xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #ifdef EXPENSIVE_CHECKS
74 #include "llvm/IR/Verifier.h"
75 #endif
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/Local.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 // The maximum depth that the look-ahead score heuristic will explore
168 // when it probing among candidates for vectorization tree roots.
169 // The higher this value, the higher the compilation time overhead but unlike
170 // similar limit for operands ordering this is less frequently used, hence
171 // impact of higher value is less noticeable.
172 static cl::opt<int> RootLookAheadMaxDepth(
173     "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
174     cl::desc("The maximum look-ahead depth for searching best rooting option"));
175 
176 static cl::opt<bool>
177     ViewSLPTree("view-slp-tree", cl::Hidden,
178                 cl::desc("Display the SLP trees with Graphviz"));
179 
180 // Limit the number of alias checks. The limit is chosen so that
181 // it has no negative effect on the llvm benchmarks.
182 static const unsigned AliasedCheckLimit = 10;
183 
184 // Another limit for the alias checks: The maximum distance between load/store
185 // instructions where alias checks are done.
186 // This limit is useful for very large basic blocks.
187 static const unsigned MaxMemDepDistance = 160;
188 
189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
190 /// regions to be handled.
191 static const int MinScheduleRegionSize = 16;
192 
193 /// Predicate for the element types that the SLP vectorizer supports.
194 ///
195 /// The most important thing to filter here are types which are invalid in LLVM
196 /// vectors. We also filter target specific types which have absolutely no
197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
198 /// avoids spending time checking the cost model and realizing that they will
199 /// be inevitably scalarized.
200 static bool isValidElementType(Type *Ty) {
201   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
202          !Ty->isPPC_FP128Ty();
203 }
204 
205 /// \returns True if the value is a constant (but not globals/constant
206 /// expressions).
207 static bool isConstant(Value *V) {
208   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
209 }
210 
211 /// Checks if \p V is one of vector-like instructions, i.e. undef,
212 /// insertelement/extractelement with constant indices for fixed vector type or
213 /// extractvalue instruction.
214 static bool isVectorLikeInstWithConstOps(Value *V) {
215   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
216       !isa<ExtractValueInst, UndefValue>(V))
217     return false;
218   auto *I = dyn_cast<Instruction>(V);
219   if (!I || isa<ExtractValueInst>(I))
220     return true;
221   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
222     return false;
223   if (isa<ExtractElementInst>(I))
224     return isConstant(I->getOperand(1));
225   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
226   return isConstant(I->getOperand(2));
227 }
228 
229 /// \returns true if all of the instructions in \p VL are in the same block or
230 /// false otherwise.
231 static bool allSameBlock(ArrayRef<Value *> VL) {
232   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
233   if (!I0)
234     return false;
235   if (all_of(VL, isVectorLikeInstWithConstOps))
236     return true;
237 
238   BasicBlock *BB = I0->getParent();
239   for (int I = 1, E = VL.size(); I < E; I++) {
240     auto *II = dyn_cast<Instruction>(VL[I]);
241     if (!II)
242       return false;
243 
244     if (BB != II->getParent())
245       return false;
246   }
247   return true;
248 }
249 
250 /// \returns True if all of the values in \p VL are constants (but not
251 /// globals/constant expressions).
252 static bool allConstant(ArrayRef<Value *> VL) {
253   // Constant expressions and globals can't be vectorized like normal integer/FP
254   // constants.
255   return all_of(VL, isConstant);
256 }
257 
258 /// \returns True if all of the values in \p VL are identical or some of them
259 /// are UndefValue.
260 static bool isSplat(ArrayRef<Value *> VL) {
261   Value *FirstNonUndef = nullptr;
262   for (Value *V : VL) {
263     if (isa<UndefValue>(V))
264       continue;
265     if (!FirstNonUndef) {
266       FirstNonUndef = V;
267       continue;
268     }
269     if (V != FirstNonUndef)
270       return false;
271   }
272   return FirstNonUndef != nullptr;
273 }
274 
275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
276 static bool isCommutative(Instruction *I) {
277   if (auto *Cmp = dyn_cast<CmpInst>(I))
278     return Cmp->isCommutative();
279   if (auto *BO = dyn_cast<BinaryOperator>(I))
280     return BO->isCommutative();
281   // TODO: This should check for generic Instruction::isCommutative(), but
282   //       we need to confirm that the caller code correctly handles Intrinsics
283   //       for example (does not have 2 operands).
284   return false;
285 }
286 
287 /// Checks if the given value is actually an undefined constant vector.
288 static bool isUndefVector(const Value *V) {
289   if (isa<UndefValue>(V))
290     return true;
291   auto *C = dyn_cast<Constant>(V);
292   if (!C)
293     return false;
294   if (!C->containsUndefOrPoisonElement())
295     return false;
296   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
297   if (!VecTy)
298     return false;
299   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
300     if (Constant *Elem = C->getAggregateElement(I))
301       if (!isa<UndefValue>(Elem))
302         return false;
303   }
304   return true;
305 }
306 
307 /// Checks if the vector of instructions can be represented as a shuffle, like:
308 /// %x0 = extractelement <4 x i8> %x, i32 0
309 /// %x3 = extractelement <4 x i8> %x, i32 3
310 /// %y1 = extractelement <4 x i8> %y, i32 1
311 /// %y2 = extractelement <4 x i8> %y, i32 2
312 /// %x0x0 = mul i8 %x0, %x0
313 /// %x3x3 = mul i8 %x3, %x3
314 /// %y1y1 = mul i8 %y1, %y1
315 /// %y2y2 = mul i8 %y2, %y2
316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
320 /// ret <4 x i8> %ins4
321 /// can be transformed into:
322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
323 ///                                                         i32 6>
324 /// %2 = mul <4 x i8> %1, %1
325 /// ret <4 x i8> %2
326 /// We convert this initially to something like:
327 /// %x0 = extractelement <4 x i8> %x, i32 0
328 /// %x3 = extractelement <4 x i8> %x, i32 3
329 /// %y1 = extractelement <4 x i8> %y, i32 1
330 /// %y2 = extractelement <4 x i8> %y, i32 2
331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
335 /// %5 = mul <4 x i8> %4, %4
336 /// %6 = extractelement <4 x i8> %5, i32 0
337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
338 /// %7 = extractelement <4 x i8> %5, i32 1
339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
340 /// %8 = extractelement <4 x i8> %5, i32 2
341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
342 /// %9 = extractelement <4 x i8> %5, i32 3
343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
344 /// ret <4 x i8> %ins4
345 /// InstCombiner transforms this into a shuffle and vector mul
346 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
347 /// TODO: Can we split off and reuse the shuffle mask detection from
348 /// TargetTransformInfo::getInstructionThroughput?
349 static Optional<TargetTransformInfo::ShuffleKind>
350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
351   const auto *It =
352       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
353   if (It == VL.end())
354     return None;
355   auto *EI0 = cast<ExtractElementInst>(*It);
356   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
357     return None;
358   unsigned Size =
359       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
360   Value *Vec1 = nullptr;
361   Value *Vec2 = nullptr;
362   enum ShuffleMode { Unknown, Select, Permute };
363   ShuffleMode CommonShuffleMode = Unknown;
364   Mask.assign(VL.size(), UndefMaskElem);
365   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
366     // Undef can be represented as an undef element in a vector.
367     if (isa<UndefValue>(VL[I]))
368       continue;
369     auto *EI = cast<ExtractElementInst>(VL[I]);
370     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
371       return None;
372     auto *Vec = EI->getVectorOperand();
373     // We can extractelement from undef or poison vector.
374     if (isUndefVector(Vec))
375       continue;
376     // All vector operands must have the same number of vector elements.
377     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
378       return None;
379     if (isa<UndefValue>(EI->getIndexOperand()))
380       continue;
381     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
382     if (!Idx)
383       return None;
384     // Undefined behavior if Idx is negative or >= Size.
385     if (Idx->getValue().uge(Size))
386       continue;
387     unsigned IntIdx = Idx->getValue().getZExtValue();
388     Mask[I] = IntIdx;
389     // For correct shuffling we have to have at most 2 different vector operands
390     // in all extractelement instructions.
391     if (!Vec1 || Vec1 == Vec) {
392       Vec1 = Vec;
393     } else if (!Vec2 || Vec2 == Vec) {
394       Vec2 = Vec;
395       Mask[I] += Size;
396     } else {
397       return None;
398     }
399     if (CommonShuffleMode == Permute)
400       continue;
401     // If the extract index is not the same as the operation number, it is a
402     // permutation.
403     if (IntIdx != I) {
404       CommonShuffleMode = Permute;
405       continue;
406     }
407     CommonShuffleMode = Select;
408   }
409   // If we're not crossing lanes in different vectors, consider it as blending.
410   if (CommonShuffleMode == Select && Vec2)
411     return TargetTransformInfo::SK_Select;
412   // If Vec2 was never used, we have a permutation of a single vector, otherwise
413   // we have permutation of 2 vectors.
414   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
415               : TargetTransformInfo::SK_PermuteSingleSrc;
416 }
417 
418 namespace {
419 
420 /// Main data required for vectorization of instructions.
421 struct InstructionsState {
422   /// The very first instruction in the list with the main opcode.
423   Value *OpValue = nullptr;
424 
425   /// The main/alternate instruction.
426   Instruction *MainOp = nullptr;
427   Instruction *AltOp = nullptr;
428 
429   /// The main/alternate opcodes for the list of instructions.
430   unsigned getOpcode() const {
431     return MainOp ? MainOp->getOpcode() : 0;
432   }
433 
434   unsigned getAltOpcode() const {
435     return AltOp ? AltOp->getOpcode() : 0;
436   }
437 
438   /// Some of the instructions in the list have alternate opcodes.
439   bool isAltShuffle() const { return AltOp != MainOp; }
440 
441   bool isOpcodeOrAlt(Instruction *I) const {
442     unsigned CheckedOpcode = I->getOpcode();
443     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
444   }
445 
446   InstructionsState() = delete;
447   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
448       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
449 };
450 
451 } // end anonymous namespace
452 
453 /// Chooses the correct key for scheduling data. If \p Op has the same (or
454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
455 /// OpValue.
456 static Value *isOneOf(const InstructionsState &S, Value *Op) {
457   auto *I = dyn_cast<Instruction>(Op);
458   if (I && S.isOpcodeOrAlt(I))
459     return Op;
460   return S.OpValue;
461 }
462 
463 /// \returns true if \p Opcode is allowed as part of of the main/alternate
464 /// instruction for SLP vectorization.
465 ///
466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
467 /// "shuffled out" lane would result in division by zero.
468 static bool isValidForAlternation(unsigned Opcode) {
469   if (Instruction::isIntDivRem(Opcode))
470     return false;
471 
472   return true;
473 }
474 
475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
476                                        unsigned BaseIndex = 0);
477 
478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
479 /// compatible instructions or constants, or just some other regular values.
480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
481                                 Value *Op1) {
482   return (isConstant(BaseOp0) && isConstant(Op0)) ||
483          (isConstant(BaseOp1) && isConstant(Op1)) ||
484          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
485           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
486          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
487          getSameOpcode({BaseOp1, Op1}).getOpcode();
488 }
489 
490 /// \returns analysis of the Instructions in \p VL described in
491 /// InstructionsState, the Opcode that we suppose the whole list
492 /// could be vectorized even if its structure is diverse.
493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
494                                        unsigned BaseIndex) {
495   // Make sure these are all Instructions.
496   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
497     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
498 
499   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
500   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
501   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
502   CmpInst::Predicate BasePred =
503       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
504               : CmpInst::BAD_ICMP_PREDICATE;
505   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
506   unsigned AltOpcode = Opcode;
507   unsigned AltIndex = BaseIndex;
508 
509   // Check for one alternate opcode from another BinaryOperator.
510   // TODO - generalize to support all operators (types, calls etc.).
511   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
512     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
513     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
514       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
515         continue;
516       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
517           isValidForAlternation(Opcode)) {
518         AltOpcode = InstOpcode;
519         AltIndex = Cnt;
520         continue;
521       }
522     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
523       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
524       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
525       if (Ty0 == Ty1) {
526         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
527           continue;
528         if (Opcode == AltOpcode) {
529           assert(isValidForAlternation(Opcode) &&
530                  isValidForAlternation(InstOpcode) &&
531                  "Cast isn't safe for alternation, logic needs to be updated!");
532           AltOpcode = InstOpcode;
533           AltIndex = Cnt;
534           continue;
535         }
536       }
537     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
538       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
539       auto *Inst = cast<Instruction>(VL[Cnt]);
540       Type *Ty0 = BaseInst->getOperand(0)->getType();
541       Type *Ty1 = Inst->getOperand(0)->getType();
542       if (Ty0 == Ty1) {
543         Value *BaseOp0 = BaseInst->getOperand(0);
544         Value *BaseOp1 = BaseInst->getOperand(1);
545         Value *Op0 = Inst->getOperand(0);
546         Value *Op1 = Inst->getOperand(1);
547         CmpInst::Predicate CurrentPred =
548             cast<CmpInst>(VL[Cnt])->getPredicate();
549         CmpInst::Predicate SwappedCurrentPred =
550             CmpInst::getSwappedPredicate(CurrentPred);
551         // Check for compatible operands. If the corresponding operands are not
552         // compatible - need to perform alternate vectorization.
553         if (InstOpcode == Opcode) {
554           if (BasePred == CurrentPred &&
555               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
556             continue;
557           if (BasePred == SwappedCurrentPred &&
558               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
559             continue;
560           if (E == 2 &&
561               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
562             continue;
563           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
564           CmpInst::Predicate AltPred = AltInst->getPredicate();
565           Value *AltOp0 = AltInst->getOperand(0);
566           Value *AltOp1 = AltInst->getOperand(1);
567           // Check if operands are compatible with alternate operands.
568           if (AltPred == CurrentPred &&
569               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
570             continue;
571           if (AltPred == SwappedCurrentPred &&
572               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
573             continue;
574         }
575         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
576           assert(isValidForAlternation(Opcode) &&
577                  isValidForAlternation(InstOpcode) &&
578                  "Cast isn't safe for alternation, logic needs to be updated!");
579           AltIndex = Cnt;
580           continue;
581         }
582         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
583         CmpInst::Predicate AltPred = AltInst->getPredicate();
584         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
585             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
586           continue;
587       }
588     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
589       continue;
590     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
591   }
592 
593   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
594                            cast<Instruction>(VL[AltIndex]));
595 }
596 
597 /// \returns true if all of the values in \p VL have the same type or false
598 /// otherwise.
599 static bool allSameType(ArrayRef<Value *> VL) {
600   Type *Ty = VL[0]->getType();
601   for (int i = 1, e = VL.size(); i < e; i++)
602     if (VL[i]->getType() != Ty)
603       return false;
604 
605   return true;
606 }
607 
608 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
609 static Optional<unsigned> getExtractIndex(Instruction *E) {
610   unsigned Opcode = E->getOpcode();
611   assert((Opcode == Instruction::ExtractElement ||
612           Opcode == Instruction::ExtractValue) &&
613          "Expected extractelement or extractvalue instruction.");
614   if (Opcode == Instruction::ExtractElement) {
615     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
616     if (!CI)
617       return None;
618     return CI->getZExtValue();
619   }
620   ExtractValueInst *EI = cast<ExtractValueInst>(E);
621   if (EI->getNumIndices() != 1)
622     return None;
623   return *EI->idx_begin();
624 }
625 
626 /// \returns True if in-tree use also needs extract. This refers to
627 /// possible scalar operand in vectorized instruction.
628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
629                                     TargetLibraryInfo *TLI) {
630   unsigned Opcode = UserInst->getOpcode();
631   switch (Opcode) {
632   case Instruction::Load: {
633     LoadInst *LI = cast<LoadInst>(UserInst);
634     return (LI->getPointerOperand() == Scalar);
635   }
636   case Instruction::Store: {
637     StoreInst *SI = cast<StoreInst>(UserInst);
638     return (SI->getPointerOperand() == Scalar);
639   }
640   case Instruction::Call: {
641     CallInst *CI = cast<CallInst>(UserInst);
642     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
643     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
644       if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
645         return (CI->getArgOperand(i) == Scalar);
646     }
647     LLVM_FALLTHROUGH;
648   }
649   default:
650     return false;
651   }
652 }
653 
654 /// \returns the AA location that is being access by the instruction.
655 static MemoryLocation getLocation(Instruction *I) {
656   if (StoreInst *SI = dyn_cast<StoreInst>(I))
657     return MemoryLocation::get(SI);
658   if (LoadInst *LI = dyn_cast<LoadInst>(I))
659     return MemoryLocation::get(LI);
660   return MemoryLocation();
661 }
662 
663 /// \returns True if the instruction is not a volatile or atomic load/store.
664 static bool isSimple(Instruction *I) {
665   if (LoadInst *LI = dyn_cast<LoadInst>(I))
666     return LI->isSimple();
667   if (StoreInst *SI = dyn_cast<StoreInst>(I))
668     return SI->isSimple();
669   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
670     return !MI->isVolatile();
671   return true;
672 }
673 
674 /// Shuffles \p Mask in accordance with the given \p SubMask.
675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
676   if (SubMask.empty())
677     return;
678   if (Mask.empty()) {
679     Mask.append(SubMask.begin(), SubMask.end());
680     return;
681   }
682   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
683   int TermValue = std::min(Mask.size(), SubMask.size());
684   for (int I = 0, E = SubMask.size(); I < E; ++I) {
685     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
686         Mask[SubMask[I]] >= TermValue)
687       continue;
688     NewMask[I] = Mask[SubMask[I]];
689   }
690   Mask.swap(NewMask);
691 }
692 
693 /// Order may have elements assigned special value (size) which is out of
694 /// bounds. Such indices only appear on places which correspond to undef values
695 /// (see canReuseExtract for details) and used in order to avoid undef values
696 /// have effect on operands ordering.
697 /// The first loop below simply finds all unused indices and then the next loop
698 /// nest assigns these indices for undef values positions.
699 /// As an example below Order has two undef positions and they have assigned
700 /// values 3 and 7 respectively:
701 /// before:  6 9 5 4 9 2 1 0
702 /// after:   6 3 5 4 7 2 1 0
703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
704   const unsigned Sz = Order.size();
705   SmallBitVector UnusedIndices(Sz, /*t=*/true);
706   SmallBitVector MaskedIndices(Sz);
707   for (unsigned I = 0; I < Sz; ++I) {
708     if (Order[I] < Sz)
709       UnusedIndices.reset(Order[I]);
710     else
711       MaskedIndices.set(I);
712   }
713   if (MaskedIndices.none())
714     return;
715   assert(UnusedIndices.count() == MaskedIndices.count() &&
716          "Non-synced masked/available indices.");
717   int Idx = UnusedIndices.find_first();
718   int MIdx = MaskedIndices.find_first();
719   while (MIdx >= 0) {
720     assert(Idx >= 0 && "Indices must be synced.");
721     Order[MIdx] = Idx;
722     Idx = UnusedIndices.find_next(Idx);
723     MIdx = MaskedIndices.find_next(MIdx);
724   }
725 }
726 
727 namespace llvm {
728 
729 static void inversePermutation(ArrayRef<unsigned> Indices,
730                                SmallVectorImpl<int> &Mask) {
731   Mask.clear();
732   const unsigned E = Indices.size();
733   Mask.resize(E, UndefMaskElem);
734   for (unsigned I = 0; I < E; ++I)
735     Mask[Indices[I]] = I;
736 }
737 
738 /// \returns inserting index of InsertElement or InsertValue instruction,
739 /// using Offset as base offset for index.
740 static Optional<unsigned> getInsertIndex(const Value *InsertInst,
741                                          unsigned Offset = 0) {
742   int Index = Offset;
743   if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
744     if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
745       auto *VT = cast<FixedVectorType>(IE->getType());
746       if (CI->getValue().uge(VT->getNumElements()))
747         return None;
748       Index *= VT->getNumElements();
749       Index += CI->getZExtValue();
750       return Index;
751     }
752     return None;
753   }
754 
755   const auto *IV = cast<InsertValueInst>(InsertInst);
756   Type *CurrentType = IV->getType();
757   for (unsigned I : IV->indices()) {
758     if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
759       Index *= ST->getNumElements();
760       CurrentType = ST->getElementType(I);
761     } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
762       Index *= AT->getNumElements();
763       CurrentType = AT->getElementType();
764     } else {
765       return None;
766     }
767     Index += I;
768   }
769   return Index;
770 }
771 
772 /// Reorders the list of scalars in accordance with the given \p Mask.
773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
774                            ArrayRef<int> Mask) {
775   assert(!Mask.empty() && "Expected non-empty mask.");
776   SmallVector<Value *> Prev(Scalars.size(),
777                             UndefValue::get(Scalars.front()->getType()));
778   Prev.swap(Scalars);
779   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
780     if (Mask[I] != UndefMaskElem)
781       Scalars[Mask[I]] = Prev[I];
782 }
783 
784 /// Checks if the provided value does not require scheduling. It does not
785 /// require scheduling if this is not an instruction or it is an instruction
786 /// that does not read/write memory and all operands are either not instructions
787 /// or phi nodes or instructions from different blocks.
788 static bool areAllOperandsNonInsts(Value *V) {
789   auto *I = dyn_cast<Instruction>(V);
790   if (!I)
791     return true;
792   return !mayHaveNonDefUseDependency(*I) &&
793     all_of(I->operands(), [I](Value *V) {
794       auto *IO = dyn_cast<Instruction>(V);
795       if (!IO)
796         return true;
797       return isa<PHINode>(IO) || IO->getParent() != I->getParent();
798     });
799 }
800 
801 /// Checks if the provided value does not require scheduling. It does not
802 /// require scheduling if this is not an instruction or it is an instruction
803 /// that does not read/write memory and all users are phi nodes or instructions
804 /// from the different blocks.
805 static bool isUsedOutsideBlock(Value *V) {
806   auto *I = dyn_cast<Instruction>(V);
807   if (!I)
808     return true;
809   // Limits the number of uses to save compile time.
810   constexpr int UsesLimit = 8;
811   return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
812          all_of(I->users(), [I](User *U) {
813            auto *IU = dyn_cast<Instruction>(U);
814            if (!IU)
815              return true;
816            return IU->getParent() != I->getParent() || isa<PHINode>(IU);
817          });
818 }
819 
820 /// Checks if the specified value does not require scheduling. It does not
821 /// require scheduling if all operands and all users do not need to be scheduled
822 /// in the current basic block.
823 static bool doesNotNeedToBeScheduled(Value *V) {
824   return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
825 }
826 
827 /// Checks if the specified array of instructions does not require scheduling.
828 /// It is so if all either instructions have operands that do not require
829 /// scheduling or their users do not require scheduling since they are phis or
830 /// in other basic blocks.
831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
832   return !VL.empty() &&
833          (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
834 }
835 
836 namespace slpvectorizer {
837 
838 /// Bottom Up SLP Vectorizer.
839 class BoUpSLP {
840   struct TreeEntry;
841   struct ScheduleData;
842 
843 public:
844   using ValueList = SmallVector<Value *, 8>;
845   using InstrList = SmallVector<Instruction *, 16>;
846   using ValueSet = SmallPtrSet<Value *, 16>;
847   using StoreList = SmallVector<StoreInst *, 8>;
848   using ExtraValueToDebugLocsMap =
849       MapVector<Value *, SmallVector<Instruction *, 2>>;
850   using OrdersType = SmallVector<unsigned, 4>;
851 
852   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
853           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
854           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
855           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
856       : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
857         DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
858     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
859     // Use the vector register size specified by the target unless overridden
860     // by a command-line option.
861     // TODO: It would be better to limit the vectorization factor based on
862     //       data type rather than just register size. For example, x86 AVX has
863     //       256-bit registers, but it does not support integer operations
864     //       at that width (that requires AVX2).
865     if (MaxVectorRegSizeOption.getNumOccurrences())
866       MaxVecRegSize = MaxVectorRegSizeOption;
867     else
868       MaxVecRegSize =
869           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
870               .getFixedSize();
871 
872     if (MinVectorRegSizeOption.getNumOccurrences())
873       MinVecRegSize = MinVectorRegSizeOption;
874     else
875       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
876   }
877 
878   /// Vectorize the tree that starts with the elements in \p VL.
879   /// Returns the vectorized root.
880   Value *vectorizeTree();
881 
882   /// Vectorize the tree but with the list of externally used values \p
883   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
884   /// generated extractvalue instructions.
885   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
886 
887   /// \returns the cost incurred by unwanted spills and fills, caused by
888   /// holding live values over call sites.
889   InstructionCost getSpillCost() const;
890 
891   /// \returns the vectorization cost of the subtree that starts at \p VL.
892   /// A negative number means that this is profitable.
893   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
894 
895   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
896   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
897   void buildTree(ArrayRef<Value *> Roots,
898                  const SmallDenseSet<Value *> &UserIgnoreLst);
899 
900   /// Construct a vectorizable tree that starts at \p Roots.
901   void buildTree(ArrayRef<Value *> Roots);
902 
903   /// Builds external uses of the vectorized scalars, i.e. the list of
904   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
905   /// ExternallyUsedValues contains additional list of external uses to handle
906   /// vectorization of reductions.
907   void
908   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
909 
910   /// Clear the internal data structures that are created by 'buildTree'.
911   void deleteTree() {
912     VectorizableTree.clear();
913     ScalarToTreeEntry.clear();
914     MustGather.clear();
915     ExternalUses.clear();
916     for (auto &Iter : BlocksSchedules) {
917       BlockScheduling *BS = Iter.second.get();
918       BS->clear();
919     }
920     MinBWs.clear();
921     InstrElementSize.clear();
922     UserIgnoreList = nullptr;
923   }
924 
925   unsigned getTreeSize() const { return VectorizableTree.size(); }
926 
927   /// Perform LICM and CSE on the newly generated gather sequences.
928   void optimizeGatherSequence();
929 
930   /// Checks if the specified gather tree entry \p TE can be represented as a
931   /// shuffled vector entry + (possibly) permutation with other gathers. It
932   /// implements the checks only for possibly ordered scalars (Loads,
933   /// ExtractElement, ExtractValue), which can be part of the graph.
934   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
935 
936   /// Sort loads into increasing pointers offsets to allow greater clustering.
937   Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
938 
939   /// Gets reordering data for the given tree entry. If the entry is vectorized
940   /// - just return ReorderIndices, otherwise check if the scalars can be
941   /// reordered and return the most optimal order.
942   /// \param TopToBottom If true, include the order of vectorized stores and
943   /// insertelement nodes, otherwise skip them.
944   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
945 
946   /// Reorders the current graph to the most profitable order starting from the
947   /// root node to the leaf nodes. The best order is chosen only from the nodes
948   /// of the same size (vectorization factor). Smaller nodes are considered
949   /// parts of subgraph with smaller VF and they are reordered independently. We
950   /// can make it because we still need to extend smaller nodes to the wider VF
951   /// and we can merge reordering shuffles with the widening shuffles.
952   void reorderTopToBottom();
953 
954   /// Reorders the current graph to the most profitable order starting from
955   /// leaves to the root. It allows to rotate small subgraphs and reduce the
956   /// number of reshuffles if the leaf nodes use the same order. In this case we
957   /// can merge the orders and just shuffle user node instead of shuffling its
958   /// operands. Plus, even the leaf nodes have different orders, it allows to
959   /// sink reordering in the graph closer to the root node and merge it later
960   /// during analysis.
961   void reorderBottomToTop(bool IgnoreReorder = false);
962 
963   /// \return The vector element size in bits to use when vectorizing the
964   /// expression tree ending at \p V. If V is a store, the size is the width of
965   /// the stored value. Otherwise, the size is the width of the largest loaded
966   /// value reaching V. This method is used by the vectorizer to calculate
967   /// vectorization factors.
968   unsigned getVectorElementSize(Value *V);
969 
970   /// Compute the minimum type sizes required to represent the entries in a
971   /// vectorizable tree.
972   void computeMinimumValueSizes();
973 
974   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
975   unsigned getMaxVecRegSize() const {
976     return MaxVecRegSize;
977   }
978 
979   // \returns minimum vector register size as set by cl::opt.
980   unsigned getMinVecRegSize() const {
981     return MinVecRegSize;
982   }
983 
984   unsigned getMinVF(unsigned Sz) const {
985     return std::max(2U, getMinVecRegSize() / Sz);
986   }
987 
988   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
989     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
990       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
991     return MaxVF ? MaxVF : UINT_MAX;
992   }
993 
994   /// Check if homogeneous aggregate is isomorphic to some VectorType.
995   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
996   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
997   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
998   ///
999   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1000   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
1001 
1002   /// \returns True if the VectorizableTree is both tiny and not fully
1003   /// vectorizable. We do not vectorize such trees.
1004   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1005 
1006   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1007   /// can be load combined in the backend. Load combining may not be allowed in
1008   /// the IR optimizer, so we do not want to alter the pattern. For example,
1009   /// partially transforming a scalar bswap() pattern into vector code is
1010   /// effectively impossible for the backend to undo.
1011   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1012   ///       may not be necessary.
1013   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1014 
1015   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1016   /// can be load combined in the backend. Load combining may not be allowed in
1017   /// the IR optimizer, so we do not want to alter the pattern. For example,
1018   /// partially transforming a scalar bswap() pattern into vector code is
1019   /// effectively impossible for the backend to undo.
1020   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1021   ///       may not be necessary.
1022   bool isLoadCombineCandidate() const;
1023 
1024   OptimizationRemarkEmitter *getORE() { return ORE; }
1025 
1026   /// This structure holds any data we need about the edges being traversed
1027   /// during buildTree_rec(). We keep track of:
1028   /// (i) the user TreeEntry index, and
1029   /// (ii) the index of the edge.
1030   struct EdgeInfo {
1031     EdgeInfo() = default;
1032     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1033         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1034     /// The user TreeEntry.
1035     TreeEntry *UserTE = nullptr;
1036     /// The operand index of the use.
1037     unsigned EdgeIdx = UINT_MAX;
1038 #ifndef NDEBUG
1039     friend inline raw_ostream &operator<<(raw_ostream &OS,
1040                                           const BoUpSLP::EdgeInfo &EI) {
1041       EI.dump(OS);
1042       return OS;
1043     }
1044     /// Debug print.
1045     void dump(raw_ostream &OS) const {
1046       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1047          << " EdgeIdx:" << EdgeIdx << "}";
1048     }
1049     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1050 #endif
1051   };
1052 
1053   /// A helper class used for scoring candidates for two consecutive lanes.
1054   class LookAheadHeuristics {
1055     const DataLayout &DL;
1056     ScalarEvolution &SE;
1057     const BoUpSLP &R;
1058     int NumLanes; // Total number of lanes (aka vectorization factor).
1059     int MaxLevel; // The maximum recursion depth for accumulating score.
1060 
1061   public:
1062     LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE,
1063                         const BoUpSLP &R, int NumLanes, int MaxLevel)
1064         : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {}
1065 
1066     // The hard-coded scores listed here are not very important, though it shall
1067     // be higher for better matches to improve the resulting cost. When
1068     // computing the scores of matching one sub-tree with another, we are
1069     // basically counting the number of values that are matching. So even if all
1070     // scores are set to 1, we would still get a decent matching result.
1071     // However, sometimes we have to break ties. For example we may have to
1072     // choose between matching loads vs matching opcodes. This is what these
1073     // scores are helping us with: they provide the order of preference. Also,
1074     // this is important if the scalar is externally used or used in another
1075     // tree entry node in the different lane.
1076 
1077     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1078     static const int ScoreConsecutiveLoads = 4;
1079     /// The same load multiple times. This should have a better score than
1080     /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1081     /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1082     /// a vector load and 1.0 for a broadcast.
1083     static const int ScoreSplatLoads = 3;
1084     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1085     static const int ScoreReversedLoads = 3;
1086     /// ExtractElementInst from same vector and consecutive indexes.
1087     static const int ScoreConsecutiveExtracts = 4;
1088     /// ExtractElementInst from same vector and reversed indices.
1089     static const int ScoreReversedExtracts = 3;
1090     /// Constants.
1091     static const int ScoreConstants = 2;
1092     /// Instructions with the same opcode.
1093     static const int ScoreSameOpcode = 2;
1094     /// Instructions with alt opcodes (e.g, add + sub).
1095     static const int ScoreAltOpcodes = 1;
1096     /// Identical instructions (a.k.a. splat or broadcast).
1097     static const int ScoreSplat = 1;
1098     /// Matching with an undef is preferable to failing.
1099     static const int ScoreUndef = 1;
1100     /// Score for failing to find a decent match.
1101     static const int ScoreFail = 0;
1102     /// Score if all users are vectorized.
1103     static const int ScoreAllUserVectorized = 1;
1104 
1105     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1106     /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1107     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1108     /// MainAltOps.
1109     int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1110                         ArrayRef<Value *> MainAltOps) const {
1111       if (V1 == V2) {
1112         if (isa<LoadInst>(V1)) {
1113           // Retruns true if the users of V1 and V2 won't need to be extracted.
1114           auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1115             // Bail out if we have too many uses to save compilation time.
1116             static constexpr unsigned Limit = 8;
1117             if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1118               return false;
1119 
1120             auto AllUsersVectorized = [U1, U2, this](Value *V) {
1121               return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1122                 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1123               });
1124             };
1125             return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1126           };
1127           // A broadcast of a load can be cheaper on some targets.
1128           if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1129                                           ElementCount::getFixed(NumLanes)) &&
1130               ((int)V1->getNumUses() == NumLanes ||
1131                AllUsersAreInternal(V1, V2)))
1132             return LookAheadHeuristics::ScoreSplatLoads;
1133         }
1134         return LookAheadHeuristics::ScoreSplat;
1135       }
1136 
1137       auto *LI1 = dyn_cast<LoadInst>(V1);
1138       auto *LI2 = dyn_cast<LoadInst>(V2);
1139       if (LI1 && LI2) {
1140         if (LI1->getParent() != LI2->getParent())
1141           return LookAheadHeuristics::ScoreFail;
1142 
1143         Optional<int> Dist = getPointersDiff(
1144             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1145             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1146         if (!Dist || *Dist == 0)
1147           return LookAheadHeuristics::ScoreFail;
1148         // The distance is too large - still may be profitable to use masked
1149         // loads/gathers.
1150         if (std::abs(*Dist) > NumLanes / 2)
1151           return LookAheadHeuristics::ScoreAltOpcodes;
1152         // This still will detect consecutive loads, but we might have "holes"
1153         // in some cases. It is ok for non-power-2 vectorization and may produce
1154         // better results. It should not affect current vectorization.
1155         return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1156                            : LookAheadHeuristics::ScoreReversedLoads;
1157       }
1158 
1159       auto *C1 = dyn_cast<Constant>(V1);
1160       auto *C2 = dyn_cast<Constant>(V2);
1161       if (C1 && C2)
1162         return LookAheadHeuristics::ScoreConstants;
1163 
1164       // Extracts from consecutive indexes of the same vector better score as
1165       // the extracts could be optimized away.
1166       Value *EV1;
1167       ConstantInt *Ex1Idx;
1168       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1169         // Undefs are always profitable for extractelements.
1170         if (isa<UndefValue>(V2))
1171           return LookAheadHeuristics::ScoreConsecutiveExtracts;
1172         Value *EV2 = nullptr;
1173         ConstantInt *Ex2Idx = nullptr;
1174         if (match(V2,
1175                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1176                                                          m_Undef())))) {
1177           // Undefs are always profitable for extractelements.
1178           if (!Ex2Idx)
1179             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1180           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1181             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1182           if (EV2 == EV1) {
1183             int Idx1 = Ex1Idx->getZExtValue();
1184             int Idx2 = Ex2Idx->getZExtValue();
1185             int Dist = Idx2 - Idx1;
1186             // The distance is too large - still may be profitable to use
1187             // shuffles.
1188             if (std::abs(Dist) == 0)
1189               return LookAheadHeuristics::ScoreSplat;
1190             if (std::abs(Dist) > NumLanes / 2)
1191               return LookAheadHeuristics::ScoreSameOpcode;
1192             return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1193                               : LookAheadHeuristics::ScoreReversedExtracts;
1194           }
1195           return LookAheadHeuristics::ScoreAltOpcodes;
1196         }
1197         return LookAheadHeuristics::ScoreFail;
1198       }
1199 
1200       auto *I1 = dyn_cast<Instruction>(V1);
1201       auto *I2 = dyn_cast<Instruction>(V2);
1202       if (I1 && I2) {
1203         if (I1->getParent() != I2->getParent())
1204           return LookAheadHeuristics::ScoreFail;
1205         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1206         Ops.push_back(I1);
1207         Ops.push_back(I2);
1208         InstructionsState S = getSameOpcode(Ops);
1209         // Note: Only consider instructions with <= 2 operands to avoid
1210         // complexity explosion.
1211         if (S.getOpcode() &&
1212             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1213              !S.isAltShuffle()) &&
1214             all_of(Ops, [&S](Value *V) {
1215               return cast<Instruction>(V)->getNumOperands() ==
1216                      S.MainOp->getNumOperands();
1217             }))
1218           return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1219                                   : LookAheadHeuristics::ScoreSameOpcode;
1220       }
1221 
1222       if (isa<UndefValue>(V2))
1223         return LookAheadHeuristics::ScoreUndef;
1224 
1225       return LookAheadHeuristics::ScoreFail;
1226     }
1227 
1228     /// Go through the operands of \p LHS and \p RHS recursively until
1229     /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1230     /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1231     /// of \p U1 and \p U2), except at the beginning of the recursion where
1232     /// these are set to nullptr.
1233     ///
1234     /// For example:
1235     /// \verbatim
1236     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1237     ///     \ /         \ /         \ /        \ /
1238     ///      +           +           +          +
1239     ///     G1          G2          G3         G4
1240     /// \endverbatim
1241     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1242     /// each level recursively, accumulating the score. It starts from matching
1243     /// the additions at level 0, then moves on to the loads (level 1). The
1244     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1245     /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1246     /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1247     /// Please note that the order of the operands does not matter, as we
1248     /// evaluate the score of all profitable combinations of operands. In
1249     /// other words the score of G1 and G4 is the same as G1 and G2. This
1250     /// heuristic is based on ideas described in:
1251     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1252     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1253     ///   Luís F. W. Góes
1254     int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1255                            Instruction *U2, int CurrLevel,
1256                            ArrayRef<Value *> MainAltOps) const {
1257 
1258       // Get the shallow score of V1 and V2.
1259       int ShallowScoreAtThisLevel =
1260           getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1261 
1262       // If reached MaxLevel,
1263       //  or if V1 and V2 are not instructions,
1264       //  or if they are SPLAT,
1265       //  or if they are not consecutive,
1266       //  or if profitable to vectorize loads or extractelements, early return
1267       //  the current cost.
1268       auto *I1 = dyn_cast<Instruction>(LHS);
1269       auto *I2 = dyn_cast<Instruction>(RHS);
1270       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1271           ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1272           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1273             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1274             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1275            ShallowScoreAtThisLevel))
1276         return ShallowScoreAtThisLevel;
1277       assert(I1 && I2 && "Should have early exited.");
1278 
1279       // Contains the I2 operand indexes that got matched with I1 operands.
1280       SmallSet<unsigned, 4> Op2Used;
1281 
1282       // Recursion towards the operands of I1 and I2. We are trying all possible
1283       // operand pairs, and keeping track of the best score.
1284       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1285            OpIdx1 != NumOperands1; ++OpIdx1) {
1286         // Try to pair op1I with the best operand of I2.
1287         int MaxTmpScore = 0;
1288         unsigned MaxOpIdx2 = 0;
1289         bool FoundBest = false;
1290         // If I2 is commutative try all combinations.
1291         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1292         unsigned ToIdx = isCommutative(I2)
1293                              ? I2->getNumOperands()
1294                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1295         assert(FromIdx <= ToIdx && "Bad index");
1296         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1297           // Skip operands already paired with OpIdx1.
1298           if (Op2Used.count(OpIdx2))
1299             continue;
1300           // Recursively calculate the cost at each level
1301           int TmpScore =
1302               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1303                                  I1, I2, CurrLevel + 1, None);
1304           // Look for the best score.
1305           if (TmpScore > LookAheadHeuristics::ScoreFail &&
1306               TmpScore > MaxTmpScore) {
1307             MaxTmpScore = TmpScore;
1308             MaxOpIdx2 = OpIdx2;
1309             FoundBest = true;
1310           }
1311         }
1312         if (FoundBest) {
1313           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1314           Op2Used.insert(MaxOpIdx2);
1315           ShallowScoreAtThisLevel += MaxTmpScore;
1316         }
1317       }
1318       return ShallowScoreAtThisLevel;
1319     }
1320   };
1321   /// A helper data structure to hold the operands of a vector of instructions.
1322   /// This supports a fixed vector length for all operand vectors.
1323   class VLOperands {
1324     /// For each operand we need (i) the value, and (ii) the opcode that it
1325     /// would be attached to if the expression was in a left-linearized form.
1326     /// This is required to avoid illegal operand reordering.
1327     /// For example:
1328     /// \verbatim
1329     ///                         0 Op1
1330     ///                         |/
1331     /// Op1 Op2   Linearized    + Op2
1332     ///   \ /     ---------->   |/
1333     ///    -                    -
1334     ///
1335     /// Op1 - Op2            (0 + Op1) - Op2
1336     /// \endverbatim
1337     ///
1338     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1339     ///
1340     /// Another way to think of this is to track all the operations across the
1341     /// path from the operand all the way to the root of the tree and to
1342     /// calculate the operation that corresponds to this path. For example, the
1343     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1344     /// corresponding operation is a '-' (which matches the one in the
1345     /// linearized tree, as shown above).
1346     ///
1347     /// For lack of a better term, we refer to this operation as Accumulated
1348     /// Path Operation (APO).
1349     struct OperandData {
1350       OperandData() = default;
1351       OperandData(Value *V, bool APO, bool IsUsed)
1352           : V(V), APO(APO), IsUsed(IsUsed) {}
1353       /// The operand value.
1354       Value *V = nullptr;
1355       /// TreeEntries only allow a single opcode, or an alternate sequence of
1356       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1357       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1358       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1359       /// (e.g., Add/Mul)
1360       bool APO = false;
1361       /// Helper data for the reordering function.
1362       bool IsUsed = false;
1363     };
1364 
1365     /// During operand reordering, we are trying to select the operand at lane
1366     /// that matches best with the operand at the neighboring lane. Our
1367     /// selection is based on the type of value we are looking for. For example,
1368     /// if the neighboring lane has a load, we need to look for a load that is
1369     /// accessing a consecutive address. These strategies are summarized in the
1370     /// 'ReorderingMode' enumerator.
1371     enum class ReorderingMode {
1372       Load,     ///< Matching loads to consecutive memory addresses
1373       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1374       Constant, ///< Matching constants
1375       Splat,    ///< Matching the same instruction multiple times (broadcast)
1376       Failed,   ///< We failed to create a vectorizable group
1377     };
1378 
1379     using OperandDataVec = SmallVector<OperandData, 2>;
1380 
1381     /// A vector of operand vectors.
1382     SmallVector<OperandDataVec, 4> OpsVec;
1383 
1384     const DataLayout &DL;
1385     ScalarEvolution &SE;
1386     const BoUpSLP &R;
1387 
1388     /// \returns the operand data at \p OpIdx and \p Lane.
1389     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1390       return OpsVec[OpIdx][Lane];
1391     }
1392 
1393     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1394     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1395       return OpsVec[OpIdx][Lane];
1396     }
1397 
1398     /// Clears the used flag for all entries.
1399     void clearUsed() {
1400       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1401            OpIdx != NumOperands; ++OpIdx)
1402         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1403              ++Lane)
1404           OpsVec[OpIdx][Lane].IsUsed = false;
1405     }
1406 
1407     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1408     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1409       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1410     }
1411 
1412     /// \param Lane lane of the operands under analysis.
1413     /// \param OpIdx operand index in \p Lane lane we're looking the best
1414     /// candidate for.
1415     /// \param Idx operand index of the current candidate value.
1416     /// \returns The additional score due to possible broadcasting of the
1417     /// elements in the lane. It is more profitable to have power-of-2 unique
1418     /// elements in the lane, it will be vectorized with higher probability
1419     /// after removing duplicates. Currently the SLP vectorizer supports only
1420     /// vectorization of the power-of-2 number of unique scalars.
1421     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1422       Value *IdxLaneV = getData(Idx, Lane).V;
1423       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1424         return 0;
1425       SmallPtrSet<Value *, 4> Uniques;
1426       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1427         if (Ln == Lane)
1428           continue;
1429         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1430         if (!isa<Instruction>(OpIdxLnV))
1431           return 0;
1432         Uniques.insert(OpIdxLnV);
1433       }
1434       int UniquesCount = Uniques.size();
1435       int UniquesCntWithIdxLaneV =
1436           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1437       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1438       int UniquesCntWithOpIdxLaneV =
1439           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1440       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1441         return 0;
1442       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1443               UniquesCntWithOpIdxLaneV) -
1444              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1445     }
1446 
1447     /// \param Lane lane of the operands under analysis.
1448     /// \param OpIdx operand index in \p Lane lane we're looking the best
1449     /// candidate for.
1450     /// \param Idx operand index of the current candidate value.
1451     /// \returns The additional score for the scalar which users are all
1452     /// vectorized.
1453     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1454       Value *IdxLaneV = getData(Idx, Lane).V;
1455       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1456       // Do not care about number of uses for vector-like instructions
1457       // (extractelement/extractvalue with constant indices), they are extracts
1458       // themselves and already externally used. Vectorization of such
1459       // instructions does not add extra extractelement instruction, just may
1460       // remove it.
1461       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1462           isVectorLikeInstWithConstOps(OpIdxLaneV))
1463         return LookAheadHeuristics::ScoreAllUserVectorized;
1464       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1465       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1466         return 0;
1467       return R.areAllUsersVectorized(IdxLaneI, None)
1468                  ? LookAheadHeuristics::ScoreAllUserVectorized
1469                  : 0;
1470     }
1471 
1472     /// Score scaling factor for fully compatible instructions but with
1473     /// different number of external uses. Allows better selection of the
1474     /// instructions with less external uses.
1475     static const int ScoreScaleFactor = 10;
1476 
1477     /// \Returns the look-ahead score, which tells us how much the sub-trees
1478     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1479     /// score. This helps break ties in an informed way when we cannot decide on
1480     /// the order of the operands by just considering the immediate
1481     /// predecessors.
1482     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1483                           int Lane, unsigned OpIdx, unsigned Idx,
1484                           bool &IsUsed) {
1485       LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(),
1486                                     LookAheadMaxDepth);
1487       // Keep track of the instruction stack as we recurse into the operands
1488       // during the look-ahead score exploration.
1489       int Score =
1490           LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1491                                        /*CurrLevel=*/1, MainAltOps);
1492       if (Score) {
1493         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1494         if (Score <= -SplatScore) {
1495           // Set the minimum score for splat-like sequence to avoid setting
1496           // failed state.
1497           Score = 1;
1498         } else {
1499           Score += SplatScore;
1500           // Scale score to see the difference between different operands
1501           // and similar operands but all vectorized/not all vectorized
1502           // uses. It does not affect actual selection of the best
1503           // compatible operand in general, just allows to select the
1504           // operand with all vectorized uses.
1505           Score *= ScoreScaleFactor;
1506           Score += getExternalUseScore(Lane, OpIdx, Idx);
1507           IsUsed = true;
1508         }
1509       }
1510       return Score;
1511     }
1512 
1513     /// Best defined scores per lanes between the passes. Used to choose the
1514     /// best operand (with the highest score) between the passes.
1515     /// The key - {Operand Index, Lane}.
1516     /// The value - the best score between the passes for the lane and the
1517     /// operand.
1518     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1519         BestScoresPerLanes;
1520 
1521     // Search all operands in Ops[*][Lane] for the one that matches best
1522     // Ops[OpIdx][LastLane] and return its opreand index.
1523     // If no good match can be found, return None.
1524     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1525                                       ArrayRef<ReorderingMode> ReorderingModes,
1526                                       ArrayRef<Value *> MainAltOps) {
1527       unsigned NumOperands = getNumOperands();
1528 
1529       // The operand of the previous lane at OpIdx.
1530       Value *OpLastLane = getData(OpIdx, LastLane).V;
1531 
1532       // Our strategy mode for OpIdx.
1533       ReorderingMode RMode = ReorderingModes[OpIdx];
1534       if (RMode == ReorderingMode::Failed)
1535         return None;
1536 
1537       // The linearized opcode of the operand at OpIdx, Lane.
1538       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1539 
1540       // The best operand index and its score.
1541       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1542       // are using the score to differentiate between the two.
1543       struct BestOpData {
1544         Optional<unsigned> Idx = None;
1545         unsigned Score = 0;
1546       } BestOp;
1547       BestOp.Score =
1548           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1549               .first->second;
1550 
1551       // Track if the operand must be marked as used. If the operand is set to
1552       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1553       // want to reestimate the operands again on the following iterations).
1554       bool IsUsed =
1555           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1556       // Iterate through all unused operands and look for the best.
1557       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1558         // Get the operand at Idx and Lane.
1559         OperandData &OpData = getData(Idx, Lane);
1560         Value *Op = OpData.V;
1561         bool OpAPO = OpData.APO;
1562 
1563         // Skip already selected operands.
1564         if (OpData.IsUsed)
1565           continue;
1566 
1567         // Skip if we are trying to move the operand to a position with a
1568         // different opcode in the linearized tree form. This would break the
1569         // semantics.
1570         if (OpAPO != OpIdxAPO)
1571           continue;
1572 
1573         // Look for an operand that matches the current mode.
1574         switch (RMode) {
1575         case ReorderingMode::Load:
1576         case ReorderingMode::Constant:
1577         case ReorderingMode::Opcode: {
1578           bool LeftToRight = Lane > LastLane;
1579           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1580           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1581           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1582                                         OpIdx, Idx, IsUsed);
1583           if (Score > static_cast<int>(BestOp.Score)) {
1584             BestOp.Idx = Idx;
1585             BestOp.Score = Score;
1586             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1587           }
1588           break;
1589         }
1590         case ReorderingMode::Splat:
1591           if (Op == OpLastLane)
1592             BestOp.Idx = Idx;
1593           break;
1594         case ReorderingMode::Failed:
1595           llvm_unreachable("Not expected Failed reordering mode.");
1596         }
1597       }
1598 
1599       if (BestOp.Idx) {
1600         getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1601         return BestOp.Idx;
1602       }
1603       // If we could not find a good match return None.
1604       return None;
1605     }
1606 
1607     /// Helper for reorderOperandVecs.
1608     /// \returns the lane that we should start reordering from. This is the one
1609     /// which has the least number of operands that can freely move about or
1610     /// less profitable because it already has the most optimal set of operands.
1611     unsigned getBestLaneToStartReordering() const {
1612       unsigned Min = UINT_MAX;
1613       unsigned SameOpNumber = 0;
1614       // std::pair<unsigned, unsigned> is used to implement a simple voting
1615       // algorithm and choose the lane with the least number of operands that
1616       // can freely move about or less profitable because it already has the
1617       // most optimal set of operands. The first unsigned is a counter for
1618       // voting, the second unsigned is the counter of lanes with instructions
1619       // with same/alternate opcodes and same parent basic block.
1620       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1621       // Try to be closer to the original results, if we have multiple lanes
1622       // with same cost. If 2 lanes have the same cost, use the one with the
1623       // lowest index.
1624       for (int I = getNumLanes(); I > 0; --I) {
1625         unsigned Lane = I - 1;
1626         OperandsOrderData NumFreeOpsHash =
1627             getMaxNumOperandsThatCanBeReordered(Lane);
1628         // Compare the number of operands that can move and choose the one with
1629         // the least number.
1630         if (NumFreeOpsHash.NumOfAPOs < Min) {
1631           Min = NumFreeOpsHash.NumOfAPOs;
1632           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1633           HashMap.clear();
1634           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1635         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1636                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1637           // Select the most optimal lane in terms of number of operands that
1638           // should be moved around.
1639           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1640           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1641         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1642                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1643           auto It = HashMap.find(NumFreeOpsHash.Hash);
1644           if (It == HashMap.end())
1645             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1646           else
1647             ++It->second.first;
1648         }
1649       }
1650       // Select the lane with the minimum counter.
1651       unsigned BestLane = 0;
1652       unsigned CntMin = UINT_MAX;
1653       for (const auto &Data : reverse(HashMap)) {
1654         if (Data.second.first < CntMin) {
1655           CntMin = Data.second.first;
1656           BestLane = Data.second.second;
1657         }
1658       }
1659       return BestLane;
1660     }
1661 
1662     /// Data structure that helps to reorder operands.
1663     struct OperandsOrderData {
1664       /// The best number of operands with the same APOs, which can be
1665       /// reordered.
1666       unsigned NumOfAPOs = UINT_MAX;
1667       /// Number of operands with the same/alternate instruction opcode and
1668       /// parent.
1669       unsigned NumOpsWithSameOpcodeParent = 0;
1670       /// Hash for the actual operands ordering.
1671       /// Used to count operands, actually their position id and opcode
1672       /// value. It is used in the voting mechanism to find the lane with the
1673       /// least number of operands that can freely move about or less profitable
1674       /// because it already has the most optimal set of operands. Can be
1675       /// replaced with SmallVector<unsigned> instead but hash code is faster
1676       /// and requires less memory.
1677       unsigned Hash = 0;
1678     };
1679     /// \returns the maximum number of operands that are allowed to be reordered
1680     /// for \p Lane and the number of compatible instructions(with the same
1681     /// parent/opcode). This is used as a heuristic for selecting the first lane
1682     /// to start operand reordering.
1683     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1684       unsigned CntTrue = 0;
1685       unsigned NumOperands = getNumOperands();
1686       // Operands with the same APO can be reordered. We therefore need to count
1687       // how many of them we have for each APO, like this: Cnt[APO] = x.
1688       // Since we only have two APOs, namely true and false, we can avoid using
1689       // a map. Instead we can simply count the number of operands that
1690       // correspond to one of them (in this case the 'true' APO), and calculate
1691       // the other by subtracting it from the total number of operands.
1692       // Operands with the same instruction opcode and parent are more
1693       // profitable since we don't need to move them in many cases, with a high
1694       // probability such lane already can be vectorized effectively.
1695       bool AllUndefs = true;
1696       unsigned NumOpsWithSameOpcodeParent = 0;
1697       Instruction *OpcodeI = nullptr;
1698       BasicBlock *Parent = nullptr;
1699       unsigned Hash = 0;
1700       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1701         const OperandData &OpData = getData(OpIdx, Lane);
1702         if (OpData.APO)
1703           ++CntTrue;
1704         // Use Boyer-Moore majority voting for finding the majority opcode and
1705         // the number of times it occurs.
1706         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1707           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1708               I->getParent() != Parent) {
1709             if (NumOpsWithSameOpcodeParent == 0) {
1710               NumOpsWithSameOpcodeParent = 1;
1711               OpcodeI = I;
1712               Parent = I->getParent();
1713             } else {
1714               --NumOpsWithSameOpcodeParent;
1715             }
1716           } else {
1717             ++NumOpsWithSameOpcodeParent;
1718           }
1719         }
1720         Hash = hash_combine(
1721             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1722         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1723       }
1724       if (AllUndefs)
1725         return {};
1726       OperandsOrderData Data;
1727       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1728       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1729       Data.Hash = Hash;
1730       return Data;
1731     }
1732 
1733     /// Go through the instructions in VL and append their operands.
1734     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1735       assert(!VL.empty() && "Bad VL");
1736       assert((empty() || VL.size() == getNumLanes()) &&
1737              "Expected same number of lanes");
1738       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1739       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1740       OpsVec.resize(NumOperands);
1741       unsigned NumLanes = VL.size();
1742       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1743         OpsVec[OpIdx].resize(NumLanes);
1744         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1745           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1746           // Our tree has just 3 nodes: the root and two operands.
1747           // It is therefore trivial to get the APO. We only need to check the
1748           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1749           // RHS operand. The LHS operand of both add and sub is never attached
1750           // to an inversese operation in the linearized form, therefore its APO
1751           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1752 
1753           // Since operand reordering is performed on groups of commutative
1754           // operations or alternating sequences (e.g., +, -), we can safely
1755           // tell the inverse operations by checking commutativity.
1756           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1757           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1758           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1759                                  APO, false};
1760         }
1761       }
1762     }
1763 
1764     /// \returns the number of operands.
1765     unsigned getNumOperands() const { return OpsVec.size(); }
1766 
1767     /// \returns the number of lanes.
1768     unsigned getNumLanes() const { return OpsVec[0].size(); }
1769 
1770     /// \returns the operand value at \p OpIdx and \p Lane.
1771     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1772       return getData(OpIdx, Lane).V;
1773     }
1774 
1775     /// \returns true if the data structure is empty.
1776     bool empty() const { return OpsVec.empty(); }
1777 
1778     /// Clears the data.
1779     void clear() { OpsVec.clear(); }
1780 
1781     /// \Returns true if there are enough operands identical to \p Op to fill
1782     /// the whole vector.
1783     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1784     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1785       bool OpAPO = getData(OpIdx, Lane).APO;
1786       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1787         if (Ln == Lane)
1788           continue;
1789         // This is set to true if we found a candidate for broadcast at Lane.
1790         bool FoundCandidate = false;
1791         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1792           OperandData &Data = getData(OpI, Ln);
1793           if (Data.APO != OpAPO || Data.IsUsed)
1794             continue;
1795           if (Data.V == Op) {
1796             FoundCandidate = true;
1797             Data.IsUsed = true;
1798             break;
1799           }
1800         }
1801         if (!FoundCandidate)
1802           return false;
1803       }
1804       return true;
1805     }
1806 
1807   public:
1808     /// Initialize with all the operands of the instruction vector \p RootVL.
1809     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1810                ScalarEvolution &SE, const BoUpSLP &R)
1811         : DL(DL), SE(SE), R(R) {
1812       // Append all the operands of RootVL.
1813       appendOperandsOfVL(RootVL);
1814     }
1815 
1816     /// \Returns a value vector with the operands across all lanes for the
1817     /// opearnd at \p OpIdx.
1818     ValueList getVL(unsigned OpIdx) const {
1819       ValueList OpVL(OpsVec[OpIdx].size());
1820       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1821              "Expected same num of lanes across all operands");
1822       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1823         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1824       return OpVL;
1825     }
1826 
1827     // Performs operand reordering for 2 or more operands.
1828     // The original operands are in OrigOps[OpIdx][Lane].
1829     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1830     void reorder() {
1831       unsigned NumOperands = getNumOperands();
1832       unsigned NumLanes = getNumLanes();
1833       // Each operand has its own mode. We are using this mode to help us select
1834       // the instructions for each lane, so that they match best with the ones
1835       // we have selected so far.
1836       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1837 
1838       // This is a greedy single-pass algorithm. We are going over each lane
1839       // once and deciding on the best order right away with no back-tracking.
1840       // However, in order to increase its effectiveness, we start with the lane
1841       // that has operands that can move the least. For example, given the
1842       // following lanes:
1843       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1844       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1845       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1846       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1847       // we will start at Lane 1, since the operands of the subtraction cannot
1848       // be reordered. Then we will visit the rest of the lanes in a circular
1849       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1850 
1851       // Find the first lane that we will start our search from.
1852       unsigned FirstLane = getBestLaneToStartReordering();
1853 
1854       // Initialize the modes.
1855       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1856         Value *OpLane0 = getValue(OpIdx, FirstLane);
1857         // Keep track if we have instructions with all the same opcode on one
1858         // side.
1859         if (isa<LoadInst>(OpLane0))
1860           ReorderingModes[OpIdx] = ReorderingMode::Load;
1861         else if (isa<Instruction>(OpLane0)) {
1862           // Check if OpLane0 should be broadcast.
1863           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1864             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1865           else
1866             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1867         }
1868         else if (isa<Constant>(OpLane0))
1869           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1870         else if (isa<Argument>(OpLane0))
1871           // Our best hope is a Splat. It may save some cost in some cases.
1872           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1873         else
1874           // NOTE: This should be unreachable.
1875           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1876       }
1877 
1878       // Check that we don't have same operands. No need to reorder if operands
1879       // are just perfect diamond or shuffled diamond match. Do not do it only
1880       // for possible broadcasts or non-power of 2 number of scalars (just for
1881       // now).
1882       auto &&SkipReordering = [this]() {
1883         SmallPtrSet<Value *, 4> UniqueValues;
1884         ArrayRef<OperandData> Op0 = OpsVec.front();
1885         for (const OperandData &Data : Op0)
1886           UniqueValues.insert(Data.V);
1887         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1888           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1889                 return !UniqueValues.contains(Data.V);
1890               }))
1891             return false;
1892         }
1893         // TODO: Check if we can remove a check for non-power-2 number of
1894         // scalars after full support of non-power-2 vectorization.
1895         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1896       };
1897 
1898       // If the initial strategy fails for any of the operand indexes, then we
1899       // perform reordering again in a second pass. This helps avoid assigning
1900       // high priority to the failed strategy, and should improve reordering for
1901       // the non-failed operand indexes.
1902       for (int Pass = 0; Pass != 2; ++Pass) {
1903         // Check if no need to reorder operands since they're are perfect or
1904         // shuffled diamond match.
1905         // Need to to do it to avoid extra external use cost counting for
1906         // shuffled matches, which may cause regressions.
1907         if (SkipReordering())
1908           break;
1909         // Skip the second pass if the first pass did not fail.
1910         bool StrategyFailed = false;
1911         // Mark all operand data as free to use.
1912         clearUsed();
1913         // We keep the original operand order for the FirstLane, so reorder the
1914         // rest of the lanes. We are visiting the nodes in a circular fashion,
1915         // using FirstLane as the center point and increasing the radius
1916         // distance.
1917         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1918         for (unsigned I = 0; I < NumOperands; ++I)
1919           MainAltOps[I].push_back(getData(I, FirstLane).V);
1920 
1921         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1922           // Visit the lane on the right and then the lane on the left.
1923           for (int Direction : {+1, -1}) {
1924             int Lane = FirstLane + Direction * Distance;
1925             if (Lane < 0 || Lane >= (int)NumLanes)
1926               continue;
1927             int LastLane = Lane - Direction;
1928             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1929                    "Out of bounds");
1930             // Look for a good match for each operand.
1931             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1932               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1933               Optional<unsigned> BestIdx = getBestOperand(
1934                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1935               // By not selecting a value, we allow the operands that follow to
1936               // select a better matching value. We will get a non-null value in
1937               // the next run of getBestOperand().
1938               if (BestIdx) {
1939                 // Swap the current operand with the one returned by
1940                 // getBestOperand().
1941                 swap(OpIdx, *BestIdx, Lane);
1942               } else {
1943                 // We failed to find a best operand, set mode to 'Failed'.
1944                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1945                 // Enable the second pass.
1946                 StrategyFailed = true;
1947               }
1948               // Try to get the alternate opcode and follow it during analysis.
1949               if (MainAltOps[OpIdx].size() != 2) {
1950                 OperandData &AltOp = getData(OpIdx, Lane);
1951                 InstructionsState OpS =
1952                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1953                 if (OpS.getOpcode() && OpS.isAltShuffle())
1954                   MainAltOps[OpIdx].push_back(AltOp.V);
1955               }
1956             }
1957           }
1958         }
1959         // Skip second pass if the strategy did not fail.
1960         if (!StrategyFailed)
1961           break;
1962       }
1963     }
1964 
1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1966     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1967       switch (RMode) {
1968       case ReorderingMode::Load:
1969         return "Load";
1970       case ReorderingMode::Opcode:
1971         return "Opcode";
1972       case ReorderingMode::Constant:
1973         return "Constant";
1974       case ReorderingMode::Splat:
1975         return "Splat";
1976       case ReorderingMode::Failed:
1977         return "Failed";
1978       }
1979       llvm_unreachable("Unimplemented Reordering Type");
1980     }
1981 
1982     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1983                                                    raw_ostream &OS) {
1984       return OS << getModeStr(RMode);
1985     }
1986 
1987     /// Debug print.
1988     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1989       printMode(RMode, dbgs());
1990     }
1991 
1992     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1993       return printMode(RMode, OS);
1994     }
1995 
1996     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1997       const unsigned Indent = 2;
1998       unsigned Cnt = 0;
1999       for (const OperandDataVec &OpDataVec : OpsVec) {
2000         OS << "Operand " << Cnt++ << "\n";
2001         for (const OperandData &OpData : OpDataVec) {
2002           OS.indent(Indent) << "{";
2003           if (Value *V = OpData.V)
2004             OS << *V;
2005           else
2006             OS << "null";
2007           OS << ", APO:" << OpData.APO << "}\n";
2008         }
2009         OS << "\n";
2010       }
2011       return OS;
2012     }
2013 
2014     /// Debug print.
2015     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2016 #endif
2017   };
2018 
2019   /// Evaluate each pair in \p Candidates and return index into \p Candidates
2020   /// for a pair which have highest score deemed to have best chance to form
2021   /// root of profitable tree to vectorize. Return None if no candidate scored
2022   /// above the LookAheadHeuristics::ScoreFail.
2023   /// \param Limit Lower limit of the cost, considered to be good enough score.
2024   Optional<int>
2025   findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2026                    int Limit = LookAheadHeuristics::ScoreFail) {
2027     LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2,
2028                                   RootLookAheadMaxDepth);
2029     int BestScore = Limit;
2030     Optional<int> Index = None;
2031     for (int I : seq<int>(0, Candidates.size())) {
2032       int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2033                                                Candidates[I].second,
2034                                                /*U1=*/nullptr, /*U2=*/nullptr,
2035                                                /*Level=*/1, None);
2036       if (Score > BestScore) {
2037         BestScore = Score;
2038         Index = I;
2039       }
2040     }
2041     return Index;
2042   }
2043 
2044   /// Checks if the instruction is marked for deletion.
2045   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2046 
2047   /// Removes an instruction from its block and eventually deletes it.
2048   /// It's like Instruction::eraseFromParent() except that the actual deletion
2049   /// is delayed until BoUpSLP is destructed.
2050   void eraseInstruction(Instruction *I) {
2051     DeletedInstructions.insert(I);
2052   }
2053 
2054   /// Checks if the instruction was already analyzed for being possible
2055   /// reduction root.
2056   bool isAnalyzedReductionRoot(Instruction *I) const {
2057     return AnalyzedReductionsRoots.count(I);
2058   }
2059   /// Register given instruction as already analyzed for being possible
2060   /// reduction root.
2061   void analyzedReductionRoot(Instruction *I) {
2062     AnalyzedReductionsRoots.insert(I);
2063   }
2064   /// Checks if the provided list of reduced values was checked already for
2065   /// vectorization.
2066   bool areAnalyzedReductionVals(ArrayRef<Value *> VL) {
2067     return AnalyzedReductionVals.contains(hash_value(VL));
2068   }
2069   /// Adds the list of reduced values to list of already checked values for the
2070   /// vectorization.
2071   void analyzedReductionVals(ArrayRef<Value *> VL) {
2072     AnalyzedReductionVals.insert(hash_value(VL));
2073   }
2074   /// Clear the list of the analyzed reduction root instructions.
2075   void clearReductionData() {
2076     AnalyzedReductionsRoots.clear();
2077     AnalyzedReductionVals.clear();
2078   }
2079   /// Checks if the given value is gathered in one of the nodes.
2080   bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2081     return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2082   }
2083 
2084   ~BoUpSLP();
2085 
2086 private:
2087   /// Check if the operands on the edges \p Edges of the \p UserTE allows
2088   /// reordering (i.e. the operands can be reordered because they have only one
2089   /// user and reordarable).
2090   /// \param ReorderableGathers List of all gather nodes that require reordering
2091   /// (e.g., gather of extractlements or partially vectorizable loads).
2092   /// \param GatherOps List of gather operand nodes for \p UserTE that require
2093   /// reordering, subset of \p NonVectorized.
2094   bool
2095   canReorderOperands(TreeEntry *UserTE,
2096                      SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2097                      ArrayRef<TreeEntry *> ReorderableGathers,
2098                      SmallVectorImpl<TreeEntry *> &GatherOps);
2099 
2100   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2101   /// if any. If it is not vectorized (gather node), returns nullptr.
2102   TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2103     ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2104     TreeEntry *TE = nullptr;
2105     const auto *It = find_if(VL, [this, &TE](Value *V) {
2106       TE = getTreeEntry(V);
2107       return TE;
2108     });
2109     if (It != VL.end() && TE->isSame(VL))
2110       return TE;
2111     return nullptr;
2112   }
2113 
2114   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2115   /// if any. If it is not vectorized (gather node), returns nullptr.
2116   const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2117                                         unsigned OpIdx) const {
2118     return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2119         const_cast<TreeEntry *>(UserTE), OpIdx);
2120   }
2121 
2122   /// Checks if all users of \p I are the part of the vectorization tree.
2123   bool areAllUsersVectorized(Instruction *I,
2124                              ArrayRef<Value *> VectorizedVals) const;
2125 
2126   /// \returns the cost of the vectorizable entry.
2127   InstructionCost getEntryCost(const TreeEntry *E,
2128                                ArrayRef<Value *> VectorizedVals);
2129 
2130   /// This is the recursive part of buildTree.
2131   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2132                      const EdgeInfo &EI);
2133 
2134   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2135   /// be vectorized to use the original vector (or aggregate "bitcast" to a
2136   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2137   /// returns false, setting \p CurrentOrder to either an empty vector or a
2138   /// non-identity permutation that allows to reuse extract instructions.
2139   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2140                        SmallVectorImpl<unsigned> &CurrentOrder) const;
2141 
2142   /// Vectorize a single entry in the tree.
2143   Value *vectorizeTree(TreeEntry *E);
2144 
2145   /// Vectorize a single entry in the tree, starting in \p VL.
2146   Value *vectorizeTree(ArrayRef<Value *> VL);
2147 
2148   /// Create a new vector from a list of scalar values.  Produces a sequence
2149   /// which exploits values reused across lanes, and arranges the inserts
2150   /// for ease of later optimization.
2151   Value *createBuildVector(ArrayRef<Value *> VL);
2152 
2153   /// \returns the scalarization cost for this type. Scalarization in this
2154   /// context means the creation of vectors from a group of scalars. If \p
2155   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2156   /// vector elements.
2157   InstructionCost getGatherCost(FixedVectorType *Ty,
2158                                 const APInt &ShuffledIndices,
2159                                 bool NeedToShuffle) const;
2160 
2161   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2162   /// tree entries.
2163   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2164   /// previous tree entries. \p Mask is filled with the shuffle mask.
2165   Optional<TargetTransformInfo::ShuffleKind>
2166   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2167                         SmallVectorImpl<const TreeEntry *> &Entries);
2168 
2169   /// \returns the scalarization cost for this list of values. Assuming that
2170   /// this subtree gets vectorized, we may need to extract the values from the
2171   /// roots. This method calculates the cost of extracting the values.
2172   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2173 
2174   /// Set the Builder insert point to one after the last instruction in
2175   /// the bundle
2176   void setInsertPointAfterBundle(const TreeEntry *E);
2177 
2178   /// \returns a vector from a collection of scalars in \p VL.
2179   Value *gather(ArrayRef<Value *> VL);
2180 
2181   /// \returns whether the VectorizableTree is fully vectorizable and will
2182   /// be beneficial even the tree height is tiny.
2183   bool isFullyVectorizableTinyTree(bool ForReduction) const;
2184 
2185   /// Reorder commutative or alt operands to get better probability of
2186   /// generating vectorized code.
2187   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2188                                              SmallVectorImpl<Value *> &Left,
2189                                              SmallVectorImpl<Value *> &Right,
2190                                              const DataLayout &DL,
2191                                              ScalarEvolution &SE,
2192                                              const BoUpSLP &R);
2193 
2194   /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2195   /// users of \p TE and collects the stores. It returns the map from the store
2196   /// pointers to the collected stores.
2197   DenseMap<Value *, SmallVector<StoreInst *, 4>>
2198   collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2199 
2200   /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2201   /// stores in \p StoresVec can for a vector instruction. If so it returns true
2202   /// and populates \p ReorderIndices with the shuffle indices of the the stores
2203   /// when compared to the sorted vector.
2204   bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
2205                      OrdersType &ReorderIndices) const;
2206 
2207   /// Iterates through the users of \p TE, looking for scalar stores that can be
2208   /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2209   /// their order and builds an order index vector for each store bundle. It
2210   /// returns all these order vectors found.
2211   /// We run this after the tree has formed, otherwise we may come across user
2212   /// instructions that are not yet in the tree.
2213   SmallVector<OrdersType, 1>
2214   findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2215 
2216   struct TreeEntry {
2217     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2218     TreeEntry(VecTreeTy &Container) : Container(Container) {}
2219 
2220     /// \returns true if the scalars in VL are equal to this entry.
2221     bool isSame(ArrayRef<Value *> VL) const {
2222       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2223         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2224           return std::equal(VL.begin(), VL.end(), Scalars.begin());
2225         return VL.size() == Mask.size() &&
2226                std::equal(VL.begin(), VL.end(), Mask.begin(),
2227                           [Scalars](Value *V, int Idx) {
2228                             return (isa<UndefValue>(V) &&
2229                                     Idx == UndefMaskElem) ||
2230                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
2231                           });
2232       };
2233       if (!ReorderIndices.empty()) {
2234         // TODO: implement matching if the nodes are just reordered, still can
2235         // treat the vector as the same if the list of scalars matches VL
2236         // directly, without reordering.
2237         SmallVector<int> Mask;
2238         inversePermutation(ReorderIndices, Mask);
2239         if (VL.size() == Scalars.size())
2240           return IsSame(Scalars, Mask);
2241         if (VL.size() == ReuseShuffleIndices.size()) {
2242           ::addMask(Mask, ReuseShuffleIndices);
2243           return IsSame(Scalars, Mask);
2244         }
2245         return false;
2246       }
2247       return IsSame(Scalars, ReuseShuffleIndices);
2248     }
2249 
2250     /// \returns true if current entry has same operands as \p TE.
2251     bool hasEqualOperands(const TreeEntry &TE) const {
2252       if (TE.getNumOperands() != getNumOperands())
2253         return false;
2254       SmallBitVector Used(getNumOperands());
2255       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2256         unsigned PrevCount = Used.count();
2257         for (unsigned K = 0; K < E; ++K) {
2258           if (Used.test(K))
2259             continue;
2260           if (getOperand(K) == TE.getOperand(I)) {
2261             Used.set(K);
2262             break;
2263           }
2264         }
2265         // Check if we actually found the matching operand.
2266         if (PrevCount == Used.count())
2267           return false;
2268       }
2269       return true;
2270     }
2271 
2272     /// \return Final vectorization factor for the node. Defined by the total
2273     /// number of vectorized scalars, including those, used several times in the
2274     /// entry and counted in the \a ReuseShuffleIndices, if any.
2275     unsigned getVectorFactor() const {
2276       if (!ReuseShuffleIndices.empty())
2277         return ReuseShuffleIndices.size();
2278       return Scalars.size();
2279     };
2280 
2281     /// A vector of scalars.
2282     ValueList Scalars;
2283 
2284     /// The Scalars are vectorized into this value. It is initialized to Null.
2285     Value *VectorizedValue = nullptr;
2286 
2287     /// Do we need to gather this sequence or vectorize it
2288     /// (either with vector instruction or with scatter/gather
2289     /// intrinsics for store/load)?
2290     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2291     EntryState State;
2292 
2293     /// Does this sequence require some shuffling?
2294     SmallVector<int, 4> ReuseShuffleIndices;
2295 
2296     /// Does this entry require reordering?
2297     SmallVector<unsigned, 4> ReorderIndices;
2298 
2299     /// Points back to the VectorizableTree.
2300     ///
2301     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2302     /// to be a pointer and needs to be able to initialize the child iterator.
2303     /// Thus we need a reference back to the container to translate the indices
2304     /// to entries.
2305     VecTreeTy &Container;
2306 
2307     /// The TreeEntry index containing the user of this entry.  We can actually
2308     /// have multiple users so the data structure is not truly a tree.
2309     SmallVector<EdgeInfo, 1> UserTreeIndices;
2310 
2311     /// The index of this treeEntry in VectorizableTree.
2312     int Idx = -1;
2313 
2314   private:
2315     /// The operands of each instruction in each lane Operands[op_index][lane].
2316     /// Note: This helps avoid the replication of the code that performs the
2317     /// reordering of operands during buildTree_rec() and vectorizeTree().
2318     SmallVector<ValueList, 2> Operands;
2319 
2320     /// The main/alternate instruction.
2321     Instruction *MainOp = nullptr;
2322     Instruction *AltOp = nullptr;
2323 
2324   public:
2325     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2326     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2327       if (Operands.size() < OpIdx + 1)
2328         Operands.resize(OpIdx + 1);
2329       assert(Operands[OpIdx].empty() && "Already resized?");
2330       assert(OpVL.size() <= Scalars.size() &&
2331              "Number of operands is greater than the number of scalars.");
2332       Operands[OpIdx].resize(OpVL.size());
2333       copy(OpVL, Operands[OpIdx].begin());
2334     }
2335 
2336     /// Set the operands of this bundle in their original order.
2337     void setOperandsInOrder() {
2338       assert(Operands.empty() && "Already initialized?");
2339       auto *I0 = cast<Instruction>(Scalars[0]);
2340       Operands.resize(I0->getNumOperands());
2341       unsigned NumLanes = Scalars.size();
2342       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2343            OpIdx != NumOperands; ++OpIdx) {
2344         Operands[OpIdx].resize(NumLanes);
2345         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2346           auto *I = cast<Instruction>(Scalars[Lane]);
2347           assert(I->getNumOperands() == NumOperands &&
2348                  "Expected same number of operands");
2349           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2350         }
2351       }
2352     }
2353 
2354     /// Reorders operands of the node to the given mask \p Mask.
2355     void reorderOperands(ArrayRef<int> Mask) {
2356       for (ValueList &Operand : Operands)
2357         reorderScalars(Operand, Mask);
2358     }
2359 
2360     /// \returns the \p OpIdx operand of this TreeEntry.
2361     ValueList &getOperand(unsigned OpIdx) {
2362       assert(OpIdx < Operands.size() && "Off bounds");
2363       return Operands[OpIdx];
2364     }
2365 
2366     /// \returns the \p OpIdx operand of this TreeEntry.
2367     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2368       assert(OpIdx < Operands.size() && "Off bounds");
2369       return Operands[OpIdx];
2370     }
2371 
2372     /// \returns the number of operands.
2373     unsigned getNumOperands() const { return Operands.size(); }
2374 
2375     /// \return the single \p OpIdx operand.
2376     Value *getSingleOperand(unsigned OpIdx) const {
2377       assert(OpIdx < Operands.size() && "Off bounds");
2378       assert(!Operands[OpIdx].empty() && "No operand available");
2379       return Operands[OpIdx][0];
2380     }
2381 
2382     /// Some of the instructions in the list have alternate opcodes.
2383     bool isAltShuffle() const { return MainOp != AltOp; }
2384 
2385     bool isOpcodeOrAlt(Instruction *I) const {
2386       unsigned CheckedOpcode = I->getOpcode();
2387       return (getOpcode() == CheckedOpcode ||
2388               getAltOpcode() == CheckedOpcode);
2389     }
2390 
2391     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2392     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2393     /// \p OpValue.
2394     Value *isOneOf(Value *Op) const {
2395       auto *I = dyn_cast<Instruction>(Op);
2396       if (I && isOpcodeOrAlt(I))
2397         return Op;
2398       return MainOp;
2399     }
2400 
2401     void setOperations(const InstructionsState &S) {
2402       MainOp = S.MainOp;
2403       AltOp = S.AltOp;
2404     }
2405 
2406     Instruction *getMainOp() const {
2407       return MainOp;
2408     }
2409 
2410     Instruction *getAltOp() const {
2411       return AltOp;
2412     }
2413 
2414     /// The main/alternate opcodes for the list of instructions.
2415     unsigned getOpcode() const {
2416       return MainOp ? MainOp->getOpcode() : 0;
2417     }
2418 
2419     unsigned getAltOpcode() const {
2420       return AltOp ? AltOp->getOpcode() : 0;
2421     }
2422 
2423     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2424     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2425     int findLaneForValue(Value *V) const {
2426       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2427       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2428       if (!ReorderIndices.empty())
2429         FoundLane = ReorderIndices[FoundLane];
2430       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2431       if (!ReuseShuffleIndices.empty()) {
2432         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2433                                   find(ReuseShuffleIndices, FoundLane));
2434       }
2435       return FoundLane;
2436     }
2437 
2438 #ifndef NDEBUG
2439     /// Debug printer.
2440     LLVM_DUMP_METHOD void dump() const {
2441       dbgs() << Idx << ".\n";
2442       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2443         dbgs() << "Operand " << OpI << ":\n";
2444         for (const Value *V : Operands[OpI])
2445           dbgs().indent(2) << *V << "\n";
2446       }
2447       dbgs() << "Scalars: \n";
2448       for (Value *V : Scalars)
2449         dbgs().indent(2) << *V << "\n";
2450       dbgs() << "State: ";
2451       switch (State) {
2452       case Vectorize:
2453         dbgs() << "Vectorize\n";
2454         break;
2455       case ScatterVectorize:
2456         dbgs() << "ScatterVectorize\n";
2457         break;
2458       case NeedToGather:
2459         dbgs() << "NeedToGather\n";
2460         break;
2461       }
2462       dbgs() << "MainOp: ";
2463       if (MainOp)
2464         dbgs() << *MainOp << "\n";
2465       else
2466         dbgs() << "NULL\n";
2467       dbgs() << "AltOp: ";
2468       if (AltOp)
2469         dbgs() << *AltOp << "\n";
2470       else
2471         dbgs() << "NULL\n";
2472       dbgs() << "VectorizedValue: ";
2473       if (VectorizedValue)
2474         dbgs() << *VectorizedValue << "\n";
2475       else
2476         dbgs() << "NULL\n";
2477       dbgs() << "ReuseShuffleIndices: ";
2478       if (ReuseShuffleIndices.empty())
2479         dbgs() << "Empty";
2480       else
2481         for (int ReuseIdx : ReuseShuffleIndices)
2482           dbgs() << ReuseIdx << ", ";
2483       dbgs() << "\n";
2484       dbgs() << "ReorderIndices: ";
2485       for (unsigned ReorderIdx : ReorderIndices)
2486         dbgs() << ReorderIdx << ", ";
2487       dbgs() << "\n";
2488       dbgs() << "UserTreeIndices: ";
2489       for (const auto &EInfo : UserTreeIndices)
2490         dbgs() << EInfo << ", ";
2491       dbgs() << "\n";
2492     }
2493 #endif
2494   };
2495 
2496 #ifndef NDEBUG
2497   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2498                      InstructionCost VecCost,
2499                      InstructionCost ScalarCost) const {
2500     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2501     dbgs() << "SLP: Costs:\n";
2502     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2503     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2504     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2505     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2506                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2507   }
2508 #endif
2509 
2510   /// Create a new VectorizableTree entry.
2511   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2512                           const InstructionsState &S,
2513                           const EdgeInfo &UserTreeIdx,
2514                           ArrayRef<int> ReuseShuffleIndices = None,
2515                           ArrayRef<unsigned> ReorderIndices = None) {
2516     TreeEntry::EntryState EntryState =
2517         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2518     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2519                         ReuseShuffleIndices, ReorderIndices);
2520   }
2521 
2522   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2523                           TreeEntry::EntryState EntryState,
2524                           Optional<ScheduleData *> Bundle,
2525                           const InstructionsState &S,
2526                           const EdgeInfo &UserTreeIdx,
2527                           ArrayRef<int> ReuseShuffleIndices = None,
2528                           ArrayRef<unsigned> ReorderIndices = None) {
2529     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2530             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2531            "Need to vectorize gather entry?");
2532     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2533     TreeEntry *Last = VectorizableTree.back().get();
2534     Last->Idx = VectorizableTree.size() - 1;
2535     Last->State = EntryState;
2536     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2537                                      ReuseShuffleIndices.end());
2538     if (ReorderIndices.empty()) {
2539       Last->Scalars.assign(VL.begin(), VL.end());
2540       Last->setOperations(S);
2541     } else {
2542       // Reorder scalars and build final mask.
2543       Last->Scalars.assign(VL.size(), nullptr);
2544       transform(ReorderIndices, Last->Scalars.begin(),
2545                 [VL](unsigned Idx) -> Value * {
2546                   if (Idx >= VL.size())
2547                     return UndefValue::get(VL.front()->getType());
2548                   return VL[Idx];
2549                 });
2550       InstructionsState S = getSameOpcode(Last->Scalars);
2551       Last->setOperations(S);
2552       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2553     }
2554     if (Last->State != TreeEntry::NeedToGather) {
2555       for (Value *V : VL) {
2556         assert(!getTreeEntry(V) && "Scalar already in tree!");
2557         ScalarToTreeEntry[V] = Last;
2558       }
2559       // Update the scheduler bundle to point to this TreeEntry.
2560       ScheduleData *BundleMember = *Bundle;
2561       assert((BundleMember || isa<PHINode>(S.MainOp) ||
2562               isVectorLikeInstWithConstOps(S.MainOp) ||
2563               doesNotNeedToSchedule(VL)) &&
2564              "Bundle and VL out of sync");
2565       if (BundleMember) {
2566         for (Value *V : VL) {
2567           if (doesNotNeedToBeScheduled(V))
2568             continue;
2569           assert(BundleMember && "Unexpected end of bundle.");
2570           BundleMember->TE = Last;
2571           BundleMember = BundleMember->NextInBundle;
2572         }
2573       }
2574       assert(!BundleMember && "Bundle and VL out of sync");
2575     } else {
2576       MustGather.insert(VL.begin(), VL.end());
2577     }
2578 
2579     if (UserTreeIdx.UserTE)
2580       Last->UserTreeIndices.push_back(UserTreeIdx);
2581 
2582     return Last;
2583   }
2584 
2585   /// -- Vectorization State --
2586   /// Holds all of the tree entries.
2587   TreeEntry::VecTreeTy VectorizableTree;
2588 
2589 #ifndef NDEBUG
2590   /// Debug printer.
2591   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2592     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2593       VectorizableTree[Id]->dump();
2594       dbgs() << "\n";
2595     }
2596   }
2597 #endif
2598 
2599   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2600 
2601   const TreeEntry *getTreeEntry(Value *V) const {
2602     return ScalarToTreeEntry.lookup(V);
2603   }
2604 
2605   /// Maps a specific scalar to its tree entry.
2606   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2607 
2608   /// Maps a value to the proposed vectorizable size.
2609   SmallDenseMap<Value *, unsigned> InstrElementSize;
2610 
2611   /// A list of scalars that we found that we need to keep as scalars.
2612   ValueSet MustGather;
2613 
2614   /// This POD struct describes one external user in the vectorized tree.
2615   struct ExternalUser {
2616     ExternalUser(Value *S, llvm::User *U, int L)
2617         : Scalar(S), User(U), Lane(L) {}
2618 
2619     // Which scalar in our function.
2620     Value *Scalar;
2621 
2622     // Which user that uses the scalar.
2623     llvm::User *User;
2624 
2625     // Which lane does the scalar belong to.
2626     int Lane;
2627   };
2628   using UserList = SmallVector<ExternalUser, 16>;
2629 
2630   /// Checks if two instructions may access the same memory.
2631   ///
2632   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2633   /// is invariant in the calling loop.
2634   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2635                  Instruction *Inst2) {
2636     // First check if the result is already in the cache.
2637     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2638     Optional<bool> &result = AliasCache[key];
2639     if (result) {
2640       return result.value();
2641     }
2642     bool aliased = true;
2643     if (Loc1.Ptr && isSimple(Inst1))
2644       aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2645     // Store the result in the cache.
2646     result = aliased;
2647     return aliased;
2648   }
2649 
2650   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2651 
2652   /// Cache for alias results.
2653   /// TODO: consider moving this to the AliasAnalysis itself.
2654   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2655 
2656   // Cache for pointerMayBeCaptured calls inside AA.  This is preserved
2657   // globally through SLP because we don't perform any action which
2658   // invalidates capture results.
2659   BatchAAResults BatchAA;
2660 
2661   /// Temporary store for deleted instructions. Instructions will be deleted
2662   /// eventually when the BoUpSLP is destructed.  The deferral is required to
2663   /// ensure that there are no incorrect collisions in the AliasCache, which
2664   /// can happen if a new instruction is allocated at the same address as a
2665   /// previously deleted instruction.
2666   DenseSet<Instruction *> DeletedInstructions;
2667 
2668   /// Set of the instruction, being analyzed already for reductions.
2669   SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
2670 
2671   /// Set of hashes for the list of reduction values already being analyzed.
2672   DenseSet<size_t> AnalyzedReductionVals;
2673 
2674   /// A list of values that need to extracted out of the tree.
2675   /// This list holds pairs of (Internal Scalar : External User). External User
2676   /// can be nullptr, it means that this Internal Scalar will be used later,
2677   /// after vectorization.
2678   UserList ExternalUses;
2679 
2680   /// Values used only by @llvm.assume calls.
2681   SmallPtrSet<const Value *, 32> EphValues;
2682 
2683   /// Holds all of the instructions that we gathered.
2684   SetVector<Instruction *> GatherShuffleSeq;
2685 
2686   /// A list of blocks that we are going to CSE.
2687   SetVector<BasicBlock *> CSEBlocks;
2688 
2689   /// Contains all scheduling relevant data for an instruction.
2690   /// A ScheduleData either represents a single instruction or a member of an
2691   /// instruction bundle (= a group of instructions which is combined into a
2692   /// vector instruction).
2693   struct ScheduleData {
2694     // The initial value for the dependency counters. It means that the
2695     // dependencies are not calculated yet.
2696     enum { InvalidDeps = -1 };
2697 
2698     ScheduleData() = default;
2699 
2700     void init(int BlockSchedulingRegionID, Value *OpVal) {
2701       FirstInBundle = this;
2702       NextInBundle = nullptr;
2703       NextLoadStore = nullptr;
2704       IsScheduled = false;
2705       SchedulingRegionID = BlockSchedulingRegionID;
2706       clearDependencies();
2707       OpValue = OpVal;
2708       TE = nullptr;
2709     }
2710 
2711     /// Verify basic self consistency properties
2712     void verify() {
2713       if (hasValidDependencies()) {
2714         assert(UnscheduledDeps <= Dependencies && "invariant");
2715       } else {
2716         assert(UnscheduledDeps == Dependencies && "invariant");
2717       }
2718 
2719       if (IsScheduled) {
2720         assert(isSchedulingEntity() &&
2721                 "unexpected scheduled state");
2722         for (const ScheduleData *BundleMember = this; BundleMember;
2723              BundleMember = BundleMember->NextInBundle) {
2724           assert(BundleMember->hasValidDependencies() &&
2725                  BundleMember->UnscheduledDeps == 0 &&
2726                  "unexpected scheduled state");
2727           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2728                  "only bundle is marked scheduled");
2729         }
2730       }
2731 
2732       assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
2733              "all bundle members must be in same basic block");
2734     }
2735 
2736     /// Returns true if the dependency information has been calculated.
2737     /// Note that depenendency validity can vary between instructions within
2738     /// a single bundle.
2739     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2740 
2741     /// Returns true for single instructions and for bundle representatives
2742     /// (= the head of a bundle).
2743     bool isSchedulingEntity() const { return FirstInBundle == this; }
2744 
2745     /// Returns true if it represents an instruction bundle and not only a
2746     /// single instruction.
2747     bool isPartOfBundle() const {
2748       return NextInBundle != nullptr || FirstInBundle != this || TE;
2749     }
2750 
2751     /// Returns true if it is ready for scheduling, i.e. it has no more
2752     /// unscheduled depending instructions/bundles.
2753     bool isReady() const {
2754       assert(isSchedulingEntity() &&
2755              "can't consider non-scheduling entity for ready list");
2756       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2757     }
2758 
2759     /// Modifies the number of unscheduled dependencies for this instruction,
2760     /// and returns the number of remaining dependencies for the containing
2761     /// bundle.
2762     int incrementUnscheduledDeps(int Incr) {
2763       assert(hasValidDependencies() &&
2764              "increment of unscheduled deps would be meaningless");
2765       UnscheduledDeps += Incr;
2766       return FirstInBundle->unscheduledDepsInBundle();
2767     }
2768 
2769     /// Sets the number of unscheduled dependencies to the number of
2770     /// dependencies.
2771     void resetUnscheduledDeps() {
2772       UnscheduledDeps = Dependencies;
2773     }
2774 
2775     /// Clears all dependency information.
2776     void clearDependencies() {
2777       Dependencies = InvalidDeps;
2778       resetUnscheduledDeps();
2779       MemoryDependencies.clear();
2780       ControlDependencies.clear();
2781     }
2782 
2783     int unscheduledDepsInBundle() const {
2784       assert(isSchedulingEntity() && "only meaningful on the bundle");
2785       int Sum = 0;
2786       for (const ScheduleData *BundleMember = this; BundleMember;
2787            BundleMember = BundleMember->NextInBundle) {
2788         if (BundleMember->UnscheduledDeps == InvalidDeps)
2789           return InvalidDeps;
2790         Sum += BundleMember->UnscheduledDeps;
2791       }
2792       return Sum;
2793     }
2794 
2795     void dump(raw_ostream &os) const {
2796       if (!isSchedulingEntity()) {
2797         os << "/ " << *Inst;
2798       } else if (NextInBundle) {
2799         os << '[' << *Inst;
2800         ScheduleData *SD = NextInBundle;
2801         while (SD) {
2802           os << ';' << *SD->Inst;
2803           SD = SD->NextInBundle;
2804         }
2805         os << ']';
2806       } else {
2807         os << *Inst;
2808       }
2809     }
2810 
2811     Instruction *Inst = nullptr;
2812 
2813     /// Opcode of the current instruction in the schedule data.
2814     Value *OpValue = nullptr;
2815 
2816     /// The TreeEntry that this instruction corresponds to.
2817     TreeEntry *TE = nullptr;
2818 
2819     /// Points to the head in an instruction bundle (and always to this for
2820     /// single instructions).
2821     ScheduleData *FirstInBundle = nullptr;
2822 
2823     /// Single linked list of all instructions in a bundle. Null if it is a
2824     /// single instruction.
2825     ScheduleData *NextInBundle = nullptr;
2826 
2827     /// Single linked list of all memory instructions (e.g. load, store, call)
2828     /// in the block - until the end of the scheduling region.
2829     ScheduleData *NextLoadStore = nullptr;
2830 
2831     /// The dependent memory instructions.
2832     /// This list is derived on demand in calculateDependencies().
2833     SmallVector<ScheduleData *, 4> MemoryDependencies;
2834 
2835     /// List of instructions which this instruction could be control dependent
2836     /// on.  Allowing such nodes to be scheduled below this one could introduce
2837     /// a runtime fault which didn't exist in the original program.
2838     /// ex: this is a load or udiv following a readonly call which inf loops
2839     SmallVector<ScheduleData *, 4> ControlDependencies;
2840 
2841     /// This ScheduleData is in the current scheduling region if this matches
2842     /// the current SchedulingRegionID of BlockScheduling.
2843     int SchedulingRegionID = 0;
2844 
2845     /// Used for getting a "good" final ordering of instructions.
2846     int SchedulingPriority = 0;
2847 
2848     /// The number of dependencies. Constitutes of the number of users of the
2849     /// instruction plus the number of dependent memory instructions (if any).
2850     /// This value is calculated on demand.
2851     /// If InvalidDeps, the number of dependencies is not calculated yet.
2852     int Dependencies = InvalidDeps;
2853 
2854     /// The number of dependencies minus the number of dependencies of scheduled
2855     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2856     /// for scheduling.
2857     /// Note that this is negative as long as Dependencies is not calculated.
2858     int UnscheduledDeps = InvalidDeps;
2859 
2860     /// True if this instruction is scheduled (or considered as scheduled in the
2861     /// dry-run).
2862     bool IsScheduled = false;
2863   };
2864 
2865 #ifndef NDEBUG
2866   friend inline raw_ostream &operator<<(raw_ostream &os,
2867                                         const BoUpSLP::ScheduleData &SD) {
2868     SD.dump(os);
2869     return os;
2870   }
2871 #endif
2872 
2873   friend struct GraphTraits<BoUpSLP *>;
2874   friend struct DOTGraphTraits<BoUpSLP *>;
2875 
2876   /// Contains all scheduling data for a basic block.
2877   /// It does not schedules instructions, which are not memory read/write
2878   /// instructions and their operands are either constants, or arguments, or
2879   /// phis, or instructions from others blocks, or their users are phis or from
2880   /// the other blocks. The resulting vector instructions can be placed at the
2881   /// beginning of the basic block without scheduling (if operands does not need
2882   /// to be scheduled) or at the end of the block (if users are outside of the
2883   /// block). It allows to save some compile time and memory used by the
2884   /// compiler.
2885   /// ScheduleData is assigned for each instruction in between the boundaries of
2886   /// the tree entry, even for those, which are not part of the graph. It is
2887   /// required to correctly follow the dependencies between the instructions and
2888   /// their correct scheduling. The ScheduleData is not allocated for the
2889   /// instructions, which do not require scheduling, like phis, nodes with
2890   /// extractelements/insertelements only or nodes with instructions, with
2891   /// uses/operands outside of the block.
2892   struct BlockScheduling {
2893     BlockScheduling(BasicBlock *BB)
2894         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2895 
2896     void clear() {
2897       ReadyInsts.clear();
2898       ScheduleStart = nullptr;
2899       ScheduleEnd = nullptr;
2900       FirstLoadStoreInRegion = nullptr;
2901       LastLoadStoreInRegion = nullptr;
2902       RegionHasStackSave = false;
2903 
2904       // Reduce the maximum schedule region size by the size of the
2905       // previous scheduling run.
2906       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2907       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2908         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2909       ScheduleRegionSize = 0;
2910 
2911       // Make a new scheduling region, i.e. all existing ScheduleData is not
2912       // in the new region yet.
2913       ++SchedulingRegionID;
2914     }
2915 
2916     ScheduleData *getScheduleData(Instruction *I) {
2917       if (BB != I->getParent())
2918         // Avoid lookup if can't possibly be in map.
2919         return nullptr;
2920       ScheduleData *SD = ScheduleDataMap.lookup(I);
2921       if (SD && isInSchedulingRegion(SD))
2922         return SD;
2923       return nullptr;
2924     }
2925 
2926     ScheduleData *getScheduleData(Value *V) {
2927       if (auto *I = dyn_cast<Instruction>(V))
2928         return getScheduleData(I);
2929       return nullptr;
2930     }
2931 
2932     ScheduleData *getScheduleData(Value *V, Value *Key) {
2933       if (V == Key)
2934         return getScheduleData(V);
2935       auto I = ExtraScheduleDataMap.find(V);
2936       if (I != ExtraScheduleDataMap.end()) {
2937         ScheduleData *SD = I->second.lookup(Key);
2938         if (SD && isInSchedulingRegion(SD))
2939           return SD;
2940       }
2941       return nullptr;
2942     }
2943 
2944     bool isInSchedulingRegion(ScheduleData *SD) const {
2945       return SD->SchedulingRegionID == SchedulingRegionID;
2946     }
2947 
2948     /// Marks an instruction as scheduled and puts all dependent ready
2949     /// instructions into the ready-list.
2950     template <typename ReadyListType>
2951     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2952       SD->IsScheduled = true;
2953       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2954 
2955       for (ScheduleData *BundleMember = SD; BundleMember;
2956            BundleMember = BundleMember->NextInBundle) {
2957         if (BundleMember->Inst != BundleMember->OpValue)
2958           continue;
2959 
2960         // Handle the def-use chain dependencies.
2961 
2962         // Decrement the unscheduled counter and insert to ready list if ready.
2963         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2964           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2965             if (OpDef && OpDef->hasValidDependencies() &&
2966                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2967               // There are no more unscheduled dependencies after
2968               // decrementing, so we can put the dependent instruction
2969               // into the ready list.
2970               ScheduleData *DepBundle = OpDef->FirstInBundle;
2971               assert(!DepBundle->IsScheduled &&
2972                      "already scheduled bundle gets ready");
2973               ReadyList.insert(DepBundle);
2974               LLVM_DEBUG(dbgs()
2975                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2976             }
2977           });
2978         };
2979 
2980         // If BundleMember is a vector bundle, its operands may have been
2981         // reordered during buildTree(). We therefore need to get its operands
2982         // through the TreeEntry.
2983         if (TreeEntry *TE = BundleMember->TE) {
2984           // Need to search for the lane since the tree entry can be reordered.
2985           int Lane = std::distance(TE->Scalars.begin(),
2986                                    find(TE->Scalars, BundleMember->Inst));
2987           assert(Lane >= 0 && "Lane not set");
2988 
2989           // Since vectorization tree is being built recursively this assertion
2990           // ensures that the tree entry has all operands set before reaching
2991           // this code. Couple of exceptions known at the moment are extracts
2992           // where their second (immediate) operand is not added. Since
2993           // immediates do not affect scheduler behavior this is considered
2994           // okay.
2995           auto *In = BundleMember->Inst;
2996           assert(In &&
2997                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2998                   In->getNumOperands() == TE->getNumOperands()) &&
2999                  "Missed TreeEntry operands?");
3000           (void)In; // fake use to avoid build failure when assertions disabled
3001 
3002           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3003                OpIdx != NumOperands; ++OpIdx)
3004             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3005               DecrUnsched(I);
3006         } else {
3007           // If BundleMember is a stand-alone instruction, no operand reordering
3008           // has taken place, so we directly access its operands.
3009           for (Use &U : BundleMember->Inst->operands())
3010             if (auto *I = dyn_cast<Instruction>(U.get()))
3011               DecrUnsched(I);
3012         }
3013         // Handle the memory dependencies.
3014         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3015           if (MemoryDepSD->hasValidDependencies() &&
3016               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3017             // There are no more unscheduled dependencies after decrementing,
3018             // so we can put the dependent instruction into the ready list.
3019             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3020             assert(!DepBundle->IsScheduled &&
3021                    "already scheduled bundle gets ready");
3022             ReadyList.insert(DepBundle);
3023             LLVM_DEBUG(dbgs()
3024                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
3025           }
3026         }
3027         // Handle the control dependencies.
3028         for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3029           if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3030             // There are no more unscheduled dependencies after decrementing,
3031             // so we can put the dependent instruction into the ready list.
3032             ScheduleData *DepBundle = DepSD->FirstInBundle;
3033             assert(!DepBundle->IsScheduled &&
3034                    "already scheduled bundle gets ready");
3035             ReadyList.insert(DepBundle);
3036             LLVM_DEBUG(dbgs()
3037                        << "SLP:    gets ready (ctl): " << *DepBundle << "\n");
3038           }
3039         }
3040 
3041       }
3042     }
3043 
3044     /// Verify basic self consistency properties of the data structure.
3045     void verify() {
3046       if (!ScheduleStart)
3047         return;
3048 
3049       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3050              ScheduleStart->comesBefore(ScheduleEnd) &&
3051              "Not a valid scheduling region?");
3052 
3053       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3054         auto *SD = getScheduleData(I);
3055         if (!SD)
3056           continue;
3057         assert(isInSchedulingRegion(SD) &&
3058                "primary schedule data not in window?");
3059         assert(isInSchedulingRegion(SD->FirstInBundle) &&
3060                "entire bundle in window!");
3061         (void)SD;
3062         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3063       }
3064 
3065       for (auto *SD : ReadyInsts) {
3066         assert(SD->isSchedulingEntity() && SD->isReady() &&
3067                "item in ready list not ready?");
3068         (void)SD;
3069       }
3070     }
3071 
3072     void doForAllOpcodes(Value *V,
3073                          function_ref<void(ScheduleData *SD)> Action) {
3074       if (ScheduleData *SD = getScheduleData(V))
3075         Action(SD);
3076       auto I = ExtraScheduleDataMap.find(V);
3077       if (I != ExtraScheduleDataMap.end())
3078         for (auto &P : I->second)
3079           if (isInSchedulingRegion(P.second))
3080             Action(P.second);
3081     }
3082 
3083     /// Put all instructions into the ReadyList which are ready for scheduling.
3084     template <typename ReadyListType>
3085     void initialFillReadyList(ReadyListType &ReadyList) {
3086       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3087         doForAllOpcodes(I, [&](ScheduleData *SD) {
3088           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3089               SD->isReady()) {
3090             ReadyList.insert(SD);
3091             LLVM_DEBUG(dbgs()
3092                        << "SLP:    initially in ready list: " << *SD << "\n");
3093           }
3094         });
3095       }
3096     }
3097 
3098     /// Build a bundle from the ScheduleData nodes corresponding to the
3099     /// scalar instruction for each lane.
3100     ScheduleData *buildBundle(ArrayRef<Value *> VL);
3101 
3102     /// Checks if a bundle of instructions can be scheduled, i.e. has no
3103     /// cyclic dependencies. This is only a dry-run, no instructions are
3104     /// actually moved at this stage.
3105     /// \returns the scheduling bundle. The returned Optional value is non-None
3106     /// if \p VL is allowed to be scheduled.
3107     Optional<ScheduleData *>
3108     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3109                       const InstructionsState &S);
3110 
3111     /// Un-bundles a group of instructions.
3112     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3113 
3114     /// Allocates schedule data chunk.
3115     ScheduleData *allocateScheduleDataChunks();
3116 
3117     /// Extends the scheduling region so that V is inside the region.
3118     /// \returns true if the region size is within the limit.
3119     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3120 
3121     /// Initialize the ScheduleData structures for new instructions in the
3122     /// scheduling region.
3123     void initScheduleData(Instruction *FromI, Instruction *ToI,
3124                           ScheduleData *PrevLoadStore,
3125                           ScheduleData *NextLoadStore);
3126 
3127     /// Updates the dependency information of a bundle and of all instructions/
3128     /// bundles which depend on the original bundle.
3129     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3130                                BoUpSLP *SLP);
3131 
3132     /// Sets all instruction in the scheduling region to un-scheduled.
3133     void resetSchedule();
3134 
3135     BasicBlock *BB;
3136 
3137     /// Simple memory allocation for ScheduleData.
3138     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3139 
3140     /// The size of a ScheduleData array in ScheduleDataChunks.
3141     int ChunkSize;
3142 
3143     /// The allocator position in the current chunk, which is the last entry
3144     /// of ScheduleDataChunks.
3145     int ChunkPos;
3146 
3147     /// Attaches ScheduleData to Instruction.
3148     /// Note that the mapping survives during all vectorization iterations, i.e.
3149     /// ScheduleData structures are recycled.
3150     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3151 
3152     /// Attaches ScheduleData to Instruction with the leading key.
3153     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3154         ExtraScheduleDataMap;
3155 
3156     /// The ready-list for scheduling (only used for the dry-run).
3157     SetVector<ScheduleData *> ReadyInsts;
3158 
3159     /// The first instruction of the scheduling region.
3160     Instruction *ScheduleStart = nullptr;
3161 
3162     /// The first instruction _after_ the scheduling region.
3163     Instruction *ScheduleEnd = nullptr;
3164 
3165     /// The first memory accessing instruction in the scheduling region
3166     /// (can be null).
3167     ScheduleData *FirstLoadStoreInRegion = nullptr;
3168 
3169     /// The last memory accessing instruction in the scheduling region
3170     /// (can be null).
3171     ScheduleData *LastLoadStoreInRegion = nullptr;
3172 
3173     /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3174     /// region?  Used to optimize the dependence calculation for the
3175     /// common case where there isn't.
3176     bool RegionHasStackSave = false;
3177 
3178     /// The current size of the scheduling region.
3179     int ScheduleRegionSize = 0;
3180 
3181     /// The maximum size allowed for the scheduling region.
3182     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3183 
3184     /// The ID of the scheduling region. For a new vectorization iteration this
3185     /// is incremented which "removes" all ScheduleData from the region.
3186     /// Make sure that the initial SchedulingRegionID is greater than the
3187     /// initial SchedulingRegionID in ScheduleData (which is 0).
3188     int SchedulingRegionID = 1;
3189   };
3190 
3191   /// Attaches the BlockScheduling structures to basic blocks.
3192   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3193 
3194   /// Performs the "real" scheduling. Done before vectorization is actually
3195   /// performed in a basic block.
3196   void scheduleBlock(BlockScheduling *BS);
3197 
3198   /// List of users to ignore during scheduling and that don't need extracting.
3199   const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3200 
3201   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3202   /// sorted SmallVectors of unsigned.
3203   struct OrdersTypeDenseMapInfo {
3204     static OrdersType getEmptyKey() {
3205       OrdersType V;
3206       V.push_back(~1U);
3207       return V;
3208     }
3209 
3210     static OrdersType getTombstoneKey() {
3211       OrdersType V;
3212       V.push_back(~2U);
3213       return V;
3214     }
3215 
3216     static unsigned getHashValue(const OrdersType &V) {
3217       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3218     }
3219 
3220     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3221       return LHS == RHS;
3222     }
3223   };
3224 
3225   // Analysis and block reference.
3226   Function *F;
3227   ScalarEvolution *SE;
3228   TargetTransformInfo *TTI;
3229   TargetLibraryInfo *TLI;
3230   LoopInfo *LI;
3231   DominatorTree *DT;
3232   AssumptionCache *AC;
3233   DemandedBits *DB;
3234   const DataLayout *DL;
3235   OptimizationRemarkEmitter *ORE;
3236 
3237   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3238   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3239 
3240   /// Instruction builder to construct the vectorized tree.
3241   IRBuilder<> Builder;
3242 
3243   /// A map of scalar integer values to the smallest bit width with which they
3244   /// can legally be represented. The values map to (width, signed) pairs,
3245   /// where "width" indicates the minimum bit width and "signed" is True if the
3246   /// value must be signed-extended, rather than zero-extended, back to its
3247   /// original width.
3248   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3249 };
3250 
3251 } // end namespace slpvectorizer
3252 
3253 template <> struct GraphTraits<BoUpSLP *> {
3254   using TreeEntry = BoUpSLP::TreeEntry;
3255 
3256   /// NodeRef has to be a pointer per the GraphWriter.
3257   using NodeRef = TreeEntry *;
3258 
3259   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3260 
3261   /// Add the VectorizableTree to the index iterator to be able to return
3262   /// TreeEntry pointers.
3263   struct ChildIteratorType
3264       : public iterator_adaptor_base<
3265             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3266     ContainerTy &VectorizableTree;
3267 
3268     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3269                       ContainerTy &VT)
3270         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3271 
3272     NodeRef operator*() { return I->UserTE; }
3273   };
3274 
3275   static NodeRef getEntryNode(BoUpSLP &R) {
3276     return R.VectorizableTree[0].get();
3277   }
3278 
3279   static ChildIteratorType child_begin(NodeRef N) {
3280     return {N->UserTreeIndices.begin(), N->Container};
3281   }
3282 
3283   static ChildIteratorType child_end(NodeRef N) {
3284     return {N->UserTreeIndices.end(), N->Container};
3285   }
3286 
3287   /// For the node iterator we just need to turn the TreeEntry iterator into a
3288   /// TreeEntry* iterator so that it dereferences to NodeRef.
3289   class nodes_iterator {
3290     using ItTy = ContainerTy::iterator;
3291     ItTy It;
3292 
3293   public:
3294     nodes_iterator(const ItTy &It2) : It(It2) {}
3295     NodeRef operator*() { return It->get(); }
3296     nodes_iterator operator++() {
3297       ++It;
3298       return *this;
3299     }
3300     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3301   };
3302 
3303   static nodes_iterator nodes_begin(BoUpSLP *R) {
3304     return nodes_iterator(R->VectorizableTree.begin());
3305   }
3306 
3307   static nodes_iterator nodes_end(BoUpSLP *R) {
3308     return nodes_iterator(R->VectorizableTree.end());
3309   }
3310 
3311   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3312 };
3313 
3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3315   using TreeEntry = BoUpSLP::TreeEntry;
3316 
3317   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3318 
3319   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3320     std::string Str;
3321     raw_string_ostream OS(Str);
3322     if (isSplat(Entry->Scalars))
3323       OS << "<splat> ";
3324     for (auto V : Entry->Scalars) {
3325       OS << *V;
3326       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3327             return EU.Scalar == V;
3328           }))
3329         OS << " <extract>";
3330       OS << "\n";
3331     }
3332     return Str;
3333   }
3334 
3335   static std::string getNodeAttributes(const TreeEntry *Entry,
3336                                        const BoUpSLP *) {
3337     if (Entry->State == TreeEntry::NeedToGather)
3338       return "color=red";
3339     return "";
3340   }
3341 };
3342 
3343 } // end namespace llvm
3344 
3345 BoUpSLP::~BoUpSLP() {
3346   SmallVector<WeakTrackingVH> DeadInsts;
3347   for (auto *I : DeletedInstructions) {
3348     for (Use &U : I->operands()) {
3349       auto *Op = dyn_cast<Instruction>(U.get());
3350       if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3351           wouldInstructionBeTriviallyDead(Op, TLI))
3352         DeadInsts.emplace_back(Op);
3353     }
3354     I->dropAllReferences();
3355   }
3356   for (auto *I : DeletedInstructions) {
3357     assert(I->use_empty() &&
3358            "trying to erase instruction with users.");
3359     I->eraseFromParent();
3360   }
3361 
3362   // Cleanup any dead scalar code feeding the vectorized instructions
3363   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3364 
3365 #ifdef EXPENSIVE_CHECKS
3366   // If we could guarantee that this call is not extremely slow, we could
3367   // remove the ifdef limitation (see PR47712).
3368   assert(!verifyFunction(*F, &dbgs()));
3369 #endif
3370 }
3371 
3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3373 /// contains original mask for the scalars reused in the node. Procedure
3374 /// transform this mask in accordance with the given \p Mask.
3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3376   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3377          "Expected non-empty mask.");
3378   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3379   Prev.swap(Reuses);
3380   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3381     if (Mask[I] != UndefMaskElem)
3382       Reuses[Mask[I]] = Prev[I];
3383 }
3384 
3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3386 /// the original order of the scalars. Procedure transforms the provided order
3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3388 /// identity order, \p Order is cleared.
3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3390   assert(!Mask.empty() && "Expected non-empty mask.");
3391   SmallVector<int> MaskOrder;
3392   if (Order.empty()) {
3393     MaskOrder.resize(Mask.size());
3394     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3395   } else {
3396     inversePermutation(Order, MaskOrder);
3397   }
3398   reorderReuses(MaskOrder, Mask);
3399   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3400     Order.clear();
3401     return;
3402   }
3403   Order.assign(Mask.size(), Mask.size());
3404   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3405     if (MaskOrder[I] != UndefMaskElem)
3406       Order[MaskOrder[I]] = I;
3407   fixupOrderingIndices(Order);
3408 }
3409 
3410 Optional<BoUpSLP::OrdersType>
3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3412   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3413   unsigned NumScalars = TE.Scalars.size();
3414   OrdersType CurrentOrder(NumScalars, NumScalars);
3415   SmallVector<int> Positions;
3416   SmallBitVector UsedPositions(NumScalars);
3417   const TreeEntry *STE = nullptr;
3418   // Try to find all gathered scalars that are gets vectorized in other
3419   // vectorize node. Here we can have only one single tree vector node to
3420   // correctly identify order of the gathered scalars.
3421   for (unsigned I = 0; I < NumScalars; ++I) {
3422     Value *V = TE.Scalars[I];
3423     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3424       continue;
3425     if (const auto *LocalSTE = getTreeEntry(V)) {
3426       if (!STE)
3427         STE = LocalSTE;
3428       else if (STE != LocalSTE)
3429         // Take the order only from the single vector node.
3430         return None;
3431       unsigned Lane =
3432           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3433       if (Lane >= NumScalars)
3434         return None;
3435       if (CurrentOrder[Lane] != NumScalars) {
3436         if (Lane != I)
3437           continue;
3438         UsedPositions.reset(CurrentOrder[Lane]);
3439       }
3440       // The partial identity (where only some elements of the gather node are
3441       // in the identity order) is good.
3442       CurrentOrder[Lane] = I;
3443       UsedPositions.set(I);
3444     }
3445   }
3446   // Need to keep the order if we have a vector entry and at least 2 scalars or
3447   // the vectorized entry has just 2 scalars.
3448   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3449     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3450       for (unsigned I = 0; I < NumScalars; ++I)
3451         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3452           return false;
3453       return true;
3454     };
3455     if (IsIdentityOrder(CurrentOrder)) {
3456       CurrentOrder.clear();
3457       return CurrentOrder;
3458     }
3459     auto *It = CurrentOrder.begin();
3460     for (unsigned I = 0; I < NumScalars;) {
3461       if (UsedPositions.test(I)) {
3462         ++I;
3463         continue;
3464       }
3465       if (*It == NumScalars) {
3466         *It = I;
3467         ++I;
3468       }
3469       ++It;
3470     }
3471     return CurrentOrder;
3472   }
3473   return None;
3474 }
3475 
3476 namespace {
3477 /// Tracks the state we can represent the loads in the given sequence.
3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3479 } // anonymous namespace
3480 
3481 /// Checks if the given array of loads can be represented as a vectorized,
3482 /// scatter or just simple gather.
3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3484                                     const TargetTransformInfo &TTI,
3485                                     const DataLayout &DL, ScalarEvolution &SE,
3486                                     LoopInfo &LI,
3487                                     SmallVectorImpl<unsigned> &Order,
3488                                     SmallVectorImpl<Value *> &PointerOps) {
3489   // Check that a vectorized load would load the same memory as a scalar
3490   // load. For example, we don't want to vectorize loads that are smaller
3491   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3492   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3493   // from such a struct, we read/write packed bits disagreeing with the
3494   // unvectorized version.
3495   Type *ScalarTy = VL0->getType();
3496 
3497   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3498     return LoadsState::Gather;
3499 
3500   // Make sure all loads in the bundle are simple - we can't vectorize
3501   // atomic or volatile loads.
3502   PointerOps.clear();
3503   PointerOps.resize(VL.size());
3504   auto *POIter = PointerOps.begin();
3505   for (Value *V : VL) {
3506     auto *L = cast<LoadInst>(V);
3507     if (!L->isSimple())
3508       return LoadsState::Gather;
3509     *POIter = L->getPointerOperand();
3510     ++POIter;
3511   }
3512 
3513   Order.clear();
3514   // Check the order of pointer operands or that all pointers are the same.
3515   bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3516   if (IsSorted || all_of(PointerOps, [&PointerOps](Value *P) {
3517         if (getUnderlyingObject(P) != getUnderlyingObject(PointerOps.front()))
3518           return false;
3519         auto *GEP = dyn_cast<GetElementPtrInst>(P);
3520         if (!GEP)
3521           return false;
3522         auto *GEP0 = cast<GetElementPtrInst>(PointerOps.front());
3523         return GEP->getNumOperands() == 2 &&
3524                ((isConstant(GEP->getOperand(1)) &&
3525                  isConstant(GEP0->getOperand(1))) ||
3526                 getSameOpcode({GEP->getOperand(1), GEP0->getOperand(1)})
3527                     .getOpcode());
3528       })) {
3529     if (IsSorted) {
3530       Value *Ptr0;
3531       Value *PtrN;
3532       if (Order.empty()) {
3533         Ptr0 = PointerOps.front();
3534         PtrN = PointerOps.back();
3535       } else {
3536         Ptr0 = PointerOps[Order.front()];
3537         PtrN = PointerOps[Order.back()];
3538       }
3539       Optional<int> Diff =
3540           getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3541       // Check that the sorted loads are consecutive.
3542       if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3543         return LoadsState::Vectorize;
3544     }
3545     // TODO: need to improve analysis of the pointers, if not all of them are
3546     // GEPs or have > 2 operands, we end up with a gather node, which just
3547     // increases the cost.
3548     Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3549     bool ProfitableGatherPointers =
3550         static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3551           return L && L->isLoopInvariant(V);
3552         })) <= VL.size() / 2 && VL.size() > 2;
3553     if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3554           auto *GEP = dyn_cast<GetElementPtrInst>(P);
3555           return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3556                  (GEP && GEP->getNumOperands() == 2);
3557         })) {
3558       Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3559       for (Value *V : VL)
3560         CommonAlignment =
3561             std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
3562       auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3563       if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3564           !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3565         return LoadsState::ScatterVectorize;
3566     }
3567   }
3568 
3569   return LoadsState::Gather;
3570 }
3571 
3572 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3573                             const DataLayout &DL, ScalarEvolution &SE,
3574                             SmallVectorImpl<unsigned> &SortedIndices) {
3575   assert(llvm::all_of(
3576              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3577          "Expected list of pointer operands.");
3578   // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3579   // Ptr into, sort and return the sorted indices with values next to one
3580   // another.
3581   MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3582   Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3583 
3584   unsigned Cnt = 1;
3585   for (Value *Ptr : VL.drop_front()) {
3586     bool Found = any_of(Bases, [&](auto &Base) {
3587       Optional<int> Diff =
3588           getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3589                           /*StrictCheck=*/true);
3590       if (!Diff)
3591         return false;
3592 
3593       Base.second.emplace_back(Ptr, *Diff, Cnt++);
3594       return true;
3595     });
3596 
3597     if (!Found) {
3598       // If we haven't found enough to usefully cluster, return early.
3599       if (Bases.size() > VL.size() / 2 - 1)
3600         return false;
3601 
3602       // Not found already - add a new Base
3603       Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3604     }
3605   }
3606 
3607   // For each of the bases sort the pointers by Offset and check if any of the
3608   // base become consecutively allocated.
3609   bool AnyConsecutive = false;
3610   for (auto &Base : Bases) {
3611     auto &Vec = Base.second;
3612     if (Vec.size() > 1) {
3613       llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3614                                 const std::tuple<Value *, int, unsigned> &Y) {
3615         return std::get<1>(X) < std::get<1>(Y);
3616       });
3617       int InitialOffset = std::get<1>(Vec[0]);
3618       AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
3619         return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3620       });
3621     }
3622   }
3623 
3624   // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3625   SortedIndices.clear();
3626   if (!AnyConsecutive)
3627     return false;
3628 
3629   for (auto &Base : Bases) {
3630     for (auto &T : Base.second)
3631       SortedIndices.push_back(std::get<2>(T));
3632   }
3633 
3634   assert(SortedIndices.size() == VL.size() &&
3635          "Expected SortedIndices to be the size of VL");
3636   return true;
3637 }
3638 
3639 Optional<BoUpSLP::OrdersType>
3640 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
3641   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3642   Type *ScalarTy = TE.Scalars[0]->getType();
3643 
3644   SmallVector<Value *> Ptrs;
3645   Ptrs.reserve(TE.Scalars.size());
3646   for (Value *V : TE.Scalars) {
3647     auto *L = dyn_cast<LoadInst>(V);
3648     if (!L || !L->isSimple())
3649       return None;
3650     Ptrs.push_back(L->getPointerOperand());
3651   }
3652 
3653   BoUpSLP::OrdersType Order;
3654   if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
3655     return Order;
3656   return None;
3657 }
3658 
3659 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3660                                                          bool TopToBottom) {
3661   // No need to reorder if need to shuffle reuses, still need to shuffle the
3662   // node.
3663   if (!TE.ReuseShuffleIndices.empty())
3664     return None;
3665   if (TE.State == TreeEntry::Vectorize &&
3666       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3667        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3668       !TE.isAltShuffle())
3669     return TE.ReorderIndices;
3670   if (TE.State == TreeEntry::NeedToGather) {
3671     // TODO: add analysis of other gather nodes with extractelement
3672     // instructions and other values/instructions, not only undefs.
3673     if (((TE.getOpcode() == Instruction::ExtractElement &&
3674           !TE.isAltShuffle()) ||
3675          (all_of(TE.Scalars,
3676                  [](Value *V) {
3677                    return isa<UndefValue, ExtractElementInst>(V);
3678                  }) &&
3679           any_of(TE.Scalars,
3680                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3681         all_of(TE.Scalars,
3682                [](Value *V) {
3683                  auto *EE = dyn_cast<ExtractElementInst>(V);
3684                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3685                }) &&
3686         allSameType(TE.Scalars)) {
3687       // Check that gather of extractelements can be represented as
3688       // just a shuffle of a single vector.
3689       OrdersType CurrentOrder;
3690       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3691       if (Reuse || !CurrentOrder.empty()) {
3692         if (!CurrentOrder.empty())
3693           fixupOrderingIndices(CurrentOrder);
3694         return CurrentOrder;
3695       }
3696     }
3697     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3698       return CurrentOrder;
3699     if (TE.Scalars.size() >= 4)
3700       if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
3701         return Order;
3702   }
3703   return None;
3704 }
3705 
3706 void BoUpSLP::reorderTopToBottom() {
3707   // Maps VF to the graph nodes.
3708   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3709   // ExtractElement gather nodes which can be vectorized and need to handle
3710   // their ordering.
3711   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3712 
3713   // AltShuffles can also have a preferred ordering that leads to fewer
3714   // instructions, e.g., the addsub instruction in x86.
3715   DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
3716 
3717   // Maps a TreeEntry to the reorder indices of external users.
3718   DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
3719       ExternalUserReorderMap;
3720   // FIXME: Workaround for syntax error reported by MSVC buildbots.
3721   TargetTransformInfo &TTIRef = *TTI;
3722   // Find all reorderable nodes with the given VF.
3723   // Currently the are vectorized stores,loads,extracts + some gathering of
3724   // extracts.
3725   for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
3726                               &GathersToOrders, &ExternalUserReorderMap,
3727                               &AltShufflesToOrders](
3728                                  const std::unique_ptr<TreeEntry> &TE) {
3729     // Look for external users that will probably be vectorized.
3730     SmallVector<OrdersType, 1> ExternalUserReorderIndices =
3731         findExternalStoreUsersReorderIndices(TE.get());
3732     if (!ExternalUserReorderIndices.empty()) {
3733       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3734       ExternalUserReorderMap.try_emplace(TE.get(),
3735                                          std::move(ExternalUserReorderIndices));
3736     }
3737 
3738     // Patterns like [fadd,fsub] can be combined into a single instruction in
3739     // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
3740     // to take into account their order when looking for the most used order.
3741     if (TE->isAltShuffle()) {
3742       VectorType *VecTy =
3743           FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
3744       unsigned Opcode0 = TE->getOpcode();
3745       unsigned Opcode1 = TE->getAltOpcode();
3746       // The opcode mask selects between the two opcodes.
3747       SmallBitVector OpcodeMask(TE->Scalars.size(), false);
3748       for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
3749         if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
3750           OpcodeMask.set(Lane);
3751       // If this pattern is supported by the target then we consider the order.
3752       if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
3753         VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3754         AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
3755       }
3756       // TODO: Check the reverse order too.
3757     }
3758 
3759     if (Optional<OrdersType> CurrentOrder =
3760             getReorderingData(*TE, /*TopToBottom=*/true)) {
3761       // Do not include ordering for nodes used in the alt opcode vectorization,
3762       // better to reorder them during bottom-to-top stage. If follow the order
3763       // here, it causes reordering of the whole graph though actually it is
3764       // profitable just to reorder the subgraph that starts from the alternate
3765       // opcode vectorization node. Such nodes already end-up with the shuffle
3766       // instruction and it is just enough to change this shuffle rather than
3767       // rotate the scalars for the whole graph.
3768       unsigned Cnt = 0;
3769       const TreeEntry *UserTE = TE.get();
3770       while (UserTE && Cnt < RecursionMaxDepth) {
3771         if (UserTE->UserTreeIndices.size() != 1)
3772           break;
3773         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3774               return EI.UserTE->State == TreeEntry::Vectorize &&
3775                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3776             }))
3777           return;
3778         UserTE = UserTE->UserTreeIndices.back().UserTE;
3779         ++Cnt;
3780       }
3781       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3782       if (TE->State != TreeEntry::Vectorize)
3783         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3784     }
3785   });
3786 
3787   // Reorder the graph nodes according to their vectorization factor.
3788   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3789        VF /= 2) {
3790     auto It = VFToOrderedEntries.find(VF);
3791     if (It == VFToOrderedEntries.end())
3792       continue;
3793     // Try to find the most profitable order. We just are looking for the most
3794     // used order and reorder scalar elements in the nodes according to this
3795     // mostly used order.
3796     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3797     // All operands are reordered and used only in this node - propagate the
3798     // most used order to the user node.
3799     MapVector<OrdersType, unsigned,
3800               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3801         OrdersUses;
3802     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3803     for (const TreeEntry *OpTE : OrderedEntries) {
3804       // No need to reorder this nodes, still need to extend and to use shuffle,
3805       // just need to merge reordering shuffle and the reuse shuffle.
3806       if (!OpTE->ReuseShuffleIndices.empty())
3807         continue;
3808       // Count number of orders uses.
3809       const auto &Order = [OpTE, &GathersToOrders,
3810                            &AltShufflesToOrders]() -> const OrdersType & {
3811         if (OpTE->State == TreeEntry::NeedToGather) {
3812           auto It = GathersToOrders.find(OpTE);
3813           if (It != GathersToOrders.end())
3814             return It->second;
3815         }
3816         if (OpTE->isAltShuffle()) {
3817           auto It = AltShufflesToOrders.find(OpTE);
3818           if (It != AltShufflesToOrders.end())
3819             return It->second;
3820         }
3821         return OpTE->ReorderIndices;
3822       }();
3823       // First consider the order of the external scalar users.
3824       auto It = ExternalUserReorderMap.find(OpTE);
3825       if (It != ExternalUserReorderMap.end()) {
3826         const auto &ExternalUserReorderIndices = It->second;
3827         for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
3828           ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
3829         // No other useful reorder data in this entry.
3830         if (Order.empty())
3831           continue;
3832       }
3833       // Stores actually store the mask, not the order, need to invert.
3834       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3835           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3836         SmallVector<int> Mask;
3837         inversePermutation(Order, Mask);
3838         unsigned E = Order.size();
3839         OrdersType CurrentOrder(E, E);
3840         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3841           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3842         });
3843         fixupOrderingIndices(CurrentOrder);
3844         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3845       } else {
3846         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3847       }
3848     }
3849     // Set order of the user node.
3850     if (OrdersUses.empty())
3851       continue;
3852     // Choose the most used order.
3853     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3854     unsigned Cnt = OrdersUses.front().second;
3855     for (const auto &Pair : drop_begin(OrdersUses)) {
3856       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3857         BestOrder = Pair.first;
3858         Cnt = Pair.second;
3859       }
3860     }
3861     // Set order of the user node.
3862     if (BestOrder.empty())
3863       continue;
3864     SmallVector<int> Mask;
3865     inversePermutation(BestOrder, Mask);
3866     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3867     unsigned E = BestOrder.size();
3868     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3869       return I < E ? static_cast<int>(I) : UndefMaskElem;
3870     });
3871     // Do an actual reordering, if profitable.
3872     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3873       // Just do the reordering for the nodes with the given VF.
3874       if (TE->Scalars.size() != VF) {
3875         if (TE->ReuseShuffleIndices.size() == VF) {
3876           // Need to reorder the reuses masks of the operands with smaller VF to
3877           // be able to find the match between the graph nodes and scalar
3878           // operands of the given node during vectorization/cost estimation.
3879           assert(all_of(TE->UserTreeIndices,
3880                         [VF, &TE](const EdgeInfo &EI) {
3881                           return EI.UserTE->Scalars.size() == VF ||
3882                                  EI.UserTE->Scalars.size() ==
3883                                      TE->Scalars.size();
3884                         }) &&
3885                  "All users must be of VF size.");
3886           // Update ordering of the operands with the smaller VF than the given
3887           // one.
3888           reorderReuses(TE->ReuseShuffleIndices, Mask);
3889         }
3890         continue;
3891       }
3892       if (TE->State == TreeEntry::Vectorize &&
3893           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3894               InsertElementInst>(TE->getMainOp()) &&
3895           !TE->isAltShuffle()) {
3896         // Build correct orders for extract{element,value}, loads and
3897         // stores.
3898         reorderOrder(TE->ReorderIndices, Mask);
3899         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3900           TE->reorderOperands(Mask);
3901       } else {
3902         // Reorder the node and its operands.
3903         TE->reorderOperands(Mask);
3904         assert(TE->ReorderIndices.empty() &&
3905                "Expected empty reorder sequence.");
3906         reorderScalars(TE->Scalars, Mask);
3907       }
3908       if (!TE->ReuseShuffleIndices.empty()) {
3909         // Apply reversed order to keep the original ordering of the reused
3910         // elements to avoid extra reorder indices shuffling.
3911         OrdersType CurrentOrder;
3912         reorderOrder(CurrentOrder, MaskOrder);
3913         SmallVector<int> NewReuses;
3914         inversePermutation(CurrentOrder, NewReuses);
3915         addMask(NewReuses, TE->ReuseShuffleIndices);
3916         TE->ReuseShuffleIndices.swap(NewReuses);
3917       }
3918     }
3919   }
3920 }
3921 
3922 bool BoUpSLP::canReorderOperands(
3923     TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
3924     ArrayRef<TreeEntry *> ReorderableGathers,
3925     SmallVectorImpl<TreeEntry *> &GatherOps) {
3926   for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
3927     if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3928           return OpData.first == I &&
3929                  OpData.second->State == TreeEntry::Vectorize;
3930         }))
3931       continue;
3932     if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
3933       // Do not reorder if operand node is used by many user nodes.
3934       if (any_of(TE->UserTreeIndices,
3935                  [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
3936         return false;
3937       // Add the node to the list of the ordered nodes with the identity
3938       // order.
3939       Edges.emplace_back(I, TE);
3940       // Add ScatterVectorize nodes to the list of operands, where just
3941       // reordering of the scalars is required. Similar to the gathers, so
3942       // simply add to the list of gathered ops.
3943       // If there are reused scalars, process this node as a regular vectorize
3944       // node, just reorder reuses mask.
3945       if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty())
3946         GatherOps.push_back(TE);
3947       continue;
3948     }
3949     TreeEntry *Gather = nullptr;
3950     if (count_if(ReorderableGathers,
3951                  [&Gather, UserTE, I](TreeEntry *TE) {
3952                    assert(TE->State != TreeEntry::Vectorize &&
3953                           "Only non-vectorized nodes are expected.");
3954                    if (any_of(TE->UserTreeIndices,
3955                               [UserTE, I](const EdgeInfo &EI) {
3956                                 return EI.UserTE == UserTE && EI.EdgeIdx == I;
3957                               })) {
3958                      assert(TE->isSame(UserTE->getOperand(I)) &&
3959                             "Operand entry does not match operands.");
3960                      Gather = TE;
3961                      return true;
3962                    }
3963                    return false;
3964                  }) > 1 &&
3965         !all_of(UserTE->getOperand(I), isConstant))
3966       return false;
3967     if (Gather)
3968       GatherOps.push_back(Gather);
3969   }
3970   return true;
3971 }
3972 
3973 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3974   SetVector<TreeEntry *> OrderedEntries;
3975   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3976   // Find all reorderable leaf nodes with the given VF.
3977   // Currently the are vectorized loads,extracts without alternate operands +
3978   // some gathering of extracts.
3979   SmallVector<TreeEntry *> NonVectorized;
3980   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3981                               &NonVectorized](
3982                                  const std::unique_ptr<TreeEntry> &TE) {
3983     if (TE->State != TreeEntry::Vectorize)
3984       NonVectorized.push_back(TE.get());
3985     if (Optional<OrdersType> CurrentOrder =
3986             getReorderingData(*TE, /*TopToBottom=*/false)) {
3987       OrderedEntries.insert(TE.get());
3988       if (TE->State != TreeEntry::Vectorize)
3989         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3990     }
3991   });
3992 
3993   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3994   // I.e., if the node has operands, that are reordered, try to make at least
3995   // one operand order in the natural order and reorder others + reorder the
3996   // user node itself.
3997   SmallPtrSet<const TreeEntry *, 4> Visited;
3998   while (!OrderedEntries.empty()) {
3999     // 1. Filter out only reordered nodes.
4000     // 2. If the entry has multiple uses - skip it and jump to the next node.
4001     DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
4002     SmallVector<TreeEntry *> Filtered;
4003     for (TreeEntry *TE : OrderedEntries) {
4004       if (!(TE->State == TreeEntry::Vectorize ||
4005             (TE->State == TreeEntry::NeedToGather &&
4006              GathersToOrders.count(TE))) ||
4007           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4008           !all_of(drop_begin(TE->UserTreeIndices),
4009                   [TE](const EdgeInfo &EI) {
4010                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4011                   }) ||
4012           !Visited.insert(TE).second) {
4013         Filtered.push_back(TE);
4014         continue;
4015       }
4016       // Build a map between user nodes and their operands order to speedup
4017       // search. The graph currently does not provide this dependency directly.
4018       for (EdgeInfo &EI : TE->UserTreeIndices) {
4019         TreeEntry *UserTE = EI.UserTE;
4020         auto It = Users.find(UserTE);
4021         if (It == Users.end())
4022           It = Users.insert({UserTE, {}}).first;
4023         It->second.emplace_back(EI.EdgeIdx, TE);
4024       }
4025     }
4026     // Erase filtered entries.
4027     for_each(Filtered,
4028              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
4029     SmallVector<
4030         std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4031         UsersVec(Users.begin(), Users.end());
4032     sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4033       return Data1.first->Idx > Data2.first->Idx;
4034     });
4035     for (auto &Data : UsersVec) {
4036       // Check that operands are used only in the User node.
4037       SmallVector<TreeEntry *> GatherOps;
4038       if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4039                               GatherOps)) {
4040         for_each(Data.second,
4041                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4042                    OrderedEntries.remove(Op.second);
4043                  });
4044         continue;
4045       }
4046       // All operands are reordered and used only in this node - propagate the
4047       // most used order to the user node.
4048       MapVector<OrdersType, unsigned,
4049                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4050           OrdersUses;
4051       // Do the analysis for each tree entry only once, otherwise the order of
4052       // the same node my be considered several times, though might be not
4053       // profitable.
4054       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4055       SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4056       for (const auto &Op : Data.second) {
4057         TreeEntry *OpTE = Op.second;
4058         if (!VisitedOps.insert(OpTE).second)
4059           continue;
4060         if (!OpTE->ReuseShuffleIndices.empty())
4061           continue;
4062         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4063           if (OpTE->State == TreeEntry::NeedToGather)
4064             return GathersToOrders.find(OpTE)->second;
4065           return OpTE->ReorderIndices;
4066         }();
4067         unsigned NumOps = count_if(
4068             Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4069               return P.second == OpTE;
4070             });
4071         // Stores actually store the mask, not the order, need to invert.
4072         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4073             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4074           SmallVector<int> Mask;
4075           inversePermutation(Order, Mask);
4076           unsigned E = Order.size();
4077           OrdersType CurrentOrder(E, E);
4078           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4079             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
4080           });
4081           fixupOrderingIndices(CurrentOrder);
4082           OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4083               NumOps;
4084         } else {
4085           OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4086         }
4087         auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4088         const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4089                                             const TreeEntry *TE) {
4090           if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4091               (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4092               (IgnoreReorder && TE->Idx == 0))
4093             return true;
4094           if (TE->State == TreeEntry::NeedToGather) {
4095             auto It = GathersToOrders.find(TE);
4096             if (It != GathersToOrders.end())
4097               return !It->second.empty();
4098             return true;
4099           }
4100           return false;
4101         };
4102         for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4103           TreeEntry *UserTE = EI.UserTE;
4104           if (!VisitedUsers.insert(UserTE).second)
4105             continue;
4106           // May reorder user node if it requires reordering, has reused
4107           // scalars, is an alternate op vectorize node or its op nodes require
4108           // reordering.
4109           if (AllowsReordering(UserTE))
4110             continue;
4111           // Check if users allow reordering.
4112           // Currently look up just 1 level of operands to avoid increase of
4113           // the compile time.
4114           // Profitable to reorder if definitely more operands allow
4115           // reordering rather than those with natural order.
4116           ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4117           if (static_cast<unsigned>(count_if(
4118                   Ops, [UserTE, &AllowsReordering](
4119                            const std::pair<unsigned, TreeEntry *> &Op) {
4120                     return AllowsReordering(Op.second) &&
4121                            all_of(Op.second->UserTreeIndices,
4122                                   [UserTE](const EdgeInfo &EI) {
4123                                     return EI.UserTE == UserTE;
4124                                   });
4125                   })) <= Ops.size() / 2)
4126             ++Res.first->second;
4127         }
4128       }
4129       // If no orders - skip current nodes and jump to the next one, if any.
4130       if (OrdersUses.empty()) {
4131         for_each(Data.second,
4132                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4133                    OrderedEntries.remove(Op.second);
4134                  });
4135         continue;
4136       }
4137       // Choose the best order.
4138       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4139       unsigned Cnt = OrdersUses.front().second;
4140       for (const auto &Pair : drop_begin(OrdersUses)) {
4141         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4142           BestOrder = Pair.first;
4143           Cnt = Pair.second;
4144         }
4145       }
4146       // Set order of the user node (reordering of operands and user nodes).
4147       if (BestOrder.empty()) {
4148         for_each(Data.second,
4149                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4150                    OrderedEntries.remove(Op.second);
4151                  });
4152         continue;
4153       }
4154       // Erase operands from OrderedEntries list and adjust their orders.
4155       VisitedOps.clear();
4156       SmallVector<int> Mask;
4157       inversePermutation(BestOrder, Mask);
4158       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4159       unsigned E = BestOrder.size();
4160       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4161         return I < E ? static_cast<int>(I) : UndefMaskElem;
4162       });
4163       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4164         TreeEntry *TE = Op.second;
4165         OrderedEntries.remove(TE);
4166         if (!VisitedOps.insert(TE).second)
4167           continue;
4168         if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4169           // Just reorder reuses indices.
4170           reorderReuses(TE->ReuseShuffleIndices, Mask);
4171           continue;
4172         }
4173         // Gathers are processed separately.
4174         if (TE->State != TreeEntry::Vectorize)
4175           continue;
4176         assert((BestOrder.size() == TE->ReorderIndices.size() ||
4177                 TE->ReorderIndices.empty()) &&
4178                "Non-matching sizes of user/operand entries.");
4179         reorderOrder(TE->ReorderIndices, Mask);
4180         if (IgnoreReorder && TE == VectorizableTree.front().get())
4181           IgnoreReorder = false;
4182       }
4183       // For gathers just need to reorder its scalars.
4184       for (TreeEntry *Gather : GatherOps) {
4185         assert(Gather->ReorderIndices.empty() &&
4186                "Unexpected reordering of gathers.");
4187         if (!Gather->ReuseShuffleIndices.empty()) {
4188           // Just reorder reuses indices.
4189           reorderReuses(Gather->ReuseShuffleIndices, Mask);
4190           continue;
4191         }
4192         reorderScalars(Gather->Scalars, Mask);
4193         OrderedEntries.remove(Gather);
4194       }
4195       // Reorder operands of the user node and set the ordering for the user
4196       // node itself.
4197       if (Data.first->State != TreeEntry::Vectorize ||
4198           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4199               Data.first->getMainOp()) ||
4200           Data.first->isAltShuffle())
4201         Data.first->reorderOperands(Mask);
4202       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4203           Data.first->isAltShuffle()) {
4204         reorderScalars(Data.first->Scalars, Mask);
4205         reorderOrder(Data.first->ReorderIndices, MaskOrder);
4206         if (Data.first->ReuseShuffleIndices.empty() &&
4207             !Data.first->ReorderIndices.empty() &&
4208             !Data.first->isAltShuffle()) {
4209           // Insert user node to the list to try to sink reordering deeper in
4210           // the graph.
4211           OrderedEntries.insert(Data.first);
4212         }
4213       } else {
4214         reorderOrder(Data.first->ReorderIndices, Mask);
4215       }
4216     }
4217   }
4218   // If the reordering is unnecessary, just remove the reorder.
4219   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4220       VectorizableTree.front()->ReuseShuffleIndices.empty())
4221     VectorizableTree.front()->ReorderIndices.clear();
4222 }
4223 
4224 void BoUpSLP::buildExternalUses(
4225     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4226   // Collect the values that we need to extract from the tree.
4227   for (auto &TEPtr : VectorizableTree) {
4228     TreeEntry *Entry = TEPtr.get();
4229 
4230     // No need to handle users of gathered values.
4231     if (Entry->State == TreeEntry::NeedToGather)
4232       continue;
4233 
4234     // For each lane:
4235     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4236       Value *Scalar = Entry->Scalars[Lane];
4237       int FoundLane = Entry->findLaneForValue(Scalar);
4238 
4239       // Check if the scalar is externally used as an extra arg.
4240       auto ExtI = ExternallyUsedValues.find(Scalar);
4241       if (ExtI != ExternallyUsedValues.end()) {
4242         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4243                           << Lane << " from " << *Scalar << ".\n");
4244         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4245       }
4246       for (User *U : Scalar->users()) {
4247         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4248 
4249         Instruction *UserInst = dyn_cast<Instruction>(U);
4250         if (!UserInst)
4251           continue;
4252 
4253         if (isDeleted(UserInst))
4254           continue;
4255 
4256         // Skip in-tree scalars that become vectors
4257         if (TreeEntry *UseEntry = getTreeEntry(U)) {
4258           Value *UseScalar = UseEntry->Scalars[0];
4259           // Some in-tree scalars will remain as scalar in vectorized
4260           // instructions. If that is the case, the one in Lane 0 will
4261           // be used.
4262           if (UseScalar != U ||
4263               UseEntry->State == TreeEntry::ScatterVectorize ||
4264               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4265             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4266                               << ".\n");
4267             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4268             continue;
4269           }
4270         }
4271 
4272         // Ignore users in the user ignore list.
4273         if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4274           continue;
4275 
4276         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
4277                           << Lane << " from " << *Scalar << ".\n");
4278         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4279       }
4280     }
4281   }
4282 }
4283 
4284 DenseMap<Value *, SmallVector<StoreInst *, 4>>
4285 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4286   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
4287   for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4288     Value *V = TE->Scalars[Lane];
4289     // To save compilation time we don't visit if we have too many users.
4290     static constexpr unsigned UsersLimit = 4;
4291     if (V->hasNUsesOrMore(UsersLimit))
4292       break;
4293 
4294     // Collect stores per pointer object.
4295     for (User *U : V->users()) {
4296       auto *SI = dyn_cast<StoreInst>(U);
4297       if (SI == nullptr || !SI->isSimple() ||
4298           !isValidElementType(SI->getValueOperand()->getType()))
4299         continue;
4300       // Skip entry if already
4301       if (getTreeEntry(U))
4302         continue;
4303 
4304       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4305       auto &StoresVec = PtrToStoresMap[Ptr];
4306       // For now just keep one store per pointer object per lane.
4307       // TODO: Extend this to support multiple stores per pointer per lane
4308       if (StoresVec.size() > Lane)
4309         continue;
4310       // Skip if in different BBs.
4311       if (!StoresVec.empty() &&
4312           SI->getParent() != StoresVec.back()->getParent())
4313         continue;
4314       // Make sure that the stores are of the same type.
4315       if (!StoresVec.empty() &&
4316           SI->getValueOperand()->getType() !=
4317               StoresVec.back()->getValueOperand()->getType())
4318         continue;
4319       StoresVec.push_back(SI);
4320     }
4321   }
4322   return PtrToStoresMap;
4323 }
4324 
4325 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
4326                             OrdersType &ReorderIndices) const {
4327   // We check whether the stores in StoreVec can form a vector by sorting them
4328   // and checking whether they are consecutive.
4329 
4330   // To avoid calling getPointersDiff() while sorting we create a vector of
4331   // pairs {store, offset from first} and sort this instead.
4332   SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
4333   StoreInst *S0 = StoresVec[0];
4334   StoreOffsetVec[0] = {S0, 0};
4335   Type *S0Ty = S0->getValueOperand()->getType();
4336   Value *S0Ptr = S0->getPointerOperand();
4337   for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
4338     StoreInst *SI = StoresVec[Idx];
4339     Optional<int> Diff =
4340         getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
4341                         SI->getPointerOperand(), *DL, *SE,
4342                         /*StrictCheck=*/true);
4343     // We failed to compare the pointers so just abandon this StoresVec.
4344     if (!Diff)
4345       return false;
4346     StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
4347   }
4348 
4349   // Sort the vector based on the pointers. We create a copy because we may
4350   // need the original later for calculating the reorder (shuffle) indices.
4351   stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
4352                                  const std::pair<StoreInst *, int> &Pair2) {
4353     int Offset1 = Pair1.second;
4354     int Offset2 = Pair2.second;
4355     return Offset1 < Offset2;
4356   });
4357 
4358   // Check if the stores are consecutive by checking if their difference is 1.
4359   for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
4360     if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
4361       return false;
4362 
4363   // Calculate the shuffle indices according to their offset against the sorted
4364   // StoreOffsetVec.
4365   ReorderIndices.reserve(StoresVec.size());
4366   for (StoreInst *SI : StoresVec) {
4367     unsigned Idx = find_if(StoreOffsetVec,
4368                            [SI](const std::pair<StoreInst *, int> &Pair) {
4369                              return Pair.first == SI;
4370                            }) -
4371                    StoreOffsetVec.begin();
4372     ReorderIndices.push_back(Idx);
4373   }
4374   // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
4375   // reorderTopToBottom() and reorderBottomToTop(), so we are following the
4376   // same convention here.
4377   auto IsIdentityOrder = [](const OrdersType &Order) {
4378     for (unsigned Idx : seq<unsigned>(0, Order.size()))
4379       if (Idx != Order[Idx])
4380         return false;
4381     return true;
4382   };
4383   if (IsIdentityOrder(ReorderIndices))
4384     ReorderIndices.clear();
4385 
4386   return true;
4387 }
4388 
4389 #ifndef NDEBUG
4390 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
4391   for (unsigned Idx : Order)
4392     dbgs() << Idx << ", ";
4393   dbgs() << "\n";
4394 }
4395 #endif
4396 
4397 SmallVector<BoUpSLP::OrdersType, 1>
4398 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
4399   unsigned NumLanes = TE->Scalars.size();
4400 
4401   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
4402       collectUserStores(TE);
4403 
4404   // Holds the reorder indices for each candidate store vector that is a user of
4405   // the current TreeEntry.
4406   SmallVector<OrdersType, 1> ExternalReorderIndices;
4407 
4408   // Now inspect the stores collected per pointer and look for vectorization
4409   // candidates. For each candidate calculate the reorder index vector and push
4410   // it into `ExternalReorderIndices`
4411   for (const auto &Pair : PtrToStoresMap) {
4412     auto &StoresVec = Pair.second;
4413     // If we have fewer than NumLanes stores, then we can't form a vector.
4414     if (StoresVec.size() != NumLanes)
4415       continue;
4416 
4417     // If the stores are not consecutive then abandon this StoresVec.
4418     OrdersType ReorderIndices;
4419     if (!CanFormVector(StoresVec, ReorderIndices))
4420       continue;
4421 
4422     // We now know that the scalars in StoresVec can form a vector instruction,
4423     // so set the reorder indices.
4424     ExternalReorderIndices.push_back(ReorderIndices);
4425   }
4426   return ExternalReorderIndices;
4427 }
4428 
4429 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
4430                         const SmallDenseSet<Value *> &UserIgnoreLst) {
4431   deleteTree();
4432   UserIgnoreList = &UserIgnoreLst;
4433   if (!allSameType(Roots))
4434     return;
4435   buildTree_rec(Roots, 0, EdgeInfo());
4436 }
4437 
4438 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
4439   deleteTree();
4440   if (!allSameType(Roots))
4441     return;
4442   buildTree_rec(Roots, 0, EdgeInfo());
4443 }
4444 
4445 /// \return true if the specified list of values has only one instruction that
4446 /// requires scheduling, false otherwise.
4447 #ifndef NDEBUG
4448 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
4449   Value *NeedsScheduling = nullptr;
4450   for (Value *V : VL) {
4451     if (doesNotNeedToBeScheduled(V))
4452       continue;
4453     if (!NeedsScheduling) {
4454       NeedsScheduling = V;
4455       continue;
4456     }
4457     return false;
4458   }
4459   return NeedsScheduling;
4460 }
4461 #endif
4462 
4463 /// Generates key/subkey pair for the given value to provide effective sorting
4464 /// of the values and better detection of the vectorizable values sequences. The
4465 /// keys/subkeys can be used for better sorting of the values themselves (keys)
4466 /// and in values subgroups (subkeys).
4467 static std::pair<size_t, size_t> generateKeySubkey(
4468     Value *V, const TargetLibraryInfo *TLI,
4469     function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
4470     bool AllowAlternate) {
4471   hash_code Key = hash_value(V->getValueID() + 2);
4472   hash_code SubKey = hash_value(0);
4473   // Sort the loads by the distance between the pointers.
4474   if (auto *LI = dyn_cast<LoadInst>(V)) {
4475     Key = hash_combine(hash_value(Instruction::Load), Key);
4476     if (LI->isSimple())
4477       SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
4478     else
4479       SubKey = hash_value(LI);
4480   } else if (isVectorLikeInstWithConstOps(V)) {
4481     // Sort extracts by the vector operands.
4482     if (isa<ExtractElementInst, UndefValue>(V))
4483       Key = hash_value(Value::UndefValueVal + 1);
4484     if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
4485       if (!isUndefVector(EI->getVectorOperand()) &&
4486           !isa<UndefValue>(EI->getIndexOperand()))
4487         SubKey = hash_value(EI->getVectorOperand());
4488     }
4489   } else if (auto *I = dyn_cast<Instruction>(V)) {
4490     // Sort other instructions just by the opcodes except for CMPInst.
4491     // For CMP also sort by the predicate kind.
4492     if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) &&
4493         isValidForAlternation(I->getOpcode())) {
4494       if (AllowAlternate)
4495         Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
4496       else
4497         Key = hash_combine(hash_value(I->getOpcode()), Key);
4498       SubKey = hash_combine(
4499           hash_value(I->getOpcode()), hash_value(I->getType()),
4500           hash_value(isa<BinaryOperator>(I)
4501                          ? I->getType()
4502                          : cast<CastInst>(I)->getOperand(0)->getType()));
4503       // For casts, look through the only operand to improve compile time.
4504       if (isa<CastInst>(I)) {
4505         std::pair<size_t, size_t> OpVals =
4506             generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
4507                               /*=AllowAlternate*/ true);
4508         Key = hash_combine(OpVals.first, Key);
4509         SubKey = hash_combine(OpVals.first, SubKey);
4510       }
4511     } else if (auto *CI = dyn_cast<CmpInst>(I)) {
4512       CmpInst::Predicate Pred = CI->getPredicate();
4513       if (CI->isCommutative())
4514         Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
4515       CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
4516       SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
4517                             hash_value(SwapPred),
4518                             hash_value(CI->getOperand(0)->getType()));
4519     } else if (auto *Call = dyn_cast<CallInst>(I)) {
4520       Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
4521       if (isTriviallyVectorizable(ID)) {
4522         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
4523       } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
4524         SubKey = hash_combine(hash_value(I->getOpcode()),
4525                               hash_value(Call->getCalledFunction()));
4526       } else {
4527         Key = hash_combine(hash_value(Call), Key);
4528         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
4529       }
4530       for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
4531         SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
4532                               hash_value(Op.Tag), SubKey);
4533     } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
4534       if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
4535         SubKey = hash_value(Gep->getPointerOperand());
4536       else
4537         SubKey = hash_value(Gep);
4538     } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
4539                !isa<ConstantInt>(I->getOperand(1))) {
4540       // Do not try to vectorize instructions with potentially high cost.
4541       SubKey = hash_value(I);
4542     } else {
4543       SubKey = hash_value(I->getOpcode());
4544     }
4545     Key = hash_combine(hash_value(I->getParent()), Key);
4546   }
4547   return std::make_pair(Key, SubKey);
4548 }
4549 
4550 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
4551                             const EdgeInfo &UserTreeIdx) {
4552   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
4553 
4554   SmallVector<int> ReuseShuffleIndicies;
4555   SmallVector<Value *> UniqueValues;
4556   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4557                                 &UserTreeIdx,
4558                                 this](const InstructionsState &S) {
4559     // Check that every instruction appears once in this bundle.
4560     DenseMap<Value *, unsigned> UniquePositions;
4561     for (Value *V : VL) {
4562       if (isConstant(V)) {
4563         ReuseShuffleIndicies.emplace_back(
4564             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4565         UniqueValues.emplace_back(V);
4566         continue;
4567       }
4568       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4569       ReuseShuffleIndicies.emplace_back(Res.first->second);
4570       if (Res.second)
4571         UniqueValues.emplace_back(V);
4572     }
4573     size_t NumUniqueScalarValues = UniqueValues.size();
4574     if (NumUniqueScalarValues == VL.size()) {
4575       ReuseShuffleIndicies.clear();
4576     } else {
4577       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
4578       if (NumUniqueScalarValues <= 1 ||
4579           (UniquePositions.size() == 1 && all_of(UniqueValues,
4580                                                  [](Value *V) {
4581                                                    return isa<UndefValue>(V) ||
4582                                                           !isConstant(V);
4583                                                  })) ||
4584           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4585         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
4586         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4587         return false;
4588       }
4589       VL = UniqueValues;
4590     }
4591     return true;
4592   };
4593 
4594   InstructionsState S = getSameOpcode(VL);
4595 
4596   // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of
4597   // a load), in which case peek through to include it in the tree, without
4598   // ballooning over-budget.
4599   if (Depth >= RecursionMaxDepth &&
4600       !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp &&
4601         VL.size() >= 4 &&
4602         (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) {
4603            return match(I,
4604                         m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) &&
4605                   cast<Instruction>(I)->getOpcode() ==
4606                       cast<Instruction>(S.MainOp)->getOpcode();
4607          })))) {
4608     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
4609     if (TryToFindDuplicates(S))
4610       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4611                    ReuseShuffleIndicies);
4612     return;
4613   }
4614 
4615   // Don't handle scalable vectors
4616   if (S.getOpcode() == Instruction::ExtractElement &&
4617       isa<ScalableVectorType>(
4618           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4619     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
4620     if (TryToFindDuplicates(S))
4621       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4622                    ReuseShuffleIndicies);
4623     return;
4624   }
4625 
4626   // Don't handle vectors.
4627   if (S.OpValue->getType()->isVectorTy() &&
4628       !isa<InsertElementInst>(S.OpValue)) {
4629     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
4630     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4631     return;
4632   }
4633 
4634   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4635     if (SI->getValueOperand()->getType()->isVectorTy()) {
4636       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
4637       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4638       return;
4639     }
4640 
4641   // If all of the operands are identical or constant we have a simple solution.
4642   // If we deal with insert/extract instructions, they all must have constant
4643   // indices, otherwise we should gather them, not try to vectorize.
4644   // If alternate op node with 2 elements with gathered operands - do not
4645   // vectorize.
4646   auto &&NotProfitableForVectorization = [&S, this,
4647                                           Depth](ArrayRef<Value *> VL) {
4648     if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
4649       return false;
4650     if (VectorizableTree.size() < MinTreeSize)
4651       return false;
4652     if (Depth >= RecursionMaxDepth - 1)
4653       return true;
4654     // Check if all operands are extracts, part of vector node or can build a
4655     // regular vectorize node.
4656     SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
4657     for (Value *V : VL) {
4658       auto *I = cast<Instruction>(V);
4659       InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
4660         return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
4661       }));
4662     }
4663     bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
4664     if ((IsCommutative &&
4665          std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
4666         (!IsCommutative &&
4667          all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
4668       return true;
4669     assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
4670     SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
4671     auto *I1 = cast<Instruction>(VL.front());
4672     auto *I2 = cast<Instruction>(VL.back());
4673     for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4674       Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4675                                              I2->getOperand(Op));
4676     if (static_cast<unsigned>(count_if(
4677             Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4678               return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4679             })) >= S.MainOp->getNumOperands() / 2)
4680       return false;
4681     if (S.MainOp->getNumOperands() > 2)
4682       return true;
4683     if (IsCommutative) {
4684       // Check permuted operands.
4685       Candidates.clear();
4686       for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4687         Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4688                                                I2->getOperand((Op + 1) % E));
4689       if (any_of(
4690               Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4691                 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4692               }))
4693         return false;
4694     }
4695     return true;
4696   };
4697   SmallVector<unsigned> SortedIndices;
4698   BasicBlock *BB = nullptr;
4699   bool AreAllSameInsts =
4700       (S.getOpcode() && allSameBlock(VL)) ||
4701       (S.OpValue->getType()->isPointerTy() && UserTreeIdx.UserTE &&
4702        UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize &&
4703        VL.size() > 2 &&
4704        all_of(VL,
4705               [&BB](Value *V) {
4706                 auto *I = dyn_cast<GetElementPtrInst>(V);
4707                 if (!I)
4708                   return doesNotNeedToBeScheduled(V);
4709                 if (!BB)
4710                   BB = I->getParent();
4711                 return BB == I->getParent() && I->getNumOperands() == 2;
4712               }) &&
4713        BB &&
4714        sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
4715                        SortedIndices));
4716   if (allConstant(VL) || isSplat(VL) || !AreAllSameInsts ||
4717       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
4718            S.OpValue) &&
4719        !all_of(VL, isVectorLikeInstWithConstOps)) ||
4720       NotProfitableForVectorization(VL)) {
4721     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
4722     if (TryToFindDuplicates(S))
4723       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4724                    ReuseShuffleIndicies);
4725     return;
4726   }
4727 
4728   // We now know that this is a vector of instructions of the same type from
4729   // the same block.
4730 
4731   // Don't vectorize ephemeral values.
4732   if (!EphValues.empty()) {
4733     for (Value *V : VL) {
4734       if (EphValues.count(V)) {
4735         LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4736                           << ") is ephemeral.\n");
4737         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4738         return;
4739       }
4740     }
4741   }
4742 
4743   // Check if this is a duplicate of another entry.
4744   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4745     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
4746     if (!E->isSame(VL)) {
4747       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
4748       if (TryToFindDuplicates(S))
4749         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4750                      ReuseShuffleIndicies);
4751       return;
4752     }
4753     // Record the reuse of the tree node.  FIXME, currently this is only used to
4754     // properly draw the graph rather than for the actual vectorization.
4755     E->UserTreeIndices.push_back(UserTreeIdx);
4756     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
4757                       << ".\n");
4758     return;
4759   }
4760 
4761   // Check that none of the instructions in the bundle are already in the tree.
4762   for (Value *V : VL) {
4763     auto *I = dyn_cast<Instruction>(V);
4764     if (!I)
4765       continue;
4766     if (getTreeEntry(I)) {
4767       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4768                         << ") is already in tree.\n");
4769       if (TryToFindDuplicates(S))
4770         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4771                      ReuseShuffleIndicies);
4772       return;
4773     }
4774   }
4775 
4776   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
4777   if (UserIgnoreList && !UserIgnoreList->empty()) {
4778     for (Value *V : VL) {
4779       if (UserIgnoreList && UserIgnoreList->contains(V)) {
4780         LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
4781         if (TryToFindDuplicates(S))
4782           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4783                        ReuseShuffleIndicies);
4784         return;
4785       }
4786     }
4787   }
4788 
4789   // Special processing for sorted pointers for ScatterVectorize node with
4790   // constant indeces only.
4791   if (AreAllSameInsts && !(S.getOpcode() && allSameBlock(VL)) &&
4792       UserTreeIdx.UserTE &&
4793       UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize) {
4794     assert(S.OpValue->getType()->isPointerTy() &&
4795            count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
4796                2 &&
4797            "Expected pointers only.");
4798     // Reset S to make it GetElementPtr kind of node.
4799     const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
4800     assert(It != VL.end() && "Expected at least one GEP.");
4801     S = getSameOpcode(*It);
4802   }
4803 
4804   // Check that all of the users of the scalars that we want to vectorize are
4805   // schedulable.
4806   auto *VL0 = cast<Instruction>(S.OpValue);
4807   BB = VL0->getParent();
4808 
4809   if (!DT->isReachableFromEntry(BB)) {
4810     // Don't go into unreachable blocks. They may contain instructions with
4811     // dependency cycles which confuse the final scheduling.
4812     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
4813     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4814     return;
4815   }
4816 
4817   // Don't go into catchswitch blocks, which can happen with PHIs.
4818   // Such blocks can only have PHIs and the catchswitch.  There is no
4819   // place to insert a shuffle if we need to, so just avoid that issue.
4820   if (isa<CatchSwitchInst>(BB->getTerminator())) {
4821     LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n");
4822     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4823     return;
4824   }
4825 
4826   // Check that every instruction appears once in this bundle.
4827   if (!TryToFindDuplicates(S))
4828     return;
4829 
4830   auto &BSRef = BlocksSchedules[BB];
4831   if (!BSRef)
4832     BSRef = std::make_unique<BlockScheduling>(BB);
4833 
4834   BlockScheduling &BS = *BSRef;
4835 
4836   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
4837 #ifdef EXPENSIVE_CHECKS
4838   // Make sure we didn't break any internal invariants
4839   BS.verify();
4840 #endif
4841   if (!Bundle) {
4842     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
4843     assert((!BS.getScheduleData(VL0) ||
4844             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
4845            "tryScheduleBundle should cancelScheduling on failure");
4846     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4847                  ReuseShuffleIndicies);
4848     return;
4849   }
4850   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
4851 
4852   unsigned ShuffleOrOp = S.isAltShuffle() ?
4853                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
4854   switch (ShuffleOrOp) {
4855     case Instruction::PHI: {
4856       auto *PH = cast<PHINode>(VL0);
4857 
4858       // Check for terminator values (e.g. invoke).
4859       for (Value *V : VL)
4860         for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
4861           Instruction *Term = dyn_cast<Instruction>(Incoming);
4862           if (Term && Term->isTerminator()) {
4863             LLVM_DEBUG(dbgs()
4864                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
4865             BS.cancelScheduling(VL, VL0);
4866             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4867                          ReuseShuffleIndicies);
4868             return;
4869           }
4870         }
4871 
4872       TreeEntry *TE =
4873           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
4874       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
4875 
4876       // Keeps the reordered operands to avoid code duplication.
4877       SmallVector<ValueList, 2> OperandsVec;
4878       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
4879         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
4880           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
4881           TE->setOperand(I, Operands);
4882           OperandsVec.push_back(Operands);
4883           continue;
4884         }
4885         ValueList Operands;
4886         // Prepare the operand vector.
4887         for (Value *V : VL)
4888           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
4889               PH->getIncomingBlock(I)));
4890         TE->setOperand(I, Operands);
4891         OperandsVec.push_back(Operands);
4892       }
4893       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
4894         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
4895       return;
4896     }
4897     case Instruction::ExtractValue:
4898     case Instruction::ExtractElement: {
4899       OrdersType CurrentOrder;
4900       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
4901       if (Reuse) {
4902         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
4903         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4904                      ReuseShuffleIndicies);
4905         // This is a special case, as it does not gather, but at the same time
4906         // we are not extending buildTree_rec() towards the operands.
4907         ValueList Op0;
4908         Op0.assign(VL.size(), VL0->getOperand(0));
4909         VectorizableTree.back()->setOperand(0, Op0);
4910         return;
4911       }
4912       if (!CurrentOrder.empty()) {
4913         LLVM_DEBUG({
4914           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
4915                     "with order";
4916           for (unsigned Idx : CurrentOrder)
4917             dbgs() << " " << Idx;
4918           dbgs() << "\n";
4919         });
4920         fixupOrderingIndices(CurrentOrder);
4921         // Insert new order with initial value 0, if it does not exist,
4922         // otherwise return the iterator to the existing one.
4923         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4924                      ReuseShuffleIndicies, CurrentOrder);
4925         // This is a special case, as it does not gather, but at the same time
4926         // we are not extending buildTree_rec() towards the operands.
4927         ValueList Op0;
4928         Op0.assign(VL.size(), VL0->getOperand(0));
4929         VectorizableTree.back()->setOperand(0, Op0);
4930         return;
4931       }
4932       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4933       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4934                    ReuseShuffleIndicies);
4935       BS.cancelScheduling(VL, VL0);
4936       return;
4937     }
4938     case Instruction::InsertElement: {
4939       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4940 
4941       // Check that we have a buildvector and not a shuffle of 2 or more
4942       // different vectors.
4943       ValueSet SourceVectors;
4944       for (Value *V : VL) {
4945         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4946         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4947       }
4948 
4949       if (count_if(VL, [&SourceVectors](Value *V) {
4950             return !SourceVectors.contains(V);
4951           }) >= 2) {
4952         // Found 2nd source vector - cancel.
4953         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4954                              "different source vectors.\n");
4955         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4956         BS.cancelScheduling(VL, VL0);
4957         return;
4958       }
4959 
4960       auto OrdCompare = [](const std::pair<int, int> &P1,
4961                            const std::pair<int, int> &P2) {
4962         return P1.first > P2.first;
4963       };
4964       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4965                     decltype(OrdCompare)>
4966           Indices(OrdCompare);
4967       for (int I = 0, E = VL.size(); I < E; ++I) {
4968         unsigned Idx = *getInsertIndex(VL[I]);
4969         Indices.emplace(Idx, I);
4970       }
4971       OrdersType CurrentOrder(VL.size(), VL.size());
4972       bool IsIdentity = true;
4973       for (int I = 0, E = VL.size(); I < E; ++I) {
4974         CurrentOrder[Indices.top().second] = I;
4975         IsIdentity &= Indices.top().second == I;
4976         Indices.pop();
4977       }
4978       if (IsIdentity)
4979         CurrentOrder.clear();
4980       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4981                                    None, CurrentOrder);
4982       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4983 
4984       constexpr int NumOps = 2;
4985       ValueList VectorOperands[NumOps];
4986       for (int I = 0; I < NumOps; ++I) {
4987         for (Value *V : VL)
4988           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4989 
4990         TE->setOperand(I, VectorOperands[I]);
4991       }
4992       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4993       return;
4994     }
4995     case Instruction::Load: {
4996       // Check that a vectorized load would load the same memory as a scalar
4997       // load. For example, we don't want to vectorize loads that are smaller
4998       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4999       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
5000       // from such a struct, we read/write packed bits disagreeing with the
5001       // unvectorized version.
5002       SmallVector<Value *> PointerOps;
5003       OrdersType CurrentOrder;
5004       TreeEntry *TE = nullptr;
5005       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, CurrentOrder,
5006                                 PointerOps)) {
5007       case LoadsState::Vectorize:
5008         if (CurrentOrder.empty()) {
5009           // Original loads are consecutive and does not require reordering.
5010           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5011                             ReuseShuffleIndicies);
5012           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
5013         } else {
5014           fixupOrderingIndices(CurrentOrder);
5015           // Need to reorder.
5016           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5017                             ReuseShuffleIndicies, CurrentOrder);
5018           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
5019         }
5020         TE->setOperandsInOrder();
5021         break;
5022       case LoadsState::ScatterVectorize:
5023         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
5024         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
5025                           UserTreeIdx, ReuseShuffleIndicies);
5026         TE->setOperandsInOrder();
5027         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
5028         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
5029         break;
5030       case LoadsState::Gather:
5031         BS.cancelScheduling(VL, VL0);
5032         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5033                      ReuseShuffleIndicies);
5034 #ifndef NDEBUG
5035         Type *ScalarTy = VL0->getType();
5036         if (DL->getTypeSizeInBits(ScalarTy) !=
5037             DL->getTypeAllocSizeInBits(ScalarTy))
5038           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
5039         else if (any_of(VL, [](Value *V) {
5040                    return !cast<LoadInst>(V)->isSimple();
5041                  }))
5042           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
5043         else
5044           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
5045 #endif // NDEBUG
5046         break;
5047       }
5048       return;
5049     }
5050     case Instruction::ZExt:
5051     case Instruction::SExt:
5052     case Instruction::FPToUI:
5053     case Instruction::FPToSI:
5054     case Instruction::FPExt:
5055     case Instruction::PtrToInt:
5056     case Instruction::IntToPtr:
5057     case Instruction::SIToFP:
5058     case Instruction::UIToFP:
5059     case Instruction::Trunc:
5060     case Instruction::FPTrunc:
5061     case Instruction::BitCast: {
5062       Type *SrcTy = VL0->getOperand(0)->getType();
5063       for (Value *V : VL) {
5064         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5065         if (Ty != SrcTy || !isValidElementType(Ty)) {
5066           BS.cancelScheduling(VL, VL0);
5067           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5068                        ReuseShuffleIndicies);
5069           LLVM_DEBUG(dbgs()
5070                      << "SLP: Gathering casts with different src types.\n");
5071           return;
5072         }
5073       }
5074       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5075                                    ReuseShuffleIndicies);
5076       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
5077 
5078       TE->setOperandsInOrder();
5079       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5080         ValueList Operands;
5081         // Prepare the operand vector.
5082         for (Value *V : VL)
5083           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5084 
5085         buildTree_rec(Operands, Depth + 1, {TE, i});
5086       }
5087       return;
5088     }
5089     case Instruction::ICmp:
5090     case Instruction::FCmp: {
5091       // Check that all of the compares have the same predicate.
5092       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5093       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5094       Type *ComparedTy = VL0->getOperand(0)->getType();
5095       for (Value *V : VL) {
5096         CmpInst *Cmp = cast<CmpInst>(V);
5097         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5098             Cmp->getOperand(0)->getType() != ComparedTy) {
5099           BS.cancelScheduling(VL, VL0);
5100           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5101                        ReuseShuffleIndicies);
5102           LLVM_DEBUG(dbgs()
5103                      << "SLP: Gathering cmp with different predicate.\n");
5104           return;
5105         }
5106       }
5107 
5108       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5109                                    ReuseShuffleIndicies);
5110       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
5111 
5112       ValueList Left, Right;
5113       if (cast<CmpInst>(VL0)->isCommutative()) {
5114         // Commutative predicate - collect + sort operands of the instructions
5115         // so that each side is more likely to have the same opcode.
5116         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
5117         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5118       } else {
5119         // Collect operands - commute if it uses the swapped predicate.
5120         for (Value *V : VL) {
5121           auto *Cmp = cast<CmpInst>(V);
5122           Value *LHS = Cmp->getOperand(0);
5123           Value *RHS = Cmp->getOperand(1);
5124           if (Cmp->getPredicate() != P0)
5125             std::swap(LHS, RHS);
5126           Left.push_back(LHS);
5127           Right.push_back(RHS);
5128         }
5129       }
5130       TE->setOperand(0, Left);
5131       TE->setOperand(1, Right);
5132       buildTree_rec(Left, Depth + 1, {TE, 0});
5133       buildTree_rec(Right, Depth + 1, {TE, 1});
5134       return;
5135     }
5136     case Instruction::Select:
5137     case Instruction::FNeg:
5138     case Instruction::Add:
5139     case Instruction::FAdd:
5140     case Instruction::Sub:
5141     case Instruction::FSub:
5142     case Instruction::Mul:
5143     case Instruction::FMul:
5144     case Instruction::UDiv:
5145     case Instruction::SDiv:
5146     case Instruction::FDiv:
5147     case Instruction::URem:
5148     case Instruction::SRem:
5149     case Instruction::FRem:
5150     case Instruction::Shl:
5151     case Instruction::LShr:
5152     case Instruction::AShr:
5153     case Instruction::And:
5154     case Instruction::Or:
5155     case Instruction::Xor: {
5156       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5157                                    ReuseShuffleIndicies);
5158       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
5159 
5160       // Sort operands of the instructions so that each side is more likely to
5161       // have the same opcode.
5162       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
5163         ValueList Left, Right;
5164         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5165         TE->setOperand(0, Left);
5166         TE->setOperand(1, Right);
5167         buildTree_rec(Left, Depth + 1, {TE, 0});
5168         buildTree_rec(Right, Depth + 1, {TE, 1});
5169         return;
5170       }
5171 
5172       TE->setOperandsInOrder();
5173       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5174         ValueList Operands;
5175         // Prepare the operand vector.
5176         for (Value *V : VL)
5177           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5178 
5179         buildTree_rec(Operands, Depth + 1, {TE, i});
5180       }
5181       return;
5182     }
5183     case Instruction::GetElementPtr: {
5184       // We don't combine GEPs with complicated (nested) indexing.
5185       for (Value *V : VL) {
5186         auto *I = dyn_cast<GetElementPtrInst>(V);
5187         if (!I)
5188           continue;
5189         if (I->getNumOperands() != 2) {
5190           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5191           BS.cancelScheduling(VL, VL0);
5192           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5193                        ReuseShuffleIndicies);
5194           return;
5195         }
5196       }
5197 
5198       // We can't combine several GEPs into one vector if they operate on
5199       // different types.
5200       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5201       for (Value *V : VL) {
5202         auto *GEP = dyn_cast<GEPOperator>(V);
5203         if (!GEP)
5204           continue;
5205         Type *CurTy = GEP->getSourceElementType();
5206         if (Ty0 != CurTy) {
5207           LLVM_DEBUG(dbgs()
5208                      << "SLP: not-vectorizable GEP (different types).\n");
5209           BS.cancelScheduling(VL, VL0);
5210           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5211                        ReuseShuffleIndicies);
5212           return;
5213         }
5214       }
5215 
5216       bool IsScatterUser =
5217           UserTreeIdx.UserTE &&
5218           UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize;
5219       // We don't combine GEPs with non-constant indexes.
5220       Type *Ty1 = VL0->getOperand(1)->getType();
5221       for (Value *V : VL) {
5222         auto *I = dyn_cast<GetElementPtrInst>(V);
5223         if (!I)
5224           continue;
5225         auto *Op = I->getOperand(1);
5226         if ((!IsScatterUser && !isa<ConstantInt>(Op)) ||
5227             (Op->getType() != Ty1 &&
5228              ((IsScatterUser && !isa<ConstantInt>(Op)) ||
5229               Op->getType()->getScalarSizeInBits() >
5230                   DL->getIndexSizeInBits(
5231                       V->getType()->getPointerAddressSpace())))) {
5232           LLVM_DEBUG(dbgs()
5233                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5234           BS.cancelScheduling(VL, VL0);
5235           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5236                        ReuseShuffleIndicies);
5237           return;
5238         }
5239       }
5240 
5241       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5242                                    ReuseShuffleIndicies);
5243       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
5244       SmallVector<ValueList, 2> Operands(2);
5245       // Prepare the operand vector for pointer operands.
5246       for (Value *V : VL) {
5247         auto *GEP = dyn_cast<GetElementPtrInst>(V);
5248         if (!GEP) {
5249           Operands.front().push_back(V);
5250           continue;
5251         }
5252         Operands.front().push_back(GEP->getPointerOperand());
5253       }
5254       TE->setOperand(0, Operands.front());
5255       // Need to cast all indices to the same type before vectorization to
5256       // avoid crash.
5257       // Required to be able to find correct matches between different gather
5258       // nodes and reuse the vectorized values rather than trying to gather them
5259       // again.
5260       int IndexIdx = 1;
5261       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
5262       Type *Ty = all_of(VL,
5263                         [VL0Ty, IndexIdx](Value *V) {
5264                           auto *GEP = dyn_cast<GetElementPtrInst>(V);
5265                           if (!GEP)
5266                             return true;
5267                           return VL0Ty == GEP->getOperand(IndexIdx)->getType();
5268                         })
5269                      ? VL0Ty
5270                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5271                                             ->getPointerOperandType()
5272                                             ->getScalarType());
5273       // Prepare the operand vector.
5274       for (Value *V : VL) {
5275         auto *I = dyn_cast<GetElementPtrInst>(V);
5276         if (!I) {
5277           Operands.back().push_back(
5278               ConstantInt::get(Ty, 0, /*isSigned=*/false));
5279           continue;
5280         }
5281         auto *Op = I->getOperand(IndexIdx);
5282         auto *CI = dyn_cast<ConstantInt>(Op);
5283         if (!CI)
5284           Operands.back().push_back(Op);
5285         else
5286           Operands.back().push_back(ConstantExpr::getIntegerCast(
5287               CI, Ty, CI->getValue().isSignBitSet()));
5288       }
5289       TE->setOperand(IndexIdx, Operands.back());
5290 
5291       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
5292         buildTree_rec(Operands[I], Depth + 1, {TE, I});
5293       return;
5294     }
5295     case Instruction::Store: {
5296       // Check if the stores are consecutive or if we need to swizzle them.
5297       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5298       // Avoid types that are padded when being allocated as scalars, while
5299       // being packed together in a vector (such as i1).
5300       if (DL->getTypeSizeInBits(ScalarTy) !=
5301           DL->getTypeAllocSizeInBits(ScalarTy)) {
5302         BS.cancelScheduling(VL, VL0);
5303         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5304                      ReuseShuffleIndicies);
5305         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5306         return;
5307       }
5308       // Make sure all stores in the bundle are simple - we can't vectorize
5309       // atomic or volatile stores.
5310       SmallVector<Value *, 4> PointerOps(VL.size());
5311       ValueList Operands(VL.size());
5312       auto POIter = PointerOps.begin();
5313       auto OIter = Operands.begin();
5314       for (Value *V : VL) {
5315         auto *SI = cast<StoreInst>(V);
5316         if (!SI->isSimple()) {
5317           BS.cancelScheduling(VL, VL0);
5318           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5319                        ReuseShuffleIndicies);
5320           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5321           return;
5322         }
5323         *POIter = SI->getPointerOperand();
5324         *OIter = SI->getValueOperand();
5325         ++POIter;
5326         ++OIter;
5327       }
5328 
5329       OrdersType CurrentOrder;
5330       // Check the order of pointer operands.
5331       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5332         Value *Ptr0;
5333         Value *PtrN;
5334         if (CurrentOrder.empty()) {
5335           Ptr0 = PointerOps.front();
5336           PtrN = PointerOps.back();
5337         } else {
5338           Ptr0 = PointerOps[CurrentOrder.front()];
5339           PtrN = PointerOps[CurrentOrder.back()];
5340         }
5341         Optional<int> Dist =
5342             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5343         // Check that the sorted pointer operands are consecutive.
5344         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
5345           if (CurrentOrder.empty()) {
5346             // Original stores are consecutive and does not require reordering.
5347             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
5348                                          UserTreeIdx, ReuseShuffleIndicies);
5349             TE->setOperandsInOrder();
5350             buildTree_rec(Operands, Depth + 1, {TE, 0});
5351             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
5352           } else {
5353             fixupOrderingIndices(CurrentOrder);
5354             TreeEntry *TE =
5355                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5356                              ReuseShuffleIndicies, CurrentOrder);
5357             TE->setOperandsInOrder();
5358             buildTree_rec(Operands, Depth + 1, {TE, 0});
5359             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
5360           }
5361           return;
5362         }
5363       }
5364 
5365       BS.cancelScheduling(VL, VL0);
5366       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5367                    ReuseShuffleIndicies);
5368       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5369       return;
5370     }
5371     case Instruction::Call: {
5372       // Check if the calls are all to the same vectorizable intrinsic or
5373       // library function.
5374       CallInst *CI = cast<CallInst>(VL0);
5375       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5376 
5377       VFShape Shape = VFShape::get(
5378           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5379           false /*HasGlobalPred*/);
5380       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5381 
5382       if (!VecFunc && !isTriviallyVectorizable(ID)) {
5383         BS.cancelScheduling(VL, VL0);
5384         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5385                      ReuseShuffleIndicies);
5386         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5387         return;
5388       }
5389       Function *F = CI->getCalledFunction();
5390       unsigned NumArgs = CI->arg_size();
5391       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
5392       for (unsigned j = 0; j != NumArgs; ++j)
5393         if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
5394           ScalarArgs[j] = CI->getArgOperand(j);
5395       for (Value *V : VL) {
5396         CallInst *CI2 = dyn_cast<CallInst>(V);
5397         if (!CI2 || CI2->getCalledFunction() != F ||
5398             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5399             (VecFunc &&
5400              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5401             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5402           BS.cancelScheduling(VL, VL0);
5403           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5404                        ReuseShuffleIndicies);
5405           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5406                             << "\n");
5407           return;
5408         }
5409         // Some intrinsics have scalar arguments and should be same in order for
5410         // them to be vectorized.
5411         for (unsigned j = 0; j != NumArgs; ++j) {
5412           if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
5413             Value *A1J = CI2->getArgOperand(j);
5414             if (ScalarArgs[j] != A1J) {
5415               BS.cancelScheduling(VL, VL0);
5416               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5417                            ReuseShuffleIndicies);
5418               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
5419                                 << " argument " << ScalarArgs[j] << "!=" << A1J
5420                                 << "\n");
5421               return;
5422             }
5423           }
5424         }
5425         // Verify that the bundle operands are identical between the two calls.
5426         if (CI->hasOperandBundles() &&
5427             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5428                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
5429                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5430           BS.cancelScheduling(VL, VL0);
5431           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5432                        ReuseShuffleIndicies);
5433           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
5434                             << *CI << "!=" << *V << '\n');
5435           return;
5436         }
5437       }
5438 
5439       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5440                                    ReuseShuffleIndicies);
5441       TE->setOperandsInOrder();
5442       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
5443         // For scalar operands no need to to create an entry since no need to
5444         // vectorize it.
5445         if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
5446           continue;
5447         ValueList Operands;
5448         // Prepare the operand vector.
5449         for (Value *V : VL) {
5450           auto *CI2 = cast<CallInst>(V);
5451           Operands.push_back(CI2->getArgOperand(i));
5452         }
5453         buildTree_rec(Operands, Depth + 1, {TE, i});
5454       }
5455       return;
5456     }
5457     case Instruction::ShuffleVector: {
5458       // If this is not an alternate sequence of opcode like add-sub
5459       // then do not vectorize this instruction.
5460       if (!S.isAltShuffle()) {
5461         BS.cancelScheduling(VL, VL0);
5462         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5463                      ReuseShuffleIndicies);
5464         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5465         return;
5466       }
5467       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5468                                    ReuseShuffleIndicies);
5469       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
5470 
5471       // Reorder operands if reordering would enable vectorization.
5472       auto *CI = dyn_cast<CmpInst>(VL0);
5473       if (isa<BinaryOperator>(VL0) || CI) {
5474         ValueList Left, Right;
5475         if (!CI || all_of(VL, [](Value *V) {
5476               return cast<CmpInst>(V)->isCommutative();
5477             })) {
5478           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5479         } else {
5480           CmpInst::Predicate P0 = CI->getPredicate();
5481           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
5482           assert(P0 != AltP0 &&
5483                  "Expected different main/alternate predicates.");
5484           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5485           Value *BaseOp0 = VL0->getOperand(0);
5486           Value *BaseOp1 = VL0->getOperand(1);
5487           // Collect operands - commute if it uses the swapped predicate or
5488           // alternate operation.
5489           for (Value *V : VL) {
5490             auto *Cmp = cast<CmpInst>(V);
5491             Value *LHS = Cmp->getOperand(0);
5492             Value *RHS = Cmp->getOperand(1);
5493             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
5494             if (P0 == AltP0Swapped) {
5495               if (CI != Cmp && S.AltOp != Cmp &&
5496                   ((P0 == CurrentPred &&
5497                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
5498                    (AltP0 == CurrentPred &&
5499                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
5500                 std::swap(LHS, RHS);
5501             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
5502               std::swap(LHS, RHS);
5503             }
5504             Left.push_back(LHS);
5505             Right.push_back(RHS);
5506           }
5507         }
5508         TE->setOperand(0, Left);
5509         TE->setOperand(1, Right);
5510         buildTree_rec(Left, Depth + 1, {TE, 0});
5511         buildTree_rec(Right, Depth + 1, {TE, 1});
5512         return;
5513       }
5514 
5515       TE->setOperandsInOrder();
5516       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5517         ValueList Operands;
5518         // Prepare the operand vector.
5519         for (Value *V : VL)
5520           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5521 
5522         buildTree_rec(Operands, Depth + 1, {TE, i});
5523       }
5524       return;
5525     }
5526     default:
5527       BS.cancelScheduling(VL, VL0);
5528       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5529                    ReuseShuffleIndicies);
5530       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5531       return;
5532   }
5533 }
5534 
5535 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
5536   unsigned N = 1;
5537   Type *EltTy = T;
5538 
5539   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
5540          isa<VectorType>(EltTy)) {
5541     if (auto *ST = dyn_cast<StructType>(EltTy)) {
5542       // Check that struct is homogeneous.
5543       for (const auto *Ty : ST->elements())
5544         if (Ty != *ST->element_begin())
5545           return 0;
5546       N *= ST->getNumElements();
5547       EltTy = *ST->element_begin();
5548     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
5549       N *= AT->getNumElements();
5550       EltTy = AT->getElementType();
5551     } else {
5552       auto *VT = cast<FixedVectorType>(EltTy);
5553       N *= VT->getNumElements();
5554       EltTy = VT->getElementType();
5555     }
5556   }
5557 
5558   if (!isValidElementType(EltTy))
5559     return 0;
5560   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
5561   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
5562     return 0;
5563   return N;
5564 }
5565 
5566 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
5567                               SmallVectorImpl<unsigned> &CurrentOrder) const {
5568   const auto *It = find_if(VL, [](Value *V) {
5569     return isa<ExtractElementInst, ExtractValueInst>(V);
5570   });
5571   assert(It != VL.end() && "Expected at least one extract instruction.");
5572   auto *E0 = cast<Instruction>(*It);
5573   assert(all_of(VL,
5574                 [](Value *V) {
5575                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
5576                       V);
5577                 }) &&
5578          "Invalid opcode");
5579   // Check if all of the extracts come from the same vector and from the
5580   // correct offset.
5581   Value *Vec = E0->getOperand(0);
5582 
5583   CurrentOrder.clear();
5584 
5585   // We have to extract from a vector/aggregate with the same number of elements.
5586   unsigned NElts;
5587   if (E0->getOpcode() == Instruction::ExtractValue) {
5588     const DataLayout &DL = E0->getModule()->getDataLayout();
5589     NElts = canMapToVector(Vec->getType(), DL);
5590     if (!NElts)
5591       return false;
5592     // Check if load can be rewritten as load of vector.
5593     LoadInst *LI = dyn_cast<LoadInst>(Vec);
5594     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
5595       return false;
5596   } else {
5597     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
5598   }
5599 
5600   if (NElts != VL.size())
5601     return false;
5602 
5603   // Check that all of the indices extract from the correct offset.
5604   bool ShouldKeepOrder = true;
5605   unsigned E = VL.size();
5606   // Assign to all items the initial value E + 1 so we can check if the extract
5607   // instruction index was used already.
5608   // Also, later we can check that all the indices are used and we have a
5609   // consecutive access in the extract instructions, by checking that no
5610   // element of CurrentOrder still has value E + 1.
5611   CurrentOrder.assign(E, E);
5612   unsigned I = 0;
5613   for (; I < E; ++I) {
5614     auto *Inst = dyn_cast<Instruction>(VL[I]);
5615     if (!Inst)
5616       continue;
5617     if (Inst->getOperand(0) != Vec)
5618       break;
5619     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
5620       if (isa<UndefValue>(EE->getIndexOperand()))
5621         continue;
5622     Optional<unsigned> Idx = getExtractIndex(Inst);
5623     if (!Idx)
5624       break;
5625     const unsigned ExtIdx = *Idx;
5626     if (ExtIdx != I) {
5627       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
5628         break;
5629       ShouldKeepOrder = false;
5630       CurrentOrder[ExtIdx] = I;
5631     } else {
5632       if (CurrentOrder[I] != E)
5633         break;
5634       CurrentOrder[I] = I;
5635     }
5636   }
5637   if (I < E) {
5638     CurrentOrder.clear();
5639     return false;
5640   }
5641   if (ShouldKeepOrder)
5642     CurrentOrder.clear();
5643 
5644   return ShouldKeepOrder;
5645 }
5646 
5647 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
5648                                     ArrayRef<Value *> VectorizedVals) const {
5649   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
5650          all_of(I->users(), [this](User *U) {
5651            return ScalarToTreeEntry.count(U) > 0 ||
5652                   isVectorLikeInstWithConstOps(U) ||
5653                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
5654          });
5655 }
5656 
5657 static std::pair<InstructionCost, InstructionCost>
5658 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
5659                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
5660   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5661 
5662   // Calculate the cost of the scalar and vector calls.
5663   SmallVector<Type *, 4> VecTys;
5664   for (Use &Arg : CI->args())
5665     VecTys.push_back(
5666         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
5667   FastMathFlags FMF;
5668   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
5669     FMF = FPCI->getFastMathFlags();
5670   SmallVector<const Value *> Arguments(CI->args());
5671   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
5672                                     dyn_cast<IntrinsicInst>(CI));
5673   auto IntrinsicCost =
5674     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
5675 
5676   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5677                                      VecTy->getNumElements())),
5678                             false /*HasGlobalPred*/);
5679   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5680   auto LibCost = IntrinsicCost;
5681   if (!CI->isNoBuiltin() && VecFunc) {
5682     // Calculate the cost of the vector library call.
5683     // If the corresponding vector call is cheaper, return its cost.
5684     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
5685                                     TTI::TCK_RecipThroughput);
5686   }
5687   return {IntrinsicCost, LibCost};
5688 }
5689 
5690 /// Compute the cost of creating a vector of type \p VecTy containing the
5691 /// extracted values from \p VL.
5692 static InstructionCost
5693 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
5694                    TargetTransformInfo::ShuffleKind ShuffleKind,
5695                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
5696   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
5697 
5698   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
5699       VecTy->getNumElements() < NumOfParts)
5700     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
5701 
5702   bool AllConsecutive = true;
5703   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
5704   unsigned Idx = -1;
5705   InstructionCost Cost = 0;
5706 
5707   // Process extracts in blocks of EltsPerVector to check if the source vector
5708   // operand can be re-used directly. If not, add the cost of creating a shuffle
5709   // to extract the values into a vector register.
5710   SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
5711   for (auto *V : VL) {
5712     ++Idx;
5713 
5714     // Reached the start of a new vector registers.
5715     if (Idx % EltsPerVector == 0) {
5716       RegMask.assign(EltsPerVector, UndefMaskElem);
5717       AllConsecutive = true;
5718       continue;
5719     }
5720 
5721     // Need to exclude undefs from analysis.
5722     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
5723       continue;
5724 
5725     // Check all extracts for a vector register on the target directly
5726     // extract values in order.
5727     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
5728     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
5729       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
5730       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
5731                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
5732       RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
5733     }
5734 
5735     if (AllConsecutive)
5736       continue;
5737 
5738     // Skip all indices, except for the last index per vector block.
5739     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
5740       continue;
5741 
5742     // If we have a series of extracts which are not consecutive and hence
5743     // cannot re-use the source vector register directly, compute the shuffle
5744     // cost to extract the vector with EltsPerVector elements.
5745     Cost += TTI.getShuffleCost(
5746         TargetTransformInfo::SK_PermuteSingleSrc,
5747         FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
5748   }
5749   return Cost;
5750 }
5751 
5752 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
5753 /// operations operands.
5754 static void
5755 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
5756                       ArrayRef<int> ReusesIndices,
5757                       const function_ref<bool(Instruction *)> IsAltOp,
5758                       SmallVectorImpl<int> &Mask,
5759                       SmallVectorImpl<Value *> *OpScalars = nullptr,
5760                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
5761   unsigned Sz = VL.size();
5762   Mask.assign(Sz, UndefMaskElem);
5763   SmallVector<int> OrderMask;
5764   if (!ReorderIndices.empty())
5765     inversePermutation(ReorderIndices, OrderMask);
5766   for (unsigned I = 0; I < Sz; ++I) {
5767     unsigned Idx = I;
5768     if (!ReorderIndices.empty())
5769       Idx = OrderMask[I];
5770     auto *OpInst = cast<Instruction>(VL[Idx]);
5771     if (IsAltOp(OpInst)) {
5772       Mask[I] = Sz + Idx;
5773       if (AltScalars)
5774         AltScalars->push_back(OpInst);
5775     } else {
5776       Mask[I] = Idx;
5777       if (OpScalars)
5778         OpScalars->push_back(OpInst);
5779     }
5780   }
5781   if (!ReusesIndices.empty()) {
5782     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
5783     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
5784       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
5785     });
5786     Mask.swap(NewMask);
5787   }
5788 }
5789 
5790 /// Checks if the specified instruction \p I is an alternate operation for the
5791 /// given \p MainOp and \p AltOp instructions.
5792 static bool isAlternateInstruction(const Instruction *I,
5793                                    const Instruction *MainOp,
5794                                    const Instruction *AltOp) {
5795   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
5796     auto *AltCI0 = cast<CmpInst>(AltOp);
5797     auto *CI = cast<CmpInst>(I);
5798     CmpInst::Predicate P0 = CI0->getPredicate();
5799     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5800     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
5801     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5802     CmpInst::Predicate CurrentPred = CI->getPredicate();
5803     if (P0 == AltP0Swapped)
5804       return I == AltCI0 ||
5805              (I != MainOp &&
5806               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
5807                                    CI->getOperand(0), CI->getOperand(1)));
5808     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5809   }
5810   return I->getOpcode() == AltOp->getOpcode();
5811 }
5812 
5813 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
5814                                       ArrayRef<Value *> VectorizedVals) {
5815   ArrayRef<Value*> VL = E->Scalars;
5816 
5817   Type *ScalarTy = VL[0]->getType();
5818   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
5819     ScalarTy = SI->getValueOperand()->getType();
5820   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
5821     ScalarTy = CI->getOperand(0)->getType();
5822   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
5823     ScalarTy = IE->getOperand(1)->getType();
5824   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
5825   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5826 
5827   // If we have computed a smaller type for the expression, update VecTy so
5828   // that the costs will be accurate.
5829   if (MinBWs.count(VL[0]))
5830     VecTy = FixedVectorType::get(
5831         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
5832   unsigned EntryVF = E->getVectorFactor();
5833   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
5834 
5835   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5836   // FIXME: it tries to fix a problem with MSVC buildbots.
5837   TargetTransformInfo &TTIRef = *TTI;
5838   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
5839                                VectorizedVals, E](InstructionCost &Cost) {
5840     DenseMap<Value *, int> ExtractVectorsTys;
5841     SmallPtrSet<Value *, 4> CheckedExtracts;
5842     for (auto *V : VL) {
5843       if (isa<UndefValue>(V))
5844         continue;
5845       // If all users of instruction are going to be vectorized and this
5846       // instruction itself is not going to be vectorized, consider this
5847       // instruction as dead and remove its cost from the final cost of the
5848       // vectorized tree.
5849       // Also, avoid adjusting the cost for extractelements with multiple uses
5850       // in different graph entries.
5851       const TreeEntry *VE = getTreeEntry(V);
5852       if (!CheckedExtracts.insert(V).second ||
5853           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
5854           (VE && VE != E))
5855         continue;
5856       auto *EE = cast<ExtractElementInst>(V);
5857       Optional<unsigned> EEIdx = getExtractIndex(EE);
5858       if (!EEIdx)
5859         continue;
5860       unsigned Idx = *EEIdx;
5861       if (TTIRef.getNumberOfParts(VecTy) !=
5862           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
5863         auto It =
5864             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
5865         It->getSecond() = std::min<int>(It->second, Idx);
5866       }
5867       // Take credit for instruction that will become dead.
5868       if (EE->hasOneUse()) {
5869         Instruction *Ext = EE->user_back();
5870         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5871             all_of(Ext->users(),
5872                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
5873           // Use getExtractWithExtendCost() to calculate the cost of
5874           // extractelement/ext pair.
5875           Cost -=
5876               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
5877                                               EE->getVectorOperandType(), Idx);
5878           // Add back the cost of s|zext which is subtracted separately.
5879           Cost += TTIRef.getCastInstrCost(
5880               Ext->getOpcode(), Ext->getType(), EE->getType(),
5881               TTI::getCastContextHint(Ext), CostKind, Ext);
5882           continue;
5883         }
5884       }
5885       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
5886                                         EE->getVectorOperandType(), Idx);
5887     }
5888     // Add a cost for subvector extracts/inserts if required.
5889     for (const auto &Data : ExtractVectorsTys) {
5890       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
5891       unsigned NumElts = VecTy->getNumElements();
5892       if (Data.second % NumElts == 0)
5893         continue;
5894       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
5895         unsigned Idx = (Data.second / NumElts) * NumElts;
5896         unsigned EENumElts = EEVTy->getNumElements();
5897         if (Idx + NumElts <= EENumElts) {
5898           Cost +=
5899               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5900                                     EEVTy, None, Idx, VecTy);
5901         } else {
5902           // Need to round up the subvector type vectorization factor to avoid a
5903           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
5904           // <= EENumElts.
5905           auto *SubVT =
5906               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
5907           Cost +=
5908               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5909                                     EEVTy, None, Idx, SubVT);
5910         }
5911       } else {
5912         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
5913                                       VecTy, None, 0, EEVTy);
5914       }
5915     }
5916   };
5917   if (E->State == TreeEntry::NeedToGather) {
5918     if (allConstant(VL))
5919       return 0;
5920     if (isa<InsertElementInst>(VL[0]))
5921       return InstructionCost::getInvalid();
5922     SmallVector<int> Mask;
5923     SmallVector<const TreeEntry *> Entries;
5924     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5925         isGatherShuffledEntry(E, Mask, Entries);
5926     if (Shuffle) {
5927       InstructionCost GatherCost = 0;
5928       if (ShuffleVectorInst::isIdentityMask(Mask)) {
5929         // Perfect match in the graph, will reuse the previously vectorized
5930         // node. Cost is 0.
5931         LLVM_DEBUG(
5932             dbgs()
5933             << "SLP: perfect diamond match for gather bundle that starts with "
5934             << *VL.front() << ".\n");
5935         if (NeedToShuffleReuses)
5936           GatherCost =
5937               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5938                                   FinalVecTy, E->ReuseShuffleIndices);
5939       } else {
5940         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
5941                           << " entries for bundle that starts with "
5942                           << *VL.front() << ".\n");
5943         // Detected that instead of gather we can emit a shuffle of single/two
5944         // previously vectorized nodes. Add the cost of the permutation rather
5945         // than gather.
5946         ::addMask(Mask, E->ReuseShuffleIndices);
5947         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5948       }
5949       return GatherCost;
5950     }
5951     if ((E->getOpcode() == Instruction::ExtractElement ||
5952          all_of(E->Scalars,
5953                 [](Value *V) {
5954                   return isa<ExtractElementInst, UndefValue>(V);
5955                 })) &&
5956         allSameType(VL)) {
5957       // Check that gather of extractelements can be represented as just a
5958       // shuffle of a single/two vectors the scalars are extracted from.
5959       SmallVector<int> Mask;
5960       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5961           isFixedVectorShuffle(VL, Mask);
5962       if (ShuffleKind) {
5963         // Found the bunch of extractelement instructions that must be gathered
5964         // into a vector and can be represented as a permutation elements in a
5965         // single input vector or of 2 input vectors.
5966         InstructionCost Cost =
5967             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5968         AdjustExtractsCost(Cost);
5969         if (NeedToShuffleReuses)
5970           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5971                                       FinalVecTy, E->ReuseShuffleIndices);
5972         return Cost;
5973       }
5974     }
5975     if (isSplat(VL)) {
5976       // Found the broadcasting of the single scalar, calculate the cost as the
5977       // broadcast.
5978       assert(VecTy == FinalVecTy &&
5979              "No reused scalars expected for broadcast.");
5980       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
5981                                  /*Mask=*/None, /*Index=*/0,
5982                                  /*SubTp=*/nullptr, /*Args=*/VL[0]);
5983     }
5984     InstructionCost ReuseShuffleCost = 0;
5985     if (NeedToShuffleReuses)
5986       ReuseShuffleCost = TTI->getShuffleCost(
5987           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5988     // Improve gather cost for gather of loads, if we can group some of the
5989     // loads into vector loads.
5990     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5991         !E->isAltShuffle()) {
5992       BoUpSLP::ValueSet VectorizedLoads;
5993       unsigned StartIdx = 0;
5994       unsigned VF = VL.size() / 2;
5995       unsigned VectorizedCnt = 0;
5996       unsigned ScatterVectorizeCnt = 0;
5997       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5998       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5999         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
6000              Cnt += VF) {
6001           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
6002           if (!VectorizedLoads.count(Slice.front()) &&
6003               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
6004             SmallVector<Value *> PointerOps;
6005             OrdersType CurrentOrder;
6006             LoadsState LS =
6007                 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI,
6008                                   CurrentOrder, PointerOps);
6009             switch (LS) {
6010             case LoadsState::Vectorize:
6011             case LoadsState::ScatterVectorize:
6012               // Mark the vectorized loads so that we don't vectorize them
6013               // again.
6014               if (LS == LoadsState::Vectorize)
6015                 ++VectorizedCnt;
6016               else
6017                 ++ScatterVectorizeCnt;
6018               VectorizedLoads.insert(Slice.begin(), Slice.end());
6019               // If we vectorized initial block, no need to try to vectorize it
6020               // again.
6021               if (Cnt == StartIdx)
6022                 StartIdx += VF;
6023               break;
6024             case LoadsState::Gather:
6025               break;
6026             }
6027           }
6028         }
6029         // Check if the whole array was vectorized already - exit.
6030         if (StartIdx >= VL.size())
6031           break;
6032         // Found vectorizable parts - exit.
6033         if (!VectorizedLoads.empty())
6034           break;
6035       }
6036       if (!VectorizedLoads.empty()) {
6037         InstructionCost GatherCost = 0;
6038         unsigned NumParts = TTI->getNumberOfParts(VecTy);
6039         bool NeedInsertSubvectorAnalysis =
6040             !NumParts || (VL.size() / VF) > NumParts;
6041         // Get the cost for gathered loads.
6042         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
6043           if (VectorizedLoads.contains(VL[I]))
6044             continue;
6045           GatherCost += getGatherCost(VL.slice(I, VF));
6046         }
6047         // The cost for vectorized loads.
6048         InstructionCost ScalarsCost = 0;
6049         for (Value *V : VectorizedLoads) {
6050           auto *LI = cast<LoadInst>(V);
6051           ScalarsCost += TTI->getMemoryOpCost(
6052               Instruction::Load, LI->getType(), LI->getAlign(),
6053               LI->getPointerAddressSpace(), CostKind, LI);
6054         }
6055         auto *LI = cast<LoadInst>(E->getMainOp());
6056         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
6057         Align Alignment = LI->getAlign();
6058         GatherCost +=
6059             VectorizedCnt *
6060             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
6061                                  LI->getPointerAddressSpace(), CostKind, LI);
6062         GatherCost += ScatterVectorizeCnt *
6063                       TTI->getGatherScatterOpCost(
6064                           Instruction::Load, LoadTy, LI->getPointerOperand(),
6065                           /*VariableMask=*/false, Alignment, CostKind, LI);
6066         if (NeedInsertSubvectorAnalysis) {
6067           // Add the cost for the subvectors insert.
6068           for (int I = VF, E = VL.size(); I < E; I += VF)
6069             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
6070                                               None, I, LoadTy);
6071         }
6072         return ReuseShuffleCost + GatherCost - ScalarsCost;
6073       }
6074     }
6075     return ReuseShuffleCost + getGatherCost(VL);
6076   }
6077   InstructionCost CommonCost = 0;
6078   SmallVector<int> Mask;
6079   if (!E->ReorderIndices.empty()) {
6080     SmallVector<int> NewMask;
6081     if (E->getOpcode() == Instruction::Store) {
6082       // For stores the order is actually a mask.
6083       NewMask.resize(E->ReorderIndices.size());
6084       copy(E->ReorderIndices, NewMask.begin());
6085     } else {
6086       inversePermutation(E->ReorderIndices, NewMask);
6087     }
6088     ::addMask(Mask, NewMask);
6089   }
6090   if (NeedToShuffleReuses)
6091     ::addMask(Mask, E->ReuseShuffleIndices);
6092   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
6093     CommonCost =
6094         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
6095   assert((E->State == TreeEntry::Vectorize ||
6096           E->State == TreeEntry::ScatterVectorize) &&
6097          "Unhandled state");
6098   assert(E->getOpcode() &&
6099          ((allSameType(VL) && allSameBlock(VL)) ||
6100           (E->getOpcode() == Instruction::GetElementPtr &&
6101            E->getMainOp()->getType()->isPointerTy())) &&
6102          "Invalid VL");
6103   Instruction *VL0 = E->getMainOp();
6104   unsigned ShuffleOrOp =
6105       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6106   switch (ShuffleOrOp) {
6107     case Instruction::PHI:
6108       return 0;
6109 
6110     case Instruction::ExtractValue:
6111     case Instruction::ExtractElement: {
6112       // The common cost of removal ExtractElement/ExtractValue instructions +
6113       // the cost of shuffles, if required to resuffle the original vector.
6114       if (NeedToShuffleReuses) {
6115         unsigned Idx = 0;
6116         for (unsigned I : E->ReuseShuffleIndices) {
6117           if (ShuffleOrOp == Instruction::ExtractElement) {
6118             auto *EE = cast<ExtractElementInst>(VL[I]);
6119             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6120                                                   EE->getVectorOperandType(),
6121                                                   *getExtractIndex(EE));
6122           } else {
6123             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6124                                                   VecTy, Idx);
6125             ++Idx;
6126           }
6127         }
6128         Idx = EntryVF;
6129         for (Value *V : VL) {
6130           if (ShuffleOrOp == Instruction::ExtractElement) {
6131             auto *EE = cast<ExtractElementInst>(V);
6132             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6133                                                   EE->getVectorOperandType(),
6134                                                   *getExtractIndex(EE));
6135           } else {
6136             --Idx;
6137             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6138                                                   VecTy, Idx);
6139           }
6140         }
6141       }
6142       if (ShuffleOrOp == Instruction::ExtractValue) {
6143         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
6144           auto *EI = cast<Instruction>(VL[I]);
6145           // Take credit for instruction that will become dead.
6146           if (EI->hasOneUse()) {
6147             Instruction *Ext = EI->user_back();
6148             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
6149                 all_of(Ext->users(),
6150                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
6151               // Use getExtractWithExtendCost() to calculate the cost of
6152               // extractelement/ext pair.
6153               CommonCost -= TTI->getExtractWithExtendCost(
6154                   Ext->getOpcode(), Ext->getType(), VecTy, I);
6155               // Add back the cost of s|zext which is subtracted separately.
6156               CommonCost += TTI->getCastInstrCost(
6157                   Ext->getOpcode(), Ext->getType(), EI->getType(),
6158                   TTI::getCastContextHint(Ext), CostKind, Ext);
6159               continue;
6160             }
6161           }
6162           CommonCost -=
6163               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
6164         }
6165       } else {
6166         AdjustExtractsCost(CommonCost);
6167       }
6168       return CommonCost;
6169     }
6170     case Instruction::InsertElement: {
6171       assert(E->ReuseShuffleIndices.empty() &&
6172              "Unique insertelements only are expected.");
6173       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
6174       unsigned const NumElts = SrcVecTy->getNumElements();
6175       unsigned const NumScalars = VL.size();
6176 
6177       unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
6178 
6179       unsigned OffsetBeg = *getInsertIndex(VL.front());
6180       unsigned OffsetEnd = OffsetBeg;
6181       for (Value *V : VL.drop_front()) {
6182         unsigned Idx = *getInsertIndex(V);
6183         if (OffsetBeg > Idx)
6184           OffsetBeg = Idx;
6185         else if (OffsetEnd < Idx)
6186           OffsetEnd = Idx;
6187       }
6188       unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
6189       if (NumOfParts > 0)
6190         VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
6191       unsigned VecSz =
6192           (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
6193           VecScalarsSz;
6194       unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
6195       unsigned InsertVecSz = std::min<unsigned>(
6196           PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
6197           ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) *
6198               VecScalarsSz);
6199       bool IsWholeSubvector =
6200           OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
6201       // Check if we can safely insert a subvector. If it is not possible, just
6202       // generate a whole-sized vector and shuffle the source vector and the new
6203       // subvector.
6204       if (OffsetBeg + InsertVecSz > VecSz) {
6205         // Align OffsetBeg to generate correct mask.
6206         OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
6207         InsertVecSz = VecSz;
6208       }
6209 
6210       APInt DemandedElts = APInt::getZero(NumElts);
6211       // TODO: Add support for Instruction::InsertValue.
6212       SmallVector<int> Mask;
6213       if (!E->ReorderIndices.empty()) {
6214         inversePermutation(E->ReorderIndices, Mask);
6215         Mask.append(InsertVecSz - Mask.size(), UndefMaskElem);
6216       } else {
6217         Mask.assign(VecSz, UndefMaskElem);
6218         std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
6219       }
6220       bool IsIdentity = true;
6221       SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem);
6222       Mask.swap(PrevMask);
6223       for (unsigned I = 0; I < NumScalars; ++I) {
6224         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
6225         DemandedElts.setBit(InsertIdx);
6226         IsIdentity &= InsertIdx - OffsetBeg == I;
6227         Mask[InsertIdx - OffsetBeg] = I;
6228       }
6229       assert(Offset < NumElts && "Failed to find vector index offset");
6230 
6231       InstructionCost Cost = 0;
6232       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
6233                                             /*Insert*/ true, /*Extract*/ false);
6234 
6235       // First cost - resize to actual vector size if not identity shuffle or
6236       // need to shift the vector.
6237       // Do not calculate the cost if the actual size is the register size and
6238       // we can merge this shuffle with the following SK_Select.
6239       auto *InsertVecTy =
6240           FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz);
6241       if (!IsIdentity)
6242         Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
6243                                     InsertVecTy, Mask);
6244       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6245         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6246       }));
6247       // Second cost - permutation with subvector, if some elements are from the
6248       // initial vector or inserting a subvector.
6249       // TODO: Implement the analysis of the FirstInsert->getOperand(0)
6250       // subvector of ActualVecTy.
6251       if (!isUndefVector(FirstInsert->getOperand(0)) && NumScalars != NumElts &&
6252           !IsWholeSubvector) {
6253         if (InsertVecSz != VecSz) {
6254           auto *ActualVecTy =
6255               FixedVectorType::get(SrcVecTy->getElementType(), VecSz);
6256           Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy,
6257                                       None, OffsetBeg - Offset, InsertVecTy);
6258         } else {
6259           for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
6260             Mask[I] = I;
6261           for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
6262                I <= End; ++I)
6263             if (Mask[I] != UndefMaskElem)
6264               Mask[I] = I + VecSz;
6265           for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
6266             Mask[I] = I;
6267           Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
6268         }
6269       }
6270       return Cost;
6271     }
6272     case Instruction::ZExt:
6273     case Instruction::SExt:
6274     case Instruction::FPToUI:
6275     case Instruction::FPToSI:
6276     case Instruction::FPExt:
6277     case Instruction::PtrToInt:
6278     case Instruction::IntToPtr:
6279     case Instruction::SIToFP:
6280     case Instruction::UIToFP:
6281     case Instruction::Trunc:
6282     case Instruction::FPTrunc:
6283     case Instruction::BitCast: {
6284       Type *SrcTy = VL0->getOperand(0)->getType();
6285       InstructionCost ScalarEltCost =
6286           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
6287                                 TTI::getCastContextHint(VL0), CostKind, VL0);
6288       if (NeedToShuffleReuses) {
6289         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6290       }
6291 
6292       // Calculate the cost of this instruction.
6293       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
6294 
6295       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
6296       InstructionCost VecCost = 0;
6297       // Check if the values are candidates to demote.
6298       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
6299         VecCost = CommonCost + TTI->getCastInstrCost(
6300                                    E->getOpcode(), VecTy, SrcVecTy,
6301                                    TTI::getCastContextHint(VL0), CostKind, VL0);
6302       }
6303       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6304       return VecCost - ScalarCost;
6305     }
6306     case Instruction::FCmp:
6307     case Instruction::ICmp:
6308     case Instruction::Select: {
6309       // Calculate the cost of this instruction.
6310       InstructionCost ScalarEltCost =
6311           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6312                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
6313       if (NeedToShuffleReuses) {
6314         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6315       }
6316       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
6317       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6318 
6319       // Check if all entries in VL are either compares or selects with compares
6320       // as condition that have the same predicates.
6321       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
6322       bool First = true;
6323       for (auto *V : VL) {
6324         CmpInst::Predicate CurrentPred;
6325         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
6326         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
6327              !match(V, MatchCmp)) ||
6328             (!First && VecPred != CurrentPred)) {
6329           VecPred = CmpInst::BAD_ICMP_PREDICATE;
6330           break;
6331         }
6332         First = false;
6333         VecPred = CurrentPred;
6334       }
6335 
6336       InstructionCost VecCost = TTI->getCmpSelInstrCost(
6337           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
6338       // Check if it is possible and profitable to use min/max for selects in
6339       // VL.
6340       //
6341       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
6342       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
6343         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
6344                                           {VecTy, VecTy});
6345         InstructionCost IntrinsicCost =
6346             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6347         // If the selects are the only uses of the compares, they will be dead
6348         // and we can adjust the cost by removing their cost.
6349         if (IntrinsicAndUse.second)
6350           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
6351                                                    MaskTy, VecPred, CostKind);
6352         VecCost = std::min(VecCost, IntrinsicCost);
6353       }
6354       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6355       return CommonCost + VecCost - ScalarCost;
6356     }
6357     case Instruction::FNeg:
6358     case Instruction::Add:
6359     case Instruction::FAdd:
6360     case Instruction::Sub:
6361     case Instruction::FSub:
6362     case Instruction::Mul:
6363     case Instruction::FMul:
6364     case Instruction::UDiv:
6365     case Instruction::SDiv:
6366     case Instruction::FDiv:
6367     case Instruction::URem:
6368     case Instruction::SRem:
6369     case Instruction::FRem:
6370     case Instruction::Shl:
6371     case Instruction::LShr:
6372     case Instruction::AShr:
6373     case Instruction::And:
6374     case Instruction::Or:
6375     case Instruction::Xor: {
6376       // Certain instructions can be cheaper to vectorize if they have a
6377       // constant second vector operand.
6378       TargetTransformInfo::OperandValueKind Op1VK =
6379           TargetTransformInfo::OK_AnyValue;
6380       TargetTransformInfo::OperandValueKind Op2VK =
6381           TargetTransformInfo::OK_UniformConstantValue;
6382       TargetTransformInfo::OperandValueProperties Op1VP =
6383           TargetTransformInfo::OP_None;
6384       TargetTransformInfo::OperandValueProperties Op2VP =
6385           TargetTransformInfo::OP_PowerOf2;
6386 
6387       // If all operands are exactly the same ConstantInt then set the
6388       // operand kind to OK_UniformConstantValue.
6389       // If instead not all operands are constants, then set the operand kind
6390       // to OK_AnyValue. If all operands are constants but not the same,
6391       // then set the operand kind to OK_NonUniformConstantValue.
6392       ConstantInt *CInt0 = nullptr;
6393       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
6394         const Instruction *I = cast<Instruction>(VL[i]);
6395         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
6396         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
6397         if (!CInt) {
6398           Op2VK = TargetTransformInfo::OK_AnyValue;
6399           Op2VP = TargetTransformInfo::OP_None;
6400           break;
6401         }
6402         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
6403             !CInt->getValue().isPowerOf2())
6404           Op2VP = TargetTransformInfo::OP_None;
6405         if (i == 0) {
6406           CInt0 = CInt;
6407           continue;
6408         }
6409         if (CInt0 != CInt)
6410           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6411       }
6412 
6413       SmallVector<const Value *, 4> Operands(VL0->operand_values());
6414       InstructionCost ScalarEltCost =
6415           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
6416                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6417       if (NeedToShuffleReuses) {
6418         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6419       }
6420       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6421       InstructionCost VecCost =
6422           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
6423                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6424       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6425       return CommonCost + VecCost - ScalarCost;
6426     }
6427     case Instruction::GetElementPtr: {
6428       TargetTransformInfo::OperandValueKind Op1VK =
6429           TargetTransformInfo::OK_AnyValue;
6430       TargetTransformInfo::OperandValueKind Op2VK =
6431           any_of(VL,
6432                  [](Value *V) {
6433                    return isa<GetElementPtrInst>(V) &&
6434                           !isConstant(
6435                               cast<GetElementPtrInst>(V)->getOperand(1));
6436                  })
6437               ? TargetTransformInfo::OK_AnyValue
6438               : TargetTransformInfo::OK_UniformConstantValue;
6439 
6440       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
6441           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
6442       if (NeedToShuffleReuses) {
6443         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6444       }
6445       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6446       InstructionCost VecCost = TTI->getArithmeticInstrCost(
6447           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
6448       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6449       return CommonCost + VecCost - ScalarCost;
6450     }
6451     case Instruction::Load: {
6452       // Cost of wide load - cost of scalar loads.
6453       Align Alignment = cast<LoadInst>(VL0)->getAlign();
6454       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6455           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
6456       if (NeedToShuffleReuses) {
6457         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6458       }
6459       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
6460       InstructionCost VecLdCost;
6461       if (E->State == TreeEntry::Vectorize) {
6462         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
6463                                          CostKind, VL0);
6464       } else {
6465         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
6466         Align CommonAlignment = Alignment;
6467         for (Value *V : VL)
6468           CommonAlignment =
6469               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
6470         VecLdCost = TTI->getGatherScatterOpCost(
6471             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
6472             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
6473       }
6474       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
6475       return CommonCost + VecLdCost - ScalarLdCost;
6476     }
6477     case Instruction::Store: {
6478       // We know that we can merge the stores. Calculate the cost.
6479       bool IsReorder = !E->ReorderIndices.empty();
6480       auto *SI =
6481           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
6482       Align Alignment = SI->getAlign();
6483       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6484           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
6485       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
6486       InstructionCost VecStCost = TTI->getMemoryOpCost(
6487           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
6488       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
6489       return CommonCost + VecStCost - ScalarStCost;
6490     }
6491     case Instruction::Call: {
6492       CallInst *CI = cast<CallInst>(VL0);
6493       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6494 
6495       // Calculate the cost of the scalar and vector calls.
6496       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
6497       InstructionCost ScalarEltCost =
6498           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6499       if (NeedToShuffleReuses) {
6500         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6501       }
6502       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
6503 
6504       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6505       InstructionCost VecCallCost =
6506           std::min(VecCallCosts.first, VecCallCosts.second);
6507 
6508       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
6509                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
6510                         << " for " << *CI << "\n");
6511 
6512       return CommonCost + VecCallCost - ScalarCallCost;
6513     }
6514     case Instruction::ShuffleVector: {
6515       assert(E->isAltShuffle() &&
6516              ((Instruction::isBinaryOp(E->getOpcode()) &&
6517                Instruction::isBinaryOp(E->getAltOpcode())) ||
6518               (Instruction::isCast(E->getOpcode()) &&
6519                Instruction::isCast(E->getAltOpcode())) ||
6520               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
6521              "Invalid Shuffle Vector Operand");
6522       InstructionCost ScalarCost = 0;
6523       if (NeedToShuffleReuses) {
6524         for (unsigned Idx : E->ReuseShuffleIndices) {
6525           Instruction *I = cast<Instruction>(VL[Idx]);
6526           CommonCost -= TTI->getInstructionCost(I, CostKind);
6527         }
6528         for (Value *V : VL) {
6529           Instruction *I = cast<Instruction>(V);
6530           CommonCost += TTI->getInstructionCost(I, CostKind);
6531         }
6532       }
6533       for (Value *V : VL) {
6534         Instruction *I = cast<Instruction>(V);
6535         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6536         ScalarCost += TTI->getInstructionCost(I, CostKind);
6537       }
6538       // VecCost is equal to sum of the cost of creating 2 vectors
6539       // and the cost of creating shuffle.
6540       InstructionCost VecCost = 0;
6541       // Try to find the previous shuffle node with the same operands and same
6542       // main/alternate ops.
6543       auto &&TryFindNodeWithEqualOperands = [this, E]() {
6544         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
6545           if (TE.get() == E)
6546             break;
6547           if (TE->isAltShuffle() &&
6548               ((TE->getOpcode() == E->getOpcode() &&
6549                 TE->getAltOpcode() == E->getAltOpcode()) ||
6550                (TE->getOpcode() == E->getAltOpcode() &&
6551                 TE->getAltOpcode() == E->getOpcode())) &&
6552               TE->hasEqualOperands(*E))
6553             return true;
6554         }
6555         return false;
6556       };
6557       if (TryFindNodeWithEqualOperands()) {
6558         LLVM_DEBUG({
6559           dbgs() << "SLP: diamond match for alternate node found.\n";
6560           E->dump();
6561         });
6562         // No need to add new vector costs here since we're going to reuse
6563         // same main/alternate vector ops, just do different shuffling.
6564       } else if (Instruction::isBinaryOp(E->getOpcode())) {
6565         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
6566         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
6567                                                CostKind);
6568       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
6569         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6570                                           Builder.getInt1Ty(),
6571                                           CI0->getPredicate(), CostKind, VL0);
6572         VecCost += TTI->getCmpSelInstrCost(
6573             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6574             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
6575             E->getAltOp());
6576       } else {
6577         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
6578         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
6579         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
6580         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
6581         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
6582                                         TTI::CastContextHint::None, CostKind);
6583         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
6584                                          TTI::CastContextHint::None, CostKind);
6585       }
6586 
6587       if (E->ReuseShuffleIndices.empty()) {
6588         CommonCost =
6589             TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
6590       } else {
6591         SmallVector<int> Mask;
6592         buildShuffleEntryMask(
6593             E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
6594             [E](Instruction *I) {
6595               assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6596               return I->getOpcode() == E->getAltOpcode();
6597             },
6598             Mask);
6599         CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
6600                                          FinalVecTy, Mask);
6601       }
6602       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6603       return CommonCost + VecCost - ScalarCost;
6604     }
6605     default:
6606       llvm_unreachable("Unknown instruction");
6607   }
6608 }
6609 
6610 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
6611   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
6612                     << VectorizableTree.size() << " is fully vectorizable .\n");
6613 
6614   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
6615     SmallVector<int> Mask;
6616     return TE->State == TreeEntry::NeedToGather &&
6617            !any_of(TE->Scalars,
6618                    [this](Value *V) { return EphValues.contains(V); }) &&
6619            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
6620             TE->Scalars.size() < Limit ||
6621             ((TE->getOpcode() == Instruction::ExtractElement ||
6622               all_of(TE->Scalars,
6623                      [](Value *V) {
6624                        return isa<ExtractElementInst, UndefValue>(V);
6625                      })) &&
6626              isFixedVectorShuffle(TE->Scalars, Mask)) ||
6627             (TE->State == TreeEntry::NeedToGather &&
6628              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
6629   };
6630 
6631   // We only handle trees of heights 1 and 2.
6632   if (VectorizableTree.size() == 1 &&
6633       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
6634        (ForReduction &&
6635         AreVectorizableGathers(VectorizableTree[0].get(),
6636                                VectorizableTree[0]->Scalars.size()) &&
6637         VectorizableTree[0]->getVectorFactor() > 2)))
6638     return true;
6639 
6640   if (VectorizableTree.size() != 2)
6641     return false;
6642 
6643   // Handle splat and all-constants stores. Also try to vectorize tiny trees
6644   // with the second gather nodes if they have less scalar operands rather than
6645   // the initial tree element (may be profitable to shuffle the second gather)
6646   // or they are extractelements, which form shuffle.
6647   SmallVector<int> Mask;
6648   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
6649       AreVectorizableGathers(VectorizableTree[1].get(),
6650                              VectorizableTree[0]->Scalars.size()))
6651     return true;
6652 
6653   // Gathering cost would be too much for tiny trees.
6654   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
6655       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6656        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
6657     return false;
6658 
6659   return true;
6660 }
6661 
6662 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
6663                                        TargetTransformInfo *TTI,
6664                                        bool MustMatchOrInst) {
6665   // Look past the root to find a source value. Arbitrarily follow the
6666   // path through operand 0 of any 'or'. Also, peek through optional
6667   // shift-left-by-multiple-of-8-bits.
6668   Value *ZextLoad = Root;
6669   const APInt *ShAmtC;
6670   bool FoundOr = false;
6671   while (!isa<ConstantExpr>(ZextLoad) &&
6672          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
6673           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
6674            ShAmtC->urem(8) == 0))) {
6675     auto *BinOp = cast<BinaryOperator>(ZextLoad);
6676     ZextLoad = BinOp->getOperand(0);
6677     if (BinOp->getOpcode() == Instruction::Or)
6678       FoundOr = true;
6679   }
6680   // Check if the input is an extended load of the required or/shift expression.
6681   Value *Load;
6682   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
6683       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
6684     return false;
6685 
6686   // Require that the total load bit width is a legal integer type.
6687   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
6688   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
6689   Type *SrcTy = Load->getType();
6690   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
6691   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
6692     return false;
6693 
6694   // Everything matched - assume that we can fold the whole sequence using
6695   // load combining.
6696   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
6697              << *(cast<Instruction>(Root)) << "\n");
6698 
6699   return true;
6700 }
6701 
6702 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
6703   if (RdxKind != RecurKind::Or)
6704     return false;
6705 
6706   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6707   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
6708   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
6709                                     /* MatchOr */ false);
6710 }
6711 
6712 bool BoUpSLP::isLoadCombineCandidate() const {
6713   // Peek through a final sequence of stores and check if all operations are
6714   // likely to be load-combined.
6715   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6716   for (Value *Scalar : VectorizableTree[0]->Scalars) {
6717     Value *X;
6718     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
6719         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
6720       return false;
6721   }
6722   return true;
6723 }
6724 
6725 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
6726   // No need to vectorize inserts of gathered values.
6727   if (VectorizableTree.size() == 2 &&
6728       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
6729       VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6730       (VectorizableTree[1]->getVectorFactor() <= 2 ||
6731        !(isSplat(VectorizableTree[1]->Scalars) ||
6732          allConstant(VectorizableTree[1]->Scalars))))
6733     return true;
6734 
6735   // We can vectorize the tree if its size is greater than or equal to the
6736   // minimum size specified by the MinTreeSize command line option.
6737   if (VectorizableTree.size() >= MinTreeSize)
6738     return false;
6739 
6740   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
6741   // can vectorize it if we can prove it fully vectorizable.
6742   if (isFullyVectorizableTinyTree(ForReduction))
6743     return false;
6744 
6745   assert(VectorizableTree.empty()
6746              ? ExternalUses.empty()
6747              : true && "We shouldn't have any external users");
6748 
6749   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
6750   // vectorizable.
6751   return true;
6752 }
6753 
6754 InstructionCost BoUpSLP::getSpillCost() const {
6755   // Walk from the bottom of the tree to the top, tracking which values are
6756   // live. When we see a call instruction that is not part of our tree,
6757   // query TTI to see if there is a cost to keeping values live over it
6758   // (for example, if spills and fills are required).
6759   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
6760   InstructionCost Cost = 0;
6761 
6762   SmallPtrSet<Instruction*, 4> LiveValues;
6763   Instruction *PrevInst = nullptr;
6764 
6765   // The entries in VectorizableTree are not necessarily ordered by their
6766   // position in basic blocks. Collect them and order them by dominance so later
6767   // instructions are guaranteed to be visited first. For instructions in
6768   // different basic blocks, we only scan to the beginning of the block, so
6769   // their order does not matter, as long as all instructions in a basic block
6770   // are grouped together. Using dominance ensures a deterministic order.
6771   SmallVector<Instruction *, 16> OrderedScalars;
6772   for (const auto &TEPtr : VectorizableTree) {
6773     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
6774     if (!Inst)
6775       continue;
6776     OrderedScalars.push_back(Inst);
6777   }
6778   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
6779     auto *NodeA = DT->getNode(A->getParent());
6780     auto *NodeB = DT->getNode(B->getParent());
6781     assert(NodeA && "Should only process reachable instructions");
6782     assert(NodeB && "Should only process reachable instructions");
6783     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
6784            "Different nodes should have different DFS numbers");
6785     if (NodeA != NodeB)
6786       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
6787     return B->comesBefore(A);
6788   });
6789 
6790   for (Instruction *Inst : OrderedScalars) {
6791     if (!PrevInst) {
6792       PrevInst = Inst;
6793       continue;
6794     }
6795 
6796     // Update LiveValues.
6797     LiveValues.erase(PrevInst);
6798     for (auto &J : PrevInst->operands()) {
6799       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
6800         LiveValues.insert(cast<Instruction>(&*J));
6801     }
6802 
6803     LLVM_DEBUG({
6804       dbgs() << "SLP: #LV: " << LiveValues.size();
6805       for (auto *X : LiveValues)
6806         dbgs() << " " << X->getName();
6807       dbgs() << ", Looking at ";
6808       Inst->dump();
6809     });
6810 
6811     // Now find the sequence of instructions between PrevInst and Inst.
6812     unsigned NumCalls = 0;
6813     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
6814                                  PrevInstIt =
6815                                      PrevInst->getIterator().getReverse();
6816     while (InstIt != PrevInstIt) {
6817       if (PrevInstIt == PrevInst->getParent()->rend()) {
6818         PrevInstIt = Inst->getParent()->rbegin();
6819         continue;
6820       }
6821 
6822       // Debug information does not impact spill cost.
6823       if ((isa<CallInst>(&*PrevInstIt) &&
6824            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
6825           &*PrevInstIt != PrevInst)
6826         NumCalls++;
6827 
6828       ++PrevInstIt;
6829     }
6830 
6831     if (NumCalls) {
6832       SmallVector<Type*, 4> V;
6833       for (auto *II : LiveValues) {
6834         auto *ScalarTy = II->getType();
6835         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
6836           ScalarTy = VectorTy->getElementType();
6837         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
6838       }
6839       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
6840     }
6841 
6842     PrevInst = Inst;
6843   }
6844 
6845   return Cost;
6846 }
6847 
6848 /// Check if two insertelement instructions are from the same buildvector.
6849 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
6850                                             InsertElementInst *V) {
6851   // Instructions must be from the same basic blocks.
6852   if (VU->getParent() != V->getParent())
6853     return false;
6854   // Checks if 2 insertelements are from the same buildvector.
6855   if (VU->getType() != V->getType())
6856     return false;
6857   // Multiple used inserts are separate nodes.
6858   if (!VU->hasOneUse() && !V->hasOneUse())
6859     return false;
6860   auto *IE1 = VU;
6861   auto *IE2 = V;
6862   unsigned Idx1 = *getInsertIndex(IE1);
6863   unsigned Idx2 = *getInsertIndex(IE2);
6864   // Go through the vector operand of insertelement instructions trying to find
6865   // either VU as the original vector for IE2 or V as the original vector for
6866   // IE1.
6867   do {
6868     if (IE2 == VU)
6869       return VU->hasOneUse();
6870     if (IE1 == V)
6871       return V->hasOneUse();
6872     if (IE1) {
6873       if ((IE1 != VU && !IE1->hasOneUse()) ||
6874           getInsertIndex(IE1).value_or(Idx2) == Idx2)
6875         IE1 = nullptr;
6876       else
6877         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
6878     }
6879     if (IE2) {
6880       if ((IE2 != V && !IE2->hasOneUse()) ||
6881           getInsertIndex(IE2).value_or(Idx1) == Idx1)
6882         IE2 = nullptr;
6883       else
6884         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
6885     }
6886   } while (IE1 || IE2);
6887   return false;
6888 }
6889 
6890 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
6891 /// buildvector sequence.
6892 static bool isFirstInsertElement(const InsertElementInst *IE1,
6893                                  const InsertElementInst *IE2) {
6894   if (IE1 == IE2)
6895     return false;
6896   const auto *I1 = IE1;
6897   const auto *I2 = IE2;
6898   const InsertElementInst *PrevI1;
6899   const InsertElementInst *PrevI2;
6900   unsigned Idx1 = *getInsertIndex(IE1);
6901   unsigned Idx2 = *getInsertIndex(IE2);
6902   do {
6903     if (I2 == IE1)
6904       return true;
6905     if (I1 == IE2)
6906       return false;
6907     PrevI1 = I1;
6908     PrevI2 = I2;
6909     if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
6910         getInsertIndex(I1).value_or(Idx2) != Idx2)
6911       I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
6912     if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
6913         getInsertIndex(I2).value_or(Idx1) != Idx1)
6914       I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
6915   } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
6916   llvm_unreachable("Two different buildvectors not expected.");
6917 }
6918 
6919 namespace {
6920 /// Returns incoming Value *, if the requested type is Value * too, or a default
6921 /// value, otherwise.
6922 struct ValueSelect {
6923   template <typename U>
6924   static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type
6925   get(Value *V) {
6926     return V;
6927   }
6928   template <typename U>
6929   static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type
6930   get(Value *) {
6931     return U();
6932   }
6933 };
6934 } // namespace
6935 
6936 /// Does the analysis of the provided shuffle masks and performs the requested
6937 /// actions on the vectors with the given shuffle masks. It tries to do it in
6938 /// several steps.
6939 /// 1. If the Base vector is not undef vector, resizing the very first mask to
6940 /// have common VF and perform action for 2 input vectors (including non-undef
6941 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
6942 /// and processed as a shuffle of 2 elements.
6943 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
6944 /// action only for 1 vector with the given mask, if it is not the identity
6945 /// mask.
6946 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
6947 /// vectors, combing the masks properly between the steps.
6948 template <typename T>
6949 static T *performExtractsShuffleAction(
6950     MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
6951     function_ref<unsigned(T *)> GetVF,
6952     function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction,
6953     function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
6954   assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
6955   SmallVector<int> Mask(ShuffleMask.begin()->second);
6956   auto VMIt = std::next(ShuffleMask.begin());
6957   T *Prev = nullptr;
6958   bool IsBaseNotUndef = !isUndefVector(Base);
6959   if (IsBaseNotUndef) {
6960     // Base is not undef, need to combine it with the next subvectors.
6961     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6962     for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
6963       if (Mask[Idx] == UndefMaskElem)
6964         Mask[Idx] = Idx;
6965       else
6966         Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
6967     }
6968     auto *V = ValueSelect::get<T *>(Base);
6969     (void)V;
6970     assert((!V || GetVF(V) == Mask.size()) &&
6971            "Expected base vector of VF number of elements.");
6972     Prev = Action(Mask, {nullptr, Res.first});
6973   } else if (ShuffleMask.size() == 1) {
6974     // Base is undef and only 1 vector is shuffled - perform the action only for
6975     // single vector, if the mask is not the identity mask.
6976     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6977     if (Res.second)
6978       // Identity mask is found.
6979       Prev = Res.first;
6980     else
6981       Prev = Action(Mask, {ShuffleMask.begin()->first});
6982   } else {
6983     // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
6984     // shuffles step by step, combining shuffle between the steps.
6985     unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
6986     unsigned Vec2VF = GetVF(VMIt->first);
6987     if (Vec1VF == Vec2VF) {
6988       // No need to resize the input vectors since they are of the same size, we
6989       // can shuffle them directly.
6990       ArrayRef<int> SecMask = VMIt->second;
6991       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6992         if (SecMask[I] != UndefMaskElem) {
6993           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6994           Mask[I] = SecMask[I] + Vec1VF;
6995         }
6996       }
6997       Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
6998     } else {
6999       // Vectors of different sizes - resize and reshuffle.
7000       std::pair<T *, bool> Res1 =
7001           ResizeAction(ShuffleMask.begin()->first, Mask);
7002       std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second);
7003       ArrayRef<int> SecMask = VMIt->second;
7004       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7005         if (Mask[I] != UndefMaskElem) {
7006           assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.");
7007           if (Res1.second)
7008             Mask[I] = I;
7009         } else if (SecMask[I] != UndefMaskElem) {
7010           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
7011           Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
7012         }
7013       }
7014       Prev = Action(Mask, {Res1.first, Res2.first});
7015     }
7016     VMIt = std::next(VMIt);
7017   }
7018   // Perform requested actions for the remaining masks/vectors.
7019   for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
7020     // Shuffle other input vectors, if any.
7021     std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second);
7022     ArrayRef<int> SecMask = VMIt->second;
7023     for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7024       if (SecMask[I] != UndefMaskElem) {
7025         assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&
7026                "Multiple uses of scalars.");
7027         Mask[I] = (Res.second ? I : SecMask[I]) + VF;
7028       } else if (Mask[I] != UndefMaskElem) {
7029         Mask[I] = I;
7030       }
7031     }
7032     Prev = Action(Mask, {Prev, Res.first});
7033   }
7034   return Prev;
7035 }
7036 
7037 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
7038   InstructionCost Cost = 0;
7039   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
7040                     << VectorizableTree.size() << ".\n");
7041 
7042   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
7043 
7044   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
7045     TreeEntry &TE = *VectorizableTree[I];
7046 
7047     InstructionCost C = getEntryCost(&TE, VectorizedVals);
7048     Cost += C;
7049     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7050                       << " for bundle that starts with " << *TE.Scalars[0]
7051                       << ".\n"
7052                       << "SLP: Current total cost = " << Cost << "\n");
7053   }
7054 
7055   SmallPtrSet<Value *, 16> ExtractCostCalculated;
7056   InstructionCost ExtractCost = 0;
7057   SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
7058   SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
7059   SmallVector<APInt> DemandedElts;
7060   for (ExternalUser &EU : ExternalUses) {
7061     // We only add extract cost once for the same scalar.
7062     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
7063         !ExtractCostCalculated.insert(EU.Scalar).second)
7064       continue;
7065 
7066     // Uses by ephemeral values are free (because the ephemeral value will be
7067     // removed prior to code generation, and so the extraction will be
7068     // removed as well).
7069     if (EphValues.count(EU.User))
7070       continue;
7071 
7072     // No extract cost for vector "scalar"
7073     if (isa<FixedVectorType>(EU.Scalar->getType()))
7074       continue;
7075 
7076     // Already counted the cost for external uses when tried to adjust the cost
7077     // for extractelements, no need to add it again.
7078     if (isa<ExtractElementInst>(EU.Scalar))
7079       continue;
7080 
7081     // If found user is an insertelement, do not calculate extract cost but try
7082     // to detect it as a final shuffled/identity match.
7083     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
7084       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
7085         Optional<unsigned> InsertIdx = getInsertIndex(VU);
7086         if (InsertIdx) {
7087           const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
7088           auto *It =
7089               find_if(FirstUsers,
7090                       [VU](const std::pair<Value *, const TreeEntry *> &Pair) {
7091                         return areTwoInsertFromSameBuildVector(
7092                             VU, cast<InsertElementInst>(Pair.first));
7093                       });
7094           int VecId = -1;
7095           if (It == FirstUsers.end()) {
7096             (void)ShuffleMasks.emplace_back();
7097             SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
7098             if (Mask.empty())
7099               Mask.assign(FTy->getNumElements(), UndefMaskElem);
7100             // Find the insertvector, vectorized in tree, if any.
7101             Value *Base = VU;
7102             while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
7103               if (IEBase != EU.User &&
7104                   (!IEBase->hasOneUse() ||
7105                    getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
7106                 break;
7107               // Build the mask for the vectorized insertelement instructions.
7108               if (const TreeEntry *E = getTreeEntry(IEBase)) {
7109                 VU = IEBase;
7110                 do {
7111                   IEBase = cast<InsertElementInst>(Base);
7112                   int Idx = *getInsertIndex(IEBase);
7113                   assert(Mask[Idx] == UndefMaskElem &&
7114                          "InsertElementInstruction used already.");
7115                   Mask[Idx] = Idx;
7116                   Base = IEBase->getOperand(0);
7117                 } while (E == getTreeEntry(Base));
7118                 break;
7119               }
7120               Base = cast<InsertElementInst>(Base)->getOperand(0);
7121             }
7122             FirstUsers.emplace_back(VU, ScalarTE);
7123             DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
7124             VecId = FirstUsers.size() - 1;
7125           } else {
7126             if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
7127               It->first = VU;
7128             VecId = std::distance(FirstUsers.begin(), It);
7129           }
7130           int InIdx = *InsertIdx;
7131           SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
7132           if (Mask.empty())
7133             Mask.assign(FTy->getNumElements(), UndefMaskElem);
7134           Mask[InIdx] = EU.Lane;
7135           DemandedElts[VecId].setBit(InIdx);
7136           continue;
7137         }
7138       }
7139     }
7140 
7141     // If we plan to rewrite the tree in a smaller type, we will need to sign
7142     // extend the extracted value back to the original type. Here, we account
7143     // for the extract and the added cost of the sign extend if needed.
7144     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
7145     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7146     if (MinBWs.count(ScalarRoot)) {
7147       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7148       auto Extend =
7149           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
7150       VecTy = FixedVectorType::get(MinTy, BundleWidth);
7151       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
7152                                                    VecTy, EU.Lane);
7153     } else {
7154       ExtractCost +=
7155           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
7156     }
7157   }
7158 
7159   InstructionCost SpillCost = getSpillCost();
7160   Cost += SpillCost + ExtractCost;
7161   auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) {
7162     InstructionCost C = 0;
7163     unsigned VF = Mask.size();
7164     unsigned VecVF = TE->getVectorFactor();
7165     if (VF != VecVF &&
7166         (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
7167          (all_of(Mask,
7168                  [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
7169           !ShuffleVectorInst::isIdentityMask(Mask)))) {
7170       SmallVector<int> OrigMask(VecVF, UndefMaskElem);
7171       std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
7172                 OrigMask.begin());
7173       C = TTI->getShuffleCost(
7174           TTI::SK_PermuteSingleSrc,
7175           FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
7176       LLVM_DEBUG(
7177           dbgs() << "SLP: Adding cost " << C
7178                  << " for final shuffle of insertelement external users.\n";
7179           TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
7180       Cost += C;
7181       return std::make_pair(TE, true);
7182     }
7183     return std::make_pair(TE, false);
7184   };
7185   // Calculate the cost of the reshuffled vectors, if any.
7186   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
7187     Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
7188     unsigned VF = ShuffleMasks[I].begin()->second.size();
7189     auto *FTy = FixedVectorType::get(
7190         cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
7191     auto Vector = ShuffleMasks[I].takeVector();
7192     auto &&EstimateShufflesCost = [this, FTy,
7193                                    &Cost](ArrayRef<int> Mask,
7194                                           ArrayRef<const TreeEntry *> TEs) {
7195       assert((TEs.size() == 1 || TEs.size() == 2) &&
7196              "Expected exactly 1 or 2 tree entries.");
7197       if (TEs.size() == 1) {
7198         int Limit = 2 * Mask.size();
7199         if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
7200             !ShuffleVectorInst::isIdentityMask(Mask)) {
7201           InstructionCost C =
7202               TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
7203           LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7204                             << " for final shuffle of insertelement "
7205                                "external users.\n";
7206                      TEs.front()->dump();
7207                      dbgs() << "SLP: Current total cost = " << Cost << "\n");
7208           Cost += C;
7209         }
7210       } else {
7211         InstructionCost C =
7212             TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
7213         LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7214                           << " for final shuffle of vector node and external "
7215                              "insertelement users.\n";
7216                    if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
7217                    dbgs() << "SLP: Current total cost = " << Cost << "\n");
7218         Cost += C;
7219       }
7220       return TEs.back();
7221     };
7222     (void)performExtractsShuffleAction<const TreeEntry>(
7223         makeMutableArrayRef(Vector.data(), Vector.size()), Base,
7224         [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
7225         EstimateShufflesCost);
7226     InstructionCost InsertCost = TTI->getScalarizationOverhead(
7227         cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
7228         /*Insert*/ true, /*Extract*/ false);
7229     Cost -= InsertCost;
7230   }
7231 
7232 #ifndef NDEBUG
7233   SmallString<256> Str;
7234   {
7235     raw_svector_ostream OS(Str);
7236     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
7237        << "SLP: Extract Cost = " << ExtractCost << ".\n"
7238        << "SLP: Total Cost = " << Cost << ".\n";
7239   }
7240   LLVM_DEBUG(dbgs() << Str);
7241   if (ViewSLPTree)
7242     ViewGraph(this, "SLP" + F->getName(), false, Str);
7243 #endif
7244 
7245   return Cost;
7246 }
7247 
7248 Optional<TargetTransformInfo::ShuffleKind>
7249 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
7250                                SmallVectorImpl<const TreeEntry *> &Entries) {
7251   // TODO: currently checking only for Scalars in the tree entry, need to count
7252   // reused elements too for better cost estimation.
7253   Mask.assign(TE->Scalars.size(), UndefMaskElem);
7254   Entries.clear();
7255   // Build a lists of values to tree entries.
7256   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
7257   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
7258     if (EntryPtr.get() == TE)
7259       break;
7260     if (EntryPtr->State != TreeEntry::NeedToGather)
7261       continue;
7262     for (Value *V : EntryPtr->Scalars)
7263       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
7264   }
7265   // Find all tree entries used by the gathered values. If no common entries
7266   // found - not a shuffle.
7267   // Here we build a set of tree nodes for each gathered value and trying to
7268   // find the intersection between these sets. If we have at least one common
7269   // tree node for each gathered value - we have just a permutation of the
7270   // single vector. If we have 2 different sets, we're in situation where we
7271   // have a permutation of 2 input vectors.
7272   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
7273   DenseMap<Value *, int> UsedValuesEntry;
7274   for (Value *V : TE->Scalars) {
7275     if (isa<UndefValue>(V))
7276       continue;
7277     // Build a list of tree entries where V is used.
7278     SmallPtrSet<const TreeEntry *, 4> VToTEs;
7279     auto It = ValueToTEs.find(V);
7280     if (It != ValueToTEs.end())
7281       VToTEs = It->second;
7282     if (const TreeEntry *VTE = getTreeEntry(V))
7283       VToTEs.insert(VTE);
7284     if (VToTEs.empty())
7285       return None;
7286     if (UsedTEs.empty()) {
7287       // The first iteration, just insert the list of nodes to vector.
7288       UsedTEs.push_back(VToTEs);
7289     } else {
7290       // Need to check if there are any previously used tree nodes which use V.
7291       // If there are no such nodes, consider that we have another one input
7292       // vector.
7293       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
7294       unsigned Idx = 0;
7295       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
7296         // Do we have a non-empty intersection of previously listed tree entries
7297         // and tree entries using current V?
7298         set_intersect(VToTEs, Set);
7299         if (!VToTEs.empty()) {
7300           // Yes, write the new subset and continue analysis for the next
7301           // scalar.
7302           Set.swap(VToTEs);
7303           break;
7304         }
7305         VToTEs = SavedVToTEs;
7306         ++Idx;
7307       }
7308       // No non-empty intersection found - need to add a second set of possible
7309       // source vectors.
7310       if (Idx == UsedTEs.size()) {
7311         // If the number of input vectors is greater than 2 - not a permutation,
7312         // fallback to the regular gather.
7313         if (UsedTEs.size() == 2)
7314           return None;
7315         UsedTEs.push_back(SavedVToTEs);
7316         Idx = UsedTEs.size() - 1;
7317       }
7318       UsedValuesEntry.try_emplace(V, Idx);
7319     }
7320   }
7321 
7322   if (UsedTEs.empty()) {
7323     assert(all_of(TE->Scalars, UndefValue::classof) &&
7324            "Expected vector of undefs only.");
7325     return None;
7326   }
7327 
7328   unsigned VF = 0;
7329   if (UsedTEs.size() == 1) {
7330     // Try to find the perfect match in another gather node at first.
7331     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
7332       return EntryPtr->isSame(TE->Scalars);
7333     });
7334     if (It != UsedTEs.front().end()) {
7335       Entries.push_back(*It);
7336       std::iota(Mask.begin(), Mask.end(), 0);
7337       return TargetTransformInfo::SK_PermuteSingleSrc;
7338     }
7339     // No perfect match, just shuffle, so choose the first tree node.
7340     Entries.push_back(*UsedTEs.front().begin());
7341   } else {
7342     // Try to find nodes with the same vector factor.
7343     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
7344     DenseMap<int, const TreeEntry *> VFToTE;
7345     for (const TreeEntry *TE : UsedTEs.front())
7346       VFToTE.try_emplace(TE->getVectorFactor(), TE);
7347     for (const TreeEntry *TE : UsedTEs.back()) {
7348       auto It = VFToTE.find(TE->getVectorFactor());
7349       if (It != VFToTE.end()) {
7350         VF = It->first;
7351         Entries.push_back(It->second);
7352         Entries.push_back(TE);
7353         break;
7354       }
7355     }
7356     // No 2 source vectors with the same vector factor - give up and do regular
7357     // gather.
7358     if (Entries.empty())
7359       return None;
7360   }
7361 
7362   // Build a shuffle mask for better cost estimation and vector emission.
7363   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
7364     Value *V = TE->Scalars[I];
7365     if (isa<UndefValue>(V))
7366       continue;
7367     unsigned Idx = UsedValuesEntry.lookup(V);
7368     const TreeEntry *VTE = Entries[Idx];
7369     int FoundLane = VTE->findLaneForValue(V);
7370     Mask[I] = Idx * VF + FoundLane;
7371     // Extra check required by isSingleSourceMaskImpl function (called by
7372     // ShuffleVectorInst::isSingleSourceMask).
7373     if (Mask[I] >= 2 * E)
7374       return None;
7375   }
7376   switch (Entries.size()) {
7377   case 1:
7378     return TargetTransformInfo::SK_PermuteSingleSrc;
7379   case 2:
7380     return TargetTransformInfo::SK_PermuteTwoSrc;
7381   default:
7382     break;
7383   }
7384   return None;
7385 }
7386 
7387 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
7388                                        const APInt &ShuffledIndices,
7389                                        bool NeedToShuffle) const {
7390   InstructionCost Cost =
7391       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
7392                                     /*Extract*/ false);
7393   if (NeedToShuffle)
7394     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
7395   return Cost;
7396 }
7397 
7398 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
7399   // Find the type of the operands in VL.
7400   Type *ScalarTy = VL[0]->getType();
7401   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
7402     ScalarTy = SI->getValueOperand()->getType();
7403   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7404   bool DuplicateNonConst = false;
7405   // Find the cost of inserting/extracting values from the vector.
7406   // Check if the same elements are inserted several times and count them as
7407   // shuffle candidates.
7408   APInt ShuffledElements = APInt::getZero(VL.size());
7409   DenseSet<Value *> UniqueElements;
7410   // Iterate in reverse order to consider insert elements with the high cost.
7411   for (unsigned I = VL.size(); I > 0; --I) {
7412     unsigned Idx = I - 1;
7413     // No need to shuffle duplicates for constants.
7414     if (isConstant(VL[Idx])) {
7415       ShuffledElements.setBit(Idx);
7416       continue;
7417     }
7418     if (!UniqueElements.insert(VL[Idx]).second) {
7419       DuplicateNonConst = true;
7420       ShuffledElements.setBit(Idx);
7421     }
7422   }
7423   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
7424 }
7425 
7426 // Perform operand reordering on the instructions in VL and return the reordered
7427 // operands in Left and Right.
7428 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
7429                                              SmallVectorImpl<Value *> &Left,
7430                                              SmallVectorImpl<Value *> &Right,
7431                                              const DataLayout &DL,
7432                                              ScalarEvolution &SE,
7433                                              const BoUpSLP &R) {
7434   if (VL.empty())
7435     return;
7436   VLOperands Ops(VL, DL, SE, R);
7437   // Reorder the operands in place.
7438   Ops.reorder();
7439   Left = Ops.getVL(0);
7440   Right = Ops.getVL(1);
7441 }
7442 
7443 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
7444   // Get the basic block this bundle is in. All instructions in the bundle
7445   // should be in this block (except for extractelement-like instructions with
7446   // constant indeces).
7447   auto *Front = E->getMainOp();
7448   auto *BB = Front->getParent();
7449   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
7450     if (E->getOpcode() == Instruction::GetElementPtr &&
7451         !isa<GetElementPtrInst>(V))
7452       return true;
7453     auto *I = cast<Instruction>(V);
7454     return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
7455            isVectorLikeInstWithConstOps(I);
7456   }));
7457 
7458   auto &&FindLastInst = [E, Front, this, &BB]() {
7459     Instruction *LastInst = Front;
7460     for (Value *V : E->Scalars) {
7461       auto *I = dyn_cast<Instruction>(V);
7462       if (!I)
7463         continue;
7464       if (LastInst->getParent() == I->getParent()) {
7465         if (LastInst->comesBefore(I))
7466           LastInst = I;
7467         continue;
7468       }
7469       assert(isVectorLikeInstWithConstOps(LastInst) &&
7470              isVectorLikeInstWithConstOps(I) &&
7471              "Expected vector-like insts only.");
7472       if (!DT->isReachableFromEntry(LastInst->getParent())) {
7473         LastInst = I;
7474         continue;
7475       }
7476       if (!DT->isReachableFromEntry(I->getParent()))
7477         continue;
7478       auto *NodeA = DT->getNode(LastInst->getParent());
7479       auto *NodeB = DT->getNode(I->getParent());
7480       assert(NodeA && "Should only process reachable instructions");
7481       assert(NodeB && "Should only process reachable instructions");
7482       assert((NodeA == NodeB) ==
7483                  (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
7484              "Different nodes should have different DFS numbers");
7485       if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
7486         LastInst = I;
7487     }
7488     BB = LastInst->getParent();
7489     return LastInst;
7490   };
7491 
7492   auto &&FindFirstInst = [E, Front]() {
7493     Instruction *FirstInst = Front;
7494     for (Value *V : E->Scalars) {
7495       auto *I = dyn_cast<Instruction>(V);
7496       if (!I)
7497         continue;
7498       if (I->comesBefore(FirstInst))
7499         FirstInst = I;
7500     }
7501     return FirstInst;
7502   };
7503 
7504   // Set the insert point to the beginning of the basic block if the entry
7505   // should not be scheduled.
7506   if (E->State != TreeEntry::NeedToGather &&
7507       doesNotNeedToSchedule(E->Scalars)) {
7508     Instruction *InsertInst;
7509     if (all_of(E->Scalars, isUsedOutsideBlock))
7510       InsertInst = FindLastInst();
7511     else
7512       InsertInst = FindFirstInst();
7513     // If the instruction is PHI, set the insert point after all the PHIs.
7514     if (isa<PHINode>(InsertInst))
7515       InsertInst = BB->getFirstNonPHI();
7516     BasicBlock::iterator InsertPt = InsertInst->getIterator();
7517     Builder.SetInsertPoint(BB, InsertPt);
7518     Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7519     return;
7520   }
7521 
7522   // The last instruction in the bundle in program order.
7523   Instruction *LastInst = nullptr;
7524 
7525   // Find the last instruction. The common case should be that BB has been
7526   // scheduled, and the last instruction is VL.back(). So we start with
7527   // VL.back() and iterate over schedule data until we reach the end of the
7528   // bundle. The end of the bundle is marked by null ScheduleData.
7529   if (BlocksSchedules.count(BB)) {
7530     Value *V = E->isOneOf(E->Scalars.back());
7531     if (doesNotNeedToBeScheduled(V))
7532       V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
7533     auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
7534     if (Bundle && Bundle->isPartOfBundle())
7535       for (; Bundle; Bundle = Bundle->NextInBundle)
7536         if (Bundle->OpValue == Bundle->Inst)
7537           LastInst = Bundle->Inst;
7538   }
7539 
7540   // LastInst can still be null at this point if there's either not an entry
7541   // for BB in BlocksSchedules or there's no ScheduleData available for
7542   // VL.back(). This can be the case if buildTree_rec aborts for various
7543   // reasons (e.g., the maximum recursion depth is reached, the maximum region
7544   // size is reached, etc.). ScheduleData is initialized in the scheduling
7545   // "dry-run".
7546   //
7547   // If this happens, we can still find the last instruction by brute force. We
7548   // iterate forwards from Front (inclusive) until we either see all
7549   // instructions in the bundle or reach the end of the block. If Front is the
7550   // last instruction in program order, LastInst will be set to Front, and we
7551   // will visit all the remaining instructions in the block.
7552   //
7553   // One of the reasons we exit early from buildTree_rec is to place an upper
7554   // bound on compile-time. Thus, taking an additional compile-time hit here is
7555   // not ideal. However, this should be exceedingly rare since it requires that
7556   // we both exit early from buildTree_rec and that the bundle be out-of-order
7557   // (causing us to iterate all the way to the end of the block).
7558   if (!LastInst) {
7559     LastInst = FindLastInst();
7560     // If the instruction is PHI, set the insert point after all the PHIs.
7561     if (isa<PHINode>(LastInst))
7562       LastInst = BB->getFirstNonPHI()->getPrevNode();
7563   }
7564   assert(LastInst && "Failed to find last instruction in bundle");
7565 
7566   // Set the insertion point after the last instruction in the bundle. Set the
7567   // debug location to Front.
7568   Builder.SetInsertPoint(BB, std::next(LastInst->getIterator()));
7569   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7570 }
7571 
7572 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
7573   // List of instructions/lanes from current block and/or the blocks which are
7574   // part of the current loop. These instructions will be inserted at the end to
7575   // make it possible to optimize loops and hoist invariant instructions out of
7576   // the loops body with better chances for success.
7577   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
7578   SmallSet<int, 4> PostponedIndices;
7579   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
7580   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
7581     SmallPtrSet<BasicBlock *, 4> Visited;
7582     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
7583       InsertBB = InsertBB->getSinglePredecessor();
7584     return InsertBB && InsertBB == InstBB;
7585   };
7586   for (int I = 0, E = VL.size(); I < E; ++I) {
7587     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
7588       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
7589            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
7590           PostponedIndices.insert(I).second)
7591         PostponedInsts.emplace_back(Inst, I);
7592   }
7593 
7594   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
7595     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
7596     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
7597     if (!InsElt)
7598       return Vec;
7599     GatherShuffleSeq.insert(InsElt);
7600     CSEBlocks.insert(InsElt->getParent());
7601     // Add to our 'need-to-extract' list.
7602     if (TreeEntry *Entry = getTreeEntry(V)) {
7603       // Find which lane we need to extract.
7604       unsigned FoundLane = Entry->findLaneForValue(V);
7605       ExternalUses.emplace_back(V, InsElt, FoundLane);
7606     }
7607     return Vec;
7608   };
7609   Value *Val0 =
7610       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
7611   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
7612   Value *Vec = PoisonValue::get(VecTy);
7613   SmallVector<int> NonConsts;
7614   // Insert constant values at first.
7615   for (int I = 0, E = VL.size(); I < E; ++I) {
7616     if (PostponedIndices.contains(I))
7617       continue;
7618     if (!isConstant(VL[I])) {
7619       NonConsts.push_back(I);
7620       continue;
7621     }
7622     Vec = CreateInsertElement(Vec, VL[I], I);
7623   }
7624   // Insert non-constant values.
7625   for (int I : NonConsts)
7626     Vec = CreateInsertElement(Vec, VL[I], I);
7627   // Append instructions, which are/may be part of the loop, in the end to make
7628   // it possible to hoist non-loop-based instructions.
7629   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
7630     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
7631 
7632   return Vec;
7633 }
7634 
7635 namespace {
7636 /// Merges shuffle masks and emits final shuffle instruction, if required.
7637 class ShuffleInstructionBuilder {
7638   IRBuilderBase &Builder;
7639   const unsigned VF = 0;
7640   bool IsFinalized = false;
7641   SmallVector<int, 4> Mask;
7642   /// Holds all of the instructions that we gathered.
7643   SetVector<Instruction *> &GatherShuffleSeq;
7644   /// A list of blocks that we are going to CSE.
7645   SetVector<BasicBlock *> &CSEBlocks;
7646 
7647 public:
7648   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
7649                             SetVector<Instruction *> &GatherShuffleSeq,
7650                             SetVector<BasicBlock *> &CSEBlocks)
7651       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
7652         CSEBlocks(CSEBlocks) {}
7653 
7654   /// Adds a mask, inverting it before applying.
7655   void addInversedMask(ArrayRef<unsigned> SubMask) {
7656     if (SubMask.empty())
7657       return;
7658     SmallVector<int, 4> NewMask;
7659     inversePermutation(SubMask, NewMask);
7660     addMask(NewMask);
7661   }
7662 
7663   /// Functions adds masks, merging them into  single one.
7664   void addMask(ArrayRef<unsigned> SubMask) {
7665     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
7666     addMask(NewMask);
7667   }
7668 
7669   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
7670 
7671   Value *finalize(Value *V) {
7672     IsFinalized = true;
7673     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
7674     if (VF == ValueVF && Mask.empty())
7675       return V;
7676     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
7677     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
7678     addMask(NormalizedMask);
7679 
7680     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
7681       return V;
7682     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
7683     if (auto *I = dyn_cast<Instruction>(Vec)) {
7684       GatherShuffleSeq.insert(I);
7685       CSEBlocks.insert(I->getParent());
7686     }
7687     return Vec;
7688   }
7689 
7690   ~ShuffleInstructionBuilder() {
7691     assert((IsFinalized || Mask.empty()) &&
7692            "Shuffle construction must be finalized.");
7693   }
7694 };
7695 } // namespace
7696 
7697 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
7698   const unsigned VF = VL.size();
7699   InstructionsState S = getSameOpcode(VL);
7700   // Special processing for GEPs bundle, which may include non-gep values.
7701   if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
7702     const auto *It =
7703         find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
7704     if (It != VL.end())
7705       S = getSameOpcode(*It);
7706   }
7707   if (S.getOpcode()) {
7708     if (TreeEntry *E = getTreeEntry(S.OpValue))
7709       if (E->isSame(VL)) {
7710         Value *V = vectorizeTree(E);
7711         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
7712           if (!E->ReuseShuffleIndices.empty()) {
7713             // Reshuffle to get only unique values.
7714             // If some of the scalars are duplicated in the vectorization tree
7715             // entry, we do not vectorize them but instead generate a mask for
7716             // the reuses. But if there are several users of the same entry,
7717             // they may have different vectorization factors. This is especially
7718             // important for PHI nodes. In this case, we need to adapt the
7719             // resulting instruction for the user vectorization factor and have
7720             // to reshuffle it again to take only unique elements of the vector.
7721             // Without this code the function incorrectly returns reduced vector
7722             // instruction with the same elements, not with the unique ones.
7723 
7724             // block:
7725             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
7726             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
7727             // ... (use %2)
7728             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
7729             // br %block
7730             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
7731             SmallSet<int, 4> UsedIdxs;
7732             int Pos = 0;
7733             int Sz = VL.size();
7734             for (int Idx : E->ReuseShuffleIndices) {
7735               if (Idx != Sz && Idx != UndefMaskElem &&
7736                   UsedIdxs.insert(Idx).second)
7737                 UniqueIdxs[Idx] = Pos;
7738               ++Pos;
7739             }
7740             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
7741                                             "less than original vector size.");
7742             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
7743             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
7744           } else {
7745             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
7746                    "Expected vectorization factor less "
7747                    "than original vector size.");
7748             SmallVector<int> UniformMask(VF, 0);
7749             std::iota(UniformMask.begin(), UniformMask.end(), 0);
7750             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
7751           }
7752           if (auto *I = dyn_cast<Instruction>(V)) {
7753             GatherShuffleSeq.insert(I);
7754             CSEBlocks.insert(I->getParent());
7755           }
7756         }
7757         return V;
7758       }
7759   }
7760 
7761   // Can't vectorize this, so simply build a new vector with each lane
7762   // corresponding to the requested value.
7763   return createBuildVector(VL);
7764 }
7765 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
7766   assert(any_of(VectorizableTree,
7767                 [VL](const std::unique_ptr<TreeEntry> &TE) {
7768                   return TE->State == TreeEntry::NeedToGather && TE->isSame(VL);
7769                 }) &&
7770          "Non-matching gather node.");
7771   unsigned VF = VL.size();
7772   // Exploit possible reuse of values across lanes.
7773   SmallVector<int> ReuseShuffleIndicies;
7774   SmallVector<Value *> UniqueValues;
7775   if (VL.size() > 2) {
7776     DenseMap<Value *, unsigned> UniquePositions;
7777     unsigned NumValues =
7778         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
7779                                     return !isa<UndefValue>(V);
7780                                   }).base());
7781     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
7782     int UniqueVals = 0;
7783     for (Value *V : VL.drop_back(VL.size() - VF)) {
7784       if (isa<UndefValue>(V)) {
7785         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
7786         continue;
7787       }
7788       if (isConstant(V)) {
7789         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
7790         UniqueValues.emplace_back(V);
7791         continue;
7792       }
7793       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
7794       ReuseShuffleIndicies.emplace_back(Res.first->second);
7795       if (Res.second) {
7796         UniqueValues.emplace_back(V);
7797         ++UniqueVals;
7798       }
7799     }
7800     if (UniqueVals == 1 && UniqueValues.size() == 1) {
7801       // Emit pure splat vector.
7802       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
7803                                   UndefMaskElem);
7804     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
7805       if (UniqueValues.empty()) {
7806         assert(all_of(VL, UndefValue::classof) && "Expected list of undefs.");
7807         NumValues = VF;
7808       }
7809       ReuseShuffleIndicies.clear();
7810       UniqueValues.clear();
7811       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
7812     }
7813     UniqueValues.append(VF - UniqueValues.size(),
7814                         PoisonValue::get(VL[0]->getType()));
7815     VL = UniqueValues;
7816   }
7817 
7818   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7819                                            CSEBlocks);
7820   Value *Vec = gather(VL);
7821   if (!ReuseShuffleIndicies.empty()) {
7822     ShuffleBuilder.addMask(ReuseShuffleIndicies);
7823     Vec = ShuffleBuilder.finalize(Vec);
7824   }
7825   return Vec;
7826 }
7827 
7828 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
7829   IRBuilder<>::InsertPointGuard Guard(Builder);
7830 
7831   if (E->VectorizedValue) {
7832     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
7833     return E->VectorizedValue;
7834   }
7835 
7836   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7837   unsigned VF = E->getVectorFactor();
7838   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7839                                            CSEBlocks);
7840   if (E->State == TreeEntry::NeedToGather) {
7841     if (E->getMainOp())
7842       setInsertPointAfterBundle(E);
7843     Value *Vec;
7844     SmallVector<int> Mask;
7845     SmallVector<const TreeEntry *> Entries;
7846     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
7847         isGatherShuffledEntry(E, Mask, Entries);
7848     if (Shuffle) {
7849       assert((Entries.size() == 1 || Entries.size() == 2) &&
7850              "Expected shuffle of 1 or 2 entries.");
7851       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
7852                                         Entries.back()->VectorizedValue, Mask);
7853       if (auto *I = dyn_cast<Instruction>(Vec)) {
7854         GatherShuffleSeq.insert(I);
7855         CSEBlocks.insert(I->getParent());
7856       }
7857     } else {
7858       Vec = gather(E->Scalars);
7859     }
7860     if (NeedToShuffleReuses) {
7861       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7862       Vec = ShuffleBuilder.finalize(Vec);
7863     }
7864     E->VectorizedValue = Vec;
7865     return Vec;
7866   }
7867 
7868   assert((E->State == TreeEntry::Vectorize ||
7869           E->State == TreeEntry::ScatterVectorize) &&
7870          "Unhandled state");
7871   unsigned ShuffleOrOp =
7872       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7873   Instruction *VL0 = E->getMainOp();
7874   Type *ScalarTy = VL0->getType();
7875   if (auto *Store = dyn_cast<StoreInst>(VL0))
7876     ScalarTy = Store->getValueOperand()->getType();
7877   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
7878     ScalarTy = IE->getOperand(1)->getType();
7879   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
7880   switch (ShuffleOrOp) {
7881     case Instruction::PHI: {
7882       assert((E->ReorderIndices.empty() ||
7883               E != VectorizableTree.front().get() ||
7884               !E->UserTreeIndices.empty()) &&
7885              "PHI reordering is free.");
7886       auto *PH = cast<PHINode>(VL0);
7887       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
7888       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7889       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
7890       Value *V = NewPhi;
7891 
7892       // Adjust insertion point once all PHI's have been generated.
7893       Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
7894       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7895 
7896       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7897       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7898       V = ShuffleBuilder.finalize(V);
7899 
7900       E->VectorizedValue = V;
7901 
7902       // PHINodes may have multiple entries from the same block. We want to
7903       // visit every block once.
7904       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
7905 
7906       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
7907         ValueList Operands;
7908         BasicBlock *IBB = PH->getIncomingBlock(i);
7909 
7910         if (!VisitedBBs.insert(IBB).second) {
7911           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
7912           continue;
7913         }
7914 
7915         Builder.SetInsertPoint(IBB->getTerminator());
7916         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7917         Value *Vec = vectorizeTree(E->getOperand(i));
7918         NewPhi->addIncoming(Vec, IBB);
7919       }
7920 
7921       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
7922              "Invalid number of incoming values");
7923       return V;
7924     }
7925 
7926     case Instruction::ExtractElement: {
7927       Value *V = E->getSingleOperand(0);
7928       Builder.SetInsertPoint(VL0);
7929       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7930       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7931       V = ShuffleBuilder.finalize(V);
7932       E->VectorizedValue = V;
7933       return V;
7934     }
7935     case Instruction::ExtractValue: {
7936       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
7937       Builder.SetInsertPoint(LI);
7938       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
7939       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
7940       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
7941       Value *NewV = propagateMetadata(V, E->Scalars);
7942       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7943       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7944       NewV = ShuffleBuilder.finalize(NewV);
7945       E->VectorizedValue = NewV;
7946       return NewV;
7947     }
7948     case Instruction::InsertElement: {
7949       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
7950       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
7951       Value *V = vectorizeTree(E->getOperand(1));
7952 
7953       // Create InsertVector shuffle if necessary
7954       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
7955         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
7956       }));
7957       const unsigned NumElts =
7958           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
7959       const unsigned NumScalars = E->Scalars.size();
7960 
7961       unsigned Offset = *getInsertIndex(VL0);
7962       assert(Offset < NumElts && "Failed to find vector index offset");
7963 
7964       // Create shuffle to resize vector
7965       SmallVector<int> Mask;
7966       if (!E->ReorderIndices.empty()) {
7967         inversePermutation(E->ReorderIndices, Mask);
7968         Mask.append(NumElts - NumScalars, UndefMaskElem);
7969       } else {
7970         Mask.assign(NumElts, UndefMaskElem);
7971         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
7972       }
7973       // Create InsertVector shuffle if necessary
7974       bool IsIdentity = true;
7975       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
7976       Mask.swap(PrevMask);
7977       for (unsigned I = 0; I < NumScalars; ++I) {
7978         Value *Scalar = E->Scalars[PrevMask[I]];
7979         unsigned InsertIdx = *getInsertIndex(Scalar);
7980         IsIdentity &= InsertIdx - Offset == I;
7981         Mask[InsertIdx - Offset] = I;
7982       }
7983       if (!IsIdentity || NumElts != NumScalars) {
7984         V = Builder.CreateShuffleVector(V, Mask);
7985         if (auto *I = dyn_cast<Instruction>(V)) {
7986           GatherShuffleSeq.insert(I);
7987           CSEBlocks.insert(I->getParent());
7988         }
7989       }
7990 
7991       if ((!IsIdentity || Offset != 0 ||
7992            !isUndefVector(FirstInsert->getOperand(0))) &&
7993           NumElts != NumScalars) {
7994         SmallVector<int> InsertMask(NumElts);
7995         std::iota(InsertMask.begin(), InsertMask.end(), 0);
7996         for (unsigned I = 0; I < NumElts; I++) {
7997           if (Mask[I] != UndefMaskElem)
7998             InsertMask[Offset + I] = NumElts + I;
7999         }
8000 
8001         V = Builder.CreateShuffleVector(
8002             FirstInsert->getOperand(0), V, InsertMask,
8003             cast<Instruction>(E->Scalars.back())->getName());
8004         if (auto *I = dyn_cast<Instruction>(V)) {
8005           GatherShuffleSeq.insert(I);
8006           CSEBlocks.insert(I->getParent());
8007         }
8008       }
8009 
8010       ++NumVectorInstructions;
8011       E->VectorizedValue = V;
8012       return V;
8013     }
8014     case Instruction::ZExt:
8015     case Instruction::SExt:
8016     case Instruction::FPToUI:
8017     case Instruction::FPToSI:
8018     case Instruction::FPExt:
8019     case Instruction::PtrToInt:
8020     case Instruction::IntToPtr:
8021     case Instruction::SIToFP:
8022     case Instruction::UIToFP:
8023     case Instruction::Trunc:
8024     case Instruction::FPTrunc:
8025     case Instruction::BitCast: {
8026       setInsertPointAfterBundle(E);
8027 
8028       Value *InVec = vectorizeTree(E->getOperand(0));
8029 
8030       if (E->VectorizedValue) {
8031         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8032         return E->VectorizedValue;
8033       }
8034 
8035       auto *CI = cast<CastInst>(VL0);
8036       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
8037       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8038       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8039       V = ShuffleBuilder.finalize(V);
8040 
8041       E->VectorizedValue = V;
8042       ++NumVectorInstructions;
8043       return V;
8044     }
8045     case Instruction::FCmp:
8046     case Instruction::ICmp: {
8047       setInsertPointAfterBundle(E);
8048 
8049       Value *L = vectorizeTree(E->getOperand(0));
8050       Value *R = vectorizeTree(E->getOperand(1));
8051 
8052       if (E->VectorizedValue) {
8053         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8054         return E->VectorizedValue;
8055       }
8056 
8057       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
8058       Value *V = Builder.CreateCmp(P0, L, R);
8059       propagateIRFlags(V, E->Scalars, VL0);
8060       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8061       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8062       V = ShuffleBuilder.finalize(V);
8063 
8064       E->VectorizedValue = V;
8065       ++NumVectorInstructions;
8066       return V;
8067     }
8068     case Instruction::Select: {
8069       setInsertPointAfterBundle(E);
8070 
8071       Value *Cond = vectorizeTree(E->getOperand(0));
8072       Value *True = vectorizeTree(E->getOperand(1));
8073       Value *False = vectorizeTree(E->getOperand(2));
8074 
8075       if (E->VectorizedValue) {
8076         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8077         return E->VectorizedValue;
8078       }
8079 
8080       Value *V = Builder.CreateSelect(Cond, True, False);
8081       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8082       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8083       V = ShuffleBuilder.finalize(V);
8084 
8085       E->VectorizedValue = V;
8086       ++NumVectorInstructions;
8087       return V;
8088     }
8089     case Instruction::FNeg: {
8090       setInsertPointAfterBundle(E);
8091 
8092       Value *Op = vectorizeTree(E->getOperand(0));
8093 
8094       if (E->VectorizedValue) {
8095         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8096         return E->VectorizedValue;
8097       }
8098 
8099       Value *V = Builder.CreateUnOp(
8100           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
8101       propagateIRFlags(V, E->Scalars, VL0);
8102       if (auto *I = dyn_cast<Instruction>(V))
8103         V = propagateMetadata(I, E->Scalars);
8104 
8105       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8106       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8107       V = ShuffleBuilder.finalize(V);
8108 
8109       E->VectorizedValue = V;
8110       ++NumVectorInstructions;
8111 
8112       return V;
8113     }
8114     case Instruction::Add:
8115     case Instruction::FAdd:
8116     case Instruction::Sub:
8117     case Instruction::FSub:
8118     case Instruction::Mul:
8119     case Instruction::FMul:
8120     case Instruction::UDiv:
8121     case Instruction::SDiv:
8122     case Instruction::FDiv:
8123     case Instruction::URem:
8124     case Instruction::SRem:
8125     case Instruction::FRem:
8126     case Instruction::Shl:
8127     case Instruction::LShr:
8128     case Instruction::AShr:
8129     case Instruction::And:
8130     case Instruction::Or:
8131     case Instruction::Xor: {
8132       setInsertPointAfterBundle(E);
8133 
8134       Value *LHS = vectorizeTree(E->getOperand(0));
8135       Value *RHS = vectorizeTree(E->getOperand(1));
8136 
8137       if (E->VectorizedValue) {
8138         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8139         return E->VectorizedValue;
8140       }
8141 
8142       Value *V = Builder.CreateBinOp(
8143           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
8144           RHS);
8145       propagateIRFlags(V, E->Scalars, VL0);
8146       if (auto *I = dyn_cast<Instruction>(V))
8147         V = propagateMetadata(I, E->Scalars);
8148 
8149       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8150       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8151       V = ShuffleBuilder.finalize(V);
8152 
8153       E->VectorizedValue = V;
8154       ++NumVectorInstructions;
8155 
8156       return V;
8157     }
8158     case Instruction::Load: {
8159       // Loads are inserted at the head of the tree because we don't want to
8160       // sink them all the way down past store instructions.
8161       setInsertPointAfterBundle(E);
8162 
8163       LoadInst *LI = cast<LoadInst>(VL0);
8164       Instruction *NewLI;
8165       unsigned AS = LI->getPointerAddressSpace();
8166       Value *PO = LI->getPointerOperand();
8167       if (E->State == TreeEntry::Vectorize) {
8168         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
8169         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
8170 
8171         // The pointer operand uses an in-tree scalar so we add the new BitCast
8172         // or LoadInst to ExternalUses list to make sure that an extract will
8173         // be generated in the future.
8174         if (TreeEntry *Entry = getTreeEntry(PO)) {
8175           // Find which lane we need to extract.
8176           unsigned FoundLane = Entry->findLaneForValue(PO);
8177           ExternalUses.emplace_back(
8178               PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
8179         }
8180       } else {
8181         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
8182         Value *VecPtr = vectorizeTree(E->getOperand(0));
8183         // Use the minimum alignment of the gathered loads.
8184         Align CommonAlignment = LI->getAlign();
8185         for (Value *V : E->Scalars)
8186           CommonAlignment =
8187               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
8188         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
8189       }
8190       Value *V = propagateMetadata(NewLI, E->Scalars);
8191 
8192       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8193       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8194       V = ShuffleBuilder.finalize(V);
8195       E->VectorizedValue = V;
8196       ++NumVectorInstructions;
8197       return V;
8198     }
8199     case Instruction::Store: {
8200       auto *SI = cast<StoreInst>(VL0);
8201       unsigned AS = SI->getPointerAddressSpace();
8202 
8203       setInsertPointAfterBundle(E);
8204 
8205       Value *VecValue = vectorizeTree(E->getOperand(0));
8206       ShuffleBuilder.addMask(E->ReorderIndices);
8207       VecValue = ShuffleBuilder.finalize(VecValue);
8208 
8209       Value *ScalarPtr = SI->getPointerOperand();
8210       Value *VecPtr = Builder.CreateBitCast(
8211           ScalarPtr, VecValue->getType()->getPointerTo(AS));
8212       StoreInst *ST =
8213           Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
8214 
8215       // The pointer operand uses an in-tree scalar, so add the new BitCast or
8216       // StoreInst to ExternalUses to make sure that an extract will be
8217       // generated in the future.
8218       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
8219         // Find which lane we need to extract.
8220         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
8221         ExternalUses.push_back(ExternalUser(
8222             ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
8223             FoundLane));
8224       }
8225 
8226       Value *V = propagateMetadata(ST, E->Scalars);
8227 
8228       E->VectorizedValue = V;
8229       ++NumVectorInstructions;
8230       return V;
8231     }
8232     case Instruction::GetElementPtr: {
8233       auto *GEP0 = cast<GetElementPtrInst>(VL0);
8234       setInsertPointAfterBundle(E);
8235 
8236       Value *Op0 = vectorizeTree(E->getOperand(0));
8237 
8238       SmallVector<Value *> OpVecs;
8239       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
8240         Value *OpVec = vectorizeTree(E->getOperand(J));
8241         OpVecs.push_back(OpVec);
8242       }
8243 
8244       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
8245       if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
8246         SmallVector<Value *> GEPs;
8247         for (Value *V : E->Scalars) {
8248           if (isa<GetElementPtrInst>(V))
8249             GEPs.push_back(V);
8250         }
8251         V = propagateMetadata(I, GEPs);
8252       }
8253 
8254       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8255       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8256       V = ShuffleBuilder.finalize(V);
8257 
8258       E->VectorizedValue = V;
8259       ++NumVectorInstructions;
8260 
8261       return V;
8262     }
8263     case Instruction::Call: {
8264       CallInst *CI = cast<CallInst>(VL0);
8265       setInsertPointAfterBundle(E);
8266 
8267       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
8268       if (Function *FI = CI->getCalledFunction())
8269         IID = FI->getIntrinsicID();
8270 
8271       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8272 
8273       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8274       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
8275                           VecCallCosts.first <= VecCallCosts.second;
8276 
8277       Value *ScalarArg = nullptr;
8278       std::vector<Value *> OpVecs;
8279       SmallVector<Type *, 2> TysForDecl =
8280           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
8281       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
8282         ValueList OpVL;
8283         // Some intrinsics have scalar arguments. This argument should not be
8284         // vectorized.
8285         if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
8286           CallInst *CEI = cast<CallInst>(VL0);
8287           ScalarArg = CEI->getArgOperand(j);
8288           OpVecs.push_back(CEI->getArgOperand(j));
8289           if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8290             TysForDecl.push_back(ScalarArg->getType());
8291           continue;
8292         }
8293 
8294         Value *OpVec = vectorizeTree(E->getOperand(j));
8295         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
8296         OpVecs.push_back(OpVec);
8297         if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8298           TysForDecl.push_back(OpVec->getType());
8299       }
8300 
8301       Function *CF;
8302       if (!UseIntrinsic) {
8303         VFShape Shape =
8304             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
8305                                   VecTy->getNumElements())),
8306                          false /*HasGlobalPred*/);
8307         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
8308       } else {
8309         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
8310       }
8311 
8312       SmallVector<OperandBundleDef, 1> OpBundles;
8313       CI->getOperandBundlesAsDefs(OpBundles);
8314       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
8315 
8316       // The scalar argument uses an in-tree scalar so we add the new vectorized
8317       // call to ExternalUses list to make sure that an extract will be
8318       // generated in the future.
8319       if (ScalarArg) {
8320         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
8321           // Find which lane we need to extract.
8322           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
8323           ExternalUses.push_back(
8324               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
8325         }
8326       }
8327 
8328       propagateIRFlags(V, E->Scalars, VL0);
8329       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8330       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8331       V = ShuffleBuilder.finalize(V);
8332 
8333       E->VectorizedValue = V;
8334       ++NumVectorInstructions;
8335       return V;
8336     }
8337     case Instruction::ShuffleVector: {
8338       assert(E->isAltShuffle() &&
8339              ((Instruction::isBinaryOp(E->getOpcode()) &&
8340                Instruction::isBinaryOp(E->getAltOpcode())) ||
8341               (Instruction::isCast(E->getOpcode()) &&
8342                Instruction::isCast(E->getAltOpcode())) ||
8343               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8344              "Invalid Shuffle Vector Operand");
8345 
8346       Value *LHS = nullptr, *RHS = nullptr;
8347       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
8348         setInsertPointAfterBundle(E);
8349         LHS = vectorizeTree(E->getOperand(0));
8350         RHS = vectorizeTree(E->getOperand(1));
8351       } else {
8352         setInsertPointAfterBundle(E);
8353         LHS = vectorizeTree(E->getOperand(0));
8354       }
8355 
8356       if (E->VectorizedValue) {
8357         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8358         return E->VectorizedValue;
8359       }
8360 
8361       Value *V0, *V1;
8362       if (Instruction::isBinaryOp(E->getOpcode())) {
8363         V0 = Builder.CreateBinOp(
8364             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
8365         V1 = Builder.CreateBinOp(
8366             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
8367       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8368         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
8369         auto *AltCI = cast<CmpInst>(E->getAltOp());
8370         CmpInst::Predicate AltPred = AltCI->getPredicate();
8371         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
8372       } else {
8373         V0 = Builder.CreateCast(
8374             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
8375         V1 = Builder.CreateCast(
8376             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
8377       }
8378       // Add V0 and V1 to later analysis to try to find and remove matching
8379       // instruction, if any.
8380       for (Value *V : {V0, V1}) {
8381         if (auto *I = dyn_cast<Instruction>(V)) {
8382           GatherShuffleSeq.insert(I);
8383           CSEBlocks.insert(I->getParent());
8384         }
8385       }
8386 
8387       // Create shuffle to take alternate operations from the vector.
8388       // Also, gather up main and alt scalar ops to propagate IR flags to
8389       // each vector operation.
8390       ValueList OpScalars, AltScalars;
8391       SmallVector<int> Mask;
8392       buildShuffleEntryMask(
8393           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
8394           [E](Instruction *I) {
8395             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8396             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
8397           },
8398           Mask, &OpScalars, &AltScalars);
8399 
8400       propagateIRFlags(V0, OpScalars);
8401       propagateIRFlags(V1, AltScalars);
8402 
8403       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
8404       if (auto *I = dyn_cast<Instruction>(V)) {
8405         V = propagateMetadata(I, E->Scalars);
8406         GatherShuffleSeq.insert(I);
8407         CSEBlocks.insert(I->getParent());
8408       }
8409       V = ShuffleBuilder.finalize(V);
8410 
8411       E->VectorizedValue = V;
8412       ++NumVectorInstructions;
8413 
8414       return V;
8415     }
8416     default:
8417     llvm_unreachable("unknown inst");
8418   }
8419   return nullptr;
8420 }
8421 
8422 Value *BoUpSLP::vectorizeTree() {
8423   ExtraValueToDebugLocsMap ExternallyUsedValues;
8424   return vectorizeTree(ExternallyUsedValues);
8425 }
8426 
8427 namespace {
8428 /// Data type for handling buildvector sequences with the reused scalars from
8429 /// other tree entries.
8430 struct ShuffledInsertData {
8431   /// List of insertelements to be replaced by shuffles.
8432   SmallVector<InsertElementInst *> InsertElements;
8433   /// The parent vectors and shuffle mask for the given list of inserts.
8434   MapVector<Value *, SmallVector<int>> ValueMasks;
8435 };
8436 } // namespace
8437 
8438 Value *
8439 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
8440   // All blocks must be scheduled before any instructions are inserted.
8441   for (auto &BSIter : BlocksSchedules) {
8442     scheduleBlock(BSIter.second.get());
8443   }
8444 
8445   Builder.SetInsertPoint(&F->getEntryBlock().front());
8446   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
8447 
8448   // If the vectorized tree can be rewritten in a smaller type, we truncate the
8449   // vectorized root. InstCombine will then rewrite the entire expression. We
8450   // sign extend the extracted values below.
8451   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
8452   if (MinBWs.count(ScalarRoot)) {
8453     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
8454       // If current instr is a phi and not the last phi, insert it after the
8455       // last phi node.
8456       if (isa<PHINode>(I))
8457         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
8458       else
8459         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
8460     }
8461     auto BundleWidth = VectorizableTree[0]->Scalars.size();
8462     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
8463     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
8464     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
8465     VectorizableTree[0]->VectorizedValue = Trunc;
8466   }
8467 
8468   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
8469                     << " values .\n");
8470 
8471   SmallVector<ShuffledInsertData> ShuffledInserts;
8472   // Maps vector instruction to original insertelement instruction
8473   DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
8474   // Extract all of the elements with the external uses.
8475   for (const auto &ExternalUse : ExternalUses) {
8476     Value *Scalar = ExternalUse.Scalar;
8477     llvm::User *User = ExternalUse.User;
8478 
8479     // Skip users that we already RAUW. This happens when one instruction
8480     // has multiple uses of the same value.
8481     if (User && !is_contained(Scalar->users(), User))
8482       continue;
8483     TreeEntry *E = getTreeEntry(Scalar);
8484     assert(E && "Invalid scalar");
8485     assert(E->State != TreeEntry::NeedToGather &&
8486            "Extracting from a gather list");
8487     // Non-instruction pointers are not deleted, just skip them.
8488     if (E->getOpcode() == Instruction::GetElementPtr &&
8489         !isa<GetElementPtrInst>(Scalar))
8490       continue;
8491 
8492     Value *Vec = E->VectorizedValue;
8493     assert(Vec && "Can't find vectorizable value");
8494 
8495     Value *Lane = Builder.getInt32(ExternalUse.Lane);
8496     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
8497       if (Scalar->getType() != Vec->getType()) {
8498         Value *Ex;
8499         // "Reuse" the existing extract to improve final codegen.
8500         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
8501           Ex = Builder.CreateExtractElement(ES->getOperand(0),
8502                                             ES->getOperand(1));
8503         } else {
8504           Ex = Builder.CreateExtractElement(Vec, Lane);
8505         }
8506         // If necessary, sign-extend or zero-extend ScalarRoot
8507         // to the larger type.
8508         if (!MinBWs.count(ScalarRoot))
8509           return Ex;
8510         if (MinBWs[ScalarRoot].second)
8511           return Builder.CreateSExt(Ex, Scalar->getType());
8512         return Builder.CreateZExt(Ex, Scalar->getType());
8513       }
8514       assert(isa<FixedVectorType>(Scalar->getType()) &&
8515              isa<InsertElementInst>(Scalar) &&
8516              "In-tree scalar of vector type is not insertelement?");
8517       auto *IE = cast<InsertElementInst>(Scalar);
8518       VectorToInsertElement.try_emplace(Vec, IE);
8519       return Vec;
8520     };
8521     // If User == nullptr, the Scalar is used as extra arg. Generate
8522     // ExtractElement instruction and update the record for this scalar in
8523     // ExternallyUsedValues.
8524     if (!User) {
8525       assert(ExternallyUsedValues.count(Scalar) &&
8526              "Scalar with nullptr as an external user must be registered in "
8527              "ExternallyUsedValues map");
8528       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8529         Builder.SetInsertPoint(VecI->getParent(),
8530                                std::next(VecI->getIterator()));
8531       } else {
8532         Builder.SetInsertPoint(&F->getEntryBlock().front());
8533       }
8534       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8535       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
8536       auto &NewInstLocs = ExternallyUsedValues[NewInst];
8537       auto It = ExternallyUsedValues.find(Scalar);
8538       assert(It != ExternallyUsedValues.end() &&
8539              "Externally used scalar is not found in ExternallyUsedValues");
8540       NewInstLocs.append(It->second);
8541       ExternallyUsedValues.erase(Scalar);
8542       // Required to update internally referenced instructions.
8543       Scalar->replaceAllUsesWith(NewInst);
8544       continue;
8545     }
8546 
8547     if (auto *VU = dyn_cast<InsertElementInst>(User)) {
8548       // Skip if the scalar is another vector op or Vec is not an instruction.
8549       if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
8550         if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
8551           Optional<unsigned> InsertIdx = getInsertIndex(VU);
8552           if (InsertIdx) {
8553             // Need to use original vector, if the root is truncated.
8554             if (MinBWs.count(Scalar) &&
8555                 VectorizableTree[0]->VectorizedValue == Vec)
8556               Vec = VectorRoot;
8557             auto *It =
8558                 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
8559                   // Checks if 2 insertelements are from the same buildvector.
8560                   InsertElementInst *VecInsert = Data.InsertElements.front();
8561                   return areTwoInsertFromSameBuildVector(VU, VecInsert);
8562                 });
8563             unsigned Idx = *InsertIdx;
8564             if (It == ShuffledInserts.end()) {
8565               (void)ShuffledInserts.emplace_back();
8566               It = std::next(ShuffledInserts.begin(),
8567                              ShuffledInserts.size() - 1);
8568               SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8569               if (Mask.empty())
8570                 Mask.assign(FTy->getNumElements(), UndefMaskElem);
8571               // Find the insertvector, vectorized in tree, if any.
8572               Value *Base = VU;
8573               while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
8574                 if (IEBase != User &&
8575                     (!IEBase->hasOneUse() ||
8576                      getInsertIndex(IEBase).value_or(Idx) == Idx))
8577                   break;
8578                 // Build the mask for the vectorized insertelement instructions.
8579                 if (const TreeEntry *E = getTreeEntry(IEBase)) {
8580                   do {
8581                     IEBase = cast<InsertElementInst>(Base);
8582                     int IEIdx = *getInsertIndex(IEBase);
8583                     assert(Mask[Idx] == UndefMaskElem &&
8584                            "InsertElementInstruction used already.");
8585                     Mask[IEIdx] = IEIdx;
8586                     Base = IEBase->getOperand(0);
8587                   } while (E == getTreeEntry(Base));
8588                   break;
8589                 }
8590                 Base = cast<InsertElementInst>(Base)->getOperand(0);
8591                 // After the vectorization the def-use chain has changed, need
8592                 // to look through original insertelement instructions, if they
8593                 // get replaced by vector instructions.
8594                 auto It = VectorToInsertElement.find(Base);
8595                 if (It != VectorToInsertElement.end())
8596                   Base = It->second;
8597               }
8598             }
8599             SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8600             if (Mask.empty())
8601               Mask.assign(FTy->getNumElements(), UndefMaskElem);
8602             Mask[Idx] = ExternalUse.Lane;
8603             It->InsertElements.push_back(cast<InsertElementInst>(User));
8604             continue;
8605           }
8606         }
8607       }
8608     }
8609 
8610     // Generate extracts for out-of-tree users.
8611     // Find the insertion point for the extractelement lane.
8612     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8613       if (PHINode *PH = dyn_cast<PHINode>(User)) {
8614         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
8615           if (PH->getIncomingValue(i) == Scalar) {
8616             Instruction *IncomingTerminator =
8617                 PH->getIncomingBlock(i)->getTerminator();
8618             if (isa<CatchSwitchInst>(IncomingTerminator)) {
8619               Builder.SetInsertPoint(VecI->getParent(),
8620                                      std::next(VecI->getIterator()));
8621             } else {
8622               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
8623             }
8624             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8625             CSEBlocks.insert(PH->getIncomingBlock(i));
8626             PH->setOperand(i, NewInst);
8627           }
8628         }
8629       } else {
8630         Builder.SetInsertPoint(cast<Instruction>(User));
8631         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8632         CSEBlocks.insert(cast<Instruction>(User)->getParent());
8633         User->replaceUsesOfWith(Scalar, NewInst);
8634       }
8635     } else {
8636       Builder.SetInsertPoint(&F->getEntryBlock().front());
8637       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8638       CSEBlocks.insert(&F->getEntryBlock());
8639       User->replaceUsesOfWith(Scalar, NewInst);
8640     }
8641 
8642     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
8643   }
8644 
8645   // Checks if the mask is an identity mask.
8646   auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) {
8647     int Limit = Mask.size();
8648     return VecTy->getNumElements() == Mask.size() &&
8649            all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
8650            ShuffleVectorInst::isIdentityMask(Mask);
8651   };
8652   // Tries to combine 2 different masks into single one.
8653   auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) {
8654     SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
8655     for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
8656       if (ExtMask[I] == UndefMaskElem)
8657         continue;
8658       NewMask[I] = Mask[ExtMask[I]];
8659     }
8660     Mask.swap(NewMask);
8661   };
8662   // Peek through shuffles, trying to simplify the final shuffle code.
8663   auto &&PeekThroughShuffles =
8664       [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask,
8665                                        bool CheckForLengthChange = false) {
8666         while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
8667           // Exit if not a fixed vector type or changing size shuffle.
8668           if (!isa<FixedVectorType>(SV->getType()) ||
8669               (CheckForLengthChange && SV->changesLength()))
8670             break;
8671           // Exit if the identity or broadcast mask is found.
8672           if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) ||
8673               SV->isZeroEltSplat())
8674             break;
8675           bool IsOp1Undef = isUndefVector(SV->getOperand(0));
8676           bool IsOp2Undef = isUndefVector(SV->getOperand(1));
8677           if (!IsOp1Undef && !IsOp2Undef)
8678             break;
8679           SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
8680                                        SV->getShuffleMask().end());
8681           CombineMasks(ShuffleMask, Mask);
8682           Mask.swap(ShuffleMask);
8683           if (IsOp2Undef)
8684             V = SV->getOperand(0);
8685           else
8686             V = SV->getOperand(1);
8687         }
8688       };
8689   // Smart shuffle instruction emission, walks through shuffles trees and
8690   // tries to find the best matching vector for the actual shuffle
8691   // instruction.
8692   auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles,
8693                           &CombineMasks](Value *V1, Value *V2,
8694                                          ArrayRef<int> Mask) -> Value * {
8695     assert(V1 && "Expected at least one vector value.");
8696     if (V2 && !isUndefVector(V2)) {
8697       // Peek through shuffles.
8698       Value *Op1 = V1;
8699       Value *Op2 = V2;
8700       int VF =
8701           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
8702       SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
8703       SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
8704       for (int I = 0, E = Mask.size(); I < E; ++I) {
8705         if (Mask[I] < VF)
8706           CombinedMask1[I] = Mask[I];
8707         else
8708           CombinedMask2[I] = Mask[I] - VF;
8709       }
8710       Value *PrevOp1;
8711       Value *PrevOp2;
8712       do {
8713         PrevOp1 = Op1;
8714         PrevOp2 = Op2;
8715         PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true);
8716         PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true);
8717         // Check if we have 2 resizing shuffles - need to peek through operands
8718         // again.
8719         if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
8720           if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2))
8721             if (SV1->getOperand(0)->getType() ==
8722                     SV2->getOperand(0)->getType() &&
8723                 SV1->getOperand(0)->getType() != SV1->getType() &&
8724                 isUndefVector(SV1->getOperand(1)) &&
8725                 isUndefVector(SV2->getOperand(1))) {
8726               Op1 = SV1->getOperand(0);
8727               Op2 = SV2->getOperand(0);
8728               SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
8729                                             SV1->getShuffleMask().end());
8730               CombineMasks(ShuffleMask1, CombinedMask1);
8731               CombinedMask1.swap(ShuffleMask1);
8732               SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
8733                                             SV2->getShuffleMask().end());
8734               CombineMasks(ShuffleMask2, CombinedMask2);
8735               CombinedMask2.swap(ShuffleMask2);
8736             }
8737       } while (PrevOp1 != Op1 || PrevOp2 != Op2);
8738       VF = cast<VectorType>(Op1->getType())
8739                ->getElementCount()
8740                .getKnownMinValue();
8741       for (int I = 0, E = Mask.size(); I < E; ++I) {
8742         if (CombinedMask2[I] != UndefMaskElem) {
8743           assert(CombinedMask1[I] == UndefMaskElem &&
8744                  "Expected undefined mask element");
8745           CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
8746         }
8747       }
8748       Value *Vec = Builder.CreateShuffleVector(
8749           Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
8750           CombinedMask1);
8751       if (auto *I = dyn_cast<Instruction>(Vec)) {
8752         GatherShuffleSeq.insert(I);
8753         CSEBlocks.insert(I->getParent());
8754       }
8755       return Vec;
8756     }
8757     if (isa<PoisonValue>(V1))
8758       return PoisonValue::get(FixedVectorType::get(
8759           cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
8760     Value *Op = V1;
8761     SmallVector<int> CombinedMask(Mask.begin(), Mask.end());
8762     PeekThroughShuffles(Op, CombinedMask);
8763     if (!isa<FixedVectorType>(Op->getType()) ||
8764         !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) {
8765       Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask);
8766       if (auto *I = dyn_cast<Instruction>(Vec)) {
8767         GatherShuffleSeq.insert(I);
8768         CSEBlocks.insert(I->getParent());
8769       }
8770       return Vec;
8771     }
8772     return Op;
8773   };
8774 
8775   auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) {
8776     unsigned VF = Mask.size();
8777     unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
8778     if (VF != VecVF) {
8779       if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
8780         Vec = CreateShuffle(Vec, nullptr, Mask);
8781         return std::make_pair(Vec, true);
8782       }
8783       SmallVector<int> ResizeMask(VF, UndefMaskElem);
8784       for (unsigned I = 0; I < VF; ++I) {
8785         if (Mask[I] != UndefMaskElem)
8786           ResizeMask[Mask[I]] = Mask[I];
8787       }
8788       Vec = CreateShuffle(Vec, nullptr, ResizeMask);
8789     }
8790 
8791     return std::make_pair(Vec, false);
8792   };
8793   // Perform shuffling of the vectorize tree entries for better handling of
8794   // external extracts.
8795   for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
8796     // Find the first and the last instruction in the list of insertelements.
8797     sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
8798     InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
8799     InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
8800     Builder.SetInsertPoint(LastInsert);
8801     auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
8802     Value *NewInst = performExtractsShuffleAction<Value>(
8803         makeMutableArrayRef(Vector.data(), Vector.size()),
8804         FirstInsert->getOperand(0),
8805         [](Value *Vec) {
8806           return cast<VectorType>(Vec->getType())
8807               ->getElementCount()
8808               .getKnownMinValue();
8809         },
8810         ResizeToVF,
8811         [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
8812                                       ArrayRef<Value *> Vals) {
8813           assert((Vals.size() == 1 || Vals.size() == 2) &&
8814                  "Expected exactly 1 or 2 input values.");
8815           if (Vals.size() == 1) {
8816             // Do not create shuffle if the mask is a simple identity
8817             // non-resizing mask.
8818             if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
8819                                    ->getNumElements() ||
8820                 !ShuffleVectorInst::isIdentityMask(Mask))
8821               return CreateShuffle(Vals.front(), nullptr, Mask);
8822             return Vals.front();
8823           }
8824           return CreateShuffle(Vals.front() ? Vals.front()
8825                                             : FirstInsert->getOperand(0),
8826                                Vals.back(), Mask);
8827         });
8828     auto It = ShuffledInserts[I].InsertElements.rbegin();
8829     // Rebuild buildvector chain.
8830     InsertElementInst *II = nullptr;
8831     if (It != ShuffledInserts[I].InsertElements.rend())
8832       II = *It;
8833     SmallVector<Instruction *> Inserts;
8834     while (It != ShuffledInserts[I].InsertElements.rend()) {
8835       assert(II && "Must be an insertelement instruction.");
8836       if (*It == II)
8837         ++It;
8838       else
8839         Inserts.push_back(cast<Instruction>(II));
8840       II = dyn_cast<InsertElementInst>(II->getOperand(0));
8841     }
8842     for (Instruction *II : reverse(Inserts)) {
8843       II->replaceUsesOfWith(II->getOperand(0), NewInst);
8844       if (auto *NewI = dyn_cast<Instruction>(NewInst))
8845         if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
8846           II->moveAfter(NewI);
8847       NewInst = II;
8848     }
8849     LastInsert->replaceAllUsesWith(NewInst);
8850     for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
8851       IE->replaceUsesOfWith(IE->getOperand(0),
8852                             PoisonValue::get(IE->getOperand(0)->getType()));
8853       IE->replaceUsesOfWith(IE->getOperand(1),
8854                             PoisonValue::get(IE->getOperand(1)->getType()));
8855       eraseInstruction(IE);
8856     }
8857     CSEBlocks.insert(LastInsert->getParent());
8858   }
8859 
8860   // For each vectorized value:
8861   for (auto &TEPtr : VectorizableTree) {
8862     TreeEntry *Entry = TEPtr.get();
8863 
8864     // No need to handle users of gathered values.
8865     if (Entry->State == TreeEntry::NeedToGather)
8866       continue;
8867 
8868     assert(Entry->VectorizedValue && "Can't find vectorizable value");
8869 
8870     // For each lane:
8871     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
8872       Value *Scalar = Entry->Scalars[Lane];
8873 
8874       if (Entry->getOpcode() == Instruction::GetElementPtr &&
8875           !isa<GetElementPtrInst>(Scalar))
8876         continue;
8877 #ifndef NDEBUG
8878       Type *Ty = Scalar->getType();
8879       if (!Ty->isVoidTy()) {
8880         for (User *U : Scalar->users()) {
8881           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
8882 
8883           // It is legal to delete users in the ignorelist.
8884           assert((getTreeEntry(U) ||
8885                   (UserIgnoreList && UserIgnoreList->contains(U)) ||
8886                   (isa_and_nonnull<Instruction>(U) &&
8887                    isDeleted(cast<Instruction>(U)))) &&
8888                  "Deleting out-of-tree value");
8889         }
8890       }
8891 #endif
8892       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
8893       eraseInstruction(cast<Instruction>(Scalar));
8894     }
8895   }
8896 
8897   Builder.ClearInsertionPoint();
8898   InstrElementSize.clear();
8899 
8900   return VectorizableTree[0]->VectorizedValue;
8901 }
8902 
8903 void BoUpSLP::optimizeGatherSequence() {
8904   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
8905                     << " gather sequences instructions.\n");
8906   // LICM InsertElementInst sequences.
8907   for (Instruction *I : GatherShuffleSeq) {
8908     if (isDeleted(I))
8909       continue;
8910 
8911     // Check if this block is inside a loop.
8912     Loop *L = LI->getLoopFor(I->getParent());
8913     if (!L)
8914       continue;
8915 
8916     // Check if it has a preheader.
8917     BasicBlock *PreHeader = L->getLoopPreheader();
8918     if (!PreHeader)
8919       continue;
8920 
8921     // If the vector or the element that we insert into it are
8922     // instructions that are defined in this basic block then we can't
8923     // hoist this instruction.
8924     if (any_of(I->operands(), [L](Value *V) {
8925           auto *OpI = dyn_cast<Instruction>(V);
8926           return OpI && L->contains(OpI);
8927         }))
8928       continue;
8929 
8930     // We can hoist this instruction. Move it to the pre-header.
8931     I->moveBefore(PreHeader->getTerminator());
8932   }
8933 
8934   // Make a list of all reachable blocks in our CSE queue.
8935   SmallVector<const DomTreeNode *, 8> CSEWorkList;
8936   CSEWorkList.reserve(CSEBlocks.size());
8937   for (BasicBlock *BB : CSEBlocks)
8938     if (DomTreeNode *N = DT->getNode(BB)) {
8939       assert(DT->isReachableFromEntry(N));
8940       CSEWorkList.push_back(N);
8941     }
8942 
8943   // Sort blocks by domination. This ensures we visit a block after all blocks
8944   // dominating it are visited.
8945   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
8946     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
8947            "Different nodes should have different DFS numbers");
8948     return A->getDFSNumIn() < B->getDFSNumIn();
8949   });
8950 
8951   // Less defined shuffles can be replaced by the more defined copies.
8952   // Between two shuffles one is less defined if it has the same vector operands
8953   // and its mask indeces are the same as in the first one or undefs. E.g.
8954   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
8955   // poison, <0, 0, 0, 0>.
8956   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
8957                                            SmallVectorImpl<int> &NewMask) {
8958     if (I1->getType() != I2->getType())
8959       return false;
8960     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
8961     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
8962     if (!SI1 || !SI2)
8963       return I1->isIdenticalTo(I2);
8964     if (SI1->isIdenticalTo(SI2))
8965       return true;
8966     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
8967       if (SI1->getOperand(I) != SI2->getOperand(I))
8968         return false;
8969     // Check if the second instruction is more defined than the first one.
8970     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
8971     ArrayRef<int> SM1 = SI1->getShuffleMask();
8972     // Count trailing undefs in the mask to check the final number of used
8973     // registers.
8974     unsigned LastUndefsCnt = 0;
8975     for (int I = 0, E = NewMask.size(); I < E; ++I) {
8976       if (SM1[I] == UndefMaskElem)
8977         ++LastUndefsCnt;
8978       else
8979         LastUndefsCnt = 0;
8980       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
8981           NewMask[I] != SM1[I])
8982         return false;
8983       if (NewMask[I] == UndefMaskElem)
8984         NewMask[I] = SM1[I];
8985     }
8986     // Check if the last undefs actually change the final number of used vector
8987     // registers.
8988     return SM1.size() - LastUndefsCnt > 1 &&
8989            TTI->getNumberOfParts(SI1->getType()) ==
8990                TTI->getNumberOfParts(
8991                    FixedVectorType::get(SI1->getType()->getElementType(),
8992                                         SM1.size() - LastUndefsCnt));
8993   };
8994   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
8995   // instructions. TODO: We can further optimize this scan if we split the
8996   // instructions into different buckets based on the insert lane.
8997   SmallVector<Instruction *, 16> Visited;
8998   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
8999     assert(*I &&
9000            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
9001            "Worklist not sorted properly!");
9002     BasicBlock *BB = (*I)->getBlock();
9003     // For all instructions in blocks containing gather sequences:
9004     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
9005       if (isDeleted(&In))
9006         continue;
9007       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
9008           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
9009         continue;
9010 
9011       // Check if we can replace this instruction with any of the
9012       // visited instructions.
9013       bool Replaced = false;
9014       for (Instruction *&V : Visited) {
9015         SmallVector<int> NewMask;
9016         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
9017             DT->dominates(V->getParent(), In.getParent())) {
9018           In.replaceAllUsesWith(V);
9019           eraseInstruction(&In);
9020           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
9021             if (!NewMask.empty())
9022               SI->setShuffleMask(NewMask);
9023           Replaced = true;
9024           break;
9025         }
9026         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
9027             GatherShuffleSeq.contains(V) &&
9028             IsIdenticalOrLessDefined(V, &In, NewMask) &&
9029             DT->dominates(In.getParent(), V->getParent())) {
9030           In.moveAfter(V);
9031           V->replaceAllUsesWith(&In);
9032           eraseInstruction(V);
9033           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
9034             if (!NewMask.empty())
9035               SI->setShuffleMask(NewMask);
9036           V = &In;
9037           Replaced = true;
9038           break;
9039         }
9040       }
9041       if (!Replaced) {
9042         assert(!is_contained(Visited, &In));
9043         Visited.push_back(&In);
9044       }
9045     }
9046   }
9047   CSEBlocks.clear();
9048   GatherShuffleSeq.clear();
9049 }
9050 
9051 BoUpSLP::ScheduleData *
9052 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
9053   ScheduleData *Bundle = nullptr;
9054   ScheduleData *PrevInBundle = nullptr;
9055   for (Value *V : VL) {
9056     if (doesNotNeedToBeScheduled(V))
9057       continue;
9058     ScheduleData *BundleMember = getScheduleData(V);
9059     assert(BundleMember &&
9060            "no ScheduleData for bundle member "
9061            "(maybe not in same basic block)");
9062     assert(BundleMember->isSchedulingEntity() &&
9063            "bundle member already part of other bundle");
9064     if (PrevInBundle) {
9065       PrevInBundle->NextInBundle = BundleMember;
9066     } else {
9067       Bundle = BundleMember;
9068     }
9069 
9070     // Group the instructions to a bundle.
9071     BundleMember->FirstInBundle = Bundle;
9072     PrevInBundle = BundleMember;
9073   }
9074   assert(Bundle && "Failed to find schedule bundle");
9075   return Bundle;
9076 }
9077 
9078 // Groups the instructions to a bundle (which is then a single scheduling entity)
9079 // and schedules instructions until the bundle gets ready.
9080 Optional<BoUpSLP::ScheduleData *>
9081 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
9082                                             const InstructionsState &S) {
9083   // No need to schedule PHIs, insertelement, extractelement and extractvalue
9084   // instructions.
9085   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
9086       doesNotNeedToSchedule(VL))
9087     return nullptr;
9088 
9089   // Initialize the instruction bundle.
9090   Instruction *OldScheduleEnd = ScheduleEnd;
9091   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
9092 
9093   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
9094                                                          ScheduleData *Bundle) {
9095     // The scheduling region got new instructions at the lower end (or it is a
9096     // new region for the first bundle). This makes it necessary to
9097     // recalculate all dependencies.
9098     // It is seldom that this needs to be done a second time after adding the
9099     // initial bundle to the region.
9100     if (ScheduleEnd != OldScheduleEnd) {
9101       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
9102         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
9103       ReSchedule = true;
9104     }
9105     if (Bundle) {
9106       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
9107                         << " in block " << BB->getName() << "\n");
9108       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
9109     }
9110 
9111     if (ReSchedule) {
9112       resetSchedule();
9113       initialFillReadyList(ReadyInsts);
9114     }
9115 
9116     // Now try to schedule the new bundle or (if no bundle) just calculate
9117     // dependencies. As soon as the bundle is "ready" it means that there are no
9118     // cyclic dependencies and we can schedule it. Note that's important that we
9119     // don't "schedule" the bundle yet (see cancelScheduling).
9120     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
9121            !ReadyInsts.empty()) {
9122       ScheduleData *Picked = ReadyInsts.pop_back_val();
9123       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
9124              "must be ready to schedule");
9125       schedule(Picked, ReadyInsts);
9126     }
9127   };
9128 
9129   // Make sure that the scheduling region contains all
9130   // instructions of the bundle.
9131   for (Value *V : VL) {
9132     if (doesNotNeedToBeScheduled(V))
9133       continue;
9134     if (!extendSchedulingRegion(V, S)) {
9135       // If the scheduling region got new instructions at the lower end (or it
9136       // is a new region for the first bundle). This makes it necessary to
9137       // recalculate all dependencies.
9138       // Otherwise the compiler may crash trying to incorrectly calculate
9139       // dependencies and emit instruction in the wrong order at the actual
9140       // scheduling.
9141       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
9142       return None;
9143     }
9144   }
9145 
9146   bool ReSchedule = false;
9147   for (Value *V : VL) {
9148     if (doesNotNeedToBeScheduled(V))
9149       continue;
9150     ScheduleData *BundleMember = getScheduleData(V);
9151     assert(BundleMember &&
9152            "no ScheduleData for bundle member (maybe not in same basic block)");
9153 
9154     // Make sure we don't leave the pieces of the bundle in the ready list when
9155     // whole bundle might not be ready.
9156     ReadyInsts.remove(BundleMember);
9157 
9158     if (!BundleMember->IsScheduled)
9159       continue;
9160     // A bundle member was scheduled as single instruction before and now
9161     // needs to be scheduled as part of the bundle. We just get rid of the
9162     // existing schedule.
9163     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
9164                       << " was already scheduled\n");
9165     ReSchedule = true;
9166   }
9167 
9168   auto *Bundle = buildBundle(VL);
9169   TryScheduleBundleImpl(ReSchedule, Bundle);
9170   if (!Bundle->isReady()) {
9171     cancelScheduling(VL, S.OpValue);
9172     return None;
9173   }
9174   return Bundle;
9175 }
9176 
9177 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
9178                                                 Value *OpValue) {
9179   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
9180       doesNotNeedToSchedule(VL))
9181     return;
9182 
9183   if (doesNotNeedToBeScheduled(OpValue))
9184     OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
9185   ScheduleData *Bundle = getScheduleData(OpValue);
9186   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
9187   assert(!Bundle->IsScheduled &&
9188          "Can't cancel bundle which is already scheduled");
9189   assert(Bundle->isSchedulingEntity() &&
9190          (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
9191          "tried to unbundle something which is not a bundle");
9192 
9193   // Remove the bundle from the ready list.
9194   if (Bundle->isReady())
9195     ReadyInsts.remove(Bundle);
9196 
9197   // Un-bundle: make single instructions out of the bundle.
9198   ScheduleData *BundleMember = Bundle;
9199   while (BundleMember) {
9200     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
9201     BundleMember->FirstInBundle = BundleMember;
9202     ScheduleData *Next = BundleMember->NextInBundle;
9203     BundleMember->NextInBundle = nullptr;
9204     BundleMember->TE = nullptr;
9205     if (BundleMember->unscheduledDepsInBundle() == 0) {
9206       ReadyInsts.insert(BundleMember);
9207     }
9208     BundleMember = Next;
9209   }
9210 }
9211 
9212 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
9213   // Allocate a new ScheduleData for the instruction.
9214   if (ChunkPos >= ChunkSize) {
9215     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
9216     ChunkPos = 0;
9217   }
9218   return &(ScheduleDataChunks.back()[ChunkPos++]);
9219 }
9220 
9221 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
9222                                                       const InstructionsState &S) {
9223   if (getScheduleData(V, isOneOf(S, V)))
9224     return true;
9225   Instruction *I = dyn_cast<Instruction>(V);
9226   assert(I && "bundle member must be an instruction");
9227   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
9228          !doesNotNeedToBeScheduled(I) &&
9229          "phi nodes/insertelements/extractelements/extractvalues don't need to "
9230          "be scheduled");
9231   auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
9232     ScheduleData *ISD = getScheduleData(I);
9233     if (!ISD)
9234       return false;
9235     assert(isInSchedulingRegion(ISD) &&
9236            "ScheduleData not in scheduling region");
9237     ScheduleData *SD = allocateScheduleDataChunks();
9238     SD->Inst = I;
9239     SD->init(SchedulingRegionID, S.OpValue);
9240     ExtraScheduleDataMap[I][S.OpValue] = SD;
9241     return true;
9242   };
9243   if (CheckScheduleForI(I))
9244     return true;
9245   if (!ScheduleStart) {
9246     // It's the first instruction in the new region.
9247     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
9248     ScheduleStart = I;
9249     ScheduleEnd = I->getNextNode();
9250     if (isOneOf(S, I) != I)
9251       CheckScheduleForI(I);
9252     assert(ScheduleEnd && "tried to vectorize a terminator?");
9253     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
9254     return true;
9255   }
9256   // Search up and down at the same time, because we don't know if the new
9257   // instruction is above or below the existing scheduling region.
9258   BasicBlock::reverse_iterator UpIter =
9259       ++ScheduleStart->getIterator().getReverse();
9260   BasicBlock::reverse_iterator UpperEnd = BB->rend();
9261   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
9262   BasicBlock::iterator LowerEnd = BB->end();
9263   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
9264          &*DownIter != I) {
9265     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
9266       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
9267       return false;
9268     }
9269 
9270     ++UpIter;
9271     ++DownIter;
9272   }
9273   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
9274     assert(I->getParent() == ScheduleStart->getParent() &&
9275            "Instruction is in wrong basic block.");
9276     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
9277     ScheduleStart = I;
9278     if (isOneOf(S, I) != I)
9279       CheckScheduleForI(I);
9280     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
9281                       << "\n");
9282     return true;
9283   }
9284   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
9285          "Expected to reach top of the basic block or instruction down the "
9286          "lower end.");
9287   assert(I->getParent() == ScheduleEnd->getParent() &&
9288          "Instruction is in wrong basic block.");
9289   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
9290                    nullptr);
9291   ScheduleEnd = I->getNextNode();
9292   if (isOneOf(S, I) != I)
9293     CheckScheduleForI(I);
9294   assert(ScheduleEnd && "tried to vectorize a terminator?");
9295   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
9296   return true;
9297 }
9298 
9299 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
9300                                                 Instruction *ToI,
9301                                                 ScheduleData *PrevLoadStore,
9302                                                 ScheduleData *NextLoadStore) {
9303   ScheduleData *CurrentLoadStore = PrevLoadStore;
9304   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
9305     // No need to allocate data for non-schedulable instructions.
9306     if (doesNotNeedToBeScheduled(I))
9307       continue;
9308     ScheduleData *SD = ScheduleDataMap.lookup(I);
9309     if (!SD) {
9310       SD = allocateScheduleDataChunks();
9311       ScheduleDataMap[I] = SD;
9312       SD->Inst = I;
9313     }
9314     assert(!isInSchedulingRegion(SD) &&
9315            "new ScheduleData already in scheduling region");
9316     SD->init(SchedulingRegionID, I);
9317 
9318     if (I->mayReadOrWriteMemory() &&
9319         (!isa<IntrinsicInst>(I) ||
9320          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
9321           cast<IntrinsicInst>(I)->getIntrinsicID() !=
9322               Intrinsic::pseudoprobe))) {
9323       // Update the linked list of memory accessing instructions.
9324       if (CurrentLoadStore) {
9325         CurrentLoadStore->NextLoadStore = SD;
9326       } else {
9327         FirstLoadStoreInRegion = SD;
9328       }
9329       CurrentLoadStore = SD;
9330     }
9331 
9332     if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9333         match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9334       RegionHasStackSave = true;
9335   }
9336   if (NextLoadStore) {
9337     if (CurrentLoadStore)
9338       CurrentLoadStore->NextLoadStore = NextLoadStore;
9339   } else {
9340     LastLoadStoreInRegion = CurrentLoadStore;
9341   }
9342 }
9343 
9344 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
9345                                                      bool InsertInReadyList,
9346                                                      BoUpSLP *SLP) {
9347   assert(SD->isSchedulingEntity());
9348 
9349   SmallVector<ScheduleData *, 10> WorkList;
9350   WorkList.push_back(SD);
9351 
9352   while (!WorkList.empty()) {
9353     ScheduleData *SD = WorkList.pop_back_val();
9354     for (ScheduleData *BundleMember = SD; BundleMember;
9355          BundleMember = BundleMember->NextInBundle) {
9356       assert(isInSchedulingRegion(BundleMember));
9357       if (BundleMember->hasValidDependencies())
9358         continue;
9359 
9360       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
9361                  << "\n");
9362       BundleMember->Dependencies = 0;
9363       BundleMember->resetUnscheduledDeps();
9364 
9365       // Handle def-use chain dependencies.
9366       if (BundleMember->OpValue != BundleMember->Inst) {
9367         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
9368           BundleMember->Dependencies++;
9369           ScheduleData *DestBundle = UseSD->FirstInBundle;
9370           if (!DestBundle->IsScheduled)
9371             BundleMember->incrementUnscheduledDeps(1);
9372           if (!DestBundle->hasValidDependencies())
9373             WorkList.push_back(DestBundle);
9374         }
9375       } else {
9376         for (User *U : BundleMember->Inst->users()) {
9377           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
9378             BundleMember->Dependencies++;
9379             ScheduleData *DestBundle = UseSD->FirstInBundle;
9380             if (!DestBundle->IsScheduled)
9381               BundleMember->incrementUnscheduledDeps(1);
9382             if (!DestBundle->hasValidDependencies())
9383               WorkList.push_back(DestBundle);
9384           }
9385         }
9386       }
9387 
9388       auto makeControlDependent = [&](Instruction *I) {
9389         auto *DepDest = getScheduleData(I);
9390         assert(DepDest && "must be in schedule window");
9391         DepDest->ControlDependencies.push_back(BundleMember);
9392         BundleMember->Dependencies++;
9393         ScheduleData *DestBundle = DepDest->FirstInBundle;
9394         if (!DestBundle->IsScheduled)
9395           BundleMember->incrementUnscheduledDeps(1);
9396         if (!DestBundle->hasValidDependencies())
9397           WorkList.push_back(DestBundle);
9398       };
9399 
9400       // Any instruction which isn't safe to speculate at the begining of the
9401       // block is control dependend on any early exit or non-willreturn call
9402       // which proceeds it.
9403       if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
9404         for (Instruction *I = BundleMember->Inst->getNextNode();
9405              I != ScheduleEnd; I = I->getNextNode()) {
9406           if (isSafeToSpeculativelyExecute(I, &*BB->begin()))
9407             continue;
9408 
9409           // Add the dependency
9410           makeControlDependent(I);
9411 
9412           if (!isGuaranteedToTransferExecutionToSuccessor(I))
9413             // Everything past here must be control dependent on I.
9414             break;
9415         }
9416       }
9417 
9418       if (RegionHasStackSave) {
9419         // If we have an inalloc alloca instruction, it needs to be scheduled
9420         // after any preceeding stacksave.  We also need to prevent any alloca
9421         // from reordering above a preceeding stackrestore.
9422         if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
9423             match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
9424           for (Instruction *I = BundleMember->Inst->getNextNode();
9425                I != ScheduleEnd; I = I->getNextNode()) {
9426             if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9427                 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9428               // Any allocas past here must be control dependent on I, and I
9429               // must be memory dependend on BundleMember->Inst.
9430               break;
9431 
9432             if (!isa<AllocaInst>(I))
9433               continue;
9434 
9435             // Add the dependency
9436             makeControlDependent(I);
9437           }
9438         }
9439 
9440         // In addition to the cases handle just above, we need to prevent
9441         // allocas from moving below a stacksave.  The stackrestore case
9442         // is currently thought to be conservatism.
9443         if (isa<AllocaInst>(BundleMember->Inst)) {
9444           for (Instruction *I = BundleMember->Inst->getNextNode();
9445                I != ScheduleEnd; I = I->getNextNode()) {
9446             if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
9447                 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9448               continue;
9449 
9450             // Add the dependency
9451             makeControlDependent(I);
9452             break;
9453           }
9454         }
9455       }
9456 
9457       // Handle the memory dependencies (if any).
9458       ScheduleData *DepDest = BundleMember->NextLoadStore;
9459       if (!DepDest)
9460         continue;
9461       Instruction *SrcInst = BundleMember->Inst;
9462       assert(SrcInst->mayReadOrWriteMemory() &&
9463              "NextLoadStore list for non memory effecting bundle?");
9464       MemoryLocation SrcLoc = getLocation(SrcInst);
9465       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
9466       unsigned numAliased = 0;
9467       unsigned DistToSrc = 1;
9468 
9469       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
9470         assert(isInSchedulingRegion(DepDest));
9471 
9472         // We have two limits to reduce the complexity:
9473         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
9474         //    SLP->isAliased (which is the expensive part in this loop).
9475         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
9476         //    the whole loop (even if the loop is fast, it's quadratic).
9477         //    It's important for the loop break condition (see below) to
9478         //    check this limit even between two read-only instructions.
9479         if (DistToSrc >= MaxMemDepDistance ||
9480             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
9481              (numAliased >= AliasedCheckLimit ||
9482               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
9483 
9484           // We increment the counter only if the locations are aliased
9485           // (instead of counting all alias checks). This gives a better
9486           // balance between reduced runtime and accurate dependencies.
9487           numAliased++;
9488 
9489           DepDest->MemoryDependencies.push_back(BundleMember);
9490           BundleMember->Dependencies++;
9491           ScheduleData *DestBundle = DepDest->FirstInBundle;
9492           if (!DestBundle->IsScheduled) {
9493             BundleMember->incrementUnscheduledDeps(1);
9494           }
9495           if (!DestBundle->hasValidDependencies()) {
9496             WorkList.push_back(DestBundle);
9497           }
9498         }
9499 
9500         // Example, explaining the loop break condition: Let's assume our
9501         // starting instruction is i0 and MaxMemDepDistance = 3.
9502         //
9503         //                      +--------v--v--v
9504         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
9505         //             +--------^--^--^
9506         //
9507         // MaxMemDepDistance let us stop alias-checking at i3 and we add
9508         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
9509         // Previously we already added dependencies from i3 to i6,i7,i8
9510         // (because of MaxMemDepDistance). As we added a dependency from
9511         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
9512         // and we can abort this loop at i6.
9513         if (DistToSrc >= 2 * MaxMemDepDistance)
9514           break;
9515         DistToSrc++;
9516       }
9517     }
9518     if (InsertInReadyList && SD->isReady()) {
9519       ReadyInsts.insert(SD);
9520       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
9521                         << "\n");
9522     }
9523   }
9524 }
9525 
9526 void BoUpSLP::BlockScheduling::resetSchedule() {
9527   assert(ScheduleStart &&
9528          "tried to reset schedule on block which has not been scheduled");
9529   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
9530     doForAllOpcodes(I, [&](ScheduleData *SD) {
9531       assert(isInSchedulingRegion(SD) &&
9532              "ScheduleData not in scheduling region");
9533       SD->IsScheduled = false;
9534       SD->resetUnscheduledDeps();
9535     });
9536   }
9537   ReadyInsts.clear();
9538 }
9539 
9540 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
9541   if (!BS->ScheduleStart)
9542     return;
9543 
9544   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
9545 
9546   // A key point - if we got here, pre-scheduling was able to find a valid
9547   // scheduling of the sub-graph of the scheduling window which consists
9548   // of all vector bundles and their transitive users.  As such, we do not
9549   // need to reschedule anything *outside of* that subgraph.
9550 
9551   BS->resetSchedule();
9552 
9553   // For the real scheduling we use a more sophisticated ready-list: it is
9554   // sorted by the original instruction location. This lets the final schedule
9555   // be as  close as possible to the original instruction order.
9556   // WARNING: If changing this order causes a correctness issue, that means
9557   // there is some missing dependence edge in the schedule data graph.
9558   struct ScheduleDataCompare {
9559     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
9560       return SD2->SchedulingPriority < SD1->SchedulingPriority;
9561     }
9562   };
9563   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
9564 
9565   // Ensure that all dependency data is updated (for nodes in the sub-graph)
9566   // and fill the ready-list with initial instructions.
9567   int Idx = 0;
9568   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
9569        I = I->getNextNode()) {
9570     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
9571       TreeEntry *SDTE = getTreeEntry(SD->Inst);
9572       (void)SDTE;
9573       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
9574               SD->isPartOfBundle() ==
9575                   (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
9576              "scheduler and vectorizer bundle mismatch");
9577       SD->FirstInBundle->SchedulingPriority = Idx++;
9578 
9579       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
9580         BS->calculateDependencies(SD, false, this);
9581     });
9582   }
9583   BS->initialFillReadyList(ReadyInsts);
9584 
9585   Instruction *LastScheduledInst = BS->ScheduleEnd;
9586 
9587   // Do the "real" scheduling.
9588   while (!ReadyInsts.empty()) {
9589     ScheduleData *picked = *ReadyInsts.begin();
9590     ReadyInsts.erase(ReadyInsts.begin());
9591 
9592     // Move the scheduled instruction(s) to their dedicated places, if not
9593     // there yet.
9594     for (ScheduleData *BundleMember = picked; BundleMember;
9595          BundleMember = BundleMember->NextInBundle) {
9596       Instruction *pickedInst = BundleMember->Inst;
9597       if (pickedInst->getNextNode() != LastScheduledInst)
9598         pickedInst->moveBefore(LastScheduledInst);
9599       LastScheduledInst = pickedInst;
9600     }
9601 
9602     BS->schedule(picked, ReadyInsts);
9603   }
9604 
9605   // Check that we didn't break any of our invariants.
9606 #ifdef EXPENSIVE_CHECKS
9607   BS->verify();
9608 #endif
9609 
9610 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
9611   // Check that all schedulable entities got scheduled
9612   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
9613     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
9614       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
9615         assert(SD->IsScheduled && "must be scheduled at this point");
9616       }
9617     });
9618   }
9619 #endif
9620 
9621   // Avoid duplicate scheduling of the block.
9622   BS->ScheduleStart = nullptr;
9623 }
9624 
9625 unsigned BoUpSLP::getVectorElementSize(Value *V) {
9626   // If V is a store, just return the width of the stored value (or value
9627   // truncated just before storing) without traversing the expression tree.
9628   // This is the common case.
9629   if (auto *Store = dyn_cast<StoreInst>(V))
9630     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
9631 
9632   if (auto *IEI = dyn_cast<InsertElementInst>(V))
9633     return getVectorElementSize(IEI->getOperand(1));
9634 
9635   auto E = InstrElementSize.find(V);
9636   if (E != InstrElementSize.end())
9637     return E->second;
9638 
9639   // If V is not a store, we can traverse the expression tree to find loads
9640   // that feed it. The type of the loaded value may indicate a more suitable
9641   // width than V's type. We want to base the vector element size on the width
9642   // of memory operations where possible.
9643   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
9644   SmallPtrSet<Instruction *, 16> Visited;
9645   if (auto *I = dyn_cast<Instruction>(V)) {
9646     Worklist.emplace_back(I, I->getParent());
9647     Visited.insert(I);
9648   }
9649 
9650   // Traverse the expression tree in bottom-up order looking for loads. If we
9651   // encounter an instruction we don't yet handle, we give up.
9652   auto Width = 0u;
9653   while (!Worklist.empty()) {
9654     Instruction *I;
9655     BasicBlock *Parent;
9656     std::tie(I, Parent) = Worklist.pop_back_val();
9657 
9658     // We should only be looking at scalar instructions here. If the current
9659     // instruction has a vector type, skip.
9660     auto *Ty = I->getType();
9661     if (isa<VectorType>(Ty))
9662       continue;
9663 
9664     // If the current instruction is a load, update MaxWidth to reflect the
9665     // width of the loaded value.
9666     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
9667         isa<ExtractValueInst>(I))
9668       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
9669 
9670     // Otherwise, we need to visit the operands of the instruction. We only
9671     // handle the interesting cases from buildTree here. If an operand is an
9672     // instruction we haven't yet visited and from the same basic block as the
9673     // user or the use is a PHI node, we add it to the worklist.
9674     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9675              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
9676              isa<UnaryOperator>(I)) {
9677       for (Use &U : I->operands())
9678         if (auto *J = dyn_cast<Instruction>(U.get()))
9679           if (Visited.insert(J).second &&
9680               (isa<PHINode>(I) || J->getParent() == Parent))
9681             Worklist.emplace_back(J, J->getParent());
9682     } else {
9683       break;
9684     }
9685   }
9686 
9687   // If we didn't encounter a memory access in the expression tree, or if we
9688   // gave up for some reason, just return the width of V. Otherwise, return the
9689   // maximum width we found.
9690   if (!Width) {
9691     if (auto *CI = dyn_cast<CmpInst>(V))
9692       V = CI->getOperand(0);
9693     Width = DL->getTypeSizeInBits(V->getType());
9694   }
9695 
9696   for (Instruction *I : Visited)
9697     InstrElementSize[I] = Width;
9698 
9699   return Width;
9700 }
9701 
9702 // Determine if a value V in a vectorizable expression Expr can be demoted to a
9703 // smaller type with a truncation. We collect the values that will be demoted
9704 // in ToDemote and additional roots that require investigating in Roots.
9705 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
9706                                   SmallVectorImpl<Value *> &ToDemote,
9707                                   SmallVectorImpl<Value *> &Roots) {
9708   // We can always demote constants.
9709   if (isa<Constant>(V)) {
9710     ToDemote.push_back(V);
9711     return true;
9712   }
9713 
9714   // If the value is not an instruction in the expression with only one use, it
9715   // cannot be demoted.
9716   auto *I = dyn_cast<Instruction>(V);
9717   if (!I || !I->hasOneUse() || !Expr.count(I))
9718     return false;
9719 
9720   switch (I->getOpcode()) {
9721 
9722   // We can always demote truncations and extensions. Since truncations can
9723   // seed additional demotion, we save the truncated value.
9724   case Instruction::Trunc:
9725     Roots.push_back(I->getOperand(0));
9726     break;
9727   case Instruction::ZExt:
9728   case Instruction::SExt:
9729     if (isa<ExtractElementInst>(I->getOperand(0)) ||
9730         isa<InsertElementInst>(I->getOperand(0)))
9731       return false;
9732     break;
9733 
9734   // We can demote certain binary operations if we can demote both of their
9735   // operands.
9736   case Instruction::Add:
9737   case Instruction::Sub:
9738   case Instruction::Mul:
9739   case Instruction::And:
9740   case Instruction::Or:
9741   case Instruction::Xor:
9742     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
9743         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
9744       return false;
9745     break;
9746 
9747   // We can demote selects if we can demote their true and false values.
9748   case Instruction::Select: {
9749     SelectInst *SI = cast<SelectInst>(I);
9750     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
9751         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
9752       return false;
9753     break;
9754   }
9755 
9756   // We can demote phis if we can demote all their incoming operands. Note that
9757   // we don't need to worry about cycles since we ensure single use above.
9758   case Instruction::PHI: {
9759     PHINode *PN = cast<PHINode>(I);
9760     for (Value *IncValue : PN->incoming_values())
9761       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
9762         return false;
9763     break;
9764   }
9765 
9766   // Otherwise, conservatively give up.
9767   default:
9768     return false;
9769   }
9770 
9771   // Record the value that we can demote.
9772   ToDemote.push_back(V);
9773   return true;
9774 }
9775 
9776 void BoUpSLP::computeMinimumValueSizes() {
9777   // If there are no external uses, the expression tree must be rooted by a
9778   // store. We can't demote in-memory values, so there is nothing to do here.
9779   if (ExternalUses.empty())
9780     return;
9781 
9782   // We only attempt to truncate integer expressions.
9783   auto &TreeRoot = VectorizableTree[0]->Scalars;
9784   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
9785   if (!TreeRootIT)
9786     return;
9787 
9788   // If the expression is not rooted by a store, these roots should have
9789   // external uses. We will rely on InstCombine to rewrite the expression in
9790   // the narrower type. However, InstCombine only rewrites single-use values.
9791   // This means that if a tree entry other than a root is used externally, it
9792   // must have multiple uses and InstCombine will not rewrite it. The code
9793   // below ensures that only the roots are used externally.
9794   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
9795   for (auto &EU : ExternalUses)
9796     if (!Expr.erase(EU.Scalar))
9797       return;
9798   if (!Expr.empty())
9799     return;
9800 
9801   // Collect the scalar values of the vectorizable expression. We will use this
9802   // context to determine which values can be demoted. If we see a truncation,
9803   // we mark it as seeding another demotion.
9804   for (auto &EntryPtr : VectorizableTree)
9805     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
9806 
9807   // Ensure the roots of the vectorizable tree don't form a cycle. They must
9808   // have a single external user that is not in the vectorizable tree.
9809   for (auto *Root : TreeRoot)
9810     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
9811       return;
9812 
9813   // Conservatively determine if we can actually truncate the roots of the
9814   // expression. Collect the values that can be demoted in ToDemote and
9815   // additional roots that require investigating in Roots.
9816   SmallVector<Value *, 32> ToDemote;
9817   SmallVector<Value *, 4> Roots;
9818   for (auto *Root : TreeRoot)
9819     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
9820       return;
9821 
9822   // The maximum bit width required to represent all the values that can be
9823   // demoted without loss of precision. It would be safe to truncate the roots
9824   // of the expression to this width.
9825   auto MaxBitWidth = 8u;
9826 
9827   // We first check if all the bits of the roots are demanded. If they're not,
9828   // we can truncate the roots to this narrower type.
9829   for (auto *Root : TreeRoot) {
9830     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
9831     MaxBitWidth = std::max<unsigned>(
9832         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
9833   }
9834 
9835   // True if the roots can be zero-extended back to their original type, rather
9836   // than sign-extended. We know that if the leading bits are not demanded, we
9837   // can safely zero-extend. So we initialize IsKnownPositive to True.
9838   bool IsKnownPositive = true;
9839 
9840   // If all the bits of the roots are demanded, we can try a little harder to
9841   // compute a narrower type. This can happen, for example, if the roots are
9842   // getelementptr indices. InstCombine promotes these indices to the pointer
9843   // width. Thus, all their bits are technically demanded even though the
9844   // address computation might be vectorized in a smaller type.
9845   //
9846   // We start by looking at each entry that can be demoted. We compute the
9847   // maximum bit width required to store the scalar by using ValueTracking to
9848   // compute the number of high-order bits we can truncate.
9849   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
9850       llvm::all_of(TreeRoot, [](Value *R) {
9851         assert(R->hasOneUse() && "Root should have only one use!");
9852         return isa<GetElementPtrInst>(R->user_back());
9853       })) {
9854     MaxBitWidth = 8u;
9855 
9856     // Determine if the sign bit of all the roots is known to be zero. If not,
9857     // IsKnownPositive is set to False.
9858     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
9859       KnownBits Known = computeKnownBits(R, *DL);
9860       return Known.isNonNegative();
9861     });
9862 
9863     // Determine the maximum number of bits required to store the scalar
9864     // values.
9865     for (auto *Scalar : ToDemote) {
9866       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
9867       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
9868       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
9869     }
9870 
9871     // If we can't prove that the sign bit is zero, we must add one to the
9872     // maximum bit width to account for the unknown sign bit. This preserves
9873     // the existing sign bit so we can safely sign-extend the root back to the
9874     // original type. Otherwise, if we know the sign bit is zero, we will
9875     // zero-extend the root instead.
9876     //
9877     // FIXME: This is somewhat suboptimal, as there will be cases where adding
9878     //        one to the maximum bit width will yield a larger-than-necessary
9879     //        type. In general, we need to add an extra bit only if we can't
9880     //        prove that the upper bit of the original type is equal to the
9881     //        upper bit of the proposed smaller type. If these two bits are the
9882     //        same (either zero or one) we know that sign-extending from the
9883     //        smaller type will result in the same value. Here, since we can't
9884     //        yet prove this, we are just making the proposed smaller type
9885     //        larger to ensure correctness.
9886     if (!IsKnownPositive)
9887       ++MaxBitWidth;
9888   }
9889 
9890   // Round MaxBitWidth up to the next power-of-two.
9891   if (!isPowerOf2_64(MaxBitWidth))
9892     MaxBitWidth = NextPowerOf2(MaxBitWidth);
9893 
9894   // If the maximum bit width we compute is less than the with of the roots'
9895   // type, we can proceed with the narrowing. Otherwise, do nothing.
9896   if (MaxBitWidth >= TreeRootIT->getBitWidth())
9897     return;
9898 
9899   // If we can truncate the root, we must collect additional values that might
9900   // be demoted as a result. That is, those seeded by truncations we will
9901   // modify.
9902   while (!Roots.empty())
9903     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
9904 
9905   // Finally, map the values we can demote to the maximum bit with we computed.
9906   for (auto *Scalar : ToDemote)
9907     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
9908 }
9909 
9910 namespace {
9911 
9912 /// The SLPVectorizer Pass.
9913 struct SLPVectorizer : public FunctionPass {
9914   SLPVectorizerPass Impl;
9915 
9916   /// Pass identification, replacement for typeid
9917   static char ID;
9918 
9919   explicit SLPVectorizer() : FunctionPass(ID) {
9920     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
9921   }
9922 
9923   bool doInitialization(Module &M) override { return false; }
9924 
9925   bool runOnFunction(Function &F) override {
9926     if (skipFunction(F))
9927       return false;
9928 
9929     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
9930     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
9931     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
9932     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
9933     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
9934     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
9935     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
9936     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
9937     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
9938     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
9939 
9940     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9941   }
9942 
9943   void getAnalysisUsage(AnalysisUsage &AU) const override {
9944     FunctionPass::getAnalysisUsage(AU);
9945     AU.addRequired<AssumptionCacheTracker>();
9946     AU.addRequired<ScalarEvolutionWrapperPass>();
9947     AU.addRequired<AAResultsWrapperPass>();
9948     AU.addRequired<TargetTransformInfoWrapperPass>();
9949     AU.addRequired<LoopInfoWrapperPass>();
9950     AU.addRequired<DominatorTreeWrapperPass>();
9951     AU.addRequired<DemandedBitsWrapperPass>();
9952     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
9953     AU.addRequired<InjectTLIMappingsLegacy>();
9954     AU.addPreserved<LoopInfoWrapperPass>();
9955     AU.addPreserved<DominatorTreeWrapperPass>();
9956     AU.addPreserved<AAResultsWrapperPass>();
9957     AU.addPreserved<GlobalsAAWrapperPass>();
9958     AU.setPreservesCFG();
9959   }
9960 };
9961 
9962 } // end anonymous namespace
9963 
9964 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
9965   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
9966   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
9967   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
9968   auto *AA = &AM.getResult<AAManager>(F);
9969   auto *LI = &AM.getResult<LoopAnalysis>(F);
9970   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
9971   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
9972   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
9973   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9974 
9975   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9976   if (!Changed)
9977     return PreservedAnalyses::all();
9978 
9979   PreservedAnalyses PA;
9980   PA.preserveSet<CFGAnalyses>();
9981   return PA;
9982 }
9983 
9984 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
9985                                 TargetTransformInfo *TTI_,
9986                                 TargetLibraryInfo *TLI_, AAResults *AA_,
9987                                 LoopInfo *LI_, DominatorTree *DT_,
9988                                 AssumptionCache *AC_, DemandedBits *DB_,
9989                                 OptimizationRemarkEmitter *ORE_) {
9990   if (!RunSLPVectorization)
9991     return false;
9992   SE = SE_;
9993   TTI = TTI_;
9994   TLI = TLI_;
9995   AA = AA_;
9996   LI = LI_;
9997   DT = DT_;
9998   AC = AC_;
9999   DB = DB_;
10000   DL = &F.getParent()->getDataLayout();
10001 
10002   Stores.clear();
10003   GEPs.clear();
10004   bool Changed = false;
10005 
10006   // If the target claims to have no vector registers don't attempt
10007   // vectorization.
10008   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
10009     LLVM_DEBUG(
10010         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
10011     return false;
10012   }
10013 
10014   // Don't vectorize when the attribute NoImplicitFloat is used.
10015   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
10016     return false;
10017 
10018   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
10019 
10020   // Use the bottom up slp vectorizer to construct chains that start with
10021   // store instructions.
10022   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
10023 
10024   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
10025   // delete instructions.
10026 
10027   // Update DFS numbers now so that we can use them for ordering.
10028   DT->updateDFSNumbers();
10029 
10030   // Scan the blocks in the function in post order.
10031   for (auto BB : post_order(&F.getEntryBlock())) {
10032     // Start new block - clear the list of reduction roots.
10033     R.clearReductionData();
10034     collectSeedInstructions(BB);
10035 
10036     // Vectorize trees that end at stores.
10037     if (!Stores.empty()) {
10038       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
10039                         << " underlying objects.\n");
10040       Changed |= vectorizeStoreChains(R);
10041     }
10042 
10043     // Vectorize trees that end at reductions.
10044     Changed |= vectorizeChainsInBlock(BB, R);
10045 
10046     // Vectorize the index computations of getelementptr instructions. This
10047     // is primarily intended to catch gather-like idioms ending at
10048     // non-consecutive loads.
10049     if (!GEPs.empty()) {
10050       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
10051                         << " underlying objects.\n");
10052       Changed |= vectorizeGEPIndices(BB, R);
10053     }
10054   }
10055 
10056   if (Changed) {
10057     R.optimizeGatherSequence();
10058     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
10059   }
10060   return Changed;
10061 }
10062 
10063 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
10064                                             unsigned Idx, unsigned MinVF) {
10065   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
10066                     << "\n");
10067   const unsigned Sz = R.getVectorElementSize(Chain[0]);
10068   unsigned VF = Chain.size();
10069 
10070   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
10071     return false;
10072 
10073   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
10074                     << "\n");
10075 
10076   R.buildTree(Chain);
10077   if (R.isTreeTinyAndNotFullyVectorizable())
10078     return false;
10079   if (R.isLoadCombineCandidate())
10080     return false;
10081   R.reorderTopToBottom();
10082   R.reorderBottomToTop();
10083   R.buildExternalUses();
10084 
10085   R.computeMinimumValueSizes();
10086 
10087   InstructionCost Cost = R.getTreeCost();
10088 
10089   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
10090   if (Cost < -SLPCostThreshold) {
10091     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
10092 
10093     using namespace ore;
10094 
10095     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
10096                                         cast<StoreInst>(Chain[0]))
10097                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
10098                      << " and with tree size "
10099                      << NV("TreeSize", R.getTreeSize()));
10100 
10101     R.vectorizeTree();
10102     return true;
10103   }
10104 
10105   return false;
10106 }
10107 
10108 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
10109                                         BoUpSLP &R) {
10110   // We may run into multiple chains that merge into a single chain. We mark the
10111   // stores that we vectorized so that we don't visit the same store twice.
10112   BoUpSLP::ValueSet VectorizedStores;
10113   bool Changed = false;
10114 
10115   int E = Stores.size();
10116   SmallBitVector Tails(E, false);
10117   int MaxIter = MaxStoreLookup.getValue();
10118   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
10119       E, std::make_pair(E, INT_MAX));
10120   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
10121   int IterCnt;
10122   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
10123                                   &CheckedPairs,
10124                                   &ConsecutiveChain](int K, int Idx) {
10125     if (IterCnt >= MaxIter)
10126       return true;
10127     if (CheckedPairs[Idx].test(K))
10128       return ConsecutiveChain[K].second == 1 &&
10129              ConsecutiveChain[K].first == Idx;
10130     ++IterCnt;
10131     CheckedPairs[Idx].set(K);
10132     CheckedPairs[K].set(Idx);
10133     Optional<int> Diff = getPointersDiff(
10134         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
10135         Stores[Idx]->getValueOperand()->getType(),
10136         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
10137     if (!Diff || *Diff == 0)
10138       return false;
10139     int Val = *Diff;
10140     if (Val < 0) {
10141       if (ConsecutiveChain[Idx].second > -Val) {
10142         Tails.set(K);
10143         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
10144       }
10145       return false;
10146     }
10147     if (ConsecutiveChain[K].second <= Val)
10148       return false;
10149 
10150     Tails.set(Idx);
10151     ConsecutiveChain[K] = std::make_pair(Idx, Val);
10152     return Val == 1;
10153   };
10154   // Do a quadratic search on all of the given stores in reverse order and find
10155   // all of the pairs of stores that follow each other.
10156   for (int Idx = E - 1; Idx >= 0; --Idx) {
10157     // If a store has multiple consecutive store candidates, search according
10158     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
10159     // This is because usually pairing with immediate succeeding or preceding
10160     // candidate create the best chance to find slp vectorization opportunity.
10161     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
10162     IterCnt = 0;
10163     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
10164       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
10165           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
10166         break;
10167   }
10168 
10169   // Tracks if we tried to vectorize stores starting from the given tail
10170   // already.
10171   SmallBitVector TriedTails(E, false);
10172   // For stores that start but don't end a link in the chain:
10173   for (int Cnt = E; Cnt > 0; --Cnt) {
10174     int I = Cnt - 1;
10175     if (ConsecutiveChain[I].first == E || Tails.test(I))
10176       continue;
10177     // We found a store instr that starts a chain. Now follow the chain and try
10178     // to vectorize it.
10179     BoUpSLP::ValueList Operands;
10180     // Collect the chain into a list.
10181     while (I != E && !VectorizedStores.count(Stores[I])) {
10182       Operands.push_back(Stores[I]);
10183       Tails.set(I);
10184       if (ConsecutiveChain[I].second != 1) {
10185         // Mark the new end in the chain and go back, if required. It might be
10186         // required if the original stores come in reversed order, for example.
10187         if (ConsecutiveChain[I].first != E &&
10188             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
10189             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
10190           TriedTails.set(I);
10191           Tails.reset(ConsecutiveChain[I].first);
10192           if (Cnt < ConsecutiveChain[I].first + 2)
10193             Cnt = ConsecutiveChain[I].first + 2;
10194         }
10195         break;
10196       }
10197       // Move to the next value in the chain.
10198       I = ConsecutiveChain[I].first;
10199     }
10200     assert(!Operands.empty() && "Expected non-empty list of stores.");
10201 
10202     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10203     unsigned EltSize = R.getVectorElementSize(Operands[0]);
10204     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
10205 
10206     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
10207                               MaxElts);
10208     auto *Store = cast<StoreInst>(Operands[0]);
10209     Type *StoreTy = Store->getValueOperand()->getType();
10210     Type *ValueTy = StoreTy;
10211     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
10212       ValueTy = Trunc->getSrcTy();
10213     unsigned MinVF = TTI->getStoreMinimumVF(
10214         R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
10215 
10216     // FIXME: Is division-by-2 the correct step? Should we assert that the
10217     // register size is a power-of-2?
10218     unsigned StartIdx = 0;
10219     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
10220       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
10221         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
10222         if (!VectorizedStores.count(Slice.front()) &&
10223             !VectorizedStores.count(Slice.back()) &&
10224             vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
10225           // Mark the vectorized stores so that we don't vectorize them again.
10226           VectorizedStores.insert(Slice.begin(), Slice.end());
10227           Changed = true;
10228           // If we vectorized initial block, no need to try to vectorize it
10229           // again.
10230           if (Cnt == StartIdx)
10231             StartIdx += Size;
10232           Cnt += Size;
10233           continue;
10234         }
10235         ++Cnt;
10236       }
10237       // Check if the whole array was vectorized already - exit.
10238       if (StartIdx >= Operands.size())
10239         break;
10240     }
10241   }
10242 
10243   return Changed;
10244 }
10245 
10246 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
10247   // Initialize the collections. We will make a single pass over the block.
10248   Stores.clear();
10249   GEPs.clear();
10250 
10251   // Visit the store and getelementptr instructions in BB and organize them in
10252   // Stores and GEPs according to the underlying objects of their pointer
10253   // operands.
10254   for (Instruction &I : *BB) {
10255     // Ignore store instructions that are volatile or have a pointer operand
10256     // that doesn't point to a scalar type.
10257     if (auto *SI = dyn_cast<StoreInst>(&I)) {
10258       if (!SI->isSimple())
10259         continue;
10260       if (!isValidElementType(SI->getValueOperand()->getType()))
10261         continue;
10262       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
10263     }
10264 
10265     // Ignore getelementptr instructions that have more than one index, a
10266     // constant index, or a pointer operand that doesn't point to a scalar
10267     // type.
10268     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
10269       auto Idx = GEP->idx_begin()->get();
10270       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
10271         continue;
10272       if (!isValidElementType(Idx->getType()))
10273         continue;
10274       if (GEP->getType()->isVectorTy())
10275         continue;
10276       GEPs[GEP->getPointerOperand()].push_back(GEP);
10277     }
10278   }
10279 }
10280 
10281 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
10282   if (!A || !B)
10283     return false;
10284   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
10285     return false;
10286   Value *VL[] = {A, B};
10287   return tryToVectorizeList(VL, R);
10288 }
10289 
10290 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
10291                                            bool LimitForRegisterSize) {
10292   if (VL.size() < 2)
10293     return false;
10294 
10295   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
10296                     << VL.size() << ".\n");
10297 
10298   // Check that all of the parts are instructions of the same type,
10299   // we permit an alternate opcode via InstructionsState.
10300   InstructionsState S = getSameOpcode(VL);
10301   if (!S.getOpcode())
10302     return false;
10303 
10304   Instruction *I0 = cast<Instruction>(S.OpValue);
10305   // Make sure invalid types (including vector type) are rejected before
10306   // determining vectorization factor for scalar instructions.
10307   for (Value *V : VL) {
10308     Type *Ty = V->getType();
10309     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
10310       // NOTE: the following will give user internal llvm type name, which may
10311       // not be useful.
10312       R.getORE()->emit([&]() {
10313         std::string type_str;
10314         llvm::raw_string_ostream rso(type_str);
10315         Ty->print(rso);
10316         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
10317                << "Cannot SLP vectorize list: type "
10318                << rso.str() + " is unsupported by vectorizer";
10319       });
10320       return false;
10321     }
10322   }
10323 
10324   unsigned Sz = R.getVectorElementSize(I0);
10325   unsigned MinVF = R.getMinVF(Sz);
10326   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
10327   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
10328   if (MaxVF < 2) {
10329     R.getORE()->emit([&]() {
10330       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
10331              << "Cannot SLP vectorize list: vectorization factor "
10332              << "less than 2 is not supported";
10333     });
10334     return false;
10335   }
10336 
10337   bool Changed = false;
10338   bool CandidateFound = false;
10339   InstructionCost MinCost = SLPCostThreshold.getValue();
10340   Type *ScalarTy = VL[0]->getType();
10341   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
10342     ScalarTy = IE->getOperand(1)->getType();
10343 
10344   unsigned NextInst = 0, MaxInst = VL.size();
10345   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
10346     // No actual vectorization should happen, if number of parts is the same as
10347     // provided vectorization factor (i.e. the scalar type is used for vector
10348     // code during codegen).
10349     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
10350     if (TTI->getNumberOfParts(VecTy) == VF)
10351       continue;
10352     for (unsigned I = NextInst; I < MaxInst; ++I) {
10353       unsigned OpsWidth = 0;
10354 
10355       if (I + VF > MaxInst)
10356         OpsWidth = MaxInst - I;
10357       else
10358         OpsWidth = VF;
10359 
10360       if (!isPowerOf2_32(OpsWidth))
10361         continue;
10362 
10363       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
10364           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
10365         break;
10366 
10367       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
10368       // Check that a previous iteration of this loop did not delete the Value.
10369       if (llvm::any_of(Ops, [&R](Value *V) {
10370             auto *I = dyn_cast<Instruction>(V);
10371             return I && R.isDeleted(I);
10372           }))
10373         continue;
10374 
10375       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
10376                         << "\n");
10377 
10378       R.buildTree(Ops);
10379       if (R.isTreeTinyAndNotFullyVectorizable())
10380         continue;
10381       R.reorderTopToBottom();
10382       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
10383       R.buildExternalUses();
10384 
10385       R.computeMinimumValueSizes();
10386       InstructionCost Cost = R.getTreeCost();
10387       CandidateFound = true;
10388       MinCost = std::min(MinCost, Cost);
10389 
10390       if (Cost < -SLPCostThreshold) {
10391         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
10392         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
10393                                                     cast<Instruction>(Ops[0]))
10394                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
10395                                  << " and with tree size "
10396                                  << ore::NV("TreeSize", R.getTreeSize()));
10397 
10398         R.vectorizeTree();
10399         // Move to the next bundle.
10400         I += VF - 1;
10401         NextInst = I + 1;
10402         Changed = true;
10403       }
10404     }
10405   }
10406 
10407   if (!Changed && CandidateFound) {
10408     R.getORE()->emit([&]() {
10409       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
10410              << "List vectorization was possible but not beneficial with cost "
10411              << ore::NV("Cost", MinCost) << " >= "
10412              << ore::NV("Treshold", -SLPCostThreshold);
10413     });
10414   } else if (!Changed) {
10415     R.getORE()->emit([&]() {
10416       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
10417              << "Cannot SLP vectorize list: vectorization was impossible"
10418              << " with available vectorization factors";
10419     });
10420   }
10421   return Changed;
10422 }
10423 
10424 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
10425   if (!I)
10426     return false;
10427 
10428   if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) ||
10429       isa<VectorType>(I->getType()))
10430     return false;
10431 
10432   Value *P = I->getParent();
10433 
10434   // Vectorize in current basic block only.
10435   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
10436   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
10437   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
10438     return false;
10439 
10440   // First collect all possible candidates
10441   SmallVector<std::pair<Value *, Value *>, 4> Candidates;
10442   Candidates.emplace_back(Op0, Op1);
10443 
10444   auto *A = dyn_cast<BinaryOperator>(Op0);
10445   auto *B = dyn_cast<BinaryOperator>(Op1);
10446   // Try to skip B.
10447   if (A && B && B->hasOneUse()) {
10448     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
10449     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
10450     if (B0 && B0->getParent() == P)
10451       Candidates.emplace_back(A, B0);
10452     if (B1 && B1->getParent() == P)
10453       Candidates.emplace_back(A, B1);
10454   }
10455   // Try to skip A.
10456   if (B && A && A->hasOneUse()) {
10457     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
10458     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
10459     if (A0 && A0->getParent() == P)
10460       Candidates.emplace_back(A0, B);
10461     if (A1 && A1->getParent() == P)
10462       Candidates.emplace_back(A1, B);
10463   }
10464 
10465   if (Candidates.size() == 1)
10466     return tryToVectorizePair(Op0, Op1, R);
10467 
10468   // We have multiple options. Try to pick the single best.
10469   Optional<int> BestCandidate = R.findBestRootPair(Candidates);
10470   if (!BestCandidate)
10471     return false;
10472   return tryToVectorizePair(Candidates[*BestCandidate].first,
10473                             Candidates[*BestCandidate].second, R);
10474 }
10475 
10476 namespace {
10477 
10478 /// Model horizontal reductions.
10479 ///
10480 /// A horizontal reduction is a tree of reduction instructions that has values
10481 /// that can be put into a vector as its leaves. For example:
10482 ///
10483 /// mul mul mul mul
10484 ///  \  /    \  /
10485 ///   +       +
10486 ///    \     /
10487 ///       +
10488 /// This tree has "mul" as its leaf values and "+" as its reduction
10489 /// instructions. A reduction can feed into a store or a binary operation
10490 /// feeding a phi.
10491 ///    ...
10492 ///    \  /
10493 ///     +
10494 ///     |
10495 ///  phi +=
10496 ///
10497 ///  Or:
10498 ///    ...
10499 ///    \  /
10500 ///     +
10501 ///     |
10502 ///   *p =
10503 ///
10504 class HorizontalReduction {
10505   using ReductionOpsType = SmallVector<Value *, 16>;
10506   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
10507   ReductionOpsListType ReductionOps;
10508   /// List of possibly reduced values.
10509   SmallVector<SmallVector<Value *>> ReducedVals;
10510   /// Maps reduced value to the corresponding reduction operation.
10511   DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
10512   // Use map vector to make stable output.
10513   MapVector<Instruction *, Value *> ExtraArgs;
10514   WeakTrackingVH ReductionRoot;
10515   /// The type of reduction operation.
10516   RecurKind RdxKind;
10517 
10518   static bool isCmpSelMinMax(Instruction *I) {
10519     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
10520            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
10521   }
10522 
10523   // And/or are potentially poison-safe logical patterns like:
10524   // select x, y, false
10525   // select x, true, y
10526   static bool isBoolLogicOp(Instruction *I) {
10527     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
10528            match(I, m_LogicalOr(m_Value(), m_Value()));
10529   }
10530 
10531   /// Checks if instruction is associative and can be vectorized.
10532   static bool isVectorizable(RecurKind Kind, Instruction *I) {
10533     if (Kind == RecurKind::None)
10534       return false;
10535 
10536     // Integer ops that map to select instructions or intrinsics are fine.
10537     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
10538         isBoolLogicOp(I))
10539       return true;
10540 
10541     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
10542       // FP min/max are associative except for NaN and -0.0. We do not
10543       // have to rule out -0.0 here because the intrinsic semantics do not
10544       // specify a fixed result for it.
10545       return I->getFastMathFlags().noNaNs();
10546     }
10547 
10548     return I->isAssociative();
10549   }
10550 
10551   static Value *getRdxOperand(Instruction *I, unsigned Index) {
10552     // Poison-safe 'or' takes the form: select X, true, Y
10553     // To make that work with the normal operand processing, we skip the
10554     // true value operand.
10555     // TODO: Change the code and data structures to handle this without a hack.
10556     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
10557       return I->getOperand(2);
10558     return I->getOperand(Index);
10559   }
10560 
10561   /// Creates reduction operation with the current opcode.
10562   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
10563                          Value *RHS, const Twine &Name, bool UseSelect) {
10564     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
10565     switch (Kind) {
10566     case RecurKind::Or:
10567       if (UseSelect &&
10568           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10569         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
10570       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10571                                  Name);
10572     case RecurKind::And:
10573       if (UseSelect &&
10574           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10575         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
10576       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10577                                  Name);
10578     case RecurKind::Add:
10579     case RecurKind::Mul:
10580     case RecurKind::Xor:
10581     case RecurKind::FAdd:
10582     case RecurKind::FMul:
10583       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10584                                  Name);
10585     case RecurKind::FMax:
10586       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
10587     case RecurKind::FMin:
10588       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
10589     case RecurKind::SMax:
10590       if (UseSelect) {
10591         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
10592         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10593       }
10594       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
10595     case RecurKind::SMin:
10596       if (UseSelect) {
10597         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
10598         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10599       }
10600       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
10601     case RecurKind::UMax:
10602       if (UseSelect) {
10603         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
10604         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10605       }
10606       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
10607     case RecurKind::UMin:
10608       if (UseSelect) {
10609         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
10610         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10611       }
10612       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
10613     default:
10614       llvm_unreachable("Unknown reduction operation.");
10615     }
10616   }
10617 
10618   /// Creates reduction operation with the current opcode with the IR flags
10619   /// from \p ReductionOps, dropping nuw/nsw flags.
10620   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
10621                          Value *RHS, const Twine &Name,
10622                          const ReductionOpsListType &ReductionOps) {
10623     bool UseSelect = ReductionOps.size() == 2 ||
10624                      // Logical or/and.
10625                      (ReductionOps.size() == 1 &&
10626                       isa<SelectInst>(ReductionOps.front().front()));
10627     assert((!UseSelect || ReductionOps.size() != 2 ||
10628             isa<SelectInst>(ReductionOps[1][0])) &&
10629            "Expected cmp + select pairs for reduction");
10630     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
10631     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
10632       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
10633         propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
10634                          /*IncludeWrapFlags=*/false);
10635         propagateIRFlags(Op, ReductionOps[1], nullptr,
10636                          /*IncludeWrapFlags=*/false);
10637         return Op;
10638       }
10639     }
10640     propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
10641     return Op;
10642   }
10643 
10644   static RecurKind getRdxKind(Value *V) {
10645     auto *I = dyn_cast<Instruction>(V);
10646     if (!I)
10647       return RecurKind::None;
10648     if (match(I, m_Add(m_Value(), m_Value())))
10649       return RecurKind::Add;
10650     if (match(I, m_Mul(m_Value(), m_Value())))
10651       return RecurKind::Mul;
10652     if (match(I, m_And(m_Value(), m_Value())) ||
10653         match(I, m_LogicalAnd(m_Value(), m_Value())))
10654       return RecurKind::And;
10655     if (match(I, m_Or(m_Value(), m_Value())) ||
10656         match(I, m_LogicalOr(m_Value(), m_Value())))
10657       return RecurKind::Or;
10658     if (match(I, m_Xor(m_Value(), m_Value())))
10659       return RecurKind::Xor;
10660     if (match(I, m_FAdd(m_Value(), m_Value())))
10661       return RecurKind::FAdd;
10662     if (match(I, m_FMul(m_Value(), m_Value())))
10663       return RecurKind::FMul;
10664 
10665     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
10666       return RecurKind::FMax;
10667     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
10668       return RecurKind::FMin;
10669 
10670     // This matches either cmp+select or intrinsics. SLP is expected to handle
10671     // either form.
10672     // TODO: If we are canonicalizing to intrinsics, we can remove several
10673     //       special-case paths that deal with selects.
10674     if (match(I, m_SMax(m_Value(), m_Value())))
10675       return RecurKind::SMax;
10676     if (match(I, m_SMin(m_Value(), m_Value())))
10677       return RecurKind::SMin;
10678     if (match(I, m_UMax(m_Value(), m_Value())))
10679       return RecurKind::UMax;
10680     if (match(I, m_UMin(m_Value(), m_Value())))
10681       return RecurKind::UMin;
10682 
10683     if (auto *Select = dyn_cast<SelectInst>(I)) {
10684       // Try harder: look for min/max pattern based on instructions producing
10685       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
10686       // During the intermediate stages of SLP, it's very common to have
10687       // pattern like this (since optimizeGatherSequence is run only once
10688       // at the end):
10689       // %1 = extractelement <2 x i32> %a, i32 0
10690       // %2 = extractelement <2 x i32> %a, i32 1
10691       // %cond = icmp sgt i32 %1, %2
10692       // %3 = extractelement <2 x i32> %a, i32 0
10693       // %4 = extractelement <2 x i32> %a, i32 1
10694       // %select = select i1 %cond, i32 %3, i32 %4
10695       CmpInst::Predicate Pred;
10696       Instruction *L1;
10697       Instruction *L2;
10698 
10699       Value *LHS = Select->getTrueValue();
10700       Value *RHS = Select->getFalseValue();
10701       Value *Cond = Select->getCondition();
10702 
10703       // TODO: Support inverse predicates.
10704       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
10705         if (!isa<ExtractElementInst>(RHS) ||
10706             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10707           return RecurKind::None;
10708       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
10709         if (!isa<ExtractElementInst>(LHS) ||
10710             !L1->isIdenticalTo(cast<Instruction>(LHS)))
10711           return RecurKind::None;
10712       } else {
10713         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
10714           return RecurKind::None;
10715         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
10716             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
10717             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10718           return RecurKind::None;
10719       }
10720 
10721       switch (Pred) {
10722       default:
10723         return RecurKind::None;
10724       case CmpInst::ICMP_SGT:
10725       case CmpInst::ICMP_SGE:
10726         return RecurKind::SMax;
10727       case CmpInst::ICMP_SLT:
10728       case CmpInst::ICMP_SLE:
10729         return RecurKind::SMin;
10730       case CmpInst::ICMP_UGT:
10731       case CmpInst::ICMP_UGE:
10732         return RecurKind::UMax;
10733       case CmpInst::ICMP_ULT:
10734       case CmpInst::ICMP_ULE:
10735         return RecurKind::UMin;
10736       }
10737     }
10738     return RecurKind::None;
10739   }
10740 
10741   /// Get the index of the first operand.
10742   static unsigned getFirstOperandIndex(Instruction *I) {
10743     return isCmpSelMinMax(I) ? 1 : 0;
10744   }
10745 
10746   /// Total number of operands in the reduction operation.
10747   static unsigned getNumberOfOperands(Instruction *I) {
10748     return isCmpSelMinMax(I) ? 3 : 2;
10749   }
10750 
10751   /// Checks if the instruction is in basic block \p BB.
10752   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
10753   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
10754     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
10755       auto *Sel = cast<SelectInst>(I);
10756       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
10757       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
10758     }
10759     return I->getParent() == BB;
10760   }
10761 
10762   /// Expected number of uses for reduction operations/reduced values.
10763   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
10764     if (IsCmpSelMinMax) {
10765       // SelectInst must be used twice while the condition op must have single
10766       // use only.
10767       if (auto *Sel = dyn_cast<SelectInst>(I))
10768         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
10769       return I->hasNUses(2);
10770     }
10771 
10772     // Arithmetic reduction operation must be used once only.
10773     return I->hasOneUse();
10774   }
10775 
10776   /// Initializes the list of reduction operations.
10777   void initReductionOps(Instruction *I) {
10778     if (isCmpSelMinMax(I))
10779       ReductionOps.assign(2, ReductionOpsType());
10780     else
10781       ReductionOps.assign(1, ReductionOpsType());
10782   }
10783 
10784   /// Add all reduction operations for the reduction instruction \p I.
10785   void addReductionOps(Instruction *I) {
10786     if (isCmpSelMinMax(I)) {
10787       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
10788       ReductionOps[1].emplace_back(I);
10789     } else {
10790       ReductionOps[0].emplace_back(I);
10791     }
10792   }
10793 
10794   static Value *getLHS(RecurKind Kind, Instruction *I) {
10795     if (Kind == RecurKind::None)
10796       return nullptr;
10797     return I->getOperand(getFirstOperandIndex(I));
10798   }
10799   static Value *getRHS(RecurKind Kind, Instruction *I) {
10800     if (Kind == RecurKind::None)
10801       return nullptr;
10802     return I->getOperand(getFirstOperandIndex(I) + 1);
10803   }
10804 
10805 public:
10806   HorizontalReduction() = default;
10807 
10808   /// Try to find a reduction tree.
10809   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
10810                                  ScalarEvolution &SE, const DataLayout &DL,
10811                                  const TargetLibraryInfo &TLI) {
10812     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
10813            "Phi needs to use the binary operator");
10814     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
10815             isa<IntrinsicInst>(Inst)) &&
10816            "Expected binop, select, or intrinsic for reduction matching");
10817     RdxKind = getRdxKind(Inst);
10818 
10819     // We could have a initial reductions that is not an add.
10820     //  r *= v1 + v2 + v3 + v4
10821     // In such a case start looking for a tree rooted in the first '+'.
10822     if (Phi) {
10823       if (getLHS(RdxKind, Inst) == Phi) {
10824         Phi = nullptr;
10825         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
10826         if (!Inst)
10827           return false;
10828         RdxKind = getRdxKind(Inst);
10829       } else if (getRHS(RdxKind, Inst) == Phi) {
10830         Phi = nullptr;
10831         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
10832         if (!Inst)
10833           return false;
10834         RdxKind = getRdxKind(Inst);
10835       }
10836     }
10837 
10838     if (!isVectorizable(RdxKind, Inst))
10839       return false;
10840 
10841     // Analyze "regular" integer/FP types for reductions - no target-specific
10842     // types or pointers.
10843     Type *Ty = Inst->getType();
10844     if (!isValidElementType(Ty) || Ty->isPointerTy())
10845       return false;
10846 
10847     // Though the ultimate reduction may have multiple uses, its condition must
10848     // have only single use.
10849     if (auto *Sel = dyn_cast<SelectInst>(Inst))
10850       if (!Sel->getCondition()->hasOneUse())
10851         return false;
10852 
10853     ReductionRoot = Inst;
10854 
10855     // Iterate through all the operands of the possible reduction tree and
10856     // gather all the reduced values, sorting them by their value id.
10857     BasicBlock *BB = Inst->getParent();
10858     bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
10859     SmallVector<Instruction *> Worklist(1, Inst);
10860     // Checks if the operands of the \p TreeN instruction are also reduction
10861     // operations or should be treated as reduced values or an extra argument,
10862     // which is not part of the reduction.
10863     auto &&CheckOperands = [this, IsCmpSelMinMax,
10864                             BB](Instruction *TreeN,
10865                                 SmallVectorImpl<Value *> &ExtraArgs,
10866                                 SmallVectorImpl<Value *> &PossibleReducedVals,
10867                                 SmallVectorImpl<Instruction *> &ReductionOps) {
10868       for (int I = getFirstOperandIndex(TreeN),
10869                End = getNumberOfOperands(TreeN);
10870            I < End; ++I) {
10871         Value *EdgeVal = getRdxOperand(TreeN, I);
10872         ReducedValsToOps[EdgeVal].push_back(TreeN);
10873         auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
10874         // Edge has wrong parent - mark as an extra argument.
10875         if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
10876             !hasSameParent(EdgeInst, BB)) {
10877           ExtraArgs.push_back(EdgeVal);
10878           continue;
10879         }
10880         // If the edge is not an instruction, or it is different from the main
10881         // reduction opcode or has too many uses - possible reduced value.
10882         if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
10883             IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
10884             !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
10885             !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
10886           PossibleReducedVals.push_back(EdgeVal);
10887           continue;
10888         }
10889         ReductionOps.push_back(EdgeInst);
10890       }
10891     };
10892     // Try to regroup reduced values so that it gets more profitable to try to
10893     // reduce them. Values are grouped by their value ids, instructions - by
10894     // instruction op id and/or alternate op id, plus do extra analysis for
10895     // loads (grouping them by the distabce between pointers) and cmp
10896     // instructions (grouping them by the predicate).
10897     MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
10898         PossibleReducedVals;
10899     initReductionOps(Inst);
10900     while (!Worklist.empty()) {
10901       Instruction *TreeN = Worklist.pop_back_val();
10902       SmallVector<Value *> Args;
10903       SmallVector<Value *> PossibleRedVals;
10904       SmallVector<Instruction *> PossibleReductionOps;
10905       CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
10906       // If too many extra args - mark the instruction itself as a reduction
10907       // value, not a reduction operation.
10908       if (Args.size() < 2) {
10909         addReductionOps(TreeN);
10910         // Add extra args.
10911         if (!Args.empty()) {
10912           assert(Args.size() == 1 && "Expected only single argument.");
10913           ExtraArgs[TreeN] = Args.front();
10914         }
10915         // Add reduction values. The values are sorted for better vectorization
10916         // results.
10917         for (Value *V : PossibleRedVals) {
10918           size_t Key, Idx;
10919           std::tie(Key, Idx) = generateKeySubkey(
10920               V, &TLI,
10921               [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10922                 auto It = PossibleReducedVals.find(Key);
10923                 if (It != PossibleReducedVals.end()) {
10924                   for (const auto &LoadData : It->second) {
10925                     auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10926                     if (getPointersDiff(RLI->getType(),
10927                                         RLI->getPointerOperand(), LI->getType(),
10928                                         LI->getPointerOperand(), DL, SE,
10929                                         /*StrictCheck=*/true))
10930                       return hash_value(RLI->getPointerOperand());
10931                   }
10932                 }
10933                 return hash_value(LI->getPointerOperand());
10934               },
10935               /*AllowAlternate=*/false);
10936           ++PossibleReducedVals[Key][Idx]
10937                 .insert(std::make_pair(V, 0))
10938                 .first->second;
10939         }
10940         Worklist.append(PossibleReductionOps.rbegin(),
10941                         PossibleReductionOps.rend());
10942       } else {
10943         size_t Key, Idx;
10944         std::tie(Key, Idx) = generateKeySubkey(
10945             TreeN, &TLI,
10946             [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10947               auto It = PossibleReducedVals.find(Key);
10948               if (It != PossibleReducedVals.end()) {
10949                 for (const auto &LoadData : It->second) {
10950                   auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10951                   if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
10952                                       LI->getType(), LI->getPointerOperand(),
10953                                       DL, SE, /*StrictCheck=*/true))
10954                     return hash_value(RLI->getPointerOperand());
10955                 }
10956               }
10957               return hash_value(LI->getPointerOperand());
10958             },
10959             /*AllowAlternate=*/false);
10960         ++PossibleReducedVals[Key][Idx]
10961               .insert(std::make_pair(TreeN, 0))
10962               .first->second;
10963       }
10964     }
10965     auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
10966     // Sort values by the total number of values kinds to start the reduction
10967     // from the longest possible reduced values sequences.
10968     for (auto &PossibleReducedVals : PossibleReducedValsVect) {
10969       auto PossibleRedVals = PossibleReducedVals.second.takeVector();
10970       SmallVector<SmallVector<Value *>> PossibleRedValsVect;
10971       for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
10972            It != E; ++It) {
10973         PossibleRedValsVect.emplace_back();
10974         auto RedValsVect = It->second.takeVector();
10975         stable_sort(RedValsVect, llvm::less_second());
10976         for (const std::pair<Value *, unsigned> &Data : RedValsVect)
10977           PossibleRedValsVect.back().append(Data.second, Data.first);
10978       }
10979       stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
10980         return P1.size() > P2.size();
10981       });
10982       ReducedVals.emplace_back();
10983       for (ArrayRef<Value *> Data : PossibleRedValsVect)
10984         ReducedVals.back().append(Data.rbegin(), Data.rend());
10985     }
10986     // Sort the reduced values by number of same/alternate opcode and/or pointer
10987     // operand.
10988     stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
10989       return P1.size() > P2.size();
10990     });
10991     return true;
10992   }
10993 
10994   /// Attempt to vectorize the tree found by matchAssociativeReduction.
10995   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
10996     constexpr int ReductionLimit = 4;
10997     constexpr unsigned RegMaxNumber = 4;
10998     constexpr unsigned RedValsMaxNumber = 128;
10999     // If there are a sufficient number of reduction values, reduce
11000     // to a nearby power-of-2. We can safely generate oversized
11001     // vectors and rely on the backend to split them to legal sizes.
11002     unsigned NumReducedVals = std::accumulate(
11003         ReducedVals.begin(), ReducedVals.end(), 0,
11004         [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); });
11005     if (NumReducedVals < ReductionLimit)
11006       return nullptr;
11007 
11008     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
11009 
11010     // Track the reduced values in case if they are replaced by extractelement
11011     // because of the vectorization.
11012     DenseMap<Value *, WeakTrackingVH> TrackedVals;
11013     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
11014     // The same extra argument may be used several times, so log each attempt
11015     // to use it.
11016     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
11017       assert(Pair.first && "DebugLoc must be set.");
11018       ExternallyUsedValues[Pair.second].push_back(Pair.first);
11019       TrackedVals.try_emplace(Pair.second, Pair.second);
11020     }
11021 
11022     // The compare instruction of a min/max is the insertion point for new
11023     // instructions and may be replaced with a new compare instruction.
11024     auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
11025       assert(isa<SelectInst>(RdxRootInst) &&
11026              "Expected min/max reduction to have select root instruction");
11027       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
11028       assert(isa<Instruction>(ScalarCond) &&
11029              "Expected min/max reduction to have compare condition");
11030       return cast<Instruction>(ScalarCond);
11031     };
11032 
11033     // The reduction root is used as the insertion point for new instructions,
11034     // so set it as externally used to prevent it from being deleted.
11035     ExternallyUsedValues[ReductionRoot];
11036     SmallDenseSet<Value *> IgnoreList;
11037     for (ReductionOpsType &RdxOps : ReductionOps)
11038       for (Value *RdxOp : RdxOps) {
11039         if (!RdxOp)
11040           continue;
11041         IgnoreList.insert(RdxOp);
11042       }
11043     bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
11044 
11045     // Need to track reduced vals, they may be changed during vectorization of
11046     // subvectors.
11047     for (ArrayRef<Value *> Candidates : ReducedVals)
11048       for (Value *V : Candidates)
11049         TrackedVals.try_emplace(V, V);
11050 
11051     DenseMap<Value *, unsigned> VectorizedVals;
11052     Value *VectorizedTree = nullptr;
11053     bool CheckForReusedReductionOps = false;
11054     // Try to vectorize elements based on their type.
11055     for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
11056       ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
11057       InstructionsState S = getSameOpcode(OrigReducedVals);
11058       SmallVector<Value *> Candidates;
11059       DenseMap<Value *, Value *> TrackedToOrig;
11060       for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
11061         Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
11062         // Check if the reduction value was not overriden by the extractelement
11063         // instruction because of the vectorization and exclude it, if it is not
11064         // compatible with other values.
11065         if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11066           if (isVectorLikeInstWithConstOps(Inst) &&
11067               (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
11068             continue;
11069         Candidates.push_back(RdxVal);
11070         TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
11071       }
11072       bool ShuffledExtracts = false;
11073       // Try to handle shuffled extractelements.
11074       if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
11075           I + 1 < E) {
11076         InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]);
11077         if (NextS.getOpcode() == Instruction::ExtractElement &&
11078             !NextS.isAltShuffle()) {
11079           SmallVector<Value *> CommonCandidates(Candidates);
11080           for (Value *RV : ReducedVals[I + 1]) {
11081             Value *RdxVal = TrackedVals.find(RV)->second;
11082             // Check if the reduction value was not overriden by the
11083             // extractelement instruction because of the vectorization and
11084             // exclude it, if it is not compatible with other values.
11085             if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11086               if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
11087                 continue;
11088             CommonCandidates.push_back(RdxVal);
11089             TrackedToOrig.try_emplace(RdxVal, RV);
11090           }
11091           SmallVector<int> Mask;
11092           if (isFixedVectorShuffle(CommonCandidates, Mask)) {
11093             ++I;
11094             Candidates.swap(CommonCandidates);
11095             ShuffledExtracts = true;
11096           }
11097         }
11098       }
11099       unsigned NumReducedVals = Candidates.size();
11100       if (NumReducedVals < ReductionLimit)
11101         continue;
11102 
11103       unsigned MaxVecRegSize = V.getMaxVecRegSize();
11104       unsigned EltSize = V.getVectorElementSize(Candidates[0]);
11105       unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
11106 
11107       unsigned ReduxWidth = std::min<unsigned>(
11108           PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
11109       unsigned Start = 0;
11110       unsigned Pos = Start;
11111       // Restarts vectorization attempt with lower vector factor.
11112       unsigned PrevReduxWidth = ReduxWidth;
11113       bool CheckForReusedReductionOpsLocal = false;
11114       auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
11115                                   &CheckForReusedReductionOpsLocal,
11116                                   &PrevReduxWidth, &V,
11117                                   &IgnoreList](bool IgnoreVL = false) {
11118         bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
11119         if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
11120           // Check if any of the reduction ops are gathered. If so, worth
11121           // trying again with less number of reduction ops.
11122           CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
11123         }
11124         ++Pos;
11125         if (Pos < NumReducedVals - ReduxWidth + 1)
11126           return IsAnyRedOpGathered;
11127         Pos = Start;
11128         ReduxWidth /= 2;
11129         return IsAnyRedOpGathered;
11130       };
11131       while (Pos < NumReducedVals - ReduxWidth + 1 &&
11132              ReduxWidth >= ReductionLimit) {
11133         // Dependency in tree of the reduction ops - drop this attempt, try
11134         // later.
11135         if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
11136             Start == 0) {
11137           CheckForReusedReductionOps = true;
11138           break;
11139         }
11140         PrevReduxWidth = ReduxWidth;
11141         ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
11142         // Beeing analyzed already - skip.
11143         if (V.areAnalyzedReductionVals(VL)) {
11144           (void)AdjustReducedVals(/*IgnoreVL=*/true);
11145           continue;
11146         }
11147         // Early exit if any of the reduction values were deleted during
11148         // previous vectorization attempts.
11149         if (any_of(VL, [&V](Value *RedVal) {
11150               auto *RedValI = dyn_cast<Instruction>(RedVal);
11151               if (!RedValI)
11152                 return false;
11153               return V.isDeleted(RedValI);
11154             }))
11155           break;
11156         V.buildTree(VL, IgnoreList);
11157         if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
11158           if (!AdjustReducedVals())
11159             V.analyzedReductionVals(VL);
11160           continue;
11161         }
11162         if (V.isLoadCombineReductionCandidate(RdxKind)) {
11163           if (!AdjustReducedVals())
11164             V.analyzedReductionVals(VL);
11165           continue;
11166         }
11167         V.reorderTopToBottom();
11168         // No need to reorder the root node at all.
11169         V.reorderBottomToTop(/*IgnoreReorder=*/true);
11170         // Keep extracted other reduction values, if they are used in the
11171         // vectorization trees.
11172         BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
11173             ExternallyUsedValues);
11174         for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
11175           if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
11176             continue;
11177           for_each(ReducedVals[Cnt],
11178                    [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
11179                      if (isa<Instruction>(V))
11180                        LocalExternallyUsedValues[TrackedVals[V]];
11181                    });
11182         }
11183         // Number of uses of the candidates in the vector of values.
11184         SmallDenseMap<Value *, unsigned> NumUses;
11185         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11186           Value *V = Candidates[Cnt];
11187           if (NumUses.count(V) > 0)
11188             continue;
11189           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11190         }
11191         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11192           Value *V = Candidates[Cnt];
11193           if (NumUses.count(V) > 0)
11194             continue;
11195           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11196         }
11197         // Gather externally used values.
11198         SmallPtrSet<Value *, 4> Visited;
11199         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11200           Value *V = Candidates[Cnt];
11201           if (!Visited.insert(V).second)
11202             continue;
11203           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11204           if (NumOps != ReducedValsToOps.find(V)->second.size())
11205             LocalExternallyUsedValues[V];
11206         }
11207         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11208           Value *V = Candidates[Cnt];
11209           if (!Visited.insert(V).second)
11210             continue;
11211           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11212           if (NumOps != ReducedValsToOps.find(V)->second.size())
11213             LocalExternallyUsedValues[V];
11214         }
11215         V.buildExternalUses(LocalExternallyUsedValues);
11216 
11217         V.computeMinimumValueSizes();
11218 
11219         // Intersect the fast-math-flags from all reduction operations.
11220         FastMathFlags RdxFMF;
11221         RdxFMF.set();
11222         for (Value *U : IgnoreList)
11223           if (auto *FPMO = dyn_cast<FPMathOperator>(U))
11224             RdxFMF &= FPMO->getFastMathFlags();
11225         // Estimate cost.
11226         InstructionCost TreeCost = V.getTreeCost(VL);
11227         InstructionCost ReductionCost =
11228             getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
11229         InstructionCost Cost = TreeCost + ReductionCost;
11230         if (!Cost.isValid()) {
11231           LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
11232           return nullptr;
11233         }
11234         if (Cost >= -SLPCostThreshold) {
11235           V.getORE()->emit([&]() {
11236             return OptimizationRemarkMissed(
11237                        SV_NAME, "HorSLPNotBeneficial",
11238                        ReducedValsToOps.find(VL[0])->second.front())
11239                    << "Vectorizing horizontal reduction is possible "
11240                    << "but not beneficial with cost " << ore::NV("Cost", Cost)
11241                    << " and threshold "
11242                    << ore::NV("Threshold", -SLPCostThreshold);
11243           });
11244           if (!AdjustReducedVals())
11245             V.analyzedReductionVals(VL);
11246           continue;
11247         }
11248 
11249         LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
11250                           << Cost << ". (HorRdx)\n");
11251         V.getORE()->emit([&]() {
11252           return OptimizationRemark(
11253                      SV_NAME, "VectorizedHorizontalReduction",
11254                      ReducedValsToOps.find(VL[0])->second.front())
11255                  << "Vectorized horizontal reduction with cost "
11256                  << ore::NV("Cost", Cost) << " and with tree size "
11257                  << ore::NV("TreeSize", V.getTreeSize());
11258         });
11259 
11260         Builder.setFastMathFlags(RdxFMF);
11261 
11262         // Vectorize a tree.
11263         Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues);
11264 
11265         // Emit a reduction. If the root is a select (min/max idiom), the insert
11266         // point is the compare condition of that select.
11267         Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
11268         if (IsCmpSelMinMax)
11269           Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst));
11270         else
11271           Builder.SetInsertPoint(RdxRootInst);
11272 
11273         // To prevent poison from leaking across what used to be sequential,
11274         // safe, scalar boolean logic operations, the reduction operand must be
11275         // frozen.
11276         if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
11277           VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
11278 
11279         Value *ReducedSubTree =
11280             emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
11281 
11282         if (!VectorizedTree) {
11283           // Initialize the final value in the reduction.
11284           VectorizedTree = ReducedSubTree;
11285         } else {
11286           // Update the final value in the reduction.
11287           Builder.SetCurrentDebugLocation(
11288               cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
11289           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11290                                     ReducedSubTree, "op.rdx", ReductionOps);
11291         }
11292         // Count vectorized reduced values to exclude them from final reduction.
11293         for (Value *V : VL)
11294           ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0)
11295                 .first->getSecond();
11296         Pos += ReduxWidth;
11297         Start = Pos;
11298         ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
11299       }
11300     }
11301     if (VectorizedTree) {
11302       // Finish the reduction.
11303       // Need to add extra arguments and not vectorized possible reduction
11304       // values.
11305       // Try to avoid dependencies between the scalar remainders after
11306       // reductions.
11307       auto &&FinalGen =
11308           [this, &Builder,
11309            &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
11310             unsigned Sz = InstVals.size();
11311             SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
11312                                                                      Sz % 2);
11313             for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
11314               Instruction *RedOp = InstVals[I + 1].first;
11315               Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11316               Value *RdxVal1 = InstVals[I].second;
11317               Value *StableRdxVal1 = RdxVal1;
11318               auto It1 = TrackedVals.find(RdxVal1);
11319               if (It1 != TrackedVals.end())
11320                 StableRdxVal1 = It1->second;
11321               Value *RdxVal2 = InstVals[I + 1].second;
11322               Value *StableRdxVal2 = RdxVal2;
11323               auto It2 = TrackedVals.find(RdxVal2);
11324               if (It2 != TrackedVals.end())
11325                 StableRdxVal2 = It2->second;
11326               Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
11327                                          StableRdxVal2, "op.rdx", ReductionOps);
11328               ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
11329             }
11330             if (Sz % 2 == 1)
11331               ExtraReds[Sz / 2] = InstVals.back();
11332             return ExtraReds;
11333           };
11334       SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
11335       SmallPtrSet<Value *, 8> Visited;
11336       for (ArrayRef<Value *> Candidates : ReducedVals) {
11337         for (Value *RdxVal : Candidates) {
11338           if (!Visited.insert(RdxVal).second)
11339             continue;
11340           unsigned NumOps = VectorizedVals.lookup(RdxVal);
11341           for (Instruction *RedOp :
11342                makeArrayRef(ReducedValsToOps.find(RdxVal)->second)
11343                    .drop_back(NumOps))
11344             ExtraReductions.emplace_back(RedOp, RdxVal);
11345         }
11346       }
11347       for (auto &Pair : ExternallyUsedValues) {
11348         // Add each externally used value to the final reduction.
11349         for (auto *I : Pair.second)
11350           ExtraReductions.emplace_back(I, Pair.first);
11351       }
11352       // Iterate through all not-vectorized reduction values/extra arguments.
11353       while (ExtraReductions.size() > 1) {
11354         SmallVector<std::pair<Instruction *, Value *>> NewReds =
11355             FinalGen(ExtraReductions);
11356         ExtraReductions.swap(NewReds);
11357       }
11358       // Final reduction.
11359       if (ExtraReductions.size() == 1) {
11360         Instruction *RedOp = ExtraReductions.back().first;
11361         Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11362         Value *RdxVal = ExtraReductions.back().second;
11363         Value *StableRdxVal = RdxVal;
11364         auto It = TrackedVals.find(RdxVal);
11365         if (It != TrackedVals.end())
11366           StableRdxVal = It->second;
11367         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11368                                   StableRdxVal, "op.rdx", ReductionOps);
11369       }
11370 
11371       ReductionRoot->replaceAllUsesWith(VectorizedTree);
11372 
11373       // The original scalar reduction is expected to have no remaining
11374       // uses outside the reduction tree itself.  Assert that we got this
11375       // correct, replace internal uses with undef, and mark for eventual
11376       // deletion.
11377 #ifndef NDEBUG
11378       SmallSet<Value *, 4> IgnoreSet;
11379       for (ArrayRef<Value *> RdxOps : ReductionOps)
11380         IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
11381 #endif
11382       for (ArrayRef<Value *> RdxOps : ReductionOps) {
11383         for (Value *Ignore : RdxOps) {
11384           if (!Ignore)
11385             continue;
11386 #ifndef NDEBUG
11387           for (auto *U : Ignore->users()) {
11388             assert(IgnoreSet.count(U) &&
11389                    "All users must be either in the reduction ops list.");
11390           }
11391 #endif
11392           if (!Ignore->use_empty()) {
11393             Value *Undef = UndefValue::get(Ignore->getType());
11394             Ignore->replaceAllUsesWith(Undef);
11395           }
11396           V.eraseInstruction(cast<Instruction>(Ignore));
11397         }
11398       }
11399     } else if (!CheckForReusedReductionOps) {
11400       for (ReductionOpsType &RdxOps : ReductionOps)
11401         for (Value *RdxOp : RdxOps)
11402           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11403     }
11404     return VectorizedTree;
11405   }
11406 
11407 private:
11408   /// Calculate the cost of a reduction.
11409   InstructionCost getReductionCost(TargetTransformInfo *TTI,
11410                                    ArrayRef<Value *> ReducedVals,
11411                                    unsigned ReduxWidth, FastMathFlags FMF) {
11412     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
11413     Value *FirstReducedVal = ReducedVals.front();
11414     Type *ScalarTy = FirstReducedVal->getType();
11415     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
11416     InstructionCost VectorCost = 0, ScalarCost;
11417     // If all of the reduced values are constant, the vector cost is 0, since
11418     // the reduction value can be calculated at the compile time.
11419     bool AllConsts = all_of(ReducedVals, isConstant);
11420     switch (RdxKind) {
11421     case RecurKind::Add:
11422     case RecurKind::Mul:
11423     case RecurKind::Or:
11424     case RecurKind::And:
11425     case RecurKind::Xor:
11426     case RecurKind::FAdd:
11427     case RecurKind::FMul: {
11428       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
11429       if (!AllConsts)
11430         VectorCost =
11431             TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
11432       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
11433       break;
11434     }
11435     case RecurKind::FMax:
11436     case RecurKind::FMin: {
11437       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11438       if (!AllConsts) {
11439         auto *VecCondTy =
11440             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11441         VectorCost =
11442             TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11443                                         /*IsUnsigned=*/false, CostKind);
11444       }
11445       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11446       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
11447                                            SclCondTy, RdxPred, CostKind) +
11448                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11449                                            SclCondTy, RdxPred, CostKind);
11450       break;
11451     }
11452     case RecurKind::SMax:
11453     case RecurKind::SMin:
11454     case RecurKind::UMax:
11455     case RecurKind::UMin: {
11456       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11457       if (!AllConsts) {
11458         auto *VecCondTy =
11459             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11460         bool IsUnsigned =
11461             RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
11462         VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11463                                                  IsUnsigned, CostKind);
11464       }
11465       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11466       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
11467                                            SclCondTy, RdxPred, CostKind) +
11468                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11469                                            SclCondTy, RdxPred, CostKind);
11470       break;
11471     }
11472     default:
11473       llvm_unreachable("Expected arithmetic or min/max reduction operation");
11474     }
11475 
11476     // Scalar cost is repeated for N-1 elements.
11477     ScalarCost *= (ReduxWidth - 1);
11478     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
11479                       << " for reduction that starts with " << *FirstReducedVal
11480                       << " (It is a splitting reduction)\n");
11481     return VectorCost - ScalarCost;
11482   }
11483 
11484   /// Emit a horizontal reduction of the vectorized value.
11485   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
11486                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
11487     assert(VectorizedValue && "Need to have a vectorized tree node");
11488     assert(isPowerOf2_32(ReduxWidth) &&
11489            "We only handle power-of-two reductions for now");
11490     assert(RdxKind != RecurKind::FMulAdd &&
11491            "A call to the llvm.fmuladd intrinsic is not handled yet");
11492 
11493     ++NumVectorInstructions;
11494     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
11495   }
11496 };
11497 
11498 } // end anonymous namespace
11499 
11500 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
11501   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
11502     return cast<FixedVectorType>(IE->getType())->getNumElements();
11503 
11504   unsigned AggregateSize = 1;
11505   auto *IV = cast<InsertValueInst>(InsertInst);
11506   Type *CurrentType = IV->getType();
11507   do {
11508     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
11509       for (auto *Elt : ST->elements())
11510         if (Elt != ST->getElementType(0)) // check homogeneity
11511           return None;
11512       AggregateSize *= ST->getNumElements();
11513       CurrentType = ST->getElementType(0);
11514     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
11515       AggregateSize *= AT->getNumElements();
11516       CurrentType = AT->getElementType();
11517     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
11518       AggregateSize *= VT->getNumElements();
11519       return AggregateSize;
11520     } else if (CurrentType->isSingleValueType()) {
11521       return AggregateSize;
11522     } else {
11523       return None;
11524     }
11525   } while (true);
11526 }
11527 
11528 static void findBuildAggregate_rec(Instruction *LastInsertInst,
11529                                    TargetTransformInfo *TTI,
11530                                    SmallVectorImpl<Value *> &BuildVectorOpds,
11531                                    SmallVectorImpl<Value *> &InsertElts,
11532                                    unsigned OperandOffset) {
11533   do {
11534     Value *InsertedOperand = LastInsertInst->getOperand(1);
11535     Optional<unsigned> OperandIndex =
11536         getInsertIndex(LastInsertInst, OperandOffset);
11537     if (!OperandIndex)
11538       return;
11539     if (isa<InsertElementInst>(InsertedOperand) ||
11540         isa<InsertValueInst>(InsertedOperand)) {
11541       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
11542                              BuildVectorOpds, InsertElts, *OperandIndex);
11543 
11544     } else {
11545       BuildVectorOpds[*OperandIndex] = InsertedOperand;
11546       InsertElts[*OperandIndex] = LastInsertInst;
11547     }
11548     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
11549   } while (LastInsertInst != nullptr &&
11550            (isa<InsertValueInst>(LastInsertInst) ||
11551             isa<InsertElementInst>(LastInsertInst)) &&
11552            LastInsertInst->hasOneUse());
11553 }
11554 
11555 /// Recognize construction of vectors like
11556 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
11557 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
11558 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
11559 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
11560 ///  starting from the last insertelement or insertvalue instruction.
11561 ///
11562 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
11563 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
11564 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
11565 ///
11566 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
11567 ///
11568 /// \return true if it matches.
11569 static bool findBuildAggregate(Instruction *LastInsertInst,
11570                                TargetTransformInfo *TTI,
11571                                SmallVectorImpl<Value *> &BuildVectorOpds,
11572                                SmallVectorImpl<Value *> &InsertElts) {
11573 
11574   assert((isa<InsertElementInst>(LastInsertInst) ||
11575           isa<InsertValueInst>(LastInsertInst)) &&
11576          "Expected insertelement or insertvalue instruction!");
11577 
11578   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
11579          "Expected empty result vectors!");
11580 
11581   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
11582   if (!AggregateSize)
11583     return false;
11584   BuildVectorOpds.resize(*AggregateSize);
11585   InsertElts.resize(*AggregateSize);
11586 
11587   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
11588   llvm::erase_value(BuildVectorOpds, nullptr);
11589   llvm::erase_value(InsertElts, nullptr);
11590   if (BuildVectorOpds.size() >= 2)
11591     return true;
11592 
11593   return false;
11594 }
11595 
11596 /// Try and get a reduction value from a phi node.
11597 ///
11598 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
11599 /// if they come from either \p ParentBB or a containing loop latch.
11600 ///
11601 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
11602 /// if not possible.
11603 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
11604                                 BasicBlock *ParentBB, LoopInfo *LI) {
11605   // There are situations where the reduction value is not dominated by the
11606   // reduction phi. Vectorizing such cases has been reported to cause
11607   // miscompiles. See PR25787.
11608   auto DominatedReduxValue = [&](Value *R) {
11609     return isa<Instruction>(R) &&
11610            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
11611   };
11612 
11613   Value *Rdx = nullptr;
11614 
11615   // Return the incoming value if it comes from the same BB as the phi node.
11616   if (P->getIncomingBlock(0) == ParentBB) {
11617     Rdx = P->getIncomingValue(0);
11618   } else if (P->getIncomingBlock(1) == ParentBB) {
11619     Rdx = P->getIncomingValue(1);
11620   }
11621 
11622   if (Rdx && DominatedReduxValue(Rdx))
11623     return Rdx;
11624 
11625   // Otherwise, check whether we have a loop latch to look at.
11626   Loop *BBL = LI->getLoopFor(ParentBB);
11627   if (!BBL)
11628     return nullptr;
11629   BasicBlock *BBLatch = BBL->getLoopLatch();
11630   if (!BBLatch)
11631     return nullptr;
11632 
11633   // There is a loop latch, return the incoming value if it comes from
11634   // that. This reduction pattern occasionally turns up.
11635   if (P->getIncomingBlock(0) == BBLatch) {
11636     Rdx = P->getIncomingValue(0);
11637   } else if (P->getIncomingBlock(1) == BBLatch) {
11638     Rdx = P->getIncomingValue(1);
11639   }
11640 
11641   if (Rdx && DominatedReduxValue(Rdx))
11642     return Rdx;
11643 
11644   return nullptr;
11645 }
11646 
11647 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
11648   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
11649     return true;
11650   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
11651     return true;
11652   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
11653     return true;
11654   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
11655     return true;
11656   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
11657     return true;
11658   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
11659     return true;
11660   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
11661     return true;
11662   return false;
11663 }
11664 
11665 /// Attempt to reduce a horizontal reduction.
11666 /// If it is legal to match a horizontal reduction feeding the phi node \a P
11667 /// with reduction operators \a Root (or one of its operands) in a basic block
11668 /// \a BB, then check if it can be done. If horizontal reduction is not found
11669 /// and root instruction is a binary operation, vectorization of the operands is
11670 /// attempted.
11671 /// \returns true if a horizontal reduction was matched and reduced or operands
11672 /// of one of the binary instruction were vectorized.
11673 /// \returns false if a horizontal reduction was not matched (or not possible)
11674 /// or no vectorization of any binary operation feeding \a Root instruction was
11675 /// performed.
11676 static bool tryToVectorizeHorReductionOrInstOperands(
11677     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
11678     TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL,
11679     const TargetLibraryInfo &TLI,
11680     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
11681   if (!ShouldVectorizeHor)
11682     return false;
11683 
11684   if (!Root)
11685     return false;
11686 
11687   if (Root->getParent() != BB || isa<PHINode>(Root))
11688     return false;
11689   // Start analysis starting from Root instruction. If horizontal reduction is
11690   // found, try to vectorize it. If it is not a horizontal reduction or
11691   // vectorization is not possible or not effective, and currently analyzed
11692   // instruction is a binary operation, try to vectorize the operands, using
11693   // pre-order DFS traversal order. If the operands were not vectorized, repeat
11694   // the same procedure considering each operand as a possible root of the
11695   // horizontal reduction.
11696   // Interrupt the process if the Root instruction itself was vectorized or all
11697   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
11698   // Skip the analysis of CmpInsts. Compiler implements postanalysis of the
11699   // CmpInsts so we can skip extra attempts in
11700   // tryToVectorizeHorReductionOrInstOperands and save compile time.
11701   std::queue<std::pair<Instruction *, unsigned>> Stack;
11702   Stack.emplace(Root, 0);
11703   SmallPtrSet<Value *, 8> VisitedInstrs;
11704   SmallVector<WeakTrackingVH> PostponedInsts;
11705   bool Res = false;
11706   auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst,
11707                                                      Value *&B0,
11708                                                      Value *&B1) -> Value * {
11709     if (R.isAnalyzedReductionRoot(Inst))
11710       return nullptr;
11711     bool IsBinop = matchRdxBop(Inst, B0, B1);
11712     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
11713     if (IsBinop || IsSelect) {
11714       HorizontalReduction HorRdx;
11715       if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI))
11716         return HorRdx.tryToReduce(R, TTI);
11717     }
11718     return nullptr;
11719   };
11720   while (!Stack.empty()) {
11721     Instruction *Inst;
11722     unsigned Level;
11723     std::tie(Inst, Level) = Stack.front();
11724     Stack.pop();
11725     // Do not try to analyze instruction that has already been vectorized.
11726     // This may happen when we vectorize instruction operands on a previous
11727     // iteration while stack was populated before that happened.
11728     if (R.isDeleted(Inst))
11729       continue;
11730     Value *B0 = nullptr, *B1 = nullptr;
11731     if (Value *V = TryToReduce(Inst, B0, B1)) {
11732       Res = true;
11733       // Set P to nullptr to avoid re-analysis of phi node in
11734       // matchAssociativeReduction function unless this is the root node.
11735       P = nullptr;
11736       if (auto *I = dyn_cast<Instruction>(V)) {
11737         // Try to find another reduction.
11738         Stack.emplace(I, Level);
11739         continue;
11740       }
11741     } else {
11742       bool IsBinop = B0 && B1;
11743       if (P && IsBinop) {
11744         Inst = dyn_cast<Instruction>(B0);
11745         if (Inst == P)
11746           Inst = dyn_cast<Instruction>(B1);
11747         if (!Inst) {
11748           // Set P to nullptr to avoid re-analysis of phi node in
11749           // matchAssociativeReduction function unless this is the root node.
11750           P = nullptr;
11751           continue;
11752         }
11753       }
11754       // Set P to nullptr to avoid re-analysis of phi node in
11755       // matchAssociativeReduction function unless this is the root node.
11756       P = nullptr;
11757       // Do not try to vectorize CmpInst operands, this is done separately.
11758       // Final attempt for binop args vectorization should happen after the loop
11759       // to try to find reductions.
11760       if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
11761         PostponedInsts.push_back(Inst);
11762     }
11763 
11764     // Try to vectorize operands.
11765     // Continue analysis for the instruction from the same basic block only to
11766     // save compile time.
11767     if (++Level < RecursionMaxDepth)
11768       for (auto *Op : Inst->operand_values())
11769         if (VisitedInstrs.insert(Op).second)
11770           if (auto *I = dyn_cast<Instruction>(Op))
11771             // Do not try to vectorize CmpInst operands,  this is done
11772             // separately.
11773             if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
11774                 !R.isDeleted(I) && I->getParent() == BB)
11775               Stack.emplace(I, Level);
11776   }
11777   // Try to vectorized binops where reductions were not found.
11778   for (Value *V : PostponedInsts)
11779     if (auto *Inst = dyn_cast<Instruction>(V))
11780       if (!R.isDeleted(Inst))
11781         Res |= Vectorize(Inst, R);
11782   return Res;
11783 }
11784 
11785 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
11786                                                  BasicBlock *BB, BoUpSLP &R,
11787                                                  TargetTransformInfo *TTI) {
11788   auto *I = dyn_cast_or_null<Instruction>(V);
11789   if (!I)
11790     return false;
11791 
11792   if (!isa<BinaryOperator>(I))
11793     P = nullptr;
11794   // Try to match and vectorize a horizontal reduction.
11795   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
11796     return tryToVectorize(I, R);
11797   };
11798   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL,
11799                                                   *TLI, ExtraVectorization);
11800 }
11801 
11802 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
11803                                                  BasicBlock *BB, BoUpSLP &R) {
11804   const DataLayout &DL = BB->getModule()->getDataLayout();
11805   if (!R.canMapToVector(IVI->getType(), DL))
11806     return false;
11807 
11808   SmallVector<Value *, 16> BuildVectorOpds;
11809   SmallVector<Value *, 16> BuildVectorInsts;
11810   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
11811     return false;
11812 
11813   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
11814   // Aggregate value is unlikely to be processed in vector register.
11815   return tryToVectorizeList(BuildVectorOpds, R);
11816 }
11817 
11818 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
11819                                                    BasicBlock *BB, BoUpSLP &R) {
11820   SmallVector<Value *, 16> BuildVectorInsts;
11821   SmallVector<Value *, 16> BuildVectorOpds;
11822   SmallVector<int> Mask;
11823   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
11824       (llvm::all_of(
11825            BuildVectorOpds,
11826            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
11827        isFixedVectorShuffle(BuildVectorOpds, Mask)))
11828     return false;
11829 
11830   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
11831   return tryToVectorizeList(BuildVectorInsts, R);
11832 }
11833 
11834 template <typename T>
11835 static bool
11836 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
11837                        function_ref<unsigned(T *)> Limit,
11838                        function_ref<bool(T *, T *)> Comparator,
11839                        function_ref<bool(T *, T *)> AreCompatible,
11840                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
11841                        bool LimitForRegisterSize) {
11842   bool Changed = false;
11843   // Sort by type, parent, operands.
11844   stable_sort(Incoming, Comparator);
11845 
11846   // Try to vectorize elements base on their type.
11847   SmallVector<T *> Candidates;
11848   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
11849     // Look for the next elements with the same type, parent and operand
11850     // kinds.
11851     auto *SameTypeIt = IncIt;
11852     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
11853       ++SameTypeIt;
11854 
11855     // Try to vectorize them.
11856     unsigned NumElts = (SameTypeIt - IncIt);
11857     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
11858                       << NumElts << ")\n");
11859     // The vectorization is a 3-state attempt:
11860     // 1. Try to vectorize instructions with the same/alternate opcodes with the
11861     // size of maximal register at first.
11862     // 2. Try to vectorize remaining instructions with the same type, if
11863     // possible. This may result in the better vectorization results rather than
11864     // if we try just to vectorize instructions with the same/alternate opcodes.
11865     // 3. Final attempt to try to vectorize all instructions with the
11866     // same/alternate ops only, this may result in some extra final
11867     // vectorization.
11868     if (NumElts > 1 &&
11869         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
11870       // Success start over because instructions might have been changed.
11871       Changed = true;
11872     } else if (NumElts < Limit(*IncIt) &&
11873                (Candidates.empty() ||
11874                 Candidates.front()->getType() == (*IncIt)->getType())) {
11875       Candidates.append(IncIt, std::next(IncIt, NumElts));
11876     }
11877     // Final attempt to vectorize instructions with the same types.
11878     if (Candidates.size() > 1 &&
11879         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
11880       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
11881         // Success start over because instructions might have been changed.
11882         Changed = true;
11883       } else if (LimitForRegisterSize) {
11884         // Try to vectorize using small vectors.
11885         for (auto *It = Candidates.begin(), *End = Candidates.end();
11886              It != End;) {
11887           auto *SameTypeIt = It;
11888           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
11889             ++SameTypeIt;
11890           unsigned NumElts = (SameTypeIt - It);
11891           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
11892                                             /*LimitForRegisterSize=*/false))
11893             Changed = true;
11894           It = SameTypeIt;
11895         }
11896       }
11897       Candidates.clear();
11898     }
11899 
11900     // Start over at the next instruction of a different type (or the end).
11901     IncIt = SameTypeIt;
11902   }
11903   return Changed;
11904 }
11905 
11906 /// Compare two cmp instructions. If IsCompatibility is true, function returns
11907 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
11908 /// operands. If IsCompatibility is false, function implements strict weak
11909 /// ordering relation between two cmp instructions, returning true if the first
11910 /// instruction is "less" than the second, i.e. its predicate is less than the
11911 /// predicate of the second or the operands IDs are less than the operands IDs
11912 /// of the second cmp instruction.
11913 template <bool IsCompatibility>
11914 static bool compareCmp(Value *V, Value *V2,
11915                        function_ref<bool(Instruction *)> IsDeleted) {
11916   auto *CI1 = cast<CmpInst>(V);
11917   auto *CI2 = cast<CmpInst>(V2);
11918   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
11919     return false;
11920   if (CI1->getOperand(0)->getType()->getTypeID() <
11921       CI2->getOperand(0)->getType()->getTypeID())
11922     return !IsCompatibility;
11923   if (CI1->getOperand(0)->getType()->getTypeID() >
11924       CI2->getOperand(0)->getType()->getTypeID())
11925     return false;
11926   CmpInst::Predicate Pred1 = CI1->getPredicate();
11927   CmpInst::Predicate Pred2 = CI2->getPredicate();
11928   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
11929   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
11930   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
11931   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
11932   if (BasePred1 < BasePred2)
11933     return !IsCompatibility;
11934   if (BasePred1 > BasePred2)
11935     return false;
11936   // Compare operands.
11937   bool LEPreds = Pred1 <= Pred2;
11938   bool GEPreds = Pred1 >= Pred2;
11939   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
11940     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
11941     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
11942     if (Op1->getValueID() < Op2->getValueID())
11943       return !IsCompatibility;
11944     if (Op1->getValueID() > Op2->getValueID())
11945       return false;
11946     if (auto *I1 = dyn_cast<Instruction>(Op1))
11947       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
11948         if (I1->getParent() != I2->getParent())
11949           return false;
11950         InstructionsState S = getSameOpcode({I1, I2});
11951         if (S.getOpcode())
11952           continue;
11953         return false;
11954       }
11955   }
11956   return IsCompatibility;
11957 }
11958 
11959 bool SLPVectorizerPass::vectorizeSimpleInstructions(
11960     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
11961     bool AtTerminator) {
11962   bool OpsChanged = false;
11963   SmallVector<Instruction *, 4> PostponedCmps;
11964   for (auto *I : reverse(Instructions)) {
11965     if (R.isDeleted(I))
11966       continue;
11967     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
11968       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
11969     } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
11970       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
11971     } else if (isa<CmpInst>(I)) {
11972       PostponedCmps.push_back(I);
11973       continue;
11974     }
11975     // Try to find reductions in buildvector sequnces.
11976     OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI);
11977   }
11978   if (AtTerminator) {
11979     // Try to find reductions first.
11980     for (Instruction *I : PostponedCmps) {
11981       if (R.isDeleted(I))
11982         continue;
11983       for (Value *Op : I->operands())
11984         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
11985     }
11986     // Try to vectorize operands as vector bundles.
11987     for (Instruction *I : PostponedCmps) {
11988       if (R.isDeleted(I))
11989         continue;
11990       OpsChanged |= tryToVectorize(I, R);
11991     }
11992     // Try to vectorize list of compares.
11993     // Sort by type, compare predicate, etc.
11994     auto &&CompareSorter = [&R](Value *V, Value *V2) {
11995       return compareCmp<false>(V, V2,
11996                                [&R](Instruction *I) { return R.isDeleted(I); });
11997     };
11998 
11999     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
12000       if (V1 == V2)
12001         return true;
12002       return compareCmp<true>(V1, V2,
12003                               [&R](Instruction *I) { return R.isDeleted(I); });
12004     };
12005     auto Limit = [&R](Value *V) {
12006       unsigned EltSize = R.getVectorElementSize(V);
12007       return std::max(2U, R.getMaxVecRegSize() / EltSize);
12008     };
12009 
12010     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
12011     OpsChanged |= tryToVectorizeSequence<Value>(
12012         Vals, Limit, CompareSorter, AreCompatibleCompares,
12013         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12014           // Exclude possible reductions from other blocks.
12015           bool ArePossiblyReducedInOtherBlock =
12016               any_of(Candidates, [](Value *V) {
12017                 return any_of(V->users(), [V](User *U) {
12018                   return isa<SelectInst>(U) &&
12019                          cast<SelectInst>(U)->getParent() !=
12020                              cast<Instruction>(V)->getParent();
12021                 });
12022               });
12023           if (ArePossiblyReducedInOtherBlock)
12024             return false;
12025           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12026         },
12027         /*LimitForRegisterSize=*/true);
12028     Instructions.clear();
12029   } else {
12030     // Insert in reverse order since the PostponedCmps vector was filled in
12031     // reverse order.
12032     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
12033   }
12034   return OpsChanged;
12035 }
12036 
12037 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
12038   bool Changed = false;
12039   SmallVector<Value *, 4> Incoming;
12040   SmallPtrSet<Value *, 16> VisitedInstrs;
12041   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
12042   // node. Allows better to identify the chains that can be vectorized in the
12043   // better way.
12044   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
12045   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
12046     assert(isValidElementType(V1->getType()) &&
12047            isValidElementType(V2->getType()) &&
12048            "Expected vectorizable types only.");
12049     // It is fine to compare type IDs here, since we expect only vectorizable
12050     // types, like ints, floats and pointers, we don't care about other type.
12051     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
12052       return true;
12053     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
12054       return false;
12055     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12056     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12057     if (Opcodes1.size() < Opcodes2.size())
12058       return true;
12059     if (Opcodes1.size() > Opcodes2.size())
12060       return false;
12061     Optional<bool> ConstOrder;
12062     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12063       // Undefs are compatible with any other value.
12064       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
12065         if (!ConstOrder)
12066           ConstOrder =
12067               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
12068         continue;
12069       }
12070       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12071         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12072           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
12073           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
12074           if (!NodeI1)
12075             return NodeI2 != nullptr;
12076           if (!NodeI2)
12077             return false;
12078           assert((NodeI1 == NodeI2) ==
12079                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12080                  "Different nodes should have different DFS numbers");
12081           if (NodeI1 != NodeI2)
12082             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12083           InstructionsState S = getSameOpcode({I1, I2});
12084           if (S.getOpcode())
12085             continue;
12086           return I1->getOpcode() < I2->getOpcode();
12087         }
12088       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
12089         if (!ConstOrder)
12090           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
12091         continue;
12092       }
12093       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
12094         return true;
12095       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
12096         return false;
12097     }
12098     return ConstOrder && *ConstOrder;
12099   };
12100   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
12101     if (V1 == V2)
12102       return true;
12103     if (V1->getType() != V2->getType())
12104       return false;
12105     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12106     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12107     if (Opcodes1.size() != Opcodes2.size())
12108       return false;
12109     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12110       // Undefs are compatible with any other value.
12111       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
12112         continue;
12113       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12114         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12115           if (I1->getParent() != I2->getParent())
12116             return false;
12117           InstructionsState S = getSameOpcode({I1, I2});
12118           if (S.getOpcode())
12119             continue;
12120           return false;
12121         }
12122       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
12123         continue;
12124       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
12125         return false;
12126     }
12127     return true;
12128   };
12129   auto Limit = [&R](Value *V) {
12130     unsigned EltSize = R.getVectorElementSize(V);
12131     return std::max(2U, R.getMaxVecRegSize() / EltSize);
12132   };
12133 
12134   bool HaveVectorizedPhiNodes = false;
12135   do {
12136     // Collect the incoming values from the PHIs.
12137     Incoming.clear();
12138     for (Instruction &I : *BB) {
12139       PHINode *P = dyn_cast<PHINode>(&I);
12140       if (!P)
12141         break;
12142 
12143       // No need to analyze deleted, vectorized and non-vectorizable
12144       // instructions.
12145       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
12146           isValidElementType(P->getType()))
12147         Incoming.push_back(P);
12148     }
12149 
12150     // Find the corresponding non-phi nodes for better matching when trying to
12151     // build the tree.
12152     for (Value *V : Incoming) {
12153       SmallVectorImpl<Value *> &Opcodes =
12154           PHIToOpcodes.try_emplace(V).first->getSecond();
12155       if (!Opcodes.empty())
12156         continue;
12157       SmallVector<Value *, 4> Nodes(1, V);
12158       SmallPtrSet<Value *, 4> Visited;
12159       while (!Nodes.empty()) {
12160         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
12161         if (!Visited.insert(PHI).second)
12162           continue;
12163         for (Value *V : PHI->incoming_values()) {
12164           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
12165             Nodes.push_back(PHI1);
12166             continue;
12167           }
12168           Opcodes.emplace_back(V);
12169         }
12170       }
12171     }
12172 
12173     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
12174         Incoming, Limit, PHICompare, AreCompatiblePHIs,
12175         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12176           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12177         },
12178         /*LimitForRegisterSize=*/true);
12179     Changed |= HaveVectorizedPhiNodes;
12180     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
12181   } while (HaveVectorizedPhiNodes);
12182 
12183   VisitedInstrs.clear();
12184 
12185   SmallVector<Instruction *, 8> PostProcessInstructions;
12186   SmallDenseSet<Instruction *, 4> KeyNodes;
12187   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
12188     // Skip instructions with scalable type. The num of elements is unknown at
12189     // compile-time for scalable type.
12190     if (isa<ScalableVectorType>(it->getType()))
12191       continue;
12192 
12193     // Skip instructions marked for the deletion.
12194     if (R.isDeleted(&*it))
12195       continue;
12196     // We may go through BB multiple times so skip the one we have checked.
12197     if (!VisitedInstrs.insert(&*it).second) {
12198       if (it->use_empty() && KeyNodes.contains(&*it) &&
12199           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12200                                       it->isTerminator())) {
12201         // We would like to start over since some instructions are deleted
12202         // and the iterator may become invalid value.
12203         Changed = true;
12204         it = BB->begin();
12205         e = BB->end();
12206       }
12207       continue;
12208     }
12209 
12210     if (isa<DbgInfoIntrinsic>(it))
12211       continue;
12212 
12213     // Try to vectorize reductions that use PHINodes.
12214     if (PHINode *P = dyn_cast<PHINode>(it)) {
12215       // Check that the PHI is a reduction PHI.
12216       if (P->getNumIncomingValues() == 2) {
12217         // Try to match and vectorize a horizontal reduction.
12218         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
12219                                      TTI)) {
12220           Changed = true;
12221           it = BB->begin();
12222           e = BB->end();
12223           continue;
12224         }
12225       }
12226       // Try to vectorize the incoming values of the PHI, to catch reductions
12227       // that feed into PHIs.
12228       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
12229         // Skip if the incoming block is the current BB for now. Also, bypass
12230         // unreachable IR for efficiency and to avoid crashing.
12231         // TODO: Collect the skipped incoming values and try to vectorize them
12232         // after processing BB.
12233         if (BB == P->getIncomingBlock(I) ||
12234             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
12235           continue;
12236 
12237         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
12238                                             P->getIncomingBlock(I), R, TTI);
12239       }
12240       continue;
12241     }
12242 
12243     // Ran into an instruction without users, like terminator, or function call
12244     // with ignored return value, store. Ignore unused instructions (basing on
12245     // instruction type, except for CallInst and InvokeInst).
12246     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
12247                             isa<InvokeInst>(it))) {
12248       KeyNodes.insert(&*it);
12249       bool OpsChanged = false;
12250       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
12251         for (auto *V : it->operand_values()) {
12252           // Try to match and vectorize a horizontal reduction.
12253           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
12254         }
12255       }
12256       // Start vectorization of post-process list of instructions from the
12257       // top-tree instructions to try to vectorize as many instructions as
12258       // possible.
12259       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12260                                                 it->isTerminator());
12261       if (OpsChanged) {
12262         // We would like to start over since some instructions are deleted
12263         // and the iterator may become invalid value.
12264         Changed = true;
12265         it = BB->begin();
12266         e = BB->end();
12267         continue;
12268       }
12269     }
12270 
12271     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
12272         isa<InsertValueInst>(it))
12273       PostProcessInstructions.push_back(&*it);
12274   }
12275 
12276   return Changed;
12277 }
12278 
12279 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
12280   auto Changed = false;
12281   for (auto &Entry : GEPs) {
12282     // If the getelementptr list has fewer than two elements, there's nothing
12283     // to do.
12284     if (Entry.second.size() < 2)
12285       continue;
12286 
12287     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
12288                       << Entry.second.size() << ".\n");
12289 
12290     // Process the GEP list in chunks suitable for the target's supported
12291     // vector size. If a vector register can't hold 1 element, we are done. We
12292     // are trying to vectorize the index computations, so the maximum number of
12293     // elements is based on the size of the index expression, rather than the
12294     // size of the GEP itself (the target's pointer size).
12295     unsigned MaxVecRegSize = R.getMaxVecRegSize();
12296     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
12297     if (MaxVecRegSize < EltSize)
12298       continue;
12299 
12300     unsigned MaxElts = MaxVecRegSize / EltSize;
12301     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
12302       auto Len = std::min<unsigned>(BE - BI, MaxElts);
12303       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
12304 
12305       // Initialize a set a candidate getelementptrs. Note that we use a
12306       // SetVector here to preserve program order. If the index computations
12307       // are vectorizable and begin with loads, we want to minimize the chance
12308       // of having to reorder them later.
12309       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
12310 
12311       // Some of the candidates may have already been vectorized after we
12312       // initially collected them. If so, they are marked as deleted, so remove
12313       // them from the set of candidates.
12314       Candidates.remove_if(
12315           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
12316 
12317       // Remove from the set of candidates all pairs of getelementptrs with
12318       // constant differences. Such getelementptrs are likely not good
12319       // candidates for vectorization in a bottom-up phase since one can be
12320       // computed from the other. We also ensure all candidate getelementptr
12321       // indices are unique.
12322       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
12323         auto *GEPI = GEPList[I];
12324         if (!Candidates.count(GEPI))
12325           continue;
12326         auto *SCEVI = SE->getSCEV(GEPList[I]);
12327         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
12328           auto *GEPJ = GEPList[J];
12329           auto *SCEVJ = SE->getSCEV(GEPList[J]);
12330           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
12331             Candidates.remove(GEPI);
12332             Candidates.remove(GEPJ);
12333           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
12334             Candidates.remove(GEPJ);
12335           }
12336         }
12337       }
12338 
12339       // We break out of the above computation as soon as we know there are
12340       // fewer than two candidates remaining.
12341       if (Candidates.size() < 2)
12342         continue;
12343 
12344       // Add the single, non-constant index of each candidate to the bundle. We
12345       // ensured the indices met these constraints when we originally collected
12346       // the getelementptrs.
12347       SmallVector<Value *, 16> Bundle(Candidates.size());
12348       auto BundleIndex = 0u;
12349       for (auto *V : Candidates) {
12350         auto *GEP = cast<GetElementPtrInst>(V);
12351         auto *GEPIdx = GEP->idx_begin()->get();
12352         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
12353         Bundle[BundleIndex++] = GEPIdx;
12354       }
12355 
12356       // Try and vectorize the indices. We are currently only interested in
12357       // gather-like cases of the form:
12358       //
12359       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
12360       //
12361       // where the loads of "a", the loads of "b", and the subtractions can be
12362       // performed in parallel. It's likely that detecting this pattern in a
12363       // bottom-up phase will be simpler and less costly than building a
12364       // full-blown top-down phase beginning at the consecutive loads.
12365       Changed |= tryToVectorizeList(Bundle, R);
12366     }
12367   }
12368   return Changed;
12369 }
12370 
12371 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
12372   bool Changed = false;
12373   // Sort by type, base pointers and values operand. Value operands must be
12374   // compatible (have the same opcode, same parent), otherwise it is
12375   // definitely not profitable to try to vectorize them.
12376   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
12377     if (V->getPointerOperandType()->getTypeID() <
12378         V2->getPointerOperandType()->getTypeID())
12379       return true;
12380     if (V->getPointerOperandType()->getTypeID() >
12381         V2->getPointerOperandType()->getTypeID())
12382       return false;
12383     // UndefValues are compatible with all other values.
12384     if (isa<UndefValue>(V->getValueOperand()) ||
12385         isa<UndefValue>(V2->getValueOperand()))
12386       return false;
12387     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
12388       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12389         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
12390             DT->getNode(I1->getParent());
12391         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
12392             DT->getNode(I2->getParent());
12393         assert(NodeI1 && "Should only process reachable instructions");
12394         assert(NodeI2 && "Should only process reachable instructions");
12395         assert((NodeI1 == NodeI2) ==
12396                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12397                "Different nodes should have different DFS numbers");
12398         if (NodeI1 != NodeI2)
12399           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12400         InstructionsState S = getSameOpcode({I1, I2});
12401         if (S.getOpcode())
12402           return false;
12403         return I1->getOpcode() < I2->getOpcode();
12404       }
12405     if (isa<Constant>(V->getValueOperand()) &&
12406         isa<Constant>(V2->getValueOperand()))
12407       return false;
12408     return V->getValueOperand()->getValueID() <
12409            V2->getValueOperand()->getValueID();
12410   };
12411 
12412   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
12413     if (V1 == V2)
12414       return true;
12415     if (V1->getPointerOperandType() != V2->getPointerOperandType())
12416       return false;
12417     // Undefs are compatible with any other value.
12418     if (isa<UndefValue>(V1->getValueOperand()) ||
12419         isa<UndefValue>(V2->getValueOperand()))
12420       return true;
12421     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
12422       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12423         if (I1->getParent() != I2->getParent())
12424           return false;
12425         InstructionsState S = getSameOpcode({I1, I2});
12426         return S.getOpcode() > 0;
12427       }
12428     if (isa<Constant>(V1->getValueOperand()) &&
12429         isa<Constant>(V2->getValueOperand()))
12430       return true;
12431     return V1->getValueOperand()->getValueID() ==
12432            V2->getValueOperand()->getValueID();
12433   };
12434   auto Limit = [&R, this](StoreInst *SI) {
12435     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
12436     return R.getMinVF(EltSize);
12437   };
12438 
12439   // Attempt to sort and vectorize each of the store-groups.
12440   for (auto &Pair : Stores) {
12441     if (Pair.second.size() < 2)
12442       continue;
12443 
12444     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
12445                       << Pair.second.size() << ".\n");
12446 
12447     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
12448       continue;
12449 
12450     Changed |= tryToVectorizeSequence<StoreInst>(
12451         Pair.second, Limit, StoreSorter, AreCompatibleStores,
12452         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
12453           return vectorizeStores(Candidates, R);
12454         },
12455         /*LimitForRegisterSize=*/false);
12456   }
12457   return Changed;
12458 }
12459 
12460 char SLPVectorizer::ID = 0;
12461 
12462 static const char lv_name[] = "SLP Vectorizer";
12463 
12464 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
12465 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
12466 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
12467 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12468 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
12469 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
12470 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
12471 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
12472 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
12473 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
12474 
12475 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
12476