1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 const SmallDenseSet<Value *> &UserIgnoreLst); 899 900 /// Construct a vectorizable tree that starts at \p Roots. 901 void buildTree(ArrayRef<Value *> Roots); 902 903 /// Builds external uses of the vectorized scalars, i.e. the list of 904 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 905 /// ExternallyUsedValues contains additional list of external uses to handle 906 /// vectorization of reductions. 907 void 908 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 909 910 /// Clear the internal data structures that are created by 'buildTree'. 911 void deleteTree() { 912 VectorizableTree.clear(); 913 ScalarToTreeEntry.clear(); 914 MustGather.clear(); 915 ExternalUses.clear(); 916 for (auto &Iter : BlocksSchedules) { 917 BlockScheduling *BS = Iter.second.get(); 918 BS->clear(); 919 } 920 MinBWs.clear(); 921 InstrElementSize.clear(); 922 UserIgnoreList = nullptr; 923 } 924 925 unsigned getTreeSize() const { return VectorizableTree.size(); } 926 927 /// Perform LICM and CSE on the newly generated gather sequences. 928 void optimizeGatherSequence(); 929 930 /// Checks if the specified gather tree entry \p TE can be represented as a 931 /// shuffled vector entry + (possibly) permutation with other gathers. It 932 /// implements the checks only for possibly ordered scalars (Loads, 933 /// ExtractElement, ExtractValue), which can be part of the graph. 934 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 935 936 /// Sort loads into increasing pointers offsets to allow greater clustering. 937 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 938 939 /// Gets reordering data for the given tree entry. If the entry is vectorized 940 /// - just return ReorderIndices, otherwise check if the scalars can be 941 /// reordered and return the most optimal order. 942 /// \param TopToBottom If true, include the order of vectorized stores and 943 /// insertelement nodes, otherwise skip them. 944 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 945 946 /// Reorders the current graph to the most profitable order starting from the 947 /// root node to the leaf nodes. The best order is chosen only from the nodes 948 /// of the same size (vectorization factor). Smaller nodes are considered 949 /// parts of subgraph with smaller VF and they are reordered independently. We 950 /// can make it because we still need to extend smaller nodes to the wider VF 951 /// and we can merge reordering shuffles with the widening shuffles. 952 void reorderTopToBottom(); 953 954 /// Reorders the current graph to the most profitable order starting from 955 /// leaves to the root. It allows to rotate small subgraphs and reduce the 956 /// number of reshuffles if the leaf nodes use the same order. In this case we 957 /// can merge the orders and just shuffle user node instead of shuffling its 958 /// operands. Plus, even the leaf nodes have different orders, it allows to 959 /// sink reordering in the graph closer to the root node and merge it later 960 /// during analysis. 961 void reorderBottomToTop(bool IgnoreReorder = false); 962 963 /// \return The vector element size in bits to use when vectorizing the 964 /// expression tree ending at \p V. If V is a store, the size is the width of 965 /// the stored value. Otherwise, the size is the width of the largest loaded 966 /// value reaching V. This method is used by the vectorizer to calculate 967 /// vectorization factors. 968 unsigned getVectorElementSize(Value *V); 969 970 /// Compute the minimum type sizes required to represent the entries in a 971 /// vectorizable tree. 972 void computeMinimumValueSizes(); 973 974 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 975 unsigned getMaxVecRegSize() const { 976 return MaxVecRegSize; 977 } 978 979 // \returns minimum vector register size as set by cl::opt. 980 unsigned getMinVecRegSize() const { 981 return MinVecRegSize; 982 } 983 984 unsigned getMinVF(unsigned Sz) const { 985 return std::max(2U, getMinVecRegSize() / Sz); 986 } 987 988 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 989 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 990 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 991 return MaxVF ? MaxVF : UINT_MAX; 992 } 993 994 /// Check if homogeneous aggregate is isomorphic to some VectorType. 995 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 996 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 997 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 998 /// 999 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 1000 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 1001 1002 /// \returns True if the VectorizableTree is both tiny and not fully 1003 /// vectorizable. We do not vectorize such trees. 1004 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1005 1006 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1007 /// can be load combined in the backend. Load combining may not be allowed in 1008 /// the IR optimizer, so we do not want to alter the pattern. For example, 1009 /// partially transforming a scalar bswap() pattern into vector code is 1010 /// effectively impossible for the backend to undo. 1011 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1012 /// may not be necessary. 1013 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1014 1015 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1016 /// can be load combined in the backend. Load combining may not be allowed in 1017 /// the IR optimizer, so we do not want to alter the pattern. For example, 1018 /// partially transforming a scalar bswap() pattern into vector code is 1019 /// effectively impossible for the backend to undo. 1020 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1021 /// may not be necessary. 1022 bool isLoadCombineCandidate() const; 1023 1024 OptimizationRemarkEmitter *getORE() { return ORE; } 1025 1026 /// This structure holds any data we need about the edges being traversed 1027 /// during buildTree_rec(). We keep track of: 1028 /// (i) the user TreeEntry index, and 1029 /// (ii) the index of the edge. 1030 struct EdgeInfo { 1031 EdgeInfo() = default; 1032 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1033 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1034 /// The user TreeEntry. 1035 TreeEntry *UserTE = nullptr; 1036 /// The operand index of the use. 1037 unsigned EdgeIdx = UINT_MAX; 1038 #ifndef NDEBUG 1039 friend inline raw_ostream &operator<<(raw_ostream &OS, 1040 const BoUpSLP::EdgeInfo &EI) { 1041 EI.dump(OS); 1042 return OS; 1043 } 1044 /// Debug print. 1045 void dump(raw_ostream &OS) const { 1046 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1047 << " EdgeIdx:" << EdgeIdx << "}"; 1048 } 1049 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1050 #endif 1051 }; 1052 1053 /// A helper class used for scoring candidates for two consecutive lanes. 1054 class LookAheadHeuristics { 1055 const DataLayout &DL; 1056 ScalarEvolution &SE; 1057 const BoUpSLP &R; 1058 int NumLanes; // Total number of lanes (aka vectorization factor). 1059 int MaxLevel; // The maximum recursion depth for accumulating score. 1060 1061 public: 1062 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1063 const BoUpSLP &R, int NumLanes, int MaxLevel) 1064 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1065 1066 // The hard-coded scores listed here are not very important, though it shall 1067 // be higher for better matches to improve the resulting cost. When 1068 // computing the scores of matching one sub-tree with another, we are 1069 // basically counting the number of values that are matching. So even if all 1070 // scores are set to 1, we would still get a decent matching result. 1071 // However, sometimes we have to break ties. For example we may have to 1072 // choose between matching loads vs matching opcodes. This is what these 1073 // scores are helping us with: they provide the order of preference. Also, 1074 // this is important if the scalar is externally used or used in another 1075 // tree entry node in the different lane. 1076 1077 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1078 static const int ScoreConsecutiveLoads = 4; 1079 /// The same load multiple times. This should have a better score than 1080 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1081 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1082 /// a vector load and 1.0 for a broadcast. 1083 static const int ScoreSplatLoads = 3; 1084 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1085 static const int ScoreReversedLoads = 3; 1086 /// ExtractElementInst from same vector and consecutive indexes. 1087 static const int ScoreConsecutiveExtracts = 4; 1088 /// ExtractElementInst from same vector and reversed indices. 1089 static const int ScoreReversedExtracts = 3; 1090 /// Constants. 1091 static const int ScoreConstants = 2; 1092 /// Instructions with the same opcode. 1093 static const int ScoreSameOpcode = 2; 1094 /// Instructions with alt opcodes (e.g, add + sub). 1095 static const int ScoreAltOpcodes = 1; 1096 /// Identical instructions (a.k.a. splat or broadcast). 1097 static const int ScoreSplat = 1; 1098 /// Matching with an undef is preferable to failing. 1099 static const int ScoreUndef = 1; 1100 /// Score for failing to find a decent match. 1101 static const int ScoreFail = 0; 1102 /// Score if all users are vectorized. 1103 static const int ScoreAllUserVectorized = 1; 1104 1105 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1106 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1107 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1108 /// MainAltOps. 1109 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1110 ArrayRef<Value *> MainAltOps) const { 1111 if (V1 == V2) { 1112 if (isa<LoadInst>(V1)) { 1113 // Retruns true if the users of V1 and V2 won't need to be extracted. 1114 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1115 // Bail out if we have too many uses to save compilation time. 1116 static constexpr unsigned Limit = 8; 1117 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1118 return false; 1119 1120 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1121 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1122 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1123 }); 1124 }; 1125 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1126 }; 1127 // A broadcast of a load can be cheaper on some targets. 1128 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1129 ElementCount::getFixed(NumLanes)) && 1130 ((int)V1->getNumUses() == NumLanes || 1131 AllUsersAreInternal(V1, V2))) 1132 return LookAheadHeuristics::ScoreSplatLoads; 1133 } 1134 return LookAheadHeuristics::ScoreSplat; 1135 } 1136 1137 auto *LI1 = dyn_cast<LoadInst>(V1); 1138 auto *LI2 = dyn_cast<LoadInst>(V2); 1139 if (LI1 && LI2) { 1140 if (LI1->getParent() != LI2->getParent()) 1141 return LookAheadHeuristics::ScoreFail; 1142 1143 Optional<int> Dist = getPointersDiff( 1144 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1145 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1146 if (!Dist || *Dist == 0) 1147 return LookAheadHeuristics::ScoreFail; 1148 // The distance is too large - still may be profitable to use masked 1149 // loads/gathers. 1150 if (std::abs(*Dist) > NumLanes / 2) 1151 return LookAheadHeuristics::ScoreAltOpcodes; 1152 // This still will detect consecutive loads, but we might have "holes" 1153 // in some cases. It is ok for non-power-2 vectorization and may produce 1154 // better results. It should not affect current vectorization. 1155 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1156 : LookAheadHeuristics::ScoreReversedLoads; 1157 } 1158 1159 auto *C1 = dyn_cast<Constant>(V1); 1160 auto *C2 = dyn_cast<Constant>(V2); 1161 if (C1 && C2) 1162 return LookAheadHeuristics::ScoreConstants; 1163 1164 // Extracts from consecutive indexes of the same vector better score as 1165 // the extracts could be optimized away. 1166 Value *EV1; 1167 ConstantInt *Ex1Idx; 1168 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1169 // Undefs are always profitable for extractelements. 1170 if (isa<UndefValue>(V2)) 1171 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1172 Value *EV2 = nullptr; 1173 ConstantInt *Ex2Idx = nullptr; 1174 if (match(V2, 1175 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1176 m_Undef())))) { 1177 // Undefs are always profitable for extractelements. 1178 if (!Ex2Idx) 1179 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1180 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1181 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1182 if (EV2 == EV1) { 1183 int Idx1 = Ex1Idx->getZExtValue(); 1184 int Idx2 = Ex2Idx->getZExtValue(); 1185 int Dist = Idx2 - Idx1; 1186 // The distance is too large - still may be profitable to use 1187 // shuffles. 1188 if (std::abs(Dist) == 0) 1189 return LookAheadHeuristics::ScoreSplat; 1190 if (std::abs(Dist) > NumLanes / 2) 1191 return LookAheadHeuristics::ScoreSameOpcode; 1192 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1193 : LookAheadHeuristics::ScoreReversedExtracts; 1194 } 1195 return LookAheadHeuristics::ScoreAltOpcodes; 1196 } 1197 return LookAheadHeuristics::ScoreFail; 1198 } 1199 1200 auto *I1 = dyn_cast<Instruction>(V1); 1201 auto *I2 = dyn_cast<Instruction>(V2); 1202 if (I1 && I2) { 1203 if (I1->getParent() != I2->getParent()) 1204 return LookAheadHeuristics::ScoreFail; 1205 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1206 Ops.push_back(I1); 1207 Ops.push_back(I2); 1208 InstructionsState S = getSameOpcode(Ops); 1209 // Note: Only consider instructions with <= 2 operands to avoid 1210 // complexity explosion. 1211 if (S.getOpcode() && 1212 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1213 !S.isAltShuffle()) && 1214 all_of(Ops, [&S](Value *V) { 1215 return cast<Instruction>(V)->getNumOperands() == 1216 S.MainOp->getNumOperands(); 1217 })) 1218 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1219 : LookAheadHeuristics::ScoreSameOpcode; 1220 } 1221 1222 if (isa<UndefValue>(V2)) 1223 return LookAheadHeuristics::ScoreUndef; 1224 1225 return LookAheadHeuristics::ScoreFail; 1226 } 1227 1228 /// Go through the operands of \p LHS and \p RHS recursively until 1229 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1230 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1231 /// of \p U1 and \p U2), except at the beginning of the recursion where 1232 /// these are set to nullptr. 1233 /// 1234 /// For example: 1235 /// \verbatim 1236 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1237 /// \ / \ / \ / \ / 1238 /// + + + + 1239 /// G1 G2 G3 G4 1240 /// \endverbatim 1241 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1242 /// each level recursively, accumulating the score. It starts from matching 1243 /// the additions at level 0, then moves on to the loads (level 1). The 1244 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1245 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1246 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1247 /// Please note that the order of the operands does not matter, as we 1248 /// evaluate the score of all profitable combinations of operands. In 1249 /// other words the score of G1 and G4 is the same as G1 and G2. This 1250 /// heuristic is based on ideas described in: 1251 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1252 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1253 /// Luís F. W. Góes 1254 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1255 Instruction *U2, int CurrLevel, 1256 ArrayRef<Value *> MainAltOps) const { 1257 1258 // Get the shallow score of V1 and V2. 1259 int ShallowScoreAtThisLevel = 1260 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1261 1262 // If reached MaxLevel, 1263 // or if V1 and V2 are not instructions, 1264 // or if they are SPLAT, 1265 // or if they are not consecutive, 1266 // or if profitable to vectorize loads or extractelements, early return 1267 // the current cost. 1268 auto *I1 = dyn_cast<Instruction>(LHS); 1269 auto *I2 = dyn_cast<Instruction>(RHS); 1270 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1271 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1272 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1273 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1274 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1275 ShallowScoreAtThisLevel)) 1276 return ShallowScoreAtThisLevel; 1277 assert(I1 && I2 && "Should have early exited."); 1278 1279 // Contains the I2 operand indexes that got matched with I1 operands. 1280 SmallSet<unsigned, 4> Op2Used; 1281 1282 // Recursion towards the operands of I1 and I2. We are trying all possible 1283 // operand pairs, and keeping track of the best score. 1284 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1285 OpIdx1 != NumOperands1; ++OpIdx1) { 1286 // Try to pair op1I with the best operand of I2. 1287 int MaxTmpScore = 0; 1288 unsigned MaxOpIdx2 = 0; 1289 bool FoundBest = false; 1290 // If I2 is commutative try all combinations. 1291 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1292 unsigned ToIdx = isCommutative(I2) 1293 ? I2->getNumOperands() 1294 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1295 assert(FromIdx <= ToIdx && "Bad index"); 1296 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1297 // Skip operands already paired with OpIdx1. 1298 if (Op2Used.count(OpIdx2)) 1299 continue; 1300 // Recursively calculate the cost at each level 1301 int TmpScore = 1302 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1303 I1, I2, CurrLevel + 1, None); 1304 // Look for the best score. 1305 if (TmpScore > LookAheadHeuristics::ScoreFail && 1306 TmpScore > MaxTmpScore) { 1307 MaxTmpScore = TmpScore; 1308 MaxOpIdx2 = OpIdx2; 1309 FoundBest = true; 1310 } 1311 } 1312 if (FoundBest) { 1313 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1314 Op2Used.insert(MaxOpIdx2); 1315 ShallowScoreAtThisLevel += MaxTmpScore; 1316 } 1317 } 1318 return ShallowScoreAtThisLevel; 1319 } 1320 }; 1321 /// A helper data structure to hold the operands of a vector of instructions. 1322 /// This supports a fixed vector length for all operand vectors. 1323 class VLOperands { 1324 /// For each operand we need (i) the value, and (ii) the opcode that it 1325 /// would be attached to if the expression was in a left-linearized form. 1326 /// This is required to avoid illegal operand reordering. 1327 /// For example: 1328 /// \verbatim 1329 /// 0 Op1 1330 /// |/ 1331 /// Op1 Op2 Linearized + Op2 1332 /// \ / ----------> |/ 1333 /// - - 1334 /// 1335 /// Op1 - Op2 (0 + Op1) - Op2 1336 /// \endverbatim 1337 /// 1338 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1339 /// 1340 /// Another way to think of this is to track all the operations across the 1341 /// path from the operand all the way to the root of the tree and to 1342 /// calculate the operation that corresponds to this path. For example, the 1343 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1344 /// corresponding operation is a '-' (which matches the one in the 1345 /// linearized tree, as shown above). 1346 /// 1347 /// For lack of a better term, we refer to this operation as Accumulated 1348 /// Path Operation (APO). 1349 struct OperandData { 1350 OperandData() = default; 1351 OperandData(Value *V, bool APO, bool IsUsed) 1352 : V(V), APO(APO), IsUsed(IsUsed) {} 1353 /// The operand value. 1354 Value *V = nullptr; 1355 /// TreeEntries only allow a single opcode, or an alternate sequence of 1356 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1357 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1358 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1359 /// (e.g., Add/Mul) 1360 bool APO = false; 1361 /// Helper data for the reordering function. 1362 bool IsUsed = false; 1363 }; 1364 1365 /// During operand reordering, we are trying to select the operand at lane 1366 /// that matches best with the operand at the neighboring lane. Our 1367 /// selection is based on the type of value we are looking for. For example, 1368 /// if the neighboring lane has a load, we need to look for a load that is 1369 /// accessing a consecutive address. These strategies are summarized in the 1370 /// 'ReorderingMode' enumerator. 1371 enum class ReorderingMode { 1372 Load, ///< Matching loads to consecutive memory addresses 1373 Opcode, ///< Matching instructions based on opcode (same or alternate) 1374 Constant, ///< Matching constants 1375 Splat, ///< Matching the same instruction multiple times (broadcast) 1376 Failed, ///< We failed to create a vectorizable group 1377 }; 1378 1379 using OperandDataVec = SmallVector<OperandData, 2>; 1380 1381 /// A vector of operand vectors. 1382 SmallVector<OperandDataVec, 4> OpsVec; 1383 1384 const DataLayout &DL; 1385 ScalarEvolution &SE; 1386 const BoUpSLP &R; 1387 1388 /// \returns the operand data at \p OpIdx and \p Lane. 1389 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1390 return OpsVec[OpIdx][Lane]; 1391 } 1392 1393 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1394 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1395 return OpsVec[OpIdx][Lane]; 1396 } 1397 1398 /// Clears the used flag for all entries. 1399 void clearUsed() { 1400 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1401 OpIdx != NumOperands; ++OpIdx) 1402 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1403 ++Lane) 1404 OpsVec[OpIdx][Lane].IsUsed = false; 1405 } 1406 1407 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1408 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1409 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1410 } 1411 1412 /// \param Lane lane of the operands under analysis. 1413 /// \param OpIdx operand index in \p Lane lane we're looking the best 1414 /// candidate for. 1415 /// \param Idx operand index of the current candidate value. 1416 /// \returns The additional score due to possible broadcasting of the 1417 /// elements in the lane. It is more profitable to have power-of-2 unique 1418 /// elements in the lane, it will be vectorized with higher probability 1419 /// after removing duplicates. Currently the SLP vectorizer supports only 1420 /// vectorization of the power-of-2 number of unique scalars. 1421 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1422 Value *IdxLaneV = getData(Idx, Lane).V; 1423 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1424 return 0; 1425 SmallPtrSet<Value *, 4> Uniques; 1426 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1427 if (Ln == Lane) 1428 continue; 1429 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1430 if (!isa<Instruction>(OpIdxLnV)) 1431 return 0; 1432 Uniques.insert(OpIdxLnV); 1433 } 1434 int UniquesCount = Uniques.size(); 1435 int UniquesCntWithIdxLaneV = 1436 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1437 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1438 int UniquesCntWithOpIdxLaneV = 1439 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1440 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1441 return 0; 1442 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1443 UniquesCntWithOpIdxLaneV) - 1444 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1445 } 1446 1447 /// \param Lane lane of the operands under analysis. 1448 /// \param OpIdx operand index in \p Lane lane we're looking the best 1449 /// candidate for. 1450 /// \param Idx operand index of the current candidate value. 1451 /// \returns The additional score for the scalar which users are all 1452 /// vectorized. 1453 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1454 Value *IdxLaneV = getData(Idx, Lane).V; 1455 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1456 // Do not care about number of uses for vector-like instructions 1457 // (extractelement/extractvalue with constant indices), they are extracts 1458 // themselves and already externally used. Vectorization of such 1459 // instructions does not add extra extractelement instruction, just may 1460 // remove it. 1461 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1462 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1463 return LookAheadHeuristics::ScoreAllUserVectorized; 1464 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1465 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1466 return 0; 1467 return R.areAllUsersVectorized(IdxLaneI, None) 1468 ? LookAheadHeuristics::ScoreAllUserVectorized 1469 : 0; 1470 } 1471 1472 /// Score scaling factor for fully compatible instructions but with 1473 /// different number of external uses. Allows better selection of the 1474 /// instructions with less external uses. 1475 static const int ScoreScaleFactor = 10; 1476 1477 /// \Returns the look-ahead score, which tells us how much the sub-trees 1478 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1479 /// score. This helps break ties in an informed way when we cannot decide on 1480 /// the order of the operands by just considering the immediate 1481 /// predecessors. 1482 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1483 int Lane, unsigned OpIdx, unsigned Idx, 1484 bool &IsUsed) { 1485 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1486 LookAheadMaxDepth); 1487 // Keep track of the instruction stack as we recurse into the operands 1488 // during the look-ahead score exploration. 1489 int Score = 1490 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1491 /*CurrLevel=*/1, MainAltOps); 1492 if (Score) { 1493 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1494 if (Score <= -SplatScore) { 1495 // Set the minimum score for splat-like sequence to avoid setting 1496 // failed state. 1497 Score = 1; 1498 } else { 1499 Score += SplatScore; 1500 // Scale score to see the difference between different operands 1501 // and similar operands but all vectorized/not all vectorized 1502 // uses. It does not affect actual selection of the best 1503 // compatible operand in general, just allows to select the 1504 // operand with all vectorized uses. 1505 Score *= ScoreScaleFactor; 1506 Score += getExternalUseScore(Lane, OpIdx, Idx); 1507 IsUsed = true; 1508 } 1509 } 1510 return Score; 1511 } 1512 1513 /// Best defined scores per lanes between the passes. Used to choose the 1514 /// best operand (with the highest score) between the passes. 1515 /// The key - {Operand Index, Lane}. 1516 /// The value - the best score between the passes for the lane and the 1517 /// operand. 1518 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1519 BestScoresPerLanes; 1520 1521 // Search all operands in Ops[*][Lane] for the one that matches best 1522 // Ops[OpIdx][LastLane] and return its opreand index. 1523 // If no good match can be found, return None. 1524 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1525 ArrayRef<ReorderingMode> ReorderingModes, 1526 ArrayRef<Value *> MainAltOps) { 1527 unsigned NumOperands = getNumOperands(); 1528 1529 // The operand of the previous lane at OpIdx. 1530 Value *OpLastLane = getData(OpIdx, LastLane).V; 1531 1532 // Our strategy mode for OpIdx. 1533 ReorderingMode RMode = ReorderingModes[OpIdx]; 1534 if (RMode == ReorderingMode::Failed) 1535 return None; 1536 1537 // The linearized opcode of the operand at OpIdx, Lane. 1538 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1539 1540 // The best operand index and its score. 1541 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1542 // are using the score to differentiate between the two. 1543 struct BestOpData { 1544 Optional<unsigned> Idx = None; 1545 unsigned Score = 0; 1546 } BestOp; 1547 BestOp.Score = 1548 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1549 .first->second; 1550 1551 // Track if the operand must be marked as used. If the operand is set to 1552 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1553 // want to reestimate the operands again on the following iterations). 1554 bool IsUsed = 1555 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1556 // Iterate through all unused operands and look for the best. 1557 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1558 // Get the operand at Idx and Lane. 1559 OperandData &OpData = getData(Idx, Lane); 1560 Value *Op = OpData.V; 1561 bool OpAPO = OpData.APO; 1562 1563 // Skip already selected operands. 1564 if (OpData.IsUsed) 1565 continue; 1566 1567 // Skip if we are trying to move the operand to a position with a 1568 // different opcode in the linearized tree form. This would break the 1569 // semantics. 1570 if (OpAPO != OpIdxAPO) 1571 continue; 1572 1573 // Look for an operand that matches the current mode. 1574 switch (RMode) { 1575 case ReorderingMode::Load: 1576 case ReorderingMode::Constant: 1577 case ReorderingMode::Opcode: { 1578 bool LeftToRight = Lane > LastLane; 1579 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1580 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1581 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1582 OpIdx, Idx, IsUsed); 1583 if (Score > static_cast<int>(BestOp.Score)) { 1584 BestOp.Idx = Idx; 1585 BestOp.Score = Score; 1586 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1587 } 1588 break; 1589 } 1590 case ReorderingMode::Splat: 1591 if (Op == OpLastLane) 1592 BestOp.Idx = Idx; 1593 break; 1594 case ReorderingMode::Failed: 1595 llvm_unreachable("Not expected Failed reordering mode."); 1596 } 1597 } 1598 1599 if (BestOp.Idx) { 1600 getData(*BestOp.Idx, Lane).IsUsed = IsUsed; 1601 return BestOp.Idx; 1602 } 1603 // If we could not find a good match return None. 1604 return None; 1605 } 1606 1607 /// Helper for reorderOperandVecs. 1608 /// \returns the lane that we should start reordering from. This is the one 1609 /// which has the least number of operands that can freely move about or 1610 /// less profitable because it already has the most optimal set of operands. 1611 unsigned getBestLaneToStartReordering() const { 1612 unsigned Min = UINT_MAX; 1613 unsigned SameOpNumber = 0; 1614 // std::pair<unsigned, unsigned> is used to implement a simple voting 1615 // algorithm and choose the lane with the least number of operands that 1616 // can freely move about or less profitable because it already has the 1617 // most optimal set of operands. The first unsigned is a counter for 1618 // voting, the second unsigned is the counter of lanes with instructions 1619 // with same/alternate opcodes and same parent basic block. 1620 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1621 // Try to be closer to the original results, if we have multiple lanes 1622 // with same cost. If 2 lanes have the same cost, use the one with the 1623 // lowest index. 1624 for (int I = getNumLanes(); I > 0; --I) { 1625 unsigned Lane = I - 1; 1626 OperandsOrderData NumFreeOpsHash = 1627 getMaxNumOperandsThatCanBeReordered(Lane); 1628 // Compare the number of operands that can move and choose the one with 1629 // the least number. 1630 if (NumFreeOpsHash.NumOfAPOs < Min) { 1631 Min = NumFreeOpsHash.NumOfAPOs; 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap.clear(); 1634 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1635 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1636 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1637 // Select the most optimal lane in terms of number of operands that 1638 // should be moved around. 1639 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1640 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1641 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1642 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1643 auto It = HashMap.find(NumFreeOpsHash.Hash); 1644 if (It == HashMap.end()) 1645 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1646 else 1647 ++It->second.first; 1648 } 1649 } 1650 // Select the lane with the minimum counter. 1651 unsigned BestLane = 0; 1652 unsigned CntMin = UINT_MAX; 1653 for (const auto &Data : reverse(HashMap)) { 1654 if (Data.second.first < CntMin) { 1655 CntMin = Data.second.first; 1656 BestLane = Data.second.second; 1657 } 1658 } 1659 return BestLane; 1660 } 1661 1662 /// Data structure that helps to reorder operands. 1663 struct OperandsOrderData { 1664 /// The best number of operands with the same APOs, which can be 1665 /// reordered. 1666 unsigned NumOfAPOs = UINT_MAX; 1667 /// Number of operands with the same/alternate instruction opcode and 1668 /// parent. 1669 unsigned NumOpsWithSameOpcodeParent = 0; 1670 /// Hash for the actual operands ordering. 1671 /// Used to count operands, actually their position id and opcode 1672 /// value. It is used in the voting mechanism to find the lane with the 1673 /// least number of operands that can freely move about or less profitable 1674 /// because it already has the most optimal set of operands. Can be 1675 /// replaced with SmallVector<unsigned> instead but hash code is faster 1676 /// and requires less memory. 1677 unsigned Hash = 0; 1678 }; 1679 /// \returns the maximum number of operands that are allowed to be reordered 1680 /// for \p Lane and the number of compatible instructions(with the same 1681 /// parent/opcode). This is used as a heuristic for selecting the first lane 1682 /// to start operand reordering. 1683 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1684 unsigned CntTrue = 0; 1685 unsigned NumOperands = getNumOperands(); 1686 // Operands with the same APO can be reordered. We therefore need to count 1687 // how many of them we have for each APO, like this: Cnt[APO] = x. 1688 // Since we only have two APOs, namely true and false, we can avoid using 1689 // a map. Instead we can simply count the number of operands that 1690 // correspond to one of them (in this case the 'true' APO), and calculate 1691 // the other by subtracting it from the total number of operands. 1692 // Operands with the same instruction opcode and parent are more 1693 // profitable since we don't need to move them in many cases, with a high 1694 // probability such lane already can be vectorized effectively. 1695 bool AllUndefs = true; 1696 unsigned NumOpsWithSameOpcodeParent = 0; 1697 Instruction *OpcodeI = nullptr; 1698 BasicBlock *Parent = nullptr; 1699 unsigned Hash = 0; 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 const OperandData &OpData = getData(OpIdx, Lane); 1702 if (OpData.APO) 1703 ++CntTrue; 1704 // Use Boyer-Moore majority voting for finding the majority opcode and 1705 // the number of times it occurs. 1706 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1707 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1708 I->getParent() != Parent) { 1709 if (NumOpsWithSameOpcodeParent == 0) { 1710 NumOpsWithSameOpcodeParent = 1; 1711 OpcodeI = I; 1712 Parent = I->getParent(); 1713 } else { 1714 --NumOpsWithSameOpcodeParent; 1715 } 1716 } else { 1717 ++NumOpsWithSameOpcodeParent; 1718 } 1719 } 1720 Hash = hash_combine( 1721 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1722 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1723 } 1724 if (AllUndefs) 1725 return {}; 1726 OperandsOrderData Data; 1727 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1728 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1729 Data.Hash = Hash; 1730 return Data; 1731 } 1732 1733 /// Go through the instructions in VL and append their operands. 1734 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1735 assert(!VL.empty() && "Bad VL"); 1736 assert((empty() || VL.size() == getNumLanes()) && 1737 "Expected same number of lanes"); 1738 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1739 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1740 OpsVec.resize(NumOperands); 1741 unsigned NumLanes = VL.size(); 1742 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1743 OpsVec[OpIdx].resize(NumLanes); 1744 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1745 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1746 // Our tree has just 3 nodes: the root and two operands. 1747 // It is therefore trivial to get the APO. We only need to check the 1748 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1749 // RHS operand. The LHS operand of both add and sub is never attached 1750 // to an inversese operation in the linearized form, therefore its APO 1751 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1752 1753 // Since operand reordering is performed on groups of commutative 1754 // operations or alternating sequences (e.g., +, -), we can safely 1755 // tell the inverse operations by checking commutativity. 1756 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1757 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1758 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1759 APO, false}; 1760 } 1761 } 1762 } 1763 1764 /// \returns the number of operands. 1765 unsigned getNumOperands() const { return OpsVec.size(); } 1766 1767 /// \returns the number of lanes. 1768 unsigned getNumLanes() const { return OpsVec[0].size(); } 1769 1770 /// \returns the operand value at \p OpIdx and \p Lane. 1771 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1772 return getData(OpIdx, Lane).V; 1773 } 1774 1775 /// \returns true if the data structure is empty. 1776 bool empty() const { return OpsVec.empty(); } 1777 1778 /// Clears the data. 1779 void clear() { OpsVec.clear(); } 1780 1781 /// \Returns true if there are enough operands identical to \p Op to fill 1782 /// the whole vector. 1783 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1784 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1785 bool OpAPO = getData(OpIdx, Lane).APO; 1786 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1787 if (Ln == Lane) 1788 continue; 1789 // This is set to true if we found a candidate for broadcast at Lane. 1790 bool FoundCandidate = false; 1791 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1792 OperandData &Data = getData(OpI, Ln); 1793 if (Data.APO != OpAPO || Data.IsUsed) 1794 continue; 1795 if (Data.V == Op) { 1796 FoundCandidate = true; 1797 Data.IsUsed = true; 1798 break; 1799 } 1800 } 1801 if (!FoundCandidate) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 public: 1808 /// Initialize with all the operands of the instruction vector \p RootVL. 1809 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1810 ScalarEvolution &SE, const BoUpSLP &R) 1811 : DL(DL), SE(SE), R(R) { 1812 // Append all the operands of RootVL. 1813 appendOperandsOfVL(RootVL); 1814 } 1815 1816 /// \Returns a value vector with the operands across all lanes for the 1817 /// opearnd at \p OpIdx. 1818 ValueList getVL(unsigned OpIdx) const { 1819 ValueList OpVL(OpsVec[OpIdx].size()); 1820 assert(OpsVec[OpIdx].size() == getNumLanes() && 1821 "Expected same num of lanes across all operands"); 1822 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1823 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1824 return OpVL; 1825 } 1826 1827 // Performs operand reordering for 2 or more operands. 1828 // The original operands are in OrigOps[OpIdx][Lane]. 1829 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1830 void reorder() { 1831 unsigned NumOperands = getNumOperands(); 1832 unsigned NumLanes = getNumLanes(); 1833 // Each operand has its own mode. We are using this mode to help us select 1834 // the instructions for each lane, so that they match best with the ones 1835 // we have selected so far. 1836 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1837 1838 // This is a greedy single-pass algorithm. We are going over each lane 1839 // once and deciding on the best order right away with no back-tracking. 1840 // However, in order to increase its effectiveness, we start with the lane 1841 // that has operands that can move the least. For example, given the 1842 // following lanes: 1843 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1844 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1845 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1846 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1847 // we will start at Lane 1, since the operands of the subtraction cannot 1848 // be reordered. Then we will visit the rest of the lanes in a circular 1849 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1850 1851 // Find the first lane that we will start our search from. 1852 unsigned FirstLane = getBestLaneToStartReordering(); 1853 1854 // Initialize the modes. 1855 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1856 Value *OpLane0 = getValue(OpIdx, FirstLane); 1857 // Keep track if we have instructions with all the same opcode on one 1858 // side. 1859 if (isa<LoadInst>(OpLane0)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Load; 1861 else if (isa<Instruction>(OpLane0)) { 1862 // Check if OpLane0 should be broadcast. 1863 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1864 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1865 else 1866 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1867 } 1868 else if (isa<Constant>(OpLane0)) 1869 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1870 else if (isa<Argument>(OpLane0)) 1871 // Our best hope is a Splat. It may save some cost in some cases. 1872 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1873 else 1874 // NOTE: This should be unreachable. 1875 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1876 } 1877 1878 // Check that we don't have same operands. No need to reorder if operands 1879 // are just perfect diamond or shuffled diamond match. Do not do it only 1880 // for possible broadcasts or non-power of 2 number of scalars (just for 1881 // now). 1882 auto &&SkipReordering = [this]() { 1883 SmallPtrSet<Value *, 4> UniqueValues; 1884 ArrayRef<OperandData> Op0 = OpsVec.front(); 1885 for (const OperandData &Data : Op0) 1886 UniqueValues.insert(Data.V); 1887 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1888 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1889 return !UniqueValues.contains(Data.V); 1890 })) 1891 return false; 1892 } 1893 // TODO: Check if we can remove a check for non-power-2 number of 1894 // scalars after full support of non-power-2 vectorization. 1895 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1896 }; 1897 1898 // If the initial strategy fails for any of the operand indexes, then we 1899 // perform reordering again in a second pass. This helps avoid assigning 1900 // high priority to the failed strategy, and should improve reordering for 1901 // the non-failed operand indexes. 1902 for (int Pass = 0; Pass != 2; ++Pass) { 1903 // Check if no need to reorder operands since they're are perfect or 1904 // shuffled diamond match. 1905 // Need to to do it to avoid extra external use cost counting for 1906 // shuffled matches, which may cause regressions. 1907 if (SkipReordering()) 1908 break; 1909 // Skip the second pass if the first pass did not fail. 1910 bool StrategyFailed = false; 1911 // Mark all operand data as free to use. 1912 clearUsed(); 1913 // We keep the original operand order for the FirstLane, so reorder the 1914 // rest of the lanes. We are visiting the nodes in a circular fashion, 1915 // using FirstLane as the center point and increasing the radius 1916 // distance. 1917 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1918 for (unsigned I = 0; I < NumOperands; ++I) 1919 MainAltOps[I].push_back(getData(I, FirstLane).V); 1920 1921 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1922 // Visit the lane on the right and then the lane on the left. 1923 for (int Direction : {+1, -1}) { 1924 int Lane = FirstLane + Direction * Distance; 1925 if (Lane < 0 || Lane >= (int)NumLanes) 1926 continue; 1927 int LastLane = Lane - Direction; 1928 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1929 "Out of bounds"); 1930 // Look for a good match for each operand. 1931 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1932 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1933 Optional<unsigned> BestIdx = getBestOperand( 1934 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1935 // By not selecting a value, we allow the operands that follow to 1936 // select a better matching value. We will get a non-null value in 1937 // the next run of getBestOperand(). 1938 if (BestIdx) { 1939 // Swap the current operand with the one returned by 1940 // getBestOperand(). 1941 swap(OpIdx, *BestIdx, Lane); 1942 } else { 1943 // We failed to find a best operand, set mode to 'Failed'. 1944 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1945 // Enable the second pass. 1946 StrategyFailed = true; 1947 } 1948 // Try to get the alternate opcode and follow it during analysis. 1949 if (MainAltOps[OpIdx].size() != 2) { 1950 OperandData &AltOp = getData(OpIdx, Lane); 1951 InstructionsState OpS = 1952 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1953 if (OpS.getOpcode() && OpS.isAltShuffle()) 1954 MainAltOps[OpIdx].push_back(AltOp.V); 1955 } 1956 } 1957 } 1958 } 1959 // Skip second pass if the strategy did not fail. 1960 if (!StrategyFailed) 1961 break; 1962 } 1963 } 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1967 switch (RMode) { 1968 case ReorderingMode::Load: 1969 return "Load"; 1970 case ReorderingMode::Opcode: 1971 return "Opcode"; 1972 case ReorderingMode::Constant: 1973 return "Constant"; 1974 case ReorderingMode::Splat: 1975 return "Splat"; 1976 case ReorderingMode::Failed: 1977 return "Failed"; 1978 } 1979 llvm_unreachable("Unimplemented Reordering Type"); 1980 } 1981 1982 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1983 raw_ostream &OS) { 1984 return OS << getModeStr(RMode); 1985 } 1986 1987 /// Debug print. 1988 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1989 printMode(RMode, dbgs()); 1990 } 1991 1992 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1993 return printMode(RMode, OS); 1994 } 1995 1996 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1997 const unsigned Indent = 2; 1998 unsigned Cnt = 0; 1999 for (const OperandDataVec &OpDataVec : OpsVec) { 2000 OS << "Operand " << Cnt++ << "\n"; 2001 for (const OperandData &OpData : OpDataVec) { 2002 OS.indent(Indent) << "{"; 2003 if (Value *V = OpData.V) 2004 OS << *V; 2005 else 2006 OS << "null"; 2007 OS << ", APO:" << OpData.APO << "}\n"; 2008 } 2009 OS << "\n"; 2010 } 2011 return OS; 2012 } 2013 2014 /// Debug print. 2015 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2016 #endif 2017 }; 2018 2019 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2020 /// for a pair which have highest score deemed to have best chance to form 2021 /// root of profitable tree to vectorize. Return None if no candidate scored 2022 /// above the LookAheadHeuristics::ScoreFail. 2023 /// \param Limit Lower limit of the cost, considered to be good enough score. 2024 Optional<int> 2025 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2026 int Limit = LookAheadHeuristics::ScoreFail) { 2027 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2028 RootLookAheadMaxDepth); 2029 int BestScore = Limit; 2030 Optional<int> Index = None; 2031 for (int I : seq<int>(0, Candidates.size())) { 2032 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2033 Candidates[I].second, 2034 /*U1=*/nullptr, /*U2=*/nullptr, 2035 /*Level=*/1, None); 2036 if (Score > BestScore) { 2037 BestScore = Score; 2038 Index = I; 2039 } 2040 } 2041 return Index; 2042 } 2043 2044 /// Checks if the instruction is marked for deletion. 2045 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2046 2047 /// Removes an instruction from its block and eventually deletes it. 2048 /// It's like Instruction::eraseFromParent() except that the actual deletion 2049 /// is delayed until BoUpSLP is destructed. 2050 void eraseInstruction(Instruction *I) { 2051 DeletedInstructions.insert(I); 2052 } 2053 2054 /// Checks if the instruction was already analyzed for being possible 2055 /// reduction root. 2056 bool isAnalyzedReductionRoot(Instruction *I) const { 2057 return AnalyzedReductionsRoots.count(I); 2058 } 2059 /// Register given instruction as already analyzed for being possible 2060 /// reduction root. 2061 void analyzedReductionRoot(Instruction *I) { 2062 AnalyzedReductionsRoots.insert(I); 2063 } 2064 /// Checks if the provided list of reduced values was checked already for 2065 /// vectorization. 2066 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2067 return AnalyzedReductionVals.contains(hash_value(VL)); 2068 } 2069 /// Adds the list of reduced values to list of already checked values for the 2070 /// vectorization. 2071 void analyzedReductionVals(ArrayRef<Value *> VL) { 2072 AnalyzedReductionVals.insert(hash_value(VL)); 2073 } 2074 /// Clear the list of the analyzed reduction root instructions. 2075 void clearReductionData() { 2076 AnalyzedReductionsRoots.clear(); 2077 AnalyzedReductionVals.clear(); 2078 } 2079 /// Checks if the given value is gathered in one of the nodes. 2080 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { 2081 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); 2082 } 2083 2084 ~BoUpSLP(); 2085 2086 private: 2087 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2088 /// reordering (i.e. the operands can be reordered because they have only one 2089 /// user and reordarable). 2090 /// \param ReorderableGathers List of all gather nodes that require reordering 2091 /// (e.g., gather of extractlements or partially vectorizable loads). 2092 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2093 /// reordering, subset of \p NonVectorized. 2094 bool 2095 canReorderOperands(TreeEntry *UserTE, 2096 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2097 ArrayRef<TreeEntry *> ReorderableGathers, 2098 SmallVectorImpl<TreeEntry *> &GatherOps); 2099 2100 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2101 /// if any. If it is not vectorized (gather node), returns nullptr. 2102 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2103 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2104 TreeEntry *TE = nullptr; 2105 const auto *It = find_if(VL, [this, &TE](Value *V) { 2106 TE = getTreeEntry(V); 2107 return TE; 2108 }); 2109 if (It != VL.end() && TE->isSame(VL)) 2110 return TE; 2111 return nullptr; 2112 } 2113 2114 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2115 /// if any. If it is not vectorized (gather node), returns nullptr. 2116 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2117 unsigned OpIdx) const { 2118 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2119 const_cast<TreeEntry *>(UserTE), OpIdx); 2120 } 2121 2122 /// Checks if all users of \p I are the part of the vectorization tree. 2123 bool areAllUsersVectorized(Instruction *I, 2124 ArrayRef<Value *> VectorizedVals) const; 2125 2126 /// \returns the cost of the vectorizable entry. 2127 InstructionCost getEntryCost(const TreeEntry *E, 2128 ArrayRef<Value *> VectorizedVals); 2129 2130 /// This is the recursive part of buildTree. 2131 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2132 const EdgeInfo &EI); 2133 2134 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2135 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2136 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2137 /// returns false, setting \p CurrentOrder to either an empty vector or a 2138 /// non-identity permutation that allows to reuse extract instructions. 2139 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2140 SmallVectorImpl<unsigned> &CurrentOrder) const; 2141 2142 /// Vectorize a single entry in the tree. 2143 Value *vectorizeTree(TreeEntry *E); 2144 2145 /// Vectorize a single entry in the tree, starting in \p VL. 2146 Value *vectorizeTree(ArrayRef<Value *> VL); 2147 2148 /// Create a new vector from a list of scalar values. Produces a sequence 2149 /// which exploits values reused across lanes, and arranges the inserts 2150 /// for ease of later optimization. 2151 Value *createBuildVector(ArrayRef<Value *> VL); 2152 2153 /// \returns the scalarization cost for this type. Scalarization in this 2154 /// context means the creation of vectors from a group of scalars. If \p 2155 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2156 /// vector elements. 2157 InstructionCost getGatherCost(FixedVectorType *Ty, 2158 const APInt &ShuffledIndices, 2159 bool NeedToShuffle) const; 2160 2161 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2162 /// tree entries. 2163 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2164 /// previous tree entries. \p Mask is filled with the shuffle mask. 2165 Optional<TargetTransformInfo::ShuffleKind> 2166 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2167 SmallVectorImpl<const TreeEntry *> &Entries); 2168 2169 /// \returns the scalarization cost for this list of values. Assuming that 2170 /// this subtree gets vectorized, we may need to extract the values from the 2171 /// roots. This method calculates the cost of extracting the values. 2172 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2173 2174 /// Set the Builder insert point to one after the last instruction in 2175 /// the bundle 2176 void setInsertPointAfterBundle(const TreeEntry *E); 2177 2178 /// \returns a vector from a collection of scalars in \p VL. 2179 Value *gather(ArrayRef<Value *> VL); 2180 2181 /// \returns whether the VectorizableTree is fully vectorizable and will 2182 /// be beneficial even the tree height is tiny. 2183 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2184 2185 /// Reorder commutative or alt operands to get better probability of 2186 /// generating vectorized code. 2187 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2188 SmallVectorImpl<Value *> &Left, 2189 SmallVectorImpl<Value *> &Right, 2190 const DataLayout &DL, 2191 ScalarEvolution &SE, 2192 const BoUpSLP &R); 2193 2194 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2195 /// users of \p TE and collects the stores. It returns the map from the store 2196 /// pointers to the collected stores. 2197 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2198 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2199 2200 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2201 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2202 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2203 /// when compared to the sorted vector. 2204 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2205 OrdersType &ReorderIndices) const; 2206 2207 /// Iterates through the users of \p TE, looking for scalar stores that can be 2208 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2209 /// their order and builds an order index vector for each store bundle. It 2210 /// returns all these order vectors found. 2211 /// We run this after the tree has formed, otherwise we may come across user 2212 /// instructions that are not yet in the tree. 2213 SmallVector<OrdersType, 1> 2214 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2215 2216 struct TreeEntry { 2217 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2218 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2219 2220 /// \returns true if the scalars in VL are equal to this entry. 2221 bool isSame(ArrayRef<Value *> VL) const { 2222 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2223 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2224 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2225 return VL.size() == Mask.size() && 2226 std::equal(VL.begin(), VL.end(), Mask.begin(), 2227 [Scalars](Value *V, int Idx) { 2228 return (isa<UndefValue>(V) && 2229 Idx == UndefMaskElem) || 2230 (Idx != UndefMaskElem && V == Scalars[Idx]); 2231 }); 2232 }; 2233 if (!ReorderIndices.empty()) { 2234 // TODO: implement matching if the nodes are just reordered, still can 2235 // treat the vector as the same if the list of scalars matches VL 2236 // directly, without reordering. 2237 SmallVector<int> Mask; 2238 inversePermutation(ReorderIndices, Mask); 2239 if (VL.size() == Scalars.size()) 2240 return IsSame(Scalars, Mask); 2241 if (VL.size() == ReuseShuffleIndices.size()) { 2242 ::addMask(Mask, ReuseShuffleIndices); 2243 return IsSame(Scalars, Mask); 2244 } 2245 return false; 2246 } 2247 return IsSame(Scalars, ReuseShuffleIndices); 2248 } 2249 2250 /// \returns true if current entry has same operands as \p TE. 2251 bool hasEqualOperands(const TreeEntry &TE) const { 2252 if (TE.getNumOperands() != getNumOperands()) 2253 return false; 2254 SmallBitVector Used(getNumOperands()); 2255 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2256 unsigned PrevCount = Used.count(); 2257 for (unsigned K = 0; K < E; ++K) { 2258 if (Used.test(K)) 2259 continue; 2260 if (getOperand(K) == TE.getOperand(I)) { 2261 Used.set(K); 2262 break; 2263 } 2264 } 2265 // Check if we actually found the matching operand. 2266 if (PrevCount == Used.count()) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 /// \return Final vectorization factor for the node. Defined by the total 2273 /// number of vectorized scalars, including those, used several times in the 2274 /// entry and counted in the \a ReuseShuffleIndices, if any. 2275 unsigned getVectorFactor() const { 2276 if (!ReuseShuffleIndices.empty()) 2277 return ReuseShuffleIndices.size(); 2278 return Scalars.size(); 2279 }; 2280 2281 /// A vector of scalars. 2282 ValueList Scalars; 2283 2284 /// The Scalars are vectorized into this value. It is initialized to Null. 2285 Value *VectorizedValue = nullptr; 2286 2287 /// Do we need to gather this sequence or vectorize it 2288 /// (either with vector instruction or with scatter/gather 2289 /// intrinsics for store/load)? 2290 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2291 EntryState State; 2292 2293 /// Does this sequence require some shuffling? 2294 SmallVector<int, 4> ReuseShuffleIndices; 2295 2296 /// Does this entry require reordering? 2297 SmallVector<unsigned, 4> ReorderIndices; 2298 2299 /// Points back to the VectorizableTree. 2300 /// 2301 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2302 /// to be a pointer and needs to be able to initialize the child iterator. 2303 /// Thus we need a reference back to the container to translate the indices 2304 /// to entries. 2305 VecTreeTy &Container; 2306 2307 /// The TreeEntry index containing the user of this entry. We can actually 2308 /// have multiple users so the data structure is not truly a tree. 2309 SmallVector<EdgeInfo, 1> UserTreeIndices; 2310 2311 /// The index of this treeEntry in VectorizableTree. 2312 int Idx = -1; 2313 2314 private: 2315 /// The operands of each instruction in each lane Operands[op_index][lane]. 2316 /// Note: This helps avoid the replication of the code that performs the 2317 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2318 SmallVector<ValueList, 2> Operands; 2319 2320 /// The main/alternate instruction. 2321 Instruction *MainOp = nullptr; 2322 Instruction *AltOp = nullptr; 2323 2324 public: 2325 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2326 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2327 if (Operands.size() < OpIdx + 1) 2328 Operands.resize(OpIdx + 1); 2329 assert(Operands[OpIdx].empty() && "Already resized?"); 2330 assert(OpVL.size() <= Scalars.size() && 2331 "Number of operands is greater than the number of scalars."); 2332 Operands[OpIdx].resize(OpVL.size()); 2333 copy(OpVL, Operands[OpIdx].begin()); 2334 } 2335 2336 /// Set the operands of this bundle in their original order. 2337 void setOperandsInOrder() { 2338 assert(Operands.empty() && "Already initialized?"); 2339 auto *I0 = cast<Instruction>(Scalars[0]); 2340 Operands.resize(I0->getNumOperands()); 2341 unsigned NumLanes = Scalars.size(); 2342 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2343 OpIdx != NumOperands; ++OpIdx) { 2344 Operands[OpIdx].resize(NumLanes); 2345 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2346 auto *I = cast<Instruction>(Scalars[Lane]); 2347 assert(I->getNumOperands() == NumOperands && 2348 "Expected same number of operands"); 2349 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2350 } 2351 } 2352 } 2353 2354 /// Reorders operands of the node to the given mask \p Mask. 2355 void reorderOperands(ArrayRef<int> Mask) { 2356 for (ValueList &Operand : Operands) 2357 reorderScalars(Operand, Mask); 2358 } 2359 2360 /// \returns the \p OpIdx operand of this TreeEntry. 2361 ValueList &getOperand(unsigned OpIdx) { 2362 assert(OpIdx < Operands.size() && "Off bounds"); 2363 return Operands[OpIdx]; 2364 } 2365 2366 /// \returns the \p OpIdx operand of this TreeEntry. 2367 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2368 assert(OpIdx < Operands.size() && "Off bounds"); 2369 return Operands[OpIdx]; 2370 } 2371 2372 /// \returns the number of operands. 2373 unsigned getNumOperands() const { return Operands.size(); } 2374 2375 /// \return the single \p OpIdx operand. 2376 Value *getSingleOperand(unsigned OpIdx) const { 2377 assert(OpIdx < Operands.size() && "Off bounds"); 2378 assert(!Operands[OpIdx].empty() && "No operand available"); 2379 return Operands[OpIdx][0]; 2380 } 2381 2382 /// Some of the instructions in the list have alternate opcodes. 2383 bool isAltShuffle() const { return MainOp != AltOp; } 2384 2385 bool isOpcodeOrAlt(Instruction *I) const { 2386 unsigned CheckedOpcode = I->getOpcode(); 2387 return (getOpcode() == CheckedOpcode || 2388 getAltOpcode() == CheckedOpcode); 2389 } 2390 2391 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2392 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2393 /// \p OpValue. 2394 Value *isOneOf(Value *Op) const { 2395 auto *I = dyn_cast<Instruction>(Op); 2396 if (I && isOpcodeOrAlt(I)) 2397 return Op; 2398 return MainOp; 2399 } 2400 2401 void setOperations(const InstructionsState &S) { 2402 MainOp = S.MainOp; 2403 AltOp = S.AltOp; 2404 } 2405 2406 Instruction *getMainOp() const { 2407 return MainOp; 2408 } 2409 2410 Instruction *getAltOp() const { 2411 return AltOp; 2412 } 2413 2414 /// The main/alternate opcodes for the list of instructions. 2415 unsigned getOpcode() const { 2416 return MainOp ? MainOp->getOpcode() : 0; 2417 } 2418 2419 unsigned getAltOpcode() const { 2420 return AltOp ? AltOp->getOpcode() : 0; 2421 } 2422 2423 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2424 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2425 int findLaneForValue(Value *V) const { 2426 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2427 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2428 if (!ReorderIndices.empty()) 2429 FoundLane = ReorderIndices[FoundLane]; 2430 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2431 if (!ReuseShuffleIndices.empty()) { 2432 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2433 find(ReuseShuffleIndices, FoundLane)); 2434 } 2435 return FoundLane; 2436 } 2437 2438 #ifndef NDEBUG 2439 /// Debug printer. 2440 LLVM_DUMP_METHOD void dump() const { 2441 dbgs() << Idx << ".\n"; 2442 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2443 dbgs() << "Operand " << OpI << ":\n"; 2444 for (const Value *V : Operands[OpI]) 2445 dbgs().indent(2) << *V << "\n"; 2446 } 2447 dbgs() << "Scalars: \n"; 2448 for (Value *V : Scalars) 2449 dbgs().indent(2) << *V << "\n"; 2450 dbgs() << "State: "; 2451 switch (State) { 2452 case Vectorize: 2453 dbgs() << "Vectorize\n"; 2454 break; 2455 case ScatterVectorize: 2456 dbgs() << "ScatterVectorize\n"; 2457 break; 2458 case NeedToGather: 2459 dbgs() << "NeedToGather\n"; 2460 break; 2461 } 2462 dbgs() << "MainOp: "; 2463 if (MainOp) 2464 dbgs() << *MainOp << "\n"; 2465 else 2466 dbgs() << "NULL\n"; 2467 dbgs() << "AltOp: "; 2468 if (AltOp) 2469 dbgs() << *AltOp << "\n"; 2470 else 2471 dbgs() << "NULL\n"; 2472 dbgs() << "VectorizedValue: "; 2473 if (VectorizedValue) 2474 dbgs() << *VectorizedValue << "\n"; 2475 else 2476 dbgs() << "NULL\n"; 2477 dbgs() << "ReuseShuffleIndices: "; 2478 if (ReuseShuffleIndices.empty()) 2479 dbgs() << "Empty"; 2480 else 2481 for (int ReuseIdx : ReuseShuffleIndices) 2482 dbgs() << ReuseIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "ReorderIndices: "; 2485 for (unsigned ReorderIdx : ReorderIndices) 2486 dbgs() << ReorderIdx << ", "; 2487 dbgs() << "\n"; 2488 dbgs() << "UserTreeIndices: "; 2489 for (const auto &EInfo : UserTreeIndices) 2490 dbgs() << EInfo << ", "; 2491 dbgs() << "\n"; 2492 } 2493 #endif 2494 }; 2495 2496 #ifndef NDEBUG 2497 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2498 InstructionCost VecCost, 2499 InstructionCost ScalarCost) const { 2500 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2501 dbgs() << "SLP: Costs:\n"; 2502 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2503 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2504 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2505 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2506 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2507 } 2508 #endif 2509 2510 /// Create a new VectorizableTree entry. 2511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2512 const InstructionsState &S, 2513 const EdgeInfo &UserTreeIdx, 2514 ArrayRef<int> ReuseShuffleIndices = None, 2515 ArrayRef<unsigned> ReorderIndices = None) { 2516 TreeEntry::EntryState EntryState = 2517 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2518 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2519 ReuseShuffleIndices, ReorderIndices); 2520 } 2521 2522 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2523 TreeEntry::EntryState EntryState, 2524 Optional<ScheduleData *> Bundle, 2525 const InstructionsState &S, 2526 const EdgeInfo &UserTreeIdx, 2527 ArrayRef<int> ReuseShuffleIndices = None, 2528 ArrayRef<unsigned> ReorderIndices = None) { 2529 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2530 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2531 "Need to vectorize gather entry?"); 2532 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2533 TreeEntry *Last = VectorizableTree.back().get(); 2534 Last->Idx = VectorizableTree.size() - 1; 2535 Last->State = EntryState; 2536 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2537 ReuseShuffleIndices.end()); 2538 if (ReorderIndices.empty()) { 2539 Last->Scalars.assign(VL.begin(), VL.end()); 2540 Last->setOperations(S); 2541 } else { 2542 // Reorder scalars and build final mask. 2543 Last->Scalars.assign(VL.size(), nullptr); 2544 transform(ReorderIndices, Last->Scalars.begin(), 2545 [VL](unsigned Idx) -> Value * { 2546 if (Idx >= VL.size()) 2547 return UndefValue::get(VL.front()->getType()); 2548 return VL[Idx]; 2549 }); 2550 InstructionsState S = getSameOpcode(Last->Scalars); 2551 Last->setOperations(S); 2552 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2553 } 2554 if (Last->State != TreeEntry::NeedToGather) { 2555 for (Value *V : VL) { 2556 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2557 ScalarToTreeEntry[V] = Last; 2558 } 2559 // Update the scheduler bundle to point to this TreeEntry. 2560 ScheduleData *BundleMember = *Bundle; 2561 assert((BundleMember || isa<PHINode>(S.MainOp) || 2562 isVectorLikeInstWithConstOps(S.MainOp) || 2563 doesNotNeedToSchedule(VL)) && 2564 "Bundle and VL out of sync"); 2565 if (BundleMember) { 2566 for (Value *V : VL) { 2567 if (doesNotNeedToBeScheduled(V)) 2568 continue; 2569 assert(BundleMember && "Unexpected end of bundle."); 2570 BundleMember->TE = Last; 2571 BundleMember = BundleMember->NextInBundle; 2572 } 2573 } 2574 assert(!BundleMember && "Bundle and VL out of sync"); 2575 } else { 2576 MustGather.insert(VL.begin(), VL.end()); 2577 } 2578 2579 if (UserTreeIdx.UserTE) 2580 Last->UserTreeIndices.push_back(UserTreeIdx); 2581 2582 return Last; 2583 } 2584 2585 /// -- Vectorization State -- 2586 /// Holds all of the tree entries. 2587 TreeEntry::VecTreeTy VectorizableTree; 2588 2589 #ifndef NDEBUG 2590 /// Debug printer. 2591 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2592 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2593 VectorizableTree[Id]->dump(); 2594 dbgs() << "\n"; 2595 } 2596 } 2597 #endif 2598 2599 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2600 2601 const TreeEntry *getTreeEntry(Value *V) const { 2602 return ScalarToTreeEntry.lookup(V); 2603 } 2604 2605 /// Maps a specific scalar to its tree entry. 2606 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2607 2608 /// Maps a value to the proposed vectorizable size. 2609 SmallDenseMap<Value *, unsigned> InstrElementSize; 2610 2611 /// A list of scalars that we found that we need to keep as scalars. 2612 ValueSet MustGather; 2613 2614 /// This POD struct describes one external user in the vectorized tree. 2615 struct ExternalUser { 2616 ExternalUser(Value *S, llvm::User *U, int L) 2617 : Scalar(S), User(U), Lane(L) {} 2618 2619 // Which scalar in our function. 2620 Value *Scalar; 2621 2622 // Which user that uses the scalar. 2623 llvm::User *User; 2624 2625 // Which lane does the scalar belong to. 2626 int Lane; 2627 }; 2628 using UserList = SmallVector<ExternalUser, 16>; 2629 2630 /// Checks if two instructions may access the same memory. 2631 /// 2632 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2633 /// is invariant in the calling loop. 2634 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2635 Instruction *Inst2) { 2636 // First check if the result is already in the cache. 2637 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2638 Optional<bool> &result = AliasCache[key]; 2639 if (result) { 2640 return result.getValue(); 2641 } 2642 bool aliased = true; 2643 if (Loc1.Ptr && isSimple(Inst1)) 2644 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2645 // Store the result in the cache. 2646 result = aliased; 2647 return aliased; 2648 } 2649 2650 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2651 2652 /// Cache for alias results. 2653 /// TODO: consider moving this to the AliasAnalysis itself. 2654 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2655 2656 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2657 // globally through SLP because we don't perform any action which 2658 // invalidates capture results. 2659 BatchAAResults BatchAA; 2660 2661 /// Temporary store for deleted instructions. Instructions will be deleted 2662 /// eventually when the BoUpSLP is destructed. The deferral is required to 2663 /// ensure that there are no incorrect collisions in the AliasCache, which 2664 /// can happen if a new instruction is allocated at the same address as a 2665 /// previously deleted instruction. 2666 DenseSet<Instruction *> DeletedInstructions; 2667 2668 /// Set of the instruction, being analyzed already for reductions. 2669 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2670 2671 /// Set of hashes for the list of reduction values already being analyzed. 2672 DenseSet<size_t> AnalyzedReductionVals; 2673 2674 /// A list of values that need to extracted out of the tree. 2675 /// This list holds pairs of (Internal Scalar : External User). External User 2676 /// can be nullptr, it means that this Internal Scalar will be used later, 2677 /// after vectorization. 2678 UserList ExternalUses; 2679 2680 /// Values used only by @llvm.assume calls. 2681 SmallPtrSet<const Value *, 32> EphValues; 2682 2683 /// Holds all of the instructions that we gathered. 2684 SetVector<Instruction *> GatherShuffleSeq; 2685 2686 /// A list of blocks that we are going to CSE. 2687 SetVector<BasicBlock *> CSEBlocks; 2688 2689 /// Contains all scheduling relevant data for an instruction. 2690 /// A ScheduleData either represents a single instruction or a member of an 2691 /// instruction bundle (= a group of instructions which is combined into a 2692 /// vector instruction). 2693 struct ScheduleData { 2694 // The initial value for the dependency counters. It means that the 2695 // dependencies are not calculated yet. 2696 enum { InvalidDeps = -1 }; 2697 2698 ScheduleData() = default; 2699 2700 void init(int BlockSchedulingRegionID, Value *OpVal) { 2701 FirstInBundle = this; 2702 NextInBundle = nullptr; 2703 NextLoadStore = nullptr; 2704 IsScheduled = false; 2705 SchedulingRegionID = BlockSchedulingRegionID; 2706 clearDependencies(); 2707 OpValue = OpVal; 2708 TE = nullptr; 2709 } 2710 2711 /// Verify basic self consistency properties 2712 void verify() { 2713 if (hasValidDependencies()) { 2714 assert(UnscheduledDeps <= Dependencies && "invariant"); 2715 } else { 2716 assert(UnscheduledDeps == Dependencies && "invariant"); 2717 } 2718 2719 if (IsScheduled) { 2720 assert(isSchedulingEntity() && 2721 "unexpected scheduled state"); 2722 for (const ScheduleData *BundleMember = this; BundleMember; 2723 BundleMember = BundleMember->NextInBundle) { 2724 assert(BundleMember->hasValidDependencies() && 2725 BundleMember->UnscheduledDeps == 0 && 2726 "unexpected scheduled state"); 2727 assert((BundleMember == this || !BundleMember->IsScheduled) && 2728 "only bundle is marked scheduled"); 2729 } 2730 } 2731 2732 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2733 "all bundle members must be in same basic block"); 2734 } 2735 2736 /// Returns true if the dependency information has been calculated. 2737 /// Note that depenendency validity can vary between instructions within 2738 /// a single bundle. 2739 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2740 2741 /// Returns true for single instructions and for bundle representatives 2742 /// (= the head of a bundle). 2743 bool isSchedulingEntity() const { return FirstInBundle == this; } 2744 2745 /// Returns true if it represents an instruction bundle and not only a 2746 /// single instruction. 2747 bool isPartOfBundle() const { 2748 return NextInBundle != nullptr || FirstInBundle != this || TE; 2749 } 2750 2751 /// Returns true if it is ready for scheduling, i.e. it has no more 2752 /// unscheduled depending instructions/bundles. 2753 bool isReady() const { 2754 assert(isSchedulingEntity() && 2755 "can't consider non-scheduling entity for ready list"); 2756 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2757 } 2758 2759 /// Modifies the number of unscheduled dependencies for this instruction, 2760 /// and returns the number of remaining dependencies for the containing 2761 /// bundle. 2762 int incrementUnscheduledDeps(int Incr) { 2763 assert(hasValidDependencies() && 2764 "increment of unscheduled deps would be meaningless"); 2765 UnscheduledDeps += Incr; 2766 return FirstInBundle->unscheduledDepsInBundle(); 2767 } 2768 2769 /// Sets the number of unscheduled dependencies to the number of 2770 /// dependencies. 2771 void resetUnscheduledDeps() { 2772 UnscheduledDeps = Dependencies; 2773 } 2774 2775 /// Clears all dependency information. 2776 void clearDependencies() { 2777 Dependencies = InvalidDeps; 2778 resetUnscheduledDeps(); 2779 MemoryDependencies.clear(); 2780 ControlDependencies.clear(); 2781 } 2782 2783 int unscheduledDepsInBundle() const { 2784 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2785 int Sum = 0; 2786 for (const ScheduleData *BundleMember = this; BundleMember; 2787 BundleMember = BundleMember->NextInBundle) { 2788 if (BundleMember->UnscheduledDeps == InvalidDeps) 2789 return InvalidDeps; 2790 Sum += BundleMember->UnscheduledDeps; 2791 } 2792 return Sum; 2793 } 2794 2795 void dump(raw_ostream &os) const { 2796 if (!isSchedulingEntity()) { 2797 os << "/ " << *Inst; 2798 } else if (NextInBundle) { 2799 os << '[' << *Inst; 2800 ScheduleData *SD = NextInBundle; 2801 while (SD) { 2802 os << ';' << *SD->Inst; 2803 SD = SD->NextInBundle; 2804 } 2805 os << ']'; 2806 } else { 2807 os << *Inst; 2808 } 2809 } 2810 2811 Instruction *Inst = nullptr; 2812 2813 /// Opcode of the current instruction in the schedule data. 2814 Value *OpValue = nullptr; 2815 2816 /// The TreeEntry that this instruction corresponds to. 2817 TreeEntry *TE = nullptr; 2818 2819 /// Points to the head in an instruction bundle (and always to this for 2820 /// single instructions). 2821 ScheduleData *FirstInBundle = nullptr; 2822 2823 /// Single linked list of all instructions in a bundle. Null if it is a 2824 /// single instruction. 2825 ScheduleData *NextInBundle = nullptr; 2826 2827 /// Single linked list of all memory instructions (e.g. load, store, call) 2828 /// in the block - until the end of the scheduling region. 2829 ScheduleData *NextLoadStore = nullptr; 2830 2831 /// The dependent memory instructions. 2832 /// This list is derived on demand in calculateDependencies(). 2833 SmallVector<ScheduleData *, 4> MemoryDependencies; 2834 2835 /// List of instructions which this instruction could be control dependent 2836 /// on. Allowing such nodes to be scheduled below this one could introduce 2837 /// a runtime fault which didn't exist in the original program. 2838 /// ex: this is a load or udiv following a readonly call which inf loops 2839 SmallVector<ScheduleData *, 4> ControlDependencies; 2840 2841 /// This ScheduleData is in the current scheduling region if this matches 2842 /// the current SchedulingRegionID of BlockScheduling. 2843 int SchedulingRegionID = 0; 2844 2845 /// Used for getting a "good" final ordering of instructions. 2846 int SchedulingPriority = 0; 2847 2848 /// The number of dependencies. Constitutes of the number of users of the 2849 /// instruction plus the number of dependent memory instructions (if any). 2850 /// This value is calculated on demand. 2851 /// If InvalidDeps, the number of dependencies is not calculated yet. 2852 int Dependencies = InvalidDeps; 2853 2854 /// The number of dependencies minus the number of dependencies of scheduled 2855 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2856 /// for scheduling. 2857 /// Note that this is negative as long as Dependencies is not calculated. 2858 int UnscheduledDeps = InvalidDeps; 2859 2860 /// True if this instruction is scheduled (or considered as scheduled in the 2861 /// dry-run). 2862 bool IsScheduled = false; 2863 }; 2864 2865 #ifndef NDEBUG 2866 friend inline raw_ostream &operator<<(raw_ostream &os, 2867 const BoUpSLP::ScheduleData &SD) { 2868 SD.dump(os); 2869 return os; 2870 } 2871 #endif 2872 2873 friend struct GraphTraits<BoUpSLP *>; 2874 friend struct DOTGraphTraits<BoUpSLP *>; 2875 2876 /// Contains all scheduling data for a basic block. 2877 /// It does not schedules instructions, which are not memory read/write 2878 /// instructions and their operands are either constants, or arguments, or 2879 /// phis, or instructions from others blocks, or their users are phis or from 2880 /// the other blocks. The resulting vector instructions can be placed at the 2881 /// beginning of the basic block without scheduling (if operands does not need 2882 /// to be scheduled) or at the end of the block (if users are outside of the 2883 /// block). It allows to save some compile time and memory used by the 2884 /// compiler. 2885 /// ScheduleData is assigned for each instruction in between the boundaries of 2886 /// the tree entry, even for those, which are not part of the graph. It is 2887 /// required to correctly follow the dependencies between the instructions and 2888 /// their correct scheduling. The ScheduleData is not allocated for the 2889 /// instructions, which do not require scheduling, like phis, nodes with 2890 /// extractelements/insertelements only or nodes with instructions, with 2891 /// uses/operands outside of the block. 2892 struct BlockScheduling { 2893 BlockScheduling(BasicBlock *BB) 2894 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2895 2896 void clear() { 2897 ReadyInsts.clear(); 2898 ScheduleStart = nullptr; 2899 ScheduleEnd = nullptr; 2900 FirstLoadStoreInRegion = nullptr; 2901 LastLoadStoreInRegion = nullptr; 2902 RegionHasStackSave = false; 2903 2904 // Reduce the maximum schedule region size by the size of the 2905 // previous scheduling run. 2906 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2907 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2908 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2909 ScheduleRegionSize = 0; 2910 2911 // Make a new scheduling region, i.e. all existing ScheduleData is not 2912 // in the new region yet. 2913 ++SchedulingRegionID; 2914 } 2915 2916 ScheduleData *getScheduleData(Instruction *I) { 2917 if (BB != I->getParent()) 2918 // Avoid lookup if can't possibly be in map. 2919 return nullptr; 2920 ScheduleData *SD = ScheduleDataMap.lookup(I); 2921 if (SD && isInSchedulingRegion(SD)) 2922 return SD; 2923 return nullptr; 2924 } 2925 2926 ScheduleData *getScheduleData(Value *V) { 2927 if (auto *I = dyn_cast<Instruction>(V)) 2928 return getScheduleData(I); 2929 return nullptr; 2930 } 2931 2932 ScheduleData *getScheduleData(Value *V, Value *Key) { 2933 if (V == Key) 2934 return getScheduleData(V); 2935 auto I = ExtraScheduleDataMap.find(V); 2936 if (I != ExtraScheduleDataMap.end()) { 2937 ScheduleData *SD = I->second.lookup(Key); 2938 if (SD && isInSchedulingRegion(SD)) 2939 return SD; 2940 } 2941 return nullptr; 2942 } 2943 2944 bool isInSchedulingRegion(ScheduleData *SD) const { 2945 return SD->SchedulingRegionID == SchedulingRegionID; 2946 } 2947 2948 /// Marks an instruction as scheduled and puts all dependent ready 2949 /// instructions into the ready-list. 2950 template <typename ReadyListType> 2951 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2952 SD->IsScheduled = true; 2953 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2954 2955 for (ScheduleData *BundleMember = SD; BundleMember; 2956 BundleMember = BundleMember->NextInBundle) { 2957 if (BundleMember->Inst != BundleMember->OpValue) 2958 continue; 2959 2960 // Handle the def-use chain dependencies. 2961 2962 // Decrement the unscheduled counter and insert to ready list if ready. 2963 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2964 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2965 if (OpDef && OpDef->hasValidDependencies() && 2966 OpDef->incrementUnscheduledDeps(-1) == 0) { 2967 // There are no more unscheduled dependencies after 2968 // decrementing, so we can put the dependent instruction 2969 // into the ready list. 2970 ScheduleData *DepBundle = OpDef->FirstInBundle; 2971 assert(!DepBundle->IsScheduled && 2972 "already scheduled bundle gets ready"); 2973 ReadyList.insert(DepBundle); 2974 LLVM_DEBUG(dbgs() 2975 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2976 } 2977 }); 2978 }; 2979 2980 // If BundleMember is a vector bundle, its operands may have been 2981 // reordered during buildTree(). We therefore need to get its operands 2982 // through the TreeEntry. 2983 if (TreeEntry *TE = BundleMember->TE) { 2984 // Need to search for the lane since the tree entry can be reordered. 2985 int Lane = std::distance(TE->Scalars.begin(), 2986 find(TE->Scalars, BundleMember->Inst)); 2987 assert(Lane >= 0 && "Lane not set"); 2988 2989 // Since vectorization tree is being built recursively this assertion 2990 // ensures that the tree entry has all operands set before reaching 2991 // this code. Couple of exceptions known at the moment are extracts 2992 // where their second (immediate) operand is not added. Since 2993 // immediates do not affect scheduler behavior this is considered 2994 // okay. 2995 auto *In = BundleMember->Inst; 2996 assert(In && 2997 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2998 In->getNumOperands() == TE->getNumOperands()) && 2999 "Missed TreeEntry operands?"); 3000 (void)In; // fake use to avoid build failure when assertions disabled 3001 3002 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 3003 OpIdx != NumOperands; ++OpIdx) 3004 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3005 DecrUnsched(I); 3006 } else { 3007 // If BundleMember is a stand-alone instruction, no operand reordering 3008 // has taken place, so we directly access its operands. 3009 for (Use &U : BundleMember->Inst->operands()) 3010 if (auto *I = dyn_cast<Instruction>(U.get())) 3011 DecrUnsched(I); 3012 } 3013 // Handle the memory dependencies. 3014 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3015 if (MemoryDepSD->hasValidDependencies() && 3016 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3017 // There are no more unscheduled dependencies after decrementing, 3018 // so we can put the dependent instruction into the ready list. 3019 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3020 assert(!DepBundle->IsScheduled && 3021 "already scheduled bundle gets ready"); 3022 ReadyList.insert(DepBundle); 3023 LLVM_DEBUG(dbgs() 3024 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3025 } 3026 } 3027 // Handle the control dependencies. 3028 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3029 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3030 // There are no more unscheduled dependencies after decrementing, 3031 // so we can put the dependent instruction into the ready list. 3032 ScheduleData *DepBundle = DepSD->FirstInBundle; 3033 assert(!DepBundle->IsScheduled && 3034 "already scheduled bundle gets ready"); 3035 ReadyList.insert(DepBundle); 3036 LLVM_DEBUG(dbgs() 3037 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3038 } 3039 } 3040 3041 } 3042 } 3043 3044 /// Verify basic self consistency properties of the data structure. 3045 void verify() { 3046 if (!ScheduleStart) 3047 return; 3048 3049 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3050 ScheduleStart->comesBefore(ScheduleEnd) && 3051 "Not a valid scheduling region?"); 3052 3053 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3054 auto *SD = getScheduleData(I); 3055 if (!SD) 3056 continue; 3057 assert(isInSchedulingRegion(SD) && 3058 "primary schedule data not in window?"); 3059 assert(isInSchedulingRegion(SD->FirstInBundle) && 3060 "entire bundle in window!"); 3061 (void)SD; 3062 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3063 } 3064 3065 for (auto *SD : ReadyInsts) { 3066 assert(SD->isSchedulingEntity() && SD->isReady() && 3067 "item in ready list not ready?"); 3068 (void)SD; 3069 } 3070 } 3071 3072 void doForAllOpcodes(Value *V, 3073 function_ref<void(ScheduleData *SD)> Action) { 3074 if (ScheduleData *SD = getScheduleData(V)) 3075 Action(SD); 3076 auto I = ExtraScheduleDataMap.find(V); 3077 if (I != ExtraScheduleDataMap.end()) 3078 for (auto &P : I->second) 3079 if (isInSchedulingRegion(P.second)) 3080 Action(P.second); 3081 } 3082 3083 /// Put all instructions into the ReadyList which are ready for scheduling. 3084 template <typename ReadyListType> 3085 void initialFillReadyList(ReadyListType &ReadyList) { 3086 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3087 doForAllOpcodes(I, [&](ScheduleData *SD) { 3088 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3089 SD->isReady()) { 3090 ReadyList.insert(SD); 3091 LLVM_DEBUG(dbgs() 3092 << "SLP: initially in ready list: " << *SD << "\n"); 3093 } 3094 }); 3095 } 3096 } 3097 3098 /// Build a bundle from the ScheduleData nodes corresponding to the 3099 /// scalar instruction for each lane. 3100 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3101 3102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3103 /// cyclic dependencies. This is only a dry-run, no instructions are 3104 /// actually moved at this stage. 3105 /// \returns the scheduling bundle. The returned Optional value is non-None 3106 /// if \p VL is allowed to be scheduled. 3107 Optional<ScheduleData *> 3108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3109 const InstructionsState &S); 3110 3111 /// Un-bundles a group of instructions. 3112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3113 3114 /// Allocates schedule data chunk. 3115 ScheduleData *allocateScheduleDataChunks(); 3116 3117 /// Extends the scheduling region so that V is inside the region. 3118 /// \returns true if the region size is within the limit. 3119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3120 3121 /// Initialize the ScheduleData structures for new instructions in the 3122 /// scheduling region. 3123 void initScheduleData(Instruction *FromI, Instruction *ToI, 3124 ScheduleData *PrevLoadStore, 3125 ScheduleData *NextLoadStore); 3126 3127 /// Updates the dependency information of a bundle and of all instructions/ 3128 /// bundles which depend on the original bundle. 3129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3130 BoUpSLP *SLP); 3131 3132 /// Sets all instruction in the scheduling region to un-scheduled. 3133 void resetSchedule(); 3134 3135 BasicBlock *BB; 3136 3137 /// Simple memory allocation for ScheduleData. 3138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3139 3140 /// The size of a ScheduleData array in ScheduleDataChunks. 3141 int ChunkSize; 3142 3143 /// The allocator position in the current chunk, which is the last entry 3144 /// of ScheduleDataChunks. 3145 int ChunkPos; 3146 3147 /// Attaches ScheduleData to Instruction. 3148 /// Note that the mapping survives during all vectorization iterations, i.e. 3149 /// ScheduleData structures are recycled. 3150 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3151 3152 /// Attaches ScheduleData to Instruction with the leading key. 3153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3154 ExtraScheduleDataMap; 3155 3156 /// The ready-list for scheduling (only used for the dry-run). 3157 SetVector<ScheduleData *> ReadyInsts; 3158 3159 /// The first instruction of the scheduling region. 3160 Instruction *ScheduleStart = nullptr; 3161 3162 /// The first instruction _after_ the scheduling region. 3163 Instruction *ScheduleEnd = nullptr; 3164 3165 /// The first memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *FirstLoadStoreInRegion = nullptr; 3168 3169 /// The last memory accessing instruction in the scheduling region 3170 /// (can be null). 3171 ScheduleData *LastLoadStoreInRegion = nullptr; 3172 3173 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3174 /// region? Used to optimize the dependence calculation for the 3175 /// common case where there isn't. 3176 bool RegionHasStackSave = false; 3177 3178 /// The current size of the scheduling region. 3179 int ScheduleRegionSize = 0; 3180 3181 /// The maximum size allowed for the scheduling region. 3182 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3183 3184 /// The ID of the scheduling region. For a new vectorization iteration this 3185 /// is incremented which "removes" all ScheduleData from the region. 3186 /// Make sure that the initial SchedulingRegionID is greater than the 3187 /// initial SchedulingRegionID in ScheduleData (which is 0). 3188 int SchedulingRegionID = 1; 3189 }; 3190 3191 /// Attaches the BlockScheduling structures to basic blocks. 3192 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3193 3194 /// Performs the "real" scheduling. Done before vectorization is actually 3195 /// performed in a basic block. 3196 void scheduleBlock(BlockScheduling *BS); 3197 3198 /// List of users to ignore during scheduling and that don't need extracting. 3199 const SmallDenseSet<Value *> *UserIgnoreList = nullptr; 3200 3201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3202 /// sorted SmallVectors of unsigned. 3203 struct OrdersTypeDenseMapInfo { 3204 static OrdersType getEmptyKey() { 3205 OrdersType V; 3206 V.push_back(~1U); 3207 return V; 3208 } 3209 3210 static OrdersType getTombstoneKey() { 3211 OrdersType V; 3212 V.push_back(~2U); 3213 return V; 3214 } 3215 3216 static unsigned getHashValue(const OrdersType &V) { 3217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3218 } 3219 3220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3221 return LHS == RHS; 3222 } 3223 }; 3224 3225 // Analysis and block reference. 3226 Function *F; 3227 ScalarEvolution *SE; 3228 TargetTransformInfo *TTI; 3229 TargetLibraryInfo *TLI; 3230 LoopInfo *LI; 3231 DominatorTree *DT; 3232 AssumptionCache *AC; 3233 DemandedBits *DB; 3234 const DataLayout *DL; 3235 OptimizationRemarkEmitter *ORE; 3236 3237 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3238 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3239 3240 /// Instruction builder to construct the vectorized tree. 3241 IRBuilder<> Builder; 3242 3243 /// A map of scalar integer values to the smallest bit width with which they 3244 /// can legally be represented. The values map to (width, signed) pairs, 3245 /// where "width" indicates the minimum bit width and "signed" is True if the 3246 /// value must be signed-extended, rather than zero-extended, back to its 3247 /// original width. 3248 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3249 }; 3250 3251 } // end namespace slpvectorizer 3252 3253 template <> struct GraphTraits<BoUpSLP *> { 3254 using TreeEntry = BoUpSLP::TreeEntry; 3255 3256 /// NodeRef has to be a pointer per the GraphWriter. 3257 using NodeRef = TreeEntry *; 3258 3259 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3260 3261 /// Add the VectorizableTree to the index iterator to be able to return 3262 /// TreeEntry pointers. 3263 struct ChildIteratorType 3264 : public iterator_adaptor_base< 3265 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3266 ContainerTy &VectorizableTree; 3267 3268 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3269 ContainerTy &VT) 3270 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3271 3272 NodeRef operator*() { return I->UserTE; } 3273 }; 3274 3275 static NodeRef getEntryNode(BoUpSLP &R) { 3276 return R.VectorizableTree[0].get(); 3277 } 3278 3279 static ChildIteratorType child_begin(NodeRef N) { 3280 return {N->UserTreeIndices.begin(), N->Container}; 3281 } 3282 3283 static ChildIteratorType child_end(NodeRef N) { 3284 return {N->UserTreeIndices.end(), N->Container}; 3285 } 3286 3287 /// For the node iterator we just need to turn the TreeEntry iterator into a 3288 /// TreeEntry* iterator so that it dereferences to NodeRef. 3289 class nodes_iterator { 3290 using ItTy = ContainerTy::iterator; 3291 ItTy It; 3292 3293 public: 3294 nodes_iterator(const ItTy &It2) : It(It2) {} 3295 NodeRef operator*() { return It->get(); } 3296 nodes_iterator operator++() { 3297 ++It; 3298 return *this; 3299 } 3300 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3301 }; 3302 3303 static nodes_iterator nodes_begin(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.begin()); 3305 } 3306 3307 static nodes_iterator nodes_end(BoUpSLP *R) { 3308 return nodes_iterator(R->VectorizableTree.end()); 3309 } 3310 3311 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3312 }; 3313 3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3315 using TreeEntry = BoUpSLP::TreeEntry; 3316 3317 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3318 3319 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3320 std::string Str; 3321 raw_string_ostream OS(Str); 3322 if (isSplat(Entry->Scalars)) 3323 OS << "<splat> "; 3324 for (auto V : Entry->Scalars) { 3325 OS << *V; 3326 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3327 return EU.Scalar == V; 3328 })) 3329 OS << " <extract>"; 3330 OS << "\n"; 3331 } 3332 return Str; 3333 } 3334 3335 static std::string getNodeAttributes(const TreeEntry *Entry, 3336 const BoUpSLP *) { 3337 if (Entry->State == TreeEntry::NeedToGather) 3338 return "color=red"; 3339 return ""; 3340 } 3341 }; 3342 3343 } // end namespace llvm 3344 3345 BoUpSLP::~BoUpSLP() { 3346 SmallVector<WeakTrackingVH> DeadInsts; 3347 for (auto *I : DeletedInstructions) { 3348 for (Use &U : I->operands()) { 3349 auto *Op = dyn_cast<Instruction>(U.get()); 3350 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3351 wouldInstructionBeTriviallyDead(Op, TLI)) 3352 DeadInsts.emplace_back(Op); 3353 } 3354 I->dropAllReferences(); 3355 } 3356 for (auto *I : DeletedInstructions) { 3357 assert(I->use_empty() && 3358 "trying to erase instruction with users."); 3359 I->eraseFromParent(); 3360 } 3361 3362 // Cleanup any dead scalar code feeding the vectorized instructions 3363 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3364 3365 #ifdef EXPENSIVE_CHECKS 3366 // If we could guarantee that this call is not extremely slow, we could 3367 // remove the ifdef limitation (see PR47712). 3368 assert(!verifyFunction(*F, &dbgs())); 3369 #endif 3370 } 3371 3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3373 /// contains original mask for the scalars reused in the node. Procedure 3374 /// transform this mask in accordance with the given \p Mask. 3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3376 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3377 "Expected non-empty mask."); 3378 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3379 Prev.swap(Reuses); 3380 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3381 if (Mask[I] != UndefMaskElem) 3382 Reuses[Mask[I]] = Prev[I]; 3383 } 3384 3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3386 /// the original order of the scalars. Procedure transforms the provided order 3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3388 /// identity order, \p Order is cleared. 3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3390 assert(!Mask.empty() && "Expected non-empty mask."); 3391 SmallVector<int> MaskOrder; 3392 if (Order.empty()) { 3393 MaskOrder.resize(Mask.size()); 3394 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3395 } else { 3396 inversePermutation(Order, MaskOrder); 3397 } 3398 reorderReuses(MaskOrder, Mask); 3399 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3400 Order.clear(); 3401 return; 3402 } 3403 Order.assign(Mask.size(), Mask.size()); 3404 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3405 if (MaskOrder[I] != UndefMaskElem) 3406 Order[MaskOrder[I]] = I; 3407 fixupOrderingIndices(Order); 3408 } 3409 3410 Optional<BoUpSLP::OrdersType> 3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3412 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3413 unsigned NumScalars = TE.Scalars.size(); 3414 OrdersType CurrentOrder(NumScalars, NumScalars); 3415 SmallVector<int> Positions; 3416 SmallBitVector UsedPositions(NumScalars); 3417 const TreeEntry *STE = nullptr; 3418 // Try to find all gathered scalars that are gets vectorized in other 3419 // vectorize node. Here we can have only one single tree vector node to 3420 // correctly identify order of the gathered scalars. 3421 for (unsigned I = 0; I < NumScalars; ++I) { 3422 Value *V = TE.Scalars[I]; 3423 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3424 continue; 3425 if (const auto *LocalSTE = getTreeEntry(V)) { 3426 if (!STE) 3427 STE = LocalSTE; 3428 else if (STE != LocalSTE) 3429 // Take the order only from the single vector node. 3430 return None; 3431 unsigned Lane = 3432 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3433 if (Lane >= NumScalars) 3434 return None; 3435 if (CurrentOrder[Lane] != NumScalars) { 3436 if (Lane != I) 3437 continue; 3438 UsedPositions.reset(CurrentOrder[Lane]); 3439 } 3440 // The partial identity (where only some elements of the gather node are 3441 // in the identity order) is good. 3442 CurrentOrder[Lane] = I; 3443 UsedPositions.set(I); 3444 } 3445 } 3446 // Need to keep the order if we have a vector entry and at least 2 scalars or 3447 // the vectorized entry has just 2 scalars. 3448 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3449 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3450 for (unsigned I = 0; I < NumScalars; ++I) 3451 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3452 return false; 3453 return true; 3454 }; 3455 if (IsIdentityOrder(CurrentOrder)) { 3456 CurrentOrder.clear(); 3457 return CurrentOrder; 3458 } 3459 auto *It = CurrentOrder.begin(); 3460 for (unsigned I = 0; I < NumScalars;) { 3461 if (UsedPositions.test(I)) { 3462 ++I; 3463 continue; 3464 } 3465 if (*It == NumScalars) { 3466 *It = I; 3467 ++I; 3468 } 3469 ++It; 3470 } 3471 return CurrentOrder; 3472 } 3473 return None; 3474 } 3475 3476 namespace { 3477 /// Tracks the state we can represent the loads in the given sequence. 3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3479 } // anonymous namespace 3480 3481 /// Checks if the given array of loads can be represented as a vectorized, 3482 /// scatter or just simple gather. 3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3484 const TargetTransformInfo &TTI, 3485 const DataLayout &DL, ScalarEvolution &SE, 3486 LoopInfo &LI, 3487 SmallVectorImpl<unsigned> &Order, 3488 SmallVectorImpl<Value *> &PointerOps) { 3489 // Check that a vectorized load would load the same memory as a scalar 3490 // load. For example, we don't want to vectorize loads that are smaller 3491 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3492 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3493 // from such a struct, we read/write packed bits disagreeing with the 3494 // unvectorized version. 3495 Type *ScalarTy = VL0->getType(); 3496 3497 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3498 return LoadsState::Gather; 3499 3500 // Make sure all loads in the bundle are simple - we can't vectorize 3501 // atomic or volatile loads. 3502 PointerOps.clear(); 3503 PointerOps.resize(VL.size()); 3504 auto *POIter = PointerOps.begin(); 3505 for (Value *V : VL) { 3506 auto *L = cast<LoadInst>(V); 3507 if (!L->isSimple()) 3508 return LoadsState::Gather; 3509 *POIter = L->getPointerOperand(); 3510 ++POIter; 3511 } 3512 3513 Order.clear(); 3514 // Check the order of pointer operands or that all pointers are the same. 3515 bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order); 3516 if (IsSorted || all_of(PointerOps, [&PointerOps](Value *P) { 3517 if (getUnderlyingObject(P) != getUnderlyingObject(PointerOps.front())) 3518 return false; 3519 auto *GEP = dyn_cast<GetElementPtrInst>(P); 3520 if (!GEP) 3521 return false; 3522 auto *GEP0 = cast<GetElementPtrInst>(PointerOps.front()); 3523 return GEP->getNumOperands() == 2 && 3524 ((isConstant(GEP->getOperand(1)) && 3525 isConstant(GEP0->getOperand(1))) || 3526 getSameOpcode({GEP->getOperand(1), GEP0->getOperand(1)}) 3527 .getOpcode()); 3528 })) { 3529 if (IsSorted) { 3530 Value *Ptr0; 3531 Value *PtrN; 3532 if (Order.empty()) { 3533 Ptr0 = PointerOps.front(); 3534 PtrN = PointerOps.back(); 3535 } else { 3536 Ptr0 = PointerOps[Order.front()]; 3537 PtrN = PointerOps[Order.back()]; 3538 } 3539 Optional<int> Diff = 3540 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3541 // Check that the sorted loads are consecutive. 3542 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3543 return LoadsState::Vectorize; 3544 } 3545 // TODO: need to improve analysis of the pointers, if not all of them are 3546 // GEPs or have > 2 operands, we end up with a gather node, which just 3547 // increases the cost. 3548 Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent()); 3549 bool ProfitableGatherPointers = 3550 static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { 3551 return L && L->isLoopInvariant(V); 3552 })) <= VL.size() / 2 && VL.size() > 2; 3553 if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { 3554 auto *GEP = dyn_cast<GetElementPtrInst>(P); 3555 return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || 3556 (GEP && GEP->getNumOperands() == 2); 3557 })) { 3558 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3559 for (Value *V : VL) 3560 CommonAlignment = 3561 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3562 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3563 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && 3564 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) 3565 return LoadsState::ScatterVectorize; 3566 } 3567 } 3568 3569 return LoadsState::Gather; 3570 } 3571 3572 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3573 const DataLayout &DL, ScalarEvolution &SE, 3574 SmallVectorImpl<unsigned> &SortedIndices) { 3575 assert(llvm::all_of( 3576 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3577 "Expected list of pointer operands."); 3578 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3579 // Ptr into, sort and return the sorted indices with values next to one 3580 // another. 3581 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3582 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3583 3584 unsigned Cnt = 1; 3585 for (Value *Ptr : VL.drop_front()) { 3586 bool Found = any_of(Bases, [&](auto &Base) { 3587 Optional<int> Diff = 3588 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3589 /*StrictCheck=*/true); 3590 if (!Diff) 3591 return false; 3592 3593 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3594 return true; 3595 }); 3596 3597 if (!Found) { 3598 // If we haven't found enough to usefully cluster, return early. 3599 if (Bases.size() > VL.size() / 2 - 1) 3600 return false; 3601 3602 // Not found already - add a new Base 3603 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3604 } 3605 } 3606 3607 // For each of the bases sort the pointers by Offset and check if any of the 3608 // base become consecutively allocated. 3609 bool AnyConsecutive = false; 3610 for (auto &Base : Bases) { 3611 auto &Vec = Base.second; 3612 if (Vec.size() > 1) { 3613 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3614 const std::tuple<Value *, int, unsigned> &Y) { 3615 return std::get<1>(X) < std::get<1>(Y); 3616 }); 3617 int InitialOffset = std::get<1>(Vec[0]); 3618 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3619 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3620 }); 3621 } 3622 } 3623 3624 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3625 SortedIndices.clear(); 3626 if (!AnyConsecutive) 3627 return false; 3628 3629 for (auto &Base : Bases) { 3630 for (auto &T : Base.second) 3631 SortedIndices.push_back(std::get<2>(T)); 3632 } 3633 3634 assert(SortedIndices.size() == VL.size() && 3635 "Expected SortedIndices to be the size of VL"); 3636 return true; 3637 } 3638 3639 Optional<BoUpSLP::OrdersType> 3640 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3641 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3642 Type *ScalarTy = TE.Scalars[0]->getType(); 3643 3644 SmallVector<Value *> Ptrs; 3645 Ptrs.reserve(TE.Scalars.size()); 3646 for (Value *V : TE.Scalars) { 3647 auto *L = dyn_cast<LoadInst>(V); 3648 if (!L || !L->isSimple()) 3649 return None; 3650 Ptrs.push_back(L->getPointerOperand()); 3651 } 3652 3653 BoUpSLP::OrdersType Order; 3654 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3655 return Order; 3656 return None; 3657 } 3658 3659 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3660 bool TopToBottom) { 3661 // No need to reorder if need to shuffle reuses, still need to shuffle the 3662 // node. 3663 if (!TE.ReuseShuffleIndices.empty()) 3664 return None; 3665 if (TE.State == TreeEntry::Vectorize && 3666 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3667 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3668 !TE.isAltShuffle()) 3669 return TE.ReorderIndices; 3670 if (TE.State == TreeEntry::NeedToGather) { 3671 // TODO: add analysis of other gather nodes with extractelement 3672 // instructions and other values/instructions, not only undefs. 3673 if (((TE.getOpcode() == Instruction::ExtractElement && 3674 !TE.isAltShuffle()) || 3675 (all_of(TE.Scalars, 3676 [](Value *V) { 3677 return isa<UndefValue, ExtractElementInst>(V); 3678 }) && 3679 any_of(TE.Scalars, 3680 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3681 all_of(TE.Scalars, 3682 [](Value *V) { 3683 auto *EE = dyn_cast<ExtractElementInst>(V); 3684 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3685 }) && 3686 allSameType(TE.Scalars)) { 3687 // Check that gather of extractelements can be represented as 3688 // just a shuffle of a single vector. 3689 OrdersType CurrentOrder; 3690 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3691 if (Reuse || !CurrentOrder.empty()) { 3692 if (!CurrentOrder.empty()) 3693 fixupOrderingIndices(CurrentOrder); 3694 return CurrentOrder; 3695 } 3696 } 3697 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3698 return CurrentOrder; 3699 if (TE.Scalars.size() >= 4) 3700 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3701 return Order; 3702 } 3703 return None; 3704 } 3705 3706 void BoUpSLP::reorderTopToBottom() { 3707 // Maps VF to the graph nodes. 3708 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3709 // ExtractElement gather nodes which can be vectorized and need to handle 3710 // their ordering. 3711 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3712 3713 // AltShuffles can also have a preferred ordering that leads to fewer 3714 // instructions, e.g., the addsub instruction in x86. 3715 DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; 3716 3717 // Maps a TreeEntry to the reorder indices of external users. 3718 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3719 ExternalUserReorderMap; 3720 // FIXME: Workaround for syntax error reported by MSVC buildbots. 3721 TargetTransformInfo &TTIRef = *TTI; 3722 // Find all reorderable nodes with the given VF. 3723 // Currently the are vectorized stores,loads,extracts + some gathering of 3724 // extracts. 3725 for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries, 3726 &GathersToOrders, &ExternalUserReorderMap, 3727 &AltShufflesToOrders]( 3728 const std::unique_ptr<TreeEntry> &TE) { 3729 // Look for external users that will probably be vectorized. 3730 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3731 findExternalStoreUsersReorderIndices(TE.get()); 3732 if (!ExternalUserReorderIndices.empty()) { 3733 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3734 ExternalUserReorderMap.try_emplace(TE.get(), 3735 std::move(ExternalUserReorderIndices)); 3736 } 3737 3738 // Patterns like [fadd,fsub] can be combined into a single instruction in 3739 // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need 3740 // to take into account their order when looking for the most used order. 3741 if (TE->isAltShuffle()) { 3742 VectorType *VecTy = 3743 FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size()); 3744 unsigned Opcode0 = TE->getOpcode(); 3745 unsigned Opcode1 = TE->getAltOpcode(); 3746 // The opcode mask selects between the two opcodes. 3747 SmallBitVector OpcodeMask(TE->Scalars.size(), 0); 3748 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) 3749 if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1) 3750 OpcodeMask.set(Lane); 3751 // If this pattern is supported by the target then we consider the order. 3752 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { 3753 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3754 AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); 3755 } 3756 // TODO: Check the reverse order too. 3757 } 3758 3759 if (Optional<OrdersType> CurrentOrder = 3760 getReorderingData(*TE, /*TopToBottom=*/true)) { 3761 // Do not include ordering for nodes used in the alt opcode vectorization, 3762 // better to reorder them during bottom-to-top stage. If follow the order 3763 // here, it causes reordering of the whole graph though actually it is 3764 // profitable just to reorder the subgraph that starts from the alternate 3765 // opcode vectorization node. Such nodes already end-up with the shuffle 3766 // instruction and it is just enough to change this shuffle rather than 3767 // rotate the scalars for the whole graph. 3768 unsigned Cnt = 0; 3769 const TreeEntry *UserTE = TE.get(); 3770 while (UserTE && Cnt < RecursionMaxDepth) { 3771 if (UserTE->UserTreeIndices.size() != 1) 3772 break; 3773 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3774 return EI.UserTE->State == TreeEntry::Vectorize && 3775 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3776 })) 3777 return; 3778 UserTE = UserTE->UserTreeIndices.back().UserTE; 3779 ++Cnt; 3780 } 3781 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3782 if (TE->State != TreeEntry::Vectorize) 3783 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3784 } 3785 }); 3786 3787 // Reorder the graph nodes according to their vectorization factor. 3788 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3789 VF /= 2) { 3790 auto It = VFToOrderedEntries.find(VF); 3791 if (It == VFToOrderedEntries.end()) 3792 continue; 3793 // Try to find the most profitable order. We just are looking for the most 3794 // used order and reorder scalar elements in the nodes according to this 3795 // mostly used order. 3796 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3797 // All operands are reordered and used only in this node - propagate the 3798 // most used order to the user node. 3799 MapVector<OrdersType, unsigned, 3800 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3801 OrdersUses; 3802 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3803 for (const TreeEntry *OpTE : OrderedEntries) { 3804 // No need to reorder this nodes, still need to extend and to use shuffle, 3805 // just need to merge reordering shuffle and the reuse shuffle. 3806 if (!OpTE->ReuseShuffleIndices.empty()) 3807 continue; 3808 // Count number of orders uses. 3809 const auto &Order = [OpTE, &GathersToOrders, 3810 &AltShufflesToOrders]() -> const OrdersType & { 3811 if (OpTE->State == TreeEntry::NeedToGather) { 3812 auto It = GathersToOrders.find(OpTE); 3813 if (It != GathersToOrders.end()) 3814 return It->second; 3815 } 3816 if (OpTE->isAltShuffle()) { 3817 auto It = AltShufflesToOrders.find(OpTE); 3818 if (It != AltShufflesToOrders.end()) 3819 return It->second; 3820 } 3821 return OpTE->ReorderIndices; 3822 }(); 3823 // First consider the order of the external scalar users. 3824 auto It = ExternalUserReorderMap.find(OpTE); 3825 if (It != ExternalUserReorderMap.end()) { 3826 const auto &ExternalUserReorderIndices = It->second; 3827 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3828 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3829 // No other useful reorder data in this entry. 3830 if (Order.empty()) 3831 continue; 3832 } 3833 // Stores actually store the mask, not the order, need to invert. 3834 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3835 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3836 SmallVector<int> Mask; 3837 inversePermutation(Order, Mask); 3838 unsigned E = Order.size(); 3839 OrdersType CurrentOrder(E, E); 3840 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3841 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3842 }); 3843 fixupOrderingIndices(CurrentOrder); 3844 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3845 } else { 3846 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3847 } 3848 } 3849 // Set order of the user node. 3850 if (OrdersUses.empty()) 3851 continue; 3852 // Choose the most used order. 3853 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3854 unsigned Cnt = OrdersUses.front().second; 3855 for (const auto &Pair : drop_begin(OrdersUses)) { 3856 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3857 BestOrder = Pair.first; 3858 Cnt = Pair.second; 3859 } 3860 } 3861 // Set order of the user node. 3862 if (BestOrder.empty()) 3863 continue; 3864 SmallVector<int> Mask; 3865 inversePermutation(BestOrder, Mask); 3866 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3867 unsigned E = BestOrder.size(); 3868 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3869 return I < E ? static_cast<int>(I) : UndefMaskElem; 3870 }); 3871 // Do an actual reordering, if profitable. 3872 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3873 // Just do the reordering for the nodes with the given VF. 3874 if (TE->Scalars.size() != VF) { 3875 if (TE->ReuseShuffleIndices.size() == VF) { 3876 // Need to reorder the reuses masks of the operands with smaller VF to 3877 // be able to find the match between the graph nodes and scalar 3878 // operands of the given node during vectorization/cost estimation. 3879 assert(all_of(TE->UserTreeIndices, 3880 [VF, &TE](const EdgeInfo &EI) { 3881 return EI.UserTE->Scalars.size() == VF || 3882 EI.UserTE->Scalars.size() == 3883 TE->Scalars.size(); 3884 }) && 3885 "All users must be of VF size."); 3886 // Update ordering of the operands with the smaller VF than the given 3887 // one. 3888 reorderReuses(TE->ReuseShuffleIndices, Mask); 3889 } 3890 continue; 3891 } 3892 if (TE->State == TreeEntry::Vectorize && 3893 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3894 InsertElementInst>(TE->getMainOp()) && 3895 !TE->isAltShuffle()) { 3896 // Build correct orders for extract{element,value}, loads and 3897 // stores. 3898 reorderOrder(TE->ReorderIndices, Mask); 3899 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3900 TE->reorderOperands(Mask); 3901 } else { 3902 // Reorder the node and its operands. 3903 TE->reorderOperands(Mask); 3904 assert(TE->ReorderIndices.empty() && 3905 "Expected empty reorder sequence."); 3906 reorderScalars(TE->Scalars, Mask); 3907 } 3908 if (!TE->ReuseShuffleIndices.empty()) { 3909 // Apply reversed order to keep the original ordering of the reused 3910 // elements to avoid extra reorder indices shuffling. 3911 OrdersType CurrentOrder; 3912 reorderOrder(CurrentOrder, MaskOrder); 3913 SmallVector<int> NewReuses; 3914 inversePermutation(CurrentOrder, NewReuses); 3915 addMask(NewReuses, TE->ReuseShuffleIndices); 3916 TE->ReuseShuffleIndices.swap(NewReuses); 3917 } 3918 } 3919 } 3920 } 3921 3922 bool BoUpSLP::canReorderOperands( 3923 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3924 ArrayRef<TreeEntry *> ReorderableGathers, 3925 SmallVectorImpl<TreeEntry *> &GatherOps) { 3926 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3927 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3928 return OpData.first == I && 3929 OpData.second->State == TreeEntry::Vectorize; 3930 })) 3931 continue; 3932 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3933 // Do not reorder if operand node is used by many user nodes. 3934 if (any_of(TE->UserTreeIndices, 3935 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3936 return false; 3937 // Add the node to the list of the ordered nodes with the identity 3938 // order. 3939 Edges.emplace_back(I, TE); 3940 // Add ScatterVectorize nodes to the list of operands, where just 3941 // reordering of the scalars is required. Similar to the gathers, so 3942 // simply add to the list of gathered ops. 3943 // If there are reused scalars, process this node as a regular vectorize 3944 // node, just reorder reuses mask. 3945 if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty()) 3946 GatherOps.push_back(TE); 3947 continue; 3948 } 3949 TreeEntry *Gather = nullptr; 3950 if (count_if(ReorderableGathers, 3951 [&Gather, UserTE, I](TreeEntry *TE) { 3952 assert(TE->State != TreeEntry::Vectorize && 3953 "Only non-vectorized nodes are expected."); 3954 if (any_of(TE->UserTreeIndices, 3955 [UserTE, I](const EdgeInfo &EI) { 3956 return EI.UserTE == UserTE && EI.EdgeIdx == I; 3957 })) { 3958 assert(TE->isSame(UserTE->getOperand(I)) && 3959 "Operand entry does not match operands."); 3960 Gather = TE; 3961 return true; 3962 } 3963 return false; 3964 }) > 1 && 3965 !all_of(UserTE->getOperand(I), isConstant)) 3966 return false; 3967 if (Gather) 3968 GatherOps.push_back(Gather); 3969 } 3970 return true; 3971 } 3972 3973 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3974 SetVector<TreeEntry *> OrderedEntries; 3975 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3976 // Find all reorderable leaf nodes with the given VF. 3977 // Currently the are vectorized loads,extracts without alternate operands + 3978 // some gathering of extracts. 3979 SmallVector<TreeEntry *> NonVectorized; 3980 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3981 &NonVectorized]( 3982 const std::unique_ptr<TreeEntry> &TE) { 3983 if (TE->State != TreeEntry::Vectorize) 3984 NonVectorized.push_back(TE.get()); 3985 if (Optional<OrdersType> CurrentOrder = 3986 getReorderingData(*TE, /*TopToBottom=*/false)) { 3987 OrderedEntries.insert(TE.get()); 3988 if (TE->State != TreeEntry::Vectorize) 3989 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3990 } 3991 }); 3992 3993 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3994 // I.e., if the node has operands, that are reordered, try to make at least 3995 // one operand order in the natural order and reorder others + reorder the 3996 // user node itself. 3997 SmallPtrSet<const TreeEntry *, 4> Visited; 3998 while (!OrderedEntries.empty()) { 3999 // 1. Filter out only reordered nodes. 4000 // 2. If the entry has multiple uses - skip it and jump to the next node. 4001 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 4002 SmallVector<TreeEntry *> Filtered; 4003 for (TreeEntry *TE : OrderedEntries) { 4004 if (!(TE->State == TreeEntry::Vectorize || 4005 (TE->State == TreeEntry::NeedToGather && 4006 GathersToOrders.count(TE))) || 4007 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4008 !all_of(drop_begin(TE->UserTreeIndices), 4009 [TE](const EdgeInfo &EI) { 4010 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 4011 }) || 4012 !Visited.insert(TE).second) { 4013 Filtered.push_back(TE); 4014 continue; 4015 } 4016 // Build a map between user nodes and their operands order to speedup 4017 // search. The graph currently does not provide this dependency directly. 4018 for (EdgeInfo &EI : TE->UserTreeIndices) { 4019 TreeEntry *UserTE = EI.UserTE; 4020 auto It = Users.find(UserTE); 4021 if (It == Users.end()) 4022 It = Users.insert({UserTE, {}}).first; 4023 It->second.emplace_back(EI.EdgeIdx, TE); 4024 } 4025 } 4026 // Erase filtered entries. 4027 for_each(Filtered, 4028 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 4029 SmallVector< 4030 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> 4031 UsersVec(Users.begin(), Users.end()); 4032 sort(UsersVec, [](const auto &Data1, const auto &Data2) { 4033 return Data1.first->Idx > Data2.first->Idx; 4034 }); 4035 for (auto &Data : UsersVec) { 4036 // Check that operands are used only in the User node. 4037 SmallVector<TreeEntry *> GatherOps; 4038 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 4039 GatherOps)) { 4040 for_each(Data.second, 4041 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4042 OrderedEntries.remove(Op.second); 4043 }); 4044 continue; 4045 } 4046 // All operands are reordered and used only in this node - propagate the 4047 // most used order to the user node. 4048 MapVector<OrdersType, unsigned, 4049 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 4050 OrdersUses; 4051 // Do the analysis for each tree entry only once, otherwise the order of 4052 // the same node my be considered several times, though might be not 4053 // profitable. 4054 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 4055 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 4056 for (const auto &Op : Data.second) { 4057 TreeEntry *OpTE = Op.second; 4058 if (!VisitedOps.insert(OpTE).second) 4059 continue; 4060 if (!OpTE->ReuseShuffleIndices.empty()) 4061 continue; 4062 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 4063 if (OpTE->State == TreeEntry::NeedToGather) 4064 return GathersToOrders.find(OpTE)->second; 4065 return OpTE->ReorderIndices; 4066 }(); 4067 unsigned NumOps = count_if( 4068 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 4069 return P.second == OpTE; 4070 }); 4071 // Stores actually store the mask, not the order, need to invert. 4072 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 4073 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 4074 SmallVector<int> Mask; 4075 inversePermutation(Order, Mask); 4076 unsigned E = Order.size(); 4077 OrdersType CurrentOrder(E, E); 4078 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 4079 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 4080 }); 4081 fixupOrderingIndices(CurrentOrder); 4082 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 4083 NumOps; 4084 } else { 4085 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 4086 } 4087 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 4088 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 4089 const TreeEntry *TE) { 4090 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4091 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 4092 (IgnoreReorder && TE->Idx == 0)) 4093 return true; 4094 if (TE->State == TreeEntry::NeedToGather) { 4095 auto It = GathersToOrders.find(TE); 4096 if (It != GathersToOrders.end()) 4097 return !It->second.empty(); 4098 return true; 4099 } 4100 return false; 4101 }; 4102 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 4103 TreeEntry *UserTE = EI.UserTE; 4104 if (!VisitedUsers.insert(UserTE).second) 4105 continue; 4106 // May reorder user node if it requires reordering, has reused 4107 // scalars, is an alternate op vectorize node or its op nodes require 4108 // reordering. 4109 if (AllowsReordering(UserTE)) 4110 continue; 4111 // Check if users allow reordering. 4112 // Currently look up just 1 level of operands to avoid increase of 4113 // the compile time. 4114 // Profitable to reorder if definitely more operands allow 4115 // reordering rather than those with natural order. 4116 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 4117 if (static_cast<unsigned>(count_if( 4118 Ops, [UserTE, &AllowsReordering]( 4119 const std::pair<unsigned, TreeEntry *> &Op) { 4120 return AllowsReordering(Op.second) && 4121 all_of(Op.second->UserTreeIndices, 4122 [UserTE](const EdgeInfo &EI) { 4123 return EI.UserTE == UserTE; 4124 }); 4125 })) <= Ops.size() / 2) 4126 ++Res.first->second; 4127 } 4128 } 4129 // If no orders - skip current nodes and jump to the next one, if any. 4130 if (OrdersUses.empty()) { 4131 for_each(Data.second, 4132 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4133 OrderedEntries.remove(Op.second); 4134 }); 4135 continue; 4136 } 4137 // Choose the best order. 4138 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4139 unsigned Cnt = OrdersUses.front().second; 4140 for (const auto &Pair : drop_begin(OrdersUses)) { 4141 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4142 BestOrder = Pair.first; 4143 Cnt = Pair.second; 4144 } 4145 } 4146 // Set order of the user node (reordering of operands and user nodes). 4147 if (BestOrder.empty()) { 4148 for_each(Data.second, 4149 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4150 OrderedEntries.remove(Op.second); 4151 }); 4152 continue; 4153 } 4154 // Erase operands from OrderedEntries list and adjust their orders. 4155 VisitedOps.clear(); 4156 SmallVector<int> Mask; 4157 inversePermutation(BestOrder, Mask); 4158 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4159 unsigned E = BestOrder.size(); 4160 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4161 return I < E ? static_cast<int>(I) : UndefMaskElem; 4162 }); 4163 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4164 TreeEntry *TE = Op.second; 4165 OrderedEntries.remove(TE); 4166 if (!VisitedOps.insert(TE).second) 4167 continue; 4168 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4169 // Just reorder reuses indices. 4170 reorderReuses(TE->ReuseShuffleIndices, Mask); 4171 continue; 4172 } 4173 // Gathers are processed separately. 4174 if (TE->State != TreeEntry::Vectorize) 4175 continue; 4176 assert((BestOrder.size() == TE->ReorderIndices.size() || 4177 TE->ReorderIndices.empty()) && 4178 "Non-matching sizes of user/operand entries."); 4179 reorderOrder(TE->ReorderIndices, Mask); 4180 if (IgnoreReorder && TE == VectorizableTree.front().get()) 4181 IgnoreReorder = false; 4182 } 4183 // For gathers just need to reorder its scalars. 4184 for (TreeEntry *Gather : GatherOps) { 4185 assert(Gather->ReorderIndices.empty() && 4186 "Unexpected reordering of gathers."); 4187 if (!Gather->ReuseShuffleIndices.empty()) { 4188 // Just reorder reuses indices. 4189 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4190 continue; 4191 } 4192 reorderScalars(Gather->Scalars, Mask); 4193 OrderedEntries.remove(Gather); 4194 } 4195 // Reorder operands of the user node and set the ordering for the user 4196 // node itself. 4197 if (Data.first->State != TreeEntry::Vectorize || 4198 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4199 Data.first->getMainOp()) || 4200 Data.first->isAltShuffle()) 4201 Data.first->reorderOperands(Mask); 4202 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4203 Data.first->isAltShuffle()) { 4204 reorderScalars(Data.first->Scalars, Mask); 4205 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4206 if (Data.first->ReuseShuffleIndices.empty() && 4207 !Data.first->ReorderIndices.empty() && 4208 !Data.first->isAltShuffle()) { 4209 // Insert user node to the list to try to sink reordering deeper in 4210 // the graph. 4211 OrderedEntries.insert(Data.first); 4212 } 4213 } else { 4214 reorderOrder(Data.first->ReorderIndices, Mask); 4215 } 4216 } 4217 } 4218 // If the reordering is unnecessary, just remove the reorder. 4219 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4220 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4221 VectorizableTree.front()->ReorderIndices.clear(); 4222 } 4223 4224 void BoUpSLP::buildExternalUses( 4225 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4226 // Collect the values that we need to extract from the tree. 4227 for (auto &TEPtr : VectorizableTree) { 4228 TreeEntry *Entry = TEPtr.get(); 4229 4230 // No need to handle users of gathered values. 4231 if (Entry->State == TreeEntry::NeedToGather) 4232 continue; 4233 4234 // For each lane: 4235 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4236 Value *Scalar = Entry->Scalars[Lane]; 4237 int FoundLane = Entry->findLaneForValue(Scalar); 4238 4239 // Check if the scalar is externally used as an extra arg. 4240 auto ExtI = ExternallyUsedValues.find(Scalar); 4241 if (ExtI != ExternallyUsedValues.end()) { 4242 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4243 << Lane << " from " << *Scalar << ".\n"); 4244 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4245 } 4246 for (User *U : Scalar->users()) { 4247 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4248 4249 Instruction *UserInst = dyn_cast<Instruction>(U); 4250 if (!UserInst) 4251 continue; 4252 4253 if (isDeleted(UserInst)) 4254 continue; 4255 4256 // Skip in-tree scalars that become vectors 4257 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4258 Value *UseScalar = UseEntry->Scalars[0]; 4259 // Some in-tree scalars will remain as scalar in vectorized 4260 // instructions. If that is the case, the one in Lane 0 will 4261 // be used. 4262 if (UseScalar != U || 4263 UseEntry->State == TreeEntry::ScatterVectorize || 4264 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4265 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4266 << ".\n"); 4267 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4268 continue; 4269 } 4270 } 4271 4272 // Ignore users in the user ignore list. 4273 if (UserIgnoreList && UserIgnoreList->contains(UserInst)) 4274 continue; 4275 4276 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4277 << Lane << " from " << *Scalar << ".\n"); 4278 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4279 } 4280 } 4281 } 4282 } 4283 4284 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4285 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4286 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4287 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4288 Value *V = TE->Scalars[Lane]; 4289 // To save compilation time we don't visit if we have too many users. 4290 static constexpr unsigned UsersLimit = 4; 4291 if (V->hasNUsesOrMore(UsersLimit)) 4292 break; 4293 4294 // Collect stores per pointer object. 4295 for (User *U : V->users()) { 4296 auto *SI = dyn_cast<StoreInst>(U); 4297 if (SI == nullptr || !SI->isSimple() || 4298 !isValidElementType(SI->getValueOperand()->getType())) 4299 continue; 4300 // Skip entry if already 4301 if (getTreeEntry(U)) 4302 continue; 4303 4304 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4305 auto &StoresVec = PtrToStoresMap[Ptr]; 4306 // For now just keep one store per pointer object per lane. 4307 // TODO: Extend this to support multiple stores per pointer per lane 4308 if (StoresVec.size() > Lane) 4309 continue; 4310 // Skip if in different BBs. 4311 if (!StoresVec.empty() && 4312 SI->getParent() != StoresVec.back()->getParent()) 4313 continue; 4314 // Make sure that the stores are of the same type. 4315 if (!StoresVec.empty() && 4316 SI->getValueOperand()->getType() != 4317 StoresVec.back()->getValueOperand()->getType()) 4318 continue; 4319 StoresVec.push_back(SI); 4320 } 4321 } 4322 return PtrToStoresMap; 4323 } 4324 4325 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4326 OrdersType &ReorderIndices) const { 4327 // We check whether the stores in StoreVec can form a vector by sorting them 4328 // and checking whether they are consecutive. 4329 4330 // To avoid calling getPointersDiff() while sorting we create a vector of 4331 // pairs {store, offset from first} and sort this instead. 4332 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4333 StoreInst *S0 = StoresVec[0]; 4334 StoreOffsetVec[0] = {S0, 0}; 4335 Type *S0Ty = S0->getValueOperand()->getType(); 4336 Value *S0Ptr = S0->getPointerOperand(); 4337 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4338 StoreInst *SI = StoresVec[Idx]; 4339 Optional<int> Diff = 4340 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4341 SI->getPointerOperand(), *DL, *SE, 4342 /*StrictCheck=*/true); 4343 // We failed to compare the pointers so just abandon this StoresVec. 4344 if (!Diff) 4345 return false; 4346 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4347 } 4348 4349 // Sort the vector based on the pointers. We create a copy because we may 4350 // need the original later for calculating the reorder (shuffle) indices. 4351 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4352 const std::pair<StoreInst *, int> &Pair2) { 4353 int Offset1 = Pair1.second; 4354 int Offset2 = Pair2.second; 4355 return Offset1 < Offset2; 4356 }); 4357 4358 // Check if the stores are consecutive by checking if their difference is 1. 4359 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4360 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4361 return false; 4362 4363 // Calculate the shuffle indices according to their offset against the sorted 4364 // StoreOffsetVec. 4365 ReorderIndices.reserve(StoresVec.size()); 4366 for (StoreInst *SI : StoresVec) { 4367 unsigned Idx = find_if(StoreOffsetVec, 4368 [SI](const std::pair<StoreInst *, int> &Pair) { 4369 return Pair.first == SI; 4370 }) - 4371 StoreOffsetVec.begin(); 4372 ReorderIndices.push_back(Idx); 4373 } 4374 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4375 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4376 // same convention here. 4377 auto IsIdentityOrder = [](const OrdersType &Order) { 4378 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4379 if (Idx != Order[Idx]) 4380 return false; 4381 return true; 4382 }; 4383 if (IsIdentityOrder(ReorderIndices)) 4384 ReorderIndices.clear(); 4385 4386 return true; 4387 } 4388 4389 #ifndef NDEBUG 4390 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4391 for (unsigned Idx : Order) 4392 dbgs() << Idx << ", "; 4393 dbgs() << "\n"; 4394 } 4395 #endif 4396 4397 SmallVector<BoUpSLP::OrdersType, 1> 4398 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4399 unsigned NumLanes = TE->Scalars.size(); 4400 4401 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4402 collectUserStores(TE); 4403 4404 // Holds the reorder indices for each candidate store vector that is a user of 4405 // the current TreeEntry. 4406 SmallVector<OrdersType, 1> ExternalReorderIndices; 4407 4408 // Now inspect the stores collected per pointer and look for vectorization 4409 // candidates. For each candidate calculate the reorder index vector and push 4410 // it into `ExternalReorderIndices` 4411 for (const auto &Pair : PtrToStoresMap) { 4412 auto &StoresVec = Pair.second; 4413 // If we have fewer than NumLanes stores, then we can't form a vector. 4414 if (StoresVec.size() != NumLanes) 4415 continue; 4416 4417 // If the stores are not consecutive then abandon this StoresVec. 4418 OrdersType ReorderIndices; 4419 if (!CanFormVector(StoresVec, ReorderIndices)) 4420 continue; 4421 4422 // We now know that the scalars in StoresVec can form a vector instruction, 4423 // so set the reorder indices. 4424 ExternalReorderIndices.push_back(ReorderIndices); 4425 } 4426 return ExternalReorderIndices; 4427 } 4428 4429 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4430 const SmallDenseSet<Value *> &UserIgnoreLst) { 4431 deleteTree(); 4432 UserIgnoreList = &UserIgnoreLst; 4433 if (!allSameType(Roots)) 4434 return; 4435 buildTree_rec(Roots, 0, EdgeInfo()); 4436 } 4437 4438 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 4439 deleteTree(); 4440 if (!allSameType(Roots)) 4441 return; 4442 buildTree_rec(Roots, 0, EdgeInfo()); 4443 } 4444 4445 /// \return true if the specified list of values has only one instruction that 4446 /// requires scheduling, false otherwise. 4447 #ifndef NDEBUG 4448 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4449 Value *NeedsScheduling = nullptr; 4450 for (Value *V : VL) { 4451 if (doesNotNeedToBeScheduled(V)) 4452 continue; 4453 if (!NeedsScheduling) { 4454 NeedsScheduling = V; 4455 continue; 4456 } 4457 return false; 4458 } 4459 return NeedsScheduling; 4460 } 4461 #endif 4462 4463 /// Generates key/subkey pair for the given value to provide effective sorting 4464 /// of the values and better detection of the vectorizable values sequences. The 4465 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4466 /// and in values subgroups (subkeys). 4467 static std::pair<size_t, size_t> generateKeySubkey( 4468 Value *V, const TargetLibraryInfo *TLI, 4469 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4470 bool AllowAlternate) { 4471 hash_code Key = hash_value(V->getValueID() + 2); 4472 hash_code SubKey = hash_value(0); 4473 // Sort the loads by the distance between the pointers. 4474 if (auto *LI = dyn_cast<LoadInst>(V)) { 4475 Key = hash_combine(hash_value(Instruction::Load), Key); 4476 if (LI->isSimple()) 4477 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4478 else 4479 SubKey = hash_value(LI); 4480 } else if (isVectorLikeInstWithConstOps(V)) { 4481 // Sort extracts by the vector operands. 4482 if (isa<ExtractElementInst, UndefValue>(V)) 4483 Key = hash_value(Value::UndefValueVal + 1); 4484 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4485 if (!isUndefVector(EI->getVectorOperand()) && 4486 !isa<UndefValue>(EI->getIndexOperand())) 4487 SubKey = hash_value(EI->getVectorOperand()); 4488 } 4489 } else if (auto *I = dyn_cast<Instruction>(V)) { 4490 // Sort other instructions just by the opcodes except for CMPInst. 4491 // For CMP also sort by the predicate kind. 4492 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4493 isValidForAlternation(I->getOpcode())) { 4494 if (AllowAlternate) 4495 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4496 else 4497 Key = hash_combine(hash_value(I->getOpcode()), Key); 4498 SubKey = hash_combine( 4499 hash_value(I->getOpcode()), hash_value(I->getType()), 4500 hash_value(isa<BinaryOperator>(I) 4501 ? I->getType() 4502 : cast<CastInst>(I)->getOperand(0)->getType())); 4503 // For casts, look through the only operand to improve compile time. 4504 if (isa<CastInst>(I)) { 4505 std::pair<size_t, size_t> OpVals = 4506 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, 4507 /*=AllowAlternate*/ true); 4508 Key = hash_combine(OpVals.first, Key); 4509 SubKey = hash_combine(OpVals.first, SubKey); 4510 } 4511 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4512 CmpInst::Predicate Pred = CI->getPredicate(); 4513 if (CI->isCommutative()) 4514 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4515 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4516 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4517 hash_value(SwapPred), 4518 hash_value(CI->getOperand(0)->getType())); 4519 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4520 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4521 if (isTriviallyVectorizable(ID)) { 4522 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4523 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { 4524 SubKey = hash_combine(hash_value(I->getOpcode()), 4525 hash_value(Call->getCalledFunction())); 4526 } else { 4527 Key = hash_combine(hash_value(Call), Key); 4528 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4529 } 4530 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4531 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4532 hash_value(Op.Tag), SubKey); 4533 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4534 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4535 SubKey = hash_value(Gep->getPointerOperand()); 4536 else 4537 SubKey = hash_value(Gep); 4538 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4539 !isa<ConstantInt>(I->getOperand(1))) { 4540 // Do not try to vectorize instructions with potentially high cost. 4541 SubKey = hash_value(I); 4542 } else { 4543 SubKey = hash_value(I->getOpcode()); 4544 } 4545 Key = hash_combine(hash_value(I->getParent()), Key); 4546 } 4547 return std::make_pair(Key, SubKey); 4548 } 4549 4550 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4551 const EdgeInfo &UserTreeIdx) { 4552 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4553 4554 SmallVector<int> ReuseShuffleIndicies; 4555 SmallVector<Value *> UniqueValues; 4556 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4557 &UserTreeIdx, 4558 this](const InstructionsState &S) { 4559 // Check that every instruction appears once in this bundle. 4560 DenseMap<Value *, unsigned> UniquePositions; 4561 for (Value *V : VL) { 4562 if (isConstant(V)) { 4563 ReuseShuffleIndicies.emplace_back( 4564 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4565 UniqueValues.emplace_back(V); 4566 continue; 4567 } 4568 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4569 ReuseShuffleIndicies.emplace_back(Res.first->second); 4570 if (Res.second) 4571 UniqueValues.emplace_back(V); 4572 } 4573 size_t NumUniqueScalarValues = UniqueValues.size(); 4574 if (NumUniqueScalarValues == VL.size()) { 4575 ReuseShuffleIndicies.clear(); 4576 } else { 4577 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4578 if (NumUniqueScalarValues <= 1 || 4579 (UniquePositions.size() == 1 && all_of(UniqueValues, 4580 [](Value *V) { 4581 return isa<UndefValue>(V) || 4582 !isConstant(V); 4583 })) || 4584 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4585 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4586 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4587 return false; 4588 } 4589 VL = UniqueValues; 4590 } 4591 return true; 4592 }; 4593 4594 InstructionsState S = getSameOpcode(VL); 4595 if (Depth == RecursionMaxDepth) { 4596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4597 if (TryToFindDuplicates(S)) 4598 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4599 ReuseShuffleIndicies); 4600 return; 4601 } 4602 4603 // Don't handle scalable vectors 4604 if (S.getOpcode() == Instruction::ExtractElement && 4605 isa<ScalableVectorType>( 4606 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4607 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4608 if (TryToFindDuplicates(S)) 4609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4610 ReuseShuffleIndicies); 4611 return; 4612 } 4613 4614 // Don't handle vectors. 4615 if (S.OpValue->getType()->isVectorTy() && 4616 !isa<InsertElementInst>(S.OpValue)) { 4617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4619 return; 4620 } 4621 4622 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4623 if (SI->getValueOperand()->getType()->isVectorTy()) { 4624 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4626 return; 4627 } 4628 4629 // If all of the operands are identical or constant we have a simple solution. 4630 // If we deal with insert/extract instructions, they all must have constant 4631 // indices, otherwise we should gather them, not try to vectorize. 4632 // If alternate op node with 2 elements with gathered operands - do not 4633 // vectorize. 4634 auto &&NotProfitableForVectorization = [&S, this, 4635 Depth](ArrayRef<Value *> VL) { 4636 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4637 return false; 4638 if (VectorizableTree.size() < MinTreeSize) 4639 return false; 4640 if (Depth >= RecursionMaxDepth - 1) 4641 return true; 4642 // Check if all operands are extracts, part of vector node or can build a 4643 // regular vectorize node. 4644 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4645 for (Value *V : VL) { 4646 auto *I = cast<Instruction>(V); 4647 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4648 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4649 })); 4650 } 4651 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4652 if ((IsCommutative && 4653 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4654 (!IsCommutative && 4655 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4656 return true; 4657 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4658 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4659 auto *I1 = cast<Instruction>(VL.front()); 4660 auto *I2 = cast<Instruction>(VL.back()); 4661 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4662 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4663 I2->getOperand(Op)); 4664 if (static_cast<unsigned>(count_if( 4665 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4666 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4667 })) >= S.MainOp->getNumOperands() / 2) 4668 return false; 4669 if (S.MainOp->getNumOperands() > 2) 4670 return true; 4671 if (IsCommutative) { 4672 // Check permuted operands. 4673 Candidates.clear(); 4674 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4675 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4676 I2->getOperand((Op + 1) % E)); 4677 if (any_of( 4678 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4679 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4680 })) 4681 return false; 4682 } 4683 return true; 4684 }; 4685 SmallVector<unsigned> SortedIndices; 4686 BasicBlock *BB = nullptr; 4687 bool AreAllSameInsts = 4688 (S.getOpcode() && allSameBlock(VL)) || 4689 (S.OpValue->getType()->isPointerTy() && UserTreeIdx.UserTE && 4690 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize && 4691 VL.size() > 2 && 4692 all_of(VL, 4693 [&BB](Value *V) { 4694 auto *I = dyn_cast<GetElementPtrInst>(V); 4695 if (!I) 4696 return doesNotNeedToBeScheduled(V); 4697 if (!BB) 4698 BB = I->getParent(); 4699 return BB == I->getParent() && I->getNumOperands() == 2; 4700 }) && 4701 BB && 4702 sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, 4703 SortedIndices)); 4704 if (allConstant(VL) || isSplat(VL) || !AreAllSameInsts || 4705 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( 4706 S.OpValue) && 4707 !all_of(VL, isVectorLikeInstWithConstOps)) || 4708 NotProfitableForVectorization(VL)) { 4709 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4710 if (TryToFindDuplicates(S)) 4711 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4712 ReuseShuffleIndicies); 4713 return; 4714 } 4715 4716 // We now know that this is a vector of instructions of the same type from 4717 // the same block. 4718 4719 // Don't vectorize ephemeral values. 4720 if (!EphValues.empty()) { 4721 for (Value *V : VL) { 4722 if (EphValues.count(V)) { 4723 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4724 << ") is ephemeral.\n"); 4725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4726 return; 4727 } 4728 } 4729 } 4730 4731 // Check if this is a duplicate of another entry. 4732 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4733 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4734 if (!E->isSame(VL)) { 4735 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4736 if (TryToFindDuplicates(S)) 4737 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4738 ReuseShuffleIndicies); 4739 return; 4740 } 4741 // Record the reuse of the tree node. FIXME, currently this is only used to 4742 // properly draw the graph rather than for the actual vectorization. 4743 E->UserTreeIndices.push_back(UserTreeIdx); 4744 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4745 << ".\n"); 4746 return; 4747 } 4748 4749 // Check that none of the instructions in the bundle are already in the tree. 4750 for (Value *V : VL) { 4751 auto *I = dyn_cast<Instruction>(V); 4752 if (!I) 4753 continue; 4754 if (getTreeEntry(I)) { 4755 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4756 << ") is already in tree.\n"); 4757 if (TryToFindDuplicates(S)) 4758 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4759 ReuseShuffleIndicies); 4760 return; 4761 } 4762 } 4763 4764 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4765 if (UserIgnoreList && !UserIgnoreList->empty()) { 4766 for (Value *V : VL) { 4767 if (UserIgnoreList && UserIgnoreList->contains(V)) { 4768 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4769 if (TryToFindDuplicates(S)) 4770 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4771 ReuseShuffleIndicies); 4772 return; 4773 } 4774 } 4775 } 4776 4777 // Special processing for sorted pointers for ScatterVectorize node with 4778 // constant indeces only. 4779 if (AreAllSameInsts && !(S.getOpcode() && allSameBlock(VL)) && 4780 UserTreeIdx.UserTE && 4781 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize) { 4782 assert(S.OpValue->getType()->isPointerTy() && 4783 count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 4784 2 && 4785 "Expected pointers only."); 4786 // Reset S to make it GetElementPtr kind of node. 4787 const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 4788 assert(It != VL.end() && "Expected at least one GEP."); 4789 S = getSameOpcode(*It); 4790 } 4791 4792 // Check that all of the users of the scalars that we want to vectorize are 4793 // schedulable. 4794 auto *VL0 = cast<Instruction>(S.OpValue); 4795 BB = VL0->getParent(); 4796 4797 if (!DT->isReachableFromEntry(BB)) { 4798 // Don't go into unreachable blocks. They may contain instructions with 4799 // dependency cycles which confuse the final scheduling. 4800 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4802 return; 4803 } 4804 4805 // Check that every instruction appears once in this bundle. 4806 if (!TryToFindDuplicates(S)) 4807 return; 4808 4809 auto &BSRef = BlocksSchedules[BB]; 4810 if (!BSRef) 4811 BSRef = std::make_unique<BlockScheduling>(BB); 4812 4813 BlockScheduling &BS = *BSRef; 4814 4815 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4816 #ifdef EXPENSIVE_CHECKS 4817 // Make sure we didn't break any internal invariants 4818 BS.verify(); 4819 #endif 4820 if (!Bundle) { 4821 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4822 assert((!BS.getScheduleData(VL0) || 4823 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4824 "tryScheduleBundle should cancelScheduling on failure"); 4825 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4826 ReuseShuffleIndicies); 4827 return; 4828 } 4829 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4830 4831 unsigned ShuffleOrOp = S.isAltShuffle() ? 4832 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4833 switch (ShuffleOrOp) { 4834 case Instruction::PHI: { 4835 auto *PH = cast<PHINode>(VL0); 4836 4837 // Check for terminator values (e.g. invoke). 4838 for (Value *V : VL) 4839 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4840 Instruction *Term = dyn_cast<Instruction>(Incoming); 4841 if (Term && Term->isTerminator()) { 4842 LLVM_DEBUG(dbgs() 4843 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4844 BS.cancelScheduling(VL, VL0); 4845 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4846 ReuseShuffleIndicies); 4847 return; 4848 } 4849 } 4850 4851 TreeEntry *TE = 4852 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4853 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4854 4855 // Keeps the reordered operands to avoid code duplication. 4856 SmallVector<ValueList, 2> OperandsVec; 4857 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4858 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4859 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4860 TE->setOperand(I, Operands); 4861 OperandsVec.push_back(Operands); 4862 continue; 4863 } 4864 ValueList Operands; 4865 // Prepare the operand vector. 4866 for (Value *V : VL) 4867 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4868 PH->getIncomingBlock(I))); 4869 TE->setOperand(I, Operands); 4870 OperandsVec.push_back(Operands); 4871 } 4872 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4873 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4874 return; 4875 } 4876 case Instruction::ExtractValue: 4877 case Instruction::ExtractElement: { 4878 OrdersType CurrentOrder; 4879 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4880 if (Reuse) { 4881 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4882 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4883 ReuseShuffleIndicies); 4884 // This is a special case, as it does not gather, but at the same time 4885 // we are not extending buildTree_rec() towards the operands. 4886 ValueList Op0; 4887 Op0.assign(VL.size(), VL0->getOperand(0)); 4888 VectorizableTree.back()->setOperand(0, Op0); 4889 return; 4890 } 4891 if (!CurrentOrder.empty()) { 4892 LLVM_DEBUG({ 4893 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4894 "with order"; 4895 for (unsigned Idx : CurrentOrder) 4896 dbgs() << " " << Idx; 4897 dbgs() << "\n"; 4898 }); 4899 fixupOrderingIndices(CurrentOrder); 4900 // Insert new order with initial value 0, if it does not exist, 4901 // otherwise return the iterator to the existing one. 4902 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4903 ReuseShuffleIndicies, CurrentOrder); 4904 // This is a special case, as it does not gather, but at the same time 4905 // we are not extending buildTree_rec() towards the operands. 4906 ValueList Op0; 4907 Op0.assign(VL.size(), VL0->getOperand(0)); 4908 VectorizableTree.back()->setOperand(0, Op0); 4909 return; 4910 } 4911 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4912 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4913 ReuseShuffleIndicies); 4914 BS.cancelScheduling(VL, VL0); 4915 return; 4916 } 4917 case Instruction::InsertElement: { 4918 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4919 4920 // Check that we have a buildvector and not a shuffle of 2 or more 4921 // different vectors. 4922 ValueSet SourceVectors; 4923 for (Value *V : VL) { 4924 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4925 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4926 } 4927 4928 if (count_if(VL, [&SourceVectors](Value *V) { 4929 return !SourceVectors.contains(V); 4930 }) >= 2) { 4931 // Found 2nd source vector - cancel. 4932 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4933 "different source vectors.\n"); 4934 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4935 BS.cancelScheduling(VL, VL0); 4936 return; 4937 } 4938 4939 auto OrdCompare = [](const std::pair<int, int> &P1, 4940 const std::pair<int, int> &P2) { 4941 return P1.first > P2.first; 4942 }; 4943 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4944 decltype(OrdCompare)> 4945 Indices(OrdCompare); 4946 for (int I = 0, E = VL.size(); I < E; ++I) { 4947 unsigned Idx = *getInsertIndex(VL[I]); 4948 Indices.emplace(Idx, I); 4949 } 4950 OrdersType CurrentOrder(VL.size(), VL.size()); 4951 bool IsIdentity = true; 4952 for (int I = 0, E = VL.size(); I < E; ++I) { 4953 CurrentOrder[Indices.top().second] = I; 4954 IsIdentity &= Indices.top().second == I; 4955 Indices.pop(); 4956 } 4957 if (IsIdentity) 4958 CurrentOrder.clear(); 4959 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4960 None, CurrentOrder); 4961 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4962 4963 constexpr int NumOps = 2; 4964 ValueList VectorOperands[NumOps]; 4965 for (int I = 0; I < NumOps; ++I) { 4966 for (Value *V : VL) 4967 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4968 4969 TE->setOperand(I, VectorOperands[I]); 4970 } 4971 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4972 return; 4973 } 4974 case Instruction::Load: { 4975 // Check that a vectorized load would load the same memory as a scalar 4976 // load. For example, we don't want to vectorize loads that are smaller 4977 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4978 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4979 // from such a struct, we read/write packed bits disagreeing with the 4980 // unvectorized version. 4981 SmallVector<Value *> PointerOps; 4982 OrdersType CurrentOrder; 4983 TreeEntry *TE = nullptr; 4984 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, CurrentOrder, 4985 PointerOps)) { 4986 case LoadsState::Vectorize: 4987 if (CurrentOrder.empty()) { 4988 // Original loads are consecutive and does not require reordering. 4989 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4990 ReuseShuffleIndicies); 4991 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4992 } else { 4993 fixupOrderingIndices(CurrentOrder); 4994 // Need to reorder. 4995 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4996 ReuseShuffleIndicies, CurrentOrder); 4997 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4998 } 4999 TE->setOperandsInOrder(); 5000 break; 5001 case LoadsState::ScatterVectorize: 5002 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 5003 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 5004 UserTreeIdx, ReuseShuffleIndicies); 5005 TE->setOperandsInOrder(); 5006 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 5007 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 5008 break; 5009 case LoadsState::Gather: 5010 BS.cancelScheduling(VL, VL0); 5011 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5012 ReuseShuffleIndicies); 5013 #ifndef NDEBUG 5014 Type *ScalarTy = VL0->getType(); 5015 if (DL->getTypeSizeInBits(ScalarTy) != 5016 DL->getTypeAllocSizeInBits(ScalarTy)) 5017 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 5018 else if (any_of(VL, [](Value *V) { 5019 return !cast<LoadInst>(V)->isSimple(); 5020 })) 5021 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 5022 else 5023 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 5024 #endif // NDEBUG 5025 break; 5026 } 5027 return; 5028 } 5029 case Instruction::ZExt: 5030 case Instruction::SExt: 5031 case Instruction::FPToUI: 5032 case Instruction::FPToSI: 5033 case Instruction::FPExt: 5034 case Instruction::PtrToInt: 5035 case Instruction::IntToPtr: 5036 case Instruction::SIToFP: 5037 case Instruction::UIToFP: 5038 case Instruction::Trunc: 5039 case Instruction::FPTrunc: 5040 case Instruction::BitCast: { 5041 Type *SrcTy = VL0->getOperand(0)->getType(); 5042 for (Value *V : VL) { 5043 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 5044 if (Ty != SrcTy || !isValidElementType(Ty)) { 5045 BS.cancelScheduling(VL, VL0); 5046 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5047 ReuseShuffleIndicies); 5048 LLVM_DEBUG(dbgs() 5049 << "SLP: Gathering casts with different src types.\n"); 5050 return; 5051 } 5052 } 5053 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5054 ReuseShuffleIndicies); 5055 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 5056 5057 TE->setOperandsInOrder(); 5058 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5059 ValueList Operands; 5060 // Prepare the operand vector. 5061 for (Value *V : VL) 5062 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5063 5064 buildTree_rec(Operands, Depth + 1, {TE, i}); 5065 } 5066 return; 5067 } 5068 case Instruction::ICmp: 5069 case Instruction::FCmp: { 5070 // Check that all of the compares have the same predicate. 5071 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5072 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 5073 Type *ComparedTy = VL0->getOperand(0)->getType(); 5074 for (Value *V : VL) { 5075 CmpInst *Cmp = cast<CmpInst>(V); 5076 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 5077 Cmp->getOperand(0)->getType() != ComparedTy) { 5078 BS.cancelScheduling(VL, VL0); 5079 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5080 ReuseShuffleIndicies); 5081 LLVM_DEBUG(dbgs() 5082 << "SLP: Gathering cmp with different predicate.\n"); 5083 return; 5084 } 5085 } 5086 5087 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5088 ReuseShuffleIndicies); 5089 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 5090 5091 ValueList Left, Right; 5092 if (cast<CmpInst>(VL0)->isCommutative()) { 5093 // Commutative predicate - collect + sort operands of the instructions 5094 // so that each side is more likely to have the same opcode. 5095 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 5096 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5097 } else { 5098 // Collect operands - commute if it uses the swapped predicate. 5099 for (Value *V : VL) { 5100 auto *Cmp = cast<CmpInst>(V); 5101 Value *LHS = Cmp->getOperand(0); 5102 Value *RHS = Cmp->getOperand(1); 5103 if (Cmp->getPredicate() != P0) 5104 std::swap(LHS, RHS); 5105 Left.push_back(LHS); 5106 Right.push_back(RHS); 5107 } 5108 } 5109 TE->setOperand(0, Left); 5110 TE->setOperand(1, Right); 5111 buildTree_rec(Left, Depth + 1, {TE, 0}); 5112 buildTree_rec(Right, Depth + 1, {TE, 1}); 5113 return; 5114 } 5115 case Instruction::Select: 5116 case Instruction::FNeg: 5117 case Instruction::Add: 5118 case Instruction::FAdd: 5119 case Instruction::Sub: 5120 case Instruction::FSub: 5121 case Instruction::Mul: 5122 case Instruction::FMul: 5123 case Instruction::UDiv: 5124 case Instruction::SDiv: 5125 case Instruction::FDiv: 5126 case Instruction::URem: 5127 case Instruction::SRem: 5128 case Instruction::FRem: 5129 case Instruction::Shl: 5130 case Instruction::LShr: 5131 case Instruction::AShr: 5132 case Instruction::And: 5133 case Instruction::Or: 5134 case Instruction::Xor: { 5135 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5136 ReuseShuffleIndicies); 5137 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 5138 5139 // Sort operands of the instructions so that each side is more likely to 5140 // have the same opcode. 5141 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5142 ValueList Left, Right; 5143 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5144 TE->setOperand(0, Left); 5145 TE->setOperand(1, Right); 5146 buildTree_rec(Left, Depth + 1, {TE, 0}); 5147 buildTree_rec(Right, Depth + 1, {TE, 1}); 5148 return; 5149 } 5150 5151 TE->setOperandsInOrder(); 5152 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5153 ValueList Operands; 5154 // Prepare the operand vector. 5155 for (Value *V : VL) 5156 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5157 5158 buildTree_rec(Operands, Depth + 1, {TE, i}); 5159 } 5160 return; 5161 } 5162 case Instruction::GetElementPtr: { 5163 // We don't combine GEPs with complicated (nested) indexing. 5164 for (Value *V : VL) { 5165 auto *I = dyn_cast<GetElementPtrInst>(V); 5166 if (!I) 5167 continue; 5168 if (I->getNumOperands() != 2) { 5169 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5170 BS.cancelScheduling(VL, VL0); 5171 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5172 ReuseShuffleIndicies); 5173 return; 5174 } 5175 } 5176 5177 // We can't combine several GEPs into one vector if they operate on 5178 // different types. 5179 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5180 for (Value *V : VL) { 5181 auto *GEP = dyn_cast<GEPOperator>(V); 5182 if (!GEP) 5183 continue; 5184 Type *CurTy = GEP->getSourceElementType(); 5185 if (Ty0 != CurTy) { 5186 LLVM_DEBUG(dbgs() 5187 << "SLP: not-vectorizable GEP (different types).\n"); 5188 BS.cancelScheduling(VL, VL0); 5189 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5190 ReuseShuffleIndicies); 5191 return; 5192 } 5193 } 5194 5195 bool IsScatterUser = 5196 UserTreeIdx.UserTE && 5197 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; 5198 // We don't combine GEPs with non-constant indexes. 5199 Type *Ty1 = VL0->getOperand(1)->getType(); 5200 for (Value *V : VL) { 5201 auto *I = dyn_cast<GetElementPtrInst>(V); 5202 if (!I) 5203 continue; 5204 auto *Op = I->getOperand(1); 5205 if ((!IsScatterUser && !isa<ConstantInt>(Op)) || 5206 (Op->getType() != Ty1 && 5207 ((IsScatterUser && !isa<ConstantInt>(Op)) || 5208 Op->getType()->getScalarSizeInBits() > 5209 DL->getIndexSizeInBits( 5210 V->getType()->getPointerAddressSpace())))) { 5211 LLVM_DEBUG(dbgs() 5212 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5213 BS.cancelScheduling(VL, VL0); 5214 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5215 ReuseShuffleIndicies); 5216 return; 5217 } 5218 } 5219 5220 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5221 ReuseShuffleIndicies); 5222 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5223 SmallVector<ValueList, 2> Operands(2); 5224 // Prepare the operand vector for pointer operands. 5225 for (Value *V : VL) { 5226 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5227 if (!GEP) { 5228 Operands.front().push_back(V); 5229 continue; 5230 } 5231 Operands.front().push_back(GEP->getPointerOperand()); 5232 } 5233 TE->setOperand(0, Operands.front()); 5234 // Need to cast all indices to the same type before vectorization to 5235 // avoid crash. 5236 // Required to be able to find correct matches between different gather 5237 // nodes and reuse the vectorized values rather than trying to gather them 5238 // again. 5239 int IndexIdx = 1; 5240 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5241 Type *Ty = all_of(VL, 5242 [VL0Ty, IndexIdx](Value *V) { 5243 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5244 if (!GEP) 5245 return true; 5246 return VL0Ty == GEP->getOperand(IndexIdx)->getType(); 5247 }) 5248 ? VL0Ty 5249 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5250 ->getPointerOperandType() 5251 ->getScalarType()); 5252 // Prepare the operand vector. 5253 for (Value *V : VL) { 5254 auto *I = dyn_cast<GetElementPtrInst>(V); 5255 if (!I) { 5256 Operands.back().push_back( 5257 ConstantInt::get(Ty, 0, /*isSigned=*/false)); 5258 continue; 5259 } 5260 auto *Op = I->getOperand(IndexIdx); 5261 auto *CI = dyn_cast<ConstantInt>(Op); 5262 if (!CI) 5263 Operands.back().push_back(Op); 5264 else 5265 Operands.back().push_back(ConstantExpr::getIntegerCast( 5266 CI, Ty, CI->getValue().isSignBitSet())); 5267 } 5268 TE->setOperand(IndexIdx, Operands.back()); 5269 5270 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5271 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5272 return; 5273 } 5274 case Instruction::Store: { 5275 // Check if the stores are consecutive or if we need to swizzle them. 5276 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5277 // Avoid types that are padded when being allocated as scalars, while 5278 // being packed together in a vector (such as i1). 5279 if (DL->getTypeSizeInBits(ScalarTy) != 5280 DL->getTypeAllocSizeInBits(ScalarTy)) { 5281 BS.cancelScheduling(VL, VL0); 5282 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5283 ReuseShuffleIndicies); 5284 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5285 return; 5286 } 5287 // Make sure all stores in the bundle are simple - we can't vectorize 5288 // atomic or volatile stores. 5289 SmallVector<Value *, 4> PointerOps(VL.size()); 5290 ValueList Operands(VL.size()); 5291 auto POIter = PointerOps.begin(); 5292 auto OIter = Operands.begin(); 5293 for (Value *V : VL) { 5294 auto *SI = cast<StoreInst>(V); 5295 if (!SI->isSimple()) { 5296 BS.cancelScheduling(VL, VL0); 5297 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5298 ReuseShuffleIndicies); 5299 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5300 return; 5301 } 5302 *POIter = SI->getPointerOperand(); 5303 *OIter = SI->getValueOperand(); 5304 ++POIter; 5305 ++OIter; 5306 } 5307 5308 OrdersType CurrentOrder; 5309 // Check the order of pointer operands. 5310 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5311 Value *Ptr0; 5312 Value *PtrN; 5313 if (CurrentOrder.empty()) { 5314 Ptr0 = PointerOps.front(); 5315 PtrN = PointerOps.back(); 5316 } else { 5317 Ptr0 = PointerOps[CurrentOrder.front()]; 5318 PtrN = PointerOps[CurrentOrder.back()]; 5319 } 5320 Optional<int> Dist = 5321 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5322 // Check that the sorted pointer operands are consecutive. 5323 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5324 if (CurrentOrder.empty()) { 5325 // Original stores are consecutive and does not require reordering. 5326 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5327 UserTreeIdx, ReuseShuffleIndicies); 5328 TE->setOperandsInOrder(); 5329 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5330 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5331 } else { 5332 fixupOrderingIndices(CurrentOrder); 5333 TreeEntry *TE = 5334 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5335 ReuseShuffleIndicies, CurrentOrder); 5336 TE->setOperandsInOrder(); 5337 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5338 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5339 } 5340 return; 5341 } 5342 } 5343 5344 BS.cancelScheduling(VL, VL0); 5345 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5346 ReuseShuffleIndicies); 5347 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5348 return; 5349 } 5350 case Instruction::Call: { 5351 // Check if the calls are all to the same vectorizable intrinsic or 5352 // library function. 5353 CallInst *CI = cast<CallInst>(VL0); 5354 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5355 5356 VFShape Shape = VFShape::get( 5357 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5358 false /*HasGlobalPred*/); 5359 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5360 5361 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5362 BS.cancelScheduling(VL, VL0); 5363 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5364 ReuseShuffleIndicies); 5365 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5366 return; 5367 } 5368 Function *F = CI->getCalledFunction(); 5369 unsigned NumArgs = CI->arg_size(); 5370 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5371 for (unsigned j = 0; j != NumArgs; ++j) 5372 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5373 ScalarArgs[j] = CI->getArgOperand(j); 5374 for (Value *V : VL) { 5375 CallInst *CI2 = dyn_cast<CallInst>(V); 5376 if (!CI2 || CI2->getCalledFunction() != F || 5377 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5378 (VecFunc && 5379 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5380 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5381 BS.cancelScheduling(VL, VL0); 5382 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5383 ReuseShuffleIndicies); 5384 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5385 << "\n"); 5386 return; 5387 } 5388 // Some intrinsics have scalar arguments and should be same in order for 5389 // them to be vectorized. 5390 for (unsigned j = 0; j != NumArgs; ++j) { 5391 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5392 Value *A1J = CI2->getArgOperand(j); 5393 if (ScalarArgs[j] != A1J) { 5394 BS.cancelScheduling(VL, VL0); 5395 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5396 ReuseShuffleIndicies); 5397 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5398 << " argument " << ScalarArgs[j] << "!=" << A1J 5399 << "\n"); 5400 return; 5401 } 5402 } 5403 } 5404 // Verify that the bundle operands are identical between the two calls. 5405 if (CI->hasOperandBundles() && 5406 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5407 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5408 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5409 BS.cancelScheduling(VL, VL0); 5410 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5411 ReuseShuffleIndicies); 5412 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5413 << *CI << "!=" << *V << '\n'); 5414 return; 5415 } 5416 } 5417 5418 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5419 ReuseShuffleIndicies); 5420 TE->setOperandsInOrder(); 5421 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5422 // For scalar operands no need to to create an entry since no need to 5423 // vectorize it. 5424 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5425 continue; 5426 ValueList Operands; 5427 // Prepare the operand vector. 5428 for (Value *V : VL) { 5429 auto *CI2 = cast<CallInst>(V); 5430 Operands.push_back(CI2->getArgOperand(i)); 5431 } 5432 buildTree_rec(Operands, Depth + 1, {TE, i}); 5433 } 5434 return; 5435 } 5436 case Instruction::ShuffleVector: { 5437 // If this is not an alternate sequence of opcode like add-sub 5438 // then do not vectorize this instruction. 5439 if (!S.isAltShuffle()) { 5440 BS.cancelScheduling(VL, VL0); 5441 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5442 ReuseShuffleIndicies); 5443 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5444 return; 5445 } 5446 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5447 ReuseShuffleIndicies); 5448 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5449 5450 // Reorder operands if reordering would enable vectorization. 5451 auto *CI = dyn_cast<CmpInst>(VL0); 5452 if (isa<BinaryOperator>(VL0) || CI) { 5453 ValueList Left, Right; 5454 if (!CI || all_of(VL, [](Value *V) { 5455 return cast<CmpInst>(V)->isCommutative(); 5456 })) { 5457 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5458 } else { 5459 CmpInst::Predicate P0 = CI->getPredicate(); 5460 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5461 assert(P0 != AltP0 && 5462 "Expected different main/alternate predicates."); 5463 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5464 Value *BaseOp0 = VL0->getOperand(0); 5465 Value *BaseOp1 = VL0->getOperand(1); 5466 // Collect operands - commute if it uses the swapped predicate or 5467 // alternate operation. 5468 for (Value *V : VL) { 5469 auto *Cmp = cast<CmpInst>(V); 5470 Value *LHS = Cmp->getOperand(0); 5471 Value *RHS = Cmp->getOperand(1); 5472 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5473 if (P0 == AltP0Swapped) { 5474 if (CI != Cmp && S.AltOp != Cmp && 5475 ((P0 == CurrentPred && 5476 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5477 (AltP0 == CurrentPred && 5478 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5479 std::swap(LHS, RHS); 5480 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5481 std::swap(LHS, RHS); 5482 } 5483 Left.push_back(LHS); 5484 Right.push_back(RHS); 5485 } 5486 } 5487 TE->setOperand(0, Left); 5488 TE->setOperand(1, Right); 5489 buildTree_rec(Left, Depth + 1, {TE, 0}); 5490 buildTree_rec(Right, Depth + 1, {TE, 1}); 5491 return; 5492 } 5493 5494 TE->setOperandsInOrder(); 5495 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5496 ValueList Operands; 5497 // Prepare the operand vector. 5498 for (Value *V : VL) 5499 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5500 5501 buildTree_rec(Operands, Depth + 1, {TE, i}); 5502 } 5503 return; 5504 } 5505 default: 5506 BS.cancelScheduling(VL, VL0); 5507 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5508 ReuseShuffleIndicies); 5509 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5510 return; 5511 } 5512 } 5513 5514 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5515 unsigned N = 1; 5516 Type *EltTy = T; 5517 5518 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5519 isa<VectorType>(EltTy)) { 5520 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5521 // Check that struct is homogeneous. 5522 for (const auto *Ty : ST->elements()) 5523 if (Ty != *ST->element_begin()) 5524 return 0; 5525 N *= ST->getNumElements(); 5526 EltTy = *ST->element_begin(); 5527 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5528 N *= AT->getNumElements(); 5529 EltTy = AT->getElementType(); 5530 } else { 5531 auto *VT = cast<FixedVectorType>(EltTy); 5532 N *= VT->getNumElements(); 5533 EltTy = VT->getElementType(); 5534 } 5535 } 5536 5537 if (!isValidElementType(EltTy)) 5538 return 0; 5539 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5540 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5541 return 0; 5542 return N; 5543 } 5544 5545 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5546 SmallVectorImpl<unsigned> &CurrentOrder) const { 5547 const auto *It = find_if(VL, [](Value *V) { 5548 return isa<ExtractElementInst, ExtractValueInst>(V); 5549 }); 5550 assert(It != VL.end() && "Expected at least one extract instruction."); 5551 auto *E0 = cast<Instruction>(*It); 5552 assert(all_of(VL, 5553 [](Value *V) { 5554 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5555 V); 5556 }) && 5557 "Invalid opcode"); 5558 // Check if all of the extracts come from the same vector and from the 5559 // correct offset. 5560 Value *Vec = E0->getOperand(0); 5561 5562 CurrentOrder.clear(); 5563 5564 // We have to extract from a vector/aggregate with the same number of elements. 5565 unsigned NElts; 5566 if (E0->getOpcode() == Instruction::ExtractValue) { 5567 const DataLayout &DL = E0->getModule()->getDataLayout(); 5568 NElts = canMapToVector(Vec->getType(), DL); 5569 if (!NElts) 5570 return false; 5571 // Check if load can be rewritten as load of vector. 5572 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5573 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5574 return false; 5575 } else { 5576 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5577 } 5578 5579 if (NElts != VL.size()) 5580 return false; 5581 5582 // Check that all of the indices extract from the correct offset. 5583 bool ShouldKeepOrder = true; 5584 unsigned E = VL.size(); 5585 // Assign to all items the initial value E + 1 so we can check if the extract 5586 // instruction index was used already. 5587 // Also, later we can check that all the indices are used and we have a 5588 // consecutive access in the extract instructions, by checking that no 5589 // element of CurrentOrder still has value E + 1. 5590 CurrentOrder.assign(E, E); 5591 unsigned I = 0; 5592 for (; I < E; ++I) { 5593 auto *Inst = dyn_cast<Instruction>(VL[I]); 5594 if (!Inst) 5595 continue; 5596 if (Inst->getOperand(0) != Vec) 5597 break; 5598 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5599 if (isa<UndefValue>(EE->getIndexOperand())) 5600 continue; 5601 Optional<unsigned> Idx = getExtractIndex(Inst); 5602 if (!Idx) 5603 break; 5604 const unsigned ExtIdx = *Idx; 5605 if (ExtIdx != I) { 5606 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5607 break; 5608 ShouldKeepOrder = false; 5609 CurrentOrder[ExtIdx] = I; 5610 } else { 5611 if (CurrentOrder[I] != E) 5612 break; 5613 CurrentOrder[I] = I; 5614 } 5615 } 5616 if (I < E) { 5617 CurrentOrder.clear(); 5618 return false; 5619 } 5620 if (ShouldKeepOrder) 5621 CurrentOrder.clear(); 5622 5623 return ShouldKeepOrder; 5624 } 5625 5626 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5627 ArrayRef<Value *> VectorizedVals) const { 5628 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5629 all_of(I->users(), [this](User *U) { 5630 return ScalarToTreeEntry.count(U) > 0 || 5631 isVectorLikeInstWithConstOps(U) || 5632 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5633 }); 5634 } 5635 5636 static std::pair<InstructionCost, InstructionCost> 5637 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5638 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5639 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5640 5641 // Calculate the cost of the scalar and vector calls. 5642 SmallVector<Type *, 4> VecTys; 5643 for (Use &Arg : CI->args()) 5644 VecTys.push_back( 5645 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5646 FastMathFlags FMF; 5647 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5648 FMF = FPCI->getFastMathFlags(); 5649 SmallVector<const Value *> Arguments(CI->args()); 5650 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5651 dyn_cast<IntrinsicInst>(CI)); 5652 auto IntrinsicCost = 5653 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5654 5655 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5656 VecTy->getNumElements())), 5657 false /*HasGlobalPred*/); 5658 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5659 auto LibCost = IntrinsicCost; 5660 if (!CI->isNoBuiltin() && VecFunc) { 5661 // Calculate the cost of the vector library call. 5662 // If the corresponding vector call is cheaper, return its cost. 5663 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5664 TTI::TCK_RecipThroughput); 5665 } 5666 return {IntrinsicCost, LibCost}; 5667 } 5668 5669 /// Compute the cost of creating a vector of type \p VecTy containing the 5670 /// extracted values from \p VL. 5671 static InstructionCost 5672 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5673 TargetTransformInfo::ShuffleKind ShuffleKind, 5674 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5675 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5676 5677 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5678 VecTy->getNumElements() < NumOfParts) 5679 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5680 5681 bool AllConsecutive = true; 5682 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5683 unsigned Idx = -1; 5684 InstructionCost Cost = 0; 5685 5686 // Process extracts in blocks of EltsPerVector to check if the source vector 5687 // operand can be re-used directly. If not, add the cost of creating a shuffle 5688 // to extract the values into a vector register. 5689 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5690 for (auto *V : VL) { 5691 ++Idx; 5692 5693 // Reached the start of a new vector registers. 5694 if (Idx % EltsPerVector == 0) { 5695 RegMask.assign(EltsPerVector, UndefMaskElem); 5696 AllConsecutive = true; 5697 continue; 5698 } 5699 5700 // Need to exclude undefs from analysis. 5701 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5702 continue; 5703 5704 // Check all extracts for a vector register on the target directly 5705 // extract values in order. 5706 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5707 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5708 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5709 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5710 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5711 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5712 } 5713 5714 if (AllConsecutive) 5715 continue; 5716 5717 // Skip all indices, except for the last index per vector block. 5718 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5719 continue; 5720 5721 // If we have a series of extracts which are not consecutive and hence 5722 // cannot re-use the source vector register directly, compute the shuffle 5723 // cost to extract the vector with EltsPerVector elements. 5724 Cost += TTI.getShuffleCost( 5725 TargetTransformInfo::SK_PermuteSingleSrc, 5726 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5727 } 5728 return Cost; 5729 } 5730 5731 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5732 /// operations operands. 5733 static void 5734 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5735 ArrayRef<int> ReusesIndices, 5736 const function_ref<bool(Instruction *)> IsAltOp, 5737 SmallVectorImpl<int> &Mask, 5738 SmallVectorImpl<Value *> *OpScalars = nullptr, 5739 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5740 unsigned Sz = VL.size(); 5741 Mask.assign(Sz, UndefMaskElem); 5742 SmallVector<int> OrderMask; 5743 if (!ReorderIndices.empty()) 5744 inversePermutation(ReorderIndices, OrderMask); 5745 for (unsigned I = 0; I < Sz; ++I) { 5746 unsigned Idx = I; 5747 if (!ReorderIndices.empty()) 5748 Idx = OrderMask[I]; 5749 auto *OpInst = cast<Instruction>(VL[Idx]); 5750 if (IsAltOp(OpInst)) { 5751 Mask[I] = Sz + Idx; 5752 if (AltScalars) 5753 AltScalars->push_back(OpInst); 5754 } else { 5755 Mask[I] = Idx; 5756 if (OpScalars) 5757 OpScalars->push_back(OpInst); 5758 } 5759 } 5760 if (!ReusesIndices.empty()) { 5761 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5762 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5763 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5764 }); 5765 Mask.swap(NewMask); 5766 } 5767 } 5768 5769 /// Checks if the specified instruction \p I is an alternate operation for the 5770 /// given \p MainOp and \p AltOp instructions. 5771 static bool isAlternateInstruction(const Instruction *I, 5772 const Instruction *MainOp, 5773 const Instruction *AltOp) { 5774 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5775 auto *AltCI0 = cast<CmpInst>(AltOp); 5776 auto *CI = cast<CmpInst>(I); 5777 CmpInst::Predicate P0 = CI0->getPredicate(); 5778 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5779 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5780 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5781 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5782 if (P0 == AltP0Swapped) 5783 return I == AltCI0 || 5784 (I != MainOp && 5785 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5786 CI->getOperand(0), CI->getOperand(1))); 5787 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5788 } 5789 return I->getOpcode() == AltOp->getOpcode(); 5790 } 5791 5792 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5793 ArrayRef<Value *> VectorizedVals) { 5794 ArrayRef<Value*> VL = E->Scalars; 5795 5796 Type *ScalarTy = VL[0]->getType(); 5797 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5798 ScalarTy = SI->getValueOperand()->getType(); 5799 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5800 ScalarTy = CI->getOperand(0)->getType(); 5801 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5802 ScalarTy = IE->getOperand(1)->getType(); 5803 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5804 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5805 5806 // If we have computed a smaller type for the expression, update VecTy so 5807 // that the costs will be accurate. 5808 if (MinBWs.count(VL[0])) 5809 VecTy = FixedVectorType::get( 5810 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5811 unsigned EntryVF = E->getVectorFactor(); 5812 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5813 5814 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5815 // FIXME: it tries to fix a problem with MSVC buildbots. 5816 TargetTransformInfo &TTIRef = *TTI; 5817 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5818 VectorizedVals, E](InstructionCost &Cost) { 5819 DenseMap<Value *, int> ExtractVectorsTys; 5820 SmallPtrSet<Value *, 4> CheckedExtracts; 5821 for (auto *V : VL) { 5822 if (isa<UndefValue>(V)) 5823 continue; 5824 // If all users of instruction are going to be vectorized and this 5825 // instruction itself is not going to be vectorized, consider this 5826 // instruction as dead and remove its cost from the final cost of the 5827 // vectorized tree. 5828 // Also, avoid adjusting the cost for extractelements with multiple uses 5829 // in different graph entries. 5830 const TreeEntry *VE = getTreeEntry(V); 5831 if (!CheckedExtracts.insert(V).second || 5832 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5833 (VE && VE != E)) 5834 continue; 5835 auto *EE = cast<ExtractElementInst>(V); 5836 Optional<unsigned> EEIdx = getExtractIndex(EE); 5837 if (!EEIdx) 5838 continue; 5839 unsigned Idx = *EEIdx; 5840 if (TTIRef.getNumberOfParts(VecTy) != 5841 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5842 auto It = 5843 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5844 It->getSecond() = std::min<int>(It->second, Idx); 5845 } 5846 // Take credit for instruction that will become dead. 5847 if (EE->hasOneUse()) { 5848 Instruction *Ext = EE->user_back(); 5849 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5850 all_of(Ext->users(), 5851 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5852 // Use getExtractWithExtendCost() to calculate the cost of 5853 // extractelement/ext pair. 5854 Cost -= 5855 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5856 EE->getVectorOperandType(), Idx); 5857 // Add back the cost of s|zext which is subtracted separately. 5858 Cost += TTIRef.getCastInstrCost( 5859 Ext->getOpcode(), Ext->getType(), EE->getType(), 5860 TTI::getCastContextHint(Ext), CostKind, Ext); 5861 continue; 5862 } 5863 } 5864 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5865 EE->getVectorOperandType(), Idx); 5866 } 5867 // Add a cost for subvector extracts/inserts if required. 5868 for (const auto &Data : ExtractVectorsTys) { 5869 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5870 unsigned NumElts = VecTy->getNumElements(); 5871 if (Data.second % NumElts == 0) 5872 continue; 5873 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5874 unsigned Idx = (Data.second / NumElts) * NumElts; 5875 unsigned EENumElts = EEVTy->getNumElements(); 5876 if (Idx + NumElts <= EENumElts) { 5877 Cost += 5878 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5879 EEVTy, None, Idx, VecTy); 5880 } else { 5881 // Need to round up the subvector type vectorization factor to avoid a 5882 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5883 // <= EENumElts. 5884 auto *SubVT = 5885 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5886 Cost += 5887 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5888 EEVTy, None, Idx, SubVT); 5889 } 5890 } else { 5891 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5892 VecTy, None, 0, EEVTy); 5893 } 5894 } 5895 }; 5896 if (E->State == TreeEntry::NeedToGather) { 5897 if (allConstant(VL)) 5898 return 0; 5899 if (isa<InsertElementInst>(VL[0])) 5900 return InstructionCost::getInvalid(); 5901 SmallVector<int> Mask; 5902 SmallVector<const TreeEntry *> Entries; 5903 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5904 isGatherShuffledEntry(E, Mask, Entries); 5905 if (Shuffle) { 5906 InstructionCost GatherCost = 0; 5907 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5908 // Perfect match in the graph, will reuse the previously vectorized 5909 // node. Cost is 0. 5910 LLVM_DEBUG( 5911 dbgs() 5912 << "SLP: perfect diamond match for gather bundle that starts with " 5913 << *VL.front() << ".\n"); 5914 if (NeedToShuffleReuses) 5915 GatherCost = 5916 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5917 FinalVecTy, E->ReuseShuffleIndices); 5918 } else { 5919 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5920 << " entries for bundle that starts with " 5921 << *VL.front() << ".\n"); 5922 // Detected that instead of gather we can emit a shuffle of single/two 5923 // previously vectorized nodes. Add the cost of the permutation rather 5924 // than gather. 5925 ::addMask(Mask, E->ReuseShuffleIndices); 5926 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5927 } 5928 return GatherCost; 5929 } 5930 if ((E->getOpcode() == Instruction::ExtractElement || 5931 all_of(E->Scalars, 5932 [](Value *V) { 5933 return isa<ExtractElementInst, UndefValue>(V); 5934 })) && 5935 allSameType(VL)) { 5936 // Check that gather of extractelements can be represented as just a 5937 // shuffle of a single/two vectors the scalars are extracted from. 5938 SmallVector<int> Mask; 5939 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5940 isFixedVectorShuffle(VL, Mask); 5941 if (ShuffleKind) { 5942 // Found the bunch of extractelement instructions that must be gathered 5943 // into a vector and can be represented as a permutation elements in a 5944 // single input vector or of 2 input vectors. 5945 InstructionCost Cost = 5946 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5947 AdjustExtractsCost(Cost); 5948 if (NeedToShuffleReuses) 5949 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5950 FinalVecTy, E->ReuseShuffleIndices); 5951 return Cost; 5952 } 5953 } 5954 if (isSplat(VL)) { 5955 // Found the broadcasting of the single scalar, calculate the cost as the 5956 // broadcast. 5957 assert(VecTy == FinalVecTy && 5958 "No reused scalars expected for broadcast."); 5959 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5960 /*Mask=*/None, /*Index=*/0, 5961 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5962 } 5963 InstructionCost ReuseShuffleCost = 0; 5964 if (NeedToShuffleReuses) 5965 ReuseShuffleCost = TTI->getShuffleCost( 5966 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5967 // Improve gather cost for gather of loads, if we can group some of the 5968 // loads into vector loads. 5969 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5970 !E->isAltShuffle()) { 5971 BoUpSLP::ValueSet VectorizedLoads; 5972 unsigned StartIdx = 0; 5973 unsigned VF = VL.size() / 2; 5974 unsigned VectorizedCnt = 0; 5975 unsigned ScatterVectorizeCnt = 0; 5976 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5977 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5978 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5979 Cnt += VF) { 5980 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5981 if (!VectorizedLoads.count(Slice.front()) && 5982 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5983 SmallVector<Value *> PointerOps; 5984 OrdersType CurrentOrder; 5985 LoadsState LS = 5986 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI, 5987 CurrentOrder, PointerOps); 5988 switch (LS) { 5989 case LoadsState::Vectorize: 5990 case LoadsState::ScatterVectorize: 5991 // Mark the vectorized loads so that we don't vectorize them 5992 // again. 5993 if (LS == LoadsState::Vectorize) 5994 ++VectorizedCnt; 5995 else 5996 ++ScatterVectorizeCnt; 5997 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5998 // If we vectorized initial block, no need to try to vectorize it 5999 // again. 6000 if (Cnt == StartIdx) 6001 StartIdx += VF; 6002 break; 6003 case LoadsState::Gather: 6004 break; 6005 } 6006 } 6007 } 6008 // Check if the whole array was vectorized already - exit. 6009 if (StartIdx >= VL.size()) 6010 break; 6011 // Found vectorizable parts - exit. 6012 if (!VectorizedLoads.empty()) 6013 break; 6014 } 6015 if (!VectorizedLoads.empty()) { 6016 InstructionCost GatherCost = 0; 6017 unsigned NumParts = TTI->getNumberOfParts(VecTy); 6018 bool NeedInsertSubvectorAnalysis = 6019 !NumParts || (VL.size() / VF) > NumParts; 6020 // Get the cost for gathered loads. 6021 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 6022 if (VectorizedLoads.contains(VL[I])) 6023 continue; 6024 GatherCost += getGatherCost(VL.slice(I, VF)); 6025 } 6026 // The cost for vectorized loads. 6027 InstructionCost ScalarsCost = 0; 6028 for (Value *V : VectorizedLoads) { 6029 auto *LI = cast<LoadInst>(V); 6030 ScalarsCost += TTI->getMemoryOpCost( 6031 Instruction::Load, LI->getType(), LI->getAlign(), 6032 LI->getPointerAddressSpace(), CostKind, LI); 6033 } 6034 auto *LI = cast<LoadInst>(E->getMainOp()); 6035 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 6036 Align Alignment = LI->getAlign(); 6037 GatherCost += 6038 VectorizedCnt * 6039 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 6040 LI->getPointerAddressSpace(), CostKind, LI); 6041 GatherCost += ScatterVectorizeCnt * 6042 TTI->getGatherScatterOpCost( 6043 Instruction::Load, LoadTy, LI->getPointerOperand(), 6044 /*VariableMask=*/false, Alignment, CostKind, LI); 6045 if (NeedInsertSubvectorAnalysis) { 6046 // Add the cost for the subvectors insert. 6047 for (int I = VF, E = VL.size(); I < E; I += VF) 6048 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 6049 None, I, LoadTy); 6050 } 6051 return ReuseShuffleCost + GatherCost - ScalarsCost; 6052 } 6053 } 6054 return ReuseShuffleCost + getGatherCost(VL); 6055 } 6056 InstructionCost CommonCost = 0; 6057 SmallVector<int> Mask; 6058 if (!E->ReorderIndices.empty()) { 6059 SmallVector<int> NewMask; 6060 if (E->getOpcode() == Instruction::Store) { 6061 // For stores the order is actually a mask. 6062 NewMask.resize(E->ReorderIndices.size()); 6063 copy(E->ReorderIndices, NewMask.begin()); 6064 } else { 6065 inversePermutation(E->ReorderIndices, NewMask); 6066 } 6067 ::addMask(Mask, NewMask); 6068 } 6069 if (NeedToShuffleReuses) 6070 ::addMask(Mask, E->ReuseShuffleIndices); 6071 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 6072 CommonCost = 6073 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 6074 assert((E->State == TreeEntry::Vectorize || 6075 E->State == TreeEntry::ScatterVectorize) && 6076 "Unhandled state"); 6077 assert(E->getOpcode() && 6078 ((allSameType(VL) && allSameBlock(VL)) || 6079 (E->getOpcode() == Instruction::GetElementPtr && 6080 E->getMainOp()->getType()->isPointerTy())) && 6081 "Invalid VL"); 6082 Instruction *VL0 = E->getMainOp(); 6083 unsigned ShuffleOrOp = 6084 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6085 switch (ShuffleOrOp) { 6086 case Instruction::PHI: 6087 return 0; 6088 6089 case Instruction::ExtractValue: 6090 case Instruction::ExtractElement: { 6091 // The common cost of removal ExtractElement/ExtractValue instructions + 6092 // the cost of shuffles, if required to resuffle the original vector. 6093 if (NeedToShuffleReuses) { 6094 unsigned Idx = 0; 6095 for (unsigned I : E->ReuseShuffleIndices) { 6096 if (ShuffleOrOp == Instruction::ExtractElement) { 6097 auto *EE = cast<ExtractElementInst>(VL[I]); 6098 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 6099 EE->getVectorOperandType(), 6100 *getExtractIndex(EE)); 6101 } else { 6102 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 6103 VecTy, Idx); 6104 ++Idx; 6105 } 6106 } 6107 Idx = EntryVF; 6108 for (Value *V : VL) { 6109 if (ShuffleOrOp == Instruction::ExtractElement) { 6110 auto *EE = cast<ExtractElementInst>(V); 6111 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 6112 EE->getVectorOperandType(), 6113 *getExtractIndex(EE)); 6114 } else { 6115 --Idx; 6116 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 6117 VecTy, Idx); 6118 } 6119 } 6120 } 6121 if (ShuffleOrOp == Instruction::ExtractValue) { 6122 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 6123 auto *EI = cast<Instruction>(VL[I]); 6124 // Take credit for instruction that will become dead. 6125 if (EI->hasOneUse()) { 6126 Instruction *Ext = EI->user_back(); 6127 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 6128 all_of(Ext->users(), 6129 [](User *U) { return isa<GetElementPtrInst>(U); })) { 6130 // Use getExtractWithExtendCost() to calculate the cost of 6131 // extractelement/ext pair. 6132 CommonCost -= TTI->getExtractWithExtendCost( 6133 Ext->getOpcode(), Ext->getType(), VecTy, I); 6134 // Add back the cost of s|zext which is subtracted separately. 6135 CommonCost += TTI->getCastInstrCost( 6136 Ext->getOpcode(), Ext->getType(), EI->getType(), 6137 TTI::getCastContextHint(Ext), CostKind, Ext); 6138 continue; 6139 } 6140 } 6141 CommonCost -= 6142 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 6143 } 6144 } else { 6145 AdjustExtractsCost(CommonCost); 6146 } 6147 return CommonCost; 6148 } 6149 case Instruction::InsertElement: { 6150 assert(E->ReuseShuffleIndices.empty() && 6151 "Unique insertelements only are expected."); 6152 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 6153 unsigned const NumElts = SrcVecTy->getNumElements(); 6154 unsigned const NumScalars = VL.size(); 6155 6156 unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); 6157 6158 unsigned OffsetBeg = *getInsertIndex(VL.front()); 6159 unsigned OffsetEnd = OffsetBeg; 6160 for (Value *V : VL.drop_front()) { 6161 unsigned Idx = *getInsertIndex(V); 6162 if (OffsetBeg > Idx) 6163 OffsetBeg = Idx; 6164 else if (OffsetEnd < Idx) 6165 OffsetEnd = Idx; 6166 } 6167 unsigned VecScalarsSz = PowerOf2Ceil(NumElts); 6168 if (NumOfParts > 0) 6169 VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); 6170 unsigned VecSz = 6171 (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * 6172 VecScalarsSz; 6173 unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); 6174 unsigned InsertVecSz = std::min<unsigned>( 6175 PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), 6176 ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * 6177 VecScalarsSz); 6178 bool IsWholeSubvector = 6179 OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); 6180 // Check if we can safely insert a subvector. If it is not possible, just 6181 // generate a whole-sized vector and shuffle the source vector and the new 6182 // subvector. 6183 if (OffsetBeg + InsertVecSz > VecSz) { 6184 // Align OffsetBeg to generate correct mask. 6185 OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); 6186 InsertVecSz = VecSz; 6187 } 6188 6189 APInt DemandedElts = APInt::getZero(NumElts); 6190 // TODO: Add support for Instruction::InsertValue. 6191 SmallVector<int> Mask; 6192 if (!E->ReorderIndices.empty()) { 6193 inversePermutation(E->ReorderIndices, Mask); 6194 Mask.append(InsertVecSz - Mask.size(), UndefMaskElem); 6195 } else { 6196 Mask.assign(VecSz, UndefMaskElem); 6197 std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); 6198 } 6199 bool IsIdentity = true; 6200 SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem); 6201 Mask.swap(PrevMask); 6202 for (unsigned I = 0; I < NumScalars; ++I) { 6203 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 6204 DemandedElts.setBit(InsertIdx); 6205 IsIdentity &= InsertIdx - OffsetBeg == I; 6206 Mask[InsertIdx - OffsetBeg] = I; 6207 } 6208 assert(Offset < NumElts && "Failed to find vector index offset"); 6209 6210 InstructionCost Cost = 0; 6211 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6212 /*Insert*/ true, /*Extract*/ false); 6213 6214 // First cost - resize to actual vector size if not identity shuffle or 6215 // need to shift the vector. 6216 // Do not calculate the cost if the actual size is the register size and 6217 // we can merge this shuffle with the following SK_Select. 6218 auto *InsertVecTy = 6219 FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz); 6220 if (!IsIdentity) 6221 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 6222 InsertVecTy, Mask); 6223 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6224 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6225 })); 6226 // Second cost - permutation with subvector, if some elements are from the 6227 // initial vector or inserting a subvector. 6228 // TODO: Implement the analysis of the FirstInsert->getOperand(0) 6229 // subvector of ActualVecTy. 6230 if (!isUndefVector(FirstInsert->getOperand(0)) && NumScalars != NumElts && 6231 !IsWholeSubvector) { 6232 if (InsertVecSz != VecSz) { 6233 auto *ActualVecTy = 6234 FixedVectorType::get(SrcVecTy->getElementType(), VecSz); 6235 Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, 6236 None, OffsetBeg - Offset, InsertVecTy); 6237 } else { 6238 for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) 6239 Mask[I] = I; 6240 for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; 6241 I <= End; ++I) 6242 if (Mask[I] != UndefMaskElem) 6243 Mask[I] = I + VecSz; 6244 for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) 6245 Mask[I] = I; 6246 Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); 6247 } 6248 } 6249 return Cost; 6250 } 6251 case Instruction::ZExt: 6252 case Instruction::SExt: 6253 case Instruction::FPToUI: 6254 case Instruction::FPToSI: 6255 case Instruction::FPExt: 6256 case Instruction::PtrToInt: 6257 case Instruction::IntToPtr: 6258 case Instruction::SIToFP: 6259 case Instruction::UIToFP: 6260 case Instruction::Trunc: 6261 case Instruction::FPTrunc: 6262 case Instruction::BitCast: { 6263 Type *SrcTy = VL0->getOperand(0)->getType(); 6264 InstructionCost ScalarEltCost = 6265 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6266 TTI::getCastContextHint(VL0), CostKind, VL0); 6267 if (NeedToShuffleReuses) { 6268 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6269 } 6270 6271 // Calculate the cost of this instruction. 6272 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6273 6274 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6275 InstructionCost VecCost = 0; 6276 // Check if the values are candidates to demote. 6277 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6278 VecCost = CommonCost + TTI->getCastInstrCost( 6279 E->getOpcode(), VecTy, SrcVecTy, 6280 TTI::getCastContextHint(VL0), CostKind, VL0); 6281 } 6282 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6283 return VecCost - ScalarCost; 6284 } 6285 case Instruction::FCmp: 6286 case Instruction::ICmp: 6287 case Instruction::Select: { 6288 // Calculate the cost of this instruction. 6289 InstructionCost ScalarEltCost = 6290 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6291 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6292 if (NeedToShuffleReuses) { 6293 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6294 } 6295 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6296 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6297 6298 // Check if all entries in VL are either compares or selects with compares 6299 // as condition that have the same predicates. 6300 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6301 bool First = true; 6302 for (auto *V : VL) { 6303 CmpInst::Predicate CurrentPred; 6304 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6305 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6306 !match(V, MatchCmp)) || 6307 (!First && VecPred != CurrentPred)) { 6308 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6309 break; 6310 } 6311 First = false; 6312 VecPred = CurrentPred; 6313 } 6314 6315 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6316 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6317 // Check if it is possible and profitable to use min/max for selects in 6318 // VL. 6319 // 6320 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6321 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6322 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6323 {VecTy, VecTy}); 6324 InstructionCost IntrinsicCost = 6325 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6326 // If the selects are the only uses of the compares, they will be dead 6327 // and we can adjust the cost by removing their cost. 6328 if (IntrinsicAndUse.second) 6329 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6330 MaskTy, VecPred, CostKind); 6331 VecCost = std::min(VecCost, IntrinsicCost); 6332 } 6333 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6334 return CommonCost + VecCost - ScalarCost; 6335 } 6336 case Instruction::FNeg: 6337 case Instruction::Add: 6338 case Instruction::FAdd: 6339 case Instruction::Sub: 6340 case Instruction::FSub: 6341 case Instruction::Mul: 6342 case Instruction::FMul: 6343 case Instruction::UDiv: 6344 case Instruction::SDiv: 6345 case Instruction::FDiv: 6346 case Instruction::URem: 6347 case Instruction::SRem: 6348 case Instruction::FRem: 6349 case Instruction::Shl: 6350 case Instruction::LShr: 6351 case Instruction::AShr: 6352 case Instruction::And: 6353 case Instruction::Or: 6354 case Instruction::Xor: { 6355 // Certain instructions can be cheaper to vectorize if they have a 6356 // constant second vector operand. 6357 TargetTransformInfo::OperandValueKind Op1VK = 6358 TargetTransformInfo::OK_AnyValue; 6359 TargetTransformInfo::OperandValueKind Op2VK = 6360 TargetTransformInfo::OK_UniformConstantValue; 6361 TargetTransformInfo::OperandValueProperties Op1VP = 6362 TargetTransformInfo::OP_None; 6363 TargetTransformInfo::OperandValueProperties Op2VP = 6364 TargetTransformInfo::OP_PowerOf2; 6365 6366 // If all operands are exactly the same ConstantInt then set the 6367 // operand kind to OK_UniformConstantValue. 6368 // If instead not all operands are constants, then set the operand kind 6369 // to OK_AnyValue. If all operands are constants but not the same, 6370 // then set the operand kind to OK_NonUniformConstantValue. 6371 ConstantInt *CInt0 = nullptr; 6372 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6373 const Instruction *I = cast<Instruction>(VL[i]); 6374 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6375 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6376 if (!CInt) { 6377 Op2VK = TargetTransformInfo::OK_AnyValue; 6378 Op2VP = TargetTransformInfo::OP_None; 6379 break; 6380 } 6381 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6382 !CInt->getValue().isPowerOf2()) 6383 Op2VP = TargetTransformInfo::OP_None; 6384 if (i == 0) { 6385 CInt0 = CInt; 6386 continue; 6387 } 6388 if (CInt0 != CInt) 6389 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6390 } 6391 6392 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6393 InstructionCost ScalarEltCost = 6394 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6395 Op2VK, Op1VP, Op2VP, Operands, VL0); 6396 if (NeedToShuffleReuses) { 6397 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6398 } 6399 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6400 InstructionCost VecCost = 6401 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6402 Op2VK, Op1VP, Op2VP, Operands, VL0); 6403 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6404 return CommonCost + VecCost - ScalarCost; 6405 } 6406 case Instruction::GetElementPtr: { 6407 TargetTransformInfo::OperandValueKind Op1VK = 6408 TargetTransformInfo::OK_AnyValue; 6409 TargetTransformInfo::OperandValueKind Op2VK = 6410 any_of(VL, 6411 [](Value *V) { 6412 return isa<GetElementPtrInst>(V) && 6413 !isConstant( 6414 cast<GetElementPtrInst>(V)->getOperand(1)); 6415 }) 6416 ? TargetTransformInfo::OK_AnyValue 6417 : TargetTransformInfo::OK_UniformConstantValue; 6418 6419 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6420 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6421 if (NeedToShuffleReuses) { 6422 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6423 } 6424 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6425 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6426 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6427 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6428 return CommonCost + VecCost - ScalarCost; 6429 } 6430 case Instruction::Load: { 6431 // Cost of wide load - cost of scalar loads. 6432 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6433 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6434 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6435 if (NeedToShuffleReuses) { 6436 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6437 } 6438 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6439 InstructionCost VecLdCost; 6440 if (E->State == TreeEntry::Vectorize) { 6441 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6442 CostKind, VL0); 6443 } else { 6444 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6445 Align CommonAlignment = Alignment; 6446 for (Value *V : VL) 6447 CommonAlignment = 6448 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6449 VecLdCost = TTI->getGatherScatterOpCost( 6450 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6451 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6452 } 6453 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6454 return CommonCost + VecLdCost - ScalarLdCost; 6455 } 6456 case Instruction::Store: { 6457 // We know that we can merge the stores. Calculate the cost. 6458 bool IsReorder = !E->ReorderIndices.empty(); 6459 auto *SI = 6460 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6461 Align Alignment = SI->getAlign(); 6462 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6463 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6464 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6465 InstructionCost VecStCost = TTI->getMemoryOpCost( 6466 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6467 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6468 return CommonCost + VecStCost - ScalarStCost; 6469 } 6470 case Instruction::Call: { 6471 CallInst *CI = cast<CallInst>(VL0); 6472 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6473 6474 // Calculate the cost of the scalar and vector calls. 6475 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6476 InstructionCost ScalarEltCost = 6477 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6478 if (NeedToShuffleReuses) { 6479 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6480 } 6481 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6482 6483 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6484 InstructionCost VecCallCost = 6485 std::min(VecCallCosts.first, VecCallCosts.second); 6486 6487 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6488 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6489 << " for " << *CI << "\n"); 6490 6491 return CommonCost + VecCallCost - ScalarCallCost; 6492 } 6493 case Instruction::ShuffleVector: { 6494 assert(E->isAltShuffle() && 6495 ((Instruction::isBinaryOp(E->getOpcode()) && 6496 Instruction::isBinaryOp(E->getAltOpcode())) || 6497 (Instruction::isCast(E->getOpcode()) && 6498 Instruction::isCast(E->getAltOpcode())) || 6499 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6500 "Invalid Shuffle Vector Operand"); 6501 InstructionCost ScalarCost = 0; 6502 if (NeedToShuffleReuses) { 6503 for (unsigned Idx : E->ReuseShuffleIndices) { 6504 Instruction *I = cast<Instruction>(VL[Idx]); 6505 CommonCost -= TTI->getInstructionCost(I, CostKind); 6506 } 6507 for (Value *V : VL) { 6508 Instruction *I = cast<Instruction>(V); 6509 CommonCost += TTI->getInstructionCost(I, CostKind); 6510 } 6511 } 6512 for (Value *V : VL) { 6513 Instruction *I = cast<Instruction>(V); 6514 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6515 ScalarCost += TTI->getInstructionCost(I, CostKind); 6516 } 6517 // VecCost is equal to sum of the cost of creating 2 vectors 6518 // and the cost of creating shuffle. 6519 InstructionCost VecCost = 0; 6520 // Try to find the previous shuffle node with the same operands and same 6521 // main/alternate ops. 6522 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6523 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6524 if (TE.get() == E) 6525 break; 6526 if (TE->isAltShuffle() && 6527 ((TE->getOpcode() == E->getOpcode() && 6528 TE->getAltOpcode() == E->getAltOpcode()) || 6529 (TE->getOpcode() == E->getAltOpcode() && 6530 TE->getAltOpcode() == E->getOpcode())) && 6531 TE->hasEqualOperands(*E)) 6532 return true; 6533 } 6534 return false; 6535 }; 6536 if (TryFindNodeWithEqualOperands()) { 6537 LLVM_DEBUG({ 6538 dbgs() << "SLP: diamond match for alternate node found.\n"; 6539 E->dump(); 6540 }); 6541 // No need to add new vector costs here since we're going to reuse 6542 // same main/alternate vector ops, just do different shuffling. 6543 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6544 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6545 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6546 CostKind); 6547 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6548 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6549 Builder.getInt1Ty(), 6550 CI0->getPredicate(), CostKind, VL0); 6551 VecCost += TTI->getCmpSelInstrCost( 6552 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6553 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6554 E->getAltOp()); 6555 } else { 6556 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6557 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6558 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6559 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6560 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6561 TTI::CastContextHint::None, CostKind); 6562 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6563 TTI::CastContextHint::None, CostKind); 6564 } 6565 6566 if (E->ReuseShuffleIndices.empty()) { 6567 CommonCost = 6568 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6569 } else { 6570 SmallVector<int> Mask; 6571 buildShuffleEntryMask( 6572 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6573 [E](Instruction *I) { 6574 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6575 return I->getOpcode() == E->getAltOpcode(); 6576 }, 6577 Mask); 6578 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6579 FinalVecTy, Mask); 6580 } 6581 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6582 return CommonCost + VecCost - ScalarCost; 6583 } 6584 default: 6585 llvm_unreachable("Unknown instruction"); 6586 } 6587 } 6588 6589 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6590 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6591 << VectorizableTree.size() << " is fully vectorizable .\n"); 6592 6593 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6594 SmallVector<int> Mask; 6595 return TE->State == TreeEntry::NeedToGather && 6596 !any_of(TE->Scalars, 6597 [this](Value *V) { return EphValues.contains(V); }) && 6598 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6599 TE->Scalars.size() < Limit || 6600 ((TE->getOpcode() == Instruction::ExtractElement || 6601 all_of(TE->Scalars, 6602 [](Value *V) { 6603 return isa<ExtractElementInst, UndefValue>(V); 6604 })) && 6605 isFixedVectorShuffle(TE->Scalars, Mask)) || 6606 (TE->State == TreeEntry::NeedToGather && 6607 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6608 }; 6609 6610 // We only handle trees of heights 1 and 2. 6611 if (VectorizableTree.size() == 1 && 6612 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6613 (ForReduction && 6614 AreVectorizableGathers(VectorizableTree[0].get(), 6615 VectorizableTree[0]->Scalars.size()) && 6616 VectorizableTree[0]->getVectorFactor() > 2))) 6617 return true; 6618 6619 if (VectorizableTree.size() != 2) 6620 return false; 6621 6622 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6623 // with the second gather nodes if they have less scalar operands rather than 6624 // the initial tree element (may be profitable to shuffle the second gather) 6625 // or they are extractelements, which form shuffle. 6626 SmallVector<int> Mask; 6627 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6628 AreVectorizableGathers(VectorizableTree[1].get(), 6629 VectorizableTree[0]->Scalars.size())) 6630 return true; 6631 6632 // Gathering cost would be too much for tiny trees. 6633 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6634 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6635 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6636 return false; 6637 6638 return true; 6639 } 6640 6641 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6642 TargetTransformInfo *TTI, 6643 bool MustMatchOrInst) { 6644 // Look past the root to find a source value. Arbitrarily follow the 6645 // path through operand 0 of any 'or'. Also, peek through optional 6646 // shift-left-by-multiple-of-8-bits. 6647 Value *ZextLoad = Root; 6648 const APInt *ShAmtC; 6649 bool FoundOr = false; 6650 while (!isa<ConstantExpr>(ZextLoad) && 6651 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6652 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6653 ShAmtC->urem(8) == 0))) { 6654 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6655 ZextLoad = BinOp->getOperand(0); 6656 if (BinOp->getOpcode() == Instruction::Or) 6657 FoundOr = true; 6658 } 6659 // Check if the input is an extended load of the required or/shift expression. 6660 Value *Load; 6661 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6662 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6663 return false; 6664 6665 // Require that the total load bit width is a legal integer type. 6666 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6667 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6668 Type *SrcTy = Load->getType(); 6669 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6670 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6671 return false; 6672 6673 // Everything matched - assume that we can fold the whole sequence using 6674 // load combining. 6675 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6676 << *(cast<Instruction>(Root)) << "\n"); 6677 6678 return true; 6679 } 6680 6681 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6682 if (RdxKind != RecurKind::Or) 6683 return false; 6684 6685 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6686 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6687 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6688 /* MatchOr */ false); 6689 } 6690 6691 bool BoUpSLP::isLoadCombineCandidate() const { 6692 // Peek through a final sequence of stores and check if all operations are 6693 // likely to be load-combined. 6694 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6695 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6696 Value *X; 6697 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6698 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6699 return false; 6700 } 6701 return true; 6702 } 6703 6704 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6705 // No need to vectorize inserts of gathered values. 6706 if (VectorizableTree.size() == 2 && 6707 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6708 VectorizableTree[1]->State == TreeEntry::NeedToGather && 6709 (VectorizableTree[1]->getVectorFactor() <= 2 || 6710 !(isSplat(VectorizableTree[1]->Scalars) || 6711 allConstant(VectorizableTree[1]->Scalars)))) 6712 return true; 6713 6714 // We can vectorize the tree if its size is greater than or equal to the 6715 // minimum size specified by the MinTreeSize command line option. 6716 if (VectorizableTree.size() >= MinTreeSize) 6717 return false; 6718 6719 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6720 // can vectorize it if we can prove it fully vectorizable. 6721 if (isFullyVectorizableTinyTree(ForReduction)) 6722 return false; 6723 6724 assert(VectorizableTree.empty() 6725 ? ExternalUses.empty() 6726 : true && "We shouldn't have any external users"); 6727 6728 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6729 // vectorizable. 6730 return true; 6731 } 6732 6733 InstructionCost BoUpSLP::getSpillCost() const { 6734 // Walk from the bottom of the tree to the top, tracking which values are 6735 // live. When we see a call instruction that is not part of our tree, 6736 // query TTI to see if there is a cost to keeping values live over it 6737 // (for example, if spills and fills are required). 6738 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6739 InstructionCost Cost = 0; 6740 6741 SmallPtrSet<Instruction*, 4> LiveValues; 6742 Instruction *PrevInst = nullptr; 6743 6744 // The entries in VectorizableTree are not necessarily ordered by their 6745 // position in basic blocks. Collect them and order them by dominance so later 6746 // instructions are guaranteed to be visited first. For instructions in 6747 // different basic blocks, we only scan to the beginning of the block, so 6748 // their order does not matter, as long as all instructions in a basic block 6749 // are grouped together. Using dominance ensures a deterministic order. 6750 SmallVector<Instruction *, 16> OrderedScalars; 6751 for (const auto &TEPtr : VectorizableTree) { 6752 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6753 if (!Inst) 6754 continue; 6755 OrderedScalars.push_back(Inst); 6756 } 6757 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6758 auto *NodeA = DT->getNode(A->getParent()); 6759 auto *NodeB = DT->getNode(B->getParent()); 6760 assert(NodeA && "Should only process reachable instructions"); 6761 assert(NodeB && "Should only process reachable instructions"); 6762 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6763 "Different nodes should have different DFS numbers"); 6764 if (NodeA != NodeB) 6765 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6766 return B->comesBefore(A); 6767 }); 6768 6769 for (Instruction *Inst : OrderedScalars) { 6770 if (!PrevInst) { 6771 PrevInst = Inst; 6772 continue; 6773 } 6774 6775 // Update LiveValues. 6776 LiveValues.erase(PrevInst); 6777 for (auto &J : PrevInst->operands()) { 6778 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6779 LiveValues.insert(cast<Instruction>(&*J)); 6780 } 6781 6782 LLVM_DEBUG({ 6783 dbgs() << "SLP: #LV: " << LiveValues.size(); 6784 for (auto *X : LiveValues) 6785 dbgs() << " " << X->getName(); 6786 dbgs() << ", Looking at "; 6787 Inst->dump(); 6788 }); 6789 6790 // Now find the sequence of instructions between PrevInst and Inst. 6791 unsigned NumCalls = 0; 6792 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6793 PrevInstIt = 6794 PrevInst->getIterator().getReverse(); 6795 while (InstIt != PrevInstIt) { 6796 if (PrevInstIt == PrevInst->getParent()->rend()) { 6797 PrevInstIt = Inst->getParent()->rbegin(); 6798 continue; 6799 } 6800 6801 // Debug information does not impact spill cost. 6802 if ((isa<CallInst>(&*PrevInstIt) && 6803 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6804 &*PrevInstIt != PrevInst) 6805 NumCalls++; 6806 6807 ++PrevInstIt; 6808 } 6809 6810 if (NumCalls) { 6811 SmallVector<Type*, 4> V; 6812 for (auto *II : LiveValues) { 6813 auto *ScalarTy = II->getType(); 6814 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6815 ScalarTy = VectorTy->getElementType(); 6816 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6817 } 6818 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6819 } 6820 6821 PrevInst = Inst; 6822 } 6823 6824 return Cost; 6825 } 6826 6827 /// Check if two insertelement instructions are from the same buildvector. 6828 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6829 InsertElementInst *V) { 6830 // Instructions must be from the same basic blocks. 6831 if (VU->getParent() != V->getParent()) 6832 return false; 6833 // Checks if 2 insertelements are from the same buildvector. 6834 if (VU->getType() != V->getType()) 6835 return false; 6836 // Multiple used inserts are separate nodes. 6837 if (!VU->hasOneUse() && !V->hasOneUse()) 6838 return false; 6839 auto *IE1 = VU; 6840 auto *IE2 = V; 6841 unsigned Idx1 = *getInsertIndex(IE1); 6842 unsigned Idx2 = *getInsertIndex(IE2); 6843 // Go through the vector operand of insertelement instructions trying to find 6844 // either VU as the original vector for IE2 or V as the original vector for 6845 // IE1. 6846 do { 6847 if (IE2 == VU) 6848 return VU->hasOneUse(); 6849 if (IE1 == V) 6850 return V->hasOneUse(); 6851 if (IE1) { 6852 if ((IE1 != VU && !IE1->hasOneUse()) || 6853 getInsertIndex(IE1).value_or(Idx2) == Idx2) 6854 IE1 = nullptr; 6855 else 6856 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6857 } 6858 if (IE2) { 6859 if ((IE2 != V && !IE2->hasOneUse()) || 6860 getInsertIndex(IE2).value_or(Idx1) == Idx1) 6861 IE2 = nullptr; 6862 else 6863 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6864 } 6865 } while (IE1 || IE2); 6866 return false; 6867 } 6868 6869 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6870 /// buildvector sequence. 6871 static bool isFirstInsertElement(const InsertElementInst *IE1, 6872 const InsertElementInst *IE2) { 6873 if (IE1 == IE2) 6874 return false; 6875 const auto *I1 = IE1; 6876 const auto *I2 = IE2; 6877 const InsertElementInst *PrevI1; 6878 const InsertElementInst *PrevI2; 6879 unsigned Idx1 = *getInsertIndex(IE1); 6880 unsigned Idx2 = *getInsertIndex(IE2); 6881 do { 6882 if (I2 == IE1) 6883 return true; 6884 if (I1 == IE2) 6885 return false; 6886 PrevI1 = I1; 6887 PrevI2 = I2; 6888 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6889 getInsertIndex(I1).value_or(Idx2) != Idx2) 6890 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6891 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6892 getInsertIndex(I2).value_or(Idx1) != Idx1) 6893 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6894 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6895 llvm_unreachable("Two different buildvectors not expected."); 6896 } 6897 6898 namespace { 6899 /// Returns incoming Value *, if the requested type is Value * too, or a default 6900 /// value, otherwise. 6901 struct ValueSelect { 6902 template <typename U> 6903 static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type 6904 get(Value *V) { 6905 return V; 6906 } 6907 template <typename U> 6908 static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type 6909 get(Value *) { 6910 return U(); 6911 } 6912 }; 6913 } // namespace 6914 6915 /// Does the analysis of the provided shuffle masks and performs the requested 6916 /// actions on the vectors with the given shuffle masks. It tries to do it in 6917 /// several steps. 6918 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6919 /// have common VF and perform action for 2 input vectors (including non-undef 6920 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6921 /// and processed as a shuffle of 2 elements. 6922 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6923 /// action only for 1 vector with the given mask, if it is not the identity 6924 /// mask. 6925 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6926 /// vectors, combing the masks properly between the steps. 6927 template <typename T> 6928 static T *performExtractsShuffleAction( 6929 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6930 function_ref<unsigned(T *)> GetVF, 6931 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6932 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6933 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6934 SmallVector<int> Mask(ShuffleMask.begin()->second); 6935 auto VMIt = std::next(ShuffleMask.begin()); 6936 T *Prev = nullptr; 6937 bool IsBaseNotUndef = !isUndefVector(Base); 6938 if (IsBaseNotUndef) { 6939 // Base is not undef, need to combine it with the next subvectors. 6940 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6941 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6942 if (Mask[Idx] == UndefMaskElem) 6943 Mask[Idx] = Idx; 6944 else 6945 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6946 } 6947 auto *V = ValueSelect::get<T *>(Base); 6948 (void)V; 6949 assert((!V || GetVF(V) == Mask.size()) && 6950 "Expected base vector of VF number of elements."); 6951 Prev = Action(Mask, {nullptr, Res.first}); 6952 } else if (ShuffleMask.size() == 1) { 6953 // Base is undef and only 1 vector is shuffled - perform the action only for 6954 // single vector, if the mask is not the identity mask. 6955 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6956 if (Res.second) 6957 // Identity mask is found. 6958 Prev = Res.first; 6959 else 6960 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6961 } else { 6962 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6963 // shuffles step by step, combining shuffle between the steps. 6964 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6965 unsigned Vec2VF = GetVF(VMIt->first); 6966 if (Vec1VF == Vec2VF) { 6967 // No need to resize the input vectors since they are of the same size, we 6968 // can shuffle them directly. 6969 ArrayRef<int> SecMask = VMIt->second; 6970 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6971 if (SecMask[I] != UndefMaskElem) { 6972 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6973 Mask[I] = SecMask[I] + Vec1VF; 6974 } 6975 } 6976 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6977 } else { 6978 // Vectors of different sizes - resize and reshuffle. 6979 std::pair<T *, bool> Res1 = 6980 ResizeAction(ShuffleMask.begin()->first, Mask); 6981 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6982 ArrayRef<int> SecMask = VMIt->second; 6983 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6984 if (Mask[I] != UndefMaskElem) { 6985 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6986 if (Res1.second) 6987 Mask[I] = I; 6988 } else if (SecMask[I] != UndefMaskElem) { 6989 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6990 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6991 } 6992 } 6993 Prev = Action(Mask, {Res1.first, Res2.first}); 6994 } 6995 VMIt = std::next(VMIt); 6996 } 6997 // Perform requested actions for the remaining masks/vectors. 6998 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6999 // Shuffle other input vectors, if any. 7000 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 7001 ArrayRef<int> SecMask = VMIt->second; 7002 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 7003 if (SecMask[I] != UndefMaskElem) { 7004 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 7005 "Multiple uses of scalars."); 7006 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 7007 } else if (Mask[I] != UndefMaskElem) { 7008 Mask[I] = I; 7009 } 7010 } 7011 Prev = Action(Mask, {Prev, Res.first}); 7012 } 7013 return Prev; 7014 } 7015 7016 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 7017 InstructionCost Cost = 0; 7018 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 7019 << VectorizableTree.size() << ".\n"); 7020 7021 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 7022 7023 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 7024 TreeEntry &TE = *VectorizableTree[I]; 7025 7026 InstructionCost C = getEntryCost(&TE, VectorizedVals); 7027 Cost += C; 7028 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7029 << " for bundle that starts with " << *TE.Scalars[0] 7030 << ".\n" 7031 << "SLP: Current total cost = " << Cost << "\n"); 7032 } 7033 7034 SmallPtrSet<Value *, 16> ExtractCostCalculated; 7035 InstructionCost ExtractCost = 0; 7036 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 7037 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 7038 SmallVector<APInt> DemandedElts; 7039 for (ExternalUser &EU : ExternalUses) { 7040 // We only add extract cost once for the same scalar. 7041 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 7042 !ExtractCostCalculated.insert(EU.Scalar).second) 7043 continue; 7044 7045 // Uses by ephemeral values are free (because the ephemeral value will be 7046 // removed prior to code generation, and so the extraction will be 7047 // removed as well). 7048 if (EphValues.count(EU.User)) 7049 continue; 7050 7051 // No extract cost for vector "scalar" 7052 if (isa<FixedVectorType>(EU.Scalar->getType())) 7053 continue; 7054 7055 // Already counted the cost for external uses when tried to adjust the cost 7056 // for extractelements, no need to add it again. 7057 if (isa<ExtractElementInst>(EU.Scalar)) 7058 continue; 7059 7060 // If found user is an insertelement, do not calculate extract cost but try 7061 // to detect it as a final shuffled/identity match. 7062 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 7063 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 7064 Optional<unsigned> InsertIdx = getInsertIndex(VU); 7065 if (InsertIdx) { 7066 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 7067 auto *It = 7068 find_if(FirstUsers, 7069 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 7070 return areTwoInsertFromSameBuildVector( 7071 VU, cast<InsertElementInst>(Pair.first)); 7072 }); 7073 int VecId = -1; 7074 if (It == FirstUsers.end()) { 7075 (void)ShuffleMasks.emplace_back(); 7076 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 7077 if (Mask.empty()) 7078 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7079 // Find the insertvector, vectorized in tree, if any. 7080 Value *Base = VU; 7081 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 7082 if (IEBase != EU.User && 7083 (!IEBase->hasOneUse() || 7084 getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx)) 7085 break; 7086 // Build the mask for the vectorized insertelement instructions. 7087 if (const TreeEntry *E = getTreeEntry(IEBase)) { 7088 VU = IEBase; 7089 do { 7090 IEBase = cast<InsertElementInst>(Base); 7091 int Idx = *getInsertIndex(IEBase); 7092 assert(Mask[Idx] == UndefMaskElem && 7093 "InsertElementInstruction used already."); 7094 Mask[Idx] = Idx; 7095 Base = IEBase->getOperand(0); 7096 } while (E == getTreeEntry(Base)); 7097 break; 7098 } 7099 Base = cast<InsertElementInst>(Base)->getOperand(0); 7100 } 7101 FirstUsers.emplace_back(VU, ScalarTE); 7102 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 7103 VecId = FirstUsers.size() - 1; 7104 } else { 7105 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 7106 It->first = VU; 7107 VecId = std::distance(FirstUsers.begin(), It); 7108 } 7109 int InIdx = *InsertIdx; 7110 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 7111 if (Mask.empty()) 7112 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7113 Mask[InIdx] = EU.Lane; 7114 DemandedElts[VecId].setBit(InIdx); 7115 continue; 7116 } 7117 } 7118 } 7119 7120 // If we plan to rewrite the tree in a smaller type, we will need to sign 7121 // extend the extracted value back to the original type. Here, we account 7122 // for the extract and the added cost of the sign extend if needed. 7123 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 7124 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7125 if (MinBWs.count(ScalarRoot)) { 7126 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7127 auto Extend = 7128 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 7129 VecTy = FixedVectorType::get(MinTy, BundleWidth); 7130 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 7131 VecTy, EU.Lane); 7132 } else { 7133 ExtractCost += 7134 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 7135 } 7136 } 7137 7138 InstructionCost SpillCost = getSpillCost(); 7139 Cost += SpillCost + ExtractCost; 7140 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 7141 InstructionCost C = 0; 7142 unsigned VF = Mask.size(); 7143 unsigned VecVF = TE->getVectorFactor(); 7144 if (VF != VecVF && 7145 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 7146 (all_of(Mask, 7147 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 7148 !ShuffleVectorInst::isIdentityMask(Mask)))) { 7149 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 7150 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 7151 OrigMask.begin()); 7152 C = TTI->getShuffleCost( 7153 TTI::SK_PermuteSingleSrc, 7154 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 7155 LLVM_DEBUG( 7156 dbgs() << "SLP: Adding cost " << C 7157 << " for final shuffle of insertelement external users.\n"; 7158 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7159 Cost += C; 7160 return std::make_pair(TE, true); 7161 } 7162 return std::make_pair(TE, false); 7163 }; 7164 // Calculate the cost of the reshuffled vectors, if any. 7165 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 7166 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 7167 unsigned VF = ShuffleMasks[I].begin()->second.size(); 7168 auto *FTy = FixedVectorType::get( 7169 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 7170 auto Vector = ShuffleMasks[I].takeVector(); 7171 auto &&EstimateShufflesCost = [this, FTy, 7172 &Cost](ArrayRef<int> Mask, 7173 ArrayRef<const TreeEntry *> TEs) { 7174 assert((TEs.size() == 1 || TEs.size() == 2) && 7175 "Expected exactly 1 or 2 tree entries."); 7176 if (TEs.size() == 1) { 7177 int Limit = 2 * Mask.size(); 7178 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 7179 !ShuffleVectorInst::isIdentityMask(Mask)) { 7180 InstructionCost C = 7181 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 7182 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7183 << " for final shuffle of insertelement " 7184 "external users.\n"; 7185 TEs.front()->dump(); 7186 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7187 Cost += C; 7188 } 7189 } else { 7190 InstructionCost C = 7191 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 7192 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7193 << " for final shuffle of vector node and external " 7194 "insertelement users.\n"; 7195 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 7196 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7197 Cost += C; 7198 } 7199 return TEs.back(); 7200 }; 7201 (void)performExtractsShuffleAction<const TreeEntry>( 7202 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 7203 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 7204 EstimateShufflesCost); 7205 InstructionCost InsertCost = TTI->getScalarizationOverhead( 7206 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 7207 /*Insert*/ true, /*Extract*/ false); 7208 Cost -= InsertCost; 7209 } 7210 7211 #ifndef NDEBUG 7212 SmallString<256> Str; 7213 { 7214 raw_svector_ostream OS(Str); 7215 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 7216 << "SLP: Extract Cost = " << ExtractCost << ".\n" 7217 << "SLP: Total Cost = " << Cost << ".\n"; 7218 } 7219 LLVM_DEBUG(dbgs() << Str); 7220 if (ViewSLPTree) 7221 ViewGraph(this, "SLP" + F->getName(), false, Str); 7222 #endif 7223 7224 return Cost; 7225 } 7226 7227 Optional<TargetTransformInfo::ShuffleKind> 7228 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 7229 SmallVectorImpl<const TreeEntry *> &Entries) { 7230 // TODO: currently checking only for Scalars in the tree entry, need to count 7231 // reused elements too for better cost estimation. 7232 Mask.assign(TE->Scalars.size(), UndefMaskElem); 7233 Entries.clear(); 7234 // Build a lists of values to tree entries. 7235 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 7236 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 7237 if (EntryPtr.get() == TE) 7238 break; 7239 if (EntryPtr->State != TreeEntry::NeedToGather) 7240 continue; 7241 for (Value *V : EntryPtr->Scalars) 7242 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 7243 } 7244 // Find all tree entries used by the gathered values. If no common entries 7245 // found - not a shuffle. 7246 // Here we build a set of tree nodes for each gathered value and trying to 7247 // find the intersection between these sets. If we have at least one common 7248 // tree node for each gathered value - we have just a permutation of the 7249 // single vector. If we have 2 different sets, we're in situation where we 7250 // have a permutation of 2 input vectors. 7251 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7252 DenseMap<Value *, int> UsedValuesEntry; 7253 for (Value *V : TE->Scalars) { 7254 if (isa<UndefValue>(V)) 7255 continue; 7256 // Build a list of tree entries where V is used. 7257 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7258 auto It = ValueToTEs.find(V); 7259 if (It != ValueToTEs.end()) 7260 VToTEs = It->second; 7261 if (const TreeEntry *VTE = getTreeEntry(V)) 7262 VToTEs.insert(VTE); 7263 if (VToTEs.empty()) 7264 return None; 7265 if (UsedTEs.empty()) { 7266 // The first iteration, just insert the list of nodes to vector. 7267 UsedTEs.push_back(VToTEs); 7268 } else { 7269 // Need to check if there are any previously used tree nodes which use V. 7270 // If there are no such nodes, consider that we have another one input 7271 // vector. 7272 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7273 unsigned Idx = 0; 7274 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7275 // Do we have a non-empty intersection of previously listed tree entries 7276 // and tree entries using current V? 7277 set_intersect(VToTEs, Set); 7278 if (!VToTEs.empty()) { 7279 // Yes, write the new subset and continue analysis for the next 7280 // scalar. 7281 Set.swap(VToTEs); 7282 break; 7283 } 7284 VToTEs = SavedVToTEs; 7285 ++Idx; 7286 } 7287 // No non-empty intersection found - need to add a second set of possible 7288 // source vectors. 7289 if (Idx == UsedTEs.size()) { 7290 // If the number of input vectors is greater than 2 - not a permutation, 7291 // fallback to the regular gather. 7292 if (UsedTEs.size() == 2) 7293 return None; 7294 UsedTEs.push_back(SavedVToTEs); 7295 Idx = UsedTEs.size() - 1; 7296 } 7297 UsedValuesEntry.try_emplace(V, Idx); 7298 } 7299 } 7300 7301 if (UsedTEs.empty()) { 7302 assert(all_of(TE->Scalars, UndefValue::classof) && 7303 "Expected vector of undefs only."); 7304 return None; 7305 } 7306 7307 unsigned VF = 0; 7308 if (UsedTEs.size() == 1) { 7309 // Try to find the perfect match in another gather node at first. 7310 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7311 return EntryPtr->isSame(TE->Scalars); 7312 }); 7313 if (It != UsedTEs.front().end()) { 7314 Entries.push_back(*It); 7315 std::iota(Mask.begin(), Mask.end(), 0); 7316 return TargetTransformInfo::SK_PermuteSingleSrc; 7317 } 7318 // No perfect match, just shuffle, so choose the first tree node. 7319 Entries.push_back(*UsedTEs.front().begin()); 7320 } else { 7321 // Try to find nodes with the same vector factor. 7322 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7323 DenseMap<int, const TreeEntry *> VFToTE; 7324 for (const TreeEntry *TE : UsedTEs.front()) 7325 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7326 for (const TreeEntry *TE : UsedTEs.back()) { 7327 auto It = VFToTE.find(TE->getVectorFactor()); 7328 if (It != VFToTE.end()) { 7329 VF = It->first; 7330 Entries.push_back(It->second); 7331 Entries.push_back(TE); 7332 break; 7333 } 7334 } 7335 // No 2 source vectors with the same vector factor - give up and do regular 7336 // gather. 7337 if (Entries.empty()) 7338 return None; 7339 } 7340 7341 // Build a shuffle mask for better cost estimation and vector emission. 7342 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7343 Value *V = TE->Scalars[I]; 7344 if (isa<UndefValue>(V)) 7345 continue; 7346 unsigned Idx = UsedValuesEntry.lookup(V); 7347 const TreeEntry *VTE = Entries[Idx]; 7348 int FoundLane = VTE->findLaneForValue(V); 7349 Mask[I] = Idx * VF + FoundLane; 7350 // Extra check required by isSingleSourceMaskImpl function (called by 7351 // ShuffleVectorInst::isSingleSourceMask). 7352 if (Mask[I] >= 2 * E) 7353 return None; 7354 } 7355 switch (Entries.size()) { 7356 case 1: 7357 return TargetTransformInfo::SK_PermuteSingleSrc; 7358 case 2: 7359 return TargetTransformInfo::SK_PermuteTwoSrc; 7360 default: 7361 break; 7362 } 7363 return None; 7364 } 7365 7366 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7367 const APInt &ShuffledIndices, 7368 bool NeedToShuffle) const { 7369 InstructionCost Cost = 7370 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7371 /*Extract*/ false); 7372 if (NeedToShuffle) 7373 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7374 return Cost; 7375 } 7376 7377 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7378 // Find the type of the operands in VL. 7379 Type *ScalarTy = VL[0]->getType(); 7380 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7381 ScalarTy = SI->getValueOperand()->getType(); 7382 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7383 bool DuplicateNonConst = false; 7384 // Find the cost of inserting/extracting values from the vector. 7385 // Check if the same elements are inserted several times and count them as 7386 // shuffle candidates. 7387 APInt ShuffledElements = APInt::getZero(VL.size()); 7388 DenseSet<Value *> UniqueElements; 7389 // Iterate in reverse order to consider insert elements with the high cost. 7390 for (unsigned I = VL.size(); I > 0; --I) { 7391 unsigned Idx = I - 1; 7392 // No need to shuffle duplicates for constants. 7393 if (isConstant(VL[Idx])) { 7394 ShuffledElements.setBit(Idx); 7395 continue; 7396 } 7397 if (!UniqueElements.insert(VL[Idx]).second) { 7398 DuplicateNonConst = true; 7399 ShuffledElements.setBit(Idx); 7400 } 7401 } 7402 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7403 } 7404 7405 // Perform operand reordering on the instructions in VL and return the reordered 7406 // operands in Left and Right. 7407 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7408 SmallVectorImpl<Value *> &Left, 7409 SmallVectorImpl<Value *> &Right, 7410 const DataLayout &DL, 7411 ScalarEvolution &SE, 7412 const BoUpSLP &R) { 7413 if (VL.empty()) 7414 return; 7415 VLOperands Ops(VL, DL, SE, R); 7416 // Reorder the operands in place. 7417 Ops.reorder(); 7418 Left = Ops.getVL(0); 7419 Right = Ops.getVL(1); 7420 } 7421 7422 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7423 // Get the basic block this bundle is in. All instructions in the bundle 7424 // should be in this block (except for extractelement-like instructions with 7425 // constant indeces). 7426 auto *Front = E->getMainOp(); 7427 auto *BB = Front->getParent(); 7428 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7429 if (E->getOpcode() == Instruction::GetElementPtr && 7430 !isa<GetElementPtrInst>(V)) 7431 return true; 7432 auto *I = cast<Instruction>(V); 7433 return !E->isOpcodeOrAlt(I) || I->getParent() == BB || 7434 isVectorLikeInstWithConstOps(I); 7435 })); 7436 7437 auto &&FindLastInst = [E, Front, this, &BB]() { 7438 Instruction *LastInst = Front; 7439 for (Value *V : E->Scalars) { 7440 auto *I = dyn_cast<Instruction>(V); 7441 if (!I) 7442 continue; 7443 if (LastInst->getParent() == I->getParent()) { 7444 if (LastInst->comesBefore(I)) 7445 LastInst = I; 7446 continue; 7447 } 7448 assert(isVectorLikeInstWithConstOps(LastInst) && 7449 isVectorLikeInstWithConstOps(I) && 7450 "Expected vector-like insts only."); 7451 if (!DT->isReachableFromEntry(LastInst->getParent())) { 7452 LastInst = I; 7453 continue; 7454 } 7455 if (!DT->isReachableFromEntry(I->getParent())) 7456 continue; 7457 auto *NodeA = DT->getNode(LastInst->getParent()); 7458 auto *NodeB = DT->getNode(I->getParent()); 7459 assert(NodeA && "Should only process reachable instructions"); 7460 assert(NodeB && "Should only process reachable instructions"); 7461 assert((NodeA == NodeB) == 7462 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 7463 "Different nodes should have different DFS numbers"); 7464 if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) 7465 LastInst = I; 7466 } 7467 BB = LastInst->getParent(); 7468 return LastInst; 7469 }; 7470 7471 auto &&FindFirstInst = [E, Front]() { 7472 Instruction *FirstInst = Front; 7473 for (Value *V : E->Scalars) { 7474 auto *I = dyn_cast<Instruction>(V); 7475 if (!I) 7476 continue; 7477 if (I->comesBefore(FirstInst)) 7478 FirstInst = I; 7479 } 7480 return FirstInst; 7481 }; 7482 7483 // Set the insert point to the beginning of the basic block if the entry 7484 // should not be scheduled. 7485 if (E->State != TreeEntry::NeedToGather && 7486 doesNotNeedToSchedule(E->Scalars)) { 7487 Instruction *InsertInst; 7488 if (all_of(E->Scalars, isUsedOutsideBlock)) 7489 InsertInst = FindLastInst(); 7490 else 7491 InsertInst = FindFirstInst(); 7492 // If the instruction is PHI, set the insert point after all the PHIs. 7493 if (isa<PHINode>(InsertInst)) 7494 InsertInst = BB->getFirstNonPHI(); 7495 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7496 Builder.SetInsertPoint(BB, InsertPt); 7497 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7498 return; 7499 } 7500 7501 // The last instruction in the bundle in program order. 7502 Instruction *LastInst = nullptr; 7503 7504 // Find the last instruction. The common case should be that BB has been 7505 // scheduled, and the last instruction is VL.back(). So we start with 7506 // VL.back() and iterate over schedule data until we reach the end of the 7507 // bundle. The end of the bundle is marked by null ScheduleData. 7508 if (BlocksSchedules.count(BB)) { 7509 Value *V = E->isOneOf(E->Scalars.back()); 7510 if (doesNotNeedToBeScheduled(V)) 7511 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7512 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7513 if (Bundle && Bundle->isPartOfBundle()) 7514 for (; Bundle; Bundle = Bundle->NextInBundle) 7515 if (Bundle->OpValue == Bundle->Inst) 7516 LastInst = Bundle->Inst; 7517 } 7518 7519 // LastInst can still be null at this point if there's either not an entry 7520 // for BB in BlocksSchedules or there's no ScheduleData available for 7521 // VL.back(). This can be the case if buildTree_rec aborts for various 7522 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7523 // size is reached, etc.). ScheduleData is initialized in the scheduling 7524 // "dry-run". 7525 // 7526 // If this happens, we can still find the last instruction by brute force. We 7527 // iterate forwards from Front (inclusive) until we either see all 7528 // instructions in the bundle or reach the end of the block. If Front is the 7529 // last instruction in program order, LastInst will be set to Front, and we 7530 // will visit all the remaining instructions in the block. 7531 // 7532 // One of the reasons we exit early from buildTree_rec is to place an upper 7533 // bound on compile-time. Thus, taking an additional compile-time hit here is 7534 // not ideal. However, this should be exceedingly rare since it requires that 7535 // we both exit early from buildTree_rec and that the bundle be out-of-order 7536 // (causing us to iterate all the way to the end of the block). 7537 if (!LastInst) { 7538 LastInst = FindLastInst(); 7539 // If the instruction is PHI, set the insert point after all the PHIs. 7540 if (isa<PHINode>(LastInst)) 7541 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7542 } 7543 assert(LastInst && "Failed to find last instruction in bundle"); 7544 7545 // Set the insertion point after the last instruction in the bundle. Set the 7546 // debug location to Front. 7547 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7548 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7549 } 7550 7551 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7552 // List of instructions/lanes from current block and/or the blocks which are 7553 // part of the current loop. These instructions will be inserted at the end to 7554 // make it possible to optimize loops and hoist invariant instructions out of 7555 // the loops body with better chances for success. 7556 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7557 SmallSet<int, 4> PostponedIndices; 7558 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7559 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7560 SmallPtrSet<BasicBlock *, 4> Visited; 7561 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7562 InsertBB = InsertBB->getSinglePredecessor(); 7563 return InsertBB && InsertBB == InstBB; 7564 }; 7565 for (int I = 0, E = VL.size(); I < E; ++I) { 7566 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7567 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7568 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7569 PostponedIndices.insert(I).second) 7570 PostponedInsts.emplace_back(Inst, I); 7571 } 7572 7573 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7574 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7575 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7576 if (!InsElt) 7577 return Vec; 7578 GatherShuffleSeq.insert(InsElt); 7579 CSEBlocks.insert(InsElt->getParent()); 7580 // Add to our 'need-to-extract' list. 7581 if (TreeEntry *Entry = getTreeEntry(V)) { 7582 // Find which lane we need to extract. 7583 unsigned FoundLane = Entry->findLaneForValue(V); 7584 ExternalUses.emplace_back(V, InsElt, FoundLane); 7585 } 7586 return Vec; 7587 }; 7588 Value *Val0 = 7589 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7590 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7591 Value *Vec = PoisonValue::get(VecTy); 7592 SmallVector<int> NonConsts; 7593 // Insert constant values at first. 7594 for (int I = 0, E = VL.size(); I < E; ++I) { 7595 if (PostponedIndices.contains(I)) 7596 continue; 7597 if (!isConstant(VL[I])) { 7598 NonConsts.push_back(I); 7599 continue; 7600 } 7601 Vec = CreateInsertElement(Vec, VL[I], I); 7602 } 7603 // Insert non-constant values. 7604 for (int I : NonConsts) 7605 Vec = CreateInsertElement(Vec, VL[I], I); 7606 // Append instructions, which are/may be part of the loop, in the end to make 7607 // it possible to hoist non-loop-based instructions. 7608 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7609 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7610 7611 return Vec; 7612 } 7613 7614 namespace { 7615 /// Merges shuffle masks and emits final shuffle instruction, if required. 7616 class ShuffleInstructionBuilder { 7617 IRBuilderBase &Builder; 7618 const unsigned VF = 0; 7619 bool IsFinalized = false; 7620 SmallVector<int, 4> Mask; 7621 /// Holds all of the instructions that we gathered. 7622 SetVector<Instruction *> &GatherShuffleSeq; 7623 /// A list of blocks that we are going to CSE. 7624 SetVector<BasicBlock *> &CSEBlocks; 7625 7626 public: 7627 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7628 SetVector<Instruction *> &GatherShuffleSeq, 7629 SetVector<BasicBlock *> &CSEBlocks) 7630 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7631 CSEBlocks(CSEBlocks) {} 7632 7633 /// Adds a mask, inverting it before applying. 7634 void addInversedMask(ArrayRef<unsigned> SubMask) { 7635 if (SubMask.empty()) 7636 return; 7637 SmallVector<int, 4> NewMask; 7638 inversePermutation(SubMask, NewMask); 7639 addMask(NewMask); 7640 } 7641 7642 /// Functions adds masks, merging them into single one. 7643 void addMask(ArrayRef<unsigned> SubMask) { 7644 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7645 addMask(NewMask); 7646 } 7647 7648 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7649 7650 Value *finalize(Value *V) { 7651 IsFinalized = true; 7652 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7653 if (VF == ValueVF && Mask.empty()) 7654 return V; 7655 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7656 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7657 addMask(NormalizedMask); 7658 7659 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7660 return V; 7661 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7662 if (auto *I = dyn_cast<Instruction>(Vec)) { 7663 GatherShuffleSeq.insert(I); 7664 CSEBlocks.insert(I->getParent()); 7665 } 7666 return Vec; 7667 } 7668 7669 ~ShuffleInstructionBuilder() { 7670 assert((IsFinalized || Mask.empty()) && 7671 "Shuffle construction must be finalized."); 7672 } 7673 }; 7674 } // namespace 7675 7676 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7677 const unsigned VF = VL.size(); 7678 InstructionsState S = getSameOpcode(VL); 7679 // Special processing for GEPs bundle, which may include non-gep values. 7680 if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { 7681 const auto *It = 7682 find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 7683 if (It != VL.end()) 7684 S = getSameOpcode(*It); 7685 } 7686 if (S.getOpcode()) { 7687 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7688 if (E->isSame(VL)) { 7689 Value *V = vectorizeTree(E); 7690 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7691 if (!E->ReuseShuffleIndices.empty()) { 7692 // Reshuffle to get only unique values. 7693 // If some of the scalars are duplicated in the vectorization tree 7694 // entry, we do not vectorize them but instead generate a mask for 7695 // the reuses. But if there are several users of the same entry, 7696 // they may have different vectorization factors. This is especially 7697 // important for PHI nodes. In this case, we need to adapt the 7698 // resulting instruction for the user vectorization factor and have 7699 // to reshuffle it again to take only unique elements of the vector. 7700 // Without this code the function incorrectly returns reduced vector 7701 // instruction with the same elements, not with the unique ones. 7702 7703 // block: 7704 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7705 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7706 // ... (use %2) 7707 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7708 // br %block 7709 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7710 SmallSet<int, 4> UsedIdxs; 7711 int Pos = 0; 7712 int Sz = VL.size(); 7713 for (int Idx : E->ReuseShuffleIndices) { 7714 if (Idx != Sz && Idx != UndefMaskElem && 7715 UsedIdxs.insert(Idx).second) 7716 UniqueIdxs[Idx] = Pos; 7717 ++Pos; 7718 } 7719 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7720 "less than original vector size."); 7721 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7722 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7723 } else { 7724 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7725 "Expected vectorization factor less " 7726 "than original vector size."); 7727 SmallVector<int> UniformMask(VF, 0); 7728 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7729 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7730 } 7731 if (auto *I = dyn_cast<Instruction>(V)) { 7732 GatherShuffleSeq.insert(I); 7733 CSEBlocks.insert(I->getParent()); 7734 } 7735 } 7736 return V; 7737 } 7738 } 7739 7740 // Can't vectorize this, so simply build a new vector with each lane 7741 // corresponding to the requested value. 7742 return createBuildVector(VL); 7743 } 7744 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7745 assert(any_of(VectorizableTree, 7746 [VL](const std::unique_ptr<TreeEntry> &TE) { 7747 return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); 7748 }) && 7749 "Non-matching gather node."); 7750 unsigned VF = VL.size(); 7751 // Exploit possible reuse of values across lanes. 7752 SmallVector<int> ReuseShuffleIndicies; 7753 SmallVector<Value *> UniqueValues; 7754 if (VL.size() > 2) { 7755 DenseMap<Value *, unsigned> UniquePositions; 7756 unsigned NumValues = 7757 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7758 return !isa<UndefValue>(V); 7759 }).base()); 7760 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7761 int UniqueVals = 0; 7762 for (Value *V : VL.drop_back(VL.size() - VF)) { 7763 if (isa<UndefValue>(V)) { 7764 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7765 continue; 7766 } 7767 if (isConstant(V)) { 7768 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7769 UniqueValues.emplace_back(V); 7770 continue; 7771 } 7772 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7773 ReuseShuffleIndicies.emplace_back(Res.first->second); 7774 if (Res.second) { 7775 UniqueValues.emplace_back(V); 7776 ++UniqueVals; 7777 } 7778 } 7779 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7780 // Emit pure splat vector. 7781 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7782 UndefMaskElem); 7783 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7784 if (UniqueValues.empty()) { 7785 assert(all_of(VL, UndefValue::classof) && "Expected list of undefs."); 7786 NumValues = VF; 7787 } 7788 ReuseShuffleIndicies.clear(); 7789 UniqueValues.clear(); 7790 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7791 } 7792 UniqueValues.append(VF - UniqueValues.size(), 7793 PoisonValue::get(VL[0]->getType())); 7794 VL = UniqueValues; 7795 } 7796 7797 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7798 CSEBlocks); 7799 Value *Vec = gather(VL); 7800 if (!ReuseShuffleIndicies.empty()) { 7801 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7802 Vec = ShuffleBuilder.finalize(Vec); 7803 } 7804 return Vec; 7805 } 7806 7807 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7808 IRBuilder<>::InsertPointGuard Guard(Builder); 7809 7810 if (E->VectorizedValue) { 7811 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7812 return E->VectorizedValue; 7813 } 7814 7815 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7816 unsigned VF = E->getVectorFactor(); 7817 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7818 CSEBlocks); 7819 if (E->State == TreeEntry::NeedToGather) { 7820 if (E->getMainOp()) 7821 setInsertPointAfterBundle(E); 7822 Value *Vec; 7823 SmallVector<int> Mask; 7824 SmallVector<const TreeEntry *> Entries; 7825 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7826 isGatherShuffledEntry(E, Mask, Entries); 7827 if (Shuffle) { 7828 assert((Entries.size() == 1 || Entries.size() == 2) && 7829 "Expected shuffle of 1 or 2 entries."); 7830 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7831 Entries.back()->VectorizedValue, Mask); 7832 if (auto *I = dyn_cast<Instruction>(Vec)) { 7833 GatherShuffleSeq.insert(I); 7834 CSEBlocks.insert(I->getParent()); 7835 } 7836 } else { 7837 Vec = gather(E->Scalars); 7838 } 7839 if (NeedToShuffleReuses) { 7840 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7841 Vec = ShuffleBuilder.finalize(Vec); 7842 } 7843 E->VectorizedValue = Vec; 7844 return Vec; 7845 } 7846 7847 assert((E->State == TreeEntry::Vectorize || 7848 E->State == TreeEntry::ScatterVectorize) && 7849 "Unhandled state"); 7850 unsigned ShuffleOrOp = 7851 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7852 Instruction *VL0 = E->getMainOp(); 7853 Type *ScalarTy = VL0->getType(); 7854 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7855 ScalarTy = Store->getValueOperand()->getType(); 7856 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7857 ScalarTy = IE->getOperand(1)->getType(); 7858 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7859 switch (ShuffleOrOp) { 7860 case Instruction::PHI: { 7861 assert((E->ReorderIndices.empty() || 7862 E != VectorizableTree.front().get() || 7863 !E->UserTreeIndices.empty()) && 7864 "PHI reordering is free."); 7865 auto *PH = cast<PHINode>(VL0); 7866 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7867 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7868 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7869 Value *V = NewPhi; 7870 7871 // Adjust insertion point once all PHI's have been generated. 7872 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7873 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7874 7875 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7876 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7877 V = ShuffleBuilder.finalize(V); 7878 7879 E->VectorizedValue = V; 7880 7881 // PHINodes may have multiple entries from the same block. We want to 7882 // visit every block once. 7883 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7884 7885 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7886 ValueList Operands; 7887 BasicBlock *IBB = PH->getIncomingBlock(i); 7888 7889 if (!VisitedBBs.insert(IBB).second) { 7890 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7891 continue; 7892 } 7893 7894 Builder.SetInsertPoint(IBB->getTerminator()); 7895 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7896 Value *Vec = vectorizeTree(E->getOperand(i)); 7897 NewPhi->addIncoming(Vec, IBB); 7898 } 7899 7900 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7901 "Invalid number of incoming values"); 7902 return V; 7903 } 7904 7905 case Instruction::ExtractElement: { 7906 Value *V = E->getSingleOperand(0); 7907 Builder.SetInsertPoint(VL0); 7908 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7909 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7910 V = ShuffleBuilder.finalize(V); 7911 E->VectorizedValue = V; 7912 return V; 7913 } 7914 case Instruction::ExtractValue: { 7915 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7916 Builder.SetInsertPoint(LI); 7917 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7918 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7919 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7920 Value *NewV = propagateMetadata(V, E->Scalars); 7921 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7922 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7923 NewV = ShuffleBuilder.finalize(NewV); 7924 E->VectorizedValue = NewV; 7925 return NewV; 7926 } 7927 case Instruction::InsertElement: { 7928 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7929 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7930 Value *V = vectorizeTree(E->getOperand(1)); 7931 7932 // Create InsertVector shuffle if necessary 7933 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7934 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7935 })); 7936 const unsigned NumElts = 7937 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7938 const unsigned NumScalars = E->Scalars.size(); 7939 7940 unsigned Offset = *getInsertIndex(VL0); 7941 assert(Offset < NumElts && "Failed to find vector index offset"); 7942 7943 // Create shuffle to resize vector 7944 SmallVector<int> Mask; 7945 if (!E->ReorderIndices.empty()) { 7946 inversePermutation(E->ReorderIndices, Mask); 7947 Mask.append(NumElts - NumScalars, UndefMaskElem); 7948 } else { 7949 Mask.assign(NumElts, UndefMaskElem); 7950 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7951 } 7952 // Create InsertVector shuffle if necessary 7953 bool IsIdentity = true; 7954 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7955 Mask.swap(PrevMask); 7956 for (unsigned I = 0; I < NumScalars; ++I) { 7957 Value *Scalar = E->Scalars[PrevMask[I]]; 7958 unsigned InsertIdx = *getInsertIndex(Scalar); 7959 IsIdentity &= InsertIdx - Offset == I; 7960 Mask[InsertIdx - Offset] = I; 7961 } 7962 if (!IsIdentity || NumElts != NumScalars) { 7963 V = Builder.CreateShuffleVector(V, Mask); 7964 if (auto *I = dyn_cast<Instruction>(V)) { 7965 GatherShuffleSeq.insert(I); 7966 CSEBlocks.insert(I->getParent()); 7967 } 7968 } 7969 7970 if ((!IsIdentity || Offset != 0 || 7971 !isUndefVector(FirstInsert->getOperand(0))) && 7972 NumElts != NumScalars) { 7973 SmallVector<int> InsertMask(NumElts); 7974 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7975 for (unsigned I = 0; I < NumElts; I++) { 7976 if (Mask[I] != UndefMaskElem) 7977 InsertMask[Offset + I] = NumElts + I; 7978 } 7979 7980 V = Builder.CreateShuffleVector( 7981 FirstInsert->getOperand(0), V, InsertMask, 7982 cast<Instruction>(E->Scalars.back())->getName()); 7983 if (auto *I = dyn_cast<Instruction>(V)) { 7984 GatherShuffleSeq.insert(I); 7985 CSEBlocks.insert(I->getParent()); 7986 } 7987 } 7988 7989 ++NumVectorInstructions; 7990 E->VectorizedValue = V; 7991 return V; 7992 } 7993 case Instruction::ZExt: 7994 case Instruction::SExt: 7995 case Instruction::FPToUI: 7996 case Instruction::FPToSI: 7997 case Instruction::FPExt: 7998 case Instruction::PtrToInt: 7999 case Instruction::IntToPtr: 8000 case Instruction::SIToFP: 8001 case Instruction::UIToFP: 8002 case Instruction::Trunc: 8003 case Instruction::FPTrunc: 8004 case Instruction::BitCast: { 8005 setInsertPointAfterBundle(E); 8006 8007 Value *InVec = vectorizeTree(E->getOperand(0)); 8008 8009 if (E->VectorizedValue) { 8010 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8011 return E->VectorizedValue; 8012 } 8013 8014 auto *CI = cast<CastInst>(VL0); 8015 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 8016 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8017 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8018 V = ShuffleBuilder.finalize(V); 8019 8020 E->VectorizedValue = V; 8021 ++NumVectorInstructions; 8022 return V; 8023 } 8024 case Instruction::FCmp: 8025 case Instruction::ICmp: { 8026 setInsertPointAfterBundle(E); 8027 8028 Value *L = vectorizeTree(E->getOperand(0)); 8029 Value *R = vectorizeTree(E->getOperand(1)); 8030 8031 if (E->VectorizedValue) { 8032 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8033 return E->VectorizedValue; 8034 } 8035 8036 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 8037 Value *V = Builder.CreateCmp(P0, L, R); 8038 propagateIRFlags(V, E->Scalars, VL0); 8039 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8040 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8041 V = ShuffleBuilder.finalize(V); 8042 8043 E->VectorizedValue = V; 8044 ++NumVectorInstructions; 8045 return V; 8046 } 8047 case Instruction::Select: { 8048 setInsertPointAfterBundle(E); 8049 8050 Value *Cond = vectorizeTree(E->getOperand(0)); 8051 Value *True = vectorizeTree(E->getOperand(1)); 8052 Value *False = vectorizeTree(E->getOperand(2)); 8053 8054 if (E->VectorizedValue) { 8055 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8056 return E->VectorizedValue; 8057 } 8058 8059 Value *V = Builder.CreateSelect(Cond, True, False); 8060 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8061 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8062 V = ShuffleBuilder.finalize(V); 8063 8064 E->VectorizedValue = V; 8065 ++NumVectorInstructions; 8066 return V; 8067 } 8068 case Instruction::FNeg: { 8069 setInsertPointAfterBundle(E); 8070 8071 Value *Op = vectorizeTree(E->getOperand(0)); 8072 8073 if (E->VectorizedValue) { 8074 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8075 return E->VectorizedValue; 8076 } 8077 8078 Value *V = Builder.CreateUnOp( 8079 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 8080 propagateIRFlags(V, E->Scalars, VL0); 8081 if (auto *I = dyn_cast<Instruction>(V)) 8082 V = propagateMetadata(I, E->Scalars); 8083 8084 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8085 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8086 V = ShuffleBuilder.finalize(V); 8087 8088 E->VectorizedValue = V; 8089 ++NumVectorInstructions; 8090 8091 return V; 8092 } 8093 case Instruction::Add: 8094 case Instruction::FAdd: 8095 case Instruction::Sub: 8096 case Instruction::FSub: 8097 case Instruction::Mul: 8098 case Instruction::FMul: 8099 case Instruction::UDiv: 8100 case Instruction::SDiv: 8101 case Instruction::FDiv: 8102 case Instruction::URem: 8103 case Instruction::SRem: 8104 case Instruction::FRem: 8105 case Instruction::Shl: 8106 case Instruction::LShr: 8107 case Instruction::AShr: 8108 case Instruction::And: 8109 case Instruction::Or: 8110 case Instruction::Xor: { 8111 setInsertPointAfterBundle(E); 8112 8113 Value *LHS = vectorizeTree(E->getOperand(0)); 8114 Value *RHS = vectorizeTree(E->getOperand(1)); 8115 8116 if (E->VectorizedValue) { 8117 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8118 return E->VectorizedValue; 8119 } 8120 8121 Value *V = Builder.CreateBinOp( 8122 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 8123 RHS); 8124 propagateIRFlags(V, E->Scalars, VL0); 8125 if (auto *I = dyn_cast<Instruction>(V)) 8126 V = propagateMetadata(I, E->Scalars); 8127 8128 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8129 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8130 V = ShuffleBuilder.finalize(V); 8131 8132 E->VectorizedValue = V; 8133 ++NumVectorInstructions; 8134 8135 return V; 8136 } 8137 case Instruction::Load: { 8138 // Loads are inserted at the head of the tree because we don't want to 8139 // sink them all the way down past store instructions. 8140 setInsertPointAfterBundle(E); 8141 8142 LoadInst *LI = cast<LoadInst>(VL0); 8143 Instruction *NewLI; 8144 unsigned AS = LI->getPointerAddressSpace(); 8145 Value *PO = LI->getPointerOperand(); 8146 if (E->State == TreeEntry::Vectorize) { 8147 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 8148 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 8149 8150 // The pointer operand uses an in-tree scalar so we add the new BitCast 8151 // or LoadInst to ExternalUses list to make sure that an extract will 8152 // be generated in the future. 8153 if (TreeEntry *Entry = getTreeEntry(PO)) { 8154 // Find which lane we need to extract. 8155 unsigned FoundLane = Entry->findLaneForValue(PO); 8156 ExternalUses.emplace_back( 8157 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 8158 } 8159 } else { 8160 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 8161 Value *VecPtr = vectorizeTree(E->getOperand(0)); 8162 // Use the minimum alignment of the gathered loads. 8163 Align CommonAlignment = LI->getAlign(); 8164 for (Value *V : E->Scalars) 8165 CommonAlignment = 8166 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 8167 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 8168 } 8169 Value *V = propagateMetadata(NewLI, E->Scalars); 8170 8171 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8172 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8173 V = ShuffleBuilder.finalize(V); 8174 E->VectorizedValue = V; 8175 ++NumVectorInstructions; 8176 return V; 8177 } 8178 case Instruction::Store: { 8179 auto *SI = cast<StoreInst>(VL0); 8180 unsigned AS = SI->getPointerAddressSpace(); 8181 8182 setInsertPointAfterBundle(E); 8183 8184 Value *VecValue = vectorizeTree(E->getOperand(0)); 8185 ShuffleBuilder.addMask(E->ReorderIndices); 8186 VecValue = ShuffleBuilder.finalize(VecValue); 8187 8188 Value *ScalarPtr = SI->getPointerOperand(); 8189 Value *VecPtr = Builder.CreateBitCast( 8190 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 8191 StoreInst *ST = 8192 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 8193 8194 // The pointer operand uses an in-tree scalar, so add the new BitCast or 8195 // StoreInst to ExternalUses to make sure that an extract will be 8196 // generated in the future. 8197 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 8198 // Find which lane we need to extract. 8199 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 8200 ExternalUses.push_back(ExternalUser( 8201 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 8202 FoundLane)); 8203 } 8204 8205 Value *V = propagateMetadata(ST, E->Scalars); 8206 8207 E->VectorizedValue = V; 8208 ++NumVectorInstructions; 8209 return V; 8210 } 8211 case Instruction::GetElementPtr: { 8212 auto *GEP0 = cast<GetElementPtrInst>(VL0); 8213 setInsertPointAfterBundle(E); 8214 8215 Value *Op0 = vectorizeTree(E->getOperand(0)); 8216 8217 SmallVector<Value *> OpVecs; 8218 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 8219 Value *OpVec = vectorizeTree(E->getOperand(J)); 8220 OpVecs.push_back(OpVec); 8221 } 8222 8223 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 8224 if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { 8225 SmallVector<Value *> GEPs; 8226 for (Value *V : E->Scalars) { 8227 if (isa<GetElementPtrInst>(V)) 8228 GEPs.push_back(V); 8229 } 8230 V = propagateMetadata(I, GEPs); 8231 } 8232 8233 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8234 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8235 V = ShuffleBuilder.finalize(V); 8236 8237 E->VectorizedValue = V; 8238 ++NumVectorInstructions; 8239 8240 return V; 8241 } 8242 case Instruction::Call: { 8243 CallInst *CI = cast<CallInst>(VL0); 8244 setInsertPointAfterBundle(E); 8245 8246 Intrinsic::ID IID = Intrinsic::not_intrinsic; 8247 if (Function *FI = CI->getCalledFunction()) 8248 IID = FI->getIntrinsicID(); 8249 8250 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8251 8252 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 8253 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 8254 VecCallCosts.first <= VecCallCosts.second; 8255 8256 Value *ScalarArg = nullptr; 8257 std::vector<Value *> OpVecs; 8258 SmallVector<Type *, 2> TysForDecl = 8259 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 8260 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 8261 ValueList OpVL; 8262 // Some intrinsics have scalar arguments. This argument should not be 8263 // vectorized. 8264 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 8265 CallInst *CEI = cast<CallInst>(VL0); 8266 ScalarArg = CEI->getArgOperand(j); 8267 OpVecs.push_back(CEI->getArgOperand(j)); 8268 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8269 TysForDecl.push_back(ScalarArg->getType()); 8270 continue; 8271 } 8272 8273 Value *OpVec = vectorizeTree(E->getOperand(j)); 8274 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 8275 OpVecs.push_back(OpVec); 8276 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8277 TysForDecl.push_back(OpVec->getType()); 8278 } 8279 8280 Function *CF; 8281 if (!UseIntrinsic) { 8282 VFShape Shape = 8283 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 8284 VecTy->getNumElements())), 8285 false /*HasGlobalPred*/); 8286 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 8287 } else { 8288 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 8289 } 8290 8291 SmallVector<OperandBundleDef, 1> OpBundles; 8292 CI->getOperandBundlesAsDefs(OpBundles); 8293 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 8294 8295 // The scalar argument uses an in-tree scalar so we add the new vectorized 8296 // call to ExternalUses list to make sure that an extract will be 8297 // generated in the future. 8298 if (ScalarArg) { 8299 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8300 // Find which lane we need to extract. 8301 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8302 ExternalUses.push_back( 8303 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8304 } 8305 } 8306 8307 propagateIRFlags(V, E->Scalars, VL0); 8308 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8309 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8310 V = ShuffleBuilder.finalize(V); 8311 8312 E->VectorizedValue = V; 8313 ++NumVectorInstructions; 8314 return V; 8315 } 8316 case Instruction::ShuffleVector: { 8317 assert(E->isAltShuffle() && 8318 ((Instruction::isBinaryOp(E->getOpcode()) && 8319 Instruction::isBinaryOp(E->getAltOpcode())) || 8320 (Instruction::isCast(E->getOpcode()) && 8321 Instruction::isCast(E->getAltOpcode())) || 8322 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8323 "Invalid Shuffle Vector Operand"); 8324 8325 Value *LHS = nullptr, *RHS = nullptr; 8326 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8327 setInsertPointAfterBundle(E); 8328 LHS = vectorizeTree(E->getOperand(0)); 8329 RHS = vectorizeTree(E->getOperand(1)); 8330 } else { 8331 setInsertPointAfterBundle(E); 8332 LHS = vectorizeTree(E->getOperand(0)); 8333 } 8334 8335 if (E->VectorizedValue) { 8336 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8337 return E->VectorizedValue; 8338 } 8339 8340 Value *V0, *V1; 8341 if (Instruction::isBinaryOp(E->getOpcode())) { 8342 V0 = Builder.CreateBinOp( 8343 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8344 V1 = Builder.CreateBinOp( 8345 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8346 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8347 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8348 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8349 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8350 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8351 } else { 8352 V0 = Builder.CreateCast( 8353 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8354 V1 = Builder.CreateCast( 8355 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8356 } 8357 // Add V0 and V1 to later analysis to try to find and remove matching 8358 // instruction, if any. 8359 for (Value *V : {V0, V1}) { 8360 if (auto *I = dyn_cast<Instruction>(V)) { 8361 GatherShuffleSeq.insert(I); 8362 CSEBlocks.insert(I->getParent()); 8363 } 8364 } 8365 8366 // Create shuffle to take alternate operations from the vector. 8367 // Also, gather up main and alt scalar ops to propagate IR flags to 8368 // each vector operation. 8369 ValueList OpScalars, AltScalars; 8370 SmallVector<int> Mask; 8371 buildShuffleEntryMask( 8372 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8373 [E](Instruction *I) { 8374 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8375 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8376 }, 8377 Mask, &OpScalars, &AltScalars); 8378 8379 propagateIRFlags(V0, OpScalars); 8380 propagateIRFlags(V1, AltScalars); 8381 8382 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8383 if (auto *I = dyn_cast<Instruction>(V)) { 8384 V = propagateMetadata(I, E->Scalars); 8385 GatherShuffleSeq.insert(I); 8386 CSEBlocks.insert(I->getParent()); 8387 } 8388 V = ShuffleBuilder.finalize(V); 8389 8390 E->VectorizedValue = V; 8391 ++NumVectorInstructions; 8392 8393 return V; 8394 } 8395 default: 8396 llvm_unreachable("unknown inst"); 8397 } 8398 return nullptr; 8399 } 8400 8401 Value *BoUpSLP::vectorizeTree() { 8402 ExtraValueToDebugLocsMap ExternallyUsedValues; 8403 return vectorizeTree(ExternallyUsedValues); 8404 } 8405 8406 namespace { 8407 /// Data type for handling buildvector sequences with the reused scalars from 8408 /// other tree entries. 8409 struct ShuffledInsertData { 8410 /// List of insertelements to be replaced by shuffles. 8411 SmallVector<InsertElementInst *> InsertElements; 8412 /// The parent vectors and shuffle mask for the given list of inserts. 8413 MapVector<Value *, SmallVector<int>> ValueMasks; 8414 }; 8415 } // namespace 8416 8417 Value * 8418 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8419 // All blocks must be scheduled before any instructions are inserted. 8420 for (auto &BSIter : BlocksSchedules) { 8421 scheduleBlock(BSIter.second.get()); 8422 } 8423 8424 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8425 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8426 8427 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8428 // vectorized root. InstCombine will then rewrite the entire expression. We 8429 // sign extend the extracted values below. 8430 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8431 if (MinBWs.count(ScalarRoot)) { 8432 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8433 // If current instr is a phi and not the last phi, insert it after the 8434 // last phi node. 8435 if (isa<PHINode>(I)) 8436 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8437 else 8438 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8439 } 8440 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8441 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8442 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8443 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8444 VectorizableTree[0]->VectorizedValue = Trunc; 8445 } 8446 8447 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8448 << " values .\n"); 8449 8450 SmallVector<ShuffledInsertData> ShuffledInserts; 8451 // Maps vector instruction to original insertelement instruction 8452 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 8453 // Extract all of the elements with the external uses. 8454 for (const auto &ExternalUse : ExternalUses) { 8455 Value *Scalar = ExternalUse.Scalar; 8456 llvm::User *User = ExternalUse.User; 8457 8458 // Skip users that we already RAUW. This happens when one instruction 8459 // has multiple uses of the same value. 8460 if (User && !is_contained(Scalar->users(), User)) 8461 continue; 8462 TreeEntry *E = getTreeEntry(Scalar); 8463 assert(E && "Invalid scalar"); 8464 assert(E->State != TreeEntry::NeedToGather && 8465 "Extracting from a gather list"); 8466 // Non-instruction pointers are not deleted, just skip them. 8467 if (E->getOpcode() == Instruction::GetElementPtr && 8468 !isa<GetElementPtrInst>(Scalar)) 8469 continue; 8470 8471 Value *Vec = E->VectorizedValue; 8472 assert(Vec && "Can't find vectorizable value"); 8473 8474 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8475 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8476 if (Scalar->getType() != Vec->getType()) { 8477 Value *Ex; 8478 // "Reuse" the existing extract to improve final codegen. 8479 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8480 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8481 ES->getOperand(1)); 8482 } else { 8483 Ex = Builder.CreateExtractElement(Vec, Lane); 8484 } 8485 // If necessary, sign-extend or zero-extend ScalarRoot 8486 // to the larger type. 8487 if (!MinBWs.count(ScalarRoot)) 8488 return Ex; 8489 if (MinBWs[ScalarRoot].second) 8490 return Builder.CreateSExt(Ex, Scalar->getType()); 8491 return Builder.CreateZExt(Ex, Scalar->getType()); 8492 } 8493 assert(isa<FixedVectorType>(Scalar->getType()) && 8494 isa<InsertElementInst>(Scalar) && 8495 "In-tree scalar of vector type is not insertelement?"); 8496 auto *IE = cast<InsertElementInst>(Scalar); 8497 VectorToInsertElement.try_emplace(Vec, IE); 8498 return Vec; 8499 }; 8500 // If User == nullptr, the Scalar is used as extra arg. Generate 8501 // ExtractElement instruction and update the record for this scalar in 8502 // ExternallyUsedValues. 8503 if (!User) { 8504 assert(ExternallyUsedValues.count(Scalar) && 8505 "Scalar with nullptr as an external user must be registered in " 8506 "ExternallyUsedValues map"); 8507 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8508 Builder.SetInsertPoint(VecI->getParent(), 8509 std::next(VecI->getIterator())); 8510 } else { 8511 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8512 } 8513 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8514 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8515 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8516 auto It = ExternallyUsedValues.find(Scalar); 8517 assert(It != ExternallyUsedValues.end() && 8518 "Externally used scalar is not found in ExternallyUsedValues"); 8519 NewInstLocs.append(It->second); 8520 ExternallyUsedValues.erase(Scalar); 8521 // Required to update internally referenced instructions. 8522 Scalar->replaceAllUsesWith(NewInst); 8523 continue; 8524 } 8525 8526 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 8527 // Skip if the scalar is another vector op or Vec is not an instruction. 8528 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { 8529 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 8530 Optional<unsigned> InsertIdx = getInsertIndex(VU); 8531 if (InsertIdx) { 8532 // Need to use original vector, if the root is truncated. 8533 if (MinBWs.count(Scalar) && 8534 VectorizableTree[0]->VectorizedValue == Vec) 8535 Vec = VectorRoot; 8536 auto *It = 8537 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 8538 // Checks if 2 insertelements are from the same buildvector. 8539 InsertElementInst *VecInsert = Data.InsertElements.front(); 8540 return areTwoInsertFromSameBuildVector(VU, VecInsert); 8541 }); 8542 unsigned Idx = *InsertIdx; 8543 if (It == ShuffledInserts.end()) { 8544 (void)ShuffledInserts.emplace_back(); 8545 It = std::next(ShuffledInserts.begin(), 8546 ShuffledInserts.size() - 1); 8547 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8548 if (Mask.empty()) 8549 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8550 // Find the insertvector, vectorized in tree, if any. 8551 Value *Base = VU; 8552 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 8553 if (IEBase != User && 8554 (!IEBase->hasOneUse() || 8555 getInsertIndex(IEBase).value_or(Idx) == Idx)) 8556 break; 8557 // Build the mask for the vectorized insertelement instructions. 8558 if (const TreeEntry *E = getTreeEntry(IEBase)) { 8559 do { 8560 IEBase = cast<InsertElementInst>(Base); 8561 int IEIdx = *getInsertIndex(IEBase); 8562 assert(Mask[Idx] == UndefMaskElem && 8563 "InsertElementInstruction used already."); 8564 Mask[IEIdx] = IEIdx; 8565 Base = IEBase->getOperand(0); 8566 } while (E == getTreeEntry(Base)); 8567 break; 8568 } 8569 Base = cast<InsertElementInst>(Base)->getOperand(0); 8570 // After the vectorization the def-use chain has changed, need 8571 // to look through original insertelement instructions, if they 8572 // get replaced by vector instructions. 8573 auto It = VectorToInsertElement.find(Base); 8574 if (It != VectorToInsertElement.end()) 8575 Base = It->second; 8576 } 8577 } 8578 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8579 if (Mask.empty()) 8580 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8581 Mask[Idx] = ExternalUse.Lane; 8582 It->InsertElements.push_back(cast<InsertElementInst>(User)); 8583 continue; 8584 } 8585 } 8586 } 8587 } 8588 8589 // Generate extracts for out-of-tree users. 8590 // Find the insertion point for the extractelement lane. 8591 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8592 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8593 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8594 if (PH->getIncomingValue(i) == Scalar) { 8595 Instruction *IncomingTerminator = 8596 PH->getIncomingBlock(i)->getTerminator(); 8597 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8598 Builder.SetInsertPoint(VecI->getParent(), 8599 std::next(VecI->getIterator())); 8600 } else { 8601 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8602 } 8603 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8604 CSEBlocks.insert(PH->getIncomingBlock(i)); 8605 PH->setOperand(i, NewInst); 8606 } 8607 } 8608 } else { 8609 Builder.SetInsertPoint(cast<Instruction>(User)); 8610 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8611 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8612 User->replaceUsesOfWith(Scalar, NewInst); 8613 } 8614 } else { 8615 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8616 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8617 CSEBlocks.insert(&F->getEntryBlock()); 8618 User->replaceUsesOfWith(Scalar, NewInst); 8619 } 8620 8621 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8622 } 8623 8624 // Checks if the mask is an identity mask. 8625 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) { 8626 int Limit = Mask.size(); 8627 return VecTy->getNumElements() == Mask.size() && 8628 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 8629 ShuffleVectorInst::isIdentityMask(Mask); 8630 }; 8631 // Tries to combine 2 different masks into single one. 8632 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) { 8633 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8634 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8635 if (ExtMask[I] == UndefMaskElem) 8636 continue; 8637 NewMask[I] = Mask[ExtMask[I]]; 8638 } 8639 Mask.swap(NewMask); 8640 }; 8641 // Peek through shuffles, trying to simplify the final shuffle code. 8642 auto &&PeekThroughShuffles = 8643 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask, 8644 bool CheckForLengthChange = false) { 8645 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 8646 // Exit if not a fixed vector type or changing size shuffle. 8647 if (!isa<FixedVectorType>(SV->getType()) || 8648 (CheckForLengthChange && SV->changesLength())) 8649 break; 8650 // Exit if the identity or broadcast mask is found. 8651 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) || 8652 SV->isZeroEltSplat()) 8653 break; 8654 bool IsOp1Undef = isUndefVector(SV->getOperand(0)); 8655 bool IsOp2Undef = isUndefVector(SV->getOperand(1)); 8656 if (!IsOp1Undef && !IsOp2Undef) 8657 break; 8658 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 8659 SV->getShuffleMask().end()); 8660 CombineMasks(ShuffleMask, Mask); 8661 Mask.swap(ShuffleMask); 8662 if (IsOp2Undef) 8663 V = SV->getOperand(0); 8664 else 8665 V = SV->getOperand(1); 8666 } 8667 }; 8668 // Smart shuffle instruction emission, walks through shuffles trees and 8669 // tries to find the best matching vector for the actual shuffle 8670 // instruction. 8671 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles, 8672 &CombineMasks](Value *V1, Value *V2, 8673 ArrayRef<int> Mask) -> Value * { 8674 assert(V1 && "Expected at least one vector value."); 8675 if (V2 && !isUndefVector(V2)) { 8676 // Peek through shuffles. 8677 Value *Op1 = V1; 8678 Value *Op2 = V2; 8679 int VF = 8680 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 8681 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 8682 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 8683 for (int I = 0, E = Mask.size(); I < E; ++I) { 8684 if (Mask[I] < VF) 8685 CombinedMask1[I] = Mask[I]; 8686 else 8687 CombinedMask2[I] = Mask[I] - VF; 8688 } 8689 Value *PrevOp1; 8690 Value *PrevOp2; 8691 do { 8692 PrevOp1 = Op1; 8693 PrevOp2 = Op2; 8694 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true); 8695 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true); 8696 // Check if we have 2 resizing shuffles - need to peek through operands 8697 // again. 8698 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 8699 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) 8700 if (SV1->getOperand(0)->getType() == 8701 SV2->getOperand(0)->getType() && 8702 SV1->getOperand(0)->getType() != SV1->getType() && 8703 isUndefVector(SV1->getOperand(1)) && 8704 isUndefVector(SV2->getOperand(1))) { 8705 Op1 = SV1->getOperand(0); 8706 Op2 = SV2->getOperand(0); 8707 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 8708 SV1->getShuffleMask().end()); 8709 CombineMasks(ShuffleMask1, CombinedMask1); 8710 CombinedMask1.swap(ShuffleMask1); 8711 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 8712 SV2->getShuffleMask().end()); 8713 CombineMasks(ShuffleMask2, CombinedMask2); 8714 CombinedMask2.swap(ShuffleMask2); 8715 } 8716 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 8717 VF = cast<VectorType>(Op1->getType()) 8718 ->getElementCount() 8719 .getKnownMinValue(); 8720 for (int I = 0, E = Mask.size(); I < E; ++I) { 8721 if (CombinedMask2[I] != UndefMaskElem) { 8722 assert(CombinedMask1[I] == UndefMaskElem && 8723 "Expected undefined mask element"); 8724 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 8725 } 8726 } 8727 Value *Vec = Builder.CreateShuffleVector( 8728 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 8729 CombinedMask1); 8730 if (auto *I = dyn_cast<Instruction>(Vec)) { 8731 GatherShuffleSeq.insert(I); 8732 CSEBlocks.insert(I->getParent()); 8733 } 8734 return Vec; 8735 } 8736 if (isa<PoisonValue>(V1)) 8737 return PoisonValue::get(FixedVectorType::get( 8738 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 8739 Value *Op = V1; 8740 SmallVector<int> CombinedMask(Mask.begin(), Mask.end()); 8741 PeekThroughShuffles(Op, CombinedMask); 8742 if (!isa<FixedVectorType>(Op->getType()) || 8743 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) { 8744 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask); 8745 if (auto *I = dyn_cast<Instruction>(Vec)) { 8746 GatherShuffleSeq.insert(I); 8747 CSEBlocks.insert(I->getParent()); 8748 } 8749 return Vec; 8750 } 8751 return Op; 8752 }; 8753 8754 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) { 8755 unsigned VF = Mask.size(); 8756 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 8757 if (VF != VecVF) { 8758 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 8759 Vec = CreateShuffle(Vec, nullptr, Mask); 8760 return std::make_pair(Vec, true); 8761 } 8762 SmallVector<int> ResizeMask(VF, UndefMaskElem); 8763 for (unsigned I = 0; I < VF; ++I) { 8764 if (Mask[I] != UndefMaskElem) 8765 ResizeMask[Mask[I]] = Mask[I]; 8766 } 8767 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 8768 } 8769 8770 return std::make_pair(Vec, false); 8771 }; 8772 // Perform shuffling of the vectorize tree entries for better handling of 8773 // external extracts. 8774 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 8775 // Find the first and the last instruction in the list of insertelements. 8776 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 8777 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 8778 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 8779 Builder.SetInsertPoint(LastInsert); 8780 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 8781 Value *NewInst = performExtractsShuffleAction<Value>( 8782 makeMutableArrayRef(Vector.data(), Vector.size()), 8783 FirstInsert->getOperand(0), 8784 [](Value *Vec) { 8785 return cast<VectorType>(Vec->getType()) 8786 ->getElementCount() 8787 .getKnownMinValue(); 8788 }, 8789 ResizeToVF, 8790 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 8791 ArrayRef<Value *> Vals) { 8792 assert((Vals.size() == 1 || Vals.size() == 2) && 8793 "Expected exactly 1 or 2 input values."); 8794 if (Vals.size() == 1) { 8795 // Do not create shuffle if the mask is a simple identity 8796 // non-resizing mask. 8797 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 8798 ->getNumElements() || 8799 !ShuffleVectorInst::isIdentityMask(Mask)) 8800 return CreateShuffle(Vals.front(), nullptr, Mask); 8801 return Vals.front(); 8802 } 8803 return CreateShuffle(Vals.front() ? Vals.front() 8804 : FirstInsert->getOperand(0), 8805 Vals.back(), Mask); 8806 }); 8807 auto It = ShuffledInserts[I].InsertElements.rbegin(); 8808 // Rebuild buildvector chain. 8809 InsertElementInst *II = nullptr; 8810 if (It != ShuffledInserts[I].InsertElements.rend()) 8811 II = *It; 8812 SmallVector<Instruction *> Inserts; 8813 while (It != ShuffledInserts[I].InsertElements.rend()) { 8814 assert(II && "Must be an insertelement instruction."); 8815 if (*It == II) 8816 ++It; 8817 else 8818 Inserts.push_back(cast<Instruction>(II)); 8819 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 8820 } 8821 for (Instruction *II : reverse(Inserts)) { 8822 II->replaceUsesOfWith(II->getOperand(0), NewInst); 8823 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 8824 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 8825 II->moveAfter(NewI); 8826 NewInst = II; 8827 } 8828 LastInsert->replaceAllUsesWith(NewInst); 8829 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 8830 IE->replaceUsesOfWith(IE->getOperand(0), 8831 PoisonValue::get(IE->getOperand(0)->getType())); 8832 IE->replaceUsesOfWith(IE->getOperand(1), 8833 PoisonValue::get(IE->getOperand(1)->getType())); 8834 eraseInstruction(IE); 8835 } 8836 CSEBlocks.insert(LastInsert->getParent()); 8837 } 8838 8839 // For each vectorized value: 8840 for (auto &TEPtr : VectorizableTree) { 8841 TreeEntry *Entry = TEPtr.get(); 8842 8843 // No need to handle users of gathered values. 8844 if (Entry->State == TreeEntry::NeedToGather) 8845 continue; 8846 8847 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8848 8849 // For each lane: 8850 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8851 Value *Scalar = Entry->Scalars[Lane]; 8852 8853 if (Entry->getOpcode() == Instruction::GetElementPtr && 8854 !isa<GetElementPtrInst>(Scalar)) 8855 continue; 8856 #ifndef NDEBUG 8857 Type *Ty = Scalar->getType(); 8858 if (!Ty->isVoidTy()) { 8859 for (User *U : Scalar->users()) { 8860 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8861 8862 // It is legal to delete users in the ignorelist. 8863 assert((getTreeEntry(U) || 8864 (UserIgnoreList && UserIgnoreList->contains(U)) || 8865 (isa_and_nonnull<Instruction>(U) && 8866 isDeleted(cast<Instruction>(U)))) && 8867 "Deleting out-of-tree value"); 8868 } 8869 } 8870 #endif 8871 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8872 eraseInstruction(cast<Instruction>(Scalar)); 8873 } 8874 } 8875 8876 Builder.ClearInsertionPoint(); 8877 InstrElementSize.clear(); 8878 8879 return VectorizableTree[0]->VectorizedValue; 8880 } 8881 8882 void BoUpSLP::optimizeGatherSequence() { 8883 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8884 << " gather sequences instructions.\n"); 8885 // LICM InsertElementInst sequences. 8886 for (Instruction *I : GatherShuffleSeq) { 8887 if (isDeleted(I)) 8888 continue; 8889 8890 // Check if this block is inside a loop. 8891 Loop *L = LI->getLoopFor(I->getParent()); 8892 if (!L) 8893 continue; 8894 8895 // Check if it has a preheader. 8896 BasicBlock *PreHeader = L->getLoopPreheader(); 8897 if (!PreHeader) 8898 continue; 8899 8900 // If the vector or the element that we insert into it are 8901 // instructions that are defined in this basic block then we can't 8902 // hoist this instruction. 8903 if (any_of(I->operands(), [L](Value *V) { 8904 auto *OpI = dyn_cast<Instruction>(V); 8905 return OpI && L->contains(OpI); 8906 })) 8907 continue; 8908 8909 // We can hoist this instruction. Move it to the pre-header. 8910 I->moveBefore(PreHeader->getTerminator()); 8911 } 8912 8913 // Make a list of all reachable blocks in our CSE queue. 8914 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8915 CSEWorkList.reserve(CSEBlocks.size()); 8916 for (BasicBlock *BB : CSEBlocks) 8917 if (DomTreeNode *N = DT->getNode(BB)) { 8918 assert(DT->isReachableFromEntry(N)); 8919 CSEWorkList.push_back(N); 8920 } 8921 8922 // Sort blocks by domination. This ensures we visit a block after all blocks 8923 // dominating it are visited. 8924 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8925 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8926 "Different nodes should have different DFS numbers"); 8927 return A->getDFSNumIn() < B->getDFSNumIn(); 8928 }); 8929 8930 // Less defined shuffles can be replaced by the more defined copies. 8931 // Between two shuffles one is less defined if it has the same vector operands 8932 // and its mask indeces are the same as in the first one or undefs. E.g. 8933 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8934 // poison, <0, 0, 0, 0>. 8935 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8936 SmallVectorImpl<int> &NewMask) { 8937 if (I1->getType() != I2->getType()) 8938 return false; 8939 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8940 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8941 if (!SI1 || !SI2) 8942 return I1->isIdenticalTo(I2); 8943 if (SI1->isIdenticalTo(SI2)) 8944 return true; 8945 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8946 if (SI1->getOperand(I) != SI2->getOperand(I)) 8947 return false; 8948 // Check if the second instruction is more defined than the first one. 8949 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8950 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8951 // Count trailing undefs in the mask to check the final number of used 8952 // registers. 8953 unsigned LastUndefsCnt = 0; 8954 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8955 if (SM1[I] == UndefMaskElem) 8956 ++LastUndefsCnt; 8957 else 8958 LastUndefsCnt = 0; 8959 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8960 NewMask[I] != SM1[I]) 8961 return false; 8962 if (NewMask[I] == UndefMaskElem) 8963 NewMask[I] = SM1[I]; 8964 } 8965 // Check if the last undefs actually change the final number of used vector 8966 // registers. 8967 return SM1.size() - LastUndefsCnt > 1 && 8968 TTI->getNumberOfParts(SI1->getType()) == 8969 TTI->getNumberOfParts( 8970 FixedVectorType::get(SI1->getType()->getElementType(), 8971 SM1.size() - LastUndefsCnt)); 8972 }; 8973 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8974 // instructions. TODO: We can further optimize this scan if we split the 8975 // instructions into different buckets based on the insert lane. 8976 SmallVector<Instruction *, 16> Visited; 8977 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8978 assert(*I && 8979 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8980 "Worklist not sorted properly!"); 8981 BasicBlock *BB = (*I)->getBlock(); 8982 // For all instructions in blocks containing gather sequences: 8983 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8984 if (isDeleted(&In)) 8985 continue; 8986 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8987 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8988 continue; 8989 8990 // Check if we can replace this instruction with any of the 8991 // visited instructions. 8992 bool Replaced = false; 8993 for (Instruction *&V : Visited) { 8994 SmallVector<int> NewMask; 8995 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8996 DT->dominates(V->getParent(), In.getParent())) { 8997 In.replaceAllUsesWith(V); 8998 eraseInstruction(&In); 8999 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 9000 if (!NewMask.empty()) 9001 SI->setShuffleMask(NewMask); 9002 Replaced = true; 9003 break; 9004 } 9005 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 9006 GatherShuffleSeq.contains(V) && 9007 IsIdenticalOrLessDefined(V, &In, NewMask) && 9008 DT->dominates(In.getParent(), V->getParent())) { 9009 In.moveAfter(V); 9010 V->replaceAllUsesWith(&In); 9011 eraseInstruction(V); 9012 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 9013 if (!NewMask.empty()) 9014 SI->setShuffleMask(NewMask); 9015 V = &In; 9016 Replaced = true; 9017 break; 9018 } 9019 } 9020 if (!Replaced) { 9021 assert(!is_contained(Visited, &In)); 9022 Visited.push_back(&In); 9023 } 9024 } 9025 } 9026 CSEBlocks.clear(); 9027 GatherShuffleSeq.clear(); 9028 } 9029 9030 BoUpSLP::ScheduleData * 9031 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 9032 ScheduleData *Bundle = nullptr; 9033 ScheduleData *PrevInBundle = nullptr; 9034 for (Value *V : VL) { 9035 if (doesNotNeedToBeScheduled(V)) 9036 continue; 9037 ScheduleData *BundleMember = getScheduleData(V); 9038 assert(BundleMember && 9039 "no ScheduleData for bundle member " 9040 "(maybe not in same basic block)"); 9041 assert(BundleMember->isSchedulingEntity() && 9042 "bundle member already part of other bundle"); 9043 if (PrevInBundle) { 9044 PrevInBundle->NextInBundle = BundleMember; 9045 } else { 9046 Bundle = BundleMember; 9047 } 9048 9049 // Group the instructions to a bundle. 9050 BundleMember->FirstInBundle = Bundle; 9051 PrevInBundle = BundleMember; 9052 } 9053 assert(Bundle && "Failed to find schedule bundle"); 9054 return Bundle; 9055 } 9056 9057 // Groups the instructions to a bundle (which is then a single scheduling entity) 9058 // and schedules instructions until the bundle gets ready. 9059 Optional<BoUpSLP::ScheduleData *> 9060 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 9061 const InstructionsState &S) { 9062 // No need to schedule PHIs, insertelement, extractelement and extractvalue 9063 // instructions. 9064 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 9065 doesNotNeedToSchedule(VL)) 9066 return nullptr; 9067 9068 // Initialize the instruction bundle. 9069 Instruction *OldScheduleEnd = ScheduleEnd; 9070 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 9071 9072 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 9073 ScheduleData *Bundle) { 9074 // The scheduling region got new instructions at the lower end (or it is a 9075 // new region for the first bundle). This makes it necessary to 9076 // recalculate all dependencies. 9077 // It is seldom that this needs to be done a second time after adding the 9078 // initial bundle to the region. 9079 if (ScheduleEnd != OldScheduleEnd) { 9080 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 9081 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 9082 ReSchedule = true; 9083 } 9084 if (Bundle) { 9085 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 9086 << " in block " << BB->getName() << "\n"); 9087 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 9088 } 9089 9090 if (ReSchedule) { 9091 resetSchedule(); 9092 initialFillReadyList(ReadyInsts); 9093 } 9094 9095 // Now try to schedule the new bundle or (if no bundle) just calculate 9096 // dependencies. As soon as the bundle is "ready" it means that there are no 9097 // cyclic dependencies and we can schedule it. Note that's important that we 9098 // don't "schedule" the bundle yet (see cancelScheduling). 9099 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 9100 !ReadyInsts.empty()) { 9101 ScheduleData *Picked = ReadyInsts.pop_back_val(); 9102 assert(Picked->isSchedulingEntity() && Picked->isReady() && 9103 "must be ready to schedule"); 9104 schedule(Picked, ReadyInsts); 9105 } 9106 }; 9107 9108 // Make sure that the scheduling region contains all 9109 // instructions of the bundle. 9110 for (Value *V : VL) { 9111 if (doesNotNeedToBeScheduled(V)) 9112 continue; 9113 if (!extendSchedulingRegion(V, S)) { 9114 // If the scheduling region got new instructions at the lower end (or it 9115 // is a new region for the first bundle). This makes it necessary to 9116 // recalculate all dependencies. 9117 // Otherwise the compiler may crash trying to incorrectly calculate 9118 // dependencies and emit instruction in the wrong order at the actual 9119 // scheduling. 9120 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 9121 return None; 9122 } 9123 } 9124 9125 bool ReSchedule = false; 9126 for (Value *V : VL) { 9127 if (doesNotNeedToBeScheduled(V)) 9128 continue; 9129 ScheduleData *BundleMember = getScheduleData(V); 9130 assert(BundleMember && 9131 "no ScheduleData for bundle member (maybe not in same basic block)"); 9132 9133 // Make sure we don't leave the pieces of the bundle in the ready list when 9134 // whole bundle might not be ready. 9135 ReadyInsts.remove(BundleMember); 9136 9137 if (!BundleMember->IsScheduled) 9138 continue; 9139 // A bundle member was scheduled as single instruction before and now 9140 // needs to be scheduled as part of the bundle. We just get rid of the 9141 // existing schedule. 9142 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 9143 << " was already scheduled\n"); 9144 ReSchedule = true; 9145 } 9146 9147 auto *Bundle = buildBundle(VL); 9148 TryScheduleBundleImpl(ReSchedule, Bundle); 9149 if (!Bundle->isReady()) { 9150 cancelScheduling(VL, S.OpValue); 9151 return None; 9152 } 9153 return Bundle; 9154 } 9155 9156 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 9157 Value *OpValue) { 9158 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 9159 doesNotNeedToSchedule(VL)) 9160 return; 9161 9162 if (doesNotNeedToBeScheduled(OpValue)) 9163 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 9164 ScheduleData *Bundle = getScheduleData(OpValue); 9165 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 9166 assert(!Bundle->IsScheduled && 9167 "Can't cancel bundle which is already scheduled"); 9168 assert(Bundle->isSchedulingEntity() && 9169 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 9170 "tried to unbundle something which is not a bundle"); 9171 9172 // Remove the bundle from the ready list. 9173 if (Bundle->isReady()) 9174 ReadyInsts.remove(Bundle); 9175 9176 // Un-bundle: make single instructions out of the bundle. 9177 ScheduleData *BundleMember = Bundle; 9178 while (BundleMember) { 9179 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 9180 BundleMember->FirstInBundle = BundleMember; 9181 ScheduleData *Next = BundleMember->NextInBundle; 9182 BundleMember->NextInBundle = nullptr; 9183 BundleMember->TE = nullptr; 9184 if (BundleMember->unscheduledDepsInBundle() == 0) { 9185 ReadyInsts.insert(BundleMember); 9186 } 9187 BundleMember = Next; 9188 } 9189 } 9190 9191 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 9192 // Allocate a new ScheduleData for the instruction. 9193 if (ChunkPos >= ChunkSize) { 9194 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 9195 ChunkPos = 0; 9196 } 9197 return &(ScheduleDataChunks.back()[ChunkPos++]); 9198 } 9199 9200 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 9201 const InstructionsState &S) { 9202 if (getScheduleData(V, isOneOf(S, V))) 9203 return true; 9204 Instruction *I = dyn_cast<Instruction>(V); 9205 assert(I && "bundle member must be an instruction"); 9206 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 9207 !doesNotNeedToBeScheduled(I) && 9208 "phi nodes/insertelements/extractelements/extractvalues don't need to " 9209 "be scheduled"); 9210 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 9211 ScheduleData *ISD = getScheduleData(I); 9212 if (!ISD) 9213 return false; 9214 assert(isInSchedulingRegion(ISD) && 9215 "ScheduleData not in scheduling region"); 9216 ScheduleData *SD = allocateScheduleDataChunks(); 9217 SD->Inst = I; 9218 SD->init(SchedulingRegionID, S.OpValue); 9219 ExtraScheduleDataMap[I][S.OpValue] = SD; 9220 return true; 9221 }; 9222 if (CheckScheduleForI(I)) 9223 return true; 9224 if (!ScheduleStart) { 9225 // It's the first instruction in the new region. 9226 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 9227 ScheduleStart = I; 9228 ScheduleEnd = I->getNextNode(); 9229 if (isOneOf(S, I) != I) 9230 CheckScheduleForI(I); 9231 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9232 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 9233 return true; 9234 } 9235 // Search up and down at the same time, because we don't know if the new 9236 // instruction is above or below the existing scheduling region. 9237 BasicBlock::reverse_iterator UpIter = 9238 ++ScheduleStart->getIterator().getReverse(); 9239 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 9240 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 9241 BasicBlock::iterator LowerEnd = BB->end(); 9242 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 9243 &*DownIter != I) { 9244 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 9245 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 9246 return false; 9247 } 9248 9249 ++UpIter; 9250 ++DownIter; 9251 } 9252 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 9253 assert(I->getParent() == ScheduleStart->getParent() && 9254 "Instruction is in wrong basic block."); 9255 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 9256 ScheduleStart = I; 9257 if (isOneOf(S, I) != I) 9258 CheckScheduleForI(I); 9259 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 9260 << "\n"); 9261 return true; 9262 } 9263 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 9264 "Expected to reach top of the basic block or instruction down the " 9265 "lower end."); 9266 assert(I->getParent() == ScheduleEnd->getParent() && 9267 "Instruction is in wrong basic block."); 9268 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 9269 nullptr); 9270 ScheduleEnd = I->getNextNode(); 9271 if (isOneOf(S, I) != I) 9272 CheckScheduleForI(I); 9273 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9274 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 9275 return true; 9276 } 9277 9278 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 9279 Instruction *ToI, 9280 ScheduleData *PrevLoadStore, 9281 ScheduleData *NextLoadStore) { 9282 ScheduleData *CurrentLoadStore = PrevLoadStore; 9283 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 9284 // No need to allocate data for non-schedulable instructions. 9285 if (doesNotNeedToBeScheduled(I)) 9286 continue; 9287 ScheduleData *SD = ScheduleDataMap.lookup(I); 9288 if (!SD) { 9289 SD = allocateScheduleDataChunks(); 9290 ScheduleDataMap[I] = SD; 9291 SD->Inst = I; 9292 } 9293 assert(!isInSchedulingRegion(SD) && 9294 "new ScheduleData already in scheduling region"); 9295 SD->init(SchedulingRegionID, I); 9296 9297 if (I->mayReadOrWriteMemory() && 9298 (!isa<IntrinsicInst>(I) || 9299 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 9300 cast<IntrinsicInst>(I)->getIntrinsicID() != 9301 Intrinsic::pseudoprobe))) { 9302 // Update the linked list of memory accessing instructions. 9303 if (CurrentLoadStore) { 9304 CurrentLoadStore->NextLoadStore = SD; 9305 } else { 9306 FirstLoadStoreInRegion = SD; 9307 } 9308 CurrentLoadStore = SD; 9309 } 9310 9311 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9312 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9313 RegionHasStackSave = true; 9314 } 9315 if (NextLoadStore) { 9316 if (CurrentLoadStore) 9317 CurrentLoadStore->NextLoadStore = NextLoadStore; 9318 } else { 9319 LastLoadStoreInRegion = CurrentLoadStore; 9320 } 9321 } 9322 9323 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 9324 bool InsertInReadyList, 9325 BoUpSLP *SLP) { 9326 assert(SD->isSchedulingEntity()); 9327 9328 SmallVector<ScheduleData *, 10> WorkList; 9329 WorkList.push_back(SD); 9330 9331 while (!WorkList.empty()) { 9332 ScheduleData *SD = WorkList.pop_back_val(); 9333 for (ScheduleData *BundleMember = SD; BundleMember; 9334 BundleMember = BundleMember->NextInBundle) { 9335 assert(isInSchedulingRegion(BundleMember)); 9336 if (BundleMember->hasValidDependencies()) 9337 continue; 9338 9339 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 9340 << "\n"); 9341 BundleMember->Dependencies = 0; 9342 BundleMember->resetUnscheduledDeps(); 9343 9344 // Handle def-use chain dependencies. 9345 if (BundleMember->OpValue != BundleMember->Inst) { 9346 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 9347 BundleMember->Dependencies++; 9348 ScheduleData *DestBundle = UseSD->FirstInBundle; 9349 if (!DestBundle->IsScheduled) 9350 BundleMember->incrementUnscheduledDeps(1); 9351 if (!DestBundle->hasValidDependencies()) 9352 WorkList.push_back(DestBundle); 9353 } 9354 } else { 9355 for (User *U : BundleMember->Inst->users()) { 9356 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 9357 BundleMember->Dependencies++; 9358 ScheduleData *DestBundle = UseSD->FirstInBundle; 9359 if (!DestBundle->IsScheduled) 9360 BundleMember->incrementUnscheduledDeps(1); 9361 if (!DestBundle->hasValidDependencies()) 9362 WorkList.push_back(DestBundle); 9363 } 9364 } 9365 } 9366 9367 auto makeControlDependent = [&](Instruction *I) { 9368 auto *DepDest = getScheduleData(I); 9369 assert(DepDest && "must be in schedule window"); 9370 DepDest->ControlDependencies.push_back(BundleMember); 9371 BundleMember->Dependencies++; 9372 ScheduleData *DestBundle = DepDest->FirstInBundle; 9373 if (!DestBundle->IsScheduled) 9374 BundleMember->incrementUnscheduledDeps(1); 9375 if (!DestBundle->hasValidDependencies()) 9376 WorkList.push_back(DestBundle); 9377 }; 9378 9379 // Any instruction which isn't safe to speculate at the begining of the 9380 // block is control dependend on any early exit or non-willreturn call 9381 // which proceeds it. 9382 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 9383 for (Instruction *I = BundleMember->Inst->getNextNode(); 9384 I != ScheduleEnd; I = I->getNextNode()) { 9385 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 9386 continue; 9387 9388 // Add the dependency 9389 makeControlDependent(I); 9390 9391 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 9392 // Everything past here must be control dependent on I. 9393 break; 9394 } 9395 } 9396 9397 if (RegionHasStackSave) { 9398 // If we have an inalloc alloca instruction, it needs to be scheduled 9399 // after any preceeding stacksave. We also need to prevent any alloca 9400 // from reordering above a preceeding stackrestore. 9401 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 9402 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 9403 for (Instruction *I = BundleMember->Inst->getNextNode(); 9404 I != ScheduleEnd; I = I->getNextNode()) { 9405 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9406 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9407 // Any allocas past here must be control dependent on I, and I 9408 // must be memory dependend on BundleMember->Inst. 9409 break; 9410 9411 if (!isa<AllocaInst>(I)) 9412 continue; 9413 9414 // Add the dependency 9415 makeControlDependent(I); 9416 } 9417 } 9418 9419 // In addition to the cases handle just above, we need to prevent 9420 // allocas from moving below a stacksave. The stackrestore case 9421 // is currently thought to be conservatism. 9422 if (isa<AllocaInst>(BundleMember->Inst)) { 9423 for (Instruction *I = BundleMember->Inst->getNextNode(); 9424 I != ScheduleEnd; I = I->getNextNode()) { 9425 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 9426 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9427 continue; 9428 9429 // Add the dependency 9430 makeControlDependent(I); 9431 break; 9432 } 9433 } 9434 } 9435 9436 // Handle the memory dependencies (if any). 9437 ScheduleData *DepDest = BundleMember->NextLoadStore; 9438 if (!DepDest) 9439 continue; 9440 Instruction *SrcInst = BundleMember->Inst; 9441 assert(SrcInst->mayReadOrWriteMemory() && 9442 "NextLoadStore list for non memory effecting bundle?"); 9443 MemoryLocation SrcLoc = getLocation(SrcInst); 9444 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 9445 unsigned numAliased = 0; 9446 unsigned DistToSrc = 1; 9447 9448 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 9449 assert(isInSchedulingRegion(DepDest)); 9450 9451 // We have two limits to reduce the complexity: 9452 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 9453 // SLP->isAliased (which is the expensive part in this loop). 9454 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 9455 // the whole loop (even if the loop is fast, it's quadratic). 9456 // It's important for the loop break condition (see below) to 9457 // check this limit even between two read-only instructions. 9458 if (DistToSrc >= MaxMemDepDistance || 9459 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 9460 (numAliased >= AliasedCheckLimit || 9461 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 9462 9463 // We increment the counter only if the locations are aliased 9464 // (instead of counting all alias checks). This gives a better 9465 // balance between reduced runtime and accurate dependencies. 9466 numAliased++; 9467 9468 DepDest->MemoryDependencies.push_back(BundleMember); 9469 BundleMember->Dependencies++; 9470 ScheduleData *DestBundle = DepDest->FirstInBundle; 9471 if (!DestBundle->IsScheduled) { 9472 BundleMember->incrementUnscheduledDeps(1); 9473 } 9474 if (!DestBundle->hasValidDependencies()) { 9475 WorkList.push_back(DestBundle); 9476 } 9477 } 9478 9479 // Example, explaining the loop break condition: Let's assume our 9480 // starting instruction is i0 and MaxMemDepDistance = 3. 9481 // 9482 // +--------v--v--v 9483 // i0,i1,i2,i3,i4,i5,i6,i7,i8 9484 // +--------^--^--^ 9485 // 9486 // MaxMemDepDistance let us stop alias-checking at i3 and we add 9487 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 9488 // Previously we already added dependencies from i3 to i6,i7,i8 9489 // (because of MaxMemDepDistance). As we added a dependency from 9490 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 9491 // and we can abort this loop at i6. 9492 if (DistToSrc >= 2 * MaxMemDepDistance) 9493 break; 9494 DistToSrc++; 9495 } 9496 } 9497 if (InsertInReadyList && SD->isReady()) { 9498 ReadyInsts.insert(SD); 9499 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 9500 << "\n"); 9501 } 9502 } 9503 } 9504 9505 void BoUpSLP::BlockScheduling::resetSchedule() { 9506 assert(ScheduleStart && 9507 "tried to reset schedule on block which has not been scheduled"); 9508 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 9509 doForAllOpcodes(I, [&](ScheduleData *SD) { 9510 assert(isInSchedulingRegion(SD) && 9511 "ScheduleData not in scheduling region"); 9512 SD->IsScheduled = false; 9513 SD->resetUnscheduledDeps(); 9514 }); 9515 } 9516 ReadyInsts.clear(); 9517 } 9518 9519 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 9520 if (!BS->ScheduleStart) 9521 return; 9522 9523 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 9524 9525 // A key point - if we got here, pre-scheduling was able to find a valid 9526 // scheduling of the sub-graph of the scheduling window which consists 9527 // of all vector bundles and their transitive users. As such, we do not 9528 // need to reschedule anything *outside of* that subgraph. 9529 9530 BS->resetSchedule(); 9531 9532 // For the real scheduling we use a more sophisticated ready-list: it is 9533 // sorted by the original instruction location. This lets the final schedule 9534 // be as close as possible to the original instruction order. 9535 // WARNING: If changing this order causes a correctness issue, that means 9536 // there is some missing dependence edge in the schedule data graph. 9537 struct ScheduleDataCompare { 9538 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 9539 return SD2->SchedulingPriority < SD1->SchedulingPriority; 9540 } 9541 }; 9542 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 9543 9544 // Ensure that all dependency data is updated (for nodes in the sub-graph) 9545 // and fill the ready-list with initial instructions. 9546 int Idx = 0; 9547 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 9548 I = I->getNextNode()) { 9549 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 9550 TreeEntry *SDTE = getTreeEntry(SD->Inst); 9551 (void)SDTE; 9552 assert((isVectorLikeInstWithConstOps(SD->Inst) || 9553 SD->isPartOfBundle() == 9554 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 9555 "scheduler and vectorizer bundle mismatch"); 9556 SD->FirstInBundle->SchedulingPriority = Idx++; 9557 9558 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 9559 BS->calculateDependencies(SD, false, this); 9560 }); 9561 } 9562 BS->initialFillReadyList(ReadyInsts); 9563 9564 Instruction *LastScheduledInst = BS->ScheduleEnd; 9565 9566 // Do the "real" scheduling. 9567 while (!ReadyInsts.empty()) { 9568 ScheduleData *picked = *ReadyInsts.begin(); 9569 ReadyInsts.erase(ReadyInsts.begin()); 9570 9571 // Move the scheduled instruction(s) to their dedicated places, if not 9572 // there yet. 9573 for (ScheduleData *BundleMember = picked; BundleMember; 9574 BundleMember = BundleMember->NextInBundle) { 9575 Instruction *pickedInst = BundleMember->Inst; 9576 if (pickedInst->getNextNode() != LastScheduledInst) 9577 pickedInst->moveBefore(LastScheduledInst); 9578 LastScheduledInst = pickedInst; 9579 } 9580 9581 BS->schedule(picked, ReadyInsts); 9582 } 9583 9584 // Check that we didn't break any of our invariants. 9585 #ifdef EXPENSIVE_CHECKS 9586 BS->verify(); 9587 #endif 9588 9589 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 9590 // Check that all schedulable entities got scheduled 9591 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 9592 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 9593 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 9594 assert(SD->IsScheduled && "must be scheduled at this point"); 9595 } 9596 }); 9597 } 9598 #endif 9599 9600 // Avoid duplicate scheduling of the block. 9601 BS->ScheduleStart = nullptr; 9602 } 9603 9604 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9605 // If V is a store, just return the width of the stored value (or value 9606 // truncated just before storing) without traversing the expression tree. 9607 // This is the common case. 9608 if (auto *Store = dyn_cast<StoreInst>(V)) 9609 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9610 9611 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9612 return getVectorElementSize(IEI->getOperand(1)); 9613 9614 auto E = InstrElementSize.find(V); 9615 if (E != InstrElementSize.end()) 9616 return E->second; 9617 9618 // If V is not a store, we can traverse the expression tree to find loads 9619 // that feed it. The type of the loaded value may indicate a more suitable 9620 // width than V's type. We want to base the vector element size on the width 9621 // of memory operations where possible. 9622 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9623 SmallPtrSet<Instruction *, 16> Visited; 9624 if (auto *I = dyn_cast<Instruction>(V)) { 9625 Worklist.emplace_back(I, I->getParent()); 9626 Visited.insert(I); 9627 } 9628 9629 // Traverse the expression tree in bottom-up order looking for loads. If we 9630 // encounter an instruction we don't yet handle, we give up. 9631 auto Width = 0u; 9632 while (!Worklist.empty()) { 9633 Instruction *I; 9634 BasicBlock *Parent; 9635 std::tie(I, Parent) = Worklist.pop_back_val(); 9636 9637 // We should only be looking at scalar instructions here. If the current 9638 // instruction has a vector type, skip. 9639 auto *Ty = I->getType(); 9640 if (isa<VectorType>(Ty)) 9641 continue; 9642 9643 // If the current instruction is a load, update MaxWidth to reflect the 9644 // width of the loaded value. 9645 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9646 isa<ExtractValueInst>(I)) 9647 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9648 9649 // Otherwise, we need to visit the operands of the instruction. We only 9650 // handle the interesting cases from buildTree here. If an operand is an 9651 // instruction we haven't yet visited and from the same basic block as the 9652 // user or the use is a PHI node, we add it to the worklist. 9653 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9654 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9655 isa<UnaryOperator>(I)) { 9656 for (Use &U : I->operands()) 9657 if (auto *J = dyn_cast<Instruction>(U.get())) 9658 if (Visited.insert(J).second && 9659 (isa<PHINode>(I) || J->getParent() == Parent)) 9660 Worklist.emplace_back(J, J->getParent()); 9661 } else { 9662 break; 9663 } 9664 } 9665 9666 // If we didn't encounter a memory access in the expression tree, or if we 9667 // gave up for some reason, just return the width of V. Otherwise, return the 9668 // maximum width we found. 9669 if (!Width) { 9670 if (auto *CI = dyn_cast<CmpInst>(V)) 9671 V = CI->getOperand(0); 9672 Width = DL->getTypeSizeInBits(V->getType()); 9673 } 9674 9675 for (Instruction *I : Visited) 9676 InstrElementSize[I] = Width; 9677 9678 return Width; 9679 } 9680 9681 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9682 // smaller type with a truncation. We collect the values that will be demoted 9683 // in ToDemote and additional roots that require investigating in Roots. 9684 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9685 SmallVectorImpl<Value *> &ToDemote, 9686 SmallVectorImpl<Value *> &Roots) { 9687 // We can always demote constants. 9688 if (isa<Constant>(V)) { 9689 ToDemote.push_back(V); 9690 return true; 9691 } 9692 9693 // If the value is not an instruction in the expression with only one use, it 9694 // cannot be demoted. 9695 auto *I = dyn_cast<Instruction>(V); 9696 if (!I || !I->hasOneUse() || !Expr.count(I)) 9697 return false; 9698 9699 switch (I->getOpcode()) { 9700 9701 // We can always demote truncations and extensions. Since truncations can 9702 // seed additional demotion, we save the truncated value. 9703 case Instruction::Trunc: 9704 Roots.push_back(I->getOperand(0)); 9705 break; 9706 case Instruction::ZExt: 9707 case Instruction::SExt: 9708 if (isa<ExtractElementInst>(I->getOperand(0)) || 9709 isa<InsertElementInst>(I->getOperand(0))) 9710 return false; 9711 break; 9712 9713 // We can demote certain binary operations if we can demote both of their 9714 // operands. 9715 case Instruction::Add: 9716 case Instruction::Sub: 9717 case Instruction::Mul: 9718 case Instruction::And: 9719 case Instruction::Or: 9720 case Instruction::Xor: 9721 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9722 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9723 return false; 9724 break; 9725 9726 // We can demote selects if we can demote their true and false values. 9727 case Instruction::Select: { 9728 SelectInst *SI = cast<SelectInst>(I); 9729 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9730 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9731 return false; 9732 break; 9733 } 9734 9735 // We can demote phis if we can demote all their incoming operands. Note that 9736 // we don't need to worry about cycles since we ensure single use above. 9737 case Instruction::PHI: { 9738 PHINode *PN = cast<PHINode>(I); 9739 for (Value *IncValue : PN->incoming_values()) 9740 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9741 return false; 9742 break; 9743 } 9744 9745 // Otherwise, conservatively give up. 9746 default: 9747 return false; 9748 } 9749 9750 // Record the value that we can demote. 9751 ToDemote.push_back(V); 9752 return true; 9753 } 9754 9755 void BoUpSLP::computeMinimumValueSizes() { 9756 // If there are no external uses, the expression tree must be rooted by a 9757 // store. We can't demote in-memory values, so there is nothing to do here. 9758 if (ExternalUses.empty()) 9759 return; 9760 9761 // We only attempt to truncate integer expressions. 9762 auto &TreeRoot = VectorizableTree[0]->Scalars; 9763 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9764 if (!TreeRootIT) 9765 return; 9766 9767 // If the expression is not rooted by a store, these roots should have 9768 // external uses. We will rely on InstCombine to rewrite the expression in 9769 // the narrower type. However, InstCombine only rewrites single-use values. 9770 // This means that if a tree entry other than a root is used externally, it 9771 // must have multiple uses and InstCombine will not rewrite it. The code 9772 // below ensures that only the roots are used externally. 9773 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9774 for (auto &EU : ExternalUses) 9775 if (!Expr.erase(EU.Scalar)) 9776 return; 9777 if (!Expr.empty()) 9778 return; 9779 9780 // Collect the scalar values of the vectorizable expression. We will use this 9781 // context to determine which values can be demoted. If we see a truncation, 9782 // we mark it as seeding another demotion. 9783 for (auto &EntryPtr : VectorizableTree) 9784 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9785 9786 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9787 // have a single external user that is not in the vectorizable tree. 9788 for (auto *Root : TreeRoot) 9789 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9790 return; 9791 9792 // Conservatively determine if we can actually truncate the roots of the 9793 // expression. Collect the values that can be demoted in ToDemote and 9794 // additional roots that require investigating in Roots. 9795 SmallVector<Value *, 32> ToDemote; 9796 SmallVector<Value *, 4> Roots; 9797 for (auto *Root : TreeRoot) 9798 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9799 return; 9800 9801 // The maximum bit width required to represent all the values that can be 9802 // demoted without loss of precision. It would be safe to truncate the roots 9803 // of the expression to this width. 9804 auto MaxBitWidth = 8u; 9805 9806 // We first check if all the bits of the roots are demanded. If they're not, 9807 // we can truncate the roots to this narrower type. 9808 for (auto *Root : TreeRoot) { 9809 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9810 MaxBitWidth = std::max<unsigned>( 9811 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9812 } 9813 9814 // True if the roots can be zero-extended back to their original type, rather 9815 // than sign-extended. We know that if the leading bits are not demanded, we 9816 // can safely zero-extend. So we initialize IsKnownPositive to True. 9817 bool IsKnownPositive = true; 9818 9819 // If all the bits of the roots are demanded, we can try a little harder to 9820 // compute a narrower type. This can happen, for example, if the roots are 9821 // getelementptr indices. InstCombine promotes these indices to the pointer 9822 // width. Thus, all their bits are technically demanded even though the 9823 // address computation might be vectorized in a smaller type. 9824 // 9825 // We start by looking at each entry that can be demoted. We compute the 9826 // maximum bit width required to store the scalar by using ValueTracking to 9827 // compute the number of high-order bits we can truncate. 9828 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9829 llvm::all_of(TreeRoot, [](Value *R) { 9830 assert(R->hasOneUse() && "Root should have only one use!"); 9831 return isa<GetElementPtrInst>(R->user_back()); 9832 })) { 9833 MaxBitWidth = 8u; 9834 9835 // Determine if the sign bit of all the roots is known to be zero. If not, 9836 // IsKnownPositive is set to False. 9837 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9838 KnownBits Known = computeKnownBits(R, *DL); 9839 return Known.isNonNegative(); 9840 }); 9841 9842 // Determine the maximum number of bits required to store the scalar 9843 // values. 9844 for (auto *Scalar : ToDemote) { 9845 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9846 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9847 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9848 } 9849 9850 // If we can't prove that the sign bit is zero, we must add one to the 9851 // maximum bit width to account for the unknown sign bit. This preserves 9852 // the existing sign bit so we can safely sign-extend the root back to the 9853 // original type. Otherwise, if we know the sign bit is zero, we will 9854 // zero-extend the root instead. 9855 // 9856 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9857 // one to the maximum bit width will yield a larger-than-necessary 9858 // type. In general, we need to add an extra bit only if we can't 9859 // prove that the upper bit of the original type is equal to the 9860 // upper bit of the proposed smaller type. If these two bits are the 9861 // same (either zero or one) we know that sign-extending from the 9862 // smaller type will result in the same value. Here, since we can't 9863 // yet prove this, we are just making the proposed smaller type 9864 // larger to ensure correctness. 9865 if (!IsKnownPositive) 9866 ++MaxBitWidth; 9867 } 9868 9869 // Round MaxBitWidth up to the next power-of-two. 9870 if (!isPowerOf2_64(MaxBitWidth)) 9871 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9872 9873 // If the maximum bit width we compute is less than the with of the roots' 9874 // type, we can proceed with the narrowing. Otherwise, do nothing. 9875 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9876 return; 9877 9878 // If we can truncate the root, we must collect additional values that might 9879 // be demoted as a result. That is, those seeded by truncations we will 9880 // modify. 9881 while (!Roots.empty()) 9882 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9883 9884 // Finally, map the values we can demote to the maximum bit with we computed. 9885 for (auto *Scalar : ToDemote) 9886 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9887 } 9888 9889 namespace { 9890 9891 /// The SLPVectorizer Pass. 9892 struct SLPVectorizer : public FunctionPass { 9893 SLPVectorizerPass Impl; 9894 9895 /// Pass identification, replacement for typeid 9896 static char ID; 9897 9898 explicit SLPVectorizer() : FunctionPass(ID) { 9899 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9900 } 9901 9902 bool doInitialization(Module &M) override { return false; } 9903 9904 bool runOnFunction(Function &F) override { 9905 if (skipFunction(F)) 9906 return false; 9907 9908 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9909 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9910 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9911 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9912 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9913 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9914 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9915 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9916 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9917 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9918 9919 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9920 } 9921 9922 void getAnalysisUsage(AnalysisUsage &AU) const override { 9923 FunctionPass::getAnalysisUsage(AU); 9924 AU.addRequired<AssumptionCacheTracker>(); 9925 AU.addRequired<ScalarEvolutionWrapperPass>(); 9926 AU.addRequired<AAResultsWrapperPass>(); 9927 AU.addRequired<TargetTransformInfoWrapperPass>(); 9928 AU.addRequired<LoopInfoWrapperPass>(); 9929 AU.addRequired<DominatorTreeWrapperPass>(); 9930 AU.addRequired<DemandedBitsWrapperPass>(); 9931 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9932 AU.addRequired<InjectTLIMappingsLegacy>(); 9933 AU.addPreserved<LoopInfoWrapperPass>(); 9934 AU.addPreserved<DominatorTreeWrapperPass>(); 9935 AU.addPreserved<AAResultsWrapperPass>(); 9936 AU.addPreserved<GlobalsAAWrapperPass>(); 9937 AU.setPreservesCFG(); 9938 } 9939 }; 9940 9941 } // end anonymous namespace 9942 9943 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9944 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9945 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9946 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9947 auto *AA = &AM.getResult<AAManager>(F); 9948 auto *LI = &AM.getResult<LoopAnalysis>(F); 9949 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9950 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9951 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9952 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9953 9954 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9955 if (!Changed) 9956 return PreservedAnalyses::all(); 9957 9958 PreservedAnalyses PA; 9959 PA.preserveSet<CFGAnalyses>(); 9960 return PA; 9961 } 9962 9963 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9964 TargetTransformInfo *TTI_, 9965 TargetLibraryInfo *TLI_, AAResults *AA_, 9966 LoopInfo *LI_, DominatorTree *DT_, 9967 AssumptionCache *AC_, DemandedBits *DB_, 9968 OptimizationRemarkEmitter *ORE_) { 9969 if (!RunSLPVectorization) 9970 return false; 9971 SE = SE_; 9972 TTI = TTI_; 9973 TLI = TLI_; 9974 AA = AA_; 9975 LI = LI_; 9976 DT = DT_; 9977 AC = AC_; 9978 DB = DB_; 9979 DL = &F.getParent()->getDataLayout(); 9980 9981 Stores.clear(); 9982 GEPs.clear(); 9983 bool Changed = false; 9984 9985 // If the target claims to have no vector registers don't attempt 9986 // vectorization. 9987 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9988 LLVM_DEBUG( 9989 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9990 return false; 9991 } 9992 9993 // Don't vectorize when the attribute NoImplicitFloat is used. 9994 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9995 return false; 9996 9997 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9998 9999 // Use the bottom up slp vectorizer to construct chains that start with 10000 // store instructions. 10001 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 10002 10003 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 10004 // delete instructions. 10005 10006 // Update DFS numbers now so that we can use them for ordering. 10007 DT->updateDFSNumbers(); 10008 10009 // Scan the blocks in the function in post order. 10010 for (auto BB : post_order(&F.getEntryBlock())) { 10011 // Start new block - clear the list of reduction roots. 10012 R.clearReductionData(); 10013 collectSeedInstructions(BB); 10014 10015 // Vectorize trees that end at stores. 10016 if (!Stores.empty()) { 10017 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 10018 << " underlying objects.\n"); 10019 Changed |= vectorizeStoreChains(R); 10020 } 10021 10022 // Vectorize trees that end at reductions. 10023 Changed |= vectorizeChainsInBlock(BB, R); 10024 10025 // Vectorize the index computations of getelementptr instructions. This 10026 // is primarily intended to catch gather-like idioms ending at 10027 // non-consecutive loads. 10028 if (!GEPs.empty()) { 10029 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 10030 << " underlying objects.\n"); 10031 Changed |= vectorizeGEPIndices(BB, R); 10032 } 10033 } 10034 10035 if (Changed) { 10036 R.optimizeGatherSequence(); 10037 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 10038 } 10039 return Changed; 10040 } 10041 10042 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 10043 unsigned Idx, unsigned MinVF) { 10044 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 10045 << "\n"); 10046 const unsigned Sz = R.getVectorElementSize(Chain[0]); 10047 unsigned VF = Chain.size(); 10048 10049 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 10050 return false; 10051 10052 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 10053 << "\n"); 10054 10055 R.buildTree(Chain); 10056 if (R.isTreeTinyAndNotFullyVectorizable()) 10057 return false; 10058 if (R.isLoadCombineCandidate()) 10059 return false; 10060 R.reorderTopToBottom(); 10061 R.reorderBottomToTop(); 10062 R.buildExternalUses(); 10063 10064 R.computeMinimumValueSizes(); 10065 10066 InstructionCost Cost = R.getTreeCost(); 10067 10068 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 10069 if (Cost < -SLPCostThreshold) { 10070 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 10071 10072 using namespace ore; 10073 10074 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 10075 cast<StoreInst>(Chain[0])) 10076 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 10077 << " and with tree size " 10078 << NV("TreeSize", R.getTreeSize())); 10079 10080 R.vectorizeTree(); 10081 return true; 10082 } 10083 10084 return false; 10085 } 10086 10087 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 10088 BoUpSLP &R) { 10089 // We may run into multiple chains that merge into a single chain. We mark the 10090 // stores that we vectorized so that we don't visit the same store twice. 10091 BoUpSLP::ValueSet VectorizedStores; 10092 bool Changed = false; 10093 10094 int E = Stores.size(); 10095 SmallBitVector Tails(E, false); 10096 int MaxIter = MaxStoreLookup.getValue(); 10097 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 10098 E, std::make_pair(E, INT_MAX)); 10099 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 10100 int IterCnt; 10101 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 10102 &CheckedPairs, 10103 &ConsecutiveChain](int K, int Idx) { 10104 if (IterCnt >= MaxIter) 10105 return true; 10106 if (CheckedPairs[Idx].test(K)) 10107 return ConsecutiveChain[K].second == 1 && 10108 ConsecutiveChain[K].first == Idx; 10109 ++IterCnt; 10110 CheckedPairs[Idx].set(K); 10111 CheckedPairs[K].set(Idx); 10112 Optional<int> Diff = getPointersDiff( 10113 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 10114 Stores[Idx]->getValueOperand()->getType(), 10115 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 10116 if (!Diff || *Diff == 0) 10117 return false; 10118 int Val = *Diff; 10119 if (Val < 0) { 10120 if (ConsecutiveChain[Idx].second > -Val) { 10121 Tails.set(K); 10122 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 10123 } 10124 return false; 10125 } 10126 if (ConsecutiveChain[K].second <= Val) 10127 return false; 10128 10129 Tails.set(Idx); 10130 ConsecutiveChain[K] = std::make_pair(Idx, Val); 10131 return Val == 1; 10132 }; 10133 // Do a quadratic search on all of the given stores in reverse order and find 10134 // all of the pairs of stores that follow each other. 10135 for (int Idx = E - 1; Idx >= 0; --Idx) { 10136 // If a store has multiple consecutive store candidates, search according 10137 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 10138 // This is because usually pairing with immediate succeeding or preceding 10139 // candidate create the best chance to find slp vectorization opportunity. 10140 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 10141 IterCnt = 0; 10142 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 10143 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 10144 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 10145 break; 10146 } 10147 10148 // Tracks if we tried to vectorize stores starting from the given tail 10149 // already. 10150 SmallBitVector TriedTails(E, false); 10151 // For stores that start but don't end a link in the chain: 10152 for (int Cnt = E; Cnt > 0; --Cnt) { 10153 int I = Cnt - 1; 10154 if (ConsecutiveChain[I].first == E || Tails.test(I)) 10155 continue; 10156 // We found a store instr that starts a chain. Now follow the chain and try 10157 // to vectorize it. 10158 BoUpSLP::ValueList Operands; 10159 // Collect the chain into a list. 10160 while (I != E && !VectorizedStores.count(Stores[I])) { 10161 Operands.push_back(Stores[I]); 10162 Tails.set(I); 10163 if (ConsecutiveChain[I].second != 1) { 10164 // Mark the new end in the chain and go back, if required. It might be 10165 // required if the original stores come in reversed order, for example. 10166 if (ConsecutiveChain[I].first != E && 10167 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 10168 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 10169 TriedTails.set(I); 10170 Tails.reset(ConsecutiveChain[I].first); 10171 if (Cnt < ConsecutiveChain[I].first + 2) 10172 Cnt = ConsecutiveChain[I].first + 2; 10173 } 10174 break; 10175 } 10176 // Move to the next value in the chain. 10177 I = ConsecutiveChain[I].first; 10178 } 10179 assert(!Operands.empty() && "Expected non-empty list of stores."); 10180 10181 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10182 unsigned EltSize = R.getVectorElementSize(Operands[0]); 10183 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 10184 10185 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 10186 MaxElts); 10187 auto *Store = cast<StoreInst>(Operands[0]); 10188 Type *StoreTy = Store->getValueOperand()->getType(); 10189 Type *ValueTy = StoreTy; 10190 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 10191 ValueTy = Trunc->getSrcTy(); 10192 unsigned MinVF = TTI->getStoreMinimumVF( 10193 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 10194 10195 // FIXME: Is division-by-2 the correct step? Should we assert that the 10196 // register size is a power-of-2? 10197 unsigned StartIdx = 0; 10198 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 10199 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 10200 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 10201 if (!VectorizedStores.count(Slice.front()) && 10202 !VectorizedStores.count(Slice.back()) && 10203 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 10204 // Mark the vectorized stores so that we don't vectorize them again. 10205 VectorizedStores.insert(Slice.begin(), Slice.end()); 10206 Changed = true; 10207 // If we vectorized initial block, no need to try to vectorize it 10208 // again. 10209 if (Cnt == StartIdx) 10210 StartIdx += Size; 10211 Cnt += Size; 10212 continue; 10213 } 10214 ++Cnt; 10215 } 10216 // Check if the whole array was vectorized already - exit. 10217 if (StartIdx >= Operands.size()) 10218 break; 10219 } 10220 } 10221 10222 return Changed; 10223 } 10224 10225 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 10226 // Initialize the collections. We will make a single pass over the block. 10227 Stores.clear(); 10228 GEPs.clear(); 10229 10230 // Visit the store and getelementptr instructions in BB and organize them in 10231 // Stores and GEPs according to the underlying objects of their pointer 10232 // operands. 10233 for (Instruction &I : *BB) { 10234 // Ignore store instructions that are volatile or have a pointer operand 10235 // that doesn't point to a scalar type. 10236 if (auto *SI = dyn_cast<StoreInst>(&I)) { 10237 if (!SI->isSimple()) 10238 continue; 10239 if (!isValidElementType(SI->getValueOperand()->getType())) 10240 continue; 10241 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 10242 } 10243 10244 // Ignore getelementptr instructions that have more than one index, a 10245 // constant index, or a pointer operand that doesn't point to a scalar 10246 // type. 10247 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 10248 auto Idx = GEP->idx_begin()->get(); 10249 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 10250 continue; 10251 if (!isValidElementType(Idx->getType())) 10252 continue; 10253 if (GEP->getType()->isVectorTy()) 10254 continue; 10255 GEPs[GEP->getPointerOperand()].push_back(GEP); 10256 } 10257 } 10258 } 10259 10260 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 10261 if (!A || !B) 10262 return false; 10263 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 10264 return false; 10265 Value *VL[] = {A, B}; 10266 return tryToVectorizeList(VL, R); 10267 } 10268 10269 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 10270 bool LimitForRegisterSize) { 10271 if (VL.size() < 2) 10272 return false; 10273 10274 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 10275 << VL.size() << ".\n"); 10276 10277 // Check that all of the parts are instructions of the same type, 10278 // we permit an alternate opcode via InstructionsState. 10279 InstructionsState S = getSameOpcode(VL); 10280 if (!S.getOpcode()) 10281 return false; 10282 10283 Instruction *I0 = cast<Instruction>(S.OpValue); 10284 // Make sure invalid types (including vector type) are rejected before 10285 // determining vectorization factor for scalar instructions. 10286 for (Value *V : VL) { 10287 Type *Ty = V->getType(); 10288 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 10289 // NOTE: the following will give user internal llvm type name, which may 10290 // not be useful. 10291 R.getORE()->emit([&]() { 10292 std::string type_str; 10293 llvm::raw_string_ostream rso(type_str); 10294 Ty->print(rso); 10295 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 10296 << "Cannot SLP vectorize list: type " 10297 << rso.str() + " is unsupported by vectorizer"; 10298 }); 10299 return false; 10300 } 10301 } 10302 10303 unsigned Sz = R.getVectorElementSize(I0); 10304 unsigned MinVF = R.getMinVF(Sz); 10305 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 10306 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 10307 if (MaxVF < 2) { 10308 R.getORE()->emit([&]() { 10309 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 10310 << "Cannot SLP vectorize list: vectorization factor " 10311 << "less than 2 is not supported"; 10312 }); 10313 return false; 10314 } 10315 10316 bool Changed = false; 10317 bool CandidateFound = false; 10318 InstructionCost MinCost = SLPCostThreshold.getValue(); 10319 Type *ScalarTy = VL[0]->getType(); 10320 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 10321 ScalarTy = IE->getOperand(1)->getType(); 10322 10323 unsigned NextInst = 0, MaxInst = VL.size(); 10324 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 10325 // No actual vectorization should happen, if number of parts is the same as 10326 // provided vectorization factor (i.e. the scalar type is used for vector 10327 // code during codegen). 10328 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 10329 if (TTI->getNumberOfParts(VecTy) == VF) 10330 continue; 10331 for (unsigned I = NextInst; I < MaxInst; ++I) { 10332 unsigned OpsWidth = 0; 10333 10334 if (I + VF > MaxInst) 10335 OpsWidth = MaxInst - I; 10336 else 10337 OpsWidth = VF; 10338 10339 if (!isPowerOf2_32(OpsWidth)) 10340 continue; 10341 10342 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 10343 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 10344 break; 10345 10346 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 10347 // Check that a previous iteration of this loop did not delete the Value. 10348 if (llvm::any_of(Ops, [&R](Value *V) { 10349 auto *I = dyn_cast<Instruction>(V); 10350 return I && R.isDeleted(I); 10351 })) 10352 continue; 10353 10354 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 10355 << "\n"); 10356 10357 R.buildTree(Ops); 10358 if (R.isTreeTinyAndNotFullyVectorizable()) 10359 continue; 10360 R.reorderTopToBottom(); 10361 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 10362 R.buildExternalUses(); 10363 10364 R.computeMinimumValueSizes(); 10365 InstructionCost Cost = R.getTreeCost(); 10366 CandidateFound = true; 10367 MinCost = std::min(MinCost, Cost); 10368 10369 if (Cost < -SLPCostThreshold) { 10370 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 10371 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 10372 cast<Instruction>(Ops[0])) 10373 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 10374 << " and with tree size " 10375 << ore::NV("TreeSize", R.getTreeSize())); 10376 10377 R.vectorizeTree(); 10378 // Move to the next bundle. 10379 I += VF - 1; 10380 NextInst = I + 1; 10381 Changed = true; 10382 } 10383 } 10384 } 10385 10386 if (!Changed && CandidateFound) { 10387 R.getORE()->emit([&]() { 10388 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 10389 << "List vectorization was possible but not beneficial with cost " 10390 << ore::NV("Cost", MinCost) << " >= " 10391 << ore::NV("Treshold", -SLPCostThreshold); 10392 }); 10393 } else if (!Changed) { 10394 R.getORE()->emit([&]() { 10395 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 10396 << "Cannot SLP vectorize list: vectorization was impossible" 10397 << " with available vectorization factors"; 10398 }); 10399 } 10400 return Changed; 10401 } 10402 10403 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 10404 if (!I) 10405 return false; 10406 10407 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 10408 isa<VectorType>(I->getType())) 10409 return false; 10410 10411 Value *P = I->getParent(); 10412 10413 // Vectorize in current basic block only. 10414 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 10415 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 10416 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 10417 return false; 10418 10419 // First collect all possible candidates 10420 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 10421 Candidates.emplace_back(Op0, Op1); 10422 10423 auto *A = dyn_cast<BinaryOperator>(Op0); 10424 auto *B = dyn_cast<BinaryOperator>(Op1); 10425 // Try to skip B. 10426 if (A && B && B->hasOneUse()) { 10427 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 10428 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 10429 if (B0 && B0->getParent() == P) 10430 Candidates.emplace_back(A, B0); 10431 if (B1 && B1->getParent() == P) 10432 Candidates.emplace_back(A, B1); 10433 } 10434 // Try to skip A. 10435 if (B && A && A->hasOneUse()) { 10436 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 10437 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 10438 if (A0 && A0->getParent() == P) 10439 Candidates.emplace_back(A0, B); 10440 if (A1 && A1->getParent() == P) 10441 Candidates.emplace_back(A1, B); 10442 } 10443 10444 if (Candidates.size() == 1) 10445 return tryToVectorizePair(Op0, Op1, R); 10446 10447 // We have multiple options. Try to pick the single best. 10448 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 10449 if (!BestCandidate) 10450 return false; 10451 return tryToVectorizePair(Candidates[*BestCandidate].first, 10452 Candidates[*BestCandidate].second, R); 10453 } 10454 10455 namespace { 10456 10457 /// Model horizontal reductions. 10458 /// 10459 /// A horizontal reduction is a tree of reduction instructions that has values 10460 /// that can be put into a vector as its leaves. For example: 10461 /// 10462 /// mul mul mul mul 10463 /// \ / \ / 10464 /// + + 10465 /// \ / 10466 /// + 10467 /// This tree has "mul" as its leaf values and "+" as its reduction 10468 /// instructions. A reduction can feed into a store or a binary operation 10469 /// feeding a phi. 10470 /// ... 10471 /// \ / 10472 /// + 10473 /// | 10474 /// phi += 10475 /// 10476 /// Or: 10477 /// ... 10478 /// \ / 10479 /// + 10480 /// | 10481 /// *p = 10482 /// 10483 class HorizontalReduction { 10484 using ReductionOpsType = SmallVector<Value *, 16>; 10485 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 10486 ReductionOpsListType ReductionOps; 10487 /// List of possibly reduced values. 10488 SmallVector<SmallVector<Value *>> ReducedVals; 10489 /// Maps reduced value to the corresponding reduction operation. 10490 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 10491 // Use map vector to make stable output. 10492 MapVector<Instruction *, Value *> ExtraArgs; 10493 WeakTrackingVH ReductionRoot; 10494 /// The type of reduction operation. 10495 RecurKind RdxKind; 10496 10497 static bool isCmpSelMinMax(Instruction *I) { 10498 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 10499 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 10500 } 10501 10502 // And/or are potentially poison-safe logical patterns like: 10503 // select x, y, false 10504 // select x, true, y 10505 static bool isBoolLogicOp(Instruction *I) { 10506 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 10507 match(I, m_LogicalOr(m_Value(), m_Value())); 10508 } 10509 10510 /// Checks if instruction is associative and can be vectorized. 10511 static bool isVectorizable(RecurKind Kind, Instruction *I) { 10512 if (Kind == RecurKind::None) 10513 return false; 10514 10515 // Integer ops that map to select instructions or intrinsics are fine. 10516 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 10517 isBoolLogicOp(I)) 10518 return true; 10519 10520 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 10521 // FP min/max are associative except for NaN and -0.0. We do not 10522 // have to rule out -0.0 here because the intrinsic semantics do not 10523 // specify a fixed result for it. 10524 return I->getFastMathFlags().noNaNs(); 10525 } 10526 10527 return I->isAssociative(); 10528 } 10529 10530 static Value *getRdxOperand(Instruction *I, unsigned Index) { 10531 // Poison-safe 'or' takes the form: select X, true, Y 10532 // To make that work with the normal operand processing, we skip the 10533 // true value operand. 10534 // TODO: Change the code and data structures to handle this without a hack. 10535 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 10536 return I->getOperand(2); 10537 return I->getOperand(Index); 10538 } 10539 10540 /// Creates reduction operation with the current opcode. 10541 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 10542 Value *RHS, const Twine &Name, bool UseSelect) { 10543 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 10544 switch (Kind) { 10545 case RecurKind::Or: 10546 if (UseSelect && 10547 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10548 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 10549 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10550 Name); 10551 case RecurKind::And: 10552 if (UseSelect && 10553 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10554 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 10555 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10556 Name); 10557 case RecurKind::Add: 10558 case RecurKind::Mul: 10559 case RecurKind::Xor: 10560 case RecurKind::FAdd: 10561 case RecurKind::FMul: 10562 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10563 Name); 10564 case RecurKind::FMax: 10565 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 10566 case RecurKind::FMin: 10567 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 10568 case RecurKind::SMax: 10569 if (UseSelect) { 10570 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 10571 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10572 } 10573 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 10574 case RecurKind::SMin: 10575 if (UseSelect) { 10576 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 10577 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10578 } 10579 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 10580 case RecurKind::UMax: 10581 if (UseSelect) { 10582 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 10583 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10584 } 10585 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 10586 case RecurKind::UMin: 10587 if (UseSelect) { 10588 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 10589 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10590 } 10591 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 10592 default: 10593 llvm_unreachable("Unknown reduction operation."); 10594 } 10595 } 10596 10597 /// Creates reduction operation with the current opcode with the IR flags 10598 /// from \p ReductionOps, dropping nuw/nsw flags. 10599 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10600 Value *RHS, const Twine &Name, 10601 const ReductionOpsListType &ReductionOps) { 10602 bool UseSelect = ReductionOps.size() == 2 || 10603 // Logical or/and. 10604 (ReductionOps.size() == 1 && 10605 isa<SelectInst>(ReductionOps.front().front())); 10606 assert((!UseSelect || ReductionOps.size() != 2 || 10607 isa<SelectInst>(ReductionOps[1][0])) && 10608 "Expected cmp + select pairs for reduction"); 10609 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10610 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10611 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10612 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, 10613 /*IncludeWrapFlags=*/false); 10614 propagateIRFlags(Op, ReductionOps[1], nullptr, 10615 /*IncludeWrapFlags=*/false); 10616 return Op; 10617 } 10618 } 10619 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); 10620 return Op; 10621 } 10622 10623 static RecurKind getRdxKind(Value *V) { 10624 auto *I = dyn_cast<Instruction>(V); 10625 if (!I) 10626 return RecurKind::None; 10627 if (match(I, m_Add(m_Value(), m_Value()))) 10628 return RecurKind::Add; 10629 if (match(I, m_Mul(m_Value(), m_Value()))) 10630 return RecurKind::Mul; 10631 if (match(I, m_And(m_Value(), m_Value())) || 10632 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10633 return RecurKind::And; 10634 if (match(I, m_Or(m_Value(), m_Value())) || 10635 match(I, m_LogicalOr(m_Value(), m_Value()))) 10636 return RecurKind::Or; 10637 if (match(I, m_Xor(m_Value(), m_Value()))) 10638 return RecurKind::Xor; 10639 if (match(I, m_FAdd(m_Value(), m_Value()))) 10640 return RecurKind::FAdd; 10641 if (match(I, m_FMul(m_Value(), m_Value()))) 10642 return RecurKind::FMul; 10643 10644 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10645 return RecurKind::FMax; 10646 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10647 return RecurKind::FMin; 10648 10649 // This matches either cmp+select or intrinsics. SLP is expected to handle 10650 // either form. 10651 // TODO: If we are canonicalizing to intrinsics, we can remove several 10652 // special-case paths that deal with selects. 10653 if (match(I, m_SMax(m_Value(), m_Value()))) 10654 return RecurKind::SMax; 10655 if (match(I, m_SMin(m_Value(), m_Value()))) 10656 return RecurKind::SMin; 10657 if (match(I, m_UMax(m_Value(), m_Value()))) 10658 return RecurKind::UMax; 10659 if (match(I, m_UMin(m_Value(), m_Value()))) 10660 return RecurKind::UMin; 10661 10662 if (auto *Select = dyn_cast<SelectInst>(I)) { 10663 // Try harder: look for min/max pattern based on instructions producing 10664 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10665 // During the intermediate stages of SLP, it's very common to have 10666 // pattern like this (since optimizeGatherSequence is run only once 10667 // at the end): 10668 // %1 = extractelement <2 x i32> %a, i32 0 10669 // %2 = extractelement <2 x i32> %a, i32 1 10670 // %cond = icmp sgt i32 %1, %2 10671 // %3 = extractelement <2 x i32> %a, i32 0 10672 // %4 = extractelement <2 x i32> %a, i32 1 10673 // %select = select i1 %cond, i32 %3, i32 %4 10674 CmpInst::Predicate Pred; 10675 Instruction *L1; 10676 Instruction *L2; 10677 10678 Value *LHS = Select->getTrueValue(); 10679 Value *RHS = Select->getFalseValue(); 10680 Value *Cond = Select->getCondition(); 10681 10682 // TODO: Support inverse predicates. 10683 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10684 if (!isa<ExtractElementInst>(RHS) || 10685 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10686 return RecurKind::None; 10687 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10688 if (!isa<ExtractElementInst>(LHS) || 10689 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10690 return RecurKind::None; 10691 } else { 10692 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10693 return RecurKind::None; 10694 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10695 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10696 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10697 return RecurKind::None; 10698 } 10699 10700 switch (Pred) { 10701 default: 10702 return RecurKind::None; 10703 case CmpInst::ICMP_SGT: 10704 case CmpInst::ICMP_SGE: 10705 return RecurKind::SMax; 10706 case CmpInst::ICMP_SLT: 10707 case CmpInst::ICMP_SLE: 10708 return RecurKind::SMin; 10709 case CmpInst::ICMP_UGT: 10710 case CmpInst::ICMP_UGE: 10711 return RecurKind::UMax; 10712 case CmpInst::ICMP_ULT: 10713 case CmpInst::ICMP_ULE: 10714 return RecurKind::UMin; 10715 } 10716 } 10717 return RecurKind::None; 10718 } 10719 10720 /// Get the index of the first operand. 10721 static unsigned getFirstOperandIndex(Instruction *I) { 10722 return isCmpSelMinMax(I) ? 1 : 0; 10723 } 10724 10725 /// Total number of operands in the reduction operation. 10726 static unsigned getNumberOfOperands(Instruction *I) { 10727 return isCmpSelMinMax(I) ? 3 : 2; 10728 } 10729 10730 /// Checks if the instruction is in basic block \p BB. 10731 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10732 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10733 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10734 auto *Sel = cast<SelectInst>(I); 10735 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10736 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10737 } 10738 return I->getParent() == BB; 10739 } 10740 10741 /// Expected number of uses for reduction operations/reduced values. 10742 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10743 if (IsCmpSelMinMax) { 10744 // SelectInst must be used twice while the condition op must have single 10745 // use only. 10746 if (auto *Sel = dyn_cast<SelectInst>(I)) 10747 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10748 return I->hasNUses(2); 10749 } 10750 10751 // Arithmetic reduction operation must be used once only. 10752 return I->hasOneUse(); 10753 } 10754 10755 /// Initializes the list of reduction operations. 10756 void initReductionOps(Instruction *I) { 10757 if (isCmpSelMinMax(I)) 10758 ReductionOps.assign(2, ReductionOpsType()); 10759 else 10760 ReductionOps.assign(1, ReductionOpsType()); 10761 } 10762 10763 /// Add all reduction operations for the reduction instruction \p I. 10764 void addReductionOps(Instruction *I) { 10765 if (isCmpSelMinMax(I)) { 10766 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10767 ReductionOps[1].emplace_back(I); 10768 } else { 10769 ReductionOps[0].emplace_back(I); 10770 } 10771 } 10772 10773 static Value *getLHS(RecurKind Kind, Instruction *I) { 10774 if (Kind == RecurKind::None) 10775 return nullptr; 10776 return I->getOperand(getFirstOperandIndex(I)); 10777 } 10778 static Value *getRHS(RecurKind Kind, Instruction *I) { 10779 if (Kind == RecurKind::None) 10780 return nullptr; 10781 return I->getOperand(getFirstOperandIndex(I) + 1); 10782 } 10783 10784 public: 10785 HorizontalReduction() = default; 10786 10787 /// Try to find a reduction tree. 10788 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10789 ScalarEvolution &SE, const DataLayout &DL, 10790 const TargetLibraryInfo &TLI) { 10791 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10792 "Phi needs to use the binary operator"); 10793 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10794 isa<IntrinsicInst>(Inst)) && 10795 "Expected binop, select, or intrinsic for reduction matching"); 10796 RdxKind = getRdxKind(Inst); 10797 10798 // We could have a initial reductions that is not an add. 10799 // r *= v1 + v2 + v3 + v4 10800 // In such a case start looking for a tree rooted in the first '+'. 10801 if (Phi) { 10802 if (getLHS(RdxKind, Inst) == Phi) { 10803 Phi = nullptr; 10804 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10805 if (!Inst) 10806 return false; 10807 RdxKind = getRdxKind(Inst); 10808 } else if (getRHS(RdxKind, Inst) == Phi) { 10809 Phi = nullptr; 10810 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10811 if (!Inst) 10812 return false; 10813 RdxKind = getRdxKind(Inst); 10814 } 10815 } 10816 10817 if (!isVectorizable(RdxKind, Inst)) 10818 return false; 10819 10820 // Analyze "regular" integer/FP types for reductions - no target-specific 10821 // types or pointers. 10822 Type *Ty = Inst->getType(); 10823 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10824 return false; 10825 10826 // Though the ultimate reduction may have multiple uses, its condition must 10827 // have only single use. 10828 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10829 if (!Sel->getCondition()->hasOneUse()) 10830 return false; 10831 10832 ReductionRoot = Inst; 10833 10834 // Iterate through all the operands of the possible reduction tree and 10835 // gather all the reduced values, sorting them by their value id. 10836 BasicBlock *BB = Inst->getParent(); 10837 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10838 SmallVector<Instruction *> Worklist(1, Inst); 10839 // Checks if the operands of the \p TreeN instruction are also reduction 10840 // operations or should be treated as reduced values or an extra argument, 10841 // which is not part of the reduction. 10842 auto &&CheckOperands = [this, IsCmpSelMinMax, 10843 BB](Instruction *TreeN, 10844 SmallVectorImpl<Value *> &ExtraArgs, 10845 SmallVectorImpl<Value *> &PossibleReducedVals, 10846 SmallVectorImpl<Instruction *> &ReductionOps) { 10847 for (int I = getFirstOperandIndex(TreeN), 10848 End = getNumberOfOperands(TreeN); 10849 I < End; ++I) { 10850 Value *EdgeVal = getRdxOperand(TreeN, I); 10851 ReducedValsToOps[EdgeVal].push_back(TreeN); 10852 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10853 // Edge has wrong parent - mark as an extra argument. 10854 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10855 !hasSameParent(EdgeInst, BB)) { 10856 ExtraArgs.push_back(EdgeVal); 10857 continue; 10858 } 10859 // If the edge is not an instruction, or it is different from the main 10860 // reduction opcode or has too many uses - possible reduced value. 10861 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10862 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10863 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10864 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10865 PossibleReducedVals.push_back(EdgeVal); 10866 continue; 10867 } 10868 ReductionOps.push_back(EdgeInst); 10869 } 10870 }; 10871 // Try to regroup reduced values so that it gets more profitable to try to 10872 // reduce them. Values are grouped by their value ids, instructions - by 10873 // instruction op id and/or alternate op id, plus do extra analysis for 10874 // loads (grouping them by the distabce between pointers) and cmp 10875 // instructions (grouping them by the predicate). 10876 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10877 PossibleReducedVals; 10878 initReductionOps(Inst); 10879 while (!Worklist.empty()) { 10880 Instruction *TreeN = Worklist.pop_back_val(); 10881 SmallVector<Value *> Args; 10882 SmallVector<Value *> PossibleRedVals; 10883 SmallVector<Instruction *> PossibleReductionOps; 10884 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10885 // If too many extra args - mark the instruction itself as a reduction 10886 // value, not a reduction operation. 10887 if (Args.size() < 2) { 10888 addReductionOps(TreeN); 10889 // Add extra args. 10890 if (!Args.empty()) { 10891 assert(Args.size() == 1 && "Expected only single argument."); 10892 ExtraArgs[TreeN] = Args.front(); 10893 } 10894 // Add reduction values. The values are sorted for better vectorization 10895 // results. 10896 for (Value *V : PossibleRedVals) { 10897 size_t Key, Idx; 10898 std::tie(Key, Idx) = generateKeySubkey( 10899 V, &TLI, 10900 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10901 auto It = PossibleReducedVals.find(Key); 10902 if (It != PossibleReducedVals.end()) { 10903 for (const auto &LoadData : It->second) { 10904 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10905 if (getPointersDiff(RLI->getType(), 10906 RLI->getPointerOperand(), LI->getType(), 10907 LI->getPointerOperand(), DL, SE, 10908 /*StrictCheck=*/true)) 10909 return hash_value(RLI->getPointerOperand()); 10910 } 10911 } 10912 return hash_value(LI->getPointerOperand()); 10913 }, 10914 /*AllowAlternate=*/false); 10915 ++PossibleReducedVals[Key][Idx] 10916 .insert(std::make_pair(V, 0)) 10917 .first->second; 10918 } 10919 Worklist.append(PossibleReductionOps.rbegin(), 10920 PossibleReductionOps.rend()); 10921 } else { 10922 size_t Key, Idx; 10923 std::tie(Key, Idx) = generateKeySubkey( 10924 TreeN, &TLI, 10925 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10926 auto It = PossibleReducedVals.find(Key); 10927 if (It != PossibleReducedVals.end()) { 10928 for (const auto &LoadData : It->second) { 10929 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10930 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10931 LI->getType(), LI->getPointerOperand(), 10932 DL, SE, /*StrictCheck=*/true)) 10933 return hash_value(RLI->getPointerOperand()); 10934 } 10935 } 10936 return hash_value(LI->getPointerOperand()); 10937 }, 10938 /*AllowAlternate=*/false); 10939 ++PossibleReducedVals[Key][Idx] 10940 .insert(std::make_pair(TreeN, 0)) 10941 .first->second; 10942 } 10943 } 10944 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10945 // Sort values by the total number of values kinds to start the reduction 10946 // from the longest possible reduced values sequences. 10947 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10948 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10949 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10950 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10951 It != E; ++It) { 10952 PossibleRedValsVect.emplace_back(); 10953 auto RedValsVect = It->second.takeVector(); 10954 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10955 return P1.second < P2.second; 10956 }); 10957 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10958 PossibleRedValsVect.back().append(Data.second, Data.first); 10959 } 10960 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10961 return P1.size() > P2.size(); 10962 }); 10963 ReducedVals.emplace_back(); 10964 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10965 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10966 } 10967 // Sort the reduced values by number of same/alternate opcode and/or pointer 10968 // operand. 10969 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10970 return P1.size() > P2.size(); 10971 }); 10972 return true; 10973 } 10974 10975 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10976 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10977 constexpr int ReductionLimit = 4; 10978 constexpr unsigned RegMaxNumber = 4; 10979 constexpr unsigned RedValsMaxNumber = 128; 10980 // If there are a sufficient number of reduction values, reduce 10981 // to a nearby power-of-2. We can safely generate oversized 10982 // vectors and rely on the backend to split them to legal sizes. 10983 unsigned NumReducedVals = std::accumulate( 10984 ReducedVals.begin(), ReducedVals.end(), 0, 10985 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10986 if (NumReducedVals < ReductionLimit) 10987 return nullptr; 10988 10989 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10990 10991 // Track the reduced values in case if they are replaced by extractelement 10992 // because of the vectorization. 10993 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10994 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10995 // The same extra argument may be used several times, so log each attempt 10996 // to use it. 10997 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10998 assert(Pair.first && "DebugLoc must be set."); 10999 ExternallyUsedValues[Pair.second].push_back(Pair.first); 11000 TrackedVals.try_emplace(Pair.second, Pair.second); 11001 } 11002 11003 // The compare instruction of a min/max is the insertion point for new 11004 // instructions and may be replaced with a new compare instruction. 11005 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 11006 assert(isa<SelectInst>(RdxRootInst) && 11007 "Expected min/max reduction to have select root instruction"); 11008 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 11009 assert(isa<Instruction>(ScalarCond) && 11010 "Expected min/max reduction to have compare condition"); 11011 return cast<Instruction>(ScalarCond); 11012 }; 11013 11014 // The reduction root is used as the insertion point for new instructions, 11015 // so set it as externally used to prevent it from being deleted. 11016 ExternallyUsedValues[ReductionRoot]; 11017 SmallDenseSet<Value *> IgnoreList; 11018 for (ReductionOpsType &RdxOps : ReductionOps) 11019 for (Value *RdxOp : RdxOps) { 11020 if (!RdxOp) 11021 continue; 11022 IgnoreList.insert(RdxOp); 11023 } 11024 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 11025 11026 // Need to track reduced vals, they may be changed during vectorization of 11027 // subvectors. 11028 for (ArrayRef<Value *> Candidates : ReducedVals) 11029 for (Value *V : Candidates) 11030 TrackedVals.try_emplace(V, V); 11031 11032 DenseMap<Value *, unsigned> VectorizedVals; 11033 Value *VectorizedTree = nullptr; 11034 bool CheckForReusedReductionOps = false; 11035 // Try to vectorize elements based on their type. 11036 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 11037 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 11038 InstructionsState S = getSameOpcode(OrigReducedVals); 11039 SmallVector<Value *> Candidates; 11040 DenseMap<Value *, Value *> TrackedToOrig; 11041 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 11042 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 11043 // Check if the reduction value was not overriden by the extractelement 11044 // instruction because of the vectorization and exclude it, if it is not 11045 // compatible with other values. 11046 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 11047 if (isVectorLikeInstWithConstOps(Inst) && 11048 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 11049 continue; 11050 Candidates.push_back(RdxVal); 11051 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 11052 } 11053 bool ShuffledExtracts = false; 11054 // Try to handle shuffled extractelements. 11055 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 11056 I + 1 < E) { 11057 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 11058 if (NextS.getOpcode() == Instruction::ExtractElement && 11059 !NextS.isAltShuffle()) { 11060 SmallVector<Value *> CommonCandidates(Candidates); 11061 for (Value *RV : ReducedVals[I + 1]) { 11062 Value *RdxVal = TrackedVals.find(RV)->second; 11063 // Check if the reduction value was not overriden by the 11064 // extractelement instruction because of the vectorization and 11065 // exclude it, if it is not compatible with other values. 11066 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 11067 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 11068 continue; 11069 CommonCandidates.push_back(RdxVal); 11070 TrackedToOrig.try_emplace(RdxVal, RV); 11071 } 11072 SmallVector<int> Mask; 11073 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 11074 ++I; 11075 Candidates.swap(CommonCandidates); 11076 ShuffledExtracts = true; 11077 } 11078 } 11079 } 11080 unsigned NumReducedVals = Candidates.size(); 11081 if (NumReducedVals < ReductionLimit) 11082 continue; 11083 11084 unsigned MaxVecRegSize = V.getMaxVecRegSize(); 11085 unsigned EltSize = V.getVectorElementSize(Candidates[0]); 11086 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); 11087 11088 unsigned ReduxWidth = std::min<unsigned>( 11089 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); 11090 unsigned Start = 0; 11091 unsigned Pos = Start; 11092 // Restarts vectorization attempt with lower vector factor. 11093 unsigned PrevReduxWidth = ReduxWidth; 11094 bool CheckForReusedReductionOpsLocal = false; 11095 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 11096 &CheckForReusedReductionOpsLocal, 11097 &PrevReduxWidth, &V, 11098 &IgnoreList](bool IgnoreVL = false) { 11099 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); 11100 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 11101 // Check if any of the reduction ops are gathered. If so, worth 11102 // trying again with less number of reduction ops. 11103 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 11104 } 11105 ++Pos; 11106 if (Pos < NumReducedVals - ReduxWidth + 1) 11107 return IsAnyRedOpGathered; 11108 Pos = Start; 11109 ReduxWidth /= 2; 11110 return IsAnyRedOpGathered; 11111 }; 11112 while (Pos < NumReducedVals - ReduxWidth + 1 && 11113 ReduxWidth >= ReductionLimit) { 11114 // Dependency in tree of the reduction ops - drop this attempt, try 11115 // later. 11116 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 11117 Start == 0) { 11118 CheckForReusedReductionOps = true; 11119 break; 11120 } 11121 PrevReduxWidth = ReduxWidth; 11122 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 11123 // Beeing analyzed already - skip. 11124 if (V.areAnalyzedReductionVals(VL)) { 11125 (void)AdjustReducedVals(/*IgnoreVL=*/true); 11126 continue; 11127 } 11128 // Early exit if any of the reduction values were deleted during 11129 // previous vectorization attempts. 11130 if (any_of(VL, [&V](Value *RedVal) { 11131 auto *RedValI = dyn_cast<Instruction>(RedVal); 11132 if (!RedValI) 11133 return false; 11134 return V.isDeleted(RedValI); 11135 })) 11136 break; 11137 V.buildTree(VL, IgnoreList); 11138 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 11139 if (!AdjustReducedVals()) 11140 V.analyzedReductionVals(VL); 11141 continue; 11142 } 11143 if (V.isLoadCombineReductionCandidate(RdxKind)) { 11144 if (!AdjustReducedVals()) 11145 V.analyzedReductionVals(VL); 11146 continue; 11147 } 11148 V.reorderTopToBottom(); 11149 // No need to reorder the root node at all. 11150 V.reorderBottomToTop(/*IgnoreReorder=*/true); 11151 // Keep extracted other reduction values, if they are used in the 11152 // vectorization trees. 11153 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 11154 ExternallyUsedValues); 11155 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 11156 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 11157 continue; 11158 for_each(ReducedVals[Cnt], 11159 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 11160 if (isa<Instruction>(V)) 11161 LocalExternallyUsedValues[TrackedVals[V]]; 11162 }); 11163 } 11164 // Number of uses of the candidates in the vector of values. 11165 SmallDenseMap<Value *, unsigned> NumUses; 11166 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 11167 Value *V = Candidates[Cnt]; 11168 if (NumUses.count(V) > 0) 11169 continue; 11170 NumUses[V] = std::count(VL.begin(), VL.end(), V); 11171 } 11172 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 11173 Value *V = Candidates[Cnt]; 11174 if (NumUses.count(V) > 0) 11175 continue; 11176 NumUses[V] = std::count(VL.begin(), VL.end(), V); 11177 } 11178 // Gather externally used values. 11179 SmallPtrSet<Value *, 4> Visited; 11180 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 11181 Value *V = Candidates[Cnt]; 11182 if (!Visited.insert(V).second) 11183 continue; 11184 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 11185 if (NumOps != ReducedValsToOps.find(V)->second.size()) 11186 LocalExternallyUsedValues[V]; 11187 } 11188 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 11189 Value *V = Candidates[Cnt]; 11190 if (!Visited.insert(V).second) 11191 continue; 11192 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 11193 if (NumOps != ReducedValsToOps.find(V)->second.size()) 11194 LocalExternallyUsedValues[V]; 11195 } 11196 V.buildExternalUses(LocalExternallyUsedValues); 11197 11198 V.computeMinimumValueSizes(); 11199 11200 // Intersect the fast-math-flags from all reduction operations. 11201 FastMathFlags RdxFMF; 11202 RdxFMF.set(); 11203 for (Value *U : IgnoreList) 11204 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 11205 RdxFMF &= FPMO->getFastMathFlags(); 11206 // Estimate cost. 11207 InstructionCost TreeCost = V.getTreeCost(VL); 11208 InstructionCost ReductionCost = 11209 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 11210 InstructionCost Cost = TreeCost + ReductionCost; 11211 if (!Cost.isValid()) { 11212 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 11213 return nullptr; 11214 } 11215 if (Cost >= -SLPCostThreshold) { 11216 V.getORE()->emit([&]() { 11217 return OptimizationRemarkMissed( 11218 SV_NAME, "HorSLPNotBeneficial", 11219 ReducedValsToOps.find(VL[0])->second.front()) 11220 << "Vectorizing horizontal reduction is possible" 11221 << "but not beneficial with cost " << ore::NV("Cost", Cost) 11222 << " and threshold " 11223 << ore::NV("Threshold", -SLPCostThreshold); 11224 }); 11225 if (!AdjustReducedVals()) 11226 V.analyzedReductionVals(VL); 11227 continue; 11228 } 11229 11230 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 11231 << Cost << ". (HorRdx)\n"); 11232 V.getORE()->emit([&]() { 11233 return OptimizationRemark( 11234 SV_NAME, "VectorizedHorizontalReduction", 11235 ReducedValsToOps.find(VL[0])->second.front()) 11236 << "Vectorized horizontal reduction with cost " 11237 << ore::NV("Cost", Cost) << " and with tree size " 11238 << ore::NV("TreeSize", V.getTreeSize()); 11239 }); 11240 11241 Builder.setFastMathFlags(RdxFMF); 11242 11243 // Vectorize a tree. 11244 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 11245 11246 // Emit a reduction. If the root is a select (min/max idiom), the insert 11247 // point is the compare condition of that select. 11248 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 11249 if (IsCmpSelMinMax) 11250 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 11251 else 11252 Builder.SetInsertPoint(RdxRootInst); 11253 11254 // To prevent poison from leaking across what used to be sequential, 11255 // safe, scalar boolean logic operations, the reduction operand must be 11256 // frozen. 11257 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 11258 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 11259 11260 Value *ReducedSubTree = 11261 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 11262 11263 if (!VectorizedTree) { 11264 // Initialize the final value in the reduction. 11265 VectorizedTree = ReducedSubTree; 11266 } else { 11267 // Update the final value in the reduction. 11268 Builder.SetCurrentDebugLocation( 11269 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 11270 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11271 ReducedSubTree, "op.rdx", ReductionOps); 11272 } 11273 // Count vectorized reduced values to exclude them from final reduction. 11274 for (Value *V : VL) 11275 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 11276 .first->getSecond(); 11277 Pos += ReduxWidth; 11278 Start = Pos; 11279 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 11280 } 11281 } 11282 if (VectorizedTree) { 11283 // Finish the reduction. 11284 // Need to add extra arguments and not vectorized possible reduction 11285 // values. 11286 // Try to avoid dependencies between the scalar remainders after 11287 // reductions. 11288 auto &&FinalGen = 11289 [this, &Builder, 11290 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 11291 unsigned Sz = InstVals.size(); 11292 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 11293 Sz % 2); 11294 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 11295 Instruction *RedOp = InstVals[I + 1].first; 11296 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11297 Value *RdxVal1 = InstVals[I].second; 11298 Value *StableRdxVal1 = RdxVal1; 11299 auto It1 = TrackedVals.find(RdxVal1); 11300 if (It1 != TrackedVals.end()) 11301 StableRdxVal1 = It1->second; 11302 Value *RdxVal2 = InstVals[I + 1].second; 11303 Value *StableRdxVal2 = RdxVal2; 11304 auto It2 = TrackedVals.find(RdxVal2); 11305 if (It2 != TrackedVals.end()) 11306 StableRdxVal2 = It2->second; 11307 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 11308 StableRdxVal2, "op.rdx", ReductionOps); 11309 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 11310 } 11311 if (Sz % 2 == 1) 11312 ExtraReds[Sz / 2] = InstVals.back(); 11313 return ExtraReds; 11314 }; 11315 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 11316 SmallPtrSet<Value *, 8> Visited; 11317 for (ArrayRef<Value *> Candidates : ReducedVals) { 11318 for (Value *RdxVal : Candidates) { 11319 if (!Visited.insert(RdxVal).second) 11320 continue; 11321 unsigned NumOps = VectorizedVals.lookup(RdxVal); 11322 for (Instruction *RedOp : 11323 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 11324 .drop_back(NumOps)) 11325 ExtraReductions.emplace_back(RedOp, RdxVal); 11326 } 11327 } 11328 for (auto &Pair : ExternallyUsedValues) { 11329 // Add each externally used value to the final reduction. 11330 for (auto *I : Pair.second) 11331 ExtraReductions.emplace_back(I, Pair.first); 11332 } 11333 // Iterate through all not-vectorized reduction values/extra arguments. 11334 while (ExtraReductions.size() > 1) { 11335 SmallVector<std::pair<Instruction *, Value *>> NewReds = 11336 FinalGen(ExtraReductions); 11337 ExtraReductions.swap(NewReds); 11338 } 11339 // Final reduction. 11340 if (ExtraReductions.size() == 1) { 11341 Instruction *RedOp = ExtraReductions.back().first; 11342 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11343 Value *RdxVal = ExtraReductions.back().second; 11344 Value *StableRdxVal = RdxVal; 11345 auto It = TrackedVals.find(RdxVal); 11346 if (It != TrackedVals.end()) 11347 StableRdxVal = It->second; 11348 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11349 StableRdxVal, "op.rdx", ReductionOps); 11350 } 11351 11352 ReductionRoot->replaceAllUsesWith(VectorizedTree); 11353 11354 // The original scalar reduction is expected to have no remaining 11355 // uses outside the reduction tree itself. Assert that we got this 11356 // correct, replace internal uses with undef, and mark for eventual 11357 // deletion. 11358 #ifndef NDEBUG 11359 SmallSet<Value *, 4> IgnoreSet; 11360 for (ArrayRef<Value *> RdxOps : ReductionOps) 11361 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 11362 #endif 11363 for (ArrayRef<Value *> RdxOps : ReductionOps) { 11364 for (Value *Ignore : RdxOps) { 11365 if (!Ignore) 11366 continue; 11367 #ifndef NDEBUG 11368 for (auto *U : Ignore->users()) { 11369 assert(IgnoreSet.count(U) && 11370 "All users must be either in the reduction ops list."); 11371 } 11372 #endif 11373 if (!Ignore->use_empty()) { 11374 Value *Undef = UndefValue::get(Ignore->getType()); 11375 Ignore->replaceAllUsesWith(Undef); 11376 } 11377 V.eraseInstruction(cast<Instruction>(Ignore)); 11378 } 11379 } 11380 } else if (!CheckForReusedReductionOps) { 11381 for (ReductionOpsType &RdxOps : ReductionOps) 11382 for (Value *RdxOp : RdxOps) 11383 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 11384 } 11385 return VectorizedTree; 11386 } 11387 11388 private: 11389 /// Calculate the cost of a reduction. 11390 InstructionCost getReductionCost(TargetTransformInfo *TTI, 11391 ArrayRef<Value *> ReducedVals, 11392 unsigned ReduxWidth, FastMathFlags FMF) { 11393 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 11394 Value *FirstReducedVal = ReducedVals.front(); 11395 Type *ScalarTy = FirstReducedVal->getType(); 11396 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 11397 InstructionCost VectorCost = 0, ScalarCost; 11398 // If all of the reduced values are constant, the vector cost is 0, since 11399 // the reduction value can be calculated at the compile time. 11400 bool AllConsts = all_of(ReducedVals, isConstant); 11401 switch (RdxKind) { 11402 case RecurKind::Add: 11403 case RecurKind::Mul: 11404 case RecurKind::Or: 11405 case RecurKind::And: 11406 case RecurKind::Xor: 11407 case RecurKind::FAdd: 11408 case RecurKind::FMul: { 11409 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 11410 if (!AllConsts) 11411 VectorCost = 11412 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 11413 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 11414 break; 11415 } 11416 case RecurKind::FMax: 11417 case RecurKind::FMin: { 11418 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11419 if (!AllConsts) { 11420 auto *VecCondTy = 11421 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11422 VectorCost = 11423 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11424 /*IsUnsigned=*/false, CostKind); 11425 } 11426 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11427 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 11428 SclCondTy, RdxPred, CostKind) + 11429 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11430 SclCondTy, RdxPred, CostKind); 11431 break; 11432 } 11433 case RecurKind::SMax: 11434 case RecurKind::SMin: 11435 case RecurKind::UMax: 11436 case RecurKind::UMin: { 11437 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11438 if (!AllConsts) { 11439 auto *VecCondTy = 11440 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11441 bool IsUnsigned = 11442 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 11443 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11444 IsUnsigned, CostKind); 11445 } 11446 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11447 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 11448 SclCondTy, RdxPred, CostKind) + 11449 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11450 SclCondTy, RdxPred, CostKind); 11451 break; 11452 } 11453 default: 11454 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 11455 } 11456 11457 // Scalar cost is repeated for N-1 elements. 11458 ScalarCost *= (ReduxWidth - 1); 11459 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 11460 << " for reduction that starts with " << *FirstReducedVal 11461 << " (It is a splitting reduction)\n"); 11462 return VectorCost - ScalarCost; 11463 } 11464 11465 /// Emit a horizontal reduction of the vectorized value. 11466 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 11467 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 11468 assert(VectorizedValue && "Need to have a vectorized tree node"); 11469 assert(isPowerOf2_32(ReduxWidth) && 11470 "We only handle power-of-two reductions for now"); 11471 assert(RdxKind != RecurKind::FMulAdd && 11472 "A call to the llvm.fmuladd intrinsic is not handled yet"); 11473 11474 ++NumVectorInstructions; 11475 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 11476 } 11477 }; 11478 11479 } // end anonymous namespace 11480 11481 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 11482 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 11483 return cast<FixedVectorType>(IE->getType())->getNumElements(); 11484 11485 unsigned AggregateSize = 1; 11486 auto *IV = cast<InsertValueInst>(InsertInst); 11487 Type *CurrentType = IV->getType(); 11488 do { 11489 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 11490 for (auto *Elt : ST->elements()) 11491 if (Elt != ST->getElementType(0)) // check homogeneity 11492 return None; 11493 AggregateSize *= ST->getNumElements(); 11494 CurrentType = ST->getElementType(0); 11495 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 11496 AggregateSize *= AT->getNumElements(); 11497 CurrentType = AT->getElementType(); 11498 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 11499 AggregateSize *= VT->getNumElements(); 11500 return AggregateSize; 11501 } else if (CurrentType->isSingleValueType()) { 11502 return AggregateSize; 11503 } else { 11504 return None; 11505 } 11506 } while (true); 11507 } 11508 11509 static void findBuildAggregate_rec(Instruction *LastInsertInst, 11510 TargetTransformInfo *TTI, 11511 SmallVectorImpl<Value *> &BuildVectorOpds, 11512 SmallVectorImpl<Value *> &InsertElts, 11513 unsigned OperandOffset) { 11514 do { 11515 Value *InsertedOperand = LastInsertInst->getOperand(1); 11516 Optional<unsigned> OperandIndex = 11517 getInsertIndex(LastInsertInst, OperandOffset); 11518 if (!OperandIndex) 11519 return; 11520 if (isa<InsertElementInst>(InsertedOperand) || 11521 isa<InsertValueInst>(InsertedOperand)) { 11522 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 11523 BuildVectorOpds, InsertElts, *OperandIndex); 11524 11525 } else { 11526 BuildVectorOpds[*OperandIndex] = InsertedOperand; 11527 InsertElts[*OperandIndex] = LastInsertInst; 11528 } 11529 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 11530 } while (LastInsertInst != nullptr && 11531 (isa<InsertValueInst>(LastInsertInst) || 11532 isa<InsertElementInst>(LastInsertInst)) && 11533 LastInsertInst->hasOneUse()); 11534 } 11535 11536 /// Recognize construction of vectors like 11537 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 11538 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 11539 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 11540 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 11541 /// starting from the last insertelement or insertvalue instruction. 11542 /// 11543 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 11544 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 11545 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 11546 /// 11547 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 11548 /// 11549 /// \return true if it matches. 11550 static bool findBuildAggregate(Instruction *LastInsertInst, 11551 TargetTransformInfo *TTI, 11552 SmallVectorImpl<Value *> &BuildVectorOpds, 11553 SmallVectorImpl<Value *> &InsertElts) { 11554 11555 assert((isa<InsertElementInst>(LastInsertInst) || 11556 isa<InsertValueInst>(LastInsertInst)) && 11557 "Expected insertelement or insertvalue instruction!"); 11558 11559 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 11560 "Expected empty result vectors!"); 11561 11562 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 11563 if (!AggregateSize) 11564 return false; 11565 BuildVectorOpds.resize(*AggregateSize); 11566 InsertElts.resize(*AggregateSize); 11567 11568 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 11569 llvm::erase_value(BuildVectorOpds, nullptr); 11570 llvm::erase_value(InsertElts, nullptr); 11571 if (BuildVectorOpds.size() >= 2) 11572 return true; 11573 11574 return false; 11575 } 11576 11577 /// Try and get a reduction value from a phi node. 11578 /// 11579 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 11580 /// if they come from either \p ParentBB or a containing loop latch. 11581 /// 11582 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 11583 /// if not possible. 11584 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 11585 BasicBlock *ParentBB, LoopInfo *LI) { 11586 // There are situations where the reduction value is not dominated by the 11587 // reduction phi. Vectorizing such cases has been reported to cause 11588 // miscompiles. See PR25787. 11589 auto DominatedReduxValue = [&](Value *R) { 11590 return isa<Instruction>(R) && 11591 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 11592 }; 11593 11594 Value *Rdx = nullptr; 11595 11596 // Return the incoming value if it comes from the same BB as the phi node. 11597 if (P->getIncomingBlock(0) == ParentBB) { 11598 Rdx = P->getIncomingValue(0); 11599 } else if (P->getIncomingBlock(1) == ParentBB) { 11600 Rdx = P->getIncomingValue(1); 11601 } 11602 11603 if (Rdx && DominatedReduxValue(Rdx)) 11604 return Rdx; 11605 11606 // Otherwise, check whether we have a loop latch to look at. 11607 Loop *BBL = LI->getLoopFor(ParentBB); 11608 if (!BBL) 11609 return nullptr; 11610 BasicBlock *BBLatch = BBL->getLoopLatch(); 11611 if (!BBLatch) 11612 return nullptr; 11613 11614 // There is a loop latch, return the incoming value if it comes from 11615 // that. This reduction pattern occasionally turns up. 11616 if (P->getIncomingBlock(0) == BBLatch) { 11617 Rdx = P->getIncomingValue(0); 11618 } else if (P->getIncomingBlock(1) == BBLatch) { 11619 Rdx = P->getIncomingValue(1); 11620 } 11621 11622 if (Rdx && DominatedReduxValue(Rdx)) 11623 return Rdx; 11624 11625 return nullptr; 11626 } 11627 11628 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11629 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11630 return true; 11631 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11632 return true; 11633 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11634 return true; 11635 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11636 return true; 11637 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11638 return true; 11639 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11640 return true; 11641 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11642 return true; 11643 return false; 11644 } 11645 11646 /// Attempt to reduce a horizontal reduction. 11647 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11648 /// with reduction operators \a Root (or one of its operands) in a basic block 11649 /// \a BB, then check if it can be done. If horizontal reduction is not found 11650 /// and root instruction is a binary operation, vectorization of the operands is 11651 /// attempted. 11652 /// \returns true if a horizontal reduction was matched and reduced or operands 11653 /// of one of the binary instruction were vectorized. 11654 /// \returns false if a horizontal reduction was not matched (or not possible) 11655 /// or no vectorization of any binary operation feeding \a Root instruction was 11656 /// performed. 11657 static bool tryToVectorizeHorReductionOrInstOperands( 11658 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11659 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11660 const TargetLibraryInfo &TLI, 11661 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11662 if (!ShouldVectorizeHor) 11663 return false; 11664 11665 if (!Root) 11666 return false; 11667 11668 if (Root->getParent() != BB || isa<PHINode>(Root)) 11669 return false; 11670 // Start analysis starting from Root instruction. If horizontal reduction is 11671 // found, try to vectorize it. If it is not a horizontal reduction or 11672 // vectorization is not possible or not effective, and currently analyzed 11673 // instruction is a binary operation, try to vectorize the operands, using 11674 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11675 // the same procedure considering each operand as a possible root of the 11676 // horizontal reduction. 11677 // Interrupt the process if the Root instruction itself was vectorized or all 11678 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11679 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11680 // CmpInsts so we can skip extra attempts in 11681 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11682 std::queue<std::pair<Instruction *, unsigned>> Stack; 11683 Stack.emplace(Root, 0); 11684 SmallPtrSet<Value *, 8> VisitedInstrs; 11685 SmallVector<WeakTrackingVH> PostponedInsts; 11686 bool Res = false; 11687 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11688 Value *&B0, 11689 Value *&B1) -> Value * { 11690 if (R.isAnalyzedReductionRoot(Inst)) 11691 return nullptr; 11692 bool IsBinop = matchRdxBop(Inst, B0, B1); 11693 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11694 if (IsBinop || IsSelect) { 11695 HorizontalReduction HorRdx; 11696 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11697 return HorRdx.tryToReduce(R, TTI); 11698 } 11699 return nullptr; 11700 }; 11701 while (!Stack.empty()) { 11702 Instruction *Inst; 11703 unsigned Level; 11704 std::tie(Inst, Level) = Stack.front(); 11705 Stack.pop(); 11706 // Do not try to analyze instruction that has already been vectorized. 11707 // This may happen when we vectorize instruction operands on a previous 11708 // iteration while stack was populated before that happened. 11709 if (R.isDeleted(Inst)) 11710 continue; 11711 Value *B0 = nullptr, *B1 = nullptr; 11712 if (Value *V = TryToReduce(Inst, B0, B1)) { 11713 Res = true; 11714 // Set P to nullptr to avoid re-analysis of phi node in 11715 // matchAssociativeReduction function unless this is the root node. 11716 P = nullptr; 11717 if (auto *I = dyn_cast<Instruction>(V)) { 11718 // Try to find another reduction. 11719 Stack.emplace(I, Level); 11720 continue; 11721 } 11722 } else { 11723 bool IsBinop = B0 && B1; 11724 if (P && IsBinop) { 11725 Inst = dyn_cast<Instruction>(B0); 11726 if (Inst == P) 11727 Inst = dyn_cast<Instruction>(B1); 11728 if (!Inst) { 11729 // Set P to nullptr to avoid re-analysis of phi node in 11730 // matchAssociativeReduction function unless this is the root node. 11731 P = nullptr; 11732 continue; 11733 } 11734 } 11735 // Set P to nullptr to avoid re-analysis of phi node in 11736 // matchAssociativeReduction function unless this is the root node. 11737 P = nullptr; 11738 // Do not try to vectorize CmpInst operands, this is done separately. 11739 // Final attempt for binop args vectorization should happen after the loop 11740 // to try to find reductions. 11741 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11742 PostponedInsts.push_back(Inst); 11743 } 11744 11745 // Try to vectorize operands. 11746 // Continue analysis for the instruction from the same basic block only to 11747 // save compile time. 11748 if (++Level < RecursionMaxDepth) 11749 for (auto *Op : Inst->operand_values()) 11750 if (VisitedInstrs.insert(Op).second) 11751 if (auto *I = dyn_cast<Instruction>(Op)) 11752 // Do not try to vectorize CmpInst operands, this is done 11753 // separately. 11754 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11755 !R.isDeleted(I) && I->getParent() == BB) 11756 Stack.emplace(I, Level); 11757 } 11758 // Try to vectorized binops where reductions were not found. 11759 for (Value *V : PostponedInsts) 11760 if (auto *Inst = dyn_cast<Instruction>(V)) 11761 if (!R.isDeleted(Inst)) 11762 Res |= Vectorize(Inst, R); 11763 return Res; 11764 } 11765 11766 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11767 BasicBlock *BB, BoUpSLP &R, 11768 TargetTransformInfo *TTI) { 11769 auto *I = dyn_cast_or_null<Instruction>(V); 11770 if (!I) 11771 return false; 11772 11773 if (!isa<BinaryOperator>(I)) 11774 P = nullptr; 11775 // Try to match and vectorize a horizontal reduction. 11776 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11777 return tryToVectorize(I, R); 11778 }; 11779 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11780 *TLI, ExtraVectorization); 11781 } 11782 11783 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11784 BasicBlock *BB, BoUpSLP &R) { 11785 const DataLayout &DL = BB->getModule()->getDataLayout(); 11786 if (!R.canMapToVector(IVI->getType(), DL)) 11787 return false; 11788 11789 SmallVector<Value *, 16> BuildVectorOpds; 11790 SmallVector<Value *, 16> BuildVectorInsts; 11791 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11792 return false; 11793 11794 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11795 // Aggregate value is unlikely to be processed in vector register. 11796 return tryToVectorizeList(BuildVectorOpds, R); 11797 } 11798 11799 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11800 BasicBlock *BB, BoUpSLP &R) { 11801 SmallVector<Value *, 16> BuildVectorInsts; 11802 SmallVector<Value *, 16> BuildVectorOpds; 11803 SmallVector<int> Mask; 11804 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11805 (llvm::all_of( 11806 BuildVectorOpds, 11807 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11808 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11809 return false; 11810 11811 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11812 return tryToVectorizeList(BuildVectorInsts, R); 11813 } 11814 11815 template <typename T> 11816 static bool 11817 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11818 function_ref<unsigned(T *)> Limit, 11819 function_ref<bool(T *, T *)> Comparator, 11820 function_ref<bool(T *, T *)> AreCompatible, 11821 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11822 bool LimitForRegisterSize) { 11823 bool Changed = false; 11824 // Sort by type, parent, operands. 11825 stable_sort(Incoming, Comparator); 11826 11827 // Try to vectorize elements base on their type. 11828 SmallVector<T *> Candidates; 11829 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11830 // Look for the next elements with the same type, parent and operand 11831 // kinds. 11832 auto *SameTypeIt = IncIt; 11833 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11834 ++SameTypeIt; 11835 11836 // Try to vectorize them. 11837 unsigned NumElts = (SameTypeIt - IncIt); 11838 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11839 << NumElts << ")\n"); 11840 // The vectorization is a 3-state attempt: 11841 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11842 // size of maximal register at first. 11843 // 2. Try to vectorize remaining instructions with the same type, if 11844 // possible. This may result in the better vectorization results rather than 11845 // if we try just to vectorize instructions with the same/alternate opcodes. 11846 // 3. Final attempt to try to vectorize all instructions with the 11847 // same/alternate ops only, this may result in some extra final 11848 // vectorization. 11849 if (NumElts > 1 && 11850 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11851 // Success start over because instructions might have been changed. 11852 Changed = true; 11853 } else if (NumElts < Limit(*IncIt) && 11854 (Candidates.empty() || 11855 Candidates.front()->getType() == (*IncIt)->getType())) { 11856 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11857 } 11858 // Final attempt to vectorize instructions with the same types. 11859 if (Candidates.size() > 1 && 11860 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11861 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11862 // Success start over because instructions might have been changed. 11863 Changed = true; 11864 } else if (LimitForRegisterSize) { 11865 // Try to vectorize using small vectors. 11866 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11867 It != End;) { 11868 auto *SameTypeIt = It; 11869 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11870 ++SameTypeIt; 11871 unsigned NumElts = (SameTypeIt - It); 11872 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11873 /*LimitForRegisterSize=*/false)) 11874 Changed = true; 11875 It = SameTypeIt; 11876 } 11877 } 11878 Candidates.clear(); 11879 } 11880 11881 // Start over at the next instruction of a different type (or the end). 11882 IncIt = SameTypeIt; 11883 } 11884 return Changed; 11885 } 11886 11887 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11888 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11889 /// operands. If IsCompatibility is false, function implements strict weak 11890 /// ordering relation between two cmp instructions, returning true if the first 11891 /// instruction is "less" than the second, i.e. its predicate is less than the 11892 /// predicate of the second or the operands IDs are less than the operands IDs 11893 /// of the second cmp instruction. 11894 template <bool IsCompatibility> 11895 static bool compareCmp(Value *V, Value *V2, 11896 function_ref<bool(Instruction *)> IsDeleted) { 11897 auto *CI1 = cast<CmpInst>(V); 11898 auto *CI2 = cast<CmpInst>(V2); 11899 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11900 return false; 11901 if (CI1->getOperand(0)->getType()->getTypeID() < 11902 CI2->getOperand(0)->getType()->getTypeID()) 11903 return !IsCompatibility; 11904 if (CI1->getOperand(0)->getType()->getTypeID() > 11905 CI2->getOperand(0)->getType()->getTypeID()) 11906 return false; 11907 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11908 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11909 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11910 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11911 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11912 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11913 if (BasePred1 < BasePred2) 11914 return !IsCompatibility; 11915 if (BasePred1 > BasePred2) 11916 return false; 11917 // Compare operands. 11918 bool LEPreds = Pred1 <= Pred2; 11919 bool GEPreds = Pred1 >= Pred2; 11920 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11921 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11922 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11923 if (Op1->getValueID() < Op2->getValueID()) 11924 return !IsCompatibility; 11925 if (Op1->getValueID() > Op2->getValueID()) 11926 return false; 11927 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11928 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11929 if (I1->getParent() != I2->getParent()) 11930 return false; 11931 InstructionsState S = getSameOpcode({I1, I2}); 11932 if (S.getOpcode()) 11933 continue; 11934 return false; 11935 } 11936 } 11937 return IsCompatibility; 11938 } 11939 11940 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11941 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11942 bool AtTerminator) { 11943 bool OpsChanged = false; 11944 SmallVector<Instruction *, 4> PostponedCmps; 11945 for (auto *I : reverse(Instructions)) { 11946 if (R.isDeleted(I)) 11947 continue; 11948 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11949 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11950 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11951 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11952 } else if (isa<CmpInst>(I)) { 11953 PostponedCmps.push_back(I); 11954 continue; 11955 } 11956 // Try to find reductions in buildvector sequnces. 11957 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11958 } 11959 if (AtTerminator) { 11960 // Try to find reductions first. 11961 for (Instruction *I : PostponedCmps) { 11962 if (R.isDeleted(I)) 11963 continue; 11964 for (Value *Op : I->operands()) 11965 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11966 } 11967 // Try to vectorize operands as vector bundles. 11968 for (Instruction *I : PostponedCmps) { 11969 if (R.isDeleted(I)) 11970 continue; 11971 OpsChanged |= tryToVectorize(I, R); 11972 } 11973 // Try to vectorize list of compares. 11974 // Sort by type, compare predicate, etc. 11975 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11976 return compareCmp<false>(V, V2, 11977 [&R](Instruction *I) { return R.isDeleted(I); }); 11978 }; 11979 11980 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11981 if (V1 == V2) 11982 return true; 11983 return compareCmp<true>(V1, V2, 11984 [&R](Instruction *I) { return R.isDeleted(I); }); 11985 }; 11986 auto Limit = [&R](Value *V) { 11987 unsigned EltSize = R.getVectorElementSize(V); 11988 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11989 }; 11990 11991 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11992 OpsChanged |= tryToVectorizeSequence<Value>( 11993 Vals, Limit, CompareSorter, AreCompatibleCompares, 11994 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11995 // Exclude possible reductions from other blocks. 11996 bool ArePossiblyReducedInOtherBlock = 11997 any_of(Candidates, [](Value *V) { 11998 return any_of(V->users(), [V](User *U) { 11999 return isa<SelectInst>(U) && 12000 cast<SelectInst>(U)->getParent() != 12001 cast<Instruction>(V)->getParent(); 12002 }); 12003 }); 12004 if (ArePossiblyReducedInOtherBlock) 12005 return false; 12006 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 12007 }, 12008 /*LimitForRegisterSize=*/true); 12009 Instructions.clear(); 12010 } else { 12011 // Insert in reverse order since the PostponedCmps vector was filled in 12012 // reverse order. 12013 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 12014 } 12015 return OpsChanged; 12016 } 12017 12018 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 12019 bool Changed = false; 12020 SmallVector<Value *, 4> Incoming; 12021 SmallPtrSet<Value *, 16> VisitedInstrs; 12022 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 12023 // node. Allows better to identify the chains that can be vectorized in the 12024 // better way. 12025 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 12026 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 12027 assert(isValidElementType(V1->getType()) && 12028 isValidElementType(V2->getType()) && 12029 "Expected vectorizable types only."); 12030 // It is fine to compare type IDs here, since we expect only vectorizable 12031 // types, like ints, floats and pointers, we don't care about other type. 12032 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 12033 return true; 12034 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 12035 return false; 12036 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 12037 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 12038 if (Opcodes1.size() < Opcodes2.size()) 12039 return true; 12040 if (Opcodes1.size() > Opcodes2.size()) 12041 return false; 12042 Optional<bool> ConstOrder; 12043 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 12044 // Undefs are compatible with any other value. 12045 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 12046 if (!ConstOrder) 12047 ConstOrder = 12048 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 12049 continue; 12050 } 12051 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 12052 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 12053 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 12054 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 12055 if (!NodeI1) 12056 return NodeI2 != nullptr; 12057 if (!NodeI2) 12058 return false; 12059 assert((NodeI1 == NodeI2) == 12060 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12061 "Different nodes should have different DFS numbers"); 12062 if (NodeI1 != NodeI2) 12063 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12064 InstructionsState S = getSameOpcode({I1, I2}); 12065 if (S.getOpcode()) 12066 continue; 12067 return I1->getOpcode() < I2->getOpcode(); 12068 } 12069 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 12070 if (!ConstOrder) 12071 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 12072 continue; 12073 } 12074 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 12075 return true; 12076 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 12077 return false; 12078 } 12079 return ConstOrder && *ConstOrder; 12080 }; 12081 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 12082 if (V1 == V2) 12083 return true; 12084 if (V1->getType() != V2->getType()) 12085 return false; 12086 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 12087 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 12088 if (Opcodes1.size() != Opcodes2.size()) 12089 return false; 12090 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 12091 // Undefs are compatible with any other value. 12092 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 12093 continue; 12094 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 12095 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 12096 if (I1->getParent() != I2->getParent()) 12097 return false; 12098 InstructionsState S = getSameOpcode({I1, I2}); 12099 if (S.getOpcode()) 12100 continue; 12101 return false; 12102 } 12103 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 12104 continue; 12105 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 12106 return false; 12107 } 12108 return true; 12109 }; 12110 auto Limit = [&R](Value *V) { 12111 unsigned EltSize = R.getVectorElementSize(V); 12112 return std::max(2U, R.getMaxVecRegSize() / EltSize); 12113 }; 12114 12115 bool HaveVectorizedPhiNodes = false; 12116 do { 12117 // Collect the incoming values from the PHIs. 12118 Incoming.clear(); 12119 for (Instruction &I : *BB) { 12120 PHINode *P = dyn_cast<PHINode>(&I); 12121 if (!P) 12122 break; 12123 12124 // No need to analyze deleted, vectorized and non-vectorizable 12125 // instructions. 12126 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 12127 isValidElementType(P->getType())) 12128 Incoming.push_back(P); 12129 } 12130 12131 // Find the corresponding non-phi nodes for better matching when trying to 12132 // build the tree. 12133 for (Value *V : Incoming) { 12134 SmallVectorImpl<Value *> &Opcodes = 12135 PHIToOpcodes.try_emplace(V).first->getSecond(); 12136 if (!Opcodes.empty()) 12137 continue; 12138 SmallVector<Value *, 4> Nodes(1, V); 12139 SmallPtrSet<Value *, 4> Visited; 12140 while (!Nodes.empty()) { 12141 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 12142 if (!Visited.insert(PHI).second) 12143 continue; 12144 for (Value *V : PHI->incoming_values()) { 12145 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 12146 Nodes.push_back(PHI1); 12147 continue; 12148 } 12149 Opcodes.emplace_back(V); 12150 } 12151 } 12152 } 12153 12154 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 12155 Incoming, Limit, PHICompare, AreCompatiblePHIs, 12156 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 12157 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 12158 }, 12159 /*LimitForRegisterSize=*/true); 12160 Changed |= HaveVectorizedPhiNodes; 12161 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 12162 } while (HaveVectorizedPhiNodes); 12163 12164 VisitedInstrs.clear(); 12165 12166 SmallVector<Instruction *, 8> PostProcessInstructions; 12167 SmallDenseSet<Instruction *, 4> KeyNodes; 12168 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 12169 // Skip instructions with scalable type. The num of elements is unknown at 12170 // compile-time for scalable type. 12171 if (isa<ScalableVectorType>(it->getType())) 12172 continue; 12173 12174 // Skip instructions marked for the deletion. 12175 if (R.isDeleted(&*it)) 12176 continue; 12177 // We may go through BB multiple times so skip the one we have checked. 12178 if (!VisitedInstrs.insert(&*it).second) { 12179 if (it->use_empty() && KeyNodes.contains(&*it) && 12180 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 12181 it->isTerminator())) { 12182 // We would like to start over since some instructions are deleted 12183 // and the iterator may become invalid value. 12184 Changed = true; 12185 it = BB->begin(); 12186 e = BB->end(); 12187 } 12188 continue; 12189 } 12190 12191 if (isa<DbgInfoIntrinsic>(it)) 12192 continue; 12193 12194 // Try to vectorize reductions that use PHINodes. 12195 if (PHINode *P = dyn_cast<PHINode>(it)) { 12196 // Check that the PHI is a reduction PHI. 12197 if (P->getNumIncomingValues() == 2) { 12198 // Try to match and vectorize a horizontal reduction. 12199 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 12200 TTI)) { 12201 Changed = true; 12202 it = BB->begin(); 12203 e = BB->end(); 12204 continue; 12205 } 12206 } 12207 // Try to vectorize the incoming values of the PHI, to catch reductions 12208 // that feed into PHIs. 12209 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 12210 // Skip if the incoming block is the current BB for now. Also, bypass 12211 // unreachable IR for efficiency and to avoid crashing. 12212 // TODO: Collect the skipped incoming values and try to vectorize them 12213 // after processing BB. 12214 if (BB == P->getIncomingBlock(I) || 12215 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 12216 continue; 12217 12218 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 12219 P->getIncomingBlock(I), R, TTI); 12220 } 12221 continue; 12222 } 12223 12224 // Ran into an instruction without users, like terminator, or function call 12225 // with ignored return value, store. Ignore unused instructions (basing on 12226 // instruction type, except for CallInst and InvokeInst). 12227 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 12228 isa<InvokeInst>(it))) { 12229 KeyNodes.insert(&*it); 12230 bool OpsChanged = false; 12231 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 12232 for (auto *V : it->operand_values()) { 12233 // Try to match and vectorize a horizontal reduction. 12234 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 12235 } 12236 } 12237 // Start vectorization of post-process list of instructions from the 12238 // top-tree instructions to try to vectorize as many instructions as 12239 // possible. 12240 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 12241 it->isTerminator()); 12242 if (OpsChanged) { 12243 // We would like to start over since some instructions are deleted 12244 // and the iterator may become invalid value. 12245 Changed = true; 12246 it = BB->begin(); 12247 e = BB->end(); 12248 continue; 12249 } 12250 } 12251 12252 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 12253 isa<InsertValueInst>(it)) 12254 PostProcessInstructions.push_back(&*it); 12255 } 12256 12257 return Changed; 12258 } 12259 12260 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 12261 auto Changed = false; 12262 for (auto &Entry : GEPs) { 12263 // If the getelementptr list has fewer than two elements, there's nothing 12264 // to do. 12265 if (Entry.second.size() < 2) 12266 continue; 12267 12268 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 12269 << Entry.second.size() << ".\n"); 12270 12271 // Process the GEP list in chunks suitable for the target's supported 12272 // vector size. If a vector register can't hold 1 element, we are done. We 12273 // are trying to vectorize the index computations, so the maximum number of 12274 // elements is based on the size of the index expression, rather than the 12275 // size of the GEP itself (the target's pointer size). 12276 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 12277 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 12278 if (MaxVecRegSize < EltSize) 12279 continue; 12280 12281 unsigned MaxElts = MaxVecRegSize / EltSize; 12282 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 12283 auto Len = std::min<unsigned>(BE - BI, MaxElts); 12284 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 12285 12286 // Initialize a set a candidate getelementptrs. Note that we use a 12287 // SetVector here to preserve program order. If the index computations 12288 // are vectorizable and begin with loads, we want to minimize the chance 12289 // of having to reorder them later. 12290 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 12291 12292 // Some of the candidates may have already been vectorized after we 12293 // initially collected them. If so, they are marked as deleted, so remove 12294 // them from the set of candidates. 12295 Candidates.remove_if( 12296 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 12297 12298 // Remove from the set of candidates all pairs of getelementptrs with 12299 // constant differences. Such getelementptrs are likely not good 12300 // candidates for vectorization in a bottom-up phase since one can be 12301 // computed from the other. We also ensure all candidate getelementptr 12302 // indices are unique. 12303 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 12304 auto *GEPI = GEPList[I]; 12305 if (!Candidates.count(GEPI)) 12306 continue; 12307 auto *SCEVI = SE->getSCEV(GEPList[I]); 12308 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 12309 auto *GEPJ = GEPList[J]; 12310 auto *SCEVJ = SE->getSCEV(GEPList[J]); 12311 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 12312 Candidates.remove(GEPI); 12313 Candidates.remove(GEPJ); 12314 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 12315 Candidates.remove(GEPJ); 12316 } 12317 } 12318 } 12319 12320 // We break out of the above computation as soon as we know there are 12321 // fewer than two candidates remaining. 12322 if (Candidates.size() < 2) 12323 continue; 12324 12325 // Add the single, non-constant index of each candidate to the bundle. We 12326 // ensured the indices met these constraints when we originally collected 12327 // the getelementptrs. 12328 SmallVector<Value *, 16> Bundle(Candidates.size()); 12329 auto BundleIndex = 0u; 12330 for (auto *V : Candidates) { 12331 auto *GEP = cast<GetElementPtrInst>(V); 12332 auto *GEPIdx = GEP->idx_begin()->get(); 12333 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 12334 Bundle[BundleIndex++] = GEPIdx; 12335 } 12336 12337 // Try and vectorize the indices. We are currently only interested in 12338 // gather-like cases of the form: 12339 // 12340 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 12341 // 12342 // where the loads of "a", the loads of "b", and the subtractions can be 12343 // performed in parallel. It's likely that detecting this pattern in a 12344 // bottom-up phase will be simpler and less costly than building a 12345 // full-blown top-down phase beginning at the consecutive loads. 12346 Changed |= tryToVectorizeList(Bundle, R); 12347 } 12348 } 12349 return Changed; 12350 } 12351 12352 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 12353 bool Changed = false; 12354 // Sort by type, base pointers and values operand. Value operands must be 12355 // compatible (have the same opcode, same parent), otherwise it is 12356 // definitely not profitable to try to vectorize them. 12357 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 12358 if (V->getPointerOperandType()->getTypeID() < 12359 V2->getPointerOperandType()->getTypeID()) 12360 return true; 12361 if (V->getPointerOperandType()->getTypeID() > 12362 V2->getPointerOperandType()->getTypeID()) 12363 return false; 12364 // UndefValues are compatible with all other values. 12365 if (isa<UndefValue>(V->getValueOperand()) || 12366 isa<UndefValue>(V2->getValueOperand())) 12367 return false; 12368 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 12369 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12370 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 12371 DT->getNode(I1->getParent()); 12372 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 12373 DT->getNode(I2->getParent()); 12374 assert(NodeI1 && "Should only process reachable instructions"); 12375 assert(NodeI2 && "Should only process reachable instructions"); 12376 assert((NodeI1 == NodeI2) == 12377 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12378 "Different nodes should have different DFS numbers"); 12379 if (NodeI1 != NodeI2) 12380 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12381 InstructionsState S = getSameOpcode({I1, I2}); 12382 if (S.getOpcode()) 12383 return false; 12384 return I1->getOpcode() < I2->getOpcode(); 12385 } 12386 if (isa<Constant>(V->getValueOperand()) && 12387 isa<Constant>(V2->getValueOperand())) 12388 return false; 12389 return V->getValueOperand()->getValueID() < 12390 V2->getValueOperand()->getValueID(); 12391 }; 12392 12393 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 12394 if (V1 == V2) 12395 return true; 12396 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 12397 return false; 12398 // Undefs are compatible with any other value. 12399 if (isa<UndefValue>(V1->getValueOperand()) || 12400 isa<UndefValue>(V2->getValueOperand())) 12401 return true; 12402 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 12403 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12404 if (I1->getParent() != I2->getParent()) 12405 return false; 12406 InstructionsState S = getSameOpcode({I1, I2}); 12407 return S.getOpcode() > 0; 12408 } 12409 if (isa<Constant>(V1->getValueOperand()) && 12410 isa<Constant>(V2->getValueOperand())) 12411 return true; 12412 return V1->getValueOperand()->getValueID() == 12413 V2->getValueOperand()->getValueID(); 12414 }; 12415 auto Limit = [&R, this](StoreInst *SI) { 12416 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 12417 return R.getMinVF(EltSize); 12418 }; 12419 12420 // Attempt to sort and vectorize each of the store-groups. 12421 for (auto &Pair : Stores) { 12422 if (Pair.second.size() < 2) 12423 continue; 12424 12425 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 12426 << Pair.second.size() << ".\n"); 12427 12428 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 12429 continue; 12430 12431 Changed |= tryToVectorizeSequence<StoreInst>( 12432 Pair.second, Limit, StoreSorter, AreCompatibleStores, 12433 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 12434 return vectorizeStores(Candidates, R); 12435 }, 12436 /*LimitForRegisterSize=*/false); 12437 } 12438 return Changed; 12439 } 12440 12441 char SLPVectorizer::ID = 0; 12442 12443 static const char lv_name[] = "SLP Vectorizer"; 12444 12445 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 12446 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 12447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 12448 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 12450 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 12451 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 12452 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 12453 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 12454 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 12455 12456 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 12457