xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #ifdef EXPENSIVE_CHECKS
74 #include "llvm/IR/Verifier.h"
75 #endif
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/Local.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 // The maximum depth that the look-ahead score heuristic will explore
168 // when it probing among candidates for vectorization tree roots.
169 // The higher this value, the higher the compilation time overhead but unlike
170 // similar limit for operands ordering this is less frequently used, hence
171 // impact of higher value is less noticeable.
172 static cl::opt<int> RootLookAheadMaxDepth(
173     "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
174     cl::desc("The maximum look-ahead depth for searching best rooting option"));
175 
176 static cl::opt<bool>
177     ViewSLPTree("view-slp-tree", cl::Hidden,
178                 cl::desc("Display the SLP trees with Graphviz"));
179 
180 // Limit the number of alias checks. The limit is chosen so that
181 // it has no negative effect on the llvm benchmarks.
182 static const unsigned AliasedCheckLimit = 10;
183 
184 // Another limit for the alias checks: The maximum distance between load/store
185 // instructions where alias checks are done.
186 // This limit is useful for very large basic blocks.
187 static const unsigned MaxMemDepDistance = 160;
188 
189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
190 /// regions to be handled.
191 static const int MinScheduleRegionSize = 16;
192 
193 /// Predicate for the element types that the SLP vectorizer supports.
194 ///
195 /// The most important thing to filter here are types which are invalid in LLVM
196 /// vectors. We also filter target specific types which have absolutely no
197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
198 /// avoids spending time checking the cost model and realizing that they will
199 /// be inevitably scalarized.
200 static bool isValidElementType(Type *Ty) {
201   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
202          !Ty->isPPC_FP128Ty();
203 }
204 
205 /// \returns True if the value is a constant (but not globals/constant
206 /// expressions).
207 static bool isConstant(Value *V) {
208   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
209 }
210 
211 /// Checks if \p V is one of vector-like instructions, i.e. undef,
212 /// insertelement/extractelement with constant indices for fixed vector type or
213 /// extractvalue instruction.
214 static bool isVectorLikeInstWithConstOps(Value *V) {
215   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
216       !isa<ExtractValueInst, UndefValue>(V))
217     return false;
218   auto *I = dyn_cast<Instruction>(V);
219   if (!I || isa<ExtractValueInst>(I))
220     return true;
221   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
222     return false;
223   if (isa<ExtractElementInst>(I))
224     return isConstant(I->getOperand(1));
225   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
226   return isConstant(I->getOperand(2));
227 }
228 
229 /// \returns true if all of the instructions in \p VL are in the same block or
230 /// false otherwise.
231 static bool allSameBlock(ArrayRef<Value *> VL) {
232   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
233   if (!I0)
234     return false;
235   if (all_of(VL, isVectorLikeInstWithConstOps))
236     return true;
237 
238   BasicBlock *BB = I0->getParent();
239   for (int I = 1, E = VL.size(); I < E; I++) {
240     auto *II = dyn_cast<Instruction>(VL[I]);
241     if (!II)
242       return false;
243 
244     if (BB != II->getParent())
245       return false;
246   }
247   return true;
248 }
249 
250 /// \returns True if all of the values in \p VL are constants (but not
251 /// globals/constant expressions).
252 static bool allConstant(ArrayRef<Value *> VL) {
253   // Constant expressions and globals can't be vectorized like normal integer/FP
254   // constants.
255   return all_of(VL, isConstant);
256 }
257 
258 /// \returns True if all of the values in \p VL are identical or some of them
259 /// are UndefValue.
260 static bool isSplat(ArrayRef<Value *> VL) {
261   Value *FirstNonUndef = nullptr;
262   for (Value *V : VL) {
263     if (isa<UndefValue>(V))
264       continue;
265     if (!FirstNonUndef) {
266       FirstNonUndef = V;
267       continue;
268     }
269     if (V != FirstNonUndef)
270       return false;
271   }
272   return FirstNonUndef != nullptr;
273 }
274 
275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
276 static bool isCommutative(Instruction *I) {
277   if (auto *Cmp = dyn_cast<CmpInst>(I))
278     return Cmp->isCommutative();
279   if (auto *BO = dyn_cast<BinaryOperator>(I))
280     return BO->isCommutative();
281   // TODO: This should check for generic Instruction::isCommutative(), but
282   //       we need to confirm that the caller code correctly handles Intrinsics
283   //       for example (does not have 2 operands).
284   return false;
285 }
286 
287 /// Checks if the given value is actually an undefined constant vector.
288 static bool isUndefVector(const Value *V) {
289   if (isa<UndefValue>(V))
290     return true;
291   auto *C = dyn_cast<Constant>(V);
292   if (!C)
293     return false;
294   if (!C->containsUndefOrPoisonElement())
295     return false;
296   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
297   if (!VecTy)
298     return false;
299   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
300     if (Constant *Elem = C->getAggregateElement(I))
301       if (!isa<UndefValue>(Elem))
302         return false;
303   }
304   return true;
305 }
306 
307 /// Checks if the vector of instructions can be represented as a shuffle, like:
308 /// %x0 = extractelement <4 x i8> %x, i32 0
309 /// %x3 = extractelement <4 x i8> %x, i32 3
310 /// %y1 = extractelement <4 x i8> %y, i32 1
311 /// %y2 = extractelement <4 x i8> %y, i32 2
312 /// %x0x0 = mul i8 %x0, %x0
313 /// %x3x3 = mul i8 %x3, %x3
314 /// %y1y1 = mul i8 %y1, %y1
315 /// %y2y2 = mul i8 %y2, %y2
316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
320 /// ret <4 x i8> %ins4
321 /// can be transformed into:
322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
323 ///                                                         i32 6>
324 /// %2 = mul <4 x i8> %1, %1
325 /// ret <4 x i8> %2
326 /// We convert this initially to something like:
327 /// %x0 = extractelement <4 x i8> %x, i32 0
328 /// %x3 = extractelement <4 x i8> %x, i32 3
329 /// %y1 = extractelement <4 x i8> %y, i32 1
330 /// %y2 = extractelement <4 x i8> %y, i32 2
331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
335 /// %5 = mul <4 x i8> %4, %4
336 /// %6 = extractelement <4 x i8> %5, i32 0
337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
338 /// %7 = extractelement <4 x i8> %5, i32 1
339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
340 /// %8 = extractelement <4 x i8> %5, i32 2
341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
342 /// %9 = extractelement <4 x i8> %5, i32 3
343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
344 /// ret <4 x i8> %ins4
345 /// InstCombiner transforms this into a shuffle and vector mul
346 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
347 /// TODO: Can we split off and reuse the shuffle mask detection from
348 /// TargetTransformInfo::getInstructionThroughput?
349 static Optional<TargetTransformInfo::ShuffleKind>
350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
351   const auto *It =
352       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
353   if (It == VL.end())
354     return None;
355   auto *EI0 = cast<ExtractElementInst>(*It);
356   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
357     return None;
358   unsigned Size =
359       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
360   Value *Vec1 = nullptr;
361   Value *Vec2 = nullptr;
362   enum ShuffleMode { Unknown, Select, Permute };
363   ShuffleMode CommonShuffleMode = Unknown;
364   Mask.assign(VL.size(), UndefMaskElem);
365   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
366     // Undef can be represented as an undef element in a vector.
367     if (isa<UndefValue>(VL[I]))
368       continue;
369     auto *EI = cast<ExtractElementInst>(VL[I]);
370     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
371       return None;
372     auto *Vec = EI->getVectorOperand();
373     // We can extractelement from undef or poison vector.
374     if (isUndefVector(Vec))
375       continue;
376     // All vector operands must have the same number of vector elements.
377     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
378       return None;
379     if (isa<UndefValue>(EI->getIndexOperand()))
380       continue;
381     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
382     if (!Idx)
383       return None;
384     // Undefined behavior if Idx is negative or >= Size.
385     if (Idx->getValue().uge(Size))
386       continue;
387     unsigned IntIdx = Idx->getValue().getZExtValue();
388     Mask[I] = IntIdx;
389     // For correct shuffling we have to have at most 2 different vector operands
390     // in all extractelement instructions.
391     if (!Vec1 || Vec1 == Vec) {
392       Vec1 = Vec;
393     } else if (!Vec2 || Vec2 == Vec) {
394       Vec2 = Vec;
395       Mask[I] += Size;
396     } else {
397       return None;
398     }
399     if (CommonShuffleMode == Permute)
400       continue;
401     // If the extract index is not the same as the operation number, it is a
402     // permutation.
403     if (IntIdx != I) {
404       CommonShuffleMode = Permute;
405       continue;
406     }
407     CommonShuffleMode = Select;
408   }
409   // If we're not crossing lanes in different vectors, consider it as blending.
410   if (CommonShuffleMode == Select && Vec2)
411     return TargetTransformInfo::SK_Select;
412   // If Vec2 was never used, we have a permutation of a single vector, otherwise
413   // we have permutation of 2 vectors.
414   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
415               : TargetTransformInfo::SK_PermuteSingleSrc;
416 }
417 
418 namespace {
419 
420 /// Main data required for vectorization of instructions.
421 struct InstructionsState {
422   /// The very first instruction in the list with the main opcode.
423   Value *OpValue = nullptr;
424 
425   /// The main/alternate instruction.
426   Instruction *MainOp = nullptr;
427   Instruction *AltOp = nullptr;
428 
429   /// The main/alternate opcodes for the list of instructions.
430   unsigned getOpcode() const {
431     return MainOp ? MainOp->getOpcode() : 0;
432   }
433 
434   unsigned getAltOpcode() const {
435     return AltOp ? AltOp->getOpcode() : 0;
436   }
437 
438   /// Some of the instructions in the list have alternate opcodes.
439   bool isAltShuffle() const { return AltOp != MainOp; }
440 
441   bool isOpcodeOrAlt(Instruction *I) const {
442     unsigned CheckedOpcode = I->getOpcode();
443     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
444   }
445 
446   InstructionsState() = delete;
447   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
448       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
449 };
450 
451 } // end anonymous namespace
452 
453 /// Chooses the correct key for scheduling data. If \p Op has the same (or
454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
455 /// OpValue.
456 static Value *isOneOf(const InstructionsState &S, Value *Op) {
457   auto *I = dyn_cast<Instruction>(Op);
458   if (I && S.isOpcodeOrAlt(I))
459     return Op;
460   return S.OpValue;
461 }
462 
463 /// \returns true if \p Opcode is allowed as part of of the main/alternate
464 /// instruction for SLP vectorization.
465 ///
466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
467 /// "shuffled out" lane would result in division by zero.
468 static bool isValidForAlternation(unsigned Opcode) {
469   if (Instruction::isIntDivRem(Opcode))
470     return false;
471 
472   return true;
473 }
474 
475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
476                                        unsigned BaseIndex = 0);
477 
478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
479 /// compatible instructions or constants, or just some other regular values.
480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
481                                 Value *Op1) {
482   return (isConstant(BaseOp0) && isConstant(Op0)) ||
483          (isConstant(BaseOp1) && isConstant(Op1)) ||
484          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
485           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
486          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
487          getSameOpcode({BaseOp1, Op1}).getOpcode();
488 }
489 
490 /// \returns analysis of the Instructions in \p VL described in
491 /// InstructionsState, the Opcode that we suppose the whole list
492 /// could be vectorized even if its structure is diverse.
493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
494                                        unsigned BaseIndex) {
495   // Make sure these are all Instructions.
496   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
497     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
498 
499   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
500   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
501   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
502   CmpInst::Predicate BasePred =
503       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
504               : CmpInst::BAD_ICMP_PREDICATE;
505   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
506   unsigned AltOpcode = Opcode;
507   unsigned AltIndex = BaseIndex;
508 
509   // Check for one alternate opcode from another BinaryOperator.
510   // TODO - generalize to support all operators (types, calls etc.).
511   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
512     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
513     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
514       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
515         continue;
516       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
517           isValidForAlternation(Opcode)) {
518         AltOpcode = InstOpcode;
519         AltIndex = Cnt;
520         continue;
521       }
522     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
523       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
524       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
525       if (Ty0 == Ty1) {
526         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
527           continue;
528         if (Opcode == AltOpcode) {
529           assert(isValidForAlternation(Opcode) &&
530                  isValidForAlternation(InstOpcode) &&
531                  "Cast isn't safe for alternation, logic needs to be updated!");
532           AltOpcode = InstOpcode;
533           AltIndex = Cnt;
534           continue;
535         }
536       }
537     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
538       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
539       auto *Inst = cast<Instruction>(VL[Cnt]);
540       Type *Ty0 = BaseInst->getOperand(0)->getType();
541       Type *Ty1 = Inst->getOperand(0)->getType();
542       if (Ty0 == Ty1) {
543         Value *BaseOp0 = BaseInst->getOperand(0);
544         Value *BaseOp1 = BaseInst->getOperand(1);
545         Value *Op0 = Inst->getOperand(0);
546         Value *Op1 = Inst->getOperand(1);
547         CmpInst::Predicate CurrentPred =
548             cast<CmpInst>(VL[Cnt])->getPredicate();
549         CmpInst::Predicate SwappedCurrentPred =
550             CmpInst::getSwappedPredicate(CurrentPred);
551         // Check for compatible operands. If the corresponding operands are not
552         // compatible - need to perform alternate vectorization.
553         if (InstOpcode == Opcode) {
554           if (BasePred == CurrentPred &&
555               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
556             continue;
557           if (BasePred == SwappedCurrentPred &&
558               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
559             continue;
560           if (E == 2 &&
561               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
562             continue;
563           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
564           CmpInst::Predicate AltPred = AltInst->getPredicate();
565           Value *AltOp0 = AltInst->getOperand(0);
566           Value *AltOp1 = AltInst->getOperand(1);
567           // Check if operands are compatible with alternate operands.
568           if (AltPred == CurrentPred &&
569               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
570             continue;
571           if (AltPred == SwappedCurrentPred &&
572               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
573             continue;
574         }
575         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
576           assert(isValidForAlternation(Opcode) &&
577                  isValidForAlternation(InstOpcode) &&
578                  "Cast isn't safe for alternation, logic needs to be updated!");
579           AltIndex = Cnt;
580           continue;
581         }
582         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
583         CmpInst::Predicate AltPred = AltInst->getPredicate();
584         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
585             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
586           continue;
587       }
588     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
589       continue;
590     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
591   }
592 
593   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
594                            cast<Instruction>(VL[AltIndex]));
595 }
596 
597 /// \returns true if all of the values in \p VL have the same type or false
598 /// otherwise.
599 static bool allSameType(ArrayRef<Value *> VL) {
600   Type *Ty = VL[0]->getType();
601   for (int i = 1, e = VL.size(); i < e; i++)
602     if (VL[i]->getType() != Ty)
603       return false;
604 
605   return true;
606 }
607 
608 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
609 static Optional<unsigned> getExtractIndex(Instruction *E) {
610   unsigned Opcode = E->getOpcode();
611   assert((Opcode == Instruction::ExtractElement ||
612           Opcode == Instruction::ExtractValue) &&
613          "Expected extractelement or extractvalue instruction.");
614   if (Opcode == Instruction::ExtractElement) {
615     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
616     if (!CI)
617       return None;
618     return CI->getZExtValue();
619   }
620   ExtractValueInst *EI = cast<ExtractValueInst>(E);
621   if (EI->getNumIndices() != 1)
622     return None;
623   return *EI->idx_begin();
624 }
625 
626 /// \returns True if in-tree use also needs extract. This refers to
627 /// possible scalar operand in vectorized instruction.
628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
629                                     TargetLibraryInfo *TLI) {
630   unsigned Opcode = UserInst->getOpcode();
631   switch (Opcode) {
632   case Instruction::Load: {
633     LoadInst *LI = cast<LoadInst>(UserInst);
634     return (LI->getPointerOperand() == Scalar);
635   }
636   case Instruction::Store: {
637     StoreInst *SI = cast<StoreInst>(UserInst);
638     return (SI->getPointerOperand() == Scalar);
639   }
640   case Instruction::Call: {
641     CallInst *CI = cast<CallInst>(UserInst);
642     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
643     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
644       if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
645         return (CI->getArgOperand(i) == Scalar);
646     }
647     LLVM_FALLTHROUGH;
648   }
649   default:
650     return false;
651   }
652 }
653 
654 /// \returns the AA location that is being access by the instruction.
655 static MemoryLocation getLocation(Instruction *I) {
656   if (StoreInst *SI = dyn_cast<StoreInst>(I))
657     return MemoryLocation::get(SI);
658   if (LoadInst *LI = dyn_cast<LoadInst>(I))
659     return MemoryLocation::get(LI);
660   return MemoryLocation();
661 }
662 
663 /// \returns True if the instruction is not a volatile or atomic load/store.
664 static bool isSimple(Instruction *I) {
665   if (LoadInst *LI = dyn_cast<LoadInst>(I))
666     return LI->isSimple();
667   if (StoreInst *SI = dyn_cast<StoreInst>(I))
668     return SI->isSimple();
669   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
670     return !MI->isVolatile();
671   return true;
672 }
673 
674 /// Shuffles \p Mask in accordance with the given \p SubMask.
675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
676   if (SubMask.empty())
677     return;
678   if (Mask.empty()) {
679     Mask.append(SubMask.begin(), SubMask.end());
680     return;
681   }
682   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
683   int TermValue = std::min(Mask.size(), SubMask.size());
684   for (int I = 0, E = SubMask.size(); I < E; ++I) {
685     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
686         Mask[SubMask[I]] >= TermValue)
687       continue;
688     NewMask[I] = Mask[SubMask[I]];
689   }
690   Mask.swap(NewMask);
691 }
692 
693 /// Order may have elements assigned special value (size) which is out of
694 /// bounds. Such indices only appear on places which correspond to undef values
695 /// (see canReuseExtract for details) and used in order to avoid undef values
696 /// have effect on operands ordering.
697 /// The first loop below simply finds all unused indices and then the next loop
698 /// nest assigns these indices for undef values positions.
699 /// As an example below Order has two undef positions and they have assigned
700 /// values 3 and 7 respectively:
701 /// before:  6 9 5 4 9 2 1 0
702 /// after:   6 3 5 4 7 2 1 0
703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
704   const unsigned Sz = Order.size();
705   SmallBitVector UnusedIndices(Sz, /*t=*/true);
706   SmallBitVector MaskedIndices(Sz);
707   for (unsigned I = 0; I < Sz; ++I) {
708     if (Order[I] < Sz)
709       UnusedIndices.reset(Order[I]);
710     else
711       MaskedIndices.set(I);
712   }
713   if (MaskedIndices.none())
714     return;
715   assert(UnusedIndices.count() == MaskedIndices.count() &&
716          "Non-synced masked/available indices.");
717   int Idx = UnusedIndices.find_first();
718   int MIdx = MaskedIndices.find_first();
719   while (MIdx >= 0) {
720     assert(Idx >= 0 && "Indices must be synced.");
721     Order[MIdx] = Idx;
722     Idx = UnusedIndices.find_next(Idx);
723     MIdx = MaskedIndices.find_next(MIdx);
724   }
725 }
726 
727 namespace llvm {
728 
729 static void inversePermutation(ArrayRef<unsigned> Indices,
730                                SmallVectorImpl<int> &Mask) {
731   Mask.clear();
732   const unsigned E = Indices.size();
733   Mask.resize(E, UndefMaskElem);
734   for (unsigned I = 0; I < E; ++I)
735     Mask[Indices[I]] = I;
736 }
737 
738 /// \returns inserting index of InsertElement or InsertValue instruction,
739 /// using Offset as base offset for index.
740 static Optional<unsigned> getInsertIndex(const Value *InsertInst,
741                                          unsigned Offset = 0) {
742   int Index = Offset;
743   if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
744     if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
745       auto *VT = cast<FixedVectorType>(IE->getType());
746       if (CI->getValue().uge(VT->getNumElements()))
747         return None;
748       Index *= VT->getNumElements();
749       Index += CI->getZExtValue();
750       return Index;
751     }
752     return None;
753   }
754 
755   const auto *IV = cast<InsertValueInst>(InsertInst);
756   Type *CurrentType = IV->getType();
757   for (unsigned I : IV->indices()) {
758     if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
759       Index *= ST->getNumElements();
760       CurrentType = ST->getElementType(I);
761     } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
762       Index *= AT->getNumElements();
763       CurrentType = AT->getElementType();
764     } else {
765       return None;
766     }
767     Index += I;
768   }
769   return Index;
770 }
771 
772 /// Reorders the list of scalars in accordance with the given \p Mask.
773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
774                            ArrayRef<int> Mask) {
775   assert(!Mask.empty() && "Expected non-empty mask.");
776   SmallVector<Value *> Prev(Scalars.size(),
777                             UndefValue::get(Scalars.front()->getType()));
778   Prev.swap(Scalars);
779   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
780     if (Mask[I] != UndefMaskElem)
781       Scalars[Mask[I]] = Prev[I];
782 }
783 
784 /// Checks if the provided value does not require scheduling. It does not
785 /// require scheduling if this is not an instruction or it is an instruction
786 /// that does not read/write memory and all operands are either not instructions
787 /// or phi nodes or instructions from different blocks.
788 static bool areAllOperandsNonInsts(Value *V) {
789   auto *I = dyn_cast<Instruction>(V);
790   if (!I)
791     return true;
792   return !mayHaveNonDefUseDependency(*I) &&
793     all_of(I->operands(), [I](Value *V) {
794       auto *IO = dyn_cast<Instruction>(V);
795       if (!IO)
796         return true;
797       return isa<PHINode>(IO) || IO->getParent() != I->getParent();
798     });
799 }
800 
801 /// Checks if the provided value does not require scheduling. It does not
802 /// require scheduling if this is not an instruction or it is an instruction
803 /// that does not read/write memory and all users are phi nodes or instructions
804 /// from the different blocks.
805 static bool isUsedOutsideBlock(Value *V) {
806   auto *I = dyn_cast<Instruction>(V);
807   if (!I)
808     return true;
809   // Limits the number of uses to save compile time.
810   constexpr int UsesLimit = 8;
811   return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
812          all_of(I->users(), [I](User *U) {
813            auto *IU = dyn_cast<Instruction>(U);
814            if (!IU)
815              return true;
816            return IU->getParent() != I->getParent() || isa<PHINode>(IU);
817          });
818 }
819 
820 /// Checks if the specified value does not require scheduling. It does not
821 /// require scheduling if all operands and all users do not need to be scheduled
822 /// in the current basic block.
823 static bool doesNotNeedToBeScheduled(Value *V) {
824   return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
825 }
826 
827 /// Checks if the specified array of instructions does not require scheduling.
828 /// It is so if all either instructions have operands that do not require
829 /// scheduling or their users do not require scheduling since they are phis or
830 /// in other basic blocks.
831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
832   return !VL.empty() &&
833          (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
834 }
835 
836 namespace slpvectorizer {
837 
838 /// Bottom Up SLP Vectorizer.
839 class BoUpSLP {
840   struct TreeEntry;
841   struct ScheduleData;
842 
843 public:
844   using ValueList = SmallVector<Value *, 8>;
845   using InstrList = SmallVector<Instruction *, 16>;
846   using ValueSet = SmallPtrSet<Value *, 16>;
847   using StoreList = SmallVector<StoreInst *, 8>;
848   using ExtraValueToDebugLocsMap =
849       MapVector<Value *, SmallVector<Instruction *, 2>>;
850   using OrdersType = SmallVector<unsigned, 4>;
851 
852   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
853           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
854           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
855           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
856       : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
857         DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
858     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
859     // Use the vector register size specified by the target unless overridden
860     // by a command-line option.
861     // TODO: It would be better to limit the vectorization factor based on
862     //       data type rather than just register size. For example, x86 AVX has
863     //       256-bit registers, but it does not support integer operations
864     //       at that width (that requires AVX2).
865     if (MaxVectorRegSizeOption.getNumOccurrences())
866       MaxVecRegSize = MaxVectorRegSizeOption;
867     else
868       MaxVecRegSize =
869           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
870               .getFixedSize();
871 
872     if (MinVectorRegSizeOption.getNumOccurrences())
873       MinVecRegSize = MinVectorRegSizeOption;
874     else
875       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
876   }
877 
878   /// Vectorize the tree that starts with the elements in \p VL.
879   /// Returns the vectorized root.
880   Value *vectorizeTree();
881 
882   /// Vectorize the tree but with the list of externally used values \p
883   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
884   /// generated extractvalue instructions.
885   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
886 
887   /// \returns the cost incurred by unwanted spills and fills, caused by
888   /// holding live values over call sites.
889   InstructionCost getSpillCost() const;
890 
891   /// \returns the vectorization cost of the subtree that starts at \p VL.
892   /// A negative number means that this is profitable.
893   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
894 
895   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
896   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
897   void buildTree(ArrayRef<Value *> Roots,
898                  const SmallDenseSet<Value *> &UserIgnoreLst);
899 
900   /// Construct a vectorizable tree that starts at \p Roots.
901   void buildTree(ArrayRef<Value *> Roots);
902 
903   /// Builds external uses of the vectorized scalars, i.e. the list of
904   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
905   /// ExternallyUsedValues contains additional list of external uses to handle
906   /// vectorization of reductions.
907   void
908   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
909 
910   /// Clear the internal data structures that are created by 'buildTree'.
911   void deleteTree() {
912     VectorizableTree.clear();
913     ScalarToTreeEntry.clear();
914     MustGather.clear();
915     ExternalUses.clear();
916     for (auto &Iter : BlocksSchedules) {
917       BlockScheduling *BS = Iter.second.get();
918       BS->clear();
919     }
920     MinBWs.clear();
921     InstrElementSize.clear();
922     UserIgnoreList = nullptr;
923   }
924 
925   unsigned getTreeSize() const { return VectorizableTree.size(); }
926 
927   /// Perform LICM and CSE on the newly generated gather sequences.
928   void optimizeGatherSequence();
929 
930   /// Checks if the specified gather tree entry \p TE can be represented as a
931   /// shuffled vector entry + (possibly) permutation with other gathers. It
932   /// implements the checks only for possibly ordered scalars (Loads,
933   /// ExtractElement, ExtractValue), which can be part of the graph.
934   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
935 
936   /// Sort loads into increasing pointers offsets to allow greater clustering.
937   Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
938 
939   /// Gets reordering data for the given tree entry. If the entry is vectorized
940   /// - just return ReorderIndices, otherwise check if the scalars can be
941   /// reordered and return the most optimal order.
942   /// \param TopToBottom If true, include the order of vectorized stores and
943   /// insertelement nodes, otherwise skip them.
944   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
945 
946   /// Reorders the current graph to the most profitable order starting from the
947   /// root node to the leaf nodes. The best order is chosen only from the nodes
948   /// of the same size (vectorization factor). Smaller nodes are considered
949   /// parts of subgraph with smaller VF and they are reordered independently. We
950   /// can make it because we still need to extend smaller nodes to the wider VF
951   /// and we can merge reordering shuffles with the widening shuffles.
952   void reorderTopToBottom();
953 
954   /// Reorders the current graph to the most profitable order starting from
955   /// leaves to the root. It allows to rotate small subgraphs and reduce the
956   /// number of reshuffles if the leaf nodes use the same order. In this case we
957   /// can merge the orders and just shuffle user node instead of shuffling its
958   /// operands. Plus, even the leaf nodes have different orders, it allows to
959   /// sink reordering in the graph closer to the root node and merge it later
960   /// during analysis.
961   void reorderBottomToTop(bool IgnoreReorder = false);
962 
963   /// \return The vector element size in bits to use when vectorizing the
964   /// expression tree ending at \p V. If V is a store, the size is the width of
965   /// the stored value. Otherwise, the size is the width of the largest loaded
966   /// value reaching V. This method is used by the vectorizer to calculate
967   /// vectorization factors.
968   unsigned getVectorElementSize(Value *V);
969 
970   /// Compute the minimum type sizes required to represent the entries in a
971   /// vectorizable tree.
972   void computeMinimumValueSizes();
973 
974   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
975   unsigned getMaxVecRegSize() const {
976     return MaxVecRegSize;
977   }
978 
979   // \returns minimum vector register size as set by cl::opt.
980   unsigned getMinVecRegSize() const {
981     return MinVecRegSize;
982   }
983 
984   unsigned getMinVF(unsigned Sz) const {
985     return std::max(2U, getMinVecRegSize() / Sz);
986   }
987 
988   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
989     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
990       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
991     return MaxVF ? MaxVF : UINT_MAX;
992   }
993 
994   /// Check if homogeneous aggregate is isomorphic to some VectorType.
995   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
996   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
997   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
998   ///
999   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1000   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
1001 
1002   /// \returns True if the VectorizableTree is both tiny and not fully
1003   /// vectorizable. We do not vectorize such trees.
1004   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1005 
1006   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1007   /// can be load combined in the backend. Load combining may not be allowed in
1008   /// the IR optimizer, so we do not want to alter the pattern. For example,
1009   /// partially transforming a scalar bswap() pattern into vector code is
1010   /// effectively impossible for the backend to undo.
1011   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1012   ///       may not be necessary.
1013   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1014 
1015   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1016   /// can be load combined in the backend. Load combining may not be allowed in
1017   /// the IR optimizer, so we do not want to alter the pattern. For example,
1018   /// partially transforming a scalar bswap() pattern into vector code is
1019   /// effectively impossible for the backend to undo.
1020   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1021   ///       may not be necessary.
1022   bool isLoadCombineCandidate() const;
1023 
1024   OptimizationRemarkEmitter *getORE() { return ORE; }
1025 
1026   /// This structure holds any data we need about the edges being traversed
1027   /// during buildTree_rec(). We keep track of:
1028   /// (i) the user TreeEntry index, and
1029   /// (ii) the index of the edge.
1030   struct EdgeInfo {
1031     EdgeInfo() = default;
1032     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1033         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1034     /// The user TreeEntry.
1035     TreeEntry *UserTE = nullptr;
1036     /// The operand index of the use.
1037     unsigned EdgeIdx = UINT_MAX;
1038 #ifndef NDEBUG
1039     friend inline raw_ostream &operator<<(raw_ostream &OS,
1040                                           const BoUpSLP::EdgeInfo &EI) {
1041       EI.dump(OS);
1042       return OS;
1043     }
1044     /// Debug print.
1045     void dump(raw_ostream &OS) const {
1046       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1047          << " EdgeIdx:" << EdgeIdx << "}";
1048     }
1049     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1050 #endif
1051   };
1052 
1053   /// A helper class used for scoring candidates for two consecutive lanes.
1054   class LookAheadHeuristics {
1055     const DataLayout &DL;
1056     ScalarEvolution &SE;
1057     const BoUpSLP &R;
1058     int NumLanes; // Total number of lanes (aka vectorization factor).
1059     int MaxLevel; // The maximum recursion depth for accumulating score.
1060 
1061   public:
1062     LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE,
1063                         const BoUpSLP &R, int NumLanes, int MaxLevel)
1064         : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {}
1065 
1066     // The hard-coded scores listed here are not very important, though it shall
1067     // be higher for better matches to improve the resulting cost. When
1068     // computing the scores of matching one sub-tree with another, we are
1069     // basically counting the number of values that are matching. So even if all
1070     // scores are set to 1, we would still get a decent matching result.
1071     // However, sometimes we have to break ties. For example we may have to
1072     // choose between matching loads vs matching opcodes. This is what these
1073     // scores are helping us with: they provide the order of preference. Also,
1074     // this is important if the scalar is externally used or used in another
1075     // tree entry node in the different lane.
1076 
1077     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1078     static const int ScoreConsecutiveLoads = 4;
1079     /// The same load multiple times. This should have a better score than
1080     /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1081     /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1082     /// a vector load and 1.0 for a broadcast.
1083     static const int ScoreSplatLoads = 3;
1084     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1085     static const int ScoreReversedLoads = 3;
1086     /// ExtractElementInst from same vector and consecutive indexes.
1087     static const int ScoreConsecutiveExtracts = 4;
1088     /// ExtractElementInst from same vector and reversed indices.
1089     static const int ScoreReversedExtracts = 3;
1090     /// Constants.
1091     static const int ScoreConstants = 2;
1092     /// Instructions with the same opcode.
1093     static const int ScoreSameOpcode = 2;
1094     /// Instructions with alt opcodes (e.g, add + sub).
1095     static const int ScoreAltOpcodes = 1;
1096     /// Identical instructions (a.k.a. splat or broadcast).
1097     static const int ScoreSplat = 1;
1098     /// Matching with an undef is preferable to failing.
1099     static const int ScoreUndef = 1;
1100     /// Score for failing to find a decent match.
1101     static const int ScoreFail = 0;
1102     /// Score if all users are vectorized.
1103     static const int ScoreAllUserVectorized = 1;
1104 
1105     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1106     /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1107     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1108     /// MainAltOps.
1109     int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1110                         ArrayRef<Value *> MainAltOps) const {
1111       if (V1 == V2) {
1112         if (isa<LoadInst>(V1)) {
1113           // Retruns true if the users of V1 and V2 won't need to be extracted.
1114           auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1115             // Bail out if we have too many uses to save compilation time.
1116             static constexpr unsigned Limit = 8;
1117             if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1118               return false;
1119 
1120             auto AllUsersVectorized = [U1, U2, this](Value *V) {
1121               return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1122                 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1123               });
1124             };
1125             return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1126           };
1127           // A broadcast of a load can be cheaper on some targets.
1128           if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1129                                           ElementCount::getFixed(NumLanes)) &&
1130               ((int)V1->getNumUses() == NumLanes ||
1131                AllUsersAreInternal(V1, V2)))
1132             return LookAheadHeuristics::ScoreSplatLoads;
1133         }
1134         return LookAheadHeuristics::ScoreSplat;
1135       }
1136 
1137       auto *LI1 = dyn_cast<LoadInst>(V1);
1138       auto *LI2 = dyn_cast<LoadInst>(V2);
1139       if (LI1 && LI2) {
1140         if (LI1->getParent() != LI2->getParent())
1141           return LookAheadHeuristics::ScoreFail;
1142 
1143         Optional<int> Dist = getPointersDiff(
1144             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1145             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1146         if (!Dist || *Dist == 0)
1147           return LookAheadHeuristics::ScoreFail;
1148         // The distance is too large - still may be profitable to use masked
1149         // loads/gathers.
1150         if (std::abs(*Dist) > NumLanes / 2)
1151           return LookAheadHeuristics::ScoreAltOpcodes;
1152         // This still will detect consecutive loads, but we might have "holes"
1153         // in some cases. It is ok for non-power-2 vectorization and may produce
1154         // better results. It should not affect current vectorization.
1155         return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1156                            : LookAheadHeuristics::ScoreReversedLoads;
1157       }
1158 
1159       auto *C1 = dyn_cast<Constant>(V1);
1160       auto *C2 = dyn_cast<Constant>(V2);
1161       if (C1 && C2)
1162         return LookAheadHeuristics::ScoreConstants;
1163 
1164       // Extracts from consecutive indexes of the same vector better score as
1165       // the extracts could be optimized away.
1166       Value *EV1;
1167       ConstantInt *Ex1Idx;
1168       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1169         // Undefs are always profitable for extractelements.
1170         if (isa<UndefValue>(V2))
1171           return LookAheadHeuristics::ScoreConsecutiveExtracts;
1172         Value *EV2 = nullptr;
1173         ConstantInt *Ex2Idx = nullptr;
1174         if (match(V2,
1175                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1176                                                          m_Undef())))) {
1177           // Undefs are always profitable for extractelements.
1178           if (!Ex2Idx)
1179             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1180           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1181             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1182           if (EV2 == EV1) {
1183             int Idx1 = Ex1Idx->getZExtValue();
1184             int Idx2 = Ex2Idx->getZExtValue();
1185             int Dist = Idx2 - Idx1;
1186             // The distance is too large - still may be profitable to use
1187             // shuffles.
1188             if (std::abs(Dist) == 0)
1189               return LookAheadHeuristics::ScoreSplat;
1190             if (std::abs(Dist) > NumLanes / 2)
1191               return LookAheadHeuristics::ScoreSameOpcode;
1192             return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1193                               : LookAheadHeuristics::ScoreReversedExtracts;
1194           }
1195           return LookAheadHeuristics::ScoreAltOpcodes;
1196         }
1197         return LookAheadHeuristics::ScoreFail;
1198       }
1199 
1200       auto *I1 = dyn_cast<Instruction>(V1);
1201       auto *I2 = dyn_cast<Instruction>(V2);
1202       if (I1 && I2) {
1203         if (I1->getParent() != I2->getParent())
1204           return LookAheadHeuristics::ScoreFail;
1205         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1206         Ops.push_back(I1);
1207         Ops.push_back(I2);
1208         InstructionsState S = getSameOpcode(Ops);
1209         // Note: Only consider instructions with <= 2 operands to avoid
1210         // complexity explosion.
1211         if (S.getOpcode() &&
1212             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1213              !S.isAltShuffle()) &&
1214             all_of(Ops, [&S](Value *V) {
1215               return cast<Instruction>(V)->getNumOperands() ==
1216                      S.MainOp->getNumOperands();
1217             }))
1218           return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1219                                   : LookAheadHeuristics::ScoreSameOpcode;
1220       }
1221 
1222       if (isa<UndefValue>(V2))
1223         return LookAheadHeuristics::ScoreUndef;
1224 
1225       return LookAheadHeuristics::ScoreFail;
1226     }
1227 
1228     /// Go through the operands of \p LHS and \p RHS recursively until
1229     /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1230     /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1231     /// of \p U1 and \p U2), except at the beginning of the recursion where
1232     /// these are set to nullptr.
1233     ///
1234     /// For example:
1235     /// \verbatim
1236     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1237     ///     \ /         \ /         \ /        \ /
1238     ///      +           +           +          +
1239     ///     G1          G2          G3         G4
1240     /// \endverbatim
1241     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1242     /// each level recursively, accumulating the score. It starts from matching
1243     /// the additions at level 0, then moves on to the loads (level 1). The
1244     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1245     /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1246     /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1247     /// Please note that the order of the operands does not matter, as we
1248     /// evaluate the score of all profitable combinations of operands. In
1249     /// other words the score of G1 and G4 is the same as G1 and G2. This
1250     /// heuristic is based on ideas described in:
1251     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1252     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1253     ///   Luís F. W. Góes
1254     int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1255                            Instruction *U2, int CurrLevel,
1256                            ArrayRef<Value *> MainAltOps) const {
1257 
1258       // Get the shallow score of V1 and V2.
1259       int ShallowScoreAtThisLevel =
1260           getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1261 
1262       // If reached MaxLevel,
1263       //  or if V1 and V2 are not instructions,
1264       //  or if they are SPLAT,
1265       //  or if they are not consecutive,
1266       //  or if profitable to vectorize loads or extractelements, early return
1267       //  the current cost.
1268       auto *I1 = dyn_cast<Instruction>(LHS);
1269       auto *I2 = dyn_cast<Instruction>(RHS);
1270       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1271           ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1272           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1273             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1274             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1275            ShallowScoreAtThisLevel))
1276         return ShallowScoreAtThisLevel;
1277       assert(I1 && I2 && "Should have early exited.");
1278 
1279       // Contains the I2 operand indexes that got matched with I1 operands.
1280       SmallSet<unsigned, 4> Op2Used;
1281 
1282       // Recursion towards the operands of I1 and I2. We are trying all possible
1283       // operand pairs, and keeping track of the best score.
1284       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1285            OpIdx1 != NumOperands1; ++OpIdx1) {
1286         // Try to pair op1I with the best operand of I2.
1287         int MaxTmpScore = 0;
1288         unsigned MaxOpIdx2 = 0;
1289         bool FoundBest = false;
1290         // If I2 is commutative try all combinations.
1291         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1292         unsigned ToIdx = isCommutative(I2)
1293                              ? I2->getNumOperands()
1294                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1295         assert(FromIdx <= ToIdx && "Bad index");
1296         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1297           // Skip operands already paired with OpIdx1.
1298           if (Op2Used.count(OpIdx2))
1299             continue;
1300           // Recursively calculate the cost at each level
1301           int TmpScore =
1302               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1303                                  I1, I2, CurrLevel + 1, None);
1304           // Look for the best score.
1305           if (TmpScore > LookAheadHeuristics::ScoreFail &&
1306               TmpScore > MaxTmpScore) {
1307             MaxTmpScore = TmpScore;
1308             MaxOpIdx2 = OpIdx2;
1309             FoundBest = true;
1310           }
1311         }
1312         if (FoundBest) {
1313           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1314           Op2Used.insert(MaxOpIdx2);
1315           ShallowScoreAtThisLevel += MaxTmpScore;
1316         }
1317       }
1318       return ShallowScoreAtThisLevel;
1319     }
1320   };
1321   /// A helper data structure to hold the operands of a vector of instructions.
1322   /// This supports a fixed vector length for all operand vectors.
1323   class VLOperands {
1324     /// For each operand we need (i) the value, and (ii) the opcode that it
1325     /// would be attached to if the expression was in a left-linearized form.
1326     /// This is required to avoid illegal operand reordering.
1327     /// For example:
1328     /// \verbatim
1329     ///                         0 Op1
1330     ///                         |/
1331     /// Op1 Op2   Linearized    + Op2
1332     ///   \ /     ---------->   |/
1333     ///    -                    -
1334     ///
1335     /// Op1 - Op2            (0 + Op1) - Op2
1336     /// \endverbatim
1337     ///
1338     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1339     ///
1340     /// Another way to think of this is to track all the operations across the
1341     /// path from the operand all the way to the root of the tree and to
1342     /// calculate the operation that corresponds to this path. For example, the
1343     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1344     /// corresponding operation is a '-' (which matches the one in the
1345     /// linearized tree, as shown above).
1346     ///
1347     /// For lack of a better term, we refer to this operation as Accumulated
1348     /// Path Operation (APO).
1349     struct OperandData {
1350       OperandData() = default;
1351       OperandData(Value *V, bool APO, bool IsUsed)
1352           : V(V), APO(APO), IsUsed(IsUsed) {}
1353       /// The operand value.
1354       Value *V = nullptr;
1355       /// TreeEntries only allow a single opcode, or an alternate sequence of
1356       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1357       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1358       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1359       /// (e.g., Add/Mul)
1360       bool APO = false;
1361       /// Helper data for the reordering function.
1362       bool IsUsed = false;
1363     };
1364 
1365     /// During operand reordering, we are trying to select the operand at lane
1366     /// that matches best with the operand at the neighboring lane. Our
1367     /// selection is based on the type of value we are looking for. For example,
1368     /// if the neighboring lane has a load, we need to look for a load that is
1369     /// accessing a consecutive address. These strategies are summarized in the
1370     /// 'ReorderingMode' enumerator.
1371     enum class ReorderingMode {
1372       Load,     ///< Matching loads to consecutive memory addresses
1373       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1374       Constant, ///< Matching constants
1375       Splat,    ///< Matching the same instruction multiple times (broadcast)
1376       Failed,   ///< We failed to create a vectorizable group
1377     };
1378 
1379     using OperandDataVec = SmallVector<OperandData, 2>;
1380 
1381     /// A vector of operand vectors.
1382     SmallVector<OperandDataVec, 4> OpsVec;
1383 
1384     const DataLayout &DL;
1385     ScalarEvolution &SE;
1386     const BoUpSLP &R;
1387 
1388     /// \returns the operand data at \p OpIdx and \p Lane.
1389     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1390       return OpsVec[OpIdx][Lane];
1391     }
1392 
1393     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1394     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1395       return OpsVec[OpIdx][Lane];
1396     }
1397 
1398     /// Clears the used flag for all entries.
1399     void clearUsed() {
1400       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1401            OpIdx != NumOperands; ++OpIdx)
1402         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1403              ++Lane)
1404           OpsVec[OpIdx][Lane].IsUsed = false;
1405     }
1406 
1407     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1408     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1409       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1410     }
1411 
1412     /// \param Lane lane of the operands under analysis.
1413     /// \param OpIdx operand index in \p Lane lane we're looking the best
1414     /// candidate for.
1415     /// \param Idx operand index of the current candidate value.
1416     /// \returns The additional score due to possible broadcasting of the
1417     /// elements in the lane. It is more profitable to have power-of-2 unique
1418     /// elements in the lane, it will be vectorized with higher probability
1419     /// after removing duplicates. Currently the SLP vectorizer supports only
1420     /// vectorization of the power-of-2 number of unique scalars.
1421     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1422       Value *IdxLaneV = getData(Idx, Lane).V;
1423       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1424         return 0;
1425       SmallPtrSet<Value *, 4> Uniques;
1426       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1427         if (Ln == Lane)
1428           continue;
1429         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1430         if (!isa<Instruction>(OpIdxLnV))
1431           return 0;
1432         Uniques.insert(OpIdxLnV);
1433       }
1434       int UniquesCount = Uniques.size();
1435       int UniquesCntWithIdxLaneV =
1436           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1437       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1438       int UniquesCntWithOpIdxLaneV =
1439           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1440       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1441         return 0;
1442       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1443               UniquesCntWithOpIdxLaneV) -
1444              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1445     }
1446 
1447     /// \param Lane lane of the operands under analysis.
1448     /// \param OpIdx operand index in \p Lane lane we're looking the best
1449     /// candidate for.
1450     /// \param Idx operand index of the current candidate value.
1451     /// \returns The additional score for the scalar which users are all
1452     /// vectorized.
1453     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1454       Value *IdxLaneV = getData(Idx, Lane).V;
1455       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1456       // Do not care about number of uses for vector-like instructions
1457       // (extractelement/extractvalue with constant indices), they are extracts
1458       // themselves and already externally used. Vectorization of such
1459       // instructions does not add extra extractelement instruction, just may
1460       // remove it.
1461       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1462           isVectorLikeInstWithConstOps(OpIdxLaneV))
1463         return LookAheadHeuristics::ScoreAllUserVectorized;
1464       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1465       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1466         return 0;
1467       return R.areAllUsersVectorized(IdxLaneI, None)
1468                  ? LookAheadHeuristics::ScoreAllUserVectorized
1469                  : 0;
1470     }
1471 
1472     /// Score scaling factor for fully compatible instructions but with
1473     /// different number of external uses. Allows better selection of the
1474     /// instructions with less external uses.
1475     static const int ScoreScaleFactor = 10;
1476 
1477     /// \Returns the look-ahead score, which tells us how much the sub-trees
1478     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1479     /// score. This helps break ties in an informed way when we cannot decide on
1480     /// the order of the operands by just considering the immediate
1481     /// predecessors.
1482     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1483                           int Lane, unsigned OpIdx, unsigned Idx,
1484                           bool &IsUsed) {
1485       LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(),
1486                                     LookAheadMaxDepth);
1487       // Keep track of the instruction stack as we recurse into the operands
1488       // during the look-ahead score exploration.
1489       int Score =
1490           LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1491                                        /*CurrLevel=*/1, MainAltOps);
1492       if (Score) {
1493         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1494         if (Score <= -SplatScore) {
1495           // Set the minimum score for splat-like sequence to avoid setting
1496           // failed state.
1497           Score = 1;
1498         } else {
1499           Score += SplatScore;
1500           // Scale score to see the difference between different operands
1501           // and similar operands but all vectorized/not all vectorized
1502           // uses. It does not affect actual selection of the best
1503           // compatible operand in general, just allows to select the
1504           // operand with all vectorized uses.
1505           Score *= ScoreScaleFactor;
1506           Score += getExternalUseScore(Lane, OpIdx, Idx);
1507           IsUsed = true;
1508         }
1509       }
1510       return Score;
1511     }
1512 
1513     /// Best defined scores per lanes between the passes. Used to choose the
1514     /// best operand (with the highest score) between the passes.
1515     /// The key - {Operand Index, Lane}.
1516     /// The value - the best score between the passes for the lane and the
1517     /// operand.
1518     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1519         BestScoresPerLanes;
1520 
1521     // Search all operands in Ops[*][Lane] for the one that matches best
1522     // Ops[OpIdx][LastLane] and return its opreand index.
1523     // If no good match can be found, return None.
1524     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1525                                       ArrayRef<ReorderingMode> ReorderingModes,
1526                                       ArrayRef<Value *> MainAltOps) {
1527       unsigned NumOperands = getNumOperands();
1528 
1529       // The operand of the previous lane at OpIdx.
1530       Value *OpLastLane = getData(OpIdx, LastLane).V;
1531 
1532       // Our strategy mode for OpIdx.
1533       ReorderingMode RMode = ReorderingModes[OpIdx];
1534       if (RMode == ReorderingMode::Failed)
1535         return None;
1536 
1537       // The linearized opcode of the operand at OpIdx, Lane.
1538       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1539 
1540       // The best operand index and its score.
1541       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1542       // are using the score to differentiate between the two.
1543       struct BestOpData {
1544         Optional<unsigned> Idx = None;
1545         unsigned Score = 0;
1546       } BestOp;
1547       BestOp.Score =
1548           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1549               .first->second;
1550 
1551       // Track if the operand must be marked as used. If the operand is set to
1552       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1553       // want to reestimate the operands again on the following iterations).
1554       bool IsUsed =
1555           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1556       // Iterate through all unused operands and look for the best.
1557       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1558         // Get the operand at Idx and Lane.
1559         OperandData &OpData = getData(Idx, Lane);
1560         Value *Op = OpData.V;
1561         bool OpAPO = OpData.APO;
1562 
1563         // Skip already selected operands.
1564         if (OpData.IsUsed)
1565           continue;
1566 
1567         // Skip if we are trying to move the operand to a position with a
1568         // different opcode in the linearized tree form. This would break the
1569         // semantics.
1570         if (OpAPO != OpIdxAPO)
1571           continue;
1572 
1573         // Look for an operand that matches the current mode.
1574         switch (RMode) {
1575         case ReorderingMode::Load:
1576         case ReorderingMode::Constant:
1577         case ReorderingMode::Opcode: {
1578           bool LeftToRight = Lane > LastLane;
1579           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1580           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1581           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1582                                         OpIdx, Idx, IsUsed);
1583           if (Score > static_cast<int>(BestOp.Score)) {
1584             BestOp.Idx = Idx;
1585             BestOp.Score = Score;
1586             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1587           }
1588           break;
1589         }
1590         case ReorderingMode::Splat:
1591           if (Op == OpLastLane)
1592             BestOp.Idx = Idx;
1593           break;
1594         case ReorderingMode::Failed:
1595           llvm_unreachable("Not expected Failed reordering mode.");
1596         }
1597       }
1598 
1599       if (BestOp.Idx) {
1600         getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1601         return BestOp.Idx;
1602       }
1603       // If we could not find a good match return None.
1604       return None;
1605     }
1606 
1607     /// Helper for reorderOperandVecs.
1608     /// \returns the lane that we should start reordering from. This is the one
1609     /// which has the least number of operands that can freely move about or
1610     /// less profitable because it already has the most optimal set of operands.
1611     unsigned getBestLaneToStartReordering() const {
1612       unsigned Min = UINT_MAX;
1613       unsigned SameOpNumber = 0;
1614       // std::pair<unsigned, unsigned> is used to implement a simple voting
1615       // algorithm and choose the lane with the least number of operands that
1616       // can freely move about or less profitable because it already has the
1617       // most optimal set of operands. The first unsigned is a counter for
1618       // voting, the second unsigned is the counter of lanes with instructions
1619       // with same/alternate opcodes and same parent basic block.
1620       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1621       // Try to be closer to the original results, if we have multiple lanes
1622       // with same cost. If 2 lanes have the same cost, use the one with the
1623       // lowest index.
1624       for (int I = getNumLanes(); I > 0; --I) {
1625         unsigned Lane = I - 1;
1626         OperandsOrderData NumFreeOpsHash =
1627             getMaxNumOperandsThatCanBeReordered(Lane);
1628         // Compare the number of operands that can move and choose the one with
1629         // the least number.
1630         if (NumFreeOpsHash.NumOfAPOs < Min) {
1631           Min = NumFreeOpsHash.NumOfAPOs;
1632           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1633           HashMap.clear();
1634           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1635         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1636                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1637           // Select the most optimal lane in terms of number of operands that
1638           // should be moved around.
1639           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1640           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1641         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1642                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1643           auto It = HashMap.find(NumFreeOpsHash.Hash);
1644           if (It == HashMap.end())
1645             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1646           else
1647             ++It->second.first;
1648         }
1649       }
1650       // Select the lane with the minimum counter.
1651       unsigned BestLane = 0;
1652       unsigned CntMin = UINT_MAX;
1653       for (const auto &Data : reverse(HashMap)) {
1654         if (Data.second.first < CntMin) {
1655           CntMin = Data.second.first;
1656           BestLane = Data.second.second;
1657         }
1658       }
1659       return BestLane;
1660     }
1661 
1662     /// Data structure that helps to reorder operands.
1663     struct OperandsOrderData {
1664       /// The best number of operands with the same APOs, which can be
1665       /// reordered.
1666       unsigned NumOfAPOs = UINT_MAX;
1667       /// Number of operands with the same/alternate instruction opcode and
1668       /// parent.
1669       unsigned NumOpsWithSameOpcodeParent = 0;
1670       /// Hash for the actual operands ordering.
1671       /// Used to count operands, actually their position id and opcode
1672       /// value. It is used in the voting mechanism to find the lane with the
1673       /// least number of operands that can freely move about or less profitable
1674       /// because it already has the most optimal set of operands. Can be
1675       /// replaced with SmallVector<unsigned> instead but hash code is faster
1676       /// and requires less memory.
1677       unsigned Hash = 0;
1678     };
1679     /// \returns the maximum number of operands that are allowed to be reordered
1680     /// for \p Lane and the number of compatible instructions(with the same
1681     /// parent/opcode). This is used as a heuristic for selecting the first lane
1682     /// to start operand reordering.
1683     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1684       unsigned CntTrue = 0;
1685       unsigned NumOperands = getNumOperands();
1686       // Operands with the same APO can be reordered. We therefore need to count
1687       // how many of them we have for each APO, like this: Cnt[APO] = x.
1688       // Since we only have two APOs, namely true and false, we can avoid using
1689       // a map. Instead we can simply count the number of operands that
1690       // correspond to one of them (in this case the 'true' APO), and calculate
1691       // the other by subtracting it from the total number of operands.
1692       // Operands with the same instruction opcode and parent are more
1693       // profitable since we don't need to move them in many cases, with a high
1694       // probability such lane already can be vectorized effectively.
1695       bool AllUndefs = true;
1696       unsigned NumOpsWithSameOpcodeParent = 0;
1697       Instruction *OpcodeI = nullptr;
1698       BasicBlock *Parent = nullptr;
1699       unsigned Hash = 0;
1700       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1701         const OperandData &OpData = getData(OpIdx, Lane);
1702         if (OpData.APO)
1703           ++CntTrue;
1704         // Use Boyer-Moore majority voting for finding the majority opcode and
1705         // the number of times it occurs.
1706         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1707           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1708               I->getParent() != Parent) {
1709             if (NumOpsWithSameOpcodeParent == 0) {
1710               NumOpsWithSameOpcodeParent = 1;
1711               OpcodeI = I;
1712               Parent = I->getParent();
1713             } else {
1714               --NumOpsWithSameOpcodeParent;
1715             }
1716           } else {
1717             ++NumOpsWithSameOpcodeParent;
1718           }
1719         }
1720         Hash = hash_combine(
1721             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1722         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1723       }
1724       if (AllUndefs)
1725         return {};
1726       OperandsOrderData Data;
1727       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1728       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1729       Data.Hash = Hash;
1730       return Data;
1731     }
1732 
1733     /// Go through the instructions in VL and append their operands.
1734     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1735       assert(!VL.empty() && "Bad VL");
1736       assert((empty() || VL.size() == getNumLanes()) &&
1737              "Expected same number of lanes");
1738       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1739       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1740       OpsVec.resize(NumOperands);
1741       unsigned NumLanes = VL.size();
1742       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1743         OpsVec[OpIdx].resize(NumLanes);
1744         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1745           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1746           // Our tree has just 3 nodes: the root and two operands.
1747           // It is therefore trivial to get the APO. We only need to check the
1748           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1749           // RHS operand. The LHS operand of both add and sub is never attached
1750           // to an inversese operation in the linearized form, therefore its APO
1751           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1752 
1753           // Since operand reordering is performed on groups of commutative
1754           // operations or alternating sequences (e.g., +, -), we can safely
1755           // tell the inverse operations by checking commutativity.
1756           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1757           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1758           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1759                                  APO, false};
1760         }
1761       }
1762     }
1763 
1764     /// \returns the number of operands.
1765     unsigned getNumOperands() const { return OpsVec.size(); }
1766 
1767     /// \returns the number of lanes.
1768     unsigned getNumLanes() const { return OpsVec[0].size(); }
1769 
1770     /// \returns the operand value at \p OpIdx and \p Lane.
1771     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1772       return getData(OpIdx, Lane).V;
1773     }
1774 
1775     /// \returns true if the data structure is empty.
1776     bool empty() const { return OpsVec.empty(); }
1777 
1778     /// Clears the data.
1779     void clear() { OpsVec.clear(); }
1780 
1781     /// \Returns true if there are enough operands identical to \p Op to fill
1782     /// the whole vector.
1783     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1784     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1785       bool OpAPO = getData(OpIdx, Lane).APO;
1786       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1787         if (Ln == Lane)
1788           continue;
1789         // This is set to true if we found a candidate for broadcast at Lane.
1790         bool FoundCandidate = false;
1791         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1792           OperandData &Data = getData(OpI, Ln);
1793           if (Data.APO != OpAPO || Data.IsUsed)
1794             continue;
1795           if (Data.V == Op) {
1796             FoundCandidate = true;
1797             Data.IsUsed = true;
1798             break;
1799           }
1800         }
1801         if (!FoundCandidate)
1802           return false;
1803       }
1804       return true;
1805     }
1806 
1807   public:
1808     /// Initialize with all the operands of the instruction vector \p RootVL.
1809     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1810                ScalarEvolution &SE, const BoUpSLP &R)
1811         : DL(DL), SE(SE), R(R) {
1812       // Append all the operands of RootVL.
1813       appendOperandsOfVL(RootVL);
1814     }
1815 
1816     /// \Returns a value vector with the operands across all lanes for the
1817     /// opearnd at \p OpIdx.
1818     ValueList getVL(unsigned OpIdx) const {
1819       ValueList OpVL(OpsVec[OpIdx].size());
1820       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1821              "Expected same num of lanes across all operands");
1822       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1823         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1824       return OpVL;
1825     }
1826 
1827     // Performs operand reordering for 2 or more operands.
1828     // The original operands are in OrigOps[OpIdx][Lane].
1829     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1830     void reorder() {
1831       unsigned NumOperands = getNumOperands();
1832       unsigned NumLanes = getNumLanes();
1833       // Each operand has its own mode. We are using this mode to help us select
1834       // the instructions for each lane, so that they match best with the ones
1835       // we have selected so far.
1836       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1837 
1838       // This is a greedy single-pass algorithm. We are going over each lane
1839       // once and deciding on the best order right away with no back-tracking.
1840       // However, in order to increase its effectiveness, we start with the lane
1841       // that has operands that can move the least. For example, given the
1842       // following lanes:
1843       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1844       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1845       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1846       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1847       // we will start at Lane 1, since the operands of the subtraction cannot
1848       // be reordered. Then we will visit the rest of the lanes in a circular
1849       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1850 
1851       // Find the first lane that we will start our search from.
1852       unsigned FirstLane = getBestLaneToStartReordering();
1853 
1854       // Initialize the modes.
1855       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1856         Value *OpLane0 = getValue(OpIdx, FirstLane);
1857         // Keep track if we have instructions with all the same opcode on one
1858         // side.
1859         if (isa<LoadInst>(OpLane0))
1860           ReorderingModes[OpIdx] = ReorderingMode::Load;
1861         else if (isa<Instruction>(OpLane0)) {
1862           // Check if OpLane0 should be broadcast.
1863           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1864             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1865           else
1866             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1867         }
1868         else if (isa<Constant>(OpLane0))
1869           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1870         else if (isa<Argument>(OpLane0))
1871           // Our best hope is a Splat. It may save some cost in some cases.
1872           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1873         else
1874           // NOTE: This should be unreachable.
1875           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1876       }
1877 
1878       // Check that we don't have same operands. No need to reorder if operands
1879       // are just perfect diamond or shuffled diamond match. Do not do it only
1880       // for possible broadcasts or non-power of 2 number of scalars (just for
1881       // now).
1882       auto &&SkipReordering = [this]() {
1883         SmallPtrSet<Value *, 4> UniqueValues;
1884         ArrayRef<OperandData> Op0 = OpsVec.front();
1885         for (const OperandData &Data : Op0)
1886           UniqueValues.insert(Data.V);
1887         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1888           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1889                 return !UniqueValues.contains(Data.V);
1890               }))
1891             return false;
1892         }
1893         // TODO: Check if we can remove a check for non-power-2 number of
1894         // scalars after full support of non-power-2 vectorization.
1895         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1896       };
1897 
1898       // If the initial strategy fails for any of the operand indexes, then we
1899       // perform reordering again in a second pass. This helps avoid assigning
1900       // high priority to the failed strategy, and should improve reordering for
1901       // the non-failed operand indexes.
1902       for (int Pass = 0; Pass != 2; ++Pass) {
1903         // Check if no need to reorder operands since they're are perfect or
1904         // shuffled diamond match.
1905         // Need to to do it to avoid extra external use cost counting for
1906         // shuffled matches, which may cause regressions.
1907         if (SkipReordering())
1908           break;
1909         // Skip the second pass if the first pass did not fail.
1910         bool StrategyFailed = false;
1911         // Mark all operand data as free to use.
1912         clearUsed();
1913         // We keep the original operand order for the FirstLane, so reorder the
1914         // rest of the lanes. We are visiting the nodes in a circular fashion,
1915         // using FirstLane as the center point and increasing the radius
1916         // distance.
1917         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1918         for (unsigned I = 0; I < NumOperands; ++I)
1919           MainAltOps[I].push_back(getData(I, FirstLane).V);
1920 
1921         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1922           // Visit the lane on the right and then the lane on the left.
1923           for (int Direction : {+1, -1}) {
1924             int Lane = FirstLane + Direction * Distance;
1925             if (Lane < 0 || Lane >= (int)NumLanes)
1926               continue;
1927             int LastLane = Lane - Direction;
1928             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1929                    "Out of bounds");
1930             // Look for a good match for each operand.
1931             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1932               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1933               Optional<unsigned> BestIdx = getBestOperand(
1934                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1935               // By not selecting a value, we allow the operands that follow to
1936               // select a better matching value. We will get a non-null value in
1937               // the next run of getBestOperand().
1938               if (BestIdx) {
1939                 // Swap the current operand with the one returned by
1940                 // getBestOperand().
1941                 swap(OpIdx, *BestIdx, Lane);
1942               } else {
1943                 // We failed to find a best operand, set mode to 'Failed'.
1944                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1945                 // Enable the second pass.
1946                 StrategyFailed = true;
1947               }
1948               // Try to get the alternate opcode and follow it during analysis.
1949               if (MainAltOps[OpIdx].size() != 2) {
1950                 OperandData &AltOp = getData(OpIdx, Lane);
1951                 InstructionsState OpS =
1952                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1953                 if (OpS.getOpcode() && OpS.isAltShuffle())
1954                   MainAltOps[OpIdx].push_back(AltOp.V);
1955               }
1956             }
1957           }
1958         }
1959         // Skip second pass if the strategy did not fail.
1960         if (!StrategyFailed)
1961           break;
1962       }
1963     }
1964 
1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1966     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1967       switch (RMode) {
1968       case ReorderingMode::Load:
1969         return "Load";
1970       case ReorderingMode::Opcode:
1971         return "Opcode";
1972       case ReorderingMode::Constant:
1973         return "Constant";
1974       case ReorderingMode::Splat:
1975         return "Splat";
1976       case ReorderingMode::Failed:
1977         return "Failed";
1978       }
1979       llvm_unreachable("Unimplemented Reordering Type");
1980     }
1981 
1982     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1983                                                    raw_ostream &OS) {
1984       return OS << getModeStr(RMode);
1985     }
1986 
1987     /// Debug print.
1988     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1989       printMode(RMode, dbgs());
1990     }
1991 
1992     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1993       return printMode(RMode, OS);
1994     }
1995 
1996     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1997       const unsigned Indent = 2;
1998       unsigned Cnt = 0;
1999       for (const OperandDataVec &OpDataVec : OpsVec) {
2000         OS << "Operand " << Cnt++ << "\n";
2001         for (const OperandData &OpData : OpDataVec) {
2002           OS.indent(Indent) << "{";
2003           if (Value *V = OpData.V)
2004             OS << *V;
2005           else
2006             OS << "null";
2007           OS << ", APO:" << OpData.APO << "}\n";
2008         }
2009         OS << "\n";
2010       }
2011       return OS;
2012     }
2013 
2014     /// Debug print.
2015     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2016 #endif
2017   };
2018 
2019   /// Evaluate each pair in \p Candidates and return index into \p Candidates
2020   /// for a pair which have highest score deemed to have best chance to form
2021   /// root of profitable tree to vectorize. Return None if no candidate scored
2022   /// above the LookAheadHeuristics::ScoreFail.
2023   /// \param Limit Lower limit of the cost, considered to be good enough score.
2024   Optional<int>
2025   findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2026                    int Limit = LookAheadHeuristics::ScoreFail) {
2027     LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2,
2028                                   RootLookAheadMaxDepth);
2029     int BestScore = Limit;
2030     Optional<int> Index = None;
2031     for (int I : seq<int>(0, Candidates.size())) {
2032       int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2033                                                Candidates[I].second,
2034                                                /*U1=*/nullptr, /*U2=*/nullptr,
2035                                                /*Level=*/1, None);
2036       if (Score > BestScore) {
2037         BestScore = Score;
2038         Index = I;
2039       }
2040     }
2041     return Index;
2042   }
2043 
2044   /// Checks if the instruction is marked for deletion.
2045   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2046 
2047   /// Removes an instruction from its block and eventually deletes it.
2048   /// It's like Instruction::eraseFromParent() except that the actual deletion
2049   /// is delayed until BoUpSLP is destructed.
2050   void eraseInstruction(Instruction *I) {
2051     DeletedInstructions.insert(I);
2052   }
2053 
2054   /// Checks if the instruction was already analyzed for being possible
2055   /// reduction root.
2056   bool isAnalyzedReductionRoot(Instruction *I) const {
2057     return AnalyzedReductionsRoots.count(I);
2058   }
2059   /// Register given instruction as already analyzed for being possible
2060   /// reduction root.
2061   void analyzedReductionRoot(Instruction *I) {
2062     AnalyzedReductionsRoots.insert(I);
2063   }
2064   /// Checks if the provided list of reduced values was checked already for
2065   /// vectorization.
2066   bool areAnalyzedReductionVals(ArrayRef<Value *> VL) {
2067     return AnalyzedReductionVals.contains(hash_value(VL));
2068   }
2069   /// Adds the list of reduced values to list of already checked values for the
2070   /// vectorization.
2071   void analyzedReductionVals(ArrayRef<Value *> VL) {
2072     AnalyzedReductionVals.insert(hash_value(VL));
2073   }
2074   /// Clear the list of the analyzed reduction root instructions.
2075   void clearReductionData() {
2076     AnalyzedReductionsRoots.clear();
2077     AnalyzedReductionVals.clear();
2078   }
2079   /// Checks if the given value is gathered in one of the nodes.
2080   bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2081     return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2082   }
2083 
2084   ~BoUpSLP();
2085 
2086 private:
2087   /// Check if the operands on the edges \p Edges of the \p UserTE allows
2088   /// reordering (i.e. the operands can be reordered because they have only one
2089   /// user and reordarable).
2090   /// \param ReorderableGathers List of all gather nodes that require reordering
2091   /// (e.g., gather of extractlements or partially vectorizable loads).
2092   /// \param GatherOps List of gather operand nodes for \p UserTE that require
2093   /// reordering, subset of \p NonVectorized.
2094   bool
2095   canReorderOperands(TreeEntry *UserTE,
2096                      SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2097                      ArrayRef<TreeEntry *> ReorderableGathers,
2098                      SmallVectorImpl<TreeEntry *> &GatherOps);
2099 
2100   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2101   /// if any. If it is not vectorized (gather node), returns nullptr.
2102   TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2103     ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2104     TreeEntry *TE = nullptr;
2105     const auto *It = find_if(VL, [this, &TE](Value *V) {
2106       TE = getTreeEntry(V);
2107       return TE;
2108     });
2109     if (It != VL.end() && TE->isSame(VL))
2110       return TE;
2111     return nullptr;
2112   }
2113 
2114   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2115   /// if any. If it is not vectorized (gather node), returns nullptr.
2116   const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2117                                         unsigned OpIdx) const {
2118     return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2119         const_cast<TreeEntry *>(UserTE), OpIdx);
2120   }
2121 
2122   /// Checks if all users of \p I are the part of the vectorization tree.
2123   bool areAllUsersVectorized(Instruction *I,
2124                              ArrayRef<Value *> VectorizedVals) const;
2125 
2126   /// \returns the cost of the vectorizable entry.
2127   InstructionCost getEntryCost(const TreeEntry *E,
2128                                ArrayRef<Value *> VectorizedVals);
2129 
2130   /// This is the recursive part of buildTree.
2131   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2132                      const EdgeInfo &EI);
2133 
2134   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2135   /// be vectorized to use the original vector (or aggregate "bitcast" to a
2136   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2137   /// returns false, setting \p CurrentOrder to either an empty vector or a
2138   /// non-identity permutation that allows to reuse extract instructions.
2139   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2140                        SmallVectorImpl<unsigned> &CurrentOrder) const;
2141 
2142   /// Vectorize a single entry in the tree.
2143   Value *vectorizeTree(TreeEntry *E);
2144 
2145   /// Vectorize a single entry in the tree, starting in \p VL.
2146   Value *vectorizeTree(ArrayRef<Value *> VL);
2147 
2148   /// Create a new vector from a list of scalar values.  Produces a sequence
2149   /// which exploits values reused across lanes, and arranges the inserts
2150   /// for ease of later optimization.
2151   Value *createBuildVector(ArrayRef<Value *> VL);
2152 
2153   /// \returns the scalarization cost for this type. Scalarization in this
2154   /// context means the creation of vectors from a group of scalars. If \p
2155   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2156   /// vector elements.
2157   InstructionCost getGatherCost(FixedVectorType *Ty,
2158                                 const APInt &ShuffledIndices,
2159                                 bool NeedToShuffle) const;
2160 
2161   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2162   /// tree entries.
2163   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2164   /// previous tree entries. \p Mask is filled with the shuffle mask.
2165   Optional<TargetTransformInfo::ShuffleKind>
2166   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2167                         SmallVectorImpl<const TreeEntry *> &Entries);
2168 
2169   /// \returns the scalarization cost for this list of values. Assuming that
2170   /// this subtree gets vectorized, we may need to extract the values from the
2171   /// roots. This method calculates the cost of extracting the values.
2172   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2173 
2174   /// Set the Builder insert point to one after the last instruction in
2175   /// the bundle
2176   void setInsertPointAfterBundle(const TreeEntry *E);
2177 
2178   /// \returns a vector from a collection of scalars in \p VL.
2179   Value *gather(ArrayRef<Value *> VL);
2180 
2181   /// \returns whether the VectorizableTree is fully vectorizable and will
2182   /// be beneficial even the tree height is tiny.
2183   bool isFullyVectorizableTinyTree(bool ForReduction) const;
2184 
2185   /// Reorder commutative or alt operands to get better probability of
2186   /// generating vectorized code.
2187   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2188                                              SmallVectorImpl<Value *> &Left,
2189                                              SmallVectorImpl<Value *> &Right,
2190                                              const DataLayout &DL,
2191                                              ScalarEvolution &SE,
2192                                              const BoUpSLP &R);
2193 
2194   /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2195   /// users of \p TE and collects the stores. It returns the map from the store
2196   /// pointers to the collected stores.
2197   DenseMap<Value *, SmallVector<StoreInst *, 4>>
2198   collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2199 
2200   /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2201   /// stores in \p StoresVec can for a vector instruction. If so it returns true
2202   /// and populates \p ReorderIndices with the shuffle indices of the the stores
2203   /// when compared to the sorted vector.
2204   bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
2205                      OrdersType &ReorderIndices) const;
2206 
2207   /// Iterates through the users of \p TE, looking for scalar stores that can be
2208   /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2209   /// their order and builds an order index vector for each store bundle. It
2210   /// returns all these order vectors found.
2211   /// We run this after the tree has formed, otherwise we may come across user
2212   /// instructions that are not yet in the tree.
2213   SmallVector<OrdersType, 1>
2214   findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2215 
2216   struct TreeEntry {
2217     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2218     TreeEntry(VecTreeTy &Container) : Container(Container) {}
2219 
2220     /// \returns true if the scalars in VL are equal to this entry.
2221     bool isSame(ArrayRef<Value *> VL) const {
2222       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2223         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2224           return std::equal(VL.begin(), VL.end(), Scalars.begin());
2225         return VL.size() == Mask.size() &&
2226                std::equal(VL.begin(), VL.end(), Mask.begin(),
2227                           [Scalars](Value *V, int Idx) {
2228                             return (isa<UndefValue>(V) &&
2229                                     Idx == UndefMaskElem) ||
2230                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
2231                           });
2232       };
2233       if (!ReorderIndices.empty()) {
2234         // TODO: implement matching if the nodes are just reordered, still can
2235         // treat the vector as the same if the list of scalars matches VL
2236         // directly, without reordering.
2237         SmallVector<int> Mask;
2238         inversePermutation(ReorderIndices, Mask);
2239         if (VL.size() == Scalars.size())
2240           return IsSame(Scalars, Mask);
2241         if (VL.size() == ReuseShuffleIndices.size()) {
2242           ::addMask(Mask, ReuseShuffleIndices);
2243           return IsSame(Scalars, Mask);
2244         }
2245         return false;
2246       }
2247       return IsSame(Scalars, ReuseShuffleIndices);
2248     }
2249 
2250     /// \returns true if current entry has same operands as \p TE.
2251     bool hasEqualOperands(const TreeEntry &TE) const {
2252       if (TE.getNumOperands() != getNumOperands())
2253         return false;
2254       SmallBitVector Used(getNumOperands());
2255       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2256         unsigned PrevCount = Used.count();
2257         for (unsigned K = 0; K < E; ++K) {
2258           if (Used.test(K))
2259             continue;
2260           if (getOperand(K) == TE.getOperand(I)) {
2261             Used.set(K);
2262             break;
2263           }
2264         }
2265         // Check if we actually found the matching operand.
2266         if (PrevCount == Used.count())
2267           return false;
2268       }
2269       return true;
2270     }
2271 
2272     /// \return Final vectorization factor for the node. Defined by the total
2273     /// number of vectorized scalars, including those, used several times in the
2274     /// entry and counted in the \a ReuseShuffleIndices, if any.
2275     unsigned getVectorFactor() const {
2276       if (!ReuseShuffleIndices.empty())
2277         return ReuseShuffleIndices.size();
2278       return Scalars.size();
2279     };
2280 
2281     /// A vector of scalars.
2282     ValueList Scalars;
2283 
2284     /// The Scalars are vectorized into this value. It is initialized to Null.
2285     Value *VectorizedValue = nullptr;
2286 
2287     /// Do we need to gather this sequence or vectorize it
2288     /// (either with vector instruction or with scatter/gather
2289     /// intrinsics for store/load)?
2290     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2291     EntryState State;
2292 
2293     /// Does this sequence require some shuffling?
2294     SmallVector<int, 4> ReuseShuffleIndices;
2295 
2296     /// Does this entry require reordering?
2297     SmallVector<unsigned, 4> ReorderIndices;
2298 
2299     /// Points back to the VectorizableTree.
2300     ///
2301     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2302     /// to be a pointer and needs to be able to initialize the child iterator.
2303     /// Thus we need a reference back to the container to translate the indices
2304     /// to entries.
2305     VecTreeTy &Container;
2306 
2307     /// The TreeEntry index containing the user of this entry.  We can actually
2308     /// have multiple users so the data structure is not truly a tree.
2309     SmallVector<EdgeInfo, 1> UserTreeIndices;
2310 
2311     /// The index of this treeEntry in VectorizableTree.
2312     int Idx = -1;
2313 
2314   private:
2315     /// The operands of each instruction in each lane Operands[op_index][lane].
2316     /// Note: This helps avoid the replication of the code that performs the
2317     /// reordering of operands during buildTree_rec() and vectorizeTree().
2318     SmallVector<ValueList, 2> Operands;
2319 
2320     /// The main/alternate instruction.
2321     Instruction *MainOp = nullptr;
2322     Instruction *AltOp = nullptr;
2323 
2324   public:
2325     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2326     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2327       if (Operands.size() < OpIdx + 1)
2328         Operands.resize(OpIdx + 1);
2329       assert(Operands[OpIdx].empty() && "Already resized?");
2330       assert(OpVL.size() <= Scalars.size() &&
2331              "Number of operands is greater than the number of scalars.");
2332       Operands[OpIdx].resize(OpVL.size());
2333       copy(OpVL, Operands[OpIdx].begin());
2334     }
2335 
2336     /// Set the operands of this bundle in their original order.
2337     void setOperandsInOrder() {
2338       assert(Operands.empty() && "Already initialized?");
2339       auto *I0 = cast<Instruction>(Scalars[0]);
2340       Operands.resize(I0->getNumOperands());
2341       unsigned NumLanes = Scalars.size();
2342       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2343            OpIdx != NumOperands; ++OpIdx) {
2344         Operands[OpIdx].resize(NumLanes);
2345         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2346           auto *I = cast<Instruction>(Scalars[Lane]);
2347           assert(I->getNumOperands() == NumOperands &&
2348                  "Expected same number of operands");
2349           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2350         }
2351       }
2352     }
2353 
2354     /// Reorders operands of the node to the given mask \p Mask.
2355     void reorderOperands(ArrayRef<int> Mask) {
2356       for (ValueList &Operand : Operands)
2357         reorderScalars(Operand, Mask);
2358     }
2359 
2360     /// \returns the \p OpIdx operand of this TreeEntry.
2361     ValueList &getOperand(unsigned OpIdx) {
2362       assert(OpIdx < Operands.size() && "Off bounds");
2363       return Operands[OpIdx];
2364     }
2365 
2366     /// \returns the \p OpIdx operand of this TreeEntry.
2367     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2368       assert(OpIdx < Operands.size() && "Off bounds");
2369       return Operands[OpIdx];
2370     }
2371 
2372     /// \returns the number of operands.
2373     unsigned getNumOperands() const { return Operands.size(); }
2374 
2375     /// \return the single \p OpIdx operand.
2376     Value *getSingleOperand(unsigned OpIdx) const {
2377       assert(OpIdx < Operands.size() && "Off bounds");
2378       assert(!Operands[OpIdx].empty() && "No operand available");
2379       return Operands[OpIdx][0];
2380     }
2381 
2382     /// Some of the instructions in the list have alternate opcodes.
2383     bool isAltShuffle() const { return MainOp != AltOp; }
2384 
2385     bool isOpcodeOrAlt(Instruction *I) const {
2386       unsigned CheckedOpcode = I->getOpcode();
2387       return (getOpcode() == CheckedOpcode ||
2388               getAltOpcode() == CheckedOpcode);
2389     }
2390 
2391     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2392     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2393     /// \p OpValue.
2394     Value *isOneOf(Value *Op) const {
2395       auto *I = dyn_cast<Instruction>(Op);
2396       if (I && isOpcodeOrAlt(I))
2397         return Op;
2398       return MainOp;
2399     }
2400 
2401     void setOperations(const InstructionsState &S) {
2402       MainOp = S.MainOp;
2403       AltOp = S.AltOp;
2404     }
2405 
2406     Instruction *getMainOp() const {
2407       return MainOp;
2408     }
2409 
2410     Instruction *getAltOp() const {
2411       return AltOp;
2412     }
2413 
2414     /// The main/alternate opcodes for the list of instructions.
2415     unsigned getOpcode() const {
2416       return MainOp ? MainOp->getOpcode() : 0;
2417     }
2418 
2419     unsigned getAltOpcode() const {
2420       return AltOp ? AltOp->getOpcode() : 0;
2421     }
2422 
2423     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2424     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2425     int findLaneForValue(Value *V) const {
2426       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2427       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2428       if (!ReorderIndices.empty())
2429         FoundLane = ReorderIndices[FoundLane];
2430       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2431       if (!ReuseShuffleIndices.empty()) {
2432         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2433                                   find(ReuseShuffleIndices, FoundLane));
2434       }
2435       return FoundLane;
2436     }
2437 
2438 #ifndef NDEBUG
2439     /// Debug printer.
2440     LLVM_DUMP_METHOD void dump() const {
2441       dbgs() << Idx << ".\n";
2442       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2443         dbgs() << "Operand " << OpI << ":\n";
2444         for (const Value *V : Operands[OpI])
2445           dbgs().indent(2) << *V << "\n";
2446       }
2447       dbgs() << "Scalars: \n";
2448       for (Value *V : Scalars)
2449         dbgs().indent(2) << *V << "\n";
2450       dbgs() << "State: ";
2451       switch (State) {
2452       case Vectorize:
2453         dbgs() << "Vectorize\n";
2454         break;
2455       case ScatterVectorize:
2456         dbgs() << "ScatterVectorize\n";
2457         break;
2458       case NeedToGather:
2459         dbgs() << "NeedToGather\n";
2460         break;
2461       }
2462       dbgs() << "MainOp: ";
2463       if (MainOp)
2464         dbgs() << *MainOp << "\n";
2465       else
2466         dbgs() << "NULL\n";
2467       dbgs() << "AltOp: ";
2468       if (AltOp)
2469         dbgs() << *AltOp << "\n";
2470       else
2471         dbgs() << "NULL\n";
2472       dbgs() << "VectorizedValue: ";
2473       if (VectorizedValue)
2474         dbgs() << *VectorizedValue << "\n";
2475       else
2476         dbgs() << "NULL\n";
2477       dbgs() << "ReuseShuffleIndices: ";
2478       if (ReuseShuffleIndices.empty())
2479         dbgs() << "Empty";
2480       else
2481         for (int ReuseIdx : ReuseShuffleIndices)
2482           dbgs() << ReuseIdx << ", ";
2483       dbgs() << "\n";
2484       dbgs() << "ReorderIndices: ";
2485       for (unsigned ReorderIdx : ReorderIndices)
2486         dbgs() << ReorderIdx << ", ";
2487       dbgs() << "\n";
2488       dbgs() << "UserTreeIndices: ";
2489       for (const auto &EInfo : UserTreeIndices)
2490         dbgs() << EInfo << ", ";
2491       dbgs() << "\n";
2492     }
2493 #endif
2494   };
2495 
2496 #ifndef NDEBUG
2497   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2498                      InstructionCost VecCost,
2499                      InstructionCost ScalarCost) const {
2500     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2501     dbgs() << "SLP: Costs:\n";
2502     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2503     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2504     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2505     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2506                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2507   }
2508 #endif
2509 
2510   /// Create a new VectorizableTree entry.
2511   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2512                           const InstructionsState &S,
2513                           const EdgeInfo &UserTreeIdx,
2514                           ArrayRef<int> ReuseShuffleIndices = None,
2515                           ArrayRef<unsigned> ReorderIndices = None) {
2516     TreeEntry::EntryState EntryState =
2517         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2518     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2519                         ReuseShuffleIndices, ReorderIndices);
2520   }
2521 
2522   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2523                           TreeEntry::EntryState EntryState,
2524                           Optional<ScheduleData *> Bundle,
2525                           const InstructionsState &S,
2526                           const EdgeInfo &UserTreeIdx,
2527                           ArrayRef<int> ReuseShuffleIndices = None,
2528                           ArrayRef<unsigned> ReorderIndices = None) {
2529     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2530             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2531            "Need to vectorize gather entry?");
2532     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2533     TreeEntry *Last = VectorizableTree.back().get();
2534     Last->Idx = VectorizableTree.size() - 1;
2535     Last->State = EntryState;
2536     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2537                                      ReuseShuffleIndices.end());
2538     if (ReorderIndices.empty()) {
2539       Last->Scalars.assign(VL.begin(), VL.end());
2540       Last->setOperations(S);
2541     } else {
2542       // Reorder scalars and build final mask.
2543       Last->Scalars.assign(VL.size(), nullptr);
2544       transform(ReorderIndices, Last->Scalars.begin(),
2545                 [VL](unsigned Idx) -> Value * {
2546                   if (Idx >= VL.size())
2547                     return UndefValue::get(VL.front()->getType());
2548                   return VL[Idx];
2549                 });
2550       InstructionsState S = getSameOpcode(Last->Scalars);
2551       Last->setOperations(S);
2552       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2553     }
2554     if (Last->State != TreeEntry::NeedToGather) {
2555       for (Value *V : VL) {
2556         assert(!getTreeEntry(V) && "Scalar already in tree!");
2557         ScalarToTreeEntry[V] = Last;
2558       }
2559       // Update the scheduler bundle to point to this TreeEntry.
2560       ScheduleData *BundleMember = *Bundle;
2561       assert((BundleMember || isa<PHINode>(S.MainOp) ||
2562               isVectorLikeInstWithConstOps(S.MainOp) ||
2563               doesNotNeedToSchedule(VL)) &&
2564              "Bundle and VL out of sync");
2565       if (BundleMember) {
2566         for (Value *V : VL) {
2567           if (doesNotNeedToBeScheduled(V))
2568             continue;
2569           assert(BundleMember && "Unexpected end of bundle.");
2570           BundleMember->TE = Last;
2571           BundleMember = BundleMember->NextInBundle;
2572         }
2573       }
2574       assert(!BundleMember && "Bundle and VL out of sync");
2575     } else {
2576       MustGather.insert(VL.begin(), VL.end());
2577     }
2578 
2579     if (UserTreeIdx.UserTE)
2580       Last->UserTreeIndices.push_back(UserTreeIdx);
2581 
2582     return Last;
2583   }
2584 
2585   /// -- Vectorization State --
2586   /// Holds all of the tree entries.
2587   TreeEntry::VecTreeTy VectorizableTree;
2588 
2589 #ifndef NDEBUG
2590   /// Debug printer.
2591   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2592     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2593       VectorizableTree[Id]->dump();
2594       dbgs() << "\n";
2595     }
2596   }
2597 #endif
2598 
2599   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2600 
2601   const TreeEntry *getTreeEntry(Value *V) const {
2602     return ScalarToTreeEntry.lookup(V);
2603   }
2604 
2605   /// Maps a specific scalar to its tree entry.
2606   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2607 
2608   /// Maps a value to the proposed vectorizable size.
2609   SmallDenseMap<Value *, unsigned> InstrElementSize;
2610 
2611   /// A list of scalars that we found that we need to keep as scalars.
2612   ValueSet MustGather;
2613 
2614   /// This POD struct describes one external user in the vectorized tree.
2615   struct ExternalUser {
2616     ExternalUser(Value *S, llvm::User *U, int L)
2617         : Scalar(S), User(U), Lane(L) {}
2618 
2619     // Which scalar in our function.
2620     Value *Scalar;
2621 
2622     // Which user that uses the scalar.
2623     llvm::User *User;
2624 
2625     // Which lane does the scalar belong to.
2626     int Lane;
2627   };
2628   using UserList = SmallVector<ExternalUser, 16>;
2629 
2630   /// Checks if two instructions may access the same memory.
2631   ///
2632   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2633   /// is invariant in the calling loop.
2634   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2635                  Instruction *Inst2) {
2636     // First check if the result is already in the cache.
2637     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2638     Optional<bool> &result = AliasCache[key];
2639     if (result) {
2640       return result.getValue();
2641     }
2642     bool aliased = true;
2643     if (Loc1.Ptr && isSimple(Inst1))
2644       aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2645     // Store the result in the cache.
2646     result = aliased;
2647     return aliased;
2648   }
2649 
2650   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2651 
2652   /// Cache for alias results.
2653   /// TODO: consider moving this to the AliasAnalysis itself.
2654   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2655 
2656   // Cache for pointerMayBeCaptured calls inside AA.  This is preserved
2657   // globally through SLP because we don't perform any action which
2658   // invalidates capture results.
2659   BatchAAResults BatchAA;
2660 
2661   /// Temporary store for deleted instructions. Instructions will be deleted
2662   /// eventually when the BoUpSLP is destructed.  The deferral is required to
2663   /// ensure that there are no incorrect collisions in the AliasCache, which
2664   /// can happen if a new instruction is allocated at the same address as a
2665   /// previously deleted instruction.
2666   DenseSet<Instruction *> DeletedInstructions;
2667 
2668   /// Set of the instruction, being analyzed already for reductions.
2669   SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
2670 
2671   /// Set of hashes for the list of reduction values already being analyzed.
2672   DenseSet<size_t> AnalyzedReductionVals;
2673 
2674   /// A list of values that need to extracted out of the tree.
2675   /// This list holds pairs of (Internal Scalar : External User). External User
2676   /// can be nullptr, it means that this Internal Scalar will be used later,
2677   /// after vectorization.
2678   UserList ExternalUses;
2679 
2680   /// Values used only by @llvm.assume calls.
2681   SmallPtrSet<const Value *, 32> EphValues;
2682 
2683   /// Holds all of the instructions that we gathered.
2684   SetVector<Instruction *> GatherShuffleSeq;
2685 
2686   /// A list of blocks that we are going to CSE.
2687   SetVector<BasicBlock *> CSEBlocks;
2688 
2689   /// Contains all scheduling relevant data for an instruction.
2690   /// A ScheduleData either represents a single instruction or a member of an
2691   /// instruction bundle (= a group of instructions which is combined into a
2692   /// vector instruction).
2693   struct ScheduleData {
2694     // The initial value for the dependency counters. It means that the
2695     // dependencies are not calculated yet.
2696     enum { InvalidDeps = -1 };
2697 
2698     ScheduleData() = default;
2699 
2700     void init(int BlockSchedulingRegionID, Value *OpVal) {
2701       FirstInBundle = this;
2702       NextInBundle = nullptr;
2703       NextLoadStore = nullptr;
2704       IsScheduled = false;
2705       SchedulingRegionID = BlockSchedulingRegionID;
2706       clearDependencies();
2707       OpValue = OpVal;
2708       TE = nullptr;
2709     }
2710 
2711     /// Verify basic self consistency properties
2712     void verify() {
2713       if (hasValidDependencies()) {
2714         assert(UnscheduledDeps <= Dependencies && "invariant");
2715       } else {
2716         assert(UnscheduledDeps == Dependencies && "invariant");
2717       }
2718 
2719       if (IsScheduled) {
2720         assert(isSchedulingEntity() &&
2721                 "unexpected scheduled state");
2722         for (const ScheduleData *BundleMember = this; BundleMember;
2723              BundleMember = BundleMember->NextInBundle) {
2724           assert(BundleMember->hasValidDependencies() &&
2725                  BundleMember->UnscheduledDeps == 0 &&
2726                  "unexpected scheduled state");
2727           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2728                  "only bundle is marked scheduled");
2729         }
2730       }
2731 
2732       assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
2733              "all bundle members must be in same basic block");
2734     }
2735 
2736     /// Returns true if the dependency information has been calculated.
2737     /// Note that depenendency validity can vary between instructions within
2738     /// a single bundle.
2739     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2740 
2741     /// Returns true for single instructions and for bundle representatives
2742     /// (= the head of a bundle).
2743     bool isSchedulingEntity() const { return FirstInBundle == this; }
2744 
2745     /// Returns true if it represents an instruction bundle and not only a
2746     /// single instruction.
2747     bool isPartOfBundle() const {
2748       return NextInBundle != nullptr || FirstInBundle != this || TE;
2749     }
2750 
2751     /// Returns true if it is ready for scheduling, i.e. it has no more
2752     /// unscheduled depending instructions/bundles.
2753     bool isReady() const {
2754       assert(isSchedulingEntity() &&
2755              "can't consider non-scheduling entity for ready list");
2756       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2757     }
2758 
2759     /// Modifies the number of unscheduled dependencies for this instruction,
2760     /// and returns the number of remaining dependencies for the containing
2761     /// bundle.
2762     int incrementUnscheduledDeps(int Incr) {
2763       assert(hasValidDependencies() &&
2764              "increment of unscheduled deps would be meaningless");
2765       UnscheduledDeps += Incr;
2766       return FirstInBundle->unscheduledDepsInBundle();
2767     }
2768 
2769     /// Sets the number of unscheduled dependencies to the number of
2770     /// dependencies.
2771     void resetUnscheduledDeps() {
2772       UnscheduledDeps = Dependencies;
2773     }
2774 
2775     /// Clears all dependency information.
2776     void clearDependencies() {
2777       Dependencies = InvalidDeps;
2778       resetUnscheduledDeps();
2779       MemoryDependencies.clear();
2780       ControlDependencies.clear();
2781     }
2782 
2783     int unscheduledDepsInBundle() const {
2784       assert(isSchedulingEntity() && "only meaningful on the bundle");
2785       int Sum = 0;
2786       for (const ScheduleData *BundleMember = this; BundleMember;
2787            BundleMember = BundleMember->NextInBundle) {
2788         if (BundleMember->UnscheduledDeps == InvalidDeps)
2789           return InvalidDeps;
2790         Sum += BundleMember->UnscheduledDeps;
2791       }
2792       return Sum;
2793     }
2794 
2795     void dump(raw_ostream &os) const {
2796       if (!isSchedulingEntity()) {
2797         os << "/ " << *Inst;
2798       } else if (NextInBundle) {
2799         os << '[' << *Inst;
2800         ScheduleData *SD = NextInBundle;
2801         while (SD) {
2802           os << ';' << *SD->Inst;
2803           SD = SD->NextInBundle;
2804         }
2805         os << ']';
2806       } else {
2807         os << *Inst;
2808       }
2809     }
2810 
2811     Instruction *Inst = nullptr;
2812 
2813     /// Opcode of the current instruction in the schedule data.
2814     Value *OpValue = nullptr;
2815 
2816     /// The TreeEntry that this instruction corresponds to.
2817     TreeEntry *TE = nullptr;
2818 
2819     /// Points to the head in an instruction bundle (and always to this for
2820     /// single instructions).
2821     ScheduleData *FirstInBundle = nullptr;
2822 
2823     /// Single linked list of all instructions in a bundle. Null if it is a
2824     /// single instruction.
2825     ScheduleData *NextInBundle = nullptr;
2826 
2827     /// Single linked list of all memory instructions (e.g. load, store, call)
2828     /// in the block - until the end of the scheduling region.
2829     ScheduleData *NextLoadStore = nullptr;
2830 
2831     /// The dependent memory instructions.
2832     /// This list is derived on demand in calculateDependencies().
2833     SmallVector<ScheduleData *, 4> MemoryDependencies;
2834 
2835     /// List of instructions which this instruction could be control dependent
2836     /// on.  Allowing such nodes to be scheduled below this one could introduce
2837     /// a runtime fault which didn't exist in the original program.
2838     /// ex: this is a load or udiv following a readonly call which inf loops
2839     SmallVector<ScheduleData *, 4> ControlDependencies;
2840 
2841     /// This ScheduleData is in the current scheduling region if this matches
2842     /// the current SchedulingRegionID of BlockScheduling.
2843     int SchedulingRegionID = 0;
2844 
2845     /// Used for getting a "good" final ordering of instructions.
2846     int SchedulingPriority = 0;
2847 
2848     /// The number of dependencies. Constitutes of the number of users of the
2849     /// instruction plus the number of dependent memory instructions (if any).
2850     /// This value is calculated on demand.
2851     /// If InvalidDeps, the number of dependencies is not calculated yet.
2852     int Dependencies = InvalidDeps;
2853 
2854     /// The number of dependencies minus the number of dependencies of scheduled
2855     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2856     /// for scheduling.
2857     /// Note that this is negative as long as Dependencies is not calculated.
2858     int UnscheduledDeps = InvalidDeps;
2859 
2860     /// True if this instruction is scheduled (or considered as scheduled in the
2861     /// dry-run).
2862     bool IsScheduled = false;
2863   };
2864 
2865 #ifndef NDEBUG
2866   friend inline raw_ostream &operator<<(raw_ostream &os,
2867                                         const BoUpSLP::ScheduleData &SD) {
2868     SD.dump(os);
2869     return os;
2870   }
2871 #endif
2872 
2873   friend struct GraphTraits<BoUpSLP *>;
2874   friend struct DOTGraphTraits<BoUpSLP *>;
2875 
2876   /// Contains all scheduling data for a basic block.
2877   /// It does not schedules instructions, which are not memory read/write
2878   /// instructions and their operands are either constants, or arguments, or
2879   /// phis, or instructions from others blocks, or their users are phis or from
2880   /// the other blocks. The resulting vector instructions can be placed at the
2881   /// beginning of the basic block without scheduling (if operands does not need
2882   /// to be scheduled) or at the end of the block (if users are outside of the
2883   /// block). It allows to save some compile time and memory used by the
2884   /// compiler.
2885   /// ScheduleData is assigned for each instruction in between the boundaries of
2886   /// the tree entry, even for those, which are not part of the graph. It is
2887   /// required to correctly follow the dependencies between the instructions and
2888   /// their correct scheduling. The ScheduleData is not allocated for the
2889   /// instructions, which do not require scheduling, like phis, nodes with
2890   /// extractelements/insertelements only or nodes with instructions, with
2891   /// uses/operands outside of the block.
2892   struct BlockScheduling {
2893     BlockScheduling(BasicBlock *BB)
2894         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2895 
2896     void clear() {
2897       ReadyInsts.clear();
2898       ScheduleStart = nullptr;
2899       ScheduleEnd = nullptr;
2900       FirstLoadStoreInRegion = nullptr;
2901       LastLoadStoreInRegion = nullptr;
2902       RegionHasStackSave = false;
2903 
2904       // Reduce the maximum schedule region size by the size of the
2905       // previous scheduling run.
2906       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2907       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2908         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2909       ScheduleRegionSize = 0;
2910 
2911       // Make a new scheduling region, i.e. all existing ScheduleData is not
2912       // in the new region yet.
2913       ++SchedulingRegionID;
2914     }
2915 
2916     ScheduleData *getScheduleData(Instruction *I) {
2917       if (BB != I->getParent())
2918         // Avoid lookup if can't possibly be in map.
2919         return nullptr;
2920       ScheduleData *SD = ScheduleDataMap.lookup(I);
2921       if (SD && isInSchedulingRegion(SD))
2922         return SD;
2923       return nullptr;
2924     }
2925 
2926     ScheduleData *getScheduleData(Value *V) {
2927       if (auto *I = dyn_cast<Instruction>(V))
2928         return getScheduleData(I);
2929       return nullptr;
2930     }
2931 
2932     ScheduleData *getScheduleData(Value *V, Value *Key) {
2933       if (V == Key)
2934         return getScheduleData(V);
2935       auto I = ExtraScheduleDataMap.find(V);
2936       if (I != ExtraScheduleDataMap.end()) {
2937         ScheduleData *SD = I->second.lookup(Key);
2938         if (SD && isInSchedulingRegion(SD))
2939           return SD;
2940       }
2941       return nullptr;
2942     }
2943 
2944     bool isInSchedulingRegion(ScheduleData *SD) const {
2945       return SD->SchedulingRegionID == SchedulingRegionID;
2946     }
2947 
2948     /// Marks an instruction as scheduled and puts all dependent ready
2949     /// instructions into the ready-list.
2950     template <typename ReadyListType>
2951     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2952       SD->IsScheduled = true;
2953       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2954 
2955       for (ScheduleData *BundleMember = SD; BundleMember;
2956            BundleMember = BundleMember->NextInBundle) {
2957         if (BundleMember->Inst != BundleMember->OpValue)
2958           continue;
2959 
2960         // Handle the def-use chain dependencies.
2961 
2962         // Decrement the unscheduled counter and insert to ready list if ready.
2963         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2964           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2965             if (OpDef && OpDef->hasValidDependencies() &&
2966                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2967               // There are no more unscheduled dependencies after
2968               // decrementing, so we can put the dependent instruction
2969               // into the ready list.
2970               ScheduleData *DepBundle = OpDef->FirstInBundle;
2971               assert(!DepBundle->IsScheduled &&
2972                      "already scheduled bundle gets ready");
2973               ReadyList.insert(DepBundle);
2974               LLVM_DEBUG(dbgs()
2975                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2976             }
2977           });
2978         };
2979 
2980         // If BundleMember is a vector bundle, its operands may have been
2981         // reordered during buildTree(). We therefore need to get its operands
2982         // through the TreeEntry.
2983         if (TreeEntry *TE = BundleMember->TE) {
2984           // Need to search for the lane since the tree entry can be reordered.
2985           int Lane = std::distance(TE->Scalars.begin(),
2986                                    find(TE->Scalars, BundleMember->Inst));
2987           assert(Lane >= 0 && "Lane not set");
2988 
2989           // Since vectorization tree is being built recursively this assertion
2990           // ensures that the tree entry has all operands set before reaching
2991           // this code. Couple of exceptions known at the moment are extracts
2992           // where their second (immediate) operand is not added. Since
2993           // immediates do not affect scheduler behavior this is considered
2994           // okay.
2995           auto *In = BundleMember->Inst;
2996           assert(In &&
2997                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2998                   In->getNumOperands() == TE->getNumOperands()) &&
2999                  "Missed TreeEntry operands?");
3000           (void)In; // fake use to avoid build failure when assertions disabled
3001 
3002           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3003                OpIdx != NumOperands; ++OpIdx)
3004             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3005               DecrUnsched(I);
3006         } else {
3007           // If BundleMember is a stand-alone instruction, no operand reordering
3008           // has taken place, so we directly access its operands.
3009           for (Use &U : BundleMember->Inst->operands())
3010             if (auto *I = dyn_cast<Instruction>(U.get()))
3011               DecrUnsched(I);
3012         }
3013         // Handle the memory dependencies.
3014         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3015           if (MemoryDepSD->hasValidDependencies() &&
3016               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3017             // There are no more unscheduled dependencies after decrementing,
3018             // so we can put the dependent instruction into the ready list.
3019             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3020             assert(!DepBundle->IsScheduled &&
3021                    "already scheduled bundle gets ready");
3022             ReadyList.insert(DepBundle);
3023             LLVM_DEBUG(dbgs()
3024                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
3025           }
3026         }
3027         // Handle the control dependencies.
3028         for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3029           if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3030             // There are no more unscheduled dependencies after decrementing,
3031             // so we can put the dependent instruction into the ready list.
3032             ScheduleData *DepBundle = DepSD->FirstInBundle;
3033             assert(!DepBundle->IsScheduled &&
3034                    "already scheduled bundle gets ready");
3035             ReadyList.insert(DepBundle);
3036             LLVM_DEBUG(dbgs()
3037                        << "SLP:    gets ready (ctl): " << *DepBundle << "\n");
3038           }
3039         }
3040 
3041       }
3042     }
3043 
3044     /// Verify basic self consistency properties of the data structure.
3045     void verify() {
3046       if (!ScheduleStart)
3047         return;
3048 
3049       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3050              ScheduleStart->comesBefore(ScheduleEnd) &&
3051              "Not a valid scheduling region?");
3052 
3053       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3054         auto *SD = getScheduleData(I);
3055         if (!SD)
3056           continue;
3057         assert(isInSchedulingRegion(SD) &&
3058                "primary schedule data not in window?");
3059         assert(isInSchedulingRegion(SD->FirstInBundle) &&
3060                "entire bundle in window!");
3061         (void)SD;
3062         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3063       }
3064 
3065       for (auto *SD : ReadyInsts) {
3066         assert(SD->isSchedulingEntity() && SD->isReady() &&
3067                "item in ready list not ready?");
3068         (void)SD;
3069       }
3070     }
3071 
3072     void doForAllOpcodes(Value *V,
3073                          function_ref<void(ScheduleData *SD)> Action) {
3074       if (ScheduleData *SD = getScheduleData(V))
3075         Action(SD);
3076       auto I = ExtraScheduleDataMap.find(V);
3077       if (I != ExtraScheduleDataMap.end())
3078         for (auto &P : I->second)
3079           if (isInSchedulingRegion(P.second))
3080             Action(P.second);
3081     }
3082 
3083     /// Put all instructions into the ReadyList which are ready for scheduling.
3084     template <typename ReadyListType>
3085     void initialFillReadyList(ReadyListType &ReadyList) {
3086       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3087         doForAllOpcodes(I, [&](ScheduleData *SD) {
3088           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3089               SD->isReady()) {
3090             ReadyList.insert(SD);
3091             LLVM_DEBUG(dbgs()
3092                        << "SLP:    initially in ready list: " << *SD << "\n");
3093           }
3094         });
3095       }
3096     }
3097 
3098     /// Build a bundle from the ScheduleData nodes corresponding to the
3099     /// scalar instruction for each lane.
3100     ScheduleData *buildBundle(ArrayRef<Value *> VL);
3101 
3102     /// Checks if a bundle of instructions can be scheduled, i.e. has no
3103     /// cyclic dependencies. This is only a dry-run, no instructions are
3104     /// actually moved at this stage.
3105     /// \returns the scheduling bundle. The returned Optional value is non-None
3106     /// if \p VL is allowed to be scheduled.
3107     Optional<ScheduleData *>
3108     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3109                       const InstructionsState &S);
3110 
3111     /// Un-bundles a group of instructions.
3112     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3113 
3114     /// Allocates schedule data chunk.
3115     ScheduleData *allocateScheduleDataChunks();
3116 
3117     /// Extends the scheduling region so that V is inside the region.
3118     /// \returns true if the region size is within the limit.
3119     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3120 
3121     /// Initialize the ScheduleData structures for new instructions in the
3122     /// scheduling region.
3123     void initScheduleData(Instruction *FromI, Instruction *ToI,
3124                           ScheduleData *PrevLoadStore,
3125                           ScheduleData *NextLoadStore);
3126 
3127     /// Updates the dependency information of a bundle and of all instructions/
3128     /// bundles which depend on the original bundle.
3129     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3130                                BoUpSLP *SLP);
3131 
3132     /// Sets all instruction in the scheduling region to un-scheduled.
3133     void resetSchedule();
3134 
3135     BasicBlock *BB;
3136 
3137     /// Simple memory allocation for ScheduleData.
3138     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3139 
3140     /// The size of a ScheduleData array in ScheduleDataChunks.
3141     int ChunkSize;
3142 
3143     /// The allocator position in the current chunk, which is the last entry
3144     /// of ScheduleDataChunks.
3145     int ChunkPos;
3146 
3147     /// Attaches ScheduleData to Instruction.
3148     /// Note that the mapping survives during all vectorization iterations, i.e.
3149     /// ScheduleData structures are recycled.
3150     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3151 
3152     /// Attaches ScheduleData to Instruction with the leading key.
3153     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3154         ExtraScheduleDataMap;
3155 
3156     /// The ready-list for scheduling (only used for the dry-run).
3157     SetVector<ScheduleData *> ReadyInsts;
3158 
3159     /// The first instruction of the scheduling region.
3160     Instruction *ScheduleStart = nullptr;
3161 
3162     /// The first instruction _after_ the scheduling region.
3163     Instruction *ScheduleEnd = nullptr;
3164 
3165     /// The first memory accessing instruction in the scheduling region
3166     /// (can be null).
3167     ScheduleData *FirstLoadStoreInRegion = nullptr;
3168 
3169     /// The last memory accessing instruction in the scheduling region
3170     /// (can be null).
3171     ScheduleData *LastLoadStoreInRegion = nullptr;
3172 
3173     /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3174     /// region?  Used to optimize the dependence calculation for the
3175     /// common case where there isn't.
3176     bool RegionHasStackSave = false;
3177 
3178     /// The current size of the scheduling region.
3179     int ScheduleRegionSize = 0;
3180 
3181     /// The maximum size allowed for the scheduling region.
3182     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3183 
3184     /// The ID of the scheduling region. For a new vectorization iteration this
3185     /// is incremented which "removes" all ScheduleData from the region.
3186     /// Make sure that the initial SchedulingRegionID is greater than the
3187     /// initial SchedulingRegionID in ScheduleData (which is 0).
3188     int SchedulingRegionID = 1;
3189   };
3190 
3191   /// Attaches the BlockScheduling structures to basic blocks.
3192   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3193 
3194   /// Performs the "real" scheduling. Done before vectorization is actually
3195   /// performed in a basic block.
3196   void scheduleBlock(BlockScheduling *BS);
3197 
3198   /// List of users to ignore during scheduling and that don't need extracting.
3199   const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3200 
3201   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3202   /// sorted SmallVectors of unsigned.
3203   struct OrdersTypeDenseMapInfo {
3204     static OrdersType getEmptyKey() {
3205       OrdersType V;
3206       V.push_back(~1U);
3207       return V;
3208     }
3209 
3210     static OrdersType getTombstoneKey() {
3211       OrdersType V;
3212       V.push_back(~2U);
3213       return V;
3214     }
3215 
3216     static unsigned getHashValue(const OrdersType &V) {
3217       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3218     }
3219 
3220     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3221       return LHS == RHS;
3222     }
3223   };
3224 
3225   // Analysis and block reference.
3226   Function *F;
3227   ScalarEvolution *SE;
3228   TargetTransformInfo *TTI;
3229   TargetLibraryInfo *TLI;
3230   LoopInfo *LI;
3231   DominatorTree *DT;
3232   AssumptionCache *AC;
3233   DemandedBits *DB;
3234   const DataLayout *DL;
3235   OptimizationRemarkEmitter *ORE;
3236 
3237   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3238   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3239 
3240   /// Instruction builder to construct the vectorized tree.
3241   IRBuilder<> Builder;
3242 
3243   /// A map of scalar integer values to the smallest bit width with which they
3244   /// can legally be represented. The values map to (width, signed) pairs,
3245   /// where "width" indicates the minimum bit width and "signed" is True if the
3246   /// value must be signed-extended, rather than zero-extended, back to its
3247   /// original width.
3248   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3249 };
3250 
3251 } // end namespace slpvectorizer
3252 
3253 template <> struct GraphTraits<BoUpSLP *> {
3254   using TreeEntry = BoUpSLP::TreeEntry;
3255 
3256   /// NodeRef has to be a pointer per the GraphWriter.
3257   using NodeRef = TreeEntry *;
3258 
3259   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3260 
3261   /// Add the VectorizableTree to the index iterator to be able to return
3262   /// TreeEntry pointers.
3263   struct ChildIteratorType
3264       : public iterator_adaptor_base<
3265             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3266     ContainerTy &VectorizableTree;
3267 
3268     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3269                       ContainerTy &VT)
3270         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3271 
3272     NodeRef operator*() { return I->UserTE; }
3273   };
3274 
3275   static NodeRef getEntryNode(BoUpSLP &R) {
3276     return R.VectorizableTree[0].get();
3277   }
3278 
3279   static ChildIteratorType child_begin(NodeRef N) {
3280     return {N->UserTreeIndices.begin(), N->Container};
3281   }
3282 
3283   static ChildIteratorType child_end(NodeRef N) {
3284     return {N->UserTreeIndices.end(), N->Container};
3285   }
3286 
3287   /// For the node iterator we just need to turn the TreeEntry iterator into a
3288   /// TreeEntry* iterator so that it dereferences to NodeRef.
3289   class nodes_iterator {
3290     using ItTy = ContainerTy::iterator;
3291     ItTy It;
3292 
3293   public:
3294     nodes_iterator(const ItTy &It2) : It(It2) {}
3295     NodeRef operator*() { return It->get(); }
3296     nodes_iterator operator++() {
3297       ++It;
3298       return *this;
3299     }
3300     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3301   };
3302 
3303   static nodes_iterator nodes_begin(BoUpSLP *R) {
3304     return nodes_iterator(R->VectorizableTree.begin());
3305   }
3306 
3307   static nodes_iterator nodes_end(BoUpSLP *R) {
3308     return nodes_iterator(R->VectorizableTree.end());
3309   }
3310 
3311   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3312 };
3313 
3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3315   using TreeEntry = BoUpSLP::TreeEntry;
3316 
3317   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3318 
3319   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3320     std::string Str;
3321     raw_string_ostream OS(Str);
3322     if (isSplat(Entry->Scalars))
3323       OS << "<splat> ";
3324     for (auto V : Entry->Scalars) {
3325       OS << *V;
3326       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3327             return EU.Scalar == V;
3328           }))
3329         OS << " <extract>";
3330       OS << "\n";
3331     }
3332     return Str;
3333   }
3334 
3335   static std::string getNodeAttributes(const TreeEntry *Entry,
3336                                        const BoUpSLP *) {
3337     if (Entry->State == TreeEntry::NeedToGather)
3338       return "color=red";
3339     return "";
3340   }
3341 };
3342 
3343 } // end namespace llvm
3344 
3345 BoUpSLP::~BoUpSLP() {
3346   SmallVector<WeakTrackingVH> DeadInsts;
3347   for (auto *I : DeletedInstructions) {
3348     for (Use &U : I->operands()) {
3349       auto *Op = dyn_cast<Instruction>(U.get());
3350       if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3351           wouldInstructionBeTriviallyDead(Op, TLI))
3352         DeadInsts.emplace_back(Op);
3353     }
3354     I->dropAllReferences();
3355   }
3356   for (auto *I : DeletedInstructions) {
3357     assert(I->use_empty() &&
3358            "trying to erase instruction with users.");
3359     I->eraseFromParent();
3360   }
3361 
3362   // Cleanup any dead scalar code feeding the vectorized instructions
3363   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3364 
3365 #ifdef EXPENSIVE_CHECKS
3366   // If we could guarantee that this call is not extremely slow, we could
3367   // remove the ifdef limitation (see PR47712).
3368   assert(!verifyFunction(*F, &dbgs()));
3369 #endif
3370 }
3371 
3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3373 /// contains original mask for the scalars reused in the node. Procedure
3374 /// transform this mask in accordance with the given \p Mask.
3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3376   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3377          "Expected non-empty mask.");
3378   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3379   Prev.swap(Reuses);
3380   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3381     if (Mask[I] != UndefMaskElem)
3382       Reuses[Mask[I]] = Prev[I];
3383 }
3384 
3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3386 /// the original order of the scalars. Procedure transforms the provided order
3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3388 /// identity order, \p Order is cleared.
3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3390   assert(!Mask.empty() && "Expected non-empty mask.");
3391   SmallVector<int> MaskOrder;
3392   if (Order.empty()) {
3393     MaskOrder.resize(Mask.size());
3394     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3395   } else {
3396     inversePermutation(Order, MaskOrder);
3397   }
3398   reorderReuses(MaskOrder, Mask);
3399   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3400     Order.clear();
3401     return;
3402   }
3403   Order.assign(Mask.size(), Mask.size());
3404   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3405     if (MaskOrder[I] != UndefMaskElem)
3406       Order[MaskOrder[I]] = I;
3407   fixupOrderingIndices(Order);
3408 }
3409 
3410 Optional<BoUpSLP::OrdersType>
3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3412   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3413   unsigned NumScalars = TE.Scalars.size();
3414   OrdersType CurrentOrder(NumScalars, NumScalars);
3415   SmallVector<int> Positions;
3416   SmallBitVector UsedPositions(NumScalars);
3417   const TreeEntry *STE = nullptr;
3418   // Try to find all gathered scalars that are gets vectorized in other
3419   // vectorize node. Here we can have only one single tree vector node to
3420   // correctly identify order of the gathered scalars.
3421   for (unsigned I = 0; I < NumScalars; ++I) {
3422     Value *V = TE.Scalars[I];
3423     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3424       continue;
3425     if (const auto *LocalSTE = getTreeEntry(V)) {
3426       if (!STE)
3427         STE = LocalSTE;
3428       else if (STE != LocalSTE)
3429         // Take the order only from the single vector node.
3430         return None;
3431       unsigned Lane =
3432           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3433       if (Lane >= NumScalars)
3434         return None;
3435       if (CurrentOrder[Lane] != NumScalars) {
3436         if (Lane != I)
3437           continue;
3438         UsedPositions.reset(CurrentOrder[Lane]);
3439       }
3440       // The partial identity (where only some elements of the gather node are
3441       // in the identity order) is good.
3442       CurrentOrder[Lane] = I;
3443       UsedPositions.set(I);
3444     }
3445   }
3446   // Need to keep the order if we have a vector entry and at least 2 scalars or
3447   // the vectorized entry has just 2 scalars.
3448   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3449     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3450       for (unsigned I = 0; I < NumScalars; ++I)
3451         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3452           return false;
3453       return true;
3454     };
3455     if (IsIdentityOrder(CurrentOrder)) {
3456       CurrentOrder.clear();
3457       return CurrentOrder;
3458     }
3459     auto *It = CurrentOrder.begin();
3460     for (unsigned I = 0; I < NumScalars;) {
3461       if (UsedPositions.test(I)) {
3462         ++I;
3463         continue;
3464       }
3465       if (*It == NumScalars) {
3466         *It = I;
3467         ++I;
3468       }
3469       ++It;
3470     }
3471     return CurrentOrder;
3472   }
3473   return None;
3474 }
3475 
3476 namespace {
3477 /// Tracks the state we can represent the loads in the given sequence.
3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3479 } // anonymous namespace
3480 
3481 /// Checks if the given array of loads can be represented as a vectorized,
3482 /// scatter or just simple gather.
3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3484                                     const TargetTransformInfo &TTI,
3485                                     const DataLayout &DL, ScalarEvolution &SE,
3486                                     LoopInfo &LI,
3487                                     SmallVectorImpl<unsigned> &Order,
3488                                     SmallVectorImpl<Value *> &PointerOps) {
3489   // Check that a vectorized load would load the same memory as a scalar
3490   // load. For example, we don't want to vectorize loads that are smaller
3491   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3492   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3493   // from such a struct, we read/write packed bits disagreeing with the
3494   // unvectorized version.
3495   Type *ScalarTy = VL0->getType();
3496 
3497   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3498     return LoadsState::Gather;
3499 
3500   // Make sure all loads in the bundle are simple - we can't vectorize
3501   // atomic or volatile loads.
3502   PointerOps.clear();
3503   PointerOps.resize(VL.size());
3504   auto *POIter = PointerOps.begin();
3505   for (Value *V : VL) {
3506     auto *L = cast<LoadInst>(V);
3507     if (!L->isSimple())
3508       return LoadsState::Gather;
3509     *POIter = L->getPointerOperand();
3510     ++POIter;
3511   }
3512 
3513   Order.clear();
3514   // Check the order of pointer operands or that all pointers are the same.
3515   bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3516   if (IsSorted || all_of(PointerOps, [&PointerOps](Value *P) {
3517         if (getUnderlyingObject(P) != getUnderlyingObject(PointerOps.front()))
3518           return false;
3519         auto *GEP = dyn_cast<GetElementPtrInst>(P);
3520         if (!GEP)
3521           return false;
3522         auto *GEP0 = cast<GetElementPtrInst>(PointerOps.front());
3523         return GEP->getNumOperands() == 2 &&
3524                ((isConstant(GEP->getOperand(1)) &&
3525                  isConstant(GEP0->getOperand(1))) ||
3526                 getSameOpcode({GEP->getOperand(1), GEP0->getOperand(1)})
3527                     .getOpcode());
3528       })) {
3529     if (IsSorted) {
3530       Value *Ptr0;
3531       Value *PtrN;
3532       if (Order.empty()) {
3533         Ptr0 = PointerOps.front();
3534         PtrN = PointerOps.back();
3535       } else {
3536         Ptr0 = PointerOps[Order.front()];
3537         PtrN = PointerOps[Order.back()];
3538       }
3539       Optional<int> Diff =
3540           getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3541       // Check that the sorted loads are consecutive.
3542       if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3543         return LoadsState::Vectorize;
3544     }
3545     // TODO: need to improve analysis of the pointers, if not all of them are
3546     // GEPs or have > 2 operands, we end up with a gather node, which just
3547     // increases the cost.
3548     Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3549     bool ProfitableGatherPointers =
3550         static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3551           return L && L->isLoopInvariant(V);
3552         })) <= VL.size() / 2 && VL.size() > 2;
3553     if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3554           auto *GEP = dyn_cast<GetElementPtrInst>(P);
3555           return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3556                  (GEP && GEP->getNumOperands() == 2);
3557         })) {
3558       Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3559       for (Value *V : VL)
3560         CommonAlignment =
3561             std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
3562       auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3563       if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3564           !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3565         return LoadsState::ScatterVectorize;
3566     }
3567   }
3568 
3569   return LoadsState::Gather;
3570 }
3571 
3572 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3573                             const DataLayout &DL, ScalarEvolution &SE,
3574                             SmallVectorImpl<unsigned> &SortedIndices) {
3575   assert(llvm::all_of(
3576              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3577          "Expected list of pointer operands.");
3578   // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3579   // Ptr into, sort and return the sorted indices with values next to one
3580   // another.
3581   MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3582   Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3583 
3584   unsigned Cnt = 1;
3585   for (Value *Ptr : VL.drop_front()) {
3586     bool Found = any_of(Bases, [&](auto &Base) {
3587       Optional<int> Diff =
3588           getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3589                           /*StrictCheck=*/true);
3590       if (!Diff)
3591         return false;
3592 
3593       Base.second.emplace_back(Ptr, *Diff, Cnt++);
3594       return true;
3595     });
3596 
3597     if (!Found) {
3598       // If we haven't found enough to usefully cluster, return early.
3599       if (Bases.size() > VL.size() / 2 - 1)
3600         return false;
3601 
3602       // Not found already - add a new Base
3603       Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3604     }
3605   }
3606 
3607   // For each of the bases sort the pointers by Offset and check if any of the
3608   // base become consecutively allocated.
3609   bool AnyConsecutive = false;
3610   for (auto &Base : Bases) {
3611     auto &Vec = Base.second;
3612     if (Vec.size() > 1) {
3613       llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3614                                 const std::tuple<Value *, int, unsigned> &Y) {
3615         return std::get<1>(X) < std::get<1>(Y);
3616       });
3617       int InitialOffset = std::get<1>(Vec[0]);
3618       AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
3619         return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3620       });
3621     }
3622   }
3623 
3624   // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3625   SortedIndices.clear();
3626   if (!AnyConsecutive)
3627     return false;
3628 
3629   for (auto &Base : Bases) {
3630     for (auto &T : Base.second)
3631       SortedIndices.push_back(std::get<2>(T));
3632   }
3633 
3634   assert(SortedIndices.size() == VL.size() &&
3635          "Expected SortedIndices to be the size of VL");
3636   return true;
3637 }
3638 
3639 Optional<BoUpSLP::OrdersType>
3640 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
3641   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3642   Type *ScalarTy = TE.Scalars[0]->getType();
3643 
3644   SmallVector<Value *> Ptrs;
3645   Ptrs.reserve(TE.Scalars.size());
3646   for (Value *V : TE.Scalars) {
3647     auto *L = dyn_cast<LoadInst>(V);
3648     if (!L || !L->isSimple())
3649       return None;
3650     Ptrs.push_back(L->getPointerOperand());
3651   }
3652 
3653   BoUpSLP::OrdersType Order;
3654   if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
3655     return Order;
3656   return None;
3657 }
3658 
3659 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3660                                                          bool TopToBottom) {
3661   // No need to reorder if need to shuffle reuses, still need to shuffle the
3662   // node.
3663   if (!TE.ReuseShuffleIndices.empty())
3664     return None;
3665   if (TE.State == TreeEntry::Vectorize &&
3666       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3667        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3668       !TE.isAltShuffle())
3669     return TE.ReorderIndices;
3670   if (TE.State == TreeEntry::NeedToGather) {
3671     // TODO: add analysis of other gather nodes with extractelement
3672     // instructions and other values/instructions, not only undefs.
3673     if (((TE.getOpcode() == Instruction::ExtractElement &&
3674           !TE.isAltShuffle()) ||
3675          (all_of(TE.Scalars,
3676                  [](Value *V) {
3677                    return isa<UndefValue, ExtractElementInst>(V);
3678                  }) &&
3679           any_of(TE.Scalars,
3680                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3681         all_of(TE.Scalars,
3682                [](Value *V) {
3683                  auto *EE = dyn_cast<ExtractElementInst>(V);
3684                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3685                }) &&
3686         allSameType(TE.Scalars)) {
3687       // Check that gather of extractelements can be represented as
3688       // just a shuffle of a single vector.
3689       OrdersType CurrentOrder;
3690       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3691       if (Reuse || !CurrentOrder.empty()) {
3692         if (!CurrentOrder.empty())
3693           fixupOrderingIndices(CurrentOrder);
3694         return CurrentOrder;
3695       }
3696     }
3697     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3698       return CurrentOrder;
3699     if (TE.Scalars.size() >= 4)
3700       if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
3701         return Order;
3702   }
3703   return None;
3704 }
3705 
3706 void BoUpSLP::reorderTopToBottom() {
3707   // Maps VF to the graph nodes.
3708   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3709   // ExtractElement gather nodes which can be vectorized and need to handle
3710   // their ordering.
3711   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3712 
3713   // AltShuffles can also have a preferred ordering that leads to fewer
3714   // instructions, e.g., the addsub instruction in x86.
3715   DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
3716 
3717   // Maps a TreeEntry to the reorder indices of external users.
3718   DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
3719       ExternalUserReorderMap;
3720   // FIXME: Workaround for syntax error reported by MSVC buildbots.
3721   TargetTransformInfo &TTIRef = *TTI;
3722   // Find all reorderable nodes with the given VF.
3723   // Currently the are vectorized stores,loads,extracts + some gathering of
3724   // extracts.
3725   for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
3726                               &GathersToOrders, &ExternalUserReorderMap,
3727                               &AltShufflesToOrders](
3728                                  const std::unique_ptr<TreeEntry> &TE) {
3729     // Look for external users that will probably be vectorized.
3730     SmallVector<OrdersType, 1> ExternalUserReorderIndices =
3731         findExternalStoreUsersReorderIndices(TE.get());
3732     if (!ExternalUserReorderIndices.empty()) {
3733       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3734       ExternalUserReorderMap.try_emplace(TE.get(),
3735                                          std::move(ExternalUserReorderIndices));
3736     }
3737 
3738     // Patterns like [fadd,fsub] can be combined into a single instruction in
3739     // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
3740     // to take into account their order when looking for the most used order.
3741     if (TE->isAltShuffle()) {
3742       VectorType *VecTy =
3743           FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
3744       unsigned Opcode0 = TE->getOpcode();
3745       unsigned Opcode1 = TE->getAltOpcode();
3746       // The opcode mask selects between the two opcodes.
3747       SmallBitVector OpcodeMask(TE->Scalars.size(), 0);
3748       for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
3749         if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
3750           OpcodeMask.set(Lane);
3751       // If this pattern is supported by the target then we consider the order.
3752       if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
3753         VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3754         AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
3755       }
3756       // TODO: Check the reverse order too.
3757     }
3758 
3759     if (Optional<OrdersType> CurrentOrder =
3760             getReorderingData(*TE, /*TopToBottom=*/true)) {
3761       // Do not include ordering for nodes used in the alt opcode vectorization,
3762       // better to reorder them during bottom-to-top stage. If follow the order
3763       // here, it causes reordering of the whole graph though actually it is
3764       // profitable just to reorder the subgraph that starts from the alternate
3765       // opcode vectorization node. Such nodes already end-up with the shuffle
3766       // instruction and it is just enough to change this shuffle rather than
3767       // rotate the scalars for the whole graph.
3768       unsigned Cnt = 0;
3769       const TreeEntry *UserTE = TE.get();
3770       while (UserTE && Cnt < RecursionMaxDepth) {
3771         if (UserTE->UserTreeIndices.size() != 1)
3772           break;
3773         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3774               return EI.UserTE->State == TreeEntry::Vectorize &&
3775                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3776             }))
3777           return;
3778         UserTE = UserTE->UserTreeIndices.back().UserTE;
3779         ++Cnt;
3780       }
3781       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3782       if (TE->State != TreeEntry::Vectorize)
3783         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3784     }
3785   });
3786 
3787   // Reorder the graph nodes according to their vectorization factor.
3788   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3789        VF /= 2) {
3790     auto It = VFToOrderedEntries.find(VF);
3791     if (It == VFToOrderedEntries.end())
3792       continue;
3793     // Try to find the most profitable order. We just are looking for the most
3794     // used order and reorder scalar elements in the nodes according to this
3795     // mostly used order.
3796     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3797     // All operands are reordered and used only in this node - propagate the
3798     // most used order to the user node.
3799     MapVector<OrdersType, unsigned,
3800               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3801         OrdersUses;
3802     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3803     for (const TreeEntry *OpTE : OrderedEntries) {
3804       // No need to reorder this nodes, still need to extend and to use shuffle,
3805       // just need to merge reordering shuffle and the reuse shuffle.
3806       if (!OpTE->ReuseShuffleIndices.empty())
3807         continue;
3808       // Count number of orders uses.
3809       const auto &Order = [OpTE, &GathersToOrders,
3810                            &AltShufflesToOrders]() -> const OrdersType & {
3811         if (OpTE->State == TreeEntry::NeedToGather) {
3812           auto It = GathersToOrders.find(OpTE);
3813           if (It != GathersToOrders.end())
3814             return It->second;
3815         }
3816         if (OpTE->isAltShuffle()) {
3817           auto It = AltShufflesToOrders.find(OpTE);
3818           if (It != AltShufflesToOrders.end())
3819             return It->second;
3820         }
3821         return OpTE->ReorderIndices;
3822       }();
3823       // First consider the order of the external scalar users.
3824       auto It = ExternalUserReorderMap.find(OpTE);
3825       if (It != ExternalUserReorderMap.end()) {
3826         const auto &ExternalUserReorderIndices = It->second;
3827         for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
3828           ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
3829         // No other useful reorder data in this entry.
3830         if (Order.empty())
3831           continue;
3832       }
3833       // Stores actually store the mask, not the order, need to invert.
3834       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3835           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3836         SmallVector<int> Mask;
3837         inversePermutation(Order, Mask);
3838         unsigned E = Order.size();
3839         OrdersType CurrentOrder(E, E);
3840         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3841           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3842         });
3843         fixupOrderingIndices(CurrentOrder);
3844         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3845       } else {
3846         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3847       }
3848     }
3849     // Set order of the user node.
3850     if (OrdersUses.empty())
3851       continue;
3852     // Choose the most used order.
3853     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3854     unsigned Cnt = OrdersUses.front().second;
3855     for (const auto &Pair : drop_begin(OrdersUses)) {
3856       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3857         BestOrder = Pair.first;
3858         Cnt = Pair.second;
3859       }
3860     }
3861     // Set order of the user node.
3862     if (BestOrder.empty())
3863       continue;
3864     SmallVector<int> Mask;
3865     inversePermutation(BestOrder, Mask);
3866     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3867     unsigned E = BestOrder.size();
3868     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3869       return I < E ? static_cast<int>(I) : UndefMaskElem;
3870     });
3871     // Do an actual reordering, if profitable.
3872     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3873       // Just do the reordering for the nodes with the given VF.
3874       if (TE->Scalars.size() != VF) {
3875         if (TE->ReuseShuffleIndices.size() == VF) {
3876           // Need to reorder the reuses masks of the operands with smaller VF to
3877           // be able to find the match between the graph nodes and scalar
3878           // operands of the given node during vectorization/cost estimation.
3879           assert(all_of(TE->UserTreeIndices,
3880                         [VF, &TE](const EdgeInfo &EI) {
3881                           return EI.UserTE->Scalars.size() == VF ||
3882                                  EI.UserTE->Scalars.size() ==
3883                                      TE->Scalars.size();
3884                         }) &&
3885                  "All users must be of VF size.");
3886           // Update ordering of the operands with the smaller VF than the given
3887           // one.
3888           reorderReuses(TE->ReuseShuffleIndices, Mask);
3889         }
3890         continue;
3891       }
3892       if (TE->State == TreeEntry::Vectorize &&
3893           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3894               InsertElementInst>(TE->getMainOp()) &&
3895           !TE->isAltShuffle()) {
3896         // Build correct orders for extract{element,value}, loads and
3897         // stores.
3898         reorderOrder(TE->ReorderIndices, Mask);
3899         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3900           TE->reorderOperands(Mask);
3901       } else {
3902         // Reorder the node and its operands.
3903         TE->reorderOperands(Mask);
3904         assert(TE->ReorderIndices.empty() &&
3905                "Expected empty reorder sequence.");
3906         reorderScalars(TE->Scalars, Mask);
3907       }
3908       if (!TE->ReuseShuffleIndices.empty()) {
3909         // Apply reversed order to keep the original ordering of the reused
3910         // elements to avoid extra reorder indices shuffling.
3911         OrdersType CurrentOrder;
3912         reorderOrder(CurrentOrder, MaskOrder);
3913         SmallVector<int> NewReuses;
3914         inversePermutation(CurrentOrder, NewReuses);
3915         addMask(NewReuses, TE->ReuseShuffleIndices);
3916         TE->ReuseShuffleIndices.swap(NewReuses);
3917       }
3918     }
3919   }
3920 }
3921 
3922 bool BoUpSLP::canReorderOperands(
3923     TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
3924     ArrayRef<TreeEntry *> ReorderableGathers,
3925     SmallVectorImpl<TreeEntry *> &GatherOps) {
3926   for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
3927     if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3928           return OpData.first == I &&
3929                  OpData.second->State == TreeEntry::Vectorize;
3930         }))
3931       continue;
3932     if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
3933       // Do not reorder if operand node is used by many user nodes.
3934       if (any_of(TE->UserTreeIndices,
3935                  [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
3936         return false;
3937       // Add the node to the list of the ordered nodes with the identity
3938       // order.
3939       Edges.emplace_back(I, TE);
3940       // Add ScatterVectorize nodes to the list of operands, where just
3941       // reordering of the scalars is required. Similar to the gathers, so
3942       // simply add to the list of gathered ops.
3943       // If there are reused scalars, process this node as a regular vectorize
3944       // node, just reorder reuses mask.
3945       if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty())
3946         GatherOps.push_back(TE);
3947       continue;
3948     }
3949     TreeEntry *Gather = nullptr;
3950     if (count_if(ReorderableGathers,
3951                  [&Gather, UserTE, I](TreeEntry *TE) {
3952                    assert(TE->State != TreeEntry::Vectorize &&
3953                           "Only non-vectorized nodes are expected.");
3954                    if (any_of(TE->UserTreeIndices,
3955                               [UserTE, I](const EdgeInfo &EI) {
3956                                 return EI.UserTE == UserTE && EI.EdgeIdx == I;
3957                               })) {
3958                      assert(TE->isSame(UserTE->getOperand(I)) &&
3959                             "Operand entry does not match operands.");
3960                      Gather = TE;
3961                      return true;
3962                    }
3963                    return false;
3964                  }) > 1 &&
3965         !all_of(UserTE->getOperand(I), isConstant))
3966       return false;
3967     if (Gather)
3968       GatherOps.push_back(Gather);
3969   }
3970   return true;
3971 }
3972 
3973 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3974   SetVector<TreeEntry *> OrderedEntries;
3975   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3976   // Find all reorderable leaf nodes with the given VF.
3977   // Currently the are vectorized loads,extracts without alternate operands +
3978   // some gathering of extracts.
3979   SmallVector<TreeEntry *> NonVectorized;
3980   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3981                               &NonVectorized](
3982                                  const std::unique_ptr<TreeEntry> &TE) {
3983     if (TE->State != TreeEntry::Vectorize)
3984       NonVectorized.push_back(TE.get());
3985     if (Optional<OrdersType> CurrentOrder =
3986             getReorderingData(*TE, /*TopToBottom=*/false)) {
3987       OrderedEntries.insert(TE.get());
3988       if (TE->State != TreeEntry::Vectorize)
3989         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3990     }
3991   });
3992 
3993   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3994   // I.e., if the node has operands, that are reordered, try to make at least
3995   // one operand order in the natural order and reorder others + reorder the
3996   // user node itself.
3997   SmallPtrSet<const TreeEntry *, 4> Visited;
3998   while (!OrderedEntries.empty()) {
3999     // 1. Filter out only reordered nodes.
4000     // 2. If the entry has multiple uses - skip it and jump to the next node.
4001     DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
4002     SmallVector<TreeEntry *> Filtered;
4003     for (TreeEntry *TE : OrderedEntries) {
4004       if (!(TE->State == TreeEntry::Vectorize ||
4005             (TE->State == TreeEntry::NeedToGather &&
4006              GathersToOrders.count(TE))) ||
4007           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4008           !all_of(drop_begin(TE->UserTreeIndices),
4009                   [TE](const EdgeInfo &EI) {
4010                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4011                   }) ||
4012           !Visited.insert(TE).second) {
4013         Filtered.push_back(TE);
4014         continue;
4015       }
4016       // Build a map between user nodes and their operands order to speedup
4017       // search. The graph currently does not provide this dependency directly.
4018       for (EdgeInfo &EI : TE->UserTreeIndices) {
4019         TreeEntry *UserTE = EI.UserTE;
4020         auto It = Users.find(UserTE);
4021         if (It == Users.end())
4022           It = Users.insert({UserTE, {}}).first;
4023         It->second.emplace_back(EI.EdgeIdx, TE);
4024       }
4025     }
4026     // Erase filtered entries.
4027     for_each(Filtered,
4028              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
4029     SmallVector<
4030         std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4031         UsersVec(Users.begin(), Users.end());
4032     sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4033       return Data1.first->Idx > Data2.first->Idx;
4034     });
4035     for (auto &Data : UsersVec) {
4036       // Check that operands are used only in the User node.
4037       SmallVector<TreeEntry *> GatherOps;
4038       if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4039                               GatherOps)) {
4040         for_each(Data.second,
4041                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4042                    OrderedEntries.remove(Op.second);
4043                  });
4044         continue;
4045       }
4046       // All operands are reordered and used only in this node - propagate the
4047       // most used order to the user node.
4048       MapVector<OrdersType, unsigned,
4049                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4050           OrdersUses;
4051       // Do the analysis for each tree entry only once, otherwise the order of
4052       // the same node my be considered several times, though might be not
4053       // profitable.
4054       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4055       SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4056       for (const auto &Op : Data.second) {
4057         TreeEntry *OpTE = Op.second;
4058         if (!VisitedOps.insert(OpTE).second)
4059           continue;
4060         if (!OpTE->ReuseShuffleIndices.empty())
4061           continue;
4062         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4063           if (OpTE->State == TreeEntry::NeedToGather)
4064             return GathersToOrders.find(OpTE)->second;
4065           return OpTE->ReorderIndices;
4066         }();
4067         unsigned NumOps = count_if(
4068             Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4069               return P.second == OpTE;
4070             });
4071         // Stores actually store the mask, not the order, need to invert.
4072         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4073             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4074           SmallVector<int> Mask;
4075           inversePermutation(Order, Mask);
4076           unsigned E = Order.size();
4077           OrdersType CurrentOrder(E, E);
4078           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4079             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
4080           });
4081           fixupOrderingIndices(CurrentOrder);
4082           OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4083               NumOps;
4084         } else {
4085           OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4086         }
4087         auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4088         const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4089                                             const TreeEntry *TE) {
4090           if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4091               (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4092               (IgnoreReorder && TE->Idx == 0))
4093             return true;
4094           if (TE->State == TreeEntry::NeedToGather) {
4095             auto It = GathersToOrders.find(TE);
4096             if (It != GathersToOrders.end())
4097               return !It->second.empty();
4098             return true;
4099           }
4100           return false;
4101         };
4102         for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4103           TreeEntry *UserTE = EI.UserTE;
4104           if (!VisitedUsers.insert(UserTE).second)
4105             continue;
4106           // May reorder user node if it requires reordering, has reused
4107           // scalars, is an alternate op vectorize node or its op nodes require
4108           // reordering.
4109           if (AllowsReordering(UserTE))
4110             continue;
4111           // Check if users allow reordering.
4112           // Currently look up just 1 level of operands to avoid increase of
4113           // the compile time.
4114           // Profitable to reorder if definitely more operands allow
4115           // reordering rather than those with natural order.
4116           ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4117           if (static_cast<unsigned>(count_if(
4118                   Ops, [UserTE, &AllowsReordering](
4119                            const std::pair<unsigned, TreeEntry *> &Op) {
4120                     return AllowsReordering(Op.second) &&
4121                            all_of(Op.second->UserTreeIndices,
4122                                   [UserTE](const EdgeInfo &EI) {
4123                                     return EI.UserTE == UserTE;
4124                                   });
4125                   })) <= Ops.size() / 2)
4126             ++Res.first->second;
4127         }
4128       }
4129       // If no orders - skip current nodes and jump to the next one, if any.
4130       if (OrdersUses.empty()) {
4131         for_each(Data.second,
4132                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4133                    OrderedEntries.remove(Op.second);
4134                  });
4135         continue;
4136       }
4137       // Choose the best order.
4138       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4139       unsigned Cnt = OrdersUses.front().second;
4140       for (const auto &Pair : drop_begin(OrdersUses)) {
4141         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4142           BestOrder = Pair.first;
4143           Cnt = Pair.second;
4144         }
4145       }
4146       // Set order of the user node (reordering of operands and user nodes).
4147       if (BestOrder.empty()) {
4148         for_each(Data.second,
4149                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4150                    OrderedEntries.remove(Op.second);
4151                  });
4152         continue;
4153       }
4154       // Erase operands from OrderedEntries list and adjust their orders.
4155       VisitedOps.clear();
4156       SmallVector<int> Mask;
4157       inversePermutation(BestOrder, Mask);
4158       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4159       unsigned E = BestOrder.size();
4160       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4161         return I < E ? static_cast<int>(I) : UndefMaskElem;
4162       });
4163       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4164         TreeEntry *TE = Op.second;
4165         OrderedEntries.remove(TE);
4166         if (!VisitedOps.insert(TE).second)
4167           continue;
4168         if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4169           // Just reorder reuses indices.
4170           reorderReuses(TE->ReuseShuffleIndices, Mask);
4171           continue;
4172         }
4173         // Gathers are processed separately.
4174         if (TE->State != TreeEntry::Vectorize)
4175           continue;
4176         assert((BestOrder.size() == TE->ReorderIndices.size() ||
4177                 TE->ReorderIndices.empty()) &&
4178                "Non-matching sizes of user/operand entries.");
4179         reorderOrder(TE->ReorderIndices, Mask);
4180         if (IgnoreReorder && TE == VectorizableTree.front().get())
4181           IgnoreReorder = false;
4182       }
4183       // For gathers just need to reorder its scalars.
4184       for (TreeEntry *Gather : GatherOps) {
4185         assert(Gather->ReorderIndices.empty() &&
4186                "Unexpected reordering of gathers.");
4187         if (!Gather->ReuseShuffleIndices.empty()) {
4188           // Just reorder reuses indices.
4189           reorderReuses(Gather->ReuseShuffleIndices, Mask);
4190           continue;
4191         }
4192         reorderScalars(Gather->Scalars, Mask);
4193         OrderedEntries.remove(Gather);
4194       }
4195       // Reorder operands of the user node and set the ordering for the user
4196       // node itself.
4197       if (Data.first->State != TreeEntry::Vectorize ||
4198           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4199               Data.first->getMainOp()) ||
4200           Data.first->isAltShuffle())
4201         Data.first->reorderOperands(Mask);
4202       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4203           Data.first->isAltShuffle()) {
4204         reorderScalars(Data.first->Scalars, Mask);
4205         reorderOrder(Data.first->ReorderIndices, MaskOrder);
4206         if (Data.first->ReuseShuffleIndices.empty() &&
4207             !Data.first->ReorderIndices.empty() &&
4208             !Data.first->isAltShuffle()) {
4209           // Insert user node to the list to try to sink reordering deeper in
4210           // the graph.
4211           OrderedEntries.insert(Data.first);
4212         }
4213       } else {
4214         reorderOrder(Data.first->ReorderIndices, Mask);
4215       }
4216     }
4217   }
4218   // If the reordering is unnecessary, just remove the reorder.
4219   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4220       VectorizableTree.front()->ReuseShuffleIndices.empty())
4221     VectorizableTree.front()->ReorderIndices.clear();
4222 }
4223 
4224 void BoUpSLP::buildExternalUses(
4225     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4226   // Collect the values that we need to extract from the tree.
4227   for (auto &TEPtr : VectorizableTree) {
4228     TreeEntry *Entry = TEPtr.get();
4229 
4230     // No need to handle users of gathered values.
4231     if (Entry->State == TreeEntry::NeedToGather)
4232       continue;
4233 
4234     // For each lane:
4235     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4236       Value *Scalar = Entry->Scalars[Lane];
4237       int FoundLane = Entry->findLaneForValue(Scalar);
4238 
4239       // Check if the scalar is externally used as an extra arg.
4240       auto ExtI = ExternallyUsedValues.find(Scalar);
4241       if (ExtI != ExternallyUsedValues.end()) {
4242         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4243                           << Lane << " from " << *Scalar << ".\n");
4244         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4245       }
4246       for (User *U : Scalar->users()) {
4247         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4248 
4249         Instruction *UserInst = dyn_cast<Instruction>(U);
4250         if (!UserInst)
4251           continue;
4252 
4253         if (isDeleted(UserInst))
4254           continue;
4255 
4256         // Skip in-tree scalars that become vectors
4257         if (TreeEntry *UseEntry = getTreeEntry(U)) {
4258           Value *UseScalar = UseEntry->Scalars[0];
4259           // Some in-tree scalars will remain as scalar in vectorized
4260           // instructions. If that is the case, the one in Lane 0 will
4261           // be used.
4262           if (UseScalar != U ||
4263               UseEntry->State == TreeEntry::ScatterVectorize ||
4264               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4265             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4266                               << ".\n");
4267             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4268             continue;
4269           }
4270         }
4271 
4272         // Ignore users in the user ignore list.
4273         if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4274           continue;
4275 
4276         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
4277                           << Lane << " from " << *Scalar << ".\n");
4278         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4279       }
4280     }
4281   }
4282 }
4283 
4284 DenseMap<Value *, SmallVector<StoreInst *, 4>>
4285 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4286   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
4287   for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4288     Value *V = TE->Scalars[Lane];
4289     // To save compilation time we don't visit if we have too many users.
4290     static constexpr unsigned UsersLimit = 4;
4291     if (V->hasNUsesOrMore(UsersLimit))
4292       break;
4293 
4294     // Collect stores per pointer object.
4295     for (User *U : V->users()) {
4296       auto *SI = dyn_cast<StoreInst>(U);
4297       if (SI == nullptr || !SI->isSimple() ||
4298           !isValidElementType(SI->getValueOperand()->getType()))
4299         continue;
4300       // Skip entry if already
4301       if (getTreeEntry(U))
4302         continue;
4303 
4304       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4305       auto &StoresVec = PtrToStoresMap[Ptr];
4306       // For now just keep one store per pointer object per lane.
4307       // TODO: Extend this to support multiple stores per pointer per lane
4308       if (StoresVec.size() > Lane)
4309         continue;
4310       // Skip if in different BBs.
4311       if (!StoresVec.empty() &&
4312           SI->getParent() != StoresVec.back()->getParent())
4313         continue;
4314       // Make sure that the stores are of the same type.
4315       if (!StoresVec.empty() &&
4316           SI->getValueOperand()->getType() !=
4317               StoresVec.back()->getValueOperand()->getType())
4318         continue;
4319       StoresVec.push_back(SI);
4320     }
4321   }
4322   return PtrToStoresMap;
4323 }
4324 
4325 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
4326                             OrdersType &ReorderIndices) const {
4327   // We check whether the stores in StoreVec can form a vector by sorting them
4328   // and checking whether they are consecutive.
4329 
4330   // To avoid calling getPointersDiff() while sorting we create a vector of
4331   // pairs {store, offset from first} and sort this instead.
4332   SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
4333   StoreInst *S0 = StoresVec[0];
4334   StoreOffsetVec[0] = {S0, 0};
4335   Type *S0Ty = S0->getValueOperand()->getType();
4336   Value *S0Ptr = S0->getPointerOperand();
4337   for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
4338     StoreInst *SI = StoresVec[Idx];
4339     Optional<int> Diff =
4340         getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
4341                         SI->getPointerOperand(), *DL, *SE,
4342                         /*StrictCheck=*/true);
4343     // We failed to compare the pointers so just abandon this StoresVec.
4344     if (!Diff)
4345       return false;
4346     StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
4347   }
4348 
4349   // Sort the vector based on the pointers. We create a copy because we may
4350   // need the original later for calculating the reorder (shuffle) indices.
4351   stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
4352                                  const std::pair<StoreInst *, int> &Pair2) {
4353     int Offset1 = Pair1.second;
4354     int Offset2 = Pair2.second;
4355     return Offset1 < Offset2;
4356   });
4357 
4358   // Check if the stores are consecutive by checking if their difference is 1.
4359   for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
4360     if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
4361       return false;
4362 
4363   // Calculate the shuffle indices according to their offset against the sorted
4364   // StoreOffsetVec.
4365   ReorderIndices.reserve(StoresVec.size());
4366   for (StoreInst *SI : StoresVec) {
4367     unsigned Idx = find_if(StoreOffsetVec,
4368                            [SI](const std::pair<StoreInst *, int> &Pair) {
4369                              return Pair.first == SI;
4370                            }) -
4371                    StoreOffsetVec.begin();
4372     ReorderIndices.push_back(Idx);
4373   }
4374   // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
4375   // reorderTopToBottom() and reorderBottomToTop(), so we are following the
4376   // same convention here.
4377   auto IsIdentityOrder = [](const OrdersType &Order) {
4378     for (unsigned Idx : seq<unsigned>(0, Order.size()))
4379       if (Idx != Order[Idx])
4380         return false;
4381     return true;
4382   };
4383   if (IsIdentityOrder(ReorderIndices))
4384     ReorderIndices.clear();
4385 
4386   return true;
4387 }
4388 
4389 #ifndef NDEBUG
4390 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
4391   for (unsigned Idx : Order)
4392     dbgs() << Idx << ", ";
4393   dbgs() << "\n";
4394 }
4395 #endif
4396 
4397 SmallVector<BoUpSLP::OrdersType, 1>
4398 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
4399   unsigned NumLanes = TE->Scalars.size();
4400 
4401   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
4402       collectUserStores(TE);
4403 
4404   // Holds the reorder indices for each candidate store vector that is a user of
4405   // the current TreeEntry.
4406   SmallVector<OrdersType, 1> ExternalReorderIndices;
4407 
4408   // Now inspect the stores collected per pointer and look for vectorization
4409   // candidates. For each candidate calculate the reorder index vector and push
4410   // it into `ExternalReorderIndices`
4411   for (const auto &Pair : PtrToStoresMap) {
4412     auto &StoresVec = Pair.second;
4413     // If we have fewer than NumLanes stores, then we can't form a vector.
4414     if (StoresVec.size() != NumLanes)
4415       continue;
4416 
4417     // If the stores are not consecutive then abandon this StoresVec.
4418     OrdersType ReorderIndices;
4419     if (!CanFormVector(StoresVec, ReorderIndices))
4420       continue;
4421 
4422     // We now know that the scalars in StoresVec can form a vector instruction,
4423     // so set the reorder indices.
4424     ExternalReorderIndices.push_back(ReorderIndices);
4425   }
4426   return ExternalReorderIndices;
4427 }
4428 
4429 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
4430                         const SmallDenseSet<Value *> &UserIgnoreLst) {
4431   deleteTree();
4432   UserIgnoreList = &UserIgnoreLst;
4433   if (!allSameType(Roots))
4434     return;
4435   buildTree_rec(Roots, 0, EdgeInfo());
4436 }
4437 
4438 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
4439   deleteTree();
4440   if (!allSameType(Roots))
4441     return;
4442   buildTree_rec(Roots, 0, EdgeInfo());
4443 }
4444 
4445 /// \return true if the specified list of values has only one instruction that
4446 /// requires scheduling, false otherwise.
4447 #ifndef NDEBUG
4448 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
4449   Value *NeedsScheduling = nullptr;
4450   for (Value *V : VL) {
4451     if (doesNotNeedToBeScheduled(V))
4452       continue;
4453     if (!NeedsScheduling) {
4454       NeedsScheduling = V;
4455       continue;
4456     }
4457     return false;
4458   }
4459   return NeedsScheduling;
4460 }
4461 #endif
4462 
4463 /// Generates key/subkey pair for the given value to provide effective sorting
4464 /// of the values and better detection of the vectorizable values sequences. The
4465 /// keys/subkeys can be used for better sorting of the values themselves (keys)
4466 /// and in values subgroups (subkeys).
4467 static std::pair<size_t, size_t> generateKeySubkey(
4468     Value *V, const TargetLibraryInfo *TLI,
4469     function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
4470     bool AllowAlternate) {
4471   hash_code Key = hash_value(V->getValueID() + 2);
4472   hash_code SubKey = hash_value(0);
4473   // Sort the loads by the distance between the pointers.
4474   if (auto *LI = dyn_cast<LoadInst>(V)) {
4475     Key = hash_combine(hash_value(Instruction::Load), Key);
4476     if (LI->isSimple())
4477       SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
4478     else
4479       SubKey = hash_value(LI);
4480   } else if (isVectorLikeInstWithConstOps(V)) {
4481     // Sort extracts by the vector operands.
4482     if (isa<ExtractElementInst, UndefValue>(V))
4483       Key = hash_value(Value::UndefValueVal + 1);
4484     if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
4485       if (!isUndefVector(EI->getVectorOperand()) &&
4486           !isa<UndefValue>(EI->getIndexOperand()))
4487         SubKey = hash_value(EI->getVectorOperand());
4488     }
4489   } else if (auto *I = dyn_cast<Instruction>(V)) {
4490     // Sort other instructions just by the opcodes except for CMPInst.
4491     // For CMP also sort by the predicate kind.
4492     if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) &&
4493         isValidForAlternation(I->getOpcode())) {
4494       if (AllowAlternate)
4495         Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
4496       else
4497         Key = hash_combine(hash_value(I->getOpcode()), Key);
4498       SubKey = hash_combine(
4499           hash_value(I->getOpcode()), hash_value(I->getType()),
4500           hash_value(isa<BinaryOperator>(I)
4501                          ? I->getType()
4502                          : cast<CastInst>(I)->getOperand(0)->getType()));
4503       // For casts, look through the only operand to improve compile time.
4504       if (isa<CastInst>(I)) {
4505         std::pair<size_t, size_t> OpVals =
4506             generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
4507                               /*=AllowAlternate*/ true);
4508         Key = hash_combine(OpVals.first, Key);
4509         SubKey = hash_combine(OpVals.first, SubKey);
4510       }
4511     } else if (auto *CI = dyn_cast<CmpInst>(I)) {
4512       CmpInst::Predicate Pred = CI->getPredicate();
4513       if (CI->isCommutative())
4514         Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
4515       CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
4516       SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
4517                             hash_value(SwapPred),
4518                             hash_value(CI->getOperand(0)->getType()));
4519     } else if (auto *Call = dyn_cast<CallInst>(I)) {
4520       Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
4521       if (isTriviallyVectorizable(ID)) {
4522         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
4523       } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
4524         SubKey = hash_combine(hash_value(I->getOpcode()),
4525                               hash_value(Call->getCalledFunction()));
4526       } else {
4527         Key = hash_combine(hash_value(Call), Key);
4528         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
4529       }
4530       for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
4531         SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
4532                               hash_value(Op.Tag), SubKey);
4533     } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
4534       if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
4535         SubKey = hash_value(Gep->getPointerOperand());
4536       else
4537         SubKey = hash_value(Gep);
4538     } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
4539                !isa<ConstantInt>(I->getOperand(1))) {
4540       // Do not try to vectorize instructions with potentially high cost.
4541       SubKey = hash_value(I);
4542     } else {
4543       SubKey = hash_value(I->getOpcode());
4544     }
4545     Key = hash_combine(hash_value(I->getParent()), Key);
4546   }
4547   return std::make_pair(Key, SubKey);
4548 }
4549 
4550 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
4551                             const EdgeInfo &UserTreeIdx) {
4552   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
4553 
4554   SmallVector<int> ReuseShuffleIndicies;
4555   SmallVector<Value *> UniqueValues;
4556   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4557                                 &UserTreeIdx,
4558                                 this](const InstructionsState &S) {
4559     // Check that every instruction appears once in this bundle.
4560     DenseMap<Value *, unsigned> UniquePositions;
4561     for (Value *V : VL) {
4562       if (isConstant(V)) {
4563         ReuseShuffleIndicies.emplace_back(
4564             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4565         UniqueValues.emplace_back(V);
4566         continue;
4567       }
4568       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4569       ReuseShuffleIndicies.emplace_back(Res.first->second);
4570       if (Res.second)
4571         UniqueValues.emplace_back(V);
4572     }
4573     size_t NumUniqueScalarValues = UniqueValues.size();
4574     if (NumUniqueScalarValues == VL.size()) {
4575       ReuseShuffleIndicies.clear();
4576     } else {
4577       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
4578       if (NumUniqueScalarValues <= 1 ||
4579           (UniquePositions.size() == 1 && all_of(UniqueValues,
4580                                                  [](Value *V) {
4581                                                    return isa<UndefValue>(V) ||
4582                                                           !isConstant(V);
4583                                                  })) ||
4584           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4585         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
4586         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4587         return false;
4588       }
4589       VL = UniqueValues;
4590     }
4591     return true;
4592   };
4593 
4594   InstructionsState S = getSameOpcode(VL);
4595   if (Depth == RecursionMaxDepth) {
4596     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
4597     if (TryToFindDuplicates(S))
4598       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4599                    ReuseShuffleIndicies);
4600     return;
4601   }
4602 
4603   // Don't handle scalable vectors
4604   if (S.getOpcode() == Instruction::ExtractElement &&
4605       isa<ScalableVectorType>(
4606           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4607     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
4608     if (TryToFindDuplicates(S))
4609       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4610                    ReuseShuffleIndicies);
4611     return;
4612   }
4613 
4614   // Don't handle vectors.
4615   if (S.OpValue->getType()->isVectorTy() &&
4616       !isa<InsertElementInst>(S.OpValue)) {
4617     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
4618     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4619     return;
4620   }
4621 
4622   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4623     if (SI->getValueOperand()->getType()->isVectorTy()) {
4624       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
4625       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4626       return;
4627     }
4628 
4629   // If all of the operands are identical or constant we have a simple solution.
4630   // If we deal with insert/extract instructions, they all must have constant
4631   // indices, otherwise we should gather them, not try to vectorize.
4632   // If alternate op node with 2 elements with gathered operands - do not
4633   // vectorize.
4634   auto &&NotProfitableForVectorization = [&S, this,
4635                                           Depth](ArrayRef<Value *> VL) {
4636     if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
4637       return false;
4638     if (VectorizableTree.size() < MinTreeSize)
4639       return false;
4640     if (Depth >= RecursionMaxDepth - 1)
4641       return true;
4642     // Check if all operands are extracts, part of vector node or can build a
4643     // regular vectorize node.
4644     SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
4645     for (Value *V : VL) {
4646       auto *I = cast<Instruction>(V);
4647       InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
4648         return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
4649       }));
4650     }
4651     bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
4652     if ((IsCommutative &&
4653          std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
4654         (!IsCommutative &&
4655          all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
4656       return true;
4657     assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
4658     SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
4659     auto *I1 = cast<Instruction>(VL.front());
4660     auto *I2 = cast<Instruction>(VL.back());
4661     for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4662       Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4663                                              I2->getOperand(Op));
4664     if (static_cast<unsigned>(count_if(
4665             Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4666               return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4667             })) >= S.MainOp->getNumOperands() / 2)
4668       return false;
4669     if (S.MainOp->getNumOperands() > 2)
4670       return true;
4671     if (IsCommutative) {
4672       // Check permuted operands.
4673       Candidates.clear();
4674       for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4675         Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4676                                                I2->getOperand((Op + 1) % E));
4677       if (any_of(
4678               Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4679                 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4680               }))
4681         return false;
4682     }
4683     return true;
4684   };
4685   SmallVector<unsigned> SortedIndices;
4686   BasicBlock *BB = nullptr;
4687   bool AreAllSameInsts =
4688       (S.getOpcode() && allSameBlock(VL)) ||
4689       (S.OpValue->getType()->isPointerTy() && UserTreeIdx.UserTE &&
4690        UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize &&
4691        VL.size() > 2 &&
4692        all_of(VL,
4693               [&BB](Value *V) {
4694                 auto *I = dyn_cast<GetElementPtrInst>(V);
4695                 if (!I)
4696                   return doesNotNeedToBeScheduled(V);
4697                 if (!BB)
4698                   BB = I->getParent();
4699                 return BB == I->getParent() && I->getNumOperands() == 2;
4700               }) &&
4701        BB &&
4702        sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
4703                        SortedIndices));
4704   if (allConstant(VL) || isSplat(VL) || !AreAllSameInsts ||
4705       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
4706            S.OpValue) &&
4707        !all_of(VL, isVectorLikeInstWithConstOps)) ||
4708       NotProfitableForVectorization(VL)) {
4709     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
4710     if (TryToFindDuplicates(S))
4711       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4712                    ReuseShuffleIndicies);
4713     return;
4714   }
4715 
4716   // We now know that this is a vector of instructions of the same type from
4717   // the same block.
4718 
4719   // Don't vectorize ephemeral values.
4720   if (!EphValues.empty()) {
4721     for (Value *V : VL) {
4722       if (EphValues.count(V)) {
4723         LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4724                           << ") is ephemeral.\n");
4725         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4726         return;
4727       }
4728     }
4729   }
4730 
4731   // Check if this is a duplicate of another entry.
4732   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4733     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
4734     if (!E->isSame(VL)) {
4735       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
4736       if (TryToFindDuplicates(S))
4737         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4738                      ReuseShuffleIndicies);
4739       return;
4740     }
4741     // Record the reuse of the tree node.  FIXME, currently this is only used to
4742     // properly draw the graph rather than for the actual vectorization.
4743     E->UserTreeIndices.push_back(UserTreeIdx);
4744     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
4745                       << ".\n");
4746     return;
4747   }
4748 
4749   // Check that none of the instructions in the bundle are already in the tree.
4750   for (Value *V : VL) {
4751     auto *I = dyn_cast<Instruction>(V);
4752     if (!I)
4753       continue;
4754     if (getTreeEntry(I)) {
4755       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4756                         << ") is already in tree.\n");
4757       if (TryToFindDuplicates(S))
4758         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4759                      ReuseShuffleIndicies);
4760       return;
4761     }
4762   }
4763 
4764   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
4765   if (UserIgnoreList && !UserIgnoreList->empty()) {
4766     for (Value *V : VL) {
4767       if (UserIgnoreList && UserIgnoreList->contains(V)) {
4768         LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
4769         if (TryToFindDuplicates(S))
4770           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4771                        ReuseShuffleIndicies);
4772         return;
4773       }
4774     }
4775   }
4776 
4777   // Special processing for sorted pointers for ScatterVectorize node with
4778   // constant indeces only.
4779   if (AreAllSameInsts && !(S.getOpcode() && allSameBlock(VL)) &&
4780       UserTreeIdx.UserTE &&
4781       UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize) {
4782     assert(S.OpValue->getType()->isPointerTy() &&
4783            count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
4784                2 &&
4785            "Expected pointers only.");
4786     // Reset S to make it GetElementPtr kind of node.
4787     const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
4788     assert(It != VL.end() && "Expected at least one GEP.");
4789     S = getSameOpcode(*It);
4790   }
4791 
4792   // Check that all of the users of the scalars that we want to vectorize are
4793   // schedulable.
4794   auto *VL0 = cast<Instruction>(S.OpValue);
4795   BB = VL0->getParent();
4796 
4797   if (!DT->isReachableFromEntry(BB)) {
4798     // Don't go into unreachable blocks. They may contain instructions with
4799     // dependency cycles which confuse the final scheduling.
4800     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
4801     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4802     return;
4803   }
4804 
4805   // Check that every instruction appears once in this bundle.
4806   if (!TryToFindDuplicates(S))
4807     return;
4808 
4809   auto &BSRef = BlocksSchedules[BB];
4810   if (!BSRef)
4811     BSRef = std::make_unique<BlockScheduling>(BB);
4812 
4813   BlockScheduling &BS = *BSRef;
4814 
4815   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
4816 #ifdef EXPENSIVE_CHECKS
4817   // Make sure we didn't break any internal invariants
4818   BS.verify();
4819 #endif
4820   if (!Bundle) {
4821     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
4822     assert((!BS.getScheduleData(VL0) ||
4823             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
4824            "tryScheduleBundle should cancelScheduling on failure");
4825     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4826                  ReuseShuffleIndicies);
4827     return;
4828   }
4829   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
4830 
4831   unsigned ShuffleOrOp = S.isAltShuffle() ?
4832                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
4833   switch (ShuffleOrOp) {
4834     case Instruction::PHI: {
4835       auto *PH = cast<PHINode>(VL0);
4836 
4837       // Check for terminator values (e.g. invoke).
4838       for (Value *V : VL)
4839         for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
4840           Instruction *Term = dyn_cast<Instruction>(Incoming);
4841           if (Term && Term->isTerminator()) {
4842             LLVM_DEBUG(dbgs()
4843                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
4844             BS.cancelScheduling(VL, VL0);
4845             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4846                          ReuseShuffleIndicies);
4847             return;
4848           }
4849         }
4850 
4851       TreeEntry *TE =
4852           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
4853       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
4854 
4855       // Keeps the reordered operands to avoid code duplication.
4856       SmallVector<ValueList, 2> OperandsVec;
4857       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
4858         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
4859           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
4860           TE->setOperand(I, Operands);
4861           OperandsVec.push_back(Operands);
4862           continue;
4863         }
4864         ValueList Operands;
4865         // Prepare the operand vector.
4866         for (Value *V : VL)
4867           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
4868               PH->getIncomingBlock(I)));
4869         TE->setOperand(I, Operands);
4870         OperandsVec.push_back(Operands);
4871       }
4872       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
4873         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
4874       return;
4875     }
4876     case Instruction::ExtractValue:
4877     case Instruction::ExtractElement: {
4878       OrdersType CurrentOrder;
4879       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
4880       if (Reuse) {
4881         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
4882         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4883                      ReuseShuffleIndicies);
4884         // This is a special case, as it does not gather, but at the same time
4885         // we are not extending buildTree_rec() towards the operands.
4886         ValueList Op0;
4887         Op0.assign(VL.size(), VL0->getOperand(0));
4888         VectorizableTree.back()->setOperand(0, Op0);
4889         return;
4890       }
4891       if (!CurrentOrder.empty()) {
4892         LLVM_DEBUG({
4893           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
4894                     "with order";
4895           for (unsigned Idx : CurrentOrder)
4896             dbgs() << " " << Idx;
4897           dbgs() << "\n";
4898         });
4899         fixupOrderingIndices(CurrentOrder);
4900         // Insert new order with initial value 0, if it does not exist,
4901         // otherwise return the iterator to the existing one.
4902         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4903                      ReuseShuffleIndicies, CurrentOrder);
4904         // This is a special case, as it does not gather, but at the same time
4905         // we are not extending buildTree_rec() towards the operands.
4906         ValueList Op0;
4907         Op0.assign(VL.size(), VL0->getOperand(0));
4908         VectorizableTree.back()->setOperand(0, Op0);
4909         return;
4910       }
4911       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4912       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4913                    ReuseShuffleIndicies);
4914       BS.cancelScheduling(VL, VL0);
4915       return;
4916     }
4917     case Instruction::InsertElement: {
4918       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4919 
4920       // Check that we have a buildvector and not a shuffle of 2 or more
4921       // different vectors.
4922       ValueSet SourceVectors;
4923       for (Value *V : VL) {
4924         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4925         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4926       }
4927 
4928       if (count_if(VL, [&SourceVectors](Value *V) {
4929             return !SourceVectors.contains(V);
4930           }) >= 2) {
4931         // Found 2nd source vector - cancel.
4932         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4933                              "different source vectors.\n");
4934         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4935         BS.cancelScheduling(VL, VL0);
4936         return;
4937       }
4938 
4939       auto OrdCompare = [](const std::pair<int, int> &P1,
4940                            const std::pair<int, int> &P2) {
4941         return P1.first > P2.first;
4942       };
4943       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4944                     decltype(OrdCompare)>
4945           Indices(OrdCompare);
4946       for (int I = 0, E = VL.size(); I < E; ++I) {
4947         unsigned Idx = *getInsertIndex(VL[I]);
4948         Indices.emplace(Idx, I);
4949       }
4950       OrdersType CurrentOrder(VL.size(), VL.size());
4951       bool IsIdentity = true;
4952       for (int I = 0, E = VL.size(); I < E; ++I) {
4953         CurrentOrder[Indices.top().second] = I;
4954         IsIdentity &= Indices.top().second == I;
4955         Indices.pop();
4956       }
4957       if (IsIdentity)
4958         CurrentOrder.clear();
4959       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4960                                    None, CurrentOrder);
4961       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4962 
4963       constexpr int NumOps = 2;
4964       ValueList VectorOperands[NumOps];
4965       for (int I = 0; I < NumOps; ++I) {
4966         for (Value *V : VL)
4967           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4968 
4969         TE->setOperand(I, VectorOperands[I]);
4970       }
4971       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4972       return;
4973     }
4974     case Instruction::Load: {
4975       // Check that a vectorized load would load the same memory as a scalar
4976       // load. For example, we don't want to vectorize loads that are smaller
4977       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4978       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4979       // from such a struct, we read/write packed bits disagreeing with the
4980       // unvectorized version.
4981       SmallVector<Value *> PointerOps;
4982       OrdersType CurrentOrder;
4983       TreeEntry *TE = nullptr;
4984       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, CurrentOrder,
4985                                 PointerOps)) {
4986       case LoadsState::Vectorize:
4987         if (CurrentOrder.empty()) {
4988           // Original loads are consecutive and does not require reordering.
4989           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4990                             ReuseShuffleIndicies);
4991           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4992         } else {
4993           fixupOrderingIndices(CurrentOrder);
4994           // Need to reorder.
4995           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4996                             ReuseShuffleIndicies, CurrentOrder);
4997           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4998         }
4999         TE->setOperandsInOrder();
5000         break;
5001       case LoadsState::ScatterVectorize:
5002         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
5003         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
5004                           UserTreeIdx, ReuseShuffleIndicies);
5005         TE->setOperandsInOrder();
5006         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
5007         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
5008         break;
5009       case LoadsState::Gather:
5010         BS.cancelScheduling(VL, VL0);
5011         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5012                      ReuseShuffleIndicies);
5013 #ifndef NDEBUG
5014         Type *ScalarTy = VL0->getType();
5015         if (DL->getTypeSizeInBits(ScalarTy) !=
5016             DL->getTypeAllocSizeInBits(ScalarTy))
5017           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
5018         else if (any_of(VL, [](Value *V) {
5019                    return !cast<LoadInst>(V)->isSimple();
5020                  }))
5021           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
5022         else
5023           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
5024 #endif // NDEBUG
5025         break;
5026       }
5027       return;
5028     }
5029     case Instruction::ZExt:
5030     case Instruction::SExt:
5031     case Instruction::FPToUI:
5032     case Instruction::FPToSI:
5033     case Instruction::FPExt:
5034     case Instruction::PtrToInt:
5035     case Instruction::IntToPtr:
5036     case Instruction::SIToFP:
5037     case Instruction::UIToFP:
5038     case Instruction::Trunc:
5039     case Instruction::FPTrunc:
5040     case Instruction::BitCast: {
5041       Type *SrcTy = VL0->getOperand(0)->getType();
5042       for (Value *V : VL) {
5043         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5044         if (Ty != SrcTy || !isValidElementType(Ty)) {
5045           BS.cancelScheduling(VL, VL0);
5046           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5047                        ReuseShuffleIndicies);
5048           LLVM_DEBUG(dbgs()
5049                      << "SLP: Gathering casts with different src types.\n");
5050           return;
5051         }
5052       }
5053       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5054                                    ReuseShuffleIndicies);
5055       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
5056 
5057       TE->setOperandsInOrder();
5058       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5059         ValueList Operands;
5060         // Prepare the operand vector.
5061         for (Value *V : VL)
5062           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5063 
5064         buildTree_rec(Operands, Depth + 1, {TE, i});
5065       }
5066       return;
5067     }
5068     case Instruction::ICmp:
5069     case Instruction::FCmp: {
5070       // Check that all of the compares have the same predicate.
5071       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5072       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5073       Type *ComparedTy = VL0->getOperand(0)->getType();
5074       for (Value *V : VL) {
5075         CmpInst *Cmp = cast<CmpInst>(V);
5076         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5077             Cmp->getOperand(0)->getType() != ComparedTy) {
5078           BS.cancelScheduling(VL, VL0);
5079           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5080                        ReuseShuffleIndicies);
5081           LLVM_DEBUG(dbgs()
5082                      << "SLP: Gathering cmp with different predicate.\n");
5083           return;
5084         }
5085       }
5086 
5087       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5088                                    ReuseShuffleIndicies);
5089       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
5090 
5091       ValueList Left, Right;
5092       if (cast<CmpInst>(VL0)->isCommutative()) {
5093         // Commutative predicate - collect + sort operands of the instructions
5094         // so that each side is more likely to have the same opcode.
5095         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
5096         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5097       } else {
5098         // Collect operands - commute if it uses the swapped predicate.
5099         for (Value *V : VL) {
5100           auto *Cmp = cast<CmpInst>(V);
5101           Value *LHS = Cmp->getOperand(0);
5102           Value *RHS = Cmp->getOperand(1);
5103           if (Cmp->getPredicate() != P0)
5104             std::swap(LHS, RHS);
5105           Left.push_back(LHS);
5106           Right.push_back(RHS);
5107         }
5108       }
5109       TE->setOperand(0, Left);
5110       TE->setOperand(1, Right);
5111       buildTree_rec(Left, Depth + 1, {TE, 0});
5112       buildTree_rec(Right, Depth + 1, {TE, 1});
5113       return;
5114     }
5115     case Instruction::Select:
5116     case Instruction::FNeg:
5117     case Instruction::Add:
5118     case Instruction::FAdd:
5119     case Instruction::Sub:
5120     case Instruction::FSub:
5121     case Instruction::Mul:
5122     case Instruction::FMul:
5123     case Instruction::UDiv:
5124     case Instruction::SDiv:
5125     case Instruction::FDiv:
5126     case Instruction::URem:
5127     case Instruction::SRem:
5128     case Instruction::FRem:
5129     case Instruction::Shl:
5130     case Instruction::LShr:
5131     case Instruction::AShr:
5132     case Instruction::And:
5133     case Instruction::Or:
5134     case Instruction::Xor: {
5135       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5136                                    ReuseShuffleIndicies);
5137       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
5138 
5139       // Sort operands of the instructions so that each side is more likely to
5140       // have the same opcode.
5141       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
5142         ValueList Left, Right;
5143         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5144         TE->setOperand(0, Left);
5145         TE->setOperand(1, Right);
5146         buildTree_rec(Left, Depth + 1, {TE, 0});
5147         buildTree_rec(Right, Depth + 1, {TE, 1});
5148         return;
5149       }
5150 
5151       TE->setOperandsInOrder();
5152       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5153         ValueList Operands;
5154         // Prepare the operand vector.
5155         for (Value *V : VL)
5156           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5157 
5158         buildTree_rec(Operands, Depth + 1, {TE, i});
5159       }
5160       return;
5161     }
5162     case Instruction::GetElementPtr: {
5163       // We don't combine GEPs with complicated (nested) indexing.
5164       for (Value *V : VL) {
5165         auto *I = dyn_cast<GetElementPtrInst>(V);
5166         if (!I)
5167           continue;
5168         if (I->getNumOperands() != 2) {
5169           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5170           BS.cancelScheduling(VL, VL0);
5171           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5172                        ReuseShuffleIndicies);
5173           return;
5174         }
5175       }
5176 
5177       // We can't combine several GEPs into one vector if they operate on
5178       // different types.
5179       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5180       for (Value *V : VL) {
5181         auto *GEP = dyn_cast<GEPOperator>(V);
5182         if (!GEP)
5183           continue;
5184         Type *CurTy = GEP->getSourceElementType();
5185         if (Ty0 != CurTy) {
5186           LLVM_DEBUG(dbgs()
5187                      << "SLP: not-vectorizable GEP (different types).\n");
5188           BS.cancelScheduling(VL, VL0);
5189           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5190                        ReuseShuffleIndicies);
5191           return;
5192         }
5193       }
5194 
5195       bool IsScatterUser =
5196           UserTreeIdx.UserTE &&
5197           UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize;
5198       // We don't combine GEPs with non-constant indexes.
5199       Type *Ty1 = VL0->getOperand(1)->getType();
5200       for (Value *V : VL) {
5201         auto *I = dyn_cast<GetElementPtrInst>(V);
5202         if (!I)
5203           continue;
5204         auto *Op = I->getOperand(1);
5205         if ((!IsScatterUser && !isa<ConstantInt>(Op)) ||
5206             (Op->getType() != Ty1 &&
5207              ((IsScatterUser && !isa<ConstantInt>(Op)) ||
5208               Op->getType()->getScalarSizeInBits() >
5209                   DL->getIndexSizeInBits(
5210                       V->getType()->getPointerAddressSpace())))) {
5211           LLVM_DEBUG(dbgs()
5212                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5213           BS.cancelScheduling(VL, VL0);
5214           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5215                        ReuseShuffleIndicies);
5216           return;
5217         }
5218       }
5219 
5220       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5221                                    ReuseShuffleIndicies);
5222       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
5223       SmallVector<ValueList, 2> Operands(2);
5224       // Prepare the operand vector for pointer operands.
5225       for (Value *V : VL) {
5226         auto *GEP = dyn_cast<GetElementPtrInst>(V);
5227         if (!GEP) {
5228           Operands.front().push_back(V);
5229           continue;
5230         }
5231         Operands.front().push_back(GEP->getPointerOperand());
5232       }
5233       TE->setOperand(0, Operands.front());
5234       // Need to cast all indices to the same type before vectorization to
5235       // avoid crash.
5236       // Required to be able to find correct matches between different gather
5237       // nodes and reuse the vectorized values rather than trying to gather them
5238       // again.
5239       int IndexIdx = 1;
5240       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
5241       Type *Ty = all_of(VL,
5242                         [VL0Ty, IndexIdx](Value *V) {
5243                           auto *GEP = dyn_cast<GetElementPtrInst>(V);
5244                           if (!GEP)
5245                             return true;
5246                           return VL0Ty == GEP->getOperand(IndexIdx)->getType();
5247                         })
5248                      ? VL0Ty
5249                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5250                                             ->getPointerOperandType()
5251                                             ->getScalarType());
5252       // Prepare the operand vector.
5253       for (Value *V : VL) {
5254         auto *I = dyn_cast<GetElementPtrInst>(V);
5255         if (!I) {
5256           Operands.back().push_back(
5257               ConstantInt::get(Ty, 0, /*isSigned=*/false));
5258           continue;
5259         }
5260         auto *Op = I->getOperand(IndexIdx);
5261         auto *CI = dyn_cast<ConstantInt>(Op);
5262         if (!CI)
5263           Operands.back().push_back(Op);
5264         else
5265           Operands.back().push_back(ConstantExpr::getIntegerCast(
5266               CI, Ty, CI->getValue().isSignBitSet()));
5267       }
5268       TE->setOperand(IndexIdx, Operands.back());
5269 
5270       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
5271         buildTree_rec(Operands[I], Depth + 1, {TE, I});
5272       return;
5273     }
5274     case Instruction::Store: {
5275       // Check if the stores are consecutive or if we need to swizzle them.
5276       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5277       // Avoid types that are padded when being allocated as scalars, while
5278       // being packed together in a vector (such as i1).
5279       if (DL->getTypeSizeInBits(ScalarTy) !=
5280           DL->getTypeAllocSizeInBits(ScalarTy)) {
5281         BS.cancelScheduling(VL, VL0);
5282         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5283                      ReuseShuffleIndicies);
5284         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5285         return;
5286       }
5287       // Make sure all stores in the bundle are simple - we can't vectorize
5288       // atomic or volatile stores.
5289       SmallVector<Value *, 4> PointerOps(VL.size());
5290       ValueList Operands(VL.size());
5291       auto POIter = PointerOps.begin();
5292       auto OIter = Operands.begin();
5293       for (Value *V : VL) {
5294         auto *SI = cast<StoreInst>(V);
5295         if (!SI->isSimple()) {
5296           BS.cancelScheduling(VL, VL0);
5297           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5298                        ReuseShuffleIndicies);
5299           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5300           return;
5301         }
5302         *POIter = SI->getPointerOperand();
5303         *OIter = SI->getValueOperand();
5304         ++POIter;
5305         ++OIter;
5306       }
5307 
5308       OrdersType CurrentOrder;
5309       // Check the order of pointer operands.
5310       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5311         Value *Ptr0;
5312         Value *PtrN;
5313         if (CurrentOrder.empty()) {
5314           Ptr0 = PointerOps.front();
5315           PtrN = PointerOps.back();
5316         } else {
5317           Ptr0 = PointerOps[CurrentOrder.front()];
5318           PtrN = PointerOps[CurrentOrder.back()];
5319         }
5320         Optional<int> Dist =
5321             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5322         // Check that the sorted pointer operands are consecutive.
5323         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
5324           if (CurrentOrder.empty()) {
5325             // Original stores are consecutive and does not require reordering.
5326             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
5327                                          UserTreeIdx, ReuseShuffleIndicies);
5328             TE->setOperandsInOrder();
5329             buildTree_rec(Operands, Depth + 1, {TE, 0});
5330             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
5331           } else {
5332             fixupOrderingIndices(CurrentOrder);
5333             TreeEntry *TE =
5334                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5335                              ReuseShuffleIndicies, CurrentOrder);
5336             TE->setOperandsInOrder();
5337             buildTree_rec(Operands, Depth + 1, {TE, 0});
5338             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
5339           }
5340           return;
5341         }
5342       }
5343 
5344       BS.cancelScheduling(VL, VL0);
5345       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5346                    ReuseShuffleIndicies);
5347       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5348       return;
5349     }
5350     case Instruction::Call: {
5351       // Check if the calls are all to the same vectorizable intrinsic or
5352       // library function.
5353       CallInst *CI = cast<CallInst>(VL0);
5354       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5355 
5356       VFShape Shape = VFShape::get(
5357           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5358           false /*HasGlobalPred*/);
5359       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5360 
5361       if (!VecFunc && !isTriviallyVectorizable(ID)) {
5362         BS.cancelScheduling(VL, VL0);
5363         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5364                      ReuseShuffleIndicies);
5365         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5366         return;
5367       }
5368       Function *F = CI->getCalledFunction();
5369       unsigned NumArgs = CI->arg_size();
5370       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
5371       for (unsigned j = 0; j != NumArgs; ++j)
5372         if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
5373           ScalarArgs[j] = CI->getArgOperand(j);
5374       for (Value *V : VL) {
5375         CallInst *CI2 = dyn_cast<CallInst>(V);
5376         if (!CI2 || CI2->getCalledFunction() != F ||
5377             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5378             (VecFunc &&
5379              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5380             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5381           BS.cancelScheduling(VL, VL0);
5382           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5383                        ReuseShuffleIndicies);
5384           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5385                             << "\n");
5386           return;
5387         }
5388         // Some intrinsics have scalar arguments and should be same in order for
5389         // them to be vectorized.
5390         for (unsigned j = 0; j != NumArgs; ++j) {
5391           if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
5392             Value *A1J = CI2->getArgOperand(j);
5393             if (ScalarArgs[j] != A1J) {
5394               BS.cancelScheduling(VL, VL0);
5395               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5396                            ReuseShuffleIndicies);
5397               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
5398                                 << " argument " << ScalarArgs[j] << "!=" << A1J
5399                                 << "\n");
5400               return;
5401             }
5402           }
5403         }
5404         // Verify that the bundle operands are identical between the two calls.
5405         if (CI->hasOperandBundles() &&
5406             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5407                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
5408                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5409           BS.cancelScheduling(VL, VL0);
5410           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5411                        ReuseShuffleIndicies);
5412           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
5413                             << *CI << "!=" << *V << '\n');
5414           return;
5415         }
5416       }
5417 
5418       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5419                                    ReuseShuffleIndicies);
5420       TE->setOperandsInOrder();
5421       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
5422         // For scalar operands no need to to create an entry since no need to
5423         // vectorize it.
5424         if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
5425           continue;
5426         ValueList Operands;
5427         // Prepare the operand vector.
5428         for (Value *V : VL) {
5429           auto *CI2 = cast<CallInst>(V);
5430           Operands.push_back(CI2->getArgOperand(i));
5431         }
5432         buildTree_rec(Operands, Depth + 1, {TE, i});
5433       }
5434       return;
5435     }
5436     case Instruction::ShuffleVector: {
5437       // If this is not an alternate sequence of opcode like add-sub
5438       // then do not vectorize this instruction.
5439       if (!S.isAltShuffle()) {
5440         BS.cancelScheduling(VL, VL0);
5441         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5442                      ReuseShuffleIndicies);
5443         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5444         return;
5445       }
5446       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5447                                    ReuseShuffleIndicies);
5448       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
5449 
5450       // Reorder operands if reordering would enable vectorization.
5451       auto *CI = dyn_cast<CmpInst>(VL0);
5452       if (isa<BinaryOperator>(VL0) || CI) {
5453         ValueList Left, Right;
5454         if (!CI || all_of(VL, [](Value *V) {
5455               return cast<CmpInst>(V)->isCommutative();
5456             })) {
5457           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5458         } else {
5459           CmpInst::Predicate P0 = CI->getPredicate();
5460           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
5461           assert(P0 != AltP0 &&
5462                  "Expected different main/alternate predicates.");
5463           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5464           Value *BaseOp0 = VL0->getOperand(0);
5465           Value *BaseOp1 = VL0->getOperand(1);
5466           // Collect operands - commute if it uses the swapped predicate or
5467           // alternate operation.
5468           for (Value *V : VL) {
5469             auto *Cmp = cast<CmpInst>(V);
5470             Value *LHS = Cmp->getOperand(0);
5471             Value *RHS = Cmp->getOperand(1);
5472             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
5473             if (P0 == AltP0Swapped) {
5474               if (CI != Cmp && S.AltOp != Cmp &&
5475                   ((P0 == CurrentPred &&
5476                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
5477                    (AltP0 == CurrentPred &&
5478                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
5479                 std::swap(LHS, RHS);
5480             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
5481               std::swap(LHS, RHS);
5482             }
5483             Left.push_back(LHS);
5484             Right.push_back(RHS);
5485           }
5486         }
5487         TE->setOperand(0, Left);
5488         TE->setOperand(1, Right);
5489         buildTree_rec(Left, Depth + 1, {TE, 0});
5490         buildTree_rec(Right, Depth + 1, {TE, 1});
5491         return;
5492       }
5493 
5494       TE->setOperandsInOrder();
5495       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5496         ValueList Operands;
5497         // Prepare the operand vector.
5498         for (Value *V : VL)
5499           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5500 
5501         buildTree_rec(Operands, Depth + 1, {TE, i});
5502       }
5503       return;
5504     }
5505     default:
5506       BS.cancelScheduling(VL, VL0);
5507       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5508                    ReuseShuffleIndicies);
5509       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5510       return;
5511   }
5512 }
5513 
5514 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
5515   unsigned N = 1;
5516   Type *EltTy = T;
5517 
5518   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
5519          isa<VectorType>(EltTy)) {
5520     if (auto *ST = dyn_cast<StructType>(EltTy)) {
5521       // Check that struct is homogeneous.
5522       for (const auto *Ty : ST->elements())
5523         if (Ty != *ST->element_begin())
5524           return 0;
5525       N *= ST->getNumElements();
5526       EltTy = *ST->element_begin();
5527     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
5528       N *= AT->getNumElements();
5529       EltTy = AT->getElementType();
5530     } else {
5531       auto *VT = cast<FixedVectorType>(EltTy);
5532       N *= VT->getNumElements();
5533       EltTy = VT->getElementType();
5534     }
5535   }
5536 
5537   if (!isValidElementType(EltTy))
5538     return 0;
5539   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
5540   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
5541     return 0;
5542   return N;
5543 }
5544 
5545 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
5546                               SmallVectorImpl<unsigned> &CurrentOrder) const {
5547   const auto *It = find_if(VL, [](Value *V) {
5548     return isa<ExtractElementInst, ExtractValueInst>(V);
5549   });
5550   assert(It != VL.end() && "Expected at least one extract instruction.");
5551   auto *E0 = cast<Instruction>(*It);
5552   assert(all_of(VL,
5553                 [](Value *V) {
5554                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
5555                       V);
5556                 }) &&
5557          "Invalid opcode");
5558   // Check if all of the extracts come from the same vector and from the
5559   // correct offset.
5560   Value *Vec = E0->getOperand(0);
5561 
5562   CurrentOrder.clear();
5563 
5564   // We have to extract from a vector/aggregate with the same number of elements.
5565   unsigned NElts;
5566   if (E0->getOpcode() == Instruction::ExtractValue) {
5567     const DataLayout &DL = E0->getModule()->getDataLayout();
5568     NElts = canMapToVector(Vec->getType(), DL);
5569     if (!NElts)
5570       return false;
5571     // Check if load can be rewritten as load of vector.
5572     LoadInst *LI = dyn_cast<LoadInst>(Vec);
5573     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
5574       return false;
5575   } else {
5576     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
5577   }
5578 
5579   if (NElts != VL.size())
5580     return false;
5581 
5582   // Check that all of the indices extract from the correct offset.
5583   bool ShouldKeepOrder = true;
5584   unsigned E = VL.size();
5585   // Assign to all items the initial value E + 1 so we can check if the extract
5586   // instruction index was used already.
5587   // Also, later we can check that all the indices are used and we have a
5588   // consecutive access in the extract instructions, by checking that no
5589   // element of CurrentOrder still has value E + 1.
5590   CurrentOrder.assign(E, E);
5591   unsigned I = 0;
5592   for (; I < E; ++I) {
5593     auto *Inst = dyn_cast<Instruction>(VL[I]);
5594     if (!Inst)
5595       continue;
5596     if (Inst->getOperand(0) != Vec)
5597       break;
5598     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
5599       if (isa<UndefValue>(EE->getIndexOperand()))
5600         continue;
5601     Optional<unsigned> Idx = getExtractIndex(Inst);
5602     if (!Idx)
5603       break;
5604     const unsigned ExtIdx = *Idx;
5605     if (ExtIdx != I) {
5606       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
5607         break;
5608       ShouldKeepOrder = false;
5609       CurrentOrder[ExtIdx] = I;
5610     } else {
5611       if (CurrentOrder[I] != E)
5612         break;
5613       CurrentOrder[I] = I;
5614     }
5615   }
5616   if (I < E) {
5617     CurrentOrder.clear();
5618     return false;
5619   }
5620   if (ShouldKeepOrder)
5621     CurrentOrder.clear();
5622 
5623   return ShouldKeepOrder;
5624 }
5625 
5626 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
5627                                     ArrayRef<Value *> VectorizedVals) const {
5628   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
5629          all_of(I->users(), [this](User *U) {
5630            return ScalarToTreeEntry.count(U) > 0 ||
5631                   isVectorLikeInstWithConstOps(U) ||
5632                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
5633          });
5634 }
5635 
5636 static std::pair<InstructionCost, InstructionCost>
5637 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
5638                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
5639   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5640 
5641   // Calculate the cost of the scalar and vector calls.
5642   SmallVector<Type *, 4> VecTys;
5643   for (Use &Arg : CI->args())
5644     VecTys.push_back(
5645         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
5646   FastMathFlags FMF;
5647   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
5648     FMF = FPCI->getFastMathFlags();
5649   SmallVector<const Value *> Arguments(CI->args());
5650   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
5651                                     dyn_cast<IntrinsicInst>(CI));
5652   auto IntrinsicCost =
5653     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
5654 
5655   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5656                                      VecTy->getNumElements())),
5657                             false /*HasGlobalPred*/);
5658   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5659   auto LibCost = IntrinsicCost;
5660   if (!CI->isNoBuiltin() && VecFunc) {
5661     // Calculate the cost of the vector library call.
5662     // If the corresponding vector call is cheaper, return its cost.
5663     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
5664                                     TTI::TCK_RecipThroughput);
5665   }
5666   return {IntrinsicCost, LibCost};
5667 }
5668 
5669 /// Compute the cost of creating a vector of type \p VecTy containing the
5670 /// extracted values from \p VL.
5671 static InstructionCost
5672 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
5673                    TargetTransformInfo::ShuffleKind ShuffleKind,
5674                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
5675   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
5676 
5677   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
5678       VecTy->getNumElements() < NumOfParts)
5679     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
5680 
5681   bool AllConsecutive = true;
5682   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
5683   unsigned Idx = -1;
5684   InstructionCost Cost = 0;
5685 
5686   // Process extracts in blocks of EltsPerVector to check if the source vector
5687   // operand can be re-used directly. If not, add the cost of creating a shuffle
5688   // to extract the values into a vector register.
5689   SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
5690   for (auto *V : VL) {
5691     ++Idx;
5692 
5693     // Reached the start of a new vector registers.
5694     if (Idx % EltsPerVector == 0) {
5695       RegMask.assign(EltsPerVector, UndefMaskElem);
5696       AllConsecutive = true;
5697       continue;
5698     }
5699 
5700     // Need to exclude undefs from analysis.
5701     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
5702       continue;
5703 
5704     // Check all extracts for a vector register on the target directly
5705     // extract values in order.
5706     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
5707     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
5708       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
5709       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
5710                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
5711       RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
5712     }
5713 
5714     if (AllConsecutive)
5715       continue;
5716 
5717     // Skip all indices, except for the last index per vector block.
5718     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
5719       continue;
5720 
5721     // If we have a series of extracts which are not consecutive and hence
5722     // cannot re-use the source vector register directly, compute the shuffle
5723     // cost to extract the vector with EltsPerVector elements.
5724     Cost += TTI.getShuffleCost(
5725         TargetTransformInfo::SK_PermuteSingleSrc,
5726         FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
5727   }
5728   return Cost;
5729 }
5730 
5731 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
5732 /// operations operands.
5733 static void
5734 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
5735                       ArrayRef<int> ReusesIndices,
5736                       const function_ref<bool(Instruction *)> IsAltOp,
5737                       SmallVectorImpl<int> &Mask,
5738                       SmallVectorImpl<Value *> *OpScalars = nullptr,
5739                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
5740   unsigned Sz = VL.size();
5741   Mask.assign(Sz, UndefMaskElem);
5742   SmallVector<int> OrderMask;
5743   if (!ReorderIndices.empty())
5744     inversePermutation(ReorderIndices, OrderMask);
5745   for (unsigned I = 0; I < Sz; ++I) {
5746     unsigned Idx = I;
5747     if (!ReorderIndices.empty())
5748       Idx = OrderMask[I];
5749     auto *OpInst = cast<Instruction>(VL[Idx]);
5750     if (IsAltOp(OpInst)) {
5751       Mask[I] = Sz + Idx;
5752       if (AltScalars)
5753         AltScalars->push_back(OpInst);
5754     } else {
5755       Mask[I] = Idx;
5756       if (OpScalars)
5757         OpScalars->push_back(OpInst);
5758     }
5759   }
5760   if (!ReusesIndices.empty()) {
5761     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
5762     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
5763       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
5764     });
5765     Mask.swap(NewMask);
5766   }
5767 }
5768 
5769 /// Checks if the specified instruction \p I is an alternate operation for the
5770 /// given \p MainOp and \p AltOp instructions.
5771 static bool isAlternateInstruction(const Instruction *I,
5772                                    const Instruction *MainOp,
5773                                    const Instruction *AltOp) {
5774   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
5775     auto *AltCI0 = cast<CmpInst>(AltOp);
5776     auto *CI = cast<CmpInst>(I);
5777     CmpInst::Predicate P0 = CI0->getPredicate();
5778     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5779     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
5780     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5781     CmpInst::Predicate CurrentPred = CI->getPredicate();
5782     if (P0 == AltP0Swapped)
5783       return I == AltCI0 ||
5784              (I != MainOp &&
5785               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
5786                                    CI->getOperand(0), CI->getOperand(1)));
5787     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5788   }
5789   return I->getOpcode() == AltOp->getOpcode();
5790 }
5791 
5792 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
5793                                       ArrayRef<Value *> VectorizedVals) {
5794   ArrayRef<Value*> VL = E->Scalars;
5795 
5796   Type *ScalarTy = VL[0]->getType();
5797   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
5798     ScalarTy = SI->getValueOperand()->getType();
5799   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
5800     ScalarTy = CI->getOperand(0)->getType();
5801   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
5802     ScalarTy = IE->getOperand(1)->getType();
5803   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
5804   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5805 
5806   // If we have computed a smaller type for the expression, update VecTy so
5807   // that the costs will be accurate.
5808   if (MinBWs.count(VL[0]))
5809     VecTy = FixedVectorType::get(
5810         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
5811   unsigned EntryVF = E->getVectorFactor();
5812   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
5813 
5814   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5815   // FIXME: it tries to fix a problem with MSVC buildbots.
5816   TargetTransformInfo &TTIRef = *TTI;
5817   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
5818                                VectorizedVals, E](InstructionCost &Cost) {
5819     DenseMap<Value *, int> ExtractVectorsTys;
5820     SmallPtrSet<Value *, 4> CheckedExtracts;
5821     for (auto *V : VL) {
5822       if (isa<UndefValue>(V))
5823         continue;
5824       // If all users of instruction are going to be vectorized and this
5825       // instruction itself is not going to be vectorized, consider this
5826       // instruction as dead and remove its cost from the final cost of the
5827       // vectorized tree.
5828       // Also, avoid adjusting the cost for extractelements with multiple uses
5829       // in different graph entries.
5830       const TreeEntry *VE = getTreeEntry(V);
5831       if (!CheckedExtracts.insert(V).second ||
5832           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
5833           (VE && VE != E))
5834         continue;
5835       auto *EE = cast<ExtractElementInst>(V);
5836       Optional<unsigned> EEIdx = getExtractIndex(EE);
5837       if (!EEIdx)
5838         continue;
5839       unsigned Idx = *EEIdx;
5840       if (TTIRef.getNumberOfParts(VecTy) !=
5841           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
5842         auto It =
5843             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
5844         It->getSecond() = std::min<int>(It->second, Idx);
5845       }
5846       // Take credit for instruction that will become dead.
5847       if (EE->hasOneUse()) {
5848         Instruction *Ext = EE->user_back();
5849         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5850             all_of(Ext->users(),
5851                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
5852           // Use getExtractWithExtendCost() to calculate the cost of
5853           // extractelement/ext pair.
5854           Cost -=
5855               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
5856                                               EE->getVectorOperandType(), Idx);
5857           // Add back the cost of s|zext which is subtracted separately.
5858           Cost += TTIRef.getCastInstrCost(
5859               Ext->getOpcode(), Ext->getType(), EE->getType(),
5860               TTI::getCastContextHint(Ext), CostKind, Ext);
5861           continue;
5862         }
5863       }
5864       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
5865                                         EE->getVectorOperandType(), Idx);
5866     }
5867     // Add a cost for subvector extracts/inserts if required.
5868     for (const auto &Data : ExtractVectorsTys) {
5869       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
5870       unsigned NumElts = VecTy->getNumElements();
5871       if (Data.second % NumElts == 0)
5872         continue;
5873       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
5874         unsigned Idx = (Data.second / NumElts) * NumElts;
5875         unsigned EENumElts = EEVTy->getNumElements();
5876         if (Idx + NumElts <= EENumElts) {
5877           Cost +=
5878               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5879                                     EEVTy, None, Idx, VecTy);
5880         } else {
5881           // Need to round up the subvector type vectorization factor to avoid a
5882           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
5883           // <= EENumElts.
5884           auto *SubVT =
5885               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
5886           Cost +=
5887               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5888                                     EEVTy, None, Idx, SubVT);
5889         }
5890       } else {
5891         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
5892                                       VecTy, None, 0, EEVTy);
5893       }
5894     }
5895   };
5896   if (E->State == TreeEntry::NeedToGather) {
5897     if (allConstant(VL))
5898       return 0;
5899     if (isa<InsertElementInst>(VL[0]))
5900       return InstructionCost::getInvalid();
5901     SmallVector<int> Mask;
5902     SmallVector<const TreeEntry *> Entries;
5903     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5904         isGatherShuffledEntry(E, Mask, Entries);
5905     if (Shuffle) {
5906       InstructionCost GatherCost = 0;
5907       if (ShuffleVectorInst::isIdentityMask(Mask)) {
5908         // Perfect match in the graph, will reuse the previously vectorized
5909         // node. Cost is 0.
5910         LLVM_DEBUG(
5911             dbgs()
5912             << "SLP: perfect diamond match for gather bundle that starts with "
5913             << *VL.front() << ".\n");
5914         if (NeedToShuffleReuses)
5915           GatherCost =
5916               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5917                                   FinalVecTy, E->ReuseShuffleIndices);
5918       } else {
5919         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
5920                           << " entries for bundle that starts with "
5921                           << *VL.front() << ".\n");
5922         // Detected that instead of gather we can emit a shuffle of single/two
5923         // previously vectorized nodes. Add the cost of the permutation rather
5924         // than gather.
5925         ::addMask(Mask, E->ReuseShuffleIndices);
5926         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5927       }
5928       return GatherCost;
5929     }
5930     if ((E->getOpcode() == Instruction::ExtractElement ||
5931          all_of(E->Scalars,
5932                 [](Value *V) {
5933                   return isa<ExtractElementInst, UndefValue>(V);
5934                 })) &&
5935         allSameType(VL)) {
5936       // Check that gather of extractelements can be represented as just a
5937       // shuffle of a single/two vectors the scalars are extracted from.
5938       SmallVector<int> Mask;
5939       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5940           isFixedVectorShuffle(VL, Mask);
5941       if (ShuffleKind) {
5942         // Found the bunch of extractelement instructions that must be gathered
5943         // into a vector and can be represented as a permutation elements in a
5944         // single input vector or of 2 input vectors.
5945         InstructionCost Cost =
5946             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5947         AdjustExtractsCost(Cost);
5948         if (NeedToShuffleReuses)
5949           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5950                                       FinalVecTy, E->ReuseShuffleIndices);
5951         return Cost;
5952       }
5953     }
5954     if (isSplat(VL)) {
5955       // Found the broadcasting of the single scalar, calculate the cost as the
5956       // broadcast.
5957       assert(VecTy == FinalVecTy &&
5958              "No reused scalars expected for broadcast.");
5959       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
5960                                  /*Mask=*/None, /*Index=*/0,
5961                                  /*SubTp=*/nullptr, /*Args=*/VL[0]);
5962     }
5963     InstructionCost ReuseShuffleCost = 0;
5964     if (NeedToShuffleReuses)
5965       ReuseShuffleCost = TTI->getShuffleCost(
5966           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5967     // Improve gather cost for gather of loads, if we can group some of the
5968     // loads into vector loads.
5969     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5970         !E->isAltShuffle()) {
5971       BoUpSLP::ValueSet VectorizedLoads;
5972       unsigned StartIdx = 0;
5973       unsigned VF = VL.size() / 2;
5974       unsigned VectorizedCnt = 0;
5975       unsigned ScatterVectorizeCnt = 0;
5976       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5977       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5978         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5979              Cnt += VF) {
5980           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5981           if (!VectorizedLoads.count(Slice.front()) &&
5982               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5983             SmallVector<Value *> PointerOps;
5984             OrdersType CurrentOrder;
5985             LoadsState LS =
5986                 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI,
5987                                   CurrentOrder, PointerOps);
5988             switch (LS) {
5989             case LoadsState::Vectorize:
5990             case LoadsState::ScatterVectorize:
5991               // Mark the vectorized loads so that we don't vectorize them
5992               // again.
5993               if (LS == LoadsState::Vectorize)
5994                 ++VectorizedCnt;
5995               else
5996                 ++ScatterVectorizeCnt;
5997               VectorizedLoads.insert(Slice.begin(), Slice.end());
5998               // If we vectorized initial block, no need to try to vectorize it
5999               // again.
6000               if (Cnt == StartIdx)
6001                 StartIdx += VF;
6002               break;
6003             case LoadsState::Gather:
6004               break;
6005             }
6006           }
6007         }
6008         // Check if the whole array was vectorized already - exit.
6009         if (StartIdx >= VL.size())
6010           break;
6011         // Found vectorizable parts - exit.
6012         if (!VectorizedLoads.empty())
6013           break;
6014       }
6015       if (!VectorizedLoads.empty()) {
6016         InstructionCost GatherCost = 0;
6017         unsigned NumParts = TTI->getNumberOfParts(VecTy);
6018         bool NeedInsertSubvectorAnalysis =
6019             !NumParts || (VL.size() / VF) > NumParts;
6020         // Get the cost for gathered loads.
6021         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
6022           if (VectorizedLoads.contains(VL[I]))
6023             continue;
6024           GatherCost += getGatherCost(VL.slice(I, VF));
6025         }
6026         // The cost for vectorized loads.
6027         InstructionCost ScalarsCost = 0;
6028         for (Value *V : VectorizedLoads) {
6029           auto *LI = cast<LoadInst>(V);
6030           ScalarsCost += TTI->getMemoryOpCost(
6031               Instruction::Load, LI->getType(), LI->getAlign(),
6032               LI->getPointerAddressSpace(), CostKind, LI);
6033         }
6034         auto *LI = cast<LoadInst>(E->getMainOp());
6035         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
6036         Align Alignment = LI->getAlign();
6037         GatherCost +=
6038             VectorizedCnt *
6039             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
6040                                  LI->getPointerAddressSpace(), CostKind, LI);
6041         GatherCost += ScatterVectorizeCnt *
6042                       TTI->getGatherScatterOpCost(
6043                           Instruction::Load, LoadTy, LI->getPointerOperand(),
6044                           /*VariableMask=*/false, Alignment, CostKind, LI);
6045         if (NeedInsertSubvectorAnalysis) {
6046           // Add the cost for the subvectors insert.
6047           for (int I = VF, E = VL.size(); I < E; I += VF)
6048             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
6049                                               None, I, LoadTy);
6050         }
6051         return ReuseShuffleCost + GatherCost - ScalarsCost;
6052       }
6053     }
6054     return ReuseShuffleCost + getGatherCost(VL);
6055   }
6056   InstructionCost CommonCost = 0;
6057   SmallVector<int> Mask;
6058   if (!E->ReorderIndices.empty()) {
6059     SmallVector<int> NewMask;
6060     if (E->getOpcode() == Instruction::Store) {
6061       // For stores the order is actually a mask.
6062       NewMask.resize(E->ReorderIndices.size());
6063       copy(E->ReorderIndices, NewMask.begin());
6064     } else {
6065       inversePermutation(E->ReorderIndices, NewMask);
6066     }
6067     ::addMask(Mask, NewMask);
6068   }
6069   if (NeedToShuffleReuses)
6070     ::addMask(Mask, E->ReuseShuffleIndices);
6071   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
6072     CommonCost =
6073         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
6074   assert((E->State == TreeEntry::Vectorize ||
6075           E->State == TreeEntry::ScatterVectorize) &&
6076          "Unhandled state");
6077   assert(E->getOpcode() &&
6078          ((allSameType(VL) && allSameBlock(VL)) ||
6079           (E->getOpcode() == Instruction::GetElementPtr &&
6080            E->getMainOp()->getType()->isPointerTy())) &&
6081          "Invalid VL");
6082   Instruction *VL0 = E->getMainOp();
6083   unsigned ShuffleOrOp =
6084       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6085   switch (ShuffleOrOp) {
6086     case Instruction::PHI:
6087       return 0;
6088 
6089     case Instruction::ExtractValue:
6090     case Instruction::ExtractElement: {
6091       // The common cost of removal ExtractElement/ExtractValue instructions +
6092       // the cost of shuffles, if required to resuffle the original vector.
6093       if (NeedToShuffleReuses) {
6094         unsigned Idx = 0;
6095         for (unsigned I : E->ReuseShuffleIndices) {
6096           if (ShuffleOrOp == Instruction::ExtractElement) {
6097             auto *EE = cast<ExtractElementInst>(VL[I]);
6098             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6099                                                   EE->getVectorOperandType(),
6100                                                   *getExtractIndex(EE));
6101           } else {
6102             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6103                                                   VecTy, Idx);
6104             ++Idx;
6105           }
6106         }
6107         Idx = EntryVF;
6108         for (Value *V : VL) {
6109           if (ShuffleOrOp == Instruction::ExtractElement) {
6110             auto *EE = cast<ExtractElementInst>(V);
6111             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6112                                                   EE->getVectorOperandType(),
6113                                                   *getExtractIndex(EE));
6114           } else {
6115             --Idx;
6116             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6117                                                   VecTy, Idx);
6118           }
6119         }
6120       }
6121       if (ShuffleOrOp == Instruction::ExtractValue) {
6122         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
6123           auto *EI = cast<Instruction>(VL[I]);
6124           // Take credit for instruction that will become dead.
6125           if (EI->hasOneUse()) {
6126             Instruction *Ext = EI->user_back();
6127             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
6128                 all_of(Ext->users(),
6129                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
6130               // Use getExtractWithExtendCost() to calculate the cost of
6131               // extractelement/ext pair.
6132               CommonCost -= TTI->getExtractWithExtendCost(
6133                   Ext->getOpcode(), Ext->getType(), VecTy, I);
6134               // Add back the cost of s|zext which is subtracted separately.
6135               CommonCost += TTI->getCastInstrCost(
6136                   Ext->getOpcode(), Ext->getType(), EI->getType(),
6137                   TTI::getCastContextHint(Ext), CostKind, Ext);
6138               continue;
6139             }
6140           }
6141           CommonCost -=
6142               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
6143         }
6144       } else {
6145         AdjustExtractsCost(CommonCost);
6146       }
6147       return CommonCost;
6148     }
6149     case Instruction::InsertElement: {
6150       assert(E->ReuseShuffleIndices.empty() &&
6151              "Unique insertelements only are expected.");
6152       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
6153       unsigned const NumElts = SrcVecTy->getNumElements();
6154       unsigned const NumScalars = VL.size();
6155 
6156       unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
6157 
6158       unsigned OffsetBeg = *getInsertIndex(VL.front());
6159       unsigned OffsetEnd = OffsetBeg;
6160       for (Value *V : VL.drop_front()) {
6161         unsigned Idx = *getInsertIndex(V);
6162         if (OffsetBeg > Idx)
6163           OffsetBeg = Idx;
6164         else if (OffsetEnd < Idx)
6165           OffsetEnd = Idx;
6166       }
6167       unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
6168       if (NumOfParts > 0)
6169         VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
6170       unsigned VecSz =
6171           (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
6172           VecScalarsSz;
6173       unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
6174       unsigned InsertVecSz = std::min<unsigned>(
6175           PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
6176           ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) *
6177               VecScalarsSz);
6178       bool IsWholeSubvector =
6179           OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
6180       // Check if we can safely insert a subvector. If it is not possible, just
6181       // generate a whole-sized vector and shuffle the source vector and the new
6182       // subvector.
6183       if (OffsetBeg + InsertVecSz > VecSz) {
6184         // Align OffsetBeg to generate correct mask.
6185         OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
6186         InsertVecSz = VecSz;
6187       }
6188 
6189       APInt DemandedElts = APInt::getZero(NumElts);
6190       // TODO: Add support for Instruction::InsertValue.
6191       SmallVector<int> Mask;
6192       if (!E->ReorderIndices.empty()) {
6193         inversePermutation(E->ReorderIndices, Mask);
6194         Mask.append(InsertVecSz - Mask.size(), UndefMaskElem);
6195       } else {
6196         Mask.assign(VecSz, UndefMaskElem);
6197         std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
6198       }
6199       bool IsIdentity = true;
6200       SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem);
6201       Mask.swap(PrevMask);
6202       for (unsigned I = 0; I < NumScalars; ++I) {
6203         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
6204         DemandedElts.setBit(InsertIdx);
6205         IsIdentity &= InsertIdx - OffsetBeg == I;
6206         Mask[InsertIdx - OffsetBeg] = I;
6207       }
6208       assert(Offset < NumElts && "Failed to find vector index offset");
6209 
6210       InstructionCost Cost = 0;
6211       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
6212                                             /*Insert*/ true, /*Extract*/ false);
6213 
6214       // First cost - resize to actual vector size if not identity shuffle or
6215       // need to shift the vector.
6216       // Do not calculate the cost if the actual size is the register size and
6217       // we can merge this shuffle with the following SK_Select.
6218       auto *InsertVecTy =
6219           FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz);
6220       if (!IsIdentity)
6221         Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
6222                                     InsertVecTy, Mask);
6223       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6224         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6225       }));
6226       // Second cost - permutation with subvector, if some elements are from the
6227       // initial vector or inserting a subvector.
6228       // TODO: Implement the analysis of the FirstInsert->getOperand(0)
6229       // subvector of ActualVecTy.
6230       if (!isUndefVector(FirstInsert->getOperand(0)) && NumScalars != NumElts &&
6231           !IsWholeSubvector) {
6232         if (InsertVecSz != VecSz) {
6233           auto *ActualVecTy =
6234               FixedVectorType::get(SrcVecTy->getElementType(), VecSz);
6235           Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy,
6236                                       None, OffsetBeg - Offset, InsertVecTy);
6237         } else {
6238           for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
6239             Mask[I] = I;
6240           for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
6241                I <= End; ++I)
6242             if (Mask[I] != UndefMaskElem)
6243               Mask[I] = I + VecSz;
6244           for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
6245             Mask[I] = I;
6246           Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
6247         }
6248       }
6249       return Cost;
6250     }
6251     case Instruction::ZExt:
6252     case Instruction::SExt:
6253     case Instruction::FPToUI:
6254     case Instruction::FPToSI:
6255     case Instruction::FPExt:
6256     case Instruction::PtrToInt:
6257     case Instruction::IntToPtr:
6258     case Instruction::SIToFP:
6259     case Instruction::UIToFP:
6260     case Instruction::Trunc:
6261     case Instruction::FPTrunc:
6262     case Instruction::BitCast: {
6263       Type *SrcTy = VL0->getOperand(0)->getType();
6264       InstructionCost ScalarEltCost =
6265           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
6266                                 TTI::getCastContextHint(VL0), CostKind, VL0);
6267       if (NeedToShuffleReuses) {
6268         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6269       }
6270 
6271       // Calculate the cost of this instruction.
6272       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
6273 
6274       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
6275       InstructionCost VecCost = 0;
6276       // Check if the values are candidates to demote.
6277       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
6278         VecCost = CommonCost + TTI->getCastInstrCost(
6279                                    E->getOpcode(), VecTy, SrcVecTy,
6280                                    TTI::getCastContextHint(VL0), CostKind, VL0);
6281       }
6282       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6283       return VecCost - ScalarCost;
6284     }
6285     case Instruction::FCmp:
6286     case Instruction::ICmp:
6287     case Instruction::Select: {
6288       // Calculate the cost of this instruction.
6289       InstructionCost ScalarEltCost =
6290           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6291                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
6292       if (NeedToShuffleReuses) {
6293         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6294       }
6295       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
6296       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6297 
6298       // Check if all entries in VL are either compares or selects with compares
6299       // as condition that have the same predicates.
6300       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
6301       bool First = true;
6302       for (auto *V : VL) {
6303         CmpInst::Predicate CurrentPred;
6304         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
6305         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
6306              !match(V, MatchCmp)) ||
6307             (!First && VecPred != CurrentPred)) {
6308           VecPred = CmpInst::BAD_ICMP_PREDICATE;
6309           break;
6310         }
6311         First = false;
6312         VecPred = CurrentPred;
6313       }
6314 
6315       InstructionCost VecCost = TTI->getCmpSelInstrCost(
6316           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
6317       // Check if it is possible and profitable to use min/max for selects in
6318       // VL.
6319       //
6320       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
6321       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
6322         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
6323                                           {VecTy, VecTy});
6324         InstructionCost IntrinsicCost =
6325             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6326         // If the selects are the only uses of the compares, they will be dead
6327         // and we can adjust the cost by removing their cost.
6328         if (IntrinsicAndUse.second)
6329           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
6330                                                    MaskTy, VecPred, CostKind);
6331         VecCost = std::min(VecCost, IntrinsicCost);
6332       }
6333       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6334       return CommonCost + VecCost - ScalarCost;
6335     }
6336     case Instruction::FNeg:
6337     case Instruction::Add:
6338     case Instruction::FAdd:
6339     case Instruction::Sub:
6340     case Instruction::FSub:
6341     case Instruction::Mul:
6342     case Instruction::FMul:
6343     case Instruction::UDiv:
6344     case Instruction::SDiv:
6345     case Instruction::FDiv:
6346     case Instruction::URem:
6347     case Instruction::SRem:
6348     case Instruction::FRem:
6349     case Instruction::Shl:
6350     case Instruction::LShr:
6351     case Instruction::AShr:
6352     case Instruction::And:
6353     case Instruction::Or:
6354     case Instruction::Xor: {
6355       // Certain instructions can be cheaper to vectorize if they have a
6356       // constant second vector operand.
6357       TargetTransformInfo::OperandValueKind Op1VK =
6358           TargetTransformInfo::OK_AnyValue;
6359       TargetTransformInfo::OperandValueKind Op2VK =
6360           TargetTransformInfo::OK_UniformConstantValue;
6361       TargetTransformInfo::OperandValueProperties Op1VP =
6362           TargetTransformInfo::OP_None;
6363       TargetTransformInfo::OperandValueProperties Op2VP =
6364           TargetTransformInfo::OP_PowerOf2;
6365 
6366       // If all operands are exactly the same ConstantInt then set the
6367       // operand kind to OK_UniformConstantValue.
6368       // If instead not all operands are constants, then set the operand kind
6369       // to OK_AnyValue. If all operands are constants but not the same,
6370       // then set the operand kind to OK_NonUniformConstantValue.
6371       ConstantInt *CInt0 = nullptr;
6372       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
6373         const Instruction *I = cast<Instruction>(VL[i]);
6374         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
6375         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
6376         if (!CInt) {
6377           Op2VK = TargetTransformInfo::OK_AnyValue;
6378           Op2VP = TargetTransformInfo::OP_None;
6379           break;
6380         }
6381         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
6382             !CInt->getValue().isPowerOf2())
6383           Op2VP = TargetTransformInfo::OP_None;
6384         if (i == 0) {
6385           CInt0 = CInt;
6386           continue;
6387         }
6388         if (CInt0 != CInt)
6389           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6390       }
6391 
6392       SmallVector<const Value *, 4> Operands(VL0->operand_values());
6393       InstructionCost ScalarEltCost =
6394           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
6395                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6396       if (NeedToShuffleReuses) {
6397         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6398       }
6399       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6400       InstructionCost VecCost =
6401           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
6402                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6403       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6404       return CommonCost + VecCost - ScalarCost;
6405     }
6406     case Instruction::GetElementPtr: {
6407       TargetTransformInfo::OperandValueKind Op1VK =
6408           TargetTransformInfo::OK_AnyValue;
6409       TargetTransformInfo::OperandValueKind Op2VK =
6410           any_of(VL,
6411                  [](Value *V) {
6412                    return isa<GetElementPtrInst>(V) &&
6413                           !isConstant(
6414                               cast<GetElementPtrInst>(V)->getOperand(1));
6415                  })
6416               ? TargetTransformInfo::OK_AnyValue
6417               : TargetTransformInfo::OK_UniformConstantValue;
6418 
6419       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
6420           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
6421       if (NeedToShuffleReuses) {
6422         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6423       }
6424       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6425       InstructionCost VecCost = TTI->getArithmeticInstrCost(
6426           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
6427       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6428       return CommonCost + VecCost - ScalarCost;
6429     }
6430     case Instruction::Load: {
6431       // Cost of wide load - cost of scalar loads.
6432       Align Alignment = cast<LoadInst>(VL0)->getAlign();
6433       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6434           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
6435       if (NeedToShuffleReuses) {
6436         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6437       }
6438       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
6439       InstructionCost VecLdCost;
6440       if (E->State == TreeEntry::Vectorize) {
6441         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
6442                                          CostKind, VL0);
6443       } else {
6444         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
6445         Align CommonAlignment = Alignment;
6446         for (Value *V : VL)
6447           CommonAlignment =
6448               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
6449         VecLdCost = TTI->getGatherScatterOpCost(
6450             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
6451             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
6452       }
6453       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
6454       return CommonCost + VecLdCost - ScalarLdCost;
6455     }
6456     case Instruction::Store: {
6457       // We know that we can merge the stores. Calculate the cost.
6458       bool IsReorder = !E->ReorderIndices.empty();
6459       auto *SI =
6460           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
6461       Align Alignment = SI->getAlign();
6462       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6463           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
6464       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
6465       InstructionCost VecStCost = TTI->getMemoryOpCost(
6466           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
6467       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
6468       return CommonCost + VecStCost - ScalarStCost;
6469     }
6470     case Instruction::Call: {
6471       CallInst *CI = cast<CallInst>(VL0);
6472       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6473 
6474       // Calculate the cost of the scalar and vector calls.
6475       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
6476       InstructionCost ScalarEltCost =
6477           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6478       if (NeedToShuffleReuses) {
6479         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6480       }
6481       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
6482 
6483       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6484       InstructionCost VecCallCost =
6485           std::min(VecCallCosts.first, VecCallCosts.second);
6486 
6487       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
6488                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
6489                         << " for " << *CI << "\n");
6490 
6491       return CommonCost + VecCallCost - ScalarCallCost;
6492     }
6493     case Instruction::ShuffleVector: {
6494       assert(E->isAltShuffle() &&
6495              ((Instruction::isBinaryOp(E->getOpcode()) &&
6496                Instruction::isBinaryOp(E->getAltOpcode())) ||
6497               (Instruction::isCast(E->getOpcode()) &&
6498                Instruction::isCast(E->getAltOpcode())) ||
6499               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
6500              "Invalid Shuffle Vector Operand");
6501       InstructionCost ScalarCost = 0;
6502       if (NeedToShuffleReuses) {
6503         for (unsigned Idx : E->ReuseShuffleIndices) {
6504           Instruction *I = cast<Instruction>(VL[Idx]);
6505           CommonCost -= TTI->getInstructionCost(I, CostKind);
6506         }
6507         for (Value *V : VL) {
6508           Instruction *I = cast<Instruction>(V);
6509           CommonCost += TTI->getInstructionCost(I, CostKind);
6510         }
6511       }
6512       for (Value *V : VL) {
6513         Instruction *I = cast<Instruction>(V);
6514         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6515         ScalarCost += TTI->getInstructionCost(I, CostKind);
6516       }
6517       // VecCost is equal to sum of the cost of creating 2 vectors
6518       // and the cost of creating shuffle.
6519       InstructionCost VecCost = 0;
6520       // Try to find the previous shuffle node with the same operands and same
6521       // main/alternate ops.
6522       auto &&TryFindNodeWithEqualOperands = [this, E]() {
6523         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
6524           if (TE.get() == E)
6525             break;
6526           if (TE->isAltShuffle() &&
6527               ((TE->getOpcode() == E->getOpcode() &&
6528                 TE->getAltOpcode() == E->getAltOpcode()) ||
6529                (TE->getOpcode() == E->getAltOpcode() &&
6530                 TE->getAltOpcode() == E->getOpcode())) &&
6531               TE->hasEqualOperands(*E))
6532             return true;
6533         }
6534         return false;
6535       };
6536       if (TryFindNodeWithEqualOperands()) {
6537         LLVM_DEBUG({
6538           dbgs() << "SLP: diamond match for alternate node found.\n";
6539           E->dump();
6540         });
6541         // No need to add new vector costs here since we're going to reuse
6542         // same main/alternate vector ops, just do different shuffling.
6543       } else if (Instruction::isBinaryOp(E->getOpcode())) {
6544         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
6545         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
6546                                                CostKind);
6547       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
6548         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6549                                           Builder.getInt1Ty(),
6550                                           CI0->getPredicate(), CostKind, VL0);
6551         VecCost += TTI->getCmpSelInstrCost(
6552             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6553             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
6554             E->getAltOp());
6555       } else {
6556         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
6557         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
6558         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
6559         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
6560         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
6561                                         TTI::CastContextHint::None, CostKind);
6562         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
6563                                          TTI::CastContextHint::None, CostKind);
6564       }
6565 
6566       if (E->ReuseShuffleIndices.empty()) {
6567         CommonCost =
6568             TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
6569       } else {
6570         SmallVector<int> Mask;
6571         buildShuffleEntryMask(
6572             E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
6573             [E](Instruction *I) {
6574               assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6575               return I->getOpcode() == E->getAltOpcode();
6576             },
6577             Mask);
6578         CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
6579                                          FinalVecTy, Mask);
6580       }
6581       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6582       return CommonCost + VecCost - ScalarCost;
6583     }
6584     default:
6585       llvm_unreachable("Unknown instruction");
6586   }
6587 }
6588 
6589 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
6590   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
6591                     << VectorizableTree.size() << " is fully vectorizable .\n");
6592 
6593   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
6594     SmallVector<int> Mask;
6595     return TE->State == TreeEntry::NeedToGather &&
6596            !any_of(TE->Scalars,
6597                    [this](Value *V) { return EphValues.contains(V); }) &&
6598            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
6599             TE->Scalars.size() < Limit ||
6600             ((TE->getOpcode() == Instruction::ExtractElement ||
6601               all_of(TE->Scalars,
6602                      [](Value *V) {
6603                        return isa<ExtractElementInst, UndefValue>(V);
6604                      })) &&
6605              isFixedVectorShuffle(TE->Scalars, Mask)) ||
6606             (TE->State == TreeEntry::NeedToGather &&
6607              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
6608   };
6609 
6610   // We only handle trees of heights 1 and 2.
6611   if (VectorizableTree.size() == 1 &&
6612       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
6613        (ForReduction &&
6614         AreVectorizableGathers(VectorizableTree[0].get(),
6615                                VectorizableTree[0]->Scalars.size()) &&
6616         VectorizableTree[0]->getVectorFactor() > 2)))
6617     return true;
6618 
6619   if (VectorizableTree.size() != 2)
6620     return false;
6621 
6622   // Handle splat and all-constants stores. Also try to vectorize tiny trees
6623   // with the second gather nodes if they have less scalar operands rather than
6624   // the initial tree element (may be profitable to shuffle the second gather)
6625   // or they are extractelements, which form shuffle.
6626   SmallVector<int> Mask;
6627   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
6628       AreVectorizableGathers(VectorizableTree[1].get(),
6629                              VectorizableTree[0]->Scalars.size()))
6630     return true;
6631 
6632   // Gathering cost would be too much for tiny trees.
6633   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
6634       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6635        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
6636     return false;
6637 
6638   return true;
6639 }
6640 
6641 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
6642                                        TargetTransformInfo *TTI,
6643                                        bool MustMatchOrInst) {
6644   // Look past the root to find a source value. Arbitrarily follow the
6645   // path through operand 0 of any 'or'. Also, peek through optional
6646   // shift-left-by-multiple-of-8-bits.
6647   Value *ZextLoad = Root;
6648   const APInt *ShAmtC;
6649   bool FoundOr = false;
6650   while (!isa<ConstantExpr>(ZextLoad) &&
6651          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
6652           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
6653            ShAmtC->urem(8) == 0))) {
6654     auto *BinOp = cast<BinaryOperator>(ZextLoad);
6655     ZextLoad = BinOp->getOperand(0);
6656     if (BinOp->getOpcode() == Instruction::Or)
6657       FoundOr = true;
6658   }
6659   // Check if the input is an extended load of the required or/shift expression.
6660   Value *Load;
6661   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
6662       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
6663     return false;
6664 
6665   // Require that the total load bit width is a legal integer type.
6666   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
6667   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
6668   Type *SrcTy = Load->getType();
6669   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
6670   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
6671     return false;
6672 
6673   // Everything matched - assume that we can fold the whole sequence using
6674   // load combining.
6675   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
6676              << *(cast<Instruction>(Root)) << "\n");
6677 
6678   return true;
6679 }
6680 
6681 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
6682   if (RdxKind != RecurKind::Or)
6683     return false;
6684 
6685   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6686   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
6687   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
6688                                     /* MatchOr */ false);
6689 }
6690 
6691 bool BoUpSLP::isLoadCombineCandidate() const {
6692   // Peek through a final sequence of stores and check if all operations are
6693   // likely to be load-combined.
6694   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6695   for (Value *Scalar : VectorizableTree[0]->Scalars) {
6696     Value *X;
6697     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
6698         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
6699       return false;
6700   }
6701   return true;
6702 }
6703 
6704 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
6705   // No need to vectorize inserts of gathered values.
6706   if (VectorizableTree.size() == 2 &&
6707       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
6708       VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6709       (VectorizableTree[1]->getVectorFactor() <= 2 ||
6710        !(isSplat(VectorizableTree[1]->Scalars) ||
6711          allConstant(VectorizableTree[1]->Scalars))))
6712     return true;
6713 
6714   // We can vectorize the tree if its size is greater than or equal to the
6715   // minimum size specified by the MinTreeSize command line option.
6716   if (VectorizableTree.size() >= MinTreeSize)
6717     return false;
6718 
6719   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
6720   // can vectorize it if we can prove it fully vectorizable.
6721   if (isFullyVectorizableTinyTree(ForReduction))
6722     return false;
6723 
6724   assert(VectorizableTree.empty()
6725              ? ExternalUses.empty()
6726              : true && "We shouldn't have any external users");
6727 
6728   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
6729   // vectorizable.
6730   return true;
6731 }
6732 
6733 InstructionCost BoUpSLP::getSpillCost() const {
6734   // Walk from the bottom of the tree to the top, tracking which values are
6735   // live. When we see a call instruction that is not part of our tree,
6736   // query TTI to see if there is a cost to keeping values live over it
6737   // (for example, if spills and fills are required).
6738   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
6739   InstructionCost Cost = 0;
6740 
6741   SmallPtrSet<Instruction*, 4> LiveValues;
6742   Instruction *PrevInst = nullptr;
6743 
6744   // The entries in VectorizableTree are not necessarily ordered by their
6745   // position in basic blocks. Collect them and order them by dominance so later
6746   // instructions are guaranteed to be visited first. For instructions in
6747   // different basic blocks, we only scan to the beginning of the block, so
6748   // their order does not matter, as long as all instructions in a basic block
6749   // are grouped together. Using dominance ensures a deterministic order.
6750   SmallVector<Instruction *, 16> OrderedScalars;
6751   for (const auto &TEPtr : VectorizableTree) {
6752     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
6753     if (!Inst)
6754       continue;
6755     OrderedScalars.push_back(Inst);
6756   }
6757   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
6758     auto *NodeA = DT->getNode(A->getParent());
6759     auto *NodeB = DT->getNode(B->getParent());
6760     assert(NodeA && "Should only process reachable instructions");
6761     assert(NodeB && "Should only process reachable instructions");
6762     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
6763            "Different nodes should have different DFS numbers");
6764     if (NodeA != NodeB)
6765       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
6766     return B->comesBefore(A);
6767   });
6768 
6769   for (Instruction *Inst : OrderedScalars) {
6770     if (!PrevInst) {
6771       PrevInst = Inst;
6772       continue;
6773     }
6774 
6775     // Update LiveValues.
6776     LiveValues.erase(PrevInst);
6777     for (auto &J : PrevInst->operands()) {
6778       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
6779         LiveValues.insert(cast<Instruction>(&*J));
6780     }
6781 
6782     LLVM_DEBUG({
6783       dbgs() << "SLP: #LV: " << LiveValues.size();
6784       for (auto *X : LiveValues)
6785         dbgs() << " " << X->getName();
6786       dbgs() << ", Looking at ";
6787       Inst->dump();
6788     });
6789 
6790     // Now find the sequence of instructions between PrevInst and Inst.
6791     unsigned NumCalls = 0;
6792     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
6793                                  PrevInstIt =
6794                                      PrevInst->getIterator().getReverse();
6795     while (InstIt != PrevInstIt) {
6796       if (PrevInstIt == PrevInst->getParent()->rend()) {
6797         PrevInstIt = Inst->getParent()->rbegin();
6798         continue;
6799       }
6800 
6801       // Debug information does not impact spill cost.
6802       if ((isa<CallInst>(&*PrevInstIt) &&
6803            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
6804           &*PrevInstIt != PrevInst)
6805         NumCalls++;
6806 
6807       ++PrevInstIt;
6808     }
6809 
6810     if (NumCalls) {
6811       SmallVector<Type*, 4> V;
6812       for (auto *II : LiveValues) {
6813         auto *ScalarTy = II->getType();
6814         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
6815           ScalarTy = VectorTy->getElementType();
6816         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
6817       }
6818       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
6819     }
6820 
6821     PrevInst = Inst;
6822   }
6823 
6824   return Cost;
6825 }
6826 
6827 /// Check if two insertelement instructions are from the same buildvector.
6828 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
6829                                             InsertElementInst *V) {
6830   // Instructions must be from the same basic blocks.
6831   if (VU->getParent() != V->getParent())
6832     return false;
6833   // Checks if 2 insertelements are from the same buildvector.
6834   if (VU->getType() != V->getType())
6835     return false;
6836   // Multiple used inserts are separate nodes.
6837   if (!VU->hasOneUse() && !V->hasOneUse())
6838     return false;
6839   auto *IE1 = VU;
6840   auto *IE2 = V;
6841   unsigned Idx1 = *getInsertIndex(IE1);
6842   unsigned Idx2 = *getInsertIndex(IE2);
6843   // Go through the vector operand of insertelement instructions trying to find
6844   // either VU as the original vector for IE2 or V as the original vector for
6845   // IE1.
6846   do {
6847     if (IE2 == VU)
6848       return VU->hasOneUse();
6849     if (IE1 == V)
6850       return V->hasOneUse();
6851     if (IE1) {
6852       if ((IE1 != VU && !IE1->hasOneUse()) ||
6853           getInsertIndex(IE1).value_or(Idx2) == Idx2)
6854         IE1 = nullptr;
6855       else
6856         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
6857     }
6858     if (IE2) {
6859       if ((IE2 != V && !IE2->hasOneUse()) ||
6860           getInsertIndex(IE2).value_or(Idx1) == Idx1)
6861         IE2 = nullptr;
6862       else
6863         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
6864     }
6865   } while (IE1 || IE2);
6866   return false;
6867 }
6868 
6869 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
6870 /// buildvector sequence.
6871 static bool isFirstInsertElement(const InsertElementInst *IE1,
6872                                  const InsertElementInst *IE2) {
6873   if (IE1 == IE2)
6874     return false;
6875   const auto *I1 = IE1;
6876   const auto *I2 = IE2;
6877   const InsertElementInst *PrevI1;
6878   const InsertElementInst *PrevI2;
6879   unsigned Idx1 = *getInsertIndex(IE1);
6880   unsigned Idx2 = *getInsertIndex(IE2);
6881   do {
6882     if (I2 == IE1)
6883       return true;
6884     if (I1 == IE2)
6885       return false;
6886     PrevI1 = I1;
6887     PrevI2 = I2;
6888     if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
6889         getInsertIndex(I1).value_or(Idx2) != Idx2)
6890       I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
6891     if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
6892         getInsertIndex(I2).value_or(Idx1) != Idx1)
6893       I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
6894   } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
6895   llvm_unreachable("Two different buildvectors not expected.");
6896 }
6897 
6898 namespace {
6899 /// Returns incoming Value *, if the requested type is Value * too, or a default
6900 /// value, otherwise.
6901 struct ValueSelect {
6902   template <typename U>
6903   static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type
6904   get(Value *V) {
6905     return V;
6906   }
6907   template <typename U>
6908   static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type
6909   get(Value *) {
6910     return U();
6911   }
6912 };
6913 } // namespace
6914 
6915 /// Does the analysis of the provided shuffle masks and performs the requested
6916 /// actions on the vectors with the given shuffle masks. It tries to do it in
6917 /// several steps.
6918 /// 1. If the Base vector is not undef vector, resizing the very first mask to
6919 /// have common VF and perform action for 2 input vectors (including non-undef
6920 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
6921 /// and processed as a shuffle of 2 elements.
6922 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
6923 /// action only for 1 vector with the given mask, if it is not the identity
6924 /// mask.
6925 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
6926 /// vectors, combing the masks properly between the steps.
6927 template <typename T>
6928 static T *performExtractsShuffleAction(
6929     MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
6930     function_ref<unsigned(T *)> GetVF,
6931     function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction,
6932     function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
6933   assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
6934   SmallVector<int> Mask(ShuffleMask.begin()->second);
6935   auto VMIt = std::next(ShuffleMask.begin());
6936   T *Prev = nullptr;
6937   bool IsBaseNotUndef = !isUndefVector(Base);
6938   if (IsBaseNotUndef) {
6939     // Base is not undef, need to combine it with the next subvectors.
6940     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6941     for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
6942       if (Mask[Idx] == UndefMaskElem)
6943         Mask[Idx] = Idx;
6944       else
6945         Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
6946     }
6947     auto *V = ValueSelect::get<T *>(Base);
6948     (void)V;
6949     assert((!V || GetVF(V) == Mask.size()) &&
6950            "Expected base vector of VF number of elements.");
6951     Prev = Action(Mask, {nullptr, Res.first});
6952   } else if (ShuffleMask.size() == 1) {
6953     // Base is undef and only 1 vector is shuffled - perform the action only for
6954     // single vector, if the mask is not the identity mask.
6955     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6956     if (Res.second)
6957       // Identity mask is found.
6958       Prev = Res.first;
6959     else
6960       Prev = Action(Mask, {ShuffleMask.begin()->first});
6961   } else {
6962     // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
6963     // shuffles step by step, combining shuffle between the steps.
6964     unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
6965     unsigned Vec2VF = GetVF(VMIt->first);
6966     if (Vec1VF == Vec2VF) {
6967       // No need to resize the input vectors since they are of the same size, we
6968       // can shuffle them directly.
6969       ArrayRef<int> SecMask = VMIt->second;
6970       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6971         if (SecMask[I] != UndefMaskElem) {
6972           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6973           Mask[I] = SecMask[I] + Vec1VF;
6974         }
6975       }
6976       Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
6977     } else {
6978       // Vectors of different sizes - resize and reshuffle.
6979       std::pair<T *, bool> Res1 =
6980           ResizeAction(ShuffleMask.begin()->first, Mask);
6981       std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second);
6982       ArrayRef<int> SecMask = VMIt->second;
6983       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6984         if (Mask[I] != UndefMaskElem) {
6985           assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.");
6986           if (Res1.second)
6987             Mask[I] = I;
6988         } else if (SecMask[I] != UndefMaskElem) {
6989           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6990           Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
6991         }
6992       }
6993       Prev = Action(Mask, {Res1.first, Res2.first});
6994     }
6995     VMIt = std::next(VMIt);
6996   }
6997   // Perform requested actions for the remaining masks/vectors.
6998   for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
6999     // Shuffle other input vectors, if any.
7000     std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second);
7001     ArrayRef<int> SecMask = VMIt->second;
7002     for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7003       if (SecMask[I] != UndefMaskElem) {
7004         assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&
7005                "Multiple uses of scalars.");
7006         Mask[I] = (Res.second ? I : SecMask[I]) + VF;
7007       } else if (Mask[I] != UndefMaskElem) {
7008         Mask[I] = I;
7009       }
7010     }
7011     Prev = Action(Mask, {Prev, Res.first});
7012   }
7013   return Prev;
7014 }
7015 
7016 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
7017   InstructionCost Cost = 0;
7018   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
7019                     << VectorizableTree.size() << ".\n");
7020 
7021   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
7022 
7023   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
7024     TreeEntry &TE = *VectorizableTree[I];
7025 
7026     InstructionCost C = getEntryCost(&TE, VectorizedVals);
7027     Cost += C;
7028     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7029                       << " for bundle that starts with " << *TE.Scalars[0]
7030                       << ".\n"
7031                       << "SLP: Current total cost = " << Cost << "\n");
7032   }
7033 
7034   SmallPtrSet<Value *, 16> ExtractCostCalculated;
7035   InstructionCost ExtractCost = 0;
7036   SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
7037   SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
7038   SmallVector<APInt> DemandedElts;
7039   for (ExternalUser &EU : ExternalUses) {
7040     // We only add extract cost once for the same scalar.
7041     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
7042         !ExtractCostCalculated.insert(EU.Scalar).second)
7043       continue;
7044 
7045     // Uses by ephemeral values are free (because the ephemeral value will be
7046     // removed prior to code generation, and so the extraction will be
7047     // removed as well).
7048     if (EphValues.count(EU.User))
7049       continue;
7050 
7051     // No extract cost for vector "scalar"
7052     if (isa<FixedVectorType>(EU.Scalar->getType()))
7053       continue;
7054 
7055     // Already counted the cost for external uses when tried to adjust the cost
7056     // for extractelements, no need to add it again.
7057     if (isa<ExtractElementInst>(EU.Scalar))
7058       continue;
7059 
7060     // If found user is an insertelement, do not calculate extract cost but try
7061     // to detect it as a final shuffled/identity match.
7062     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
7063       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
7064         Optional<unsigned> InsertIdx = getInsertIndex(VU);
7065         if (InsertIdx) {
7066           const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
7067           auto *It =
7068               find_if(FirstUsers,
7069                       [VU](const std::pair<Value *, const TreeEntry *> &Pair) {
7070                         return areTwoInsertFromSameBuildVector(
7071                             VU, cast<InsertElementInst>(Pair.first));
7072                       });
7073           int VecId = -1;
7074           if (It == FirstUsers.end()) {
7075             (void)ShuffleMasks.emplace_back();
7076             SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
7077             if (Mask.empty())
7078               Mask.assign(FTy->getNumElements(), UndefMaskElem);
7079             // Find the insertvector, vectorized in tree, if any.
7080             Value *Base = VU;
7081             while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
7082               if (IEBase != EU.User &&
7083                   (!IEBase->hasOneUse() ||
7084                    getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
7085                 break;
7086               // Build the mask for the vectorized insertelement instructions.
7087               if (const TreeEntry *E = getTreeEntry(IEBase)) {
7088                 VU = IEBase;
7089                 do {
7090                   IEBase = cast<InsertElementInst>(Base);
7091                   int Idx = *getInsertIndex(IEBase);
7092                   assert(Mask[Idx] == UndefMaskElem &&
7093                          "InsertElementInstruction used already.");
7094                   Mask[Idx] = Idx;
7095                   Base = IEBase->getOperand(0);
7096                 } while (E == getTreeEntry(Base));
7097                 break;
7098               }
7099               Base = cast<InsertElementInst>(Base)->getOperand(0);
7100             }
7101             FirstUsers.emplace_back(VU, ScalarTE);
7102             DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
7103             VecId = FirstUsers.size() - 1;
7104           } else {
7105             if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
7106               It->first = VU;
7107             VecId = std::distance(FirstUsers.begin(), It);
7108           }
7109           int InIdx = *InsertIdx;
7110           SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
7111           if (Mask.empty())
7112             Mask.assign(FTy->getNumElements(), UndefMaskElem);
7113           Mask[InIdx] = EU.Lane;
7114           DemandedElts[VecId].setBit(InIdx);
7115           continue;
7116         }
7117       }
7118     }
7119 
7120     // If we plan to rewrite the tree in a smaller type, we will need to sign
7121     // extend the extracted value back to the original type. Here, we account
7122     // for the extract and the added cost of the sign extend if needed.
7123     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
7124     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7125     if (MinBWs.count(ScalarRoot)) {
7126       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7127       auto Extend =
7128           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
7129       VecTy = FixedVectorType::get(MinTy, BundleWidth);
7130       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
7131                                                    VecTy, EU.Lane);
7132     } else {
7133       ExtractCost +=
7134           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
7135     }
7136   }
7137 
7138   InstructionCost SpillCost = getSpillCost();
7139   Cost += SpillCost + ExtractCost;
7140   auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) {
7141     InstructionCost C = 0;
7142     unsigned VF = Mask.size();
7143     unsigned VecVF = TE->getVectorFactor();
7144     if (VF != VecVF &&
7145         (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
7146          (all_of(Mask,
7147                  [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
7148           !ShuffleVectorInst::isIdentityMask(Mask)))) {
7149       SmallVector<int> OrigMask(VecVF, UndefMaskElem);
7150       std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
7151                 OrigMask.begin());
7152       C = TTI->getShuffleCost(
7153           TTI::SK_PermuteSingleSrc,
7154           FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
7155       LLVM_DEBUG(
7156           dbgs() << "SLP: Adding cost " << C
7157                  << " for final shuffle of insertelement external users.\n";
7158           TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
7159       Cost += C;
7160       return std::make_pair(TE, true);
7161     }
7162     return std::make_pair(TE, false);
7163   };
7164   // Calculate the cost of the reshuffled vectors, if any.
7165   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
7166     Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
7167     unsigned VF = ShuffleMasks[I].begin()->second.size();
7168     auto *FTy = FixedVectorType::get(
7169         cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
7170     auto Vector = ShuffleMasks[I].takeVector();
7171     auto &&EstimateShufflesCost = [this, FTy,
7172                                    &Cost](ArrayRef<int> Mask,
7173                                           ArrayRef<const TreeEntry *> TEs) {
7174       assert((TEs.size() == 1 || TEs.size() == 2) &&
7175              "Expected exactly 1 or 2 tree entries.");
7176       if (TEs.size() == 1) {
7177         int Limit = 2 * Mask.size();
7178         if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
7179             !ShuffleVectorInst::isIdentityMask(Mask)) {
7180           InstructionCost C =
7181               TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
7182           LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7183                             << " for final shuffle of insertelement "
7184                                "external users.\n";
7185                      TEs.front()->dump();
7186                      dbgs() << "SLP: Current total cost = " << Cost << "\n");
7187           Cost += C;
7188         }
7189       } else {
7190         InstructionCost C =
7191             TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
7192         LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7193                           << " for final shuffle of vector node and external "
7194                              "insertelement users.\n";
7195                    if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
7196                    dbgs() << "SLP: Current total cost = " << Cost << "\n");
7197         Cost += C;
7198       }
7199       return TEs.back();
7200     };
7201     (void)performExtractsShuffleAction<const TreeEntry>(
7202         makeMutableArrayRef(Vector.data(), Vector.size()), Base,
7203         [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
7204         EstimateShufflesCost);
7205     InstructionCost InsertCost = TTI->getScalarizationOverhead(
7206         cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
7207         /*Insert*/ true, /*Extract*/ false);
7208     Cost -= InsertCost;
7209   }
7210 
7211 #ifndef NDEBUG
7212   SmallString<256> Str;
7213   {
7214     raw_svector_ostream OS(Str);
7215     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
7216        << "SLP: Extract Cost = " << ExtractCost << ".\n"
7217        << "SLP: Total Cost = " << Cost << ".\n";
7218   }
7219   LLVM_DEBUG(dbgs() << Str);
7220   if (ViewSLPTree)
7221     ViewGraph(this, "SLP" + F->getName(), false, Str);
7222 #endif
7223 
7224   return Cost;
7225 }
7226 
7227 Optional<TargetTransformInfo::ShuffleKind>
7228 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
7229                                SmallVectorImpl<const TreeEntry *> &Entries) {
7230   // TODO: currently checking only for Scalars in the tree entry, need to count
7231   // reused elements too for better cost estimation.
7232   Mask.assign(TE->Scalars.size(), UndefMaskElem);
7233   Entries.clear();
7234   // Build a lists of values to tree entries.
7235   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
7236   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
7237     if (EntryPtr.get() == TE)
7238       break;
7239     if (EntryPtr->State != TreeEntry::NeedToGather)
7240       continue;
7241     for (Value *V : EntryPtr->Scalars)
7242       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
7243   }
7244   // Find all tree entries used by the gathered values. If no common entries
7245   // found - not a shuffle.
7246   // Here we build a set of tree nodes for each gathered value and trying to
7247   // find the intersection between these sets. If we have at least one common
7248   // tree node for each gathered value - we have just a permutation of the
7249   // single vector. If we have 2 different sets, we're in situation where we
7250   // have a permutation of 2 input vectors.
7251   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
7252   DenseMap<Value *, int> UsedValuesEntry;
7253   for (Value *V : TE->Scalars) {
7254     if (isa<UndefValue>(V))
7255       continue;
7256     // Build a list of tree entries where V is used.
7257     SmallPtrSet<const TreeEntry *, 4> VToTEs;
7258     auto It = ValueToTEs.find(V);
7259     if (It != ValueToTEs.end())
7260       VToTEs = It->second;
7261     if (const TreeEntry *VTE = getTreeEntry(V))
7262       VToTEs.insert(VTE);
7263     if (VToTEs.empty())
7264       return None;
7265     if (UsedTEs.empty()) {
7266       // The first iteration, just insert the list of nodes to vector.
7267       UsedTEs.push_back(VToTEs);
7268     } else {
7269       // Need to check if there are any previously used tree nodes which use V.
7270       // If there are no such nodes, consider that we have another one input
7271       // vector.
7272       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
7273       unsigned Idx = 0;
7274       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
7275         // Do we have a non-empty intersection of previously listed tree entries
7276         // and tree entries using current V?
7277         set_intersect(VToTEs, Set);
7278         if (!VToTEs.empty()) {
7279           // Yes, write the new subset and continue analysis for the next
7280           // scalar.
7281           Set.swap(VToTEs);
7282           break;
7283         }
7284         VToTEs = SavedVToTEs;
7285         ++Idx;
7286       }
7287       // No non-empty intersection found - need to add a second set of possible
7288       // source vectors.
7289       if (Idx == UsedTEs.size()) {
7290         // If the number of input vectors is greater than 2 - not a permutation,
7291         // fallback to the regular gather.
7292         if (UsedTEs.size() == 2)
7293           return None;
7294         UsedTEs.push_back(SavedVToTEs);
7295         Idx = UsedTEs.size() - 1;
7296       }
7297       UsedValuesEntry.try_emplace(V, Idx);
7298     }
7299   }
7300 
7301   if (UsedTEs.empty()) {
7302     assert(all_of(TE->Scalars, UndefValue::classof) &&
7303            "Expected vector of undefs only.");
7304     return None;
7305   }
7306 
7307   unsigned VF = 0;
7308   if (UsedTEs.size() == 1) {
7309     // Try to find the perfect match in another gather node at first.
7310     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
7311       return EntryPtr->isSame(TE->Scalars);
7312     });
7313     if (It != UsedTEs.front().end()) {
7314       Entries.push_back(*It);
7315       std::iota(Mask.begin(), Mask.end(), 0);
7316       return TargetTransformInfo::SK_PermuteSingleSrc;
7317     }
7318     // No perfect match, just shuffle, so choose the first tree node.
7319     Entries.push_back(*UsedTEs.front().begin());
7320   } else {
7321     // Try to find nodes with the same vector factor.
7322     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
7323     DenseMap<int, const TreeEntry *> VFToTE;
7324     for (const TreeEntry *TE : UsedTEs.front())
7325       VFToTE.try_emplace(TE->getVectorFactor(), TE);
7326     for (const TreeEntry *TE : UsedTEs.back()) {
7327       auto It = VFToTE.find(TE->getVectorFactor());
7328       if (It != VFToTE.end()) {
7329         VF = It->first;
7330         Entries.push_back(It->second);
7331         Entries.push_back(TE);
7332         break;
7333       }
7334     }
7335     // No 2 source vectors with the same vector factor - give up and do regular
7336     // gather.
7337     if (Entries.empty())
7338       return None;
7339   }
7340 
7341   // Build a shuffle mask for better cost estimation and vector emission.
7342   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
7343     Value *V = TE->Scalars[I];
7344     if (isa<UndefValue>(V))
7345       continue;
7346     unsigned Idx = UsedValuesEntry.lookup(V);
7347     const TreeEntry *VTE = Entries[Idx];
7348     int FoundLane = VTE->findLaneForValue(V);
7349     Mask[I] = Idx * VF + FoundLane;
7350     // Extra check required by isSingleSourceMaskImpl function (called by
7351     // ShuffleVectorInst::isSingleSourceMask).
7352     if (Mask[I] >= 2 * E)
7353       return None;
7354   }
7355   switch (Entries.size()) {
7356   case 1:
7357     return TargetTransformInfo::SK_PermuteSingleSrc;
7358   case 2:
7359     return TargetTransformInfo::SK_PermuteTwoSrc;
7360   default:
7361     break;
7362   }
7363   return None;
7364 }
7365 
7366 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
7367                                        const APInt &ShuffledIndices,
7368                                        bool NeedToShuffle) const {
7369   InstructionCost Cost =
7370       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
7371                                     /*Extract*/ false);
7372   if (NeedToShuffle)
7373     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
7374   return Cost;
7375 }
7376 
7377 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
7378   // Find the type of the operands in VL.
7379   Type *ScalarTy = VL[0]->getType();
7380   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
7381     ScalarTy = SI->getValueOperand()->getType();
7382   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7383   bool DuplicateNonConst = false;
7384   // Find the cost of inserting/extracting values from the vector.
7385   // Check if the same elements are inserted several times and count them as
7386   // shuffle candidates.
7387   APInt ShuffledElements = APInt::getZero(VL.size());
7388   DenseSet<Value *> UniqueElements;
7389   // Iterate in reverse order to consider insert elements with the high cost.
7390   for (unsigned I = VL.size(); I > 0; --I) {
7391     unsigned Idx = I - 1;
7392     // No need to shuffle duplicates for constants.
7393     if (isConstant(VL[Idx])) {
7394       ShuffledElements.setBit(Idx);
7395       continue;
7396     }
7397     if (!UniqueElements.insert(VL[Idx]).second) {
7398       DuplicateNonConst = true;
7399       ShuffledElements.setBit(Idx);
7400     }
7401   }
7402   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
7403 }
7404 
7405 // Perform operand reordering on the instructions in VL and return the reordered
7406 // operands in Left and Right.
7407 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
7408                                              SmallVectorImpl<Value *> &Left,
7409                                              SmallVectorImpl<Value *> &Right,
7410                                              const DataLayout &DL,
7411                                              ScalarEvolution &SE,
7412                                              const BoUpSLP &R) {
7413   if (VL.empty())
7414     return;
7415   VLOperands Ops(VL, DL, SE, R);
7416   // Reorder the operands in place.
7417   Ops.reorder();
7418   Left = Ops.getVL(0);
7419   Right = Ops.getVL(1);
7420 }
7421 
7422 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
7423   // Get the basic block this bundle is in. All instructions in the bundle
7424   // should be in this block (except for extractelement-like instructions with
7425   // constant indeces).
7426   auto *Front = E->getMainOp();
7427   auto *BB = Front->getParent();
7428   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
7429     if (E->getOpcode() == Instruction::GetElementPtr &&
7430         !isa<GetElementPtrInst>(V))
7431       return true;
7432     auto *I = cast<Instruction>(V);
7433     return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
7434            isVectorLikeInstWithConstOps(I);
7435   }));
7436 
7437   auto &&FindLastInst = [E, Front, this, &BB]() {
7438     Instruction *LastInst = Front;
7439     for (Value *V : E->Scalars) {
7440       auto *I = dyn_cast<Instruction>(V);
7441       if (!I)
7442         continue;
7443       if (LastInst->getParent() == I->getParent()) {
7444         if (LastInst->comesBefore(I))
7445           LastInst = I;
7446         continue;
7447       }
7448       assert(isVectorLikeInstWithConstOps(LastInst) &&
7449              isVectorLikeInstWithConstOps(I) &&
7450              "Expected vector-like insts only.");
7451       if (!DT->isReachableFromEntry(LastInst->getParent())) {
7452         LastInst = I;
7453         continue;
7454       }
7455       if (!DT->isReachableFromEntry(I->getParent()))
7456         continue;
7457       auto *NodeA = DT->getNode(LastInst->getParent());
7458       auto *NodeB = DT->getNode(I->getParent());
7459       assert(NodeA && "Should only process reachable instructions");
7460       assert(NodeB && "Should only process reachable instructions");
7461       assert((NodeA == NodeB) ==
7462                  (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
7463              "Different nodes should have different DFS numbers");
7464       if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
7465         LastInst = I;
7466     }
7467     BB = LastInst->getParent();
7468     return LastInst;
7469   };
7470 
7471   auto &&FindFirstInst = [E, Front]() {
7472     Instruction *FirstInst = Front;
7473     for (Value *V : E->Scalars) {
7474       auto *I = dyn_cast<Instruction>(V);
7475       if (!I)
7476         continue;
7477       if (I->comesBefore(FirstInst))
7478         FirstInst = I;
7479     }
7480     return FirstInst;
7481   };
7482 
7483   // Set the insert point to the beginning of the basic block if the entry
7484   // should not be scheduled.
7485   if (E->State != TreeEntry::NeedToGather &&
7486       doesNotNeedToSchedule(E->Scalars)) {
7487     Instruction *InsertInst;
7488     if (all_of(E->Scalars, isUsedOutsideBlock))
7489       InsertInst = FindLastInst();
7490     else
7491       InsertInst = FindFirstInst();
7492     // If the instruction is PHI, set the insert point after all the PHIs.
7493     if (isa<PHINode>(InsertInst))
7494       InsertInst = BB->getFirstNonPHI();
7495     BasicBlock::iterator InsertPt = InsertInst->getIterator();
7496     Builder.SetInsertPoint(BB, InsertPt);
7497     Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7498     return;
7499   }
7500 
7501   // The last instruction in the bundle in program order.
7502   Instruction *LastInst = nullptr;
7503 
7504   // Find the last instruction. The common case should be that BB has been
7505   // scheduled, and the last instruction is VL.back(). So we start with
7506   // VL.back() and iterate over schedule data until we reach the end of the
7507   // bundle. The end of the bundle is marked by null ScheduleData.
7508   if (BlocksSchedules.count(BB)) {
7509     Value *V = E->isOneOf(E->Scalars.back());
7510     if (doesNotNeedToBeScheduled(V))
7511       V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
7512     auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
7513     if (Bundle && Bundle->isPartOfBundle())
7514       for (; Bundle; Bundle = Bundle->NextInBundle)
7515         if (Bundle->OpValue == Bundle->Inst)
7516           LastInst = Bundle->Inst;
7517   }
7518 
7519   // LastInst can still be null at this point if there's either not an entry
7520   // for BB in BlocksSchedules or there's no ScheduleData available for
7521   // VL.back(). This can be the case if buildTree_rec aborts for various
7522   // reasons (e.g., the maximum recursion depth is reached, the maximum region
7523   // size is reached, etc.). ScheduleData is initialized in the scheduling
7524   // "dry-run".
7525   //
7526   // If this happens, we can still find the last instruction by brute force. We
7527   // iterate forwards from Front (inclusive) until we either see all
7528   // instructions in the bundle or reach the end of the block. If Front is the
7529   // last instruction in program order, LastInst will be set to Front, and we
7530   // will visit all the remaining instructions in the block.
7531   //
7532   // One of the reasons we exit early from buildTree_rec is to place an upper
7533   // bound on compile-time. Thus, taking an additional compile-time hit here is
7534   // not ideal. However, this should be exceedingly rare since it requires that
7535   // we both exit early from buildTree_rec and that the bundle be out-of-order
7536   // (causing us to iterate all the way to the end of the block).
7537   if (!LastInst) {
7538     LastInst = FindLastInst();
7539     // If the instruction is PHI, set the insert point after all the PHIs.
7540     if (isa<PHINode>(LastInst))
7541       LastInst = BB->getFirstNonPHI()->getPrevNode();
7542   }
7543   assert(LastInst && "Failed to find last instruction in bundle");
7544 
7545   // Set the insertion point after the last instruction in the bundle. Set the
7546   // debug location to Front.
7547   Builder.SetInsertPoint(BB, std::next(LastInst->getIterator()));
7548   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7549 }
7550 
7551 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
7552   // List of instructions/lanes from current block and/or the blocks which are
7553   // part of the current loop. These instructions will be inserted at the end to
7554   // make it possible to optimize loops and hoist invariant instructions out of
7555   // the loops body with better chances for success.
7556   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
7557   SmallSet<int, 4> PostponedIndices;
7558   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
7559   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
7560     SmallPtrSet<BasicBlock *, 4> Visited;
7561     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
7562       InsertBB = InsertBB->getSinglePredecessor();
7563     return InsertBB && InsertBB == InstBB;
7564   };
7565   for (int I = 0, E = VL.size(); I < E; ++I) {
7566     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
7567       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
7568            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
7569           PostponedIndices.insert(I).second)
7570         PostponedInsts.emplace_back(Inst, I);
7571   }
7572 
7573   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
7574     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
7575     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
7576     if (!InsElt)
7577       return Vec;
7578     GatherShuffleSeq.insert(InsElt);
7579     CSEBlocks.insert(InsElt->getParent());
7580     // Add to our 'need-to-extract' list.
7581     if (TreeEntry *Entry = getTreeEntry(V)) {
7582       // Find which lane we need to extract.
7583       unsigned FoundLane = Entry->findLaneForValue(V);
7584       ExternalUses.emplace_back(V, InsElt, FoundLane);
7585     }
7586     return Vec;
7587   };
7588   Value *Val0 =
7589       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
7590   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
7591   Value *Vec = PoisonValue::get(VecTy);
7592   SmallVector<int> NonConsts;
7593   // Insert constant values at first.
7594   for (int I = 0, E = VL.size(); I < E; ++I) {
7595     if (PostponedIndices.contains(I))
7596       continue;
7597     if (!isConstant(VL[I])) {
7598       NonConsts.push_back(I);
7599       continue;
7600     }
7601     Vec = CreateInsertElement(Vec, VL[I], I);
7602   }
7603   // Insert non-constant values.
7604   for (int I : NonConsts)
7605     Vec = CreateInsertElement(Vec, VL[I], I);
7606   // Append instructions, which are/may be part of the loop, in the end to make
7607   // it possible to hoist non-loop-based instructions.
7608   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
7609     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
7610 
7611   return Vec;
7612 }
7613 
7614 namespace {
7615 /// Merges shuffle masks and emits final shuffle instruction, if required.
7616 class ShuffleInstructionBuilder {
7617   IRBuilderBase &Builder;
7618   const unsigned VF = 0;
7619   bool IsFinalized = false;
7620   SmallVector<int, 4> Mask;
7621   /// Holds all of the instructions that we gathered.
7622   SetVector<Instruction *> &GatherShuffleSeq;
7623   /// A list of blocks that we are going to CSE.
7624   SetVector<BasicBlock *> &CSEBlocks;
7625 
7626 public:
7627   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
7628                             SetVector<Instruction *> &GatherShuffleSeq,
7629                             SetVector<BasicBlock *> &CSEBlocks)
7630       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
7631         CSEBlocks(CSEBlocks) {}
7632 
7633   /// Adds a mask, inverting it before applying.
7634   void addInversedMask(ArrayRef<unsigned> SubMask) {
7635     if (SubMask.empty())
7636       return;
7637     SmallVector<int, 4> NewMask;
7638     inversePermutation(SubMask, NewMask);
7639     addMask(NewMask);
7640   }
7641 
7642   /// Functions adds masks, merging them into  single one.
7643   void addMask(ArrayRef<unsigned> SubMask) {
7644     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
7645     addMask(NewMask);
7646   }
7647 
7648   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
7649 
7650   Value *finalize(Value *V) {
7651     IsFinalized = true;
7652     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
7653     if (VF == ValueVF && Mask.empty())
7654       return V;
7655     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
7656     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
7657     addMask(NormalizedMask);
7658 
7659     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
7660       return V;
7661     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
7662     if (auto *I = dyn_cast<Instruction>(Vec)) {
7663       GatherShuffleSeq.insert(I);
7664       CSEBlocks.insert(I->getParent());
7665     }
7666     return Vec;
7667   }
7668 
7669   ~ShuffleInstructionBuilder() {
7670     assert((IsFinalized || Mask.empty()) &&
7671            "Shuffle construction must be finalized.");
7672   }
7673 };
7674 } // namespace
7675 
7676 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
7677   const unsigned VF = VL.size();
7678   InstructionsState S = getSameOpcode(VL);
7679   // Special processing for GEPs bundle, which may include non-gep values.
7680   if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
7681     const auto *It =
7682         find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
7683     if (It != VL.end())
7684       S = getSameOpcode(*It);
7685   }
7686   if (S.getOpcode()) {
7687     if (TreeEntry *E = getTreeEntry(S.OpValue))
7688       if (E->isSame(VL)) {
7689         Value *V = vectorizeTree(E);
7690         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
7691           if (!E->ReuseShuffleIndices.empty()) {
7692             // Reshuffle to get only unique values.
7693             // If some of the scalars are duplicated in the vectorization tree
7694             // entry, we do not vectorize them but instead generate a mask for
7695             // the reuses. But if there are several users of the same entry,
7696             // they may have different vectorization factors. This is especially
7697             // important for PHI nodes. In this case, we need to adapt the
7698             // resulting instruction for the user vectorization factor and have
7699             // to reshuffle it again to take only unique elements of the vector.
7700             // Without this code the function incorrectly returns reduced vector
7701             // instruction with the same elements, not with the unique ones.
7702 
7703             // block:
7704             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
7705             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
7706             // ... (use %2)
7707             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
7708             // br %block
7709             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
7710             SmallSet<int, 4> UsedIdxs;
7711             int Pos = 0;
7712             int Sz = VL.size();
7713             for (int Idx : E->ReuseShuffleIndices) {
7714               if (Idx != Sz && Idx != UndefMaskElem &&
7715                   UsedIdxs.insert(Idx).second)
7716                 UniqueIdxs[Idx] = Pos;
7717               ++Pos;
7718             }
7719             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
7720                                             "less than original vector size.");
7721             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
7722             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
7723           } else {
7724             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
7725                    "Expected vectorization factor less "
7726                    "than original vector size.");
7727             SmallVector<int> UniformMask(VF, 0);
7728             std::iota(UniformMask.begin(), UniformMask.end(), 0);
7729             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
7730           }
7731           if (auto *I = dyn_cast<Instruction>(V)) {
7732             GatherShuffleSeq.insert(I);
7733             CSEBlocks.insert(I->getParent());
7734           }
7735         }
7736         return V;
7737       }
7738   }
7739 
7740   // Can't vectorize this, so simply build a new vector with each lane
7741   // corresponding to the requested value.
7742   return createBuildVector(VL);
7743 }
7744 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
7745   assert(any_of(VectorizableTree,
7746                 [VL](const std::unique_ptr<TreeEntry> &TE) {
7747                   return TE->State == TreeEntry::NeedToGather && TE->isSame(VL);
7748                 }) &&
7749          "Non-matching gather node.");
7750   unsigned VF = VL.size();
7751   // Exploit possible reuse of values across lanes.
7752   SmallVector<int> ReuseShuffleIndicies;
7753   SmallVector<Value *> UniqueValues;
7754   if (VL.size() > 2) {
7755     DenseMap<Value *, unsigned> UniquePositions;
7756     unsigned NumValues =
7757         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
7758                                     return !isa<UndefValue>(V);
7759                                   }).base());
7760     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
7761     int UniqueVals = 0;
7762     for (Value *V : VL.drop_back(VL.size() - VF)) {
7763       if (isa<UndefValue>(V)) {
7764         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
7765         continue;
7766       }
7767       if (isConstant(V)) {
7768         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
7769         UniqueValues.emplace_back(V);
7770         continue;
7771       }
7772       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
7773       ReuseShuffleIndicies.emplace_back(Res.first->second);
7774       if (Res.second) {
7775         UniqueValues.emplace_back(V);
7776         ++UniqueVals;
7777       }
7778     }
7779     if (UniqueVals == 1 && UniqueValues.size() == 1) {
7780       // Emit pure splat vector.
7781       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
7782                                   UndefMaskElem);
7783     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
7784       if (UniqueValues.empty()) {
7785         assert(all_of(VL, UndefValue::classof) && "Expected list of undefs.");
7786         NumValues = VF;
7787       }
7788       ReuseShuffleIndicies.clear();
7789       UniqueValues.clear();
7790       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
7791     }
7792     UniqueValues.append(VF - UniqueValues.size(),
7793                         PoisonValue::get(VL[0]->getType()));
7794     VL = UniqueValues;
7795   }
7796 
7797   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7798                                            CSEBlocks);
7799   Value *Vec = gather(VL);
7800   if (!ReuseShuffleIndicies.empty()) {
7801     ShuffleBuilder.addMask(ReuseShuffleIndicies);
7802     Vec = ShuffleBuilder.finalize(Vec);
7803   }
7804   return Vec;
7805 }
7806 
7807 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
7808   IRBuilder<>::InsertPointGuard Guard(Builder);
7809 
7810   if (E->VectorizedValue) {
7811     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
7812     return E->VectorizedValue;
7813   }
7814 
7815   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7816   unsigned VF = E->getVectorFactor();
7817   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7818                                            CSEBlocks);
7819   if (E->State == TreeEntry::NeedToGather) {
7820     if (E->getMainOp())
7821       setInsertPointAfterBundle(E);
7822     Value *Vec;
7823     SmallVector<int> Mask;
7824     SmallVector<const TreeEntry *> Entries;
7825     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
7826         isGatherShuffledEntry(E, Mask, Entries);
7827     if (Shuffle) {
7828       assert((Entries.size() == 1 || Entries.size() == 2) &&
7829              "Expected shuffle of 1 or 2 entries.");
7830       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
7831                                         Entries.back()->VectorizedValue, Mask);
7832       if (auto *I = dyn_cast<Instruction>(Vec)) {
7833         GatherShuffleSeq.insert(I);
7834         CSEBlocks.insert(I->getParent());
7835       }
7836     } else {
7837       Vec = gather(E->Scalars);
7838     }
7839     if (NeedToShuffleReuses) {
7840       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7841       Vec = ShuffleBuilder.finalize(Vec);
7842     }
7843     E->VectorizedValue = Vec;
7844     return Vec;
7845   }
7846 
7847   assert((E->State == TreeEntry::Vectorize ||
7848           E->State == TreeEntry::ScatterVectorize) &&
7849          "Unhandled state");
7850   unsigned ShuffleOrOp =
7851       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7852   Instruction *VL0 = E->getMainOp();
7853   Type *ScalarTy = VL0->getType();
7854   if (auto *Store = dyn_cast<StoreInst>(VL0))
7855     ScalarTy = Store->getValueOperand()->getType();
7856   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
7857     ScalarTy = IE->getOperand(1)->getType();
7858   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
7859   switch (ShuffleOrOp) {
7860     case Instruction::PHI: {
7861       assert((E->ReorderIndices.empty() ||
7862               E != VectorizableTree.front().get() ||
7863               !E->UserTreeIndices.empty()) &&
7864              "PHI reordering is free.");
7865       auto *PH = cast<PHINode>(VL0);
7866       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
7867       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7868       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
7869       Value *V = NewPhi;
7870 
7871       // Adjust insertion point once all PHI's have been generated.
7872       Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
7873       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7874 
7875       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7876       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7877       V = ShuffleBuilder.finalize(V);
7878 
7879       E->VectorizedValue = V;
7880 
7881       // PHINodes may have multiple entries from the same block. We want to
7882       // visit every block once.
7883       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
7884 
7885       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
7886         ValueList Operands;
7887         BasicBlock *IBB = PH->getIncomingBlock(i);
7888 
7889         if (!VisitedBBs.insert(IBB).second) {
7890           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
7891           continue;
7892         }
7893 
7894         Builder.SetInsertPoint(IBB->getTerminator());
7895         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7896         Value *Vec = vectorizeTree(E->getOperand(i));
7897         NewPhi->addIncoming(Vec, IBB);
7898       }
7899 
7900       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
7901              "Invalid number of incoming values");
7902       return V;
7903     }
7904 
7905     case Instruction::ExtractElement: {
7906       Value *V = E->getSingleOperand(0);
7907       Builder.SetInsertPoint(VL0);
7908       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7909       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7910       V = ShuffleBuilder.finalize(V);
7911       E->VectorizedValue = V;
7912       return V;
7913     }
7914     case Instruction::ExtractValue: {
7915       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
7916       Builder.SetInsertPoint(LI);
7917       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
7918       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
7919       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
7920       Value *NewV = propagateMetadata(V, E->Scalars);
7921       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7922       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7923       NewV = ShuffleBuilder.finalize(NewV);
7924       E->VectorizedValue = NewV;
7925       return NewV;
7926     }
7927     case Instruction::InsertElement: {
7928       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
7929       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
7930       Value *V = vectorizeTree(E->getOperand(1));
7931 
7932       // Create InsertVector shuffle if necessary
7933       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
7934         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
7935       }));
7936       const unsigned NumElts =
7937           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
7938       const unsigned NumScalars = E->Scalars.size();
7939 
7940       unsigned Offset = *getInsertIndex(VL0);
7941       assert(Offset < NumElts && "Failed to find vector index offset");
7942 
7943       // Create shuffle to resize vector
7944       SmallVector<int> Mask;
7945       if (!E->ReorderIndices.empty()) {
7946         inversePermutation(E->ReorderIndices, Mask);
7947         Mask.append(NumElts - NumScalars, UndefMaskElem);
7948       } else {
7949         Mask.assign(NumElts, UndefMaskElem);
7950         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
7951       }
7952       // Create InsertVector shuffle if necessary
7953       bool IsIdentity = true;
7954       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
7955       Mask.swap(PrevMask);
7956       for (unsigned I = 0; I < NumScalars; ++I) {
7957         Value *Scalar = E->Scalars[PrevMask[I]];
7958         unsigned InsertIdx = *getInsertIndex(Scalar);
7959         IsIdentity &= InsertIdx - Offset == I;
7960         Mask[InsertIdx - Offset] = I;
7961       }
7962       if (!IsIdentity || NumElts != NumScalars) {
7963         V = Builder.CreateShuffleVector(V, Mask);
7964         if (auto *I = dyn_cast<Instruction>(V)) {
7965           GatherShuffleSeq.insert(I);
7966           CSEBlocks.insert(I->getParent());
7967         }
7968       }
7969 
7970       if ((!IsIdentity || Offset != 0 ||
7971            !isUndefVector(FirstInsert->getOperand(0))) &&
7972           NumElts != NumScalars) {
7973         SmallVector<int> InsertMask(NumElts);
7974         std::iota(InsertMask.begin(), InsertMask.end(), 0);
7975         for (unsigned I = 0; I < NumElts; I++) {
7976           if (Mask[I] != UndefMaskElem)
7977             InsertMask[Offset + I] = NumElts + I;
7978         }
7979 
7980         V = Builder.CreateShuffleVector(
7981             FirstInsert->getOperand(0), V, InsertMask,
7982             cast<Instruction>(E->Scalars.back())->getName());
7983         if (auto *I = dyn_cast<Instruction>(V)) {
7984           GatherShuffleSeq.insert(I);
7985           CSEBlocks.insert(I->getParent());
7986         }
7987       }
7988 
7989       ++NumVectorInstructions;
7990       E->VectorizedValue = V;
7991       return V;
7992     }
7993     case Instruction::ZExt:
7994     case Instruction::SExt:
7995     case Instruction::FPToUI:
7996     case Instruction::FPToSI:
7997     case Instruction::FPExt:
7998     case Instruction::PtrToInt:
7999     case Instruction::IntToPtr:
8000     case Instruction::SIToFP:
8001     case Instruction::UIToFP:
8002     case Instruction::Trunc:
8003     case Instruction::FPTrunc:
8004     case Instruction::BitCast: {
8005       setInsertPointAfterBundle(E);
8006 
8007       Value *InVec = vectorizeTree(E->getOperand(0));
8008 
8009       if (E->VectorizedValue) {
8010         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8011         return E->VectorizedValue;
8012       }
8013 
8014       auto *CI = cast<CastInst>(VL0);
8015       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
8016       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8017       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8018       V = ShuffleBuilder.finalize(V);
8019 
8020       E->VectorizedValue = V;
8021       ++NumVectorInstructions;
8022       return V;
8023     }
8024     case Instruction::FCmp:
8025     case Instruction::ICmp: {
8026       setInsertPointAfterBundle(E);
8027 
8028       Value *L = vectorizeTree(E->getOperand(0));
8029       Value *R = vectorizeTree(E->getOperand(1));
8030 
8031       if (E->VectorizedValue) {
8032         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8033         return E->VectorizedValue;
8034       }
8035 
8036       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
8037       Value *V = Builder.CreateCmp(P0, L, R);
8038       propagateIRFlags(V, E->Scalars, VL0);
8039       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8040       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8041       V = ShuffleBuilder.finalize(V);
8042 
8043       E->VectorizedValue = V;
8044       ++NumVectorInstructions;
8045       return V;
8046     }
8047     case Instruction::Select: {
8048       setInsertPointAfterBundle(E);
8049 
8050       Value *Cond = vectorizeTree(E->getOperand(0));
8051       Value *True = vectorizeTree(E->getOperand(1));
8052       Value *False = vectorizeTree(E->getOperand(2));
8053 
8054       if (E->VectorizedValue) {
8055         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8056         return E->VectorizedValue;
8057       }
8058 
8059       Value *V = Builder.CreateSelect(Cond, True, False);
8060       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8061       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8062       V = ShuffleBuilder.finalize(V);
8063 
8064       E->VectorizedValue = V;
8065       ++NumVectorInstructions;
8066       return V;
8067     }
8068     case Instruction::FNeg: {
8069       setInsertPointAfterBundle(E);
8070 
8071       Value *Op = vectorizeTree(E->getOperand(0));
8072 
8073       if (E->VectorizedValue) {
8074         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8075         return E->VectorizedValue;
8076       }
8077 
8078       Value *V = Builder.CreateUnOp(
8079           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
8080       propagateIRFlags(V, E->Scalars, VL0);
8081       if (auto *I = dyn_cast<Instruction>(V))
8082         V = propagateMetadata(I, E->Scalars);
8083 
8084       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8085       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8086       V = ShuffleBuilder.finalize(V);
8087 
8088       E->VectorizedValue = V;
8089       ++NumVectorInstructions;
8090 
8091       return V;
8092     }
8093     case Instruction::Add:
8094     case Instruction::FAdd:
8095     case Instruction::Sub:
8096     case Instruction::FSub:
8097     case Instruction::Mul:
8098     case Instruction::FMul:
8099     case Instruction::UDiv:
8100     case Instruction::SDiv:
8101     case Instruction::FDiv:
8102     case Instruction::URem:
8103     case Instruction::SRem:
8104     case Instruction::FRem:
8105     case Instruction::Shl:
8106     case Instruction::LShr:
8107     case Instruction::AShr:
8108     case Instruction::And:
8109     case Instruction::Or:
8110     case Instruction::Xor: {
8111       setInsertPointAfterBundle(E);
8112 
8113       Value *LHS = vectorizeTree(E->getOperand(0));
8114       Value *RHS = vectorizeTree(E->getOperand(1));
8115 
8116       if (E->VectorizedValue) {
8117         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8118         return E->VectorizedValue;
8119       }
8120 
8121       Value *V = Builder.CreateBinOp(
8122           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
8123           RHS);
8124       propagateIRFlags(V, E->Scalars, VL0);
8125       if (auto *I = dyn_cast<Instruction>(V))
8126         V = propagateMetadata(I, E->Scalars);
8127 
8128       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8129       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8130       V = ShuffleBuilder.finalize(V);
8131 
8132       E->VectorizedValue = V;
8133       ++NumVectorInstructions;
8134 
8135       return V;
8136     }
8137     case Instruction::Load: {
8138       // Loads are inserted at the head of the tree because we don't want to
8139       // sink them all the way down past store instructions.
8140       setInsertPointAfterBundle(E);
8141 
8142       LoadInst *LI = cast<LoadInst>(VL0);
8143       Instruction *NewLI;
8144       unsigned AS = LI->getPointerAddressSpace();
8145       Value *PO = LI->getPointerOperand();
8146       if (E->State == TreeEntry::Vectorize) {
8147         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
8148         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
8149 
8150         // The pointer operand uses an in-tree scalar so we add the new BitCast
8151         // or LoadInst to ExternalUses list to make sure that an extract will
8152         // be generated in the future.
8153         if (TreeEntry *Entry = getTreeEntry(PO)) {
8154           // Find which lane we need to extract.
8155           unsigned FoundLane = Entry->findLaneForValue(PO);
8156           ExternalUses.emplace_back(
8157               PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
8158         }
8159       } else {
8160         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
8161         Value *VecPtr = vectorizeTree(E->getOperand(0));
8162         // Use the minimum alignment of the gathered loads.
8163         Align CommonAlignment = LI->getAlign();
8164         for (Value *V : E->Scalars)
8165           CommonAlignment =
8166               std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
8167         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
8168       }
8169       Value *V = propagateMetadata(NewLI, E->Scalars);
8170 
8171       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8172       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8173       V = ShuffleBuilder.finalize(V);
8174       E->VectorizedValue = V;
8175       ++NumVectorInstructions;
8176       return V;
8177     }
8178     case Instruction::Store: {
8179       auto *SI = cast<StoreInst>(VL0);
8180       unsigned AS = SI->getPointerAddressSpace();
8181 
8182       setInsertPointAfterBundle(E);
8183 
8184       Value *VecValue = vectorizeTree(E->getOperand(0));
8185       ShuffleBuilder.addMask(E->ReorderIndices);
8186       VecValue = ShuffleBuilder.finalize(VecValue);
8187 
8188       Value *ScalarPtr = SI->getPointerOperand();
8189       Value *VecPtr = Builder.CreateBitCast(
8190           ScalarPtr, VecValue->getType()->getPointerTo(AS));
8191       StoreInst *ST =
8192           Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
8193 
8194       // The pointer operand uses an in-tree scalar, so add the new BitCast or
8195       // StoreInst to ExternalUses to make sure that an extract will be
8196       // generated in the future.
8197       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
8198         // Find which lane we need to extract.
8199         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
8200         ExternalUses.push_back(ExternalUser(
8201             ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
8202             FoundLane));
8203       }
8204 
8205       Value *V = propagateMetadata(ST, E->Scalars);
8206 
8207       E->VectorizedValue = V;
8208       ++NumVectorInstructions;
8209       return V;
8210     }
8211     case Instruction::GetElementPtr: {
8212       auto *GEP0 = cast<GetElementPtrInst>(VL0);
8213       setInsertPointAfterBundle(E);
8214 
8215       Value *Op0 = vectorizeTree(E->getOperand(0));
8216 
8217       SmallVector<Value *> OpVecs;
8218       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
8219         Value *OpVec = vectorizeTree(E->getOperand(J));
8220         OpVecs.push_back(OpVec);
8221       }
8222 
8223       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
8224       if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
8225         SmallVector<Value *> GEPs;
8226         for (Value *V : E->Scalars) {
8227           if (isa<GetElementPtrInst>(V))
8228             GEPs.push_back(V);
8229         }
8230         V = propagateMetadata(I, GEPs);
8231       }
8232 
8233       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8234       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8235       V = ShuffleBuilder.finalize(V);
8236 
8237       E->VectorizedValue = V;
8238       ++NumVectorInstructions;
8239 
8240       return V;
8241     }
8242     case Instruction::Call: {
8243       CallInst *CI = cast<CallInst>(VL0);
8244       setInsertPointAfterBundle(E);
8245 
8246       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
8247       if (Function *FI = CI->getCalledFunction())
8248         IID = FI->getIntrinsicID();
8249 
8250       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8251 
8252       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8253       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
8254                           VecCallCosts.first <= VecCallCosts.second;
8255 
8256       Value *ScalarArg = nullptr;
8257       std::vector<Value *> OpVecs;
8258       SmallVector<Type *, 2> TysForDecl =
8259           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
8260       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
8261         ValueList OpVL;
8262         // Some intrinsics have scalar arguments. This argument should not be
8263         // vectorized.
8264         if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
8265           CallInst *CEI = cast<CallInst>(VL0);
8266           ScalarArg = CEI->getArgOperand(j);
8267           OpVecs.push_back(CEI->getArgOperand(j));
8268           if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8269             TysForDecl.push_back(ScalarArg->getType());
8270           continue;
8271         }
8272 
8273         Value *OpVec = vectorizeTree(E->getOperand(j));
8274         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
8275         OpVecs.push_back(OpVec);
8276         if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8277           TysForDecl.push_back(OpVec->getType());
8278       }
8279 
8280       Function *CF;
8281       if (!UseIntrinsic) {
8282         VFShape Shape =
8283             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
8284                                   VecTy->getNumElements())),
8285                          false /*HasGlobalPred*/);
8286         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
8287       } else {
8288         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
8289       }
8290 
8291       SmallVector<OperandBundleDef, 1> OpBundles;
8292       CI->getOperandBundlesAsDefs(OpBundles);
8293       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
8294 
8295       // The scalar argument uses an in-tree scalar so we add the new vectorized
8296       // call to ExternalUses list to make sure that an extract will be
8297       // generated in the future.
8298       if (ScalarArg) {
8299         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
8300           // Find which lane we need to extract.
8301           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
8302           ExternalUses.push_back(
8303               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
8304         }
8305       }
8306 
8307       propagateIRFlags(V, E->Scalars, VL0);
8308       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8309       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8310       V = ShuffleBuilder.finalize(V);
8311 
8312       E->VectorizedValue = V;
8313       ++NumVectorInstructions;
8314       return V;
8315     }
8316     case Instruction::ShuffleVector: {
8317       assert(E->isAltShuffle() &&
8318              ((Instruction::isBinaryOp(E->getOpcode()) &&
8319                Instruction::isBinaryOp(E->getAltOpcode())) ||
8320               (Instruction::isCast(E->getOpcode()) &&
8321                Instruction::isCast(E->getAltOpcode())) ||
8322               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8323              "Invalid Shuffle Vector Operand");
8324 
8325       Value *LHS = nullptr, *RHS = nullptr;
8326       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
8327         setInsertPointAfterBundle(E);
8328         LHS = vectorizeTree(E->getOperand(0));
8329         RHS = vectorizeTree(E->getOperand(1));
8330       } else {
8331         setInsertPointAfterBundle(E);
8332         LHS = vectorizeTree(E->getOperand(0));
8333       }
8334 
8335       if (E->VectorizedValue) {
8336         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8337         return E->VectorizedValue;
8338       }
8339 
8340       Value *V0, *V1;
8341       if (Instruction::isBinaryOp(E->getOpcode())) {
8342         V0 = Builder.CreateBinOp(
8343             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
8344         V1 = Builder.CreateBinOp(
8345             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
8346       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8347         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
8348         auto *AltCI = cast<CmpInst>(E->getAltOp());
8349         CmpInst::Predicate AltPred = AltCI->getPredicate();
8350         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
8351       } else {
8352         V0 = Builder.CreateCast(
8353             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
8354         V1 = Builder.CreateCast(
8355             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
8356       }
8357       // Add V0 and V1 to later analysis to try to find and remove matching
8358       // instruction, if any.
8359       for (Value *V : {V0, V1}) {
8360         if (auto *I = dyn_cast<Instruction>(V)) {
8361           GatherShuffleSeq.insert(I);
8362           CSEBlocks.insert(I->getParent());
8363         }
8364       }
8365 
8366       // Create shuffle to take alternate operations from the vector.
8367       // Also, gather up main and alt scalar ops to propagate IR flags to
8368       // each vector operation.
8369       ValueList OpScalars, AltScalars;
8370       SmallVector<int> Mask;
8371       buildShuffleEntryMask(
8372           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
8373           [E](Instruction *I) {
8374             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8375             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
8376           },
8377           Mask, &OpScalars, &AltScalars);
8378 
8379       propagateIRFlags(V0, OpScalars);
8380       propagateIRFlags(V1, AltScalars);
8381 
8382       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
8383       if (auto *I = dyn_cast<Instruction>(V)) {
8384         V = propagateMetadata(I, E->Scalars);
8385         GatherShuffleSeq.insert(I);
8386         CSEBlocks.insert(I->getParent());
8387       }
8388       V = ShuffleBuilder.finalize(V);
8389 
8390       E->VectorizedValue = V;
8391       ++NumVectorInstructions;
8392 
8393       return V;
8394     }
8395     default:
8396     llvm_unreachable("unknown inst");
8397   }
8398   return nullptr;
8399 }
8400 
8401 Value *BoUpSLP::vectorizeTree() {
8402   ExtraValueToDebugLocsMap ExternallyUsedValues;
8403   return vectorizeTree(ExternallyUsedValues);
8404 }
8405 
8406 namespace {
8407 /// Data type for handling buildvector sequences with the reused scalars from
8408 /// other tree entries.
8409 struct ShuffledInsertData {
8410   /// List of insertelements to be replaced by shuffles.
8411   SmallVector<InsertElementInst *> InsertElements;
8412   /// The parent vectors and shuffle mask for the given list of inserts.
8413   MapVector<Value *, SmallVector<int>> ValueMasks;
8414 };
8415 } // namespace
8416 
8417 Value *
8418 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
8419   // All blocks must be scheduled before any instructions are inserted.
8420   for (auto &BSIter : BlocksSchedules) {
8421     scheduleBlock(BSIter.second.get());
8422   }
8423 
8424   Builder.SetInsertPoint(&F->getEntryBlock().front());
8425   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
8426 
8427   // If the vectorized tree can be rewritten in a smaller type, we truncate the
8428   // vectorized root. InstCombine will then rewrite the entire expression. We
8429   // sign extend the extracted values below.
8430   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
8431   if (MinBWs.count(ScalarRoot)) {
8432     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
8433       // If current instr is a phi and not the last phi, insert it after the
8434       // last phi node.
8435       if (isa<PHINode>(I))
8436         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
8437       else
8438         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
8439     }
8440     auto BundleWidth = VectorizableTree[0]->Scalars.size();
8441     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
8442     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
8443     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
8444     VectorizableTree[0]->VectorizedValue = Trunc;
8445   }
8446 
8447   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
8448                     << " values .\n");
8449 
8450   SmallVector<ShuffledInsertData> ShuffledInserts;
8451   // Maps vector instruction to original insertelement instruction
8452   DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
8453   // Extract all of the elements with the external uses.
8454   for (const auto &ExternalUse : ExternalUses) {
8455     Value *Scalar = ExternalUse.Scalar;
8456     llvm::User *User = ExternalUse.User;
8457 
8458     // Skip users that we already RAUW. This happens when one instruction
8459     // has multiple uses of the same value.
8460     if (User && !is_contained(Scalar->users(), User))
8461       continue;
8462     TreeEntry *E = getTreeEntry(Scalar);
8463     assert(E && "Invalid scalar");
8464     assert(E->State != TreeEntry::NeedToGather &&
8465            "Extracting from a gather list");
8466     // Non-instruction pointers are not deleted, just skip them.
8467     if (E->getOpcode() == Instruction::GetElementPtr &&
8468         !isa<GetElementPtrInst>(Scalar))
8469       continue;
8470 
8471     Value *Vec = E->VectorizedValue;
8472     assert(Vec && "Can't find vectorizable value");
8473 
8474     Value *Lane = Builder.getInt32(ExternalUse.Lane);
8475     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
8476       if (Scalar->getType() != Vec->getType()) {
8477         Value *Ex;
8478         // "Reuse" the existing extract to improve final codegen.
8479         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
8480           Ex = Builder.CreateExtractElement(ES->getOperand(0),
8481                                             ES->getOperand(1));
8482         } else {
8483           Ex = Builder.CreateExtractElement(Vec, Lane);
8484         }
8485         // If necessary, sign-extend or zero-extend ScalarRoot
8486         // to the larger type.
8487         if (!MinBWs.count(ScalarRoot))
8488           return Ex;
8489         if (MinBWs[ScalarRoot].second)
8490           return Builder.CreateSExt(Ex, Scalar->getType());
8491         return Builder.CreateZExt(Ex, Scalar->getType());
8492       }
8493       assert(isa<FixedVectorType>(Scalar->getType()) &&
8494              isa<InsertElementInst>(Scalar) &&
8495              "In-tree scalar of vector type is not insertelement?");
8496       auto *IE = cast<InsertElementInst>(Scalar);
8497       VectorToInsertElement.try_emplace(Vec, IE);
8498       return Vec;
8499     };
8500     // If User == nullptr, the Scalar is used as extra arg. Generate
8501     // ExtractElement instruction and update the record for this scalar in
8502     // ExternallyUsedValues.
8503     if (!User) {
8504       assert(ExternallyUsedValues.count(Scalar) &&
8505              "Scalar with nullptr as an external user must be registered in "
8506              "ExternallyUsedValues map");
8507       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8508         Builder.SetInsertPoint(VecI->getParent(),
8509                                std::next(VecI->getIterator()));
8510       } else {
8511         Builder.SetInsertPoint(&F->getEntryBlock().front());
8512       }
8513       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8514       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
8515       auto &NewInstLocs = ExternallyUsedValues[NewInst];
8516       auto It = ExternallyUsedValues.find(Scalar);
8517       assert(It != ExternallyUsedValues.end() &&
8518              "Externally used scalar is not found in ExternallyUsedValues");
8519       NewInstLocs.append(It->second);
8520       ExternallyUsedValues.erase(Scalar);
8521       // Required to update internally referenced instructions.
8522       Scalar->replaceAllUsesWith(NewInst);
8523       continue;
8524     }
8525 
8526     if (auto *VU = dyn_cast<InsertElementInst>(User)) {
8527       // Skip if the scalar is another vector op or Vec is not an instruction.
8528       if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
8529         if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
8530           Optional<unsigned> InsertIdx = getInsertIndex(VU);
8531           if (InsertIdx) {
8532             // Need to use original vector, if the root is truncated.
8533             if (MinBWs.count(Scalar) &&
8534                 VectorizableTree[0]->VectorizedValue == Vec)
8535               Vec = VectorRoot;
8536             auto *It =
8537                 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
8538                   // Checks if 2 insertelements are from the same buildvector.
8539                   InsertElementInst *VecInsert = Data.InsertElements.front();
8540                   return areTwoInsertFromSameBuildVector(VU, VecInsert);
8541                 });
8542             unsigned Idx = *InsertIdx;
8543             if (It == ShuffledInserts.end()) {
8544               (void)ShuffledInserts.emplace_back();
8545               It = std::next(ShuffledInserts.begin(),
8546                              ShuffledInserts.size() - 1);
8547               SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8548               if (Mask.empty())
8549                 Mask.assign(FTy->getNumElements(), UndefMaskElem);
8550               // Find the insertvector, vectorized in tree, if any.
8551               Value *Base = VU;
8552               while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
8553                 if (IEBase != User &&
8554                     (!IEBase->hasOneUse() ||
8555                      getInsertIndex(IEBase).value_or(Idx) == Idx))
8556                   break;
8557                 // Build the mask for the vectorized insertelement instructions.
8558                 if (const TreeEntry *E = getTreeEntry(IEBase)) {
8559                   do {
8560                     IEBase = cast<InsertElementInst>(Base);
8561                     int IEIdx = *getInsertIndex(IEBase);
8562                     assert(Mask[Idx] == UndefMaskElem &&
8563                            "InsertElementInstruction used already.");
8564                     Mask[IEIdx] = IEIdx;
8565                     Base = IEBase->getOperand(0);
8566                   } while (E == getTreeEntry(Base));
8567                   break;
8568                 }
8569                 Base = cast<InsertElementInst>(Base)->getOperand(0);
8570                 // After the vectorization the def-use chain has changed, need
8571                 // to look through original insertelement instructions, if they
8572                 // get replaced by vector instructions.
8573                 auto It = VectorToInsertElement.find(Base);
8574                 if (It != VectorToInsertElement.end())
8575                   Base = It->second;
8576               }
8577             }
8578             SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8579             if (Mask.empty())
8580               Mask.assign(FTy->getNumElements(), UndefMaskElem);
8581             Mask[Idx] = ExternalUse.Lane;
8582             It->InsertElements.push_back(cast<InsertElementInst>(User));
8583             continue;
8584           }
8585         }
8586       }
8587     }
8588 
8589     // Generate extracts for out-of-tree users.
8590     // Find the insertion point for the extractelement lane.
8591     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8592       if (PHINode *PH = dyn_cast<PHINode>(User)) {
8593         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
8594           if (PH->getIncomingValue(i) == Scalar) {
8595             Instruction *IncomingTerminator =
8596                 PH->getIncomingBlock(i)->getTerminator();
8597             if (isa<CatchSwitchInst>(IncomingTerminator)) {
8598               Builder.SetInsertPoint(VecI->getParent(),
8599                                      std::next(VecI->getIterator()));
8600             } else {
8601               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
8602             }
8603             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8604             CSEBlocks.insert(PH->getIncomingBlock(i));
8605             PH->setOperand(i, NewInst);
8606           }
8607         }
8608       } else {
8609         Builder.SetInsertPoint(cast<Instruction>(User));
8610         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8611         CSEBlocks.insert(cast<Instruction>(User)->getParent());
8612         User->replaceUsesOfWith(Scalar, NewInst);
8613       }
8614     } else {
8615       Builder.SetInsertPoint(&F->getEntryBlock().front());
8616       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8617       CSEBlocks.insert(&F->getEntryBlock());
8618       User->replaceUsesOfWith(Scalar, NewInst);
8619     }
8620 
8621     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
8622   }
8623 
8624   // Checks if the mask is an identity mask.
8625   auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) {
8626     int Limit = Mask.size();
8627     return VecTy->getNumElements() == Mask.size() &&
8628            all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
8629            ShuffleVectorInst::isIdentityMask(Mask);
8630   };
8631   // Tries to combine 2 different masks into single one.
8632   auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) {
8633     SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
8634     for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
8635       if (ExtMask[I] == UndefMaskElem)
8636         continue;
8637       NewMask[I] = Mask[ExtMask[I]];
8638     }
8639     Mask.swap(NewMask);
8640   };
8641   // Peek through shuffles, trying to simplify the final shuffle code.
8642   auto &&PeekThroughShuffles =
8643       [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask,
8644                                        bool CheckForLengthChange = false) {
8645         while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
8646           // Exit if not a fixed vector type or changing size shuffle.
8647           if (!isa<FixedVectorType>(SV->getType()) ||
8648               (CheckForLengthChange && SV->changesLength()))
8649             break;
8650           // Exit if the identity or broadcast mask is found.
8651           if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) ||
8652               SV->isZeroEltSplat())
8653             break;
8654           bool IsOp1Undef = isUndefVector(SV->getOperand(0));
8655           bool IsOp2Undef = isUndefVector(SV->getOperand(1));
8656           if (!IsOp1Undef && !IsOp2Undef)
8657             break;
8658           SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
8659                                        SV->getShuffleMask().end());
8660           CombineMasks(ShuffleMask, Mask);
8661           Mask.swap(ShuffleMask);
8662           if (IsOp2Undef)
8663             V = SV->getOperand(0);
8664           else
8665             V = SV->getOperand(1);
8666         }
8667       };
8668   // Smart shuffle instruction emission, walks through shuffles trees and
8669   // tries to find the best matching vector for the actual shuffle
8670   // instruction.
8671   auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles,
8672                           &CombineMasks](Value *V1, Value *V2,
8673                                          ArrayRef<int> Mask) -> Value * {
8674     assert(V1 && "Expected at least one vector value.");
8675     if (V2 && !isUndefVector(V2)) {
8676       // Peek through shuffles.
8677       Value *Op1 = V1;
8678       Value *Op2 = V2;
8679       int VF =
8680           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
8681       SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
8682       SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
8683       for (int I = 0, E = Mask.size(); I < E; ++I) {
8684         if (Mask[I] < VF)
8685           CombinedMask1[I] = Mask[I];
8686         else
8687           CombinedMask2[I] = Mask[I] - VF;
8688       }
8689       Value *PrevOp1;
8690       Value *PrevOp2;
8691       do {
8692         PrevOp1 = Op1;
8693         PrevOp2 = Op2;
8694         PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true);
8695         PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true);
8696         // Check if we have 2 resizing shuffles - need to peek through operands
8697         // again.
8698         if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
8699           if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2))
8700             if (SV1->getOperand(0)->getType() ==
8701                     SV2->getOperand(0)->getType() &&
8702                 SV1->getOperand(0)->getType() != SV1->getType() &&
8703                 isUndefVector(SV1->getOperand(1)) &&
8704                 isUndefVector(SV2->getOperand(1))) {
8705               Op1 = SV1->getOperand(0);
8706               Op2 = SV2->getOperand(0);
8707               SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
8708                                             SV1->getShuffleMask().end());
8709               CombineMasks(ShuffleMask1, CombinedMask1);
8710               CombinedMask1.swap(ShuffleMask1);
8711               SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
8712                                             SV2->getShuffleMask().end());
8713               CombineMasks(ShuffleMask2, CombinedMask2);
8714               CombinedMask2.swap(ShuffleMask2);
8715             }
8716       } while (PrevOp1 != Op1 || PrevOp2 != Op2);
8717       VF = cast<VectorType>(Op1->getType())
8718                ->getElementCount()
8719                .getKnownMinValue();
8720       for (int I = 0, E = Mask.size(); I < E; ++I) {
8721         if (CombinedMask2[I] != UndefMaskElem) {
8722           assert(CombinedMask1[I] == UndefMaskElem &&
8723                  "Expected undefined mask element");
8724           CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
8725         }
8726       }
8727       Value *Vec = Builder.CreateShuffleVector(
8728           Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
8729           CombinedMask1);
8730       if (auto *I = dyn_cast<Instruction>(Vec)) {
8731         GatherShuffleSeq.insert(I);
8732         CSEBlocks.insert(I->getParent());
8733       }
8734       return Vec;
8735     }
8736     if (isa<PoisonValue>(V1))
8737       return PoisonValue::get(FixedVectorType::get(
8738           cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
8739     Value *Op = V1;
8740     SmallVector<int> CombinedMask(Mask.begin(), Mask.end());
8741     PeekThroughShuffles(Op, CombinedMask);
8742     if (!isa<FixedVectorType>(Op->getType()) ||
8743         !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) {
8744       Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask);
8745       if (auto *I = dyn_cast<Instruction>(Vec)) {
8746         GatherShuffleSeq.insert(I);
8747         CSEBlocks.insert(I->getParent());
8748       }
8749       return Vec;
8750     }
8751     return Op;
8752   };
8753 
8754   auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) {
8755     unsigned VF = Mask.size();
8756     unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
8757     if (VF != VecVF) {
8758       if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
8759         Vec = CreateShuffle(Vec, nullptr, Mask);
8760         return std::make_pair(Vec, true);
8761       }
8762       SmallVector<int> ResizeMask(VF, UndefMaskElem);
8763       for (unsigned I = 0; I < VF; ++I) {
8764         if (Mask[I] != UndefMaskElem)
8765           ResizeMask[Mask[I]] = Mask[I];
8766       }
8767       Vec = CreateShuffle(Vec, nullptr, ResizeMask);
8768     }
8769 
8770     return std::make_pair(Vec, false);
8771   };
8772   // Perform shuffling of the vectorize tree entries for better handling of
8773   // external extracts.
8774   for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
8775     // Find the first and the last instruction in the list of insertelements.
8776     sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
8777     InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
8778     InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
8779     Builder.SetInsertPoint(LastInsert);
8780     auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
8781     Value *NewInst = performExtractsShuffleAction<Value>(
8782         makeMutableArrayRef(Vector.data(), Vector.size()),
8783         FirstInsert->getOperand(0),
8784         [](Value *Vec) {
8785           return cast<VectorType>(Vec->getType())
8786               ->getElementCount()
8787               .getKnownMinValue();
8788         },
8789         ResizeToVF,
8790         [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
8791                                       ArrayRef<Value *> Vals) {
8792           assert((Vals.size() == 1 || Vals.size() == 2) &&
8793                  "Expected exactly 1 or 2 input values.");
8794           if (Vals.size() == 1) {
8795             // Do not create shuffle if the mask is a simple identity
8796             // non-resizing mask.
8797             if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
8798                                    ->getNumElements() ||
8799                 !ShuffleVectorInst::isIdentityMask(Mask))
8800               return CreateShuffle(Vals.front(), nullptr, Mask);
8801             return Vals.front();
8802           }
8803           return CreateShuffle(Vals.front() ? Vals.front()
8804                                             : FirstInsert->getOperand(0),
8805                                Vals.back(), Mask);
8806         });
8807     auto It = ShuffledInserts[I].InsertElements.rbegin();
8808     // Rebuild buildvector chain.
8809     InsertElementInst *II = nullptr;
8810     if (It != ShuffledInserts[I].InsertElements.rend())
8811       II = *It;
8812     SmallVector<Instruction *> Inserts;
8813     while (It != ShuffledInserts[I].InsertElements.rend()) {
8814       assert(II && "Must be an insertelement instruction.");
8815       if (*It == II)
8816         ++It;
8817       else
8818         Inserts.push_back(cast<Instruction>(II));
8819       II = dyn_cast<InsertElementInst>(II->getOperand(0));
8820     }
8821     for (Instruction *II : reverse(Inserts)) {
8822       II->replaceUsesOfWith(II->getOperand(0), NewInst);
8823       if (auto *NewI = dyn_cast<Instruction>(NewInst))
8824         if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
8825           II->moveAfter(NewI);
8826       NewInst = II;
8827     }
8828     LastInsert->replaceAllUsesWith(NewInst);
8829     for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
8830       IE->replaceUsesOfWith(IE->getOperand(0),
8831                             PoisonValue::get(IE->getOperand(0)->getType()));
8832       IE->replaceUsesOfWith(IE->getOperand(1),
8833                             PoisonValue::get(IE->getOperand(1)->getType()));
8834       eraseInstruction(IE);
8835     }
8836     CSEBlocks.insert(LastInsert->getParent());
8837   }
8838 
8839   // For each vectorized value:
8840   for (auto &TEPtr : VectorizableTree) {
8841     TreeEntry *Entry = TEPtr.get();
8842 
8843     // No need to handle users of gathered values.
8844     if (Entry->State == TreeEntry::NeedToGather)
8845       continue;
8846 
8847     assert(Entry->VectorizedValue && "Can't find vectorizable value");
8848 
8849     // For each lane:
8850     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
8851       Value *Scalar = Entry->Scalars[Lane];
8852 
8853       if (Entry->getOpcode() == Instruction::GetElementPtr &&
8854           !isa<GetElementPtrInst>(Scalar))
8855         continue;
8856 #ifndef NDEBUG
8857       Type *Ty = Scalar->getType();
8858       if (!Ty->isVoidTy()) {
8859         for (User *U : Scalar->users()) {
8860           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
8861 
8862           // It is legal to delete users in the ignorelist.
8863           assert((getTreeEntry(U) ||
8864                   (UserIgnoreList && UserIgnoreList->contains(U)) ||
8865                   (isa_and_nonnull<Instruction>(U) &&
8866                    isDeleted(cast<Instruction>(U)))) &&
8867                  "Deleting out-of-tree value");
8868         }
8869       }
8870 #endif
8871       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
8872       eraseInstruction(cast<Instruction>(Scalar));
8873     }
8874   }
8875 
8876   Builder.ClearInsertionPoint();
8877   InstrElementSize.clear();
8878 
8879   return VectorizableTree[0]->VectorizedValue;
8880 }
8881 
8882 void BoUpSLP::optimizeGatherSequence() {
8883   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
8884                     << " gather sequences instructions.\n");
8885   // LICM InsertElementInst sequences.
8886   for (Instruction *I : GatherShuffleSeq) {
8887     if (isDeleted(I))
8888       continue;
8889 
8890     // Check if this block is inside a loop.
8891     Loop *L = LI->getLoopFor(I->getParent());
8892     if (!L)
8893       continue;
8894 
8895     // Check if it has a preheader.
8896     BasicBlock *PreHeader = L->getLoopPreheader();
8897     if (!PreHeader)
8898       continue;
8899 
8900     // If the vector or the element that we insert into it are
8901     // instructions that are defined in this basic block then we can't
8902     // hoist this instruction.
8903     if (any_of(I->operands(), [L](Value *V) {
8904           auto *OpI = dyn_cast<Instruction>(V);
8905           return OpI && L->contains(OpI);
8906         }))
8907       continue;
8908 
8909     // We can hoist this instruction. Move it to the pre-header.
8910     I->moveBefore(PreHeader->getTerminator());
8911   }
8912 
8913   // Make a list of all reachable blocks in our CSE queue.
8914   SmallVector<const DomTreeNode *, 8> CSEWorkList;
8915   CSEWorkList.reserve(CSEBlocks.size());
8916   for (BasicBlock *BB : CSEBlocks)
8917     if (DomTreeNode *N = DT->getNode(BB)) {
8918       assert(DT->isReachableFromEntry(N));
8919       CSEWorkList.push_back(N);
8920     }
8921 
8922   // Sort blocks by domination. This ensures we visit a block after all blocks
8923   // dominating it are visited.
8924   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
8925     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
8926            "Different nodes should have different DFS numbers");
8927     return A->getDFSNumIn() < B->getDFSNumIn();
8928   });
8929 
8930   // Less defined shuffles can be replaced by the more defined copies.
8931   // Between two shuffles one is less defined if it has the same vector operands
8932   // and its mask indeces are the same as in the first one or undefs. E.g.
8933   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
8934   // poison, <0, 0, 0, 0>.
8935   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
8936                                            SmallVectorImpl<int> &NewMask) {
8937     if (I1->getType() != I2->getType())
8938       return false;
8939     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
8940     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
8941     if (!SI1 || !SI2)
8942       return I1->isIdenticalTo(I2);
8943     if (SI1->isIdenticalTo(SI2))
8944       return true;
8945     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
8946       if (SI1->getOperand(I) != SI2->getOperand(I))
8947         return false;
8948     // Check if the second instruction is more defined than the first one.
8949     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
8950     ArrayRef<int> SM1 = SI1->getShuffleMask();
8951     // Count trailing undefs in the mask to check the final number of used
8952     // registers.
8953     unsigned LastUndefsCnt = 0;
8954     for (int I = 0, E = NewMask.size(); I < E; ++I) {
8955       if (SM1[I] == UndefMaskElem)
8956         ++LastUndefsCnt;
8957       else
8958         LastUndefsCnt = 0;
8959       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
8960           NewMask[I] != SM1[I])
8961         return false;
8962       if (NewMask[I] == UndefMaskElem)
8963         NewMask[I] = SM1[I];
8964     }
8965     // Check if the last undefs actually change the final number of used vector
8966     // registers.
8967     return SM1.size() - LastUndefsCnt > 1 &&
8968            TTI->getNumberOfParts(SI1->getType()) ==
8969                TTI->getNumberOfParts(
8970                    FixedVectorType::get(SI1->getType()->getElementType(),
8971                                         SM1.size() - LastUndefsCnt));
8972   };
8973   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
8974   // instructions. TODO: We can further optimize this scan if we split the
8975   // instructions into different buckets based on the insert lane.
8976   SmallVector<Instruction *, 16> Visited;
8977   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
8978     assert(*I &&
8979            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
8980            "Worklist not sorted properly!");
8981     BasicBlock *BB = (*I)->getBlock();
8982     // For all instructions in blocks containing gather sequences:
8983     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
8984       if (isDeleted(&In))
8985         continue;
8986       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
8987           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
8988         continue;
8989 
8990       // Check if we can replace this instruction with any of the
8991       // visited instructions.
8992       bool Replaced = false;
8993       for (Instruction *&V : Visited) {
8994         SmallVector<int> NewMask;
8995         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
8996             DT->dominates(V->getParent(), In.getParent())) {
8997           In.replaceAllUsesWith(V);
8998           eraseInstruction(&In);
8999           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
9000             if (!NewMask.empty())
9001               SI->setShuffleMask(NewMask);
9002           Replaced = true;
9003           break;
9004         }
9005         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
9006             GatherShuffleSeq.contains(V) &&
9007             IsIdenticalOrLessDefined(V, &In, NewMask) &&
9008             DT->dominates(In.getParent(), V->getParent())) {
9009           In.moveAfter(V);
9010           V->replaceAllUsesWith(&In);
9011           eraseInstruction(V);
9012           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
9013             if (!NewMask.empty())
9014               SI->setShuffleMask(NewMask);
9015           V = &In;
9016           Replaced = true;
9017           break;
9018         }
9019       }
9020       if (!Replaced) {
9021         assert(!is_contained(Visited, &In));
9022         Visited.push_back(&In);
9023       }
9024     }
9025   }
9026   CSEBlocks.clear();
9027   GatherShuffleSeq.clear();
9028 }
9029 
9030 BoUpSLP::ScheduleData *
9031 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
9032   ScheduleData *Bundle = nullptr;
9033   ScheduleData *PrevInBundle = nullptr;
9034   for (Value *V : VL) {
9035     if (doesNotNeedToBeScheduled(V))
9036       continue;
9037     ScheduleData *BundleMember = getScheduleData(V);
9038     assert(BundleMember &&
9039            "no ScheduleData for bundle member "
9040            "(maybe not in same basic block)");
9041     assert(BundleMember->isSchedulingEntity() &&
9042            "bundle member already part of other bundle");
9043     if (PrevInBundle) {
9044       PrevInBundle->NextInBundle = BundleMember;
9045     } else {
9046       Bundle = BundleMember;
9047     }
9048 
9049     // Group the instructions to a bundle.
9050     BundleMember->FirstInBundle = Bundle;
9051     PrevInBundle = BundleMember;
9052   }
9053   assert(Bundle && "Failed to find schedule bundle");
9054   return Bundle;
9055 }
9056 
9057 // Groups the instructions to a bundle (which is then a single scheduling entity)
9058 // and schedules instructions until the bundle gets ready.
9059 Optional<BoUpSLP::ScheduleData *>
9060 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
9061                                             const InstructionsState &S) {
9062   // No need to schedule PHIs, insertelement, extractelement and extractvalue
9063   // instructions.
9064   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
9065       doesNotNeedToSchedule(VL))
9066     return nullptr;
9067 
9068   // Initialize the instruction bundle.
9069   Instruction *OldScheduleEnd = ScheduleEnd;
9070   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
9071 
9072   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
9073                                                          ScheduleData *Bundle) {
9074     // The scheduling region got new instructions at the lower end (or it is a
9075     // new region for the first bundle). This makes it necessary to
9076     // recalculate all dependencies.
9077     // It is seldom that this needs to be done a second time after adding the
9078     // initial bundle to the region.
9079     if (ScheduleEnd != OldScheduleEnd) {
9080       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
9081         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
9082       ReSchedule = true;
9083     }
9084     if (Bundle) {
9085       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
9086                         << " in block " << BB->getName() << "\n");
9087       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
9088     }
9089 
9090     if (ReSchedule) {
9091       resetSchedule();
9092       initialFillReadyList(ReadyInsts);
9093     }
9094 
9095     // Now try to schedule the new bundle or (if no bundle) just calculate
9096     // dependencies. As soon as the bundle is "ready" it means that there are no
9097     // cyclic dependencies and we can schedule it. Note that's important that we
9098     // don't "schedule" the bundle yet (see cancelScheduling).
9099     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
9100            !ReadyInsts.empty()) {
9101       ScheduleData *Picked = ReadyInsts.pop_back_val();
9102       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
9103              "must be ready to schedule");
9104       schedule(Picked, ReadyInsts);
9105     }
9106   };
9107 
9108   // Make sure that the scheduling region contains all
9109   // instructions of the bundle.
9110   for (Value *V : VL) {
9111     if (doesNotNeedToBeScheduled(V))
9112       continue;
9113     if (!extendSchedulingRegion(V, S)) {
9114       // If the scheduling region got new instructions at the lower end (or it
9115       // is a new region for the first bundle). This makes it necessary to
9116       // recalculate all dependencies.
9117       // Otherwise the compiler may crash trying to incorrectly calculate
9118       // dependencies and emit instruction in the wrong order at the actual
9119       // scheduling.
9120       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
9121       return None;
9122     }
9123   }
9124 
9125   bool ReSchedule = false;
9126   for (Value *V : VL) {
9127     if (doesNotNeedToBeScheduled(V))
9128       continue;
9129     ScheduleData *BundleMember = getScheduleData(V);
9130     assert(BundleMember &&
9131            "no ScheduleData for bundle member (maybe not in same basic block)");
9132 
9133     // Make sure we don't leave the pieces of the bundle in the ready list when
9134     // whole bundle might not be ready.
9135     ReadyInsts.remove(BundleMember);
9136 
9137     if (!BundleMember->IsScheduled)
9138       continue;
9139     // A bundle member was scheduled as single instruction before and now
9140     // needs to be scheduled as part of the bundle. We just get rid of the
9141     // existing schedule.
9142     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
9143                       << " was already scheduled\n");
9144     ReSchedule = true;
9145   }
9146 
9147   auto *Bundle = buildBundle(VL);
9148   TryScheduleBundleImpl(ReSchedule, Bundle);
9149   if (!Bundle->isReady()) {
9150     cancelScheduling(VL, S.OpValue);
9151     return None;
9152   }
9153   return Bundle;
9154 }
9155 
9156 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
9157                                                 Value *OpValue) {
9158   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
9159       doesNotNeedToSchedule(VL))
9160     return;
9161 
9162   if (doesNotNeedToBeScheduled(OpValue))
9163     OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
9164   ScheduleData *Bundle = getScheduleData(OpValue);
9165   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
9166   assert(!Bundle->IsScheduled &&
9167          "Can't cancel bundle which is already scheduled");
9168   assert(Bundle->isSchedulingEntity() &&
9169          (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
9170          "tried to unbundle something which is not a bundle");
9171 
9172   // Remove the bundle from the ready list.
9173   if (Bundle->isReady())
9174     ReadyInsts.remove(Bundle);
9175 
9176   // Un-bundle: make single instructions out of the bundle.
9177   ScheduleData *BundleMember = Bundle;
9178   while (BundleMember) {
9179     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
9180     BundleMember->FirstInBundle = BundleMember;
9181     ScheduleData *Next = BundleMember->NextInBundle;
9182     BundleMember->NextInBundle = nullptr;
9183     BundleMember->TE = nullptr;
9184     if (BundleMember->unscheduledDepsInBundle() == 0) {
9185       ReadyInsts.insert(BundleMember);
9186     }
9187     BundleMember = Next;
9188   }
9189 }
9190 
9191 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
9192   // Allocate a new ScheduleData for the instruction.
9193   if (ChunkPos >= ChunkSize) {
9194     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
9195     ChunkPos = 0;
9196   }
9197   return &(ScheduleDataChunks.back()[ChunkPos++]);
9198 }
9199 
9200 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
9201                                                       const InstructionsState &S) {
9202   if (getScheduleData(V, isOneOf(S, V)))
9203     return true;
9204   Instruction *I = dyn_cast<Instruction>(V);
9205   assert(I && "bundle member must be an instruction");
9206   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
9207          !doesNotNeedToBeScheduled(I) &&
9208          "phi nodes/insertelements/extractelements/extractvalues don't need to "
9209          "be scheduled");
9210   auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
9211     ScheduleData *ISD = getScheduleData(I);
9212     if (!ISD)
9213       return false;
9214     assert(isInSchedulingRegion(ISD) &&
9215            "ScheduleData not in scheduling region");
9216     ScheduleData *SD = allocateScheduleDataChunks();
9217     SD->Inst = I;
9218     SD->init(SchedulingRegionID, S.OpValue);
9219     ExtraScheduleDataMap[I][S.OpValue] = SD;
9220     return true;
9221   };
9222   if (CheckScheduleForI(I))
9223     return true;
9224   if (!ScheduleStart) {
9225     // It's the first instruction in the new region.
9226     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
9227     ScheduleStart = I;
9228     ScheduleEnd = I->getNextNode();
9229     if (isOneOf(S, I) != I)
9230       CheckScheduleForI(I);
9231     assert(ScheduleEnd && "tried to vectorize a terminator?");
9232     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
9233     return true;
9234   }
9235   // Search up and down at the same time, because we don't know if the new
9236   // instruction is above or below the existing scheduling region.
9237   BasicBlock::reverse_iterator UpIter =
9238       ++ScheduleStart->getIterator().getReverse();
9239   BasicBlock::reverse_iterator UpperEnd = BB->rend();
9240   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
9241   BasicBlock::iterator LowerEnd = BB->end();
9242   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
9243          &*DownIter != I) {
9244     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
9245       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
9246       return false;
9247     }
9248 
9249     ++UpIter;
9250     ++DownIter;
9251   }
9252   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
9253     assert(I->getParent() == ScheduleStart->getParent() &&
9254            "Instruction is in wrong basic block.");
9255     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
9256     ScheduleStart = I;
9257     if (isOneOf(S, I) != I)
9258       CheckScheduleForI(I);
9259     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
9260                       << "\n");
9261     return true;
9262   }
9263   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
9264          "Expected to reach top of the basic block or instruction down the "
9265          "lower end.");
9266   assert(I->getParent() == ScheduleEnd->getParent() &&
9267          "Instruction is in wrong basic block.");
9268   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
9269                    nullptr);
9270   ScheduleEnd = I->getNextNode();
9271   if (isOneOf(S, I) != I)
9272     CheckScheduleForI(I);
9273   assert(ScheduleEnd && "tried to vectorize a terminator?");
9274   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
9275   return true;
9276 }
9277 
9278 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
9279                                                 Instruction *ToI,
9280                                                 ScheduleData *PrevLoadStore,
9281                                                 ScheduleData *NextLoadStore) {
9282   ScheduleData *CurrentLoadStore = PrevLoadStore;
9283   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
9284     // No need to allocate data for non-schedulable instructions.
9285     if (doesNotNeedToBeScheduled(I))
9286       continue;
9287     ScheduleData *SD = ScheduleDataMap.lookup(I);
9288     if (!SD) {
9289       SD = allocateScheduleDataChunks();
9290       ScheduleDataMap[I] = SD;
9291       SD->Inst = I;
9292     }
9293     assert(!isInSchedulingRegion(SD) &&
9294            "new ScheduleData already in scheduling region");
9295     SD->init(SchedulingRegionID, I);
9296 
9297     if (I->mayReadOrWriteMemory() &&
9298         (!isa<IntrinsicInst>(I) ||
9299          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
9300           cast<IntrinsicInst>(I)->getIntrinsicID() !=
9301               Intrinsic::pseudoprobe))) {
9302       // Update the linked list of memory accessing instructions.
9303       if (CurrentLoadStore) {
9304         CurrentLoadStore->NextLoadStore = SD;
9305       } else {
9306         FirstLoadStoreInRegion = SD;
9307       }
9308       CurrentLoadStore = SD;
9309     }
9310 
9311     if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9312         match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9313       RegionHasStackSave = true;
9314   }
9315   if (NextLoadStore) {
9316     if (CurrentLoadStore)
9317       CurrentLoadStore->NextLoadStore = NextLoadStore;
9318   } else {
9319     LastLoadStoreInRegion = CurrentLoadStore;
9320   }
9321 }
9322 
9323 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
9324                                                      bool InsertInReadyList,
9325                                                      BoUpSLP *SLP) {
9326   assert(SD->isSchedulingEntity());
9327 
9328   SmallVector<ScheduleData *, 10> WorkList;
9329   WorkList.push_back(SD);
9330 
9331   while (!WorkList.empty()) {
9332     ScheduleData *SD = WorkList.pop_back_val();
9333     for (ScheduleData *BundleMember = SD; BundleMember;
9334          BundleMember = BundleMember->NextInBundle) {
9335       assert(isInSchedulingRegion(BundleMember));
9336       if (BundleMember->hasValidDependencies())
9337         continue;
9338 
9339       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
9340                  << "\n");
9341       BundleMember->Dependencies = 0;
9342       BundleMember->resetUnscheduledDeps();
9343 
9344       // Handle def-use chain dependencies.
9345       if (BundleMember->OpValue != BundleMember->Inst) {
9346         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
9347           BundleMember->Dependencies++;
9348           ScheduleData *DestBundle = UseSD->FirstInBundle;
9349           if (!DestBundle->IsScheduled)
9350             BundleMember->incrementUnscheduledDeps(1);
9351           if (!DestBundle->hasValidDependencies())
9352             WorkList.push_back(DestBundle);
9353         }
9354       } else {
9355         for (User *U : BundleMember->Inst->users()) {
9356           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
9357             BundleMember->Dependencies++;
9358             ScheduleData *DestBundle = UseSD->FirstInBundle;
9359             if (!DestBundle->IsScheduled)
9360               BundleMember->incrementUnscheduledDeps(1);
9361             if (!DestBundle->hasValidDependencies())
9362               WorkList.push_back(DestBundle);
9363           }
9364         }
9365       }
9366 
9367       auto makeControlDependent = [&](Instruction *I) {
9368         auto *DepDest = getScheduleData(I);
9369         assert(DepDest && "must be in schedule window");
9370         DepDest->ControlDependencies.push_back(BundleMember);
9371         BundleMember->Dependencies++;
9372         ScheduleData *DestBundle = DepDest->FirstInBundle;
9373         if (!DestBundle->IsScheduled)
9374           BundleMember->incrementUnscheduledDeps(1);
9375         if (!DestBundle->hasValidDependencies())
9376           WorkList.push_back(DestBundle);
9377       };
9378 
9379       // Any instruction which isn't safe to speculate at the begining of the
9380       // block is control dependend on any early exit or non-willreturn call
9381       // which proceeds it.
9382       if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
9383         for (Instruction *I = BundleMember->Inst->getNextNode();
9384              I != ScheduleEnd; I = I->getNextNode()) {
9385           if (isSafeToSpeculativelyExecute(I, &*BB->begin()))
9386             continue;
9387 
9388           // Add the dependency
9389           makeControlDependent(I);
9390 
9391           if (!isGuaranteedToTransferExecutionToSuccessor(I))
9392             // Everything past here must be control dependent on I.
9393             break;
9394         }
9395       }
9396 
9397       if (RegionHasStackSave) {
9398         // If we have an inalloc alloca instruction, it needs to be scheduled
9399         // after any preceeding stacksave.  We also need to prevent any alloca
9400         // from reordering above a preceeding stackrestore.
9401         if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
9402             match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
9403           for (Instruction *I = BundleMember->Inst->getNextNode();
9404                I != ScheduleEnd; I = I->getNextNode()) {
9405             if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9406                 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9407               // Any allocas past here must be control dependent on I, and I
9408               // must be memory dependend on BundleMember->Inst.
9409               break;
9410 
9411             if (!isa<AllocaInst>(I))
9412               continue;
9413 
9414             // Add the dependency
9415             makeControlDependent(I);
9416           }
9417         }
9418 
9419         // In addition to the cases handle just above, we need to prevent
9420         // allocas from moving below a stacksave.  The stackrestore case
9421         // is currently thought to be conservatism.
9422         if (isa<AllocaInst>(BundleMember->Inst)) {
9423           for (Instruction *I = BundleMember->Inst->getNextNode();
9424                I != ScheduleEnd; I = I->getNextNode()) {
9425             if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
9426                 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9427               continue;
9428 
9429             // Add the dependency
9430             makeControlDependent(I);
9431             break;
9432           }
9433         }
9434       }
9435 
9436       // Handle the memory dependencies (if any).
9437       ScheduleData *DepDest = BundleMember->NextLoadStore;
9438       if (!DepDest)
9439         continue;
9440       Instruction *SrcInst = BundleMember->Inst;
9441       assert(SrcInst->mayReadOrWriteMemory() &&
9442              "NextLoadStore list for non memory effecting bundle?");
9443       MemoryLocation SrcLoc = getLocation(SrcInst);
9444       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
9445       unsigned numAliased = 0;
9446       unsigned DistToSrc = 1;
9447 
9448       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
9449         assert(isInSchedulingRegion(DepDest));
9450 
9451         // We have two limits to reduce the complexity:
9452         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
9453         //    SLP->isAliased (which is the expensive part in this loop).
9454         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
9455         //    the whole loop (even if the loop is fast, it's quadratic).
9456         //    It's important for the loop break condition (see below) to
9457         //    check this limit even between two read-only instructions.
9458         if (DistToSrc >= MaxMemDepDistance ||
9459             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
9460              (numAliased >= AliasedCheckLimit ||
9461               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
9462 
9463           // We increment the counter only if the locations are aliased
9464           // (instead of counting all alias checks). This gives a better
9465           // balance between reduced runtime and accurate dependencies.
9466           numAliased++;
9467 
9468           DepDest->MemoryDependencies.push_back(BundleMember);
9469           BundleMember->Dependencies++;
9470           ScheduleData *DestBundle = DepDest->FirstInBundle;
9471           if (!DestBundle->IsScheduled) {
9472             BundleMember->incrementUnscheduledDeps(1);
9473           }
9474           if (!DestBundle->hasValidDependencies()) {
9475             WorkList.push_back(DestBundle);
9476           }
9477         }
9478 
9479         // Example, explaining the loop break condition: Let's assume our
9480         // starting instruction is i0 and MaxMemDepDistance = 3.
9481         //
9482         //                      +--------v--v--v
9483         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
9484         //             +--------^--^--^
9485         //
9486         // MaxMemDepDistance let us stop alias-checking at i3 and we add
9487         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
9488         // Previously we already added dependencies from i3 to i6,i7,i8
9489         // (because of MaxMemDepDistance). As we added a dependency from
9490         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
9491         // and we can abort this loop at i6.
9492         if (DistToSrc >= 2 * MaxMemDepDistance)
9493           break;
9494         DistToSrc++;
9495       }
9496     }
9497     if (InsertInReadyList && SD->isReady()) {
9498       ReadyInsts.insert(SD);
9499       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
9500                         << "\n");
9501     }
9502   }
9503 }
9504 
9505 void BoUpSLP::BlockScheduling::resetSchedule() {
9506   assert(ScheduleStart &&
9507          "tried to reset schedule on block which has not been scheduled");
9508   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
9509     doForAllOpcodes(I, [&](ScheduleData *SD) {
9510       assert(isInSchedulingRegion(SD) &&
9511              "ScheduleData not in scheduling region");
9512       SD->IsScheduled = false;
9513       SD->resetUnscheduledDeps();
9514     });
9515   }
9516   ReadyInsts.clear();
9517 }
9518 
9519 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
9520   if (!BS->ScheduleStart)
9521     return;
9522 
9523   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
9524 
9525   // A key point - if we got here, pre-scheduling was able to find a valid
9526   // scheduling of the sub-graph of the scheduling window which consists
9527   // of all vector bundles and their transitive users.  As such, we do not
9528   // need to reschedule anything *outside of* that subgraph.
9529 
9530   BS->resetSchedule();
9531 
9532   // For the real scheduling we use a more sophisticated ready-list: it is
9533   // sorted by the original instruction location. This lets the final schedule
9534   // be as  close as possible to the original instruction order.
9535   // WARNING: If changing this order causes a correctness issue, that means
9536   // there is some missing dependence edge in the schedule data graph.
9537   struct ScheduleDataCompare {
9538     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
9539       return SD2->SchedulingPriority < SD1->SchedulingPriority;
9540     }
9541   };
9542   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
9543 
9544   // Ensure that all dependency data is updated (for nodes in the sub-graph)
9545   // and fill the ready-list with initial instructions.
9546   int Idx = 0;
9547   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
9548        I = I->getNextNode()) {
9549     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
9550       TreeEntry *SDTE = getTreeEntry(SD->Inst);
9551       (void)SDTE;
9552       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
9553               SD->isPartOfBundle() ==
9554                   (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
9555              "scheduler and vectorizer bundle mismatch");
9556       SD->FirstInBundle->SchedulingPriority = Idx++;
9557 
9558       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
9559         BS->calculateDependencies(SD, false, this);
9560     });
9561   }
9562   BS->initialFillReadyList(ReadyInsts);
9563 
9564   Instruction *LastScheduledInst = BS->ScheduleEnd;
9565 
9566   // Do the "real" scheduling.
9567   while (!ReadyInsts.empty()) {
9568     ScheduleData *picked = *ReadyInsts.begin();
9569     ReadyInsts.erase(ReadyInsts.begin());
9570 
9571     // Move the scheduled instruction(s) to their dedicated places, if not
9572     // there yet.
9573     for (ScheduleData *BundleMember = picked; BundleMember;
9574          BundleMember = BundleMember->NextInBundle) {
9575       Instruction *pickedInst = BundleMember->Inst;
9576       if (pickedInst->getNextNode() != LastScheduledInst)
9577         pickedInst->moveBefore(LastScheduledInst);
9578       LastScheduledInst = pickedInst;
9579     }
9580 
9581     BS->schedule(picked, ReadyInsts);
9582   }
9583 
9584   // Check that we didn't break any of our invariants.
9585 #ifdef EXPENSIVE_CHECKS
9586   BS->verify();
9587 #endif
9588 
9589 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
9590   // Check that all schedulable entities got scheduled
9591   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
9592     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
9593       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
9594         assert(SD->IsScheduled && "must be scheduled at this point");
9595       }
9596     });
9597   }
9598 #endif
9599 
9600   // Avoid duplicate scheduling of the block.
9601   BS->ScheduleStart = nullptr;
9602 }
9603 
9604 unsigned BoUpSLP::getVectorElementSize(Value *V) {
9605   // If V is a store, just return the width of the stored value (or value
9606   // truncated just before storing) without traversing the expression tree.
9607   // This is the common case.
9608   if (auto *Store = dyn_cast<StoreInst>(V))
9609     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
9610 
9611   if (auto *IEI = dyn_cast<InsertElementInst>(V))
9612     return getVectorElementSize(IEI->getOperand(1));
9613 
9614   auto E = InstrElementSize.find(V);
9615   if (E != InstrElementSize.end())
9616     return E->second;
9617 
9618   // If V is not a store, we can traverse the expression tree to find loads
9619   // that feed it. The type of the loaded value may indicate a more suitable
9620   // width than V's type. We want to base the vector element size on the width
9621   // of memory operations where possible.
9622   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
9623   SmallPtrSet<Instruction *, 16> Visited;
9624   if (auto *I = dyn_cast<Instruction>(V)) {
9625     Worklist.emplace_back(I, I->getParent());
9626     Visited.insert(I);
9627   }
9628 
9629   // Traverse the expression tree in bottom-up order looking for loads. If we
9630   // encounter an instruction we don't yet handle, we give up.
9631   auto Width = 0u;
9632   while (!Worklist.empty()) {
9633     Instruction *I;
9634     BasicBlock *Parent;
9635     std::tie(I, Parent) = Worklist.pop_back_val();
9636 
9637     // We should only be looking at scalar instructions here. If the current
9638     // instruction has a vector type, skip.
9639     auto *Ty = I->getType();
9640     if (isa<VectorType>(Ty))
9641       continue;
9642 
9643     // If the current instruction is a load, update MaxWidth to reflect the
9644     // width of the loaded value.
9645     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
9646         isa<ExtractValueInst>(I))
9647       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
9648 
9649     // Otherwise, we need to visit the operands of the instruction. We only
9650     // handle the interesting cases from buildTree here. If an operand is an
9651     // instruction we haven't yet visited and from the same basic block as the
9652     // user or the use is a PHI node, we add it to the worklist.
9653     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9654              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
9655              isa<UnaryOperator>(I)) {
9656       for (Use &U : I->operands())
9657         if (auto *J = dyn_cast<Instruction>(U.get()))
9658           if (Visited.insert(J).second &&
9659               (isa<PHINode>(I) || J->getParent() == Parent))
9660             Worklist.emplace_back(J, J->getParent());
9661     } else {
9662       break;
9663     }
9664   }
9665 
9666   // If we didn't encounter a memory access in the expression tree, or if we
9667   // gave up for some reason, just return the width of V. Otherwise, return the
9668   // maximum width we found.
9669   if (!Width) {
9670     if (auto *CI = dyn_cast<CmpInst>(V))
9671       V = CI->getOperand(0);
9672     Width = DL->getTypeSizeInBits(V->getType());
9673   }
9674 
9675   for (Instruction *I : Visited)
9676     InstrElementSize[I] = Width;
9677 
9678   return Width;
9679 }
9680 
9681 // Determine if a value V in a vectorizable expression Expr can be demoted to a
9682 // smaller type with a truncation. We collect the values that will be demoted
9683 // in ToDemote and additional roots that require investigating in Roots.
9684 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
9685                                   SmallVectorImpl<Value *> &ToDemote,
9686                                   SmallVectorImpl<Value *> &Roots) {
9687   // We can always demote constants.
9688   if (isa<Constant>(V)) {
9689     ToDemote.push_back(V);
9690     return true;
9691   }
9692 
9693   // If the value is not an instruction in the expression with only one use, it
9694   // cannot be demoted.
9695   auto *I = dyn_cast<Instruction>(V);
9696   if (!I || !I->hasOneUse() || !Expr.count(I))
9697     return false;
9698 
9699   switch (I->getOpcode()) {
9700 
9701   // We can always demote truncations and extensions. Since truncations can
9702   // seed additional demotion, we save the truncated value.
9703   case Instruction::Trunc:
9704     Roots.push_back(I->getOperand(0));
9705     break;
9706   case Instruction::ZExt:
9707   case Instruction::SExt:
9708     if (isa<ExtractElementInst>(I->getOperand(0)) ||
9709         isa<InsertElementInst>(I->getOperand(0)))
9710       return false;
9711     break;
9712 
9713   // We can demote certain binary operations if we can demote both of their
9714   // operands.
9715   case Instruction::Add:
9716   case Instruction::Sub:
9717   case Instruction::Mul:
9718   case Instruction::And:
9719   case Instruction::Or:
9720   case Instruction::Xor:
9721     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
9722         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
9723       return false;
9724     break;
9725 
9726   // We can demote selects if we can demote their true and false values.
9727   case Instruction::Select: {
9728     SelectInst *SI = cast<SelectInst>(I);
9729     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
9730         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
9731       return false;
9732     break;
9733   }
9734 
9735   // We can demote phis if we can demote all their incoming operands. Note that
9736   // we don't need to worry about cycles since we ensure single use above.
9737   case Instruction::PHI: {
9738     PHINode *PN = cast<PHINode>(I);
9739     for (Value *IncValue : PN->incoming_values())
9740       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
9741         return false;
9742     break;
9743   }
9744 
9745   // Otherwise, conservatively give up.
9746   default:
9747     return false;
9748   }
9749 
9750   // Record the value that we can demote.
9751   ToDemote.push_back(V);
9752   return true;
9753 }
9754 
9755 void BoUpSLP::computeMinimumValueSizes() {
9756   // If there are no external uses, the expression tree must be rooted by a
9757   // store. We can't demote in-memory values, so there is nothing to do here.
9758   if (ExternalUses.empty())
9759     return;
9760 
9761   // We only attempt to truncate integer expressions.
9762   auto &TreeRoot = VectorizableTree[0]->Scalars;
9763   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
9764   if (!TreeRootIT)
9765     return;
9766 
9767   // If the expression is not rooted by a store, these roots should have
9768   // external uses. We will rely on InstCombine to rewrite the expression in
9769   // the narrower type. However, InstCombine only rewrites single-use values.
9770   // This means that if a tree entry other than a root is used externally, it
9771   // must have multiple uses and InstCombine will not rewrite it. The code
9772   // below ensures that only the roots are used externally.
9773   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
9774   for (auto &EU : ExternalUses)
9775     if (!Expr.erase(EU.Scalar))
9776       return;
9777   if (!Expr.empty())
9778     return;
9779 
9780   // Collect the scalar values of the vectorizable expression. We will use this
9781   // context to determine which values can be demoted. If we see a truncation,
9782   // we mark it as seeding another demotion.
9783   for (auto &EntryPtr : VectorizableTree)
9784     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
9785 
9786   // Ensure the roots of the vectorizable tree don't form a cycle. They must
9787   // have a single external user that is not in the vectorizable tree.
9788   for (auto *Root : TreeRoot)
9789     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
9790       return;
9791 
9792   // Conservatively determine if we can actually truncate the roots of the
9793   // expression. Collect the values that can be demoted in ToDemote and
9794   // additional roots that require investigating in Roots.
9795   SmallVector<Value *, 32> ToDemote;
9796   SmallVector<Value *, 4> Roots;
9797   for (auto *Root : TreeRoot)
9798     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
9799       return;
9800 
9801   // The maximum bit width required to represent all the values that can be
9802   // demoted without loss of precision. It would be safe to truncate the roots
9803   // of the expression to this width.
9804   auto MaxBitWidth = 8u;
9805 
9806   // We first check if all the bits of the roots are demanded. If they're not,
9807   // we can truncate the roots to this narrower type.
9808   for (auto *Root : TreeRoot) {
9809     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
9810     MaxBitWidth = std::max<unsigned>(
9811         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
9812   }
9813 
9814   // True if the roots can be zero-extended back to their original type, rather
9815   // than sign-extended. We know that if the leading bits are not demanded, we
9816   // can safely zero-extend. So we initialize IsKnownPositive to True.
9817   bool IsKnownPositive = true;
9818 
9819   // If all the bits of the roots are demanded, we can try a little harder to
9820   // compute a narrower type. This can happen, for example, if the roots are
9821   // getelementptr indices. InstCombine promotes these indices to the pointer
9822   // width. Thus, all their bits are technically demanded even though the
9823   // address computation might be vectorized in a smaller type.
9824   //
9825   // We start by looking at each entry that can be demoted. We compute the
9826   // maximum bit width required to store the scalar by using ValueTracking to
9827   // compute the number of high-order bits we can truncate.
9828   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
9829       llvm::all_of(TreeRoot, [](Value *R) {
9830         assert(R->hasOneUse() && "Root should have only one use!");
9831         return isa<GetElementPtrInst>(R->user_back());
9832       })) {
9833     MaxBitWidth = 8u;
9834 
9835     // Determine if the sign bit of all the roots is known to be zero. If not,
9836     // IsKnownPositive is set to False.
9837     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
9838       KnownBits Known = computeKnownBits(R, *DL);
9839       return Known.isNonNegative();
9840     });
9841 
9842     // Determine the maximum number of bits required to store the scalar
9843     // values.
9844     for (auto *Scalar : ToDemote) {
9845       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
9846       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
9847       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
9848     }
9849 
9850     // If we can't prove that the sign bit is zero, we must add one to the
9851     // maximum bit width to account for the unknown sign bit. This preserves
9852     // the existing sign bit so we can safely sign-extend the root back to the
9853     // original type. Otherwise, if we know the sign bit is zero, we will
9854     // zero-extend the root instead.
9855     //
9856     // FIXME: This is somewhat suboptimal, as there will be cases where adding
9857     //        one to the maximum bit width will yield a larger-than-necessary
9858     //        type. In general, we need to add an extra bit only if we can't
9859     //        prove that the upper bit of the original type is equal to the
9860     //        upper bit of the proposed smaller type. If these two bits are the
9861     //        same (either zero or one) we know that sign-extending from the
9862     //        smaller type will result in the same value. Here, since we can't
9863     //        yet prove this, we are just making the proposed smaller type
9864     //        larger to ensure correctness.
9865     if (!IsKnownPositive)
9866       ++MaxBitWidth;
9867   }
9868 
9869   // Round MaxBitWidth up to the next power-of-two.
9870   if (!isPowerOf2_64(MaxBitWidth))
9871     MaxBitWidth = NextPowerOf2(MaxBitWidth);
9872 
9873   // If the maximum bit width we compute is less than the with of the roots'
9874   // type, we can proceed with the narrowing. Otherwise, do nothing.
9875   if (MaxBitWidth >= TreeRootIT->getBitWidth())
9876     return;
9877 
9878   // If we can truncate the root, we must collect additional values that might
9879   // be demoted as a result. That is, those seeded by truncations we will
9880   // modify.
9881   while (!Roots.empty())
9882     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
9883 
9884   // Finally, map the values we can demote to the maximum bit with we computed.
9885   for (auto *Scalar : ToDemote)
9886     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
9887 }
9888 
9889 namespace {
9890 
9891 /// The SLPVectorizer Pass.
9892 struct SLPVectorizer : public FunctionPass {
9893   SLPVectorizerPass Impl;
9894 
9895   /// Pass identification, replacement for typeid
9896   static char ID;
9897 
9898   explicit SLPVectorizer() : FunctionPass(ID) {
9899     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
9900   }
9901 
9902   bool doInitialization(Module &M) override { return false; }
9903 
9904   bool runOnFunction(Function &F) override {
9905     if (skipFunction(F))
9906       return false;
9907 
9908     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
9909     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
9910     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
9911     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
9912     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
9913     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
9914     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
9915     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
9916     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
9917     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
9918 
9919     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9920   }
9921 
9922   void getAnalysisUsage(AnalysisUsage &AU) const override {
9923     FunctionPass::getAnalysisUsage(AU);
9924     AU.addRequired<AssumptionCacheTracker>();
9925     AU.addRequired<ScalarEvolutionWrapperPass>();
9926     AU.addRequired<AAResultsWrapperPass>();
9927     AU.addRequired<TargetTransformInfoWrapperPass>();
9928     AU.addRequired<LoopInfoWrapperPass>();
9929     AU.addRequired<DominatorTreeWrapperPass>();
9930     AU.addRequired<DemandedBitsWrapperPass>();
9931     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
9932     AU.addRequired<InjectTLIMappingsLegacy>();
9933     AU.addPreserved<LoopInfoWrapperPass>();
9934     AU.addPreserved<DominatorTreeWrapperPass>();
9935     AU.addPreserved<AAResultsWrapperPass>();
9936     AU.addPreserved<GlobalsAAWrapperPass>();
9937     AU.setPreservesCFG();
9938   }
9939 };
9940 
9941 } // end anonymous namespace
9942 
9943 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
9944   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
9945   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
9946   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
9947   auto *AA = &AM.getResult<AAManager>(F);
9948   auto *LI = &AM.getResult<LoopAnalysis>(F);
9949   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
9950   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
9951   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
9952   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9953 
9954   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9955   if (!Changed)
9956     return PreservedAnalyses::all();
9957 
9958   PreservedAnalyses PA;
9959   PA.preserveSet<CFGAnalyses>();
9960   return PA;
9961 }
9962 
9963 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
9964                                 TargetTransformInfo *TTI_,
9965                                 TargetLibraryInfo *TLI_, AAResults *AA_,
9966                                 LoopInfo *LI_, DominatorTree *DT_,
9967                                 AssumptionCache *AC_, DemandedBits *DB_,
9968                                 OptimizationRemarkEmitter *ORE_) {
9969   if (!RunSLPVectorization)
9970     return false;
9971   SE = SE_;
9972   TTI = TTI_;
9973   TLI = TLI_;
9974   AA = AA_;
9975   LI = LI_;
9976   DT = DT_;
9977   AC = AC_;
9978   DB = DB_;
9979   DL = &F.getParent()->getDataLayout();
9980 
9981   Stores.clear();
9982   GEPs.clear();
9983   bool Changed = false;
9984 
9985   // If the target claims to have no vector registers don't attempt
9986   // vectorization.
9987   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
9988     LLVM_DEBUG(
9989         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
9990     return false;
9991   }
9992 
9993   // Don't vectorize when the attribute NoImplicitFloat is used.
9994   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
9995     return false;
9996 
9997   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
9998 
9999   // Use the bottom up slp vectorizer to construct chains that start with
10000   // store instructions.
10001   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
10002 
10003   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
10004   // delete instructions.
10005 
10006   // Update DFS numbers now so that we can use them for ordering.
10007   DT->updateDFSNumbers();
10008 
10009   // Scan the blocks in the function in post order.
10010   for (auto BB : post_order(&F.getEntryBlock())) {
10011     // Start new block - clear the list of reduction roots.
10012     R.clearReductionData();
10013     collectSeedInstructions(BB);
10014 
10015     // Vectorize trees that end at stores.
10016     if (!Stores.empty()) {
10017       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
10018                         << " underlying objects.\n");
10019       Changed |= vectorizeStoreChains(R);
10020     }
10021 
10022     // Vectorize trees that end at reductions.
10023     Changed |= vectorizeChainsInBlock(BB, R);
10024 
10025     // Vectorize the index computations of getelementptr instructions. This
10026     // is primarily intended to catch gather-like idioms ending at
10027     // non-consecutive loads.
10028     if (!GEPs.empty()) {
10029       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
10030                         << " underlying objects.\n");
10031       Changed |= vectorizeGEPIndices(BB, R);
10032     }
10033   }
10034 
10035   if (Changed) {
10036     R.optimizeGatherSequence();
10037     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
10038   }
10039   return Changed;
10040 }
10041 
10042 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
10043                                             unsigned Idx, unsigned MinVF) {
10044   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
10045                     << "\n");
10046   const unsigned Sz = R.getVectorElementSize(Chain[0]);
10047   unsigned VF = Chain.size();
10048 
10049   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
10050     return false;
10051 
10052   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
10053                     << "\n");
10054 
10055   R.buildTree(Chain);
10056   if (R.isTreeTinyAndNotFullyVectorizable())
10057     return false;
10058   if (R.isLoadCombineCandidate())
10059     return false;
10060   R.reorderTopToBottom();
10061   R.reorderBottomToTop();
10062   R.buildExternalUses();
10063 
10064   R.computeMinimumValueSizes();
10065 
10066   InstructionCost Cost = R.getTreeCost();
10067 
10068   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
10069   if (Cost < -SLPCostThreshold) {
10070     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
10071 
10072     using namespace ore;
10073 
10074     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
10075                                         cast<StoreInst>(Chain[0]))
10076                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
10077                      << " and with tree size "
10078                      << NV("TreeSize", R.getTreeSize()));
10079 
10080     R.vectorizeTree();
10081     return true;
10082   }
10083 
10084   return false;
10085 }
10086 
10087 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
10088                                         BoUpSLP &R) {
10089   // We may run into multiple chains that merge into a single chain. We mark the
10090   // stores that we vectorized so that we don't visit the same store twice.
10091   BoUpSLP::ValueSet VectorizedStores;
10092   bool Changed = false;
10093 
10094   int E = Stores.size();
10095   SmallBitVector Tails(E, false);
10096   int MaxIter = MaxStoreLookup.getValue();
10097   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
10098       E, std::make_pair(E, INT_MAX));
10099   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
10100   int IterCnt;
10101   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
10102                                   &CheckedPairs,
10103                                   &ConsecutiveChain](int K, int Idx) {
10104     if (IterCnt >= MaxIter)
10105       return true;
10106     if (CheckedPairs[Idx].test(K))
10107       return ConsecutiveChain[K].second == 1 &&
10108              ConsecutiveChain[K].first == Idx;
10109     ++IterCnt;
10110     CheckedPairs[Idx].set(K);
10111     CheckedPairs[K].set(Idx);
10112     Optional<int> Diff = getPointersDiff(
10113         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
10114         Stores[Idx]->getValueOperand()->getType(),
10115         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
10116     if (!Diff || *Diff == 0)
10117       return false;
10118     int Val = *Diff;
10119     if (Val < 0) {
10120       if (ConsecutiveChain[Idx].second > -Val) {
10121         Tails.set(K);
10122         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
10123       }
10124       return false;
10125     }
10126     if (ConsecutiveChain[K].second <= Val)
10127       return false;
10128 
10129     Tails.set(Idx);
10130     ConsecutiveChain[K] = std::make_pair(Idx, Val);
10131     return Val == 1;
10132   };
10133   // Do a quadratic search on all of the given stores in reverse order and find
10134   // all of the pairs of stores that follow each other.
10135   for (int Idx = E - 1; Idx >= 0; --Idx) {
10136     // If a store has multiple consecutive store candidates, search according
10137     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
10138     // This is because usually pairing with immediate succeeding or preceding
10139     // candidate create the best chance to find slp vectorization opportunity.
10140     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
10141     IterCnt = 0;
10142     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
10143       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
10144           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
10145         break;
10146   }
10147 
10148   // Tracks if we tried to vectorize stores starting from the given tail
10149   // already.
10150   SmallBitVector TriedTails(E, false);
10151   // For stores that start but don't end a link in the chain:
10152   for (int Cnt = E; Cnt > 0; --Cnt) {
10153     int I = Cnt - 1;
10154     if (ConsecutiveChain[I].first == E || Tails.test(I))
10155       continue;
10156     // We found a store instr that starts a chain. Now follow the chain and try
10157     // to vectorize it.
10158     BoUpSLP::ValueList Operands;
10159     // Collect the chain into a list.
10160     while (I != E && !VectorizedStores.count(Stores[I])) {
10161       Operands.push_back(Stores[I]);
10162       Tails.set(I);
10163       if (ConsecutiveChain[I].second != 1) {
10164         // Mark the new end in the chain and go back, if required. It might be
10165         // required if the original stores come in reversed order, for example.
10166         if (ConsecutiveChain[I].first != E &&
10167             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
10168             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
10169           TriedTails.set(I);
10170           Tails.reset(ConsecutiveChain[I].first);
10171           if (Cnt < ConsecutiveChain[I].first + 2)
10172             Cnt = ConsecutiveChain[I].first + 2;
10173         }
10174         break;
10175       }
10176       // Move to the next value in the chain.
10177       I = ConsecutiveChain[I].first;
10178     }
10179     assert(!Operands.empty() && "Expected non-empty list of stores.");
10180 
10181     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10182     unsigned EltSize = R.getVectorElementSize(Operands[0]);
10183     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
10184 
10185     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
10186                               MaxElts);
10187     auto *Store = cast<StoreInst>(Operands[0]);
10188     Type *StoreTy = Store->getValueOperand()->getType();
10189     Type *ValueTy = StoreTy;
10190     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
10191       ValueTy = Trunc->getSrcTy();
10192     unsigned MinVF = TTI->getStoreMinimumVF(
10193         R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
10194 
10195     // FIXME: Is division-by-2 the correct step? Should we assert that the
10196     // register size is a power-of-2?
10197     unsigned StartIdx = 0;
10198     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
10199       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
10200         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
10201         if (!VectorizedStores.count(Slice.front()) &&
10202             !VectorizedStores.count(Slice.back()) &&
10203             vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
10204           // Mark the vectorized stores so that we don't vectorize them again.
10205           VectorizedStores.insert(Slice.begin(), Slice.end());
10206           Changed = true;
10207           // If we vectorized initial block, no need to try to vectorize it
10208           // again.
10209           if (Cnt == StartIdx)
10210             StartIdx += Size;
10211           Cnt += Size;
10212           continue;
10213         }
10214         ++Cnt;
10215       }
10216       // Check if the whole array was vectorized already - exit.
10217       if (StartIdx >= Operands.size())
10218         break;
10219     }
10220   }
10221 
10222   return Changed;
10223 }
10224 
10225 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
10226   // Initialize the collections. We will make a single pass over the block.
10227   Stores.clear();
10228   GEPs.clear();
10229 
10230   // Visit the store and getelementptr instructions in BB and organize them in
10231   // Stores and GEPs according to the underlying objects of their pointer
10232   // operands.
10233   for (Instruction &I : *BB) {
10234     // Ignore store instructions that are volatile or have a pointer operand
10235     // that doesn't point to a scalar type.
10236     if (auto *SI = dyn_cast<StoreInst>(&I)) {
10237       if (!SI->isSimple())
10238         continue;
10239       if (!isValidElementType(SI->getValueOperand()->getType()))
10240         continue;
10241       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
10242     }
10243 
10244     // Ignore getelementptr instructions that have more than one index, a
10245     // constant index, or a pointer operand that doesn't point to a scalar
10246     // type.
10247     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
10248       auto Idx = GEP->idx_begin()->get();
10249       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
10250         continue;
10251       if (!isValidElementType(Idx->getType()))
10252         continue;
10253       if (GEP->getType()->isVectorTy())
10254         continue;
10255       GEPs[GEP->getPointerOperand()].push_back(GEP);
10256     }
10257   }
10258 }
10259 
10260 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
10261   if (!A || !B)
10262     return false;
10263   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
10264     return false;
10265   Value *VL[] = {A, B};
10266   return tryToVectorizeList(VL, R);
10267 }
10268 
10269 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
10270                                            bool LimitForRegisterSize) {
10271   if (VL.size() < 2)
10272     return false;
10273 
10274   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
10275                     << VL.size() << ".\n");
10276 
10277   // Check that all of the parts are instructions of the same type,
10278   // we permit an alternate opcode via InstructionsState.
10279   InstructionsState S = getSameOpcode(VL);
10280   if (!S.getOpcode())
10281     return false;
10282 
10283   Instruction *I0 = cast<Instruction>(S.OpValue);
10284   // Make sure invalid types (including vector type) are rejected before
10285   // determining vectorization factor for scalar instructions.
10286   for (Value *V : VL) {
10287     Type *Ty = V->getType();
10288     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
10289       // NOTE: the following will give user internal llvm type name, which may
10290       // not be useful.
10291       R.getORE()->emit([&]() {
10292         std::string type_str;
10293         llvm::raw_string_ostream rso(type_str);
10294         Ty->print(rso);
10295         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
10296                << "Cannot SLP vectorize list: type "
10297                << rso.str() + " is unsupported by vectorizer";
10298       });
10299       return false;
10300     }
10301   }
10302 
10303   unsigned Sz = R.getVectorElementSize(I0);
10304   unsigned MinVF = R.getMinVF(Sz);
10305   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
10306   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
10307   if (MaxVF < 2) {
10308     R.getORE()->emit([&]() {
10309       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
10310              << "Cannot SLP vectorize list: vectorization factor "
10311              << "less than 2 is not supported";
10312     });
10313     return false;
10314   }
10315 
10316   bool Changed = false;
10317   bool CandidateFound = false;
10318   InstructionCost MinCost = SLPCostThreshold.getValue();
10319   Type *ScalarTy = VL[0]->getType();
10320   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
10321     ScalarTy = IE->getOperand(1)->getType();
10322 
10323   unsigned NextInst = 0, MaxInst = VL.size();
10324   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
10325     // No actual vectorization should happen, if number of parts is the same as
10326     // provided vectorization factor (i.e. the scalar type is used for vector
10327     // code during codegen).
10328     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
10329     if (TTI->getNumberOfParts(VecTy) == VF)
10330       continue;
10331     for (unsigned I = NextInst; I < MaxInst; ++I) {
10332       unsigned OpsWidth = 0;
10333 
10334       if (I + VF > MaxInst)
10335         OpsWidth = MaxInst - I;
10336       else
10337         OpsWidth = VF;
10338 
10339       if (!isPowerOf2_32(OpsWidth))
10340         continue;
10341 
10342       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
10343           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
10344         break;
10345 
10346       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
10347       // Check that a previous iteration of this loop did not delete the Value.
10348       if (llvm::any_of(Ops, [&R](Value *V) {
10349             auto *I = dyn_cast<Instruction>(V);
10350             return I && R.isDeleted(I);
10351           }))
10352         continue;
10353 
10354       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
10355                         << "\n");
10356 
10357       R.buildTree(Ops);
10358       if (R.isTreeTinyAndNotFullyVectorizable())
10359         continue;
10360       R.reorderTopToBottom();
10361       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
10362       R.buildExternalUses();
10363 
10364       R.computeMinimumValueSizes();
10365       InstructionCost Cost = R.getTreeCost();
10366       CandidateFound = true;
10367       MinCost = std::min(MinCost, Cost);
10368 
10369       if (Cost < -SLPCostThreshold) {
10370         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
10371         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
10372                                                     cast<Instruction>(Ops[0]))
10373                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
10374                                  << " and with tree size "
10375                                  << ore::NV("TreeSize", R.getTreeSize()));
10376 
10377         R.vectorizeTree();
10378         // Move to the next bundle.
10379         I += VF - 1;
10380         NextInst = I + 1;
10381         Changed = true;
10382       }
10383     }
10384   }
10385 
10386   if (!Changed && CandidateFound) {
10387     R.getORE()->emit([&]() {
10388       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
10389              << "List vectorization was possible but not beneficial with cost "
10390              << ore::NV("Cost", MinCost) << " >= "
10391              << ore::NV("Treshold", -SLPCostThreshold);
10392     });
10393   } else if (!Changed) {
10394     R.getORE()->emit([&]() {
10395       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
10396              << "Cannot SLP vectorize list: vectorization was impossible"
10397              << " with available vectorization factors";
10398     });
10399   }
10400   return Changed;
10401 }
10402 
10403 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
10404   if (!I)
10405     return false;
10406 
10407   if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) ||
10408       isa<VectorType>(I->getType()))
10409     return false;
10410 
10411   Value *P = I->getParent();
10412 
10413   // Vectorize in current basic block only.
10414   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
10415   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
10416   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
10417     return false;
10418 
10419   // First collect all possible candidates
10420   SmallVector<std::pair<Value *, Value *>, 4> Candidates;
10421   Candidates.emplace_back(Op0, Op1);
10422 
10423   auto *A = dyn_cast<BinaryOperator>(Op0);
10424   auto *B = dyn_cast<BinaryOperator>(Op1);
10425   // Try to skip B.
10426   if (A && B && B->hasOneUse()) {
10427     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
10428     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
10429     if (B0 && B0->getParent() == P)
10430       Candidates.emplace_back(A, B0);
10431     if (B1 && B1->getParent() == P)
10432       Candidates.emplace_back(A, B1);
10433   }
10434   // Try to skip A.
10435   if (B && A && A->hasOneUse()) {
10436     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
10437     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
10438     if (A0 && A0->getParent() == P)
10439       Candidates.emplace_back(A0, B);
10440     if (A1 && A1->getParent() == P)
10441       Candidates.emplace_back(A1, B);
10442   }
10443 
10444   if (Candidates.size() == 1)
10445     return tryToVectorizePair(Op0, Op1, R);
10446 
10447   // We have multiple options. Try to pick the single best.
10448   Optional<int> BestCandidate = R.findBestRootPair(Candidates);
10449   if (!BestCandidate)
10450     return false;
10451   return tryToVectorizePair(Candidates[*BestCandidate].first,
10452                             Candidates[*BestCandidate].second, R);
10453 }
10454 
10455 namespace {
10456 
10457 /// Model horizontal reductions.
10458 ///
10459 /// A horizontal reduction is a tree of reduction instructions that has values
10460 /// that can be put into a vector as its leaves. For example:
10461 ///
10462 /// mul mul mul mul
10463 ///  \  /    \  /
10464 ///   +       +
10465 ///    \     /
10466 ///       +
10467 /// This tree has "mul" as its leaf values and "+" as its reduction
10468 /// instructions. A reduction can feed into a store or a binary operation
10469 /// feeding a phi.
10470 ///    ...
10471 ///    \  /
10472 ///     +
10473 ///     |
10474 ///  phi +=
10475 ///
10476 ///  Or:
10477 ///    ...
10478 ///    \  /
10479 ///     +
10480 ///     |
10481 ///   *p =
10482 ///
10483 class HorizontalReduction {
10484   using ReductionOpsType = SmallVector<Value *, 16>;
10485   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
10486   ReductionOpsListType ReductionOps;
10487   /// List of possibly reduced values.
10488   SmallVector<SmallVector<Value *>> ReducedVals;
10489   /// Maps reduced value to the corresponding reduction operation.
10490   DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
10491   // Use map vector to make stable output.
10492   MapVector<Instruction *, Value *> ExtraArgs;
10493   WeakTrackingVH ReductionRoot;
10494   /// The type of reduction operation.
10495   RecurKind RdxKind;
10496 
10497   static bool isCmpSelMinMax(Instruction *I) {
10498     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
10499            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
10500   }
10501 
10502   // And/or are potentially poison-safe logical patterns like:
10503   // select x, y, false
10504   // select x, true, y
10505   static bool isBoolLogicOp(Instruction *I) {
10506     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
10507            match(I, m_LogicalOr(m_Value(), m_Value()));
10508   }
10509 
10510   /// Checks if instruction is associative and can be vectorized.
10511   static bool isVectorizable(RecurKind Kind, Instruction *I) {
10512     if (Kind == RecurKind::None)
10513       return false;
10514 
10515     // Integer ops that map to select instructions or intrinsics are fine.
10516     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
10517         isBoolLogicOp(I))
10518       return true;
10519 
10520     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
10521       // FP min/max are associative except for NaN and -0.0. We do not
10522       // have to rule out -0.0 here because the intrinsic semantics do not
10523       // specify a fixed result for it.
10524       return I->getFastMathFlags().noNaNs();
10525     }
10526 
10527     return I->isAssociative();
10528   }
10529 
10530   static Value *getRdxOperand(Instruction *I, unsigned Index) {
10531     // Poison-safe 'or' takes the form: select X, true, Y
10532     // To make that work with the normal operand processing, we skip the
10533     // true value operand.
10534     // TODO: Change the code and data structures to handle this without a hack.
10535     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
10536       return I->getOperand(2);
10537     return I->getOperand(Index);
10538   }
10539 
10540   /// Creates reduction operation with the current opcode.
10541   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
10542                          Value *RHS, const Twine &Name, bool UseSelect) {
10543     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
10544     switch (Kind) {
10545     case RecurKind::Or:
10546       if (UseSelect &&
10547           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10548         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
10549       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10550                                  Name);
10551     case RecurKind::And:
10552       if (UseSelect &&
10553           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10554         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
10555       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10556                                  Name);
10557     case RecurKind::Add:
10558     case RecurKind::Mul:
10559     case RecurKind::Xor:
10560     case RecurKind::FAdd:
10561     case RecurKind::FMul:
10562       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10563                                  Name);
10564     case RecurKind::FMax:
10565       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
10566     case RecurKind::FMin:
10567       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
10568     case RecurKind::SMax:
10569       if (UseSelect) {
10570         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
10571         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10572       }
10573       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
10574     case RecurKind::SMin:
10575       if (UseSelect) {
10576         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
10577         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10578       }
10579       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
10580     case RecurKind::UMax:
10581       if (UseSelect) {
10582         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
10583         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10584       }
10585       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
10586     case RecurKind::UMin:
10587       if (UseSelect) {
10588         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
10589         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10590       }
10591       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
10592     default:
10593       llvm_unreachable("Unknown reduction operation.");
10594     }
10595   }
10596 
10597   /// Creates reduction operation with the current opcode with the IR flags
10598   /// from \p ReductionOps, dropping nuw/nsw flags.
10599   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
10600                          Value *RHS, const Twine &Name,
10601                          const ReductionOpsListType &ReductionOps) {
10602     bool UseSelect = ReductionOps.size() == 2 ||
10603                      // Logical or/and.
10604                      (ReductionOps.size() == 1 &&
10605                       isa<SelectInst>(ReductionOps.front().front()));
10606     assert((!UseSelect || ReductionOps.size() != 2 ||
10607             isa<SelectInst>(ReductionOps[1][0])) &&
10608            "Expected cmp + select pairs for reduction");
10609     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
10610     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
10611       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
10612         propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
10613                          /*IncludeWrapFlags=*/false);
10614         propagateIRFlags(Op, ReductionOps[1], nullptr,
10615                          /*IncludeWrapFlags=*/false);
10616         return Op;
10617       }
10618     }
10619     propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
10620     return Op;
10621   }
10622 
10623   static RecurKind getRdxKind(Value *V) {
10624     auto *I = dyn_cast<Instruction>(V);
10625     if (!I)
10626       return RecurKind::None;
10627     if (match(I, m_Add(m_Value(), m_Value())))
10628       return RecurKind::Add;
10629     if (match(I, m_Mul(m_Value(), m_Value())))
10630       return RecurKind::Mul;
10631     if (match(I, m_And(m_Value(), m_Value())) ||
10632         match(I, m_LogicalAnd(m_Value(), m_Value())))
10633       return RecurKind::And;
10634     if (match(I, m_Or(m_Value(), m_Value())) ||
10635         match(I, m_LogicalOr(m_Value(), m_Value())))
10636       return RecurKind::Or;
10637     if (match(I, m_Xor(m_Value(), m_Value())))
10638       return RecurKind::Xor;
10639     if (match(I, m_FAdd(m_Value(), m_Value())))
10640       return RecurKind::FAdd;
10641     if (match(I, m_FMul(m_Value(), m_Value())))
10642       return RecurKind::FMul;
10643 
10644     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
10645       return RecurKind::FMax;
10646     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
10647       return RecurKind::FMin;
10648 
10649     // This matches either cmp+select or intrinsics. SLP is expected to handle
10650     // either form.
10651     // TODO: If we are canonicalizing to intrinsics, we can remove several
10652     //       special-case paths that deal with selects.
10653     if (match(I, m_SMax(m_Value(), m_Value())))
10654       return RecurKind::SMax;
10655     if (match(I, m_SMin(m_Value(), m_Value())))
10656       return RecurKind::SMin;
10657     if (match(I, m_UMax(m_Value(), m_Value())))
10658       return RecurKind::UMax;
10659     if (match(I, m_UMin(m_Value(), m_Value())))
10660       return RecurKind::UMin;
10661 
10662     if (auto *Select = dyn_cast<SelectInst>(I)) {
10663       // Try harder: look for min/max pattern based on instructions producing
10664       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
10665       // During the intermediate stages of SLP, it's very common to have
10666       // pattern like this (since optimizeGatherSequence is run only once
10667       // at the end):
10668       // %1 = extractelement <2 x i32> %a, i32 0
10669       // %2 = extractelement <2 x i32> %a, i32 1
10670       // %cond = icmp sgt i32 %1, %2
10671       // %3 = extractelement <2 x i32> %a, i32 0
10672       // %4 = extractelement <2 x i32> %a, i32 1
10673       // %select = select i1 %cond, i32 %3, i32 %4
10674       CmpInst::Predicate Pred;
10675       Instruction *L1;
10676       Instruction *L2;
10677 
10678       Value *LHS = Select->getTrueValue();
10679       Value *RHS = Select->getFalseValue();
10680       Value *Cond = Select->getCondition();
10681 
10682       // TODO: Support inverse predicates.
10683       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
10684         if (!isa<ExtractElementInst>(RHS) ||
10685             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10686           return RecurKind::None;
10687       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
10688         if (!isa<ExtractElementInst>(LHS) ||
10689             !L1->isIdenticalTo(cast<Instruction>(LHS)))
10690           return RecurKind::None;
10691       } else {
10692         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
10693           return RecurKind::None;
10694         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
10695             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
10696             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10697           return RecurKind::None;
10698       }
10699 
10700       switch (Pred) {
10701       default:
10702         return RecurKind::None;
10703       case CmpInst::ICMP_SGT:
10704       case CmpInst::ICMP_SGE:
10705         return RecurKind::SMax;
10706       case CmpInst::ICMP_SLT:
10707       case CmpInst::ICMP_SLE:
10708         return RecurKind::SMin;
10709       case CmpInst::ICMP_UGT:
10710       case CmpInst::ICMP_UGE:
10711         return RecurKind::UMax;
10712       case CmpInst::ICMP_ULT:
10713       case CmpInst::ICMP_ULE:
10714         return RecurKind::UMin;
10715       }
10716     }
10717     return RecurKind::None;
10718   }
10719 
10720   /// Get the index of the first operand.
10721   static unsigned getFirstOperandIndex(Instruction *I) {
10722     return isCmpSelMinMax(I) ? 1 : 0;
10723   }
10724 
10725   /// Total number of operands in the reduction operation.
10726   static unsigned getNumberOfOperands(Instruction *I) {
10727     return isCmpSelMinMax(I) ? 3 : 2;
10728   }
10729 
10730   /// Checks if the instruction is in basic block \p BB.
10731   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
10732   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
10733     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
10734       auto *Sel = cast<SelectInst>(I);
10735       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
10736       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
10737     }
10738     return I->getParent() == BB;
10739   }
10740 
10741   /// Expected number of uses for reduction operations/reduced values.
10742   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
10743     if (IsCmpSelMinMax) {
10744       // SelectInst must be used twice while the condition op must have single
10745       // use only.
10746       if (auto *Sel = dyn_cast<SelectInst>(I))
10747         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
10748       return I->hasNUses(2);
10749     }
10750 
10751     // Arithmetic reduction operation must be used once only.
10752     return I->hasOneUse();
10753   }
10754 
10755   /// Initializes the list of reduction operations.
10756   void initReductionOps(Instruction *I) {
10757     if (isCmpSelMinMax(I))
10758       ReductionOps.assign(2, ReductionOpsType());
10759     else
10760       ReductionOps.assign(1, ReductionOpsType());
10761   }
10762 
10763   /// Add all reduction operations for the reduction instruction \p I.
10764   void addReductionOps(Instruction *I) {
10765     if (isCmpSelMinMax(I)) {
10766       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
10767       ReductionOps[1].emplace_back(I);
10768     } else {
10769       ReductionOps[0].emplace_back(I);
10770     }
10771   }
10772 
10773   static Value *getLHS(RecurKind Kind, Instruction *I) {
10774     if (Kind == RecurKind::None)
10775       return nullptr;
10776     return I->getOperand(getFirstOperandIndex(I));
10777   }
10778   static Value *getRHS(RecurKind Kind, Instruction *I) {
10779     if (Kind == RecurKind::None)
10780       return nullptr;
10781     return I->getOperand(getFirstOperandIndex(I) + 1);
10782   }
10783 
10784 public:
10785   HorizontalReduction() = default;
10786 
10787   /// Try to find a reduction tree.
10788   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
10789                                  ScalarEvolution &SE, const DataLayout &DL,
10790                                  const TargetLibraryInfo &TLI) {
10791     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
10792            "Phi needs to use the binary operator");
10793     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
10794             isa<IntrinsicInst>(Inst)) &&
10795            "Expected binop, select, or intrinsic for reduction matching");
10796     RdxKind = getRdxKind(Inst);
10797 
10798     // We could have a initial reductions that is not an add.
10799     //  r *= v1 + v2 + v3 + v4
10800     // In such a case start looking for a tree rooted in the first '+'.
10801     if (Phi) {
10802       if (getLHS(RdxKind, Inst) == Phi) {
10803         Phi = nullptr;
10804         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
10805         if (!Inst)
10806           return false;
10807         RdxKind = getRdxKind(Inst);
10808       } else if (getRHS(RdxKind, Inst) == Phi) {
10809         Phi = nullptr;
10810         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
10811         if (!Inst)
10812           return false;
10813         RdxKind = getRdxKind(Inst);
10814       }
10815     }
10816 
10817     if (!isVectorizable(RdxKind, Inst))
10818       return false;
10819 
10820     // Analyze "regular" integer/FP types for reductions - no target-specific
10821     // types or pointers.
10822     Type *Ty = Inst->getType();
10823     if (!isValidElementType(Ty) || Ty->isPointerTy())
10824       return false;
10825 
10826     // Though the ultimate reduction may have multiple uses, its condition must
10827     // have only single use.
10828     if (auto *Sel = dyn_cast<SelectInst>(Inst))
10829       if (!Sel->getCondition()->hasOneUse())
10830         return false;
10831 
10832     ReductionRoot = Inst;
10833 
10834     // Iterate through all the operands of the possible reduction tree and
10835     // gather all the reduced values, sorting them by their value id.
10836     BasicBlock *BB = Inst->getParent();
10837     bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
10838     SmallVector<Instruction *> Worklist(1, Inst);
10839     // Checks if the operands of the \p TreeN instruction are also reduction
10840     // operations or should be treated as reduced values or an extra argument,
10841     // which is not part of the reduction.
10842     auto &&CheckOperands = [this, IsCmpSelMinMax,
10843                             BB](Instruction *TreeN,
10844                                 SmallVectorImpl<Value *> &ExtraArgs,
10845                                 SmallVectorImpl<Value *> &PossibleReducedVals,
10846                                 SmallVectorImpl<Instruction *> &ReductionOps) {
10847       for (int I = getFirstOperandIndex(TreeN),
10848                End = getNumberOfOperands(TreeN);
10849            I < End; ++I) {
10850         Value *EdgeVal = getRdxOperand(TreeN, I);
10851         ReducedValsToOps[EdgeVal].push_back(TreeN);
10852         auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
10853         // Edge has wrong parent - mark as an extra argument.
10854         if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
10855             !hasSameParent(EdgeInst, BB)) {
10856           ExtraArgs.push_back(EdgeVal);
10857           continue;
10858         }
10859         // If the edge is not an instruction, or it is different from the main
10860         // reduction opcode or has too many uses - possible reduced value.
10861         if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
10862             IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
10863             !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
10864             !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
10865           PossibleReducedVals.push_back(EdgeVal);
10866           continue;
10867         }
10868         ReductionOps.push_back(EdgeInst);
10869       }
10870     };
10871     // Try to regroup reduced values so that it gets more profitable to try to
10872     // reduce them. Values are grouped by their value ids, instructions - by
10873     // instruction op id and/or alternate op id, plus do extra analysis for
10874     // loads (grouping them by the distabce between pointers) and cmp
10875     // instructions (grouping them by the predicate).
10876     MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
10877         PossibleReducedVals;
10878     initReductionOps(Inst);
10879     while (!Worklist.empty()) {
10880       Instruction *TreeN = Worklist.pop_back_val();
10881       SmallVector<Value *> Args;
10882       SmallVector<Value *> PossibleRedVals;
10883       SmallVector<Instruction *> PossibleReductionOps;
10884       CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
10885       // If too many extra args - mark the instruction itself as a reduction
10886       // value, not a reduction operation.
10887       if (Args.size() < 2) {
10888         addReductionOps(TreeN);
10889         // Add extra args.
10890         if (!Args.empty()) {
10891           assert(Args.size() == 1 && "Expected only single argument.");
10892           ExtraArgs[TreeN] = Args.front();
10893         }
10894         // Add reduction values. The values are sorted for better vectorization
10895         // results.
10896         for (Value *V : PossibleRedVals) {
10897           size_t Key, Idx;
10898           std::tie(Key, Idx) = generateKeySubkey(
10899               V, &TLI,
10900               [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10901                 auto It = PossibleReducedVals.find(Key);
10902                 if (It != PossibleReducedVals.end()) {
10903                   for (const auto &LoadData : It->second) {
10904                     auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10905                     if (getPointersDiff(RLI->getType(),
10906                                         RLI->getPointerOperand(), LI->getType(),
10907                                         LI->getPointerOperand(), DL, SE,
10908                                         /*StrictCheck=*/true))
10909                       return hash_value(RLI->getPointerOperand());
10910                   }
10911                 }
10912                 return hash_value(LI->getPointerOperand());
10913               },
10914               /*AllowAlternate=*/false);
10915           ++PossibleReducedVals[Key][Idx]
10916                 .insert(std::make_pair(V, 0))
10917                 .first->second;
10918         }
10919         Worklist.append(PossibleReductionOps.rbegin(),
10920                         PossibleReductionOps.rend());
10921       } else {
10922         size_t Key, Idx;
10923         std::tie(Key, Idx) = generateKeySubkey(
10924             TreeN, &TLI,
10925             [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10926               auto It = PossibleReducedVals.find(Key);
10927               if (It != PossibleReducedVals.end()) {
10928                 for (const auto &LoadData : It->second) {
10929                   auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10930                   if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
10931                                       LI->getType(), LI->getPointerOperand(),
10932                                       DL, SE, /*StrictCheck=*/true))
10933                     return hash_value(RLI->getPointerOperand());
10934                 }
10935               }
10936               return hash_value(LI->getPointerOperand());
10937             },
10938             /*AllowAlternate=*/false);
10939         ++PossibleReducedVals[Key][Idx]
10940               .insert(std::make_pair(TreeN, 0))
10941               .first->second;
10942       }
10943     }
10944     auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
10945     // Sort values by the total number of values kinds to start the reduction
10946     // from the longest possible reduced values sequences.
10947     for (auto &PossibleReducedVals : PossibleReducedValsVect) {
10948       auto PossibleRedVals = PossibleReducedVals.second.takeVector();
10949       SmallVector<SmallVector<Value *>> PossibleRedValsVect;
10950       for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
10951            It != E; ++It) {
10952         PossibleRedValsVect.emplace_back();
10953         auto RedValsVect = It->second.takeVector();
10954         stable_sort(RedValsVect, [](const auto &P1, const auto &P2) {
10955           return P1.second < P2.second;
10956         });
10957         for (const std::pair<Value *, unsigned> &Data : RedValsVect)
10958           PossibleRedValsVect.back().append(Data.second, Data.first);
10959       }
10960       stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
10961         return P1.size() > P2.size();
10962       });
10963       ReducedVals.emplace_back();
10964       for (ArrayRef<Value *> Data : PossibleRedValsVect)
10965         ReducedVals.back().append(Data.rbegin(), Data.rend());
10966     }
10967     // Sort the reduced values by number of same/alternate opcode and/or pointer
10968     // operand.
10969     stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
10970       return P1.size() > P2.size();
10971     });
10972     return true;
10973   }
10974 
10975   /// Attempt to vectorize the tree found by matchAssociativeReduction.
10976   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
10977     constexpr int ReductionLimit = 4;
10978     constexpr unsigned RegMaxNumber = 4;
10979     constexpr unsigned RedValsMaxNumber = 128;
10980     // If there are a sufficient number of reduction values, reduce
10981     // to a nearby power-of-2. We can safely generate oversized
10982     // vectors and rely on the backend to split them to legal sizes.
10983     unsigned NumReducedVals = std::accumulate(
10984         ReducedVals.begin(), ReducedVals.end(), 0,
10985         [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); });
10986     if (NumReducedVals < ReductionLimit)
10987       return nullptr;
10988 
10989     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
10990 
10991     // Track the reduced values in case if they are replaced by extractelement
10992     // because of the vectorization.
10993     DenseMap<Value *, WeakTrackingVH> TrackedVals;
10994     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
10995     // The same extra argument may be used several times, so log each attempt
10996     // to use it.
10997     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
10998       assert(Pair.first && "DebugLoc must be set.");
10999       ExternallyUsedValues[Pair.second].push_back(Pair.first);
11000       TrackedVals.try_emplace(Pair.second, Pair.second);
11001     }
11002 
11003     // The compare instruction of a min/max is the insertion point for new
11004     // instructions and may be replaced with a new compare instruction.
11005     auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
11006       assert(isa<SelectInst>(RdxRootInst) &&
11007              "Expected min/max reduction to have select root instruction");
11008       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
11009       assert(isa<Instruction>(ScalarCond) &&
11010              "Expected min/max reduction to have compare condition");
11011       return cast<Instruction>(ScalarCond);
11012     };
11013 
11014     // The reduction root is used as the insertion point for new instructions,
11015     // so set it as externally used to prevent it from being deleted.
11016     ExternallyUsedValues[ReductionRoot];
11017     SmallDenseSet<Value *> IgnoreList;
11018     for (ReductionOpsType &RdxOps : ReductionOps)
11019       for (Value *RdxOp : RdxOps) {
11020         if (!RdxOp)
11021           continue;
11022         IgnoreList.insert(RdxOp);
11023       }
11024     bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
11025 
11026     // Need to track reduced vals, they may be changed during vectorization of
11027     // subvectors.
11028     for (ArrayRef<Value *> Candidates : ReducedVals)
11029       for (Value *V : Candidates)
11030         TrackedVals.try_emplace(V, V);
11031 
11032     DenseMap<Value *, unsigned> VectorizedVals;
11033     Value *VectorizedTree = nullptr;
11034     bool CheckForReusedReductionOps = false;
11035     // Try to vectorize elements based on their type.
11036     for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
11037       ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
11038       InstructionsState S = getSameOpcode(OrigReducedVals);
11039       SmallVector<Value *> Candidates;
11040       DenseMap<Value *, Value *> TrackedToOrig;
11041       for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
11042         Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
11043         // Check if the reduction value was not overriden by the extractelement
11044         // instruction because of the vectorization and exclude it, if it is not
11045         // compatible with other values.
11046         if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11047           if (isVectorLikeInstWithConstOps(Inst) &&
11048               (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
11049             continue;
11050         Candidates.push_back(RdxVal);
11051         TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
11052       }
11053       bool ShuffledExtracts = false;
11054       // Try to handle shuffled extractelements.
11055       if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
11056           I + 1 < E) {
11057         InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]);
11058         if (NextS.getOpcode() == Instruction::ExtractElement &&
11059             !NextS.isAltShuffle()) {
11060           SmallVector<Value *> CommonCandidates(Candidates);
11061           for (Value *RV : ReducedVals[I + 1]) {
11062             Value *RdxVal = TrackedVals.find(RV)->second;
11063             // Check if the reduction value was not overriden by the
11064             // extractelement instruction because of the vectorization and
11065             // exclude it, if it is not compatible with other values.
11066             if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11067               if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
11068                 continue;
11069             CommonCandidates.push_back(RdxVal);
11070             TrackedToOrig.try_emplace(RdxVal, RV);
11071           }
11072           SmallVector<int> Mask;
11073           if (isFixedVectorShuffle(CommonCandidates, Mask)) {
11074             ++I;
11075             Candidates.swap(CommonCandidates);
11076             ShuffledExtracts = true;
11077           }
11078         }
11079       }
11080       unsigned NumReducedVals = Candidates.size();
11081       if (NumReducedVals < ReductionLimit)
11082         continue;
11083 
11084       unsigned MaxVecRegSize = V.getMaxVecRegSize();
11085       unsigned EltSize = V.getVectorElementSize(Candidates[0]);
11086       unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
11087 
11088       unsigned ReduxWidth = std::min<unsigned>(
11089           PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
11090       unsigned Start = 0;
11091       unsigned Pos = Start;
11092       // Restarts vectorization attempt with lower vector factor.
11093       unsigned PrevReduxWidth = ReduxWidth;
11094       bool CheckForReusedReductionOpsLocal = false;
11095       auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
11096                                   &CheckForReusedReductionOpsLocal,
11097                                   &PrevReduxWidth, &V,
11098                                   &IgnoreList](bool IgnoreVL = false) {
11099         bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
11100         if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
11101           // Check if any of the reduction ops are gathered. If so, worth
11102           // trying again with less number of reduction ops.
11103           CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
11104         }
11105         ++Pos;
11106         if (Pos < NumReducedVals - ReduxWidth + 1)
11107           return IsAnyRedOpGathered;
11108         Pos = Start;
11109         ReduxWidth /= 2;
11110         return IsAnyRedOpGathered;
11111       };
11112       while (Pos < NumReducedVals - ReduxWidth + 1 &&
11113              ReduxWidth >= ReductionLimit) {
11114         // Dependency in tree of the reduction ops - drop this attempt, try
11115         // later.
11116         if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
11117             Start == 0) {
11118           CheckForReusedReductionOps = true;
11119           break;
11120         }
11121         PrevReduxWidth = ReduxWidth;
11122         ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
11123         // Beeing analyzed already - skip.
11124         if (V.areAnalyzedReductionVals(VL)) {
11125           (void)AdjustReducedVals(/*IgnoreVL=*/true);
11126           continue;
11127         }
11128         // Early exit if any of the reduction values were deleted during
11129         // previous vectorization attempts.
11130         if (any_of(VL, [&V](Value *RedVal) {
11131               auto *RedValI = dyn_cast<Instruction>(RedVal);
11132               if (!RedValI)
11133                 return false;
11134               return V.isDeleted(RedValI);
11135             }))
11136           break;
11137         V.buildTree(VL, IgnoreList);
11138         if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
11139           if (!AdjustReducedVals())
11140             V.analyzedReductionVals(VL);
11141           continue;
11142         }
11143         if (V.isLoadCombineReductionCandidate(RdxKind)) {
11144           if (!AdjustReducedVals())
11145             V.analyzedReductionVals(VL);
11146           continue;
11147         }
11148         V.reorderTopToBottom();
11149         // No need to reorder the root node at all.
11150         V.reorderBottomToTop(/*IgnoreReorder=*/true);
11151         // Keep extracted other reduction values, if they are used in the
11152         // vectorization trees.
11153         BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
11154             ExternallyUsedValues);
11155         for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
11156           if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
11157             continue;
11158           for_each(ReducedVals[Cnt],
11159                    [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
11160                      if (isa<Instruction>(V))
11161                        LocalExternallyUsedValues[TrackedVals[V]];
11162                    });
11163         }
11164         // Number of uses of the candidates in the vector of values.
11165         SmallDenseMap<Value *, unsigned> NumUses;
11166         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11167           Value *V = Candidates[Cnt];
11168           if (NumUses.count(V) > 0)
11169             continue;
11170           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11171         }
11172         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11173           Value *V = Candidates[Cnt];
11174           if (NumUses.count(V) > 0)
11175             continue;
11176           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11177         }
11178         // Gather externally used values.
11179         SmallPtrSet<Value *, 4> Visited;
11180         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11181           Value *V = Candidates[Cnt];
11182           if (!Visited.insert(V).second)
11183             continue;
11184           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11185           if (NumOps != ReducedValsToOps.find(V)->second.size())
11186             LocalExternallyUsedValues[V];
11187         }
11188         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11189           Value *V = Candidates[Cnt];
11190           if (!Visited.insert(V).second)
11191             continue;
11192           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11193           if (NumOps != ReducedValsToOps.find(V)->second.size())
11194             LocalExternallyUsedValues[V];
11195         }
11196         V.buildExternalUses(LocalExternallyUsedValues);
11197 
11198         V.computeMinimumValueSizes();
11199 
11200         // Intersect the fast-math-flags from all reduction operations.
11201         FastMathFlags RdxFMF;
11202         RdxFMF.set();
11203         for (Value *U : IgnoreList)
11204           if (auto *FPMO = dyn_cast<FPMathOperator>(U))
11205             RdxFMF &= FPMO->getFastMathFlags();
11206         // Estimate cost.
11207         InstructionCost TreeCost = V.getTreeCost(VL);
11208         InstructionCost ReductionCost =
11209             getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
11210         InstructionCost Cost = TreeCost + ReductionCost;
11211         if (!Cost.isValid()) {
11212           LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
11213           return nullptr;
11214         }
11215         if (Cost >= -SLPCostThreshold) {
11216           V.getORE()->emit([&]() {
11217             return OptimizationRemarkMissed(
11218                        SV_NAME, "HorSLPNotBeneficial",
11219                        ReducedValsToOps.find(VL[0])->second.front())
11220                    << "Vectorizing horizontal reduction is possible"
11221                    << "but not beneficial with cost " << ore::NV("Cost", Cost)
11222                    << " and threshold "
11223                    << ore::NV("Threshold", -SLPCostThreshold);
11224           });
11225           if (!AdjustReducedVals())
11226             V.analyzedReductionVals(VL);
11227           continue;
11228         }
11229 
11230         LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
11231                           << Cost << ". (HorRdx)\n");
11232         V.getORE()->emit([&]() {
11233           return OptimizationRemark(
11234                      SV_NAME, "VectorizedHorizontalReduction",
11235                      ReducedValsToOps.find(VL[0])->second.front())
11236                  << "Vectorized horizontal reduction with cost "
11237                  << ore::NV("Cost", Cost) << " and with tree size "
11238                  << ore::NV("TreeSize", V.getTreeSize());
11239         });
11240 
11241         Builder.setFastMathFlags(RdxFMF);
11242 
11243         // Vectorize a tree.
11244         Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues);
11245 
11246         // Emit a reduction. If the root is a select (min/max idiom), the insert
11247         // point is the compare condition of that select.
11248         Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
11249         if (IsCmpSelMinMax)
11250           Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst));
11251         else
11252           Builder.SetInsertPoint(RdxRootInst);
11253 
11254         // To prevent poison from leaking across what used to be sequential,
11255         // safe, scalar boolean logic operations, the reduction operand must be
11256         // frozen.
11257         if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
11258           VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
11259 
11260         Value *ReducedSubTree =
11261             emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
11262 
11263         if (!VectorizedTree) {
11264           // Initialize the final value in the reduction.
11265           VectorizedTree = ReducedSubTree;
11266         } else {
11267           // Update the final value in the reduction.
11268           Builder.SetCurrentDebugLocation(
11269               cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
11270           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11271                                     ReducedSubTree, "op.rdx", ReductionOps);
11272         }
11273         // Count vectorized reduced values to exclude them from final reduction.
11274         for (Value *V : VL)
11275           ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0)
11276                 .first->getSecond();
11277         Pos += ReduxWidth;
11278         Start = Pos;
11279         ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
11280       }
11281     }
11282     if (VectorizedTree) {
11283       // Finish the reduction.
11284       // Need to add extra arguments and not vectorized possible reduction
11285       // values.
11286       // Try to avoid dependencies between the scalar remainders after
11287       // reductions.
11288       auto &&FinalGen =
11289           [this, &Builder,
11290            &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
11291             unsigned Sz = InstVals.size();
11292             SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
11293                                                                      Sz % 2);
11294             for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
11295               Instruction *RedOp = InstVals[I + 1].first;
11296               Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11297               Value *RdxVal1 = InstVals[I].second;
11298               Value *StableRdxVal1 = RdxVal1;
11299               auto It1 = TrackedVals.find(RdxVal1);
11300               if (It1 != TrackedVals.end())
11301                 StableRdxVal1 = It1->second;
11302               Value *RdxVal2 = InstVals[I + 1].second;
11303               Value *StableRdxVal2 = RdxVal2;
11304               auto It2 = TrackedVals.find(RdxVal2);
11305               if (It2 != TrackedVals.end())
11306                 StableRdxVal2 = It2->second;
11307               Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
11308                                          StableRdxVal2, "op.rdx", ReductionOps);
11309               ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
11310             }
11311             if (Sz % 2 == 1)
11312               ExtraReds[Sz / 2] = InstVals.back();
11313             return ExtraReds;
11314           };
11315       SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
11316       SmallPtrSet<Value *, 8> Visited;
11317       for (ArrayRef<Value *> Candidates : ReducedVals) {
11318         for (Value *RdxVal : Candidates) {
11319           if (!Visited.insert(RdxVal).second)
11320             continue;
11321           unsigned NumOps = VectorizedVals.lookup(RdxVal);
11322           for (Instruction *RedOp :
11323                makeArrayRef(ReducedValsToOps.find(RdxVal)->second)
11324                    .drop_back(NumOps))
11325             ExtraReductions.emplace_back(RedOp, RdxVal);
11326         }
11327       }
11328       for (auto &Pair : ExternallyUsedValues) {
11329         // Add each externally used value to the final reduction.
11330         for (auto *I : Pair.second)
11331           ExtraReductions.emplace_back(I, Pair.first);
11332       }
11333       // Iterate through all not-vectorized reduction values/extra arguments.
11334       while (ExtraReductions.size() > 1) {
11335         SmallVector<std::pair<Instruction *, Value *>> NewReds =
11336             FinalGen(ExtraReductions);
11337         ExtraReductions.swap(NewReds);
11338       }
11339       // Final reduction.
11340       if (ExtraReductions.size() == 1) {
11341         Instruction *RedOp = ExtraReductions.back().first;
11342         Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11343         Value *RdxVal = ExtraReductions.back().second;
11344         Value *StableRdxVal = RdxVal;
11345         auto It = TrackedVals.find(RdxVal);
11346         if (It != TrackedVals.end())
11347           StableRdxVal = It->second;
11348         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11349                                   StableRdxVal, "op.rdx", ReductionOps);
11350       }
11351 
11352       ReductionRoot->replaceAllUsesWith(VectorizedTree);
11353 
11354       // The original scalar reduction is expected to have no remaining
11355       // uses outside the reduction tree itself.  Assert that we got this
11356       // correct, replace internal uses with undef, and mark for eventual
11357       // deletion.
11358 #ifndef NDEBUG
11359       SmallSet<Value *, 4> IgnoreSet;
11360       for (ArrayRef<Value *> RdxOps : ReductionOps)
11361         IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
11362 #endif
11363       for (ArrayRef<Value *> RdxOps : ReductionOps) {
11364         for (Value *Ignore : RdxOps) {
11365           if (!Ignore)
11366             continue;
11367 #ifndef NDEBUG
11368           for (auto *U : Ignore->users()) {
11369             assert(IgnoreSet.count(U) &&
11370                    "All users must be either in the reduction ops list.");
11371           }
11372 #endif
11373           if (!Ignore->use_empty()) {
11374             Value *Undef = UndefValue::get(Ignore->getType());
11375             Ignore->replaceAllUsesWith(Undef);
11376           }
11377           V.eraseInstruction(cast<Instruction>(Ignore));
11378         }
11379       }
11380     } else if (!CheckForReusedReductionOps) {
11381       for (ReductionOpsType &RdxOps : ReductionOps)
11382         for (Value *RdxOp : RdxOps)
11383           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11384     }
11385     return VectorizedTree;
11386   }
11387 
11388 private:
11389   /// Calculate the cost of a reduction.
11390   InstructionCost getReductionCost(TargetTransformInfo *TTI,
11391                                    ArrayRef<Value *> ReducedVals,
11392                                    unsigned ReduxWidth, FastMathFlags FMF) {
11393     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
11394     Value *FirstReducedVal = ReducedVals.front();
11395     Type *ScalarTy = FirstReducedVal->getType();
11396     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
11397     InstructionCost VectorCost = 0, ScalarCost;
11398     // If all of the reduced values are constant, the vector cost is 0, since
11399     // the reduction value can be calculated at the compile time.
11400     bool AllConsts = all_of(ReducedVals, isConstant);
11401     switch (RdxKind) {
11402     case RecurKind::Add:
11403     case RecurKind::Mul:
11404     case RecurKind::Or:
11405     case RecurKind::And:
11406     case RecurKind::Xor:
11407     case RecurKind::FAdd:
11408     case RecurKind::FMul: {
11409       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
11410       if (!AllConsts)
11411         VectorCost =
11412             TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
11413       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
11414       break;
11415     }
11416     case RecurKind::FMax:
11417     case RecurKind::FMin: {
11418       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11419       if (!AllConsts) {
11420         auto *VecCondTy =
11421             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11422         VectorCost =
11423             TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11424                                         /*IsUnsigned=*/false, CostKind);
11425       }
11426       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11427       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
11428                                            SclCondTy, RdxPred, CostKind) +
11429                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11430                                            SclCondTy, RdxPred, CostKind);
11431       break;
11432     }
11433     case RecurKind::SMax:
11434     case RecurKind::SMin:
11435     case RecurKind::UMax:
11436     case RecurKind::UMin: {
11437       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11438       if (!AllConsts) {
11439         auto *VecCondTy =
11440             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11441         bool IsUnsigned =
11442             RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
11443         VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11444                                                  IsUnsigned, CostKind);
11445       }
11446       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11447       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
11448                                            SclCondTy, RdxPred, CostKind) +
11449                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11450                                            SclCondTy, RdxPred, CostKind);
11451       break;
11452     }
11453     default:
11454       llvm_unreachable("Expected arithmetic or min/max reduction operation");
11455     }
11456 
11457     // Scalar cost is repeated for N-1 elements.
11458     ScalarCost *= (ReduxWidth - 1);
11459     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
11460                       << " for reduction that starts with " << *FirstReducedVal
11461                       << " (It is a splitting reduction)\n");
11462     return VectorCost - ScalarCost;
11463   }
11464 
11465   /// Emit a horizontal reduction of the vectorized value.
11466   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
11467                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
11468     assert(VectorizedValue && "Need to have a vectorized tree node");
11469     assert(isPowerOf2_32(ReduxWidth) &&
11470            "We only handle power-of-two reductions for now");
11471     assert(RdxKind != RecurKind::FMulAdd &&
11472            "A call to the llvm.fmuladd intrinsic is not handled yet");
11473 
11474     ++NumVectorInstructions;
11475     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
11476   }
11477 };
11478 
11479 } // end anonymous namespace
11480 
11481 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
11482   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
11483     return cast<FixedVectorType>(IE->getType())->getNumElements();
11484 
11485   unsigned AggregateSize = 1;
11486   auto *IV = cast<InsertValueInst>(InsertInst);
11487   Type *CurrentType = IV->getType();
11488   do {
11489     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
11490       for (auto *Elt : ST->elements())
11491         if (Elt != ST->getElementType(0)) // check homogeneity
11492           return None;
11493       AggregateSize *= ST->getNumElements();
11494       CurrentType = ST->getElementType(0);
11495     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
11496       AggregateSize *= AT->getNumElements();
11497       CurrentType = AT->getElementType();
11498     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
11499       AggregateSize *= VT->getNumElements();
11500       return AggregateSize;
11501     } else if (CurrentType->isSingleValueType()) {
11502       return AggregateSize;
11503     } else {
11504       return None;
11505     }
11506   } while (true);
11507 }
11508 
11509 static void findBuildAggregate_rec(Instruction *LastInsertInst,
11510                                    TargetTransformInfo *TTI,
11511                                    SmallVectorImpl<Value *> &BuildVectorOpds,
11512                                    SmallVectorImpl<Value *> &InsertElts,
11513                                    unsigned OperandOffset) {
11514   do {
11515     Value *InsertedOperand = LastInsertInst->getOperand(1);
11516     Optional<unsigned> OperandIndex =
11517         getInsertIndex(LastInsertInst, OperandOffset);
11518     if (!OperandIndex)
11519       return;
11520     if (isa<InsertElementInst>(InsertedOperand) ||
11521         isa<InsertValueInst>(InsertedOperand)) {
11522       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
11523                              BuildVectorOpds, InsertElts, *OperandIndex);
11524 
11525     } else {
11526       BuildVectorOpds[*OperandIndex] = InsertedOperand;
11527       InsertElts[*OperandIndex] = LastInsertInst;
11528     }
11529     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
11530   } while (LastInsertInst != nullptr &&
11531            (isa<InsertValueInst>(LastInsertInst) ||
11532             isa<InsertElementInst>(LastInsertInst)) &&
11533            LastInsertInst->hasOneUse());
11534 }
11535 
11536 /// Recognize construction of vectors like
11537 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
11538 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
11539 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
11540 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
11541 ///  starting from the last insertelement or insertvalue instruction.
11542 ///
11543 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
11544 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
11545 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
11546 ///
11547 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
11548 ///
11549 /// \return true if it matches.
11550 static bool findBuildAggregate(Instruction *LastInsertInst,
11551                                TargetTransformInfo *TTI,
11552                                SmallVectorImpl<Value *> &BuildVectorOpds,
11553                                SmallVectorImpl<Value *> &InsertElts) {
11554 
11555   assert((isa<InsertElementInst>(LastInsertInst) ||
11556           isa<InsertValueInst>(LastInsertInst)) &&
11557          "Expected insertelement or insertvalue instruction!");
11558 
11559   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
11560          "Expected empty result vectors!");
11561 
11562   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
11563   if (!AggregateSize)
11564     return false;
11565   BuildVectorOpds.resize(*AggregateSize);
11566   InsertElts.resize(*AggregateSize);
11567 
11568   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
11569   llvm::erase_value(BuildVectorOpds, nullptr);
11570   llvm::erase_value(InsertElts, nullptr);
11571   if (BuildVectorOpds.size() >= 2)
11572     return true;
11573 
11574   return false;
11575 }
11576 
11577 /// Try and get a reduction value from a phi node.
11578 ///
11579 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
11580 /// if they come from either \p ParentBB or a containing loop latch.
11581 ///
11582 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
11583 /// if not possible.
11584 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
11585                                 BasicBlock *ParentBB, LoopInfo *LI) {
11586   // There are situations where the reduction value is not dominated by the
11587   // reduction phi. Vectorizing such cases has been reported to cause
11588   // miscompiles. See PR25787.
11589   auto DominatedReduxValue = [&](Value *R) {
11590     return isa<Instruction>(R) &&
11591            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
11592   };
11593 
11594   Value *Rdx = nullptr;
11595 
11596   // Return the incoming value if it comes from the same BB as the phi node.
11597   if (P->getIncomingBlock(0) == ParentBB) {
11598     Rdx = P->getIncomingValue(0);
11599   } else if (P->getIncomingBlock(1) == ParentBB) {
11600     Rdx = P->getIncomingValue(1);
11601   }
11602 
11603   if (Rdx && DominatedReduxValue(Rdx))
11604     return Rdx;
11605 
11606   // Otherwise, check whether we have a loop latch to look at.
11607   Loop *BBL = LI->getLoopFor(ParentBB);
11608   if (!BBL)
11609     return nullptr;
11610   BasicBlock *BBLatch = BBL->getLoopLatch();
11611   if (!BBLatch)
11612     return nullptr;
11613 
11614   // There is a loop latch, return the incoming value if it comes from
11615   // that. This reduction pattern occasionally turns up.
11616   if (P->getIncomingBlock(0) == BBLatch) {
11617     Rdx = P->getIncomingValue(0);
11618   } else if (P->getIncomingBlock(1) == BBLatch) {
11619     Rdx = P->getIncomingValue(1);
11620   }
11621 
11622   if (Rdx && DominatedReduxValue(Rdx))
11623     return Rdx;
11624 
11625   return nullptr;
11626 }
11627 
11628 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
11629   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
11630     return true;
11631   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
11632     return true;
11633   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
11634     return true;
11635   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
11636     return true;
11637   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
11638     return true;
11639   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
11640     return true;
11641   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
11642     return true;
11643   return false;
11644 }
11645 
11646 /// Attempt to reduce a horizontal reduction.
11647 /// If it is legal to match a horizontal reduction feeding the phi node \a P
11648 /// with reduction operators \a Root (or one of its operands) in a basic block
11649 /// \a BB, then check if it can be done. If horizontal reduction is not found
11650 /// and root instruction is a binary operation, vectorization of the operands is
11651 /// attempted.
11652 /// \returns true if a horizontal reduction was matched and reduced or operands
11653 /// of one of the binary instruction were vectorized.
11654 /// \returns false if a horizontal reduction was not matched (or not possible)
11655 /// or no vectorization of any binary operation feeding \a Root instruction was
11656 /// performed.
11657 static bool tryToVectorizeHorReductionOrInstOperands(
11658     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
11659     TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL,
11660     const TargetLibraryInfo &TLI,
11661     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
11662   if (!ShouldVectorizeHor)
11663     return false;
11664 
11665   if (!Root)
11666     return false;
11667 
11668   if (Root->getParent() != BB || isa<PHINode>(Root))
11669     return false;
11670   // Start analysis starting from Root instruction. If horizontal reduction is
11671   // found, try to vectorize it. If it is not a horizontal reduction or
11672   // vectorization is not possible or not effective, and currently analyzed
11673   // instruction is a binary operation, try to vectorize the operands, using
11674   // pre-order DFS traversal order. If the operands were not vectorized, repeat
11675   // the same procedure considering each operand as a possible root of the
11676   // horizontal reduction.
11677   // Interrupt the process if the Root instruction itself was vectorized or all
11678   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
11679   // Skip the analysis of CmpInsts. Compiler implements postanalysis of the
11680   // CmpInsts so we can skip extra attempts in
11681   // tryToVectorizeHorReductionOrInstOperands and save compile time.
11682   std::queue<std::pair<Instruction *, unsigned>> Stack;
11683   Stack.emplace(Root, 0);
11684   SmallPtrSet<Value *, 8> VisitedInstrs;
11685   SmallVector<WeakTrackingVH> PostponedInsts;
11686   bool Res = false;
11687   auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst,
11688                                                      Value *&B0,
11689                                                      Value *&B1) -> Value * {
11690     if (R.isAnalyzedReductionRoot(Inst))
11691       return nullptr;
11692     bool IsBinop = matchRdxBop(Inst, B0, B1);
11693     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
11694     if (IsBinop || IsSelect) {
11695       HorizontalReduction HorRdx;
11696       if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI))
11697         return HorRdx.tryToReduce(R, TTI);
11698     }
11699     return nullptr;
11700   };
11701   while (!Stack.empty()) {
11702     Instruction *Inst;
11703     unsigned Level;
11704     std::tie(Inst, Level) = Stack.front();
11705     Stack.pop();
11706     // Do not try to analyze instruction that has already been vectorized.
11707     // This may happen when we vectorize instruction operands on a previous
11708     // iteration while stack was populated before that happened.
11709     if (R.isDeleted(Inst))
11710       continue;
11711     Value *B0 = nullptr, *B1 = nullptr;
11712     if (Value *V = TryToReduce(Inst, B0, B1)) {
11713       Res = true;
11714       // Set P to nullptr to avoid re-analysis of phi node in
11715       // matchAssociativeReduction function unless this is the root node.
11716       P = nullptr;
11717       if (auto *I = dyn_cast<Instruction>(V)) {
11718         // Try to find another reduction.
11719         Stack.emplace(I, Level);
11720         continue;
11721       }
11722     } else {
11723       bool IsBinop = B0 && B1;
11724       if (P && IsBinop) {
11725         Inst = dyn_cast<Instruction>(B0);
11726         if (Inst == P)
11727           Inst = dyn_cast<Instruction>(B1);
11728         if (!Inst) {
11729           // Set P to nullptr to avoid re-analysis of phi node in
11730           // matchAssociativeReduction function unless this is the root node.
11731           P = nullptr;
11732           continue;
11733         }
11734       }
11735       // Set P to nullptr to avoid re-analysis of phi node in
11736       // matchAssociativeReduction function unless this is the root node.
11737       P = nullptr;
11738       // Do not try to vectorize CmpInst operands, this is done separately.
11739       // Final attempt for binop args vectorization should happen after the loop
11740       // to try to find reductions.
11741       if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
11742         PostponedInsts.push_back(Inst);
11743     }
11744 
11745     // Try to vectorize operands.
11746     // Continue analysis for the instruction from the same basic block only to
11747     // save compile time.
11748     if (++Level < RecursionMaxDepth)
11749       for (auto *Op : Inst->operand_values())
11750         if (VisitedInstrs.insert(Op).second)
11751           if (auto *I = dyn_cast<Instruction>(Op))
11752             // Do not try to vectorize CmpInst operands,  this is done
11753             // separately.
11754             if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
11755                 !R.isDeleted(I) && I->getParent() == BB)
11756               Stack.emplace(I, Level);
11757   }
11758   // Try to vectorized binops where reductions were not found.
11759   for (Value *V : PostponedInsts)
11760     if (auto *Inst = dyn_cast<Instruction>(V))
11761       if (!R.isDeleted(Inst))
11762         Res |= Vectorize(Inst, R);
11763   return Res;
11764 }
11765 
11766 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
11767                                                  BasicBlock *BB, BoUpSLP &R,
11768                                                  TargetTransformInfo *TTI) {
11769   auto *I = dyn_cast_or_null<Instruction>(V);
11770   if (!I)
11771     return false;
11772 
11773   if (!isa<BinaryOperator>(I))
11774     P = nullptr;
11775   // Try to match and vectorize a horizontal reduction.
11776   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
11777     return tryToVectorize(I, R);
11778   };
11779   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL,
11780                                                   *TLI, ExtraVectorization);
11781 }
11782 
11783 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
11784                                                  BasicBlock *BB, BoUpSLP &R) {
11785   const DataLayout &DL = BB->getModule()->getDataLayout();
11786   if (!R.canMapToVector(IVI->getType(), DL))
11787     return false;
11788 
11789   SmallVector<Value *, 16> BuildVectorOpds;
11790   SmallVector<Value *, 16> BuildVectorInsts;
11791   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
11792     return false;
11793 
11794   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
11795   // Aggregate value is unlikely to be processed in vector register.
11796   return tryToVectorizeList(BuildVectorOpds, R);
11797 }
11798 
11799 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
11800                                                    BasicBlock *BB, BoUpSLP &R) {
11801   SmallVector<Value *, 16> BuildVectorInsts;
11802   SmallVector<Value *, 16> BuildVectorOpds;
11803   SmallVector<int> Mask;
11804   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
11805       (llvm::all_of(
11806            BuildVectorOpds,
11807            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
11808        isFixedVectorShuffle(BuildVectorOpds, Mask)))
11809     return false;
11810 
11811   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
11812   return tryToVectorizeList(BuildVectorInsts, R);
11813 }
11814 
11815 template <typename T>
11816 static bool
11817 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
11818                        function_ref<unsigned(T *)> Limit,
11819                        function_ref<bool(T *, T *)> Comparator,
11820                        function_ref<bool(T *, T *)> AreCompatible,
11821                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
11822                        bool LimitForRegisterSize) {
11823   bool Changed = false;
11824   // Sort by type, parent, operands.
11825   stable_sort(Incoming, Comparator);
11826 
11827   // Try to vectorize elements base on their type.
11828   SmallVector<T *> Candidates;
11829   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
11830     // Look for the next elements with the same type, parent and operand
11831     // kinds.
11832     auto *SameTypeIt = IncIt;
11833     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
11834       ++SameTypeIt;
11835 
11836     // Try to vectorize them.
11837     unsigned NumElts = (SameTypeIt - IncIt);
11838     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
11839                       << NumElts << ")\n");
11840     // The vectorization is a 3-state attempt:
11841     // 1. Try to vectorize instructions with the same/alternate opcodes with the
11842     // size of maximal register at first.
11843     // 2. Try to vectorize remaining instructions with the same type, if
11844     // possible. This may result in the better vectorization results rather than
11845     // if we try just to vectorize instructions with the same/alternate opcodes.
11846     // 3. Final attempt to try to vectorize all instructions with the
11847     // same/alternate ops only, this may result in some extra final
11848     // vectorization.
11849     if (NumElts > 1 &&
11850         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
11851       // Success start over because instructions might have been changed.
11852       Changed = true;
11853     } else if (NumElts < Limit(*IncIt) &&
11854                (Candidates.empty() ||
11855                 Candidates.front()->getType() == (*IncIt)->getType())) {
11856       Candidates.append(IncIt, std::next(IncIt, NumElts));
11857     }
11858     // Final attempt to vectorize instructions with the same types.
11859     if (Candidates.size() > 1 &&
11860         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
11861       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
11862         // Success start over because instructions might have been changed.
11863         Changed = true;
11864       } else if (LimitForRegisterSize) {
11865         // Try to vectorize using small vectors.
11866         for (auto *It = Candidates.begin(), *End = Candidates.end();
11867              It != End;) {
11868           auto *SameTypeIt = It;
11869           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
11870             ++SameTypeIt;
11871           unsigned NumElts = (SameTypeIt - It);
11872           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
11873                                             /*LimitForRegisterSize=*/false))
11874             Changed = true;
11875           It = SameTypeIt;
11876         }
11877       }
11878       Candidates.clear();
11879     }
11880 
11881     // Start over at the next instruction of a different type (or the end).
11882     IncIt = SameTypeIt;
11883   }
11884   return Changed;
11885 }
11886 
11887 /// Compare two cmp instructions. If IsCompatibility is true, function returns
11888 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
11889 /// operands. If IsCompatibility is false, function implements strict weak
11890 /// ordering relation between two cmp instructions, returning true if the first
11891 /// instruction is "less" than the second, i.e. its predicate is less than the
11892 /// predicate of the second or the operands IDs are less than the operands IDs
11893 /// of the second cmp instruction.
11894 template <bool IsCompatibility>
11895 static bool compareCmp(Value *V, Value *V2,
11896                        function_ref<bool(Instruction *)> IsDeleted) {
11897   auto *CI1 = cast<CmpInst>(V);
11898   auto *CI2 = cast<CmpInst>(V2);
11899   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
11900     return false;
11901   if (CI1->getOperand(0)->getType()->getTypeID() <
11902       CI2->getOperand(0)->getType()->getTypeID())
11903     return !IsCompatibility;
11904   if (CI1->getOperand(0)->getType()->getTypeID() >
11905       CI2->getOperand(0)->getType()->getTypeID())
11906     return false;
11907   CmpInst::Predicate Pred1 = CI1->getPredicate();
11908   CmpInst::Predicate Pred2 = CI2->getPredicate();
11909   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
11910   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
11911   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
11912   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
11913   if (BasePred1 < BasePred2)
11914     return !IsCompatibility;
11915   if (BasePred1 > BasePred2)
11916     return false;
11917   // Compare operands.
11918   bool LEPreds = Pred1 <= Pred2;
11919   bool GEPreds = Pred1 >= Pred2;
11920   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
11921     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
11922     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
11923     if (Op1->getValueID() < Op2->getValueID())
11924       return !IsCompatibility;
11925     if (Op1->getValueID() > Op2->getValueID())
11926       return false;
11927     if (auto *I1 = dyn_cast<Instruction>(Op1))
11928       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
11929         if (I1->getParent() != I2->getParent())
11930           return false;
11931         InstructionsState S = getSameOpcode({I1, I2});
11932         if (S.getOpcode())
11933           continue;
11934         return false;
11935       }
11936   }
11937   return IsCompatibility;
11938 }
11939 
11940 bool SLPVectorizerPass::vectorizeSimpleInstructions(
11941     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
11942     bool AtTerminator) {
11943   bool OpsChanged = false;
11944   SmallVector<Instruction *, 4> PostponedCmps;
11945   for (auto *I : reverse(Instructions)) {
11946     if (R.isDeleted(I))
11947       continue;
11948     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
11949       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
11950     } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
11951       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
11952     } else if (isa<CmpInst>(I)) {
11953       PostponedCmps.push_back(I);
11954       continue;
11955     }
11956     // Try to find reductions in buildvector sequnces.
11957     OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI);
11958   }
11959   if (AtTerminator) {
11960     // Try to find reductions first.
11961     for (Instruction *I : PostponedCmps) {
11962       if (R.isDeleted(I))
11963         continue;
11964       for (Value *Op : I->operands())
11965         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
11966     }
11967     // Try to vectorize operands as vector bundles.
11968     for (Instruction *I : PostponedCmps) {
11969       if (R.isDeleted(I))
11970         continue;
11971       OpsChanged |= tryToVectorize(I, R);
11972     }
11973     // Try to vectorize list of compares.
11974     // Sort by type, compare predicate, etc.
11975     auto &&CompareSorter = [&R](Value *V, Value *V2) {
11976       return compareCmp<false>(V, V2,
11977                                [&R](Instruction *I) { return R.isDeleted(I); });
11978     };
11979 
11980     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
11981       if (V1 == V2)
11982         return true;
11983       return compareCmp<true>(V1, V2,
11984                               [&R](Instruction *I) { return R.isDeleted(I); });
11985     };
11986     auto Limit = [&R](Value *V) {
11987       unsigned EltSize = R.getVectorElementSize(V);
11988       return std::max(2U, R.getMaxVecRegSize() / EltSize);
11989     };
11990 
11991     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
11992     OpsChanged |= tryToVectorizeSequence<Value>(
11993         Vals, Limit, CompareSorter, AreCompatibleCompares,
11994         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
11995           // Exclude possible reductions from other blocks.
11996           bool ArePossiblyReducedInOtherBlock =
11997               any_of(Candidates, [](Value *V) {
11998                 return any_of(V->users(), [V](User *U) {
11999                   return isa<SelectInst>(U) &&
12000                          cast<SelectInst>(U)->getParent() !=
12001                              cast<Instruction>(V)->getParent();
12002                 });
12003               });
12004           if (ArePossiblyReducedInOtherBlock)
12005             return false;
12006           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12007         },
12008         /*LimitForRegisterSize=*/true);
12009     Instructions.clear();
12010   } else {
12011     // Insert in reverse order since the PostponedCmps vector was filled in
12012     // reverse order.
12013     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
12014   }
12015   return OpsChanged;
12016 }
12017 
12018 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
12019   bool Changed = false;
12020   SmallVector<Value *, 4> Incoming;
12021   SmallPtrSet<Value *, 16> VisitedInstrs;
12022   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
12023   // node. Allows better to identify the chains that can be vectorized in the
12024   // better way.
12025   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
12026   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
12027     assert(isValidElementType(V1->getType()) &&
12028            isValidElementType(V2->getType()) &&
12029            "Expected vectorizable types only.");
12030     // It is fine to compare type IDs here, since we expect only vectorizable
12031     // types, like ints, floats and pointers, we don't care about other type.
12032     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
12033       return true;
12034     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
12035       return false;
12036     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12037     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12038     if (Opcodes1.size() < Opcodes2.size())
12039       return true;
12040     if (Opcodes1.size() > Opcodes2.size())
12041       return false;
12042     Optional<bool> ConstOrder;
12043     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12044       // Undefs are compatible with any other value.
12045       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
12046         if (!ConstOrder)
12047           ConstOrder =
12048               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
12049         continue;
12050       }
12051       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12052         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12053           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
12054           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
12055           if (!NodeI1)
12056             return NodeI2 != nullptr;
12057           if (!NodeI2)
12058             return false;
12059           assert((NodeI1 == NodeI2) ==
12060                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12061                  "Different nodes should have different DFS numbers");
12062           if (NodeI1 != NodeI2)
12063             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12064           InstructionsState S = getSameOpcode({I1, I2});
12065           if (S.getOpcode())
12066             continue;
12067           return I1->getOpcode() < I2->getOpcode();
12068         }
12069       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
12070         if (!ConstOrder)
12071           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
12072         continue;
12073       }
12074       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
12075         return true;
12076       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
12077         return false;
12078     }
12079     return ConstOrder && *ConstOrder;
12080   };
12081   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
12082     if (V1 == V2)
12083       return true;
12084     if (V1->getType() != V2->getType())
12085       return false;
12086     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12087     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12088     if (Opcodes1.size() != Opcodes2.size())
12089       return false;
12090     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12091       // Undefs are compatible with any other value.
12092       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
12093         continue;
12094       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12095         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12096           if (I1->getParent() != I2->getParent())
12097             return false;
12098           InstructionsState S = getSameOpcode({I1, I2});
12099           if (S.getOpcode())
12100             continue;
12101           return false;
12102         }
12103       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
12104         continue;
12105       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
12106         return false;
12107     }
12108     return true;
12109   };
12110   auto Limit = [&R](Value *V) {
12111     unsigned EltSize = R.getVectorElementSize(V);
12112     return std::max(2U, R.getMaxVecRegSize() / EltSize);
12113   };
12114 
12115   bool HaveVectorizedPhiNodes = false;
12116   do {
12117     // Collect the incoming values from the PHIs.
12118     Incoming.clear();
12119     for (Instruction &I : *BB) {
12120       PHINode *P = dyn_cast<PHINode>(&I);
12121       if (!P)
12122         break;
12123 
12124       // No need to analyze deleted, vectorized and non-vectorizable
12125       // instructions.
12126       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
12127           isValidElementType(P->getType()))
12128         Incoming.push_back(P);
12129     }
12130 
12131     // Find the corresponding non-phi nodes for better matching when trying to
12132     // build the tree.
12133     for (Value *V : Incoming) {
12134       SmallVectorImpl<Value *> &Opcodes =
12135           PHIToOpcodes.try_emplace(V).first->getSecond();
12136       if (!Opcodes.empty())
12137         continue;
12138       SmallVector<Value *, 4> Nodes(1, V);
12139       SmallPtrSet<Value *, 4> Visited;
12140       while (!Nodes.empty()) {
12141         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
12142         if (!Visited.insert(PHI).second)
12143           continue;
12144         for (Value *V : PHI->incoming_values()) {
12145           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
12146             Nodes.push_back(PHI1);
12147             continue;
12148           }
12149           Opcodes.emplace_back(V);
12150         }
12151       }
12152     }
12153 
12154     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
12155         Incoming, Limit, PHICompare, AreCompatiblePHIs,
12156         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12157           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12158         },
12159         /*LimitForRegisterSize=*/true);
12160     Changed |= HaveVectorizedPhiNodes;
12161     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
12162   } while (HaveVectorizedPhiNodes);
12163 
12164   VisitedInstrs.clear();
12165 
12166   SmallVector<Instruction *, 8> PostProcessInstructions;
12167   SmallDenseSet<Instruction *, 4> KeyNodes;
12168   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
12169     // Skip instructions with scalable type. The num of elements is unknown at
12170     // compile-time for scalable type.
12171     if (isa<ScalableVectorType>(it->getType()))
12172       continue;
12173 
12174     // Skip instructions marked for the deletion.
12175     if (R.isDeleted(&*it))
12176       continue;
12177     // We may go through BB multiple times so skip the one we have checked.
12178     if (!VisitedInstrs.insert(&*it).second) {
12179       if (it->use_empty() && KeyNodes.contains(&*it) &&
12180           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12181                                       it->isTerminator())) {
12182         // We would like to start over since some instructions are deleted
12183         // and the iterator may become invalid value.
12184         Changed = true;
12185         it = BB->begin();
12186         e = BB->end();
12187       }
12188       continue;
12189     }
12190 
12191     if (isa<DbgInfoIntrinsic>(it))
12192       continue;
12193 
12194     // Try to vectorize reductions that use PHINodes.
12195     if (PHINode *P = dyn_cast<PHINode>(it)) {
12196       // Check that the PHI is a reduction PHI.
12197       if (P->getNumIncomingValues() == 2) {
12198         // Try to match and vectorize a horizontal reduction.
12199         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
12200                                      TTI)) {
12201           Changed = true;
12202           it = BB->begin();
12203           e = BB->end();
12204           continue;
12205         }
12206       }
12207       // Try to vectorize the incoming values of the PHI, to catch reductions
12208       // that feed into PHIs.
12209       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
12210         // Skip if the incoming block is the current BB for now. Also, bypass
12211         // unreachable IR for efficiency and to avoid crashing.
12212         // TODO: Collect the skipped incoming values and try to vectorize them
12213         // after processing BB.
12214         if (BB == P->getIncomingBlock(I) ||
12215             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
12216           continue;
12217 
12218         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
12219                                             P->getIncomingBlock(I), R, TTI);
12220       }
12221       continue;
12222     }
12223 
12224     // Ran into an instruction without users, like terminator, or function call
12225     // with ignored return value, store. Ignore unused instructions (basing on
12226     // instruction type, except for CallInst and InvokeInst).
12227     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
12228                             isa<InvokeInst>(it))) {
12229       KeyNodes.insert(&*it);
12230       bool OpsChanged = false;
12231       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
12232         for (auto *V : it->operand_values()) {
12233           // Try to match and vectorize a horizontal reduction.
12234           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
12235         }
12236       }
12237       // Start vectorization of post-process list of instructions from the
12238       // top-tree instructions to try to vectorize as many instructions as
12239       // possible.
12240       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12241                                                 it->isTerminator());
12242       if (OpsChanged) {
12243         // We would like to start over since some instructions are deleted
12244         // and the iterator may become invalid value.
12245         Changed = true;
12246         it = BB->begin();
12247         e = BB->end();
12248         continue;
12249       }
12250     }
12251 
12252     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
12253         isa<InsertValueInst>(it))
12254       PostProcessInstructions.push_back(&*it);
12255   }
12256 
12257   return Changed;
12258 }
12259 
12260 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
12261   auto Changed = false;
12262   for (auto &Entry : GEPs) {
12263     // If the getelementptr list has fewer than two elements, there's nothing
12264     // to do.
12265     if (Entry.second.size() < 2)
12266       continue;
12267 
12268     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
12269                       << Entry.second.size() << ".\n");
12270 
12271     // Process the GEP list in chunks suitable for the target's supported
12272     // vector size. If a vector register can't hold 1 element, we are done. We
12273     // are trying to vectorize the index computations, so the maximum number of
12274     // elements is based on the size of the index expression, rather than the
12275     // size of the GEP itself (the target's pointer size).
12276     unsigned MaxVecRegSize = R.getMaxVecRegSize();
12277     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
12278     if (MaxVecRegSize < EltSize)
12279       continue;
12280 
12281     unsigned MaxElts = MaxVecRegSize / EltSize;
12282     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
12283       auto Len = std::min<unsigned>(BE - BI, MaxElts);
12284       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
12285 
12286       // Initialize a set a candidate getelementptrs. Note that we use a
12287       // SetVector here to preserve program order. If the index computations
12288       // are vectorizable and begin with loads, we want to minimize the chance
12289       // of having to reorder them later.
12290       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
12291 
12292       // Some of the candidates may have already been vectorized after we
12293       // initially collected them. If so, they are marked as deleted, so remove
12294       // them from the set of candidates.
12295       Candidates.remove_if(
12296           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
12297 
12298       // Remove from the set of candidates all pairs of getelementptrs with
12299       // constant differences. Such getelementptrs are likely not good
12300       // candidates for vectorization in a bottom-up phase since one can be
12301       // computed from the other. We also ensure all candidate getelementptr
12302       // indices are unique.
12303       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
12304         auto *GEPI = GEPList[I];
12305         if (!Candidates.count(GEPI))
12306           continue;
12307         auto *SCEVI = SE->getSCEV(GEPList[I]);
12308         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
12309           auto *GEPJ = GEPList[J];
12310           auto *SCEVJ = SE->getSCEV(GEPList[J]);
12311           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
12312             Candidates.remove(GEPI);
12313             Candidates.remove(GEPJ);
12314           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
12315             Candidates.remove(GEPJ);
12316           }
12317         }
12318       }
12319 
12320       // We break out of the above computation as soon as we know there are
12321       // fewer than two candidates remaining.
12322       if (Candidates.size() < 2)
12323         continue;
12324 
12325       // Add the single, non-constant index of each candidate to the bundle. We
12326       // ensured the indices met these constraints when we originally collected
12327       // the getelementptrs.
12328       SmallVector<Value *, 16> Bundle(Candidates.size());
12329       auto BundleIndex = 0u;
12330       for (auto *V : Candidates) {
12331         auto *GEP = cast<GetElementPtrInst>(V);
12332         auto *GEPIdx = GEP->idx_begin()->get();
12333         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
12334         Bundle[BundleIndex++] = GEPIdx;
12335       }
12336 
12337       // Try and vectorize the indices. We are currently only interested in
12338       // gather-like cases of the form:
12339       //
12340       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
12341       //
12342       // where the loads of "a", the loads of "b", and the subtractions can be
12343       // performed in parallel. It's likely that detecting this pattern in a
12344       // bottom-up phase will be simpler and less costly than building a
12345       // full-blown top-down phase beginning at the consecutive loads.
12346       Changed |= tryToVectorizeList(Bundle, R);
12347     }
12348   }
12349   return Changed;
12350 }
12351 
12352 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
12353   bool Changed = false;
12354   // Sort by type, base pointers and values operand. Value operands must be
12355   // compatible (have the same opcode, same parent), otherwise it is
12356   // definitely not profitable to try to vectorize them.
12357   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
12358     if (V->getPointerOperandType()->getTypeID() <
12359         V2->getPointerOperandType()->getTypeID())
12360       return true;
12361     if (V->getPointerOperandType()->getTypeID() >
12362         V2->getPointerOperandType()->getTypeID())
12363       return false;
12364     // UndefValues are compatible with all other values.
12365     if (isa<UndefValue>(V->getValueOperand()) ||
12366         isa<UndefValue>(V2->getValueOperand()))
12367       return false;
12368     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
12369       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12370         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
12371             DT->getNode(I1->getParent());
12372         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
12373             DT->getNode(I2->getParent());
12374         assert(NodeI1 && "Should only process reachable instructions");
12375         assert(NodeI2 && "Should only process reachable instructions");
12376         assert((NodeI1 == NodeI2) ==
12377                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12378                "Different nodes should have different DFS numbers");
12379         if (NodeI1 != NodeI2)
12380           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12381         InstructionsState S = getSameOpcode({I1, I2});
12382         if (S.getOpcode())
12383           return false;
12384         return I1->getOpcode() < I2->getOpcode();
12385       }
12386     if (isa<Constant>(V->getValueOperand()) &&
12387         isa<Constant>(V2->getValueOperand()))
12388       return false;
12389     return V->getValueOperand()->getValueID() <
12390            V2->getValueOperand()->getValueID();
12391   };
12392 
12393   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
12394     if (V1 == V2)
12395       return true;
12396     if (V1->getPointerOperandType() != V2->getPointerOperandType())
12397       return false;
12398     // Undefs are compatible with any other value.
12399     if (isa<UndefValue>(V1->getValueOperand()) ||
12400         isa<UndefValue>(V2->getValueOperand()))
12401       return true;
12402     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
12403       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12404         if (I1->getParent() != I2->getParent())
12405           return false;
12406         InstructionsState S = getSameOpcode({I1, I2});
12407         return S.getOpcode() > 0;
12408       }
12409     if (isa<Constant>(V1->getValueOperand()) &&
12410         isa<Constant>(V2->getValueOperand()))
12411       return true;
12412     return V1->getValueOperand()->getValueID() ==
12413            V2->getValueOperand()->getValueID();
12414   };
12415   auto Limit = [&R, this](StoreInst *SI) {
12416     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
12417     return R.getMinVF(EltSize);
12418   };
12419 
12420   // Attempt to sort and vectorize each of the store-groups.
12421   for (auto &Pair : Stores) {
12422     if (Pair.second.size() < 2)
12423       continue;
12424 
12425     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
12426                       << Pair.second.size() << ".\n");
12427 
12428     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
12429       continue;
12430 
12431     Changed |= tryToVectorizeSequence<StoreInst>(
12432         Pair.second, Limit, StoreSorter, AreCompatibleStores,
12433         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
12434           return vectorizeStores(Candidates, R);
12435         },
12436         /*LimitForRegisterSize=*/false);
12437   }
12438   return Changed;
12439 }
12440 
12441 char SLPVectorizer::ID = 0;
12442 
12443 static const char lv_name[] = "SLP Vectorizer";
12444 
12445 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
12446 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
12447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
12448 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
12450 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
12451 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
12452 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
12453 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
12454 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
12455 
12456 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
12457