1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 const SmallDenseSet<Value *> &UserIgnoreLst); 899 900 /// Construct a vectorizable tree that starts at \p Roots. 901 void buildTree(ArrayRef<Value *> Roots); 902 903 /// Builds external uses of the vectorized scalars, i.e. the list of 904 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 905 /// ExternallyUsedValues contains additional list of external uses to handle 906 /// vectorization of reductions. 907 void 908 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 909 910 /// Clear the internal data structures that are created by 'buildTree'. 911 void deleteTree() { 912 VectorizableTree.clear(); 913 ScalarToTreeEntry.clear(); 914 MustGather.clear(); 915 ExternalUses.clear(); 916 for (auto &Iter : BlocksSchedules) { 917 BlockScheduling *BS = Iter.second.get(); 918 BS->clear(); 919 } 920 MinBWs.clear(); 921 InstrElementSize.clear(); 922 UserIgnoreList = nullptr; 923 } 924 925 unsigned getTreeSize() const { return VectorizableTree.size(); } 926 927 /// Perform LICM and CSE on the newly generated gather sequences. 928 void optimizeGatherSequence(); 929 930 /// Checks if the specified gather tree entry \p TE can be represented as a 931 /// shuffled vector entry + (possibly) permutation with other gathers. It 932 /// implements the checks only for possibly ordered scalars (Loads, 933 /// ExtractElement, ExtractValue), which can be part of the graph. 934 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 935 936 /// Sort loads into increasing pointers offsets to allow greater clustering. 937 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 938 939 /// Gets reordering data for the given tree entry. If the entry is vectorized 940 /// - just return ReorderIndices, otherwise check if the scalars can be 941 /// reordered and return the most optimal order. 942 /// \param TopToBottom If true, include the order of vectorized stores and 943 /// insertelement nodes, otherwise skip them. 944 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 945 946 /// Reorders the current graph to the most profitable order starting from the 947 /// root node to the leaf nodes. The best order is chosen only from the nodes 948 /// of the same size (vectorization factor). Smaller nodes are considered 949 /// parts of subgraph with smaller VF and they are reordered independently. We 950 /// can make it because we still need to extend smaller nodes to the wider VF 951 /// and we can merge reordering shuffles with the widening shuffles. 952 void reorderTopToBottom(); 953 954 /// Reorders the current graph to the most profitable order starting from 955 /// leaves to the root. It allows to rotate small subgraphs and reduce the 956 /// number of reshuffles if the leaf nodes use the same order. In this case we 957 /// can merge the orders and just shuffle user node instead of shuffling its 958 /// operands. Plus, even the leaf nodes have different orders, it allows to 959 /// sink reordering in the graph closer to the root node and merge it later 960 /// during analysis. 961 void reorderBottomToTop(bool IgnoreReorder = false); 962 963 /// \return The vector element size in bits to use when vectorizing the 964 /// expression tree ending at \p V. If V is a store, the size is the width of 965 /// the stored value. Otherwise, the size is the width of the largest loaded 966 /// value reaching V. This method is used by the vectorizer to calculate 967 /// vectorization factors. 968 unsigned getVectorElementSize(Value *V); 969 970 /// Compute the minimum type sizes required to represent the entries in a 971 /// vectorizable tree. 972 void computeMinimumValueSizes(); 973 974 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 975 unsigned getMaxVecRegSize() const { 976 return MaxVecRegSize; 977 } 978 979 // \returns minimum vector register size as set by cl::opt. 980 unsigned getMinVecRegSize() const { 981 return MinVecRegSize; 982 } 983 984 unsigned getMinVF(unsigned Sz) const { 985 return std::max(2U, getMinVecRegSize() / Sz); 986 } 987 988 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 989 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 990 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 991 return MaxVF ? MaxVF : UINT_MAX; 992 } 993 994 /// Check if homogeneous aggregate is isomorphic to some VectorType. 995 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 996 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 997 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 998 /// 999 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 1000 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 1001 1002 /// \returns True if the VectorizableTree is both tiny and not fully 1003 /// vectorizable. We do not vectorize such trees. 1004 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1005 1006 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1007 /// can be load combined in the backend. Load combining may not be allowed in 1008 /// the IR optimizer, so we do not want to alter the pattern. For example, 1009 /// partially transforming a scalar bswap() pattern into vector code is 1010 /// effectively impossible for the backend to undo. 1011 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1012 /// may not be necessary. 1013 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1014 1015 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1016 /// can be load combined in the backend. Load combining may not be allowed in 1017 /// the IR optimizer, so we do not want to alter the pattern. For example, 1018 /// partially transforming a scalar bswap() pattern into vector code is 1019 /// effectively impossible for the backend to undo. 1020 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1021 /// may not be necessary. 1022 bool isLoadCombineCandidate() const; 1023 1024 OptimizationRemarkEmitter *getORE() { return ORE; } 1025 1026 /// This structure holds any data we need about the edges being traversed 1027 /// during buildTree_rec(). We keep track of: 1028 /// (i) the user TreeEntry index, and 1029 /// (ii) the index of the edge. 1030 struct EdgeInfo { 1031 EdgeInfo() = default; 1032 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1033 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1034 /// The user TreeEntry. 1035 TreeEntry *UserTE = nullptr; 1036 /// The operand index of the use. 1037 unsigned EdgeIdx = UINT_MAX; 1038 #ifndef NDEBUG 1039 friend inline raw_ostream &operator<<(raw_ostream &OS, 1040 const BoUpSLP::EdgeInfo &EI) { 1041 EI.dump(OS); 1042 return OS; 1043 } 1044 /// Debug print. 1045 void dump(raw_ostream &OS) const { 1046 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1047 << " EdgeIdx:" << EdgeIdx << "}"; 1048 } 1049 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1050 #endif 1051 }; 1052 1053 /// A helper class used for scoring candidates for two consecutive lanes. 1054 class LookAheadHeuristics { 1055 const DataLayout &DL; 1056 ScalarEvolution &SE; 1057 const BoUpSLP &R; 1058 int NumLanes; // Total number of lanes (aka vectorization factor). 1059 int MaxLevel; // The maximum recursion depth for accumulating score. 1060 1061 public: 1062 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1063 const BoUpSLP &R, int NumLanes, int MaxLevel) 1064 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1065 1066 // The hard-coded scores listed here are not very important, though it shall 1067 // be higher for better matches to improve the resulting cost. When 1068 // computing the scores of matching one sub-tree with another, we are 1069 // basically counting the number of values that are matching. So even if all 1070 // scores are set to 1, we would still get a decent matching result. 1071 // However, sometimes we have to break ties. For example we may have to 1072 // choose between matching loads vs matching opcodes. This is what these 1073 // scores are helping us with: they provide the order of preference. Also, 1074 // this is important if the scalar is externally used or used in another 1075 // tree entry node in the different lane. 1076 1077 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1078 static const int ScoreConsecutiveLoads = 4; 1079 /// The same load multiple times. This should have a better score than 1080 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1081 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1082 /// a vector load and 1.0 for a broadcast. 1083 static const int ScoreSplatLoads = 3; 1084 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1085 static const int ScoreReversedLoads = 3; 1086 /// ExtractElementInst from same vector and consecutive indexes. 1087 static const int ScoreConsecutiveExtracts = 4; 1088 /// ExtractElementInst from same vector and reversed indices. 1089 static const int ScoreReversedExtracts = 3; 1090 /// Constants. 1091 static const int ScoreConstants = 2; 1092 /// Instructions with the same opcode. 1093 static const int ScoreSameOpcode = 2; 1094 /// Instructions with alt opcodes (e.g, add + sub). 1095 static const int ScoreAltOpcodes = 1; 1096 /// Identical instructions (a.k.a. splat or broadcast). 1097 static const int ScoreSplat = 1; 1098 /// Matching with an undef is preferable to failing. 1099 static const int ScoreUndef = 1; 1100 /// Score for failing to find a decent match. 1101 static const int ScoreFail = 0; 1102 /// Score if all users are vectorized. 1103 static const int ScoreAllUserVectorized = 1; 1104 1105 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1106 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1107 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1108 /// MainAltOps. 1109 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1110 ArrayRef<Value *> MainAltOps) const { 1111 if (V1 == V2) { 1112 if (isa<LoadInst>(V1)) { 1113 // Retruns true if the users of V1 and V2 won't need to be extracted. 1114 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1115 // Bail out if we have too many uses to save compilation time. 1116 static constexpr unsigned Limit = 8; 1117 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1118 return false; 1119 1120 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1121 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1122 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1123 }); 1124 }; 1125 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1126 }; 1127 // A broadcast of a load can be cheaper on some targets. 1128 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1129 ElementCount::getFixed(NumLanes)) && 1130 ((int)V1->getNumUses() == NumLanes || 1131 AllUsersAreInternal(V1, V2))) 1132 return LookAheadHeuristics::ScoreSplatLoads; 1133 } 1134 return LookAheadHeuristics::ScoreSplat; 1135 } 1136 1137 auto *LI1 = dyn_cast<LoadInst>(V1); 1138 auto *LI2 = dyn_cast<LoadInst>(V2); 1139 if (LI1 && LI2) { 1140 if (LI1->getParent() != LI2->getParent()) 1141 return LookAheadHeuristics::ScoreFail; 1142 1143 Optional<int> Dist = getPointersDiff( 1144 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1145 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1146 if (!Dist || *Dist == 0) 1147 return LookAheadHeuristics::ScoreFail; 1148 // The distance is too large - still may be profitable to use masked 1149 // loads/gathers. 1150 if (std::abs(*Dist) > NumLanes / 2) 1151 return LookAheadHeuristics::ScoreAltOpcodes; 1152 // This still will detect consecutive loads, but we might have "holes" 1153 // in some cases. It is ok for non-power-2 vectorization and may produce 1154 // better results. It should not affect current vectorization. 1155 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1156 : LookAheadHeuristics::ScoreReversedLoads; 1157 } 1158 1159 auto *C1 = dyn_cast<Constant>(V1); 1160 auto *C2 = dyn_cast<Constant>(V2); 1161 if (C1 && C2) 1162 return LookAheadHeuristics::ScoreConstants; 1163 1164 // Extracts from consecutive indexes of the same vector better score as 1165 // the extracts could be optimized away. 1166 Value *EV1; 1167 ConstantInt *Ex1Idx; 1168 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1169 // Undefs are always profitable for extractelements. 1170 if (isa<UndefValue>(V2)) 1171 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1172 Value *EV2 = nullptr; 1173 ConstantInt *Ex2Idx = nullptr; 1174 if (match(V2, 1175 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1176 m_Undef())))) { 1177 // Undefs are always profitable for extractelements. 1178 if (!Ex2Idx) 1179 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1180 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1181 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1182 if (EV2 == EV1) { 1183 int Idx1 = Ex1Idx->getZExtValue(); 1184 int Idx2 = Ex2Idx->getZExtValue(); 1185 int Dist = Idx2 - Idx1; 1186 // The distance is too large - still may be profitable to use 1187 // shuffles. 1188 if (std::abs(Dist) == 0) 1189 return LookAheadHeuristics::ScoreSplat; 1190 if (std::abs(Dist) > NumLanes / 2) 1191 return LookAheadHeuristics::ScoreSameOpcode; 1192 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1193 : LookAheadHeuristics::ScoreReversedExtracts; 1194 } 1195 return LookAheadHeuristics::ScoreAltOpcodes; 1196 } 1197 return LookAheadHeuristics::ScoreFail; 1198 } 1199 1200 auto *I1 = dyn_cast<Instruction>(V1); 1201 auto *I2 = dyn_cast<Instruction>(V2); 1202 if (I1 && I2) { 1203 if (I1->getParent() != I2->getParent()) 1204 return LookAheadHeuristics::ScoreFail; 1205 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1206 Ops.push_back(I1); 1207 Ops.push_back(I2); 1208 InstructionsState S = getSameOpcode(Ops); 1209 // Note: Only consider instructions with <= 2 operands to avoid 1210 // complexity explosion. 1211 if (S.getOpcode() && 1212 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1213 !S.isAltShuffle()) && 1214 all_of(Ops, [&S](Value *V) { 1215 return cast<Instruction>(V)->getNumOperands() == 1216 S.MainOp->getNumOperands(); 1217 })) 1218 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1219 : LookAheadHeuristics::ScoreSameOpcode; 1220 } 1221 1222 if (isa<UndefValue>(V2)) 1223 return LookAheadHeuristics::ScoreUndef; 1224 1225 return LookAheadHeuristics::ScoreFail; 1226 } 1227 1228 /// Go through the operands of \p LHS and \p RHS recursively until 1229 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1230 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1231 /// of \p U1 and \p U2), except at the beginning of the recursion where 1232 /// these are set to nullptr. 1233 /// 1234 /// For example: 1235 /// \verbatim 1236 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1237 /// \ / \ / \ / \ / 1238 /// + + + + 1239 /// G1 G2 G3 G4 1240 /// \endverbatim 1241 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1242 /// each level recursively, accumulating the score. It starts from matching 1243 /// the additions at level 0, then moves on to the loads (level 1). The 1244 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1245 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1246 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1247 /// Please note that the order of the operands does not matter, as we 1248 /// evaluate the score of all profitable combinations of operands. In 1249 /// other words the score of G1 and G4 is the same as G1 and G2. This 1250 /// heuristic is based on ideas described in: 1251 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1252 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1253 /// Luís F. W. Góes 1254 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1255 Instruction *U2, int CurrLevel, 1256 ArrayRef<Value *> MainAltOps) const { 1257 1258 // Get the shallow score of V1 and V2. 1259 int ShallowScoreAtThisLevel = 1260 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1261 1262 // If reached MaxLevel, 1263 // or if V1 and V2 are not instructions, 1264 // or if they are SPLAT, 1265 // or if they are not consecutive, 1266 // or if profitable to vectorize loads or extractelements, early return 1267 // the current cost. 1268 auto *I1 = dyn_cast<Instruction>(LHS); 1269 auto *I2 = dyn_cast<Instruction>(RHS); 1270 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1271 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1272 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1273 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1274 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1275 ShallowScoreAtThisLevel)) 1276 return ShallowScoreAtThisLevel; 1277 assert(I1 && I2 && "Should have early exited."); 1278 1279 // Contains the I2 operand indexes that got matched with I1 operands. 1280 SmallSet<unsigned, 4> Op2Used; 1281 1282 // Recursion towards the operands of I1 and I2. We are trying all possible 1283 // operand pairs, and keeping track of the best score. 1284 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1285 OpIdx1 != NumOperands1; ++OpIdx1) { 1286 // Try to pair op1I with the best operand of I2. 1287 int MaxTmpScore = 0; 1288 unsigned MaxOpIdx2 = 0; 1289 bool FoundBest = false; 1290 // If I2 is commutative try all combinations. 1291 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1292 unsigned ToIdx = isCommutative(I2) 1293 ? I2->getNumOperands() 1294 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1295 assert(FromIdx <= ToIdx && "Bad index"); 1296 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1297 // Skip operands already paired with OpIdx1. 1298 if (Op2Used.count(OpIdx2)) 1299 continue; 1300 // Recursively calculate the cost at each level 1301 int TmpScore = 1302 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1303 I1, I2, CurrLevel + 1, None); 1304 // Look for the best score. 1305 if (TmpScore > LookAheadHeuristics::ScoreFail && 1306 TmpScore > MaxTmpScore) { 1307 MaxTmpScore = TmpScore; 1308 MaxOpIdx2 = OpIdx2; 1309 FoundBest = true; 1310 } 1311 } 1312 if (FoundBest) { 1313 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1314 Op2Used.insert(MaxOpIdx2); 1315 ShallowScoreAtThisLevel += MaxTmpScore; 1316 } 1317 } 1318 return ShallowScoreAtThisLevel; 1319 } 1320 }; 1321 /// A helper data structure to hold the operands of a vector of instructions. 1322 /// This supports a fixed vector length for all operand vectors. 1323 class VLOperands { 1324 /// For each operand we need (i) the value, and (ii) the opcode that it 1325 /// would be attached to if the expression was in a left-linearized form. 1326 /// This is required to avoid illegal operand reordering. 1327 /// For example: 1328 /// \verbatim 1329 /// 0 Op1 1330 /// |/ 1331 /// Op1 Op2 Linearized + Op2 1332 /// \ / ----------> |/ 1333 /// - - 1334 /// 1335 /// Op1 - Op2 (0 + Op1) - Op2 1336 /// \endverbatim 1337 /// 1338 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1339 /// 1340 /// Another way to think of this is to track all the operations across the 1341 /// path from the operand all the way to the root of the tree and to 1342 /// calculate the operation that corresponds to this path. For example, the 1343 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1344 /// corresponding operation is a '-' (which matches the one in the 1345 /// linearized tree, as shown above). 1346 /// 1347 /// For lack of a better term, we refer to this operation as Accumulated 1348 /// Path Operation (APO). 1349 struct OperandData { 1350 OperandData() = default; 1351 OperandData(Value *V, bool APO, bool IsUsed) 1352 : V(V), APO(APO), IsUsed(IsUsed) {} 1353 /// The operand value. 1354 Value *V = nullptr; 1355 /// TreeEntries only allow a single opcode, or an alternate sequence of 1356 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1357 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1358 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1359 /// (e.g., Add/Mul) 1360 bool APO = false; 1361 /// Helper data for the reordering function. 1362 bool IsUsed = false; 1363 }; 1364 1365 /// During operand reordering, we are trying to select the operand at lane 1366 /// that matches best with the operand at the neighboring lane. Our 1367 /// selection is based on the type of value we are looking for. For example, 1368 /// if the neighboring lane has a load, we need to look for a load that is 1369 /// accessing a consecutive address. These strategies are summarized in the 1370 /// 'ReorderingMode' enumerator. 1371 enum class ReorderingMode { 1372 Load, ///< Matching loads to consecutive memory addresses 1373 Opcode, ///< Matching instructions based on opcode (same or alternate) 1374 Constant, ///< Matching constants 1375 Splat, ///< Matching the same instruction multiple times (broadcast) 1376 Failed, ///< We failed to create a vectorizable group 1377 }; 1378 1379 using OperandDataVec = SmallVector<OperandData, 2>; 1380 1381 /// A vector of operand vectors. 1382 SmallVector<OperandDataVec, 4> OpsVec; 1383 1384 const DataLayout &DL; 1385 ScalarEvolution &SE; 1386 const BoUpSLP &R; 1387 1388 /// \returns the operand data at \p OpIdx and \p Lane. 1389 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1390 return OpsVec[OpIdx][Lane]; 1391 } 1392 1393 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1394 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1395 return OpsVec[OpIdx][Lane]; 1396 } 1397 1398 /// Clears the used flag for all entries. 1399 void clearUsed() { 1400 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1401 OpIdx != NumOperands; ++OpIdx) 1402 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1403 ++Lane) 1404 OpsVec[OpIdx][Lane].IsUsed = false; 1405 } 1406 1407 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1408 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1409 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1410 } 1411 1412 /// \param Lane lane of the operands under analysis. 1413 /// \param OpIdx operand index in \p Lane lane we're looking the best 1414 /// candidate for. 1415 /// \param Idx operand index of the current candidate value. 1416 /// \returns The additional score due to possible broadcasting of the 1417 /// elements in the lane. It is more profitable to have power-of-2 unique 1418 /// elements in the lane, it will be vectorized with higher probability 1419 /// after removing duplicates. Currently the SLP vectorizer supports only 1420 /// vectorization of the power-of-2 number of unique scalars. 1421 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1422 Value *IdxLaneV = getData(Idx, Lane).V; 1423 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1424 return 0; 1425 SmallPtrSet<Value *, 4> Uniques; 1426 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1427 if (Ln == Lane) 1428 continue; 1429 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1430 if (!isa<Instruction>(OpIdxLnV)) 1431 return 0; 1432 Uniques.insert(OpIdxLnV); 1433 } 1434 int UniquesCount = Uniques.size(); 1435 int UniquesCntWithIdxLaneV = 1436 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1437 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1438 int UniquesCntWithOpIdxLaneV = 1439 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1440 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1441 return 0; 1442 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1443 UniquesCntWithOpIdxLaneV) - 1444 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1445 } 1446 1447 /// \param Lane lane of the operands under analysis. 1448 /// \param OpIdx operand index in \p Lane lane we're looking the best 1449 /// candidate for. 1450 /// \param Idx operand index of the current candidate value. 1451 /// \returns The additional score for the scalar which users are all 1452 /// vectorized. 1453 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1454 Value *IdxLaneV = getData(Idx, Lane).V; 1455 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1456 // Do not care about number of uses for vector-like instructions 1457 // (extractelement/extractvalue with constant indices), they are extracts 1458 // themselves and already externally used. Vectorization of such 1459 // instructions does not add extra extractelement instruction, just may 1460 // remove it. 1461 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1462 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1463 return LookAheadHeuristics::ScoreAllUserVectorized; 1464 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1465 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1466 return 0; 1467 return R.areAllUsersVectorized(IdxLaneI, None) 1468 ? LookAheadHeuristics::ScoreAllUserVectorized 1469 : 0; 1470 } 1471 1472 /// Score scaling factor for fully compatible instructions but with 1473 /// different number of external uses. Allows better selection of the 1474 /// instructions with less external uses. 1475 static const int ScoreScaleFactor = 10; 1476 1477 /// \Returns the look-ahead score, which tells us how much the sub-trees 1478 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1479 /// score. This helps break ties in an informed way when we cannot decide on 1480 /// the order of the operands by just considering the immediate 1481 /// predecessors. 1482 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1483 int Lane, unsigned OpIdx, unsigned Idx, 1484 bool &IsUsed) { 1485 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1486 LookAheadMaxDepth); 1487 // Keep track of the instruction stack as we recurse into the operands 1488 // during the look-ahead score exploration. 1489 int Score = 1490 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1491 /*CurrLevel=*/1, MainAltOps); 1492 if (Score) { 1493 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1494 if (Score <= -SplatScore) { 1495 // Set the minimum score for splat-like sequence to avoid setting 1496 // failed state. 1497 Score = 1; 1498 } else { 1499 Score += SplatScore; 1500 // Scale score to see the difference between different operands 1501 // and similar operands but all vectorized/not all vectorized 1502 // uses. It does not affect actual selection of the best 1503 // compatible operand in general, just allows to select the 1504 // operand with all vectorized uses. 1505 Score *= ScoreScaleFactor; 1506 Score += getExternalUseScore(Lane, OpIdx, Idx); 1507 IsUsed = true; 1508 } 1509 } 1510 return Score; 1511 } 1512 1513 /// Best defined scores per lanes between the passes. Used to choose the 1514 /// best operand (with the highest score) between the passes. 1515 /// The key - {Operand Index, Lane}. 1516 /// The value - the best score between the passes for the lane and the 1517 /// operand. 1518 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1519 BestScoresPerLanes; 1520 1521 // Search all operands in Ops[*][Lane] for the one that matches best 1522 // Ops[OpIdx][LastLane] and return its opreand index. 1523 // If no good match can be found, return None. 1524 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1525 ArrayRef<ReorderingMode> ReorderingModes, 1526 ArrayRef<Value *> MainAltOps) { 1527 unsigned NumOperands = getNumOperands(); 1528 1529 // The operand of the previous lane at OpIdx. 1530 Value *OpLastLane = getData(OpIdx, LastLane).V; 1531 1532 // Our strategy mode for OpIdx. 1533 ReorderingMode RMode = ReorderingModes[OpIdx]; 1534 if (RMode == ReorderingMode::Failed) 1535 return None; 1536 1537 // The linearized opcode of the operand at OpIdx, Lane. 1538 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1539 1540 // The best operand index and its score. 1541 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1542 // are using the score to differentiate between the two. 1543 struct BestOpData { 1544 Optional<unsigned> Idx = None; 1545 unsigned Score = 0; 1546 } BestOp; 1547 BestOp.Score = 1548 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1549 .first->second; 1550 1551 // Track if the operand must be marked as used. If the operand is set to 1552 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1553 // want to reestimate the operands again on the following iterations). 1554 bool IsUsed = 1555 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1556 // Iterate through all unused operands and look for the best. 1557 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1558 // Get the operand at Idx and Lane. 1559 OperandData &OpData = getData(Idx, Lane); 1560 Value *Op = OpData.V; 1561 bool OpAPO = OpData.APO; 1562 1563 // Skip already selected operands. 1564 if (OpData.IsUsed) 1565 continue; 1566 1567 // Skip if we are trying to move the operand to a position with a 1568 // different opcode in the linearized tree form. This would break the 1569 // semantics. 1570 if (OpAPO != OpIdxAPO) 1571 continue; 1572 1573 // Look for an operand that matches the current mode. 1574 switch (RMode) { 1575 case ReorderingMode::Load: 1576 case ReorderingMode::Constant: 1577 case ReorderingMode::Opcode: { 1578 bool LeftToRight = Lane > LastLane; 1579 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1580 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1581 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1582 OpIdx, Idx, IsUsed); 1583 if (Score > static_cast<int>(BestOp.Score)) { 1584 BestOp.Idx = Idx; 1585 BestOp.Score = Score; 1586 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1587 } 1588 break; 1589 } 1590 case ReorderingMode::Splat: 1591 if (Op == OpLastLane) 1592 BestOp.Idx = Idx; 1593 break; 1594 case ReorderingMode::Failed: 1595 llvm_unreachable("Not expected Failed reordering mode."); 1596 } 1597 } 1598 1599 if (BestOp.Idx) { 1600 getData(*BestOp.Idx, Lane).IsUsed = IsUsed; 1601 return BestOp.Idx; 1602 } 1603 // If we could not find a good match return None. 1604 return None; 1605 } 1606 1607 /// Helper for reorderOperandVecs. 1608 /// \returns the lane that we should start reordering from. This is the one 1609 /// which has the least number of operands that can freely move about or 1610 /// less profitable because it already has the most optimal set of operands. 1611 unsigned getBestLaneToStartReordering() const { 1612 unsigned Min = UINT_MAX; 1613 unsigned SameOpNumber = 0; 1614 // std::pair<unsigned, unsigned> is used to implement a simple voting 1615 // algorithm and choose the lane with the least number of operands that 1616 // can freely move about or less profitable because it already has the 1617 // most optimal set of operands. The first unsigned is a counter for 1618 // voting, the second unsigned is the counter of lanes with instructions 1619 // with same/alternate opcodes and same parent basic block. 1620 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1621 // Try to be closer to the original results, if we have multiple lanes 1622 // with same cost. If 2 lanes have the same cost, use the one with the 1623 // lowest index. 1624 for (int I = getNumLanes(); I > 0; --I) { 1625 unsigned Lane = I - 1; 1626 OperandsOrderData NumFreeOpsHash = 1627 getMaxNumOperandsThatCanBeReordered(Lane); 1628 // Compare the number of operands that can move and choose the one with 1629 // the least number. 1630 if (NumFreeOpsHash.NumOfAPOs < Min) { 1631 Min = NumFreeOpsHash.NumOfAPOs; 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap.clear(); 1634 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1635 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1636 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1637 // Select the most optimal lane in terms of number of operands that 1638 // should be moved around. 1639 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1640 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1641 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1642 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1643 auto It = HashMap.find(NumFreeOpsHash.Hash); 1644 if (It == HashMap.end()) 1645 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1646 else 1647 ++It->second.first; 1648 } 1649 } 1650 // Select the lane with the minimum counter. 1651 unsigned BestLane = 0; 1652 unsigned CntMin = UINT_MAX; 1653 for (const auto &Data : reverse(HashMap)) { 1654 if (Data.second.first < CntMin) { 1655 CntMin = Data.second.first; 1656 BestLane = Data.second.second; 1657 } 1658 } 1659 return BestLane; 1660 } 1661 1662 /// Data structure that helps to reorder operands. 1663 struct OperandsOrderData { 1664 /// The best number of operands with the same APOs, which can be 1665 /// reordered. 1666 unsigned NumOfAPOs = UINT_MAX; 1667 /// Number of operands with the same/alternate instruction opcode and 1668 /// parent. 1669 unsigned NumOpsWithSameOpcodeParent = 0; 1670 /// Hash for the actual operands ordering. 1671 /// Used to count operands, actually their position id and opcode 1672 /// value. It is used in the voting mechanism to find the lane with the 1673 /// least number of operands that can freely move about or less profitable 1674 /// because it already has the most optimal set of operands. Can be 1675 /// replaced with SmallVector<unsigned> instead but hash code is faster 1676 /// and requires less memory. 1677 unsigned Hash = 0; 1678 }; 1679 /// \returns the maximum number of operands that are allowed to be reordered 1680 /// for \p Lane and the number of compatible instructions(with the same 1681 /// parent/opcode). This is used as a heuristic for selecting the first lane 1682 /// to start operand reordering. 1683 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1684 unsigned CntTrue = 0; 1685 unsigned NumOperands = getNumOperands(); 1686 // Operands with the same APO can be reordered. We therefore need to count 1687 // how many of them we have for each APO, like this: Cnt[APO] = x. 1688 // Since we only have two APOs, namely true and false, we can avoid using 1689 // a map. Instead we can simply count the number of operands that 1690 // correspond to one of them (in this case the 'true' APO), and calculate 1691 // the other by subtracting it from the total number of operands. 1692 // Operands with the same instruction opcode and parent are more 1693 // profitable since we don't need to move them in many cases, with a high 1694 // probability such lane already can be vectorized effectively. 1695 bool AllUndefs = true; 1696 unsigned NumOpsWithSameOpcodeParent = 0; 1697 Instruction *OpcodeI = nullptr; 1698 BasicBlock *Parent = nullptr; 1699 unsigned Hash = 0; 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 const OperandData &OpData = getData(OpIdx, Lane); 1702 if (OpData.APO) 1703 ++CntTrue; 1704 // Use Boyer-Moore majority voting for finding the majority opcode and 1705 // the number of times it occurs. 1706 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1707 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1708 I->getParent() != Parent) { 1709 if (NumOpsWithSameOpcodeParent == 0) { 1710 NumOpsWithSameOpcodeParent = 1; 1711 OpcodeI = I; 1712 Parent = I->getParent(); 1713 } else { 1714 --NumOpsWithSameOpcodeParent; 1715 } 1716 } else { 1717 ++NumOpsWithSameOpcodeParent; 1718 } 1719 } 1720 Hash = hash_combine( 1721 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1722 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1723 } 1724 if (AllUndefs) 1725 return {}; 1726 OperandsOrderData Data; 1727 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1728 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1729 Data.Hash = Hash; 1730 return Data; 1731 } 1732 1733 /// Go through the instructions in VL and append their operands. 1734 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1735 assert(!VL.empty() && "Bad VL"); 1736 assert((empty() || VL.size() == getNumLanes()) && 1737 "Expected same number of lanes"); 1738 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1739 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1740 OpsVec.resize(NumOperands); 1741 unsigned NumLanes = VL.size(); 1742 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1743 OpsVec[OpIdx].resize(NumLanes); 1744 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1745 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1746 // Our tree has just 3 nodes: the root and two operands. 1747 // It is therefore trivial to get the APO. We only need to check the 1748 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1749 // RHS operand. The LHS operand of both add and sub is never attached 1750 // to an inversese operation in the linearized form, therefore its APO 1751 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1752 1753 // Since operand reordering is performed on groups of commutative 1754 // operations or alternating sequences (e.g., +, -), we can safely 1755 // tell the inverse operations by checking commutativity. 1756 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1757 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1758 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1759 APO, false}; 1760 } 1761 } 1762 } 1763 1764 /// \returns the number of operands. 1765 unsigned getNumOperands() const { return OpsVec.size(); } 1766 1767 /// \returns the number of lanes. 1768 unsigned getNumLanes() const { return OpsVec[0].size(); } 1769 1770 /// \returns the operand value at \p OpIdx and \p Lane. 1771 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1772 return getData(OpIdx, Lane).V; 1773 } 1774 1775 /// \returns true if the data structure is empty. 1776 bool empty() const { return OpsVec.empty(); } 1777 1778 /// Clears the data. 1779 void clear() { OpsVec.clear(); } 1780 1781 /// \Returns true if there are enough operands identical to \p Op to fill 1782 /// the whole vector. 1783 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1784 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1785 bool OpAPO = getData(OpIdx, Lane).APO; 1786 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1787 if (Ln == Lane) 1788 continue; 1789 // This is set to true if we found a candidate for broadcast at Lane. 1790 bool FoundCandidate = false; 1791 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1792 OperandData &Data = getData(OpI, Ln); 1793 if (Data.APO != OpAPO || Data.IsUsed) 1794 continue; 1795 if (Data.V == Op) { 1796 FoundCandidate = true; 1797 Data.IsUsed = true; 1798 break; 1799 } 1800 } 1801 if (!FoundCandidate) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 public: 1808 /// Initialize with all the operands of the instruction vector \p RootVL. 1809 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1810 ScalarEvolution &SE, const BoUpSLP &R) 1811 : DL(DL), SE(SE), R(R) { 1812 // Append all the operands of RootVL. 1813 appendOperandsOfVL(RootVL); 1814 } 1815 1816 /// \Returns a value vector with the operands across all lanes for the 1817 /// opearnd at \p OpIdx. 1818 ValueList getVL(unsigned OpIdx) const { 1819 ValueList OpVL(OpsVec[OpIdx].size()); 1820 assert(OpsVec[OpIdx].size() == getNumLanes() && 1821 "Expected same num of lanes across all operands"); 1822 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1823 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1824 return OpVL; 1825 } 1826 1827 // Performs operand reordering for 2 or more operands. 1828 // The original operands are in OrigOps[OpIdx][Lane]. 1829 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1830 void reorder() { 1831 unsigned NumOperands = getNumOperands(); 1832 unsigned NumLanes = getNumLanes(); 1833 // Each operand has its own mode. We are using this mode to help us select 1834 // the instructions for each lane, so that they match best with the ones 1835 // we have selected so far. 1836 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1837 1838 // This is a greedy single-pass algorithm. We are going over each lane 1839 // once and deciding on the best order right away with no back-tracking. 1840 // However, in order to increase its effectiveness, we start with the lane 1841 // that has operands that can move the least. For example, given the 1842 // following lanes: 1843 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1844 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1845 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1846 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1847 // we will start at Lane 1, since the operands of the subtraction cannot 1848 // be reordered. Then we will visit the rest of the lanes in a circular 1849 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1850 1851 // Find the first lane that we will start our search from. 1852 unsigned FirstLane = getBestLaneToStartReordering(); 1853 1854 // Initialize the modes. 1855 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1856 Value *OpLane0 = getValue(OpIdx, FirstLane); 1857 // Keep track if we have instructions with all the same opcode on one 1858 // side. 1859 if (isa<LoadInst>(OpLane0)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Load; 1861 else if (isa<Instruction>(OpLane0)) { 1862 // Check if OpLane0 should be broadcast. 1863 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1864 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1865 else 1866 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1867 } 1868 else if (isa<Constant>(OpLane0)) 1869 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1870 else if (isa<Argument>(OpLane0)) 1871 // Our best hope is a Splat. It may save some cost in some cases. 1872 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1873 else 1874 // NOTE: This should be unreachable. 1875 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1876 } 1877 1878 // Check that we don't have same operands. No need to reorder if operands 1879 // are just perfect diamond or shuffled diamond match. Do not do it only 1880 // for possible broadcasts or non-power of 2 number of scalars (just for 1881 // now). 1882 auto &&SkipReordering = [this]() { 1883 SmallPtrSet<Value *, 4> UniqueValues; 1884 ArrayRef<OperandData> Op0 = OpsVec.front(); 1885 for (const OperandData &Data : Op0) 1886 UniqueValues.insert(Data.V); 1887 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1888 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1889 return !UniqueValues.contains(Data.V); 1890 })) 1891 return false; 1892 } 1893 // TODO: Check if we can remove a check for non-power-2 number of 1894 // scalars after full support of non-power-2 vectorization. 1895 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1896 }; 1897 1898 // If the initial strategy fails for any of the operand indexes, then we 1899 // perform reordering again in a second pass. This helps avoid assigning 1900 // high priority to the failed strategy, and should improve reordering for 1901 // the non-failed operand indexes. 1902 for (int Pass = 0; Pass != 2; ++Pass) { 1903 // Check if no need to reorder operands since they're are perfect or 1904 // shuffled diamond match. 1905 // Need to to do it to avoid extra external use cost counting for 1906 // shuffled matches, which may cause regressions. 1907 if (SkipReordering()) 1908 break; 1909 // Skip the second pass if the first pass did not fail. 1910 bool StrategyFailed = false; 1911 // Mark all operand data as free to use. 1912 clearUsed(); 1913 // We keep the original operand order for the FirstLane, so reorder the 1914 // rest of the lanes. We are visiting the nodes in a circular fashion, 1915 // using FirstLane as the center point and increasing the radius 1916 // distance. 1917 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1918 for (unsigned I = 0; I < NumOperands; ++I) 1919 MainAltOps[I].push_back(getData(I, FirstLane).V); 1920 1921 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1922 // Visit the lane on the right and then the lane on the left. 1923 for (int Direction : {+1, -1}) { 1924 int Lane = FirstLane + Direction * Distance; 1925 if (Lane < 0 || Lane >= (int)NumLanes) 1926 continue; 1927 int LastLane = Lane - Direction; 1928 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1929 "Out of bounds"); 1930 // Look for a good match for each operand. 1931 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1932 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1933 Optional<unsigned> BestIdx = getBestOperand( 1934 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1935 // By not selecting a value, we allow the operands that follow to 1936 // select a better matching value. We will get a non-null value in 1937 // the next run of getBestOperand(). 1938 if (BestIdx) { 1939 // Swap the current operand with the one returned by 1940 // getBestOperand(). 1941 swap(OpIdx, *BestIdx, Lane); 1942 } else { 1943 // We failed to find a best operand, set mode to 'Failed'. 1944 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1945 // Enable the second pass. 1946 StrategyFailed = true; 1947 } 1948 // Try to get the alternate opcode and follow it during analysis. 1949 if (MainAltOps[OpIdx].size() != 2) { 1950 OperandData &AltOp = getData(OpIdx, Lane); 1951 InstructionsState OpS = 1952 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1953 if (OpS.getOpcode() && OpS.isAltShuffle()) 1954 MainAltOps[OpIdx].push_back(AltOp.V); 1955 } 1956 } 1957 } 1958 } 1959 // Skip second pass if the strategy did not fail. 1960 if (!StrategyFailed) 1961 break; 1962 } 1963 } 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1967 switch (RMode) { 1968 case ReorderingMode::Load: 1969 return "Load"; 1970 case ReorderingMode::Opcode: 1971 return "Opcode"; 1972 case ReorderingMode::Constant: 1973 return "Constant"; 1974 case ReorderingMode::Splat: 1975 return "Splat"; 1976 case ReorderingMode::Failed: 1977 return "Failed"; 1978 } 1979 llvm_unreachable("Unimplemented Reordering Type"); 1980 } 1981 1982 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1983 raw_ostream &OS) { 1984 return OS << getModeStr(RMode); 1985 } 1986 1987 /// Debug print. 1988 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1989 printMode(RMode, dbgs()); 1990 } 1991 1992 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1993 return printMode(RMode, OS); 1994 } 1995 1996 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1997 const unsigned Indent = 2; 1998 unsigned Cnt = 0; 1999 for (const OperandDataVec &OpDataVec : OpsVec) { 2000 OS << "Operand " << Cnt++ << "\n"; 2001 for (const OperandData &OpData : OpDataVec) { 2002 OS.indent(Indent) << "{"; 2003 if (Value *V = OpData.V) 2004 OS << *V; 2005 else 2006 OS << "null"; 2007 OS << ", APO:" << OpData.APO << "}\n"; 2008 } 2009 OS << "\n"; 2010 } 2011 return OS; 2012 } 2013 2014 /// Debug print. 2015 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2016 #endif 2017 }; 2018 2019 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2020 /// for a pair which have highest score deemed to have best chance to form 2021 /// root of profitable tree to vectorize. Return None if no candidate scored 2022 /// above the LookAheadHeuristics::ScoreFail. 2023 /// \param Limit Lower limit of the cost, considered to be good enough score. 2024 Optional<int> 2025 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2026 int Limit = LookAheadHeuristics::ScoreFail) { 2027 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2028 RootLookAheadMaxDepth); 2029 int BestScore = Limit; 2030 Optional<int> Index = None; 2031 for (int I : seq<int>(0, Candidates.size())) { 2032 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2033 Candidates[I].second, 2034 /*U1=*/nullptr, /*U2=*/nullptr, 2035 /*Level=*/1, None); 2036 if (Score > BestScore) { 2037 BestScore = Score; 2038 Index = I; 2039 } 2040 } 2041 return Index; 2042 } 2043 2044 /// Checks if the instruction is marked for deletion. 2045 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2046 2047 /// Removes an instruction from its block and eventually deletes it. 2048 /// It's like Instruction::eraseFromParent() except that the actual deletion 2049 /// is delayed until BoUpSLP is destructed. 2050 void eraseInstruction(Instruction *I) { 2051 DeletedInstructions.insert(I); 2052 } 2053 2054 /// Checks if the instruction was already analyzed for being possible 2055 /// reduction root. 2056 bool isAnalyzedReductionRoot(Instruction *I) const { 2057 return AnalyzedReductionsRoots.count(I); 2058 } 2059 /// Register given instruction as already analyzed for being possible 2060 /// reduction root. 2061 void analyzedReductionRoot(Instruction *I) { 2062 AnalyzedReductionsRoots.insert(I); 2063 } 2064 /// Checks if the provided list of reduced values was checked already for 2065 /// vectorization. 2066 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2067 return AnalyzedReductionVals.contains(hash_value(VL)); 2068 } 2069 /// Adds the list of reduced values to list of already checked values for the 2070 /// vectorization. 2071 void analyzedReductionVals(ArrayRef<Value *> VL) { 2072 AnalyzedReductionVals.insert(hash_value(VL)); 2073 } 2074 /// Clear the list of the analyzed reduction root instructions. 2075 void clearReductionData() { 2076 AnalyzedReductionsRoots.clear(); 2077 AnalyzedReductionVals.clear(); 2078 } 2079 /// Checks if the given value is gathered in one of the nodes. 2080 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { 2081 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); 2082 } 2083 2084 ~BoUpSLP(); 2085 2086 private: 2087 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2088 /// reordering (i.e. the operands can be reordered because they have only one 2089 /// user and reordarable). 2090 /// \param ReorderableGathers List of all gather nodes that require reordering 2091 /// (e.g., gather of extractlements or partially vectorizable loads). 2092 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2093 /// reordering, subset of \p NonVectorized. 2094 bool 2095 canReorderOperands(TreeEntry *UserTE, 2096 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2097 ArrayRef<TreeEntry *> ReorderableGathers, 2098 SmallVectorImpl<TreeEntry *> &GatherOps); 2099 2100 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2101 /// if any. If it is not vectorized (gather node), returns nullptr. 2102 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2103 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2104 TreeEntry *TE = nullptr; 2105 const auto *It = find_if(VL, [this, &TE](Value *V) { 2106 TE = getTreeEntry(V); 2107 return TE; 2108 }); 2109 if (It != VL.end() && TE->isSame(VL)) 2110 return TE; 2111 return nullptr; 2112 } 2113 2114 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2115 /// if any. If it is not vectorized (gather node), returns nullptr. 2116 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2117 unsigned OpIdx) const { 2118 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2119 const_cast<TreeEntry *>(UserTE), OpIdx); 2120 } 2121 2122 /// Checks if all users of \p I are the part of the vectorization tree. 2123 bool areAllUsersVectorized(Instruction *I, 2124 ArrayRef<Value *> VectorizedVals) const; 2125 2126 /// \returns the cost of the vectorizable entry. 2127 InstructionCost getEntryCost(const TreeEntry *E, 2128 ArrayRef<Value *> VectorizedVals); 2129 2130 /// This is the recursive part of buildTree. 2131 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2132 const EdgeInfo &EI); 2133 2134 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2135 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2136 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2137 /// returns false, setting \p CurrentOrder to either an empty vector or a 2138 /// non-identity permutation that allows to reuse extract instructions. 2139 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2140 SmallVectorImpl<unsigned> &CurrentOrder) const; 2141 2142 /// Vectorize a single entry in the tree. 2143 Value *vectorizeTree(TreeEntry *E); 2144 2145 /// Vectorize a single entry in the tree, starting in \p VL. 2146 Value *vectorizeTree(ArrayRef<Value *> VL); 2147 2148 /// Create a new vector from a list of scalar values. Produces a sequence 2149 /// which exploits values reused across lanes, and arranges the inserts 2150 /// for ease of later optimization. 2151 Value *createBuildVector(ArrayRef<Value *> VL); 2152 2153 /// \returns the scalarization cost for this type. Scalarization in this 2154 /// context means the creation of vectors from a group of scalars. If \p 2155 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2156 /// vector elements. 2157 InstructionCost getGatherCost(FixedVectorType *Ty, 2158 const APInt &ShuffledIndices, 2159 bool NeedToShuffle) const; 2160 2161 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2162 /// tree entries. 2163 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2164 /// previous tree entries. \p Mask is filled with the shuffle mask. 2165 Optional<TargetTransformInfo::ShuffleKind> 2166 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2167 SmallVectorImpl<const TreeEntry *> &Entries); 2168 2169 /// \returns the scalarization cost for this list of values. Assuming that 2170 /// this subtree gets vectorized, we may need to extract the values from the 2171 /// roots. This method calculates the cost of extracting the values. 2172 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2173 2174 /// Set the Builder insert point to one after the last instruction in 2175 /// the bundle 2176 void setInsertPointAfterBundle(const TreeEntry *E); 2177 2178 /// \returns a vector from a collection of scalars in \p VL. 2179 Value *gather(ArrayRef<Value *> VL); 2180 2181 /// \returns whether the VectorizableTree is fully vectorizable and will 2182 /// be beneficial even the tree height is tiny. 2183 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2184 2185 /// Reorder commutative or alt operands to get better probability of 2186 /// generating vectorized code. 2187 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2188 SmallVectorImpl<Value *> &Left, 2189 SmallVectorImpl<Value *> &Right, 2190 const DataLayout &DL, 2191 ScalarEvolution &SE, 2192 const BoUpSLP &R); 2193 2194 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2195 /// users of \p TE and collects the stores. It returns the map from the store 2196 /// pointers to the collected stores. 2197 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2198 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2199 2200 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2201 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2202 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2203 /// when compared to the sorted vector. 2204 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2205 OrdersType &ReorderIndices) const; 2206 2207 /// Iterates through the users of \p TE, looking for scalar stores that can be 2208 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2209 /// their order and builds an order index vector for each store bundle. It 2210 /// returns all these order vectors found. 2211 /// We run this after the tree has formed, otherwise we may come across user 2212 /// instructions that are not yet in the tree. 2213 SmallVector<OrdersType, 1> 2214 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2215 2216 struct TreeEntry { 2217 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2218 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2219 2220 /// \returns true if the scalars in VL are equal to this entry. 2221 bool isSame(ArrayRef<Value *> VL) const { 2222 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2223 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2224 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2225 return VL.size() == Mask.size() && 2226 std::equal(VL.begin(), VL.end(), Mask.begin(), 2227 [Scalars](Value *V, int Idx) { 2228 return (isa<UndefValue>(V) && 2229 Idx == UndefMaskElem) || 2230 (Idx != UndefMaskElem && V == Scalars[Idx]); 2231 }); 2232 }; 2233 if (!ReorderIndices.empty()) { 2234 // TODO: implement matching if the nodes are just reordered, still can 2235 // treat the vector as the same if the list of scalars matches VL 2236 // directly, without reordering. 2237 SmallVector<int> Mask; 2238 inversePermutation(ReorderIndices, Mask); 2239 if (VL.size() == Scalars.size()) 2240 return IsSame(Scalars, Mask); 2241 if (VL.size() == ReuseShuffleIndices.size()) { 2242 ::addMask(Mask, ReuseShuffleIndices); 2243 return IsSame(Scalars, Mask); 2244 } 2245 return false; 2246 } 2247 return IsSame(Scalars, ReuseShuffleIndices); 2248 } 2249 2250 /// \returns true if current entry has same operands as \p TE. 2251 bool hasEqualOperands(const TreeEntry &TE) const { 2252 if (TE.getNumOperands() != getNumOperands()) 2253 return false; 2254 SmallBitVector Used(getNumOperands()); 2255 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2256 unsigned PrevCount = Used.count(); 2257 for (unsigned K = 0; K < E; ++K) { 2258 if (Used.test(K)) 2259 continue; 2260 if (getOperand(K) == TE.getOperand(I)) { 2261 Used.set(K); 2262 break; 2263 } 2264 } 2265 // Check if we actually found the matching operand. 2266 if (PrevCount == Used.count()) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 /// \return Final vectorization factor for the node. Defined by the total 2273 /// number of vectorized scalars, including those, used several times in the 2274 /// entry and counted in the \a ReuseShuffleIndices, if any. 2275 unsigned getVectorFactor() const { 2276 if (!ReuseShuffleIndices.empty()) 2277 return ReuseShuffleIndices.size(); 2278 return Scalars.size(); 2279 }; 2280 2281 /// A vector of scalars. 2282 ValueList Scalars; 2283 2284 /// The Scalars are vectorized into this value. It is initialized to Null. 2285 Value *VectorizedValue = nullptr; 2286 2287 /// Do we need to gather this sequence or vectorize it 2288 /// (either with vector instruction or with scatter/gather 2289 /// intrinsics for store/load)? 2290 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2291 EntryState State; 2292 2293 /// Does this sequence require some shuffling? 2294 SmallVector<int, 4> ReuseShuffleIndices; 2295 2296 /// Does this entry require reordering? 2297 SmallVector<unsigned, 4> ReorderIndices; 2298 2299 /// Points back to the VectorizableTree. 2300 /// 2301 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2302 /// to be a pointer and needs to be able to initialize the child iterator. 2303 /// Thus we need a reference back to the container to translate the indices 2304 /// to entries. 2305 VecTreeTy &Container; 2306 2307 /// The TreeEntry index containing the user of this entry. We can actually 2308 /// have multiple users so the data structure is not truly a tree. 2309 SmallVector<EdgeInfo, 1> UserTreeIndices; 2310 2311 /// The index of this treeEntry in VectorizableTree. 2312 int Idx = -1; 2313 2314 private: 2315 /// The operands of each instruction in each lane Operands[op_index][lane]. 2316 /// Note: This helps avoid the replication of the code that performs the 2317 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2318 SmallVector<ValueList, 2> Operands; 2319 2320 /// The main/alternate instruction. 2321 Instruction *MainOp = nullptr; 2322 Instruction *AltOp = nullptr; 2323 2324 public: 2325 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2326 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2327 if (Operands.size() < OpIdx + 1) 2328 Operands.resize(OpIdx + 1); 2329 assert(Operands[OpIdx].empty() && "Already resized?"); 2330 assert(OpVL.size() <= Scalars.size() && 2331 "Number of operands is greater than the number of scalars."); 2332 Operands[OpIdx].resize(OpVL.size()); 2333 copy(OpVL, Operands[OpIdx].begin()); 2334 } 2335 2336 /// Set the operands of this bundle in their original order. 2337 void setOperandsInOrder() { 2338 assert(Operands.empty() && "Already initialized?"); 2339 auto *I0 = cast<Instruction>(Scalars[0]); 2340 Operands.resize(I0->getNumOperands()); 2341 unsigned NumLanes = Scalars.size(); 2342 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2343 OpIdx != NumOperands; ++OpIdx) { 2344 Operands[OpIdx].resize(NumLanes); 2345 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2346 auto *I = cast<Instruction>(Scalars[Lane]); 2347 assert(I->getNumOperands() == NumOperands && 2348 "Expected same number of operands"); 2349 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2350 } 2351 } 2352 } 2353 2354 /// Reorders operands of the node to the given mask \p Mask. 2355 void reorderOperands(ArrayRef<int> Mask) { 2356 for (ValueList &Operand : Operands) 2357 reorderScalars(Operand, Mask); 2358 } 2359 2360 /// \returns the \p OpIdx operand of this TreeEntry. 2361 ValueList &getOperand(unsigned OpIdx) { 2362 assert(OpIdx < Operands.size() && "Off bounds"); 2363 return Operands[OpIdx]; 2364 } 2365 2366 /// \returns the \p OpIdx operand of this TreeEntry. 2367 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2368 assert(OpIdx < Operands.size() && "Off bounds"); 2369 return Operands[OpIdx]; 2370 } 2371 2372 /// \returns the number of operands. 2373 unsigned getNumOperands() const { return Operands.size(); } 2374 2375 /// \return the single \p OpIdx operand. 2376 Value *getSingleOperand(unsigned OpIdx) const { 2377 assert(OpIdx < Operands.size() && "Off bounds"); 2378 assert(!Operands[OpIdx].empty() && "No operand available"); 2379 return Operands[OpIdx][0]; 2380 } 2381 2382 /// Some of the instructions in the list have alternate opcodes. 2383 bool isAltShuffle() const { return MainOp != AltOp; } 2384 2385 bool isOpcodeOrAlt(Instruction *I) const { 2386 unsigned CheckedOpcode = I->getOpcode(); 2387 return (getOpcode() == CheckedOpcode || 2388 getAltOpcode() == CheckedOpcode); 2389 } 2390 2391 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2392 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2393 /// \p OpValue. 2394 Value *isOneOf(Value *Op) const { 2395 auto *I = dyn_cast<Instruction>(Op); 2396 if (I && isOpcodeOrAlt(I)) 2397 return Op; 2398 return MainOp; 2399 } 2400 2401 void setOperations(const InstructionsState &S) { 2402 MainOp = S.MainOp; 2403 AltOp = S.AltOp; 2404 } 2405 2406 Instruction *getMainOp() const { 2407 return MainOp; 2408 } 2409 2410 Instruction *getAltOp() const { 2411 return AltOp; 2412 } 2413 2414 /// The main/alternate opcodes for the list of instructions. 2415 unsigned getOpcode() const { 2416 return MainOp ? MainOp->getOpcode() : 0; 2417 } 2418 2419 unsigned getAltOpcode() const { 2420 return AltOp ? AltOp->getOpcode() : 0; 2421 } 2422 2423 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2424 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2425 int findLaneForValue(Value *V) const { 2426 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2427 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2428 if (!ReorderIndices.empty()) 2429 FoundLane = ReorderIndices[FoundLane]; 2430 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2431 if (!ReuseShuffleIndices.empty()) { 2432 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2433 find(ReuseShuffleIndices, FoundLane)); 2434 } 2435 return FoundLane; 2436 } 2437 2438 #ifndef NDEBUG 2439 /// Debug printer. 2440 LLVM_DUMP_METHOD void dump() const { 2441 dbgs() << Idx << ".\n"; 2442 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2443 dbgs() << "Operand " << OpI << ":\n"; 2444 for (const Value *V : Operands[OpI]) 2445 dbgs().indent(2) << *V << "\n"; 2446 } 2447 dbgs() << "Scalars: \n"; 2448 for (Value *V : Scalars) 2449 dbgs().indent(2) << *V << "\n"; 2450 dbgs() << "State: "; 2451 switch (State) { 2452 case Vectorize: 2453 dbgs() << "Vectorize\n"; 2454 break; 2455 case ScatterVectorize: 2456 dbgs() << "ScatterVectorize\n"; 2457 break; 2458 case NeedToGather: 2459 dbgs() << "NeedToGather\n"; 2460 break; 2461 } 2462 dbgs() << "MainOp: "; 2463 if (MainOp) 2464 dbgs() << *MainOp << "\n"; 2465 else 2466 dbgs() << "NULL\n"; 2467 dbgs() << "AltOp: "; 2468 if (AltOp) 2469 dbgs() << *AltOp << "\n"; 2470 else 2471 dbgs() << "NULL\n"; 2472 dbgs() << "VectorizedValue: "; 2473 if (VectorizedValue) 2474 dbgs() << *VectorizedValue << "\n"; 2475 else 2476 dbgs() << "NULL\n"; 2477 dbgs() << "ReuseShuffleIndices: "; 2478 if (ReuseShuffleIndices.empty()) 2479 dbgs() << "Empty"; 2480 else 2481 for (int ReuseIdx : ReuseShuffleIndices) 2482 dbgs() << ReuseIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "ReorderIndices: "; 2485 for (unsigned ReorderIdx : ReorderIndices) 2486 dbgs() << ReorderIdx << ", "; 2487 dbgs() << "\n"; 2488 dbgs() << "UserTreeIndices: "; 2489 for (const auto &EInfo : UserTreeIndices) 2490 dbgs() << EInfo << ", "; 2491 dbgs() << "\n"; 2492 } 2493 #endif 2494 }; 2495 2496 #ifndef NDEBUG 2497 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2498 InstructionCost VecCost, 2499 InstructionCost ScalarCost) const { 2500 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2501 dbgs() << "SLP: Costs:\n"; 2502 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2503 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2504 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2505 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2506 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2507 } 2508 #endif 2509 2510 /// Create a new VectorizableTree entry. 2511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2512 const InstructionsState &S, 2513 const EdgeInfo &UserTreeIdx, 2514 ArrayRef<int> ReuseShuffleIndices = None, 2515 ArrayRef<unsigned> ReorderIndices = None) { 2516 TreeEntry::EntryState EntryState = 2517 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2518 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2519 ReuseShuffleIndices, ReorderIndices); 2520 } 2521 2522 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2523 TreeEntry::EntryState EntryState, 2524 Optional<ScheduleData *> Bundle, 2525 const InstructionsState &S, 2526 const EdgeInfo &UserTreeIdx, 2527 ArrayRef<int> ReuseShuffleIndices = None, 2528 ArrayRef<unsigned> ReorderIndices = None) { 2529 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2530 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2531 "Need to vectorize gather entry?"); 2532 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2533 TreeEntry *Last = VectorizableTree.back().get(); 2534 Last->Idx = VectorizableTree.size() - 1; 2535 Last->State = EntryState; 2536 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2537 ReuseShuffleIndices.end()); 2538 if (ReorderIndices.empty()) { 2539 Last->Scalars.assign(VL.begin(), VL.end()); 2540 Last->setOperations(S); 2541 } else { 2542 // Reorder scalars and build final mask. 2543 Last->Scalars.assign(VL.size(), nullptr); 2544 transform(ReorderIndices, Last->Scalars.begin(), 2545 [VL](unsigned Idx) -> Value * { 2546 if (Idx >= VL.size()) 2547 return UndefValue::get(VL.front()->getType()); 2548 return VL[Idx]; 2549 }); 2550 InstructionsState S = getSameOpcode(Last->Scalars); 2551 Last->setOperations(S); 2552 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2553 } 2554 if (Last->State != TreeEntry::NeedToGather) { 2555 for (Value *V : VL) { 2556 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2557 ScalarToTreeEntry[V] = Last; 2558 } 2559 // Update the scheduler bundle to point to this TreeEntry. 2560 ScheduleData *BundleMember = *Bundle; 2561 assert((BundleMember || isa<PHINode>(S.MainOp) || 2562 isVectorLikeInstWithConstOps(S.MainOp) || 2563 doesNotNeedToSchedule(VL)) && 2564 "Bundle and VL out of sync"); 2565 if (BundleMember) { 2566 for (Value *V : VL) { 2567 if (doesNotNeedToBeScheduled(V)) 2568 continue; 2569 assert(BundleMember && "Unexpected end of bundle."); 2570 BundleMember->TE = Last; 2571 BundleMember = BundleMember->NextInBundle; 2572 } 2573 } 2574 assert(!BundleMember && "Bundle and VL out of sync"); 2575 } else { 2576 MustGather.insert(VL.begin(), VL.end()); 2577 } 2578 2579 if (UserTreeIdx.UserTE) 2580 Last->UserTreeIndices.push_back(UserTreeIdx); 2581 2582 return Last; 2583 } 2584 2585 /// -- Vectorization State -- 2586 /// Holds all of the tree entries. 2587 TreeEntry::VecTreeTy VectorizableTree; 2588 2589 #ifndef NDEBUG 2590 /// Debug printer. 2591 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2592 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2593 VectorizableTree[Id]->dump(); 2594 dbgs() << "\n"; 2595 } 2596 } 2597 #endif 2598 2599 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2600 2601 const TreeEntry *getTreeEntry(Value *V) const { 2602 return ScalarToTreeEntry.lookup(V); 2603 } 2604 2605 /// Maps a specific scalar to its tree entry. 2606 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2607 2608 /// Maps a value to the proposed vectorizable size. 2609 SmallDenseMap<Value *, unsigned> InstrElementSize; 2610 2611 /// A list of scalars that we found that we need to keep as scalars. 2612 ValueSet MustGather; 2613 2614 /// This POD struct describes one external user in the vectorized tree. 2615 struct ExternalUser { 2616 ExternalUser(Value *S, llvm::User *U, int L) 2617 : Scalar(S), User(U), Lane(L) {} 2618 2619 // Which scalar in our function. 2620 Value *Scalar; 2621 2622 // Which user that uses the scalar. 2623 llvm::User *User; 2624 2625 // Which lane does the scalar belong to. 2626 int Lane; 2627 }; 2628 using UserList = SmallVector<ExternalUser, 16>; 2629 2630 /// Checks if two instructions may access the same memory. 2631 /// 2632 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2633 /// is invariant in the calling loop. 2634 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2635 Instruction *Inst2) { 2636 // First check if the result is already in the cache. 2637 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2638 Optional<bool> &result = AliasCache[key]; 2639 if (result) { 2640 return result.value(); 2641 } 2642 bool aliased = true; 2643 if (Loc1.Ptr && isSimple(Inst1)) 2644 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2645 // Store the result in the cache. 2646 result = aliased; 2647 return aliased; 2648 } 2649 2650 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2651 2652 /// Cache for alias results. 2653 /// TODO: consider moving this to the AliasAnalysis itself. 2654 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2655 2656 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2657 // globally through SLP because we don't perform any action which 2658 // invalidates capture results. 2659 BatchAAResults BatchAA; 2660 2661 /// Temporary store for deleted instructions. Instructions will be deleted 2662 /// eventually when the BoUpSLP is destructed. The deferral is required to 2663 /// ensure that there are no incorrect collisions in the AliasCache, which 2664 /// can happen if a new instruction is allocated at the same address as a 2665 /// previously deleted instruction. 2666 DenseSet<Instruction *> DeletedInstructions; 2667 2668 /// Set of the instruction, being analyzed already for reductions. 2669 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2670 2671 /// Set of hashes for the list of reduction values already being analyzed. 2672 DenseSet<size_t> AnalyzedReductionVals; 2673 2674 /// A list of values that need to extracted out of the tree. 2675 /// This list holds pairs of (Internal Scalar : External User). External User 2676 /// can be nullptr, it means that this Internal Scalar will be used later, 2677 /// after vectorization. 2678 UserList ExternalUses; 2679 2680 /// Values used only by @llvm.assume calls. 2681 SmallPtrSet<const Value *, 32> EphValues; 2682 2683 /// Holds all of the instructions that we gathered. 2684 SetVector<Instruction *> GatherShuffleSeq; 2685 2686 /// A list of blocks that we are going to CSE. 2687 SetVector<BasicBlock *> CSEBlocks; 2688 2689 /// Contains all scheduling relevant data for an instruction. 2690 /// A ScheduleData either represents a single instruction or a member of an 2691 /// instruction bundle (= a group of instructions which is combined into a 2692 /// vector instruction). 2693 struct ScheduleData { 2694 // The initial value for the dependency counters. It means that the 2695 // dependencies are not calculated yet. 2696 enum { InvalidDeps = -1 }; 2697 2698 ScheduleData() = default; 2699 2700 void init(int BlockSchedulingRegionID, Value *OpVal) { 2701 FirstInBundle = this; 2702 NextInBundle = nullptr; 2703 NextLoadStore = nullptr; 2704 IsScheduled = false; 2705 SchedulingRegionID = BlockSchedulingRegionID; 2706 clearDependencies(); 2707 OpValue = OpVal; 2708 TE = nullptr; 2709 } 2710 2711 /// Verify basic self consistency properties 2712 void verify() { 2713 if (hasValidDependencies()) { 2714 assert(UnscheduledDeps <= Dependencies && "invariant"); 2715 } else { 2716 assert(UnscheduledDeps == Dependencies && "invariant"); 2717 } 2718 2719 if (IsScheduled) { 2720 assert(isSchedulingEntity() && 2721 "unexpected scheduled state"); 2722 for (const ScheduleData *BundleMember = this; BundleMember; 2723 BundleMember = BundleMember->NextInBundle) { 2724 assert(BundleMember->hasValidDependencies() && 2725 BundleMember->UnscheduledDeps == 0 && 2726 "unexpected scheduled state"); 2727 assert((BundleMember == this || !BundleMember->IsScheduled) && 2728 "only bundle is marked scheduled"); 2729 } 2730 } 2731 2732 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2733 "all bundle members must be in same basic block"); 2734 } 2735 2736 /// Returns true if the dependency information has been calculated. 2737 /// Note that depenendency validity can vary between instructions within 2738 /// a single bundle. 2739 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2740 2741 /// Returns true for single instructions and for bundle representatives 2742 /// (= the head of a bundle). 2743 bool isSchedulingEntity() const { return FirstInBundle == this; } 2744 2745 /// Returns true if it represents an instruction bundle and not only a 2746 /// single instruction. 2747 bool isPartOfBundle() const { 2748 return NextInBundle != nullptr || FirstInBundle != this || TE; 2749 } 2750 2751 /// Returns true if it is ready for scheduling, i.e. it has no more 2752 /// unscheduled depending instructions/bundles. 2753 bool isReady() const { 2754 assert(isSchedulingEntity() && 2755 "can't consider non-scheduling entity for ready list"); 2756 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2757 } 2758 2759 /// Modifies the number of unscheduled dependencies for this instruction, 2760 /// and returns the number of remaining dependencies for the containing 2761 /// bundle. 2762 int incrementUnscheduledDeps(int Incr) { 2763 assert(hasValidDependencies() && 2764 "increment of unscheduled deps would be meaningless"); 2765 UnscheduledDeps += Incr; 2766 return FirstInBundle->unscheduledDepsInBundle(); 2767 } 2768 2769 /// Sets the number of unscheduled dependencies to the number of 2770 /// dependencies. 2771 void resetUnscheduledDeps() { 2772 UnscheduledDeps = Dependencies; 2773 } 2774 2775 /// Clears all dependency information. 2776 void clearDependencies() { 2777 Dependencies = InvalidDeps; 2778 resetUnscheduledDeps(); 2779 MemoryDependencies.clear(); 2780 ControlDependencies.clear(); 2781 } 2782 2783 int unscheduledDepsInBundle() const { 2784 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2785 int Sum = 0; 2786 for (const ScheduleData *BundleMember = this; BundleMember; 2787 BundleMember = BundleMember->NextInBundle) { 2788 if (BundleMember->UnscheduledDeps == InvalidDeps) 2789 return InvalidDeps; 2790 Sum += BundleMember->UnscheduledDeps; 2791 } 2792 return Sum; 2793 } 2794 2795 void dump(raw_ostream &os) const { 2796 if (!isSchedulingEntity()) { 2797 os << "/ " << *Inst; 2798 } else if (NextInBundle) { 2799 os << '[' << *Inst; 2800 ScheduleData *SD = NextInBundle; 2801 while (SD) { 2802 os << ';' << *SD->Inst; 2803 SD = SD->NextInBundle; 2804 } 2805 os << ']'; 2806 } else { 2807 os << *Inst; 2808 } 2809 } 2810 2811 Instruction *Inst = nullptr; 2812 2813 /// Opcode of the current instruction in the schedule data. 2814 Value *OpValue = nullptr; 2815 2816 /// The TreeEntry that this instruction corresponds to. 2817 TreeEntry *TE = nullptr; 2818 2819 /// Points to the head in an instruction bundle (and always to this for 2820 /// single instructions). 2821 ScheduleData *FirstInBundle = nullptr; 2822 2823 /// Single linked list of all instructions in a bundle. Null if it is a 2824 /// single instruction. 2825 ScheduleData *NextInBundle = nullptr; 2826 2827 /// Single linked list of all memory instructions (e.g. load, store, call) 2828 /// in the block - until the end of the scheduling region. 2829 ScheduleData *NextLoadStore = nullptr; 2830 2831 /// The dependent memory instructions. 2832 /// This list is derived on demand in calculateDependencies(). 2833 SmallVector<ScheduleData *, 4> MemoryDependencies; 2834 2835 /// List of instructions which this instruction could be control dependent 2836 /// on. Allowing such nodes to be scheduled below this one could introduce 2837 /// a runtime fault which didn't exist in the original program. 2838 /// ex: this is a load or udiv following a readonly call which inf loops 2839 SmallVector<ScheduleData *, 4> ControlDependencies; 2840 2841 /// This ScheduleData is in the current scheduling region if this matches 2842 /// the current SchedulingRegionID of BlockScheduling. 2843 int SchedulingRegionID = 0; 2844 2845 /// Used for getting a "good" final ordering of instructions. 2846 int SchedulingPriority = 0; 2847 2848 /// The number of dependencies. Constitutes of the number of users of the 2849 /// instruction plus the number of dependent memory instructions (if any). 2850 /// This value is calculated on demand. 2851 /// If InvalidDeps, the number of dependencies is not calculated yet. 2852 int Dependencies = InvalidDeps; 2853 2854 /// The number of dependencies minus the number of dependencies of scheduled 2855 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2856 /// for scheduling. 2857 /// Note that this is negative as long as Dependencies is not calculated. 2858 int UnscheduledDeps = InvalidDeps; 2859 2860 /// True if this instruction is scheduled (or considered as scheduled in the 2861 /// dry-run). 2862 bool IsScheduled = false; 2863 }; 2864 2865 #ifndef NDEBUG 2866 friend inline raw_ostream &operator<<(raw_ostream &os, 2867 const BoUpSLP::ScheduleData &SD) { 2868 SD.dump(os); 2869 return os; 2870 } 2871 #endif 2872 2873 friend struct GraphTraits<BoUpSLP *>; 2874 friend struct DOTGraphTraits<BoUpSLP *>; 2875 2876 /// Contains all scheduling data for a basic block. 2877 /// It does not schedules instructions, which are not memory read/write 2878 /// instructions and their operands are either constants, or arguments, or 2879 /// phis, or instructions from others blocks, or their users are phis or from 2880 /// the other blocks. The resulting vector instructions can be placed at the 2881 /// beginning of the basic block without scheduling (if operands does not need 2882 /// to be scheduled) or at the end of the block (if users are outside of the 2883 /// block). It allows to save some compile time and memory used by the 2884 /// compiler. 2885 /// ScheduleData is assigned for each instruction in between the boundaries of 2886 /// the tree entry, even for those, which are not part of the graph. It is 2887 /// required to correctly follow the dependencies between the instructions and 2888 /// their correct scheduling. The ScheduleData is not allocated for the 2889 /// instructions, which do not require scheduling, like phis, nodes with 2890 /// extractelements/insertelements only or nodes with instructions, with 2891 /// uses/operands outside of the block. 2892 struct BlockScheduling { 2893 BlockScheduling(BasicBlock *BB) 2894 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2895 2896 void clear() { 2897 ReadyInsts.clear(); 2898 ScheduleStart = nullptr; 2899 ScheduleEnd = nullptr; 2900 FirstLoadStoreInRegion = nullptr; 2901 LastLoadStoreInRegion = nullptr; 2902 RegionHasStackSave = false; 2903 2904 // Reduce the maximum schedule region size by the size of the 2905 // previous scheduling run. 2906 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2907 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2908 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2909 ScheduleRegionSize = 0; 2910 2911 // Make a new scheduling region, i.e. all existing ScheduleData is not 2912 // in the new region yet. 2913 ++SchedulingRegionID; 2914 } 2915 2916 ScheduleData *getScheduleData(Instruction *I) { 2917 if (BB != I->getParent()) 2918 // Avoid lookup if can't possibly be in map. 2919 return nullptr; 2920 ScheduleData *SD = ScheduleDataMap.lookup(I); 2921 if (SD && isInSchedulingRegion(SD)) 2922 return SD; 2923 return nullptr; 2924 } 2925 2926 ScheduleData *getScheduleData(Value *V) { 2927 if (auto *I = dyn_cast<Instruction>(V)) 2928 return getScheduleData(I); 2929 return nullptr; 2930 } 2931 2932 ScheduleData *getScheduleData(Value *V, Value *Key) { 2933 if (V == Key) 2934 return getScheduleData(V); 2935 auto I = ExtraScheduleDataMap.find(V); 2936 if (I != ExtraScheduleDataMap.end()) { 2937 ScheduleData *SD = I->second.lookup(Key); 2938 if (SD && isInSchedulingRegion(SD)) 2939 return SD; 2940 } 2941 return nullptr; 2942 } 2943 2944 bool isInSchedulingRegion(ScheduleData *SD) const { 2945 return SD->SchedulingRegionID == SchedulingRegionID; 2946 } 2947 2948 /// Marks an instruction as scheduled and puts all dependent ready 2949 /// instructions into the ready-list. 2950 template <typename ReadyListType> 2951 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2952 SD->IsScheduled = true; 2953 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2954 2955 for (ScheduleData *BundleMember = SD; BundleMember; 2956 BundleMember = BundleMember->NextInBundle) { 2957 if (BundleMember->Inst != BundleMember->OpValue) 2958 continue; 2959 2960 // Handle the def-use chain dependencies. 2961 2962 // Decrement the unscheduled counter and insert to ready list if ready. 2963 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2964 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2965 if (OpDef && OpDef->hasValidDependencies() && 2966 OpDef->incrementUnscheduledDeps(-1) == 0) { 2967 // There are no more unscheduled dependencies after 2968 // decrementing, so we can put the dependent instruction 2969 // into the ready list. 2970 ScheduleData *DepBundle = OpDef->FirstInBundle; 2971 assert(!DepBundle->IsScheduled && 2972 "already scheduled bundle gets ready"); 2973 ReadyList.insert(DepBundle); 2974 LLVM_DEBUG(dbgs() 2975 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2976 } 2977 }); 2978 }; 2979 2980 // If BundleMember is a vector bundle, its operands may have been 2981 // reordered during buildTree(). We therefore need to get its operands 2982 // through the TreeEntry. 2983 if (TreeEntry *TE = BundleMember->TE) { 2984 // Need to search for the lane since the tree entry can be reordered. 2985 int Lane = std::distance(TE->Scalars.begin(), 2986 find(TE->Scalars, BundleMember->Inst)); 2987 assert(Lane >= 0 && "Lane not set"); 2988 2989 // Since vectorization tree is being built recursively this assertion 2990 // ensures that the tree entry has all operands set before reaching 2991 // this code. Couple of exceptions known at the moment are extracts 2992 // where their second (immediate) operand is not added. Since 2993 // immediates do not affect scheduler behavior this is considered 2994 // okay. 2995 auto *In = BundleMember->Inst; 2996 assert(In && 2997 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2998 In->getNumOperands() == TE->getNumOperands()) && 2999 "Missed TreeEntry operands?"); 3000 (void)In; // fake use to avoid build failure when assertions disabled 3001 3002 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 3003 OpIdx != NumOperands; ++OpIdx) 3004 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3005 DecrUnsched(I); 3006 } else { 3007 // If BundleMember is a stand-alone instruction, no operand reordering 3008 // has taken place, so we directly access its operands. 3009 for (Use &U : BundleMember->Inst->operands()) 3010 if (auto *I = dyn_cast<Instruction>(U.get())) 3011 DecrUnsched(I); 3012 } 3013 // Handle the memory dependencies. 3014 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3015 if (MemoryDepSD->hasValidDependencies() && 3016 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3017 // There are no more unscheduled dependencies after decrementing, 3018 // so we can put the dependent instruction into the ready list. 3019 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3020 assert(!DepBundle->IsScheduled && 3021 "already scheduled bundle gets ready"); 3022 ReadyList.insert(DepBundle); 3023 LLVM_DEBUG(dbgs() 3024 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3025 } 3026 } 3027 // Handle the control dependencies. 3028 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3029 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3030 // There are no more unscheduled dependencies after decrementing, 3031 // so we can put the dependent instruction into the ready list. 3032 ScheduleData *DepBundle = DepSD->FirstInBundle; 3033 assert(!DepBundle->IsScheduled && 3034 "already scheduled bundle gets ready"); 3035 ReadyList.insert(DepBundle); 3036 LLVM_DEBUG(dbgs() 3037 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3038 } 3039 } 3040 3041 } 3042 } 3043 3044 /// Verify basic self consistency properties of the data structure. 3045 void verify() { 3046 if (!ScheduleStart) 3047 return; 3048 3049 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3050 ScheduleStart->comesBefore(ScheduleEnd) && 3051 "Not a valid scheduling region?"); 3052 3053 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3054 auto *SD = getScheduleData(I); 3055 if (!SD) 3056 continue; 3057 assert(isInSchedulingRegion(SD) && 3058 "primary schedule data not in window?"); 3059 assert(isInSchedulingRegion(SD->FirstInBundle) && 3060 "entire bundle in window!"); 3061 (void)SD; 3062 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3063 } 3064 3065 for (auto *SD : ReadyInsts) { 3066 assert(SD->isSchedulingEntity() && SD->isReady() && 3067 "item in ready list not ready?"); 3068 (void)SD; 3069 } 3070 } 3071 3072 void doForAllOpcodes(Value *V, 3073 function_ref<void(ScheduleData *SD)> Action) { 3074 if (ScheduleData *SD = getScheduleData(V)) 3075 Action(SD); 3076 auto I = ExtraScheduleDataMap.find(V); 3077 if (I != ExtraScheduleDataMap.end()) 3078 for (auto &P : I->second) 3079 if (isInSchedulingRegion(P.second)) 3080 Action(P.second); 3081 } 3082 3083 /// Put all instructions into the ReadyList which are ready for scheduling. 3084 template <typename ReadyListType> 3085 void initialFillReadyList(ReadyListType &ReadyList) { 3086 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3087 doForAllOpcodes(I, [&](ScheduleData *SD) { 3088 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3089 SD->isReady()) { 3090 ReadyList.insert(SD); 3091 LLVM_DEBUG(dbgs() 3092 << "SLP: initially in ready list: " << *SD << "\n"); 3093 } 3094 }); 3095 } 3096 } 3097 3098 /// Build a bundle from the ScheduleData nodes corresponding to the 3099 /// scalar instruction for each lane. 3100 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3101 3102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3103 /// cyclic dependencies. This is only a dry-run, no instructions are 3104 /// actually moved at this stage. 3105 /// \returns the scheduling bundle. The returned Optional value is non-None 3106 /// if \p VL is allowed to be scheduled. 3107 Optional<ScheduleData *> 3108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3109 const InstructionsState &S); 3110 3111 /// Un-bundles a group of instructions. 3112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3113 3114 /// Allocates schedule data chunk. 3115 ScheduleData *allocateScheduleDataChunks(); 3116 3117 /// Extends the scheduling region so that V is inside the region. 3118 /// \returns true if the region size is within the limit. 3119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3120 3121 /// Initialize the ScheduleData structures for new instructions in the 3122 /// scheduling region. 3123 void initScheduleData(Instruction *FromI, Instruction *ToI, 3124 ScheduleData *PrevLoadStore, 3125 ScheduleData *NextLoadStore); 3126 3127 /// Updates the dependency information of a bundle and of all instructions/ 3128 /// bundles which depend on the original bundle. 3129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3130 BoUpSLP *SLP); 3131 3132 /// Sets all instruction in the scheduling region to un-scheduled. 3133 void resetSchedule(); 3134 3135 BasicBlock *BB; 3136 3137 /// Simple memory allocation for ScheduleData. 3138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3139 3140 /// The size of a ScheduleData array in ScheduleDataChunks. 3141 int ChunkSize; 3142 3143 /// The allocator position in the current chunk, which is the last entry 3144 /// of ScheduleDataChunks. 3145 int ChunkPos; 3146 3147 /// Attaches ScheduleData to Instruction. 3148 /// Note that the mapping survives during all vectorization iterations, i.e. 3149 /// ScheduleData structures are recycled. 3150 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3151 3152 /// Attaches ScheduleData to Instruction with the leading key. 3153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3154 ExtraScheduleDataMap; 3155 3156 /// The ready-list for scheduling (only used for the dry-run). 3157 SetVector<ScheduleData *> ReadyInsts; 3158 3159 /// The first instruction of the scheduling region. 3160 Instruction *ScheduleStart = nullptr; 3161 3162 /// The first instruction _after_ the scheduling region. 3163 Instruction *ScheduleEnd = nullptr; 3164 3165 /// The first memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *FirstLoadStoreInRegion = nullptr; 3168 3169 /// The last memory accessing instruction in the scheduling region 3170 /// (can be null). 3171 ScheduleData *LastLoadStoreInRegion = nullptr; 3172 3173 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3174 /// region? Used to optimize the dependence calculation for the 3175 /// common case where there isn't. 3176 bool RegionHasStackSave = false; 3177 3178 /// The current size of the scheduling region. 3179 int ScheduleRegionSize = 0; 3180 3181 /// The maximum size allowed for the scheduling region. 3182 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3183 3184 /// The ID of the scheduling region. For a new vectorization iteration this 3185 /// is incremented which "removes" all ScheduleData from the region. 3186 /// Make sure that the initial SchedulingRegionID is greater than the 3187 /// initial SchedulingRegionID in ScheduleData (which is 0). 3188 int SchedulingRegionID = 1; 3189 }; 3190 3191 /// Attaches the BlockScheduling structures to basic blocks. 3192 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3193 3194 /// Performs the "real" scheduling. Done before vectorization is actually 3195 /// performed in a basic block. 3196 void scheduleBlock(BlockScheduling *BS); 3197 3198 /// List of users to ignore during scheduling and that don't need extracting. 3199 const SmallDenseSet<Value *> *UserIgnoreList = nullptr; 3200 3201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3202 /// sorted SmallVectors of unsigned. 3203 struct OrdersTypeDenseMapInfo { 3204 static OrdersType getEmptyKey() { 3205 OrdersType V; 3206 V.push_back(~1U); 3207 return V; 3208 } 3209 3210 static OrdersType getTombstoneKey() { 3211 OrdersType V; 3212 V.push_back(~2U); 3213 return V; 3214 } 3215 3216 static unsigned getHashValue(const OrdersType &V) { 3217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3218 } 3219 3220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3221 return LHS == RHS; 3222 } 3223 }; 3224 3225 // Analysis and block reference. 3226 Function *F; 3227 ScalarEvolution *SE; 3228 TargetTransformInfo *TTI; 3229 TargetLibraryInfo *TLI; 3230 LoopInfo *LI; 3231 DominatorTree *DT; 3232 AssumptionCache *AC; 3233 DemandedBits *DB; 3234 const DataLayout *DL; 3235 OptimizationRemarkEmitter *ORE; 3236 3237 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3238 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3239 3240 /// Instruction builder to construct the vectorized tree. 3241 IRBuilder<> Builder; 3242 3243 /// A map of scalar integer values to the smallest bit width with which they 3244 /// can legally be represented. The values map to (width, signed) pairs, 3245 /// where "width" indicates the minimum bit width and "signed" is True if the 3246 /// value must be signed-extended, rather than zero-extended, back to its 3247 /// original width. 3248 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3249 }; 3250 3251 } // end namespace slpvectorizer 3252 3253 template <> struct GraphTraits<BoUpSLP *> { 3254 using TreeEntry = BoUpSLP::TreeEntry; 3255 3256 /// NodeRef has to be a pointer per the GraphWriter. 3257 using NodeRef = TreeEntry *; 3258 3259 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3260 3261 /// Add the VectorizableTree to the index iterator to be able to return 3262 /// TreeEntry pointers. 3263 struct ChildIteratorType 3264 : public iterator_adaptor_base< 3265 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3266 ContainerTy &VectorizableTree; 3267 3268 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3269 ContainerTy &VT) 3270 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3271 3272 NodeRef operator*() { return I->UserTE; } 3273 }; 3274 3275 static NodeRef getEntryNode(BoUpSLP &R) { 3276 return R.VectorizableTree[0].get(); 3277 } 3278 3279 static ChildIteratorType child_begin(NodeRef N) { 3280 return {N->UserTreeIndices.begin(), N->Container}; 3281 } 3282 3283 static ChildIteratorType child_end(NodeRef N) { 3284 return {N->UserTreeIndices.end(), N->Container}; 3285 } 3286 3287 /// For the node iterator we just need to turn the TreeEntry iterator into a 3288 /// TreeEntry* iterator so that it dereferences to NodeRef. 3289 class nodes_iterator { 3290 using ItTy = ContainerTy::iterator; 3291 ItTy It; 3292 3293 public: 3294 nodes_iterator(const ItTy &It2) : It(It2) {} 3295 NodeRef operator*() { return It->get(); } 3296 nodes_iterator operator++() { 3297 ++It; 3298 return *this; 3299 } 3300 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3301 }; 3302 3303 static nodes_iterator nodes_begin(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.begin()); 3305 } 3306 3307 static nodes_iterator nodes_end(BoUpSLP *R) { 3308 return nodes_iterator(R->VectorizableTree.end()); 3309 } 3310 3311 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3312 }; 3313 3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3315 using TreeEntry = BoUpSLP::TreeEntry; 3316 3317 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3318 3319 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3320 std::string Str; 3321 raw_string_ostream OS(Str); 3322 if (isSplat(Entry->Scalars)) 3323 OS << "<splat> "; 3324 for (auto V : Entry->Scalars) { 3325 OS << *V; 3326 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3327 return EU.Scalar == V; 3328 })) 3329 OS << " <extract>"; 3330 OS << "\n"; 3331 } 3332 return Str; 3333 } 3334 3335 static std::string getNodeAttributes(const TreeEntry *Entry, 3336 const BoUpSLP *) { 3337 if (Entry->State == TreeEntry::NeedToGather) 3338 return "color=red"; 3339 return ""; 3340 } 3341 }; 3342 3343 } // end namespace llvm 3344 3345 BoUpSLP::~BoUpSLP() { 3346 SmallVector<WeakTrackingVH> DeadInsts; 3347 for (auto *I : DeletedInstructions) { 3348 for (Use &U : I->operands()) { 3349 auto *Op = dyn_cast<Instruction>(U.get()); 3350 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3351 wouldInstructionBeTriviallyDead(Op, TLI)) 3352 DeadInsts.emplace_back(Op); 3353 } 3354 I->dropAllReferences(); 3355 } 3356 for (auto *I : DeletedInstructions) { 3357 assert(I->use_empty() && 3358 "trying to erase instruction with users."); 3359 I->eraseFromParent(); 3360 } 3361 3362 // Cleanup any dead scalar code feeding the vectorized instructions 3363 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3364 3365 #ifdef EXPENSIVE_CHECKS 3366 // If we could guarantee that this call is not extremely slow, we could 3367 // remove the ifdef limitation (see PR47712). 3368 assert(!verifyFunction(*F, &dbgs())); 3369 #endif 3370 } 3371 3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3373 /// contains original mask for the scalars reused in the node. Procedure 3374 /// transform this mask in accordance with the given \p Mask. 3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3376 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3377 "Expected non-empty mask."); 3378 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3379 Prev.swap(Reuses); 3380 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3381 if (Mask[I] != UndefMaskElem) 3382 Reuses[Mask[I]] = Prev[I]; 3383 } 3384 3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3386 /// the original order of the scalars. Procedure transforms the provided order 3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3388 /// identity order, \p Order is cleared. 3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3390 assert(!Mask.empty() && "Expected non-empty mask."); 3391 SmallVector<int> MaskOrder; 3392 if (Order.empty()) { 3393 MaskOrder.resize(Mask.size()); 3394 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3395 } else { 3396 inversePermutation(Order, MaskOrder); 3397 } 3398 reorderReuses(MaskOrder, Mask); 3399 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3400 Order.clear(); 3401 return; 3402 } 3403 Order.assign(Mask.size(), Mask.size()); 3404 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3405 if (MaskOrder[I] != UndefMaskElem) 3406 Order[MaskOrder[I]] = I; 3407 fixupOrderingIndices(Order); 3408 } 3409 3410 Optional<BoUpSLP::OrdersType> 3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3412 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3413 unsigned NumScalars = TE.Scalars.size(); 3414 OrdersType CurrentOrder(NumScalars, NumScalars); 3415 SmallVector<int> Positions; 3416 SmallBitVector UsedPositions(NumScalars); 3417 const TreeEntry *STE = nullptr; 3418 // Try to find all gathered scalars that are gets vectorized in other 3419 // vectorize node. Here we can have only one single tree vector node to 3420 // correctly identify order of the gathered scalars. 3421 for (unsigned I = 0; I < NumScalars; ++I) { 3422 Value *V = TE.Scalars[I]; 3423 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3424 continue; 3425 if (const auto *LocalSTE = getTreeEntry(V)) { 3426 if (!STE) 3427 STE = LocalSTE; 3428 else if (STE != LocalSTE) 3429 // Take the order only from the single vector node. 3430 return None; 3431 unsigned Lane = 3432 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3433 if (Lane >= NumScalars) 3434 return None; 3435 if (CurrentOrder[Lane] != NumScalars) { 3436 if (Lane != I) 3437 continue; 3438 UsedPositions.reset(CurrentOrder[Lane]); 3439 } 3440 // The partial identity (where only some elements of the gather node are 3441 // in the identity order) is good. 3442 CurrentOrder[Lane] = I; 3443 UsedPositions.set(I); 3444 } 3445 } 3446 // Need to keep the order if we have a vector entry and at least 2 scalars or 3447 // the vectorized entry has just 2 scalars. 3448 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3449 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3450 for (unsigned I = 0; I < NumScalars; ++I) 3451 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3452 return false; 3453 return true; 3454 }; 3455 if (IsIdentityOrder(CurrentOrder)) { 3456 CurrentOrder.clear(); 3457 return CurrentOrder; 3458 } 3459 auto *It = CurrentOrder.begin(); 3460 for (unsigned I = 0; I < NumScalars;) { 3461 if (UsedPositions.test(I)) { 3462 ++I; 3463 continue; 3464 } 3465 if (*It == NumScalars) { 3466 *It = I; 3467 ++I; 3468 } 3469 ++It; 3470 } 3471 return CurrentOrder; 3472 } 3473 return None; 3474 } 3475 3476 namespace { 3477 /// Tracks the state we can represent the loads in the given sequence. 3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3479 } // anonymous namespace 3480 3481 /// Checks if the given array of loads can be represented as a vectorized, 3482 /// scatter or just simple gather. 3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3484 const TargetTransformInfo &TTI, 3485 const DataLayout &DL, ScalarEvolution &SE, 3486 LoopInfo &LI, 3487 SmallVectorImpl<unsigned> &Order, 3488 SmallVectorImpl<Value *> &PointerOps) { 3489 // Check that a vectorized load would load the same memory as a scalar 3490 // load. For example, we don't want to vectorize loads that are smaller 3491 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3492 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3493 // from such a struct, we read/write packed bits disagreeing with the 3494 // unvectorized version. 3495 Type *ScalarTy = VL0->getType(); 3496 3497 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3498 return LoadsState::Gather; 3499 3500 // Make sure all loads in the bundle are simple - we can't vectorize 3501 // atomic or volatile loads. 3502 PointerOps.clear(); 3503 PointerOps.resize(VL.size()); 3504 auto *POIter = PointerOps.begin(); 3505 for (Value *V : VL) { 3506 auto *L = cast<LoadInst>(V); 3507 if (!L->isSimple()) 3508 return LoadsState::Gather; 3509 *POIter = L->getPointerOperand(); 3510 ++POIter; 3511 } 3512 3513 Order.clear(); 3514 // Check the order of pointer operands or that all pointers are the same. 3515 bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order); 3516 if (IsSorted || all_of(PointerOps, [&PointerOps](Value *P) { 3517 if (getUnderlyingObject(P) != getUnderlyingObject(PointerOps.front())) 3518 return false; 3519 auto *GEP = dyn_cast<GetElementPtrInst>(P); 3520 if (!GEP) 3521 return false; 3522 auto *GEP0 = cast<GetElementPtrInst>(PointerOps.front()); 3523 return GEP->getNumOperands() == 2 && 3524 ((isConstant(GEP->getOperand(1)) && 3525 isConstant(GEP0->getOperand(1))) || 3526 getSameOpcode({GEP->getOperand(1), GEP0->getOperand(1)}) 3527 .getOpcode()); 3528 })) { 3529 if (IsSorted) { 3530 Value *Ptr0; 3531 Value *PtrN; 3532 if (Order.empty()) { 3533 Ptr0 = PointerOps.front(); 3534 PtrN = PointerOps.back(); 3535 } else { 3536 Ptr0 = PointerOps[Order.front()]; 3537 PtrN = PointerOps[Order.back()]; 3538 } 3539 Optional<int> Diff = 3540 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3541 // Check that the sorted loads are consecutive. 3542 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3543 return LoadsState::Vectorize; 3544 } 3545 // TODO: need to improve analysis of the pointers, if not all of them are 3546 // GEPs or have > 2 operands, we end up with a gather node, which just 3547 // increases the cost. 3548 Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent()); 3549 bool ProfitableGatherPointers = 3550 static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { 3551 return L && L->isLoopInvariant(V); 3552 })) <= VL.size() / 2 && VL.size() > 2; 3553 if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { 3554 auto *GEP = dyn_cast<GetElementPtrInst>(P); 3555 return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || 3556 (GEP && GEP->getNumOperands() == 2); 3557 })) { 3558 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3559 for (Value *V : VL) 3560 CommonAlignment = 3561 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3562 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3563 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && 3564 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) 3565 return LoadsState::ScatterVectorize; 3566 } 3567 } 3568 3569 return LoadsState::Gather; 3570 } 3571 3572 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3573 const DataLayout &DL, ScalarEvolution &SE, 3574 SmallVectorImpl<unsigned> &SortedIndices) { 3575 assert(llvm::all_of( 3576 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3577 "Expected list of pointer operands."); 3578 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3579 // Ptr into, sort and return the sorted indices with values next to one 3580 // another. 3581 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3582 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3583 3584 unsigned Cnt = 1; 3585 for (Value *Ptr : VL.drop_front()) { 3586 bool Found = any_of(Bases, [&](auto &Base) { 3587 Optional<int> Diff = 3588 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3589 /*StrictCheck=*/true); 3590 if (!Diff) 3591 return false; 3592 3593 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3594 return true; 3595 }); 3596 3597 if (!Found) { 3598 // If we haven't found enough to usefully cluster, return early. 3599 if (Bases.size() > VL.size() / 2 - 1) 3600 return false; 3601 3602 // Not found already - add a new Base 3603 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3604 } 3605 } 3606 3607 // For each of the bases sort the pointers by Offset and check if any of the 3608 // base become consecutively allocated. 3609 bool AnyConsecutive = false; 3610 for (auto &Base : Bases) { 3611 auto &Vec = Base.second; 3612 if (Vec.size() > 1) { 3613 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3614 const std::tuple<Value *, int, unsigned> &Y) { 3615 return std::get<1>(X) < std::get<1>(Y); 3616 }); 3617 int InitialOffset = std::get<1>(Vec[0]); 3618 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3619 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3620 }); 3621 } 3622 } 3623 3624 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3625 SortedIndices.clear(); 3626 if (!AnyConsecutive) 3627 return false; 3628 3629 for (auto &Base : Bases) { 3630 for (auto &T : Base.second) 3631 SortedIndices.push_back(std::get<2>(T)); 3632 } 3633 3634 assert(SortedIndices.size() == VL.size() && 3635 "Expected SortedIndices to be the size of VL"); 3636 return true; 3637 } 3638 3639 Optional<BoUpSLP::OrdersType> 3640 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3641 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3642 Type *ScalarTy = TE.Scalars[0]->getType(); 3643 3644 SmallVector<Value *> Ptrs; 3645 Ptrs.reserve(TE.Scalars.size()); 3646 for (Value *V : TE.Scalars) { 3647 auto *L = dyn_cast<LoadInst>(V); 3648 if (!L || !L->isSimple()) 3649 return None; 3650 Ptrs.push_back(L->getPointerOperand()); 3651 } 3652 3653 BoUpSLP::OrdersType Order; 3654 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3655 return Order; 3656 return None; 3657 } 3658 3659 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3660 bool TopToBottom) { 3661 // No need to reorder if need to shuffle reuses, still need to shuffle the 3662 // node. 3663 if (!TE.ReuseShuffleIndices.empty()) 3664 return None; 3665 if (TE.State == TreeEntry::Vectorize && 3666 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3667 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3668 !TE.isAltShuffle()) 3669 return TE.ReorderIndices; 3670 if (TE.State == TreeEntry::NeedToGather) { 3671 // TODO: add analysis of other gather nodes with extractelement 3672 // instructions and other values/instructions, not only undefs. 3673 if (((TE.getOpcode() == Instruction::ExtractElement && 3674 !TE.isAltShuffle()) || 3675 (all_of(TE.Scalars, 3676 [](Value *V) { 3677 return isa<UndefValue, ExtractElementInst>(V); 3678 }) && 3679 any_of(TE.Scalars, 3680 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3681 all_of(TE.Scalars, 3682 [](Value *V) { 3683 auto *EE = dyn_cast<ExtractElementInst>(V); 3684 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3685 }) && 3686 allSameType(TE.Scalars)) { 3687 // Check that gather of extractelements can be represented as 3688 // just a shuffle of a single vector. 3689 OrdersType CurrentOrder; 3690 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3691 if (Reuse || !CurrentOrder.empty()) { 3692 if (!CurrentOrder.empty()) 3693 fixupOrderingIndices(CurrentOrder); 3694 return CurrentOrder; 3695 } 3696 } 3697 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3698 return CurrentOrder; 3699 if (TE.Scalars.size() >= 4) 3700 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3701 return Order; 3702 } 3703 return None; 3704 } 3705 3706 void BoUpSLP::reorderTopToBottom() { 3707 // Maps VF to the graph nodes. 3708 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3709 // ExtractElement gather nodes which can be vectorized and need to handle 3710 // their ordering. 3711 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3712 3713 // AltShuffles can also have a preferred ordering that leads to fewer 3714 // instructions, e.g., the addsub instruction in x86. 3715 DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; 3716 3717 // Maps a TreeEntry to the reorder indices of external users. 3718 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3719 ExternalUserReorderMap; 3720 // FIXME: Workaround for syntax error reported by MSVC buildbots. 3721 TargetTransformInfo &TTIRef = *TTI; 3722 // Find all reorderable nodes with the given VF. 3723 // Currently the are vectorized stores,loads,extracts + some gathering of 3724 // extracts. 3725 for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries, 3726 &GathersToOrders, &ExternalUserReorderMap, 3727 &AltShufflesToOrders]( 3728 const std::unique_ptr<TreeEntry> &TE) { 3729 // Look for external users that will probably be vectorized. 3730 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3731 findExternalStoreUsersReorderIndices(TE.get()); 3732 if (!ExternalUserReorderIndices.empty()) { 3733 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3734 ExternalUserReorderMap.try_emplace(TE.get(), 3735 std::move(ExternalUserReorderIndices)); 3736 } 3737 3738 // Patterns like [fadd,fsub] can be combined into a single instruction in 3739 // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need 3740 // to take into account their order when looking for the most used order. 3741 if (TE->isAltShuffle()) { 3742 VectorType *VecTy = 3743 FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size()); 3744 unsigned Opcode0 = TE->getOpcode(); 3745 unsigned Opcode1 = TE->getAltOpcode(); 3746 // The opcode mask selects between the two opcodes. 3747 SmallBitVector OpcodeMask(TE->Scalars.size(), 0); 3748 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) 3749 if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1) 3750 OpcodeMask.set(Lane); 3751 // If this pattern is supported by the target then we consider the order. 3752 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { 3753 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3754 AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); 3755 } 3756 // TODO: Check the reverse order too. 3757 } 3758 3759 if (Optional<OrdersType> CurrentOrder = 3760 getReorderingData(*TE, /*TopToBottom=*/true)) { 3761 // Do not include ordering for nodes used in the alt opcode vectorization, 3762 // better to reorder them during bottom-to-top stage. If follow the order 3763 // here, it causes reordering of the whole graph though actually it is 3764 // profitable just to reorder the subgraph that starts from the alternate 3765 // opcode vectorization node. Such nodes already end-up with the shuffle 3766 // instruction and it is just enough to change this shuffle rather than 3767 // rotate the scalars for the whole graph. 3768 unsigned Cnt = 0; 3769 const TreeEntry *UserTE = TE.get(); 3770 while (UserTE && Cnt < RecursionMaxDepth) { 3771 if (UserTE->UserTreeIndices.size() != 1) 3772 break; 3773 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3774 return EI.UserTE->State == TreeEntry::Vectorize && 3775 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3776 })) 3777 return; 3778 UserTE = UserTE->UserTreeIndices.back().UserTE; 3779 ++Cnt; 3780 } 3781 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3782 if (TE->State != TreeEntry::Vectorize) 3783 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3784 } 3785 }); 3786 3787 // Reorder the graph nodes according to their vectorization factor. 3788 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3789 VF /= 2) { 3790 auto It = VFToOrderedEntries.find(VF); 3791 if (It == VFToOrderedEntries.end()) 3792 continue; 3793 // Try to find the most profitable order. We just are looking for the most 3794 // used order and reorder scalar elements in the nodes according to this 3795 // mostly used order. 3796 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3797 // All operands are reordered and used only in this node - propagate the 3798 // most used order to the user node. 3799 MapVector<OrdersType, unsigned, 3800 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3801 OrdersUses; 3802 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3803 for (const TreeEntry *OpTE : OrderedEntries) { 3804 // No need to reorder this nodes, still need to extend and to use shuffle, 3805 // just need to merge reordering shuffle and the reuse shuffle. 3806 if (!OpTE->ReuseShuffleIndices.empty()) 3807 continue; 3808 // Count number of orders uses. 3809 const auto &Order = [OpTE, &GathersToOrders, 3810 &AltShufflesToOrders]() -> const OrdersType & { 3811 if (OpTE->State == TreeEntry::NeedToGather) { 3812 auto It = GathersToOrders.find(OpTE); 3813 if (It != GathersToOrders.end()) 3814 return It->second; 3815 } 3816 if (OpTE->isAltShuffle()) { 3817 auto It = AltShufflesToOrders.find(OpTE); 3818 if (It != AltShufflesToOrders.end()) 3819 return It->second; 3820 } 3821 return OpTE->ReorderIndices; 3822 }(); 3823 // First consider the order of the external scalar users. 3824 auto It = ExternalUserReorderMap.find(OpTE); 3825 if (It != ExternalUserReorderMap.end()) { 3826 const auto &ExternalUserReorderIndices = It->second; 3827 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3828 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3829 // No other useful reorder data in this entry. 3830 if (Order.empty()) 3831 continue; 3832 } 3833 // Stores actually store the mask, not the order, need to invert. 3834 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3835 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3836 SmallVector<int> Mask; 3837 inversePermutation(Order, Mask); 3838 unsigned E = Order.size(); 3839 OrdersType CurrentOrder(E, E); 3840 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3841 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3842 }); 3843 fixupOrderingIndices(CurrentOrder); 3844 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3845 } else { 3846 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3847 } 3848 } 3849 // Set order of the user node. 3850 if (OrdersUses.empty()) 3851 continue; 3852 // Choose the most used order. 3853 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3854 unsigned Cnt = OrdersUses.front().second; 3855 for (const auto &Pair : drop_begin(OrdersUses)) { 3856 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3857 BestOrder = Pair.first; 3858 Cnt = Pair.second; 3859 } 3860 } 3861 // Set order of the user node. 3862 if (BestOrder.empty()) 3863 continue; 3864 SmallVector<int> Mask; 3865 inversePermutation(BestOrder, Mask); 3866 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3867 unsigned E = BestOrder.size(); 3868 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3869 return I < E ? static_cast<int>(I) : UndefMaskElem; 3870 }); 3871 // Do an actual reordering, if profitable. 3872 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3873 // Just do the reordering for the nodes with the given VF. 3874 if (TE->Scalars.size() != VF) { 3875 if (TE->ReuseShuffleIndices.size() == VF) { 3876 // Need to reorder the reuses masks of the operands with smaller VF to 3877 // be able to find the match between the graph nodes and scalar 3878 // operands of the given node during vectorization/cost estimation. 3879 assert(all_of(TE->UserTreeIndices, 3880 [VF, &TE](const EdgeInfo &EI) { 3881 return EI.UserTE->Scalars.size() == VF || 3882 EI.UserTE->Scalars.size() == 3883 TE->Scalars.size(); 3884 }) && 3885 "All users must be of VF size."); 3886 // Update ordering of the operands with the smaller VF than the given 3887 // one. 3888 reorderReuses(TE->ReuseShuffleIndices, Mask); 3889 } 3890 continue; 3891 } 3892 if (TE->State == TreeEntry::Vectorize && 3893 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3894 InsertElementInst>(TE->getMainOp()) && 3895 !TE->isAltShuffle()) { 3896 // Build correct orders for extract{element,value}, loads and 3897 // stores. 3898 reorderOrder(TE->ReorderIndices, Mask); 3899 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3900 TE->reorderOperands(Mask); 3901 } else { 3902 // Reorder the node and its operands. 3903 TE->reorderOperands(Mask); 3904 assert(TE->ReorderIndices.empty() && 3905 "Expected empty reorder sequence."); 3906 reorderScalars(TE->Scalars, Mask); 3907 } 3908 if (!TE->ReuseShuffleIndices.empty()) { 3909 // Apply reversed order to keep the original ordering of the reused 3910 // elements to avoid extra reorder indices shuffling. 3911 OrdersType CurrentOrder; 3912 reorderOrder(CurrentOrder, MaskOrder); 3913 SmallVector<int> NewReuses; 3914 inversePermutation(CurrentOrder, NewReuses); 3915 addMask(NewReuses, TE->ReuseShuffleIndices); 3916 TE->ReuseShuffleIndices.swap(NewReuses); 3917 } 3918 } 3919 } 3920 } 3921 3922 bool BoUpSLP::canReorderOperands( 3923 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3924 ArrayRef<TreeEntry *> ReorderableGathers, 3925 SmallVectorImpl<TreeEntry *> &GatherOps) { 3926 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3927 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3928 return OpData.first == I && 3929 OpData.second->State == TreeEntry::Vectorize; 3930 })) 3931 continue; 3932 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3933 // Do not reorder if operand node is used by many user nodes. 3934 if (any_of(TE->UserTreeIndices, 3935 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3936 return false; 3937 // Add the node to the list of the ordered nodes with the identity 3938 // order. 3939 Edges.emplace_back(I, TE); 3940 // Add ScatterVectorize nodes to the list of operands, where just 3941 // reordering of the scalars is required. Similar to the gathers, so 3942 // simply add to the list of gathered ops. 3943 // If there are reused scalars, process this node as a regular vectorize 3944 // node, just reorder reuses mask. 3945 if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty()) 3946 GatherOps.push_back(TE); 3947 continue; 3948 } 3949 TreeEntry *Gather = nullptr; 3950 if (count_if(ReorderableGathers, 3951 [&Gather, UserTE, I](TreeEntry *TE) { 3952 assert(TE->State != TreeEntry::Vectorize && 3953 "Only non-vectorized nodes are expected."); 3954 if (any_of(TE->UserTreeIndices, 3955 [UserTE, I](const EdgeInfo &EI) { 3956 return EI.UserTE == UserTE && EI.EdgeIdx == I; 3957 })) { 3958 assert(TE->isSame(UserTE->getOperand(I)) && 3959 "Operand entry does not match operands."); 3960 Gather = TE; 3961 return true; 3962 } 3963 return false; 3964 }) > 1 && 3965 !all_of(UserTE->getOperand(I), isConstant)) 3966 return false; 3967 if (Gather) 3968 GatherOps.push_back(Gather); 3969 } 3970 return true; 3971 } 3972 3973 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3974 SetVector<TreeEntry *> OrderedEntries; 3975 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3976 // Find all reorderable leaf nodes with the given VF. 3977 // Currently the are vectorized loads,extracts without alternate operands + 3978 // some gathering of extracts. 3979 SmallVector<TreeEntry *> NonVectorized; 3980 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3981 &NonVectorized]( 3982 const std::unique_ptr<TreeEntry> &TE) { 3983 if (TE->State != TreeEntry::Vectorize) 3984 NonVectorized.push_back(TE.get()); 3985 if (Optional<OrdersType> CurrentOrder = 3986 getReorderingData(*TE, /*TopToBottom=*/false)) { 3987 OrderedEntries.insert(TE.get()); 3988 if (TE->State != TreeEntry::Vectorize) 3989 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3990 } 3991 }); 3992 3993 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3994 // I.e., if the node has operands, that are reordered, try to make at least 3995 // one operand order in the natural order and reorder others + reorder the 3996 // user node itself. 3997 SmallPtrSet<const TreeEntry *, 4> Visited; 3998 while (!OrderedEntries.empty()) { 3999 // 1. Filter out only reordered nodes. 4000 // 2. If the entry has multiple uses - skip it and jump to the next node. 4001 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 4002 SmallVector<TreeEntry *> Filtered; 4003 for (TreeEntry *TE : OrderedEntries) { 4004 if (!(TE->State == TreeEntry::Vectorize || 4005 (TE->State == TreeEntry::NeedToGather && 4006 GathersToOrders.count(TE))) || 4007 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4008 !all_of(drop_begin(TE->UserTreeIndices), 4009 [TE](const EdgeInfo &EI) { 4010 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 4011 }) || 4012 !Visited.insert(TE).second) { 4013 Filtered.push_back(TE); 4014 continue; 4015 } 4016 // Build a map between user nodes and their operands order to speedup 4017 // search. The graph currently does not provide this dependency directly. 4018 for (EdgeInfo &EI : TE->UserTreeIndices) { 4019 TreeEntry *UserTE = EI.UserTE; 4020 auto It = Users.find(UserTE); 4021 if (It == Users.end()) 4022 It = Users.insert({UserTE, {}}).first; 4023 It->second.emplace_back(EI.EdgeIdx, TE); 4024 } 4025 } 4026 // Erase filtered entries. 4027 for_each(Filtered, 4028 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 4029 SmallVector< 4030 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> 4031 UsersVec(Users.begin(), Users.end()); 4032 sort(UsersVec, [](const auto &Data1, const auto &Data2) { 4033 return Data1.first->Idx > Data2.first->Idx; 4034 }); 4035 for (auto &Data : UsersVec) { 4036 // Check that operands are used only in the User node. 4037 SmallVector<TreeEntry *> GatherOps; 4038 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 4039 GatherOps)) { 4040 for_each(Data.second, 4041 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4042 OrderedEntries.remove(Op.second); 4043 }); 4044 continue; 4045 } 4046 // All operands are reordered and used only in this node - propagate the 4047 // most used order to the user node. 4048 MapVector<OrdersType, unsigned, 4049 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 4050 OrdersUses; 4051 // Do the analysis for each tree entry only once, otherwise the order of 4052 // the same node my be considered several times, though might be not 4053 // profitable. 4054 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 4055 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 4056 for (const auto &Op : Data.second) { 4057 TreeEntry *OpTE = Op.second; 4058 if (!VisitedOps.insert(OpTE).second) 4059 continue; 4060 if (!OpTE->ReuseShuffleIndices.empty()) 4061 continue; 4062 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 4063 if (OpTE->State == TreeEntry::NeedToGather) 4064 return GathersToOrders.find(OpTE)->second; 4065 return OpTE->ReorderIndices; 4066 }(); 4067 unsigned NumOps = count_if( 4068 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 4069 return P.second == OpTE; 4070 }); 4071 // Stores actually store the mask, not the order, need to invert. 4072 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 4073 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 4074 SmallVector<int> Mask; 4075 inversePermutation(Order, Mask); 4076 unsigned E = Order.size(); 4077 OrdersType CurrentOrder(E, E); 4078 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 4079 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 4080 }); 4081 fixupOrderingIndices(CurrentOrder); 4082 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 4083 NumOps; 4084 } else { 4085 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 4086 } 4087 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 4088 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 4089 const TreeEntry *TE) { 4090 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4091 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 4092 (IgnoreReorder && TE->Idx == 0)) 4093 return true; 4094 if (TE->State == TreeEntry::NeedToGather) { 4095 auto It = GathersToOrders.find(TE); 4096 if (It != GathersToOrders.end()) 4097 return !It->second.empty(); 4098 return true; 4099 } 4100 return false; 4101 }; 4102 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 4103 TreeEntry *UserTE = EI.UserTE; 4104 if (!VisitedUsers.insert(UserTE).second) 4105 continue; 4106 // May reorder user node if it requires reordering, has reused 4107 // scalars, is an alternate op vectorize node or its op nodes require 4108 // reordering. 4109 if (AllowsReordering(UserTE)) 4110 continue; 4111 // Check if users allow reordering. 4112 // Currently look up just 1 level of operands to avoid increase of 4113 // the compile time. 4114 // Profitable to reorder if definitely more operands allow 4115 // reordering rather than those with natural order. 4116 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 4117 if (static_cast<unsigned>(count_if( 4118 Ops, [UserTE, &AllowsReordering]( 4119 const std::pair<unsigned, TreeEntry *> &Op) { 4120 return AllowsReordering(Op.second) && 4121 all_of(Op.second->UserTreeIndices, 4122 [UserTE](const EdgeInfo &EI) { 4123 return EI.UserTE == UserTE; 4124 }); 4125 })) <= Ops.size() / 2) 4126 ++Res.first->second; 4127 } 4128 } 4129 // If no orders - skip current nodes and jump to the next one, if any. 4130 if (OrdersUses.empty()) { 4131 for_each(Data.second, 4132 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4133 OrderedEntries.remove(Op.second); 4134 }); 4135 continue; 4136 } 4137 // Choose the best order. 4138 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4139 unsigned Cnt = OrdersUses.front().second; 4140 for (const auto &Pair : drop_begin(OrdersUses)) { 4141 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4142 BestOrder = Pair.first; 4143 Cnt = Pair.second; 4144 } 4145 } 4146 // Set order of the user node (reordering of operands and user nodes). 4147 if (BestOrder.empty()) { 4148 for_each(Data.second, 4149 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4150 OrderedEntries.remove(Op.second); 4151 }); 4152 continue; 4153 } 4154 // Erase operands from OrderedEntries list and adjust their orders. 4155 VisitedOps.clear(); 4156 SmallVector<int> Mask; 4157 inversePermutation(BestOrder, Mask); 4158 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4159 unsigned E = BestOrder.size(); 4160 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4161 return I < E ? static_cast<int>(I) : UndefMaskElem; 4162 }); 4163 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4164 TreeEntry *TE = Op.second; 4165 OrderedEntries.remove(TE); 4166 if (!VisitedOps.insert(TE).second) 4167 continue; 4168 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4169 // Just reorder reuses indices. 4170 reorderReuses(TE->ReuseShuffleIndices, Mask); 4171 continue; 4172 } 4173 // Gathers are processed separately. 4174 if (TE->State != TreeEntry::Vectorize) 4175 continue; 4176 assert((BestOrder.size() == TE->ReorderIndices.size() || 4177 TE->ReorderIndices.empty()) && 4178 "Non-matching sizes of user/operand entries."); 4179 reorderOrder(TE->ReorderIndices, Mask); 4180 if (IgnoreReorder && TE == VectorizableTree.front().get()) 4181 IgnoreReorder = false; 4182 } 4183 // For gathers just need to reorder its scalars. 4184 for (TreeEntry *Gather : GatherOps) { 4185 assert(Gather->ReorderIndices.empty() && 4186 "Unexpected reordering of gathers."); 4187 if (!Gather->ReuseShuffleIndices.empty()) { 4188 // Just reorder reuses indices. 4189 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4190 continue; 4191 } 4192 reorderScalars(Gather->Scalars, Mask); 4193 OrderedEntries.remove(Gather); 4194 } 4195 // Reorder operands of the user node and set the ordering for the user 4196 // node itself. 4197 if (Data.first->State != TreeEntry::Vectorize || 4198 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4199 Data.first->getMainOp()) || 4200 Data.first->isAltShuffle()) 4201 Data.first->reorderOperands(Mask); 4202 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4203 Data.first->isAltShuffle()) { 4204 reorderScalars(Data.first->Scalars, Mask); 4205 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4206 if (Data.first->ReuseShuffleIndices.empty() && 4207 !Data.first->ReorderIndices.empty() && 4208 !Data.first->isAltShuffle()) { 4209 // Insert user node to the list to try to sink reordering deeper in 4210 // the graph. 4211 OrderedEntries.insert(Data.first); 4212 } 4213 } else { 4214 reorderOrder(Data.first->ReorderIndices, Mask); 4215 } 4216 } 4217 } 4218 // If the reordering is unnecessary, just remove the reorder. 4219 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4220 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4221 VectorizableTree.front()->ReorderIndices.clear(); 4222 } 4223 4224 void BoUpSLP::buildExternalUses( 4225 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4226 // Collect the values that we need to extract from the tree. 4227 for (auto &TEPtr : VectorizableTree) { 4228 TreeEntry *Entry = TEPtr.get(); 4229 4230 // No need to handle users of gathered values. 4231 if (Entry->State == TreeEntry::NeedToGather) 4232 continue; 4233 4234 // For each lane: 4235 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4236 Value *Scalar = Entry->Scalars[Lane]; 4237 int FoundLane = Entry->findLaneForValue(Scalar); 4238 4239 // Check if the scalar is externally used as an extra arg. 4240 auto ExtI = ExternallyUsedValues.find(Scalar); 4241 if (ExtI != ExternallyUsedValues.end()) { 4242 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4243 << Lane << " from " << *Scalar << ".\n"); 4244 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4245 } 4246 for (User *U : Scalar->users()) { 4247 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4248 4249 Instruction *UserInst = dyn_cast<Instruction>(U); 4250 if (!UserInst) 4251 continue; 4252 4253 if (isDeleted(UserInst)) 4254 continue; 4255 4256 // Skip in-tree scalars that become vectors 4257 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4258 Value *UseScalar = UseEntry->Scalars[0]; 4259 // Some in-tree scalars will remain as scalar in vectorized 4260 // instructions. If that is the case, the one in Lane 0 will 4261 // be used. 4262 if (UseScalar != U || 4263 UseEntry->State == TreeEntry::ScatterVectorize || 4264 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4265 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4266 << ".\n"); 4267 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4268 continue; 4269 } 4270 } 4271 4272 // Ignore users in the user ignore list. 4273 if (UserIgnoreList && UserIgnoreList->contains(UserInst)) 4274 continue; 4275 4276 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4277 << Lane << " from " << *Scalar << ".\n"); 4278 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4279 } 4280 } 4281 } 4282 } 4283 4284 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4285 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4286 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4287 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4288 Value *V = TE->Scalars[Lane]; 4289 // To save compilation time we don't visit if we have too many users. 4290 static constexpr unsigned UsersLimit = 4; 4291 if (V->hasNUsesOrMore(UsersLimit)) 4292 break; 4293 4294 // Collect stores per pointer object. 4295 for (User *U : V->users()) { 4296 auto *SI = dyn_cast<StoreInst>(U); 4297 if (SI == nullptr || !SI->isSimple() || 4298 !isValidElementType(SI->getValueOperand()->getType())) 4299 continue; 4300 // Skip entry if already 4301 if (getTreeEntry(U)) 4302 continue; 4303 4304 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4305 auto &StoresVec = PtrToStoresMap[Ptr]; 4306 // For now just keep one store per pointer object per lane. 4307 // TODO: Extend this to support multiple stores per pointer per lane 4308 if (StoresVec.size() > Lane) 4309 continue; 4310 // Skip if in different BBs. 4311 if (!StoresVec.empty() && 4312 SI->getParent() != StoresVec.back()->getParent()) 4313 continue; 4314 // Make sure that the stores are of the same type. 4315 if (!StoresVec.empty() && 4316 SI->getValueOperand()->getType() != 4317 StoresVec.back()->getValueOperand()->getType()) 4318 continue; 4319 StoresVec.push_back(SI); 4320 } 4321 } 4322 return PtrToStoresMap; 4323 } 4324 4325 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4326 OrdersType &ReorderIndices) const { 4327 // We check whether the stores in StoreVec can form a vector by sorting them 4328 // and checking whether they are consecutive. 4329 4330 // To avoid calling getPointersDiff() while sorting we create a vector of 4331 // pairs {store, offset from first} and sort this instead. 4332 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4333 StoreInst *S0 = StoresVec[0]; 4334 StoreOffsetVec[0] = {S0, 0}; 4335 Type *S0Ty = S0->getValueOperand()->getType(); 4336 Value *S0Ptr = S0->getPointerOperand(); 4337 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4338 StoreInst *SI = StoresVec[Idx]; 4339 Optional<int> Diff = 4340 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4341 SI->getPointerOperand(), *DL, *SE, 4342 /*StrictCheck=*/true); 4343 // We failed to compare the pointers so just abandon this StoresVec. 4344 if (!Diff) 4345 return false; 4346 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4347 } 4348 4349 // Sort the vector based on the pointers. We create a copy because we may 4350 // need the original later for calculating the reorder (shuffle) indices. 4351 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4352 const std::pair<StoreInst *, int> &Pair2) { 4353 int Offset1 = Pair1.second; 4354 int Offset2 = Pair2.second; 4355 return Offset1 < Offset2; 4356 }); 4357 4358 // Check if the stores are consecutive by checking if their difference is 1. 4359 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4360 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4361 return false; 4362 4363 // Calculate the shuffle indices according to their offset against the sorted 4364 // StoreOffsetVec. 4365 ReorderIndices.reserve(StoresVec.size()); 4366 for (StoreInst *SI : StoresVec) { 4367 unsigned Idx = find_if(StoreOffsetVec, 4368 [SI](const std::pair<StoreInst *, int> &Pair) { 4369 return Pair.first == SI; 4370 }) - 4371 StoreOffsetVec.begin(); 4372 ReorderIndices.push_back(Idx); 4373 } 4374 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4375 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4376 // same convention here. 4377 auto IsIdentityOrder = [](const OrdersType &Order) { 4378 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4379 if (Idx != Order[Idx]) 4380 return false; 4381 return true; 4382 }; 4383 if (IsIdentityOrder(ReorderIndices)) 4384 ReorderIndices.clear(); 4385 4386 return true; 4387 } 4388 4389 #ifndef NDEBUG 4390 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4391 for (unsigned Idx : Order) 4392 dbgs() << Idx << ", "; 4393 dbgs() << "\n"; 4394 } 4395 #endif 4396 4397 SmallVector<BoUpSLP::OrdersType, 1> 4398 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4399 unsigned NumLanes = TE->Scalars.size(); 4400 4401 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4402 collectUserStores(TE); 4403 4404 // Holds the reorder indices for each candidate store vector that is a user of 4405 // the current TreeEntry. 4406 SmallVector<OrdersType, 1> ExternalReorderIndices; 4407 4408 // Now inspect the stores collected per pointer and look for vectorization 4409 // candidates. For each candidate calculate the reorder index vector and push 4410 // it into `ExternalReorderIndices` 4411 for (const auto &Pair : PtrToStoresMap) { 4412 auto &StoresVec = Pair.second; 4413 // If we have fewer than NumLanes stores, then we can't form a vector. 4414 if (StoresVec.size() != NumLanes) 4415 continue; 4416 4417 // If the stores are not consecutive then abandon this StoresVec. 4418 OrdersType ReorderIndices; 4419 if (!CanFormVector(StoresVec, ReorderIndices)) 4420 continue; 4421 4422 // We now know that the scalars in StoresVec can form a vector instruction, 4423 // so set the reorder indices. 4424 ExternalReorderIndices.push_back(ReorderIndices); 4425 } 4426 return ExternalReorderIndices; 4427 } 4428 4429 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4430 const SmallDenseSet<Value *> &UserIgnoreLst) { 4431 deleteTree(); 4432 UserIgnoreList = &UserIgnoreLst; 4433 if (!allSameType(Roots)) 4434 return; 4435 buildTree_rec(Roots, 0, EdgeInfo()); 4436 } 4437 4438 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 4439 deleteTree(); 4440 if (!allSameType(Roots)) 4441 return; 4442 buildTree_rec(Roots, 0, EdgeInfo()); 4443 } 4444 4445 /// \return true if the specified list of values has only one instruction that 4446 /// requires scheduling, false otherwise. 4447 #ifndef NDEBUG 4448 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4449 Value *NeedsScheduling = nullptr; 4450 for (Value *V : VL) { 4451 if (doesNotNeedToBeScheduled(V)) 4452 continue; 4453 if (!NeedsScheduling) { 4454 NeedsScheduling = V; 4455 continue; 4456 } 4457 return false; 4458 } 4459 return NeedsScheduling; 4460 } 4461 #endif 4462 4463 /// Generates key/subkey pair for the given value to provide effective sorting 4464 /// of the values and better detection of the vectorizable values sequences. The 4465 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4466 /// and in values subgroups (subkeys). 4467 static std::pair<size_t, size_t> generateKeySubkey( 4468 Value *V, const TargetLibraryInfo *TLI, 4469 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4470 bool AllowAlternate) { 4471 hash_code Key = hash_value(V->getValueID() + 2); 4472 hash_code SubKey = hash_value(0); 4473 // Sort the loads by the distance between the pointers. 4474 if (auto *LI = dyn_cast<LoadInst>(V)) { 4475 Key = hash_combine(hash_value(Instruction::Load), Key); 4476 if (LI->isSimple()) 4477 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4478 else 4479 SubKey = hash_value(LI); 4480 } else if (isVectorLikeInstWithConstOps(V)) { 4481 // Sort extracts by the vector operands. 4482 if (isa<ExtractElementInst, UndefValue>(V)) 4483 Key = hash_value(Value::UndefValueVal + 1); 4484 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4485 if (!isUndefVector(EI->getVectorOperand()) && 4486 !isa<UndefValue>(EI->getIndexOperand())) 4487 SubKey = hash_value(EI->getVectorOperand()); 4488 } 4489 } else if (auto *I = dyn_cast<Instruction>(V)) { 4490 // Sort other instructions just by the opcodes except for CMPInst. 4491 // For CMP also sort by the predicate kind. 4492 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4493 isValidForAlternation(I->getOpcode())) { 4494 if (AllowAlternate) 4495 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4496 else 4497 Key = hash_combine(hash_value(I->getOpcode()), Key); 4498 SubKey = hash_combine( 4499 hash_value(I->getOpcode()), hash_value(I->getType()), 4500 hash_value(isa<BinaryOperator>(I) 4501 ? I->getType() 4502 : cast<CastInst>(I)->getOperand(0)->getType())); 4503 // For casts, look through the only operand to improve compile time. 4504 if (isa<CastInst>(I)) { 4505 std::pair<size_t, size_t> OpVals = 4506 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, 4507 /*=AllowAlternate*/ true); 4508 Key = hash_combine(OpVals.first, Key); 4509 SubKey = hash_combine(OpVals.first, SubKey); 4510 } 4511 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4512 CmpInst::Predicate Pred = CI->getPredicate(); 4513 if (CI->isCommutative()) 4514 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4515 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4516 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4517 hash_value(SwapPred), 4518 hash_value(CI->getOperand(0)->getType())); 4519 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4520 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4521 if (isTriviallyVectorizable(ID)) { 4522 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4523 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { 4524 SubKey = hash_combine(hash_value(I->getOpcode()), 4525 hash_value(Call->getCalledFunction())); 4526 } else { 4527 Key = hash_combine(hash_value(Call), Key); 4528 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4529 } 4530 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4531 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4532 hash_value(Op.Tag), SubKey); 4533 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4534 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4535 SubKey = hash_value(Gep->getPointerOperand()); 4536 else 4537 SubKey = hash_value(Gep); 4538 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4539 !isa<ConstantInt>(I->getOperand(1))) { 4540 // Do not try to vectorize instructions with potentially high cost. 4541 SubKey = hash_value(I); 4542 } else { 4543 SubKey = hash_value(I->getOpcode()); 4544 } 4545 Key = hash_combine(hash_value(I->getParent()), Key); 4546 } 4547 return std::make_pair(Key, SubKey); 4548 } 4549 4550 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4551 const EdgeInfo &UserTreeIdx) { 4552 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4553 4554 SmallVector<int> ReuseShuffleIndicies; 4555 SmallVector<Value *> UniqueValues; 4556 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4557 &UserTreeIdx, 4558 this](const InstructionsState &S) { 4559 // Check that every instruction appears once in this bundle. 4560 DenseMap<Value *, unsigned> UniquePositions; 4561 for (Value *V : VL) { 4562 if (isConstant(V)) { 4563 ReuseShuffleIndicies.emplace_back( 4564 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4565 UniqueValues.emplace_back(V); 4566 continue; 4567 } 4568 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4569 ReuseShuffleIndicies.emplace_back(Res.first->second); 4570 if (Res.second) 4571 UniqueValues.emplace_back(V); 4572 } 4573 size_t NumUniqueScalarValues = UniqueValues.size(); 4574 if (NumUniqueScalarValues == VL.size()) { 4575 ReuseShuffleIndicies.clear(); 4576 } else { 4577 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4578 if (NumUniqueScalarValues <= 1 || 4579 (UniquePositions.size() == 1 && all_of(UniqueValues, 4580 [](Value *V) { 4581 return isa<UndefValue>(V) || 4582 !isConstant(V); 4583 })) || 4584 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4585 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4586 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4587 return false; 4588 } 4589 VL = UniqueValues; 4590 } 4591 return true; 4592 }; 4593 4594 InstructionsState S = getSameOpcode(VL); 4595 4596 // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of 4597 // a load), in which case peek through to include it in the tree, without 4598 // ballooning over-budget. 4599 if (Depth >= RecursionMaxDepth && 4600 !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp && 4601 VL.size() >= 4 && 4602 (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) { 4603 return match(I, 4604 m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) && 4605 cast<Instruction>(I)->getOpcode() == 4606 cast<Instruction>(S.MainOp)->getOpcode(); 4607 })))) { 4608 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4609 if (TryToFindDuplicates(S)) 4610 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4611 ReuseShuffleIndicies); 4612 return; 4613 } 4614 4615 // Don't handle scalable vectors 4616 if (S.getOpcode() == Instruction::ExtractElement && 4617 isa<ScalableVectorType>( 4618 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4619 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4620 if (TryToFindDuplicates(S)) 4621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4622 ReuseShuffleIndicies); 4623 return; 4624 } 4625 4626 // Don't handle vectors. 4627 if (S.OpValue->getType()->isVectorTy() && 4628 !isa<InsertElementInst>(S.OpValue)) { 4629 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4631 return; 4632 } 4633 4634 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4635 if (SI->getValueOperand()->getType()->isVectorTy()) { 4636 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4638 return; 4639 } 4640 4641 // If all of the operands are identical or constant we have a simple solution. 4642 // If we deal with insert/extract instructions, they all must have constant 4643 // indices, otherwise we should gather them, not try to vectorize. 4644 // If alternate op node with 2 elements with gathered operands - do not 4645 // vectorize. 4646 auto &&NotProfitableForVectorization = [&S, this, 4647 Depth](ArrayRef<Value *> VL) { 4648 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4649 return false; 4650 if (VectorizableTree.size() < MinTreeSize) 4651 return false; 4652 if (Depth >= RecursionMaxDepth - 1) 4653 return true; 4654 // Check if all operands are extracts, part of vector node or can build a 4655 // regular vectorize node. 4656 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4657 for (Value *V : VL) { 4658 auto *I = cast<Instruction>(V); 4659 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4660 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4661 })); 4662 } 4663 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4664 if ((IsCommutative && 4665 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4666 (!IsCommutative && 4667 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4668 return true; 4669 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4670 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4671 auto *I1 = cast<Instruction>(VL.front()); 4672 auto *I2 = cast<Instruction>(VL.back()); 4673 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4674 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4675 I2->getOperand(Op)); 4676 if (static_cast<unsigned>(count_if( 4677 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4678 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4679 })) >= S.MainOp->getNumOperands() / 2) 4680 return false; 4681 if (S.MainOp->getNumOperands() > 2) 4682 return true; 4683 if (IsCommutative) { 4684 // Check permuted operands. 4685 Candidates.clear(); 4686 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4687 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4688 I2->getOperand((Op + 1) % E)); 4689 if (any_of( 4690 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4691 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4692 })) 4693 return false; 4694 } 4695 return true; 4696 }; 4697 SmallVector<unsigned> SortedIndices; 4698 BasicBlock *BB = nullptr; 4699 bool AreAllSameInsts = 4700 (S.getOpcode() && allSameBlock(VL)) || 4701 (S.OpValue->getType()->isPointerTy() && UserTreeIdx.UserTE && 4702 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize && 4703 VL.size() > 2 && 4704 all_of(VL, 4705 [&BB](Value *V) { 4706 auto *I = dyn_cast<GetElementPtrInst>(V); 4707 if (!I) 4708 return doesNotNeedToBeScheduled(V); 4709 if (!BB) 4710 BB = I->getParent(); 4711 return BB == I->getParent() && I->getNumOperands() == 2; 4712 }) && 4713 BB && 4714 sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, 4715 SortedIndices)); 4716 if (allConstant(VL) || isSplat(VL) || !AreAllSameInsts || 4717 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( 4718 S.OpValue) && 4719 !all_of(VL, isVectorLikeInstWithConstOps)) || 4720 NotProfitableForVectorization(VL)) { 4721 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4722 if (TryToFindDuplicates(S)) 4723 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4724 ReuseShuffleIndicies); 4725 return; 4726 } 4727 4728 // We now know that this is a vector of instructions of the same type from 4729 // the same block. 4730 4731 // Don't vectorize ephemeral values. 4732 if (!EphValues.empty()) { 4733 for (Value *V : VL) { 4734 if (EphValues.count(V)) { 4735 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4736 << ") is ephemeral.\n"); 4737 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4738 return; 4739 } 4740 } 4741 } 4742 4743 // Check if this is a duplicate of another entry. 4744 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4745 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4746 if (!E->isSame(VL)) { 4747 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4748 if (TryToFindDuplicates(S)) 4749 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4750 ReuseShuffleIndicies); 4751 return; 4752 } 4753 // Record the reuse of the tree node. FIXME, currently this is only used to 4754 // properly draw the graph rather than for the actual vectorization. 4755 E->UserTreeIndices.push_back(UserTreeIdx); 4756 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4757 << ".\n"); 4758 return; 4759 } 4760 4761 // Check that none of the instructions in the bundle are already in the tree. 4762 for (Value *V : VL) { 4763 auto *I = dyn_cast<Instruction>(V); 4764 if (!I) 4765 continue; 4766 if (getTreeEntry(I)) { 4767 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4768 << ") is already in tree.\n"); 4769 if (TryToFindDuplicates(S)) 4770 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4771 ReuseShuffleIndicies); 4772 return; 4773 } 4774 } 4775 4776 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4777 if (UserIgnoreList && !UserIgnoreList->empty()) { 4778 for (Value *V : VL) { 4779 if (UserIgnoreList && UserIgnoreList->contains(V)) { 4780 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4781 if (TryToFindDuplicates(S)) 4782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4783 ReuseShuffleIndicies); 4784 return; 4785 } 4786 } 4787 } 4788 4789 // Special processing for sorted pointers for ScatterVectorize node with 4790 // constant indeces only. 4791 if (AreAllSameInsts && !(S.getOpcode() && allSameBlock(VL)) && 4792 UserTreeIdx.UserTE && 4793 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize) { 4794 assert(S.OpValue->getType()->isPointerTy() && 4795 count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 4796 2 && 4797 "Expected pointers only."); 4798 // Reset S to make it GetElementPtr kind of node. 4799 const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 4800 assert(It != VL.end() && "Expected at least one GEP."); 4801 S = getSameOpcode(*It); 4802 } 4803 4804 // Check that all of the users of the scalars that we want to vectorize are 4805 // schedulable. 4806 auto *VL0 = cast<Instruction>(S.OpValue); 4807 BB = VL0->getParent(); 4808 4809 if (!DT->isReachableFromEntry(BB)) { 4810 // Don't go into unreachable blocks. They may contain instructions with 4811 // dependency cycles which confuse the final scheduling. 4812 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4813 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4814 return; 4815 } 4816 4817 // Check that every instruction appears once in this bundle. 4818 if (!TryToFindDuplicates(S)) 4819 return; 4820 4821 auto &BSRef = BlocksSchedules[BB]; 4822 if (!BSRef) 4823 BSRef = std::make_unique<BlockScheduling>(BB); 4824 4825 BlockScheduling &BS = *BSRef; 4826 4827 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4828 #ifdef EXPENSIVE_CHECKS 4829 // Make sure we didn't break any internal invariants 4830 BS.verify(); 4831 #endif 4832 if (!Bundle) { 4833 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4834 assert((!BS.getScheduleData(VL0) || 4835 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4836 "tryScheduleBundle should cancelScheduling on failure"); 4837 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4838 ReuseShuffleIndicies); 4839 return; 4840 } 4841 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4842 4843 unsigned ShuffleOrOp = S.isAltShuffle() ? 4844 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4845 switch (ShuffleOrOp) { 4846 case Instruction::PHI: { 4847 auto *PH = cast<PHINode>(VL0); 4848 4849 // Check for terminator values (e.g. invoke). 4850 for (Value *V : VL) 4851 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4852 Instruction *Term = dyn_cast<Instruction>(Incoming); 4853 if (Term && Term->isTerminator()) { 4854 LLVM_DEBUG(dbgs() 4855 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4856 BS.cancelScheduling(VL, VL0); 4857 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4858 ReuseShuffleIndicies); 4859 return; 4860 } 4861 } 4862 4863 TreeEntry *TE = 4864 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4865 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4866 4867 // Keeps the reordered operands to avoid code duplication. 4868 SmallVector<ValueList, 2> OperandsVec; 4869 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4870 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4871 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4872 TE->setOperand(I, Operands); 4873 OperandsVec.push_back(Operands); 4874 continue; 4875 } 4876 ValueList Operands; 4877 // Prepare the operand vector. 4878 for (Value *V : VL) 4879 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4880 PH->getIncomingBlock(I))); 4881 TE->setOperand(I, Operands); 4882 OperandsVec.push_back(Operands); 4883 } 4884 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4885 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4886 return; 4887 } 4888 case Instruction::ExtractValue: 4889 case Instruction::ExtractElement: { 4890 OrdersType CurrentOrder; 4891 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4892 if (Reuse) { 4893 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4894 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4895 ReuseShuffleIndicies); 4896 // This is a special case, as it does not gather, but at the same time 4897 // we are not extending buildTree_rec() towards the operands. 4898 ValueList Op0; 4899 Op0.assign(VL.size(), VL0->getOperand(0)); 4900 VectorizableTree.back()->setOperand(0, Op0); 4901 return; 4902 } 4903 if (!CurrentOrder.empty()) { 4904 LLVM_DEBUG({ 4905 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4906 "with order"; 4907 for (unsigned Idx : CurrentOrder) 4908 dbgs() << " " << Idx; 4909 dbgs() << "\n"; 4910 }); 4911 fixupOrderingIndices(CurrentOrder); 4912 // Insert new order with initial value 0, if it does not exist, 4913 // otherwise return the iterator to the existing one. 4914 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4915 ReuseShuffleIndicies, CurrentOrder); 4916 // This is a special case, as it does not gather, but at the same time 4917 // we are not extending buildTree_rec() towards the operands. 4918 ValueList Op0; 4919 Op0.assign(VL.size(), VL0->getOperand(0)); 4920 VectorizableTree.back()->setOperand(0, Op0); 4921 return; 4922 } 4923 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4924 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4925 ReuseShuffleIndicies); 4926 BS.cancelScheduling(VL, VL0); 4927 return; 4928 } 4929 case Instruction::InsertElement: { 4930 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4931 4932 // Check that we have a buildvector and not a shuffle of 2 or more 4933 // different vectors. 4934 ValueSet SourceVectors; 4935 for (Value *V : VL) { 4936 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4937 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4938 } 4939 4940 if (count_if(VL, [&SourceVectors](Value *V) { 4941 return !SourceVectors.contains(V); 4942 }) >= 2) { 4943 // Found 2nd source vector - cancel. 4944 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4945 "different source vectors.\n"); 4946 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4947 BS.cancelScheduling(VL, VL0); 4948 return; 4949 } 4950 4951 auto OrdCompare = [](const std::pair<int, int> &P1, 4952 const std::pair<int, int> &P2) { 4953 return P1.first > P2.first; 4954 }; 4955 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4956 decltype(OrdCompare)> 4957 Indices(OrdCompare); 4958 for (int I = 0, E = VL.size(); I < E; ++I) { 4959 unsigned Idx = *getInsertIndex(VL[I]); 4960 Indices.emplace(Idx, I); 4961 } 4962 OrdersType CurrentOrder(VL.size(), VL.size()); 4963 bool IsIdentity = true; 4964 for (int I = 0, E = VL.size(); I < E; ++I) { 4965 CurrentOrder[Indices.top().second] = I; 4966 IsIdentity &= Indices.top().second == I; 4967 Indices.pop(); 4968 } 4969 if (IsIdentity) 4970 CurrentOrder.clear(); 4971 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4972 None, CurrentOrder); 4973 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4974 4975 constexpr int NumOps = 2; 4976 ValueList VectorOperands[NumOps]; 4977 for (int I = 0; I < NumOps; ++I) { 4978 for (Value *V : VL) 4979 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4980 4981 TE->setOperand(I, VectorOperands[I]); 4982 } 4983 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4984 return; 4985 } 4986 case Instruction::Load: { 4987 // Check that a vectorized load would load the same memory as a scalar 4988 // load. For example, we don't want to vectorize loads that are smaller 4989 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4990 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4991 // from such a struct, we read/write packed bits disagreeing with the 4992 // unvectorized version. 4993 SmallVector<Value *> PointerOps; 4994 OrdersType CurrentOrder; 4995 TreeEntry *TE = nullptr; 4996 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, CurrentOrder, 4997 PointerOps)) { 4998 case LoadsState::Vectorize: 4999 if (CurrentOrder.empty()) { 5000 // Original loads are consecutive and does not require reordering. 5001 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5002 ReuseShuffleIndicies); 5003 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 5004 } else { 5005 fixupOrderingIndices(CurrentOrder); 5006 // Need to reorder. 5007 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5008 ReuseShuffleIndicies, CurrentOrder); 5009 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 5010 } 5011 TE->setOperandsInOrder(); 5012 break; 5013 case LoadsState::ScatterVectorize: 5014 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 5015 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 5016 UserTreeIdx, ReuseShuffleIndicies); 5017 TE->setOperandsInOrder(); 5018 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 5019 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 5020 break; 5021 case LoadsState::Gather: 5022 BS.cancelScheduling(VL, VL0); 5023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5024 ReuseShuffleIndicies); 5025 #ifndef NDEBUG 5026 Type *ScalarTy = VL0->getType(); 5027 if (DL->getTypeSizeInBits(ScalarTy) != 5028 DL->getTypeAllocSizeInBits(ScalarTy)) 5029 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 5030 else if (any_of(VL, [](Value *V) { 5031 return !cast<LoadInst>(V)->isSimple(); 5032 })) 5033 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 5034 else 5035 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 5036 #endif // NDEBUG 5037 break; 5038 } 5039 return; 5040 } 5041 case Instruction::ZExt: 5042 case Instruction::SExt: 5043 case Instruction::FPToUI: 5044 case Instruction::FPToSI: 5045 case Instruction::FPExt: 5046 case Instruction::PtrToInt: 5047 case Instruction::IntToPtr: 5048 case Instruction::SIToFP: 5049 case Instruction::UIToFP: 5050 case Instruction::Trunc: 5051 case Instruction::FPTrunc: 5052 case Instruction::BitCast: { 5053 Type *SrcTy = VL0->getOperand(0)->getType(); 5054 for (Value *V : VL) { 5055 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 5056 if (Ty != SrcTy || !isValidElementType(Ty)) { 5057 BS.cancelScheduling(VL, VL0); 5058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5059 ReuseShuffleIndicies); 5060 LLVM_DEBUG(dbgs() 5061 << "SLP: Gathering casts with different src types.\n"); 5062 return; 5063 } 5064 } 5065 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5066 ReuseShuffleIndicies); 5067 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 5068 5069 TE->setOperandsInOrder(); 5070 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5071 ValueList Operands; 5072 // Prepare the operand vector. 5073 for (Value *V : VL) 5074 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5075 5076 buildTree_rec(Operands, Depth + 1, {TE, i}); 5077 } 5078 return; 5079 } 5080 case Instruction::ICmp: 5081 case Instruction::FCmp: { 5082 // Check that all of the compares have the same predicate. 5083 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5084 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 5085 Type *ComparedTy = VL0->getOperand(0)->getType(); 5086 for (Value *V : VL) { 5087 CmpInst *Cmp = cast<CmpInst>(V); 5088 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 5089 Cmp->getOperand(0)->getType() != ComparedTy) { 5090 BS.cancelScheduling(VL, VL0); 5091 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5092 ReuseShuffleIndicies); 5093 LLVM_DEBUG(dbgs() 5094 << "SLP: Gathering cmp with different predicate.\n"); 5095 return; 5096 } 5097 } 5098 5099 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5100 ReuseShuffleIndicies); 5101 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 5102 5103 ValueList Left, Right; 5104 if (cast<CmpInst>(VL0)->isCommutative()) { 5105 // Commutative predicate - collect + sort operands of the instructions 5106 // so that each side is more likely to have the same opcode. 5107 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 5108 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5109 } else { 5110 // Collect operands - commute if it uses the swapped predicate. 5111 for (Value *V : VL) { 5112 auto *Cmp = cast<CmpInst>(V); 5113 Value *LHS = Cmp->getOperand(0); 5114 Value *RHS = Cmp->getOperand(1); 5115 if (Cmp->getPredicate() != P0) 5116 std::swap(LHS, RHS); 5117 Left.push_back(LHS); 5118 Right.push_back(RHS); 5119 } 5120 } 5121 TE->setOperand(0, Left); 5122 TE->setOperand(1, Right); 5123 buildTree_rec(Left, Depth + 1, {TE, 0}); 5124 buildTree_rec(Right, Depth + 1, {TE, 1}); 5125 return; 5126 } 5127 case Instruction::Select: 5128 case Instruction::FNeg: 5129 case Instruction::Add: 5130 case Instruction::FAdd: 5131 case Instruction::Sub: 5132 case Instruction::FSub: 5133 case Instruction::Mul: 5134 case Instruction::FMul: 5135 case Instruction::UDiv: 5136 case Instruction::SDiv: 5137 case Instruction::FDiv: 5138 case Instruction::URem: 5139 case Instruction::SRem: 5140 case Instruction::FRem: 5141 case Instruction::Shl: 5142 case Instruction::LShr: 5143 case Instruction::AShr: 5144 case Instruction::And: 5145 case Instruction::Or: 5146 case Instruction::Xor: { 5147 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5148 ReuseShuffleIndicies); 5149 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 5150 5151 // Sort operands of the instructions so that each side is more likely to 5152 // have the same opcode. 5153 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5154 ValueList Left, Right; 5155 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5156 TE->setOperand(0, Left); 5157 TE->setOperand(1, Right); 5158 buildTree_rec(Left, Depth + 1, {TE, 0}); 5159 buildTree_rec(Right, Depth + 1, {TE, 1}); 5160 return; 5161 } 5162 5163 TE->setOperandsInOrder(); 5164 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5165 ValueList Operands; 5166 // Prepare the operand vector. 5167 for (Value *V : VL) 5168 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5169 5170 buildTree_rec(Operands, Depth + 1, {TE, i}); 5171 } 5172 return; 5173 } 5174 case Instruction::GetElementPtr: { 5175 // We don't combine GEPs with complicated (nested) indexing. 5176 for (Value *V : VL) { 5177 auto *I = dyn_cast<GetElementPtrInst>(V); 5178 if (!I) 5179 continue; 5180 if (I->getNumOperands() != 2) { 5181 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5182 BS.cancelScheduling(VL, VL0); 5183 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5184 ReuseShuffleIndicies); 5185 return; 5186 } 5187 } 5188 5189 // We can't combine several GEPs into one vector if they operate on 5190 // different types. 5191 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5192 for (Value *V : VL) { 5193 auto *GEP = dyn_cast<GEPOperator>(V); 5194 if (!GEP) 5195 continue; 5196 Type *CurTy = GEP->getSourceElementType(); 5197 if (Ty0 != CurTy) { 5198 LLVM_DEBUG(dbgs() 5199 << "SLP: not-vectorizable GEP (different types).\n"); 5200 BS.cancelScheduling(VL, VL0); 5201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5202 ReuseShuffleIndicies); 5203 return; 5204 } 5205 } 5206 5207 bool IsScatterUser = 5208 UserTreeIdx.UserTE && 5209 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; 5210 // We don't combine GEPs with non-constant indexes. 5211 Type *Ty1 = VL0->getOperand(1)->getType(); 5212 for (Value *V : VL) { 5213 auto *I = dyn_cast<GetElementPtrInst>(V); 5214 if (!I) 5215 continue; 5216 auto *Op = I->getOperand(1); 5217 if ((!IsScatterUser && !isa<ConstantInt>(Op)) || 5218 (Op->getType() != Ty1 && 5219 ((IsScatterUser && !isa<ConstantInt>(Op)) || 5220 Op->getType()->getScalarSizeInBits() > 5221 DL->getIndexSizeInBits( 5222 V->getType()->getPointerAddressSpace())))) { 5223 LLVM_DEBUG(dbgs() 5224 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5225 BS.cancelScheduling(VL, VL0); 5226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5227 ReuseShuffleIndicies); 5228 return; 5229 } 5230 } 5231 5232 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5233 ReuseShuffleIndicies); 5234 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5235 SmallVector<ValueList, 2> Operands(2); 5236 // Prepare the operand vector for pointer operands. 5237 for (Value *V : VL) { 5238 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5239 if (!GEP) { 5240 Operands.front().push_back(V); 5241 continue; 5242 } 5243 Operands.front().push_back(GEP->getPointerOperand()); 5244 } 5245 TE->setOperand(0, Operands.front()); 5246 // Need to cast all indices to the same type before vectorization to 5247 // avoid crash. 5248 // Required to be able to find correct matches between different gather 5249 // nodes and reuse the vectorized values rather than trying to gather them 5250 // again. 5251 int IndexIdx = 1; 5252 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5253 Type *Ty = all_of(VL, 5254 [VL0Ty, IndexIdx](Value *V) { 5255 auto *GEP = dyn_cast<GetElementPtrInst>(V); 5256 if (!GEP) 5257 return true; 5258 return VL0Ty == GEP->getOperand(IndexIdx)->getType(); 5259 }) 5260 ? VL0Ty 5261 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5262 ->getPointerOperandType() 5263 ->getScalarType()); 5264 // Prepare the operand vector. 5265 for (Value *V : VL) { 5266 auto *I = dyn_cast<GetElementPtrInst>(V); 5267 if (!I) { 5268 Operands.back().push_back( 5269 ConstantInt::get(Ty, 0, /*isSigned=*/false)); 5270 continue; 5271 } 5272 auto *Op = I->getOperand(IndexIdx); 5273 auto *CI = dyn_cast<ConstantInt>(Op); 5274 if (!CI) 5275 Operands.back().push_back(Op); 5276 else 5277 Operands.back().push_back(ConstantExpr::getIntegerCast( 5278 CI, Ty, CI->getValue().isSignBitSet())); 5279 } 5280 TE->setOperand(IndexIdx, Operands.back()); 5281 5282 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5283 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5284 return; 5285 } 5286 case Instruction::Store: { 5287 // Check if the stores are consecutive or if we need to swizzle them. 5288 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5289 // Avoid types that are padded when being allocated as scalars, while 5290 // being packed together in a vector (such as i1). 5291 if (DL->getTypeSizeInBits(ScalarTy) != 5292 DL->getTypeAllocSizeInBits(ScalarTy)) { 5293 BS.cancelScheduling(VL, VL0); 5294 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5295 ReuseShuffleIndicies); 5296 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5297 return; 5298 } 5299 // Make sure all stores in the bundle are simple - we can't vectorize 5300 // atomic or volatile stores. 5301 SmallVector<Value *, 4> PointerOps(VL.size()); 5302 ValueList Operands(VL.size()); 5303 auto POIter = PointerOps.begin(); 5304 auto OIter = Operands.begin(); 5305 for (Value *V : VL) { 5306 auto *SI = cast<StoreInst>(V); 5307 if (!SI->isSimple()) { 5308 BS.cancelScheduling(VL, VL0); 5309 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5310 ReuseShuffleIndicies); 5311 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5312 return; 5313 } 5314 *POIter = SI->getPointerOperand(); 5315 *OIter = SI->getValueOperand(); 5316 ++POIter; 5317 ++OIter; 5318 } 5319 5320 OrdersType CurrentOrder; 5321 // Check the order of pointer operands. 5322 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5323 Value *Ptr0; 5324 Value *PtrN; 5325 if (CurrentOrder.empty()) { 5326 Ptr0 = PointerOps.front(); 5327 PtrN = PointerOps.back(); 5328 } else { 5329 Ptr0 = PointerOps[CurrentOrder.front()]; 5330 PtrN = PointerOps[CurrentOrder.back()]; 5331 } 5332 Optional<int> Dist = 5333 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5334 // Check that the sorted pointer operands are consecutive. 5335 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5336 if (CurrentOrder.empty()) { 5337 // Original stores are consecutive and does not require reordering. 5338 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5339 UserTreeIdx, ReuseShuffleIndicies); 5340 TE->setOperandsInOrder(); 5341 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5342 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5343 } else { 5344 fixupOrderingIndices(CurrentOrder); 5345 TreeEntry *TE = 5346 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5347 ReuseShuffleIndicies, CurrentOrder); 5348 TE->setOperandsInOrder(); 5349 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5350 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5351 } 5352 return; 5353 } 5354 } 5355 5356 BS.cancelScheduling(VL, VL0); 5357 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5358 ReuseShuffleIndicies); 5359 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5360 return; 5361 } 5362 case Instruction::Call: { 5363 // Check if the calls are all to the same vectorizable intrinsic or 5364 // library function. 5365 CallInst *CI = cast<CallInst>(VL0); 5366 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5367 5368 VFShape Shape = VFShape::get( 5369 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5370 false /*HasGlobalPred*/); 5371 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5372 5373 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5374 BS.cancelScheduling(VL, VL0); 5375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5376 ReuseShuffleIndicies); 5377 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5378 return; 5379 } 5380 Function *F = CI->getCalledFunction(); 5381 unsigned NumArgs = CI->arg_size(); 5382 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5383 for (unsigned j = 0; j != NumArgs; ++j) 5384 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5385 ScalarArgs[j] = CI->getArgOperand(j); 5386 for (Value *V : VL) { 5387 CallInst *CI2 = dyn_cast<CallInst>(V); 5388 if (!CI2 || CI2->getCalledFunction() != F || 5389 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5390 (VecFunc && 5391 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5392 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5393 BS.cancelScheduling(VL, VL0); 5394 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5395 ReuseShuffleIndicies); 5396 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5397 << "\n"); 5398 return; 5399 } 5400 // Some intrinsics have scalar arguments and should be same in order for 5401 // them to be vectorized. 5402 for (unsigned j = 0; j != NumArgs; ++j) { 5403 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5404 Value *A1J = CI2->getArgOperand(j); 5405 if (ScalarArgs[j] != A1J) { 5406 BS.cancelScheduling(VL, VL0); 5407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5408 ReuseShuffleIndicies); 5409 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5410 << " argument " << ScalarArgs[j] << "!=" << A1J 5411 << "\n"); 5412 return; 5413 } 5414 } 5415 } 5416 // Verify that the bundle operands are identical between the two calls. 5417 if (CI->hasOperandBundles() && 5418 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5419 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5420 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5421 BS.cancelScheduling(VL, VL0); 5422 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5423 ReuseShuffleIndicies); 5424 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5425 << *CI << "!=" << *V << '\n'); 5426 return; 5427 } 5428 } 5429 5430 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5431 ReuseShuffleIndicies); 5432 TE->setOperandsInOrder(); 5433 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5434 // For scalar operands no need to to create an entry since no need to 5435 // vectorize it. 5436 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5437 continue; 5438 ValueList Operands; 5439 // Prepare the operand vector. 5440 for (Value *V : VL) { 5441 auto *CI2 = cast<CallInst>(V); 5442 Operands.push_back(CI2->getArgOperand(i)); 5443 } 5444 buildTree_rec(Operands, Depth + 1, {TE, i}); 5445 } 5446 return; 5447 } 5448 case Instruction::ShuffleVector: { 5449 // If this is not an alternate sequence of opcode like add-sub 5450 // then do not vectorize this instruction. 5451 if (!S.isAltShuffle()) { 5452 BS.cancelScheduling(VL, VL0); 5453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5454 ReuseShuffleIndicies); 5455 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5456 return; 5457 } 5458 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5459 ReuseShuffleIndicies); 5460 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5461 5462 // Reorder operands if reordering would enable vectorization. 5463 auto *CI = dyn_cast<CmpInst>(VL0); 5464 if (isa<BinaryOperator>(VL0) || CI) { 5465 ValueList Left, Right; 5466 if (!CI || all_of(VL, [](Value *V) { 5467 return cast<CmpInst>(V)->isCommutative(); 5468 })) { 5469 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5470 } else { 5471 CmpInst::Predicate P0 = CI->getPredicate(); 5472 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5473 assert(P0 != AltP0 && 5474 "Expected different main/alternate predicates."); 5475 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5476 Value *BaseOp0 = VL0->getOperand(0); 5477 Value *BaseOp1 = VL0->getOperand(1); 5478 // Collect operands - commute if it uses the swapped predicate or 5479 // alternate operation. 5480 for (Value *V : VL) { 5481 auto *Cmp = cast<CmpInst>(V); 5482 Value *LHS = Cmp->getOperand(0); 5483 Value *RHS = Cmp->getOperand(1); 5484 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5485 if (P0 == AltP0Swapped) { 5486 if (CI != Cmp && S.AltOp != Cmp && 5487 ((P0 == CurrentPred && 5488 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5489 (AltP0 == CurrentPred && 5490 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5491 std::swap(LHS, RHS); 5492 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5493 std::swap(LHS, RHS); 5494 } 5495 Left.push_back(LHS); 5496 Right.push_back(RHS); 5497 } 5498 } 5499 TE->setOperand(0, Left); 5500 TE->setOperand(1, Right); 5501 buildTree_rec(Left, Depth + 1, {TE, 0}); 5502 buildTree_rec(Right, Depth + 1, {TE, 1}); 5503 return; 5504 } 5505 5506 TE->setOperandsInOrder(); 5507 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5508 ValueList Operands; 5509 // Prepare the operand vector. 5510 for (Value *V : VL) 5511 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5512 5513 buildTree_rec(Operands, Depth + 1, {TE, i}); 5514 } 5515 return; 5516 } 5517 default: 5518 BS.cancelScheduling(VL, VL0); 5519 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5520 ReuseShuffleIndicies); 5521 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5522 return; 5523 } 5524 } 5525 5526 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5527 unsigned N = 1; 5528 Type *EltTy = T; 5529 5530 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5531 isa<VectorType>(EltTy)) { 5532 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5533 // Check that struct is homogeneous. 5534 for (const auto *Ty : ST->elements()) 5535 if (Ty != *ST->element_begin()) 5536 return 0; 5537 N *= ST->getNumElements(); 5538 EltTy = *ST->element_begin(); 5539 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5540 N *= AT->getNumElements(); 5541 EltTy = AT->getElementType(); 5542 } else { 5543 auto *VT = cast<FixedVectorType>(EltTy); 5544 N *= VT->getNumElements(); 5545 EltTy = VT->getElementType(); 5546 } 5547 } 5548 5549 if (!isValidElementType(EltTy)) 5550 return 0; 5551 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5552 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5553 return 0; 5554 return N; 5555 } 5556 5557 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5558 SmallVectorImpl<unsigned> &CurrentOrder) const { 5559 const auto *It = find_if(VL, [](Value *V) { 5560 return isa<ExtractElementInst, ExtractValueInst>(V); 5561 }); 5562 assert(It != VL.end() && "Expected at least one extract instruction."); 5563 auto *E0 = cast<Instruction>(*It); 5564 assert(all_of(VL, 5565 [](Value *V) { 5566 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5567 V); 5568 }) && 5569 "Invalid opcode"); 5570 // Check if all of the extracts come from the same vector and from the 5571 // correct offset. 5572 Value *Vec = E0->getOperand(0); 5573 5574 CurrentOrder.clear(); 5575 5576 // We have to extract from a vector/aggregate with the same number of elements. 5577 unsigned NElts; 5578 if (E0->getOpcode() == Instruction::ExtractValue) { 5579 const DataLayout &DL = E0->getModule()->getDataLayout(); 5580 NElts = canMapToVector(Vec->getType(), DL); 5581 if (!NElts) 5582 return false; 5583 // Check if load can be rewritten as load of vector. 5584 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5585 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5586 return false; 5587 } else { 5588 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5589 } 5590 5591 if (NElts != VL.size()) 5592 return false; 5593 5594 // Check that all of the indices extract from the correct offset. 5595 bool ShouldKeepOrder = true; 5596 unsigned E = VL.size(); 5597 // Assign to all items the initial value E + 1 so we can check if the extract 5598 // instruction index was used already. 5599 // Also, later we can check that all the indices are used and we have a 5600 // consecutive access in the extract instructions, by checking that no 5601 // element of CurrentOrder still has value E + 1. 5602 CurrentOrder.assign(E, E); 5603 unsigned I = 0; 5604 for (; I < E; ++I) { 5605 auto *Inst = dyn_cast<Instruction>(VL[I]); 5606 if (!Inst) 5607 continue; 5608 if (Inst->getOperand(0) != Vec) 5609 break; 5610 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5611 if (isa<UndefValue>(EE->getIndexOperand())) 5612 continue; 5613 Optional<unsigned> Idx = getExtractIndex(Inst); 5614 if (!Idx) 5615 break; 5616 const unsigned ExtIdx = *Idx; 5617 if (ExtIdx != I) { 5618 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5619 break; 5620 ShouldKeepOrder = false; 5621 CurrentOrder[ExtIdx] = I; 5622 } else { 5623 if (CurrentOrder[I] != E) 5624 break; 5625 CurrentOrder[I] = I; 5626 } 5627 } 5628 if (I < E) { 5629 CurrentOrder.clear(); 5630 return false; 5631 } 5632 if (ShouldKeepOrder) 5633 CurrentOrder.clear(); 5634 5635 return ShouldKeepOrder; 5636 } 5637 5638 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5639 ArrayRef<Value *> VectorizedVals) const { 5640 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5641 all_of(I->users(), [this](User *U) { 5642 return ScalarToTreeEntry.count(U) > 0 || 5643 isVectorLikeInstWithConstOps(U) || 5644 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5645 }); 5646 } 5647 5648 static std::pair<InstructionCost, InstructionCost> 5649 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5650 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5651 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5652 5653 // Calculate the cost of the scalar and vector calls. 5654 SmallVector<Type *, 4> VecTys; 5655 for (Use &Arg : CI->args()) 5656 VecTys.push_back( 5657 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5658 FastMathFlags FMF; 5659 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5660 FMF = FPCI->getFastMathFlags(); 5661 SmallVector<const Value *> Arguments(CI->args()); 5662 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5663 dyn_cast<IntrinsicInst>(CI)); 5664 auto IntrinsicCost = 5665 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5666 5667 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5668 VecTy->getNumElements())), 5669 false /*HasGlobalPred*/); 5670 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5671 auto LibCost = IntrinsicCost; 5672 if (!CI->isNoBuiltin() && VecFunc) { 5673 // Calculate the cost of the vector library call. 5674 // If the corresponding vector call is cheaper, return its cost. 5675 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5676 TTI::TCK_RecipThroughput); 5677 } 5678 return {IntrinsicCost, LibCost}; 5679 } 5680 5681 /// Compute the cost of creating a vector of type \p VecTy containing the 5682 /// extracted values from \p VL. 5683 static InstructionCost 5684 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5685 TargetTransformInfo::ShuffleKind ShuffleKind, 5686 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5687 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5688 5689 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5690 VecTy->getNumElements() < NumOfParts) 5691 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5692 5693 bool AllConsecutive = true; 5694 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5695 unsigned Idx = -1; 5696 InstructionCost Cost = 0; 5697 5698 // Process extracts in blocks of EltsPerVector to check if the source vector 5699 // operand can be re-used directly. If not, add the cost of creating a shuffle 5700 // to extract the values into a vector register. 5701 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5702 for (auto *V : VL) { 5703 ++Idx; 5704 5705 // Reached the start of a new vector registers. 5706 if (Idx % EltsPerVector == 0) { 5707 RegMask.assign(EltsPerVector, UndefMaskElem); 5708 AllConsecutive = true; 5709 continue; 5710 } 5711 5712 // Need to exclude undefs from analysis. 5713 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5714 continue; 5715 5716 // Check all extracts for a vector register on the target directly 5717 // extract values in order. 5718 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5719 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5720 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5721 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5722 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5723 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5724 } 5725 5726 if (AllConsecutive) 5727 continue; 5728 5729 // Skip all indices, except for the last index per vector block. 5730 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5731 continue; 5732 5733 // If we have a series of extracts which are not consecutive and hence 5734 // cannot re-use the source vector register directly, compute the shuffle 5735 // cost to extract the vector with EltsPerVector elements. 5736 Cost += TTI.getShuffleCost( 5737 TargetTransformInfo::SK_PermuteSingleSrc, 5738 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5739 } 5740 return Cost; 5741 } 5742 5743 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5744 /// operations operands. 5745 static void 5746 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5747 ArrayRef<int> ReusesIndices, 5748 const function_ref<bool(Instruction *)> IsAltOp, 5749 SmallVectorImpl<int> &Mask, 5750 SmallVectorImpl<Value *> *OpScalars = nullptr, 5751 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5752 unsigned Sz = VL.size(); 5753 Mask.assign(Sz, UndefMaskElem); 5754 SmallVector<int> OrderMask; 5755 if (!ReorderIndices.empty()) 5756 inversePermutation(ReorderIndices, OrderMask); 5757 for (unsigned I = 0; I < Sz; ++I) { 5758 unsigned Idx = I; 5759 if (!ReorderIndices.empty()) 5760 Idx = OrderMask[I]; 5761 auto *OpInst = cast<Instruction>(VL[Idx]); 5762 if (IsAltOp(OpInst)) { 5763 Mask[I] = Sz + Idx; 5764 if (AltScalars) 5765 AltScalars->push_back(OpInst); 5766 } else { 5767 Mask[I] = Idx; 5768 if (OpScalars) 5769 OpScalars->push_back(OpInst); 5770 } 5771 } 5772 if (!ReusesIndices.empty()) { 5773 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5774 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5775 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5776 }); 5777 Mask.swap(NewMask); 5778 } 5779 } 5780 5781 /// Checks if the specified instruction \p I is an alternate operation for the 5782 /// given \p MainOp and \p AltOp instructions. 5783 static bool isAlternateInstruction(const Instruction *I, 5784 const Instruction *MainOp, 5785 const Instruction *AltOp) { 5786 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5787 auto *AltCI0 = cast<CmpInst>(AltOp); 5788 auto *CI = cast<CmpInst>(I); 5789 CmpInst::Predicate P0 = CI0->getPredicate(); 5790 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5791 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5792 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5793 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5794 if (P0 == AltP0Swapped) 5795 return I == AltCI0 || 5796 (I != MainOp && 5797 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5798 CI->getOperand(0), CI->getOperand(1))); 5799 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5800 } 5801 return I->getOpcode() == AltOp->getOpcode(); 5802 } 5803 5804 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5805 ArrayRef<Value *> VectorizedVals) { 5806 ArrayRef<Value*> VL = E->Scalars; 5807 5808 Type *ScalarTy = VL[0]->getType(); 5809 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5810 ScalarTy = SI->getValueOperand()->getType(); 5811 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5812 ScalarTy = CI->getOperand(0)->getType(); 5813 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5814 ScalarTy = IE->getOperand(1)->getType(); 5815 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5816 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5817 5818 // If we have computed a smaller type for the expression, update VecTy so 5819 // that the costs will be accurate. 5820 if (MinBWs.count(VL[0])) 5821 VecTy = FixedVectorType::get( 5822 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5823 unsigned EntryVF = E->getVectorFactor(); 5824 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5825 5826 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5827 // FIXME: it tries to fix a problem with MSVC buildbots. 5828 TargetTransformInfo &TTIRef = *TTI; 5829 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5830 VectorizedVals, E](InstructionCost &Cost) { 5831 DenseMap<Value *, int> ExtractVectorsTys; 5832 SmallPtrSet<Value *, 4> CheckedExtracts; 5833 for (auto *V : VL) { 5834 if (isa<UndefValue>(V)) 5835 continue; 5836 // If all users of instruction are going to be vectorized and this 5837 // instruction itself is not going to be vectorized, consider this 5838 // instruction as dead and remove its cost from the final cost of the 5839 // vectorized tree. 5840 // Also, avoid adjusting the cost for extractelements with multiple uses 5841 // in different graph entries. 5842 const TreeEntry *VE = getTreeEntry(V); 5843 if (!CheckedExtracts.insert(V).second || 5844 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5845 (VE && VE != E)) 5846 continue; 5847 auto *EE = cast<ExtractElementInst>(V); 5848 Optional<unsigned> EEIdx = getExtractIndex(EE); 5849 if (!EEIdx) 5850 continue; 5851 unsigned Idx = *EEIdx; 5852 if (TTIRef.getNumberOfParts(VecTy) != 5853 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5854 auto It = 5855 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5856 It->getSecond() = std::min<int>(It->second, Idx); 5857 } 5858 // Take credit for instruction that will become dead. 5859 if (EE->hasOneUse()) { 5860 Instruction *Ext = EE->user_back(); 5861 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5862 all_of(Ext->users(), 5863 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5864 // Use getExtractWithExtendCost() to calculate the cost of 5865 // extractelement/ext pair. 5866 Cost -= 5867 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5868 EE->getVectorOperandType(), Idx); 5869 // Add back the cost of s|zext which is subtracted separately. 5870 Cost += TTIRef.getCastInstrCost( 5871 Ext->getOpcode(), Ext->getType(), EE->getType(), 5872 TTI::getCastContextHint(Ext), CostKind, Ext); 5873 continue; 5874 } 5875 } 5876 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5877 EE->getVectorOperandType(), Idx); 5878 } 5879 // Add a cost for subvector extracts/inserts if required. 5880 for (const auto &Data : ExtractVectorsTys) { 5881 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5882 unsigned NumElts = VecTy->getNumElements(); 5883 if (Data.second % NumElts == 0) 5884 continue; 5885 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5886 unsigned Idx = (Data.second / NumElts) * NumElts; 5887 unsigned EENumElts = EEVTy->getNumElements(); 5888 if (Idx + NumElts <= EENumElts) { 5889 Cost += 5890 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5891 EEVTy, None, Idx, VecTy); 5892 } else { 5893 // Need to round up the subvector type vectorization factor to avoid a 5894 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5895 // <= EENumElts. 5896 auto *SubVT = 5897 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5898 Cost += 5899 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5900 EEVTy, None, Idx, SubVT); 5901 } 5902 } else { 5903 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5904 VecTy, None, 0, EEVTy); 5905 } 5906 } 5907 }; 5908 if (E->State == TreeEntry::NeedToGather) { 5909 if (allConstant(VL)) 5910 return 0; 5911 if (isa<InsertElementInst>(VL[0])) 5912 return InstructionCost::getInvalid(); 5913 SmallVector<int> Mask; 5914 SmallVector<const TreeEntry *> Entries; 5915 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5916 isGatherShuffledEntry(E, Mask, Entries); 5917 if (Shuffle) { 5918 InstructionCost GatherCost = 0; 5919 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5920 // Perfect match in the graph, will reuse the previously vectorized 5921 // node. Cost is 0. 5922 LLVM_DEBUG( 5923 dbgs() 5924 << "SLP: perfect diamond match for gather bundle that starts with " 5925 << *VL.front() << ".\n"); 5926 if (NeedToShuffleReuses) 5927 GatherCost = 5928 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5929 FinalVecTy, E->ReuseShuffleIndices); 5930 } else { 5931 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5932 << " entries for bundle that starts with " 5933 << *VL.front() << ".\n"); 5934 // Detected that instead of gather we can emit a shuffle of single/two 5935 // previously vectorized nodes. Add the cost of the permutation rather 5936 // than gather. 5937 ::addMask(Mask, E->ReuseShuffleIndices); 5938 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5939 } 5940 return GatherCost; 5941 } 5942 if ((E->getOpcode() == Instruction::ExtractElement || 5943 all_of(E->Scalars, 5944 [](Value *V) { 5945 return isa<ExtractElementInst, UndefValue>(V); 5946 })) && 5947 allSameType(VL)) { 5948 // Check that gather of extractelements can be represented as just a 5949 // shuffle of a single/two vectors the scalars are extracted from. 5950 SmallVector<int> Mask; 5951 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5952 isFixedVectorShuffle(VL, Mask); 5953 if (ShuffleKind) { 5954 // Found the bunch of extractelement instructions that must be gathered 5955 // into a vector and can be represented as a permutation elements in a 5956 // single input vector or of 2 input vectors. 5957 InstructionCost Cost = 5958 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5959 AdjustExtractsCost(Cost); 5960 if (NeedToShuffleReuses) 5961 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5962 FinalVecTy, E->ReuseShuffleIndices); 5963 return Cost; 5964 } 5965 } 5966 if (isSplat(VL)) { 5967 // Found the broadcasting of the single scalar, calculate the cost as the 5968 // broadcast. 5969 assert(VecTy == FinalVecTy && 5970 "No reused scalars expected for broadcast."); 5971 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5972 /*Mask=*/None, /*Index=*/0, 5973 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5974 } 5975 InstructionCost ReuseShuffleCost = 0; 5976 if (NeedToShuffleReuses) 5977 ReuseShuffleCost = TTI->getShuffleCost( 5978 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5979 // Improve gather cost for gather of loads, if we can group some of the 5980 // loads into vector loads. 5981 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5982 !E->isAltShuffle()) { 5983 BoUpSLP::ValueSet VectorizedLoads; 5984 unsigned StartIdx = 0; 5985 unsigned VF = VL.size() / 2; 5986 unsigned VectorizedCnt = 0; 5987 unsigned ScatterVectorizeCnt = 0; 5988 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5989 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5990 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5991 Cnt += VF) { 5992 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5993 if (!VectorizedLoads.count(Slice.front()) && 5994 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5995 SmallVector<Value *> PointerOps; 5996 OrdersType CurrentOrder; 5997 LoadsState LS = 5998 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI, 5999 CurrentOrder, PointerOps); 6000 switch (LS) { 6001 case LoadsState::Vectorize: 6002 case LoadsState::ScatterVectorize: 6003 // Mark the vectorized loads so that we don't vectorize them 6004 // again. 6005 if (LS == LoadsState::Vectorize) 6006 ++VectorizedCnt; 6007 else 6008 ++ScatterVectorizeCnt; 6009 VectorizedLoads.insert(Slice.begin(), Slice.end()); 6010 // If we vectorized initial block, no need to try to vectorize it 6011 // again. 6012 if (Cnt == StartIdx) 6013 StartIdx += VF; 6014 break; 6015 case LoadsState::Gather: 6016 break; 6017 } 6018 } 6019 } 6020 // Check if the whole array was vectorized already - exit. 6021 if (StartIdx >= VL.size()) 6022 break; 6023 // Found vectorizable parts - exit. 6024 if (!VectorizedLoads.empty()) 6025 break; 6026 } 6027 if (!VectorizedLoads.empty()) { 6028 InstructionCost GatherCost = 0; 6029 unsigned NumParts = TTI->getNumberOfParts(VecTy); 6030 bool NeedInsertSubvectorAnalysis = 6031 !NumParts || (VL.size() / VF) > NumParts; 6032 // Get the cost for gathered loads. 6033 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 6034 if (VectorizedLoads.contains(VL[I])) 6035 continue; 6036 GatherCost += getGatherCost(VL.slice(I, VF)); 6037 } 6038 // The cost for vectorized loads. 6039 InstructionCost ScalarsCost = 0; 6040 for (Value *V : VectorizedLoads) { 6041 auto *LI = cast<LoadInst>(V); 6042 ScalarsCost += TTI->getMemoryOpCost( 6043 Instruction::Load, LI->getType(), LI->getAlign(), 6044 LI->getPointerAddressSpace(), CostKind, LI); 6045 } 6046 auto *LI = cast<LoadInst>(E->getMainOp()); 6047 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 6048 Align Alignment = LI->getAlign(); 6049 GatherCost += 6050 VectorizedCnt * 6051 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 6052 LI->getPointerAddressSpace(), CostKind, LI); 6053 GatherCost += ScatterVectorizeCnt * 6054 TTI->getGatherScatterOpCost( 6055 Instruction::Load, LoadTy, LI->getPointerOperand(), 6056 /*VariableMask=*/false, Alignment, CostKind, LI); 6057 if (NeedInsertSubvectorAnalysis) { 6058 // Add the cost for the subvectors insert. 6059 for (int I = VF, E = VL.size(); I < E; I += VF) 6060 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 6061 None, I, LoadTy); 6062 } 6063 return ReuseShuffleCost + GatherCost - ScalarsCost; 6064 } 6065 } 6066 return ReuseShuffleCost + getGatherCost(VL); 6067 } 6068 InstructionCost CommonCost = 0; 6069 SmallVector<int> Mask; 6070 if (!E->ReorderIndices.empty()) { 6071 SmallVector<int> NewMask; 6072 if (E->getOpcode() == Instruction::Store) { 6073 // For stores the order is actually a mask. 6074 NewMask.resize(E->ReorderIndices.size()); 6075 copy(E->ReorderIndices, NewMask.begin()); 6076 } else { 6077 inversePermutation(E->ReorderIndices, NewMask); 6078 } 6079 ::addMask(Mask, NewMask); 6080 } 6081 if (NeedToShuffleReuses) 6082 ::addMask(Mask, E->ReuseShuffleIndices); 6083 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 6084 CommonCost = 6085 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 6086 assert((E->State == TreeEntry::Vectorize || 6087 E->State == TreeEntry::ScatterVectorize) && 6088 "Unhandled state"); 6089 assert(E->getOpcode() && 6090 ((allSameType(VL) && allSameBlock(VL)) || 6091 (E->getOpcode() == Instruction::GetElementPtr && 6092 E->getMainOp()->getType()->isPointerTy())) && 6093 "Invalid VL"); 6094 Instruction *VL0 = E->getMainOp(); 6095 unsigned ShuffleOrOp = 6096 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6097 switch (ShuffleOrOp) { 6098 case Instruction::PHI: 6099 return 0; 6100 6101 case Instruction::ExtractValue: 6102 case Instruction::ExtractElement: { 6103 // The common cost of removal ExtractElement/ExtractValue instructions + 6104 // the cost of shuffles, if required to resuffle the original vector. 6105 if (NeedToShuffleReuses) { 6106 unsigned Idx = 0; 6107 for (unsigned I : E->ReuseShuffleIndices) { 6108 if (ShuffleOrOp == Instruction::ExtractElement) { 6109 auto *EE = cast<ExtractElementInst>(VL[I]); 6110 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 6111 EE->getVectorOperandType(), 6112 *getExtractIndex(EE)); 6113 } else { 6114 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 6115 VecTy, Idx); 6116 ++Idx; 6117 } 6118 } 6119 Idx = EntryVF; 6120 for (Value *V : VL) { 6121 if (ShuffleOrOp == Instruction::ExtractElement) { 6122 auto *EE = cast<ExtractElementInst>(V); 6123 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 6124 EE->getVectorOperandType(), 6125 *getExtractIndex(EE)); 6126 } else { 6127 --Idx; 6128 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 6129 VecTy, Idx); 6130 } 6131 } 6132 } 6133 if (ShuffleOrOp == Instruction::ExtractValue) { 6134 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 6135 auto *EI = cast<Instruction>(VL[I]); 6136 // Take credit for instruction that will become dead. 6137 if (EI->hasOneUse()) { 6138 Instruction *Ext = EI->user_back(); 6139 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 6140 all_of(Ext->users(), 6141 [](User *U) { return isa<GetElementPtrInst>(U); })) { 6142 // Use getExtractWithExtendCost() to calculate the cost of 6143 // extractelement/ext pair. 6144 CommonCost -= TTI->getExtractWithExtendCost( 6145 Ext->getOpcode(), Ext->getType(), VecTy, I); 6146 // Add back the cost of s|zext which is subtracted separately. 6147 CommonCost += TTI->getCastInstrCost( 6148 Ext->getOpcode(), Ext->getType(), EI->getType(), 6149 TTI::getCastContextHint(Ext), CostKind, Ext); 6150 continue; 6151 } 6152 } 6153 CommonCost -= 6154 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 6155 } 6156 } else { 6157 AdjustExtractsCost(CommonCost); 6158 } 6159 return CommonCost; 6160 } 6161 case Instruction::InsertElement: { 6162 assert(E->ReuseShuffleIndices.empty() && 6163 "Unique insertelements only are expected."); 6164 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 6165 unsigned const NumElts = SrcVecTy->getNumElements(); 6166 unsigned const NumScalars = VL.size(); 6167 6168 unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); 6169 6170 unsigned OffsetBeg = *getInsertIndex(VL.front()); 6171 unsigned OffsetEnd = OffsetBeg; 6172 for (Value *V : VL.drop_front()) { 6173 unsigned Idx = *getInsertIndex(V); 6174 if (OffsetBeg > Idx) 6175 OffsetBeg = Idx; 6176 else if (OffsetEnd < Idx) 6177 OffsetEnd = Idx; 6178 } 6179 unsigned VecScalarsSz = PowerOf2Ceil(NumElts); 6180 if (NumOfParts > 0) 6181 VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); 6182 unsigned VecSz = 6183 (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * 6184 VecScalarsSz; 6185 unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); 6186 unsigned InsertVecSz = std::min<unsigned>( 6187 PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), 6188 ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * 6189 VecScalarsSz); 6190 bool IsWholeSubvector = 6191 OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); 6192 // Check if we can safely insert a subvector. If it is not possible, just 6193 // generate a whole-sized vector and shuffle the source vector and the new 6194 // subvector. 6195 if (OffsetBeg + InsertVecSz > VecSz) { 6196 // Align OffsetBeg to generate correct mask. 6197 OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); 6198 InsertVecSz = VecSz; 6199 } 6200 6201 APInt DemandedElts = APInt::getZero(NumElts); 6202 // TODO: Add support for Instruction::InsertValue. 6203 SmallVector<int> Mask; 6204 if (!E->ReorderIndices.empty()) { 6205 inversePermutation(E->ReorderIndices, Mask); 6206 Mask.append(InsertVecSz - Mask.size(), UndefMaskElem); 6207 } else { 6208 Mask.assign(VecSz, UndefMaskElem); 6209 std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); 6210 } 6211 bool IsIdentity = true; 6212 SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem); 6213 Mask.swap(PrevMask); 6214 for (unsigned I = 0; I < NumScalars; ++I) { 6215 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 6216 DemandedElts.setBit(InsertIdx); 6217 IsIdentity &= InsertIdx - OffsetBeg == I; 6218 Mask[InsertIdx - OffsetBeg] = I; 6219 } 6220 assert(Offset < NumElts && "Failed to find vector index offset"); 6221 6222 InstructionCost Cost = 0; 6223 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6224 /*Insert*/ true, /*Extract*/ false); 6225 6226 // First cost - resize to actual vector size if not identity shuffle or 6227 // need to shift the vector. 6228 // Do not calculate the cost if the actual size is the register size and 6229 // we can merge this shuffle with the following SK_Select. 6230 auto *InsertVecTy = 6231 FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz); 6232 if (!IsIdentity) 6233 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 6234 InsertVecTy, Mask); 6235 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6236 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6237 })); 6238 // Second cost - permutation with subvector, if some elements are from the 6239 // initial vector or inserting a subvector. 6240 // TODO: Implement the analysis of the FirstInsert->getOperand(0) 6241 // subvector of ActualVecTy. 6242 if (!isUndefVector(FirstInsert->getOperand(0)) && NumScalars != NumElts && 6243 !IsWholeSubvector) { 6244 if (InsertVecSz != VecSz) { 6245 auto *ActualVecTy = 6246 FixedVectorType::get(SrcVecTy->getElementType(), VecSz); 6247 Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, 6248 None, OffsetBeg - Offset, InsertVecTy); 6249 } else { 6250 for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) 6251 Mask[I] = I; 6252 for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; 6253 I <= End; ++I) 6254 if (Mask[I] != UndefMaskElem) 6255 Mask[I] = I + VecSz; 6256 for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) 6257 Mask[I] = I; 6258 Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); 6259 } 6260 } 6261 return Cost; 6262 } 6263 case Instruction::ZExt: 6264 case Instruction::SExt: 6265 case Instruction::FPToUI: 6266 case Instruction::FPToSI: 6267 case Instruction::FPExt: 6268 case Instruction::PtrToInt: 6269 case Instruction::IntToPtr: 6270 case Instruction::SIToFP: 6271 case Instruction::UIToFP: 6272 case Instruction::Trunc: 6273 case Instruction::FPTrunc: 6274 case Instruction::BitCast: { 6275 Type *SrcTy = VL0->getOperand(0)->getType(); 6276 InstructionCost ScalarEltCost = 6277 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6278 TTI::getCastContextHint(VL0), CostKind, VL0); 6279 if (NeedToShuffleReuses) { 6280 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6281 } 6282 6283 // Calculate the cost of this instruction. 6284 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6285 6286 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6287 InstructionCost VecCost = 0; 6288 // Check if the values are candidates to demote. 6289 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6290 VecCost = CommonCost + TTI->getCastInstrCost( 6291 E->getOpcode(), VecTy, SrcVecTy, 6292 TTI::getCastContextHint(VL0), CostKind, VL0); 6293 } 6294 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6295 return VecCost - ScalarCost; 6296 } 6297 case Instruction::FCmp: 6298 case Instruction::ICmp: 6299 case Instruction::Select: { 6300 // Calculate the cost of this instruction. 6301 InstructionCost ScalarEltCost = 6302 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6303 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6304 if (NeedToShuffleReuses) { 6305 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6306 } 6307 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6308 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6309 6310 // Check if all entries in VL are either compares or selects with compares 6311 // as condition that have the same predicates. 6312 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6313 bool First = true; 6314 for (auto *V : VL) { 6315 CmpInst::Predicate CurrentPred; 6316 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6317 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6318 !match(V, MatchCmp)) || 6319 (!First && VecPred != CurrentPred)) { 6320 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6321 break; 6322 } 6323 First = false; 6324 VecPred = CurrentPred; 6325 } 6326 6327 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6328 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6329 // Check if it is possible and profitable to use min/max for selects in 6330 // VL. 6331 // 6332 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6333 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6334 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6335 {VecTy, VecTy}); 6336 InstructionCost IntrinsicCost = 6337 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6338 // If the selects are the only uses of the compares, they will be dead 6339 // and we can adjust the cost by removing their cost. 6340 if (IntrinsicAndUse.second) 6341 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6342 MaskTy, VecPred, CostKind); 6343 VecCost = std::min(VecCost, IntrinsicCost); 6344 } 6345 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6346 return CommonCost + VecCost - ScalarCost; 6347 } 6348 case Instruction::FNeg: 6349 case Instruction::Add: 6350 case Instruction::FAdd: 6351 case Instruction::Sub: 6352 case Instruction::FSub: 6353 case Instruction::Mul: 6354 case Instruction::FMul: 6355 case Instruction::UDiv: 6356 case Instruction::SDiv: 6357 case Instruction::FDiv: 6358 case Instruction::URem: 6359 case Instruction::SRem: 6360 case Instruction::FRem: 6361 case Instruction::Shl: 6362 case Instruction::LShr: 6363 case Instruction::AShr: 6364 case Instruction::And: 6365 case Instruction::Or: 6366 case Instruction::Xor: { 6367 // Certain instructions can be cheaper to vectorize if they have a 6368 // constant second vector operand. 6369 TargetTransformInfo::OperandValueKind Op1VK = 6370 TargetTransformInfo::OK_AnyValue; 6371 TargetTransformInfo::OperandValueKind Op2VK = 6372 TargetTransformInfo::OK_UniformConstantValue; 6373 TargetTransformInfo::OperandValueProperties Op1VP = 6374 TargetTransformInfo::OP_None; 6375 TargetTransformInfo::OperandValueProperties Op2VP = 6376 TargetTransformInfo::OP_PowerOf2; 6377 6378 // If all operands are exactly the same ConstantInt then set the 6379 // operand kind to OK_UniformConstantValue. 6380 // If instead not all operands are constants, then set the operand kind 6381 // to OK_AnyValue. If all operands are constants but not the same, 6382 // then set the operand kind to OK_NonUniformConstantValue. 6383 ConstantInt *CInt0 = nullptr; 6384 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6385 const Instruction *I = cast<Instruction>(VL[i]); 6386 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6387 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6388 if (!CInt) { 6389 Op2VK = TargetTransformInfo::OK_AnyValue; 6390 Op2VP = TargetTransformInfo::OP_None; 6391 break; 6392 } 6393 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6394 !CInt->getValue().isPowerOf2()) 6395 Op2VP = TargetTransformInfo::OP_None; 6396 if (i == 0) { 6397 CInt0 = CInt; 6398 continue; 6399 } 6400 if (CInt0 != CInt) 6401 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6402 } 6403 6404 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6405 InstructionCost ScalarEltCost = 6406 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6407 Op2VK, Op1VP, Op2VP, Operands, VL0); 6408 if (NeedToShuffleReuses) { 6409 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6410 } 6411 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6412 InstructionCost VecCost = 6413 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6414 Op2VK, Op1VP, Op2VP, Operands, VL0); 6415 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6416 return CommonCost + VecCost - ScalarCost; 6417 } 6418 case Instruction::GetElementPtr: { 6419 TargetTransformInfo::OperandValueKind Op1VK = 6420 TargetTransformInfo::OK_AnyValue; 6421 TargetTransformInfo::OperandValueKind Op2VK = 6422 any_of(VL, 6423 [](Value *V) { 6424 return isa<GetElementPtrInst>(V) && 6425 !isConstant( 6426 cast<GetElementPtrInst>(V)->getOperand(1)); 6427 }) 6428 ? TargetTransformInfo::OK_AnyValue 6429 : TargetTransformInfo::OK_UniformConstantValue; 6430 6431 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6432 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6433 if (NeedToShuffleReuses) { 6434 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6435 } 6436 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6437 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6438 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6439 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6440 return CommonCost + VecCost - ScalarCost; 6441 } 6442 case Instruction::Load: { 6443 // Cost of wide load - cost of scalar loads. 6444 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6445 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6446 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6447 if (NeedToShuffleReuses) { 6448 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6449 } 6450 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6451 InstructionCost VecLdCost; 6452 if (E->State == TreeEntry::Vectorize) { 6453 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6454 CostKind, VL0); 6455 } else { 6456 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6457 Align CommonAlignment = Alignment; 6458 for (Value *V : VL) 6459 CommonAlignment = 6460 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6461 VecLdCost = TTI->getGatherScatterOpCost( 6462 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6463 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6464 } 6465 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6466 return CommonCost + VecLdCost - ScalarLdCost; 6467 } 6468 case Instruction::Store: { 6469 // We know that we can merge the stores. Calculate the cost. 6470 bool IsReorder = !E->ReorderIndices.empty(); 6471 auto *SI = 6472 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6473 Align Alignment = SI->getAlign(); 6474 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6475 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6476 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6477 InstructionCost VecStCost = TTI->getMemoryOpCost( 6478 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6479 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6480 return CommonCost + VecStCost - ScalarStCost; 6481 } 6482 case Instruction::Call: { 6483 CallInst *CI = cast<CallInst>(VL0); 6484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6485 6486 // Calculate the cost of the scalar and vector calls. 6487 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6488 InstructionCost ScalarEltCost = 6489 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6490 if (NeedToShuffleReuses) { 6491 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6492 } 6493 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6494 6495 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6496 InstructionCost VecCallCost = 6497 std::min(VecCallCosts.first, VecCallCosts.second); 6498 6499 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6500 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6501 << " for " << *CI << "\n"); 6502 6503 return CommonCost + VecCallCost - ScalarCallCost; 6504 } 6505 case Instruction::ShuffleVector: { 6506 assert(E->isAltShuffle() && 6507 ((Instruction::isBinaryOp(E->getOpcode()) && 6508 Instruction::isBinaryOp(E->getAltOpcode())) || 6509 (Instruction::isCast(E->getOpcode()) && 6510 Instruction::isCast(E->getAltOpcode())) || 6511 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6512 "Invalid Shuffle Vector Operand"); 6513 InstructionCost ScalarCost = 0; 6514 if (NeedToShuffleReuses) { 6515 for (unsigned Idx : E->ReuseShuffleIndices) { 6516 Instruction *I = cast<Instruction>(VL[Idx]); 6517 CommonCost -= TTI->getInstructionCost(I, CostKind); 6518 } 6519 for (Value *V : VL) { 6520 Instruction *I = cast<Instruction>(V); 6521 CommonCost += TTI->getInstructionCost(I, CostKind); 6522 } 6523 } 6524 for (Value *V : VL) { 6525 Instruction *I = cast<Instruction>(V); 6526 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6527 ScalarCost += TTI->getInstructionCost(I, CostKind); 6528 } 6529 // VecCost is equal to sum of the cost of creating 2 vectors 6530 // and the cost of creating shuffle. 6531 InstructionCost VecCost = 0; 6532 // Try to find the previous shuffle node with the same operands and same 6533 // main/alternate ops. 6534 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6535 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6536 if (TE.get() == E) 6537 break; 6538 if (TE->isAltShuffle() && 6539 ((TE->getOpcode() == E->getOpcode() && 6540 TE->getAltOpcode() == E->getAltOpcode()) || 6541 (TE->getOpcode() == E->getAltOpcode() && 6542 TE->getAltOpcode() == E->getOpcode())) && 6543 TE->hasEqualOperands(*E)) 6544 return true; 6545 } 6546 return false; 6547 }; 6548 if (TryFindNodeWithEqualOperands()) { 6549 LLVM_DEBUG({ 6550 dbgs() << "SLP: diamond match for alternate node found.\n"; 6551 E->dump(); 6552 }); 6553 // No need to add new vector costs here since we're going to reuse 6554 // same main/alternate vector ops, just do different shuffling. 6555 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6556 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6557 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6558 CostKind); 6559 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6560 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6561 Builder.getInt1Ty(), 6562 CI0->getPredicate(), CostKind, VL0); 6563 VecCost += TTI->getCmpSelInstrCost( 6564 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6565 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6566 E->getAltOp()); 6567 } else { 6568 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6569 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6570 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6571 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6572 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6573 TTI::CastContextHint::None, CostKind); 6574 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6575 TTI::CastContextHint::None, CostKind); 6576 } 6577 6578 if (E->ReuseShuffleIndices.empty()) { 6579 CommonCost = 6580 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6581 } else { 6582 SmallVector<int> Mask; 6583 buildShuffleEntryMask( 6584 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6585 [E](Instruction *I) { 6586 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6587 return I->getOpcode() == E->getAltOpcode(); 6588 }, 6589 Mask); 6590 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6591 FinalVecTy, Mask); 6592 } 6593 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6594 return CommonCost + VecCost - ScalarCost; 6595 } 6596 default: 6597 llvm_unreachable("Unknown instruction"); 6598 } 6599 } 6600 6601 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6602 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6603 << VectorizableTree.size() << " is fully vectorizable .\n"); 6604 6605 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6606 SmallVector<int> Mask; 6607 return TE->State == TreeEntry::NeedToGather && 6608 !any_of(TE->Scalars, 6609 [this](Value *V) { return EphValues.contains(V); }) && 6610 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6611 TE->Scalars.size() < Limit || 6612 ((TE->getOpcode() == Instruction::ExtractElement || 6613 all_of(TE->Scalars, 6614 [](Value *V) { 6615 return isa<ExtractElementInst, UndefValue>(V); 6616 })) && 6617 isFixedVectorShuffle(TE->Scalars, Mask)) || 6618 (TE->State == TreeEntry::NeedToGather && 6619 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6620 }; 6621 6622 // We only handle trees of heights 1 and 2. 6623 if (VectorizableTree.size() == 1 && 6624 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6625 (ForReduction && 6626 AreVectorizableGathers(VectorizableTree[0].get(), 6627 VectorizableTree[0]->Scalars.size()) && 6628 VectorizableTree[0]->getVectorFactor() > 2))) 6629 return true; 6630 6631 if (VectorizableTree.size() != 2) 6632 return false; 6633 6634 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6635 // with the second gather nodes if they have less scalar operands rather than 6636 // the initial tree element (may be profitable to shuffle the second gather) 6637 // or they are extractelements, which form shuffle. 6638 SmallVector<int> Mask; 6639 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6640 AreVectorizableGathers(VectorizableTree[1].get(), 6641 VectorizableTree[0]->Scalars.size())) 6642 return true; 6643 6644 // Gathering cost would be too much for tiny trees. 6645 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6646 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6647 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6648 return false; 6649 6650 return true; 6651 } 6652 6653 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6654 TargetTransformInfo *TTI, 6655 bool MustMatchOrInst) { 6656 // Look past the root to find a source value. Arbitrarily follow the 6657 // path through operand 0 of any 'or'. Also, peek through optional 6658 // shift-left-by-multiple-of-8-bits. 6659 Value *ZextLoad = Root; 6660 const APInt *ShAmtC; 6661 bool FoundOr = false; 6662 while (!isa<ConstantExpr>(ZextLoad) && 6663 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6664 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6665 ShAmtC->urem(8) == 0))) { 6666 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6667 ZextLoad = BinOp->getOperand(0); 6668 if (BinOp->getOpcode() == Instruction::Or) 6669 FoundOr = true; 6670 } 6671 // Check if the input is an extended load of the required or/shift expression. 6672 Value *Load; 6673 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6674 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6675 return false; 6676 6677 // Require that the total load bit width is a legal integer type. 6678 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6679 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6680 Type *SrcTy = Load->getType(); 6681 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6682 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6683 return false; 6684 6685 // Everything matched - assume that we can fold the whole sequence using 6686 // load combining. 6687 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6688 << *(cast<Instruction>(Root)) << "\n"); 6689 6690 return true; 6691 } 6692 6693 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6694 if (RdxKind != RecurKind::Or) 6695 return false; 6696 6697 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6698 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6699 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6700 /* MatchOr */ false); 6701 } 6702 6703 bool BoUpSLP::isLoadCombineCandidate() const { 6704 // Peek through a final sequence of stores and check if all operations are 6705 // likely to be load-combined. 6706 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6707 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6708 Value *X; 6709 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6710 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6711 return false; 6712 } 6713 return true; 6714 } 6715 6716 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6717 // No need to vectorize inserts of gathered values. 6718 if (VectorizableTree.size() == 2 && 6719 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6720 VectorizableTree[1]->State == TreeEntry::NeedToGather && 6721 (VectorizableTree[1]->getVectorFactor() <= 2 || 6722 !(isSplat(VectorizableTree[1]->Scalars) || 6723 allConstant(VectorizableTree[1]->Scalars)))) 6724 return true; 6725 6726 // We can vectorize the tree if its size is greater than or equal to the 6727 // minimum size specified by the MinTreeSize command line option. 6728 if (VectorizableTree.size() >= MinTreeSize) 6729 return false; 6730 6731 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6732 // can vectorize it if we can prove it fully vectorizable. 6733 if (isFullyVectorizableTinyTree(ForReduction)) 6734 return false; 6735 6736 assert(VectorizableTree.empty() 6737 ? ExternalUses.empty() 6738 : true && "We shouldn't have any external users"); 6739 6740 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6741 // vectorizable. 6742 return true; 6743 } 6744 6745 InstructionCost BoUpSLP::getSpillCost() const { 6746 // Walk from the bottom of the tree to the top, tracking which values are 6747 // live. When we see a call instruction that is not part of our tree, 6748 // query TTI to see if there is a cost to keeping values live over it 6749 // (for example, if spills and fills are required). 6750 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6751 InstructionCost Cost = 0; 6752 6753 SmallPtrSet<Instruction*, 4> LiveValues; 6754 Instruction *PrevInst = nullptr; 6755 6756 // The entries in VectorizableTree are not necessarily ordered by their 6757 // position in basic blocks. Collect them and order them by dominance so later 6758 // instructions are guaranteed to be visited first. For instructions in 6759 // different basic blocks, we only scan to the beginning of the block, so 6760 // their order does not matter, as long as all instructions in a basic block 6761 // are grouped together. Using dominance ensures a deterministic order. 6762 SmallVector<Instruction *, 16> OrderedScalars; 6763 for (const auto &TEPtr : VectorizableTree) { 6764 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6765 if (!Inst) 6766 continue; 6767 OrderedScalars.push_back(Inst); 6768 } 6769 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6770 auto *NodeA = DT->getNode(A->getParent()); 6771 auto *NodeB = DT->getNode(B->getParent()); 6772 assert(NodeA && "Should only process reachable instructions"); 6773 assert(NodeB && "Should only process reachable instructions"); 6774 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6775 "Different nodes should have different DFS numbers"); 6776 if (NodeA != NodeB) 6777 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6778 return B->comesBefore(A); 6779 }); 6780 6781 for (Instruction *Inst : OrderedScalars) { 6782 if (!PrevInst) { 6783 PrevInst = Inst; 6784 continue; 6785 } 6786 6787 // Update LiveValues. 6788 LiveValues.erase(PrevInst); 6789 for (auto &J : PrevInst->operands()) { 6790 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6791 LiveValues.insert(cast<Instruction>(&*J)); 6792 } 6793 6794 LLVM_DEBUG({ 6795 dbgs() << "SLP: #LV: " << LiveValues.size(); 6796 for (auto *X : LiveValues) 6797 dbgs() << " " << X->getName(); 6798 dbgs() << ", Looking at "; 6799 Inst->dump(); 6800 }); 6801 6802 // Now find the sequence of instructions between PrevInst and Inst. 6803 unsigned NumCalls = 0; 6804 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6805 PrevInstIt = 6806 PrevInst->getIterator().getReverse(); 6807 while (InstIt != PrevInstIt) { 6808 if (PrevInstIt == PrevInst->getParent()->rend()) { 6809 PrevInstIt = Inst->getParent()->rbegin(); 6810 continue; 6811 } 6812 6813 // Debug information does not impact spill cost. 6814 if ((isa<CallInst>(&*PrevInstIt) && 6815 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6816 &*PrevInstIt != PrevInst) 6817 NumCalls++; 6818 6819 ++PrevInstIt; 6820 } 6821 6822 if (NumCalls) { 6823 SmallVector<Type*, 4> V; 6824 for (auto *II : LiveValues) { 6825 auto *ScalarTy = II->getType(); 6826 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6827 ScalarTy = VectorTy->getElementType(); 6828 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6829 } 6830 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6831 } 6832 6833 PrevInst = Inst; 6834 } 6835 6836 return Cost; 6837 } 6838 6839 /// Check if two insertelement instructions are from the same buildvector. 6840 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6841 InsertElementInst *V) { 6842 // Instructions must be from the same basic blocks. 6843 if (VU->getParent() != V->getParent()) 6844 return false; 6845 // Checks if 2 insertelements are from the same buildvector. 6846 if (VU->getType() != V->getType()) 6847 return false; 6848 // Multiple used inserts are separate nodes. 6849 if (!VU->hasOneUse() && !V->hasOneUse()) 6850 return false; 6851 auto *IE1 = VU; 6852 auto *IE2 = V; 6853 unsigned Idx1 = *getInsertIndex(IE1); 6854 unsigned Idx2 = *getInsertIndex(IE2); 6855 // Go through the vector operand of insertelement instructions trying to find 6856 // either VU as the original vector for IE2 or V as the original vector for 6857 // IE1. 6858 do { 6859 if (IE2 == VU) 6860 return VU->hasOneUse(); 6861 if (IE1 == V) 6862 return V->hasOneUse(); 6863 if (IE1) { 6864 if ((IE1 != VU && !IE1->hasOneUse()) || 6865 getInsertIndex(IE1).value_or(Idx2) == Idx2) 6866 IE1 = nullptr; 6867 else 6868 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6869 } 6870 if (IE2) { 6871 if ((IE2 != V && !IE2->hasOneUse()) || 6872 getInsertIndex(IE2).value_or(Idx1) == Idx1) 6873 IE2 = nullptr; 6874 else 6875 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6876 } 6877 } while (IE1 || IE2); 6878 return false; 6879 } 6880 6881 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6882 /// buildvector sequence. 6883 static bool isFirstInsertElement(const InsertElementInst *IE1, 6884 const InsertElementInst *IE2) { 6885 if (IE1 == IE2) 6886 return false; 6887 const auto *I1 = IE1; 6888 const auto *I2 = IE2; 6889 const InsertElementInst *PrevI1; 6890 const InsertElementInst *PrevI2; 6891 unsigned Idx1 = *getInsertIndex(IE1); 6892 unsigned Idx2 = *getInsertIndex(IE2); 6893 do { 6894 if (I2 == IE1) 6895 return true; 6896 if (I1 == IE2) 6897 return false; 6898 PrevI1 = I1; 6899 PrevI2 = I2; 6900 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6901 getInsertIndex(I1).value_or(Idx2) != Idx2) 6902 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6903 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6904 getInsertIndex(I2).value_or(Idx1) != Idx1) 6905 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6906 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6907 llvm_unreachable("Two different buildvectors not expected."); 6908 } 6909 6910 namespace { 6911 /// Returns incoming Value *, if the requested type is Value * too, or a default 6912 /// value, otherwise. 6913 struct ValueSelect { 6914 template <typename U> 6915 static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type 6916 get(Value *V) { 6917 return V; 6918 } 6919 template <typename U> 6920 static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type 6921 get(Value *) { 6922 return U(); 6923 } 6924 }; 6925 } // namespace 6926 6927 /// Does the analysis of the provided shuffle masks and performs the requested 6928 /// actions on the vectors with the given shuffle masks. It tries to do it in 6929 /// several steps. 6930 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6931 /// have common VF and perform action for 2 input vectors (including non-undef 6932 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6933 /// and processed as a shuffle of 2 elements. 6934 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6935 /// action only for 1 vector with the given mask, if it is not the identity 6936 /// mask. 6937 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6938 /// vectors, combing the masks properly between the steps. 6939 template <typename T> 6940 static T *performExtractsShuffleAction( 6941 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6942 function_ref<unsigned(T *)> GetVF, 6943 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6944 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6945 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6946 SmallVector<int> Mask(ShuffleMask.begin()->second); 6947 auto VMIt = std::next(ShuffleMask.begin()); 6948 T *Prev = nullptr; 6949 bool IsBaseNotUndef = !isUndefVector(Base); 6950 if (IsBaseNotUndef) { 6951 // Base is not undef, need to combine it with the next subvectors. 6952 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6953 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6954 if (Mask[Idx] == UndefMaskElem) 6955 Mask[Idx] = Idx; 6956 else 6957 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6958 } 6959 auto *V = ValueSelect::get<T *>(Base); 6960 (void)V; 6961 assert((!V || GetVF(V) == Mask.size()) && 6962 "Expected base vector of VF number of elements."); 6963 Prev = Action(Mask, {nullptr, Res.first}); 6964 } else if (ShuffleMask.size() == 1) { 6965 // Base is undef and only 1 vector is shuffled - perform the action only for 6966 // single vector, if the mask is not the identity mask. 6967 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6968 if (Res.second) 6969 // Identity mask is found. 6970 Prev = Res.first; 6971 else 6972 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6973 } else { 6974 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6975 // shuffles step by step, combining shuffle between the steps. 6976 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6977 unsigned Vec2VF = GetVF(VMIt->first); 6978 if (Vec1VF == Vec2VF) { 6979 // No need to resize the input vectors since they are of the same size, we 6980 // can shuffle them directly. 6981 ArrayRef<int> SecMask = VMIt->second; 6982 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6983 if (SecMask[I] != UndefMaskElem) { 6984 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6985 Mask[I] = SecMask[I] + Vec1VF; 6986 } 6987 } 6988 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6989 } else { 6990 // Vectors of different sizes - resize and reshuffle. 6991 std::pair<T *, bool> Res1 = 6992 ResizeAction(ShuffleMask.begin()->first, Mask); 6993 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6994 ArrayRef<int> SecMask = VMIt->second; 6995 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6996 if (Mask[I] != UndefMaskElem) { 6997 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6998 if (Res1.second) 6999 Mask[I] = I; 7000 } else if (SecMask[I] != UndefMaskElem) { 7001 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 7002 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 7003 } 7004 } 7005 Prev = Action(Mask, {Res1.first, Res2.first}); 7006 } 7007 VMIt = std::next(VMIt); 7008 } 7009 // Perform requested actions for the remaining masks/vectors. 7010 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 7011 // Shuffle other input vectors, if any. 7012 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 7013 ArrayRef<int> SecMask = VMIt->second; 7014 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 7015 if (SecMask[I] != UndefMaskElem) { 7016 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 7017 "Multiple uses of scalars."); 7018 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 7019 } else if (Mask[I] != UndefMaskElem) { 7020 Mask[I] = I; 7021 } 7022 } 7023 Prev = Action(Mask, {Prev, Res.first}); 7024 } 7025 return Prev; 7026 } 7027 7028 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 7029 InstructionCost Cost = 0; 7030 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 7031 << VectorizableTree.size() << ".\n"); 7032 7033 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 7034 7035 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 7036 TreeEntry &TE = *VectorizableTree[I]; 7037 7038 InstructionCost C = getEntryCost(&TE, VectorizedVals); 7039 Cost += C; 7040 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7041 << " for bundle that starts with " << *TE.Scalars[0] 7042 << ".\n" 7043 << "SLP: Current total cost = " << Cost << "\n"); 7044 } 7045 7046 SmallPtrSet<Value *, 16> ExtractCostCalculated; 7047 InstructionCost ExtractCost = 0; 7048 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 7049 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 7050 SmallVector<APInt> DemandedElts; 7051 for (ExternalUser &EU : ExternalUses) { 7052 // We only add extract cost once for the same scalar. 7053 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 7054 !ExtractCostCalculated.insert(EU.Scalar).second) 7055 continue; 7056 7057 // Uses by ephemeral values are free (because the ephemeral value will be 7058 // removed prior to code generation, and so the extraction will be 7059 // removed as well). 7060 if (EphValues.count(EU.User)) 7061 continue; 7062 7063 // No extract cost for vector "scalar" 7064 if (isa<FixedVectorType>(EU.Scalar->getType())) 7065 continue; 7066 7067 // Already counted the cost for external uses when tried to adjust the cost 7068 // for extractelements, no need to add it again. 7069 if (isa<ExtractElementInst>(EU.Scalar)) 7070 continue; 7071 7072 // If found user is an insertelement, do not calculate extract cost but try 7073 // to detect it as a final shuffled/identity match. 7074 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 7075 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 7076 Optional<unsigned> InsertIdx = getInsertIndex(VU); 7077 if (InsertIdx) { 7078 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 7079 auto *It = 7080 find_if(FirstUsers, 7081 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 7082 return areTwoInsertFromSameBuildVector( 7083 VU, cast<InsertElementInst>(Pair.first)); 7084 }); 7085 int VecId = -1; 7086 if (It == FirstUsers.end()) { 7087 (void)ShuffleMasks.emplace_back(); 7088 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 7089 if (Mask.empty()) 7090 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7091 // Find the insertvector, vectorized in tree, if any. 7092 Value *Base = VU; 7093 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 7094 if (IEBase != EU.User && 7095 (!IEBase->hasOneUse() || 7096 getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx)) 7097 break; 7098 // Build the mask for the vectorized insertelement instructions. 7099 if (const TreeEntry *E = getTreeEntry(IEBase)) { 7100 VU = IEBase; 7101 do { 7102 IEBase = cast<InsertElementInst>(Base); 7103 int Idx = *getInsertIndex(IEBase); 7104 assert(Mask[Idx] == UndefMaskElem && 7105 "InsertElementInstruction used already."); 7106 Mask[Idx] = Idx; 7107 Base = IEBase->getOperand(0); 7108 } while (E == getTreeEntry(Base)); 7109 break; 7110 } 7111 Base = cast<InsertElementInst>(Base)->getOperand(0); 7112 } 7113 FirstUsers.emplace_back(VU, ScalarTE); 7114 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 7115 VecId = FirstUsers.size() - 1; 7116 } else { 7117 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 7118 It->first = VU; 7119 VecId = std::distance(FirstUsers.begin(), It); 7120 } 7121 int InIdx = *InsertIdx; 7122 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 7123 if (Mask.empty()) 7124 Mask.assign(FTy->getNumElements(), UndefMaskElem); 7125 Mask[InIdx] = EU.Lane; 7126 DemandedElts[VecId].setBit(InIdx); 7127 continue; 7128 } 7129 } 7130 } 7131 7132 // If we plan to rewrite the tree in a smaller type, we will need to sign 7133 // extend the extracted value back to the original type. Here, we account 7134 // for the extract and the added cost of the sign extend if needed. 7135 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 7136 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7137 if (MinBWs.count(ScalarRoot)) { 7138 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7139 auto Extend = 7140 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 7141 VecTy = FixedVectorType::get(MinTy, BundleWidth); 7142 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 7143 VecTy, EU.Lane); 7144 } else { 7145 ExtractCost += 7146 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 7147 } 7148 } 7149 7150 InstructionCost SpillCost = getSpillCost(); 7151 Cost += SpillCost + ExtractCost; 7152 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 7153 InstructionCost C = 0; 7154 unsigned VF = Mask.size(); 7155 unsigned VecVF = TE->getVectorFactor(); 7156 if (VF != VecVF && 7157 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 7158 (all_of(Mask, 7159 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 7160 !ShuffleVectorInst::isIdentityMask(Mask)))) { 7161 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 7162 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 7163 OrigMask.begin()); 7164 C = TTI->getShuffleCost( 7165 TTI::SK_PermuteSingleSrc, 7166 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 7167 LLVM_DEBUG( 7168 dbgs() << "SLP: Adding cost " << C 7169 << " for final shuffle of insertelement external users.\n"; 7170 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7171 Cost += C; 7172 return std::make_pair(TE, true); 7173 } 7174 return std::make_pair(TE, false); 7175 }; 7176 // Calculate the cost of the reshuffled vectors, if any. 7177 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 7178 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 7179 unsigned VF = ShuffleMasks[I].begin()->second.size(); 7180 auto *FTy = FixedVectorType::get( 7181 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 7182 auto Vector = ShuffleMasks[I].takeVector(); 7183 auto &&EstimateShufflesCost = [this, FTy, 7184 &Cost](ArrayRef<int> Mask, 7185 ArrayRef<const TreeEntry *> TEs) { 7186 assert((TEs.size() == 1 || TEs.size() == 2) && 7187 "Expected exactly 1 or 2 tree entries."); 7188 if (TEs.size() == 1) { 7189 int Limit = 2 * Mask.size(); 7190 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 7191 !ShuffleVectorInst::isIdentityMask(Mask)) { 7192 InstructionCost C = 7193 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 7194 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7195 << " for final shuffle of insertelement " 7196 "external users.\n"; 7197 TEs.front()->dump(); 7198 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7199 Cost += C; 7200 } 7201 } else { 7202 InstructionCost C = 7203 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 7204 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7205 << " for final shuffle of vector node and external " 7206 "insertelement users.\n"; 7207 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 7208 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7209 Cost += C; 7210 } 7211 return TEs.back(); 7212 }; 7213 (void)performExtractsShuffleAction<const TreeEntry>( 7214 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 7215 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 7216 EstimateShufflesCost); 7217 InstructionCost InsertCost = TTI->getScalarizationOverhead( 7218 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 7219 /*Insert*/ true, /*Extract*/ false); 7220 Cost -= InsertCost; 7221 } 7222 7223 #ifndef NDEBUG 7224 SmallString<256> Str; 7225 { 7226 raw_svector_ostream OS(Str); 7227 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 7228 << "SLP: Extract Cost = " << ExtractCost << ".\n" 7229 << "SLP: Total Cost = " << Cost << ".\n"; 7230 } 7231 LLVM_DEBUG(dbgs() << Str); 7232 if (ViewSLPTree) 7233 ViewGraph(this, "SLP" + F->getName(), false, Str); 7234 #endif 7235 7236 return Cost; 7237 } 7238 7239 Optional<TargetTransformInfo::ShuffleKind> 7240 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 7241 SmallVectorImpl<const TreeEntry *> &Entries) { 7242 // TODO: currently checking only for Scalars in the tree entry, need to count 7243 // reused elements too for better cost estimation. 7244 Mask.assign(TE->Scalars.size(), UndefMaskElem); 7245 Entries.clear(); 7246 // Build a lists of values to tree entries. 7247 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 7248 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 7249 if (EntryPtr.get() == TE) 7250 break; 7251 if (EntryPtr->State != TreeEntry::NeedToGather) 7252 continue; 7253 for (Value *V : EntryPtr->Scalars) 7254 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 7255 } 7256 // Find all tree entries used by the gathered values. If no common entries 7257 // found - not a shuffle. 7258 // Here we build a set of tree nodes for each gathered value and trying to 7259 // find the intersection between these sets. If we have at least one common 7260 // tree node for each gathered value - we have just a permutation of the 7261 // single vector. If we have 2 different sets, we're in situation where we 7262 // have a permutation of 2 input vectors. 7263 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7264 DenseMap<Value *, int> UsedValuesEntry; 7265 for (Value *V : TE->Scalars) { 7266 if (isa<UndefValue>(V)) 7267 continue; 7268 // Build a list of tree entries where V is used. 7269 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7270 auto It = ValueToTEs.find(V); 7271 if (It != ValueToTEs.end()) 7272 VToTEs = It->second; 7273 if (const TreeEntry *VTE = getTreeEntry(V)) 7274 VToTEs.insert(VTE); 7275 if (VToTEs.empty()) 7276 return None; 7277 if (UsedTEs.empty()) { 7278 // The first iteration, just insert the list of nodes to vector. 7279 UsedTEs.push_back(VToTEs); 7280 } else { 7281 // Need to check if there are any previously used tree nodes which use V. 7282 // If there are no such nodes, consider that we have another one input 7283 // vector. 7284 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7285 unsigned Idx = 0; 7286 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7287 // Do we have a non-empty intersection of previously listed tree entries 7288 // and tree entries using current V? 7289 set_intersect(VToTEs, Set); 7290 if (!VToTEs.empty()) { 7291 // Yes, write the new subset and continue analysis for the next 7292 // scalar. 7293 Set.swap(VToTEs); 7294 break; 7295 } 7296 VToTEs = SavedVToTEs; 7297 ++Idx; 7298 } 7299 // No non-empty intersection found - need to add a second set of possible 7300 // source vectors. 7301 if (Idx == UsedTEs.size()) { 7302 // If the number of input vectors is greater than 2 - not a permutation, 7303 // fallback to the regular gather. 7304 if (UsedTEs.size() == 2) 7305 return None; 7306 UsedTEs.push_back(SavedVToTEs); 7307 Idx = UsedTEs.size() - 1; 7308 } 7309 UsedValuesEntry.try_emplace(V, Idx); 7310 } 7311 } 7312 7313 if (UsedTEs.empty()) { 7314 assert(all_of(TE->Scalars, UndefValue::classof) && 7315 "Expected vector of undefs only."); 7316 return None; 7317 } 7318 7319 unsigned VF = 0; 7320 if (UsedTEs.size() == 1) { 7321 // Try to find the perfect match in another gather node at first. 7322 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7323 return EntryPtr->isSame(TE->Scalars); 7324 }); 7325 if (It != UsedTEs.front().end()) { 7326 Entries.push_back(*It); 7327 std::iota(Mask.begin(), Mask.end(), 0); 7328 return TargetTransformInfo::SK_PermuteSingleSrc; 7329 } 7330 // No perfect match, just shuffle, so choose the first tree node. 7331 Entries.push_back(*UsedTEs.front().begin()); 7332 } else { 7333 // Try to find nodes with the same vector factor. 7334 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7335 DenseMap<int, const TreeEntry *> VFToTE; 7336 for (const TreeEntry *TE : UsedTEs.front()) 7337 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7338 for (const TreeEntry *TE : UsedTEs.back()) { 7339 auto It = VFToTE.find(TE->getVectorFactor()); 7340 if (It != VFToTE.end()) { 7341 VF = It->first; 7342 Entries.push_back(It->second); 7343 Entries.push_back(TE); 7344 break; 7345 } 7346 } 7347 // No 2 source vectors with the same vector factor - give up and do regular 7348 // gather. 7349 if (Entries.empty()) 7350 return None; 7351 } 7352 7353 // Build a shuffle mask for better cost estimation and vector emission. 7354 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7355 Value *V = TE->Scalars[I]; 7356 if (isa<UndefValue>(V)) 7357 continue; 7358 unsigned Idx = UsedValuesEntry.lookup(V); 7359 const TreeEntry *VTE = Entries[Idx]; 7360 int FoundLane = VTE->findLaneForValue(V); 7361 Mask[I] = Idx * VF + FoundLane; 7362 // Extra check required by isSingleSourceMaskImpl function (called by 7363 // ShuffleVectorInst::isSingleSourceMask). 7364 if (Mask[I] >= 2 * E) 7365 return None; 7366 } 7367 switch (Entries.size()) { 7368 case 1: 7369 return TargetTransformInfo::SK_PermuteSingleSrc; 7370 case 2: 7371 return TargetTransformInfo::SK_PermuteTwoSrc; 7372 default: 7373 break; 7374 } 7375 return None; 7376 } 7377 7378 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7379 const APInt &ShuffledIndices, 7380 bool NeedToShuffle) const { 7381 InstructionCost Cost = 7382 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7383 /*Extract*/ false); 7384 if (NeedToShuffle) 7385 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7386 return Cost; 7387 } 7388 7389 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7390 // Find the type of the operands in VL. 7391 Type *ScalarTy = VL[0]->getType(); 7392 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7393 ScalarTy = SI->getValueOperand()->getType(); 7394 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7395 bool DuplicateNonConst = false; 7396 // Find the cost of inserting/extracting values from the vector. 7397 // Check if the same elements are inserted several times and count them as 7398 // shuffle candidates. 7399 APInt ShuffledElements = APInt::getZero(VL.size()); 7400 DenseSet<Value *> UniqueElements; 7401 // Iterate in reverse order to consider insert elements with the high cost. 7402 for (unsigned I = VL.size(); I > 0; --I) { 7403 unsigned Idx = I - 1; 7404 // No need to shuffle duplicates for constants. 7405 if (isConstant(VL[Idx])) { 7406 ShuffledElements.setBit(Idx); 7407 continue; 7408 } 7409 if (!UniqueElements.insert(VL[Idx]).second) { 7410 DuplicateNonConst = true; 7411 ShuffledElements.setBit(Idx); 7412 } 7413 } 7414 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7415 } 7416 7417 // Perform operand reordering on the instructions in VL and return the reordered 7418 // operands in Left and Right. 7419 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7420 SmallVectorImpl<Value *> &Left, 7421 SmallVectorImpl<Value *> &Right, 7422 const DataLayout &DL, 7423 ScalarEvolution &SE, 7424 const BoUpSLP &R) { 7425 if (VL.empty()) 7426 return; 7427 VLOperands Ops(VL, DL, SE, R); 7428 // Reorder the operands in place. 7429 Ops.reorder(); 7430 Left = Ops.getVL(0); 7431 Right = Ops.getVL(1); 7432 } 7433 7434 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7435 // Get the basic block this bundle is in. All instructions in the bundle 7436 // should be in this block (except for extractelement-like instructions with 7437 // constant indeces). 7438 auto *Front = E->getMainOp(); 7439 auto *BB = Front->getParent(); 7440 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7441 if (E->getOpcode() == Instruction::GetElementPtr && 7442 !isa<GetElementPtrInst>(V)) 7443 return true; 7444 auto *I = cast<Instruction>(V); 7445 return !E->isOpcodeOrAlt(I) || I->getParent() == BB || 7446 isVectorLikeInstWithConstOps(I); 7447 })); 7448 7449 auto &&FindLastInst = [E, Front, this, &BB]() { 7450 Instruction *LastInst = Front; 7451 for (Value *V : E->Scalars) { 7452 auto *I = dyn_cast<Instruction>(V); 7453 if (!I) 7454 continue; 7455 if (LastInst->getParent() == I->getParent()) { 7456 if (LastInst->comesBefore(I)) 7457 LastInst = I; 7458 continue; 7459 } 7460 assert(isVectorLikeInstWithConstOps(LastInst) && 7461 isVectorLikeInstWithConstOps(I) && 7462 "Expected vector-like insts only."); 7463 if (!DT->isReachableFromEntry(LastInst->getParent())) { 7464 LastInst = I; 7465 continue; 7466 } 7467 if (!DT->isReachableFromEntry(I->getParent())) 7468 continue; 7469 auto *NodeA = DT->getNode(LastInst->getParent()); 7470 auto *NodeB = DT->getNode(I->getParent()); 7471 assert(NodeA && "Should only process reachable instructions"); 7472 assert(NodeB && "Should only process reachable instructions"); 7473 assert((NodeA == NodeB) == 7474 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 7475 "Different nodes should have different DFS numbers"); 7476 if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) 7477 LastInst = I; 7478 } 7479 BB = LastInst->getParent(); 7480 return LastInst; 7481 }; 7482 7483 auto &&FindFirstInst = [E, Front]() { 7484 Instruction *FirstInst = Front; 7485 for (Value *V : E->Scalars) { 7486 auto *I = dyn_cast<Instruction>(V); 7487 if (!I) 7488 continue; 7489 if (I->comesBefore(FirstInst)) 7490 FirstInst = I; 7491 } 7492 return FirstInst; 7493 }; 7494 7495 // Set the insert point to the beginning of the basic block if the entry 7496 // should not be scheduled. 7497 if (E->State != TreeEntry::NeedToGather && 7498 doesNotNeedToSchedule(E->Scalars)) { 7499 Instruction *InsertInst; 7500 if (all_of(E->Scalars, isUsedOutsideBlock)) 7501 InsertInst = FindLastInst(); 7502 else 7503 InsertInst = FindFirstInst(); 7504 // If the instruction is PHI, set the insert point after all the PHIs. 7505 if (isa<PHINode>(InsertInst)) 7506 InsertInst = BB->getFirstNonPHI(); 7507 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7508 Builder.SetInsertPoint(BB, InsertPt); 7509 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7510 return; 7511 } 7512 7513 // The last instruction in the bundle in program order. 7514 Instruction *LastInst = nullptr; 7515 7516 // Find the last instruction. The common case should be that BB has been 7517 // scheduled, and the last instruction is VL.back(). So we start with 7518 // VL.back() and iterate over schedule data until we reach the end of the 7519 // bundle. The end of the bundle is marked by null ScheduleData. 7520 if (BlocksSchedules.count(BB)) { 7521 Value *V = E->isOneOf(E->Scalars.back()); 7522 if (doesNotNeedToBeScheduled(V)) 7523 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7524 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7525 if (Bundle && Bundle->isPartOfBundle()) 7526 for (; Bundle; Bundle = Bundle->NextInBundle) 7527 if (Bundle->OpValue == Bundle->Inst) 7528 LastInst = Bundle->Inst; 7529 } 7530 7531 // LastInst can still be null at this point if there's either not an entry 7532 // for BB in BlocksSchedules or there's no ScheduleData available for 7533 // VL.back(). This can be the case if buildTree_rec aborts for various 7534 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7535 // size is reached, etc.). ScheduleData is initialized in the scheduling 7536 // "dry-run". 7537 // 7538 // If this happens, we can still find the last instruction by brute force. We 7539 // iterate forwards from Front (inclusive) until we either see all 7540 // instructions in the bundle or reach the end of the block. If Front is the 7541 // last instruction in program order, LastInst will be set to Front, and we 7542 // will visit all the remaining instructions in the block. 7543 // 7544 // One of the reasons we exit early from buildTree_rec is to place an upper 7545 // bound on compile-time. Thus, taking an additional compile-time hit here is 7546 // not ideal. However, this should be exceedingly rare since it requires that 7547 // we both exit early from buildTree_rec and that the bundle be out-of-order 7548 // (causing us to iterate all the way to the end of the block). 7549 if (!LastInst) { 7550 LastInst = FindLastInst(); 7551 // If the instruction is PHI, set the insert point after all the PHIs. 7552 if (isa<PHINode>(LastInst)) 7553 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7554 } 7555 assert(LastInst && "Failed to find last instruction in bundle"); 7556 7557 // Set the insertion point after the last instruction in the bundle. Set the 7558 // debug location to Front. 7559 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7560 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7561 } 7562 7563 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7564 // List of instructions/lanes from current block and/or the blocks which are 7565 // part of the current loop. These instructions will be inserted at the end to 7566 // make it possible to optimize loops and hoist invariant instructions out of 7567 // the loops body with better chances for success. 7568 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7569 SmallSet<int, 4> PostponedIndices; 7570 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7571 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7572 SmallPtrSet<BasicBlock *, 4> Visited; 7573 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7574 InsertBB = InsertBB->getSinglePredecessor(); 7575 return InsertBB && InsertBB == InstBB; 7576 }; 7577 for (int I = 0, E = VL.size(); I < E; ++I) { 7578 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7579 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7580 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7581 PostponedIndices.insert(I).second) 7582 PostponedInsts.emplace_back(Inst, I); 7583 } 7584 7585 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7586 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7587 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7588 if (!InsElt) 7589 return Vec; 7590 GatherShuffleSeq.insert(InsElt); 7591 CSEBlocks.insert(InsElt->getParent()); 7592 // Add to our 'need-to-extract' list. 7593 if (TreeEntry *Entry = getTreeEntry(V)) { 7594 // Find which lane we need to extract. 7595 unsigned FoundLane = Entry->findLaneForValue(V); 7596 ExternalUses.emplace_back(V, InsElt, FoundLane); 7597 } 7598 return Vec; 7599 }; 7600 Value *Val0 = 7601 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7602 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7603 Value *Vec = PoisonValue::get(VecTy); 7604 SmallVector<int> NonConsts; 7605 // Insert constant values at first. 7606 for (int I = 0, E = VL.size(); I < E; ++I) { 7607 if (PostponedIndices.contains(I)) 7608 continue; 7609 if (!isConstant(VL[I])) { 7610 NonConsts.push_back(I); 7611 continue; 7612 } 7613 Vec = CreateInsertElement(Vec, VL[I], I); 7614 } 7615 // Insert non-constant values. 7616 for (int I : NonConsts) 7617 Vec = CreateInsertElement(Vec, VL[I], I); 7618 // Append instructions, which are/may be part of the loop, in the end to make 7619 // it possible to hoist non-loop-based instructions. 7620 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7621 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7622 7623 return Vec; 7624 } 7625 7626 namespace { 7627 /// Merges shuffle masks and emits final shuffle instruction, if required. 7628 class ShuffleInstructionBuilder { 7629 IRBuilderBase &Builder; 7630 const unsigned VF = 0; 7631 bool IsFinalized = false; 7632 SmallVector<int, 4> Mask; 7633 /// Holds all of the instructions that we gathered. 7634 SetVector<Instruction *> &GatherShuffleSeq; 7635 /// A list of blocks that we are going to CSE. 7636 SetVector<BasicBlock *> &CSEBlocks; 7637 7638 public: 7639 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7640 SetVector<Instruction *> &GatherShuffleSeq, 7641 SetVector<BasicBlock *> &CSEBlocks) 7642 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7643 CSEBlocks(CSEBlocks) {} 7644 7645 /// Adds a mask, inverting it before applying. 7646 void addInversedMask(ArrayRef<unsigned> SubMask) { 7647 if (SubMask.empty()) 7648 return; 7649 SmallVector<int, 4> NewMask; 7650 inversePermutation(SubMask, NewMask); 7651 addMask(NewMask); 7652 } 7653 7654 /// Functions adds masks, merging them into single one. 7655 void addMask(ArrayRef<unsigned> SubMask) { 7656 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7657 addMask(NewMask); 7658 } 7659 7660 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7661 7662 Value *finalize(Value *V) { 7663 IsFinalized = true; 7664 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7665 if (VF == ValueVF && Mask.empty()) 7666 return V; 7667 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7668 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7669 addMask(NormalizedMask); 7670 7671 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7672 return V; 7673 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7674 if (auto *I = dyn_cast<Instruction>(Vec)) { 7675 GatherShuffleSeq.insert(I); 7676 CSEBlocks.insert(I->getParent()); 7677 } 7678 return Vec; 7679 } 7680 7681 ~ShuffleInstructionBuilder() { 7682 assert((IsFinalized || Mask.empty()) && 7683 "Shuffle construction must be finalized."); 7684 } 7685 }; 7686 } // namespace 7687 7688 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7689 const unsigned VF = VL.size(); 7690 InstructionsState S = getSameOpcode(VL); 7691 // Special processing for GEPs bundle, which may include non-gep values. 7692 if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { 7693 const auto *It = 7694 find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); 7695 if (It != VL.end()) 7696 S = getSameOpcode(*It); 7697 } 7698 if (S.getOpcode()) { 7699 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7700 if (E->isSame(VL)) { 7701 Value *V = vectorizeTree(E); 7702 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7703 if (!E->ReuseShuffleIndices.empty()) { 7704 // Reshuffle to get only unique values. 7705 // If some of the scalars are duplicated in the vectorization tree 7706 // entry, we do not vectorize them but instead generate a mask for 7707 // the reuses. But if there are several users of the same entry, 7708 // they may have different vectorization factors. This is especially 7709 // important for PHI nodes. In this case, we need to adapt the 7710 // resulting instruction for the user vectorization factor and have 7711 // to reshuffle it again to take only unique elements of the vector. 7712 // Without this code the function incorrectly returns reduced vector 7713 // instruction with the same elements, not with the unique ones. 7714 7715 // block: 7716 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7717 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7718 // ... (use %2) 7719 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7720 // br %block 7721 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7722 SmallSet<int, 4> UsedIdxs; 7723 int Pos = 0; 7724 int Sz = VL.size(); 7725 for (int Idx : E->ReuseShuffleIndices) { 7726 if (Idx != Sz && Idx != UndefMaskElem && 7727 UsedIdxs.insert(Idx).second) 7728 UniqueIdxs[Idx] = Pos; 7729 ++Pos; 7730 } 7731 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7732 "less than original vector size."); 7733 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7734 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7735 } else { 7736 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7737 "Expected vectorization factor less " 7738 "than original vector size."); 7739 SmallVector<int> UniformMask(VF, 0); 7740 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7741 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7742 } 7743 if (auto *I = dyn_cast<Instruction>(V)) { 7744 GatherShuffleSeq.insert(I); 7745 CSEBlocks.insert(I->getParent()); 7746 } 7747 } 7748 return V; 7749 } 7750 } 7751 7752 // Can't vectorize this, so simply build a new vector with each lane 7753 // corresponding to the requested value. 7754 return createBuildVector(VL); 7755 } 7756 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7757 assert(any_of(VectorizableTree, 7758 [VL](const std::unique_ptr<TreeEntry> &TE) { 7759 return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); 7760 }) && 7761 "Non-matching gather node."); 7762 unsigned VF = VL.size(); 7763 // Exploit possible reuse of values across lanes. 7764 SmallVector<int> ReuseShuffleIndicies; 7765 SmallVector<Value *> UniqueValues; 7766 if (VL.size() > 2) { 7767 DenseMap<Value *, unsigned> UniquePositions; 7768 unsigned NumValues = 7769 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7770 return !isa<UndefValue>(V); 7771 }).base()); 7772 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7773 int UniqueVals = 0; 7774 for (Value *V : VL.drop_back(VL.size() - VF)) { 7775 if (isa<UndefValue>(V)) { 7776 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7777 continue; 7778 } 7779 if (isConstant(V)) { 7780 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7781 UniqueValues.emplace_back(V); 7782 continue; 7783 } 7784 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7785 ReuseShuffleIndicies.emplace_back(Res.first->second); 7786 if (Res.second) { 7787 UniqueValues.emplace_back(V); 7788 ++UniqueVals; 7789 } 7790 } 7791 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7792 // Emit pure splat vector. 7793 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7794 UndefMaskElem); 7795 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7796 if (UniqueValues.empty()) { 7797 assert(all_of(VL, UndefValue::classof) && "Expected list of undefs."); 7798 NumValues = VF; 7799 } 7800 ReuseShuffleIndicies.clear(); 7801 UniqueValues.clear(); 7802 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7803 } 7804 UniqueValues.append(VF - UniqueValues.size(), 7805 PoisonValue::get(VL[0]->getType())); 7806 VL = UniqueValues; 7807 } 7808 7809 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7810 CSEBlocks); 7811 Value *Vec = gather(VL); 7812 if (!ReuseShuffleIndicies.empty()) { 7813 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7814 Vec = ShuffleBuilder.finalize(Vec); 7815 } 7816 return Vec; 7817 } 7818 7819 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7820 IRBuilder<>::InsertPointGuard Guard(Builder); 7821 7822 if (E->VectorizedValue) { 7823 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7824 return E->VectorizedValue; 7825 } 7826 7827 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7828 unsigned VF = E->getVectorFactor(); 7829 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7830 CSEBlocks); 7831 if (E->State == TreeEntry::NeedToGather) { 7832 if (E->getMainOp()) 7833 setInsertPointAfterBundle(E); 7834 Value *Vec; 7835 SmallVector<int> Mask; 7836 SmallVector<const TreeEntry *> Entries; 7837 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7838 isGatherShuffledEntry(E, Mask, Entries); 7839 if (Shuffle) { 7840 assert((Entries.size() == 1 || Entries.size() == 2) && 7841 "Expected shuffle of 1 or 2 entries."); 7842 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7843 Entries.back()->VectorizedValue, Mask); 7844 if (auto *I = dyn_cast<Instruction>(Vec)) { 7845 GatherShuffleSeq.insert(I); 7846 CSEBlocks.insert(I->getParent()); 7847 } 7848 } else { 7849 Vec = gather(E->Scalars); 7850 } 7851 if (NeedToShuffleReuses) { 7852 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7853 Vec = ShuffleBuilder.finalize(Vec); 7854 } 7855 E->VectorizedValue = Vec; 7856 return Vec; 7857 } 7858 7859 assert((E->State == TreeEntry::Vectorize || 7860 E->State == TreeEntry::ScatterVectorize) && 7861 "Unhandled state"); 7862 unsigned ShuffleOrOp = 7863 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7864 Instruction *VL0 = E->getMainOp(); 7865 Type *ScalarTy = VL0->getType(); 7866 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7867 ScalarTy = Store->getValueOperand()->getType(); 7868 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7869 ScalarTy = IE->getOperand(1)->getType(); 7870 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7871 switch (ShuffleOrOp) { 7872 case Instruction::PHI: { 7873 assert((E->ReorderIndices.empty() || 7874 E != VectorizableTree.front().get() || 7875 !E->UserTreeIndices.empty()) && 7876 "PHI reordering is free."); 7877 auto *PH = cast<PHINode>(VL0); 7878 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7879 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7880 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7881 Value *V = NewPhi; 7882 7883 // Adjust insertion point once all PHI's have been generated. 7884 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7885 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7886 7887 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7888 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7889 V = ShuffleBuilder.finalize(V); 7890 7891 E->VectorizedValue = V; 7892 7893 // PHINodes may have multiple entries from the same block. We want to 7894 // visit every block once. 7895 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7896 7897 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7898 ValueList Operands; 7899 BasicBlock *IBB = PH->getIncomingBlock(i); 7900 7901 if (!VisitedBBs.insert(IBB).second) { 7902 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7903 continue; 7904 } 7905 7906 Builder.SetInsertPoint(IBB->getTerminator()); 7907 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7908 Value *Vec = vectorizeTree(E->getOperand(i)); 7909 NewPhi->addIncoming(Vec, IBB); 7910 } 7911 7912 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7913 "Invalid number of incoming values"); 7914 return V; 7915 } 7916 7917 case Instruction::ExtractElement: { 7918 Value *V = E->getSingleOperand(0); 7919 Builder.SetInsertPoint(VL0); 7920 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7921 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7922 V = ShuffleBuilder.finalize(V); 7923 E->VectorizedValue = V; 7924 return V; 7925 } 7926 case Instruction::ExtractValue: { 7927 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7928 Builder.SetInsertPoint(LI); 7929 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7930 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7931 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7932 Value *NewV = propagateMetadata(V, E->Scalars); 7933 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7934 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7935 NewV = ShuffleBuilder.finalize(NewV); 7936 E->VectorizedValue = NewV; 7937 return NewV; 7938 } 7939 case Instruction::InsertElement: { 7940 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7941 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7942 Value *V = vectorizeTree(E->getOperand(1)); 7943 7944 // Create InsertVector shuffle if necessary 7945 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7946 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7947 })); 7948 const unsigned NumElts = 7949 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7950 const unsigned NumScalars = E->Scalars.size(); 7951 7952 unsigned Offset = *getInsertIndex(VL0); 7953 assert(Offset < NumElts && "Failed to find vector index offset"); 7954 7955 // Create shuffle to resize vector 7956 SmallVector<int> Mask; 7957 if (!E->ReorderIndices.empty()) { 7958 inversePermutation(E->ReorderIndices, Mask); 7959 Mask.append(NumElts - NumScalars, UndefMaskElem); 7960 } else { 7961 Mask.assign(NumElts, UndefMaskElem); 7962 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7963 } 7964 // Create InsertVector shuffle if necessary 7965 bool IsIdentity = true; 7966 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7967 Mask.swap(PrevMask); 7968 for (unsigned I = 0; I < NumScalars; ++I) { 7969 Value *Scalar = E->Scalars[PrevMask[I]]; 7970 unsigned InsertIdx = *getInsertIndex(Scalar); 7971 IsIdentity &= InsertIdx - Offset == I; 7972 Mask[InsertIdx - Offset] = I; 7973 } 7974 if (!IsIdentity || NumElts != NumScalars) { 7975 V = Builder.CreateShuffleVector(V, Mask); 7976 if (auto *I = dyn_cast<Instruction>(V)) { 7977 GatherShuffleSeq.insert(I); 7978 CSEBlocks.insert(I->getParent()); 7979 } 7980 } 7981 7982 if ((!IsIdentity || Offset != 0 || 7983 !isUndefVector(FirstInsert->getOperand(0))) && 7984 NumElts != NumScalars) { 7985 SmallVector<int> InsertMask(NumElts); 7986 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7987 for (unsigned I = 0; I < NumElts; I++) { 7988 if (Mask[I] != UndefMaskElem) 7989 InsertMask[Offset + I] = NumElts + I; 7990 } 7991 7992 V = Builder.CreateShuffleVector( 7993 FirstInsert->getOperand(0), V, InsertMask, 7994 cast<Instruction>(E->Scalars.back())->getName()); 7995 if (auto *I = dyn_cast<Instruction>(V)) { 7996 GatherShuffleSeq.insert(I); 7997 CSEBlocks.insert(I->getParent()); 7998 } 7999 } 8000 8001 ++NumVectorInstructions; 8002 E->VectorizedValue = V; 8003 return V; 8004 } 8005 case Instruction::ZExt: 8006 case Instruction::SExt: 8007 case Instruction::FPToUI: 8008 case Instruction::FPToSI: 8009 case Instruction::FPExt: 8010 case Instruction::PtrToInt: 8011 case Instruction::IntToPtr: 8012 case Instruction::SIToFP: 8013 case Instruction::UIToFP: 8014 case Instruction::Trunc: 8015 case Instruction::FPTrunc: 8016 case Instruction::BitCast: { 8017 setInsertPointAfterBundle(E); 8018 8019 Value *InVec = vectorizeTree(E->getOperand(0)); 8020 8021 if (E->VectorizedValue) { 8022 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8023 return E->VectorizedValue; 8024 } 8025 8026 auto *CI = cast<CastInst>(VL0); 8027 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 8028 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8029 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8030 V = ShuffleBuilder.finalize(V); 8031 8032 E->VectorizedValue = V; 8033 ++NumVectorInstructions; 8034 return V; 8035 } 8036 case Instruction::FCmp: 8037 case Instruction::ICmp: { 8038 setInsertPointAfterBundle(E); 8039 8040 Value *L = vectorizeTree(E->getOperand(0)); 8041 Value *R = vectorizeTree(E->getOperand(1)); 8042 8043 if (E->VectorizedValue) { 8044 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8045 return E->VectorizedValue; 8046 } 8047 8048 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 8049 Value *V = Builder.CreateCmp(P0, L, R); 8050 propagateIRFlags(V, E->Scalars, VL0); 8051 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8052 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8053 V = ShuffleBuilder.finalize(V); 8054 8055 E->VectorizedValue = V; 8056 ++NumVectorInstructions; 8057 return V; 8058 } 8059 case Instruction::Select: { 8060 setInsertPointAfterBundle(E); 8061 8062 Value *Cond = vectorizeTree(E->getOperand(0)); 8063 Value *True = vectorizeTree(E->getOperand(1)); 8064 Value *False = vectorizeTree(E->getOperand(2)); 8065 8066 if (E->VectorizedValue) { 8067 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8068 return E->VectorizedValue; 8069 } 8070 8071 Value *V = Builder.CreateSelect(Cond, True, False); 8072 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8073 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8074 V = ShuffleBuilder.finalize(V); 8075 8076 E->VectorizedValue = V; 8077 ++NumVectorInstructions; 8078 return V; 8079 } 8080 case Instruction::FNeg: { 8081 setInsertPointAfterBundle(E); 8082 8083 Value *Op = vectorizeTree(E->getOperand(0)); 8084 8085 if (E->VectorizedValue) { 8086 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8087 return E->VectorizedValue; 8088 } 8089 8090 Value *V = Builder.CreateUnOp( 8091 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 8092 propagateIRFlags(V, E->Scalars, VL0); 8093 if (auto *I = dyn_cast<Instruction>(V)) 8094 V = propagateMetadata(I, E->Scalars); 8095 8096 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8097 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8098 V = ShuffleBuilder.finalize(V); 8099 8100 E->VectorizedValue = V; 8101 ++NumVectorInstructions; 8102 8103 return V; 8104 } 8105 case Instruction::Add: 8106 case Instruction::FAdd: 8107 case Instruction::Sub: 8108 case Instruction::FSub: 8109 case Instruction::Mul: 8110 case Instruction::FMul: 8111 case Instruction::UDiv: 8112 case Instruction::SDiv: 8113 case Instruction::FDiv: 8114 case Instruction::URem: 8115 case Instruction::SRem: 8116 case Instruction::FRem: 8117 case Instruction::Shl: 8118 case Instruction::LShr: 8119 case Instruction::AShr: 8120 case Instruction::And: 8121 case Instruction::Or: 8122 case Instruction::Xor: { 8123 setInsertPointAfterBundle(E); 8124 8125 Value *LHS = vectorizeTree(E->getOperand(0)); 8126 Value *RHS = vectorizeTree(E->getOperand(1)); 8127 8128 if (E->VectorizedValue) { 8129 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8130 return E->VectorizedValue; 8131 } 8132 8133 Value *V = Builder.CreateBinOp( 8134 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 8135 RHS); 8136 propagateIRFlags(V, E->Scalars, VL0); 8137 if (auto *I = dyn_cast<Instruction>(V)) 8138 V = propagateMetadata(I, E->Scalars); 8139 8140 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8141 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8142 V = ShuffleBuilder.finalize(V); 8143 8144 E->VectorizedValue = V; 8145 ++NumVectorInstructions; 8146 8147 return V; 8148 } 8149 case Instruction::Load: { 8150 // Loads are inserted at the head of the tree because we don't want to 8151 // sink them all the way down past store instructions. 8152 setInsertPointAfterBundle(E); 8153 8154 LoadInst *LI = cast<LoadInst>(VL0); 8155 Instruction *NewLI; 8156 unsigned AS = LI->getPointerAddressSpace(); 8157 Value *PO = LI->getPointerOperand(); 8158 if (E->State == TreeEntry::Vectorize) { 8159 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 8160 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 8161 8162 // The pointer operand uses an in-tree scalar so we add the new BitCast 8163 // or LoadInst to ExternalUses list to make sure that an extract will 8164 // be generated in the future. 8165 if (TreeEntry *Entry = getTreeEntry(PO)) { 8166 // Find which lane we need to extract. 8167 unsigned FoundLane = Entry->findLaneForValue(PO); 8168 ExternalUses.emplace_back( 8169 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 8170 } 8171 } else { 8172 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 8173 Value *VecPtr = vectorizeTree(E->getOperand(0)); 8174 // Use the minimum alignment of the gathered loads. 8175 Align CommonAlignment = LI->getAlign(); 8176 for (Value *V : E->Scalars) 8177 CommonAlignment = 8178 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); 8179 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 8180 } 8181 Value *V = propagateMetadata(NewLI, E->Scalars); 8182 8183 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8184 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8185 V = ShuffleBuilder.finalize(V); 8186 E->VectorizedValue = V; 8187 ++NumVectorInstructions; 8188 return V; 8189 } 8190 case Instruction::Store: { 8191 auto *SI = cast<StoreInst>(VL0); 8192 unsigned AS = SI->getPointerAddressSpace(); 8193 8194 setInsertPointAfterBundle(E); 8195 8196 Value *VecValue = vectorizeTree(E->getOperand(0)); 8197 ShuffleBuilder.addMask(E->ReorderIndices); 8198 VecValue = ShuffleBuilder.finalize(VecValue); 8199 8200 Value *ScalarPtr = SI->getPointerOperand(); 8201 Value *VecPtr = Builder.CreateBitCast( 8202 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 8203 StoreInst *ST = 8204 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 8205 8206 // The pointer operand uses an in-tree scalar, so add the new BitCast or 8207 // StoreInst to ExternalUses to make sure that an extract will be 8208 // generated in the future. 8209 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 8210 // Find which lane we need to extract. 8211 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 8212 ExternalUses.push_back(ExternalUser( 8213 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 8214 FoundLane)); 8215 } 8216 8217 Value *V = propagateMetadata(ST, E->Scalars); 8218 8219 E->VectorizedValue = V; 8220 ++NumVectorInstructions; 8221 return V; 8222 } 8223 case Instruction::GetElementPtr: { 8224 auto *GEP0 = cast<GetElementPtrInst>(VL0); 8225 setInsertPointAfterBundle(E); 8226 8227 Value *Op0 = vectorizeTree(E->getOperand(0)); 8228 8229 SmallVector<Value *> OpVecs; 8230 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 8231 Value *OpVec = vectorizeTree(E->getOperand(J)); 8232 OpVecs.push_back(OpVec); 8233 } 8234 8235 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 8236 if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { 8237 SmallVector<Value *> GEPs; 8238 for (Value *V : E->Scalars) { 8239 if (isa<GetElementPtrInst>(V)) 8240 GEPs.push_back(V); 8241 } 8242 V = propagateMetadata(I, GEPs); 8243 } 8244 8245 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8246 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8247 V = ShuffleBuilder.finalize(V); 8248 8249 E->VectorizedValue = V; 8250 ++NumVectorInstructions; 8251 8252 return V; 8253 } 8254 case Instruction::Call: { 8255 CallInst *CI = cast<CallInst>(VL0); 8256 setInsertPointAfterBundle(E); 8257 8258 Intrinsic::ID IID = Intrinsic::not_intrinsic; 8259 if (Function *FI = CI->getCalledFunction()) 8260 IID = FI->getIntrinsicID(); 8261 8262 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8263 8264 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 8265 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 8266 VecCallCosts.first <= VecCallCosts.second; 8267 8268 Value *ScalarArg = nullptr; 8269 std::vector<Value *> OpVecs; 8270 SmallVector<Type *, 2> TysForDecl = 8271 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 8272 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 8273 ValueList OpVL; 8274 // Some intrinsics have scalar arguments. This argument should not be 8275 // vectorized. 8276 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 8277 CallInst *CEI = cast<CallInst>(VL0); 8278 ScalarArg = CEI->getArgOperand(j); 8279 OpVecs.push_back(CEI->getArgOperand(j)); 8280 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8281 TysForDecl.push_back(ScalarArg->getType()); 8282 continue; 8283 } 8284 8285 Value *OpVec = vectorizeTree(E->getOperand(j)); 8286 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 8287 OpVecs.push_back(OpVec); 8288 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8289 TysForDecl.push_back(OpVec->getType()); 8290 } 8291 8292 Function *CF; 8293 if (!UseIntrinsic) { 8294 VFShape Shape = 8295 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 8296 VecTy->getNumElements())), 8297 false /*HasGlobalPred*/); 8298 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 8299 } else { 8300 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 8301 } 8302 8303 SmallVector<OperandBundleDef, 1> OpBundles; 8304 CI->getOperandBundlesAsDefs(OpBundles); 8305 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 8306 8307 // The scalar argument uses an in-tree scalar so we add the new vectorized 8308 // call to ExternalUses list to make sure that an extract will be 8309 // generated in the future. 8310 if (ScalarArg) { 8311 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8312 // Find which lane we need to extract. 8313 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8314 ExternalUses.push_back( 8315 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8316 } 8317 } 8318 8319 propagateIRFlags(V, E->Scalars, VL0); 8320 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8321 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8322 V = ShuffleBuilder.finalize(V); 8323 8324 E->VectorizedValue = V; 8325 ++NumVectorInstructions; 8326 return V; 8327 } 8328 case Instruction::ShuffleVector: { 8329 assert(E->isAltShuffle() && 8330 ((Instruction::isBinaryOp(E->getOpcode()) && 8331 Instruction::isBinaryOp(E->getAltOpcode())) || 8332 (Instruction::isCast(E->getOpcode()) && 8333 Instruction::isCast(E->getAltOpcode())) || 8334 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8335 "Invalid Shuffle Vector Operand"); 8336 8337 Value *LHS = nullptr, *RHS = nullptr; 8338 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8339 setInsertPointAfterBundle(E); 8340 LHS = vectorizeTree(E->getOperand(0)); 8341 RHS = vectorizeTree(E->getOperand(1)); 8342 } else { 8343 setInsertPointAfterBundle(E); 8344 LHS = vectorizeTree(E->getOperand(0)); 8345 } 8346 8347 if (E->VectorizedValue) { 8348 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8349 return E->VectorizedValue; 8350 } 8351 8352 Value *V0, *V1; 8353 if (Instruction::isBinaryOp(E->getOpcode())) { 8354 V0 = Builder.CreateBinOp( 8355 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8356 V1 = Builder.CreateBinOp( 8357 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8358 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8359 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8360 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8361 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8362 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8363 } else { 8364 V0 = Builder.CreateCast( 8365 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8366 V1 = Builder.CreateCast( 8367 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8368 } 8369 // Add V0 and V1 to later analysis to try to find and remove matching 8370 // instruction, if any. 8371 for (Value *V : {V0, V1}) { 8372 if (auto *I = dyn_cast<Instruction>(V)) { 8373 GatherShuffleSeq.insert(I); 8374 CSEBlocks.insert(I->getParent()); 8375 } 8376 } 8377 8378 // Create shuffle to take alternate operations from the vector. 8379 // Also, gather up main and alt scalar ops to propagate IR flags to 8380 // each vector operation. 8381 ValueList OpScalars, AltScalars; 8382 SmallVector<int> Mask; 8383 buildShuffleEntryMask( 8384 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8385 [E](Instruction *I) { 8386 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8387 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8388 }, 8389 Mask, &OpScalars, &AltScalars); 8390 8391 propagateIRFlags(V0, OpScalars); 8392 propagateIRFlags(V1, AltScalars); 8393 8394 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8395 if (auto *I = dyn_cast<Instruction>(V)) { 8396 V = propagateMetadata(I, E->Scalars); 8397 GatherShuffleSeq.insert(I); 8398 CSEBlocks.insert(I->getParent()); 8399 } 8400 V = ShuffleBuilder.finalize(V); 8401 8402 E->VectorizedValue = V; 8403 ++NumVectorInstructions; 8404 8405 return V; 8406 } 8407 default: 8408 llvm_unreachable("unknown inst"); 8409 } 8410 return nullptr; 8411 } 8412 8413 Value *BoUpSLP::vectorizeTree() { 8414 ExtraValueToDebugLocsMap ExternallyUsedValues; 8415 return vectorizeTree(ExternallyUsedValues); 8416 } 8417 8418 namespace { 8419 /// Data type for handling buildvector sequences with the reused scalars from 8420 /// other tree entries. 8421 struct ShuffledInsertData { 8422 /// List of insertelements to be replaced by shuffles. 8423 SmallVector<InsertElementInst *> InsertElements; 8424 /// The parent vectors and shuffle mask for the given list of inserts. 8425 MapVector<Value *, SmallVector<int>> ValueMasks; 8426 }; 8427 } // namespace 8428 8429 Value * 8430 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8431 // All blocks must be scheduled before any instructions are inserted. 8432 for (auto &BSIter : BlocksSchedules) { 8433 scheduleBlock(BSIter.second.get()); 8434 } 8435 8436 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8437 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8438 8439 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8440 // vectorized root. InstCombine will then rewrite the entire expression. We 8441 // sign extend the extracted values below. 8442 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8443 if (MinBWs.count(ScalarRoot)) { 8444 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8445 // If current instr is a phi and not the last phi, insert it after the 8446 // last phi node. 8447 if (isa<PHINode>(I)) 8448 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8449 else 8450 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8451 } 8452 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8453 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8454 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8455 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8456 VectorizableTree[0]->VectorizedValue = Trunc; 8457 } 8458 8459 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8460 << " values .\n"); 8461 8462 SmallVector<ShuffledInsertData> ShuffledInserts; 8463 // Maps vector instruction to original insertelement instruction 8464 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 8465 // Extract all of the elements with the external uses. 8466 for (const auto &ExternalUse : ExternalUses) { 8467 Value *Scalar = ExternalUse.Scalar; 8468 llvm::User *User = ExternalUse.User; 8469 8470 // Skip users that we already RAUW. This happens when one instruction 8471 // has multiple uses of the same value. 8472 if (User && !is_contained(Scalar->users(), User)) 8473 continue; 8474 TreeEntry *E = getTreeEntry(Scalar); 8475 assert(E && "Invalid scalar"); 8476 assert(E->State != TreeEntry::NeedToGather && 8477 "Extracting from a gather list"); 8478 // Non-instruction pointers are not deleted, just skip them. 8479 if (E->getOpcode() == Instruction::GetElementPtr && 8480 !isa<GetElementPtrInst>(Scalar)) 8481 continue; 8482 8483 Value *Vec = E->VectorizedValue; 8484 assert(Vec && "Can't find vectorizable value"); 8485 8486 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8487 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8488 if (Scalar->getType() != Vec->getType()) { 8489 Value *Ex; 8490 // "Reuse" the existing extract to improve final codegen. 8491 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8492 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8493 ES->getOperand(1)); 8494 } else { 8495 Ex = Builder.CreateExtractElement(Vec, Lane); 8496 } 8497 // If necessary, sign-extend or zero-extend ScalarRoot 8498 // to the larger type. 8499 if (!MinBWs.count(ScalarRoot)) 8500 return Ex; 8501 if (MinBWs[ScalarRoot].second) 8502 return Builder.CreateSExt(Ex, Scalar->getType()); 8503 return Builder.CreateZExt(Ex, Scalar->getType()); 8504 } 8505 assert(isa<FixedVectorType>(Scalar->getType()) && 8506 isa<InsertElementInst>(Scalar) && 8507 "In-tree scalar of vector type is not insertelement?"); 8508 auto *IE = cast<InsertElementInst>(Scalar); 8509 VectorToInsertElement.try_emplace(Vec, IE); 8510 return Vec; 8511 }; 8512 // If User == nullptr, the Scalar is used as extra arg. Generate 8513 // ExtractElement instruction and update the record for this scalar in 8514 // ExternallyUsedValues. 8515 if (!User) { 8516 assert(ExternallyUsedValues.count(Scalar) && 8517 "Scalar with nullptr as an external user must be registered in " 8518 "ExternallyUsedValues map"); 8519 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8520 Builder.SetInsertPoint(VecI->getParent(), 8521 std::next(VecI->getIterator())); 8522 } else { 8523 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8524 } 8525 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8526 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8527 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8528 auto It = ExternallyUsedValues.find(Scalar); 8529 assert(It != ExternallyUsedValues.end() && 8530 "Externally used scalar is not found in ExternallyUsedValues"); 8531 NewInstLocs.append(It->second); 8532 ExternallyUsedValues.erase(Scalar); 8533 // Required to update internally referenced instructions. 8534 Scalar->replaceAllUsesWith(NewInst); 8535 continue; 8536 } 8537 8538 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 8539 // Skip if the scalar is another vector op or Vec is not an instruction. 8540 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { 8541 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 8542 Optional<unsigned> InsertIdx = getInsertIndex(VU); 8543 if (InsertIdx) { 8544 // Need to use original vector, if the root is truncated. 8545 if (MinBWs.count(Scalar) && 8546 VectorizableTree[0]->VectorizedValue == Vec) 8547 Vec = VectorRoot; 8548 auto *It = 8549 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 8550 // Checks if 2 insertelements are from the same buildvector. 8551 InsertElementInst *VecInsert = Data.InsertElements.front(); 8552 return areTwoInsertFromSameBuildVector(VU, VecInsert); 8553 }); 8554 unsigned Idx = *InsertIdx; 8555 if (It == ShuffledInserts.end()) { 8556 (void)ShuffledInserts.emplace_back(); 8557 It = std::next(ShuffledInserts.begin(), 8558 ShuffledInserts.size() - 1); 8559 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8560 if (Mask.empty()) 8561 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8562 // Find the insertvector, vectorized in tree, if any. 8563 Value *Base = VU; 8564 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 8565 if (IEBase != User && 8566 (!IEBase->hasOneUse() || 8567 getInsertIndex(IEBase).value_or(Idx) == Idx)) 8568 break; 8569 // Build the mask for the vectorized insertelement instructions. 8570 if (const TreeEntry *E = getTreeEntry(IEBase)) { 8571 do { 8572 IEBase = cast<InsertElementInst>(Base); 8573 int IEIdx = *getInsertIndex(IEBase); 8574 assert(Mask[Idx] == UndefMaskElem && 8575 "InsertElementInstruction used already."); 8576 Mask[IEIdx] = IEIdx; 8577 Base = IEBase->getOperand(0); 8578 } while (E == getTreeEntry(Base)); 8579 break; 8580 } 8581 Base = cast<InsertElementInst>(Base)->getOperand(0); 8582 // After the vectorization the def-use chain has changed, need 8583 // to look through original insertelement instructions, if they 8584 // get replaced by vector instructions. 8585 auto It = VectorToInsertElement.find(Base); 8586 if (It != VectorToInsertElement.end()) 8587 Base = It->second; 8588 } 8589 } 8590 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8591 if (Mask.empty()) 8592 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8593 Mask[Idx] = ExternalUse.Lane; 8594 It->InsertElements.push_back(cast<InsertElementInst>(User)); 8595 continue; 8596 } 8597 } 8598 } 8599 } 8600 8601 // Generate extracts for out-of-tree users. 8602 // Find the insertion point for the extractelement lane. 8603 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8604 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8605 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8606 if (PH->getIncomingValue(i) == Scalar) { 8607 Instruction *IncomingTerminator = 8608 PH->getIncomingBlock(i)->getTerminator(); 8609 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8610 Builder.SetInsertPoint(VecI->getParent(), 8611 std::next(VecI->getIterator())); 8612 } else { 8613 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8614 } 8615 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8616 CSEBlocks.insert(PH->getIncomingBlock(i)); 8617 PH->setOperand(i, NewInst); 8618 } 8619 } 8620 } else { 8621 Builder.SetInsertPoint(cast<Instruction>(User)); 8622 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8623 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8624 User->replaceUsesOfWith(Scalar, NewInst); 8625 } 8626 } else { 8627 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8628 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8629 CSEBlocks.insert(&F->getEntryBlock()); 8630 User->replaceUsesOfWith(Scalar, NewInst); 8631 } 8632 8633 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8634 } 8635 8636 // Checks if the mask is an identity mask. 8637 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) { 8638 int Limit = Mask.size(); 8639 return VecTy->getNumElements() == Mask.size() && 8640 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 8641 ShuffleVectorInst::isIdentityMask(Mask); 8642 }; 8643 // Tries to combine 2 different masks into single one. 8644 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) { 8645 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8646 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8647 if (ExtMask[I] == UndefMaskElem) 8648 continue; 8649 NewMask[I] = Mask[ExtMask[I]]; 8650 } 8651 Mask.swap(NewMask); 8652 }; 8653 // Peek through shuffles, trying to simplify the final shuffle code. 8654 auto &&PeekThroughShuffles = 8655 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask, 8656 bool CheckForLengthChange = false) { 8657 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 8658 // Exit if not a fixed vector type or changing size shuffle. 8659 if (!isa<FixedVectorType>(SV->getType()) || 8660 (CheckForLengthChange && SV->changesLength())) 8661 break; 8662 // Exit if the identity or broadcast mask is found. 8663 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) || 8664 SV->isZeroEltSplat()) 8665 break; 8666 bool IsOp1Undef = isUndefVector(SV->getOperand(0)); 8667 bool IsOp2Undef = isUndefVector(SV->getOperand(1)); 8668 if (!IsOp1Undef && !IsOp2Undef) 8669 break; 8670 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 8671 SV->getShuffleMask().end()); 8672 CombineMasks(ShuffleMask, Mask); 8673 Mask.swap(ShuffleMask); 8674 if (IsOp2Undef) 8675 V = SV->getOperand(0); 8676 else 8677 V = SV->getOperand(1); 8678 } 8679 }; 8680 // Smart shuffle instruction emission, walks through shuffles trees and 8681 // tries to find the best matching vector for the actual shuffle 8682 // instruction. 8683 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles, 8684 &CombineMasks](Value *V1, Value *V2, 8685 ArrayRef<int> Mask) -> Value * { 8686 assert(V1 && "Expected at least one vector value."); 8687 if (V2 && !isUndefVector(V2)) { 8688 // Peek through shuffles. 8689 Value *Op1 = V1; 8690 Value *Op2 = V2; 8691 int VF = 8692 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 8693 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 8694 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 8695 for (int I = 0, E = Mask.size(); I < E; ++I) { 8696 if (Mask[I] < VF) 8697 CombinedMask1[I] = Mask[I]; 8698 else 8699 CombinedMask2[I] = Mask[I] - VF; 8700 } 8701 Value *PrevOp1; 8702 Value *PrevOp2; 8703 do { 8704 PrevOp1 = Op1; 8705 PrevOp2 = Op2; 8706 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true); 8707 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true); 8708 // Check if we have 2 resizing shuffles - need to peek through operands 8709 // again. 8710 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 8711 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) 8712 if (SV1->getOperand(0)->getType() == 8713 SV2->getOperand(0)->getType() && 8714 SV1->getOperand(0)->getType() != SV1->getType() && 8715 isUndefVector(SV1->getOperand(1)) && 8716 isUndefVector(SV2->getOperand(1))) { 8717 Op1 = SV1->getOperand(0); 8718 Op2 = SV2->getOperand(0); 8719 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 8720 SV1->getShuffleMask().end()); 8721 CombineMasks(ShuffleMask1, CombinedMask1); 8722 CombinedMask1.swap(ShuffleMask1); 8723 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 8724 SV2->getShuffleMask().end()); 8725 CombineMasks(ShuffleMask2, CombinedMask2); 8726 CombinedMask2.swap(ShuffleMask2); 8727 } 8728 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 8729 VF = cast<VectorType>(Op1->getType()) 8730 ->getElementCount() 8731 .getKnownMinValue(); 8732 for (int I = 0, E = Mask.size(); I < E; ++I) { 8733 if (CombinedMask2[I] != UndefMaskElem) { 8734 assert(CombinedMask1[I] == UndefMaskElem && 8735 "Expected undefined mask element"); 8736 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 8737 } 8738 } 8739 Value *Vec = Builder.CreateShuffleVector( 8740 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 8741 CombinedMask1); 8742 if (auto *I = dyn_cast<Instruction>(Vec)) { 8743 GatherShuffleSeq.insert(I); 8744 CSEBlocks.insert(I->getParent()); 8745 } 8746 return Vec; 8747 } 8748 if (isa<PoisonValue>(V1)) 8749 return PoisonValue::get(FixedVectorType::get( 8750 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 8751 Value *Op = V1; 8752 SmallVector<int> CombinedMask(Mask.begin(), Mask.end()); 8753 PeekThroughShuffles(Op, CombinedMask); 8754 if (!isa<FixedVectorType>(Op->getType()) || 8755 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) { 8756 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask); 8757 if (auto *I = dyn_cast<Instruction>(Vec)) { 8758 GatherShuffleSeq.insert(I); 8759 CSEBlocks.insert(I->getParent()); 8760 } 8761 return Vec; 8762 } 8763 return Op; 8764 }; 8765 8766 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) { 8767 unsigned VF = Mask.size(); 8768 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 8769 if (VF != VecVF) { 8770 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 8771 Vec = CreateShuffle(Vec, nullptr, Mask); 8772 return std::make_pair(Vec, true); 8773 } 8774 SmallVector<int> ResizeMask(VF, UndefMaskElem); 8775 for (unsigned I = 0; I < VF; ++I) { 8776 if (Mask[I] != UndefMaskElem) 8777 ResizeMask[Mask[I]] = Mask[I]; 8778 } 8779 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 8780 } 8781 8782 return std::make_pair(Vec, false); 8783 }; 8784 // Perform shuffling of the vectorize tree entries for better handling of 8785 // external extracts. 8786 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 8787 // Find the first and the last instruction in the list of insertelements. 8788 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 8789 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 8790 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 8791 Builder.SetInsertPoint(LastInsert); 8792 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 8793 Value *NewInst = performExtractsShuffleAction<Value>( 8794 makeMutableArrayRef(Vector.data(), Vector.size()), 8795 FirstInsert->getOperand(0), 8796 [](Value *Vec) { 8797 return cast<VectorType>(Vec->getType()) 8798 ->getElementCount() 8799 .getKnownMinValue(); 8800 }, 8801 ResizeToVF, 8802 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 8803 ArrayRef<Value *> Vals) { 8804 assert((Vals.size() == 1 || Vals.size() == 2) && 8805 "Expected exactly 1 or 2 input values."); 8806 if (Vals.size() == 1) { 8807 // Do not create shuffle if the mask is a simple identity 8808 // non-resizing mask. 8809 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 8810 ->getNumElements() || 8811 !ShuffleVectorInst::isIdentityMask(Mask)) 8812 return CreateShuffle(Vals.front(), nullptr, Mask); 8813 return Vals.front(); 8814 } 8815 return CreateShuffle(Vals.front() ? Vals.front() 8816 : FirstInsert->getOperand(0), 8817 Vals.back(), Mask); 8818 }); 8819 auto It = ShuffledInserts[I].InsertElements.rbegin(); 8820 // Rebuild buildvector chain. 8821 InsertElementInst *II = nullptr; 8822 if (It != ShuffledInserts[I].InsertElements.rend()) 8823 II = *It; 8824 SmallVector<Instruction *> Inserts; 8825 while (It != ShuffledInserts[I].InsertElements.rend()) { 8826 assert(II && "Must be an insertelement instruction."); 8827 if (*It == II) 8828 ++It; 8829 else 8830 Inserts.push_back(cast<Instruction>(II)); 8831 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 8832 } 8833 for (Instruction *II : reverse(Inserts)) { 8834 II->replaceUsesOfWith(II->getOperand(0), NewInst); 8835 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 8836 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 8837 II->moveAfter(NewI); 8838 NewInst = II; 8839 } 8840 LastInsert->replaceAllUsesWith(NewInst); 8841 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 8842 IE->replaceUsesOfWith(IE->getOperand(0), 8843 PoisonValue::get(IE->getOperand(0)->getType())); 8844 IE->replaceUsesOfWith(IE->getOperand(1), 8845 PoisonValue::get(IE->getOperand(1)->getType())); 8846 eraseInstruction(IE); 8847 } 8848 CSEBlocks.insert(LastInsert->getParent()); 8849 } 8850 8851 // For each vectorized value: 8852 for (auto &TEPtr : VectorizableTree) { 8853 TreeEntry *Entry = TEPtr.get(); 8854 8855 // No need to handle users of gathered values. 8856 if (Entry->State == TreeEntry::NeedToGather) 8857 continue; 8858 8859 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8860 8861 // For each lane: 8862 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8863 Value *Scalar = Entry->Scalars[Lane]; 8864 8865 if (Entry->getOpcode() == Instruction::GetElementPtr && 8866 !isa<GetElementPtrInst>(Scalar)) 8867 continue; 8868 #ifndef NDEBUG 8869 Type *Ty = Scalar->getType(); 8870 if (!Ty->isVoidTy()) { 8871 for (User *U : Scalar->users()) { 8872 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8873 8874 // It is legal to delete users in the ignorelist. 8875 assert((getTreeEntry(U) || 8876 (UserIgnoreList && UserIgnoreList->contains(U)) || 8877 (isa_and_nonnull<Instruction>(U) && 8878 isDeleted(cast<Instruction>(U)))) && 8879 "Deleting out-of-tree value"); 8880 } 8881 } 8882 #endif 8883 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8884 eraseInstruction(cast<Instruction>(Scalar)); 8885 } 8886 } 8887 8888 Builder.ClearInsertionPoint(); 8889 InstrElementSize.clear(); 8890 8891 return VectorizableTree[0]->VectorizedValue; 8892 } 8893 8894 void BoUpSLP::optimizeGatherSequence() { 8895 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8896 << " gather sequences instructions.\n"); 8897 // LICM InsertElementInst sequences. 8898 for (Instruction *I : GatherShuffleSeq) { 8899 if (isDeleted(I)) 8900 continue; 8901 8902 // Check if this block is inside a loop. 8903 Loop *L = LI->getLoopFor(I->getParent()); 8904 if (!L) 8905 continue; 8906 8907 // Check if it has a preheader. 8908 BasicBlock *PreHeader = L->getLoopPreheader(); 8909 if (!PreHeader) 8910 continue; 8911 8912 // If the vector or the element that we insert into it are 8913 // instructions that are defined in this basic block then we can't 8914 // hoist this instruction. 8915 if (any_of(I->operands(), [L](Value *V) { 8916 auto *OpI = dyn_cast<Instruction>(V); 8917 return OpI && L->contains(OpI); 8918 })) 8919 continue; 8920 8921 // We can hoist this instruction. Move it to the pre-header. 8922 I->moveBefore(PreHeader->getTerminator()); 8923 } 8924 8925 // Make a list of all reachable blocks in our CSE queue. 8926 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8927 CSEWorkList.reserve(CSEBlocks.size()); 8928 for (BasicBlock *BB : CSEBlocks) 8929 if (DomTreeNode *N = DT->getNode(BB)) { 8930 assert(DT->isReachableFromEntry(N)); 8931 CSEWorkList.push_back(N); 8932 } 8933 8934 // Sort blocks by domination. This ensures we visit a block after all blocks 8935 // dominating it are visited. 8936 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8937 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8938 "Different nodes should have different DFS numbers"); 8939 return A->getDFSNumIn() < B->getDFSNumIn(); 8940 }); 8941 8942 // Less defined shuffles can be replaced by the more defined copies. 8943 // Between two shuffles one is less defined if it has the same vector operands 8944 // and its mask indeces are the same as in the first one or undefs. E.g. 8945 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8946 // poison, <0, 0, 0, 0>. 8947 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8948 SmallVectorImpl<int> &NewMask) { 8949 if (I1->getType() != I2->getType()) 8950 return false; 8951 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8952 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8953 if (!SI1 || !SI2) 8954 return I1->isIdenticalTo(I2); 8955 if (SI1->isIdenticalTo(SI2)) 8956 return true; 8957 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8958 if (SI1->getOperand(I) != SI2->getOperand(I)) 8959 return false; 8960 // Check if the second instruction is more defined than the first one. 8961 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8962 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8963 // Count trailing undefs in the mask to check the final number of used 8964 // registers. 8965 unsigned LastUndefsCnt = 0; 8966 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8967 if (SM1[I] == UndefMaskElem) 8968 ++LastUndefsCnt; 8969 else 8970 LastUndefsCnt = 0; 8971 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8972 NewMask[I] != SM1[I]) 8973 return false; 8974 if (NewMask[I] == UndefMaskElem) 8975 NewMask[I] = SM1[I]; 8976 } 8977 // Check if the last undefs actually change the final number of used vector 8978 // registers. 8979 return SM1.size() - LastUndefsCnt > 1 && 8980 TTI->getNumberOfParts(SI1->getType()) == 8981 TTI->getNumberOfParts( 8982 FixedVectorType::get(SI1->getType()->getElementType(), 8983 SM1.size() - LastUndefsCnt)); 8984 }; 8985 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8986 // instructions. TODO: We can further optimize this scan if we split the 8987 // instructions into different buckets based on the insert lane. 8988 SmallVector<Instruction *, 16> Visited; 8989 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8990 assert(*I && 8991 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8992 "Worklist not sorted properly!"); 8993 BasicBlock *BB = (*I)->getBlock(); 8994 // For all instructions in blocks containing gather sequences: 8995 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8996 if (isDeleted(&In)) 8997 continue; 8998 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8999 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 9000 continue; 9001 9002 // Check if we can replace this instruction with any of the 9003 // visited instructions. 9004 bool Replaced = false; 9005 for (Instruction *&V : Visited) { 9006 SmallVector<int> NewMask; 9007 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 9008 DT->dominates(V->getParent(), In.getParent())) { 9009 In.replaceAllUsesWith(V); 9010 eraseInstruction(&In); 9011 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 9012 if (!NewMask.empty()) 9013 SI->setShuffleMask(NewMask); 9014 Replaced = true; 9015 break; 9016 } 9017 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 9018 GatherShuffleSeq.contains(V) && 9019 IsIdenticalOrLessDefined(V, &In, NewMask) && 9020 DT->dominates(In.getParent(), V->getParent())) { 9021 In.moveAfter(V); 9022 V->replaceAllUsesWith(&In); 9023 eraseInstruction(V); 9024 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 9025 if (!NewMask.empty()) 9026 SI->setShuffleMask(NewMask); 9027 V = &In; 9028 Replaced = true; 9029 break; 9030 } 9031 } 9032 if (!Replaced) { 9033 assert(!is_contained(Visited, &In)); 9034 Visited.push_back(&In); 9035 } 9036 } 9037 } 9038 CSEBlocks.clear(); 9039 GatherShuffleSeq.clear(); 9040 } 9041 9042 BoUpSLP::ScheduleData * 9043 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 9044 ScheduleData *Bundle = nullptr; 9045 ScheduleData *PrevInBundle = nullptr; 9046 for (Value *V : VL) { 9047 if (doesNotNeedToBeScheduled(V)) 9048 continue; 9049 ScheduleData *BundleMember = getScheduleData(V); 9050 assert(BundleMember && 9051 "no ScheduleData for bundle member " 9052 "(maybe not in same basic block)"); 9053 assert(BundleMember->isSchedulingEntity() && 9054 "bundle member already part of other bundle"); 9055 if (PrevInBundle) { 9056 PrevInBundle->NextInBundle = BundleMember; 9057 } else { 9058 Bundle = BundleMember; 9059 } 9060 9061 // Group the instructions to a bundle. 9062 BundleMember->FirstInBundle = Bundle; 9063 PrevInBundle = BundleMember; 9064 } 9065 assert(Bundle && "Failed to find schedule bundle"); 9066 return Bundle; 9067 } 9068 9069 // Groups the instructions to a bundle (which is then a single scheduling entity) 9070 // and schedules instructions until the bundle gets ready. 9071 Optional<BoUpSLP::ScheduleData *> 9072 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 9073 const InstructionsState &S) { 9074 // No need to schedule PHIs, insertelement, extractelement and extractvalue 9075 // instructions. 9076 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 9077 doesNotNeedToSchedule(VL)) 9078 return nullptr; 9079 9080 // Initialize the instruction bundle. 9081 Instruction *OldScheduleEnd = ScheduleEnd; 9082 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 9083 9084 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 9085 ScheduleData *Bundle) { 9086 // The scheduling region got new instructions at the lower end (or it is a 9087 // new region for the first bundle). This makes it necessary to 9088 // recalculate all dependencies. 9089 // It is seldom that this needs to be done a second time after adding the 9090 // initial bundle to the region. 9091 if (ScheduleEnd != OldScheduleEnd) { 9092 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 9093 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 9094 ReSchedule = true; 9095 } 9096 if (Bundle) { 9097 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 9098 << " in block " << BB->getName() << "\n"); 9099 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 9100 } 9101 9102 if (ReSchedule) { 9103 resetSchedule(); 9104 initialFillReadyList(ReadyInsts); 9105 } 9106 9107 // Now try to schedule the new bundle or (if no bundle) just calculate 9108 // dependencies. As soon as the bundle is "ready" it means that there are no 9109 // cyclic dependencies and we can schedule it. Note that's important that we 9110 // don't "schedule" the bundle yet (see cancelScheduling). 9111 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 9112 !ReadyInsts.empty()) { 9113 ScheduleData *Picked = ReadyInsts.pop_back_val(); 9114 assert(Picked->isSchedulingEntity() && Picked->isReady() && 9115 "must be ready to schedule"); 9116 schedule(Picked, ReadyInsts); 9117 } 9118 }; 9119 9120 // Make sure that the scheduling region contains all 9121 // instructions of the bundle. 9122 for (Value *V : VL) { 9123 if (doesNotNeedToBeScheduled(V)) 9124 continue; 9125 if (!extendSchedulingRegion(V, S)) { 9126 // If the scheduling region got new instructions at the lower end (or it 9127 // is a new region for the first bundle). This makes it necessary to 9128 // recalculate all dependencies. 9129 // Otherwise the compiler may crash trying to incorrectly calculate 9130 // dependencies and emit instruction in the wrong order at the actual 9131 // scheduling. 9132 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 9133 return None; 9134 } 9135 } 9136 9137 bool ReSchedule = false; 9138 for (Value *V : VL) { 9139 if (doesNotNeedToBeScheduled(V)) 9140 continue; 9141 ScheduleData *BundleMember = getScheduleData(V); 9142 assert(BundleMember && 9143 "no ScheduleData for bundle member (maybe not in same basic block)"); 9144 9145 // Make sure we don't leave the pieces of the bundle in the ready list when 9146 // whole bundle might not be ready. 9147 ReadyInsts.remove(BundleMember); 9148 9149 if (!BundleMember->IsScheduled) 9150 continue; 9151 // A bundle member was scheduled as single instruction before and now 9152 // needs to be scheduled as part of the bundle. We just get rid of the 9153 // existing schedule. 9154 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 9155 << " was already scheduled\n"); 9156 ReSchedule = true; 9157 } 9158 9159 auto *Bundle = buildBundle(VL); 9160 TryScheduleBundleImpl(ReSchedule, Bundle); 9161 if (!Bundle->isReady()) { 9162 cancelScheduling(VL, S.OpValue); 9163 return None; 9164 } 9165 return Bundle; 9166 } 9167 9168 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 9169 Value *OpValue) { 9170 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 9171 doesNotNeedToSchedule(VL)) 9172 return; 9173 9174 if (doesNotNeedToBeScheduled(OpValue)) 9175 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 9176 ScheduleData *Bundle = getScheduleData(OpValue); 9177 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 9178 assert(!Bundle->IsScheduled && 9179 "Can't cancel bundle which is already scheduled"); 9180 assert(Bundle->isSchedulingEntity() && 9181 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 9182 "tried to unbundle something which is not a bundle"); 9183 9184 // Remove the bundle from the ready list. 9185 if (Bundle->isReady()) 9186 ReadyInsts.remove(Bundle); 9187 9188 // Un-bundle: make single instructions out of the bundle. 9189 ScheduleData *BundleMember = Bundle; 9190 while (BundleMember) { 9191 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 9192 BundleMember->FirstInBundle = BundleMember; 9193 ScheduleData *Next = BundleMember->NextInBundle; 9194 BundleMember->NextInBundle = nullptr; 9195 BundleMember->TE = nullptr; 9196 if (BundleMember->unscheduledDepsInBundle() == 0) { 9197 ReadyInsts.insert(BundleMember); 9198 } 9199 BundleMember = Next; 9200 } 9201 } 9202 9203 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 9204 // Allocate a new ScheduleData for the instruction. 9205 if (ChunkPos >= ChunkSize) { 9206 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 9207 ChunkPos = 0; 9208 } 9209 return &(ScheduleDataChunks.back()[ChunkPos++]); 9210 } 9211 9212 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 9213 const InstructionsState &S) { 9214 if (getScheduleData(V, isOneOf(S, V))) 9215 return true; 9216 Instruction *I = dyn_cast<Instruction>(V); 9217 assert(I && "bundle member must be an instruction"); 9218 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 9219 !doesNotNeedToBeScheduled(I) && 9220 "phi nodes/insertelements/extractelements/extractvalues don't need to " 9221 "be scheduled"); 9222 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 9223 ScheduleData *ISD = getScheduleData(I); 9224 if (!ISD) 9225 return false; 9226 assert(isInSchedulingRegion(ISD) && 9227 "ScheduleData not in scheduling region"); 9228 ScheduleData *SD = allocateScheduleDataChunks(); 9229 SD->Inst = I; 9230 SD->init(SchedulingRegionID, S.OpValue); 9231 ExtraScheduleDataMap[I][S.OpValue] = SD; 9232 return true; 9233 }; 9234 if (CheckScheduleForI(I)) 9235 return true; 9236 if (!ScheduleStart) { 9237 // It's the first instruction in the new region. 9238 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 9239 ScheduleStart = I; 9240 ScheduleEnd = I->getNextNode(); 9241 if (isOneOf(S, I) != I) 9242 CheckScheduleForI(I); 9243 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9244 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 9245 return true; 9246 } 9247 // Search up and down at the same time, because we don't know if the new 9248 // instruction is above or below the existing scheduling region. 9249 BasicBlock::reverse_iterator UpIter = 9250 ++ScheduleStart->getIterator().getReverse(); 9251 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 9252 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 9253 BasicBlock::iterator LowerEnd = BB->end(); 9254 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 9255 &*DownIter != I) { 9256 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 9257 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 9258 return false; 9259 } 9260 9261 ++UpIter; 9262 ++DownIter; 9263 } 9264 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 9265 assert(I->getParent() == ScheduleStart->getParent() && 9266 "Instruction is in wrong basic block."); 9267 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 9268 ScheduleStart = I; 9269 if (isOneOf(S, I) != I) 9270 CheckScheduleForI(I); 9271 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 9272 << "\n"); 9273 return true; 9274 } 9275 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 9276 "Expected to reach top of the basic block or instruction down the " 9277 "lower end."); 9278 assert(I->getParent() == ScheduleEnd->getParent() && 9279 "Instruction is in wrong basic block."); 9280 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 9281 nullptr); 9282 ScheduleEnd = I->getNextNode(); 9283 if (isOneOf(S, I) != I) 9284 CheckScheduleForI(I); 9285 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9286 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 9287 return true; 9288 } 9289 9290 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 9291 Instruction *ToI, 9292 ScheduleData *PrevLoadStore, 9293 ScheduleData *NextLoadStore) { 9294 ScheduleData *CurrentLoadStore = PrevLoadStore; 9295 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 9296 // No need to allocate data for non-schedulable instructions. 9297 if (doesNotNeedToBeScheduled(I)) 9298 continue; 9299 ScheduleData *SD = ScheduleDataMap.lookup(I); 9300 if (!SD) { 9301 SD = allocateScheduleDataChunks(); 9302 ScheduleDataMap[I] = SD; 9303 SD->Inst = I; 9304 } 9305 assert(!isInSchedulingRegion(SD) && 9306 "new ScheduleData already in scheduling region"); 9307 SD->init(SchedulingRegionID, I); 9308 9309 if (I->mayReadOrWriteMemory() && 9310 (!isa<IntrinsicInst>(I) || 9311 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 9312 cast<IntrinsicInst>(I)->getIntrinsicID() != 9313 Intrinsic::pseudoprobe))) { 9314 // Update the linked list of memory accessing instructions. 9315 if (CurrentLoadStore) { 9316 CurrentLoadStore->NextLoadStore = SD; 9317 } else { 9318 FirstLoadStoreInRegion = SD; 9319 } 9320 CurrentLoadStore = SD; 9321 } 9322 9323 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9324 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9325 RegionHasStackSave = true; 9326 } 9327 if (NextLoadStore) { 9328 if (CurrentLoadStore) 9329 CurrentLoadStore->NextLoadStore = NextLoadStore; 9330 } else { 9331 LastLoadStoreInRegion = CurrentLoadStore; 9332 } 9333 } 9334 9335 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 9336 bool InsertInReadyList, 9337 BoUpSLP *SLP) { 9338 assert(SD->isSchedulingEntity()); 9339 9340 SmallVector<ScheduleData *, 10> WorkList; 9341 WorkList.push_back(SD); 9342 9343 while (!WorkList.empty()) { 9344 ScheduleData *SD = WorkList.pop_back_val(); 9345 for (ScheduleData *BundleMember = SD; BundleMember; 9346 BundleMember = BundleMember->NextInBundle) { 9347 assert(isInSchedulingRegion(BundleMember)); 9348 if (BundleMember->hasValidDependencies()) 9349 continue; 9350 9351 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 9352 << "\n"); 9353 BundleMember->Dependencies = 0; 9354 BundleMember->resetUnscheduledDeps(); 9355 9356 // Handle def-use chain dependencies. 9357 if (BundleMember->OpValue != BundleMember->Inst) { 9358 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 9359 BundleMember->Dependencies++; 9360 ScheduleData *DestBundle = UseSD->FirstInBundle; 9361 if (!DestBundle->IsScheduled) 9362 BundleMember->incrementUnscheduledDeps(1); 9363 if (!DestBundle->hasValidDependencies()) 9364 WorkList.push_back(DestBundle); 9365 } 9366 } else { 9367 for (User *U : BundleMember->Inst->users()) { 9368 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 9369 BundleMember->Dependencies++; 9370 ScheduleData *DestBundle = UseSD->FirstInBundle; 9371 if (!DestBundle->IsScheduled) 9372 BundleMember->incrementUnscheduledDeps(1); 9373 if (!DestBundle->hasValidDependencies()) 9374 WorkList.push_back(DestBundle); 9375 } 9376 } 9377 } 9378 9379 auto makeControlDependent = [&](Instruction *I) { 9380 auto *DepDest = getScheduleData(I); 9381 assert(DepDest && "must be in schedule window"); 9382 DepDest->ControlDependencies.push_back(BundleMember); 9383 BundleMember->Dependencies++; 9384 ScheduleData *DestBundle = DepDest->FirstInBundle; 9385 if (!DestBundle->IsScheduled) 9386 BundleMember->incrementUnscheduledDeps(1); 9387 if (!DestBundle->hasValidDependencies()) 9388 WorkList.push_back(DestBundle); 9389 }; 9390 9391 // Any instruction which isn't safe to speculate at the begining of the 9392 // block is control dependend on any early exit or non-willreturn call 9393 // which proceeds it. 9394 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 9395 for (Instruction *I = BundleMember->Inst->getNextNode(); 9396 I != ScheduleEnd; I = I->getNextNode()) { 9397 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 9398 continue; 9399 9400 // Add the dependency 9401 makeControlDependent(I); 9402 9403 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 9404 // Everything past here must be control dependent on I. 9405 break; 9406 } 9407 } 9408 9409 if (RegionHasStackSave) { 9410 // If we have an inalloc alloca instruction, it needs to be scheduled 9411 // after any preceeding stacksave. We also need to prevent any alloca 9412 // from reordering above a preceeding stackrestore. 9413 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 9414 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 9415 for (Instruction *I = BundleMember->Inst->getNextNode(); 9416 I != ScheduleEnd; I = I->getNextNode()) { 9417 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9418 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9419 // Any allocas past here must be control dependent on I, and I 9420 // must be memory dependend on BundleMember->Inst. 9421 break; 9422 9423 if (!isa<AllocaInst>(I)) 9424 continue; 9425 9426 // Add the dependency 9427 makeControlDependent(I); 9428 } 9429 } 9430 9431 // In addition to the cases handle just above, we need to prevent 9432 // allocas from moving below a stacksave. The stackrestore case 9433 // is currently thought to be conservatism. 9434 if (isa<AllocaInst>(BundleMember->Inst)) { 9435 for (Instruction *I = BundleMember->Inst->getNextNode(); 9436 I != ScheduleEnd; I = I->getNextNode()) { 9437 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 9438 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9439 continue; 9440 9441 // Add the dependency 9442 makeControlDependent(I); 9443 break; 9444 } 9445 } 9446 } 9447 9448 // Handle the memory dependencies (if any). 9449 ScheduleData *DepDest = BundleMember->NextLoadStore; 9450 if (!DepDest) 9451 continue; 9452 Instruction *SrcInst = BundleMember->Inst; 9453 assert(SrcInst->mayReadOrWriteMemory() && 9454 "NextLoadStore list for non memory effecting bundle?"); 9455 MemoryLocation SrcLoc = getLocation(SrcInst); 9456 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 9457 unsigned numAliased = 0; 9458 unsigned DistToSrc = 1; 9459 9460 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 9461 assert(isInSchedulingRegion(DepDest)); 9462 9463 // We have two limits to reduce the complexity: 9464 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 9465 // SLP->isAliased (which is the expensive part in this loop). 9466 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 9467 // the whole loop (even if the loop is fast, it's quadratic). 9468 // It's important for the loop break condition (see below) to 9469 // check this limit even between two read-only instructions. 9470 if (DistToSrc >= MaxMemDepDistance || 9471 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 9472 (numAliased >= AliasedCheckLimit || 9473 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 9474 9475 // We increment the counter only if the locations are aliased 9476 // (instead of counting all alias checks). This gives a better 9477 // balance between reduced runtime and accurate dependencies. 9478 numAliased++; 9479 9480 DepDest->MemoryDependencies.push_back(BundleMember); 9481 BundleMember->Dependencies++; 9482 ScheduleData *DestBundle = DepDest->FirstInBundle; 9483 if (!DestBundle->IsScheduled) { 9484 BundleMember->incrementUnscheduledDeps(1); 9485 } 9486 if (!DestBundle->hasValidDependencies()) { 9487 WorkList.push_back(DestBundle); 9488 } 9489 } 9490 9491 // Example, explaining the loop break condition: Let's assume our 9492 // starting instruction is i0 and MaxMemDepDistance = 3. 9493 // 9494 // +--------v--v--v 9495 // i0,i1,i2,i3,i4,i5,i6,i7,i8 9496 // +--------^--^--^ 9497 // 9498 // MaxMemDepDistance let us stop alias-checking at i3 and we add 9499 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 9500 // Previously we already added dependencies from i3 to i6,i7,i8 9501 // (because of MaxMemDepDistance). As we added a dependency from 9502 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 9503 // and we can abort this loop at i6. 9504 if (DistToSrc >= 2 * MaxMemDepDistance) 9505 break; 9506 DistToSrc++; 9507 } 9508 } 9509 if (InsertInReadyList && SD->isReady()) { 9510 ReadyInsts.insert(SD); 9511 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 9512 << "\n"); 9513 } 9514 } 9515 } 9516 9517 void BoUpSLP::BlockScheduling::resetSchedule() { 9518 assert(ScheduleStart && 9519 "tried to reset schedule on block which has not been scheduled"); 9520 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 9521 doForAllOpcodes(I, [&](ScheduleData *SD) { 9522 assert(isInSchedulingRegion(SD) && 9523 "ScheduleData not in scheduling region"); 9524 SD->IsScheduled = false; 9525 SD->resetUnscheduledDeps(); 9526 }); 9527 } 9528 ReadyInsts.clear(); 9529 } 9530 9531 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 9532 if (!BS->ScheduleStart) 9533 return; 9534 9535 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 9536 9537 // A key point - if we got here, pre-scheduling was able to find a valid 9538 // scheduling of the sub-graph of the scheduling window which consists 9539 // of all vector bundles and their transitive users. As such, we do not 9540 // need to reschedule anything *outside of* that subgraph. 9541 9542 BS->resetSchedule(); 9543 9544 // For the real scheduling we use a more sophisticated ready-list: it is 9545 // sorted by the original instruction location. This lets the final schedule 9546 // be as close as possible to the original instruction order. 9547 // WARNING: If changing this order causes a correctness issue, that means 9548 // there is some missing dependence edge in the schedule data graph. 9549 struct ScheduleDataCompare { 9550 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 9551 return SD2->SchedulingPriority < SD1->SchedulingPriority; 9552 } 9553 }; 9554 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 9555 9556 // Ensure that all dependency data is updated (for nodes in the sub-graph) 9557 // and fill the ready-list with initial instructions. 9558 int Idx = 0; 9559 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 9560 I = I->getNextNode()) { 9561 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 9562 TreeEntry *SDTE = getTreeEntry(SD->Inst); 9563 (void)SDTE; 9564 assert((isVectorLikeInstWithConstOps(SD->Inst) || 9565 SD->isPartOfBundle() == 9566 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 9567 "scheduler and vectorizer bundle mismatch"); 9568 SD->FirstInBundle->SchedulingPriority = Idx++; 9569 9570 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 9571 BS->calculateDependencies(SD, false, this); 9572 }); 9573 } 9574 BS->initialFillReadyList(ReadyInsts); 9575 9576 Instruction *LastScheduledInst = BS->ScheduleEnd; 9577 9578 // Do the "real" scheduling. 9579 while (!ReadyInsts.empty()) { 9580 ScheduleData *picked = *ReadyInsts.begin(); 9581 ReadyInsts.erase(ReadyInsts.begin()); 9582 9583 // Move the scheduled instruction(s) to their dedicated places, if not 9584 // there yet. 9585 for (ScheduleData *BundleMember = picked; BundleMember; 9586 BundleMember = BundleMember->NextInBundle) { 9587 Instruction *pickedInst = BundleMember->Inst; 9588 if (pickedInst->getNextNode() != LastScheduledInst) 9589 pickedInst->moveBefore(LastScheduledInst); 9590 LastScheduledInst = pickedInst; 9591 } 9592 9593 BS->schedule(picked, ReadyInsts); 9594 } 9595 9596 // Check that we didn't break any of our invariants. 9597 #ifdef EXPENSIVE_CHECKS 9598 BS->verify(); 9599 #endif 9600 9601 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 9602 // Check that all schedulable entities got scheduled 9603 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 9604 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 9605 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 9606 assert(SD->IsScheduled && "must be scheduled at this point"); 9607 } 9608 }); 9609 } 9610 #endif 9611 9612 // Avoid duplicate scheduling of the block. 9613 BS->ScheduleStart = nullptr; 9614 } 9615 9616 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9617 // If V is a store, just return the width of the stored value (or value 9618 // truncated just before storing) without traversing the expression tree. 9619 // This is the common case. 9620 if (auto *Store = dyn_cast<StoreInst>(V)) 9621 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9622 9623 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9624 return getVectorElementSize(IEI->getOperand(1)); 9625 9626 auto E = InstrElementSize.find(V); 9627 if (E != InstrElementSize.end()) 9628 return E->second; 9629 9630 // If V is not a store, we can traverse the expression tree to find loads 9631 // that feed it. The type of the loaded value may indicate a more suitable 9632 // width than V's type. We want to base the vector element size on the width 9633 // of memory operations where possible. 9634 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9635 SmallPtrSet<Instruction *, 16> Visited; 9636 if (auto *I = dyn_cast<Instruction>(V)) { 9637 Worklist.emplace_back(I, I->getParent()); 9638 Visited.insert(I); 9639 } 9640 9641 // Traverse the expression tree in bottom-up order looking for loads. If we 9642 // encounter an instruction we don't yet handle, we give up. 9643 auto Width = 0u; 9644 while (!Worklist.empty()) { 9645 Instruction *I; 9646 BasicBlock *Parent; 9647 std::tie(I, Parent) = Worklist.pop_back_val(); 9648 9649 // We should only be looking at scalar instructions here. If the current 9650 // instruction has a vector type, skip. 9651 auto *Ty = I->getType(); 9652 if (isa<VectorType>(Ty)) 9653 continue; 9654 9655 // If the current instruction is a load, update MaxWidth to reflect the 9656 // width of the loaded value. 9657 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9658 isa<ExtractValueInst>(I)) 9659 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9660 9661 // Otherwise, we need to visit the operands of the instruction. We only 9662 // handle the interesting cases from buildTree here. If an operand is an 9663 // instruction we haven't yet visited and from the same basic block as the 9664 // user or the use is a PHI node, we add it to the worklist. 9665 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9666 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9667 isa<UnaryOperator>(I)) { 9668 for (Use &U : I->operands()) 9669 if (auto *J = dyn_cast<Instruction>(U.get())) 9670 if (Visited.insert(J).second && 9671 (isa<PHINode>(I) || J->getParent() == Parent)) 9672 Worklist.emplace_back(J, J->getParent()); 9673 } else { 9674 break; 9675 } 9676 } 9677 9678 // If we didn't encounter a memory access in the expression tree, or if we 9679 // gave up for some reason, just return the width of V. Otherwise, return the 9680 // maximum width we found. 9681 if (!Width) { 9682 if (auto *CI = dyn_cast<CmpInst>(V)) 9683 V = CI->getOperand(0); 9684 Width = DL->getTypeSizeInBits(V->getType()); 9685 } 9686 9687 for (Instruction *I : Visited) 9688 InstrElementSize[I] = Width; 9689 9690 return Width; 9691 } 9692 9693 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9694 // smaller type with a truncation. We collect the values that will be demoted 9695 // in ToDemote and additional roots that require investigating in Roots. 9696 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9697 SmallVectorImpl<Value *> &ToDemote, 9698 SmallVectorImpl<Value *> &Roots) { 9699 // We can always demote constants. 9700 if (isa<Constant>(V)) { 9701 ToDemote.push_back(V); 9702 return true; 9703 } 9704 9705 // If the value is not an instruction in the expression with only one use, it 9706 // cannot be demoted. 9707 auto *I = dyn_cast<Instruction>(V); 9708 if (!I || !I->hasOneUse() || !Expr.count(I)) 9709 return false; 9710 9711 switch (I->getOpcode()) { 9712 9713 // We can always demote truncations and extensions. Since truncations can 9714 // seed additional demotion, we save the truncated value. 9715 case Instruction::Trunc: 9716 Roots.push_back(I->getOperand(0)); 9717 break; 9718 case Instruction::ZExt: 9719 case Instruction::SExt: 9720 if (isa<ExtractElementInst>(I->getOperand(0)) || 9721 isa<InsertElementInst>(I->getOperand(0))) 9722 return false; 9723 break; 9724 9725 // We can demote certain binary operations if we can demote both of their 9726 // operands. 9727 case Instruction::Add: 9728 case Instruction::Sub: 9729 case Instruction::Mul: 9730 case Instruction::And: 9731 case Instruction::Or: 9732 case Instruction::Xor: 9733 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9734 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9735 return false; 9736 break; 9737 9738 // We can demote selects if we can demote their true and false values. 9739 case Instruction::Select: { 9740 SelectInst *SI = cast<SelectInst>(I); 9741 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9742 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9743 return false; 9744 break; 9745 } 9746 9747 // We can demote phis if we can demote all their incoming operands. Note that 9748 // we don't need to worry about cycles since we ensure single use above. 9749 case Instruction::PHI: { 9750 PHINode *PN = cast<PHINode>(I); 9751 for (Value *IncValue : PN->incoming_values()) 9752 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9753 return false; 9754 break; 9755 } 9756 9757 // Otherwise, conservatively give up. 9758 default: 9759 return false; 9760 } 9761 9762 // Record the value that we can demote. 9763 ToDemote.push_back(V); 9764 return true; 9765 } 9766 9767 void BoUpSLP::computeMinimumValueSizes() { 9768 // If there are no external uses, the expression tree must be rooted by a 9769 // store. We can't demote in-memory values, so there is nothing to do here. 9770 if (ExternalUses.empty()) 9771 return; 9772 9773 // We only attempt to truncate integer expressions. 9774 auto &TreeRoot = VectorizableTree[0]->Scalars; 9775 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9776 if (!TreeRootIT) 9777 return; 9778 9779 // If the expression is not rooted by a store, these roots should have 9780 // external uses. We will rely on InstCombine to rewrite the expression in 9781 // the narrower type. However, InstCombine only rewrites single-use values. 9782 // This means that if a tree entry other than a root is used externally, it 9783 // must have multiple uses and InstCombine will not rewrite it. The code 9784 // below ensures that only the roots are used externally. 9785 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9786 for (auto &EU : ExternalUses) 9787 if (!Expr.erase(EU.Scalar)) 9788 return; 9789 if (!Expr.empty()) 9790 return; 9791 9792 // Collect the scalar values of the vectorizable expression. We will use this 9793 // context to determine which values can be demoted. If we see a truncation, 9794 // we mark it as seeding another demotion. 9795 for (auto &EntryPtr : VectorizableTree) 9796 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9797 9798 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9799 // have a single external user that is not in the vectorizable tree. 9800 for (auto *Root : TreeRoot) 9801 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9802 return; 9803 9804 // Conservatively determine if we can actually truncate the roots of the 9805 // expression. Collect the values that can be demoted in ToDemote and 9806 // additional roots that require investigating in Roots. 9807 SmallVector<Value *, 32> ToDemote; 9808 SmallVector<Value *, 4> Roots; 9809 for (auto *Root : TreeRoot) 9810 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9811 return; 9812 9813 // The maximum bit width required to represent all the values that can be 9814 // demoted without loss of precision. It would be safe to truncate the roots 9815 // of the expression to this width. 9816 auto MaxBitWidth = 8u; 9817 9818 // We first check if all the bits of the roots are demanded. If they're not, 9819 // we can truncate the roots to this narrower type. 9820 for (auto *Root : TreeRoot) { 9821 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9822 MaxBitWidth = std::max<unsigned>( 9823 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9824 } 9825 9826 // True if the roots can be zero-extended back to their original type, rather 9827 // than sign-extended. We know that if the leading bits are not demanded, we 9828 // can safely zero-extend. So we initialize IsKnownPositive to True. 9829 bool IsKnownPositive = true; 9830 9831 // If all the bits of the roots are demanded, we can try a little harder to 9832 // compute a narrower type. This can happen, for example, if the roots are 9833 // getelementptr indices. InstCombine promotes these indices to the pointer 9834 // width. Thus, all their bits are technically demanded even though the 9835 // address computation might be vectorized in a smaller type. 9836 // 9837 // We start by looking at each entry that can be demoted. We compute the 9838 // maximum bit width required to store the scalar by using ValueTracking to 9839 // compute the number of high-order bits we can truncate. 9840 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9841 llvm::all_of(TreeRoot, [](Value *R) { 9842 assert(R->hasOneUse() && "Root should have only one use!"); 9843 return isa<GetElementPtrInst>(R->user_back()); 9844 })) { 9845 MaxBitWidth = 8u; 9846 9847 // Determine if the sign bit of all the roots is known to be zero. If not, 9848 // IsKnownPositive is set to False. 9849 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9850 KnownBits Known = computeKnownBits(R, *DL); 9851 return Known.isNonNegative(); 9852 }); 9853 9854 // Determine the maximum number of bits required to store the scalar 9855 // values. 9856 for (auto *Scalar : ToDemote) { 9857 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9858 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9859 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9860 } 9861 9862 // If we can't prove that the sign bit is zero, we must add one to the 9863 // maximum bit width to account for the unknown sign bit. This preserves 9864 // the existing sign bit so we can safely sign-extend the root back to the 9865 // original type. Otherwise, if we know the sign bit is zero, we will 9866 // zero-extend the root instead. 9867 // 9868 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9869 // one to the maximum bit width will yield a larger-than-necessary 9870 // type. In general, we need to add an extra bit only if we can't 9871 // prove that the upper bit of the original type is equal to the 9872 // upper bit of the proposed smaller type. If these two bits are the 9873 // same (either zero or one) we know that sign-extending from the 9874 // smaller type will result in the same value. Here, since we can't 9875 // yet prove this, we are just making the proposed smaller type 9876 // larger to ensure correctness. 9877 if (!IsKnownPositive) 9878 ++MaxBitWidth; 9879 } 9880 9881 // Round MaxBitWidth up to the next power-of-two. 9882 if (!isPowerOf2_64(MaxBitWidth)) 9883 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9884 9885 // If the maximum bit width we compute is less than the with of the roots' 9886 // type, we can proceed with the narrowing. Otherwise, do nothing. 9887 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9888 return; 9889 9890 // If we can truncate the root, we must collect additional values that might 9891 // be demoted as a result. That is, those seeded by truncations we will 9892 // modify. 9893 while (!Roots.empty()) 9894 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9895 9896 // Finally, map the values we can demote to the maximum bit with we computed. 9897 for (auto *Scalar : ToDemote) 9898 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9899 } 9900 9901 namespace { 9902 9903 /// The SLPVectorizer Pass. 9904 struct SLPVectorizer : public FunctionPass { 9905 SLPVectorizerPass Impl; 9906 9907 /// Pass identification, replacement for typeid 9908 static char ID; 9909 9910 explicit SLPVectorizer() : FunctionPass(ID) { 9911 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9912 } 9913 9914 bool doInitialization(Module &M) override { return false; } 9915 9916 bool runOnFunction(Function &F) override { 9917 if (skipFunction(F)) 9918 return false; 9919 9920 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9921 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9922 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9923 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9924 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9925 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9926 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9927 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9928 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9929 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9930 9931 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9932 } 9933 9934 void getAnalysisUsage(AnalysisUsage &AU) const override { 9935 FunctionPass::getAnalysisUsage(AU); 9936 AU.addRequired<AssumptionCacheTracker>(); 9937 AU.addRequired<ScalarEvolutionWrapperPass>(); 9938 AU.addRequired<AAResultsWrapperPass>(); 9939 AU.addRequired<TargetTransformInfoWrapperPass>(); 9940 AU.addRequired<LoopInfoWrapperPass>(); 9941 AU.addRequired<DominatorTreeWrapperPass>(); 9942 AU.addRequired<DemandedBitsWrapperPass>(); 9943 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9944 AU.addRequired<InjectTLIMappingsLegacy>(); 9945 AU.addPreserved<LoopInfoWrapperPass>(); 9946 AU.addPreserved<DominatorTreeWrapperPass>(); 9947 AU.addPreserved<AAResultsWrapperPass>(); 9948 AU.addPreserved<GlobalsAAWrapperPass>(); 9949 AU.setPreservesCFG(); 9950 } 9951 }; 9952 9953 } // end anonymous namespace 9954 9955 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9956 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9957 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9958 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9959 auto *AA = &AM.getResult<AAManager>(F); 9960 auto *LI = &AM.getResult<LoopAnalysis>(F); 9961 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9962 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9963 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9964 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9965 9966 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9967 if (!Changed) 9968 return PreservedAnalyses::all(); 9969 9970 PreservedAnalyses PA; 9971 PA.preserveSet<CFGAnalyses>(); 9972 return PA; 9973 } 9974 9975 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9976 TargetTransformInfo *TTI_, 9977 TargetLibraryInfo *TLI_, AAResults *AA_, 9978 LoopInfo *LI_, DominatorTree *DT_, 9979 AssumptionCache *AC_, DemandedBits *DB_, 9980 OptimizationRemarkEmitter *ORE_) { 9981 if (!RunSLPVectorization) 9982 return false; 9983 SE = SE_; 9984 TTI = TTI_; 9985 TLI = TLI_; 9986 AA = AA_; 9987 LI = LI_; 9988 DT = DT_; 9989 AC = AC_; 9990 DB = DB_; 9991 DL = &F.getParent()->getDataLayout(); 9992 9993 Stores.clear(); 9994 GEPs.clear(); 9995 bool Changed = false; 9996 9997 // If the target claims to have no vector registers don't attempt 9998 // vectorization. 9999 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 10000 LLVM_DEBUG( 10001 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 10002 return false; 10003 } 10004 10005 // Don't vectorize when the attribute NoImplicitFloat is used. 10006 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 10007 return false; 10008 10009 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 10010 10011 // Use the bottom up slp vectorizer to construct chains that start with 10012 // store instructions. 10013 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 10014 10015 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 10016 // delete instructions. 10017 10018 // Update DFS numbers now so that we can use them for ordering. 10019 DT->updateDFSNumbers(); 10020 10021 // Scan the blocks in the function in post order. 10022 for (auto BB : post_order(&F.getEntryBlock())) { 10023 // Start new block - clear the list of reduction roots. 10024 R.clearReductionData(); 10025 collectSeedInstructions(BB); 10026 10027 // Vectorize trees that end at stores. 10028 if (!Stores.empty()) { 10029 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 10030 << " underlying objects.\n"); 10031 Changed |= vectorizeStoreChains(R); 10032 } 10033 10034 // Vectorize trees that end at reductions. 10035 Changed |= vectorizeChainsInBlock(BB, R); 10036 10037 // Vectorize the index computations of getelementptr instructions. This 10038 // is primarily intended to catch gather-like idioms ending at 10039 // non-consecutive loads. 10040 if (!GEPs.empty()) { 10041 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 10042 << " underlying objects.\n"); 10043 Changed |= vectorizeGEPIndices(BB, R); 10044 } 10045 } 10046 10047 if (Changed) { 10048 R.optimizeGatherSequence(); 10049 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 10050 } 10051 return Changed; 10052 } 10053 10054 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 10055 unsigned Idx, unsigned MinVF) { 10056 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 10057 << "\n"); 10058 const unsigned Sz = R.getVectorElementSize(Chain[0]); 10059 unsigned VF = Chain.size(); 10060 10061 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 10062 return false; 10063 10064 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 10065 << "\n"); 10066 10067 R.buildTree(Chain); 10068 if (R.isTreeTinyAndNotFullyVectorizable()) 10069 return false; 10070 if (R.isLoadCombineCandidate()) 10071 return false; 10072 R.reorderTopToBottom(); 10073 R.reorderBottomToTop(); 10074 R.buildExternalUses(); 10075 10076 R.computeMinimumValueSizes(); 10077 10078 InstructionCost Cost = R.getTreeCost(); 10079 10080 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 10081 if (Cost < -SLPCostThreshold) { 10082 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 10083 10084 using namespace ore; 10085 10086 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 10087 cast<StoreInst>(Chain[0])) 10088 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 10089 << " and with tree size " 10090 << NV("TreeSize", R.getTreeSize())); 10091 10092 R.vectorizeTree(); 10093 return true; 10094 } 10095 10096 return false; 10097 } 10098 10099 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 10100 BoUpSLP &R) { 10101 // We may run into multiple chains that merge into a single chain. We mark the 10102 // stores that we vectorized so that we don't visit the same store twice. 10103 BoUpSLP::ValueSet VectorizedStores; 10104 bool Changed = false; 10105 10106 int E = Stores.size(); 10107 SmallBitVector Tails(E, false); 10108 int MaxIter = MaxStoreLookup.getValue(); 10109 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 10110 E, std::make_pair(E, INT_MAX)); 10111 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 10112 int IterCnt; 10113 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 10114 &CheckedPairs, 10115 &ConsecutiveChain](int K, int Idx) { 10116 if (IterCnt >= MaxIter) 10117 return true; 10118 if (CheckedPairs[Idx].test(K)) 10119 return ConsecutiveChain[K].second == 1 && 10120 ConsecutiveChain[K].first == Idx; 10121 ++IterCnt; 10122 CheckedPairs[Idx].set(K); 10123 CheckedPairs[K].set(Idx); 10124 Optional<int> Diff = getPointersDiff( 10125 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 10126 Stores[Idx]->getValueOperand()->getType(), 10127 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 10128 if (!Diff || *Diff == 0) 10129 return false; 10130 int Val = *Diff; 10131 if (Val < 0) { 10132 if (ConsecutiveChain[Idx].second > -Val) { 10133 Tails.set(K); 10134 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 10135 } 10136 return false; 10137 } 10138 if (ConsecutiveChain[K].second <= Val) 10139 return false; 10140 10141 Tails.set(Idx); 10142 ConsecutiveChain[K] = std::make_pair(Idx, Val); 10143 return Val == 1; 10144 }; 10145 // Do a quadratic search on all of the given stores in reverse order and find 10146 // all of the pairs of stores that follow each other. 10147 for (int Idx = E - 1; Idx >= 0; --Idx) { 10148 // If a store has multiple consecutive store candidates, search according 10149 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 10150 // This is because usually pairing with immediate succeeding or preceding 10151 // candidate create the best chance to find slp vectorization opportunity. 10152 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 10153 IterCnt = 0; 10154 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 10155 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 10156 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 10157 break; 10158 } 10159 10160 // Tracks if we tried to vectorize stores starting from the given tail 10161 // already. 10162 SmallBitVector TriedTails(E, false); 10163 // For stores that start but don't end a link in the chain: 10164 for (int Cnt = E; Cnt > 0; --Cnt) { 10165 int I = Cnt - 1; 10166 if (ConsecutiveChain[I].first == E || Tails.test(I)) 10167 continue; 10168 // We found a store instr that starts a chain. Now follow the chain and try 10169 // to vectorize it. 10170 BoUpSLP::ValueList Operands; 10171 // Collect the chain into a list. 10172 while (I != E && !VectorizedStores.count(Stores[I])) { 10173 Operands.push_back(Stores[I]); 10174 Tails.set(I); 10175 if (ConsecutiveChain[I].second != 1) { 10176 // Mark the new end in the chain and go back, if required. It might be 10177 // required if the original stores come in reversed order, for example. 10178 if (ConsecutiveChain[I].first != E && 10179 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 10180 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 10181 TriedTails.set(I); 10182 Tails.reset(ConsecutiveChain[I].first); 10183 if (Cnt < ConsecutiveChain[I].first + 2) 10184 Cnt = ConsecutiveChain[I].first + 2; 10185 } 10186 break; 10187 } 10188 // Move to the next value in the chain. 10189 I = ConsecutiveChain[I].first; 10190 } 10191 assert(!Operands.empty() && "Expected non-empty list of stores."); 10192 10193 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10194 unsigned EltSize = R.getVectorElementSize(Operands[0]); 10195 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 10196 10197 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 10198 MaxElts); 10199 auto *Store = cast<StoreInst>(Operands[0]); 10200 Type *StoreTy = Store->getValueOperand()->getType(); 10201 Type *ValueTy = StoreTy; 10202 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 10203 ValueTy = Trunc->getSrcTy(); 10204 unsigned MinVF = TTI->getStoreMinimumVF( 10205 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 10206 10207 // FIXME: Is division-by-2 the correct step? Should we assert that the 10208 // register size is a power-of-2? 10209 unsigned StartIdx = 0; 10210 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 10211 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 10212 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 10213 if (!VectorizedStores.count(Slice.front()) && 10214 !VectorizedStores.count(Slice.back()) && 10215 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 10216 // Mark the vectorized stores so that we don't vectorize them again. 10217 VectorizedStores.insert(Slice.begin(), Slice.end()); 10218 Changed = true; 10219 // If we vectorized initial block, no need to try to vectorize it 10220 // again. 10221 if (Cnt == StartIdx) 10222 StartIdx += Size; 10223 Cnt += Size; 10224 continue; 10225 } 10226 ++Cnt; 10227 } 10228 // Check if the whole array was vectorized already - exit. 10229 if (StartIdx >= Operands.size()) 10230 break; 10231 } 10232 } 10233 10234 return Changed; 10235 } 10236 10237 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 10238 // Initialize the collections. We will make a single pass over the block. 10239 Stores.clear(); 10240 GEPs.clear(); 10241 10242 // Visit the store and getelementptr instructions in BB and organize them in 10243 // Stores and GEPs according to the underlying objects of their pointer 10244 // operands. 10245 for (Instruction &I : *BB) { 10246 // Ignore store instructions that are volatile or have a pointer operand 10247 // that doesn't point to a scalar type. 10248 if (auto *SI = dyn_cast<StoreInst>(&I)) { 10249 if (!SI->isSimple()) 10250 continue; 10251 if (!isValidElementType(SI->getValueOperand()->getType())) 10252 continue; 10253 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 10254 } 10255 10256 // Ignore getelementptr instructions that have more than one index, a 10257 // constant index, or a pointer operand that doesn't point to a scalar 10258 // type. 10259 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 10260 auto Idx = GEP->idx_begin()->get(); 10261 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 10262 continue; 10263 if (!isValidElementType(Idx->getType())) 10264 continue; 10265 if (GEP->getType()->isVectorTy()) 10266 continue; 10267 GEPs[GEP->getPointerOperand()].push_back(GEP); 10268 } 10269 } 10270 } 10271 10272 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 10273 if (!A || !B) 10274 return false; 10275 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 10276 return false; 10277 Value *VL[] = {A, B}; 10278 return tryToVectorizeList(VL, R); 10279 } 10280 10281 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 10282 bool LimitForRegisterSize) { 10283 if (VL.size() < 2) 10284 return false; 10285 10286 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 10287 << VL.size() << ".\n"); 10288 10289 // Check that all of the parts are instructions of the same type, 10290 // we permit an alternate opcode via InstructionsState. 10291 InstructionsState S = getSameOpcode(VL); 10292 if (!S.getOpcode()) 10293 return false; 10294 10295 Instruction *I0 = cast<Instruction>(S.OpValue); 10296 // Make sure invalid types (including vector type) are rejected before 10297 // determining vectorization factor for scalar instructions. 10298 for (Value *V : VL) { 10299 Type *Ty = V->getType(); 10300 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 10301 // NOTE: the following will give user internal llvm type name, which may 10302 // not be useful. 10303 R.getORE()->emit([&]() { 10304 std::string type_str; 10305 llvm::raw_string_ostream rso(type_str); 10306 Ty->print(rso); 10307 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 10308 << "Cannot SLP vectorize list: type " 10309 << rso.str() + " is unsupported by vectorizer"; 10310 }); 10311 return false; 10312 } 10313 } 10314 10315 unsigned Sz = R.getVectorElementSize(I0); 10316 unsigned MinVF = R.getMinVF(Sz); 10317 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 10318 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 10319 if (MaxVF < 2) { 10320 R.getORE()->emit([&]() { 10321 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 10322 << "Cannot SLP vectorize list: vectorization factor " 10323 << "less than 2 is not supported"; 10324 }); 10325 return false; 10326 } 10327 10328 bool Changed = false; 10329 bool CandidateFound = false; 10330 InstructionCost MinCost = SLPCostThreshold.getValue(); 10331 Type *ScalarTy = VL[0]->getType(); 10332 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 10333 ScalarTy = IE->getOperand(1)->getType(); 10334 10335 unsigned NextInst = 0, MaxInst = VL.size(); 10336 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 10337 // No actual vectorization should happen, if number of parts is the same as 10338 // provided vectorization factor (i.e. the scalar type is used for vector 10339 // code during codegen). 10340 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 10341 if (TTI->getNumberOfParts(VecTy) == VF) 10342 continue; 10343 for (unsigned I = NextInst; I < MaxInst; ++I) { 10344 unsigned OpsWidth = 0; 10345 10346 if (I + VF > MaxInst) 10347 OpsWidth = MaxInst - I; 10348 else 10349 OpsWidth = VF; 10350 10351 if (!isPowerOf2_32(OpsWidth)) 10352 continue; 10353 10354 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 10355 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 10356 break; 10357 10358 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 10359 // Check that a previous iteration of this loop did not delete the Value. 10360 if (llvm::any_of(Ops, [&R](Value *V) { 10361 auto *I = dyn_cast<Instruction>(V); 10362 return I && R.isDeleted(I); 10363 })) 10364 continue; 10365 10366 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 10367 << "\n"); 10368 10369 R.buildTree(Ops); 10370 if (R.isTreeTinyAndNotFullyVectorizable()) 10371 continue; 10372 R.reorderTopToBottom(); 10373 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 10374 R.buildExternalUses(); 10375 10376 R.computeMinimumValueSizes(); 10377 InstructionCost Cost = R.getTreeCost(); 10378 CandidateFound = true; 10379 MinCost = std::min(MinCost, Cost); 10380 10381 if (Cost < -SLPCostThreshold) { 10382 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 10383 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 10384 cast<Instruction>(Ops[0])) 10385 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 10386 << " and with tree size " 10387 << ore::NV("TreeSize", R.getTreeSize())); 10388 10389 R.vectorizeTree(); 10390 // Move to the next bundle. 10391 I += VF - 1; 10392 NextInst = I + 1; 10393 Changed = true; 10394 } 10395 } 10396 } 10397 10398 if (!Changed && CandidateFound) { 10399 R.getORE()->emit([&]() { 10400 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 10401 << "List vectorization was possible but not beneficial with cost " 10402 << ore::NV("Cost", MinCost) << " >= " 10403 << ore::NV("Treshold", -SLPCostThreshold); 10404 }); 10405 } else if (!Changed) { 10406 R.getORE()->emit([&]() { 10407 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 10408 << "Cannot SLP vectorize list: vectorization was impossible" 10409 << " with available vectorization factors"; 10410 }); 10411 } 10412 return Changed; 10413 } 10414 10415 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 10416 if (!I) 10417 return false; 10418 10419 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 10420 isa<VectorType>(I->getType())) 10421 return false; 10422 10423 Value *P = I->getParent(); 10424 10425 // Vectorize in current basic block only. 10426 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 10427 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 10428 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 10429 return false; 10430 10431 // First collect all possible candidates 10432 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 10433 Candidates.emplace_back(Op0, Op1); 10434 10435 auto *A = dyn_cast<BinaryOperator>(Op0); 10436 auto *B = dyn_cast<BinaryOperator>(Op1); 10437 // Try to skip B. 10438 if (A && B && B->hasOneUse()) { 10439 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 10440 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 10441 if (B0 && B0->getParent() == P) 10442 Candidates.emplace_back(A, B0); 10443 if (B1 && B1->getParent() == P) 10444 Candidates.emplace_back(A, B1); 10445 } 10446 // Try to skip A. 10447 if (B && A && A->hasOneUse()) { 10448 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 10449 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 10450 if (A0 && A0->getParent() == P) 10451 Candidates.emplace_back(A0, B); 10452 if (A1 && A1->getParent() == P) 10453 Candidates.emplace_back(A1, B); 10454 } 10455 10456 if (Candidates.size() == 1) 10457 return tryToVectorizePair(Op0, Op1, R); 10458 10459 // We have multiple options. Try to pick the single best. 10460 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 10461 if (!BestCandidate) 10462 return false; 10463 return tryToVectorizePair(Candidates[*BestCandidate].first, 10464 Candidates[*BestCandidate].second, R); 10465 } 10466 10467 namespace { 10468 10469 /// Model horizontal reductions. 10470 /// 10471 /// A horizontal reduction is a tree of reduction instructions that has values 10472 /// that can be put into a vector as its leaves. For example: 10473 /// 10474 /// mul mul mul mul 10475 /// \ / \ / 10476 /// + + 10477 /// \ / 10478 /// + 10479 /// This tree has "mul" as its leaf values and "+" as its reduction 10480 /// instructions. A reduction can feed into a store or a binary operation 10481 /// feeding a phi. 10482 /// ... 10483 /// \ / 10484 /// + 10485 /// | 10486 /// phi += 10487 /// 10488 /// Or: 10489 /// ... 10490 /// \ / 10491 /// + 10492 /// | 10493 /// *p = 10494 /// 10495 class HorizontalReduction { 10496 using ReductionOpsType = SmallVector<Value *, 16>; 10497 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 10498 ReductionOpsListType ReductionOps; 10499 /// List of possibly reduced values. 10500 SmallVector<SmallVector<Value *>> ReducedVals; 10501 /// Maps reduced value to the corresponding reduction operation. 10502 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 10503 // Use map vector to make stable output. 10504 MapVector<Instruction *, Value *> ExtraArgs; 10505 WeakTrackingVH ReductionRoot; 10506 /// The type of reduction operation. 10507 RecurKind RdxKind; 10508 10509 static bool isCmpSelMinMax(Instruction *I) { 10510 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 10511 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 10512 } 10513 10514 // And/or are potentially poison-safe logical patterns like: 10515 // select x, y, false 10516 // select x, true, y 10517 static bool isBoolLogicOp(Instruction *I) { 10518 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 10519 match(I, m_LogicalOr(m_Value(), m_Value())); 10520 } 10521 10522 /// Checks if instruction is associative and can be vectorized. 10523 static bool isVectorizable(RecurKind Kind, Instruction *I) { 10524 if (Kind == RecurKind::None) 10525 return false; 10526 10527 // Integer ops that map to select instructions or intrinsics are fine. 10528 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 10529 isBoolLogicOp(I)) 10530 return true; 10531 10532 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 10533 // FP min/max are associative except for NaN and -0.0. We do not 10534 // have to rule out -0.0 here because the intrinsic semantics do not 10535 // specify a fixed result for it. 10536 return I->getFastMathFlags().noNaNs(); 10537 } 10538 10539 return I->isAssociative(); 10540 } 10541 10542 static Value *getRdxOperand(Instruction *I, unsigned Index) { 10543 // Poison-safe 'or' takes the form: select X, true, Y 10544 // To make that work with the normal operand processing, we skip the 10545 // true value operand. 10546 // TODO: Change the code and data structures to handle this without a hack. 10547 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 10548 return I->getOperand(2); 10549 return I->getOperand(Index); 10550 } 10551 10552 /// Creates reduction operation with the current opcode. 10553 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 10554 Value *RHS, const Twine &Name, bool UseSelect) { 10555 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 10556 switch (Kind) { 10557 case RecurKind::Or: 10558 if (UseSelect && 10559 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10560 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 10561 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10562 Name); 10563 case RecurKind::And: 10564 if (UseSelect && 10565 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10566 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 10567 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10568 Name); 10569 case RecurKind::Add: 10570 case RecurKind::Mul: 10571 case RecurKind::Xor: 10572 case RecurKind::FAdd: 10573 case RecurKind::FMul: 10574 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10575 Name); 10576 case RecurKind::FMax: 10577 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 10578 case RecurKind::FMin: 10579 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 10580 case RecurKind::SMax: 10581 if (UseSelect) { 10582 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 10583 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10584 } 10585 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 10586 case RecurKind::SMin: 10587 if (UseSelect) { 10588 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 10589 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10590 } 10591 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 10592 case RecurKind::UMax: 10593 if (UseSelect) { 10594 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 10595 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10596 } 10597 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 10598 case RecurKind::UMin: 10599 if (UseSelect) { 10600 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 10601 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10602 } 10603 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 10604 default: 10605 llvm_unreachable("Unknown reduction operation."); 10606 } 10607 } 10608 10609 /// Creates reduction operation with the current opcode with the IR flags 10610 /// from \p ReductionOps, dropping nuw/nsw flags. 10611 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10612 Value *RHS, const Twine &Name, 10613 const ReductionOpsListType &ReductionOps) { 10614 bool UseSelect = ReductionOps.size() == 2 || 10615 // Logical or/and. 10616 (ReductionOps.size() == 1 && 10617 isa<SelectInst>(ReductionOps.front().front())); 10618 assert((!UseSelect || ReductionOps.size() != 2 || 10619 isa<SelectInst>(ReductionOps[1][0])) && 10620 "Expected cmp + select pairs for reduction"); 10621 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10622 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10623 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10624 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, 10625 /*IncludeWrapFlags=*/false); 10626 propagateIRFlags(Op, ReductionOps[1], nullptr, 10627 /*IncludeWrapFlags=*/false); 10628 return Op; 10629 } 10630 } 10631 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); 10632 return Op; 10633 } 10634 10635 static RecurKind getRdxKind(Value *V) { 10636 auto *I = dyn_cast<Instruction>(V); 10637 if (!I) 10638 return RecurKind::None; 10639 if (match(I, m_Add(m_Value(), m_Value()))) 10640 return RecurKind::Add; 10641 if (match(I, m_Mul(m_Value(), m_Value()))) 10642 return RecurKind::Mul; 10643 if (match(I, m_And(m_Value(), m_Value())) || 10644 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10645 return RecurKind::And; 10646 if (match(I, m_Or(m_Value(), m_Value())) || 10647 match(I, m_LogicalOr(m_Value(), m_Value()))) 10648 return RecurKind::Or; 10649 if (match(I, m_Xor(m_Value(), m_Value()))) 10650 return RecurKind::Xor; 10651 if (match(I, m_FAdd(m_Value(), m_Value()))) 10652 return RecurKind::FAdd; 10653 if (match(I, m_FMul(m_Value(), m_Value()))) 10654 return RecurKind::FMul; 10655 10656 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10657 return RecurKind::FMax; 10658 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10659 return RecurKind::FMin; 10660 10661 // This matches either cmp+select or intrinsics. SLP is expected to handle 10662 // either form. 10663 // TODO: If we are canonicalizing to intrinsics, we can remove several 10664 // special-case paths that deal with selects. 10665 if (match(I, m_SMax(m_Value(), m_Value()))) 10666 return RecurKind::SMax; 10667 if (match(I, m_SMin(m_Value(), m_Value()))) 10668 return RecurKind::SMin; 10669 if (match(I, m_UMax(m_Value(), m_Value()))) 10670 return RecurKind::UMax; 10671 if (match(I, m_UMin(m_Value(), m_Value()))) 10672 return RecurKind::UMin; 10673 10674 if (auto *Select = dyn_cast<SelectInst>(I)) { 10675 // Try harder: look for min/max pattern based on instructions producing 10676 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10677 // During the intermediate stages of SLP, it's very common to have 10678 // pattern like this (since optimizeGatherSequence is run only once 10679 // at the end): 10680 // %1 = extractelement <2 x i32> %a, i32 0 10681 // %2 = extractelement <2 x i32> %a, i32 1 10682 // %cond = icmp sgt i32 %1, %2 10683 // %3 = extractelement <2 x i32> %a, i32 0 10684 // %4 = extractelement <2 x i32> %a, i32 1 10685 // %select = select i1 %cond, i32 %3, i32 %4 10686 CmpInst::Predicate Pred; 10687 Instruction *L1; 10688 Instruction *L2; 10689 10690 Value *LHS = Select->getTrueValue(); 10691 Value *RHS = Select->getFalseValue(); 10692 Value *Cond = Select->getCondition(); 10693 10694 // TODO: Support inverse predicates. 10695 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10696 if (!isa<ExtractElementInst>(RHS) || 10697 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10698 return RecurKind::None; 10699 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10700 if (!isa<ExtractElementInst>(LHS) || 10701 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10702 return RecurKind::None; 10703 } else { 10704 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10705 return RecurKind::None; 10706 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10707 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10708 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10709 return RecurKind::None; 10710 } 10711 10712 switch (Pred) { 10713 default: 10714 return RecurKind::None; 10715 case CmpInst::ICMP_SGT: 10716 case CmpInst::ICMP_SGE: 10717 return RecurKind::SMax; 10718 case CmpInst::ICMP_SLT: 10719 case CmpInst::ICMP_SLE: 10720 return RecurKind::SMin; 10721 case CmpInst::ICMP_UGT: 10722 case CmpInst::ICMP_UGE: 10723 return RecurKind::UMax; 10724 case CmpInst::ICMP_ULT: 10725 case CmpInst::ICMP_ULE: 10726 return RecurKind::UMin; 10727 } 10728 } 10729 return RecurKind::None; 10730 } 10731 10732 /// Get the index of the first operand. 10733 static unsigned getFirstOperandIndex(Instruction *I) { 10734 return isCmpSelMinMax(I) ? 1 : 0; 10735 } 10736 10737 /// Total number of operands in the reduction operation. 10738 static unsigned getNumberOfOperands(Instruction *I) { 10739 return isCmpSelMinMax(I) ? 3 : 2; 10740 } 10741 10742 /// Checks if the instruction is in basic block \p BB. 10743 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10744 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10745 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10746 auto *Sel = cast<SelectInst>(I); 10747 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10748 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10749 } 10750 return I->getParent() == BB; 10751 } 10752 10753 /// Expected number of uses for reduction operations/reduced values. 10754 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10755 if (IsCmpSelMinMax) { 10756 // SelectInst must be used twice while the condition op must have single 10757 // use only. 10758 if (auto *Sel = dyn_cast<SelectInst>(I)) 10759 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10760 return I->hasNUses(2); 10761 } 10762 10763 // Arithmetic reduction operation must be used once only. 10764 return I->hasOneUse(); 10765 } 10766 10767 /// Initializes the list of reduction operations. 10768 void initReductionOps(Instruction *I) { 10769 if (isCmpSelMinMax(I)) 10770 ReductionOps.assign(2, ReductionOpsType()); 10771 else 10772 ReductionOps.assign(1, ReductionOpsType()); 10773 } 10774 10775 /// Add all reduction operations for the reduction instruction \p I. 10776 void addReductionOps(Instruction *I) { 10777 if (isCmpSelMinMax(I)) { 10778 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10779 ReductionOps[1].emplace_back(I); 10780 } else { 10781 ReductionOps[0].emplace_back(I); 10782 } 10783 } 10784 10785 static Value *getLHS(RecurKind Kind, Instruction *I) { 10786 if (Kind == RecurKind::None) 10787 return nullptr; 10788 return I->getOperand(getFirstOperandIndex(I)); 10789 } 10790 static Value *getRHS(RecurKind Kind, Instruction *I) { 10791 if (Kind == RecurKind::None) 10792 return nullptr; 10793 return I->getOperand(getFirstOperandIndex(I) + 1); 10794 } 10795 10796 public: 10797 HorizontalReduction() = default; 10798 10799 /// Try to find a reduction tree. 10800 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10801 ScalarEvolution &SE, const DataLayout &DL, 10802 const TargetLibraryInfo &TLI) { 10803 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10804 "Phi needs to use the binary operator"); 10805 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10806 isa<IntrinsicInst>(Inst)) && 10807 "Expected binop, select, or intrinsic for reduction matching"); 10808 RdxKind = getRdxKind(Inst); 10809 10810 // We could have a initial reductions that is not an add. 10811 // r *= v1 + v2 + v3 + v4 10812 // In such a case start looking for a tree rooted in the first '+'. 10813 if (Phi) { 10814 if (getLHS(RdxKind, Inst) == Phi) { 10815 Phi = nullptr; 10816 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10817 if (!Inst) 10818 return false; 10819 RdxKind = getRdxKind(Inst); 10820 } else if (getRHS(RdxKind, Inst) == Phi) { 10821 Phi = nullptr; 10822 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10823 if (!Inst) 10824 return false; 10825 RdxKind = getRdxKind(Inst); 10826 } 10827 } 10828 10829 if (!isVectorizable(RdxKind, Inst)) 10830 return false; 10831 10832 // Analyze "regular" integer/FP types for reductions - no target-specific 10833 // types or pointers. 10834 Type *Ty = Inst->getType(); 10835 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10836 return false; 10837 10838 // Though the ultimate reduction may have multiple uses, its condition must 10839 // have only single use. 10840 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10841 if (!Sel->getCondition()->hasOneUse()) 10842 return false; 10843 10844 ReductionRoot = Inst; 10845 10846 // Iterate through all the operands of the possible reduction tree and 10847 // gather all the reduced values, sorting them by their value id. 10848 BasicBlock *BB = Inst->getParent(); 10849 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10850 SmallVector<Instruction *> Worklist(1, Inst); 10851 // Checks if the operands of the \p TreeN instruction are also reduction 10852 // operations or should be treated as reduced values or an extra argument, 10853 // which is not part of the reduction. 10854 auto &&CheckOperands = [this, IsCmpSelMinMax, 10855 BB](Instruction *TreeN, 10856 SmallVectorImpl<Value *> &ExtraArgs, 10857 SmallVectorImpl<Value *> &PossibleReducedVals, 10858 SmallVectorImpl<Instruction *> &ReductionOps) { 10859 for (int I = getFirstOperandIndex(TreeN), 10860 End = getNumberOfOperands(TreeN); 10861 I < End; ++I) { 10862 Value *EdgeVal = getRdxOperand(TreeN, I); 10863 ReducedValsToOps[EdgeVal].push_back(TreeN); 10864 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10865 // Edge has wrong parent - mark as an extra argument. 10866 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10867 !hasSameParent(EdgeInst, BB)) { 10868 ExtraArgs.push_back(EdgeVal); 10869 continue; 10870 } 10871 // If the edge is not an instruction, or it is different from the main 10872 // reduction opcode or has too many uses - possible reduced value. 10873 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10874 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10875 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10876 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10877 PossibleReducedVals.push_back(EdgeVal); 10878 continue; 10879 } 10880 ReductionOps.push_back(EdgeInst); 10881 } 10882 }; 10883 // Try to regroup reduced values so that it gets more profitable to try to 10884 // reduce them. Values are grouped by their value ids, instructions - by 10885 // instruction op id and/or alternate op id, plus do extra analysis for 10886 // loads (grouping them by the distabce between pointers) and cmp 10887 // instructions (grouping them by the predicate). 10888 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10889 PossibleReducedVals; 10890 initReductionOps(Inst); 10891 while (!Worklist.empty()) { 10892 Instruction *TreeN = Worklist.pop_back_val(); 10893 SmallVector<Value *> Args; 10894 SmallVector<Value *> PossibleRedVals; 10895 SmallVector<Instruction *> PossibleReductionOps; 10896 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10897 // If too many extra args - mark the instruction itself as a reduction 10898 // value, not a reduction operation. 10899 if (Args.size() < 2) { 10900 addReductionOps(TreeN); 10901 // Add extra args. 10902 if (!Args.empty()) { 10903 assert(Args.size() == 1 && "Expected only single argument."); 10904 ExtraArgs[TreeN] = Args.front(); 10905 } 10906 // Add reduction values. The values are sorted for better vectorization 10907 // results. 10908 for (Value *V : PossibleRedVals) { 10909 size_t Key, Idx; 10910 std::tie(Key, Idx) = generateKeySubkey( 10911 V, &TLI, 10912 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10913 auto It = PossibleReducedVals.find(Key); 10914 if (It != PossibleReducedVals.end()) { 10915 for (const auto &LoadData : It->second) { 10916 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10917 if (getPointersDiff(RLI->getType(), 10918 RLI->getPointerOperand(), LI->getType(), 10919 LI->getPointerOperand(), DL, SE, 10920 /*StrictCheck=*/true)) 10921 return hash_value(RLI->getPointerOperand()); 10922 } 10923 } 10924 return hash_value(LI->getPointerOperand()); 10925 }, 10926 /*AllowAlternate=*/false); 10927 ++PossibleReducedVals[Key][Idx] 10928 .insert(std::make_pair(V, 0)) 10929 .first->second; 10930 } 10931 Worklist.append(PossibleReductionOps.rbegin(), 10932 PossibleReductionOps.rend()); 10933 } else { 10934 size_t Key, Idx; 10935 std::tie(Key, Idx) = generateKeySubkey( 10936 TreeN, &TLI, 10937 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10938 auto It = PossibleReducedVals.find(Key); 10939 if (It != PossibleReducedVals.end()) { 10940 for (const auto &LoadData : It->second) { 10941 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10942 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10943 LI->getType(), LI->getPointerOperand(), 10944 DL, SE, /*StrictCheck=*/true)) 10945 return hash_value(RLI->getPointerOperand()); 10946 } 10947 } 10948 return hash_value(LI->getPointerOperand()); 10949 }, 10950 /*AllowAlternate=*/false); 10951 ++PossibleReducedVals[Key][Idx] 10952 .insert(std::make_pair(TreeN, 0)) 10953 .first->second; 10954 } 10955 } 10956 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10957 // Sort values by the total number of values kinds to start the reduction 10958 // from the longest possible reduced values sequences. 10959 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10960 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10961 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10962 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10963 It != E; ++It) { 10964 PossibleRedValsVect.emplace_back(); 10965 auto RedValsVect = It->second.takeVector(); 10966 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10967 return P1.second < P2.second; 10968 }); 10969 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10970 PossibleRedValsVect.back().append(Data.second, Data.first); 10971 } 10972 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10973 return P1.size() > P2.size(); 10974 }); 10975 ReducedVals.emplace_back(); 10976 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10977 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10978 } 10979 // Sort the reduced values by number of same/alternate opcode and/or pointer 10980 // operand. 10981 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10982 return P1.size() > P2.size(); 10983 }); 10984 return true; 10985 } 10986 10987 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10988 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10989 constexpr int ReductionLimit = 4; 10990 constexpr unsigned RegMaxNumber = 4; 10991 constexpr unsigned RedValsMaxNumber = 128; 10992 // If there are a sufficient number of reduction values, reduce 10993 // to a nearby power-of-2. We can safely generate oversized 10994 // vectors and rely on the backend to split them to legal sizes. 10995 unsigned NumReducedVals = std::accumulate( 10996 ReducedVals.begin(), ReducedVals.end(), 0, 10997 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10998 if (NumReducedVals < ReductionLimit) 10999 return nullptr; 11000 11001 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 11002 11003 // Track the reduced values in case if they are replaced by extractelement 11004 // because of the vectorization. 11005 DenseMap<Value *, WeakTrackingVH> TrackedVals; 11006 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 11007 // The same extra argument may be used several times, so log each attempt 11008 // to use it. 11009 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 11010 assert(Pair.first && "DebugLoc must be set."); 11011 ExternallyUsedValues[Pair.second].push_back(Pair.first); 11012 TrackedVals.try_emplace(Pair.second, Pair.second); 11013 } 11014 11015 // The compare instruction of a min/max is the insertion point for new 11016 // instructions and may be replaced with a new compare instruction. 11017 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 11018 assert(isa<SelectInst>(RdxRootInst) && 11019 "Expected min/max reduction to have select root instruction"); 11020 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 11021 assert(isa<Instruction>(ScalarCond) && 11022 "Expected min/max reduction to have compare condition"); 11023 return cast<Instruction>(ScalarCond); 11024 }; 11025 11026 // The reduction root is used as the insertion point for new instructions, 11027 // so set it as externally used to prevent it from being deleted. 11028 ExternallyUsedValues[ReductionRoot]; 11029 SmallDenseSet<Value *> IgnoreList; 11030 for (ReductionOpsType &RdxOps : ReductionOps) 11031 for (Value *RdxOp : RdxOps) { 11032 if (!RdxOp) 11033 continue; 11034 IgnoreList.insert(RdxOp); 11035 } 11036 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 11037 11038 // Need to track reduced vals, they may be changed during vectorization of 11039 // subvectors. 11040 for (ArrayRef<Value *> Candidates : ReducedVals) 11041 for (Value *V : Candidates) 11042 TrackedVals.try_emplace(V, V); 11043 11044 DenseMap<Value *, unsigned> VectorizedVals; 11045 Value *VectorizedTree = nullptr; 11046 bool CheckForReusedReductionOps = false; 11047 // Try to vectorize elements based on their type. 11048 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 11049 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 11050 InstructionsState S = getSameOpcode(OrigReducedVals); 11051 SmallVector<Value *> Candidates; 11052 DenseMap<Value *, Value *> TrackedToOrig; 11053 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 11054 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 11055 // Check if the reduction value was not overriden by the extractelement 11056 // instruction because of the vectorization and exclude it, if it is not 11057 // compatible with other values. 11058 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 11059 if (isVectorLikeInstWithConstOps(Inst) && 11060 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 11061 continue; 11062 Candidates.push_back(RdxVal); 11063 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 11064 } 11065 bool ShuffledExtracts = false; 11066 // Try to handle shuffled extractelements. 11067 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 11068 I + 1 < E) { 11069 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 11070 if (NextS.getOpcode() == Instruction::ExtractElement && 11071 !NextS.isAltShuffle()) { 11072 SmallVector<Value *> CommonCandidates(Candidates); 11073 for (Value *RV : ReducedVals[I + 1]) { 11074 Value *RdxVal = TrackedVals.find(RV)->second; 11075 // Check if the reduction value was not overriden by the 11076 // extractelement instruction because of the vectorization and 11077 // exclude it, if it is not compatible with other values. 11078 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 11079 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 11080 continue; 11081 CommonCandidates.push_back(RdxVal); 11082 TrackedToOrig.try_emplace(RdxVal, RV); 11083 } 11084 SmallVector<int> Mask; 11085 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 11086 ++I; 11087 Candidates.swap(CommonCandidates); 11088 ShuffledExtracts = true; 11089 } 11090 } 11091 } 11092 unsigned NumReducedVals = Candidates.size(); 11093 if (NumReducedVals < ReductionLimit) 11094 continue; 11095 11096 unsigned MaxVecRegSize = V.getMaxVecRegSize(); 11097 unsigned EltSize = V.getVectorElementSize(Candidates[0]); 11098 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); 11099 11100 unsigned ReduxWidth = std::min<unsigned>( 11101 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); 11102 unsigned Start = 0; 11103 unsigned Pos = Start; 11104 // Restarts vectorization attempt with lower vector factor. 11105 unsigned PrevReduxWidth = ReduxWidth; 11106 bool CheckForReusedReductionOpsLocal = false; 11107 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 11108 &CheckForReusedReductionOpsLocal, 11109 &PrevReduxWidth, &V, 11110 &IgnoreList](bool IgnoreVL = false) { 11111 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); 11112 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 11113 // Check if any of the reduction ops are gathered. If so, worth 11114 // trying again with less number of reduction ops. 11115 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 11116 } 11117 ++Pos; 11118 if (Pos < NumReducedVals - ReduxWidth + 1) 11119 return IsAnyRedOpGathered; 11120 Pos = Start; 11121 ReduxWidth /= 2; 11122 return IsAnyRedOpGathered; 11123 }; 11124 while (Pos < NumReducedVals - ReduxWidth + 1 && 11125 ReduxWidth >= ReductionLimit) { 11126 // Dependency in tree of the reduction ops - drop this attempt, try 11127 // later. 11128 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 11129 Start == 0) { 11130 CheckForReusedReductionOps = true; 11131 break; 11132 } 11133 PrevReduxWidth = ReduxWidth; 11134 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 11135 // Beeing analyzed already - skip. 11136 if (V.areAnalyzedReductionVals(VL)) { 11137 (void)AdjustReducedVals(/*IgnoreVL=*/true); 11138 continue; 11139 } 11140 // Early exit if any of the reduction values were deleted during 11141 // previous vectorization attempts. 11142 if (any_of(VL, [&V](Value *RedVal) { 11143 auto *RedValI = dyn_cast<Instruction>(RedVal); 11144 if (!RedValI) 11145 return false; 11146 return V.isDeleted(RedValI); 11147 })) 11148 break; 11149 V.buildTree(VL, IgnoreList); 11150 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 11151 if (!AdjustReducedVals()) 11152 V.analyzedReductionVals(VL); 11153 continue; 11154 } 11155 if (V.isLoadCombineReductionCandidate(RdxKind)) { 11156 if (!AdjustReducedVals()) 11157 V.analyzedReductionVals(VL); 11158 continue; 11159 } 11160 V.reorderTopToBottom(); 11161 // No need to reorder the root node at all. 11162 V.reorderBottomToTop(/*IgnoreReorder=*/true); 11163 // Keep extracted other reduction values, if they are used in the 11164 // vectorization trees. 11165 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 11166 ExternallyUsedValues); 11167 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 11168 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 11169 continue; 11170 for_each(ReducedVals[Cnt], 11171 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 11172 if (isa<Instruction>(V)) 11173 LocalExternallyUsedValues[TrackedVals[V]]; 11174 }); 11175 } 11176 // Number of uses of the candidates in the vector of values. 11177 SmallDenseMap<Value *, unsigned> NumUses; 11178 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 11179 Value *V = Candidates[Cnt]; 11180 if (NumUses.count(V) > 0) 11181 continue; 11182 NumUses[V] = std::count(VL.begin(), VL.end(), V); 11183 } 11184 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 11185 Value *V = Candidates[Cnt]; 11186 if (NumUses.count(V) > 0) 11187 continue; 11188 NumUses[V] = std::count(VL.begin(), VL.end(), V); 11189 } 11190 // Gather externally used values. 11191 SmallPtrSet<Value *, 4> Visited; 11192 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 11193 Value *V = Candidates[Cnt]; 11194 if (!Visited.insert(V).second) 11195 continue; 11196 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 11197 if (NumOps != ReducedValsToOps.find(V)->second.size()) 11198 LocalExternallyUsedValues[V]; 11199 } 11200 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 11201 Value *V = Candidates[Cnt]; 11202 if (!Visited.insert(V).second) 11203 continue; 11204 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 11205 if (NumOps != ReducedValsToOps.find(V)->second.size()) 11206 LocalExternallyUsedValues[V]; 11207 } 11208 V.buildExternalUses(LocalExternallyUsedValues); 11209 11210 V.computeMinimumValueSizes(); 11211 11212 // Intersect the fast-math-flags from all reduction operations. 11213 FastMathFlags RdxFMF; 11214 RdxFMF.set(); 11215 for (Value *U : IgnoreList) 11216 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 11217 RdxFMF &= FPMO->getFastMathFlags(); 11218 // Estimate cost. 11219 InstructionCost TreeCost = V.getTreeCost(VL); 11220 InstructionCost ReductionCost = 11221 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 11222 InstructionCost Cost = TreeCost + ReductionCost; 11223 if (!Cost.isValid()) { 11224 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 11225 return nullptr; 11226 } 11227 if (Cost >= -SLPCostThreshold) { 11228 V.getORE()->emit([&]() { 11229 return OptimizationRemarkMissed( 11230 SV_NAME, "HorSLPNotBeneficial", 11231 ReducedValsToOps.find(VL[0])->second.front()) 11232 << "Vectorizing horizontal reduction is possible " 11233 << "but not beneficial with cost " << ore::NV("Cost", Cost) 11234 << " and threshold " 11235 << ore::NV("Threshold", -SLPCostThreshold); 11236 }); 11237 if (!AdjustReducedVals()) 11238 V.analyzedReductionVals(VL); 11239 continue; 11240 } 11241 11242 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 11243 << Cost << ". (HorRdx)\n"); 11244 V.getORE()->emit([&]() { 11245 return OptimizationRemark( 11246 SV_NAME, "VectorizedHorizontalReduction", 11247 ReducedValsToOps.find(VL[0])->second.front()) 11248 << "Vectorized horizontal reduction with cost " 11249 << ore::NV("Cost", Cost) << " and with tree size " 11250 << ore::NV("TreeSize", V.getTreeSize()); 11251 }); 11252 11253 Builder.setFastMathFlags(RdxFMF); 11254 11255 // Vectorize a tree. 11256 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 11257 11258 // Emit a reduction. If the root is a select (min/max idiom), the insert 11259 // point is the compare condition of that select. 11260 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 11261 if (IsCmpSelMinMax) 11262 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 11263 else 11264 Builder.SetInsertPoint(RdxRootInst); 11265 11266 // To prevent poison from leaking across what used to be sequential, 11267 // safe, scalar boolean logic operations, the reduction operand must be 11268 // frozen. 11269 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 11270 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 11271 11272 Value *ReducedSubTree = 11273 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 11274 11275 if (!VectorizedTree) { 11276 // Initialize the final value in the reduction. 11277 VectorizedTree = ReducedSubTree; 11278 } else { 11279 // Update the final value in the reduction. 11280 Builder.SetCurrentDebugLocation( 11281 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 11282 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11283 ReducedSubTree, "op.rdx", ReductionOps); 11284 } 11285 // Count vectorized reduced values to exclude them from final reduction. 11286 for (Value *V : VL) 11287 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 11288 .first->getSecond(); 11289 Pos += ReduxWidth; 11290 Start = Pos; 11291 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 11292 } 11293 } 11294 if (VectorizedTree) { 11295 // Finish the reduction. 11296 // Need to add extra arguments and not vectorized possible reduction 11297 // values. 11298 // Try to avoid dependencies between the scalar remainders after 11299 // reductions. 11300 auto &&FinalGen = 11301 [this, &Builder, 11302 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 11303 unsigned Sz = InstVals.size(); 11304 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 11305 Sz % 2); 11306 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 11307 Instruction *RedOp = InstVals[I + 1].first; 11308 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11309 Value *RdxVal1 = InstVals[I].second; 11310 Value *StableRdxVal1 = RdxVal1; 11311 auto It1 = TrackedVals.find(RdxVal1); 11312 if (It1 != TrackedVals.end()) 11313 StableRdxVal1 = It1->second; 11314 Value *RdxVal2 = InstVals[I + 1].second; 11315 Value *StableRdxVal2 = RdxVal2; 11316 auto It2 = TrackedVals.find(RdxVal2); 11317 if (It2 != TrackedVals.end()) 11318 StableRdxVal2 = It2->second; 11319 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 11320 StableRdxVal2, "op.rdx", ReductionOps); 11321 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 11322 } 11323 if (Sz % 2 == 1) 11324 ExtraReds[Sz / 2] = InstVals.back(); 11325 return ExtraReds; 11326 }; 11327 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 11328 SmallPtrSet<Value *, 8> Visited; 11329 for (ArrayRef<Value *> Candidates : ReducedVals) { 11330 for (Value *RdxVal : Candidates) { 11331 if (!Visited.insert(RdxVal).second) 11332 continue; 11333 unsigned NumOps = VectorizedVals.lookup(RdxVal); 11334 for (Instruction *RedOp : 11335 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 11336 .drop_back(NumOps)) 11337 ExtraReductions.emplace_back(RedOp, RdxVal); 11338 } 11339 } 11340 for (auto &Pair : ExternallyUsedValues) { 11341 // Add each externally used value to the final reduction. 11342 for (auto *I : Pair.second) 11343 ExtraReductions.emplace_back(I, Pair.first); 11344 } 11345 // Iterate through all not-vectorized reduction values/extra arguments. 11346 while (ExtraReductions.size() > 1) { 11347 SmallVector<std::pair<Instruction *, Value *>> NewReds = 11348 FinalGen(ExtraReductions); 11349 ExtraReductions.swap(NewReds); 11350 } 11351 // Final reduction. 11352 if (ExtraReductions.size() == 1) { 11353 Instruction *RedOp = ExtraReductions.back().first; 11354 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11355 Value *RdxVal = ExtraReductions.back().second; 11356 Value *StableRdxVal = RdxVal; 11357 auto It = TrackedVals.find(RdxVal); 11358 if (It != TrackedVals.end()) 11359 StableRdxVal = It->second; 11360 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11361 StableRdxVal, "op.rdx", ReductionOps); 11362 } 11363 11364 ReductionRoot->replaceAllUsesWith(VectorizedTree); 11365 11366 // The original scalar reduction is expected to have no remaining 11367 // uses outside the reduction tree itself. Assert that we got this 11368 // correct, replace internal uses with undef, and mark for eventual 11369 // deletion. 11370 #ifndef NDEBUG 11371 SmallSet<Value *, 4> IgnoreSet; 11372 for (ArrayRef<Value *> RdxOps : ReductionOps) 11373 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 11374 #endif 11375 for (ArrayRef<Value *> RdxOps : ReductionOps) { 11376 for (Value *Ignore : RdxOps) { 11377 if (!Ignore) 11378 continue; 11379 #ifndef NDEBUG 11380 for (auto *U : Ignore->users()) { 11381 assert(IgnoreSet.count(U) && 11382 "All users must be either in the reduction ops list."); 11383 } 11384 #endif 11385 if (!Ignore->use_empty()) { 11386 Value *Undef = UndefValue::get(Ignore->getType()); 11387 Ignore->replaceAllUsesWith(Undef); 11388 } 11389 V.eraseInstruction(cast<Instruction>(Ignore)); 11390 } 11391 } 11392 } else if (!CheckForReusedReductionOps) { 11393 for (ReductionOpsType &RdxOps : ReductionOps) 11394 for (Value *RdxOp : RdxOps) 11395 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 11396 } 11397 return VectorizedTree; 11398 } 11399 11400 private: 11401 /// Calculate the cost of a reduction. 11402 InstructionCost getReductionCost(TargetTransformInfo *TTI, 11403 ArrayRef<Value *> ReducedVals, 11404 unsigned ReduxWidth, FastMathFlags FMF) { 11405 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 11406 Value *FirstReducedVal = ReducedVals.front(); 11407 Type *ScalarTy = FirstReducedVal->getType(); 11408 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 11409 InstructionCost VectorCost = 0, ScalarCost; 11410 // If all of the reduced values are constant, the vector cost is 0, since 11411 // the reduction value can be calculated at the compile time. 11412 bool AllConsts = all_of(ReducedVals, isConstant); 11413 switch (RdxKind) { 11414 case RecurKind::Add: 11415 case RecurKind::Mul: 11416 case RecurKind::Or: 11417 case RecurKind::And: 11418 case RecurKind::Xor: 11419 case RecurKind::FAdd: 11420 case RecurKind::FMul: { 11421 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 11422 if (!AllConsts) 11423 VectorCost = 11424 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 11425 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 11426 break; 11427 } 11428 case RecurKind::FMax: 11429 case RecurKind::FMin: { 11430 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11431 if (!AllConsts) { 11432 auto *VecCondTy = 11433 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11434 VectorCost = 11435 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11436 /*IsUnsigned=*/false, CostKind); 11437 } 11438 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11439 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 11440 SclCondTy, RdxPred, CostKind) + 11441 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11442 SclCondTy, RdxPred, CostKind); 11443 break; 11444 } 11445 case RecurKind::SMax: 11446 case RecurKind::SMin: 11447 case RecurKind::UMax: 11448 case RecurKind::UMin: { 11449 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11450 if (!AllConsts) { 11451 auto *VecCondTy = 11452 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11453 bool IsUnsigned = 11454 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 11455 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11456 IsUnsigned, CostKind); 11457 } 11458 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11459 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 11460 SclCondTy, RdxPred, CostKind) + 11461 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11462 SclCondTy, RdxPred, CostKind); 11463 break; 11464 } 11465 default: 11466 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 11467 } 11468 11469 // Scalar cost is repeated for N-1 elements. 11470 ScalarCost *= (ReduxWidth - 1); 11471 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 11472 << " for reduction that starts with " << *FirstReducedVal 11473 << " (It is a splitting reduction)\n"); 11474 return VectorCost - ScalarCost; 11475 } 11476 11477 /// Emit a horizontal reduction of the vectorized value. 11478 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 11479 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 11480 assert(VectorizedValue && "Need to have a vectorized tree node"); 11481 assert(isPowerOf2_32(ReduxWidth) && 11482 "We only handle power-of-two reductions for now"); 11483 assert(RdxKind != RecurKind::FMulAdd && 11484 "A call to the llvm.fmuladd intrinsic is not handled yet"); 11485 11486 ++NumVectorInstructions; 11487 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 11488 } 11489 }; 11490 11491 } // end anonymous namespace 11492 11493 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 11494 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 11495 return cast<FixedVectorType>(IE->getType())->getNumElements(); 11496 11497 unsigned AggregateSize = 1; 11498 auto *IV = cast<InsertValueInst>(InsertInst); 11499 Type *CurrentType = IV->getType(); 11500 do { 11501 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 11502 for (auto *Elt : ST->elements()) 11503 if (Elt != ST->getElementType(0)) // check homogeneity 11504 return None; 11505 AggregateSize *= ST->getNumElements(); 11506 CurrentType = ST->getElementType(0); 11507 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 11508 AggregateSize *= AT->getNumElements(); 11509 CurrentType = AT->getElementType(); 11510 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 11511 AggregateSize *= VT->getNumElements(); 11512 return AggregateSize; 11513 } else if (CurrentType->isSingleValueType()) { 11514 return AggregateSize; 11515 } else { 11516 return None; 11517 } 11518 } while (true); 11519 } 11520 11521 static void findBuildAggregate_rec(Instruction *LastInsertInst, 11522 TargetTransformInfo *TTI, 11523 SmallVectorImpl<Value *> &BuildVectorOpds, 11524 SmallVectorImpl<Value *> &InsertElts, 11525 unsigned OperandOffset) { 11526 do { 11527 Value *InsertedOperand = LastInsertInst->getOperand(1); 11528 Optional<unsigned> OperandIndex = 11529 getInsertIndex(LastInsertInst, OperandOffset); 11530 if (!OperandIndex) 11531 return; 11532 if (isa<InsertElementInst>(InsertedOperand) || 11533 isa<InsertValueInst>(InsertedOperand)) { 11534 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 11535 BuildVectorOpds, InsertElts, *OperandIndex); 11536 11537 } else { 11538 BuildVectorOpds[*OperandIndex] = InsertedOperand; 11539 InsertElts[*OperandIndex] = LastInsertInst; 11540 } 11541 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 11542 } while (LastInsertInst != nullptr && 11543 (isa<InsertValueInst>(LastInsertInst) || 11544 isa<InsertElementInst>(LastInsertInst)) && 11545 LastInsertInst->hasOneUse()); 11546 } 11547 11548 /// Recognize construction of vectors like 11549 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 11550 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 11551 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 11552 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 11553 /// starting from the last insertelement or insertvalue instruction. 11554 /// 11555 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 11556 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 11557 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 11558 /// 11559 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 11560 /// 11561 /// \return true if it matches. 11562 static bool findBuildAggregate(Instruction *LastInsertInst, 11563 TargetTransformInfo *TTI, 11564 SmallVectorImpl<Value *> &BuildVectorOpds, 11565 SmallVectorImpl<Value *> &InsertElts) { 11566 11567 assert((isa<InsertElementInst>(LastInsertInst) || 11568 isa<InsertValueInst>(LastInsertInst)) && 11569 "Expected insertelement or insertvalue instruction!"); 11570 11571 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 11572 "Expected empty result vectors!"); 11573 11574 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 11575 if (!AggregateSize) 11576 return false; 11577 BuildVectorOpds.resize(*AggregateSize); 11578 InsertElts.resize(*AggregateSize); 11579 11580 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 11581 llvm::erase_value(BuildVectorOpds, nullptr); 11582 llvm::erase_value(InsertElts, nullptr); 11583 if (BuildVectorOpds.size() >= 2) 11584 return true; 11585 11586 return false; 11587 } 11588 11589 /// Try and get a reduction value from a phi node. 11590 /// 11591 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 11592 /// if they come from either \p ParentBB or a containing loop latch. 11593 /// 11594 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 11595 /// if not possible. 11596 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 11597 BasicBlock *ParentBB, LoopInfo *LI) { 11598 // There are situations where the reduction value is not dominated by the 11599 // reduction phi. Vectorizing such cases has been reported to cause 11600 // miscompiles. See PR25787. 11601 auto DominatedReduxValue = [&](Value *R) { 11602 return isa<Instruction>(R) && 11603 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 11604 }; 11605 11606 Value *Rdx = nullptr; 11607 11608 // Return the incoming value if it comes from the same BB as the phi node. 11609 if (P->getIncomingBlock(0) == ParentBB) { 11610 Rdx = P->getIncomingValue(0); 11611 } else if (P->getIncomingBlock(1) == ParentBB) { 11612 Rdx = P->getIncomingValue(1); 11613 } 11614 11615 if (Rdx && DominatedReduxValue(Rdx)) 11616 return Rdx; 11617 11618 // Otherwise, check whether we have a loop latch to look at. 11619 Loop *BBL = LI->getLoopFor(ParentBB); 11620 if (!BBL) 11621 return nullptr; 11622 BasicBlock *BBLatch = BBL->getLoopLatch(); 11623 if (!BBLatch) 11624 return nullptr; 11625 11626 // There is a loop latch, return the incoming value if it comes from 11627 // that. This reduction pattern occasionally turns up. 11628 if (P->getIncomingBlock(0) == BBLatch) { 11629 Rdx = P->getIncomingValue(0); 11630 } else if (P->getIncomingBlock(1) == BBLatch) { 11631 Rdx = P->getIncomingValue(1); 11632 } 11633 11634 if (Rdx && DominatedReduxValue(Rdx)) 11635 return Rdx; 11636 11637 return nullptr; 11638 } 11639 11640 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11641 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11642 return true; 11643 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11644 return true; 11645 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11646 return true; 11647 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11648 return true; 11649 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11650 return true; 11651 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11652 return true; 11653 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11654 return true; 11655 return false; 11656 } 11657 11658 /// Attempt to reduce a horizontal reduction. 11659 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11660 /// with reduction operators \a Root (or one of its operands) in a basic block 11661 /// \a BB, then check if it can be done. If horizontal reduction is not found 11662 /// and root instruction is a binary operation, vectorization of the operands is 11663 /// attempted. 11664 /// \returns true if a horizontal reduction was matched and reduced or operands 11665 /// of one of the binary instruction were vectorized. 11666 /// \returns false if a horizontal reduction was not matched (or not possible) 11667 /// or no vectorization of any binary operation feeding \a Root instruction was 11668 /// performed. 11669 static bool tryToVectorizeHorReductionOrInstOperands( 11670 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11671 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11672 const TargetLibraryInfo &TLI, 11673 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11674 if (!ShouldVectorizeHor) 11675 return false; 11676 11677 if (!Root) 11678 return false; 11679 11680 if (Root->getParent() != BB || isa<PHINode>(Root)) 11681 return false; 11682 // Start analysis starting from Root instruction. If horizontal reduction is 11683 // found, try to vectorize it. If it is not a horizontal reduction or 11684 // vectorization is not possible or not effective, and currently analyzed 11685 // instruction is a binary operation, try to vectorize the operands, using 11686 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11687 // the same procedure considering each operand as a possible root of the 11688 // horizontal reduction. 11689 // Interrupt the process if the Root instruction itself was vectorized or all 11690 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11691 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11692 // CmpInsts so we can skip extra attempts in 11693 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11694 std::queue<std::pair<Instruction *, unsigned>> Stack; 11695 Stack.emplace(Root, 0); 11696 SmallPtrSet<Value *, 8> VisitedInstrs; 11697 SmallVector<WeakTrackingVH> PostponedInsts; 11698 bool Res = false; 11699 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11700 Value *&B0, 11701 Value *&B1) -> Value * { 11702 if (R.isAnalyzedReductionRoot(Inst)) 11703 return nullptr; 11704 bool IsBinop = matchRdxBop(Inst, B0, B1); 11705 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11706 if (IsBinop || IsSelect) { 11707 HorizontalReduction HorRdx; 11708 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11709 return HorRdx.tryToReduce(R, TTI); 11710 } 11711 return nullptr; 11712 }; 11713 while (!Stack.empty()) { 11714 Instruction *Inst; 11715 unsigned Level; 11716 std::tie(Inst, Level) = Stack.front(); 11717 Stack.pop(); 11718 // Do not try to analyze instruction that has already been vectorized. 11719 // This may happen when we vectorize instruction operands on a previous 11720 // iteration while stack was populated before that happened. 11721 if (R.isDeleted(Inst)) 11722 continue; 11723 Value *B0 = nullptr, *B1 = nullptr; 11724 if (Value *V = TryToReduce(Inst, B0, B1)) { 11725 Res = true; 11726 // Set P to nullptr to avoid re-analysis of phi node in 11727 // matchAssociativeReduction function unless this is the root node. 11728 P = nullptr; 11729 if (auto *I = dyn_cast<Instruction>(V)) { 11730 // Try to find another reduction. 11731 Stack.emplace(I, Level); 11732 continue; 11733 } 11734 } else { 11735 bool IsBinop = B0 && B1; 11736 if (P && IsBinop) { 11737 Inst = dyn_cast<Instruction>(B0); 11738 if (Inst == P) 11739 Inst = dyn_cast<Instruction>(B1); 11740 if (!Inst) { 11741 // Set P to nullptr to avoid re-analysis of phi node in 11742 // matchAssociativeReduction function unless this is the root node. 11743 P = nullptr; 11744 continue; 11745 } 11746 } 11747 // Set P to nullptr to avoid re-analysis of phi node in 11748 // matchAssociativeReduction function unless this is the root node. 11749 P = nullptr; 11750 // Do not try to vectorize CmpInst operands, this is done separately. 11751 // Final attempt for binop args vectorization should happen after the loop 11752 // to try to find reductions. 11753 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11754 PostponedInsts.push_back(Inst); 11755 } 11756 11757 // Try to vectorize operands. 11758 // Continue analysis for the instruction from the same basic block only to 11759 // save compile time. 11760 if (++Level < RecursionMaxDepth) 11761 for (auto *Op : Inst->operand_values()) 11762 if (VisitedInstrs.insert(Op).second) 11763 if (auto *I = dyn_cast<Instruction>(Op)) 11764 // Do not try to vectorize CmpInst operands, this is done 11765 // separately. 11766 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11767 !R.isDeleted(I) && I->getParent() == BB) 11768 Stack.emplace(I, Level); 11769 } 11770 // Try to vectorized binops where reductions were not found. 11771 for (Value *V : PostponedInsts) 11772 if (auto *Inst = dyn_cast<Instruction>(V)) 11773 if (!R.isDeleted(Inst)) 11774 Res |= Vectorize(Inst, R); 11775 return Res; 11776 } 11777 11778 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11779 BasicBlock *BB, BoUpSLP &R, 11780 TargetTransformInfo *TTI) { 11781 auto *I = dyn_cast_or_null<Instruction>(V); 11782 if (!I) 11783 return false; 11784 11785 if (!isa<BinaryOperator>(I)) 11786 P = nullptr; 11787 // Try to match and vectorize a horizontal reduction. 11788 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11789 return tryToVectorize(I, R); 11790 }; 11791 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11792 *TLI, ExtraVectorization); 11793 } 11794 11795 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11796 BasicBlock *BB, BoUpSLP &R) { 11797 const DataLayout &DL = BB->getModule()->getDataLayout(); 11798 if (!R.canMapToVector(IVI->getType(), DL)) 11799 return false; 11800 11801 SmallVector<Value *, 16> BuildVectorOpds; 11802 SmallVector<Value *, 16> BuildVectorInsts; 11803 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11804 return false; 11805 11806 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11807 // Aggregate value is unlikely to be processed in vector register. 11808 return tryToVectorizeList(BuildVectorOpds, R); 11809 } 11810 11811 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11812 BasicBlock *BB, BoUpSLP &R) { 11813 SmallVector<Value *, 16> BuildVectorInsts; 11814 SmallVector<Value *, 16> BuildVectorOpds; 11815 SmallVector<int> Mask; 11816 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11817 (llvm::all_of( 11818 BuildVectorOpds, 11819 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11820 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11821 return false; 11822 11823 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11824 return tryToVectorizeList(BuildVectorInsts, R); 11825 } 11826 11827 template <typename T> 11828 static bool 11829 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11830 function_ref<unsigned(T *)> Limit, 11831 function_ref<bool(T *, T *)> Comparator, 11832 function_ref<bool(T *, T *)> AreCompatible, 11833 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11834 bool LimitForRegisterSize) { 11835 bool Changed = false; 11836 // Sort by type, parent, operands. 11837 stable_sort(Incoming, Comparator); 11838 11839 // Try to vectorize elements base on their type. 11840 SmallVector<T *> Candidates; 11841 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11842 // Look for the next elements with the same type, parent and operand 11843 // kinds. 11844 auto *SameTypeIt = IncIt; 11845 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11846 ++SameTypeIt; 11847 11848 // Try to vectorize them. 11849 unsigned NumElts = (SameTypeIt - IncIt); 11850 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11851 << NumElts << ")\n"); 11852 // The vectorization is a 3-state attempt: 11853 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11854 // size of maximal register at first. 11855 // 2. Try to vectorize remaining instructions with the same type, if 11856 // possible. This may result in the better vectorization results rather than 11857 // if we try just to vectorize instructions with the same/alternate opcodes. 11858 // 3. Final attempt to try to vectorize all instructions with the 11859 // same/alternate ops only, this may result in some extra final 11860 // vectorization. 11861 if (NumElts > 1 && 11862 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11863 // Success start over because instructions might have been changed. 11864 Changed = true; 11865 } else if (NumElts < Limit(*IncIt) && 11866 (Candidates.empty() || 11867 Candidates.front()->getType() == (*IncIt)->getType())) { 11868 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11869 } 11870 // Final attempt to vectorize instructions with the same types. 11871 if (Candidates.size() > 1 && 11872 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11873 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11874 // Success start over because instructions might have been changed. 11875 Changed = true; 11876 } else if (LimitForRegisterSize) { 11877 // Try to vectorize using small vectors. 11878 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11879 It != End;) { 11880 auto *SameTypeIt = It; 11881 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11882 ++SameTypeIt; 11883 unsigned NumElts = (SameTypeIt - It); 11884 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11885 /*LimitForRegisterSize=*/false)) 11886 Changed = true; 11887 It = SameTypeIt; 11888 } 11889 } 11890 Candidates.clear(); 11891 } 11892 11893 // Start over at the next instruction of a different type (or the end). 11894 IncIt = SameTypeIt; 11895 } 11896 return Changed; 11897 } 11898 11899 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11900 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11901 /// operands. If IsCompatibility is false, function implements strict weak 11902 /// ordering relation between two cmp instructions, returning true if the first 11903 /// instruction is "less" than the second, i.e. its predicate is less than the 11904 /// predicate of the second or the operands IDs are less than the operands IDs 11905 /// of the second cmp instruction. 11906 template <bool IsCompatibility> 11907 static bool compareCmp(Value *V, Value *V2, 11908 function_ref<bool(Instruction *)> IsDeleted) { 11909 auto *CI1 = cast<CmpInst>(V); 11910 auto *CI2 = cast<CmpInst>(V2); 11911 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11912 return false; 11913 if (CI1->getOperand(0)->getType()->getTypeID() < 11914 CI2->getOperand(0)->getType()->getTypeID()) 11915 return !IsCompatibility; 11916 if (CI1->getOperand(0)->getType()->getTypeID() > 11917 CI2->getOperand(0)->getType()->getTypeID()) 11918 return false; 11919 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11920 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11921 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11922 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11923 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11924 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11925 if (BasePred1 < BasePred2) 11926 return !IsCompatibility; 11927 if (BasePred1 > BasePred2) 11928 return false; 11929 // Compare operands. 11930 bool LEPreds = Pred1 <= Pred2; 11931 bool GEPreds = Pred1 >= Pred2; 11932 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11933 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11934 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11935 if (Op1->getValueID() < Op2->getValueID()) 11936 return !IsCompatibility; 11937 if (Op1->getValueID() > Op2->getValueID()) 11938 return false; 11939 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11940 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11941 if (I1->getParent() != I2->getParent()) 11942 return false; 11943 InstructionsState S = getSameOpcode({I1, I2}); 11944 if (S.getOpcode()) 11945 continue; 11946 return false; 11947 } 11948 } 11949 return IsCompatibility; 11950 } 11951 11952 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11953 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11954 bool AtTerminator) { 11955 bool OpsChanged = false; 11956 SmallVector<Instruction *, 4> PostponedCmps; 11957 for (auto *I : reverse(Instructions)) { 11958 if (R.isDeleted(I)) 11959 continue; 11960 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11961 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11962 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11963 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11964 } else if (isa<CmpInst>(I)) { 11965 PostponedCmps.push_back(I); 11966 continue; 11967 } 11968 // Try to find reductions in buildvector sequnces. 11969 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11970 } 11971 if (AtTerminator) { 11972 // Try to find reductions first. 11973 for (Instruction *I : PostponedCmps) { 11974 if (R.isDeleted(I)) 11975 continue; 11976 for (Value *Op : I->operands()) 11977 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11978 } 11979 // Try to vectorize operands as vector bundles. 11980 for (Instruction *I : PostponedCmps) { 11981 if (R.isDeleted(I)) 11982 continue; 11983 OpsChanged |= tryToVectorize(I, R); 11984 } 11985 // Try to vectorize list of compares. 11986 // Sort by type, compare predicate, etc. 11987 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11988 return compareCmp<false>(V, V2, 11989 [&R](Instruction *I) { return R.isDeleted(I); }); 11990 }; 11991 11992 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11993 if (V1 == V2) 11994 return true; 11995 return compareCmp<true>(V1, V2, 11996 [&R](Instruction *I) { return R.isDeleted(I); }); 11997 }; 11998 auto Limit = [&R](Value *V) { 11999 unsigned EltSize = R.getVectorElementSize(V); 12000 return std::max(2U, R.getMaxVecRegSize() / EltSize); 12001 }; 12002 12003 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 12004 OpsChanged |= tryToVectorizeSequence<Value>( 12005 Vals, Limit, CompareSorter, AreCompatibleCompares, 12006 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 12007 // Exclude possible reductions from other blocks. 12008 bool ArePossiblyReducedInOtherBlock = 12009 any_of(Candidates, [](Value *V) { 12010 return any_of(V->users(), [V](User *U) { 12011 return isa<SelectInst>(U) && 12012 cast<SelectInst>(U)->getParent() != 12013 cast<Instruction>(V)->getParent(); 12014 }); 12015 }); 12016 if (ArePossiblyReducedInOtherBlock) 12017 return false; 12018 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 12019 }, 12020 /*LimitForRegisterSize=*/true); 12021 Instructions.clear(); 12022 } else { 12023 // Insert in reverse order since the PostponedCmps vector was filled in 12024 // reverse order. 12025 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 12026 } 12027 return OpsChanged; 12028 } 12029 12030 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 12031 bool Changed = false; 12032 SmallVector<Value *, 4> Incoming; 12033 SmallPtrSet<Value *, 16> VisitedInstrs; 12034 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 12035 // node. Allows better to identify the chains that can be vectorized in the 12036 // better way. 12037 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 12038 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 12039 assert(isValidElementType(V1->getType()) && 12040 isValidElementType(V2->getType()) && 12041 "Expected vectorizable types only."); 12042 // It is fine to compare type IDs here, since we expect only vectorizable 12043 // types, like ints, floats and pointers, we don't care about other type. 12044 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 12045 return true; 12046 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 12047 return false; 12048 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 12049 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 12050 if (Opcodes1.size() < Opcodes2.size()) 12051 return true; 12052 if (Opcodes1.size() > Opcodes2.size()) 12053 return false; 12054 Optional<bool> ConstOrder; 12055 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 12056 // Undefs are compatible with any other value. 12057 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 12058 if (!ConstOrder) 12059 ConstOrder = 12060 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 12061 continue; 12062 } 12063 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 12064 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 12065 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 12066 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 12067 if (!NodeI1) 12068 return NodeI2 != nullptr; 12069 if (!NodeI2) 12070 return false; 12071 assert((NodeI1 == NodeI2) == 12072 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12073 "Different nodes should have different DFS numbers"); 12074 if (NodeI1 != NodeI2) 12075 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12076 InstructionsState S = getSameOpcode({I1, I2}); 12077 if (S.getOpcode()) 12078 continue; 12079 return I1->getOpcode() < I2->getOpcode(); 12080 } 12081 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 12082 if (!ConstOrder) 12083 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 12084 continue; 12085 } 12086 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 12087 return true; 12088 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 12089 return false; 12090 } 12091 return ConstOrder && *ConstOrder; 12092 }; 12093 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 12094 if (V1 == V2) 12095 return true; 12096 if (V1->getType() != V2->getType()) 12097 return false; 12098 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 12099 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 12100 if (Opcodes1.size() != Opcodes2.size()) 12101 return false; 12102 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 12103 // Undefs are compatible with any other value. 12104 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 12105 continue; 12106 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 12107 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 12108 if (I1->getParent() != I2->getParent()) 12109 return false; 12110 InstructionsState S = getSameOpcode({I1, I2}); 12111 if (S.getOpcode()) 12112 continue; 12113 return false; 12114 } 12115 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 12116 continue; 12117 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 12118 return false; 12119 } 12120 return true; 12121 }; 12122 auto Limit = [&R](Value *V) { 12123 unsigned EltSize = R.getVectorElementSize(V); 12124 return std::max(2U, R.getMaxVecRegSize() / EltSize); 12125 }; 12126 12127 bool HaveVectorizedPhiNodes = false; 12128 do { 12129 // Collect the incoming values from the PHIs. 12130 Incoming.clear(); 12131 for (Instruction &I : *BB) { 12132 PHINode *P = dyn_cast<PHINode>(&I); 12133 if (!P) 12134 break; 12135 12136 // No need to analyze deleted, vectorized and non-vectorizable 12137 // instructions. 12138 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 12139 isValidElementType(P->getType())) 12140 Incoming.push_back(P); 12141 } 12142 12143 // Find the corresponding non-phi nodes for better matching when trying to 12144 // build the tree. 12145 for (Value *V : Incoming) { 12146 SmallVectorImpl<Value *> &Opcodes = 12147 PHIToOpcodes.try_emplace(V).first->getSecond(); 12148 if (!Opcodes.empty()) 12149 continue; 12150 SmallVector<Value *, 4> Nodes(1, V); 12151 SmallPtrSet<Value *, 4> Visited; 12152 while (!Nodes.empty()) { 12153 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 12154 if (!Visited.insert(PHI).second) 12155 continue; 12156 for (Value *V : PHI->incoming_values()) { 12157 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 12158 Nodes.push_back(PHI1); 12159 continue; 12160 } 12161 Opcodes.emplace_back(V); 12162 } 12163 } 12164 } 12165 12166 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 12167 Incoming, Limit, PHICompare, AreCompatiblePHIs, 12168 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 12169 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 12170 }, 12171 /*LimitForRegisterSize=*/true); 12172 Changed |= HaveVectorizedPhiNodes; 12173 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 12174 } while (HaveVectorizedPhiNodes); 12175 12176 VisitedInstrs.clear(); 12177 12178 SmallVector<Instruction *, 8> PostProcessInstructions; 12179 SmallDenseSet<Instruction *, 4> KeyNodes; 12180 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 12181 // Skip instructions with scalable type. The num of elements is unknown at 12182 // compile-time for scalable type. 12183 if (isa<ScalableVectorType>(it->getType())) 12184 continue; 12185 12186 // Skip instructions marked for the deletion. 12187 if (R.isDeleted(&*it)) 12188 continue; 12189 // We may go through BB multiple times so skip the one we have checked. 12190 if (!VisitedInstrs.insert(&*it).second) { 12191 if (it->use_empty() && KeyNodes.contains(&*it) && 12192 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 12193 it->isTerminator())) { 12194 // We would like to start over since some instructions are deleted 12195 // and the iterator may become invalid value. 12196 Changed = true; 12197 it = BB->begin(); 12198 e = BB->end(); 12199 } 12200 continue; 12201 } 12202 12203 if (isa<DbgInfoIntrinsic>(it)) 12204 continue; 12205 12206 // Try to vectorize reductions that use PHINodes. 12207 if (PHINode *P = dyn_cast<PHINode>(it)) { 12208 // Check that the PHI is a reduction PHI. 12209 if (P->getNumIncomingValues() == 2) { 12210 // Try to match and vectorize a horizontal reduction. 12211 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 12212 TTI)) { 12213 Changed = true; 12214 it = BB->begin(); 12215 e = BB->end(); 12216 continue; 12217 } 12218 } 12219 // Try to vectorize the incoming values of the PHI, to catch reductions 12220 // that feed into PHIs. 12221 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 12222 // Skip if the incoming block is the current BB for now. Also, bypass 12223 // unreachable IR for efficiency and to avoid crashing. 12224 // TODO: Collect the skipped incoming values and try to vectorize them 12225 // after processing BB. 12226 if (BB == P->getIncomingBlock(I) || 12227 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 12228 continue; 12229 12230 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 12231 P->getIncomingBlock(I), R, TTI); 12232 } 12233 continue; 12234 } 12235 12236 // Ran into an instruction without users, like terminator, or function call 12237 // with ignored return value, store. Ignore unused instructions (basing on 12238 // instruction type, except for CallInst and InvokeInst). 12239 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 12240 isa<InvokeInst>(it))) { 12241 KeyNodes.insert(&*it); 12242 bool OpsChanged = false; 12243 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 12244 for (auto *V : it->operand_values()) { 12245 // Try to match and vectorize a horizontal reduction. 12246 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 12247 } 12248 } 12249 // Start vectorization of post-process list of instructions from the 12250 // top-tree instructions to try to vectorize as many instructions as 12251 // possible. 12252 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 12253 it->isTerminator()); 12254 if (OpsChanged) { 12255 // We would like to start over since some instructions are deleted 12256 // and the iterator may become invalid value. 12257 Changed = true; 12258 it = BB->begin(); 12259 e = BB->end(); 12260 continue; 12261 } 12262 } 12263 12264 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 12265 isa<InsertValueInst>(it)) 12266 PostProcessInstructions.push_back(&*it); 12267 } 12268 12269 return Changed; 12270 } 12271 12272 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 12273 auto Changed = false; 12274 for (auto &Entry : GEPs) { 12275 // If the getelementptr list has fewer than two elements, there's nothing 12276 // to do. 12277 if (Entry.second.size() < 2) 12278 continue; 12279 12280 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 12281 << Entry.second.size() << ".\n"); 12282 12283 // Process the GEP list in chunks suitable for the target's supported 12284 // vector size. If a vector register can't hold 1 element, we are done. We 12285 // are trying to vectorize the index computations, so the maximum number of 12286 // elements is based on the size of the index expression, rather than the 12287 // size of the GEP itself (the target's pointer size). 12288 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 12289 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 12290 if (MaxVecRegSize < EltSize) 12291 continue; 12292 12293 unsigned MaxElts = MaxVecRegSize / EltSize; 12294 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 12295 auto Len = std::min<unsigned>(BE - BI, MaxElts); 12296 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 12297 12298 // Initialize a set a candidate getelementptrs. Note that we use a 12299 // SetVector here to preserve program order. If the index computations 12300 // are vectorizable and begin with loads, we want to minimize the chance 12301 // of having to reorder them later. 12302 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 12303 12304 // Some of the candidates may have already been vectorized after we 12305 // initially collected them. If so, they are marked as deleted, so remove 12306 // them from the set of candidates. 12307 Candidates.remove_if( 12308 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 12309 12310 // Remove from the set of candidates all pairs of getelementptrs with 12311 // constant differences. Such getelementptrs are likely not good 12312 // candidates for vectorization in a bottom-up phase since one can be 12313 // computed from the other. We also ensure all candidate getelementptr 12314 // indices are unique. 12315 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 12316 auto *GEPI = GEPList[I]; 12317 if (!Candidates.count(GEPI)) 12318 continue; 12319 auto *SCEVI = SE->getSCEV(GEPList[I]); 12320 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 12321 auto *GEPJ = GEPList[J]; 12322 auto *SCEVJ = SE->getSCEV(GEPList[J]); 12323 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 12324 Candidates.remove(GEPI); 12325 Candidates.remove(GEPJ); 12326 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 12327 Candidates.remove(GEPJ); 12328 } 12329 } 12330 } 12331 12332 // We break out of the above computation as soon as we know there are 12333 // fewer than two candidates remaining. 12334 if (Candidates.size() < 2) 12335 continue; 12336 12337 // Add the single, non-constant index of each candidate to the bundle. We 12338 // ensured the indices met these constraints when we originally collected 12339 // the getelementptrs. 12340 SmallVector<Value *, 16> Bundle(Candidates.size()); 12341 auto BundleIndex = 0u; 12342 for (auto *V : Candidates) { 12343 auto *GEP = cast<GetElementPtrInst>(V); 12344 auto *GEPIdx = GEP->idx_begin()->get(); 12345 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 12346 Bundle[BundleIndex++] = GEPIdx; 12347 } 12348 12349 // Try and vectorize the indices. We are currently only interested in 12350 // gather-like cases of the form: 12351 // 12352 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 12353 // 12354 // where the loads of "a", the loads of "b", and the subtractions can be 12355 // performed in parallel. It's likely that detecting this pattern in a 12356 // bottom-up phase will be simpler and less costly than building a 12357 // full-blown top-down phase beginning at the consecutive loads. 12358 Changed |= tryToVectorizeList(Bundle, R); 12359 } 12360 } 12361 return Changed; 12362 } 12363 12364 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 12365 bool Changed = false; 12366 // Sort by type, base pointers and values operand. Value operands must be 12367 // compatible (have the same opcode, same parent), otherwise it is 12368 // definitely not profitable to try to vectorize them. 12369 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 12370 if (V->getPointerOperandType()->getTypeID() < 12371 V2->getPointerOperandType()->getTypeID()) 12372 return true; 12373 if (V->getPointerOperandType()->getTypeID() > 12374 V2->getPointerOperandType()->getTypeID()) 12375 return false; 12376 // UndefValues are compatible with all other values. 12377 if (isa<UndefValue>(V->getValueOperand()) || 12378 isa<UndefValue>(V2->getValueOperand())) 12379 return false; 12380 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 12381 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12382 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 12383 DT->getNode(I1->getParent()); 12384 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 12385 DT->getNode(I2->getParent()); 12386 assert(NodeI1 && "Should only process reachable instructions"); 12387 assert(NodeI2 && "Should only process reachable instructions"); 12388 assert((NodeI1 == NodeI2) == 12389 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12390 "Different nodes should have different DFS numbers"); 12391 if (NodeI1 != NodeI2) 12392 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12393 InstructionsState S = getSameOpcode({I1, I2}); 12394 if (S.getOpcode()) 12395 return false; 12396 return I1->getOpcode() < I2->getOpcode(); 12397 } 12398 if (isa<Constant>(V->getValueOperand()) && 12399 isa<Constant>(V2->getValueOperand())) 12400 return false; 12401 return V->getValueOperand()->getValueID() < 12402 V2->getValueOperand()->getValueID(); 12403 }; 12404 12405 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 12406 if (V1 == V2) 12407 return true; 12408 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 12409 return false; 12410 // Undefs are compatible with any other value. 12411 if (isa<UndefValue>(V1->getValueOperand()) || 12412 isa<UndefValue>(V2->getValueOperand())) 12413 return true; 12414 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 12415 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12416 if (I1->getParent() != I2->getParent()) 12417 return false; 12418 InstructionsState S = getSameOpcode({I1, I2}); 12419 return S.getOpcode() > 0; 12420 } 12421 if (isa<Constant>(V1->getValueOperand()) && 12422 isa<Constant>(V2->getValueOperand())) 12423 return true; 12424 return V1->getValueOperand()->getValueID() == 12425 V2->getValueOperand()->getValueID(); 12426 }; 12427 auto Limit = [&R, this](StoreInst *SI) { 12428 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 12429 return R.getMinVF(EltSize); 12430 }; 12431 12432 // Attempt to sort and vectorize each of the store-groups. 12433 for (auto &Pair : Stores) { 12434 if (Pair.second.size() < 2) 12435 continue; 12436 12437 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 12438 << Pair.second.size() << ".\n"); 12439 12440 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 12441 continue; 12442 12443 Changed |= tryToVectorizeSequence<StoreInst>( 12444 Pair.second, Limit, StoreSorter, AreCompatibleStores, 12445 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 12446 return vectorizeStores(Candidates, R); 12447 }, 12448 /*LimitForRegisterSize=*/false); 12449 } 12450 return Changed; 12451 } 12452 12453 char SLPVectorizer::ID = 0; 12454 12455 static const char lv_name[] = "SLP Vectorizer"; 12456 12457 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 12458 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 12459 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 12460 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12461 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 12462 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 12463 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 12464 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 12465 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 12466 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 12467 12468 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 12469