullptr, CommonMask); 8856 transformMaskAfterShuffle(CommonMask, Mask); 8857 } 8858 V1 = createShuffle(V1, V2, Mask); 8859 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) 8860 if (Mask[Idx] != UndefMaskElem) 8861 CommonMask[Idx] = Idx + Sz; 8862 InVectors.front() = Vec; 8863 if (InVectors.size() == 2) 8864 InVectors.back() = V1; 8865 else 8866 InVectors.push_back(V1); 8867 } 8868 /// Adds another one input vector and the mask for the shuffling. 8869 void add(Value *V1, ArrayRef<int> Mask) { 8870 if (InVectors.empty()) { 8871 if (!isa<FixedVectorType>(V1->getType())) { 8872 V1 = createShuffle(V1, nullptr, CommonMask); 8873 CommonMask.assign(Mask.size(), UndefMaskElem); 8874 transformMaskAfterShuffle(CommonMask, Mask); 8875 } 8876 InVectors.push_back(V1); 8877 CommonMask.assign(Mask.begin(), Mask.end()); 8878 return; 8879 } 8880 const auto *It = find(InVectors, V1); 8881 if (It == InVectors.end()) { 8882 if (InVectors.size() == 2 || 8883 InVectors.front()->getType() != V1->getType() || 8884 !isa<FixedVectorType>(V1->getType())) { 8885 Value *V = InVectors.front(); 8886 if (InVectors.size() == 2) { 8887 V = createShuffle(InVectors.front(), InVectors.back(), CommonMask); 8888 transformMaskAfterShuffle(CommonMask, CommonMask); 8889 } else if (cast<FixedVectorType>(V->getType())->getNumElements() != 8890 CommonMask.size()) { 8891 V = createShuffle(InVectors.front(), nullptr, CommonMask); 8892 transformMaskAfterShuffle(CommonMask, CommonMask); 8893 } 8894 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) 8895 if (CommonMask[Idx] == UndefMaskElem && Mask[Idx] != UndefMaskElem) 8896 CommonMask[Idx] = 8897 V->getType() != V1->getType() 8898 ? Idx + Sz 8899 : Mask[Idx] + cast<FixedVectorType>(V1->getType()) 8900 ->getNumElements(); 8901 if (V->getType() != V1->getType()) 8902 V1 = createShuffle(V1, nullptr, Mask); 8903 InVectors.front() = V; 8904 if (InVectors.size() == 2) 8905 InVectors.back() = V1; 8906 else 8907 InVectors.push_back(V1); 8908 return; 8909 } 8910 // Check if second vector is required if the used elements are already 8911 // used from the first one. 8912 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) 8913 if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem) { 8914 InVectors.push_back(V1); 8915 break; 8916 } 8917 } 8918 int VF = CommonMask.size(); 8919 if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) 8920 VF = FTy->getNumElements(); 8921 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) 8922 if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem) 8923 CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF); 8924 } 8925 /// Adds another one input vector and the mask for the shuffling. 8926 void addOrdered(Value *V1, ArrayRef<unsigned> Order) { 8927 SmallVector<int> NewMask; 8928 inversePermutation(Order, NewMask); 8929 add(V1, NewMask); 8930 } 8931 /// Finalize emission of the shuffles. 8932 Value * 8933 finalize(ArrayRef<int> ExtMask = std::nullopt) { 8934 IsFinalized = true; 8935 if (!ExtMask.empty()) { 8936 if (CommonMask.empty()) { 8937 CommonMask.assign(ExtMask.begin(), ExtMask.end()); 8938 } else { 8939 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8940 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8941 if (ExtMask[I] == UndefMaskElem) 8942 continue; 8943 NewMask[I] = CommonMask[ExtMask[I]]; 8944 } 8945 CommonMask.swap(NewMask); 8946 } 8947 } 8948 if (CommonMask.empty()) { 8949 assert(InVectors.size() == 1 && "Expected only one vector with no mask"); 8950 return InVectors.front(); 8951 } 8952 if (InVectors.size() == 2) 8953 return createShuffle(InVectors.front(), InVectors.back(), CommonMask); 8954 return createShuffle(InVectors.front(), nullptr, CommonMask); 8955 } 8956 8957 ~ShuffleInstructionBuilder() { 8958 assert((IsFinalized || CommonMask.empty()) && 8959 "Shuffle construction must be finalized."); 8960 } 8961 }; 8962 8963 Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx) { 8964 ArrayRef<Value *> VL = E->getOperand(NodeIdx); 8965 const unsigned VF = VL.size(); 8966 InstructionsState S = getSameOpcode(VL, *TLI); 8967 // Special processing for GEPs bundle, which may include non-gep values. 8968 if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { 8969 const auto *It = 8970 find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 8971 if (It != VL.end()) 8972 S = getSameOpcode(*It, *TLI); 8973 } 8974 if (S.getOpcode()) { 8975 if (TreeEntry *VE = getTreeEntry(S.OpValue); 8976 VE && VE->isSame(VL) && 8977 (any_of(VE->UserTreeIndices, 8978 [E, NodeIdx](const EdgeInfo &EI) { 8979 return EI.UserTE == E && EI.EdgeIdx == NodeIdx; 8980 }) || 8981 any_of(VectorizableTree, 8982 [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) { 8983 return TE->isOperandGatherNode({E, NodeIdx}) && 8984 VE->isSame(TE->Scalars); 8985 }))) { 8986 auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) { 8987 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); 8988 ShuffleBuilder.add(V, Mask); 8989 return ShuffleBuilder.finalize(std::nullopt); 8990 }; 8991 Value *V = vectorizeTree(VE); 8992 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 8993 if (!VE->ReuseShuffleIndices.empty()) { 8994 // Reshuffle to get only unique values. 8995 // If some of the scalars are duplicated in the vectorization 8996 // tree entry, we do not vectorize them but instead generate a 8997 // mask for the reuses. But if there are several users of the 8998 // same entry, they may have different vectorization factors. 8999 // This is especially important for PHI nodes. In this case, we 9000 // need to adapt the resulting instruction for the user 9001 // vectorization factor and have to reshuffle it again to take 9002 // only unique elements of the vector. Without this code the 9003 // function incorrectly returns reduced vector instruction with 9004 // the same elements, not with the unique ones. 9005 9006 // block: 9007 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 9008 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 9009 // ... (use %2) 9010 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 9011 // br %block 9012 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 9013 SmallSet<int, 4> UsedIdxs; 9014 int Pos = 0; 9015 for (int Idx : VE->ReuseShuffleIndices) { 9016 if (Idx != static_cast<int>(VF) && Idx != UndefMaskElem && 9017 UsedIdxs.insert(Idx).second) 9018 UniqueIdxs[Idx] = Pos; 9019 ++Pos; 9020 } 9021 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 9022 "less than original vector size."); 9023 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 9024 V = FinalShuffle(V, UniqueIdxs); 9025 } else { 9026 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 9027 "Expected vectorization factor less " 9028 "than original vector size."); 9029 SmallVector<int> UniformMask(VF, 0); 9030 std::iota(UniformMask.begin(), UniformMask.end(), 0); 9031 V = FinalShuffle(V, UniformMask); 9032 } 9033 } 9034 return V; 9035 } 9036 } 9037 9038 // Find the corresponding gather entry and vectorize it. 9039 // Allows to be more accurate with tree/graph transformations, checks for the 9040 // correctness of the transformations in many cases. 9041 auto *I = find_if(VectorizableTree, 9042 [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) { 9043 return TE->isOperandGatherNode({E, NodeIdx}); 9044 }); 9045 assert(I != VectorizableTree.end() && "Gather node is not in the graph."); 9046 assert(I->get()->UserTreeIndices.size() == 1 && 9047 "Expected only single user for the gather node."); 9048 assert(I->get()->isSame(VL) && "Expected same list of scalars."); 9049 IRBuilder<>::InsertPointGuard Guard(Builder); 9050 if (E->getOpcode() != Instruction::InsertElement && 9051 E->getOpcode() != Instruction::PHI) { 9052 Instruction *LastInst = EntryToLastInstruction.lookup(E); 9053 assert(LastInst && "Failed to find last instruction in bundle"); 9054 Builder.SetInsertPoint(LastInst); 9055 } 9056 return vectorizeTree(I->get()); 9057 } 9058 9059 Value *BoUpSLP::createBuildVector(const TreeEntry *E) { 9060 assert(E->State == TreeEntry::NeedToGather && "Expected gather node."); 9061 unsigned VF = E->getVectorFactor(); 9062 9063 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); 9064 SmallVector<Value *> Gathered( 9065 VF, PoisonValue::get(E->Scalars.front()->getType())); 9066 bool NeedFreeze = false; 9067 SmallVector<Value *> VL(E->Scalars.begin(), E->Scalars.end()); 9068 // Build a mask out of the redorder indices and reorder scalars per this mask. 9069 SmallVector<int> ReorderMask; 9070 inversePermutation(E->ReorderIndices, ReorderMask); 9071 if (!ReorderMask.empty()) 9072 reorderScalars(VL, ReorderMask); 9073 SmallVector<int> ReuseMask(VF, UndefMaskElem); 9074 if (!allConstant(VL)) { 9075 // For splats with can emit broadcasts instead of gathers, so try to find 9076 // such sequences. 9077 bool IsSplat = isSplat(VL) && (VL.size() > 2 || VL.front() == VL.back()); 9078 SmallVector<int> UndefPos; 9079 DenseMap<Value *, unsigned> UniquePositions; 9080 // Gather unique non-const values and all constant values. 9081 // For repeated values, just shuffle them. 9082 for (auto [I, V] : enumerate(VL)) { 9083 if (isa<UndefValue>(V)) { 9084 if (!isa<PoisonValue>(V)) { 9085 Gathered[I] = V; 9086 ReuseMask[I] = I; 9087 UndefPos.push_back(I); 9088 } 9089 continue; 9090 } 9091 if (isConstant(V)) { 9092 Gathered[I] = V; 9093 ReuseMask[I] = I; 9094 continue; 9095 } 9096 if (IsSplat) { 9097 Gathered.front() = V; 9098 ReuseMask[I] = 0; 9099 } else { 9100 const auto Res = UniquePositions.try_emplace(V, I); 9101 Gathered[Res.first->second] = V; 9102 ReuseMask[I] = Res.first->second; 9103 } 9104 } 9105 if (!UndefPos.empty() && IsSplat) { 9106 // For undef values, try to replace them with the simple broadcast. 9107 // We can do it if the broadcasted value is guaranteed to be 9108 // non-poisonous, or by freezing the incoming scalar value first. 9109 auto *It = find_if(Gathered, [this, E](Value *V) { 9110 return !isa<UndefValue>(V) && 9111 (getTreeEntry(V) || isGuaranteedNotToBePoison(V) || 9112 any_of(V->uses(), [E](const Use &U) { 9113 // Check if the value already used in the same operation in 9114 // one of the nodes already. 9115 return E->UserTreeIndices.size() == 1 && 9116 is_contained( 9117 E->UserTreeIndices.front().UserTE->Scalars, 9118 U.getUser()) && 9119 E->UserTreeIndices.front().EdgeIdx != U.getOperandNo(); 9120 })); 9121 }); 9122 if (It != Gathered.end()) { 9123 // Replace undefs by the non-poisoned scalars and emit broadcast. 9124 int Pos = std::distance(Gathered.begin(), It); 9125 for_each(UndefPos, [&](int I) { 9126 // Set the undef position to the non-poisoned scalar. 9127 ReuseMask[I] = Pos; 9128 // Replace the undef by the poison, in the mask it is replaced by non-poisoned scalar already. 9129 if (I != Pos) 9130 Gathered[I] = PoisonValue::get(Gathered[I]->getType()); 9131 }); 9132 } else { 9133 // Replace undefs by the poisons, emit broadcast and then emit 9134 // freeze. 9135 for_each(UndefPos, [&](int I) { 9136 ReuseMask[I] = UndefMaskElem; 9137 if (isa<UndefValue>(Gathered[I])) 9138 Gathered[I] = PoisonValue::get(Gathered[I]->getType()); 9139 }); 9140 NeedFreeze = true; 9141 } 9142 } 9143 } else { 9144 ReuseMask.clear(); 9145 copy(VL, Gathered.begin()); 9146 } 9147 // Gather unique scalars and all constants. 9148 Value *Vec = gather(Gathered); 9149 ShuffleBuilder.add(Vec, ReuseMask); 9150 Vec = ShuffleBuilder.finalize(E->ReuseShuffleIndices); 9151 if (NeedFreeze) 9152 Vec = Builder.CreateFreeze(Vec); 9153 return Vec; 9154 } 9155 9156 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 9157 IRBuilder<>::InsertPointGuard Guard(Builder); 9158 9159 if (E->VectorizedValue) { 9160 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 9161 return E->VectorizedValue; 9162 } 9163 9164 auto FinalShuffle = [&](Value *V, const TreeEntry *E) { 9165 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); 9166 if (E->State != TreeEntry::NeedToGather && 9167 E->getOpcode() == Instruction::Store) { 9168 ArrayRef<int> Mask = 9169 ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()), 9170 E->ReorderIndices.size()); 9171 ShuffleBuilder.add(V, Mask); 9172 } else { 9173 ShuffleBuilder.addOrdered(V, E->ReorderIndices); 9174 } 9175 return ShuffleBuilder.finalize(E->ReuseShuffleIndices); 9176 }; 9177 9178 if (E->State == TreeEntry::NeedToGather) { 9179 if (E->Idx > 0) { 9180 // We are in the middle of a vectorizable chain. We need to gather the 9181 // scalars from the users. 9182 Value *Vec = createBuildVector(E); 9183 E->VectorizedValue = Vec; 9184 return Vec; 9185 } 9186 if (E->getMainOp()) 9187 setInsertPointAfterBundle(E); 9188 SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); 9189 // Build a mask out of the reorder indices and reorder scalars per this 9190 // mask. 9191 SmallVector<int> ReorderMask; 9192 inversePermutation(E->ReorderIndices, ReorderMask); 9193 if (!ReorderMask.empty()) 9194 reorderScalars(GatheredScalars, ReorderMask); 9195 Value *Vec; 9196 SmallVector<int> Mask; 9197 SmallVector<const TreeEntry *> Entries; 9198 std::optional<TargetTransformInfo::ShuffleKind> Shuffle = 9199 isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); 9200 if (Shuffle) { 9201 assert((Entries.size() == 1 || Entries.size() == 2) && 9202 "Expected shuffle of 1 or 2 entries."); 9203 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 9204 Entries.back()->VectorizedValue, Mask); 9205 if (auto *I = dyn_cast<Instruction>(Vec)) { 9206 GatherShuffleExtractSeq.insert(I); 9207 CSEBlocks.insert(I->getParent()); 9208 } 9209 } else { 9210 Vec = gather(E->Scalars); 9211 } 9212 Vec = FinalShuffle(Vec, E); 9213 E->VectorizedValue = Vec; 9214 return Vec; 9215 } 9216 9217 assert((E->State == TreeEntry::Vectorize || 9218 E->State == TreeEntry::ScatterVectorize) && 9219 "Unhandled state"); 9220 unsigned ShuffleOrOp = 9221 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 9222 Instruction *VL0 = E->getMainOp(); 9223 Type *ScalarTy = VL0->getType(); 9224 if (auto *Store = dyn_cast<StoreInst>(VL0)) 9225 ScalarTy = Store->getValueOperand()->getType(); 9226 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 9227 ScalarTy = IE->getOperand(1)->getType(); 9228 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 9229 switch (ShuffleOrOp) { 9230 case Instruction::PHI: { 9231 assert((E->ReorderIndices.empty() || 9232 E != VectorizableTree.front().get() || 9233 !E->UserTreeIndices.empty()) && 9234 "PHI reordering is free."); 9235 auto *PH = cast<PHINode>(VL0); 9236 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 9237 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 9238 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 9239 Value *V = NewPhi; 9240 9241 // Adjust insertion point once all PHI's have been generated. 9242 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 9243 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 9244 9245 V = FinalShuffle(V, E); 9246 9247 E->VectorizedValue = V; 9248 9249 // PHINodes may have multiple entries from the same block. We want to 9250 // visit every block once. 9251 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 9252 9253 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 9254 ValueList Operands; 9255 BasicBlock *IBB = PH->getIncomingBlock(i); 9256 9257 // Stop emission if all incoming values are generated. 9258 if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) { 9259 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9260 return V; 9261 } 9262 9263 if (!VisitedBBs.insert(IBB).second) { 9264 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 9265 continue; 9266 } 9267 9268 Builder.SetInsertPoint(IBB->getTerminator()); 9269 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 9270 Value *Vec = vectorizeOperand(E, i); 9271 NewPhi->addIncoming(Vec, IBB); 9272 } 9273 9274 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 9275 "Invalid number of incoming values"); 9276 return V; 9277 } 9278 9279 case Instruction::ExtractElement: { 9280 Value *V = E->getSingleOperand(0); 9281 setInsertPointAfterBundle(E); 9282 V = FinalShuffle(V, E); 9283 E->VectorizedValue = V; 9284 return V; 9285 } 9286 case Instruction::ExtractValue: { 9287 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 9288 Builder.SetInsertPoint(LI); 9289 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 9290 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 9291 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 9292 Value *NewV = propagateMetadata(V, E->Scalars); 9293 NewV = FinalShuffle(NewV, E); 9294 E->VectorizedValue = NewV; 9295 return NewV; 9296 } 9297 case Instruction::InsertElement: { 9298 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 9299 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 9300 Value *V = vectorizeOperand(E, 1); 9301 9302 // Create InsertVector shuffle if necessary 9303 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 9304 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 9305 })); 9306 const unsigned NumElts = 9307 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 9308 const unsigned NumScalars = E->Scalars.size(); 9309 9310 unsigned Offset = *getInsertIndex(VL0); 9311 assert(Offset < NumElts && "Failed to find vector index offset"); 9312 9313 // Create shuffle to resize vector 9314 SmallVector<int> Mask; 9315 if (!E->ReorderIndices.empty()) { 9316 inversePermutation(E->ReorderIndices, Mask); 9317 Mask.append(NumElts - NumScalars, UndefMaskElem); 9318 } else { 9319 Mask.assign(NumElts, UndefMaskElem); 9320 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 9321 } 9322 // Create InsertVector shuffle if necessary 9323 bool IsIdentity = true; 9324 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 9325 Mask.swap(PrevMask); 9326 for (unsigned I = 0; I < NumScalars; ++I) { 9327 Value *Scalar = E->Scalars[PrevMask[I]]; 9328 unsigned InsertIdx = *getInsertIndex(Scalar); 9329 IsIdentity &= InsertIdx - Offset == I; 9330 Mask[InsertIdx - Offset] = I; 9331 } 9332 if (!IsIdentity || NumElts != NumScalars) { 9333 V = Builder.CreateShuffleVector(V, Mask); 9334 if (auto *I = dyn_cast<Instruction>(V)) { 9335 GatherShuffleExtractSeq.insert(I); 9336 CSEBlocks.insert(I->getParent()); 9337 } 9338 } 9339 9340 SmallVector<int> InsertMask(NumElts, UndefMaskElem); 9341 for (unsigned I = 0; I < NumElts; I++) { 9342 if (Mask[I] != UndefMaskElem) 9343 InsertMask[Offset + I] = I; 9344 } 9345 SmallBitVector UseMask = 9346 buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask); 9347 SmallBitVector IsFirstUndef = 9348 isUndefVector(FirstInsert->getOperand(0), UseMask); 9349 if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) && 9350 NumElts != NumScalars) { 9351 if (IsFirstUndef.all()) { 9352 if (!ShuffleVectorInst::isIdentityMask(InsertMask)) { 9353 SmallBitVector IsFirstPoison = 9354 isUndefVector<true>(FirstInsert->getOperand(0), UseMask); 9355 if (!IsFirstPoison.all()) { 9356 for (unsigned I = 0; I < NumElts; I++) { 9357 if (InsertMask[I] == UndefMaskElem && !IsFirstPoison.test(I)) 9358 InsertMask[I] = I + NumElts; 9359 } 9360 } 9361 V = Builder.CreateShuffleVector( 9362 V, 9363 IsFirstPoison.all() ? PoisonValue::get(V->getType()) 9364 : FirstInsert->getOperand(0), 9365 InsertMask, cast<Instruction>(E->Scalars.back())->getName()); 9366 if (auto *I = dyn_cast<Instruction>(V)) { 9367 GatherShuffleExtractSeq.insert(I); 9368 CSEBlocks.insert(I->getParent()); 9369 } 9370 } 9371 } else { 9372 SmallBitVector IsFirstPoison = 9373 isUndefVector<true>(FirstInsert->getOperand(0), UseMask); 9374 for (unsigned I = 0; I < NumElts; I++) { 9375 if (InsertMask[I] == UndefMaskElem) 9376 InsertMask[I] = IsFirstPoison.test(I) ? UndefMaskElem : I; 9377 else 9378 InsertMask[I] += NumElts; 9379 } 9380 V = Builder.CreateShuffleVector( 9381 FirstInsert->getOperand(0), V, InsertMask, 9382 cast<Instruction>(E->Scalars.back())->getName()); 9383 if (auto *I = dyn_cast<Instruction>(V)) { 9384 GatherShuffleExtractSeq.insert(I); 9385 CSEBlocks.insert(I->getParent()); 9386 } 9387 } 9388 } 9389 9390 ++NumVectorInstructions; 9391 E->VectorizedValue = V; 9392 return V; 9393 } 9394 case Instruction::ZExt: 9395 case Instruction::SExt: 9396 case Instruction::FPToUI: 9397 case Instruction::FPToSI: 9398 case Instruction::FPExt: 9399 case Instruction::PtrToInt: 9400 case Instruction::IntToPtr: 9401 case Instruction::SIToFP: 9402 case Instruction::UIToFP: 9403 case Instruction::Trunc: 9404 case Instruction::FPTrunc: 9405 case Instruction::BitCast: { 9406 setInsertPointAfterBundle(E); 9407 9408 Value *InVec = vectorizeOperand(E, 0); 9409 if (E->VectorizedValue) { 9410 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9411 return E->VectorizedValue; 9412 } 9413 9414 auto *CI = cast<CastInst>(VL0); 9415 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 9416 V = FinalShuffle(V, E); 9417 9418 E->VectorizedValue = V; 9419 ++NumVectorInstructions; 9420 return V; 9421 } 9422 case Instruction::FCmp: 9423 case Instruction::ICmp: { 9424 setInsertPointAfterBundle(E); 9425 9426 Value *L = vectorizeOperand(E, 0); 9427 if (E->VectorizedValue) { 9428 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9429 return E->VectorizedValue; 9430 } 9431 Value *R = vectorizeOperand(E, 1); 9432 if (E->VectorizedValue) { 9433 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9434 return E->VectorizedValue; 9435 } 9436 9437 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 9438 Value *V = Builder.CreateCmp(P0, L, R); 9439 propagateIRFlags(V, E->Scalars, VL0); 9440 V = FinalShuffle(V, E); 9441 9442 E->VectorizedValue = V; 9443 ++NumVectorInstructions; 9444 return V; 9445 } 9446 case Instruction::Select: { 9447 setInsertPointAfterBundle(E); 9448 9449 Value *Cond = vectorizeOperand(E, 0); 9450 if (E->VectorizedValue) { 9451 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9452 return E->VectorizedValue; 9453 } 9454 Value *True = vectorizeOperand(E, 1); 9455 if (E->VectorizedValue) { 9456 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9457 return E->VectorizedValue; 9458 } 9459 Value *False = vectorizeOperand(E, 2); 9460 if (E->VectorizedValue) { 9461 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9462 return E->VectorizedValue; 9463 } 9464 9465 Value *V = Builder.CreateSelect(Cond, True, False); 9466 V = FinalShuffle(V, E); 9467 9468 E->VectorizedValue = V; 9469 ++NumVectorInstructions; 9470 return V; 9471 } 9472 case Instruction::FNeg: { 9473 setInsertPointAfterBundle(E); 9474 9475 Value *Op = vectorizeOperand(E, 0); 9476 9477 if (E->VectorizedValue) { 9478 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9479 return E->VectorizedValue; 9480 } 9481 9482 Value *V = Builder.CreateUnOp( 9483 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 9484 propagateIRFlags(V, E->Scalars, VL0); 9485 if (auto *I = dyn_cast<Instruction>(V)) 9486 V = propagateMetadata(I, E->Scalars); 9487 9488 V = FinalShuffle(V, E); 9489 9490 E->VectorizedValue = V; 9491 ++NumVectorInstructions; 9492 9493 return V; 9494 } 9495 case Instruction::Add: 9496 case Instruction::FAdd: 9497 case Instruction::Sub: 9498 case Instruction::FSub: 9499 case Instruction::Mul: 9500 case Instruction::FMul: 9501 case Instruction::UDiv: 9502 case Instruction::SDiv: 9503 case Instruction::FDiv: 9504 case Instruction::URem: 9505 case Instruction::SRem: 9506 case Instruction::FRem: 9507 case Instruction::Shl: 9508 case Instruction::LShr: 9509 case Instruction::AShr: 9510 case Instruction::And: 9511 case Instruction::Or: 9512 case Instruction::Xor: { 9513 setInsertPointAfterBundle(E); 9514 9515 Value *LHS = vectorizeOperand(E, 0); 9516 if (E->VectorizedValue) { 9517 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9518 return E->VectorizedValue; 9519 } 9520 Value *RHS = vectorizeOperand(E, 1); 9521 if (E->VectorizedValue) { 9522 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9523 return E->VectorizedValue; 9524 } 9525 9526 Value *V = Builder.CreateBinOp( 9527 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 9528 RHS); 9529 propagateIRFlags(V, E->Scalars, VL0); 9530 if (auto *I = dyn_cast<Instruction>(V)) 9531 V = propagateMetadata(I, E->Scalars); 9532 9533 V = FinalShuffle(V, E); 9534 9535 E->VectorizedValue = V; 9536 ++NumVectorInstructions; 9537 9538 return V; 9539 } 9540 case Instruction::Load: { 9541 // Loads are inserted at the head of the tree because we don't want to 9542 // sink them all the way down past store instructions. 9543 setInsertPointAfterBundle(E); 9544 9545 LoadInst *LI = cast<LoadInst>(VL0); 9546 Instruction *NewLI; 9547 unsigned AS = LI->getPointerAddressSpace(); 9548 Value *PO = LI->getPointerOperand(); 9549 if (E->State == TreeEntry::Vectorize) { 9550 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 9551 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 9552 9553 // The pointer operand uses an in-tree scalar so we add the new BitCast 9554 // or LoadInst to ExternalUses list to make sure that an extract will 9555 // be generated in the future. 9556 if (TreeEntry *Entry = getTreeEntry(PO)) { 9557 // Find which lane we need to extract. 9558 unsigned FoundLane = Entry->findLaneForValue(PO); 9559 ExternalUses.emplace_back( 9560 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 9561 } 9562 } else { 9563 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 9564 Value *VecPtr = vectorizeOperand(E, 0); 9565 if (E->VectorizedValue) { 9566 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9567 return E->VectorizedValue; 9568 } 9569 // Use the minimum alignment of the gathered loads. 9570 Align CommonAlignment = LI->getAlign(); 9571 for (Value *V : E->Scalars) 9572 CommonAlignment = 9573 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 9574 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 9575 } 9576 Value *V = propagateMetadata(NewLI, E->Scalars); 9577 9578 V = FinalShuffle(V, E); 9579 E->VectorizedValue = V; 9580 ++NumVectorInstructions; 9581 return V; 9582 } 9583 case Instruction::Store: { 9584 auto *SI = cast<StoreInst>(VL0); 9585 unsigned AS = SI->getPointerAddressSpace(); 9586 9587 setInsertPointAfterBundle(E); 9588 9589 Value *VecValue = vectorizeOperand(E, 0); 9590 VecValue = FinalShuffle(VecValue, E); 9591 9592 Value *ScalarPtr = SI->getPointerOperand(); 9593 Value *VecPtr = Builder.CreateBitCast( 9594 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 9595 StoreInst *ST = 9596 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 9597 9598 // The pointer operand uses an in-tree scalar, so add the new BitCast or 9599 // StoreInst to ExternalUses to make sure that an extract will be 9600 // generated in the future. 9601 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 9602 // Find which lane we need to extract. 9603 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 9604 ExternalUses.push_back(ExternalUser( 9605 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 9606 FoundLane)); 9607 } 9608 9609 Value *V = propagateMetadata(ST, E->Scalars); 9610 9611 E->VectorizedValue = V; 9612 ++NumVectorInstructions; 9613 return V; 9614 } 9615 case Instruction::GetElementPtr: { 9616 auto *GEP0 = cast<GetElementPtrInst>(VL0); 9617 setInsertPointAfterBundle(E); 9618 9619 Value *Op0 = vectorizeOperand(E, 0); 9620 if (E->VectorizedValue) { 9621 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9622 return E->VectorizedValue; 9623 } 9624 9625 SmallVector<Value *> OpVecs; 9626 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 9627 Value *OpVec = vectorizeOperand(E, J); 9628 if (E->VectorizedValue) { 9629 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9630 return E->VectorizedValue; 9631 } 9632 OpVecs.push_back(OpVec); 9633 } 9634 9635 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 9636 if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { 9637 SmallVector<Value *> GEPs; 9638 for (Value *V : E->Scalars) { 9639 if (isa<GetElementPtrInst>(V)) 9640 GEPs.push_back(V); 9641 } 9642 V = propagateMetadata(I, GEPs); 9643 } 9644 9645 V = FinalShuffle(V, E); 9646 9647 E->VectorizedValue = V; 9648 ++NumVectorInstructions; 9649 9650 return V; 9651 } 9652 case Instruction::Call: { 9653 CallInst *CI = cast<CallInst>(VL0); 9654 setInsertPointAfterBundle(E); 9655 9656 Intrinsic::ID IID = Intrinsic::not_intrinsic; 9657 if (Function *FI = CI->getCalledFunction()) 9658 IID = FI->getIntrinsicID(); 9659 9660 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 9661 9662 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 9663 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 9664 VecCallCosts.first <= VecCallCosts.second; 9665 9666 Value *ScalarArg = nullptr; 9667 std::vector<Value *> OpVecs; 9668 SmallVector<Type *, 2> TysForDecl = 9669 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 9670 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 9671 ValueList OpVL; 9672 // Some intrinsics have scalar arguments. This argument should not be 9673 // vectorized. 9674 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 9675 CallInst *CEI = cast<CallInst>(VL0); 9676 ScalarArg = CEI->getArgOperand(j); 9677 OpVecs.push_back(CEI->getArgOperand(j)); 9678 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 9679 TysForDecl.push_back(ScalarArg->getType()); 9680 continue; 9681 } 9682 9683 Value *OpVec = vectorizeOperand(E, j); 9684 if (E->VectorizedValue) { 9685 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9686 return E->VectorizedValue; 9687 } 9688 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 9689 OpVecs.push_back(OpVec); 9690 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 9691 TysForDecl.push_back(OpVec->getType()); 9692 } 9693 9694 Function *CF; 9695 if (!UseIntrinsic) { 9696 VFShape Shape = 9697 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 9698 VecTy->getNumElements())), 9699 false /*HasGlobalPred*/); 9700 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 9701 } else { 9702 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 9703 } 9704 9705 SmallVector<OperandBundleDef, 1> OpBundles; 9706 CI->getOperandBundlesAsDefs(OpBundles); 9707 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 9708 9709 // The scalar argument uses an in-tree scalar so we add the new vectorized 9710 // call to ExternalUses list to make sure that an extract will be 9711 // generated in the future. 9712 if (ScalarArg) { 9713 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 9714 // Find which lane we need to extract. 9715 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 9716 ExternalUses.push_back( 9717 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 9718 } 9719 } 9720 9721 propagateIRFlags(V, E->Scalars, VL0); 9722 V = FinalShuffle(V, E); 9723 9724 E->VectorizedValue = V; 9725 ++NumVectorInstructions; 9726 return V; 9727 } 9728 case Instruction::ShuffleVector: { 9729 assert(E->isAltShuffle() && 9730 ((Instruction::isBinaryOp(E->getOpcode()) && 9731 Instruction::isBinaryOp(E->getAltOpcode())) || 9732 (Instruction::isCast(E->getOpcode()) && 9733 Instruction::isCast(E->getAltOpcode())) || 9734 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 9735 "Invalid Shuffle Vector Operand"); 9736 9737 Value *LHS = nullptr, *RHS = nullptr; 9738 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 9739 setInsertPointAfterBundle(E); 9740 LHS = vectorizeOperand(E, 0); 9741 if (E->VectorizedValue) { 9742 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9743 return E->VectorizedValue; 9744 } 9745 RHS = vectorizeOperand(E, 1); 9746 } else { 9747 setInsertPointAfterBundle(E); 9748 LHS = vectorizeOperand(E, 0); 9749 } 9750 if (E->VectorizedValue) { 9751 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 9752 return E->VectorizedValue; 9753 } 9754 9755 Value *V0, *V1; 9756 if (Instruction::isBinaryOp(E->getOpcode())) { 9757 V0 = Builder.CreateBinOp( 9758 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 9759 V1 = Builder.CreateBinOp( 9760 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 9761 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 9762 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 9763 auto *AltCI = cast<CmpInst>(E->getAltOp()); 9764 CmpInst::Predicate AltPred = AltCI->getPredicate(); 9765 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 9766 } else { 9767 V0 = Builder.CreateCast( 9768 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 9769 V1 = Builder.CreateCast( 9770 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 9771 } 9772 // Add V0 and V1 to later analysis to try to find and remove matching 9773 // instruction, if any. 9774 for (Value *V : {V0, V1}) { 9775 if (auto *I = dyn_cast<Instruction>(V)) { 9776 GatherShuffleExtractSeq.insert(I); 9777 CSEBlocks.insert(I->getParent()); 9778 } 9779 } 9780 9781 // Create shuffle to take alternate operations from the vector. 9782 // Also, gather up main and alt scalar ops to propagate IR flags to 9783 // each vector operation. 9784 ValueList OpScalars, AltScalars; 9785 SmallVector<int> Mask; 9786 buildShuffleEntryMask( 9787 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 9788 [E, this](Instruction *I) { 9789 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 9790 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(), 9791 *TLI); 9792 }, 9793 Mask, &OpScalars, &AltScalars); 9794 9795 propagateIRFlags(V0, OpScalars); 9796 propagateIRFlags(V1, AltScalars); 9797 9798 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 9799 if (auto *I = dyn_cast<Instruction>(V)) { 9800 V = propagateMetadata(I, E->Scalars); 9801 GatherShuffleExtractSeq.insert(I); 9802 CSEBlocks.insert(I->getParent()); 9803 } 9804 9805 E->VectorizedValue = V; 9806 ++NumVectorInstructions; 9807 9808 return V; 9809 } 9810 default: 9811 llvm_unreachable("unknown inst"); 9812 } 9813 return nullptr; 9814 } 9815 9816 Value *BoUpSLP::vectorizeTree() { 9817 ExtraValueToDebugLocsMap ExternallyUsedValues; 9818 return vectorizeTree(ExternallyUsedValues); 9819 } 9820 9821 namespace { 9822 /// Data type for handling buildvector sequences with the reused scalars from 9823 /// other tree entries. 9824 struct ShuffledInsertData { 9825 /// List of insertelements to be replaced by shuffles. 9826 SmallVector<InsertElementInst *> InsertElements; 9827 /// The parent vectors and shuffle mask for the given list of inserts. 9828 MapVector<Value *, SmallVector<int>> ValueMasks; 9829 }; 9830 } // namespace 9831 9832 Value *BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues, 9833 Instruction *ReductionRoot) { 9834 // All blocks must be scheduled before any instructions are inserted. 9835 for (auto &BSIter : BlocksSchedules) { 9836 scheduleBlock(BSIter.second.get()); 9837 } 9838 9839 // Pre-gather last instructions. 9840 for (const std::unique_ptr<TreeEntry> &E : VectorizableTree) { 9841 if ((E->State == TreeEntry::NeedToGather && 9842 (!E->getMainOp() || E->Idx > 0)) || 9843 (E->State != TreeEntry::NeedToGather && 9844 E->getOpcode() == Instruction::ExtractValue) || 9845 E->getOpcode() == Instruction::InsertElement) 9846 continue; 9847 Instruction *LastInst = &getLastInstructionInBundle(E.get()); 9848 EntryToLastInstruction.try_emplace(E.get(), LastInst); 9849 } 9850 9851 Builder.SetInsertPoint(ReductionRoot ? ReductionRoot 9852 : &F->getEntryBlock().front()); 9853 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 9854 9855 // If the vectorized tree can be rewritten in a smaller type, we truncate the 9856 // vectorized root. InstCombine will then rewrite the entire expression. We 9857 // sign extend the extracted values below. 9858 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 9859 if (MinBWs.count(ScalarRoot)) { 9860 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 9861 // If current instr is a phi and not the last phi, insert it after the 9862 // last phi node. 9863 if (isa<PHINode>(I)) 9864 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 9865 else 9866 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 9867 } 9868 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 9869 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 9870 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 9871 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 9872 VectorizableTree[0]->VectorizedValue = Trunc; 9873 } 9874 9875 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 9876 << " values .\n"); 9877 9878 SmallVector<ShuffledInsertData> ShuffledInserts; 9879 // Maps vector instruction to original insertelement instruction 9880 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 9881 // Maps extract Scalar to the corresponding extractelement instruction in the 9882 // basic block. Only one extractelement per block should be emitted. 9883 DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs; 9884 // Extract all of the elements with the external uses. 9885 for (const auto &ExternalUse : ExternalUses) { 9886 Value *Scalar = ExternalUse.Scalar; 9887 llvm::User *User = ExternalUse.User; 9888 9889 // Skip users that we already RAUW. This happens when one instruction 9890 // has multiple uses of the same value. 9891 if (User && !is_contained(Scalar->users(), User)) 9892 continue; 9893 TreeEntry *E = getTreeEntry(Scalar); 9894 assert(E && "Invalid scalar"); 9895 assert(E->State != TreeEntry::NeedToGather && 9896 "Extracting from a gather list"); 9897 // Non-instruction pointers are not deleted, just skip them. 9898 if (E->getOpcode() == Instruction::GetElementPtr && 9899 !isa<GetElementPtrInst>(Scalar)) 9900 continue; 9901 9902 Value *Vec = E->VectorizedValue; 9903 assert(Vec && "Can't find vectorizable value"); 9904 9905 Value *Lane = Builder.getInt32(ExternalUse.Lane); 9906 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 9907 if (Scalar->getType() != Vec->getType()) { 9908 Value *Ex = nullptr; 9909 auto It = ScalarToEEs.find(Scalar); 9910 if (It != ScalarToEEs.end()) { 9911 // No need to emit many extracts, just move the only one in the 9912 // current block. 9913 auto EEIt = It->second.find(Builder.GetInsertBlock()); 9914 if (EEIt != It->second.end()) { 9915 Instruction *I = EEIt->second; 9916 if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() && 9917 Builder.GetInsertPoint()->comesBefore(I)) 9918 I->moveBefore(&*Builder.GetInsertPoint()); 9919 Ex = I; 9920 } 9921 } 9922 if (!Ex) { 9923 // "Reuse" the existing extract to improve final codegen. 9924 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 9925 Ex = Builder.CreateExtractElement(ES->getOperand(0), 9926 ES->getOperand(1)); 9927 } else { 9928 Ex = Builder.CreateExtractElement(Vec, Lane); 9929 } 9930 if (auto *I = dyn_cast<Instruction>(Ex)) 9931 ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I); 9932 } 9933 // The then branch of the previous if may produce constants, since 0 9934 // operand might be a constant. 9935 if (auto *ExI = dyn_cast<Instruction>(Ex)) { 9936 GatherShuffleExtractSeq.insert(ExI); 9937 CSEBlocks.insert(ExI->getParent()); 9938 } 9939 // If necessary, sign-extend or zero-extend ScalarRoot 9940 // to the larger type. 9941 if (!MinBWs.count(ScalarRoot)) 9942 return Ex; 9943 if (MinBWs[ScalarRoot].second) 9944 return Builder.CreateSExt(Ex, Scalar->getType()); 9945 return Builder.CreateZExt(Ex, Scalar->getType()); 9946 } 9947 assert(isa<FixedVectorType>(Scalar->getType()) && 9948 isa<InsertElementInst>(Scalar) && 9949 "In-tree scalar of vector type is not insertelement?"); 9950 auto *IE = cast<InsertElementInst>(Scalar); 9951 VectorToInsertElement.try_emplace(Vec, IE); 9952 return Vec; 9953 }; 9954 // If User == nullptr, the Scalar is used as extra arg. Generate 9955 // ExtractElement instruction and update the record for this scalar in 9956 // ExternallyUsedValues. 9957 if (!User) { 9958 assert(ExternallyUsedValues.count(Scalar) && 9959 "Scalar with nullptr as an external user must be registered in " 9960 "ExternallyUsedValues map"); 9961 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 9962 if (auto *PHI = dyn_cast<PHINode>(VecI)) 9963 Builder.SetInsertPoint(PHI->getParent()->getFirstNonPHI()); 9964 else 9965 Builder.SetInsertPoint(VecI->getParent(), 9966 std::next(VecI->getIterator())); 9967 } else { 9968 Builder.SetInsertPoint(&F->getEntryBlock().front()); 9969 } 9970 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 9971 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 9972 auto It = ExternallyUsedValues.find(Scalar); 9973 assert(It != ExternallyUsedValues.end() && 9974 "Externally used scalar is not found in ExternallyUsedValues"); 9975 NewInstLocs.append(It->second); 9976 ExternallyUsedValues.erase(Scalar); 9977 // Required to update internally referenced instructions. 9978 Scalar->replaceAllUsesWith(NewInst); 9979 continue; 9980 } 9981 9982 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 9983 // Skip if the scalar is another vector op or Vec is not an instruction. 9984 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { 9985 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 9986 std::optional<unsigned> InsertIdx = getInsertIndex(VU); 9987 if (InsertIdx) { 9988 // Need to use original vector, if the root is truncated. 9989 if (MinBWs.count(Scalar) && 9990 VectorizableTree[0]->VectorizedValue == Vec) 9991 Vec = VectorRoot; 9992 auto *It = 9993 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 9994 // Checks if 2 insertelements are from the same buildvector. 9995 InsertElementInst *VecInsert = Data.InsertElements.front(); 9996 return areTwoInsertFromSameBuildVector( 9997 VU, VecInsert, 9998 [](InsertElementInst *II) { return II->getOperand(0); }); 9999 }); 10000 unsigned Idx = *InsertIdx; 10001 if (It == ShuffledInserts.end()) { 10002 (void)ShuffledInserts.emplace_back(); 10003 It = std::next(ShuffledInserts.begin(), 10004 ShuffledInserts.size() - 1); 10005 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 10006 if (Mask.empty()) 10007 Mask.assign(FTy->getNumElements(), UndefMaskElem); 10008 // Find the insertvector, vectorized in tree, if any. 10009 Value *Base = VU; 10010 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 10011 if (IEBase != User && 10012 (!IEBase->hasOneUse() || 10013 getInsertIndex(IEBase).value_or(Idx) == Idx)) 10014 break; 10015 // Build the mask for the vectorized insertelement instructions. 10016 if (const TreeEntry *E = getTreeEntry(IEBase)) { 10017 do { 10018 IEBase = cast<InsertElementInst>(Base); 10019 int IEIdx = *getInsertIndex(IEBase); 10020 assert(Mask[Idx] == UndefMaskElem && 10021 "InsertElementInstruction used already."); 10022 Mask[IEIdx] = IEIdx; 10023 Base = IEBase->getOperand(0); 10024 } while (E == getTreeEntry(Base)); 10025 break; 10026 } 10027 Base = cast<InsertElementInst>(Base)->getOperand(0); 10028 // After the vectorization the def-use chain has changed, need 10029 // to look through original insertelement instructions, if they 10030 // get replaced by vector instructions. 10031 auto It = VectorToInsertElement.find(Base); 10032 if (It != VectorToInsertElement.end()) 10033 Base = It->second; 10034 } 10035 } 10036 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 10037 if (Mask.empty()) 10038 Mask.assign(FTy->getNumElements(), UndefMaskElem); 10039 Mask[Idx] = ExternalUse.Lane; 10040 It->InsertElements.push_back(cast<InsertElementInst>(User)); 10041 continue; 10042 } 10043 } 10044 } 10045 } 10046 10047 // Generate extracts for out-of-tree users. 10048 // Find the insertion point for the extractelement lane. 10049 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 10050 if (PHINode *PH = dyn_cast<PHINode>(User)) { 10051 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 10052 if (PH->getIncomingValue(i) == Scalar) { 10053 Instruction *IncomingTerminator = 10054 PH->getIncomingBlock(i)->getTerminator(); 10055 if (isa<CatchSwitchInst>(IncomingTerminator)) { 10056 Builder.SetInsertPoint(VecI->getParent(), 10057 std::next(VecI->getIterator())); 10058 } else { 10059 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 10060 } 10061 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 10062 PH->setOperand(i, NewInst); 10063 } 10064 } 10065 } else { 10066 Builder.SetInsertPoint(cast<Instruction>(User)); 10067 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 10068 User->replaceUsesOfWith(Scalar, NewInst); 10069 } 10070 } else { 10071 Builder.SetInsertPoint(&F->getEntryBlock().front()); 10072 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 10073 User->replaceUsesOfWith(Scalar, NewInst); 10074 } 10075 10076 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 10077 } 10078 10079 auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) { 10080 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 10081 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 10082 int VF = cast<FixedVectorType>(V1->getType())->getNumElements(); 10083 for (int I = 0, E = Mask.size(); I < E; ++I) { 10084 if (Mask[I] < VF) 10085 CombinedMask1[I] = Mask[I]; 10086 else 10087 CombinedMask2[I] = Mask[I] - VF; 10088 } 10089 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); 10090 ShuffleBuilder.add(V1, CombinedMask1); 10091 if (V2) 10092 ShuffleBuilder.add(V2, CombinedMask2); 10093 return ShuffleBuilder.finalize(std::nullopt); 10094 }; 10095 10096 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask, 10097 bool ForSingleMask) { 10098 unsigned VF = Mask.size(); 10099 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 10100 if (VF != VecVF) { 10101 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 10102 Vec = CreateShuffle(Vec, nullptr, Mask); 10103 return std::make_pair(Vec, true); 10104 } 10105 if (!ForSingleMask) { 10106 SmallVector<int> ResizeMask(VF, UndefMaskElem); 10107 for (unsigned I = 0; I < VF; ++I) { 10108 if (Mask[I] != UndefMaskElem) 10109 ResizeMask[Mask[I]] = Mask[I]; 10110 } 10111 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 10112 } 10113 } 10114 10115 return std::make_pair(Vec, false); 10116 }; 10117 // Perform shuffling of the vectorize tree entries for better handling of 10118 // external extracts. 10119 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 10120 // Find the first and the last instruction in the list of insertelements. 10121 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 10122 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 10123 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 10124 Builder.SetInsertPoint(LastInsert); 10125 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 10126 Value *NewInst = performExtractsShuffleAction<Value>( 10127 MutableArrayRef(Vector.data(), Vector.size()), 10128 FirstInsert->getOperand(0), 10129 [](Value *Vec) { 10130 return cast<VectorType>(Vec->getType()) 10131 ->getElementCount() 10132 .getKnownMinValue(); 10133 }, 10134 ResizeToVF, 10135 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 10136 ArrayRef<Value *> Vals) { 10137 assert((Vals.size() == 1 || Vals.size() == 2) && 10138 "Expected exactly 1 or 2 input values."); 10139 if (Vals.size() == 1) { 10140 // Do not create shuffle if the mask is a simple identity 10141 // non-resizing mask. 10142 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 10143 ->getNumElements() || 10144 !ShuffleVectorInst::isIdentityMask(Mask)) 10145 return CreateShuffle(Vals.front(), nullptr, Mask); 10146 return Vals.front(); 10147 } 10148 return CreateShuffle(Vals.front() ? Vals.front() 10149 : FirstInsert->getOperand(0), 10150 Vals.back(), Mask); 10151 }); 10152 auto It = ShuffledInserts[I].InsertElements.rbegin(); 10153 // Rebuild buildvector chain. 10154 InsertElementInst *II = nullptr; 10155 if (It != ShuffledInserts[I].InsertElements.rend()) 10156 II = *It; 10157 SmallVector<Instruction *> Inserts; 10158 while (It != ShuffledInserts[I].InsertElements.rend()) { 10159 assert(II && "Must be an insertelement instruction."); 10160 if (*It == II) 10161 ++It; 10162 else 10163 Inserts.push_back(cast<Instruction>(II)); 10164 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 10165 } 10166 for (Instruction *II : reverse(Inserts)) { 10167 II->replaceUsesOfWith(II->getOperand(0), NewInst); 10168 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 10169 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 10170 II->moveAfter(NewI); 10171 NewInst = II; 10172 } 10173 LastInsert->replaceAllUsesWith(NewInst); 10174 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 10175 IE->replaceUsesOfWith(IE->getOperand(0), 10176 PoisonValue::get(IE->getOperand(0)->getType())); 10177 IE->replaceUsesOfWith(IE->getOperand(1), 10178 PoisonValue::get(IE->getOperand(1)->getType())); 10179 eraseInstruction(IE); 10180 } 10181 CSEBlocks.insert(LastInsert->getParent()); 10182 } 10183 10184 SmallVector<Instruction *> RemovedInsts; 10185 // For each vectorized value: 10186 for (auto &TEPtr : VectorizableTree) { 10187 TreeEntry *Entry = TEPtr.get(); 10188 10189 // No need to handle users of gathered values. 10190 if (Entry->State == TreeEntry::NeedToGather) 10191 continue; 10192 10193 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 10194 10195 // For each lane: 10196 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 10197 Value *Scalar = Entry->Scalars[Lane]; 10198 10199 if (Entry->getOpcode() == Instruction::GetElementPtr && 10200 !isa<GetElementPtrInst>(Scalar)) 10201 continue; 10202 #ifndef NDEBUG 10203 Type *Ty = Scalar->getType(); 10204 if (!Ty->isVoidTy()) { 10205 for (User *U : Scalar->users()) { 10206 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 10207 10208 // It is legal to delete users in the ignorelist. 10209 assert((getTreeEntry(U) || 10210 (UserIgnoreList && UserIgnoreList->contains(U)) || 10211 (isa_and_nonnull<Instruction>(U) && 10212 isDeleted(cast<Instruction>(U)))) && 10213 "Deleting out-of-tree value"); 10214 } 10215 } 10216 #endif 10217 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 10218 eraseInstruction(cast<Instruction>(Scalar)); 10219 // Retain to-be-deleted instructions for some debug-info 10220 // bookkeeping. NOTE: eraseInstruction only marks the instruction for 10221 // deletion - instructions are not deleted until later. 10222 RemovedInsts.push_back(cast<Instruction>(Scalar)); 10223 } 10224 } 10225 10226 // Merge the DIAssignIDs from the about-to-be-deleted instructions into the 10227 // new vector instruction. 10228 if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue)) 10229 V->mergeDIAssignID(RemovedInsts); 10230 10231 Builder.ClearInsertionPoint(); 10232 InstrElementSize.clear(); 10233 10234 return VectorizableTree[0]->VectorizedValue; 10235 } 10236 10237 void BoUpSLP::optimizeGatherSequence() { 10238 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size() 10239 << " gather sequences instructions.\n"); 10240 // LICM InsertElementInst sequences. 10241 for (Instruction *I : GatherShuffleExtractSeq) { 10242 if (isDeleted(I)) 10243 continue; 10244 10245 // Check if this block is inside a loop. 10246 Loop *L = LI->getLoopFor(I->getParent()); 10247 if (!L) 10248 continue; 10249 10250 // Check if it has a preheader. 10251 BasicBlock *PreHeader = L->getLoopPreheader(); 10252 if (!PreHeader) 10253 continue; 10254 10255 // If the vector or the element that we insert into it are 10256 // instructions that are defined in this basic block then we can't 10257 // hoist this instruction. 10258 if (any_of(I->operands(), [L](Value *V) { 10259 auto *OpI = dyn_cast<Instruction>(V); 10260 return OpI && L->contains(OpI); 10261 })) 10262 continue; 10263 10264 // We can hoist this instruction. Move it to the pre-header. 10265 I->moveBefore(PreHeader->getTerminator()); 10266 CSEBlocks.insert(PreHeader); 10267 } 10268 10269 // Make a list of all reachable blocks in our CSE queue. 10270 SmallVector<const DomTreeNode *, 8> CSEWorkList; 10271 CSEWorkList.reserve(CSEBlocks.size()); 10272 for (BasicBlock *BB : CSEBlocks) 10273 if (DomTreeNode *N = DT->getNode(BB)) { 10274 assert(DT->isReachableFromEntry(N)); 10275 CSEWorkList.push_back(N); 10276 } 10277 10278 // Sort blocks by domination. This ensures we visit a block after all blocks 10279 // dominating it are visited. 10280 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 10281 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 10282 "Different nodes should have different DFS numbers"); 10283 return A->getDFSNumIn() < B->getDFSNumIn(); 10284 }); 10285 10286 // Less defined shuffles can be replaced by the more defined copies. 10287 // Between two shuffles one is less defined if it has the same vector operands 10288 // and its mask indeces are the same as in the first one or undefs. E.g. 10289 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 10290 // poison, <0, 0, 0, 0>. 10291 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 10292 SmallVectorImpl<int> &NewMask) { 10293 if (I1->getType() != I2->getType()) 10294 return false; 10295 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 10296 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 10297 if (!SI1 || !SI2) 10298 return I1->isIdenticalTo(I2); 10299 if (SI1->isIdenticalTo(SI2)) 10300 return true; 10301 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 10302 if (SI1->getOperand(I) != SI2->getOperand(I)) 10303 return false; 10304 // Check if the second instruction is more defined than the first one. 10305 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 10306 ArrayRef<int> SM1 = SI1->getShuffleMask(); 10307 // Count trailing undefs in the mask to check the final number of used 10308 // registers. 10309 unsigned LastUndefsCnt = 0; 10310 for (int I = 0, E = NewMask.size(); I < E; ++I) { 10311 if (SM1[I] == UndefMaskElem) 10312 ++LastUndefsCnt; 10313 else 10314 LastUndefsCnt = 0; 10315 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 10316 NewMask[I] != SM1[I]) 10317 return false; 10318 if (NewMask[I] == UndefMaskElem) 10319 NewMask[I] = SM1[I]; 10320 } 10321 // Check if the last undefs actually change the final number of used vector 10322 // registers. 10323 return SM1.size() - LastUndefsCnt > 1 && 10324 TTI->getNumberOfParts(SI1->getType()) == 10325 TTI->getNumberOfParts( 10326 FixedVectorType::get(SI1->getType()->getElementType(), 10327 SM1.size() - LastUndefsCnt)); 10328 }; 10329 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 10330 // instructions. TODO: We can further optimize this scan if we split the 10331 // instructions into different buckets based on the insert lane. 10332 SmallVector<Instruction *, 16> Visited; 10333 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 10334 assert(*I && 10335 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 10336 "Worklist not sorted properly!"); 10337 BasicBlock *BB = (*I)->getBlock(); 10338 // For all instructions in blocks containing gather sequences: 10339 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 10340 if (isDeleted(&In)) 10341 continue; 10342 if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) && 10343 !GatherShuffleExtractSeq.contains(&In)) 10344 continue; 10345 10346 // Check if we can replace this instruction with any of the 10347 // visited instructions. 10348 bool Replaced = false; 10349 for (Instruction *&V : Visited) { 10350 SmallVector<int> NewMask; 10351 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 10352 DT->dominates(V->getParent(), In.getParent())) { 10353 In.replaceAllUsesWith(V); 10354 eraseInstruction(&In); 10355 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 10356 if (!NewMask.empty()) 10357 SI->setShuffleMask(NewMask); 10358 Replaced = true; 10359 break; 10360 } 10361 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 10362 GatherShuffleExtractSeq.contains(V) && 10363 IsIdenticalOrLessDefined(V, &In, NewMask) && 10364 DT->dominates(In.getParent(), V->getParent())) { 10365 In.moveAfter(V); 10366 V->replaceAllUsesWith(&In); 10367 eraseInstruction(V); 10368 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 10369 if (!NewMask.empty()) 10370 SI->setShuffleMask(NewMask); 10371 V = &In; 10372 Replaced = true; 10373 break; 10374 } 10375 } 10376 if (!Replaced) { 10377 assert(!is_contained(Visited, &In)); 10378 Visited.push_back(&In); 10379 } 10380 } 10381 } 10382 CSEBlocks.clear(); 10383 GatherShuffleExtractSeq.clear(); 10384 } 10385 10386 BoUpSLP::ScheduleData * 10387 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 10388 ScheduleData *Bundle = nullptr; 10389 ScheduleData *PrevInBundle = nullptr; 10390 for (Value *V : VL) { 10391 if (doesNotNeedToBeScheduled(V)) 10392 continue; 10393 ScheduleData *BundleMember = getScheduleData(V); 10394 assert(BundleMember && 10395 "no ScheduleData for bundle member " 10396 "(maybe not in same basic block)"); 10397 assert(BundleMember->isSchedulingEntity() && 10398 "bundle member already part of other bundle"); 10399 if (PrevInBundle) { 10400 PrevInBundle->NextInBundle = BundleMember; 10401 } else { 10402 Bundle = BundleMember; 10403 } 10404 10405 // Group the instructions to a bundle. 10406 BundleMember->FirstInBundle = Bundle; 10407 PrevInBundle = BundleMember; 10408 } 10409 assert(Bundle && "Failed to find schedule bundle"); 10410 return Bundle; 10411 } 10412 10413 // Groups the instructions to a bundle (which is then a single scheduling entity) 10414 // and schedules instructions until the bundle gets ready. 10415 std::optional<BoUpSLP::ScheduleData *> 10416 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 10417 const InstructionsState &S) { 10418 // No need to schedule PHIs, insertelement, extractelement and extractvalue 10419 // instructions. 10420 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 10421 doesNotNeedToSchedule(VL)) 10422 return nullptr; 10423 10424 // Initialize the instruction bundle. 10425 Instruction *OldScheduleEnd = ScheduleEnd; 10426 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 10427 10428 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 10429 ScheduleData *Bundle) { 10430 // The scheduling region got new instructions at the lower end (or it is a 10431 // new region for the first bundle). This makes it necessary to 10432 // recalculate all dependencies. 10433 // It is seldom that this needs to be done a second time after adding the 10434 // initial bundle to the region. 10435 if (ScheduleEnd != OldScheduleEnd) { 10436 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 10437 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 10438 ReSchedule = true; 10439 } 10440 if (Bundle) { 10441 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 10442 << " in block " << BB->getName() << "\n"); 10443 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 10444 } 10445 10446 if (ReSchedule) { 10447 resetSchedule(); 10448 initialFillReadyList(ReadyInsts); 10449 } 10450 10451 // Now try to schedule the new bundle or (if no bundle) just calculate 10452 // dependencies. As soon as the bundle is "ready" it means that there are no 10453 // cyclic dependencies and we can schedule it. Note that's important that we 10454 // don't "schedule" the bundle yet (see cancelScheduling). 10455 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 10456 !ReadyInsts.empty()) { 10457 ScheduleData *Picked = ReadyInsts.pop_back_val(); 10458 assert(Picked->isSchedulingEntity() && Picked->isReady() && 10459 "must be ready to schedule"); 10460 schedule(Picked, ReadyInsts); 10461 } 10462 }; 10463 10464 // Make sure that the scheduling region contains all 10465 // instructions of the bundle. 10466 for (Value *V : VL) { 10467 if (doesNotNeedToBeScheduled(V)) 10468 continue; 10469 if (!extendSchedulingRegion(V, S)) { 10470 // If the scheduling region got new instructions at the lower end (or it 10471 // is a new region for the first bundle). This makes it necessary to 10472 // recalculate all dependencies. 10473 // Otherwise the compiler may crash trying to incorrectly calculate 10474 // dependencies and emit instruction in the wrong order at the actual 10475 // scheduling. 10476 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 10477 return std::nullopt; 10478 } 10479 } 10480 10481 bool ReSchedule = false; 10482 for (Value *V : VL) { 10483 if (doesNotNeedToBeScheduled(V)) 10484 continue; 10485 ScheduleData *BundleMember = getScheduleData(V); 10486 assert(BundleMember && 10487 "no ScheduleData for bundle member (maybe not in same basic block)"); 10488 10489 // Make sure we don't leave the pieces of the bundle in the ready list when 10490 // whole bundle might not be ready. 10491 ReadyInsts.remove(BundleMember); 10492 10493 if (!BundleMember->IsScheduled) 10494 continue; 10495 // A bundle member was scheduled as single instruction before and now 10496 // needs to be scheduled as part of the bundle. We just get rid of the 10497 // existing schedule. 10498 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 10499 << " was already scheduled\n"); 10500 ReSchedule = true; 10501 } 10502 10503 auto *Bundle = buildBundle(VL); 10504 TryScheduleBundleImpl(ReSchedule, Bundle); 10505 if (!Bundle->isReady()) { 10506 cancelScheduling(VL, S.OpValue); 10507 return std::nullopt; 10508 } 10509 return Bundle; 10510 } 10511 10512 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 10513 Value *OpValue) { 10514 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 10515 doesNotNeedToSchedule(VL)) 10516 return; 10517 10518 if (doesNotNeedToBeScheduled(OpValue)) 10519 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 10520 ScheduleData *Bundle = getScheduleData(OpValue); 10521 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 10522 assert(!Bundle->IsScheduled && 10523 "Can't cancel bundle which is already scheduled"); 10524 assert(Bundle->isSchedulingEntity() && 10525 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 10526 "tried to unbundle something which is not a bundle"); 10527 10528 // Remove the bundle from the ready list. 10529 if (Bundle->isReady()) 10530 ReadyInsts.remove(Bundle); 10531 10532 // Un-bundle: make single instructions out of the bundle. 10533 ScheduleData *BundleMember = Bundle; 10534 while (BundleMember) { 10535 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 10536 BundleMember->FirstInBundle = BundleMember; 10537 ScheduleData *Next = BundleMember->NextInBundle; 10538 BundleMember->NextInBundle = nullptr; 10539 BundleMember->TE = nullptr; 10540 if (BundleMember->unscheduledDepsInBundle() == 0) { 10541 ReadyInsts.insert(BundleMember); 10542 } 10543 BundleMember = Next; 10544 } 10545 } 10546 10547 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 10548 // Allocate a new ScheduleData for the instruction. 10549 if (ChunkPos >= ChunkSize) { 10550 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 10551 ChunkPos = 0; 10552 } 10553 return &(ScheduleDataChunks.back()[ChunkPos++]); 10554 } 10555 10556 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 10557 const InstructionsState &S) { 10558 if (getScheduleData(V, isOneOf(S, V))) 10559 return true; 10560 Instruction *I = dyn_cast<Instruction>(V); 10561 assert(I && "bundle member must be an instruction"); 10562 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 10563 !doesNotNeedToBeScheduled(I) && 10564 "phi nodes/insertelements/extractelements/extractvalues don't need to " 10565 "be scheduled"); 10566 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 10567 ScheduleData *ISD = getScheduleData(I); 10568 if (!ISD) 10569 return false; 10570 assert(isInSchedulingRegion(ISD) && 10571 "ScheduleData not in scheduling region"); 10572 ScheduleData *SD = allocateScheduleDataChunks(); 10573 SD->Inst = I; 10574 SD->init(SchedulingRegionID, S.OpValue); 10575 ExtraScheduleDataMap[I][S.OpValue] = SD; 10576 return true; 10577 }; 10578 if (CheckScheduleForI(I)) 10579 return true; 10580 if (!ScheduleStart) { 10581 // It's the first instruction in the new region. 10582 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 10583 ScheduleStart = I; 10584 ScheduleEnd = I->getNextNode(); 10585 if (isOneOf(S, I) != I) 10586 CheckScheduleForI(I); 10587 assert(ScheduleEnd && "tried to vectorize a terminator?"); 10588 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 10589 return true; 10590 } 10591 // Search up and down at the same time, because we don't know if the new 10592 // instruction is above or below the existing scheduling region. 10593 BasicBlock::reverse_iterator UpIter = 10594 ++ScheduleStart->getIterator().getReverse(); 10595 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 10596 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 10597 BasicBlock::iterator LowerEnd = BB->end(); 10598 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 10599 &*DownIter != I) { 10600 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 10601 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 10602 return false; 10603 } 10604 10605 ++UpIter; 10606 ++DownIter; 10607 } 10608 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 10609 assert(I->getParent() == ScheduleStart->getParent() && 10610 "Instruction is in wrong basic block."); 10611 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 10612 ScheduleStart = I; 10613 if (isOneOf(S, I) != I) 10614 CheckScheduleForI(I); 10615 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 10616 << "\n"); 10617 return true; 10618 } 10619 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 10620 "Expected to reach top of the basic block or instruction down the " 10621 "lower end."); 10622 assert(I->getParent() == ScheduleEnd->getParent() && 10623 "Instruction is in wrong basic block."); 10624 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 10625 nullptr); 10626 ScheduleEnd = I->getNextNode(); 10627 if (isOneOf(S, I) != I) 10628 CheckScheduleForI(I); 10629 assert(ScheduleEnd && "tried to vectorize a terminator?"); 10630 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 10631 return true; 10632 } 10633 10634 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 10635 Instruction *ToI, 10636 ScheduleData *PrevLoadStore, 10637 ScheduleData *NextLoadStore) { 10638 ScheduleData *CurrentLoadStore = PrevLoadStore; 10639 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 10640 // No need to allocate data for non-schedulable instructions. 10641 if (doesNotNeedToBeScheduled(I)) 10642 continue; 10643 ScheduleData *SD = ScheduleDataMap.lookup(I); 10644 if (!SD) { 10645 SD = allocateScheduleDataChunks(); 10646 ScheduleDataMap[I] = SD; 10647 SD->Inst = I; 10648 } 10649 assert(!isInSchedulingRegion(SD) && 10650 "new ScheduleData already in scheduling region"); 10651 SD->init(SchedulingRegionID, I); 10652 10653 if (I->mayReadOrWriteMemory() && 10654 (!isa<IntrinsicInst>(I) || 10655 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 10656 cast<IntrinsicInst>(I)->getIntrinsicID() != 10657 Intrinsic::pseudoprobe))) { 10658 // Update the linked list of memory accessing instructions. 10659 if (CurrentLoadStore) { 10660 CurrentLoadStore->NextLoadStore = SD; 10661 } else { 10662 FirstLoadStoreInRegion = SD; 10663 } 10664 CurrentLoadStore = SD; 10665 } 10666 10667 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 10668 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 10669 RegionHasStackSave = true; 10670 } 10671 if (NextLoadStore) { 10672 if (CurrentLoadStore) 10673 CurrentLoadStore->NextLoadStore = NextLoadStore; 10674 } else { 10675 LastLoadStoreInRegion = CurrentLoadStore; 10676 } 10677 } 10678 10679 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 10680 bool InsertInReadyList, 10681 BoUpSLP *SLP) { 10682 assert(SD->isSchedulingEntity()); 10683 10684 SmallVector<ScheduleData *, 10> WorkList; 10685 WorkList.push_back(SD); 10686 10687 while (!WorkList.empty()) { 10688 ScheduleData *SD = WorkList.pop_back_val(); 10689 for (ScheduleData *BundleMember = SD; BundleMember; 10690 BundleMember = BundleMember->NextInBundle) { 10691 assert(isInSchedulingRegion(BundleMember)); 10692 if (BundleMember->hasValidDependencies()) 10693 continue; 10694 10695 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 10696 << "\n"); 10697 BundleMember->Dependencies = 0; 10698 BundleMember->resetUnscheduledDeps(); 10699 10700 // Handle def-use chain dependencies. 10701 if (BundleMember->OpValue != BundleMember->Inst) { 10702 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 10703 BundleMember->Dependencies++; 10704 ScheduleData *DestBundle = UseSD->FirstInBundle; 10705 if (!DestBundle->IsScheduled) 10706 BundleMember->incrementUnscheduledDeps(1); 10707 if (!DestBundle->hasValidDependencies()) 10708 WorkList.push_back(DestBundle); 10709 } 10710 } else { 10711 for (User *U : BundleMember->Inst->users()) { 10712 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 10713 BundleMember->Dependencies++; 10714 ScheduleData *DestBundle = UseSD->FirstInBundle; 10715 if (!DestBundle->IsScheduled) 10716 BundleMember->incrementUnscheduledDeps(1); 10717 if (!DestBundle->hasValidDependencies()) 10718 WorkList.push_back(DestBundle); 10719 } 10720 } 10721 } 10722 10723 auto makeControlDependent = [&](Instruction *I) { 10724 auto *DepDest = getScheduleData(I); 10725 assert(DepDest && "must be in schedule window"); 10726 DepDest->ControlDependencies.push_back(BundleMember); 10727 BundleMember->Dependencies++; 10728 ScheduleData *DestBundle = DepDest->FirstInBundle; 10729 if (!DestBundle->IsScheduled) 10730 BundleMember->incrementUnscheduledDeps(1); 10731 if (!DestBundle->hasValidDependencies()) 10732 WorkList.push_back(DestBundle); 10733 }; 10734 10735 // Any instruction which isn't safe to speculate at the beginning of the 10736 // block is control dependend on any early exit or non-willreturn call 10737 // which proceeds it. 10738 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 10739 for (Instruction *I = BundleMember->Inst->getNextNode(); 10740 I != ScheduleEnd; I = I->getNextNode()) { 10741 if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC)) 10742 continue; 10743 10744 // Add the dependency 10745 makeControlDependent(I); 10746 10747 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 10748 // Everything past here must be control dependent on I. 10749 break; 10750 } 10751 } 10752 10753 if (RegionHasStackSave) { 10754 // If we have an inalloc alloca instruction, it needs to be scheduled 10755 // after any preceeding stacksave. We also need to prevent any alloca 10756 // from reordering above a preceeding stackrestore. 10757 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 10758 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 10759 for (Instruction *I = BundleMember->Inst->getNextNode(); 10760 I != ScheduleEnd; I = I->getNextNode()) { 10761 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 10762 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 10763 // Any allocas past here must be control dependent on I, and I 10764 // must be memory dependend on BundleMember->Inst. 10765 break; 10766 10767 if (!isa<AllocaInst>(I)) 10768 continue; 10769 10770 // Add the dependency 10771 makeControlDependent(I); 10772 } 10773 } 10774 10775 // In addition to the cases handle just above, we need to prevent 10776 // allocas and loads/stores from moving below a stacksave or a 10777 // stackrestore. Avoiding moving allocas below stackrestore is currently 10778 // thought to be conservatism. Moving loads/stores below a stackrestore 10779 // can lead to incorrect code. 10780 if (isa<AllocaInst>(BundleMember->Inst) || 10781 BundleMember->Inst->mayReadOrWriteMemory()) { 10782 for (Instruction *I = BundleMember->Inst->getNextNode(); 10783 I != ScheduleEnd; I = I->getNextNode()) { 10784 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 10785 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 10786 continue; 10787 10788 // Add the dependency 10789 makeControlDependent(I); 10790 break; 10791 } 10792 } 10793 } 10794 10795 // Handle the memory dependencies (if any). 10796 ScheduleData *DepDest = BundleMember->NextLoadStore; 10797 if (!DepDest) 10798 continue; 10799 Instruction *SrcInst = BundleMember->Inst; 10800 assert(SrcInst->mayReadOrWriteMemory() && 10801 "NextLoadStore list for non memory effecting bundle?"); 10802 MemoryLocation SrcLoc = getLocation(SrcInst); 10803 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 10804 unsigned numAliased = 0; 10805 unsigned DistToSrc = 1; 10806 10807 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 10808 assert(isInSchedulingRegion(DepDest)); 10809 10810 // We have two limits to reduce the complexity: 10811 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 10812 // SLP->isAliased (which is the expensive part in this loop). 10813 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 10814 // the whole loop (even if the loop is fast, it's quadratic). 10815 // It's important for the loop break condition (see below) to 10816 // check this limit even between two read-only instructions. 10817 if (DistToSrc >= MaxMemDepDistance || 10818 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 10819 (numAliased >= AliasedCheckLimit || 10820 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 10821 10822 // We increment the counter only if the locations are aliased 10823 // (instead of counting all alias checks). This gives a better 10824 // balance between reduced runtime and accurate dependencies. 10825 numAliased++; 10826 10827 DepDest->MemoryDependencies.push_back(BundleMember); 10828 BundleMember->Dependencies++; 10829 ScheduleData *DestBundle = DepDest->FirstInBundle; 10830 if (!DestBundle->IsScheduled) { 10831 BundleMember->incrementUnscheduledDeps(1); 10832 } 10833 if (!DestBundle->hasValidDependencies()) { 10834 WorkList.push_back(DestBundle); 10835 } 10836 } 10837 10838 // Example, explaining the loop break condition: Let's assume our 10839 // starting instruction is i0 and MaxMemDepDistance = 3. 10840 // 10841 // +--------v--v--v 10842 // i0,i1,i2,i3,i4,i5,i6,i7,i8 10843 // +--------^--^--^ 10844 // 10845 // MaxMemDepDistance let us stop alias-checking at i3 and we add 10846 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 10847 // Previously we already added dependencies from i3 to i6,i7,i8 10848 // (because of MaxMemDepDistance). As we added a dependency from 10849 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 10850 // and we can abort this loop at i6. 10851 if (DistToSrc >= 2 * MaxMemDepDistance) 10852 break; 10853 DistToSrc++; 10854 } 10855 } 10856 if (InsertInReadyList && SD->isReady()) { 10857 ReadyInsts.insert(SD); 10858 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 10859 << "\n"); 10860 } 10861 } 10862 } 10863 10864 void BoUpSLP::BlockScheduling::resetSchedule() { 10865 assert(ScheduleStart && 10866 "tried to reset schedule on block which has not been scheduled"); 10867 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 10868 doForAllOpcodes(I, [&](ScheduleData *SD) { 10869 assert(isInSchedulingRegion(SD) && 10870 "ScheduleData not in scheduling region"); 10871 SD->IsScheduled = false; 10872 SD->resetUnscheduledDeps(); 10873 }); 10874 } 10875 ReadyInsts.clear(); 10876 } 10877 10878 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 10879 if (!BS->ScheduleStart) 10880 return; 10881 10882 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 10883 10884 // A key point - if we got here, pre-scheduling was able to find a valid 10885 // scheduling of the sub-graph of the scheduling window which consists 10886 // of all vector bundles and their transitive users. As such, we do not 10887 // need to reschedule anything *outside of* that subgraph. 10888 10889 BS->resetSchedule(); 10890 10891 // For the real scheduling we use a more sophisticated ready-list: it is 10892 // sorted by the original instruction location. This lets the final schedule 10893 // be as close as possible to the original instruction order. 10894 // WARNING: If changing this order causes a correctness issue, that means 10895 // there is some missing dependence edge in the schedule data graph. 10896 struct ScheduleDataCompare { 10897 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 10898 return SD2->SchedulingPriority < SD1->SchedulingPriority; 10899 } 10900 }; 10901 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 10902 10903 // Ensure that all dependency data is updated (for nodes in the sub-graph) 10904 // and fill the ready-list with initial instructions. 10905 int Idx = 0; 10906 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 10907 I = I->getNextNode()) { 10908 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 10909 TreeEntry *SDTE = getTreeEntry(SD->Inst); 10910 (void)SDTE; 10911 assert((isVectorLikeInstWithConstOps(SD->Inst) || 10912 SD->isPartOfBundle() == 10913 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 10914 "scheduler and vectorizer bundle mismatch"); 10915 SD->FirstInBundle->SchedulingPriority = Idx++; 10916 10917 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 10918 BS->calculateDependencies(SD, false, this); 10919 }); 10920 } 10921 BS->initialFillReadyList(ReadyInsts); 10922 10923 Instruction *LastScheduledInst = BS->ScheduleEnd; 10924 10925 // Do the "real" scheduling. 10926 while (!ReadyInsts.empty()) { 10927 ScheduleData *picked = *ReadyInsts.begin(); 10928 ReadyInsts.erase(ReadyInsts.begin()); 10929 10930 // Move the scheduled instruction(s) to their dedicated places, if not 10931 // there yet. 10932 for (ScheduleData *BundleMember = picked; BundleMember; 10933 BundleMember = BundleMember->NextInBundle) { 10934 Instruction *pickedInst = BundleMember->Inst; 10935 if (pickedInst->getNextNode() != LastScheduledInst) 10936 pickedInst->moveBefore(LastScheduledInst); 10937 LastScheduledInst = pickedInst; 10938 } 10939 10940 BS->schedule(picked, ReadyInsts); 10941 } 10942 10943 // Check that we didn't break any of our invariants. 10944 #ifdef EXPENSIVE_CHECKS 10945 BS->verify(); 10946 #endif 10947 10948 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 10949 // Check that all schedulable entities got scheduled 10950 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 10951 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 10952 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 10953 assert(SD->IsScheduled && "must be scheduled at this point"); 10954 } 10955 }); 10956 } 10957 #endif 10958 10959 // Avoid duplicate scheduling of the block. 10960 BS->ScheduleStart = nullptr; 10961 } 10962 10963 unsigned BoUpSLP::getVectorElementSize(Value *V) { 10964 // If V is a store, just return the width of the stored value (or value 10965 // truncated just before storing) without traversing the expression tree. 10966 // This is the common case. 10967 if (auto *Store = dyn_cast<StoreInst>(V)) 10968 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 10969 10970 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 10971 return getVectorElementSize(IEI->getOperand(1)); 10972 10973 auto E = InstrElementSize.find(V); 10974 if (E != InstrElementSize.end()) 10975 return E->second; 10976 10977 // If V is not a store, we can traverse the expression tree to find loads 10978 // that feed it. The type of the loaded value may indicate a more suitable 10979 // width than V's type. We want to base the vector element size on the width 10980 // of memory operations where possible. 10981 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 10982 SmallPtrSet<Instruction *, 16> Visited; 10983 if (auto *I = dyn_cast<Instruction>(V)) { 10984 Worklist.emplace_back(I, I->getParent()); 10985 Visited.insert(I); 10986 } 10987 10988 // Traverse the expression tree in bottom-up order looking for loads. If we 10989 // encounter an instruction we don't yet handle, we give up. 10990 auto Width = 0u; 10991 while (!Worklist.empty()) { 10992 Instruction *I; 10993 BasicBlock *Parent; 10994 std::tie(I, Parent) = Worklist.pop_back_val(); 10995 10996 // We should only be looking at scalar instructions here. If the current 10997 // instruction has a vector type, skip. 10998 auto *Ty = I->getType(); 10999 if (isa<VectorType>(Ty)) 11000 continue; 11001 11002 // If the current instruction is a load, update MaxWidth to reflect the 11003 // width of the loaded value. 11004 if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I)) 11005 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 11006 11007 // Otherwise, we need to visit the operands of the instruction. We only 11008 // handle the interesting cases from buildTree here. If an operand is an 11009 // instruction we haven't yet visited and from the same basic block as the 11010 // user or the use is a PHI node, we add it to the worklist. 11011 else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst, 11012 BinaryOperator, UnaryOperator>(I)) { 11013 for (Use &U : I->operands()) 11014 if (auto *J = dyn_cast<Instruction>(U.get())) 11015 if (Visited.insert(J).second && 11016 (isa<PHINode>(I) || J->getParent() == Parent)) 11017 Worklist.emplace_back(J, J->getParent()); 11018 } else { 11019 break; 11020 } 11021 } 11022 11023 // If we didn't encounter a memory access in the expression tree, or if we 11024 // gave up for some reason, just return the width of V. Otherwise, return the 11025 // maximum width we found. 11026 if (!Width) { 11027 if (auto *CI = dyn_cast<CmpInst>(V)) 11028 V = CI->getOperand(0); 11029 Width = DL->getTypeSizeInBits(V->getType()); 11030 } 11031 11032 for (Instruction *I : Visited) 11033 InstrElementSize[I] = Width; 11034 11035 return Width; 11036 } 11037 11038 // Determine if a value V in a vectorizable expression Expr can be demoted to a 11039 // smaller type with a truncation. We collect the values that will be demoted 11040 // in ToDemote and additional roots that require investigating in Roots. 11041 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 11042 SmallVectorImpl<Value *> &ToDemote, 11043 SmallVectorImpl<Value *> &Roots) { 11044 // We can always demote constants. 11045 if (isa<Constant>(V)) { 11046 ToDemote.push_back(V); 11047 return true; 11048 } 11049 11050 // If the value is not an instruction in the expression with only one use, it 11051 // cannot be demoted. 11052 auto *I = dyn_cast<Instruction>(V); 11053 if (!I || !I->hasOneUse() || !Expr.count(I)) 11054 return false; 11055 11056 switch (I->getOpcode()) { 11057 11058 // We can always demote truncations and extensions. Since truncations can 11059 // seed additional demotion, we save the truncated value. 11060 case Instruction::Trunc: 11061 Roots.push_back(I->getOperand(0)); 11062 break; 11063 case Instruction::ZExt: 11064 case Instruction::SExt: 11065 if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0))) 11066 return false; 11067 break; 11068 11069 // We can demote certain binary operations if we can demote both of their 11070 // operands. 11071 case Instruction::Add: 11072 case Instruction::Sub: 11073 case Instruction::Mul: 11074 case Instruction::And: 11075 case Instruction::Or: 11076 case Instruction::Xor: 11077 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 11078 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 11079 return false; 11080 break; 11081 11082 // We can demote selects if we can demote their true and false values. 11083 case Instruction::Select: { 11084 SelectInst *SI = cast<SelectInst>(I); 11085 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 11086 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 11087 return false; 11088 break; 11089 } 11090 11091 // We can demote phis if we can demote all their incoming operands. Note that 11092 // we don't need to worry about cycles since we ensure single use above. 11093 case Instruction::PHI: { 11094 PHINode *PN = cast<PHINode>(I); 11095 for (Value *IncValue : PN->incoming_values()) 11096 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 11097 return false; 11098 break; 11099 } 11100 11101 // Otherwise, conservatively give up. 11102 default: 11103 return false; 11104 } 11105 11106 // Record the value that we can demote. 11107 ToDemote.push_back(V); 11108 return true; 11109 } 11110 11111 void BoUpSLP::computeMinimumValueSizes() { 11112 // If there are no external uses, the expression tree must be rooted by a 11113 // store. We can't demote in-memory values, so there is nothing to do here. 11114 if (ExternalUses.empty()) 11115 return; 11116 11117 // We only attempt to truncate integer expressions. 11118 auto &TreeRoot = VectorizableTree[0]->Scalars; 11119 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 11120 if (!TreeRootIT) 11121 return; 11122 11123 // If the expression is not rooted by a store, these roots should have 11124 // external uses. We will rely on InstCombine to rewrite the expression in 11125 // the narrower type. However, InstCombine only rewrites single-use values. 11126 // This means that if a tree entry other than a root is used externally, it 11127 // must have multiple uses and InstCombine will not rewrite it. The code 11128 // below ensures that only the roots are used externally. 11129 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 11130 for (auto &EU : ExternalUses) 11131 if (!Expr.erase(EU.Scalar)) 11132 return; 11133 if (!Expr.empty()) 11134 return; 11135 11136 // Collect the scalar values of the vectorizable expression. We will use this 11137 // context to determine which values can be demoted. If we see a truncation, 11138 // we mark it as seeding another demotion. 11139 for (auto &EntryPtr : VectorizableTree) 11140 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 11141 11142 // Ensure the roots of the vectorizable tree don't form a cycle. They must 11143 // have a single external user that is not in the vectorizable tree. 11144 for (auto *Root : TreeRoot) 11145 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 11146 return; 11147 11148 // Conservatively determine if we can actually truncate the roots of the 11149 // expression. Collect the values that can be demoted in ToDemote and 11150 // additional roots that require investigating in Roots. 11151 SmallVector<Value *, 32> ToDemote; 11152 SmallVector<Value *, 4> Roots; 11153 for (auto *Root : TreeRoot) 11154 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 11155 return; 11156 11157 // The maximum bit width required to represent all the values that can be 11158 // demoted without loss of precision. It would be safe to truncate the roots 11159 // of the expression to this width. 11160 auto MaxBitWidth = 8u; 11161 11162 // We first check if all the bits of the roots are demanded. If they're not, 11163 // we can truncate the roots to this narrower type. 11164 for (auto *Root : TreeRoot) { 11165 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 11166 MaxBitWidth = std::max<unsigned>( 11167 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 11168 } 11169 11170 // True if the roots can be zero-extended back to their original type, rather 11171 // than sign-extended. We know that if the leading bits are not demanded, we 11172 // can safely zero-extend. So we initialize IsKnownPositive to True. 11173 bool IsKnownPositive = true; 11174 11175 // If all the bits of the roots are demanded, we can try a little harder to 11176 // compute a narrower type. This can happen, for example, if the roots are 11177 // getelementptr indices. InstCombine promotes these indices to the pointer 11178 // width. Thus, all their bits are technically demanded even though the 11179 // address computation might be vectorized in a smaller type. 11180 // 11181 // We start by looking at each entry that can be demoted. We compute the 11182 // maximum bit width required to store the scalar by using ValueTracking to 11183 // compute the number of high-order bits we can truncate. 11184 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 11185 llvm::all_of(TreeRoot, [](Value *R) { 11186 assert(R->hasOneUse() && "Root should have only one use!"); 11187 return isa<GetElementPtrInst>(R->user_back()); 11188 })) { 11189 MaxBitWidth = 8u; 11190 11191 // Determine if the sign bit of all the roots is known to be zero. If not, 11192 // IsKnownPositive is set to False. 11193 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 11194 KnownBits Known = computeKnownBits(R, *DL); 11195 return Known.isNonNegative(); 11196 }); 11197 11198 // Determine the maximum number of bits required to store the scalar 11199 // values. 11200 for (auto *Scalar : ToDemote) { 11201 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 11202 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 11203 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 11204 } 11205 11206 // If we can't prove that the sign bit is zero, we must add one to the 11207 // maximum bit width to account for the unknown sign bit. This preserves 11208 // the existing sign bit so we can safely sign-extend the root back to the 11209 // original type. Otherwise, if we know the sign bit is zero, we will 11210 // zero-extend the root instead. 11211 // 11212 // FIXME: This is somewhat suboptimal, as there will be cases where adding 11213 // one to the maximum bit width will yield a larger-than-necessary 11214 // type. In general, we need to add an extra bit only if we can't 11215 // prove that the upper bit of the original type is equal to the 11216 // upper bit of the proposed smaller type. If these two bits are the 11217 // same (either zero or one) we know that sign-extending from the 11218 // smaller type will result in the same value. Here, since we can't 11219 // yet prove this, we are just making the proposed smaller type 11220 // larger to ensure correctness. 11221 if (!IsKnownPositive) 11222 ++MaxBitWidth; 11223 } 11224 11225 // Round MaxBitWidth up to the next power-of-two. 11226 if (!isPowerOf2_64(MaxBitWidth)) 11227 MaxBitWidth = NextPowerOf2(MaxBitWidth); 11228 11229 // If the maximum bit width we compute is less than the with of the roots' 11230 // type, we can proceed with the narrowing. Otherwise, do nothing. 11231 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 11232 return; 11233 11234 // If we can truncate the root, we must collect additional values that might 11235 // be demoted as a result. That is, those seeded by truncations we will 11236 // modify. 11237 while (!Roots.empty()) 11238 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 11239 11240 // Finally, map the values we can demote to the maximum bit with we computed. 11241 for (auto *Scalar : ToDemote) 11242 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 11243 } 11244 11245 namespace { 11246 11247 /// The SLPVectorizer Pass. 11248 struct SLPVectorizer : public FunctionPass { 11249 SLPVectorizerPass Impl; 11250 11251 /// Pass identification, replacement for typeid 11252 static char ID; 11253 11254 explicit SLPVectorizer() : FunctionPass(ID) { 11255 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 11256 } 11257 11258 bool doInitialization(Module &M) override { return false; } 11259 11260 bool runOnFunction(Function &F) override { 11261 if (skipFunction(F)) 11262 return false; 11263 11264 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 11265 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 11266 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 11267 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 11268 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 11269 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 11270 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 11271 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 11272 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 11273 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 11274 11275 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 11276 } 11277 11278 void getAnalysisUsage(AnalysisUsage &AU) const override { 11279 FunctionPass::getAnalysisUsage(AU); 11280 AU.addRequired<AssumptionCacheTracker>(); 11281 AU.addRequired<ScalarEvolutionWrapperPass>(); 11282 AU.addRequired<AAResultsWrapperPass>(); 11283 AU.addRequired<TargetTransformInfoWrapperPass>(); 11284 AU.addRequired<LoopInfoWrapperPass>(); 11285 AU.addRequired<DominatorTreeWrapperPass>(); 11286 AU.addRequired<DemandedBitsWrapperPass>(); 11287 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 11288 AU.addRequired<InjectTLIMappingsLegacy>(); 11289 AU.addPreserved<LoopInfoWrapperPass>(); 11290 AU.addPreserved<DominatorTreeWrapperPass>(); 11291 AU.addPreserved<AAResultsWrapperPass>(); 11292 AU.addPreserved<GlobalsAAWrapperPass>(); 11293 AU.setPreservesCFG(); 11294 } 11295 }; 11296 11297 } // end anonymous namespace 11298 11299 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 11300 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 11301 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 11302 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 11303 auto *AA = &AM.getResult<AAManager>(F); 11304 auto *LI = &AM.getResult<LoopAnalysis>(F); 11305 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 11306 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 11307 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 11308 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 11309 11310 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 11311 if (!Changed) 11312 return PreservedAnalyses::all(); 11313 11314 PreservedAnalyses PA; 11315 PA.preserveSet<CFGAnalyses>(); 11316 return PA; 11317 } 11318 11319 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 11320 TargetTransformInfo *TTI_, 11321 TargetLibraryInfo *TLI_, AAResults *AA_, 11322 LoopInfo *LI_, DominatorTree *DT_, 11323 AssumptionCache *AC_, DemandedBits *DB_, 11324 OptimizationRemarkEmitter *ORE_) { 11325 if (!RunSLPVectorization) 11326 return false; 11327 SE = SE_; 11328 TTI = TTI_; 11329 TLI = TLI_; 11330 AA = AA_; 11331 LI = LI_; 11332 DT = DT_; 11333 AC = AC_; 11334 DB = DB_; 11335 DL = &F.getParent()->getDataLayout(); 11336 11337 Stores.clear(); 11338 GEPs.clear(); 11339 bool Changed = false; 11340 11341 // If the target claims to have no vector registers don't attempt 11342 // vectorization. 11343 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 11344 LLVM_DEBUG( 11345 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 11346 return false; 11347 } 11348 11349 // Don't vectorize when the attribute NoImplicitFloat is used. 11350 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 11351 return false; 11352 11353 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 11354 11355 // Use the bottom up slp vectorizer to construct chains that start with 11356 // store instructions. 11357 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 11358 11359 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 11360 // delete instructions. 11361 11362 // Update DFS numbers now so that we can use them for ordering. 11363 DT->updateDFSNumbers(); 11364 11365 // Scan the blocks in the function in post order. 11366 for (auto *BB : post_order(&F.getEntryBlock())) { 11367 // Start new block - clear the list of reduction roots. 11368 R.clearReductionData(); 11369 collectSeedInstructions(BB); 11370 11371 // Vectorize trees that end at stores. 11372 if (!Stores.empty()) { 11373 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 11374 << " underlying objects.\n"); 11375 Changed |= vectorizeStoreChains(R); 11376 } 11377 11378 // Vectorize trees that end at reductions. 11379 Changed |= vectorizeChainsInBlock(BB, R); 11380 11381 // Vectorize the index computations of getelementptr instructions. This 11382 // is primarily intended to catch gather-like idioms ending at 11383 // non-consecutive loads. 11384 if (!GEPs.empty()) { 11385 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 11386 << " underlying objects.\n"); 11387 Changed |= vectorizeGEPIndices(BB, R); 11388 } 11389 } 11390 11391 if (Changed) { 11392 R.optimizeGatherSequence(); 11393 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 11394 } 11395 return Changed; 11396 } 11397 11398 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 11399 unsigned Idx, unsigned MinVF) { 11400 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 11401 << "\n"); 11402 const unsigned Sz = R.getVectorElementSize(Chain[0]); 11403 unsigned VF = Chain.size(); 11404 11405 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 11406 return false; 11407 11408 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 11409 << "\n"); 11410 11411 R.buildTree(Chain); 11412 if (R.isTreeTinyAndNotFullyVectorizable()) 11413 return false; 11414 if (R.isLoadCombineCandidate()) 11415 return false; 11416 R.reorderTopToBottom(); 11417 R.reorderBottomToTop(); 11418 R.buildExternalUses(); 11419 11420 R.computeMinimumValueSizes(); 11421 11422 InstructionCost Cost = R.getTreeCost(); 11423 11424 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n"); 11425 if (Cost < -SLPCostThreshold) { 11426 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 11427 11428 using namespace ore; 11429 11430 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 11431 cast<StoreInst>(Chain[0])) 11432 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 11433 << " and with tree size " 11434 << NV("TreeSize", R.getTreeSize())); 11435 11436 R.vectorizeTree(); 11437 return true; 11438 } 11439 11440 return false; 11441 } 11442 11443 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 11444 BoUpSLP &R) { 11445 // We may run into multiple chains that merge into a single chain. We mark the 11446 // stores that we vectorized so that we don't visit the same store twice. 11447 BoUpSLP::ValueSet VectorizedStores; 11448 bool Changed = false; 11449 11450 int E = Stores.size(); 11451 SmallBitVector Tails(E, false); 11452 int MaxIter = MaxStoreLookup.getValue(); 11453 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 11454 E, std::make_pair(E, INT_MAX)); 11455 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 11456 int IterCnt; 11457 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 11458 &CheckedPairs, 11459 &ConsecutiveChain](int K, int Idx) { 11460 if (IterCnt >= MaxIter) 11461 return true; 11462 if (CheckedPairs[Idx].test(K)) 11463 return ConsecutiveChain[K].second == 1 && 11464 ConsecutiveChain[K].first == Idx; 11465 ++IterCnt; 11466 CheckedPairs[Idx].set(K); 11467 CheckedPairs[K].set(Idx); 11468 std::optional<int> Diff = getPointersDiff( 11469 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 11470 Stores[Idx]->getValueOperand()->getType(), 11471 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 11472 if (!Diff || *Diff == 0) 11473 return false; 11474 int Val = *Diff; 11475 if (Val < 0) { 11476 if (ConsecutiveChain[Idx].second > -Val) { 11477 Tails.set(K); 11478 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 11479 } 11480 return false; 11481 } 11482 if (ConsecutiveChain[K].second <= Val) 11483 return false; 11484 11485 Tails.set(Idx); 11486 ConsecutiveChain[K] = std::make_pair(Idx, Val); 11487 return Val == 1; 11488 }; 11489 // Do a quadratic search on all of the given stores in reverse order and find 11490 // all of the pairs of stores that follow each other. 11491 for (int Idx = E - 1; Idx >= 0; --Idx) { 11492 // If a store has multiple consecutive store candidates, search according 11493 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 11494 // This is because usually pairing with immediate succeeding or preceding 11495 // candidate create the best chance to find slp vectorization opportunity. 11496 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 11497 IterCnt = 0; 11498 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 11499 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 11500 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 11501 break; 11502 } 11503 11504 // Tracks if we tried to vectorize stores starting from the given tail 11505 // already. 11506 SmallBitVector TriedTails(E, false); 11507 // For stores that start but don't end a link in the chain: 11508 for (int Cnt = E; Cnt > 0; --Cnt) { 11509 int I = Cnt - 1; 11510 if (ConsecutiveChain[I].first == E || Tails.test(I)) 11511 continue; 11512 // We found a store instr that starts a chain. Now follow the chain and try 11513 // to vectorize it. 11514 BoUpSLP::ValueList Operands; 11515 // Collect the chain into a list. 11516 while (I != E && !VectorizedStores.count(Stores[I])) { 11517 Operands.push_back(Stores[I]); 11518 Tails.set(I); 11519 if (ConsecutiveChain[I].second != 1) { 11520 // Mark the new end in the chain and go back, if required. It might be 11521 // required if the original stores come in reversed order, for example. 11522 if (ConsecutiveChain[I].first != E && 11523 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 11524 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 11525 TriedTails.set(I); 11526 Tails.reset(ConsecutiveChain[I].first); 11527 if (Cnt < ConsecutiveChain[I].first + 2) 11528 Cnt = ConsecutiveChain[I].first + 2; 11529 } 11530 break; 11531 } 11532 // Move to the next value in the chain. 11533 I = ConsecutiveChain[I].first; 11534 } 11535 assert(!Operands.empty() && "Expected non-empty list of stores."); 11536 11537 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11538 unsigned EltSize = R.getVectorElementSize(Operands[0]); 11539 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 11540 11541 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 11542 MaxElts); 11543 auto *Store = cast<StoreInst>(Operands[0]); 11544 Type *StoreTy = Store->getValueOperand()->getType(); 11545 Type *ValueTy = StoreTy; 11546 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 11547 ValueTy = Trunc->getSrcTy(); 11548 unsigned MinVF = TTI->getStoreMinimumVF( 11549 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 11550 11551 if (MaxVF <= MinVF) { 11552 LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= " 11553 << "MinVF (" << MinVF << ")\n"); 11554 } 11555 11556 // FIXME: Is division-by-2 the correct step? Should we assert that the 11557 // register size is a power-of-2? 11558 unsigned StartIdx = 0; 11559 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 11560 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 11561 ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size); 11562 if (!VectorizedStores.count(Slice.front()) && 11563 !VectorizedStores.count(Slice.back()) && 11564 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 11565 // Mark the vectorized stores so that we don't vectorize them again. 11566 VectorizedStores.insert(Slice.begin(), Slice.end()); 11567 Changed = true; 11568 // If we vectorized initial block, no need to try to vectorize it 11569 // again. 11570 if (Cnt == StartIdx) 11571 StartIdx += Size; 11572 Cnt += Size; 11573 continue; 11574 } 11575 ++Cnt; 11576 } 11577 // Check if the whole array was vectorized already - exit. 11578 if (StartIdx >= Operands.size()) 11579 break; 11580 } 11581 } 11582 11583 return Changed; 11584 } 11585 11586 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 11587 // Initialize the collections. We will make a single pass over the block. 11588 Stores.clear(); 11589 GEPs.clear(); 11590 11591 // Visit the store and getelementptr instructions in BB and organize them in 11592 // Stores and GEPs according to the underlying objects of their pointer 11593 // operands. 11594 for (Instruction &I : *BB) { 11595 // Ignore store instructions that are volatile or have a pointer operand 11596 // that doesn't point to a scalar type. 11597 if (auto *SI = dyn_cast<StoreInst>(&I)) { 11598 if (!SI->isSimple()) 11599 continue; 11600 if (!isValidElementType(SI->getValueOperand()->getType())) 11601 continue; 11602 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 11603 } 11604 11605 // Ignore getelementptr instructions that have more than one index, a 11606 // constant index, or a pointer operand that doesn't point to a scalar 11607 // type. 11608 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 11609 auto Idx = GEP->idx_begin()->get(); 11610 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 11611 continue; 11612 if (!isValidElementType(Idx->getType())) 11613 continue; 11614 if (GEP->getType()->isVectorTy()) 11615 continue; 11616 GEPs[GEP->getPointerOperand()].push_back(GEP); 11617 } 11618 } 11619 } 11620 11621 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 11622 if (!A || !B) 11623 return false; 11624 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 11625 return false; 11626 Value *VL[] = {A, B}; 11627 return tryToVectorizeList(VL, R); 11628 } 11629 11630 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 11631 bool LimitForRegisterSize) { 11632 if (VL.size() < 2) 11633 return false; 11634 11635 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 11636 << VL.size() << ".\n"); 11637 11638 // Check that all of the parts are instructions of the same type, 11639 // we permit an alternate opcode via InstructionsState. 11640 InstructionsState S = getSameOpcode(VL, *TLI); 11641 if (!S.getOpcode()) 11642 return false; 11643 11644 Instruction *I0 = cast<Instruction>(S.OpValue); 11645 // Make sure invalid types (including vector type) are rejected before 11646 // determining vectorization factor for scalar instructions. 11647 for (Value *V : VL) { 11648 Type *Ty = V->getType(); 11649 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 11650 // NOTE: the following will give user internal llvm type name, which may 11651 // not be useful. 11652 R.getORE()->emit([&]() { 11653 std::string type_str; 11654 llvm::raw_string_ostream rso(type_str); 11655 Ty->print(rso); 11656 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 11657 << "Cannot SLP vectorize list: type " 11658 << rso.str() + " is unsupported by vectorizer"; 11659 }); 11660 return false; 11661 } 11662 } 11663 11664 unsigned Sz = R.getVectorElementSize(I0); 11665 unsigned MinVF = R.getMinVF(Sz); 11666 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 11667 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 11668 if (MaxVF < 2) { 11669 R.getORE()->emit([&]() { 11670 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 11671 << "Cannot SLP vectorize list: vectorization factor " 11672 << "less than 2 is not supported"; 11673 }); 11674 return false; 11675 } 11676 11677 bool Changed = false; 11678 bool CandidateFound = false; 11679 InstructionCost MinCost = SLPCostThreshold.getValue(); 11680 Type *ScalarTy = VL[0]->getType(); 11681 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 11682 ScalarTy = IE->getOperand(1)->getType(); 11683 11684 unsigned NextInst = 0, MaxInst = VL.size(); 11685 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 11686 // No actual vectorization should happen, if number of parts is the same as 11687 // provided vectorization factor (i.e. the scalar type is used for vector 11688 // code during codegen). 11689 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 11690 if (TTI->getNumberOfParts(VecTy) == VF) 11691 continue; 11692 for (unsigned I = NextInst; I < MaxInst; ++I) { 11693 unsigned OpsWidth = 0; 11694 11695 if (I + VF > MaxInst) 11696 OpsWidth = MaxInst - I; 11697 else 11698 OpsWidth = VF; 11699 11700 if (!isPowerOf2_32(OpsWidth)) 11701 continue; 11702 11703 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 11704 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 11705 break; 11706 11707 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 11708 // Check that a previous iteration of this loop did not delete the Value. 11709 if (llvm::any_of(Ops, [&R](Value *V) { 11710 auto *I = dyn_cast<Instruction>(V); 11711 return I && R.isDeleted(I); 11712 })) 11713 continue; 11714 11715 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 11716 << "\n"); 11717 11718 R.buildTree(Ops); 11719 if (R.isTreeTinyAndNotFullyVectorizable()) 11720 continue; 11721 R.reorderTopToBottom(); 11722 R.reorderBottomToTop( 11723 /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) && 11724 !R.doesRootHaveInTreeUses()); 11725 R.buildExternalUses(); 11726 11727 R.computeMinimumValueSizes(); 11728 InstructionCost Cost = R.getTreeCost(); 11729 CandidateFound = true; 11730 MinCost = std::min(MinCost, Cost); 11731 11732 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost 11733 << " for VF=" << OpsWidth << "\n"); 11734 if (Cost < -SLPCostThreshold) { 11735 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 11736 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 11737 cast<Instruction>(Ops[0])) 11738 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 11739 << " and with tree size " 11740 << ore::NV("TreeSize", R.getTreeSize())); 11741 11742 R.vectorizeTree(); 11743 // Move to the next bundle. 11744 I += VF - 1; 11745 NextInst = I + 1; 11746 Changed = true; 11747 } 11748 } 11749 } 11750 11751 if (!Changed && CandidateFound) { 11752 R.getORE()->emit([&]() { 11753 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 11754 << "List vectorization was possible but not beneficial with cost " 11755 << ore::NV("Cost", MinCost) << " >= " 11756 << ore::NV("Treshold", -SLPCostThreshold); 11757 }); 11758 } else if (!Changed) { 11759 R.getORE()->emit([&]() { 11760 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 11761 << "Cannot SLP vectorize list: vectorization was impossible" 11762 << " with available vectorization factors"; 11763 }); 11764 } 11765 return Changed; 11766 } 11767 11768 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 11769 if (!I) 11770 return false; 11771 11772 if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType())) 11773 return false; 11774 11775 Value *P = I->getParent(); 11776 11777 // Vectorize in current basic block only. 11778 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 11779 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 11780 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 11781 return false; 11782 11783 // First collect all possible candidates 11784 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 11785 Candidates.emplace_back(Op0, Op1); 11786 11787 auto *A = dyn_cast<BinaryOperator>(Op0); 11788 auto *B = dyn_cast<BinaryOperator>(Op1); 11789 // Try to skip B. 11790 if (A && B && B->hasOneUse()) { 11791 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 11792 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 11793 if (B0 && B0->getParent() == P) 11794 Candidates.emplace_back(A, B0); 11795 if (B1 && B1->getParent() == P) 11796 Candidates.emplace_back(A, B1); 11797 } 11798 // Try to skip A. 11799 if (B && A && A->hasOneUse()) { 11800 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 11801 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 11802 if (A0 && A0->getParent() == P) 11803 Candidates.emplace_back(A0, B); 11804 if (A1 && A1->getParent() == P) 11805 Candidates.emplace_back(A1, B); 11806 } 11807 11808 if (Candidates.size() == 1) 11809 return tryToVectorizePair(Op0, Op1, R); 11810 11811 // We have multiple options. Try to pick the single best. 11812 std::optional<int> BestCandidate = R.findBestRootPair(Candidates); 11813 if (!BestCandidate) 11814 return false; 11815 return tryToVectorizePair(Candidates[*BestCandidate].first, 11816 Candidates[*BestCandidate].second, R); 11817 } 11818 11819 namespace { 11820 11821 /// Model horizontal reductions. 11822 /// 11823 /// A horizontal reduction is a tree of reduction instructions that has values 11824 /// that can be put into a vector as its leaves. For example: 11825 /// 11826 /// mul mul mul mul 11827 /// \ / \ / 11828 /// + + 11829 /// \ / 11830 /// + 11831 /// This tree has "mul" as its leaf values and "+" as its reduction 11832 /// instructions. A reduction can feed into a store or a binary operation 11833 /// feeding a phi. 11834 /// ... 11835 /// \ / 11836 /// + 11837 /// | 11838 /// phi += 11839 /// 11840 /// Or: 11841 /// ... 11842 /// \ / 11843 /// + 11844 /// | 11845 /// *p = 11846 /// 11847 class HorizontalReduction { 11848 using ReductionOpsType = SmallVector<Value *, 16>; 11849 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 11850 ReductionOpsListType ReductionOps; 11851 /// List of possibly reduced values. 11852 SmallVector<SmallVector<Value *>> ReducedVals; 11853 /// Maps reduced value to the corresponding reduction operation. 11854 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 11855 // Use map vector to make stable output. 11856 MapVector<Instruction *, Value *> ExtraArgs; 11857 WeakTrackingVH ReductionRoot; 11858 /// The type of reduction operation. 11859 RecurKind RdxKind; 11860 11861 static bool isCmpSelMinMax(Instruction *I) { 11862 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 11863 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 11864 } 11865 11866 // And/or are potentially poison-safe logical patterns like: 11867 // select x, y, false 11868 // select x, true, y 11869 static bool isBoolLogicOp(Instruction *I) { 11870 return isa<SelectInst>(I) && 11871 (match(I, m_LogicalAnd()) || match(I, m_LogicalOr())); 11872 } 11873 11874 /// Checks if instruction is associative and can be vectorized. 11875 static bool isVectorizable(RecurKind Kind, Instruction *I) { 11876 if (Kind == RecurKind::None) 11877 return false; 11878 11879 // Integer ops that map to select instructions or intrinsics are fine. 11880 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 11881 isBoolLogicOp(I)) 11882 return true; 11883 11884 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 11885 // FP min/max are associative except for NaN and -0.0. We do not 11886 // have to rule out -0.0 here because the intrinsic semantics do not 11887 // specify a fixed result for it. 11888 return I->getFastMathFlags().noNaNs(); 11889 } 11890 11891 return I->isAssociative(); 11892 } 11893 11894 static Value *getRdxOperand(Instruction *I, unsigned Index) { 11895 // Poison-safe 'or' takes the form: select X, true, Y 11896 // To make that work with the normal operand processing, we skip the 11897 // true value operand. 11898 // TODO: Change the code and data structures to handle this without a hack. 11899 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 11900 return I->getOperand(2); 11901 return I->getOperand(Index); 11902 } 11903 11904 /// Creates reduction operation with the current opcode. 11905 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 11906 Value *RHS, const Twine &Name, bool UseSelect) { 11907 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 11908 switch (Kind) { 11909 case RecurKind::Or: 11910 if (UseSelect && 11911 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 11912 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 11913 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 11914 Name); 11915 case RecurKind::And: 11916 if (UseSelect && 11917 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 11918 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 11919 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 11920 Name); 11921 case RecurKind::Add: 11922 case RecurKind::Mul: 11923 case RecurKind::Xor: 11924 case RecurKind::FAdd: 11925 case RecurKind::FMul: 11926 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 11927 Name); 11928 case RecurKind::FMax: 11929 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 11930 case RecurKind::FMin: 11931 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 11932 case RecurKind::SMax: 11933 if (UseSelect) { 11934 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 11935 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 11936 } 11937 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 11938 case RecurKind::SMin: 11939 if (UseSelect) { 11940 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 11941 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 11942 } 11943 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 11944 case RecurKind::UMax: 11945 if (UseSelect) { 11946 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 11947 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 11948 } 11949 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 11950 case RecurKind::UMin: 11951 if (UseSelect) { 11952 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 11953 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 11954 } 11955 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 11956 default: 11957 llvm_unreachable("Unknown reduction operation."); 11958 } 11959 } 11960 11961 /// Creates reduction operation with the current opcode with the IR flags 11962 /// from \p ReductionOps, dropping nuw/nsw flags. 11963 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 11964 Value *RHS, const Twine &Name, 11965 const ReductionOpsListType &ReductionOps) { 11966 bool UseSelect = ReductionOps.size() == 2 || 11967 // Logical or/and. 11968 (ReductionOps.size() == 1 && 11969 isa<SelectInst>(ReductionOps.front().front())); 11970 assert((!UseSelect || ReductionOps.size() != 2 || 11971 isa<SelectInst>(ReductionOps[1][0])) && 11972 "Expected cmp + select pairs for reduction"); 11973 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 11974 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 11975 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 11976 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, 11977 /*IncludeWrapFlags=*/false); 11978 propagateIRFlags(Op, ReductionOps[1], nullptr, 11979 /*IncludeWrapFlags=*/false); 11980 return Op; 11981 } 11982 } 11983 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); 11984 return Op; 11985 } 11986 11987 static RecurKind getRdxKind(Value *V) { 11988 auto *I = dyn_cast<Instruction>(V); 11989 if (!I) 11990 return RecurKind::None; 11991 if (match(I, m_Add(m_Value(), m_Value()))) 11992 return RecurKind::Add; 11993 if (match(I, m_Mul(m_Value(), m_Value()))) 11994 return RecurKind::Mul; 11995 if (match(I, m_And(m_Value(), m_Value())) || 11996 match(I, m_LogicalAnd(m_Value(), m_Value()))) 11997 return RecurKind::And; 11998 if (match(I, m_Or(m_Value(), m_Value())) || 11999 match(I, m_LogicalOr(m_Value(), m_Value()))) 12000 return RecurKind::Or; 12001 if (match(I, m_Xor(m_Value(), m_Value()))) 12002 return RecurKind::Xor; 12003 if (match(I, m_FAdd(m_Value(), m_Value()))) 12004 return RecurKind::FAdd; 12005 if (match(I, m_FMul(m_Value(), m_Value()))) 12006 return RecurKind::FMul; 12007 12008 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 12009 return RecurKind::FMax; 12010 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 12011 return RecurKind::FMin; 12012 12013 // This matches either cmp+select or intrinsics. SLP is expected to handle 12014 // either form. 12015 // TODO: If we are canonicalizing to intrinsics, we can remove several 12016 // special-case paths that deal with selects. 12017 if (match(I, m_SMax(m_Value(), m_Value()))) 12018 return RecurKind::SMax; 12019 if (match(I, m_SMin(m_Value(), m_Value()))) 12020 return RecurKind::SMin; 12021 if (match(I, m_UMax(m_Value(), m_Value()))) 12022 return RecurKind::UMax; 12023 if (match(I, m_UMin(m_Value(), m_Value()))) 12024 return RecurKind::UMin; 12025 12026 if (auto *Select = dyn_cast<SelectInst>(I)) { 12027 // Try harder: look for min/max pattern based on instructions producing 12028 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 12029 // During the intermediate stages of SLP, it's very common to have 12030 // pattern like this (since optimizeGatherSequence is run only once 12031 // at the end): 12032 // %1 = extractelement <2 x i32> %a, i32 0 12033 // %2 = extractelement <2 x i32> %a, i32 1 12034 // %cond = icmp sgt i32 %1, %2 12035 // %3 = extractelement <2 x i32> %a, i32 0 12036 // %4 = extractelement <2 x i32> %a, i32 1 12037 // %select = select i1 %cond, i32 %3, i32 %4 12038 CmpInst::Predicate Pred; 12039 Instruction *L1; 12040 Instruction *L2; 12041 12042 Value *LHS = Select->getTrueValue(); 12043 Value *RHS = Select->getFalseValue(); 12044 Value *Cond = Select->getCondition(); 12045 12046 // TODO: Support inverse predicates. 12047 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 12048 if (!isa<ExtractElementInst>(RHS) || 12049 !L2->isIdenticalTo(cast<Instruction>(RHS))) 12050 return RecurKind::None; 12051 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 12052 if (!isa<ExtractElementInst>(LHS) || 12053 !L1->isIdenticalTo(cast<Instruction>(LHS))) 12054 return RecurKind::None; 12055 } else { 12056 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 12057 return RecurKind::None; 12058 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 12059 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 12060 !L2->isIdenticalTo(cast<Instruction>(RHS))) 12061 return RecurKind::None; 12062 } 12063 12064 switch (Pred) { 12065 default: 12066 return RecurKind::None; 12067 case CmpInst::ICMP_SGT: 12068 case CmpInst::ICMP_SGE: 12069 return RecurKind::SMax; 12070 case CmpInst::ICMP_SLT: 12071 case CmpInst::ICMP_SLE: 12072 return RecurKind::SMin; 12073 case CmpInst::ICMP_UGT: 12074 case CmpInst::ICMP_UGE: 12075 return RecurKind::UMax; 12076 case CmpInst::ICMP_ULT: 12077 case CmpInst::ICMP_ULE: 12078 return RecurKind::UMin; 12079 } 12080 } 12081 return RecurKind::None; 12082 } 12083 12084 /// Get the index of the first operand. 12085 static unsigned getFirstOperandIndex(Instruction *I) { 12086 return isCmpSelMinMax(I) ? 1 : 0; 12087 } 12088 12089 /// Total number of operands in the reduction operation. 12090 static unsigned getNumberOfOperands(Instruction *I) { 12091 return isCmpSelMinMax(I) ? 3 : 2; 12092 } 12093 12094 /// Checks if the instruction is in basic block \p BB. 12095 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 12096 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 12097 if (isCmpSelMinMax(I) || isBoolLogicOp(I)) { 12098 auto *Sel = cast<SelectInst>(I); 12099 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 12100 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 12101 } 12102 return I->getParent() == BB; 12103 } 12104 12105 /// Expected number of uses for reduction operations/reduced values. 12106 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 12107 if (IsCmpSelMinMax) { 12108 // SelectInst must be used twice while the condition op must have single 12109 // use only. 12110 if (auto *Sel = dyn_cast<SelectInst>(I)) 12111 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 12112 return I->hasNUses(2); 12113 } 12114 12115 // Arithmetic reduction operation must be used once only. 12116 return I->hasOneUse(); 12117 } 12118 12119 /// Initializes the list of reduction operations. 12120 void initReductionOps(Instruction *I) { 12121 if (isCmpSelMinMax(I)) 12122 ReductionOps.assign(2, ReductionOpsType()); 12123 else 12124 ReductionOps.assign(1, ReductionOpsType()); 12125 } 12126 12127 /// Add all reduction operations for the reduction instruction \p I. 12128 void addReductionOps(Instruction *I) { 12129 if (isCmpSelMinMax(I)) { 12130 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 12131 ReductionOps[1].emplace_back(I); 12132 } else { 12133 ReductionOps[0].emplace_back(I); 12134 } 12135 } 12136 12137 static Value *getLHS(RecurKind Kind, Instruction *I) { 12138 if (Kind == RecurKind::None) 12139 return nullptr; 12140 return I->getOperand(getFirstOperandIndex(I)); 12141 } 12142 static Value *getRHS(RecurKind Kind, Instruction *I) { 12143 if (Kind == RecurKind::None) 12144 return nullptr; 12145 return I->getOperand(getFirstOperandIndex(I) + 1); 12146 } 12147 12148 static bool isGoodForReduction(ArrayRef<Value *> Data) { 12149 int Sz = Data.size(); 12150 auto *I = dyn_cast<Instruction>(Data.front()); 12151 return Sz > 1 || isConstant(Data.front()) || 12152 (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode())); 12153 } 12154 12155 public: 12156 HorizontalReduction() = default; 12157 12158 /// Try to find a reduction tree. 12159 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 12160 ScalarEvolution &SE, const DataLayout &DL, 12161 const TargetLibraryInfo &TLI) { 12162 assert((!Phi || is_contained(Phi->operands(), Inst)) && 12163 "Phi needs to use the binary operator"); 12164 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 12165 isa<IntrinsicInst>(Inst)) && 12166 "Expected binop, select, or intrinsic for reduction matching"); 12167 RdxKind = getRdxKind(Inst); 12168 12169 // We could have a initial reductions that is not an add. 12170 // r *= v1 + v2 + v3 + v4 12171 // In such a case start looking for a tree rooted in the first '+'. 12172 if (Phi) { 12173 if (getLHS(RdxKind, Inst) == Phi) { 12174 Phi = nullptr; 12175 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 12176 if (!Inst) 12177 return false; 12178 RdxKind = getRdxKind(Inst); 12179 } else if (getRHS(RdxKind, Inst) == Phi) { 12180 Phi = nullptr; 12181 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 12182 if (!Inst) 12183 return false; 12184 RdxKind = getRdxKind(Inst); 12185 } 12186 } 12187 12188 if (!isVectorizable(RdxKind, Inst)) 12189 return false; 12190 12191 // Analyze "regular" integer/FP types for reductions - no target-specific 12192 // types or pointers. 12193 Type *Ty = Inst->getType(); 12194 if (!isValidElementType(Ty) || Ty->isPointerTy()) 12195 return false; 12196 12197 // Though the ultimate reduction may have multiple uses, its condition must 12198 // have only single use. 12199 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 12200 if (!Sel->getCondition()->hasOneUse()) 12201 return false; 12202 12203 ReductionRoot = Inst; 12204 12205 // Iterate through all the operands of the possible reduction tree and 12206 // gather all the reduced values, sorting them by their value id. 12207 BasicBlock *BB = Inst->getParent(); 12208 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 12209 SmallVector<Instruction *> Worklist(1, Inst); 12210 // Checks if the operands of the \p TreeN instruction are also reduction 12211 // operations or should be treated as reduced values or an extra argument, 12212 // which is not part of the reduction. 12213 auto &&CheckOperands = [this, IsCmpSelMinMax, 12214 BB](Instruction *TreeN, 12215 SmallVectorImpl<Value *> &ExtraArgs, 12216 SmallVectorImpl<Value *> &PossibleReducedVals, 12217 SmallVectorImpl<Instruction *> &ReductionOps) { 12218 for (int I = getFirstOperandIndex(TreeN), 12219 End = getNumberOfOperands(TreeN); 12220 I < End; ++I) { 12221 Value *EdgeVal = getRdxOperand(TreeN, I); 12222 ReducedValsToOps[EdgeVal].push_back(TreeN); 12223 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 12224 // Edge has wrong parent - mark as an extra argument. 12225 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 12226 !hasSameParent(EdgeInst, BB)) { 12227 ExtraArgs.push_back(EdgeVal); 12228 continue; 12229 } 12230 // If the edge is not an instruction, or it is different from the main 12231 // reduction opcode or has too many uses - possible reduced value. 12232 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 12233 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 12234 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 12235 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 12236 PossibleReducedVals.push_back(EdgeVal); 12237 continue; 12238 } 12239 ReductionOps.push_back(EdgeInst); 12240 } 12241 }; 12242 // Try to regroup reduced values so that it gets more profitable to try to 12243 // reduce them. Values are grouped by their value ids, instructions - by 12244 // instruction op id and/or alternate op id, plus do extra analysis for 12245 // loads (grouping them by the distabce between pointers) and cmp 12246 // instructions (grouping them by the predicate). 12247 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 12248 PossibleReducedVals; 12249 initReductionOps(Inst); 12250 DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap; 12251 SmallSet<size_t, 2> LoadKeyUsed; 12252 SmallPtrSet<Value *, 4> DoNotReverseVals; 12253 while (!Worklist.empty()) { 12254 Instruction *TreeN = Worklist.pop_back_val(); 12255 SmallVector<Value *> Args; 12256 SmallVector<Value *> PossibleRedVals; 12257 SmallVector<Instruction *> PossibleReductionOps; 12258 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 12259 // If too many extra args - mark the instruction itself as a reduction 12260 // value, not a reduction operation. 12261 if (Args.size() < 2) { 12262 addReductionOps(TreeN); 12263 // Add extra args. 12264 if (!Args.empty()) { 12265 assert(Args.size() == 1 && "Expected only single argument."); 12266 ExtraArgs[TreeN] = Args.front(); 12267 } 12268 // Add reduction values. The values are sorted for better vectorization 12269 // results. 12270 for (Value *V : PossibleRedVals) { 12271 size_t Key, Idx; 12272 std::tie(Key, Idx) = generateKeySubkey( 12273 V, &TLI, 12274 [&](size_t Key, LoadInst *LI) { 12275 Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 12276 if (LoadKeyUsed.contains(Key)) { 12277 auto LIt = LoadsMap.find(Ptr); 12278 if (LIt != LoadsMap.end()) { 12279 for (LoadInst *RLI: LIt->second) { 12280 if (getPointersDiff( 12281 RLI->getType(), RLI->getPointerOperand(), 12282 LI->getType(), LI->getPointerOperand(), DL, SE, 12283 /*StrictCheck=*/true)) 12284 return hash_value(RLI->getPointerOperand()); 12285 } 12286 for (LoadInst *RLI : LIt->second) { 12287 if (arePointersCompatible(RLI->getPointerOperand(), 12288 LI->getPointerOperand(), TLI)) { 12289 hash_code SubKey = hash_value(RLI->getPointerOperand()); 12290 DoNotReverseVals.insert(RLI); 12291 return SubKey; 12292 } 12293 } 12294 if (LIt->second.size() > 2) { 12295 hash_code SubKey = 12296 hash_value(LIt->second.back()->getPointerOperand()); 12297 DoNotReverseVals.insert(LIt->second.back()); 12298 return SubKey; 12299 } 12300 } 12301 } 12302 LoadKeyUsed.insert(Key); 12303 LoadsMap.try_emplace(Ptr).first->second.push_back(LI); 12304 return hash_value(LI->getPointerOperand()); 12305 }, 12306 /*AllowAlternate=*/false); 12307 ++PossibleReducedVals[Key][Idx] 12308 .insert(std::make_pair(V, 0)) 12309 .first->second; 12310 } 12311 Worklist.append(PossibleReductionOps.rbegin(), 12312 PossibleReductionOps.rend()); 12313 } else { 12314 size_t Key, Idx; 12315 std::tie(Key, Idx) = generateKeySubkey( 12316 TreeN, &TLI, 12317 [&](size_t Key, LoadInst *LI) { 12318 Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 12319 if (LoadKeyUsed.contains(Key)) { 12320 auto LIt = LoadsMap.find(Ptr); 12321 if (LIt != LoadsMap.end()) { 12322 for (LoadInst *RLI: LIt->second) { 12323 if (getPointersDiff(RLI->getType(), 12324 RLI->getPointerOperand(), LI->getType(), 12325 LI->getPointerOperand(), DL, SE, 12326 /*StrictCheck=*/true)) 12327 return hash_value(RLI->getPointerOperand()); 12328 } 12329 for (LoadInst *RLI : LIt->second) { 12330 if (arePointersCompatible(RLI->getPointerOperand(), 12331 LI->getPointerOperand(), TLI)) { 12332 hash_code SubKey = hash_value(RLI->getPointerOperand()); 12333 DoNotReverseVals.insert(RLI); 12334 return SubKey; 12335 } 12336 } 12337 if (LIt->second.size() > 2) { 12338 hash_code SubKey = hash_value(LIt->second.back()->getPointerOperand()); 12339 DoNotReverseVals.insert(LIt->second.back()); 12340 return SubKey; 12341 } 12342 } 12343 } 12344 LoadKeyUsed.insert(Key); 12345 LoadsMap.try_emplace(Ptr).first->second.push_back(LI); 12346 return hash_value(LI->getPointerOperand()); 12347 }, 12348 /*AllowAlternate=*/false); 12349 ++PossibleReducedVals[Key][Idx] 12350 .insert(std::make_pair(TreeN, 0)) 12351 .first->second; 12352 } 12353 } 12354 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 12355 // Sort values by the total number of values kinds to start the reduction 12356 // from the longest possible reduced values sequences. 12357 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 12358 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 12359 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 12360 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 12361 It != E; ++It) { 12362 PossibleRedValsVect.emplace_back(); 12363 auto RedValsVect = It->second.takeVector(); 12364 stable_sort(RedValsVect, llvm::less_second()); 12365 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 12366 PossibleRedValsVect.back().append(Data.second, Data.first); 12367 } 12368 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 12369 return P1.size() > P2.size(); 12370 }); 12371 int NewIdx = -1; 12372 for (ArrayRef<Value *> Data : PossibleRedValsVect) { 12373 if (isGoodForReduction(Data) || 12374 (isa<LoadInst>(Data.front()) && NewIdx >= 0 && 12375 isa<LoadInst>(ReducedVals[NewIdx].front()) && 12376 getUnderlyingObject( 12377 cast<LoadInst>(Data.front())->getPointerOperand()) == 12378 getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front()) 12379 ->getPointerOperand()))) { 12380 if (NewIdx < 0) { 12381 NewIdx = ReducedVals.size(); 12382 ReducedVals.emplace_back(); 12383 } 12384 if (DoNotReverseVals.contains(Data.front())) 12385 ReducedVals[NewIdx].append(Data.begin(), Data.end()); 12386 else 12387 ReducedVals[NewIdx].append(Data.rbegin(), Data.rend()); 12388 } else { 12389 ReducedVals.emplace_back().append(Data.rbegin(), Data.rend()); 12390 } 12391 } 12392 } 12393 // Sort the reduced values by number of same/alternate opcode and/or pointer 12394 // operand. 12395 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 12396 return P1.size() > P2.size(); 12397 }); 12398 return true; 12399 } 12400 12401 /// Attempt to vectorize the tree found by matchAssociativeReduction. 12402 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI, 12403 const TargetLibraryInfo &TLI) { 12404 constexpr int ReductionLimit = 4; 12405 constexpr unsigned RegMaxNumber = 4; 12406 constexpr unsigned RedValsMaxNumber = 128; 12407 // If there are a sufficient number of reduction values, reduce 12408 // to a nearby power-of-2. We can safely generate oversized 12409 // vectors and rely on the backend to split them to legal sizes. 12410 size_t NumReducedVals = 12411 std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0, 12412 [](size_t Num, ArrayRef<Value *> Vals) { 12413 if (!isGoodForReduction(Vals)) 12414 return Num; 12415 return Num + Vals.size(); 12416 }); 12417 if (NumReducedVals < ReductionLimit) { 12418 for (ReductionOpsType &RdxOps : ReductionOps) 12419 for (Value *RdxOp : RdxOps) 12420 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 12421 return nullptr; 12422 } 12423 12424 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 12425 12426 // Track the reduced values in case if they are replaced by extractelement 12427 // because of the vectorization. 12428 DenseMap<Value *, WeakTrackingVH> TrackedVals( 12429 ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size()); 12430 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 12431 ExternallyUsedValues.reserve(ExtraArgs.size() + 1); 12432 // The same extra argument may be used several times, so log each attempt 12433 // to use it. 12434 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 12435 assert(Pair.first && "DebugLoc must be set."); 12436 ExternallyUsedValues[Pair.second].push_back(Pair.first); 12437 TrackedVals.try_emplace(Pair.second, Pair.second); 12438 } 12439 12440 // The compare instruction of a min/max is the insertion point for new 12441 // instructions and may be replaced with a new compare instruction. 12442 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 12443 assert(isa<SelectInst>(RdxRootInst) && 12444 "Expected min/max reduction to have select root instruction"); 12445 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 12446 assert(isa<Instruction>(ScalarCond) && 12447 "Expected min/max reduction to have compare condition"); 12448 return cast<Instruction>(ScalarCond); 12449 }; 12450 12451 // The reduction root is used as the insertion point for new instructions, 12452 // so set it as externally used to prevent it from being deleted. 12453 ExternallyUsedValues[ReductionRoot]; 12454 SmallDenseSet<Value *> IgnoreList(ReductionOps.size() * 12455 ReductionOps.front().size()); 12456 for (ReductionOpsType &RdxOps : ReductionOps) 12457 for (Value *RdxOp : RdxOps) { 12458 if (!RdxOp) 12459 continue; 12460 IgnoreList.insert(RdxOp); 12461 } 12462 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 12463 12464 // Need to track reduced vals, they may be changed during vectorization of 12465 // subvectors. 12466 for (ArrayRef<Value *> Candidates : ReducedVals) 12467 for (Value *V : Candidates) 12468 TrackedVals.try_emplace(V, V); 12469 12470 DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size()); 12471 // List of the values that were reduced in other trees as part of gather 12472 // nodes and thus requiring extract if fully vectorized in other trees. 12473 SmallPtrSet<Value *, 4> RequiredExtract; 12474 Value *VectorizedTree = nullptr; 12475 bool CheckForReusedReductionOps = false; 12476 // Try to vectorize elements based on their type. 12477 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 12478 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 12479 InstructionsState S = getSameOpcode(OrigReducedVals, TLI); 12480 SmallVector<Value *> Candidates; 12481 Candidates.reserve(2 * OrigReducedVals.size()); 12482 DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size()); 12483 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 12484 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 12485 // Check if the reduction value was not overriden by the extractelement 12486 // instruction because of the vectorization and exclude it, if it is not 12487 // compatible with other values. 12488 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 12489 if (isVectorLikeInstWithConstOps(Inst) && 12490 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 12491 continue; 12492 Candidates.push_back(RdxVal); 12493 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 12494 } 12495 bool ShuffledExtracts = false; 12496 // Try to handle shuffled extractelements. 12497 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 12498 I + 1 < E) { 12499 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI); 12500 if (NextS.getOpcode() == Instruction::ExtractElement && 12501 !NextS.isAltShuffle()) { 12502 SmallVector<Value *> CommonCandidates(Candidates); 12503 for (Value *RV : ReducedVals[I + 1]) { 12504 Value *RdxVal = TrackedVals.find(RV)->second; 12505 // Check if the reduction value was not overriden by the 12506 // extractelement instruction because of the vectorization and 12507 // exclude it, if it is not compatible with other values. 12508 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 12509 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 12510 continue; 12511 CommonCandidates.push_back(RdxVal); 12512 TrackedToOrig.try_emplace(RdxVal, RV); 12513 } 12514 SmallVector<int> Mask; 12515 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 12516 ++I; 12517 Candidates.swap(CommonCandidates); 12518 ShuffledExtracts = true; 12519 } 12520 } 12521 } 12522 unsigned NumReducedVals = Candidates.size(); 12523 if (NumReducedVals < ReductionLimit) 12524 continue; 12525 12526 unsigned MaxVecRegSize = V.getMaxVecRegSize(); 12527 unsigned EltSize = V.getVectorElementSize(Candidates[0]); 12528 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); 12529 12530 unsigned ReduxWidth = std::min<unsigned>( 12531 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); 12532 unsigned Start = 0; 12533 unsigned Pos = Start; 12534 // Restarts vectorization attempt with lower vector factor. 12535 unsigned PrevReduxWidth = ReduxWidth; 12536 bool CheckForReusedReductionOpsLocal = false; 12537 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 12538 &CheckForReusedReductionOpsLocal, 12539 &PrevReduxWidth, &V, 12540 &IgnoreList](bool IgnoreVL = false) { 12541 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); 12542 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 12543 // Check if any of the reduction ops are gathered. If so, worth 12544 // trying again with less number of reduction ops. 12545 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 12546 } 12547 ++Pos; 12548 if (Pos < NumReducedVals - ReduxWidth + 1) 12549 return IsAnyRedOpGathered; 12550 Pos = Start; 12551 ReduxWidth /= 2; 12552 return IsAnyRedOpGathered; 12553 }; 12554 while (Pos < NumReducedVals - ReduxWidth + 1 && 12555 ReduxWidth >= ReductionLimit) { 12556 // Dependency in tree of the reduction ops - drop this attempt, try 12557 // later. 12558 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 12559 Start == 0) { 12560 CheckForReusedReductionOps = true; 12561 break; 12562 } 12563 PrevReduxWidth = ReduxWidth; 12564 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 12565 // Beeing analyzed already - skip. 12566 if (V.areAnalyzedReductionVals(VL)) { 12567 (void)AdjustReducedVals(/*IgnoreVL=*/true); 12568 continue; 12569 } 12570 // Early exit if any of the reduction values were deleted during 12571 // previous vectorization attempts. 12572 if (any_of(VL, [&V](Value *RedVal) { 12573 auto *RedValI = dyn_cast<Instruction>(RedVal); 12574 if (!RedValI) 12575 return false; 12576 return V.isDeleted(RedValI); 12577 })) 12578 break; 12579 V.buildTree(VL, IgnoreList); 12580 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 12581 if (!AdjustReducedVals()) 12582 V.analyzedReductionVals(VL); 12583 continue; 12584 } 12585 if (V.isLoadCombineReductionCandidate(RdxKind)) { 12586 if (!AdjustReducedVals()) 12587 V.analyzedReductionVals(VL); 12588 continue; 12589 } 12590 V.reorderTopToBottom(); 12591 // No need to reorder the root node at all. 12592 V.reorderBottomToTop(/*IgnoreReorder=*/true); 12593 // Keep extracted other reduction values, if they are used in the 12594 // vectorization trees. 12595 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 12596 ExternallyUsedValues); 12597 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 12598 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 12599 continue; 12600 for_each(ReducedVals[Cnt], 12601 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 12602 if (isa<Instruction>(V)) 12603 LocalExternallyUsedValues[TrackedVals[V]]; 12604 }); 12605 } 12606 // Number of uses of the candidates in the vector of values. 12607 SmallDenseMap<Value *, unsigned> NumUses(Candidates.size()); 12608 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 12609 Value *V = Candidates[Cnt]; 12610 ++NumUses.try_emplace(V, 0).first->getSecond(); 12611 } 12612 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 12613 Value *V = Candidates[Cnt]; 12614 ++NumUses.try_emplace(V, 0).first->getSecond(); 12615 } 12616 SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end()); 12617 // Gather externally used values. 12618 SmallPtrSet<Value *, 4> Visited; 12619 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 12620 Value *RdxVal = Candidates[Cnt]; 12621 if (!Visited.insert(RdxVal).second) 12622 continue; 12623 // Check if the scalar was vectorized as part of the vectorization 12624 // tree but not the top node. 12625 if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) { 12626 LocalExternallyUsedValues[RdxVal]; 12627 continue; 12628 } 12629 unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal]; 12630 if (NumOps != ReducedValsToOps.find(RdxVal)->second.size()) 12631 LocalExternallyUsedValues[RdxVal]; 12632 } 12633 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 12634 Value *RdxVal = Candidates[Cnt]; 12635 if (!Visited.insert(RdxVal).second) 12636 continue; 12637 // Check if the scalar was vectorized as part of the vectorization 12638 // tree but not the top node. 12639 if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) { 12640 LocalExternallyUsedValues[RdxVal]; 12641 continue; 12642 } 12643 unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal]; 12644 if (NumOps != ReducedValsToOps.find(RdxVal)->second.size()) 12645 LocalExternallyUsedValues[RdxVal]; 12646 } 12647 for (Value *RdxVal : VL) 12648 if (RequiredExtract.contains(RdxVal)) 12649 LocalExternallyUsedValues[RdxVal]; 12650 V.buildExternalUses(LocalExternallyUsedValues); 12651 12652 V.computeMinimumValueSizes(); 12653 12654 // Intersect the fast-math-flags from all reduction operations. 12655 FastMathFlags RdxFMF; 12656 RdxFMF.set(); 12657 for (Value *U : IgnoreList) 12658 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 12659 RdxFMF &= FPMO->getFastMathFlags(); 12660 // Estimate cost. 12661 InstructionCost TreeCost = V.getTreeCost(VL); 12662 InstructionCost ReductionCost = 12663 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 12664 if (V.isVectorizedFirstNode() && isa<LoadInst>(VL.front())) { 12665 Instruction *MainOp = V.getFirstNodeMainOp(); 12666 for (Value *V : VL) { 12667 auto *VI = dyn_cast<LoadInst>(V); 12668 // Add the costs of scalar GEP pointers, to be removed from the 12669 // code. 12670 if (!VI || VI == MainOp) 12671 continue; 12672 auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand()); 12673 if (!Ptr || !Ptr->hasOneUse() || Ptr->hasAllConstantIndices()) 12674 continue; 12675 TreeCost -= TTI->getArithmeticInstrCost( 12676 Instruction::Add, Ptr->getType(), TTI::TCK_RecipThroughput); 12677 } 12678 } 12679 InstructionCost Cost = TreeCost + ReductionCost; 12680 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for reduction\n"); 12681 if (!Cost.isValid()) 12682 return nullptr; 12683 if (Cost >= -SLPCostThreshold) { 12684 V.getORE()->emit([&]() { 12685 return OptimizationRemarkMissed( 12686 SV_NAME, "HorSLPNotBeneficial", 12687 ReducedValsToOps.find(VL[0])->second.front()) 12688 << "Vectorizing horizontal reduction is possible " 12689 << "but not beneficial with cost " << ore::NV("Cost", Cost) 12690 << " and threshold " 12691 << ore::NV("Threshold", -SLPCostThreshold); 12692 }); 12693 if (!AdjustReducedVals()) 12694 V.analyzedReductionVals(VL); 12695 continue; 12696 } 12697 12698 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 12699 << Cost << ". (HorRdx)\n"); 12700 V.getORE()->emit([&]() { 12701 return OptimizationRemark( 12702 SV_NAME, "VectorizedHorizontalReduction", 12703 ReducedValsToOps.find(VL[0])->second.front()) 12704 << "Vectorized horizontal reduction with cost " 12705 << ore::NV("Cost", Cost) << " and with tree size " 12706 << ore::NV("TreeSize", V.getTreeSize()); 12707 }); 12708 12709 Builder.setFastMathFlags(RdxFMF); 12710 12711 // Emit a reduction. If the root is a select (min/max idiom), the insert 12712 // point is the compare condition of that select. 12713 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 12714 Instruction *InsertPt = RdxRootInst; 12715 if (IsCmpSelMinMax) 12716 InsertPt = GetCmpForMinMaxReduction(RdxRootInst); 12717 12718 // Vectorize a tree. 12719 Value *VectorizedRoot = 12720 V.vectorizeTree(LocalExternallyUsedValues, InsertPt); 12721 12722 Builder.SetInsertPoint(InsertPt); 12723 12724 // To prevent poison from leaking across what used to be sequential, 12725 // safe, scalar boolean logic operations, the reduction operand must be 12726 // frozen. 12727 if (isBoolLogicOp(RdxRootInst)) 12728 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 12729 12730 Value *ReducedSubTree = 12731 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 12732 12733 if (!VectorizedTree) { 12734 // Initialize the final value in the reduction. 12735 VectorizedTree = ReducedSubTree; 12736 } else { 12737 // Update the final value in the reduction. 12738 Builder.SetCurrentDebugLocation( 12739 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 12740 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 12741 ReducedSubTree, "op.rdx", ReductionOps); 12742 } 12743 // Count vectorized reduced values to exclude them from final reduction. 12744 for (Value *RdxVal : VL) { 12745 ++VectorizedVals.try_emplace(TrackedToOrig.find(RdxVal)->second, 0) 12746 .first->getSecond(); 12747 if (!V.isVectorized(RdxVal)) 12748 RequiredExtract.insert(RdxVal); 12749 } 12750 Pos += ReduxWidth; 12751 Start = Pos; 12752 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 12753 } 12754 } 12755 if (VectorizedTree) { 12756 // Reorder operands of bool logical op in the natural order to avoid 12757 // possible problem with poison propagation. If not possible to reorder 12758 // (both operands are originally RHS), emit an extra freeze instruction 12759 // for the LHS operand. 12760 //I.e., if we have original code like this: 12761 // RedOp1 = select i1 ?, i1 LHS, i1 false 12762 // RedOp2 = select i1 RHS, i1 ?, i1 false 12763 12764 // Then, we swap LHS/RHS to create a new op that matches the poison 12765 // semantics of the original code. 12766 12767 // If we have original code like this and both values could be poison: 12768 // RedOp1 = select i1 ?, i1 LHS, i1 false 12769 // RedOp2 = select i1 ?, i1 RHS, i1 false 12770 12771 // Then, we must freeze LHS in the new op. 12772 auto &&FixBoolLogicalOps = 12773 [&Builder, VectorizedTree](Value *&LHS, Value *&RHS, 12774 Instruction *RedOp1, Instruction *RedOp2) { 12775 if (!isBoolLogicOp(RedOp1)) 12776 return; 12777 if (LHS == VectorizedTree || getRdxOperand(RedOp1, 0) == LHS || 12778 isGuaranteedNotToBePoison(LHS)) 12779 return; 12780 if (!isBoolLogicOp(RedOp2)) 12781 return; 12782 if (RHS == VectorizedTree || getRdxOperand(RedOp2, 0) == RHS || 12783 isGuaranteedNotToBePoison(RHS)) { 12784 std::swap(LHS, RHS); 12785 return; 12786 } 12787 LHS = Builder.CreateFreeze(LHS); 12788 }; 12789 // Finish the reduction. 12790 // Need to add extra arguments and not vectorized possible reduction 12791 // values. 12792 // Try to avoid dependencies between the scalar remainders after 12793 // reductions. 12794 auto &&FinalGen = 12795 [this, &Builder, &TrackedVals, &FixBoolLogicalOps]( 12796 ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 12797 unsigned Sz = InstVals.size(); 12798 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 12799 Sz % 2); 12800 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 12801 Instruction *RedOp = InstVals[I + 1].first; 12802 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 12803 Value *RdxVal1 = InstVals[I].second; 12804 Value *StableRdxVal1 = RdxVal1; 12805 auto It1 = TrackedVals.find(RdxVal1); 12806 if (It1 != TrackedVals.end()) 12807 StableRdxVal1 = It1->second; 12808 Value *RdxVal2 = InstVals[I + 1].second; 12809 Value *StableRdxVal2 = RdxVal2; 12810 auto It2 = TrackedVals.find(RdxVal2); 12811 if (It2 != TrackedVals.end()) 12812 StableRdxVal2 = It2->second; 12813 // To prevent poison from leaking across what used to be 12814 // sequential, safe, scalar boolean logic operations, the 12815 // reduction operand must be frozen. 12816 FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first, 12817 RedOp); 12818 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 12819 StableRdxVal2, "op.rdx", ReductionOps); 12820 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 12821 } 12822 if (Sz % 2 == 1) 12823 ExtraReds[Sz / 2] = InstVals.back(); 12824 return ExtraReds; 12825 }; 12826 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 12827 ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot), 12828 VectorizedTree); 12829 SmallPtrSet<Value *, 8> Visited; 12830 for (ArrayRef<Value *> Candidates : ReducedVals) { 12831 for (Value *RdxVal : Candidates) { 12832 if (!Visited.insert(RdxVal).second) 12833 continue; 12834 unsigned NumOps = VectorizedVals.lookup(RdxVal); 12835 for (Instruction *RedOp : 12836 ArrayRef(ReducedValsToOps.find(RdxVal)->second) 12837 .drop_back(NumOps)) 12838 ExtraReductions.emplace_back(RedOp, RdxVal); 12839 } 12840 } 12841 for (auto &Pair : ExternallyUsedValues) { 12842 // Add each externally used value to the final reduction. 12843 for (auto *I : Pair.second) 12844 ExtraReductions.emplace_back(I, Pair.first); 12845 } 12846 // Iterate through all not-vectorized reduction values/extra arguments. 12847 while (ExtraReductions.size() > 1) { 12848 VectorizedTree = ExtraReductions.front().second; 12849 SmallVector<std::pair<Instruction *, Value *>> NewReds = 12850 FinalGen(ExtraReductions); 12851 ExtraReductions.swap(NewReds); 12852 } 12853 VectorizedTree = ExtraReductions.front().second; 12854 12855 ReductionRoot->replaceAllUsesWith(VectorizedTree); 12856 12857 // The original scalar reduction is expected to have no remaining 12858 // uses outside the reduction tree itself. Assert that we got this 12859 // correct, replace internal uses with undef, and mark for eventual 12860 // deletion. 12861 #ifndef NDEBUG 12862 SmallSet<Value *, 4> IgnoreSet; 12863 for (ArrayRef<Value *> RdxOps : ReductionOps) 12864 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 12865 #endif 12866 for (ArrayRef<Value *> RdxOps : ReductionOps) { 12867 for (Value *Ignore : RdxOps) { 12868 if (!Ignore) 12869 continue; 12870 #ifndef NDEBUG 12871 for (auto *U : Ignore->users()) { 12872 assert(IgnoreSet.count(U) && 12873 "All users must be either in the reduction ops list."); 12874 } 12875 #endif 12876 if (!Ignore->use_empty()) { 12877 Value *Undef = UndefValue::get(Ignore->getType()); 12878 Ignore->replaceAllUsesWith(Undef); 12879 } 12880 V.eraseInstruction(cast<Instruction>(Ignore)); 12881 } 12882 } 12883 } else if (!CheckForReusedReductionOps) { 12884 for (ReductionOpsType &RdxOps : ReductionOps) 12885 for (Value *RdxOp : RdxOps) 12886 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 12887 } 12888 return VectorizedTree; 12889 } 12890 12891 private: 12892 /// Calculate the cost of a reduction. 12893 InstructionCost getReductionCost(TargetTransformInfo *TTI, 12894 ArrayRef<Value *> ReducedVals, 12895 unsigned ReduxWidth, FastMathFlags FMF) { 12896 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 12897 Value *FirstReducedVal = ReducedVals.front(); 12898 Type *ScalarTy = FirstReducedVal->getType(); 12899 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 12900 InstructionCost VectorCost = 0, ScalarCost; 12901 // If all of the reduced values are constant, the vector cost is 0, since 12902 // the reduction value can be calculated at the compile time. 12903 bool AllConsts = all_of(ReducedVals, isConstant); 12904 switch (RdxKind) { 12905 case RecurKind::Add: 12906 case RecurKind::Mul: 12907 case RecurKind::Or: 12908 case RecurKind::And: 12909 case RecurKind::Xor: 12910 case RecurKind::FAdd: 12911 case RecurKind::FMul: { 12912 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 12913 if (!AllConsts) 12914 VectorCost = 12915 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 12916 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 12917 break; 12918 } 12919 case RecurKind::FMax: 12920 case RecurKind::FMin: { 12921 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 12922 if (!AllConsts) { 12923 auto *VecCondTy = 12924 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 12925 VectorCost = 12926 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 12927 /*IsUnsigned=*/false, CostKind); 12928 } 12929 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 12930 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 12931 SclCondTy, RdxPred, CostKind) + 12932 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 12933 SclCondTy, RdxPred, CostKind); 12934 break; 12935 } 12936 case RecurKind::SMax: 12937 case RecurKind::SMin: 12938 case RecurKind::UMax: 12939 case RecurKind::UMin: { 12940 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 12941 if (!AllConsts) { 12942 auto *VecCondTy = 12943 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 12944 bool IsUnsigned = 12945 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 12946 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 12947 IsUnsigned, CostKind); 12948 } 12949 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 12950 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 12951 SclCondTy, RdxPred, CostKind) + 12952 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 12953 SclCondTy, RdxPred, CostKind); 12954 break; 12955 } 12956 default: 12957 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 12958 } 12959 12960 // Scalar cost is repeated for N-1 elements. 12961 ScalarCost *= (ReduxWidth - 1); 12962 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 12963 << " for reduction that starts with " << *FirstReducedVal 12964 << " (It is a splitting reduction)\n"); 12965 return VectorCost - ScalarCost; 12966 } 12967 12968 /// Emit a horizontal reduction of the vectorized value. 12969 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 12970 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 12971 assert(VectorizedValue && "Need to have a vectorized tree node"); 12972 assert(isPowerOf2_32(ReduxWidth) && 12973 "We only handle power-of-two reductions for now"); 12974 assert(RdxKind != RecurKind::FMulAdd && 12975 "A call to the llvm.fmuladd intrinsic is not handled yet"); 12976 12977 ++NumVectorInstructions; 12978 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 12979 } 12980 }; 12981 12982 } // end anonymous namespace 12983 12984 static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) { 12985 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 12986 return cast<FixedVectorType>(IE->getType())->getNumElements(); 12987 12988 unsigned AggregateSize = 1; 12989 auto *IV = cast<InsertValueInst>(InsertInst); 12990 Type *CurrentType = IV->getType(); 12991 do { 12992 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 12993 for (auto *Elt : ST->elements()) 12994 if (Elt != ST->getElementType(0)) // check homogeneity 12995 return std::nullopt; 12996 AggregateSize *= ST->getNumElements(); 12997 CurrentType = ST->getElementType(0); 12998 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 12999 AggregateSize *= AT->getNumElements(); 13000 CurrentType = AT->getElementType(); 13001 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 13002 AggregateSize *= VT->getNumElements(); 13003 return AggregateSize; 13004 } else if (CurrentType->isSingleValueType()) { 13005 return AggregateSize; 13006 } else { 13007 return std::nullopt; 13008 } 13009 } while (true); 13010 } 13011 13012 static void findBuildAggregate_rec(Instruction *LastInsertInst, 13013 TargetTransformInfo *TTI, 13014 SmallVectorImpl<Value *> &BuildVectorOpds, 13015 SmallVectorImpl<Value *> &InsertElts, 13016 unsigned OperandOffset) { 13017 do { 13018 Value *InsertedOperand = LastInsertInst->getOperand(1); 13019 std::optional<unsigned> OperandIndex = 13020 getInsertIndex(LastInsertInst, OperandOffset); 13021 if (!OperandIndex) 13022 return; 13023 if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) { 13024 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 13025 BuildVectorOpds, InsertElts, *OperandIndex); 13026 13027 } else { 13028 BuildVectorOpds[*OperandIndex] = InsertedOperand; 13029 InsertElts[*OperandIndex] = LastInsertInst; 13030 } 13031 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 13032 } while (LastInsertInst != nullptr && 13033 isa<InsertValueInst, InsertElementInst>(LastInsertInst) && 13034 LastInsertInst->hasOneUse()); 13035 } 13036 13037 /// Recognize construction of vectors like 13038 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 13039 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 13040 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 13041 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 13042 /// starting from the last insertelement or insertvalue instruction. 13043 /// 13044 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 13045 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 13046 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 13047 /// 13048 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 13049 /// 13050 /// \return true if it matches. 13051 static bool findBuildAggregate(Instruction *LastInsertInst, 13052 TargetTransformInfo *TTI, 13053 SmallVectorImpl<Value *> &BuildVectorOpds, 13054 SmallVectorImpl<Value *> &InsertElts) { 13055 13056 assert((isa<InsertElementInst>(LastInsertInst) || 13057 isa<InsertValueInst>(LastInsertInst)) && 13058 "Expected insertelement or insertvalue instruction!"); 13059 13060 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 13061 "Expected empty result vectors!"); 13062 13063 std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 13064 if (!AggregateSize) 13065 return false; 13066 BuildVectorOpds.resize(*AggregateSize); 13067 InsertElts.resize(*AggregateSize); 13068 13069 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 13070 llvm::erase_value(BuildVectorOpds, nullptr); 13071 llvm::erase_value(InsertElts, nullptr); 13072 if (BuildVectorOpds.size() >= 2) 13073 return true; 13074 13075 return false; 13076 } 13077 13078 /// Try and get a reduction value from a phi node. 13079 /// 13080 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 13081 /// if they come from either \p ParentBB or a containing loop latch. 13082 /// 13083 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 13084 /// if not possible. 13085 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 13086 BasicBlock *ParentBB, LoopInfo *LI) { 13087 // There are situations where the reduction value is not dominated by the 13088 // reduction phi. Vectorizing such cases has been reported to cause 13089 // miscompiles. See PR25787. 13090 auto DominatedReduxValue = [&](Value *R) { 13091 return isa<Instruction>(R) && 13092 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 13093 }; 13094 13095 Value *Rdx = nullptr; 13096 13097 // Return the incoming value if it comes from the same BB as the phi node. 13098 if (P->getIncomingBlock(0) == ParentBB) { 13099 Rdx = P->getIncomingValue(0); 13100 } else if (P->getIncomingBlock(1) == ParentBB) { 13101 Rdx = P->getIncomingValue(1); 13102 } 13103 13104 if (Rdx && DominatedReduxValue(Rdx)) 13105 return Rdx; 13106 13107 // Otherwise, check whether we have a loop latch to look at. 13108 Loop *BBL = LI->getLoopFor(ParentBB); 13109 if (!BBL) 13110 return nullptr; 13111 BasicBlock *BBLatch = BBL->getLoopLatch(); 13112 if (!BBLatch) 13113 return nullptr; 13114 13115 // There is a loop latch, return the incoming value if it comes from 13116 // that. This reduction pattern occasionally turns up. 13117 if (P->getIncomingBlock(0) == BBLatch) { 13118 Rdx = P->getIncomingValue(0); 13119 } else if (P->getIncomingBlock(1) == BBLatch) { 13120 Rdx = P->getIncomingValue(1); 13121 } 13122 13123 if (Rdx && DominatedReduxValue(Rdx)) 13124 return Rdx; 13125 13126 return nullptr; 13127 } 13128 13129 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 13130 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 13131 return true; 13132 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 13133 return true; 13134 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 13135 return true; 13136 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 13137 return true; 13138 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 13139 return true; 13140 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 13141 return true; 13142 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 13143 return true; 13144 return false; 13145 } 13146 13147 bool SLPVectorizerPass::vectorizeHorReduction( 13148 PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI, 13149 SmallVectorImpl<WeakTrackingVH> &PostponedInsts) { 13150 if (!ShouldVectorizeHor) 13151 return false; 13152 13153 auto *Root = dyn_cast_or_null<Instruction>(V); 13154 if (!Root) 13155 return false; 13156 13157 if (!isa<BinaryOperator>(Root)) 13158 P = nullptr; 13159 13160 if (Root->getParent() != BB || isa<PHINode>(Root)) 13161 return false; 13162 // Start analysis starting from Root instruction. If horizontal reduction is 13163 // found, try to vectorize it. If it is not a horizontal reduction or 13164 // vectorization is not possible or not effective, and currently analyzed 13165 // instruction is a binary operation, try to vectorize the operands, using 13166 // pre-order DFS traversal order. If the operands were not vectorized, repeat 13167 // the same procedure considering each operand as a possible root of the 13168 // horizontal reduction. 13169 // Interrupt the process if the Root instruction itself was vectorized or all 13170 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 13171 // If a horizintal reduction was not matched or vectorized we collect 13172 // instructions for possible later attempts for vectorization. 13173 std::queue<std::pair<Instruction *, unsigned>> Stack; 13174 Stack.emplace(Root, 0); 13175 SmallPtrSet<Value *, 8> VisitedInstrs; 13176 bool Res = false; 13177 auto &&TryToReduce = [this, TTI, &P, &R](Instruction *Inst, Value *&B0, 13178 Value *&B1) -> Value * { 13179 if (R.isAnalyzedReductionRoot(Inst)) 13180 return nullptr; 13181 bool IsBinop = matchRdxBop(Inst, B0, B1); 13182 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 13183 if (IsBinop || IsSelect) { 13184 HorizontalReduction HorRdx; 13185 if (HorRdx.matchAssociativeReduction(P, Inst, *SE, *DL, *TLI)) 13186 return HorRdx.tryToReduce(R, TTI, *TLI); 13187 } 13188 return nullptr; 13189 }; 13190 while (!Stack.empty()) { 13191 Instruction *Inst; 13192 unsigned Level; 13193 std::tie(Inst, Level) = Stack.front(); 13194 Stack.pop(); 13195 // Do not try to analyze instruction that has already been vectorized. 13196 // This may happen when we vectorize instruction operands on a previous 13197 // iteration while stack was populated before that happened. 13198 if (R.isDeleted(Inst)) 13199 continue; 13200 Value *B0 = nullptr, *B1 = nullptr; 13201 if (Value *V = TryToReduce(Inst, B0, B1)) { 13202 Res = true; 13203 // Set P to nullptr to avoid re-analysis of phi node in 13204 // matchAssociativeReduction function unless this is the root node. 13205 P = nullptr; 13206 if (auto *I = dyn_cast<Instruction>(V)) { 13207 // Try to find another reduction. 13208 Stack.emplace(I, Level); 13209 continue; 13210 } 13211 } else { 13212 bool IsBinop = B0 && B1; 13213 if (P && IsBinop) { 13214 Inst = dyn_cast<Instruction>(B0); 13215 if (Inst == P) 13216 Inst = dyn_cast<Instruction>(B1); 13217 if (!Inst) { 13218 // Set P to nullptr to avoid re-analysis of phi node in 13219 // matchAssociativeReduction function unless this is the root node. 13220 P = nullptr; 13221 continue; 13222 } 13223 } 13224 // Set P to nullptr to avoid re-analysis of phi node in 13225 // matchAssociativeReduction function unless this is the root node. 13226 P = nullptr; 13227 // Do not collect CmpInst or InsertElementInst/InsertValueInst as their 13228 // analysis is done separately. 13229 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 13230 PostponedInsts.push_back(Inst); 13231 } 13232 13233 // Try to vectorize operands. 13234 // Continue analysis for the instruction from the same basic block only to 13235 // save compile time. 13236 if (++Level < RecursionMaxDepth) 13237 for (auto *Op : Inst->operand_values()) 13238 if (VisitedInstrs.insert(Op).second) 13239 if (auto *I = dyn_cast<Instruction>(Op)) 13240 // Do not try to vectorize CmpInst operands, this is done 13241 // separately. 13242 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 13243 !R.isDeleted(I) && I->getParent() == BB) 13244 Stack.emplace(I, Level); 13245 } 13246 return Res; 13247 } 13248 13249 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 13250 BasicBlock *BB, BoUpSLP &R, 13251 TargetTransformInfo *TTI) { 13252 SmallVector<WeakTrackingVH> PostponedInsts; 13253 bool Res = vectorizeHorReduction(P, V, BB, R, TTI, PostponedInsts); 13254 Res |= tryToVectorize(PostponedInsts, R); 13255 return Res; 13256 } 13257 13258 bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts, 13259 BoUpSLP &R) { 13260 bool Res = false; 13261 for (Value *V : Insts) 13262 if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst)) 13263 Res |= tryToVectorize(Inst, R); 13264 return Res; 13265 } 13266 13267 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 13268 BasicBlock *BB, BoUpSLP &R) { 13269 const DataLayout &DL = BB->getModule()->getDataLayout(); 13270 if (!R.canMapToVector(IVI->getType(), DL)) 13271 return false; 13272 13273 SmallVector<Value *, 16> BuildVectorOpds; 13274 SmallVector<Value *, 16> BuildVectorInsts; 13275 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 13276 return false; 13277 13278 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 13279 // Aggregate value is unlikely to be processed in vector register. 13280 return tryToVectorizeList(BuildVectorOpds, R); 13281 } 13282 13283 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 13284 BasicBlock *BB, BoUpSLP &R) { 13285 SmallVector<Value *, 16> BuildVectorInsts; 13286 SmallVector<Value *, 16> BuildVectorOpds; 13287 SmallVector<int> Mask; 13288 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 13289 (llvm::all_of( 13290 BuildVectorOpds, 13291 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 13292 isFixedVectorShuffle(BuildVectorOpds, Mask))) 13293 return false; 13294 13295 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 13296 return tryToVectorizeList(BuildVectorInsts, R); 13297 } 13298 13299 template <typename T> 13300 static bool 13301 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 13302 function_ref<unsigned(T *)> Limit, 13303 function_ref<bool(T *, T *)> Comparator, 13304 function_ref<bool(T *, T *)> AreCompatible, 13305 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 13306 bool LimitForRegisterSize) { 13307 bool Changed = false; 13308 // Sort by type, parent, operands. 13309 stable_sort(Incoming, Comparator); 13310 13311 // Try to vectorize elements base on their type. 13312 SmallVector<T *> Candidates; 13313 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 13314 // Look for the next elements with the same type, parent and operand 13315 // kinds. 13316 auto *SameTypeIt = IncIt; 13317 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 13318 ++SameTypeIt; 13319 13320 // Try to vectorize them. 13321 unsigned NumElts = (SameTypeIt - IncIt); 13322 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 13323 << NumElts << ")\n"); 13324 // The vectorization is a 3-state attempt: 13325 // 1. Try to vectorize instructions with the same/alternate opcodes with the 13326 // size of maximal register at first. 13327 // 2. Try to vectorize remaining instructions with the same type, if 13328 // possible. This may result in the better vectorization results rather than 13329 // if we try just to vectorize instructions with the same/alternate opcodes. 13330 // 3. Final attempt to try to vectorize all instructions with the 13331 // same/alternate ops only, this may result in some extra final 13332 // vectorization. 13333 if (NumElts > 1 && 13334 TryToVectorizeHelper(ArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 13335 // Success start over because instructions might have been changed. 13336 Changed = true; 13337 } else if (NumElts < Limit(*IncIt) && 13338 (Candidates.empty() || 13339 Candidates.front()->getType() == (*IncIt)->getType())) { 13340 Candidates.append(IncIt, std::next(IncIt, NumElts)); 13341 } 13342 // Final attempt to vectorize instructions with the same types. 13343 if (Candidates.size() > 1 && 13344 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 13345 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 13346 // Success start over because instructions might have been changed. 13347 Changed = true; 13348 } else if (LimitForRegisterSize) { 13349 // Try to vectorize using small vectors. 13350 for (auto *It = Candidates.begin(), *End = Candidates.end(); 13351 It != End;) { 13352 auto *SameTypeIt = It; 13353 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 13354 ++SameTypeIt; 13355 unsigned NumElts = (SameTypeIt - It); 13356 if (NumElts > 1 && 13357 TryToVectorizeHelper(ArrayRef(It, NumElts), 13358 /*LimitForRegisterSize=*/false)) 13359 Changed = true; 13360 It = SameTypeIt; 13361 } 13362 } 13363 Candidates.clear(); 13364 } 13365 13366 // Start over at the next instruction of a different type (or the end). 13367 IncIt = SameTypeIt; 13368 } 13369 return Changed; 13370 } 13371 13372 /// Compare two cmp instructions. If IsCompatibility is true, function returns 13373 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 13374 /// operands. If IsCompatibility is false, function implements strict weak 13375 /// ordering relation between two cmp instructions, returning true if the first 13376 /// instruction is "less" than the second, i.e. its predicate is less than the 13377 /// predicate of the second or the operands IDs are less than the operands IDs 13378 /// of the second cmp instruction. 13379 template <bool IsCompatibility> 13380 static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI, 13381 function_ref<bool(Instruction *)> IsDeleted) { 13382 auto *CI1 = cast<CmpInst>(V); 13383 auto *CI2 = cast<CmpInst>(V2); 13384 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 13385 return false; 13386 if (CI1->getOperand(0)->getType()->getTypeID() < 13387 CI2->getOperand(0)->getType()->getTypeID()) 13388 return !IsCompatibility; 13389 if (CI1->getOperand(0)->getType()->getTypeID() > 13390 CI2->getOperand(0)->getType()->getTypeID()) 13391 return false; 13392 CmpInst::Predicate Pred1 = CI1->getPredicate(); 13393 CmpInst::Predicate Pred2 = CI2->getPredicate(); 13394 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 13395 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 13396 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 13397 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 13398 if (BasePred1 < BasePred2) 13399 return !IsCompatibility; 13400 if (BasePred1 > BasePred2) 13401 return false; 13402 // Compare operands. 13403 bool LEPreds = Pred1 <= Pred2; 13404 bool GEPreds = Pred1 >= Pred2; 13405 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 13406 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 13407 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 13408 if (Op1->getValueID() < Op2->getValueID()) 13409 return !IsCompatibility; 13410 if (Op1->getValueID() > Op2->getValueID()) 13411 return false; 13412 if (auto *I1 = dyn_cast<Instruction>(Op1)) 13413 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 13414 if (I1->getParent() != I2->getParent()) 13415 return false; 13416 InstructionsState S = getSameOpcode({I1, I2}, TLI); 13417 if (S.getOpcode()) 13418 continue; 13419 return false; 13420 } 13421 } 13422 return IsCompatibility; 13423 } 13424 13425 bool SLPVectorizerPass::vectorizeSimpleInstructions(InstSetVector &Instructions, 13426 BasicBlock *BB, BoUpSLP &R, 13427 bool AtTerminator) { 13428 bool OpsChanged = false; 13429 SmallVector<Instruction *, 4> PostponedCmps; 13430 SmallVector<WeakTrackingVH> PostponedInsts; 13431 // pass1 - try to vectorize reductions only 13432 for (auto *I : reverse(Instructions)) { 13433 if (R.isDeleted(I)) 13434 continue; 13435 if (isa<CmpInst>(I)) { 13436 PostponedCmps.push_back(I); 13437 continue; 13438 } 13439 OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts); 13440 } 13441 // pass2 - try to match and vectorize a buildvector sequence. 13442 for (auto *I : reverse(Instructions)) { 13443 if (R.isDeleted(I) || isa<CmpInst>(I)) 13444 continue; 13445 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 13446 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 13447 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 13448 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 13449 } 13450 } 13451 // Now try to vectorize postponed instructions. 13452 OpsChanged |= tryToVectorize(PostponedInsts, R); 13453 13454 if (AtTerminator) { 13455 // Try to find reductions first. 13456 for (Instruction *I : PostponedCmps) { 13457 if (R.isDeleted(I)) 13458 continue; 13459 for (Value *Op : I->operands()) 13460 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 13461 } 13462 // Try to vectorize operands as vector bundles. 13463 for (Instruction *I : PostponedCmps) { 13464 if (R.isDeleted(I)) 13465 continue; 13466 OpsChanged |= tryToVectorize(I, R); 13467 } 13468 // Try to vectorize list of compares. 13469 // Sort by type, compare predicate, etc. 13470 auto CompareSorter = [&](Value *V, Value *V2) { 13471 return compareCmp<false>(V, V2, *TLI, 13472 [&R](Instruction *I) { return R.isDeleted(I); }); 13473 }; 13474 13475 auto AreCompatibleCompares = [&](Value *V1, Value *V2) { 13476 if (V1 == V2) 13477 return true; 13478 return compareCmp<true>(V1, V2, *TLI, 13479 [&R](Instruction *I) { return R.isDeleted(I); }); 13480 }; 13481 auto Limit = [&R](Value *V) { 13482 unsigned EltSize = R.getVectorElementSize(V); 13483 return std::max(2U, R.getMaxVecRegSize() / EltSize); 13484 }; 13485 13486 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 13487 OpsChanged |= tryToVectorizeSequence<Value>( 13488 Vals, Limit, CompareSorter, AreCompatibleCompares, 13489 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 13490 // Exclude possible reductions from other blocks. 13491 bool ArePossiblyReducedInOtherBlock = 13492 any_of(Candidates, [](Value *V) { 13493 return any_of(V->users(), [V](User *U) { 13494 return isa<SelectInst>(U) && 13495 cast<SelectInst>(U)->getParent() != 13496 cast<Instruction>(V)->getParent(); 13497 }); 13498 }); 13499 if (ArePossiblyReducedInOtherBlock) 13500 return false; 13501 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 13502 }, 13503 /*LimitForRegisterSize=*/true); 13504 Instructions.clear(); 13505 } else { 13506 Instructions.clear(); 13507 // Insert in reverse order since the PostponedCmps vector was filled in 13508 // reverse order. 13509 Instructions.insert(PostponedCmps.rbegin(), PostponedCmps.rend()); 13510 } 13511 return OpsChanged; 13512 } 13513 13514 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 13515 bool Changed = false; 13516 SmallVector<Value *, 4> Incoming; 13517 SmallPtrSet<Value *, 16> VisitedInstrs; 13518 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 13519 // node. Allows better to identify the chains that can be vectorized in the 13520 // better way. 13521 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 13522 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 13523 assert(isValidElementType(V1->getType()) && 13524 isValidElementType(V2->getType()) && 13525 "Expected vectorizable types only."); 13526 // It is fine to compare type IDs here, since we expect only vectorizable 13527 // types, like ints, floats and pointers, we don't care about other type. 13528 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 13529 return true; 13530 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 13531 return false; 13532 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 13533 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 13534 if (Opcodes1.size() < Opcodes2.size()) 13535 return true; 13536 if (Opcodes1.size() > Opcodes2.size()) 13537 return false; 13538 std::optional<bool> ConstOrder; 13539 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 13540 // Undefs are compatible with any other value. 13541 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 13542 if (!ConstOrder) 13543 ConstOrder = 13544 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 13545 continue; 13546 } 13547 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 13548 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 13549 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 13550 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 13551 if (!NodeI1) 13552 return NodeI2 != nullptr; 13553 if (!NodeI2) 13554 return false; 13555 assert((NodeI1 == NodeI2) == 13556 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 13557 "Different nodes should have different DFS numbers"); 13558 if (NodeI1 != NodeI2) 13559 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 13560 InstructionsState S = getSameOpcode({I1, I2}, *TLI); 13561 if (S.getOpcode()) 13562 continue; 13563 return I1->getOpcode() < I2->getOpcode(); 13564 } 13565 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 13566 if (!ConstOrder) 13567 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 13568 continue; 13569 } 13570 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 13571 return true; 13572 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 13573 return false; 13574 } 13575 return ConstOrder && *ConstOrder; 13576 }; 13577 auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) { 13578 if (V1 == V2) 13579 return true; 13580 if (V1->getType() != V2->getType()) 13581 return false; 13582 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 13583 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 13584 if (Opcodes1.size() != Opcodes2.size()) 13585 return false; 13586 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 13587 // Undefs are compatible with any other value. 13588 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 13589 continue; 13590 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 13591 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 13592 if (I1->getParent() != I2->getParent()) 13593 return false; 13594 InstructionsState S = getSameOpcode({I1, I2}, *TLI); 13595 if (S.getOpcode()) 13596 continue; 13597 return false; 13598 } 13599 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 13600 continue; 13601 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 13602 return false; 13603 } 13604 return true; 13605 }; 13606 auto Limit = [&R](Value *V) { 13607 unsigned EltSize = R.getVectorElementSize(V); 13608 return std::max(2U, R.getMaxVecRegSize() / EltSize); 13609 }; 13610 13611 bool HaveVectorizedPhiNodes = false; 13612 do { 13613 // Collect the incoming values from the PHIs. 13614 Incoming.clear(); 13615 for (Instruction &I : *BB) { 13616 PHINode *P = dyn_cast<PHINode>(&I); 13617 if (!P) 13618 break; 13619 13620 // No need to analyze deleted, vectorized and non-vectorizable 13621 // instructions. 13622 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 13623 isValidElementType(P->getType())) 13624 Incoming.push_back(P); 13625 } 13626 13627 // Find the corresponding non-phi nodes for better matching when trying to 13628 // build the tree. 13629 for (Value *V : Incoming) { 13630 SmallVectorImpl<Value *> &Opcodes = 13631 PHIToOpcodes.try_emplace(V).first->getSecond(); 13632 if (!Opcodes.empty()) 13633 continue; 13634 SmallVector<Value *, 4> Nodes(1, V); 13635 SmallPtrSet<Value *, 4> Visited; 13636 while (!Nodes.empty()) { 13637 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 13638 if (!Visited.insert(PHI).second) 13639 continue; 13640 for (Value *V : PHI->incoming_values()) { 13641 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 13642 Nodes.push_back(PHI1); 13643 continue; 13644 } 13645 Opcodes.emplace_back(V); 13646 } 13647 } 13648 } 13649 13650 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 13651 Incoming, Limit, PHICompare, AreCompatiblePHIs, 13652 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 13653 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 13654 }, 13655 /*LimitForRegisterSize=*/true); 13656 Changed |= HaveVectorizedPhiNodes; 13657 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 13658 } while (HaveVectorizedPhiNodes); 13659 13660 VisitedInstrs.clear(); 13661 13662 InstSetVector PostProcessInstructions; 13663 SmallDenseSet<Instruction *, 4> KeyNodes; 13664 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 13665 // Skip instructions with scalable type. The num of elements is unknown at 13666 // compile-time for scalable type. 13667 if (isa<ScalableVectorType>(it->getType())) 13668 continue; 13669 13670 // Skip instructions marked for the deletion. 13671 if (R.isDeleted(&*it)) 13672 continue; 13673 // We may go through BB multiple times so skip the one we have checked. 13674 if (!VisitedInstrs.insert(&*it).second) { 13675 if (it->use_empty() && KeyNodes.contains(&*it) && 13676 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 13677 it->isTerminator())) { 13678 // We would like to start over since some instructions are deleted 13679 // and the iterator may become invalid value. 13680 Changed = true; 13681 it = BB->begin(); 13682 e = BB->end(); 13683 } 13684 continue; 13685 } 13686 13687 if (isa<DbgInfoIntrinsic>(it)) 13688 continue; 13689 13690 // Try to vectorize reductions that use PHINodes. 13691 if (PHINode *P = dyn_cast<PHINode>(it)) { 13692 // Check that the PHI is a reduction PHI. 13693 if (P->getNumIncomingValues() == 2) { 13694 // Try to match and vectorize a horizontal reduction. 13695 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 13696 TTI)) { 13697 Changed = true; 13698 it = BB->begin(); 13699 e = BB->end(); 13700 continue; 13701 } 13702 } 13703 // Try to vectorize the incoming values of the PHI, to catch reductions 13704 // that feed into PHIs. 13705 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 13706 // Skip if the incoming block is the current BB for now. Also, bypass 13707 // unreachable IR for efficiency and to avoid crashing. 13708 // TODO: Collect the skipped incoming values and try to vectorize them 13709 // after processing BB. 13710 if (BB == P->getIncomingBlock(I) || 13711 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 13712 continue; 13713 13714 // Postponed instructions should not be vectorized here, delay their 13715 // vectorization. 13716 if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I)); 13717 PI && !PostProcessInstructions.contains(PI)) 13718 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 13719 P->getIncomingBlock(I), R, TTI); 13720 } 13721 continue; 13722 } 13723 13724 // Ran into an instruction without users, like terminator, or function call 13725 // with ignored return value, store. Ignore unused instructions (basing on 13726 // instruction type, except for CallInst and InvokeInst). 13727 if (it->use_empty() && 13728 (it->getType()->isVoidTy() || isa<CallInst, InvokeInst>(it))) { 13729 KeyNodes.insert(&*it); 13730 bool OpsChanged = false; 13731 auto *SI = dyn_cast<StoreInst>(it); 13732 bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI; 13733 if (SI) { 13734 auto I = Stores.find(getUnderlyingObject(SI->getPointerOperand())); 13735 // Try to vectorize chain in store, if this is the only store to the 13736 // address in the block. 13737 // TODO: This is just a temporarily solution to save compile time. Need 13738 // to investigate if we can safely turn on slp-vectorize-hor-store 13739 // instead to allow lookup for reduction chains in all non-vectorized 13740 // stores (need to check side effects and compile time). 13741 TryToVectorizeRoot = (I == Stores.end() || I->second.size() == 1) && 13742 SI->getValueOperand()->hasOneUse(); 13743 } 13744 if (TryToVectorizeRoot) { 13745 for (auto *V : it->operand_values()) { 13746 // Postponed instructions should not be vectorized here, delay their 13747 // vectorization. 13748 if (auto *VI = dyn_cast<Instruction>(V); 13749 VI && !PostProcessInstructions.contains(VI)) 13750 // Try to match and vectorize a horizontal reduction. 13751 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 13752 } 13753 } 13754 // Start vectorization of post-process list of instructions from the 13755 // top-tree instructions to try to vectorize as many instructions as 13756 // possible. 13757 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 13758 it->isTerminator()); 13759 if (OpsChanged) { 13760 // We would like to start over since some instructions are deleted 13761 // and the iterator may become invalid value. 13762 Changed = true; 13763 it = BB->begin(); 13764 e = BB->end(); 13765 continue; 13766 } 13767 } 13768 13769 if (isa<CmpInst, InsertElementInst, InsertValueInst>(it)) 13770 PostProcessInstructions.insert(&*it); 13771 } 13772 13773 return Changed; 13774 } 13775 13776 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 13777 auto Changed = false; 13778 for (auto &Entry : GEPs) { 13779 // If the getelementptr list has fewer than two elements, there's nothing 13780 // to do. 13781 if (Entry.second.size() < 2) 13782 continue; 13783 13784 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 13785 << Entry.second.size() << ".\n"); 13786 13787 // Process the GEP list in chunks suitable for the target's supported 13788 // vector size. If a vector register can't hold 1 element, we are done. We 13789 // are trying to vectorize the index computations, so the maximum number of 13790 // elements is based on the size of the index expression, rather than the 13791 // size of the GEP itself (the target's pointer size). 13792 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 13793 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 13794 if (MaxVecRegSize < EltSize) 13795 continue; 13796 13797 unsigned MaxElts = MaxVecRegSize / EltSize; 13798 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 13799 auto Len = std::min<unsigned>(BE - BI, MaxElts); 13800 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 13801 13802 // Initialize a set a candidate getelementptrs. Note that we use a 13803 // SetVector here to preserve program order. If the index computations 13804 // are vectorizable and begin with loads, we want to minimize the chance 13805 // of having to reorder them later. 13806 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 13807 13808 // Some of the candidates may have already been vectorized after we 13809 // initially collected them. If so, they are marked as deleted, so remove 13810 // them from the set of candidates. 13811 Candidates.remove_if( 13812 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 13813 13814 // Remove from the set of candidates all pairs of getelementptrs with 13815 // constant differences. Such getelementptrs are likely not good 13816 // candidates for vectorization in a bottom-up phase since one can be 13817 // computed from the other. We also ensure all candidate getelementptr 13818 // indices are unique. 13819 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 13820 auto *GEPI = GEPList[I]; 13821 if (!Candidates.count(GEPI)) 13822 continue; 13823 auto *SCEVI = SE->getSCEV(GEPList[I]); 13824 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 13825 auto *GEPJ = GEPList[J]; 13826 auto *SCEVJ = SE->getSCEV(GEPList[J]); 13827 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 13828 Candidates.remove(GEPI); 13829 Candidates.remove(GEPJ); 13830 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 13831 Candidates.remove(GEPJ); 13832 } 13833 } 13834 } 13835 13836 // We break out of the above computation as soon as we know there are 13837 // fewer than two candidates remaining. 13838 if (Candidates.size() < 2) 13839 continue; 13840 13841 // Add the single, non-constant index of each candidate to the bundle. We 13842 // ensured the indices met these constraints when we originally collected 13843 // the getelementptrs. 13844 SmallVector<Value *, 16> Bundle(Candidates.size()); 13845 auto BundleIndex = 0u; 13846 for (auto *V : Candidates) { 13847 auto *GEP = cast<GetElementPtrInst>(V); 13848 auto *GEPIdx = GEP->idx_begin()->get(); 13849 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 13850 Bundle[BundleIndex++] = GEPIdx; 13851 } 13852 13853 // Try and vectorize the indices. We are currently only interested in 13854 // gather-like cases of the form: 13855 // 13856 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 13857 // 13858 // where the loads of "a", the loads of "b", and the subtractions can be 13859 // performed in parallel. It's likely that detecting this pattern in a 13860 // bottom-up phase will be simpler and less costly than building a 13861 // full-blown top-down phase beginning at the consecutive loads. 13862 Changed |= tryToVectorizeList(Bundle, R); 13863 } 13864 } 13865 return Changed; 13866 } 13867 13868 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 13869 bool Changed = false; 13870 // Sort by type, base pointers and values operand. Value operands must be 13871 // compatible (have the same opcode, same parent), otherwise it is 13872 // definitely not profitable to try to vectorize them. 13873 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 13874 if (V->getPointerOperandType()->getTypeID() < 13875 V2->getPointerOperandType()->getTypeID()) 13876 return true; 13877 if (V->getPointerOperandType()->getTypeID() > 13878 V2->getPointerOperandType()->getTypeID()) 13879 return false; 13880 // UndefValues are compatible with all other values. 13881 if (isa<UndefValue>(V->getValueOperand()) || 13882 isa<UndefValue>(V2->getValueOperand())) 13883 return false; 13884 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 13885 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 13886 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 13887 DT->getNode(I1->getParent()); 13888 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 13889 DT->getNode(I2->getParent()); 13890 assert(NodeI1 && "Should only process reachable instructions"); 13891 assert(NodeI2 && "Should only process reachable instructions"); 13892 assert((NodeI1 == NodeI2) == 13893 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 13894 "Different nodes should have different DFS numbers"); 13895 if (NodeI1 != NodeI2) 13896 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 13897 InstructionsState S = getSameOpcode({I1, I2}, *TLI); 13898 if (S.getOpcode()) 13899 return false; 13900 return I1->getOpcode() < I2->getOpcode(); 13901 } 13902 if (isa<Constant>(V->getValueOperand()) && 13903 isa<Constant>(V2->getValueOperand())) 13904 return false; 13905 return V->getValueOperand()->getValueID() < 13906 V2->getValueOperand()->getValueID(); 13907 }; 13908 13909 auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) { 13910 if (V1 == V2) 13911 return true; 13912 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 13913 return false; 13914 // Undefs are compatible with any other value. 13915 if (isa<UndefValue>(V1->getValueOperand()) || 13916 isa<UndefValue>(V2->getValueOperand())) 13917 return true; 13918 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 13919 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 13920 if (I1->getParent() != I2->getParent()) 13921 return false; 13922 InstructionsState S = getSameOpcode({I1, I2}, *TLI); 13923 return S.getOpcode() > 0; 13924 } 13925 if (isa<Constant>(V1->getValueOperand()) && 13926 isa<Constant>(V2->getValueOperand())) 13927 return true; 13928 return V1->getValueOperand()->getValueID() == 13929 V2->getValueOperand()->getValueID(); 13930 }; 13931 auto Limit = [&R, this](StoreInst *SI) { 13932 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 13933 return R.getMinVF(EltSize); 13934 }; 13935 13936 // Attempt to sort and vectorize each of the store-groups. 13937 for (auto &Pair : Stores) { 13938 if (Pair.second.size() < 2) 13939 continue; 13940 13941 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 13942 << Pair.second.size() << ".\n"); 13943 13944 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 13945 continue; 13946 13947 Changed |= tryToVectorizeSequence<StoreInst>( 13948 Pair.second, Limit, StoreSorter, AreCompatibleStores, 13949 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 13950 return vectorizeStores(Candidates, R); 13951 }, 13952 /*LimitForRegisterSize=*/false); 13953 } 13954 return Changed; 13955 } 13956 13957 char SLPVectorizer::ID = 0; 13958 13959 static const char lv_name[] = "SLP Vectorizer"; 13960 13961 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 13962 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 13963 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 13964 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13965 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 13966 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 13967 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 13968 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 13969 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 13970 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 13971 13972 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 13973