1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the vector of instructions can be represented as a shuffle, like: 287 /// %x0 = extractelement <4 x i8> %x, i32 0 288 /// %x3 = extractelement <4 x i8> %x, i32 3 289 /// %y1 = extractelement <4 x i8> %y, i32 1 290 /// %y2 = extractelement <4 x i8> %y, i32 2 291 /// %x0x0 = mul i8 %x0, %x0 292 /// %x3x3 = mul i8 %x3, %x3 293 /// %y1y1 = mul i8 %y1, %y1 294 /// %y2y2 = mul i8 %y2, %y2 295 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 296 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 297 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 298 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 299 /// ret <4 x i8> %ins4 300 /// can be transformed into: 301 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 302 /// i32 6> 303 /// %2 = mul <4 x i8> %1, %1 304 /// ret <4 x i8> %2 305 /// We convert this initially to something like: 306 /// %x0 = extractelement <4 x i8> %x, i32 0 307 /// %x3 = extractelement <4 x i8> %x, i32 3 308 /// %y1 = extractelement <4 x i8> %y, i32 1 309 /// %y2 = extractelement <4 x i8> %y, i32 2 310 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 311 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 312 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 313 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 314 /// %5 = mul <4 x i8> %4, %4 315 /// %6 = extractelement <4 x i8> %5, i32 0 316 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 317 /// %7 = extractelement <4 x i8> %5, i32 1 318 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 319 /// %8 = extractelement <4 x i8> %5, i32 2 320 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 321 /// %9 = extractelement <4 x i8> %5, i32 3 322 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 323 /// ret <4 x i8> %ins4 324 /// InstCombiner transforms this into a shuffle and vector mul 325 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 326 /// TODO: Can we split off and reuse the shuffle mask detection from 327 /// TargetTransformInfo::getInstructionThroughput? 328 static Optional<TargetTransformInfo::ShuffleKind> 329 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 330 auto *EI0 = cast<ExtractElementInst>(VL[0]); 331 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 332 return None; 333 unsigned Size = 334 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 335 Value *Vec1 = nullptr; 336 Value *Vec2 = nullptr; 337 enum ShuffleMode { Unknown, Select, Permute }; 338 ShuffleMode CommonShuffleMode = Unknown; 339 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 340 auto *EI = cast<ExtractElementInst>(VL[I]); 341 auto *Vec = EI->getVectorOperand(); 342 // All vector operands must have the same number of vector elements. 343 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 344 return None; 345 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 346 if (!Idx) 347 return None; 348 // Undefined behavior if Idx is negative or >= Size. 349 if (Idx->getValue().uge(Size)) { 350 Mask.push_back(UndefMaskElem); 351 continue; 352 } 353 unsigned IntIdx = Idx->getValue().getZExtValue(); 354 Mask.push_back(IntIdx); 355 // We can extractelement from undef or poison vector. 356 if (isa<UndefValue>(Vec)) 357 continue; 358 // For correct shuffling we have to have at most 2 different vector operands 359 // in all extractelement instructions. 360 if (!Vec1 || Vec1 == Vec) 361 Vec1 = Vec; 362 else if (!Vec2 || Vec2 == Vec) 363 Vec2 = Vec; 364 else 365 return None; 366 if (CommonShuffleMode == Permute) 367 continue; 368 // If the extract index is not the same as the operation number, it is a 369 // permutation. 370 if (IntIdx != I) { 371 CommonShuffleMode = Permute; 372 continue; 373 } 374 CommonShuffleMode = Select; 375 } 376 // If we're not crossing lanes in different vectors, consider it as blending. 377 if (CommonShuffleMode == Select && Vec2) 378 return TargetTransformInfo::SK_Select; 379 // If Vec2 was never used, we have a permutation of a single vector, otherwise 380 // we have permutation of 2 vectors. 381 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 382 : TargetTransformInfo::SK_PermuteSingleSrc; 383 } 384 385 namespace { 386 387 /// Main data required for vectorization of instructions. 388 struct InstructionsState { 389 /// The very first instruction in the list with the main opcode. 390 Value *OpValue = nullptr; 391 392 /// The main/alternate instruction. 393 Instruction *MainOp = nullptr; 394 Instruction *AltOp = nullptr; 395 396 /// The main/alternate opcodes for the list of instructions. 397 unsigned getOpcode() const { 398 return MainOp ? MainOp->getOpcode() : 0; 399 } 400 401 unsigned getAltOpcode() const { 402 return AltOp ? AltOp->getOpcode() : 0; 403 } 404 405 /// Some of the instructions in the list have alternate opcodes. 406 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 407 408 bool isOpcodeOrAlt(Instruction *I) const { 409 unsigned CheckedOpcode = I->getOpcode(); 410 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 411 } 412 413 InstructionsState() = delete; 414 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 415 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 416 }; 417 418 } // end anonymous namespace 419 420 /// Chooses the correct key for scheduling data. If \p Op has the same (or 421 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 422 /// OpValue. 423 static Value *isOneOf(const InstructionsState &S, Value *Op) { 424 auto *I = dyn_cast<Instruction>(Op); 425 if (I && S.isOpcodeOrAlt(I)) 426 return Op; 427 return S.OpValue; 428 } 429 430 /// \returns true if \p Opcode is allowed as part of of the main/alternate 431 /// instruction for SLP vectorization. 432 /// 433 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 434 /// "shuffled out" lane would result in division by zero. 435 static bool isValidForAlternation(unsigned Opcode) { 436 if (Instruction::isIntDivRem(Opcode)) 437 return false; 438 439 return true; 440 } 441 442 /// \returns analysis of the Instructions in \p VL described in 443 /// InstructionsState, the Opcode that we suppose the whole list 444 /// could be vectorized even if its structure is diverse. 445 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 446 unsigned BaseIndex = 0) { 447 // Make sure these are all Instructions. 448 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 449 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 450 451 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 452 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 453 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 454 unsigned AltOpcode = Opcode; 455 unsigned AltIndex = BaseIndex; 456 457 // Check for one alternate opcode from another BinaryOperator. 458 // TODO - generalize to support all operators (types, calls etc.). 459 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 460 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 461 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 462 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 463 continue; 464 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 465 isValidForAlternation(Opcode)) { 466 AltOpcode = InstOpcode; 467 AltIndex = Cnt; 468 continue; 469 } 470 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 471 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 472 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 473 if (Ty0 == Ty1) { 474 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 475 continue; 476 if (Opcode == AltOpcode) { 477 assert(isValidForAlternation(Opcode) && 478 isValidForAlternation(InstOpcode) && 479 "Cast isn't safe for alternation, logic needs to be updated!"); 480 AltOpcode = InstOpcode; 481 AltIndex = Cnt; 482 continue; 483 } 484 } 485 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 486 continue; 487 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 488 } 489 490 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 491 cast<Instruction>(VL[AltIndex])); 492 } 493 494 /// \returns true if all of the values in \p VL have the same type or false 495 /// otherwise. 496 static bool allSameType(ArrayRef<Value *> VL) { 497 Type *Ty = VL[0]->getType(); 498 for (int i = 1, e = VL.size(); i < e; i++) 499 if (VL[i]->getType() != Ty) 500 return false; 501 502 return true; 503 } 504 505 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 506 static Optional<unsigned> getExtractIndex(Instruction *E) { 507 unsigned Opcode = E->getOpcode(); 508 assert((Opcode == Instruction::ExtractElement || 509 Opcode == Instruction::ExtractValue) && 510 "Expected extractelement or extractvalue instruction."); 511 if (Opcode == Instruction::ExtractElement) { 512 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 513 if (!CI) 514 return None; 515 return CI->getZExtValue(); 516 } 517 ExtractValueInst *EI = cast<ExtractValueInst>(E); 518 if (EI->getNumIndices() != 1) 519 return None; 520 return *EI->idx_begin(); 521 } 522 523 /// \returns True if in-tree use also needs extract. This refers to 524 /// possible scalar operand in vectorized instruction. 525 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 526 TargetLibraryInfo *TLI) { 527 unsigned Opcode = UserInst->getOpcode(); 528 switch (Opcode) { 529 case Instruction::Load: { 530 LoadInst *LI = cast<LoadInst>(UserInst); 531 return (LI->getPointerOperand() == Scalar); 532 } 533 case Instruction::Store: { 534 StoreInst *SI = cast<StoreInst>(UserInst); 535 return (SI->getPointerOperand() == Scalar); 536 } 537 case Instruction::Call: { 538 CallInst *CI = cast<CallInst>(UserInst); 539 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 540 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 541 if (hasVectorInstrinsicScalarOpd(ID, i)) 542 return (CI->getArgOperand(i) == Scalar); 543 } 544 LLVM_FALLTHROUGH; 545 } 546 default: 547 return false; 548 } 549 } 550 551 /// \returns the AA location that is being access by the instruction. 552 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 553 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 554 return MemoryLocation::get(SI); 555 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 556 return MemoryLocation::get(LI); 557 return MemoryLocation(); 558 } 559 560 /// \returns True if the instruction is not a volatile or atomic load/store. 561 static bool isSimple(Instruction *I) { 562 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 563 return LI->isSimple(); 564 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 565 return SI->isSimple(); 566 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 567 return !MI->isVolatile(); 568 return true; 569 } 570 571 /// Shuffles \p Mask in accordance with the given \p SubMask. 572 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 573 if (SubMask.empty()) 574 return; 575 if (Mask.empty()) { 576 Mask.append(SubMask.begin(), SubMask.end()); 577 return; 578 } 579 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 580 int TermValue = std::min(Mask.size(), SubMask.size()); 581 for (int I = 0, E = SubMask.size(); I < E; ++I) { 582 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 583 Mask[SubMask[I]] >= TermValue) 584 continue; 585 NewMask[I] = Mask[SubMask[I]]; 586 } 587 Mask.swap(NewMask); 588 } 589 590 /// Order may have elements assigned special value (size) which is out of 591 /// bounds. Such indices only appear on places which correspond to undef values 592 /// (see canReuseExtract for details) and used in order to avoid undef values 593 /// have effect on operands ordering. 594 /// The first loop below simply finds all unused indices and then the next loop 595 /// nest assigns these indices for undef values positions. 596 /// As an example below Order has two undef positions and they have assigned 597 /// values 3 and 7 respectively: 598 /// before: 6 9 5 4 9 2 1 0 599 /// after: 6 3 5 4 7 2 1 0 600 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 601 const unsigned Sz = Order.size(); 602 SmallBitVector UsedIndices(Sz); 603 SmallVector<int> MaskedIndices; 604 for (unsigned I = 0; I < Sz; ++I) { 605 if (Order[I] < Sz) 606 UsedIndices.set(Order[I]); 607 else 608 MaskedIndices.push_back(I); 609 } 610 if (MaskedIndices.empty()) 611 return; 612 SmallVector<int> AvailableIndices(MaskedIndices.size()); 613 unsigned Cnt = 0; 614 int Idx = UsedIndices.find_first(); 615 do { 616 AvailableIndices[Cnt] = Idx; 617 Idx = UsedIndices.find_next(Idx); 618 ++Cnt; 619 } while (Idx > 0); 620 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 621 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 622 Order[MaskedIndices[I]] = AvailableIndices[I]; 623 } 624 625 namespace llvm { 626 627 static void inversePermutation(ArrayRef<unsigned> Indices, 628 SmallVectorImpl<int> &Mask) { 629 Mask.clear(); 630 const unsigned E = Indices.size(); 631 Mask.resize(E, UndefMaskElem); 632 for (unsigned I = 0; I < E; ++I) 633 Mask[Indices[I]] = I; 634 } 635 636 /// \returns inserting index of InsertElement or InsertValue instruction, 637 /// using Offset as base offset for index. 638 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 639 int Index = Offset; 640 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 641 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 642 auto *VT = cast<FixedVectorType>(IE->getType()); 643 if (CI->getValue().uge(VT->getNumElements())) 644 return UndefMaskElem; 645 Index *= VT->getNumElements(); 646 Index += CI->getZExtValue(); 647 return Index; 648 } 649 if (isa<UndefValue>(IE->getOperand(2))) 650 return UndefMaskElem; 651 return None; 652 } 653 654 auto *IV = cast<InsertValueInst>(InsertInst); 655 Type *CurrentType = IV->getType(); 656 for (unsigned I : IV->indices()) { 657 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 658 Index *= ST->getNumElements(); 659 CurrentType = ST->getElementType(I); 660 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 661 Index *= AT->getNumElements(); 662 CurrentType = AT->getElementType(); 663 } else { 664 return None; 665 } 666 Index += I; 667 } 668 return Index; 669 } 670 671 /// Reorders the list of scalars in accordance with the given \p Order and then 672 /// the \p Mask. \p Order - is the original order of the scalars, need to 673 /// reorder scalars into an unordered state at first according to the given 674 /// order. Then the ordered scalars are shuffled once again in accordance with 675 /// the provided mask. 676 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 677 ArrayRef<int> Mask) { 678 assert(!Mask.empty() && "Expected non-empty mask."); 679 SmallVector<Value *> Prev(Scalars.size(), 680 UndefValue::get(Scalars.front()->getType())); 681 Prev.swap(Scalars); 682 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 683 if (Mask[I] != UndefMaskElem) 684 Scalars[Mask[I]] = Prev[I]; 685 } 686 687 namespace slpvectorizer { 688 689 /// Bottom Up SLP Vectorizer. 690 class BoUpSLP { 691 struct TreeEntry; 692 struct ScheduleData; 693 694 public: 695 using ValueList = SmallVector<Value *, 8>; 696 using InstrList = SmallVector<Instruction *, 16>; 697 using ValueSet = SmallPtrSet<Value *, 16>; 698 using StoreList = SmallVector<StoreInst *, 8>; 699 using ExtraValueToDebugLocsMap = 700 MapVector<Value *, SmallVector<Instruction *, 2>>; 701 using OrdersType = SmallVector<unsigned, 4>; 702 703 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 704 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 705 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 706 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 707 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 708 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 709 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 710 // Use the vector register size specified by the target unless overridden 711 // by a command-line option. 712 // TODO: It would be better to limit the vectorization factor based on 713 // data type rather than just register size. For example, x86 AVX has 714 // 256-bit registers, but it does not support integer operations 715 // at that width (that requires AVX2). 716 if (MaxVectorRegSizeOption.getNumOccurrences()) 717 MaxVecRegSize = MaxVectorRegSizeOption; 718 else 719 MaxVecRegSize = 720 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 721 .getFixedSize(); 722 723 if (MinVectorRegSizeOption.getNumOccurrences()) 724 MinVecRegSize = MinVectorRegSizeOption; 725 else 726 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 727 } 728 729 /// Vectorize the tree that starts with the elements in \p VL. 730 /// Returns the vectorized root. 731 Value *vectorizeTree(); 732 733 /// Vectorize the tree but with the list of externally used values \p 734 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 735 /// generated extractvalue instructions. 736 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 737 738 /// \returns the cost incurred by unwanted spills and fills, caused by 739 /// holding live values over call sites. 740 InstructionCost getSpillCost() const; 741 742 /// \returns the vectorization cost of the subtree that starts at \p VL. 743 /// A negative number means that this is profitable. 744 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 745 746 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 747 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 748 void buildTree(ArrayRef<Value *> Roots, 749 ArrayRef<Value *> UserIgnoreLst = None); 750 751 /// Builds external uses of the vectorized scalars, i.e. the list of 752 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 753 /// ExternallyUsedValues contains additional list of external uses to handle 754 /// vectorization of reductions. 755 void 756 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 757 758 /// Clear the internal data structures that are created by 'buildTree'. 759 void deleteTree() { 760 VectorizableTree.clear(); 761 ScalarToTreeEntry.clear(); 762 MustGather.clear(); 763 ExternalUses.clear(); 764 for (auto &Iter : BlocksSchedules) { 765 BlockScheduling *BS = Iter.second.get(); 766 BS->clear(); 767 } 768 MinBWs.clear(); 769 InstrElementSize.clear(); 770 } 771 772 unsigned getTreeSize() const { return VectorizableTree.size(); } 773 774 /// Perform LICM and CSE on the newly generated gather sequences. 775 void optimizeGatherSequence(); 776 777 /// Checks if the specified gather tree entry \p TE can be represented as a 778 /// shuffled vector entry + (possibly) permutation with other gathers. It 779 /// implements the checks only for possibly ordered scalars (Loads, 780 /// ExtractElement, ExtractValue), which can be part of the graph. 781 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 782 783 /// Reorders the current graph to the most profitable order starting from the 784 /// root node to the leaf nodes. The best order is chosen only from the nodes 785 /// of the same size (vectorization factor). Smaller nodes are considered 786 /// parts of subgraph with smaller VF and they are reordered independently. We 787 /// can make it because we still need to extend smaller nodes to the wider VF 788 /// and we can merge reordering shuffles with the widening shuffles. 789 void reorderTopToBottom(); 790 791 /// Reorders the current graph to the most profitable order starting from 792 /// leaves to the root. It allows to rotate small subgraphs and reduce the 793 /// number of reshuffles if the leaf nodes use the same order. In this case we 794 /// can merge the orders and just shuffle user node instead of shuffling its 795 /// operands. Plus, even the leaf nodes have different orders, it allows to 796 /// sink reordering in the graph closer to the root node and merge it later 797 /// during analysis. 798 void reorderBottomToTop(bool IgnoreReorder = false); 799 800 /// \return The vector element size in bits to use when vectorizing the 801 /// expression tree ending at \p V. If V is a store, the size is the width of 802 /// the stored value. Otherwise, the size is the width of the largest loaded 803 /// value reaching V. This method is used by the vectorizer to calculate 804 /// vectorization factors. 805 unsigned getVectorElementSize(Value *V); 806 807 /// Compute the minimum type sizes required to represent the entries in a 808 /// vectorizable tree. 809 void computeMinimumValueSizes(); 810 811 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 812 unsigned getMaxVecRegSize() const { 813 return MaxVecRegSize; 814 } 815 816 // \returns minimum vector register size as set by cl::opt. 817 unsigned getMinVecRegSize() const { 818 return MinVecRegSize; 819 } 820 821 unsigned getMinVF(unsigned Sz) const { 822 return std::max(2U, getMinVecRegSize() / Sz); 823 } 824 825 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 826 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 827 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 828 return MaxVF ? MaxVF : UINT_MAX; 829 } 830 831 /// Check if homogeneous aggregate is isomorphic to some VectorType. 832 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 833 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 834 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 835 /// 836 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 837 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 838 839 /// \returns True if the VectorizableTree is both tiny and not fully 840 /// vectorizable. We do not vectorize such trees. 841 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 842 843 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 844 /// can be load combined in the backend. Load combining may not be allowed in 845 /// the IR optimizer, so we do not want to alter the pattern. For example, 846 /// partially transforming a scalar bswap() pattern into vector code is 847 /// effectively impossible for the backend to undo. 848 /// TODO: If load combining is allowed in the IR optimizer, this analysis 849 /// may not be necessary. 850 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 851 852 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 853 /// can be load combined in the backend. Load combining may not be allowed in 854 /// the IR optimizer, so we do not want to alter the pattern. For example, 855 /// partially transforming a scalar bswap() pattern into vector code is 856 /// effectively impossible for the backend to undo. 857 /// TODO: If load combining is allowed in the IR optimizer, this analysis 858 /// may not be necessary. 859 bool isLoadCombineCandidate() const; 860 861 OptimizationRemarkEmitter *getORE() { return ORE; } 862 863 /// This structure holds any data we need about the edges being traversed 864 /// during buildTree_rec(). We keep track of: 865 /// (i) the user TreeEntry index, and 866 /// (ii) the index of the edge. 867 struct EdgeInfo { 868 EdgeInfo() = default; 869 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 870 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 871 /// The user TreeEntry. 872 TreeEntry *UserTE = nullptr; 873 /// The operand index of the use. 874 unsigned EdgeIdx = UINT_MAX; 875 #ifndef NDEBUG 876 friend inline raw_ostream &operator<<(raw_ostream &OS, 877 const BoUpSLP::EdgeInfo &EI) { 878 EI.dump(OS); 879 return OS; 880 } 881 /// Debug print. 882 void dump(raw_ostream &OS) const { 883 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 884 << " EdgeIdx:" << EdgeIdx << "}"; 885 } 886 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 887 #endif 888 }; 889 890 /// A helper data structure to hold the operands of a vector of instructions. 891 /// This supports a fixed vector length for all operand vectors. 892 class VLOperands { 893 /// For each operand we need (i) the value, and (ii) the opcode that it 894 /// would be attached to if the expression was in a left-linearized form. 895 /// This is required to avoid illegal operand reordering. 896 /// For example: 897 /// \verbatim 898 /// 0 Op1 899 /// |/ 900 /// Op1 Op2 Linearized + Op2 901 /// \ / ----------> |/ 902 /// - - 903 /// 904 /// Op1 - Op2 (0 + Op1) - Op2 905 /// \endverbatim 906 /// 907 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 908 /// 909 /// Another way to think of this is to track all the operations across the 910 /// path from the operand all the way to the root of the tree and to 911 /// calculate the operation that corresponds to this path. For example, the 912 /// path from Op2 to the root crosses the RHS of the '-', therefore the 913 /// corresponding operation is a '-' (which matches the one in the 914 /// linearized tree, as shown above). 915 /// 916 /// For lack of a better term, we refer to this operation as Accumulated 917 /// Path Operation (APO). 918 struct OperandData { 919 OperandData() = default; 920 OperandData(Value *V, bool APO, bool IsUsed) 921 : V(V), APO(APO), IsUsed(IsUsed) {} 922 /// The operand value. 923 Value *V = nullptr; 924 /// TreeEntries only allow a single opcode, or an alternate sequence of 925 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 926 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 927 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 928 /// (e.g., Add/Mul) 929 bool APO = false; 930 /// Helper data for the reordering function. 931 bool IsUsed = false; 932 }; 933 934 /// During operand reordering, we are trying to select the operand at lane 935 /// that matches best with the operand at the neighboring lane. Our 936 /// selection is based on the type of value we are looking for. For example, 937 /// if the neighboring lane has a load, we need to look for a load that is 938 /// accessing a consecutive address. These strategies are summarized in the 939 /// 'ReorderingMode' enumerator. 940 enum class ReorderingMode { 941 Load, ///< Matching loads to consecutive memory addresses 942 Opcode, ///< Matching instructions based on opcode (same or alternate) 943 Constant, ///< Matching constants 944 Splat, ///< Matching the same instruction multiple times (broadcast) 945 Failed, ///< We failed to create a vectorizable group 946 }; 947 948 using OperandDataVec = SmallVector<OperandData, 2>; 949 950 /// A vector of operand vectors. 951 SmallVector<OperandDataVec, 4> OpsVec; 952 953 const DataLayout &DL; 954 ScalarEvolution &SE; 955 const BoUpSLP &R; 956 957 /// \returns the operand data at \p OpIdx and \p Lane. 958 OperandData &getData(unsigned OpIdx, unsigned Lane) { 959 return OpsVec[OpIdx][Lane]; 960 } 961 962 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 963 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 964 return OpsVec[OpIdx][Lane]; 965 } 966 967 /// Clears the used flag for all entries. 968 void clearUsed() { 969 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 970 OpIdx != NumOperands; ++OpIdx) 971 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 972 ++Lane) 973 OpsVec[OpIdx][Lane].IsUsed = false; 974 } 975 976 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 977 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 978 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 979 } 980 981 // The hard-coded scores listed here are not very important. When computing 982 // the scores of matching one sub-tree with another, we are basically 983 // counting the number of values that are matching. So even if all scores 984 // are set to 1, we would still get a decent matching result. 985 // However, sometimes we have to break ties. For example we may have to 986 // choose between matching loads vs matching opcodes. This is what these 987 // scores are helping us with: they provide the order of preference. 988 989 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 990 static const int ScoreConsecutiveLoads = 3; 991 /// ExtractElementInst from same vector and consecutive indexes. 992 static const int ScoreConsecutiveExtracts = 3; 993 /// Constants. 994 static const int ScoreConstants = 2; 995 /// Instructions with the same opcode. 996 static const int ScoreSameOpcode = 2; 997 /// Instructions with alt opcodes (e.g, add + sub). 998 static const int ScoreAltOpcodes = 1; 999 /// Identical instructions (a.k.a. splat or broadcast). 1000 static const int ScoreSplat = 1; 1001 /// Matching with an undef is preferable to failing. 1002 static const int ScoreUndef = 1; 1003 /// Score for failing to find a decent match. 1004 static const int ScoreFail = 0; 1005 /// User exteranl to the vectorized code. 1006 static const int ExternalUseCost = 1; 1007 /// The user is internal but in a different lane. 1008 static const int UserInDiffLaneCost = ExternalUseCost; 1009 1010 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1011 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1012 ScalarEvolution &SE) { 1013 auto *LI1 = dyn_cast<LoadInst>(V1); 1014 auto *LI2 = dyn_cast<LoadInst>(V2); 1015 if (LI1 && LI2) { 1016 if (LI1->getParent() != LI2->getParent()) 1017 return VLOperands::ScoreFail; 1018 1019 Optional<int> Dist = getPointersDiff( 1020 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1021 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1022 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1023 : VLOperands::ScoreFail; 1024 } 1025 1026 auto *C1 = dyn_cast<Constant>(V1); 1027 auto *C2 = dyn_cast<Constant>(V2); 1028 if (C1 && C2) 1029 return VLOperands::ScoreConstants; 1030 1031 // Extracts from consecutive indexes of the same vector better score as 1032 // the extracts could be optimized away. 1033 Value *EV; 1034 ConstantInt *Ex1Idx, *Ex2Idx; 1035 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1036 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1037 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1038 return VLOperands::ScoreConsecutiveExtracts; 1039 1040 auto *I1 = dyn_cast<Instruction>(V1); 1041 auto *I2 = dyn_cast<Instruction>(V2); 1042 if (I1 && I2) { 1043 if (I1 == I2) 1044 return VLOperands::ScoreSplat; 1045 InstructionsState S = getSameOpcode({I1, I2}); 1046 // Note: Only consider instructions with <= 2 operands to avoid 1047 // complexity explosion. 1048 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1049 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1050 : VLOperands::ScoreSameOpcode; 1051 } 1052 1053 if (isa<UndefValue>(V2)) 1054 return VLOperands::ScoreUndef; 1055 1056 return VLOperands::ScoreFail; 1057 } 1058 1059 /// Holds the values and their lane that are taking part in the look-ahead 1060 /// score calculation. This is used in the external uses cost calculation. 1061 SmallDenseMap<Value *, int> InLookAheadValues; 1062 1063 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1064 /// either external to the vectorized code, or require shuffling. 1065 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1066 const std::pair<Value *, int> &RHS) { 1067 int Cost = 0; 1068 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1069 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1070 Value *V = Values[Idx].first; 1071 if (isa<Constant>(V)) { 1072 // Since this is a function pass, it doesn't make semantic sense to 1073 // walk the users of a subclass of Constant. The users could be in 1074 // another function, or even another module that happens to be in 1075 // the same LLVMContext. 1076 continue; 1077 } 1078 1079 // Calculate the absolute lane, using the minimum relative lane of LHS 1080 // and RHS as base and Idx as the offset. 1081 int Ln = std::min(LHS.second, RHS.second) + Idx; 1082 assert(Ln >= 0 && "Bad lane calculation"); 1083 unsigned UsersBudget = LookAheadUsersBudget; 1084 for (User *U : V->users()) { 1085 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1086 // The user is in the VectorizableTree. Check if we need to insert. 1087 auto It = llvm::find(UserTE->Scalars, U); 1088 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1089 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1090 assert(UserLn >= 0 && "Bad lane"); 1091 if (UserLn != Ln) 1092 Cost += UserInDiffLaneCost; 1093 } else { 1094 // Check if the user is in the look-ahead code. 1095 auto It2 = InLookAheadValues.find(U); 1096 if (It2 != InLookAheadValues.end()) { 1097 // The user is in the look-ahead code. Check the lane. 1098 if (It2->second != Ln) 1099 Cost += UserInDiffLaneCost; 1100 } else { 1101 // The user is neither in SLP tree nor in the look-ahead code. 1102 Cost += ExternalUseCost; 1103 } 1104 } 1105 // Limit the number of visited uses to cap compilation time. 1106 if (--UsersBudget == 0) 1107 break; 1108 } 1109 } 1110 return Cost; 1111 } 1112 1113 /// Go through the operands of \p LHS and \p RHS recursively until \p 1114 /// MaxLevel, and return the cummulative score. For example: 1115 /// \verbatim 1116 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1117 /// \ / \ / \ / \ / 1118 /// + + + + 1119 /// G1 G2 G3 G4 1120 /// \endverbatim 1121 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1122 /// each level recursively, accumulating the score. It starts from matching 1123 /// the additions at level 0, then moves on to the loads (level 1). The 1124 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1125 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1126 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1127 /// Please note that the order of the operands does not matter, as we 1128 /// evaluate the score of all profitable combinations of operands. In 1129 /// other words the score of G1 and G4 is the same as G1 and G2. This 1130 /// heuristic is based on ideas described in: 1131 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1132 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1133 /// Luís F. W. Góes 1134 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1135 const std::pair<Value *, int> &RHS, int CurrLevel, 1136 int MaxLevel) { 1137 1138 Value *V1 = LHS.first; 1139 Value *V2 = RHS.first; 1140 // Get the shallow score of V1 and V2. 1141 int ShallowScoreAtThisLevel = 1142 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1143 getExternalUsesCost(LHS, RHS)); 1144 int Lane1 = LHS.second; 1145 int Lane2 = RHS.second; 1146 1147 // If reached MaxLevel, 1148 // or if V1 and V2 are not instructions, 1149 // or if they are SPLAT, 1150 // or if they are not consecutive, early return the current cost. 1151 auto *I1 = dyn_cast<Instruction>(V1); 1152 auto *I2 = dyn_cast<Instruction>(V2); 1153 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1154 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1155 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1156 return ShallowScoreAtThisLevel; 1157 assert(I1 && I2 && "Should have early exited."); 1158 1159 // Keep track of in-tree values for determining the external-use cost. 1160 InLookAheadValues[V1] = Lane1; 1161 InLookAheadValues[V2] = Lane2; 1162 1163 // Contains the I2 operand indexes that got matched with I1 operands. 1164 SmallSet<unsigned, 4> Op2Used; 1165 1166 // Recursion towards the operands of I1 and I2. We are trying all possbile 1167 // operand pairs, and keeping track of the best score. 1168 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1169 OpIdx1 != NumOperands1; ++OpIdx1) { 1170 // Try to pair op1I with the best operand of I2. 1171 int MaxTmpScore = 0; 1172 unsigned MaxOpIdx2 = 0; 1173 bool FoundBest = false; 1174 // If I2 is commutative try all combinations. 1175 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1176 unsigned ToIdx = isCommutative(I2) 1177 ? I2->getNumOperands() 1178 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1179 assert(FromIdx <= ToIdx && "Bad index"); 1180 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1181 // Skip operands already paired with OpIdx1. 1182 if (Op2Used.count(OpIdx2)) 1183 continue; 1184 // Recursively calculate the cost at each level 1185 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1186 {I2->getOperand(OpIdx2), Lane2}, 1187 CurrLevel + 1, MaxLevel); 1188 // Look for the best score. 1189 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1190 MaxTmpScore = TmpScore; 1191 MaxOpIdx2 = OpIdx2; 1192 FoundBest = true; 1193 } 1194 } 1195 if (FoundBest) { 1196 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1197 Op2Used.insert(MaxOpIdx2); 1198 ShallowScoreAtThisLevel += MaxTmpScore; 1199 } 1200 } 1201 return ShallowScoreAtThisLevel; 1202 } 1203 1204 /// \Returns the look-ahead score, which tells us how much the sub-trees 1205 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1206 /// score. This helps break ties in an informed way when we cannot decide on 1207 /// the order of the operands by just considering the immediate 1208 /// predecessors. 1209 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1210 const std::pair<Value *, int> &RHS) { 1211 InLookAheadValues.clear(); 1212 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1213 } 1214 1215 // Search all operands in Ops[*][Lane] for the one that matches best 1216 // Ops[OpIdx][LastLane] and return its opreand index. 1217 // If no good match can be found, return None. 1218 Optional<unsigned> 1219 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1220 ArrayRef<ReorderingMode> ReorderingModes) { 1221 unsigned NumOperands = getNumOperands(); 1222 1223 // The operand of the previous lane at OpIdx. 1224 Value *OpLastLane = getData(OpIdx, LastLane).V; 1225 1226 // Our strategy mode for OpIdx. 1227 ReorderingMode RMode = ReorderingModes[OpIdx]; 1228 1229 // The linearized opcode of the operand at OpIdx, Lane. 1230 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1231 1232 // The best operand index and its score. 1233 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1234 // are using the score to differentiate between the two. 1235 struct BestOpData { 1236 Optional<unsigned> Idx = None; 1237 unsigned Score = 0; 1238 } BestOp; 1239 1240 // Iterate through all unused operands and look for the best. 1241 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1242 // Get the operand at Idx and Lane. 1243 OperandData &OpData = getData(Idx, Lane); 1244 Value *Op = OpData.V; 1245 bool OpAPO = OpData.APO; 1246 1247 // Skip already selected operands. 1248 if (OpData.IsUsed) 1249 continue; 1250 1251 // Skip if we are trying to move the operand to a position with a 1252 // different opcode in the linearized tree form. This would break the 1253 // semantics. 1254 if (OpAPO != OpIdxAPO) 1255 continue; 1256 1257 // Look for an operand that matches the current mode. 1258 switch (RMode) { 1259 case ReorderingMode::Load: 1260 case ReorderingMode::Constant: 1261 case ReorderingMode::Opcode: { 1262 bool LeftToRight = Lane > LastLane; 1263 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1264 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1265 unsigned Score = 1266 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1267 if (Score > BestOp.Score) { 1268 BestOp.Idx = Idx; 1269 BestOp.Score = Score; 1270 } 1271 break; 1272 } 1273 case ReorderingMode::Splat: 1274 if (Op == OpLastLane) 1275 BestOp.Idx = Idx; 1276 break; 1277 case ReorderingMode::Failed: 1278 return None; 1279 } 1280 } 1281 1282 if (BestOp.Idx) { 1283 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1284 return BestOp.Idx; 1285 } 1286 // If we could not find a good match return None. 1287 return None; 1288 } 1289 1290 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1291 /// reordering from. This is the one which has the least number of operands 1292 /// that can freely move about. 1293 unsigned getBestLaneToStartReordering() const { 1294 unsigned BestLane = 0; 1295 unsigned Min = UINT_MAX; 1296 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1297 ++Lane) { 1298 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1299 if (NumFreeOps < Min) { 1300 Min = NumFreeOps; 1301 BestLane = Lane; 1302 } 1303 } 1304 return BestLane; 1305 } 1306 1307 /// \Returns the maximum number of operands that are allowed to be reordered 1308 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1309 /// start operand reordering. 1310 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1311 unsigned CntTrue = 0; 1312 unsigned NumOperands = getNumOperands(); 1313 // Operands with the same APO can be reordered. We therefore need to count 1314 // how many of them we have for each APO, like this: Cnt[APO] = x. 1315 // Since we only have two APOs, namely true and false, we can avoid using 1316 // a map. Instead we can simply count the number of operands that 1317 // correspond to one of them (in this case the 'true' APO), and calculate 1318 // the other by subtracting it from the total number of operands. 1319 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1320 if (getData(OpIdx, Lane).APO) 1321 ++CntTrue; 1322 unsigned CntFalse = NumOperands - CntTrue; 1323 return std::max(CntTrue, CntFalse); 1324 } 1325 1326 /// Go through the instructions in VL and append their operands. 1327 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1328 assert(!VL.empty() && "Bad VL"); 1329 assert((empty() || VL.size() == getNumLanes()) && 1330 "Expected same number of lanes"); 1331 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1332 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1333 OpsVec.resize(NumOperands); 1334 unsigned NumLanes = VL.size(); 1335 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1336 OpsVec[OpIdx].resize(NumLanes); 1337 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1338 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1339 // Our tree has just 3 nodes: the root and two operands. 1340 // It is therefore trivial to get the APO. We only need to check the 1341 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1342 // RHS operand. The LHS operand of both add and sub is never attached 1343 // to an inversese operation in the linearized form, therefore its APO 1344 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1345 1346 // Since operand reordering is performed on groups of commutative 1347 // operations or alternating sequences (e.g., +, -), we can safely 1348 // tell the inverse operations by checking commutativity. 1349 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1350 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1351 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1352 APO, false}; 1353 } 1354 } 1355 } 1356 1357 /// \returns the number of operands. 1358 unsigned getNumOperands() const { return OpsVec.size(); } 1359 1360 /// \returns the number of lanes. 1361 unsigned getNumLanes() const { return OpsVec[0].size(); } 1362 1363 /// \returns the operand value at \p OpIdx and \p Lane. 1364 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1365 return getData(OpIdx, Lane).V; 1366 } 1367 1368 /// \returns true if the data structure is empty. 1369 bool empty() const { return OpsVec.empty(); } 1370 1371 /// Clears the data. 1372 void clear() { OpsVec.clear(); } 1373 1374 /// \Returns true if there are enough operands identical to \p Op to fill 1375 /// the whole vector. 1376 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1377 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1378 bool OpAPO = getData(OpIdx, Lane).APO; 1379 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1380 if (Ln == Lane) 1381 continue; 1382 // This is set to true if we found a candidate for broadcast at Lane. 1383 bool FoundCandidate = false; 1384 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1385 OperandData &Data = getData(OpI, Ln); 1386 if (Data.APO != OpAPO || Data.IsUsed) 1387 continue; 1388 if (Data.V == Op) { 1389 FoundCandidate = true; 1390 Data.IsUsed = true; 1391 break; 1392 } 1393 } 1394 if (!FoundCandidate) 1395 return false; 1396 } 1397 return true; 1398 } 1399 1400 public: 1401 /// Initialize with all the operands of the instruction vector \p RootVL. 1402 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1403 ScalarEvolution &SE, const BoUpSLP &R) 1404 : DL(DL), SE(SE), R(R) { 1405 // Append all the operands of RootVL. 1406 appendOperandsOfVL(RootVL); 1407 } 1408 1409 /// \Returns a value vector with the operands across all lanes for the 1410 /// opearnd at \p OpIdx. 1411 ValueList getVL(unsigned OpIdx) const { 1412 ValueList OpVL(OpsVec[OpIdx].size()); 1413 assert(OpsVec[OpIdx].size() == getNumLanes() && 1414 "Expected same num of lanes across all operands"); 1415 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1416 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1417 return OpVL; 1418 } 1419 1420 // Performs operand reordering for 2 or more operands. 1421 // The original operands are in OrigOps[OpIdx][Lane]. 1422 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1423 void reorder() { 1424 unsigned NumOperands = getNumOperands(); 1425 unsigned NumLanes = getNumLanes(); 1426 // Each operand has its own mode. We are using this mode to help us select 1427 // the instructions for each lane, so that they match best with the ones 1428 // we have selected so far. 1429 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1430 1431 // This is a greedy single-pass algorithm. We are going over each lane 1432 // once and deciding on the best order right away with no back-tracking. 1433 // However, in order to increase its effectiveness, we start with the lane 1434 // that has operands that can move the least. For example, given the 1435 // following lanes: 1436 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1437 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1438 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1439 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1440 // we will start at Lane 1, since the operands of the subtraction cannot 1441 // be reordered. Then we will visit the rest of the lanes in a circular 1442 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1443 1444 // Find the first lane that we will start our search from. 1445 unsigned FirstLane = getBestLaneToStartReordering(); 1446 1447 // Initialize the modes. 1448 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1449 Value *OpLane0 = getValue(OpIdx, FirstLane); 1450 // Keep track if we have instructions with all the same opcode on one 1451 // side. 1452 if (isa<LoadInst>(OpLane0)) 1453 ReorderingModes[OpIdx] = ReorderingMode::Load; 1454 else if (isa<Instruction>(OpLane0)) { 1455 // Check if OpLane0 should be broadcast. 1456 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1457 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1458 else 1459 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1460 } 1461 else if (isa<Constant>(OpLane0)) 1462 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1463 else if (isa<Argument>(OpLane0)) 1464 // Our best hope is a Splat. It may save some cost in some cases. 1465 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1466 else 1467 // NOTE: This should be unreachable. 1468 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1469 } 1470 1471 // If the initial strategy fails for any of the operand indexes, then we 1472 // perform reordering again in a second pass. This helps avoid assigning 1473 // high priority to the failed strategy, and should improve reordering for 1474 // the non-failed operand indexes. 1475 for (int Pass = 0; Pass != 2; ++Pass) { 1476 // Skip the second pass if the first pass did not fail. 1477 bool StrategyFailed = false; 1478 // Mark all operand data as free to use. 1479 clearUsed(); 1480 // We keep the original operand order for the FirstLane, so reorder the 1481 // rest of the lanes. We are visiting the nodes in a circular fashion, 1482 // using FirstLane as the center point and increasing the radius 1483 // distance. 1484 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1485 // Visit the lane on the right and then the lane on the left. 1486 for (int Direction : {+1, -1}) { 1487 int Lane = FirstLane + Direction * Distance; 1488 if (Lane < 0 || Lane >= (int)NumLanes) 1489 continue; 1490 int LastLane = Lane - Direction; 1491 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1492 "Out of bounds"); 1493 // Look for a good match for each operand. 1494 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1495 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1496 Optional<unsigned> BestIdx = 1497 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1498 // By not selecting a value, we allow the operands that follow to 1499 // select a better matching value. We will get a non-null value in 1500 // the next run of getBestOperand(). 1501 if (BestIdx) { 1502 // Swap the current operand with the one returned by 1503 // getBestOperand(). 1504 swap(OpIdx, BestIdx.getValue(), Lane); 1505 } else { 1506 // We failed to find a best operand, set mode to 'Failed'. 1507 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1508 // Enable the second pass. 1509 StrategyFailed = true; 1510 } 1511 } 1512 } 1513 } 1514 // Skip second pass if the strategy did not fail. 1515 if (!StrategyFailed) 1516 break; 1517 } 1518 } 1519 1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1521 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1522 switch (RMode) { 1523 case ReorderingMode::Load: 1524 return "Load"; 1525 case ReorderingMode::Opcode: 1526 return "Opcode"; 1527 case ReorderingMode::Constant: 1528 return "Constant"; 1529 case ReorderingMode::Splat: 1530 return "Splat"; 1531 case ReorderingMode::Failed: 1532 return "Failed"; 1533 } 1534 llvm_unreachable("Unimplemented Reordering Type"); 1535 } 1536 1537 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1538 raw_ostream &OS) { 1539 return OS << getModeStr(RMode); 1540 } 1541 1542 /// Debug print. 1543 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1544 printMode(RMode, dbgs()); 1545 } 1546 1547 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1548 return printMode(RMode, OS); 1549 } 1550 1551 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1552 const unsigned Indent = 2; 1553 unsigned Cnt = 0; 1554 for (const OperandDataVec &OpDataVec : OpsVec) { 1555 OS << "Operand " << Cnt++ << "\n"; 1556 for (const OperandData &OpData : OpDataVec) { 1557 OS.indent(Indent) << "{"; 1558 if (Value *V = OpData.V) 1559 OS << *V; 1560 else 1561 OS << "null"; 1562 OS << ", APO:" << OpData.APO << "}\n"; 1563 } 1564 OS << "\n"; 1565 } 1566 return OS; 1567 } 1568 1569 /// Debug print. 1570 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1571 #endif 1572 }; 1573 1574 /// Checks if the instruction is marked for deletion. 1575 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1576 1577 /// Marks values operands for later deletion by replacing them with Undefs. 1578 void eraseInstructions(ArrayRef<Value *> AV); 1579 1580 ~BoUpSLP(); 1581 1582 private: 1583 /// Checks if all users of \p I are the part of the vectorization tree. 1584 bool areAllUsersVectorized(Instruction *I, 1585 ArrayRef<Value *> VectorizedVals) const; 1586 1587 /// \returns the cost of the vectorizable entry. 1588 InstructionCost getEntryCost(const TreeEntry *E, 1589 ArrayRef<Value *> VectorizedVals); 1590 1591 /// This is the recursive part of buildTree. 1592 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1593 const EdgeInfo &EI); 1594 1595 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1596 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1597 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1598 /// returns false, setting \p CurrentOrder to either an empty vector or a 1599 /// non-identity permutation that allows to reuse extract instructions. 1600 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1601 SmallVectorImpl<unsigned> &CurrentOrder) const; 1602 1603 /// Vectorize a single entry in the tree. 1604 Value *vectorizeTree(TreeEntry *E); 1605 1606 /// Vectorize a single entry in the tree, starting in \p VL. 1607 Value *vectorizeTree(ArrayRef<Value *> VL); 1608 1609 /// \returns the scalarization cost for this type. Scalarization in this 1610 /// context means the creation of vectors from a group of scalars. If \p 1611 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1612 /// vector elements. 1613 InstructionCost getGatherCost(FixedVectorType *Ty, 1614 const DenseSet<unsigned> &ShuffledIndices, 1615 bool NeedToShuffle) const; 1616 1617 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1618 /// tree entries. 1619 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1620 /// previous tree entries. \p Mask is filled with the shuffle mask. 1621 Optional<TargetTransformInfo::ShuffleKind> 1622 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1623 SmallVectorImpl<const TreeEntry *> &Entries); 1624 1625 /// \returns the scalarization cost for this list of values. Assuming that 1626 /// this subtree gets vectorized, we may need to extract the values from the 1627 /// roots. This method calculates the cost of extracting the values. 1628 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1629 1630 /// Set the Builder insert point to one after the last instruction in 1631 /// the bundle 1632 void setInsertPointAfterBundle(const TreeEntry *E); 1633 1634 /// \returns a vector from a collection of scalars in \p VL. 1635 Value *gather(ArrayRef<Value *> VL); 1636 1637 /// \returns whether the VectorizableTree is fully vectorizable and will 1638 /// be beneficial even the tree height is tiny. 1639 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1640 1641 /// Reorder commutative or alt operands to get better probability of 1642 /// generating vectorized code. 1643 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1644 SmallVectorImpl<Value *> &Left, 1645 SmallVectorImpl<Value *> &Right, 1646 const DataLayout &DL, 1647 ScalarEvolution &SE, 1648 const BoUpSLP &R); 1649 struct TreeEntry { 1650 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1651 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1652 1653 /// \returns true if the scalars in VL are equal to this entry. 1654 bool isSame(ArrayRef<Value *> VL) const { 1655 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1656 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1657 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1658 return VL.size() == Mask.size() && 1659 std::equal(VL.begin(), VL.end(), Mask.begin(), 1660 [Scalars](Value *V, int Idx) { 1661 return (isa<UndefValue>(V) && 1662 Idx == UndefMaskElem) || 1663 (Idx != UndefMaskElem && V == Scalars[Idx]); 1664 }); 1665 }; 1666 if (!ReorderIndices.empty()) { 1667 // TODO: implement matching if the nodes are just reordered, still can 1668 // treat the vector as the same if the list of scalars matches VL 1669 // directly, without reordering. 1670 SmallVector<int> Mask; 1671 inversePermutation(ReorderIndices, Mask); 1672 if (VL.size() == Scalars.size()) 1673 return IsSame(Scalars, Mask); 1674 if (VL.size() == ReuseShuffleIndices.size()) { 1675 ::addMask(Mask, ReuseShuffleIndices); 1676 return IsSame(Scalars, Mask); 1677 } 1678 return false; 1679 } 1680 return IsSame(Scalars, ReuseShuffleIndices); 1681 } 1682 1683 /// \return Final vectorization factor for the node. Defined by the total 1684 /// number of vectorized scalars, including those, used several times in the 1685 /// entry and counted in the \a ReuseShuffleIndices, if any. 1686 unsigned getVectorFactor() const { 1687 if (!ReuseShuffleIndices.empty()) 1688 return ReuseShuffleIndices.size(); 1689 return Scalars.size(); 1690 }; 1691 1692 /// A vector of scalars. 1693 ValueList Scalars; 1694 1695 /// The Scalars are vectorized into this value. It is initialized to Null. 1696 Value *VectorizedValue = nullptr; 1697 1698 /// Do we need to gather this sequence or vectorize it 1699 /// (either with vector instruction or with scatter/gather 1700 /// intrinsics for store/load)? 1701 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1702 EntryState State; 1703 1704 /// Does this sequence require some shuffling? 1705 SmallVector<int, 4> ReuseShuffleIndices; 1706 1707 /// Does this entry require reordering? 1708 SmallVector<unsigned, 4> ReorderIndices; 1709 1710 /// Points back to the VectorizableTree. 1711 /// 1712 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1713 /// to be a pointer and needs to be able to initialize the child iterator. 1714 /// Thus we need a reference back to the container to translate the indices 1715 /// to entries. 1716 VecTreeTy &Container; 1717 1718 /// The TreeEntry index containing the user of this entry. We can actually 1719 /// have multiple users so the data structure is not truly a tree. 1720 SmallVector<EdgeInfo, 1> UserTreeIndices; 1721 1722 /// The index of this treeEntry in VectorizableTree. 1723 int Idx = -1; 1724 1725 private: 1726 /// The operands of each instruction in each lane Operands[op_index][lane]. 1727 /// Note: This helps avoid the replication of the code that performs the 1728 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1729 SmallVector<ValueList, 2> Operands; 1730 1731 /// The main/alternate instruction. 1732 Instruction *MainOp = nullptr; 1733 Instruction *AltOp = nullptr; 1734 1735 public: 1736 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1737 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1738 if (Operands.size() < OpIdx + 1) 1739 Operands.resize(OpIdx + 1); 1740 assert(Operands[OpIdx].empty() && "Already resized?"); 1741 Operands[OpIdx].resize(Scalars.size()); 1742 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1743 Operands[OpIdx][Lane] = OpVL[Lane]; 1744 } 1745 1746 /// Set the operands of this bundle in their original order. 1747 void setOperandsInOrder() { 1748 assert(Operands.empty() && "Already initialized?"); 1749 auto *I0 = cast<Instruction>(Scalars[0]); 1750 Operands.resize(I0->getNumOperands()); 1751 unsigned NumLanes = Scalars.size(); 1752 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1753 OpIdx != NumOperands; ++OpIdx) { 1754 Operands[OpIdx].resize(NumLanes); 1755 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1756 auto *I = cast<Instruction>(Scalars[Lane]); 1757 assert(I->getNumOperands() == NumOperands && 1758 "Expected same number of operands"); 1759 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1760 } 1761 } 1762 } 1763 1764 /// Reorders operands of the node to the given mask \p Mask. 1765 void reorderOperands(ArrayRef<int> Mask) { 1766 for (ValueList &Operand : Operands) 1767 reorderScalars(Operand, Mask); 1768 } 1769 1770 /// \returns the \p OpIdx operand of this TreeEntry. 1771 ValueList &getOperand(unsigned OpIdx) { 1772 assert(OpIdx < Operands.size() && "Off bounds"); 1773 return Operands[OpIdx]; 1774 } 1775 1776 /// \returns the number of operands. 1777 unsigned getNumOperands() const { return Operands.size(); } 1778 1779 /// \return the single \p OpIdx operand. 1780 Value *getSingleOperand(unsigned OpIdx) const { 1781 assert(OpIdx < Operands.size() && "Off bounds"); 1782 assert(!Operands[OpIdx].empty() && "No operand available"); 1783 return Operands[OpIdx][0]; 1784 } 1785 1786 /// Some of the instructions in the list have alternate opcodes. 1787 bool isAltShuffle() const { 1788 return getOpcode() != getAltOpcode(); 1789 } 1790 1791 bool isOpcodeOrAlt(Instruction *I) const { 1792 unsigned CheckedOpcode = I->getOpcode(); 1793 return (getOpcode() == CheckedOpcode || 1794 getAltOpcode() == CheckedOpcode); 1795 } 1796 1797 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1798 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1799 /// \p OpValue. 1800 Value *isOneOf(Value *Op) const { 1801 auto *I = dyn_cast<Instruction>(Op); 1802 if (I && isOpcodeOrAlt(I)) 1803 return Op; 1804 return MainOp; 1805 } 1806 1807 void setOperations(const InstructionsState &S) { 1808 MainOp = S.MainOp; 1809 AltOp = S.AltOp; 1810 } 1811 1812 Instruction *getMainOp() const { 1813 return MainOp; 1814 } 1815 1816 Instruction *getAltOp() const { 1817 return AltOp; 1818 } 1819 1820 /// The main/alternate opcodes for the list of instructions. 1821 unsigned getOpcode() const { 1822 return MainOp ? MainOp->getOpcode() : 0; 1823 } 1824 1825 unsigned getAltOpcode() const { 1826 return AltOp ? AltOp->getOpcode() : 0; 1827 } 1828 1829 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1830 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1831 int findLaneForValue(Value *V) const { 1832 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1833 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1834 if (!ReorderIndices.empty()) 1835 FoundLane = ReorderIndices[FoundLane]; 1836 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1837 if (!ReuseShuffleIndices.empty()) { 1838 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1839 find(ReuseShuffleIndices, FoundLane)); 1840 } 1841 return FoundLane; 1842 } 1843 1844 #ifndef NDEBUG 1845 /// Debug printer. 1846 LLVM_DUMP_METHOD void dump() const { 1847 dbgs() << Idx << ".\n"; 1848 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1849 dbgs() << "Operand " << OpI << ":\n"; 1850 for (const Value *V : Operands[OpI]) 1851 dbgs().indent(2) << *V << "\n"; 1852 } 1853 dbgs() << "Scalars: \n"; 1854 for (Value *V : Scalars) 1855 dbgs().indent(2) << *V << "\n"; 1856 dbgs() << "State: "; 1857 switch (State) { 1858 case Vectorize: 1859 dbgs() << "Vectorize\n"; 1860 break; 1861 case ScatterVectorize: 1862 dbgs() << "ScatterVectorize\n"; 1863 break; 1864 case NeedToGather: 1865 dbgs() << "NeedToGather\n"; 1866 break; 1867 } 1868 dbgs() << "MainOp: "; 1869 if (MainOp) 1870 dbgs() << *MainOp << "\n"; 1871 else 1872 dbgs() << "NULL\n"; 1873 dbgs() << "AltOp: "; 1874 if (AltOp) 1875 dbgs() << *AltOp << "\n"; 1876 else 1877 dbgs() << "NULL\n"; 1878 dbgs() << "VectorizedValue: "; 1879 if (VectorizedValue) 1880 dbgs() << *VectorizedValue << "\n"; 1881 else 1882 dbgs() << "NULL\n"; 1883 dbgs() << "ReuseShuffleIndices: "; 1884 if (ReuseShuffleIndices.empty()) 1885 dbgs() << "Empty"; 1886 else 1887 for (unsigned ReuseIdx : ReuseShuffleIndices) 1888 dbgs() << ReuseIdx << ", "; 1889 dbgs() << "\n"; 1890 dbgs() << "ReorderIndices: "; 1891 for (unsigned ReorderIdx : ReorderIndices) 1892 dbgs() << ReorderIdx << ", "; 1893 dbgs() << "\n"; 1894 dbgs() << "UserTreeIndices: "; 1895 for (const auto &EInfo : UserTreeIndices) 1896 dbgs() << EInfo << ", "; 1897 dbgs() << "\n"; 1898 } 1899 #endif 1900 }; 1901 1902 #ifndef NDEBUG 1903 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1904 InstructionCost VecCost, 1905 InstructionCost ScalarCost) const { 1906 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1907 dbgs() << "SLP: Costs:\n"; 1908 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1909 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1910 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1911 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1912 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1913 } 1914 #endif 1915 1916 /// Create a new VectorizableTree entry. 1917 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1918 const InstructionsState &S, 1919 const EdgeInfo &UserTreeIdx, 1920 ArrayRef<int> ReuseShuffleIndices = None, 1921 ArrayRef<unsigned> ReorderIndices = None) { 1922 TreeEntry::EntryState EntryState = 1923 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1924 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1925 ReuseShuffleIndices, ReorderIndices); 1926 } 1927 1928 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1929 TreeEntry::EntryState EntryState, 1930 Optional<ScheduleData *> Bundle, 1931 const InstructionsState &S, 1932 const EdgeInfo &UserTreeIdx, 1933 ArrayRef<int> ReuseShuffleIndices = None, 1934 ArrayRef<unsigned> ReorderIndices = None) { 1935 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1936 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1937 "Need to vectorize gather entry?"); 1938 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1939 TreeEntry *Last = VectorizableTree.back().get(); 1940 Last->Idx = VectorizableTree.size() - 1; 1941 Last->State = EntryState; 1942 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1943 ReuseShuffleIndices.end()); 1944 if (ReorderIndices.empty()) { 1945 Last->Scalars.assign(VL.begin(), VL.end()); 1946 Last->setOperations(S); 1947 } else { 1948 // Reorder scalars and build final mask. 1949 Last->Scalars.assign(VL.size(), nullptr); 1950 transform(ReorderIndices, Last->Scalars.begin(), 1951 [VL](unsigned Idx) -> Value * { 1952 if (Idx >= VL.size()) 1953 return UndefValue::get(VL.front()->getType()); 1954 return VL[Idx]; 1955 }); 1956 InstructionsState S = getSameOpcode(Last->Scalars); 1957 Last->setOperations(S); 1958 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1959 } 1960 if (Last->State != TreeEntry::NeedToGather) { 1961 for (Value *V : VL) { 1962 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1963 ScalarToTreeEntry[V] = Last; 1964 } 1965 // Update the scheduler bundle to point to this TreeEntry. 1966 unsigned Lane = 0; 1967 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1968 BundleMember = BundleMember->NextInBundle) { 1969 BundleMember->TE = Last; 1970 BundleMember->Lane = Lane; 1971 ++Lane; 1972 } 1973 assert((!Bundle.getValue() || Lane == VL.size()) && 1974 "Bundle and VL out of sync"); 1975 } else { 1976 MustGather.insert(VL.begin(), VL.end()); 1977 } 1978 1979 if (UserTreeIdx.UserTE) 1980 Last->UserTreeIndices.push_back(UserTreeIdx); 1981 1982 return Last; 1983 } 1984 1985 /// -- Vectorization State -- 1986 /// Holds all of the tree entries. 1987 TreeEntry::VecTreeTy VectorizableTree; 1988 1989 #ifndef NDEBUG 1990 /// Debug printer. 1991 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1992 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1993 VectorizableTree[Id]->dump(); 1994 dbgs() << "\n"; 1995 } 1996 } 1997 #endif 1998 1999 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2000 2001 const TreeEntry *getTreeEntry(Value *V) const { 2002 return ScalarToTreeEntry.lookup(V); 2003 } 2004 2005 /// Maps a specific scalar to its tree entry. 2006 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2007 2008 /// Maps a value to the proposed vectorizable size. 2009 SmallDenseMap<Value *, unsigned> InstrElementSize; 2010 2011 /// A list of scalars that we found that we need to keep as scalars. 2012 ValueSet MustGather; 2013 2014 /// This POD struct describes one external user in the vectorized tree. 2015 struct ExternalUser { 2016 ExternalUser(Value *S, llvm::User *U, int L) 2017 : Scalar(S), User(U), Lane(L) {} 2018 2019 // Which scalar in our function. 2020 Value *Scalar; 2021 2022 // Which user that uses the scalar. 2023 llvm::User *User; 2024 2025 // Which lane does the scalar belong to. 2026 int Lane; 2027 }; 2028 using UserList = SmallVector<ExternalUser, 16>; 2029 2030 /// Checks if two instructions may access the same memory. 2031 /// 2032 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2033 /// is invariant in the calling loop. 2034 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2035 Instruction *Inst2) { 2036 // First check if the result is already in the cache. 2037 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2038 Optional<bool> &result = AliasCache[key]; 2039 if (result.hasValue()) { 2040 return result.getValue(); 2041 } 2042 bool aliased = true; 2043 if (Loc1.Ptr && isSimple(Inst1)) 2044 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2045 // Store the result in the cache. 2046 result = aliased; 2047 return aliased; 2048 } 2049 2050 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2051 2052 /// Cache for alias results. 2053 /// TODO: consider moving this to the AliasAnalysis itself. 2054 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2055 2056 /// Removes an instruction from its block and eventually deletes it. 2057 /// It's like Instruction::eraseFromParent() except that the actual deletion 2058 /// is delayed until BoUpSLP is destructed. 2059 /// This is required to ensure that there are no incorrect collisions in the 2060 /// AliasCache, which can happen if a new instruction is allocated at the 2061 /// same address as a previously deleted instruction. 2062 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2063 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2064 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2065 } 2066 2067 /// Temporary store for deleted instructions. Instructions will be deleted 2068 /// eventually when the BoUpSLP is destructed. 2069 DenseMap<Instruction *, bool> DeletedInstructions; 2070 2071 /// A list of values that need to extracted out of the tree. 2072 /// This list holds pairs of (Internal Scalar : External User). External User 2073 /// can be nullptr, it means that this Internal Scalar will be used later, 2074 /// after vectorization. 2075 UserList ExternalUses; 2076 2077 /// Values used only by @llvm.assume calls. 2078 SmallPtrSet<const Value *, 32> EphValues; 2079 2080 /// Holds all of the instructions that we gathered. 2081 SetVector<Instruction *> GatherSeq; 2082 2083 /// A list of blocks that we are going to CSE. 2084 SetVector<BasicBlock *> CSEBlocks; 2085 2086 /// Contains all scheduling relevant data for an instruction. 2087 /// A ScheduleData either represents a single instruction or a member of an 2088 /// instruction bundle (= a group of instructions which is combined into a 2089 /// vector instruction). 2090 struct ScheduleData { 2091 // The initial value for the dependency counters. It means that the 2092 // dependencies are not calculated yet. 2093 enum { InvalidDeps = -1 }; 2094 2095 ScheduleData() = default; 2096 2097 void init(int BlockSchedulingRegionID, Value *OpVal) { 2098 FirstInBundle = this; 2099 NextInBundle = nullptr; 2100 NextLoadStore = nullptr; 2101 IsScheduled = false; 2102 SchedulingRegionID = BlockSchedulingRegionID; 2103 UnscheduledDepsInBundle = UnscheduledDeps; 2104 clearDependencies(); 2105 OpValue = OpVal; 2106 TE = nullptr; 2107 Lane = -1; 2108 } 2109 2110 /// Returns true if the dependency information has been calculated. 2111 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2112 2113 /// Returns true for single instructions and for bundle representatives 2114 /// (= the head of a bundle). 2115 bool isSchedulingEntity() const { return FirstInBundle == this; } 2116 2117 /// Returns true if it represents an instruction bundle and not only a 2118 /// single instruction. 2119 bool isPartOfBundle() const { 2120 return NextInBundle != nullptr || FirstInBundle != this; 2121 } 2122 2123 /// Returns true if it is ready for scheduling, i.e. it has no more 2124 /// unscheduled depending instructions/bundles. 2125 bool isReady() const { 2126 assert(isSchedulingEntity() && 2127 "can't consider non-scheduling entity for ready list"); 2128 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2129 } 2130 2131 /// Modifies the number of unscheduled dependencies, also updating it for 2132 /// the whole bundle. 2133 int incrementUnscheduledDeps(int Incr) { 2134 UnscheduledDeps += Incr; 2135 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2136 } 2137 2138 /// Sets the number of unscheduled dependencies to the number of 2139 /// dependencies. 2140 void resetUnscheduledDeps() { 2141 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2142 } 2143 2144 /// Clears all dependency information. 2145 void clearDependencies() { 2146 Dependencies = InvalidDeps; 2147 resetUnscheduledDeps(); 2148 MemoryDependencies.clear(); 2149 } 2150 2151 void dump(raw_ostream &os) const { 2152 if (!isSchedulingEntity()) { 2153 os << "/ " << *Inst; 2154 } else if (NextInBundle) { 2155 os << '[' << *Inst; 2156 ScheduleData *SD = NextInBundle; 2157 while (SD) { 2158 os << ';' << *SD->Inst; 2159 SD = SD->NextInBundle; 2160 } 2161 os << ']'; 2162 } else { 2163 os << *Inst; 2164 } 2165 } 2166 2167 Instruction *Inst = nullptr; 2168 2169 /// Points to the head in an instruction bundle (and always to this for 2170 /// single instructions). 2171 ScheduleData *FirstInBundle = nullptr; 2172 2173 /// Single linked list of all instructions in a bundle. Null if it is a 2174 /// single instruction. 2175 ScheduleData *NextInBundle = nullptr; 2176 2177 /// Single linked list of all memory instructions (e.g. load, store, call) 2178 /// in the block - until the end of the scheduling region. 2179 ScheduleData *NextLoadStore = nullptr; 2180 2181 /// The dependent memory instructions. 2182 /// This list is derived on demand in calculateDependencies(). 2183 SmallVector<ScheduleData *, 4> MemoryDependencies; 2184 2185 /// This ScheduleData is in the current scheduling region if this matches 2186 /// the current SchedulingRegionID of BlockScheduling. 2187 int SchedulingRegionID = 0; 2188 2189 /// Used for getting a "good" final ordering of instructions. 2190 int SchedulingPriority = 0; 2191 2192 /// The number of dependencies. Constitutes of the number of users of the 2193 /// instruction plus the number of dependent memory instructions (if any). 2194 /// This value is calculated on demand. 2195 /// If InvalidDeps, the number of dependencies is not calculated yet. 2196 int Dependencies = InvalidDeps; 2197 2198 /// The number of dependencies minus the number of dependencies of scheduled 2199 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2200 /// for scheduling. 2201 /// Note that this is negative as long as Dependencies is not calculated. 2202 int UnscheduledDeps = InvalidDeps; 2203 2204 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2205 /// single instructions. 2206 int UnscheduledDepsInBundle = InvalidDeps; 2207 2208 /// True if this instruction is scheduled (or considered as scheduled in the 2209 /// dry-run). 2210 bool IsScheduled = false; 2211 2212 /// Opcode of the current instruction in the schedule data. 2213 Value *OpValue = nullptr; 2214 2215 /// The TreeEntry that this instruction corresponds to. 2216 TreeEntry *TE = nullptr; 2217 2218 /// The lane of this node in the TreeEntry. 2219 int Lane = -1; 2220 }; 2221 2222 #ifndef NDEBUG 2223 friend inline raw_ostream &operator<<(raw_ostream &os, 2224 const BoUpSLP::ScheduleData &SD) { 2225 SD.dump(os); 2226 return os; 2227 } 2228 #endif 2229 2230 friend struct GraphTraits<BoUpSLP *>; 2231 friend struct DOTGraphTraits<BoUpSLP *>; 2232 2233 /// Contains all scheduling data for a basic block. 2234 struct BlockScheduling { 2235 BlockScheduling(BasicBlock *BB) 2236 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2237 2238 void clear() { 2239 ReadyInsts.clear(); 2240 ScheduleStart = nullptr; 2241 ScheduleEnd = nullptr; 2242 FirstLoadStoreInRegion = nullptr; 2243 LastLoadStoreInRegion = nullptr; 2244 2245 // Reduce the maximum schedule region size by the size of the 2246 // previous scheduling run. 2247 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2248 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2249 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2250 ScheduleRegionSize = 0; 2251 2252 // Make a new scheduling region, i.e. all existing ScheduleData is not 2253 // in the new region yet. 2254 ++SchedulingRegionID; 2255 } 2256 2257 ScheduleData *getScheduleData(Value *V) { 2258 ScheduleData *SD = ScheduleDataMap[V]; 2259 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2260 return SD; 2261 return nullptr; 2262 } 2263 2264 ScheduleData *getScheduleData(Value *V, Value *Key) { 2265 if (V == Key) 2266 return getScheduleData(V); 2267 auto I = ExtraScheduleDataMap.find(V); 2268 if (I != ExtraScheduleDataMap.end()) { 2269 ScheduleData *SD = I->second[Key]; 2270 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2271 return SD; 2272 } 2273 return nullptr; 2274 } 2275 2276 bool isInSchedulingRegion(ScheduleData *SD) const { 2277 return SD->SchedulingRegionID == SchedulingRegionID; 2278 } 2279 2280 /// Marks an instruction as scheduled and puts all dependent ready 2281 /// instructions into the ready-list. 2282 template <typename ReadyListType> 2283 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2284 SD->IsScheduled = true; 2285 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2286 2287 ScheduleData *BundleMember = SD; 2288 while (BundleMember) { 2289 if (BundleMember->Inst != BundleMember->OpValue) { 2290 BundleMember = BundleMember->NextInBundle; 2291 continue; 2292 } 2293 // Handle the def-use chain dependencies. 2294 2295 // Decrement the unscheduled counter and insert to ready list if ready. 2296 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2297 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2298 if (OpDef && OpDef->hasValidDependencies() && 2299 OpDef->incrementUnscheduledDeps(-1) == 0) { 2300 // There are no more unscheduled dependencies after 2301 // decrementing, so we can put the dependent instruction 2302 // into the ready list. 2303 ScheduleData *DepBundle = OpDef->FirstInBundle; 2304 assert(!DepBundle->IsScheduled && 2305 "already scheduled bundle gets ready"); 2306 ReadyList.insert(DepBundle); 2307 LLVM_DEBUG(dbgs() 2308 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2309 } 2310 }); 2311 }; 2312 2313 // If BundleMember is a vector bundle, its operands may have been 2314 // reordered duiring buildTree(). We therefore need to get its operands 2315 // through the TreeEntry. 2316 if (TreeEntry *TE = BundleMember->TE) { 2317 int Lane = BundleMember->Lane; 2318 assert(Lane >= 0 && "Lane not set"); 2319 2320 // Since vectorization tree is being built recursively this assertion 2321 // ensures that the tree entry has all operands set before reaching 2322 // this code. Couple of exceptions known at the moment are extracts 2323 // where their second (immediate) operand is not added. Since 2324 // immediates do not affect scheduler behavior this is considered 2325 // okay. 2326 auto *In = TE->getMainOp(); 2327 assert(In && 2328 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2329 In->getNumOperands() == TE->getNumOperands()) && 2330 "Missed TreeEntry operands?"); 2331 (void)In; // fake use to avoid build failure when assertions disabled 2332 2333 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2334 OpIdx != NumOperands; ++OpIdx) 2335 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2336 DecrUnsched(I); 2337 } else { 2338 // If BundleMember is a stand-alone instruction, no operand reordering 2339 // has taken place, so we directly access its operands. 2340 for (Use &U : BundleMember->Inst->operands()) 2341 if (auto *I = dyn_cast<Instruction>(U.get())) 2342 DecrUnsched(I); 2343 } 2344 // Handle the memory dependencies. 2345 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2346 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2347 // There are no more unscheduled dependencies after decrementing, 2348 // so we can put the dependent instruction into the ready list. 2349 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2350 assert(!DepBundle->IsScheduled && 2351 "already scheduled bundle gets ready"); 2352 ReadyList.insert(DepBundle); 2353 LLVM_DEBUG(dbgs() 2354 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2355 } 2356 } 2357 BundleMember = BundleMember->NextInBundle; 2358 } 2359 } 2360 2361 void doForAllOpcodes(Value *V, 2362 function_ref<void(ScheduleData *SD)> Action) { 2363 if (ScheduleData *SD = getScheduleData(V)) 2364 Action(SD); 2365 auto I = ExtraScheduleDataMap.find(V); 2366 if (I != ExtraScheduleDataMap.end()) 2367 for (auto &P : I->second) 2368 if (P.second->SchedulingRegionID == SchedulingRegionID) 2369 Action(P.second); 2370 } 2371 2372 /// Put all instructions into the ReadyList which are ready for scheduling. 2373 template <typename ReadyListType> 2374 void initialFillReadyList(ReadyListType &ReadyList) { 2375 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2376 doForAllOpcodes(I, [&](ScheduleData *SD) { 2377 if (SD->isSchedulingEntity() && SD->isReady()) { 2378 ReadyList.insert(SD); 2379 LLVM_DEBUG(dbgs() 2380 << "SLP: initially in ready list: " << *I << "\n"); 2381 } 2382 }); 2383 } 2384 } 2385 2386 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2387 /// cyclic dependencies. This is only a dry-run, no instructions are 2388 /// actually moved at this stage. 2389 /// \returns the scheduling bundle. The returned Optional value is non-None 2390 /// if \p VL is allowed to be scheduled. 2391 Optional<ScheduleData *> 2392 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2393 const InstructionsState &S); 2394 2395 /// Un-bundles a group of instructions. 2396 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2397 2398 /// Allocates schedule data chunk. 2399 ScheduleData *allocateScheduleDataChunks(); 2400 2401 /// Extends the scheduling region so that V is inside the region. 2402 /// \returns true if the region size is within the limit. 2403 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2404 2405 /// Initialize the ScheduleData structures for new instructions in the 2406 /// scheduling region. 2407 void initScheduleData(Instruction *FromI, Instruction *ToI, 2408 ScheduleData *PrevLoadStore, 2409 ScheduleData *NextLoadStore); 2410 2411 /// Updates the dependency information of a bundle and of all instructions/ 2412 /// bundles which depend on the original bundle. 2413 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2414 BoUpSLP *SLP); 2415 2416 /// Sets all instruction in the scheduling region to un-scheduled. 2417 void resetSchedule(); 2418 2419 BasicBlock *BB; 2420 2421 /// Simple memory allocation for ScheduleData. 2422 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2423 2424 /// The size of a ScheduleData array in ScheduleDataChunks. 2425 int ChunkSize; 2426 2427 /// The allocator position in the current chunk, which is the last entry 2428 /// of ScheduleDataChunks. 2429 int ChunkPos; 2430 2431 /// Attaches ScheduleData to Instruction. 2432 /// Note that the mapping survives during all vectorization iterations, i.e. 2433 /// ScheduleData structures are recycled. 2434 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2435 2436 /// Attaches ScheduleData to Instruction with the leading key. 2437 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2438 ExtraScheduleDataMap; 2439 2440 struct ReadyList : SmallVector<ScheduleData *, 8> { 2441 void insert(ScheduleData *SD) { push_back(SD); } 2442 }; 2443 2444 /// The ready-list for scheduling (only used for the dry-run). 2445 ReadyList ReadyInsts; 2446 2447 /// The first instruction of the scheduling region. 2448 Instruction *ScheduleStart = nullptr; 2449 2450 /// The first instruction _after_ the scheduling region. 2451 Instruction *ScheduleEnd = nullptr; 2452 2453 /// The first memory accessing instruction in the scheduling region 2454 /// (can be null). 2455 ScheduleData *FirstLoadStoreInRegion = nullptr; 2456 2457 /// The last memory accessing instruction in the scheduling region 2458 /// (can be null). 2459 ScheduleData *LastLoadStoreInRegion = nullptr; 2460 2461 /// The current size of the scheduling region. 2462 int ScheduleRegionSize = 0; 2463 2464 /// The maximum size allowed for the scheduling region. 2465 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2466 2467 /// The ID of the scheduling region. For a new vectorization iteration this 2468 /// is incremented which "removes" all ScheduleData from the region. 2469 // Make sure that the initial SchedulingRegionID is greater than the 2470 // initial SchedulingRegionID in ScheduleData (which is 0). 2471 int SchedulingRegionID = 1; 2472 }; 2473 2474 /// Attaches the BlockScheduling structures to basic blocks. 2475 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2476 2477 /// Performs the "real" scheduling. Done before vectorization is actually 2478 /// performed in a basic block. 2479 void scheduleBlock(BlockScheduling *BS); 2480 2481 /// List of users to ignore during scheduling and that don't need extracting. 2482 ArrayRef<Value *> UserIgnoreList; 2483 2484 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2485 /// sorted SmallVectors of unsigned. 2486 struct OrdersTypeDenseMapInfo { 2487 static OrdersType getEmptyKey() { 2488 OrdersType V; 2489 V.push_back(~1U); 2490 return V; 2491 } 2492 2493 static OrdersType getTombstoneKey() { 2494 OrdersType V; 2495 V.push_back(~2U); 2496 return V; 2497 } 2498 2499 static unsigned getHashValue(const OrdersType &V) { 2500 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2501 } 2502 2503 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2504 return LHS == RHS; 2505 } 2506 }; 2507 2508 // Analysis and block reference. 2509 Function *F; 2510 ScalarEvolution *SE; 2511 TargetTransformInfo *TTI; 2512 TargetLibraryInfo *TLI; 2513 AAResults *AA; 2514 LoopInfo *LI; 2515 DominatorTree *DT; 2516 AssumptionCache *AC; 2517 DemandedBits *DB; 2518 const DataLayout *DL; 2519 OptimizationRemarkEmitter *ORE; 2520 2521 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2522 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2523 2524 /// Instruction builder to construct the vectorized tree. 2525 IRBuilder<> Builder; 2526 2527 /// A map of scalar integer values to the smallest bit width with which they 2528 /// can legally be represented. The values map to (width, signed) pairs, 2529 /// where "width" indicates the minimum bit width and "signed" is True if the 2530 /// value must be signed-extended, rather than zero-extended, back to its 2531 /// original width. 2532 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2533 }; 2534 2535 } // end namespace slpvectorizer 2536 2537 template <> struct GraphTraits<BoUpSLP *> { 2538 using TreeEntry = BoUpSLP::TreeEntry; 2539 2540 /// NodeRef has to be a pointer per the GraphWriter. 2541 using NodeRef = TreeEntry *; 2542 2543 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2544 2545 /// Add the VectorizableTree to the index iterator to be able to return 2546 /// TreeEntry pointers. 2547 struct ChildIteratorType 2548 : public iterator_adaptor_base< 2549 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2550 ContainerTy &VectorizableTree; 2551 2552 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2553 ContainerTy &VT) 2554 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2555 2556 NodeRef operator*() { return I->UserTE; } 2557 }; 2558 2559 static NodeRef getEntryNode(BoUpSLP &R) { 2560 return R.VectorizableTree[0].get(); 2561 } 2562 2563 static ChildIteratorType child_begin(NodeRef N) { 2564 return {N->UserTreeIndices.begin(), N->Container}; 2565 } 2566 2567 static ChildIteratorType child_end(NodeRef N) { 2568 return {N->UserTreeIndices.end(), N->Container}; 2569 } 2570 2571 /// For the node iterator we just need to turn the TreeEntry iterator into a 2572 /// TreeEntry* iterator so that it dereferences to NodeRef. 2573 class nodes_iterator { 2574 using ItTy = ContainerTy::iterator; 2575 ItTy It; 2576 2577 public: 2578 nodes_iterator(const ItTy &It2) : It(It2) {} 2579 NodeRef operator*() { return It->get(); } 2580 nodes_iterator operator++() { 2581 ++It; 2582 return *this; 2583 } 2584 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2585 }; 2586 2587 static nodes_iterator nodes_begin(BoUpSLP *R) { 2588 return nodes_iterator(R->VectorizableTree.begin()); 2589 } 2590 2591 static nodes_iterator nodes_end(BoUpSLP *R) { 2592 return nodes_iterator(R->VectorizableTree.end()); 2593 } 2594 2595 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2596 }; 2597 2598 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2599 using TreeEntry = BoUpSLP::TreeEntry; 2600 2601 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2602 2603 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2604 std::string Str; 2605 raw_string_ostream OS(Str); 2606 if (isSplat(Entry->Scalars)) 2607 OS << "<splat> "; 2608 for (auto V : Entry->Scalars) { 2609 OS << *V; 2610 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2611 return EU.Scalar == V; 2612 })) 2613 OS << " <extract>"; 2614 OS << "\n"; 2615 } 2616 return Str; 2617 } 2618 2619 static std::string getNodeAttributes(const TreeEntry *Entry, 2620 const BoUpSLP *) { 2621 if (Entry->State == TreeEntry::NeedToGather) 2622 return "color=red"; 2623 return ""; 2624 } 2625 }; 2626 2627 } // end namespace llvm 2628 2629 BoUpSLP::~BoUpSLP() { 2630 for (const auto &Pair : DeletedInstructions) { 2631 // Replace operands of ignored instructions with Undefs in case if they were 2632 // marked for deletion. 2633 if (Pair.getSecond()) { 2634 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2635 Pair.getFirst()->replaceAllUsesWith(Undef); 2636 } 2637 Pair.getFirst()->dropAllReferences(); 2638 } 2639 for (const auto &Pair : DeletedInstructions) { 2640 assert(Pair.getFirst()->use_empty() && 2641 "trying to erase instruction with users."); 2642 Pair.getFirst()->eraseFromParent(); 2643 } 2644 #ifdef EXPENSIVE_CHECKS 2645 // If we could guarantee that this call is not extremely slow, we could 2646 // remove the ifdef limitation (see PR47712). 2647 assert(!verifyFunction(*F, &dbgs())); 2648 #endif 2649 } 2650 2651 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2652 for (auto *V : AV) { 2653 if (auto *I = dyn_cast<Instruction>(V)) 2654 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2655 }; 2656 } 2657 2658 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2659 /// contains original mask for the scalars reused in the node. Procedure 2660 /// transform this mask in accordance with the given \p Mask. 2661 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2662 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2663 "Expected non-empty mask."); 2664 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2665 Prev.swap(Reuses); 2666 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2667 if (Mask[I] != UndefMaskElem) 2668 Reuses[Mask[I]] = Prev[I]; 2669 } 2670 2671 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2672 /// the original order of the scalars. Procedure transforms the provided order 2673 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2674 /// identity order, \p Order is cleared. 2675 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2676 assert(!Mask.empty() && "Expected non-empty mask."); 2677 SmallVector<int> MaskOrder; 2678 if (Order.empty()) { 2679 MaskOrder.resize(Mask.size()); 2680 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2681 } else { 2682 inversePermutation(Order, MaskOrder); 2683 } 2684 reorderReuses(MaskOrder, Mask); 2685 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2686 Order.clear(); 2687 return; 2688 } 2689 Order.assign(Mask.size(), Mask.size()); 2690 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2691 if (MaskOrder[I] != UndefMaskElem) 2692 Order[MaskOrder[I]] = I; 2693 fixupOrderingIndices(Order); 2694 } 2695 2696 Optional<BoUpSLP::OrdersType> 2697 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2698 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2699 unsigned NumScalars = TE.Scalars.size(); 2700 OrdersType CurrentOrder(NumScalars, NumScalars); 2701 SmallVector<int> Positions; 2702 SmallBitVector UsedPositions(NumScalars); 2703 const TreeEntry *STE = nullptr; 2704 // Try to find all gathered scalars that are gets vectorized in other 2705 // vectorize node. Here we can have only one single tree vector node to 2706 // correctly identify order of the gathered scalars. 2707 for (unsigned I = 0; I < NumScalars; ++I) { 2708 Value *V = TE.Scalars[I]; 2709 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2710 continue; 2711 if (const auto *LocalSTE = getTreeEntry(V)) { 2712 if (!STE) 2713 STE = LocalSTE; 2714 else if (STE != LocalSTE) 2715 // Take the order only from the single vector node. 2716 return None; 2717 unsigned Lane = 2718 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2719 if (Lane >= NumScalars) 2720 return None; 2721 if (CurrentOrder[Lane] != NumScalars) { 2722 if (Lane != I) 2723 continue; 2724 UsedPositions.reset(CurrentOrder[Lane]); 2725 } 2726 // The partial identity (where only some elements of the gather node are 2727 // in the identity order) is good. 2728 CurrentOrder[Lane] = I; 2729 UsedPositions.set(I); 2730 } 2731 } 2732 // Need to keep the order if we have a vector entry and at least 2 scalars or 2733 // the vectorized entry has just 2 scalars. 2734 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2735 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2736 for (unsigned I = 0; I < NumScalars; ++I) 2737 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2738 return false; 2739 return true; 2740 }; 2741 if (IsIdentityOrder(CurrentOrder)) { 2742 CurrentOrder.clear(); 2743 return CurrentOrder; 2744 } 2745 auto *It = CurrentOrder.begin(); 2746 for (unsigned I = 0; I < NumScalars;) { 2747 if (UsedPositions.test(I)) { 2748 ++I; 2749 continue; 2750 } 2751 if (*It == NumScalars) { 2752 *It = I; 2753 ++I; 2754 } 2755 ++It; 2756 } 2757 return CurrentOrder; 2758 } 2759 return None; 2760 } 2761 2762 void BoUpSLP::reorderTopToBottom() { 2763 // Maps VF to the graph nodes. 2764 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2765 // ExtractElement gather nodes which can be vectorized and need to handle 2766 // their ordering. 2767 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2768 // Find all reorderable nodes with the given VF. 2769 // Currently the are vectorized loads,extracts + some gathering of extracts. 2770 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2771 const std::unique_ptr<TreeEntry> &TE) { 2772 // No need to reorder if need to shuffle reuses, still need to shuffle the 2773 // node. 2774 if (!TE->ReuseShuffleIndices.empty()) 2775 return; 2776 if (TE->State == TreeEntry::Vectorize && 2777 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2778 InsertElementInst>(TE->getMainOp()) && 2779 !TE->isAltShuffle()) { 2780 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2781 return; 2782 } 2783 if (TE->State == TreeEntry::NeedToGather) { 2784 if (TE->getOpcode() == Instruction::ExtractElement && 2785 !TE->isAltShuffle() && 2786 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2787 ->getVectorOperandType()) && 2788 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2789 // Check that gather of extractelements can be represented as 2790 // just a shuffle of a single vector. 2791 OrdersType CurrentOrder; 2792 bool Reuse = 2793 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2794 if (Reuse || !CurrentOrder.empty()) { 2795 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2796 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2797 return; 2798 } 2799 } 2800 if (Optional<OrdersType> CurrentOrder = 2801 findReusedOrderedScalars(*TE.get())) { 2802 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2803 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2804 } 2805 } 2806 }); 2807 2808 // Reorder the graph nodes according to their vectorization factor. 2809 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2810 VF /= 2) { 2811 auto It = VFToOrderedEntries.find(VF); 2812 if (It == VFToOrderedEntries.end()) 2813 continue; 2814 // Try to find the most profitable order. We just are looking for the most 2815 // used order and reorder scalar elements in the nodes according to this 2816 // mostly used order. 2817 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2818 // All operands are reordered and used only in this node - propagate the 2819 // most used order to the user node. 2820 MapVector<OrdersType, unsigned, 2821 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2822 OrdersUses; 2823 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2824 for (const TreeEntry *OpTE : OrderedEntries) { 2825 // No need to reorder this nodes, still need to extend and to use shuffle, 2826 // just need to merge reordering shuffle and the reuse shuffle. 2827 if (!OpTE->ReuseShuffleIndices.empty()) 2828 continue; 2829 // Count number of orders uses. 2830 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2831 if (OpTE->State == TreeEntry::NeedToGather) 2832 return GathersToOrders.find(OpTE)->second; 2833 return OpTE->ReorderIndices; 2834 }(); 2835 // Stores actually store the mask, not the order, need to invert. 2836 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2837 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2838 SmallVector<int> Mask; 2839 inversePermutation(Order, Mask); 2840 unsigned E = Order.size(); 2841 OrdersType CurrentOrder(E, E); 2842 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2843 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2844 }); 2845 fixupOrderingIndices(CurrentOrder); 2846 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2847 } else { 2848 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2849 } 2850 } 2851 // Set order of the user node. 2852 if (OrdersUses.empty()) 2853 continue; 2854 // Choose the most used order. 2855 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2856 unsigned Cnt = OrdersUses.front().second; 2857 for (const auto &Pair : drop_begin(OrdersUses)) { 2858 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2859 BestOrder = Pair.first; 2860 Cnt = Pair.second; 2861 } 2862 } 2863 // Set order of the user node. 2864 if (BestOrder.empty()) 2865 continue; 2866 SmallVector<int> Mask; 2867 inversePermutation(BestOrder, Mask); 2868 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2869 unsigned E = BestOrder.size(); 2870 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2871 return I < E ? static_cast<int>(I) : UndefMaskElem; 2872 }); 2873 // Do an actual reordering, if profitable. 2874 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2875 // Just do the reordering for the nodes with the given VF. 2876 if (TE->Scalars.size() != VF) { 2877 if (TE->ReuseShuffleIndices.size() == VF) { 2878 // Need to reorder the reuses masks of the operands with smaller VF to 2879 // be able to find the match between the graph nodes and scalar 2880 // operands of the given node during vectorization/cost estimation. 2881 assert(all_of(TE->UserTreeIndices, 2882 [VF, &TE](const EdgeInfo &EI) { 2883 return EI.UserTE->Scalars.size() == VF || 2884 EI.UserTE->Scalars.size() == 2885 TE->Scalars.size(); 2886 }) && 2887 "All users must be of VF size."); 2888 // Update ordering of the operands with the smaller VF than the given 2889 // one. 2890 reorderReuses(TE->ReuseShuffleIndices, Mask); 2891 } 2892 continue; 2893 } 2894 if (TE->State == TreeEntry::Vectorize && 2895 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2896 InsertElementInst>(TE->getMainOp()) && 2897 !TE->isAltShuffle()) { 2898 // Build correct orders for extract{element,value}, loads and 2899 // stores. 2900 reorderOrder(TE->ReorderIndices, Mask); 2901 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2902 TE->reorderOperands(Mask); 2903 } else { 2904 // Reorder the node and its operands. 2905 TE->reorderOperands(Mask); 2906 assert(TE->ReorderIndices.empty() && 2907 "Expected empty reorder sequence."); 2908 reorderScalars(TE->Scalars, Mask); 2909 } 2910 if (!TE->ReuseShuffleIndices.empty()) { 2911 // Apply reversed order to keep the original ordering of the reused 2912 // elements to avoid extra reorder indices shuffling. 2913 OrdersType CurrentOrder; 2914 reorderOrder(CurrentOrder, MaskOrder); 2915 SmallVector<int> NewReuses; 2916 inversePermutation(CurrentOrder, NewReuses); 2917 addMask(NewReuses, TE->ReuseShuffleIndices); 2918 TE->ReuseShuffleIndices.swap(NewReuses); 2919 } 2920 } 2921 } 2922 } 2923 2924 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2925 SetVector<TreeEntry *> OrderedEntries; 2926 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2927 // Find all reorderable leaf nodes with the given VF. 2928 // Currently the are vectorized loads,extracts without alternate operands + 2929 // some gathering of extracts. 2930 SmallVector<TreeEntry *> NonVectorized; 2931 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2932 &NonVectorized]( 2933 const std::unique_ptr<TreeEntry> &TE) { 2934 if (TE->State != TreeEntry::Vectorize) 2935 NonVectorized.push_back(TE.get()); 2936 // No need to reorder if need to shuffle reuses, still need to shuffle the 2937 // node. 2938 if (!TE->ReuseShuffleIndices.empty()) 2939 return; 2940 if (TE->State == TreeEntry::Vectorize && 2941 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2942 !TE->isAltShuffle()) { 2943 OrderedEntries.insert(TE.get()); 2944 return; 2945 } 2946 if (TE->State == TreeEntry::NeedToGather) { 2947 if (TE->getOpcode() == Instruction::ExtractElement && 2948 !TE->isAltShuffle() && 2949 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2950 ->getVectorOperandType()) && 2951 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2952 // Check that gather of extractelements can be represented as 2953 // just a shuffle of a single vector with a single user only. 2954 OrdersType CurrentOrder; 2955 bool Reuse = 2956 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2957 if ((Reuse || !CurrentOrder.empty()) && 2958 !any_of(VectorizableTree, 2959 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2960 return Entry->State == TreeEntry::NeedToGather && 2961 Entry.get() != TE.get() && 2962 Entry->isSame(TE->Scalars); 2963 })) { 2964 OrderedEntries.insert(TE.get()); 2965 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2966 return; 2967 } 2968 } 2969 if (Optional<OrdersType> CurrentOrder = 2970 findReusedOrderedScalars(*TE.get())) { 2971 OrderedEntries.insert(TE.get()); 2972 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2973 } 2974 } 2975 }); 2976 2977 // Checks if the operands of the users are reordarable and have only single 2978 // use. 2979 auto &&CheckOperands = 2980 [this, &NonVectorized](const auto &Data, 2981 SmallVectorImpl<TreeEntry *> &GatherOps) { 2982 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2983 if (any_of(Data.second, 2984 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2985 return OpData.first == I && 2986 OpData.second->State == TreeEntry::Vectorize; 2987 })) 2988 continue; 2989 ArrayRef<Value *> VL = Data.first->getOperand(I); 2990 const TreeEntry *TE = nullptr; 2991 const auto *It = find_if(VL, [this, &TE](Value *V) { 2992 TE = getTreeEntry(V); 2993 return TE; 2994 }); 2995 if (It != VL.end() && TE->isSame(VL)) 2996 return false; 2997 TreeEntry *Gather = nullptr; 2998 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2999 assert(TE->State != TreeEntry::Vectorize && 3000 "Only non-vectorized nodes are expected."); 3001 if (TE->isSame(VL)) { 3002 Gather = TE; 3003 return true; 3004 } 3005 return false; 3006 }) > 1) 3007 return false; 3008 if (Gather) 3009 GatherOps.push_back(Gather); 3010 } 3011 return true; 3012 }; 3013 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3014 // I.e., if the node has operands, that are reordered, try to make at least 3015 // one operand order in the natural order and reorder others + reorder the 3016 // user node itself. 3017 SmallPtrSet<const TreeEntry *, 4> Visited; 3018 while (!OrderedEntries.empty()) { 3019 // 1. Filter out only reordered nodes. 3020 // 2. If the entry has multiple uses - skip it and jump to the next node. 3021 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3022 SmallVector<TreeEntry *> Filtered; 3023 for (TreeEntry *TE : OrderedEntries) { 3024 if (!(TE->State == TreeEntry::Vectorize || 3025 (TE->State == TreeEntry::NeedToGather && 3026 GathersToOrders.count(TE))) || 3027 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3028 !all_of(drop_begin(TE->UserTreeIndices), 3029 [TE](const EdgeInfo &EI) { 3030 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3031 }) || 3032 !Visited.insert(TE).second) { 3033 Filtered.push_back(TE); 3034 continue; 3035 } 3036 // Build a map between user nodes and their operands order to speedup 3037 // search. The graph currently does not provide this dependency directly. 3038 for (EdgeInfo &EI : TE->UserTreeIndices) { 3039 TreeEntry *UserTE = EI.UserTE; 3040 auto It = Users.find(UserTE); 3041 if (It == Users.end()) 3042 It = Users.insert({UserTE, {}}).first; 3043 It->second.emplace_back(EI.EdgeIdx, TE); 3044 } 3045 } 3046 // Erase filtered entries. 3047 for_each(Filtered, 3048 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3049 for (const auto &Data : Users) { 3050 // Check that operands are used only in the User node. 3051 SmallVector<TreeEntry *> GatherOps; 3052 if (!CheckOperands(Data, GatherOps)) { 3053 for_each(Data.second, 3054 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3055 OrderedEntries.remove(Op.second); 3056 }); 3057 continue; 3058 } 3059 // All operands are reordered and used only in this node - propagate the 3060 // most used order to the user node. 3061 MapVector<OrdersType, unsigned, 3062 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3063 OrdersUses; 3064 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3065 for (const auto &Op : Data.second) { 3066 TreeEntry *OpTE = Op.second; 3067 if (!OpTE->ReuseShuffleIndices.empty() || 3068 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3069 continue; 3070 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3071 if (OpTE->State == TreeEntry::NeedToGather) 3072 return GathersToOrders.find(OpTE)->second; 3073 return OpTE->ReorderIndices; 3074 }(); 3075 // Stores actually store the mask, not the order, need to invert. 3076 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3077 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3078 SmallVector<int> Mask; 3079 inversePermutation(Order, Mask); 3080 unsigned E = Order.size(); 3081 OrdersType CurrentOrder(E, E); 3082 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3083 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3084 }); 3085 fixupOrderingIndices(CurrentOrder); 3086 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3087 } else { 3088 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3089 } 3090 if (VisitedOps.insert(OpTE).second) 3091 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3092 OpTE->UserTreeIndices.size(); 3093 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3094 --OrdersUses[{}]; 3095 } 3096 // If no orders - skip current nodes and jump to the next one, if any. 3097 if (OrdersUses.empty()) { 3098 for_each(Data.second, 3099 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3100 OrderedEntries.remove(Op.second); 3101 }); 3102 continue; 3103 } 3104 // Choose the best order. 3105 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3106 unsigned Cnt = OrdersUses.front().second; 3107 for (const auto &Pair : drop_begin(OrdersUses)) { 3108 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3109 BestOrder = Pair.first; 3110 Cnt = Pair.second; 3111 } 3112 } 3113 // Set order of the user node (reordering of operands and user nodes). 3114 if (BestOrder.empty()) { 3115 for_each(Data.second, 3116 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3117 OrderedEntries.remove(Op.second); 3118 }); 3119 continue; 3120 } 3121 // Erase operands from OrderedEntries list and adjust their orders. 3122 VisitedOps.clear(); 3123 SmallVector<int> Mask; 3124 inversePermutation(BestOrder, Mask); 3125 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3126 unsigned E = BestOrder.size(); 3127 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3128 return I < E ? static_cast<int>(I) : UndefMaskElem; 3129 }); 3130 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3131 TreeEntry *TE = Op.second; 3132 OrderedEntries.remove(TE); 3133 if (!VisitedOps.insert(TE).second) 3134 continue; 3135 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3136 // Just reorder reuses indices. 3137 reorderReuses(TE->ReuseShuffleIndices, Mask); 3138 continue; 3139 } 3140 // Gathers are processed separately. 3141 if (TE->State != TreeEntry::Vectorize) 3142 continue; 3143 assert((BestOrder.size() == TE->ReorderIndices.size() || 3144 TE->ReorderIndices.empty()) && 3145 "Non-matching sizes of user/operand entries."); 3146 reorderOrder(TE->ReorderIndices, Mask); 3147 } 3148 // For gathers just need to reorder its scalars. 3149 for (TreeEntry *Gather : GatherOps) { 3150 assert(Gather->ReorderIndices.empty() && 3151 "Unexpected reordering of gathers."); 3152 if (!Gather->ReuseShuffleIndices.empty()) { 3153 // Just reorder reuses indices. 3154 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3155 continue; 3156 } 3157 reorderScalars(Gather->Scalars, Mask); 3158 OrderedEntries.remove(Gather); 3159 } 3160 // Reorder operands of the user node and set the ordering for the user 3161 // node itself. 3162 if (Data.first->State != TreeEntry::Vectorize || 3163 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3164 Data.first->getMainOp()) || 3165 Data.first->isAltShuffle()) 3166 Data.first->reorderOperands(Mask); 3167 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3168 Data.first->isAltShuffle()) { 3169 reorderScalars(Data.first->Scalars, Mask); 3170 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3171 if (Data.first->ReuseShuffleIndices.empty() && 3172 !Data.first->ReorderIndices.empty() && 3173 !Data.first->isAltShuffle()) { 3174 // Insert user node to the list to try to sink reordering deeper in 3175 // the graph. 3176 OrderedEntries.insert(Data.first); 3177 } 3178 } else { 3179 reorderOrder(Data.first->ReorderIndices, Mask); 3180 } 3181 } 3182 } 3183 // If the reordering is unnecessary, just remove the reorder. 3184 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3185 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3186 VectorizableTree.front()->ReorderIndices.clear(); 3187 } 3188 3189 void BoUpSLP::buildExternalUses( 3190 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3191 // Collect the values that we need to extract from the tree. 3192 for (auto &TEPtr : VectorizableTree) { 3193 TreeEntry *Entry = TEPtr.get(); 3194 3195 // No need to handle users of gathered values. 3196 if (Entry->State == TreeEntry::NeedToGather) 3197 continue; 3198 3199 // For each lane: 3200 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3201 Value *Scalar = Entry->Scalars[Lane]; 3202 int FoundLane = Entry->findLaneForValue(Scalar); 3203 3204 // Check if the scalar is externally used as an extra arg. 3205 auto ExtI = ExternallyUsedValues.find(Scalar); 3206 if (ExtI != ExternallyUsedValues.end()) { 3207 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3208 << Lane << " from " << *Scalar << ".\n"); 3209 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3210 } 3211 for (User *U : Scalar->users()) { 3212 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3213 3214 Instruction *UserInst = dyn_cast<Instruction>(U); 3215 if (!UserInst) 3216 continue; 3217 3218 if (isDeleted(UserInst)) 3219 continue; 3220 3221 // Skip in-tree scalars that become vectors 3222 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3223 Value *UseScalar = UseEntry->Scalars[0]; 3224 // Some in-tree scalars will remain as scalar in vectorized 3225 // instructions. If that is the case, the one in Lane 0 will 3226 // be used. 3227 if (UseScalar != U || 3228 UseEntry->State == TreeEntry::ScatterVectorize || 3229 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3230 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3231 << ".\n"); 3232 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3233 continue; 3234 } 3235 } 3236 3237 // Ignore users in the user ignore list. 3238 if (is_contained(UserIgnoreList, UserInst)) 3239 continue; 3240 3241 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3242 << Lane << " from " << *Scalar << ".\n"); 3243 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3244 } 3245 } 3246 } 3247 } 3248 3249 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3250 ArrayRef<Value *> UserIgnoreLst) { 3251 deleteTree(); 3252 UserIgnoreList = UserIgnoreLst; 3253 if (!allSameType(Roots)) 3254 return; 3255 buildTree_rec(Roots, 0, EdgeInfo()); 3256 } 3257 3258 namespace { 3259 /// Tracks the state we can represent the loads in the given sequence. 3260 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3261 } // anonymous namespace 3262 3263 /// Checks if the given array of loads can be represented as a vectorized, 3264 /// scatter or just simple gather. 3265 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3266 const TargetTransformInfo &TTI, 3267 const DataLayout &DL, ScalarEvolution &SE, 3268 SmallVectorImpl<unsigned> &Order, 3269 SmallVectorImpl<Value *> &PointerOps) { 3270 // Check that a vectorized load would load the same memory as a scalar 3271 // load. For example, we don't want to vectorize loads that are smaller 3272 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3273 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3274 // from such a struct, we read/write packed bits disagreeing with the 3275 // unvectorized version. 3276 Type *ScalarTy = VL0->getType(); 3277 3278 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3279 return LoadsState::Gather; 3280 3281 // Make sure all loads in the bundle are simple - we can't vectorize 3282 // atomic or volatile loads. 3283 PointerOps.clear(); 3284 PointerOps.resize(VL.size()); 3285 auto *POIter = PointerOps.begin(); 3286 for (Value *V : VL) { 3287 auto *L = cast<LoadInst>(V); 3288 if (!L->isSimple()) 3289 return LoadsState::Gather; 3290 *POIter = L->getPointerOperand(); 3291 ++POIter; 3292 } 3293 3294 Order.clear(); 3295 // Check the order of pointer operands. 3296 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3297 Value *Ptr0; 3298 Value *PtrN; 3299 if (Order.empty()) { 3300 Ptr0 = PointerOps.front(); 3301 PtrN = PointerOps.back(); 3302 } else { 3303 Ptr0 = PointerOps[Order.front()]; 3304 PtrN = PointerOps[Order.back()]; 3305 } 3306 Optional<int> Diff = 3307 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3308 // Check that the sorted loads are consecutive. 3309 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3310 return LoadsState::Vectorize; 3311 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3312 for (Value *V : VL) 3313 CommonAlignment = 3314 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3315 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3316 CommonAlignment)) 3317 return LoadsState::ScatterVectorize; 3318 } 3319 3320 return LoadsState::Gather; 3321 } 3322 3323 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3324 const EdgeInfo &UserTreeIdx) { 3325 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3326 3327 SmallVector<int> ReuseShuffleIndicies; 3328 SmallVector<Value *> UniqueValues; 3329 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3330 &UserTreeIdx, 3331 this](const InstructionsState &S) { 3332 // Check that every instruction appears once in this bundle. 3333 DenseMap<Value *, unsigned> UniquePositions; 3334 for (Value *V : VL) { 3335 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3336 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3337 : Res.first->second); 3338 if (Res.second) 3339 UniqueValues.emplace_back(V); 3340 } 3341 size_t NumUniqueScalarValues = UniqueValues.size(); 3342 if (NumUniqueScalarValues == VL.size()) { 3343 ReuseShuffleIndicies.clear(); 3344 } else { 3345 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3346 if (NumUniqueScalarValues <= 1 || 3347 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3348 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3349 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3350 return false; 3351 } 3352 VL = UniqueValues; 3353 } 3354 return true; 3355 }; 3356 3357 InstructionsState S = getSameOpcode(VL); 3358 if (Depth == RecursionMaxDepth) { 3359 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3360 if (TryToFindDuplicates(S)) 3361 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3362 ReuseShuffleIndicies); 3363 return; 3364 } 3365 3366 // Don't handle scalable vectors 3367 if (S.getOpcode() == Instruction::ExtractElement && 3368 isa<ScalableVectorType>( 3369 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3370 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3371 if (TryToFindDuplicates(S)) 3372 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3373 ReuseShuffleIndicies); 3374 return; 3375 } 3376 3377 // Don't handle vectors. 3378 if (S.OpValue->getType()->isVectorTy() && 3379 !isa<InsertElementInst>(S.OpValue)) { 3380 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3381 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3382 return; 3383 } 3384 3385 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3386 if (SI->getValueOperand()->getType()->isVectorTy()) { 3387 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3388 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3389 return; 3390 } 3391 3392 // If all of the operands are identical or constant we have a simple solution. 3393 // If we deal with insert/extract instructions, they all must have constant 3394 // indices, otherwise we should gather them, not try to vectorize. 3395 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3396 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3397 !all_of(VL, isVectorLikeInstWithConstOps))) { 3398 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3399 if (TryToFindDuplicates(S)) 3400 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3401 ReuseShuffleIndicies); 3402 return; 3403 } 3404 3405 // We now know that this is a vector of instructions of the same type from 3406 // the same block. 3407 3408 // Don't vectorize ephemeral values. 3409 for (Value *V : VL) { 3410 if (EphValues.count(V)) { 3411 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3412 << ") is ephemeral.\n"); 3413 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3414 return; 3415 } 3416 } 3417 3418 // Check if this is a duplicate of another entry. 3419 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3420 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3421 if (!E->isSame(VL)) { 3422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3423 if (TryToFindDuplicates(S)) 3424 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3425 ReuseShuffleIndicies); 3426 return; 3427 } 3428 // Record the reuse of the tree node. FIXME, currently this is only used to 3429 // properly draw the graph rather than for the actual vectorization. 3430 E->UserTreeIndices.push_back(UserTreeIdx); 3431 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3432 << ".\n"); 3433 return; 3434 } 3435 3436 // Check that none of the instructions in the bundle are already in the tree. 3437 for (Value *V : VL) { 3438 auto *I = dyn_cast<Instruction>(V); 3439 if (!I) 3440 continue; 3441 if (getTreeEntry(I)) { 3442 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3443 << ") is already in tree.\n"); 3444 if (TryToFindDuplicates(S)) 3445 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3446 ReuseShuffleIndicies); 3447 return; 3448 } 3449 } 3450 3451 // If any of the scalars is marked as a value that needs to stay scalar, then 3452 // we need to gather the scalars. 3453 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3454 for (Value *V : VL) { 3455 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3456 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3457 if (TryToFindDuplicates(S)) 3458 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3459 ReuseShuffleIndicies); 3460 return; 3461 } 3462 } 3463 3464 // Check that all of the users of the scalars that we want to vectorize are 3465 // schedulable. 3466 auto *VL0 = cast<Instruction>(S.OpValue); 3467 BasicBlock *BB = VL0->getParent(); 3468 3469 if (!DT->isReachableFromEntry(BB)) { 3470 // Don't go into unreachable blocks. They may contain instructions with 3471 // dependency cycles which confuse the final scheduling. 3472 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3473 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3474 return; 3475 } 3476 3477 // Check that every instruction appears once in this bundle. 3478 if (!TryToFindDuplicates(S)) 3479 return; 3480 3481 auto &BSRef = BlocksSchedules[BB]; 3482 if (!BSRef) 3483 BSRef = std::make_unique<BlockScheduling>(BB); 3484 3485 BlockScheduling &BS = *BSRef.get(); 3486 3487 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3488 if (!Bundle) { 3489 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3490 assert((!BS.getScheduleData(VL0) || 3491 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3492 "tryScheduleBundle should cancelScheduling on failure"); 3493 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3494 ReuseShuffleIndicies); 3495 return; 3496 } 3497 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3498 3499 unsigned ShuffleOrOp = S.isAltShuffle() ? 3500 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3501 switch (ShuffleOrOp) { 3502 case Instruction::PHI: { 3503 auto *PH = cast<PHINode>(VL0); 3504 3505 // Check for terminator values (e.g. invoke). 3506 for (Value *V : VL) 3507 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3508 Instruction *Term = dyn_cast<Instruction>( 3509 cast<PHINode>(V)->getIncomingValueForBlock( 3510 PH->getIncomingBlock(I))); 3511 if (Term && Term->isTerminator()) { 3512 LLVM_DEBUG(dbgs() 3513 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3514 BS.cancelScheduling(VL, VL0); 3515 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3516 ReuseShuffleIndicies); 3517 return; 3518 } 3519 } 3520 3521 TreeEntry *TE = 3522 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3523 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3524 3525 // Keeps the reordered operands to avoid code duplication. 3526 SmallVector<ValueList, 2> OperandsVec; 3527 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3528 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3529 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3530 TE->setOperand(I, Operands); 3531 OperandsVec.push_back(Operands); 3532 continue; 3533 } 3534 ValueList Operands; 3535 // Prepare the operand vector. 3536 for (Value *V : VL) 3537 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3538 PH->getIncomingBlock(I))); 3539 TE->setOperand(I, Operands); 3540 OperandsVec.push_back(Operands); 3541 } 3542 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3543 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3544 return; 3545 } 3546 case Instruction::ExtractValue: 3547 case Instruction::ExtractElement: { 3548 OrdersType CurrentOrder; 3549 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3550 if (Reuse) { 3551 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3552 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3553 ReuseShuffleIndicies); 3554 // This is a special case, as it does not gather, but at the same time 3555 // we are not extending buildTree_rec() towards the operands. 3556 ValueList Op0; 3557 Op0.assign(VL.size(), VL0->getOperand(0)); 3558 VectorizableTree.back()->setOperand(0, Op0); 3559 return; 3560 } 3561 if (!CurrentOrder.empty()) { 3562 LLVM_DEBUG({ 3563 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3564 "with order"; 3565 for (unsigned Idx : CurrentOrder) 3566 dbgs() << " " << Idx; 3567 dbgs() << "\n"; 3568 }); 3569 fixupOrderingIndices(CurrentOrder); 3570 // Insert new order with initial value 0, if it does not exist, 3571 // otherwise return the iterator to the existing one. 3572 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3573 ReuseShuffleIndicies, CurrentOrder); 3574 // This is a special case, as it does not gather, but at the same time 3575 // we are not extending buildTree_rec() towards the operands. 3576 ValueList Op0; 3577 Op0.assign(VL.size(), VL0->getOperand(0)); 3578 VectorizableTree.back()->setOperand(0, Op0); 3579 return; 3580 } 3581 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3583 ReuseShuffleIndicies); 3584 BS.cancelScheduling(VL, VL0); 3585 return; 3586 } 3587 case Instruction::InsertElement: { 3588 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3589 3590 // Check that we have a buildvector and not a shuffle of 2 or more 3591 // different vectors. 3592 ValueSet SourceVectors; 3593 int MinIdx = std::numeric_limits<int>::max(); 3594 for (Value *V : VL) { 3595 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3596 Optional<int> Idx = *getInsertIndex(V, 0); 3597 if (!Idx || *Idx == UndefMaskElem) 3598 continue; 3599 MinIdx = std::min(MinIdx, *Idx); 3600 } 3601 3602 if (count_if(VL, [&SourceVectors](Value *V) { 3603 return !SourceVectors.contains(V); 3604 }) >= 2) { 3605 // Found 2nd source vector - cancel. 3606 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3607 "different source vectors.\n"); 3608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3609 BS.cancelScheduling(VL, VL0); 3610 return; 3611 } 3612 3613 auto OrdCompare = [](const std::pair<int, int> &P1, 3614 const std::pair<int, int> &P2) { 3615 return P1.first > P2.first; 3616 }; 3617 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3618 decltype(OrdCompare)> 3619 Indices(OrdCompare); 3620 for (int I = 0, E = VL.size(); I < E; ++I) { 3621 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3622 if (!Idx || *Idx == UndefMaskElem) 3623 continue; 3624 Indices.emplace(*Idx, I); 3625 } 3626 OrdersType CurrentOrder(VL.size(), VL.size()); 3627 bool IsIdentity = true; 3628 for (int I = 0, E = VL.size(); I < E; ++I) { 3629 CurrentOrder[Indices.top().second] = I; 3630 IsIdentity &= Indices.top().second == I; 3631 Indices.pop(); 3632 } 3633 if (IsIdentity) 3634 CurrentOrder.clear(); 3635 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3636 None, CurrentOrder); 3637 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3638 3639 constexpr int NumOps = 2; 3640 ValueList VectorOperands[NumOps]; 3641 for (int I = 0; I < NumOps; ++I) { 3642 for (Value *V : VL) 3643 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3644 3645 TE->setOperand(I, VectorOperands[I]); 3646 } 3647 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3648 return; 3649 } 3650 case Instruction::Load: { 3651 // Check that a vectorized load would load the same memory as a scalar 3652 // load. For example, we don't want to vectorize loads that are smaller 3653 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3654 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3655 // from such a struct, we read/write packed bits disagreeing with the 3656 // unvectorized version. 3657 SmallVector<Value *> PointerOps; 3658 OrdersType CurrentOrder; 3659 TreeEntry *TE = nullptr; 3660 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3661 PointerOps)) { 3662 case LoadsState::Vectorize: 3663 if (CurrentOrder.empty()) { 3664 // Original loads are consecutive and does not require reordering. 3665 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3666 ReuseShuffleIndicies); 3667 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3668 } else { 3669 fixupOrderingIndices(CurrentOrder); 3670 // Need to reorder. 3671 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3672 ReuseShuffleIndicies, CurrentOrder); 3673 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3674 } 3675 TE->setOperandsInOrder(); 3676 break; 3677 case LoadsState::ScatterVectorize: 3678 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3679 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3680 UserTreeIdx, ReuseShuffleIndicies); 3681 TE->setOperandsInOrder(); 3682 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3683 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3684 break; 3685 case LoadsState::Gather: 3686 BS.cancelScheduling(VL, VL0); 3687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3688 ReuseShuffleIndicies); 3689 #ifndef NDEBUG 3690 Type *ScalarTy = VL0->getType(); 3691 if (DL->getTypeSizeInBits(ScalarTy) != 3692 DL->getTypeAllocSizeInBits(ScalarTy)) 3693 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3694 else if (any_of(VL, [](Value *V) { 3695 return !cast<LoadInst>(V)->isSimple(); 3696 })) 3697 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3698 else 3699 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3700 #endif // NDEBUG 3701 break; 3702 } 3703 return; 3704 } 3705 case Instruction::ZExt: 3706 case Instruction::SExt: 3707 case Instruction::FPToUI: 3708 case Instruction::FPToSI: 3709 case Instruction::FPExt: 3710 case Instruction::PtrToInt: 3711 case Instruction::IntToPtr: 3712 case Instruction::SIToFP: 3713 case Instruction::UIToFP: 3714 case Instruction::Trunc: 3715 case Instruction::FPTrunc: 3716 case Instruction::BitCast: { 3717 Type *SrcTy = VL0->getOperand(0)->getType(); 3718 for (Value *V : VL) { 3719 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3720 if (Ty != SrcTy || !isValidElementType(Ty)) { 3721 BS.cancelScheduling(VL, VL0); 3722 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3723 ReuseShuffleIndicies); 3724 LLVM_DEBUG(dbgs() 3725 << "SLP: Gathering casts with different src types.\n"); 3726 return; 3727 } 3728 } 3729 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3730 ReuseShuffleIndicies); 3731 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3732 3733 TE->setOperandsInOrder(); 3734 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3735 ValueList Operands; 3736 // Prepare the operand vector. 3737 for (Value *V : VL) 3738 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3739 3740 buildTree_rec(Operands, Depth + 1, {TE, i}); 3741 } 3742 return; 3743 } 3744 case Instruction::ICmp: 3745 case Instruction::FCmp: { 3746 // Check that all of the compares have the same predicate. 3747 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3748 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3749 Type *ComparedTy = VL0->getOperand(0)->getType(); 3750 for (Value *V : VL) { 3751 CmpInst *Cmp = cast<CmpInst>(V); 3752 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3753 Cmp->getOperand(0)->getType() != ComparedTy) { 3754 BS.cancelScheduling(VL, VL0); 3755 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3756 ReuseShuffleIndicies); 3757 LLVM_DEBUG(dbgs() 3758 << "SLP: Gathering cmp with different predicate.\n"); 3759 return; 3760 } 3761 } 3762 3763 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3764 ReuseShuffleIndicies); 3765 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3766 3767 ValueList Left, Right; 3768 if (cast<CmpInst>(VL0)->isCommutative()) { 3769 // Commutative predicate - collect + sort operands of the instructions 3770 // so that each side is more likely to have the same opcode. 3771 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3772 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3773 } else { 3774 // Collect operands - commute if it uses the swapped predicate. 3775 for (Value *V : VL) { 3776 auto *Cmp = cast<CmpInst>(V); 3777 Value *LHS = Cmp->getOperand(0); 3778 Value *RHS = Cmp->getOperand(1); 3779 if (Cmp->getPredicate() != P0) 3780 std::swap(LHS, RHS); 3781 Left.push_back(LHS); 3782 Right.push_back(RHS); 3783 } 3784 } 3785 TE->setOperand(0, Left); 3786 TE->setOperand(1, Right); 3787 buildTree_rec(Left, Depth + 1, {TE, 0}); 3788 buildTree_rec(Right, Depth + 1, {TE, 1}); 3789 return; 3790 } 3791 case Instruction::Select: 3792 case Instruction::FNeg: 3793 case Instruction::Add: 3794 case Instruction::FAdd: 3795 case Instruction::Sub: 3796 case Instruction::FSub: 3797 case Instruction::Mul: 3798 case Instruction::FMul: 3799 case Instruction::UDiv: 3800 case Instruction::SDiv: 3801 case Instruction::FDiv: 3802 case Instruction::URem: 3803 case Instruction::SRem: 3804 case Instruction::FRem: 3805 case Instruction::Shl: 3806 case Instruction::LShr: 3807 case Instruction::AShr: 3808 case Instruction::And: 3809 case Instruction::Or: 3810 case Instruction::Xor: { 3811 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3812 ReuseShuffleIndicies); 3813 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3814 3815 // Sort operands of the instructions so that each side is more likely to 3816 // have the same opcode. 3817 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3818 ValueList Left, Right; 3819 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3820 TE->setOperand(0, Left); 3821 TE->setOperand(1, Right); 3822 buildTree_rec(Left, Depth + 1, {TE, 0}); 3823 buildTree_rec(Right, Depth + 1, {TE, 1}); 3824 return; 3825 } 3826 3827 TE->setOperandsInOrder(); 3828 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3829 ValueList Operands; 3830 // Prepare the operand vector. 3831 for (Value *V : VL) 3832 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3833 3834 buildTree_rec(Operands, Depth + 1, {TE, i}); 3835 } 3836 return; 3837 } 3838 case Instruction::GetElementPtr: { 3839 // We don't combine GEPs with complicated (nested) indexing. 3840 for (Value *V : VL) { 3841 if (cast<Instruction>(V)->getNumOperands() != 2) { 3842 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3843 BS.cancelScheduling(VL, VL0); 3844 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3845 ReuseShuffleIndicies); 3846 return; 3847 } 3848 } 3849 3850 // We can't combine several GEPs into one vector if they operate on 3851 // different types. 3852 Type *Ty0 = VL0->getOperand(0)->getType(); 3853 for (Value *V : VL) { 3854 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3855 if (Ty0 != CurTy) { 3856 LLVM_DEBUG(dbgs() 3857 << "SLP: not-vectorizable GEP (different types).\n"); 3858 BS.cancelScheduling(VL, VL0); 3859 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3860 ReuseShuffleIndicies); 3861 return; 3862 } 3863 } 3864 3865 // We don't combine GEPs with non-constant indexes. 3866 Type *Ty1 = VL0->getOperand(1)->getType(); 3867 for (Value *V : VL) { 3868 auto Op = cast<Instruction>(V)->getOperand(1); 3869 if (!isa<ConstantInt>(Op) || 3870 (Op->getType() != Ty1 && 3871 Op->getType()->getScalarSizeInBits() > 3872 DL->getIndexSizeInBits( 3873 V->getType()->getPointerAddressSpace()))) { 3874 LLVM_DEBUG(dbgs() 3875 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3876 BS.cancelScheduling(VL, VL0); 3877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3878 ReuseShuffleIndicies); 3879 return; 3880 } 3881 } 3882 3883 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3884 ReuseShuffleIndicies); 3885 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3886 SmallVector<ValueList, 2> Operands(2); 3887 // Prepare the operand vector for pointer operands. 3888 for (Value *V : VL) 3889 Operands.front().push_back( 3890 cast<GetElementPtrInst>(V)->getPointerOperand()); 3891 TE->setOperand(0, Operands.front()); 3892 // Need to cast all indices to the same type before vectorization to 3893 // avoid crash. 3894 // Required to be able to find correct matches between different gather 3895 // nodes and reuse the vectorized values rather than trying to gather them 3896 // again. 3897 int IndexIdx = 1; 3898 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3899 Type *Ty = all_of(VL, 3900 [VL0Ty, IndexIdx](Value *V) { 3901 return VL0Ty == cast<GetElementPtrInst>(V) 3902 ->getOperand(IndexIdx) 3903 ->getType(); 3904 }) 3905 ? VL0Ty 3906 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3907 ->getPointerOperandType() 3908 ->getScalarType()); 3909 // Prepare the operand vector. 3910 for (Value *V : VL) { 3911 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3912 auto *CI = cast<ConstantInt>(Op); 3913 Operands.back().push_back(ConstantExpr::getIntegerCast( 3914 CI, Ty, CI->getValue().isSignBitSet())); 3915 } 3916 TE->setOperand(IndexIdx, Operands.back()); 3917 3918 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3919 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3920 return; 3921 } 3922 case Instruction::Store: { 3923 // Check if the stores are consecutive or if we need to swizzle them. 3924 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3925 // Avoid types that are padded when being allocated as scalars, while 3926 // being packed together in a vector (such as i1). 3927 if (DL->getTypeSizeInBits(ScalarTy) != 3928 DL->getTypeAllocSizeInBits(ScalarTy)) { 3929 BS.cancelScheduling(VL, VL0); 3930 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3931 ReuseShuffleIndicies); 3932 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3933 return; 3934 } 3935 // Make sure all stores in the bundle are simple - we can't vectorize 3936 // atomic or volatile stores. 3937 SmallVector<Value *, 4> PointerOps(VL.size()); 3938 ValueList Operands(VL.size()); 3939 auto POIter = PointerOps.begin(); 3940 auto OIter = Operands.begin(); 3941 for (Value *V : VL) { 3942 auto *SI = cast<StoreInst>(V); 3943 if (!SI->isSimple()) { 3944 BS.cancelScheduling(VL, VL0); 3945 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3946 ReuseShuffleIndicies); 3947 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3948 return; 3949 } 3950 *POIter = SI->getPointerOperand(); 3951 *OIter = SI->getValueOperand(); 3952 ++POIter; 3953 ++OIter; 3954 } 3955 3956 OrdersType CurrentOrder; 3957 // Check the order of pointer operands. 3958 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3959 Value *Ptr0; 3960 Value *PtrN; 3961 if (CurrentOrder.empty()) { 3962 Ptr0 = PointerOps.front(); 3963 PtrN = PointerOps.back(); 3964 } else { 3965 Ptr0 = PointerOps[CurrentOrder.front()]; 3966 PtrN = PointerOps[CurrentOrder.back()]; 3967 } 3968 Optional<int> Dist = 3969 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3970 // Check that the sorted pointer operands are consecutive. 3971 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3972 if (CurrentOrder.empty()) { 3973 // Original stores are consecutive and does not require reordering. 3974 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3975 UserTreeIdx, ReuseShuffleIndicies); 3976 TE->setOperandsInOrder(); 3977 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3978 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3979 } else { 3980 fixupOrderingIndices(CurrentOrder); 3981 TreeEntry *TE = 3982 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3983 ReuseShuffleIndicies, CurrentOrder); 3984 TE->setOperandsInOrder(); 3985 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3986 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3987 } 3988 return; 3989 } 3990 } 3991 3992 BS.cancelScheduling(VL, VL0); 3993 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3994 ReuseShuffleIndicies); 3995 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3996 return; 3997 } 3998 case Instruction::Call: { 3999 // Check if the calls are all to the same vectorizable intrinsic or 4000 // library function. 4001 CallInst *CI = cast<CallInst>(VL0); 4002 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4003 4004 VFShape Shape = VFShape::get( 4005 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4006 false /*HasGlobalPred*/); 4007 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4008 4009 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4010 BS.cancelScheduling(VL, VL0); 4011 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4012 ReuseShuffleIndicies); 4013 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4014 return; 4015 } 4016 Function *F = CI->getCalledFunction(); 4017 unsigned NumArgs = CI->arg_size(); 4018 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4019 for (unsigned j = 0; j != NumArgs; ++j) 4020 if (hasVectorInstrinsicScalarOpd(ID, j)) 4021 ScalarArgs[j] = CI->getArgOperand(j); 4022 for (Value *V : VL) { 4023 CallInst *CI2 = dyn_cast<CallInst>(V); 4024 if (!CI2 || CI2->getCalledFunction() != F || 4025 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4026 (VecFunc && 4027 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4028 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4029 BS.cancelScheduling(VL, VL0); 4030 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4031 ReuseShuffleIndicies); 4032 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4033 << "\n"); 4034 return; 4035 } 4036 // Some intrinsics have scalar arguments and should be same in order for 4037 // them to be vectorized. 4038 for (unsigned j = 0; j != NumArgs; ++j) { 4039 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4040 Value *A1J = CI2->getArgOperand(j); 4041 if (ScalarArgs[j] != A1J) { 4042 BS.cancelScheduling(VL, VL0); 4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4044 ReuseShuffleIndicies); 4045 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4046 << " argument " << ScalarArgs[j] << "!=" << A1J 4047 << "\n"); 4048 return; 4049 } 4050 } 4051 } 4052 // Verify that the bundle operands are identical between the two calls. 4053 if (CI->hasOperandBundles() && 4054 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4055 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4056 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4057 BS.cancelScheduling(VL, VL0); 4058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4059 ReuseShuffleIndicies); 4060 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4061 << *CI << "!=" << *V << '\n'); 4062 return; 4063 } 4064 } 4065 4066 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4067 ReuseShuffleIndicies); 4068 TE->setOperandsInOrder(); 4069 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4070 // For scalar operands no need to to create an entry since no need to 4071 // vectorize it. 4072 if (hasVectorInstrinsicScalarOpd(ID, i)) 4073 continue; 4074 ValueList Operands; 4075 // Prepare the operand vector. 4076 for (Value *V : VL) { 4077 auto *CI2 = cast<CallInst>(V); 4078 Operands.push_back(CI2->getArgOperand(i)); 4079 } 4080 buildTree_rec(Operands, Depth + 1, {TE, i}); 4081 } 4082 return; 4083 } 4084 case Instruction::ShuffleVector: { 4085 // If this is not an alternate sequence of opcode like add-sub 4086 // then do not vectorize this instruction. 4087 if (!S.isAltShuffle()) { 4088 BS.cancelScheduling(VL, VL0); 4089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4090 ReuseShuffleIndicies); 4091 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4092 return; 4093 } 4094 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4095 ReuseShuffleIndicies); 4096 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4097 4098 // Reorder operands if reordering would enable vectorization. 4099 if (isa<BinaryOperator>(VL0)) { 4100 ValueList Left, Right; 4101 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4102 TE->setOperand(0, Left); 4103 TE->setOperand(1, Right); 4104 buildTree_rec(Left, Depth + 1, {TE, 0}); 4105 buildTree_rec(Right, Depth + 1, {TE, 1}); 4106 return; 4107 } 4108 4109 TE->setOperandsInOrder(); 4110 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4111 ValueList Operands; 4112 // Prepare the operand vector. 4113 for (Value *V : VL) 4114 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4115 4116 buildTree_rec(Operands, Depth + 1, {TE, i}); 4117 } 4118 return; 4119 } 4120 default: 4121 BS.cancelScheduling(VL, VL0); 4122 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4123 ReuseShuffleIndicies); 4124 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4125 return; 4126 } 4127 } 4128 4129 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4130 unsigned N = 1; 4131 Type *EltTy = T; 4132 4133 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4134 isa<VectorType>(EltTy)) { 4135 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4136 // Check that struct is homogeneous. 4137 for (const auto *Ty : ST->elements()) 4138 if (Ty != *ST->element_begin()) 4139 return 0; 4140 N *= ST->getNumElements(); 4141 EltTy = *ST->element_begin(); 4142 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4143 N *= AT->getNumElements(); 4144 EltTy = AT->getElementType(); 4145 } else { 4146 auto *VT = cast<FixedVectorType>(EltTy); 4147 N *= VT->getNumElements(); 4148 EltTy = VT->getElementType(); 4149 } 4150 } 4151 4152 if (!isValidElementType(EltTy)) 4153 return 0; 4154 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4155 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4156 return 0; 4157 return N; 4158 } 4159 4160 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4161 SmallVectorImpl<unsigned> &CurrentOrder) const { 4162 Instruction *E0 = cast<Instruction>(OpValue); 4163 assert(E0->getOpcode() == Instruction::ExtractElement || 4164 E0->getOpcode() == Instruction::ExtractValue); 4165 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4166 // Check if all of the extracts come from the same vector and from the 4167 // correct offset. 4168 Value *Vec = E0->getOperand(0); 4169 4170 CurrentOrder.clear(); 4171 4172 // We have to extract from a vector/aggregate with the same number of elements. 4173 unsigned NElts; 4174 if (E0->getOpcode() == Instruction::ExtractValue) { 4175 const DataLayout &DL = E0->getModule()->getDataLayout(); 4176 NElts = canMapToVector(Vec->getType(), DL); 4177 if (!NElts) 4178 return false; 4179 // Check if load can be rewritten as load of vector. 4180 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4181 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4182 return false; 4183 } else { 4184 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4185 } 4186 4187 if (NElts != VL.size()) 4188 return false; 4189 4190 // Check that all of the indices extract from the correct offset. 4191 bool ShouldKeepOrder = true; 4192 unsigned E = VL.size(); 4193 // Assign to all items the initial value E + 1 so we can check if the extract 4194 // instruction index was used already. 4195 // Also, later we can check that all the indices are used and we have a 4196 // consecutive access in the extract instructions, by checking that no 4197 // element of CurrentOrder still has value E + 1. 4198 CurrentOrder.assign(E, E + 1); 4199 unsigned I = 0; 4200 for (; I < E; ++I) { 4201 auto *Inst = cast<Instruction>(VL[I]); 4202 if (Inst->getOperand(0) != Vec) 4203 break; 4204 Optional<unsigned> Idx = getExtractIndex(Inst); 4205 if (!Idx) 4206 break; 4207 const unsigned ExtIdx = *Idx; 4208 if (ExtIdx != I) { 4209 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4210 break; 4211 ShouldKeepOrder = false; 4212 CurrentOrder[ExtIdx] = I; 4213 } else { 4214 if (CurrentOrder[I] != E + 1) 4215 break; 4216 CurrentOrder[I] = I; 4217 } 4218 } 4219 if (I < E) { 4220 CurrentOrder.clear(); 4221 return false; 4222 } 4223 4224 return ShouldKeepOrder; 4225 } 4226 4227 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4228 ArrayRef<Value *> VectorizedVals) const { 4229 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4230 llvm::all_of(I->users(), [this](User *U) { 4231 return ScalarToTreeEntry.count(U) > 0; 4232 }); 4233 } 4234 4235 static std::pair<InstructionCost, InstructionCost> 4236 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4237 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4238 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4239 4240 // Calculate the cost of the scalar and vector calls. 4241 SmallVector<Type *, 4> VecTys; 4242 for (Use &Arg : CI->args()) 4243 VecTys.push_back( 4244 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4245 FastMathFlags FMF; 4246 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4247 FMF = FPCI->getFastMathFlags(); 4248 SmallVector<const Value *> Arguments(CI->args()); 4249 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4250 dyn_cast<IntrinsicInst>(CI)); 4251 auto IntrinsicCost = 4252 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4253 4254 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4255 VecTy->getNumElements())), 4256 false /*HasGlobalPred*/); 4257 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4258 auto LibCost = IntrinsicCost; 4259 if (!CI->isNoBuiltin() && VecFunc) { 4260 // Calculate the cost of the vector library call. 4261 // If the corresponding vector call is cheaper, return its cost. 4262 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4263 TTI::TCK_RecipThroughput); 4264 } 4265 return {IntrinsicCost, LibCost}; 4266 } 4267 4268 /// Compute the cost of creating a vector of type \p VecTy containing the 4269 /// extracted values from \p VL. 4270 static InstructionCost 4271 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4272 TargetTransformInfo::ShuffleKind ShuffleKind, 4273 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4274 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4275 4276 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4277 VecTy->getNumElements() < NumOfParts) 4278 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4279 4280 bool AllConsecutive = true; 4281 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4282 unsigned Idx = -1; 4283 InstructionCost Cost = 0; 4284 4285 // Process extracts in blocks of EltsPerVector to check if the source vector 4286 // operand can be re-used directly. If not, add the cost of creating a shuffle 4287 // to extract the values into a vector register. 4288 for (auto *V : VL) { 4289 ++Idx; 4290 4291 // Reached the start of a new vector registers. 4292 if (Idx % EltsPerVector == 0) { 4293 AllConsecutive = true; 4294 continue; 4295 } 4296 4297 // Check all extracts for a vector register on the target directly 4298 // extract values in order. 4299 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4300 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4301 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4302 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4303 4304 if (AllConsecutive) 4305 continue; 4306 4307 // Skip all indices, except for the last index per vector block. 4308 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4309 continue; 4310 4311 // If we have a series of extracts which are not consecutive and hence 4312 // cannot re-use the source vector register directly, compute the shuffle 4313 // cost to extract the a vector with EltsPerVector elements. 4314 Cost += TTI.getShuffleCost( 4315 TargetTransformInfo::SK_PermuteSingleSrc, 4316 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4317 } 4318 return Cost; 4319 } 4320 4321 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4322 /// operations operands. 4323 static void 4324 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4325 ArrayRef<int> ReusesIndices, 4326 const function_ref<bool(Instruction *)> IsAltOp, 4327 SmallVectorImpl<int> &Mask, 4328 SmallVectorImpl<Value *> *OpScalars = nullptr, 4329 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4330 unsigned Sz = VL.size(); 4331 Mask.assign(Sz, UndefMaskElem); 4332 SmallVector<int> OrderMask; 4333 if (!ReorderIndices.empty()) 4334 inversePermutation(ReorderIndices, OrderMask); 4335 for (unsigned I = 0; I < Sz; ++I) { 4336 unsigned Idx = I; 4337 if (!ReorderIndices.empty()) 4338 Idx = OrderMask[I]; 4339 auto *OpInst = cast<Instruction>(VL[Idx]); 4340 if (IsAltOp(OpInst)) { 4341 Mask[I] = Sz + Idx; 4342 if (AltScalars) 4343 AltScalars->push_back(OpInst); 4344 } else { 4345 Mask[I] = Idx; 4346 if (OpScalars) 4347 OpScalars->push_back(OpInst); 4348 } 4349 } 4350 if (!ReusesIndices.empty()) { 4351 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4352 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4353 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4354 }); 4355 Mask.swap(NewMask); 4356 } 4357 } 4358 4359 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4360 ArrayRef<Value *> VectorizedVals) { 4361 ArrayRef<Value*> VL = E->Scalars; 4362 4363 Type *ScalarTy = VL[0]->getType(); 4364 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4365 ScalarTy = SI->getValueOperand()->getType(); 4366 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4367 ScalarTy = CI->getOperand(0)->getType(); 4368 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4369 ScalarTy = IE->getOperand(1)->getType(); 4370 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4371 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4372 4373 // If we have computed a smaller type for the expression, update VecTy so 4374 // that the costs will be accurate. 4375 if (MinBWs.count(VL[0])) 4376 VecTy = FixedVectorType::get( 4377 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4378 unsigned EntryVF = E->getVectorFactor(); 4379 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4380 4381 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4382 // FIXME: it tries to fix a problem with MSVC buildbots. 4383 TargetTransformInfo &TTIRef = *TTI; 4384 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4385 VectorizedVals](InstructionCost &Cost, 4386 bool IsGather) { 4387 DenseMap<Value *, int> ExtractVectorsTys; 4388 for (auto *V : VL) { 4389 // If all users of instruction are going to be vectorized and this 4390 // instruction itself is not going to be vectorized, consider this 4391 // instruction as dead and remove its cost from the final cost of the 4392 // vectorized tree. 4393 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4394 (IsGather && ScalarToTreeEntry.count(V))) 4395 continue; 4396 auto *EE = cast<ExtractElementInst>(V); 4397 unsigned Idx = *getExtractIndex(EE); 4398 if (TTIRef.getNumberOfParts(VecTy) != 4399 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4400 auto It = 4401 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4402 It->getSecond() = std::min<int>(It->second, Idx); 4403 } 4404 // Take credit for instruction that will become dead. 4405 if (EE->hasOneUse()) { 4406 Instruction *Ext = EE->user_back(); 4407 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4408 all_of(Ext->users(), 4409 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4410 // Use getExtractWithExtendCost() to calculate the cost of 4411 // extractelement/ext pair. 4412 Cost -= 4413 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4414 EE->getVectorOperandType(), Idx); 4415 // Add back the cost of s|zext which is subtracted separately. 4416 Cost += TTIRef.getCastInstrCost( 4417 Ext->getOpcode(), Ext->getType(), EE->getType(), 4418 TTI::getCastContextHint(Ext), CostKind, Ext); 4419 continue; 4420 } 4421 } 4422 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4423 EE->getVectorOperandType(), Idx); 4424 } 4425 // Add a cost for subvector extracts/inserts if required. 4426 for (const auto &Data : ExtractVectorsTys) { 4427 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4428 unsigned NumElts = VecTy->getNumElements(); 4429 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4430 unsigned Idx = (Data.second / NumElts) * NumElts; 4431 unsigned EENumElts = EEVTy->getNumElements(); 4432 if (Idx + NumElts <= EENumElts) { 4433 Cost += 4434 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4435 EEVTy, None, Idx, VecTy); 4436 } else { 4437 // Need to round up the subvector type vectorization factor to avoid a 4438 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4439 // <= EENumElts. 4440 auto *SubVT = 4441 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4442 Cost += 4443 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4444 EEVTy, None, Idx, SubVT); 4445 } 4446 } else { 4447 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4448 VecTy, None, 0, EEVTy); 4449 } 4450 } 4451 }; 4452 if (E->State == TreeEntry::NeedToGather) { 4453 if (allConstant(VL)) 4454 return 0; 4455 if (isa<InsertElementInst>(VL[0])) 4456 return InstructionCost::getInvalid(); 4457 SmallVector<int> Mask; 4458 SmallVector<const TreeEntry *> Entries; 4459 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4460 isGatherShuffledEntry(E, Mask, Entries); 4461 if (Shuffle.hasValue()) { 4462 InstructionCost GatherCost = 0; 4463 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4464 // Perfect match in the graph, will reuse the previously vectorized 4465 // node. Cost is 0. 4466 LLVM_DEBUG( 4467 dbgs() 4468 << "SLP: perfect diamond match for gather bundle that starts with " 4469 << *VL.front() << ".\n"); 4470 if (NeedToShuffleReuses) 4471 GatherCost = 4472 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4473 FinalVecTy, E->ReuseShuffleIndices); 4474 } else { 4475 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4476 << " entries for bundle that starts with " 4477 << *VL.front() << ".\n"); 4478 // Detected that instead of gather we can emit a shuffle of single/two 4479 // previously vectorized nodes. Add the cost of the permutation rather 4480 // than gather. 4481 ::addMask(Mask, E->ReuseShuffleIndices); 4482 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4483 } 4484 return GatherCost; 4485 } 4486 if (isSplat(VL)) { 4487 // Found the broadcasting of the single scalar, calculate the cost as the 4488 // broadcast. 4489 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4490 } 4491 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4492 allSameBlock(VL) && 4493 !isa<ScalableVectorType>( 4494 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4495 // Check that gather of extractelements can be represented as just a 4496 // shuffle of a single/two vectors the scalars are extracted from. 4497 SmallVector<int> Mask; 4498 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4499 isFixedVectorShuffle(VL, Mask); 4500 if (ShuffleKind.hasValue()) { 4501 // Found the bunch of extractelement instructions that must be gathered 4502 // into a vector and can be represented as a permutation elements in a 4503 // single input vector or of 2 input vectors. 4504 InstructionCost Cost = 4505 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4506 AdjustExtractsCost(Cost, /*IsGather=*/true); 4507 if (NeedToShuffleReuses) 4508 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4509 FinalVecTy, E->ReuseShuffleIndices); 4510 return Cost; 4511 } 4512 } 4513 InstructionCost ReuseShuffleCost = 0; 4514 if (NeedToShuffleReuses) 4515 ReuseShuffleCost = TTI->getShuffleCost( 4516 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4517 // Improve gather cost for gather of loads, if we can group some of the 4518 // loads into vector loads. 4519 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4520 !E->isAltShuffle()) { 4521 BoUpSLP::ValueSet VectorizedLoads; 4522 unsigned StartIdx = 0; 4523 unsigned VF = VL.size() / 2; 4524 unsigned VectorizedCnt = 0; 4525 unsigned ScatterVectorizeCnt = 0; 4526 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4527 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4528 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4529 Cnt += VF) { 4530 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4531 if (!VectorizedLoads.count(Slice.front()) && 4532 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4533 SmallVector<Value *> PointerOps; 4534 OrdersType CurrentOrder; 4535 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4536 *SE, CurrentOrder, PointerOps); 4537 switch (LS) { 4538 case LoadsState::Vectorize: 4539 case LoadsState::ScatterVectorize: 4540 // Mark the vectorized loads so that we don't vectorize them 4541 // again. 4542 if (LS == LoadsState::Vectorize) 4543 ++VectorizedCnt; 4544 else 4545 ++ScatterVectorizeCnt; 4546 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4547 // If we vectorized initial block, no need to try to vectorize it 4548 // again. 4549 if (Cnt == StartIdx) 4550 StartIdx += VF; 4551 break; 4552 case LoadsState::Gather: 4553 break; 4554 } 4555 } 4556 } 4557 // Check if the whole array was vectorized already - exit. 4558 if (StartIdx >= VL.size()) 4559 break; 4560 // Found vectorizable parts - exit. 4561 if (!VectorizedLoads.empty()) 4562 break; 4563 } 4564 if (!VectorizedLoads.empty()) { 4565 InstructionCost GatherCost = 0; 4566 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4567 bool NeedInsertSubvectorAnalysis = 4568 !NumParts || (VL.size() / VF) > NumParts; 4569 // Get the cost for gathered loads. 4570 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4571 if (VectorizedLoads.contains(VL[I])) 4572 continue; 4573 GatherCost += getGatherCost(VL.slice(I, VF)); 4574 } 4575 // The cost for vectorized loads. 4576 InstructionCost ScalarsCost = 0; 4577 for (Value *V : VectorizedLoads) { 4578 auto *LI = cast<LoadInst>(V); 4579 ScalarsCost += TTI->getMemoryOpCost( 4580 Instruction::Load, LI->getType(), LI->getAlign(), 4581 LI->getPointerAddressSpace(), CostKind, LI); 4582 } 4583 auto *LI = cast<LoadInst>(E->getMainOp()); 4584 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4585 Align Alignment = LI->getAlign(); 4586 GatherCost += 4587 VectorizedCnt * 4588 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4589 LI->getPointerAddressSpace(), CostKind, LI); 4590 GatherCost += ScatterVectorizeCnt * 4591 TTI->getGatherScatterOpCost( 4592 Instruction::Load, LoadTy, LI->getPointerOperand(), 4593 /*VariableMask=*/false, Alignment, CostKind, LI); 4594 if (NeedInsertSubvectorAnalysis) { 4595 // Add the cost for the subvectors insert. 4596 for (int I = VF, E = VL.size(); I < E; I += VF) 4597 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4598 None, I, LoadTy); 4599 } 4600 return ReuseShuffleCost + GatherCost - ScalarsCost; 4601 } 4602 } 4603 return ReuseShuffleCost + getGatherCost(VL); 4604 } 4605 InstructionCost CommonCost = 0; 4606 SmallVector<int> Mask; 4607 if (!E->ReorderIndices.empty()) { 4608 SmallVector<int> NewMask; 4609 if (E->getOpcode() == Instruction::Store) { 4610 // For stores the order is actually a mask. 4611 NewMask.resize(E->ReorderIndices.size()); 4612 copy(E->ReorderIndices, NewMask.begin()); 4613 } else { 4614 inversePermutation(E->ReorderIndices, NewMask); 4615 } 4616 ::addMask(Mask, NewMask); 4617 } 4618 if (NeedToShuffleReuses) 4619 ::addMask(Mask, E->ReuseShuffleIndices); 4620 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4621 CommonCost = 4622 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4623 assert((E->State == TreeEntry::Vectorize || 4624 E->State == TreeEntry::ScatterVectorize) && 4625 "Unhandled state"); 4626 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4627 Instruction *VL0 = E->getMainOp(); 4628 unsigned ShuffleOrOp = 4629 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4630 switch (ShuffleOrOp) { 4631 case Instruction::PHI: 4632 return 0; 4633 4634 case Instruction::ExtractValue: 4635 case Instruction::ExtractElement: { 4636 // The common cost of removal ExtractElement/ExtractValue instructions + 4637 // the cost of shuffles, if required to resuffle the original vector. 4638 if (NeedToShuffleReuses) { 4639 unsigned Idx = 0; 4640 for (unsigned I : E->ReuseShuffleIndices) { 4641 if (ShuffleOrOp == Instruction::ExtractElement) { 4642 auto *EE = cast<ExtractElementInst>(VL[I]); 4643 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4644 EE->getVectorOperandType(), 4645 *getExtractIndex(EE)); 4646 } else { 4647 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4648 VecTy, Idx); 4649 ++Idx; 4650 } 4651 } 4652 Idx = EntryVF; 4653 for (Value *V : VL) { 4654 if (ShuffleOrOp == Instruction::ExtractElement) { 4655 auto *EE = cast<ExtractElementInst>(V); 4656 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4657 EE->getVectorOperandType(), 4658 *getExtractIndex(EE)); 4659 } else { 4660 --Idx; 4661 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4662 VecTy, Idx); 4663 } 4664 } 4665 } 4666 if (ShuffleOrOp == Instruction::ExtractValue) { 4667 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4668 auto *EI = cast<Instruction>(VL[I]); 4669 // Take credit for instruction that will become dead. 4670 if (EI->hasOneUse()) { 4671 Instruction *Ext = EI->user_back(); 4672 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4673 all_of(Ext->users(), 4674 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4675 // Use getExtractWithExtendCost() to calculate the cost of 4676 // extractelement/ext pair. 4677 CommonCost -= TTI->getExtractWithExtendCost( 4678 Ext->getOpcode(), Ext->getType(), VecTy, I); 4679 // Add back the cost of s|zext which is subtracted separately. 4680 CommonCost += TTI->getCastInstrCost( 4681 Ext->getOpcode(), Ext->getType(), EI->getType(), 4682 TTI::getCastContextHint(Ext), CostKind, Ext); 4683 continue; 4684 } 4685 } 4686 CommonCost -= 4687 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4688 } 4689 } else { 4690 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4691 } 4692 return CommonCost; 4693 } 4694 case Instruction::InsertElement: { 4695 assert(E->ReuseShuffleIndices.empty() && 4696 "Unique insertelements only are expected."); 4697 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4698 4699 unsigned const NumElts = SrcVecTy->getNumElements(); 4700 unsigned const NumScalars = VL.size(); 4701 APInt DemandedElts = APInt::getZero(NumElts); 4702 // TODO: Add support for Instruction::InsertValue. 4703 SmallVector<int> Mask; 4704 if (!E->ReorderIndices.empty()) { 4705 inversePermutation(E->ReorderIndices, Mask); 4706 Mask.append(NumElts - NumScalars, UndefMaskElem); 4707 } else { 4708 Mask.assign(NumElts, UndefMaskElem); 4709 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4710 } 4711 unsigned Offset = *getInsertIndex(VL0, 0); 4712 bool IsIdentity = true; 4713 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4714 Mask.swap(PrevMask); 4715 for (unsigned I = 0; I < NumScalars; ++I) { 4716 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4717 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4718 continue; 4719 DemandedElts.setBit(*InsertIdx); 4720 IsIdentity &= *InsertIdx - Offset == I; 4721 Mask[*InsertIdx - Offset] = I; 4722 } 4723 assert(Offset < NumElts && "Failed to find vector index offset"); 4724 4725 InstructionCost Cost = 0; 4726 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4727 /*Insert*/ true, /*Extract*/ false); 4728 4729 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4730 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4731 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4732 Cost += TTI->getShuffleCost( 4733 TargetTransformInfo::SK_PermuteSingleSrc, 4734 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4735 } else if (!IsIdentity) { 4736 auto *FirstInsert = 4737 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4738 return !is_contained(E->Scalars, 4739 cast<Instruction>(V)->getOperand(0)); 4740 })); 4741 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4742 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4743 } else { 4744 SmallVector<int> InsertMask(NumElts); 4745 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4746 for (unsigned I = 0; I < NumElts; I++) { 4747 if (Mask[I] != UndefMaskElem) 4748 InsertMask[Offset + I] = NumElts + I; 4749 } 4750 Cost += 4751 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4752 } 4753 } 4754 4755 return Cost; 4756 } 4757 case Instruction::ZExt: 4758 case Instruction::SExt: 4759 case Instruction::FPToUI: 4760 case Instruction::FPToSI: 4761 case Instruction::FPExt: 4762 case Instruction::PtrToInt: 4763 case Instruction::IntToPtr: 4764 case Instruction::SIToFP: 4765 case Instruction::UIToFP: 4766 case Instruction::Trunc: 4767 case Instruction::FPTrunc: 4768 case Instruction::BitCast: { 4769 Type *SrcTy = VL0->getOperand(0)->getType(); 4770 InstructionCost ScalarEltCost = 4771 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4772 TTI::getCastContextHint(VL0), CostKind, VL0); 4773 if (NeedToShuffleReuses) { 4774 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4775 } 4776 4777 // Calculate the cost of this instruction. 4778 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4779 4780 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4781 InstructionCost VecCost = 0; 4782 // Check if the values are candidates to demote. 4783 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4784 VecCost = CommonCost + TTI->getCastInstrCost( 4785 E->getOpcode(), VecTy, SrcVecTy, 4786 TTI::getCastContextHint(VL0), CostKind, VL0); 4787 } 4788 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4789 return VecCost - ScalarCost; 4790 } 4791 case Instruction::FCmp: 4792 case Instruction::ICmp: 4793 case Instruction::Select: { 4794 // Calculate the cost of this instruction. 4795 InstructionCost ScalarEltCost = 4796 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4797 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4798 if (NeedToShuffleReuses) { 4799 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4800 } 4801 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4802 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4803 4804 // Check if all entries in VL are either compares or selects with compares 4805 // as condition that have the same predicates. 4806 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4807 bool First = true; 4808 for (auto *V : VL) { 4809 CmpInst::Predicate CurrentPred; 4810 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4811 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4812 !match(V, MatchCmp)) || 4813 (!First && VecPred != CurrentPred)) { 4814 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4815 break; 4816 } 4817 First = false; 4818 VecPred = CurrentPred; 4819 } 4820 4821 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4822 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4823 // Check if it is possible and profitable to use min/max for selects in 4824 // VL. 4825 // 4826 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4827 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4828 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4829 {VecTy, VecTy}); 4830 InstructionCost IntrinsicCost = 4831 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4832 // If the selects are the only uses of the compares, they will be dead 4833 // and we can adjust the cost by removing their cost. 4834 if (IntrinsicAndUse.second) 4835 IntrinsicCost -= 4836 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4837 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4838 VecCost = std::min(VecCost, IntrinsicCost); 4839 } 4840 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4841 return CommonCost + VecCost - ScalarCost; 4842 } 4843 case Instruction::FNeg: 4844 case Instruction::Add: 4845 case Instruction::FAdd: 4846 case Instruction::Sub: 4847 case Instruction::FSub: 4848 case Instruction::Mul: 4849 case Instruction::FMul: 4850 case Instruction::UDiv: 4851 case Instruction::SDiv: 4852 case Instruction::FDiv: 4853 case Instruction::URem: 4854 case Instruction::SRem: 4855 case Instruction::FRem: 4856 case Instruction::Shl: 4857 case Instruction::LShr: 4858 case Instruction::AShr: 4859 case Instruction::And: 4860 case Instruction::Or: 4861 case Instruction::Xor: { 4862 // Certain instructions can be cheaper to vectorize if they have a 4863 // constant second vector operand. 4864 TargetTransformInfo::OperandValueKind Op1VK = 4865 TargetTransformInfo::OK_AnyValue; 4866 TargetTransformInfo::OperandValueKind Op2VK = 4867 TargetTransformInfo::OK_UniformConstantValue; 4868 TargetTransformInfo::OperandValueProperties Op1VP = 4869 TargetTransformInfo::OP_None; 4870 TargetTransformInfo::OperandValueProperties Op2VP = 4871 TargetTransformInfo::OP_PowerOf2; 4872 4873 // If all operands are exactly the same ConstantInt then set the 4874 // operand kind to OK_UniformConstantValue. 4875 // If instead not all operands are constants, then set the operand kind 4876 // to OK_AnyValue. If all operands are constants but not the same, 4877 // then set the operand kind to OK_NonUniformConstantValue. 4878 ConstantInt *CInt0 = nullptr; 4879 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4880 const Instruction *I = cast<Instruction>(VL[i]); 4881 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4882 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4883 if (!CInt) { 4884 Op2VK = TargetTransformInfo::OK_AnyValue; 4885 Op2VP = TargetTransformInfo::OP_None; 4886 break; 4887 } 4888 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4889 !CInt->getValue().isPowerOf2()) 4890 Op2VP = TargetTransformInfo::OP_None; 4891 if (i == 0) { 4892 CInt0 = CInt; 4893 continue; 4894 } 4895 if (CInt0 != CInt) 4896 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4897 } 4898 4899 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4900 InstructionCost ScalarEltCost = 4901 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4902 Op2VK, Op1VP, Op2VP, Operands, VL0); 4903 if (NeedToShuffleReuses) { 4904 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4905 } 4906 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4907 InstructionCost VecCost = 4908 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4909 Op2VK, Op1VP, Op2VP, Operands, VL0); 4910 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4911 return CommonCost + VecCost - ScalarCost; 4912 } 4913 case Instruction::GetElementPtr: { 4914 TargetTransformInfo::OperandValueKind Op1VK = 4915 TargetTransformInfo::OK_AnyValue; 4916 TargetTransformInfo::OperandValueKind Op2VK = 4917 TargetTransformInfo::OK_UniformConstantValue; 4918 4919 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4920 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4921 if (NeedToShuffleReuses) { 4922 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4923 } 4924 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4925 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4926 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4927 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4928 return CommonCost + VecCost - ScalarCost; 4929 } 4930 case Instruction::Load: { 4931 // Cost of wide load - cost of scalar loads. 4932 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4933 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4934 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4935 if (NeedToShuffleReuses) { 4936 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4937 } 4938 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4939 InstructionCost VecLdCost; 4940 if (E->State == TreeEntry::Vectorize) { 4941 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4942 CostKind, VL0); 4943 } else { 4944 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4945 Align CommonAlignment = Alignment; 4946 for (Value *V : VL) 4947 CommonAlignment = 4948 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4949 VecLdCost = TTI->getGatherScatterOpCost( 4950 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4951 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4952 } 4953 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4954 return CommonCost + VecLdCost - ScalarLdCost; 4955 } 4956 case Instruction::Store: { 4957 // We know that we can merge the stores. Calculate the cost. 4958 bool IsReorder = !E->ReorderIndices.empty(); 4959 auto *SI = 4960 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4961 Align Alignment = SI->getAlign(); 4962 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4963 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4964 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4965 InstructionCost VecStCost = TTI->getMemoryOpCost( 4966 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4967 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4968 return CommonCost + VecStCost - ScalarStCost; 4969 } 4970 case Instruction::Call: { 4971 CallInst *CI = cast<CallInst>(VL0); 4972 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4973 4974 // Calculate the cost of the scalar and vector calls. 4975 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4976 InstructionCost ScalarEltCost = 4977 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4978 if (NeedToShuffleReuses) { 4979 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4980 } 4981 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4982 4983 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4984 InstructionCost VecCallCost = 4985 std::min(VecCallCosts.first, VecCallCosts.second); 4986 4987 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4988 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4989 << " for " << *CI << "\n"); 4990 4991 return CommonCost + VecCallCost - ScalarCallCost; 4992 } 4993 case Instruction::ShuffleVector: { 4994 assert(E->isAltShuffle() && 4995 ((Instruction::isBinaryOp(E->getOpcode()) && 4996 Instruction::isBinaryOp(E->getAltOpcode())) || 4997 (Instruction::isCast(E->getOpcode()) && 4998 Instruction::isCast(E->getAltOpcode()))) && 4999 "Invalid Shuffle Vector Operand"); 5000 InstructionCost ScalarCost = 0; 5001 if (NeedToShuffleReuses) { 5002 for (unsigned Idx : E->ReuseShuffleIndices) { 5003 Instruction *I = cast<Instruction>(VL[Idx]); 5004 CommonCost -= TTI->getInstructionCost(I, CostKind); 5005 } 5006 for (Value *V : VL) { 5007 Instruction *I = cast<Instruction>(V); 5008 CommonCost += TTI->getInstructionCost(I, CostKind); 5009 } 5010 } 5011 for (Value *V : VL) { 5012 Instruction *I = cast<Instruction>(V); 5013 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5014 ScalarCost += TTI->getInstructionCost(I, CostKind); 5015 } 5016 // VecCost is equal to sum of the cost of creating 2 vectors 5017 // and the cost of creating shuffle. 5018 InstructionCost VecCost = 0; 5019 if (Instruction::isBinaryOp(E->getOpcode())) { 5020 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5021 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5022 CostKind); 5023 } else { 5024 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5025 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5026 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5027 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5028 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5029 TTI::CastContextHint::None, CostKind); 5030 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5031 TTI::CastContextHint::None, CostKind); 5032 } 5033 5034 SmallVector<int> Mask; 5035 buildSuffleEntryMask( 5036 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5037 [E](Instruction *I) { 5038 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5039 return I->getOpcode() == E->getAltOpcode(); 5040 }, 5041 Mask); 5042 CommonCost = 5043 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5044 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5045 return CommonCost + VecCost - ScalarCost; 5046 } 5047 default: 5048 llvm_unreachable("Unknown instruction"); 5049 } 5050 } 5051 5052 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5053 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5054 << VectorizableTree.size() << " is fully vectorizable .\n"); 5055 5056 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5057 SmallVector<int> Mask; 5058 return TE->State == TreeEntry::NeedToGather && 5059 !any_of(TE->Scalars, 5060 [this](Value *V) { return EphValues.contains(V); }) && 5061 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5062 TE->Scalars.size() < Limit || 5063 (TE->getOpcode() == Instruction::ExtractElement && 5064 isFixedVectorShuffle(TE->Scalars, Mask)) || 5065 (TE->State == TreeEntry::NeedToGather && 5066 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5067 }; 5068 5069 // We only handle trees of heights 1 and 2. 5070 if (VectorizableTree.size() == 1 && 5071 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5072 (ForReduction && 5073 AreVectorizableGathers(VectorizableTree[0].get(), 5074 VectorizableTree[0]->Scalars.size()) && 5075 VectorizableTree[0]->getVectorFactor() > 2))) 5076 return true; 5077 5078 if (VectorizableTree.size() != 2) 5079 return false; 5080 5081 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5082 // with the second gather nodes if they have less scalar operands rather than 5083 // the initial tree element (may be profitable to shuffle the second gather) 5084 // or they are extractelements, which form shuffle. 5085 SmallVector<int> Mask; 5086 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5087 AreVectorizableGathers(VectorizableTree[1].get(), 5088 VectorizableTree[0]->Scalars.size())) 5089 return true; 5090 5091 // Gathering cost would be too much for tiny trees. 5092 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5093 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5094 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5095 return false; 5096 5097 return true; 5098 } 5099 5100 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5101 TargetTransformInfo *TTI, 5102 bool MustMatchOrInst) { 5103 // Look past the root to find a source value. Arbitrarily follow the 5104 // path through operand 0 of any 'or'. Also, peek through optional 5105 // shift-left-by-multiple-of-8-bits. 5106 Value *ZextLoad = Root; 5107 const APInt *ShAmtC; 5108 bool FoundOr = false; 5109 while (!isa<ConstantExpr>(ZextLoad) && 5110 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5111 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5112 ShAmtC->urem(8) == 0))) { 5113 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5114 ZextLoad = BinOp->getOperand(0); 5115 if (BinOp->getOpcode() == Instruction::Or) 5116 FoundOr = true; 5117 } 5118 // Check if the input is an extended load of the required or/shift expression. 5119 Value *LoadPtr; 5120 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5121 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5122 return false; 5123 5124 // Require that the total load bit width is a legal integer type. 5125 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5126 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5127 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5128 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5129 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5130 return false; 5131 5132 // Everything matched - assume that we can fold the whole sequence using 5133 // load combining. 5134 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5135 << *(cast<Instruction>(Root)) << "\n"); 5136 5137 return true; 5138 } 5139 5140 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5141 if (RdxKind != RecurKind::Or) 5142 return false; 5143 5144 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5145 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5146 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5147 /* MatchOr */ false); 5148 } 5149 5150 bool BoUpSLP::isLoadCombineCandidate() const { 5151 // Peek through a final sequence of stores and check if all operations are 5152 // likely to be load-combined. 5153 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5154 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5155 Value *X; 5156 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5157 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5158 return false; 5159 } 5160 return true; 5161 } 5162 5163 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5164 // No need to vectorize inserts of gathered values. 5165 if (VectorizableTree.size() == 2 && 5166 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5167 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5168 return true; 5169 5170 // We can vectorize the tree if its size is greater than or equal to the 5171 // minimum size specified by the MinTreeSize command line option. 5172 if (VectorizableTree.size() >= MinTreeSize) 5173 return false; 5174 5175 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5176 // can vectorize it if we can prove it fully vectorizable. 5177 if (isFullyVectorizableTinyTree(ForReduction)) 5178 return false; 5179 5180 assert(VectorizableTree.empty() 5181 ? ExternalUses.empty() 5182 : true && "We shouldn't have any external users"); 5183 5184 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5185 // vectorizable. 5186 return true; 5187 } 5188 5189 InstructionCost BoUpSLP::getSpillCost() const { 5190 // Walk from the bottom of the tree to the top, tracking which values are 5191 // live. When we see a call instruction that is not part of our tree, 5192 // query TTI to see if there is a cost to keeping values live over it 5193 // (for example, if spills and fills are required). 5194 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5195 InstructionCost Cost = 0; 5196 5197 SmallPtrSet<Instruction*, 4> LiveValues; 5198 Instruction *PrevInst = nullptr; 5199 5200 // The entries in VectorizableTree are not necessarily ordered by their 5201 // position in basic blocks. Collect them and order them by dominance so later 5202 // instructions are guaranteed to be visited first. For instructions in 5203 // different basic blocks, we only scan to the beginning of the block, so 5204 // their order does not matter, as long as all instructions in a basic block 5205 // are grouped together. Using dominance ensures a deterministic order. 5206 SmallVector<Instruction *, 16> OrderedScalars; 5207 for (const auto &TEPtr : VectorizableTree) { 5208 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5209 if (!Inst) 5210 continue; 5211 OrderedScalars.push_back(Inst); 5212 } 5213 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5214 auto *NodeA = DT->getNode(A->getParent()); 5215 auto *NodeB = DT->getNode(B->getParent()); 5216 assert(NodeA && "Should only process reachable instructions"); 5217 assert(NodeB && "Should only process reachable instructions"); 5218 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5219 "Different nodes should have different DFS numbers"); 5220 if (NodeA != NodeB) 5221 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5222 return B->comesBefore(A); 5223 }); 5224 5225 for (Instruction *Inst : OrderedScalars) { 5226 if (!PrevInst) { 5227 PrevInst = Inst; 5228 continue; 5229 } 5230 5231 // Update LiveValues. 5232 LiveValues.erase(PrevInst); 5233 for (auto &J : PrevInst->operands()) { 5234 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5235 LiveValues.insert(cast<Instruction>(&*J)); 5236 } 5237 5238 LLVM_DEBUG({ 5239 dbgs() << "SLP: #LV: " << LiveValues.size(); 5240 for (auto *X : LiveValues) 5241 dbgs() << " " << X->getName(); 5242 dbgs() << ", Looking at "; 5243 Inst->dump(); 5244 }); 5245 5246 // Now find the sequence of instructions between PrevInst and Inst. 5247 unsigned NumCalls = 0; 5248 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5249 PrevInstIt = 5250 PrevInst->getIterator().getReverse(); 5251 while (InstIt != PrevInstIt) { 5252 if (PrevInstIt == PrevInst->getParent()->rend()) { 5253 PrevInstIt = Inst->getParent()->rbegin(); 5254 continue; 5255 } 5256 5257 // Debug information does not impact spill cost. 5258 if ((isa<CallInst>(&*PrevInstIt) && 5259 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5260 &*PrevInstIt != PrevInst) 5261 NumCalls++; 5262 5263 ++PrevInstIt; 5264 } 5265 5266 if (NumCalls) { 5267 SmallVector<Type*, 4> V; 5268 for (auto *II : LiveValues) { 5269 auto *ScalarTy = II->getType(); 5270 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5271 ScalarTy = VectorTy->getElementType(); 5272 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5273 } 5274 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5275 } 5276 5277 PrevInst = Inst; 5278 } 5279 5280 return Cost; 5281 } 5282 5283 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5284 InstructionCost Cost = 0; 5285 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5286 << VectorizableTree.size() << ".\n"); 5287 5288 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5289 5290 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5291 TreeEntry &TE = *VectorizableTree[I].get(); 5292 5293 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5294 Cost += C; 5295 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5296 << " for bundle that starts with " << *TE.Scalars[0] 5297 << ".\n" 5298 << "SLP: Current total cost = " << Cost << "\n"); 5299 } 5300 5301 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5302 InstructionCost ExtractCost = 0; 5303 SmallVector<unsigned> VF; 5304 SmallVector<SmallVector<int>> ShuffleMask; 5305 SmallVector<Value *> FirstUsers; 5306 SmallVector<APInt> DemandedElts; 5307 for (ExternalUser &EU : ExternalUses) { 5308 // We only add extract cost once for the same scalar. 5309 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5310 continue; 5311 5312 // Uses by ephemeral values are free (because the ephemeral value will be 5313 // removed prior to code generation, and so the extraction will be 5314 // removed as well). 5315 if (EphValues.count(EU.User)) 5316 continue; 5317 5318 // No extract cost for vector "scalar" 5319 if (isa<FixedVectorType>(EU.Scalar->getType())) 5320 continue; 5321 5322 // Already counted the cost for external uses when tried to adjust the cost 5323 // for extractelements, no need to add it again. 5324 if (isa<ExtractElementInst>(EU.Scalar)) 5325 continue; 5326 5327 // If found user is an insertelement, do not calculate extract cost but try 5328 // to detect it as a final shuffled/identity match. 5329 if (isa_and_nonnull<InsertElementInst>(EU.User)) { 5330 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5331 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5332 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5333 continue; 5334 Value *VU = EU.User; 5335 auto *It = find_if(FirstUsers, [VU](Value *V) { 5336 // Checks if 2 insertelements are from the same buildvector. 5337 if (VU->getType() != V->getType()) 5338 return false; 5339 auto *IE1 = cast<InsertElementInst>(VU); 5340 auto *IE2 = cast<InsertElementInst>(V); 5341 // Go through of insertelement instructions trying to find either VU 5342 // as the original vector for IE2 or V as the original vector for IE1. 5343 do { 5344 if (IE1 == VU || IE2 == V) 5345 return true; 5346 if (IE1) 5347 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5348 if (IE2) 5349 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5350 } while (IE1 || IE2); 5351 return false; 5352 }); 5353 int VecId = -1; 5354 if (It == FirstUsers.end()) { 5355 VF.push_back(FTy->getNumElements()); 5356 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5357 FirstUsers.push_back(EU.User); 5358 DemandedElts.push_back(APInt::getZero(VF.back())); 5359 VecId = FirstUsers.size() - 1; 5360 } else { 5361 VecId = std::distance(FirstUsers.begin(), It); 5362 } 5363 int Idx = *InsertIdx; 5364 ShuffleMask[VecId][Idx] = EU.Lane; 5365 DemandedElts[VecId].setBit(Idx); 5366 } 5367 } 5368 5369 // If we plan to rewrite the tree in a smaller type, we will need to sign 5370 // extend the extracted value back to the original type. Here, we account 5371 // for the extract and the added cost of the sign extend if needed. 5372 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5373 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5374 if (MinBWs.count(ScalarRoot)) { 5375 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5376 auto Extend = 5377 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5378 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5379 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5380 VecTy, EU.Lane); 5381 } else { 5382 ExtractCost += 5383 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5384 } 5385 } 5386 5387 InstructionCost SpillCost = getSpillCost(); 5388 Cost += SpillCost + ExtractCost; 5389 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5390 // For the very first element - simple shuffle of the source vector. 5391 int Limit = ShuffleMask[I].size() * 2; 5392 if (I == 0 && 5393 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5394 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5395 InstructionCost C = TTI->getShuffleCost( 5396 TTI::SK_PermuteSingleSrc, 5397 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5398 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5399 << " for final shuffle of insertelement external users " 5400 << *VectorizableTree.front()->Scalars.front() << ".\n" 5401 << "SLP: Current total cost = " << Cost << "\n"); 5402 Cost += C; 5403 continue; 5404 } 5405 // Other elements - permutation of 2 vectors (the initial one and the next 5406 // Ith incoming vector). 5407 unsigned VF = ShuffleMask[I].size(); 5408 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5409 int &Mask = ShuffleMask[I][Idx]; 5410 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5411 } 5412 InstructionCost C = TTI->getShuffleCost( 5413 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5414 ShuffleMask[I]); 5415 LLVM_DEBUG( 5416 dbgs() 5417 << "SLP: Adding cost " << C 5418 << " for final shuffle of vector node and external insertelement users " 5419 << *VectorizableTree.front()->Scalars.front() << ".\n" 5420 << "SLP: Current total cost = " << Cost << "\n"); 5421 Cost += C; 5422 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5423 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5424 /*Insert*/ true, 5425 /*Extract*/ false); 5426 Cost -= InsertCost; 5427 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5428 << " for insertelements gather.\n" 5429 << "SLP: Current total cost = " << Cost << "\n"); 5430 } 5431 5432 #ifndef NDEBUG 5433 SmallString<256> Str; 5434 { 5435 raw_svector_ostream OS(Str); 5436 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5437 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5438 << "SLP: Total Cost = " << Cost << ".\n"; 5439 } 5440 LLVM_DEBUG(dbgs() << Str); 5441 if (ViewSLPTree) 5442 ViewGraph(this, "SLP" + F->getName(), false, Str); 5443 #endif 5444 5445 return Cost; 5446 } 5447 5448 Optional<TargetTransformInfo::ShuffleKind> 5449 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5450 SmallVectorImpl<const TreeEntry *> &Entries) { 5451 // TODO: currently checking only for Scalars in the tree entry, need to count 5452 // reused elements too for better cost estimation. 5453 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5454 Entries.clear(); 5455 // Build a lists of values to tree entries. 5456 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5457 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5458 if (EntryPtr.get() == TE) 5459 break; 5460 if (EntryPtr->State != TreeEntry::NeedToGather) 5461 continue; 5462 for (Value *V : EntryPtr->Scalars) 5463 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5464 } 5465 // Find all tree entries used by the gathered values. If no common entries 5466 // found - not a shuffle. 5467 // Here we build a set of tree nodes for each gathered value and trying to 5468 // find the intersection between these sets. If we have at least one common 5469 // tree node for each gathered value - we have just a permutation of the 5470 // single vector. If we have 2 different sets, we're in situation where we 5471 // have a permutation of 2 input vectors. 5472 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5473 DenseMap<Value *, int> UsedValuesEntry; 5474 for (Value *V : TE->Scalars) { 5475 if (isa<UndefValue>(V)) 5476 continue; 5477 // Build a list of tree entries where V is used. 5478 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5479 auto It = ValueToTEs.find(V); 5480 if (It != ValueToTEs.end()) 5481 VToTEs = It->second; 5482 if (const TreeEntry *VTE = getTreeEntry(V)) 5483 VToTEs.insert(VTE); 5484 if (VToTEs.empty()) 5485 return None; 5486 if (UsedTEs.empty()) { 5487 // The first iteration, just insert the list of nodes to vector. 5488 UsedTEs.push_back(VToTEs); 5489 } else { 5490 // Need to check if there are any previously used tree nodes which use V. 5491 // If there are no such nodes, consider that we have another one input 5492 // vector. 5493 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5494 unsigned Idx = 0; 5495 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5496 // Do we have a non-empty intersection of previously listed tree entries 5497 // and tree entries using current V? 5498 set_intersect(VToTEs, Set); 5499 if (!VToTEs.empty()) { 5500 // Yes, write the new subset and continue analysis for the next 5501 // scalar. 5502 Set.swap(VToTEs); 5503 break; 5504 } 5505 VToTEs = SavedVToTEs; 5506 ++Idx; 5507 } 5508 // No non-empty intersection found - need to add a second set of possible 5509 // source vectors. 5510 if (Idx == UsedTEs.size()) { 5511 // If the number of input vectors is greater than 2 - not a permutation, 5512 // fallback to the regular gather. 5513 if (UsedTEs.size() == 2) 5514 return None; 5515 UsedTEs.push_back(SavedVToTEs); 5516 Idx = UsedTEs.size() - 1; 5517 } 5518 UsedValuesEntry.try_emplace(V, Idx); 5519 } 5520 } 5521 5522 unsigned VF = 0; 5523 if (UsedTEs.size() == 1) { 5524 // Try to find the perfect match in another gather node at first. 5525 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5526 return EntryPtr->isSame(TE->Scalars); 5527 }); 5528 if (It != UsedTEs.front().end()) { 5529 Entries.push_back(*It); 5530 std::iota(Mask.begin(), Mask.end(), 0); 5531 return TargetTransformInfo::SK_PermuteSingleSrc; 5532 } 5533 // No perfect match, just shuffle, so choose the first tree node. 5534 Entries.push_back(*UsedTEs.front().begin()); 5535 } else { 5536 // Try to find nodes with the same vector factor. 5537 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5538 DenseMap<int, const TreeEntry *> VFToTE; 5539 for (const TreeEntry *TE : UsedTEs.front()) 5540 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5541 for (const TreeEntry *TE : UsedTEs.back()) { 5542 auto It = VFToTE.find(TE->getVectorFactor()); 5543 if (It != VFToTE.end()) { 5544 VF = It->first; 5545 Entries.push_back(It->second); 5546 Entries.push_back(TE); 5547 break; 5548 } 5549 } 5550 // No 2 source vectors with the same vector factor - give up and do regular 5551 // gather. 5552 if (Entries.empty()) 5553 return None; 5554 } 5555 5556 // Build a shuffle mask for better cost estimation and vector emission. 5557 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5558 Value *V = TE->Scalars[I]; 5559 if (isa<UndefValue>(V)) 5560 continue; 5561 unsigned Idx = UsedValuesEntry.lookup(V); 5562 const TreeEntry *VTE = Entries[Idx]; 5563 int FoundLane = VTE->findLaneForValue(V); 5564 Mask[I] = Idx * VF + FoundLane; 5565 // Extra check required by isSingleSourceMaskImpl function (called by 5566 // ShuffleVectorInst::isSingleSourceMask). 5567 if (Mask[I] >= 2 * E) 5568 return None; 5569 } 5570 switch (Entries.size()) { 5571 case 1: 5572 return TargetTransformInfo::SK_PermuteSingleSrc; 5573 case 2: 5574 return TargetTransformInfo::SK_PermuteTwoSrc; 5575 default: 5576 break; 5577 } 5578 return None; 5579 } 5580 5581 InstructionCost 5582 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5583 const DenseSet<unsigned> &ShuffledIndices, 5584 bool NeedToShuffle) const { 5585 unsigned NumElts = Ty->getNumElements(); 5586 APInt DemandedElts = APInt::getZero(NumElts); 5587 for (unsigned I = 0; I < NumElts; ++I) 5588 if (!ShuffledIndices.count(I)) 5589 DemandedElts.setBit(I); 5590 InstructionCost Cost = 5591 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5592 /*Extract*/ false); 5593 if (NeedToShuffle) 5594 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5595 return Cost; 5596 } 5597 5598 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5599 // Find the type of the operands in VL. 5600 Type *ScalarTy = VL[0]->getType(); 5601 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5602 ScalarTy = SI->getValueOperand()->getType(); 5603 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5604 bool DuplicateNonConst = false; 5605 // Find the cost of inserting/extracting values from the vector. 5606 // Check if the same elements are inserted several times and count them as 5607 // shuffle candidates. 5608 DenseSet<unsigned> ShuffledElements; 5609 DenseSet<Value *> UniqueElements; 5610 // Iterate in reverse order to consider insert elements with the high cost. 5611 for (unsigned I = VL.size(); I > 0; --I) { 5612 unsigned Idx = I - 1; 5613 // No need to shuffle duplicates for constants. 5614 if (isConstant(VL[Idx])) { 5615 ShuffledElements.insert(Idx); 5616 continue; 5617 } 5618 if (!UniqueElements.insert(VL[Idx]).second) { 5619 DuplicateNonConst = true; 5620 ShuffledElements.insert(Idx); 5621 } 5622 } 5623 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5624 } 5625 5626 // Perform operand reordering on the instructions in VL and return the reordered 5627 // operands in Left and Right. 5628 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5629 SmallVectorImpl<Value *> &Left, 5630 SmallVectorImpl<Value *> &Right, 5631 const DataLayout &DL, 5632 ScalarEvolution &SE, 5633 const BoUpSLP &R) { 5634 if (VL.empty()) 5635 return; 5636 VLOperands Ops(VL, DL, SE, R); 5637 // Reorder the operands in place. 5638 Ops.reorder(); 5639 Left = Ops.getVL(0); 5640 Right = Ops.getVL(1); 5641 } 5642 5643 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5644 // Get the basic block this bundle is in. All instructions in the bundle 5645 // should be in this block. 5646 auto *Front = E->getMainOp(); 5647 auto *BB = Front->getParent(); 5648 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5649 auto *I = cast<Instruction>(V); 5650 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5651 })); 5652 5653 // The last instruction in the bundle in program order. 5654 Instruction *LastInst = nullptr; 5655 5656 // Find the last instruction. The common case should be that BB has been 5657 // scheduled, and the last instruction is VL.back(). So we start with 5658 // VL.back() and iterate over schedule data until we reach the end of the 5659 // bundle. The end of the bundle is marked by null ScheduleData. 5660 if (BlocksSchedules.count(BB)) { 5661 auto *Bundle = 5662 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5663 if (Bundle && Bundle->isPartOfBundle()) 5664 for (; Bundle; Bundle = Bundle->NextInBundle) 5665 if (Bundle->OpValue == Bundle->Inst) 5666 LastInst = Bundle->Inst; 5667 } 5668 5669 // LastInst can still be null at this point if there's either not an entry 5670 // for BB in BlocksSchedules or there's no ScheduleData available for 5671 // VL.back(). This can be the case if buildTree_rec aborts for various 5672 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5673 // size is reached, etc.). ScheduleData is initialized in the scheduling 5674 // "dry-run". 5675 // 5676 // If this happens, we can still find the last instruction by brute force. We 5677 // iterate forwards from Front (inclusive) until we either see all 5678 // instructions in the bundle or reach the end of the block. If Front is the 5679 // last instruction in program order, LastInst will be set to Front, and we 5680 // will visit all the remaining instructions in the block. 5681 // 5682 // One of the reasons we exit early from buildTree_rec is to place an upper 5683 // bound on compile-time. Thus, taking an additional compile-time hit here is 5684 // not ideal. However, this should be exceedingly rare since it requires that 5685 // we both exit early from buildTree_rec and that the bundle be out-of-order 5686 // (causing us to iterate all the way to the end of the block). 5687 if (!LastInst) { 5688 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5689 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5690 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5691 LastInst = &I; 5692 if (Bundle.empty()) 5693 break; 5694 } 5695 } 5696 assert(LastInst && "Failed to find last instruction in bundle"); 5697 5698 // Set the insertion point after the last instruction in the bundle. Set the 5699 // debug location to Front. 5700 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5701 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5702 } 5703 5704 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5705 // List of instructions/lanes from current block and/or the blocks which are 5706 // part of the current loop. These instructions will be inserted at the end to 5707 // make it possible to optimize loops and hoist invariant instructions out of 5708 // the loops body with better chances for success. 5709 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5710 SmallSet<int, 4> PostponedIndices; 5711 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5712 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5713 SmallPtrSet<BasicBlock *, 4> Visited; 5714 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5715 InsertBB = InsertBB->getSinglePredecessor(); 5716 return InsertBB && InsertBB == InstBB; 5717 }; 5718 for (int I = 0, E = VL.size(); I < E; ++I) { 5719 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5720 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5721 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5722 PostponedIndices.insert(I).second) 5723 PostponedInsts.emplace_back(Inst, I); 5724 } 5725 5726 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5727 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5728 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5729 if (!InsElt) 5730 return Vec; 5731 GatherSeq.insert(InsElt); 5732 CSEBlocks.insert(InsElt->getParent()); 5733 // Add to our 'need-to-extract' list. 5734 if (TreeEntry *Entry = getTreeEntry(V)) { 5735 // Find which lane we need to extract. 5736 unsigned FoundLane = Entry->findLaneForValue(V); 5737 ExternalUses.emplace_back(V, InsElt, FoundLane); 5738 } 5739 return Vec; 5740 }; 5741 Value *Val0 = 5742 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5743 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5744 Value *Vec = PoisonValue::get(VecTy); 5745 SmallVector<int> NonConsts; 5746 // Insert constant values at first. 5747 for (int I = 0, E = VL.size(); I < E; ++I) { 5748 if (PostponedIndices.contains(I)) 5749 continue; 5750 if (!isConstant(VL[I])) { 5751 NonConsts.push_back(I); 5752 continue; 5753 } 5754 Vec = CreateInsertElement(Vec, VL[I], I); 5755 } 5756 // Insert non-constant values. 5757 for (int I : NonConsts) 5758 Vec = CreateInsertElement(Vec, VL[I], I); 5759 // Append instructions, which are/may be part of the loop, in the end to make 5760 // it possible to hoist non-loop-based instructions. 5761 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5762 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5763 5764 return Vec; 5765 } 5766 5767 namespace { 5768 /// Merges shuffle masks and emits final shuffle instruction, if required. 5769 class ShuffleInstructionBuilder { 5770 IRBuilderBase &Builder; 5771 const unsigned VF = 0; 5772 bool IsFinalized = false; 5773 SmallVector<int, 4> Mask; 5774 5775 public: 5776 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5777 : Builder(Builder), VF(VF) {} 5778 5779 /// Adds a mask, inverting it before applying. 5780 void addInversedMask(ArrayRef<unsigned> SubMask) { 5781 if (SubMask.empty()) 5782 return; 5783 SmallVector<int, 4> NewMask; 5784 inversePermutation(SubMask, NewMask); 5785 addMask(NewMask); 5786 } 5787 5788 /// Functions adds masks, merging them into single one. 5789 void addMask(ArrayRef<unsigned> SubMask) { 5790 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5791 addMask(NewMask); 5792 } 5793 5794 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5795 5796 Value *finalize(Value *V) { 5797 IsFinalized = true; 5798 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5799 if (VF == ValueVF && Mask.empty()) 5800 return V; 5801 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5802 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5803 addMask(NormalizedMask); 5804 5805 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5806 return V; 5807 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5808 } 5809 5810 ~ShuffleInstructionBuilder() { 5811 assert((IsFinalized || Mask.empty()) && 5812 "Shuffle construction must be finalized."); 5813 } 5814 }; 5815 } // namespace 5816 5817 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5818 unsigned VF = VL.size(); 5819 InstructionsState S = getSameOpcode(VL); 5820 if (S.getOpcode()) { 5821 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5822 if (E->isSame(VL)) { 5823 Value *V = vectorizeTree(E); 5824 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5825 if (!E->ReuseShuffleIndices.empty()) { 5826 // Reshuffle to get only unique values. 5827 // If some of the scalars are duplicated in the vectorization tree 5828 // entry, we do not vectorize them but instead generate a mask for 5829 // the reuses. But if there are several users of the same entry, 5830 // they may have different vectorization factors. This is especially 5831 // important for PHI nodes. In this case, we need to adapt the 5832 // resulting instruction for the user vectorization factor and have 5833 // to reshuffle it again to take only unique elements of the vector. 5834 // Without this code the function incorrectly returns reduced vector 5835 // instruction with the same elements, not with the unique ones. 5836 5837 // block: 5838 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5839 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5840 // ... (use %2) 5841 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5842 // br %block 5843 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5844 SmallSet<int, 4> UsedIdxs; 5845 int Pos = 0; 5846 int Sz = VL.size(); 5847 for (int Idx : E->ReuseShuffleIndices) { 5848 if (Idx != Sz && Idx != UndefMaskElem && 5849 UsedIdxs.insert(Idx).second) 5850 UniqueIdxs[Idx] = Pos; 5851 ++Pos; 5852 } 5853 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5854 "less than original vector size."); 5855 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5856 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5857 } else { 5858 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5859 "Expected vectorization factor less " 5860 "than original vector size."); 5861 SmallVector<int> UniformMask(VF, 0); 5862 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5863 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5864 } 5865 } 5866 return V; 5867 } 5868 } 5869 5870 // Check that every instruction appears once in this bundle. 5871 SmallVector<int> ReuseShuffleIndicies; 5872 SmallVector<Value *> UniqueValues; 5873 if (VL.size() > 2) { 5874 DenseMap<Value *, unsigned> UniquePositions; 5875 unsigned NumValues = 5876 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5877 return !isa<UndefValue>(V); 5878 }).base()); 5879 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5880 int UniqueVals = 0; 5881 for (Value *V : VL.drop_back(VL.size() - VF)) { 5882 if (isa<UndefValue>(V)) { 5883 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5884 continue; 5885 } 5886 if (isConstant(V)) { 5887 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5888 UniqueValues.emplace_back(V); 5889 continue; 5890 } 5891 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5892 ReuseShuffleIndicies.emplace_back(Res.first->second); 5893 if (Res.second) { 5894 UniqueValues.emplace_back(V); 5895 ++UniqueVals; 5896 } 5897 } 5898 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5899 // Emit pure splat vector. 5900 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5901 UndefMaskElem); 5902 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5903 ReuseShuffleIndicies.clear(); 5904 UniqueValues.clear(); 5905 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5906 } 5907 UniqueValues.append(VF - UniqueValues.size(), 5908 PoisonValue::get(VL[0]->getType())); 5909 VL = UniqueValues; 5910 } 5911 5912 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5913 Value *Vec = gather(VL); 5914 if (!ReuseShuffleIndicies.empty()) { 5915 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5916 Vec = ShuffleBuilder.finalize(Vec); 5917 if (auto *I = dyn_cast<Instruction>(Vec)) { 5918 GatherSeq.insert(I); 5919 CSEBlocks.insert(I->getParent()); 5920 } 5921 } 5922 return Vec; 5923 } 5924 5925 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5926 IRBuilder<>::InsertPointGuard Guard(Builder); 5927 5928 if (E->VectorizedValue) { 5929 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5930 return E->VectorizedValue; 5931 } 5932 5933 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5934 unsigned VF = E->getVectorFactor(); 5935 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5936 if (E->State == TreeEntry::NeedToGather) { 5937 if (E->getMainOp()) 5938 setInsertPointAfterBundle(E); 5939 Value *Vec; 5940 SmallVector<int> Mask; 5941 SmallVector<const TreeEntry *> Entries; 5942 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5943 isGatherShuffledEntry(E, Mask, Entries); 5944 if (Shuffle.hasValue()) { 5945 assert((Entries.size() == 1 || Entries.size() == 2) && 5946 "Expected shuffle of 1 or 2 entries."); 5947 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5948 Entries.back()->VectorizedValue, Mask); 5949 } else { 5950 Vec = gather(E->Scalars); 5951 } 5952 if (NeedToShuffleReuses) { 5953 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5954 Vec = ShuffleBuilder.finalize(Vec); 5955 if (auto *I = dyn_cast<Instruction>(Vec)) { 5956 GatherSeq.insert(I); 5957 CSEBlocks.insert(I->getParent()); 5958 } 5959 } 5960 E->VectorizedValue = Vec; 5961 return Vec; 5962 } 5963 5964 assert((E->State == TreeEntry::Vectorize || 5965 E->State == TreeEntry::ScatterVectorize) && 5966 "Unhandled state"); 5967 unsigned ShuffleOrOp = 5968 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5969 Instruction *VL0 = E->getMainOp(); 5970 Type *ScalarTy = VL0->getType(); 5971 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5972 ScalarTy = Store->getValueOperand()->getType(); 5973 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5974 ScalarTy = IE->getOperand(1)->getType(); 5975 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5976 switch (ShuffleOrOp) { 5977 case Instruction::PHI: { 5978 assert( 5979 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5980 "PHI reordering is free."); 5981 auto *PH = cast<PHINode>(VL0); 5982 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5983 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5984 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5985 Value *V = NewPhi; 5986 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5987 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5988 V = ShuffleBuilder.finalize(V); 5989 5990 E->VectorizedValue = V; 5991 5992 // PHINodes may have multiple entries from the same block. We want to 5993 // visit every block once. 5994 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5995 5996 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5997 ValueList Operands; 5998 BasicBlock *IBB = PH->getIncomingBlock(i); 5999 6000 if (!VisitedBBs.insert(IBB).second) { 6001 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6002 continue; 6003 } 6004 6005 Builder.SetInsertPoint(IBB->getTerminator()); 6006 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6007 Value *Vec = vectorizeTree(E->getOperand(i)); 6008 NewPhi->addIncoming(Vec, IBB); 6009 } 6010 6011 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6012 "Invalid number of incoming values"); 6013 return V; 6014 } 6015 6016 case Instruction::ExtractElement: { 6017 Value *V = E->getSingleOperand(0); 6018 Builder.SetInsertPoint(VL0); 6019 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6020 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6021 V = ShuffleBuilder.finalize(V); 6022 E->VectorizedValue = V; 6023 return V; 6024 } 6025 case Instruction::ExtractValue: { 6026 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6027 Builder.SetInsertPoint(LI); 6028 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6029 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6030 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6031 Value *NewV = propagateMetadata(V, E->Scalars); 6032 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6033 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6034 NewV = ShuffleBuilder.finalize(NewV); 6035 E->VectorizedValue = NewV; 6036 return NewV; 6037 } 6038 case Instruction::InsertElement: { 6039 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6040 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6041 Value *V = vectorizeTree(E->getOperand(1)); 6042 6043 // Create InsertVector shuffle if necessary 6044 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6045 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6046 })); 6047 const unsigned NumElts = 6048 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6049 const unsigned NumScalars = E->Scalars.size(); 6050 6051 unsigned Offset = *getInsertIndex(VL0, 0); 6052 assert(Offset < NumElts && "Failed to find vector index offset"); 6053 6054 // Create shuffle to resize vector 6055 SmallVector<int> Mask; 6056 if (!E->ReorderIndices.empty()) { 6057 inversePermutation(E->ReorderIndices, Mask); 6058 Mask.append(NumElts - NumScalars, UndefMaskElem); 6059 } else { 6060 Mask.assign(NumElts, UndefMaskElem); 6061 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6062 } 6063 // Create InsertVector shuffle if necessary 6064 bool IsIdentity = true; 6065 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6066 Mask.swap(PrevMask); 6067 for (unsigned I = 0; I < NumScalars; ++I) { 6068 Value *Scalar = E->Scalars[PrevMask[I]]; 6069 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6070 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6071 continue; 6072 IsIdentity &= *InsertIdx - Offset == I; 6073 Mask[*InsertIdx - Offset] = I; 6074 } 6075 if (!IsIdentity || NumElts != NumScalars) 6076 V = Builder.CreateShuffleVector(V, Mask); 6077 6078 if ((!IsIdentity || Offset != 0 || 6079 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6080 NumElts != NumScalars) { 6081 SmallVector<int> InsertMask(NumElts); 6082 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6083 for (unsigned I = 0; I < NumElts; I++) { 6084 if (Mask[I] != UndefMaskElem) 6085 InsertMask[Offset + I] = NumElts + I; 6086 } 6087 6088 V = Builder.CreateShuffleVector( 6089 FirstInsert->getOperand(0), V, InsertMask, 6090 cast<Instruction>(E->Scalars.back())->getName()); 6091 } 6092 6093 ++NumVectorInstructions; 6094 E->VectorizedValue = V; 6095 return V; 6096 } 6097 case Instruction::ZExt: 6098 case Instruction::SExt: 6099 case Instruction::FPToUI: 6100 case Instruction::FPToSI: 6101 case Instruction::FPExt: 6102 case Instruction::PtrToInt: 6103 case Instruction::IntToPtr: 6104 case Instruction::SIToFP: 6105 case Instruction::UIToFP: 6106 case Instruction::Trunc: 6107 case Instruction::FPTrunc: 6108 case Instruction::BitCast: { 6109 setInsertPointAfterBundle(E); 6110 6111 Value *InVec = vectorizeTree(E->getOperand(0)); 6112 6113 if (E->VectorizedValue) { 6114 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6115 return E->VectorizedValue; 6116 } 6117 6118 auto *CI = cast<CastInst>(VL0); 6119 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6120 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6121 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6122 V = ShuffleBuilder.finalize(V); 6123 6124 E->VectorizedValue = V; 6125 ++NumVectorInstructions; 6126 return V; 6127 } 6128 case Instruction::FCmp: 6129 case Instruction::ICmp: { 6130 setInsertPointAfterBundle(E); 6131 6132 Value *L = vectorizeTree(E->getOperand(0)); 6133 Value *R = vectorizeTree(E->getOperand(1)); 6134 6135 if (E->VectorizedValue) { 6136 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6137 return E->VectorizedValue; 6138 } 6139 6140 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6141 Value *V = Builder.CreateCmp(P0, L, R); 6142 propagateIRFlags(V, E->Scalars, VL0); 6143 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6144 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6145 V = ShuffleBuilder.finalize(V); 6146 6147 E->VectorizedValue = V; 6148 ++NumVectorInstructions; 6149 return V; 6150 } 6151 case Instruction::Select: { 6152 setInsertPointAfterBundle(E); 6153 6154 Value *Cond = vectorizeTree(E->getOperand(0)); 6155 Value *True = vectorizeTree(E->getOperand(1)); 6156 Value *False = vectorizeTree(E->getOperand(2)); 6157 6158 if (E->VectorizedValue) { 6159 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6160 return E->VectorizedValue; 6161 } 6162 6163 Value *V = Builder.CreateSelect(Cond, True, False); 6164 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6165 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6166 V = ShuffleBuilder.finalize(V); 6167 6168 E->VectorizedValue = V; 6169 ++NumVectorInstructions; 6170 return V; 6171 } 6172 case Instruction::FNeg: { 6173 setInsertPointAfterBundle(E); 6174 6175 Value *Op = vectorizeTree(E->getOperand(0)); 6176 6177 if (E->VectorizedValue) { 6178 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6179 return E->VectorizedValue; 6180 } 6181 6182 Value *V = Builder.CreateUnOp( 6183 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6184 propagateIRFlags(V, E->Scalars, VL0); 6185 if (auto *I = dyn_cast<Instruction>(V)) 6186 V = propagateMetadata(I, E->Scalars); 6187 6188 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6189 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6190 V = ShuffleBuilder.finalize(V); 6191 6192 E->VectorizedValue = V; 6193 ++NumVectorInstructions; 6194 6195 return V; 6196 } 6197 case Instruction::Add: 6198 case Instruction::FAdd: 6199 case Instruction::Sub: 6200 case Instruction::FSub: 6201 case Instruction::Mul: 6202 case Instruction::FMul: 6203 case Instruction::UDiv: 6204 case Instruction::SDiv: 6205 case Instruction::FDiv: 6206 case Instruction::URem: 6207 case Instruction::SRem: 6208 case Instruction::FRem: 6209 case Instruction::Shl: 6210 case Instruction::LShr: 6211 case Instruction::AShr: 6212 case Instruction::And: 6213 case Instruction::Or: 6214 case Instruction::Xor: { 6215 setInsertPointAfterBundle(E); 6216 6217 Value *LHS = vectorizeTree(E->getOperand(0)); 6218 Value *RHS = vectorizeTree(E->getOperand(1)); 6219 6220 if (E->VectorizedValue) { 6221 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6222 return E->VectorizedValue; 6223 } 6224 6225 Value *V = Builder.CreateBinOp( 6226 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6227 RHS); 6228 propagateIRFlags(V, E->Scalars, VL0); 6229 if (auto *I = dyn_cast<Instruction>(V)) 6230 V = propagateMetadata(I, E->Scalars); 6231 6232 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6233 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6234 V = ShuffleBuilder.finalize(V); 6235 6236 E->VectorizedValue = V; 6237 ++NumVectorInstructions; 6238 6239 return V; 6240 } 6241 case Instruction::Load: { 6242 // Loads are inserted at the head of the tree because we don't want to 6243 // sink them all the way down past store instructions. 6244 setInsertPointAfterBundle(E); 6245 6246 LoadInst *LI = cast<LoadInst>(VL0); 6247 Instruction *NewLI; 6248 unsigned AS = LI->getPointerAddressSpace(); 6249 Value *PO = LI->getPointerOperand(); 6250 if (E->State == TreeEntry::Vectorize) { 6251 6252 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6253 6254 // The pointer operand uses an in-tree scalar so we add the new BitCast 6255 // to ExternalUses list to make sure that an extract will be generated 6256 // in the future. 6257 if (TreeEntry *Entry = getTreeEntry(PO)) { 6258 // Find which lane we need to extract. 6259 unsigned FoundLane = Entry->findLaneForValue(PO); 6260 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6261 } 6262 6263 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6264 } else { 6265 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6266 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6267 // Use the minimum alignment of the gathered loads. 6268 Align CommonAlignment = LI->getAlign(); 6269 for (Value *V : E->Scalars) 6270 CommonAlignment = 6271 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6272 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6273 } 6274 Value *V = propagateMetadata(NewLI, E->Scalars); 6275 6276 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6277 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6278 V = ShuffleBuilder.finalize(V); 6279 E->VectorizedValue = V; 6280 ++NumVectorInstructions; 6281 return V; 6282 } 6283 case Instruction::Store: { 6284 auto *SI = cast<StoreInst>(VL0); 6285 unsigned AS = SI->getPointerAddressSpace(); 6286 6287 setInsertPointAfterBundle(E); 6288 6289 Value *VecValue = vectorizeTree(E->getOperand(0)); 6290 ShuffleBuilder.addMask(E->ReorderIndices); 6291 VecValue = ShuffleBuilder.finalize(VecValue); 6292 6293 Value *ScalarPtr = SI->getPointerOperand(); 6294 Value *VecPtr = Builder.CreateBitCast( 6295 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6296 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6297 SI->getAlign()); 6298 6299 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6300 // ExternalUses to make sure that an extract will be generated in the 6301 // future. 6302 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6303 // Find which lane we need to extract. 6304 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6305 ExternalUses.push_back( 6306 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6307 } 6308 6309 Value *V = propagateMetadata(ST, E->Scalars); 6310 6311 E->VectorizedValue = V; 6312 ++NumVectorInstructions; 6313 return V; 6314 } 6315 case Instruction::GetElementPtr: { 6316 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6317 setInsertPointAfterBundle(E); 6318 6319 Value *Op0 = vectorizeTree(E->getOperand(0)); 6320 6321 SmallVector<Value *> OpVecs; 6322 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6323 Value *OpVec = vectorizeTree(E->getOperand(J)); 6324 OpVecs.push_back(OpVec); 6325 } 6326 6327 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6328 if (Instruction *I = dyn_cast<Instruction>(V)) 6329 V = propagateMetadata(I, E->Scalars); 6330 6331 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6332 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6333 V = ShuffleBuilder.finalize(V); 6334 6335 E->VectorizedValue = V; 6336 ++NumVectorInstructions; 6337 6338 return V; 6339 } 6340 case Instruction::Call: { 6341 CallInst *CI = cast<CallInst>(VL0); 6342 setInsertPointAfterBundle(E); 6343 6344 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6345 if (Function *FI = CI->getCalledFunction()) 6346 IID = FI->getIntrinsicID(); 6347 6348 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6349 6350 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6351 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6352 VecCallCosts.first <= VecCallCosts.second; 6353 6354 Value *ScalarArg = nullptr; 6355 std::vector<Value *> OpVecs; 6356 SmallVector<Type *, 2> TysForDecl = 6357 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6358 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6359 ValueList OpVL; 6360 // Some intrinsics have scalar arguments. This argument should not be 6361 // vectorized. 6362 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6363 CallInst *CEI = cast<CallInst>(VL0); 6364 ScalarArg = CEI->getArgOperand(j); 6365 OpVecs.push_back(CEI->getArgOperand(j)); 6366 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6367 TysForDecl.push_back(ScalarArg->getType()); 6368 continue; 6369 } 6370 6371 Value *OpVec = vectorizeTree(E->getOperand(j)); 6372 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6373 OpVecs.push_back(OpVec); 6374 } 6375 6376 Function *CF; 6377 if (!UseIntrinsic) { 6378 VFShape Shape = 6379 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6380 VecTy->getNumElements())), 6381 false /*HasGlobalPred*/); 6382 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6383 } else { 6384 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6385 } 6386 6387 SmallVector<OperandBundleDef, 1> OpBundles; 6388 CI->getOperandBundlesAsDefs(OpBundles); 6389 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6390 6391 // The scalar argument uses an in-tree scalar so we add the new vectorized 6392 // call to ExternalUses list to make sure that an extract will be 6393 // generated in the future. 6394 if (ScalarArg) { 6395 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6396 // Find which lane we need to extract. 6397 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6398 ExternalUses.push_back( 6399 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6400 } 6401 } 6402 6403 propagateIRFlags(V, E->Scalars, VL0); 6404 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6405 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6406 V = ShuffleBuilder.finalize(V); 6407 6408 E->VectorizedValue = V; 6409 ++NumVectorInstructions; 6410 return V; 6411 } 6412 case Instruction::ShuffleVector: { 6413 assert(E->isAltShuffle() && 6414 ((Instruction::isBinaryOp(E->getOpcode()) && 6415 Instruction::isBinaryOp(E->getAltOpcode())) || 6416 (Instruction::isCast(E->getOpcode()) && 6417 Instruction::isCast(E->getAltOpcode()))) && 6418 "Invalid Shuffle Vector Operand"); 6419 6420 Value *LHS = nullptr, *RHS = nullptr; 6421 if (Instruction::isBinaryOp(E->getOpcode())) { 6422 setInsertPointAfterBundle(E); 6423 LHS = vectorizeTree(E->getOperand(0)); 6424 RHS = vectorizeTree(E->getOperand(1)); 6425 } else { 6426 setInsertPointAfterBundle(E); 6427 LHS = vectorizeTree(E->getOperand(0)); 6428 } 6429 6430 if (E->VectorizedValue) { 6431 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6432 return E->VectorizedValue; 6433 } 6434 6435 Value *V0, *V1; 6436 if (Instruction::isBinaryOp(E->getOpcode())) { 6437 V0 = Builder.CreateBinOp( 6438 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6439 V1 = Builder.CreateBinOp( 6440 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6441 } else { 6442 V0 = Builder.CreateCast( 6443 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6444 V1 = Builder.CreateCast( 6445 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6446 } 6447 6448 // Create shuffle to take alternate operations from the vector. 6449 // Also, gather up main and alt scalar ops to propagate IR flags to 6450 // each vector operation. 6451 ValueList OpScalars, AltScalars; 6452 SmallVector<int> Mask; 6453 buildSuffleEntryMask( 6454 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6455 [E](Instruction *I) { 6456 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6457 return I->getOpcode() == E->getAltOpcode(); 6458 }, 6459 Mask, &OpScalars, &AltScalars); 6460 6461 propagateIRFlags(V0, OpScalars); 6462 propagateIRFlags(V1, AltScalars); 6463 6464 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6465 if (Instruction *I = dyn_cast<Instruction>(V)) 6466 V = propagateMetadata(I, E->Scalars); 6467 V = ShuffleBuilder.finalize(V); 6468 6469 E->VectorizedValue = V; 6470 ++NumVectorInstructions; 6471 6472 return V; 6473 } 6474 default: 6475 llvm_unreachable("unknown inst"); 6476 } 6477 return nullptr; 6478 } 6479 6480 Value *BoUpSLP::vectorizeTree() { 6481 ExtraValueToDebugLocsMap ExternallyUsedValues; 6482 return vectorizeTree(ExternallyUsedValues); 6483 } 6484 6485 Value * 6486 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6487 // All blocks must be scheduled before any instructions are inserted. 6488 for (auto &BSIter : BlocksSchedules) { 6489 scheduleBlock(BSIter.second.get()); 6490 } 6491 6492 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6493 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6494 6495 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6496 // vectorized root. InstCombine will then rewrite the entire expression. We 6497 // sign extend the extracted values below. 6498 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6499 if (MinBWs.count(ScalarRoot)) { 6500 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6501 // If current instr is a phi and not the last phi, insert it after the 6502 // last phi node. 6503 if (isa<PHINode>(I)) 6504 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6505 else 6506 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6507 } 6508 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6509 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6510 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6511 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6512 VectorizableTree[0]->VectorizedValue = Trunc; 6513 } 6514 6515 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6516 << " values .\n"); 6517 6518 // Extract all of the elements with the external uses. 6519 for (const auto &ExternalUse : ExternalUses) { 6520 Value *Scalar = ExternalUse.Scalar; 6521 llvm::User *User = ExternalUse.User; 6522 6523 // Skip users that we already RAUW. This happens when one instruction 6524 // has multiple uses of the same value. 6525 if (User && !is_contained(Scalar->users(), User)) 6526 continue; 6527 TreeEntry *E = getTreeEntry(Scalar); 6528 assert(E && "Invalid scalar"); 6529 assert(E->State != TreeEntry::NeedToGather && 6530 "Extracting from a gather list"); 6531 6532 Value *Vec = E->VectorizedValue; 6533 assert(Vec && "Can't find vectorizable value"); 6534 6535 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6536 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6537 if (Scalar->getType() != Vec->getType()) { 6538 Value *Ex; 6539 // "Reuse" the existing extract to improve final codegen. 6540 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6541 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6542 ES->getOperand(1)); 6543 } else { 6544 Ex = Builder.CreateExtractElement(Vec, Lane); 6545 } 6546 // If necessary, sign-extend or zero-extend ScalarRoot 6547 // to the larger type. 6548 if (!MinBWs.count(ScalarRoot)) 6549 return Ex; 6550 if (MinBWs[ScalarRoot].second) 6551 return Builder.CreateSExt(Ex, Scalar->getType()); 6552 return Builder.CreateZExt(Ex, Scalar->getType()); 6553 } 6554 assert(isa<FixedVectorType>(Scalar->getType()) && 6555 isa<InsertElementInst>(Scalar) && 6556 "In-tree scalar of vector type is not insertelement?"); 6557 return Vec; 6558 }; 6559 // If User == nullptr, the Scalar is used as extra arg. Generate 6560 // ExtractElement instruction and update the record for this scalar in 6561 // ExternallyUsedValues. 6562 if (!User) { 6563 assert(ExternallyUsedValues.count(Scalar) && 6564 "Scalar with nullptr as an external user must be registered in " 6565 "ExternallyUsedValues map"); 6566 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6567 Builder.SetInsertPoint(VecI->getParent(), 6568 std::next(VecI->getIterator())); 6569 } else { 6570 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6571 } 6572 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6573 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6574 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6575 auto It = ExternallyUsedValues.find(Scalar); 6576 assert(It != ExternallyUsedValues.end() && 6577 "Externally used scalar is not found in ExternallyUsedValues"); 6578 NewInstLocs.append(It->second); 6579 ExternallyUsedValues.erase(Scalar); 6580 // Required to update internally referenced instructions. 6581 Scalar->replaceAllUsesWith(NewInst); 6582 continue; 6583 } 6584 6585 // Generate extracts for out-of-tree users. 6586 // Find the insertion point for the extractelement lane. 6587 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6588 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6589 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6590 if (PH->getIncomingValue(i) == Scalar) { 6591 Instruction *IncomingTerminator = 6592 PH->getIncomingBlock(i)->getTerminator(); 6593 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6594 Builder.SetInsertPoint(VecI->getParent(), 6595 std::next(VecI->getIterator())); 6596 } else { 6597 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6598 } 6599 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6600 CSEBlocks.insert(PH->getIncomingBlock(i)); 6601 PH->setOperand(i, NewInst); 6602 } 6603 } 6604 } else { 6605 Builder.SetInsertPoint(cast<Instruction>(User)); 6606 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6607 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6608 User->replaceUsesOfWith(Scalar, NewInst); 6609 } 6610 } else { 6611 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6612 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6613 CSEBlocks.insert(&F->getEntryBlock()); 6614 User->replaceUsesOfWith(Scalar, NewInst); 6615 } 6616 6617 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6618 } 6619 6620 // For each vectorized value: 6621 for (auto &TEPtr : VectorizableTree) { 6622 TreeEntry *Entry = TEPtr.get(); 6623 6624 // No need to handle users of gathered values. 6625 if (Entry->State == TreeEntry::NeedToGather) 6626 continue; 6627 6628 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6629 6630 // For each lane: 6631 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6632 Value *Scalar = Entry->Scalars[Lane]; 6633 6634 #ifndef NDEBUG 6635 Type *Ty = Scalar->getType(); 6636 if (!Ty->isVoidTy()) { 6637 for (User *U : Scalar->users()) { 6638 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6639 6640 // It is legal to delete users in the ignorelist. 6641 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6642 (isa_and_nonnull<Instruction>(U) && 6643 isDeleted(cast<Instruction>(U)))) && 6644 "Deleting out-of-tree value"); 6645 } 6646 } 6647 #endif 6648 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6649 eraseInstruction(cast<Instruction>(Scalar)); 6650 } 6651 } 6652 6653 Builder.ClearInsertionPoint(); 6654 InstrElementSize.clear(); 6655 6656 return VectorizableTree[0]->VectorizedValue; 6657 } 6658 6659 void BoUpSLP::optimizeGatherSequence() { 6660 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6661 << " gather sequences instructions.\n"); 6662 // LICM InsertElementInst sequences. 6663 for (Instruction *I : GatherSeq) { 6664 if (isDeleted(I)) 6665 continue; 6666 6667 // Check if this block is inside a loop. 6668 Loop *L = LI->getLoopFor(I->getParent()); 6669 if (!L) 6670 continue; 6671 6672 // Check if it has a preheader. 6673 BasicBlock *PreHeader = L->getLoopPreheader(); 6674 if (!PreHeader) 6675 continue; 6676 6677 // If the vector or the element that we insert into it are 6678 // instructions that are defined in this basic block then we can't 6679 // hoist this instruction. 6680 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6681 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6682 if (Op0 && L->contains(Op0)) 6683 continue; 6684 if (Op1 && L->contains(Op1)) 6685 continue; 6686 6687 // We can hoist this instruction. Move it to the pre-header. 6688 I->moveBefore(PreHeader->getTerminator()); 6689 } 6690 6691 // Make a list of all reachable blocks in our CSE queue. 6692 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6693 CSEWorkList.reserve(CSEBlocks.size()); 6694 for (BasicBlock *BB : CSEBlocks) 6695 if (DomTreeNode *N = DT->getNode(BB)) { 6696 assert(DT->isReachableFromEntry(N)); 6697 CSEWorkList.push_back(N); 6698 } 6699 6700 // Sort blocks by domination. This ensures we visit a block after all blocks 6701 // dominating it are visited. 6702 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6703 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6704 "Different nodes should have different DFS numbers"); 6705 return A->getDFSNumIn() < B->getDFSNumIn(); 6706 }); 6707 6708 // Perform O(N^2) search over the gather sequences and merge identical 6709 // instructions. TODO: We can further optimize this scan if we split the 6710 // instructions into different buckets based on the insert lane. 6711 SmallVector<Instruction *, 16> Visited; 6712 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6713 assert(*I && 6714 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6715 "Worklist not sorted properly!"); 6716 BasicBlock *BB = (*I)->getBlock(); 6717 // For all instructions in blocks containing gather sequences: 6718 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6719 if (isDeleted(&In)) 6720 continue; 6721 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6722 !isa<ShuffleVectorInst>(&In)) 6723 continue; 6724 6725 // Check if we can replace this instruction with any of the 6726 // visited instructions. 6727 bool Replaced = false; 6728 for (Instruction *v : Visited) { 6729 if (In.isIdenticalTo(v) && 6730 DT->dominates(v->getParent(), In.getParent())) { 6731 In.replaceAllUsesWith(v); 6732 eraseInstruction(&In); 6733 Replaced = true; 6734 break; 6735 } 6736 } 6737 if (!Replaced) { 6738 assert(!is_contained(Visited, &In)); 6739 Visited.push_back(&In); 6740 } 6741 } 6742 } 6743 CSEBlocks.clear(); 6744 GatherSeq.clear(); 6745 } 6746 6747 // Groups the instructions to a bundle (which is then a single scheduling entity) 6748 // and schedules instructions until the bundle gets ready. 6749 Optional<BoUpSLP::ScheduleData *> 6750 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6751 const InstructionsState &S) { 6752 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6753 // instructions. 6754 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6755 return nullptr; 6756 6757 // Initialize the instruction bundle. 6758 Instruction *OldScheduleEnd = ScheduleEnd; 6759 ScheduleData *PrevInBundle = nullptr; 6760 ScheduleData *Bundle = nullptr; 6761 bool ReSchedule = false; 6762 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6763 6764 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6765 ScheduleData *Bundle) { 6766 // The scheduling region got new instructions at the lower end (or it is a 6767 // new region for the first bundle). This makes it necessary to 6768 // recalculate all dependencies. 6769 // It is seldom that this needs to be done a second time after adding the 6770 // initial bundle to the region. 6771 if (ScheduleEnd != OldScheduleEnd) { 6772 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6773 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6774 ReSchedule = true; 6775 } 6776 if (ReSchedule) { 6777 resetSchedule(); 6778 initialFillReadyList(ReadyInsts); 6779 } 6780 if (Bundle) { 6781 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6782 << " in block " << BB->getName() << "\n"); 6783 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6784 } 6785 6786 // Now try to schedule the new bundle or (if no bundle) just calculate 6787 // dependencies. As soon as the bundle is "ready" it means that there are no 6788 // cyclic dependencies and we can schedule it. Note that's important that we 6789 // don't "schedule" the bundle yet (see cancelScheduling). 6790 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6791 !ReadyInsts.empty()) { 6792 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6793 if (Picked->isSchedulingEntity() && Picked->isReady()) 6794 schedule(Picked, ReadyInsts); 6795 } 6796 }; 6797 6798 // Make sure that the scheduling region contains all 6799 // instructions of the bundle. 6800 for (Value *V : VL) { 6801 if (!extendSchedulingRegion(V, S)) { 6802 // If the scheduling region got new instructions at the lower end (or it 6803 // is a new region for the first bundle). This makes it necessary to 6804 // recalculate all dependencies. 6805 // Otherwise the compiler may crash trying to incorrectly calculate 6806 // dependencies and emit instruction in the wrong order at the actual 6807 // scheduling. 6808 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6809 return None; 6810 } 6811 } 6812 6813 for (Value *V : VL) { 6814 ScheduleData *BundleMember = getScheduleData(V); 6815 assert(BundleMember && 6816 "no ScheduleData for bundle member (maybe not in same basic block)"); 6817 if (BundleMember->IsScheduled) { 6818 // A bundle member was scheduled as single instruction before and now 6819 // needs to be scheduled as part of the bundle. We just get rid of the 6820 // existing schedule. 6821 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6822 << " was already scheduled\n"); 6823 ReSchedule = true; 6824 } 6825 assert(BundleMember->isSchedulingEntity() && 6826 "bundle member already part of other bundle"); 6827 if (PrevInBundle) { 6828 PrevInBundle->NextInBundle = BundleMember; 6829 } else { 6830 Bundle = BundleMember; 6831 } 6832 BundleMember->UnscheduledDepsInBundle = 0; 6833 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6834 6835 // Group the instructions to a bundle. 6836 BundleMember->FirstInBundle = Bundle; 6837 PrevInBundle = BundleMember; 6838 } 6839 assert(Bundle && "Failed to find schedule bundle"); 6840 TryScheduleBundle(ReSchedule, Bundle); 6841 if (!Bundle->isReady()) { 6842 cancelScheduling(VL, S.OpValue); 6843 return None; 6844 } 6845 return Bundle; 6846 } 6847 6848 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6849 Value *OpValue) { 6850 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6851 return; 6852 6853 ScheduleData *Bundle = getScheduleData(OpValue); 6854 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6855 assert(!Bundle->IsScheduled && 6856 "Can't cancel bundle which is already scheduled"); 6857 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6858 "tried to unbundle something which is not a bundle"); 6859 6860 // Un-bundle: make single instructions out of the bundle. 6861 ScheduleData *BundleMember = Bundle; 6862 while (BundleMember) { 6863 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6864 BundleMember->FirstInBundle = BundleMember; 6865 ScheduleData *Next = BundleMember->NextInBundle; 6866 BundleMember->NextInBundle = nullptr; 6867 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6868 if (BundleMember->UnscheduledDepsInBundle == 0) { 6869 ReadyInsts.insert(BundleMember); 6870 } 6871 BundleMember = Next; 6872 } 6873 } 6874 6875 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6876 // Allocate a new ScheduleData for the instruction. 6877 if (ChunkPos >= ChunkSize) { 6878 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6879 ChunkPos = 0; 6880 } 6881 return &(ScheduleDataChunks.back()[ChunkPos++]); 6882 } 6883 6884 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6885 const InstructionsState &S) { 6886 if (getScheduleData(V, isOneOf(S, V))) 6887 return true; 6888 Instruction *I = dyn_cast<Instruction>(V); 6889 assert(I && "bundle member must be an instruction"); 6890 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6891 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6892 "be scheduled"); 6893 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6894 ScheduleData *ISD = getScheduleData(I); 6895 if (!ISD) 6896 return false; 6897 assert(isInSchedulingRegion(ISD) && 6898 "ScheduleData not in scheduling region"); 6899 ScheduleData *SD = allocateScheduleDataChunks(); 6900 SD->Inst = I; 6901 SD->init(SchedulingRegionID, S.OpValue); 6902 ExtraScheduleDataMap[I][S.OpValue] = SD; 6903 return true; 6904 }; 6905 if (CheckSheduleForI(I)) 6906 return true; 6907 if (!ScheduleStart) { 6908 // It's the first instruction in the new region. 6909 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6910 ScheduleStart = I; 6911 ScheduleEnd = I->getNextNode(); 6912 if (isOneOf(S, I) != I) 6913 CheckSheduleForI(I); 6914 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6915 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6916 return true; 6917 } 6918 // Search up and down at the same time, because we don't know if the new 6919 // instruction is above or below the existing scheduling region. 6920 BasicBlock::reverse_iterator UpIter = 6921 ++ScheduleStart->getIterator().getReverse(); 6922 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6923 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6924 BasicBlock::iterator LowerEnd = BB->end(); 6925 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6926 &*DownIter != I) { 6927 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6928 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6929 return false; 6930 } 6931 6932 ++UpIter; 6933 ++DownIter; 6934 } 6935 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6936 assert(I->getParent() == ScheduleStart->getParent() && 6937 "Instruction is in wrong basic block."); 6938 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6939 ScheduleStart = I; 6940 if (isOneOf(S, I) != I) 6941 CheckSheduleForI(I); 6942 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6943 << "\n"); 6944 return true; 6945 } 6946 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6947 "Expected to reach top of the basic block or instruction down the " 6948 "lower end."); 6949 assert(I->getParent() == ScheduleEnd->getParent() && 6950 "Instruction is in wrong basic block."); 6951 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6952 nullptr); 6953 ScheduleEnd = I->getNextNode(); 6954 if (isOneOf(S, I) != I) 6955 CheckSheduleForI(I); 6956 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6957 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6958 return true; 6959 } 6960 6961 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6962 Instruction *ToI, 6963 ScheduleData *PrevLoadStore, 6964 ScheduleData *NextLoadStore) { 6965 ScheduleData *CurrentLoadStore = PrevLoadStore; 6966 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6967 ScheduleData *SD = ScheduleDataMap[I]; 6968 if (!SD) { 6969 SD = allocateScheduleDataChunks(); 6970 ScheduleDataMap[I] = SD; 6971 SD->Inst = I; 6972 } 6973 assert(!isInSchedulingRegion(SD) && 6974 "new ScheduleData already in scheduling region"); 6975 SD->init(SchedulingRegionID, I); 6976 6977 if (I->mayReadOrWriteMemory() && 6978 (!isa<IntrinsicInst>(I) || 6979 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6980 cast<IntrinsicInst>(I)->getIntrinsicID() != 6981 Intrinsic::pseudoprobe))) { 6982 // Update the linked list of memory accessing instructions. 6983 if (CurrentLoadStore) { 6984 CurrentLoadStore->NextLoadStore = SD; 6985 } else { 6986 FirstLoadStoreInRegion = SD; 6987 } 6988 CurrentLoadStore = SD; 6989 } 6990 } 6991 if (NextLoadStore) { 6992 if (CurrentLoadStore) 6993 CurrentLoadStore->NextLoadStore = NextLoadStore; 6994 } else { 6995 LastLoadStoreInRegion = CurrentLoadStore; 6996 } 6997 } 6998 6999 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7000 bool InsertInReadyList, 7001 BoUpSLP *SLP) { 7002 assert(SD->isSchedulingEntity()); 7003 7004 SmallVector<ScheduleData *, 10> WorkList; 7005 WorkList.push_back(SD); 7006 7007 while (!WorkList.empty()) { 7008 ScheduleData *SD = WorkList.pop_back_val(); 7009 7010 ScheduleData *BundleMember = SD; 7011 while (BundleMember) { 7012 assert(isInSchedulingRegion(BundleMember)); 7013 if (!BundleMember->hasValidDependencies()) { 7014 7015 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7016 << "\n"); 7017 BundleMember->Dependencies = 0; 7018 BundleMember->resetUnscheduledDeps(); 7019 7020 // Handle def-use chain dependencies. 7021 if (BundleMember->OpValue != BundleMember->Inst) { 7022 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7023 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7024 BundleMember->Dependencies++; 7025 ScheduleData *DestBundle = UseSD->FirstInBundle; 7026 if (!DestBundle->IsScheduled) 7027 BundleMember->incrementUnscheduledDeps(1); 7028 if (!DestBundle->hasValidDependencies()) 7029 WorkList.push_back(DestBundle); 7030 } 7031 } else { 7032 for (User *U : BundleMember->Inst->users()) { 7033 if (isa<Instruction>(U)) { 7034 ScheduleData *UseSD = getScheduleData(U); 7035 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7036 BundleMember->Dependencies++; 7037 ScheduleData *DestBundle = UseSD->FirstInBundle; 7038 if (!DestBundle->IsScheduled) 7039 BundleMember->incrementUnscheduledDeps(1); 7040 if (!DestBundle->hasValidDependencies()) 7041 WorkList.push_back(DestBundle); 7042 } 7043 } else { 7044 // I'm not sure if this can ever happen. But we need to be safe. 7045 // This lets the instruction/bundle never be scheduled and 7046 // eventually disable vectorization. 7047 BundleMember->Dependencies++; 7048 BundleMember->incrementUnscheduledDeps(1); 7049 } 7050 } 7051 } 7052 7053 // Handle the memory dependencies. 7054 ScheduleData *DepDest = BundleMember->NextLoadStore; 7055 if (DepDest) { 7056 Instruction *SrcInst = BundleMember->Inst; 7057 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7058 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7059 unsigned numAliased = 0; 7060 unsigned DistToSrc = 1; 7061 7062 while (DepDest) { 7063 assert(isInSchedulingRegion(DepDest)); 7064 7065 // We have two limits to reduce the complexity: 7066 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7067 // SLP->isAliased (which is the expensive part in this loop). 7068 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7069 // the whole loop (even if the loop is fast, it's quadratic). 7070 // It's important for the loop break condition (see below) to 7071 // check this limit even between two read-only instructions. 7072 if (DistToSrc >= MaxMemDepDistance || 7073 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7074 (numAliased >= AliasedCheckLimit || 7075 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7076 7077 // We increment the counter only if the locations are aliased 7078 // (instead of counting all alias checks). This gives a better 7079 // balance between reduced runtime and accurate dependencies. 7080 numAliased++; 7081 7082 DepDest->MemoryDependencies.push_back(BundleMember); 7083 BundleMember->Dependencies++; 7084 ScheduleData *DestBundle = DepDest->FirstInBundle; 7085 if (!DestBundle->IsScheduled) { 7086 BundleMember->incrementUnscheduledDeps(1); 7087 } 7088 if (!DestBundle->hasValidDependencies()) { 7089 WorkList.push_back(DestBundle); 7090 } 7091 } 7092 DepDest = DepDest->NextLoadStore; 7093 7094 // Example, explaining the loop break condition: Let's assume our 7095 // starting instruction is i0 and MaxMemDepDistance = 3. 7096 // 7097 // +--------v--v--v 7098 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7099 // +--------^--^--^ 7100 // 7101 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7102 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7103 // Previously we already added dependencies from i3 to i6,i7,i8 7104 // (because of MaxMemDepDistance). As we added a dependency from 7105 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7106 // and we can abort this loop at i6. 7107 if (DistToSrc >= 2 * MaxMemDepDistance) 7108 break; 7109 DistToSrc++; 7110 } 7111 } 7112 } 7113 BundleMember = BundleMember->NextInBundle; 7114 } 7115 if (InsertInReadyList && SD->isReady()) { 7116 ReadyInsts.push_back(SD); 7117 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7118 << "\n"); 7119 } 7120 } 7121 } 7122 7123 void BoUpSLP::BlockScheduling::resetSchedule() { 7124 assert(ScheduleStart && 7125 "tried to reset schedule on block which has not been scheduled"); 7126 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7127 doForAllOpcodes(I, [&](ScheduleData *SD) { 7128 assert(isInSchedulingRegion(SD) && 7129 "ScheduleData not in scheduling region"); 7130 SD->IsScheduled = false; 7131 SD->resetUnscheduledDeps(); 7132 }); 7133 } 7134 ReadyInsts.clear(); 7135 } 7136 7137 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7138 if (!BS->ScheduleStart) 7139 return; 7140 7141 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7142 7143 BS->resetSchedule(); 7144 7145 // For the real scheduling we use a more sophisticated ready-list: it is 7146 // sorted by the original instruction location. This lets the final schedule 7147 // be as close as possible to the original instruction order. 7148 struct ScheduleDataCompare { 7149 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7150 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7151 } 7152 }; 7153 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7154 7155 // Ensure that all dependency data is updated and fill the ready-list with 7156 // initial instructions. 7157 int Idx = 0; 7158 int NumToSchedule = 0; 7159 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7160 I = I->getNextNode()) { 7161 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7162 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7163 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7164 "scheduler and vectorizer bundle mismatch"); 7165 SD->FirstInBundle->SchedulingPriority = Idx++; 7166 if (SD->isSchedulingEntity()) { 7167 BS->calculateDependencies(SD, false, this); 7168 NumToSchedule++; 7169 } 7170 }); 7171 } 7172 BS->initialFillReadyList(ReadyInsts); 7173 7174 Instruction *LastScheduledInst = BS->ScheduleEnd; 7175 7176 // Do the "real" scheduling. 7177 while (!ReadyInsts.empty()) { 7178 ScheduleData *picked = *ReadyInsts.begin(); 7179 ReadyInsts.erase(ReadyInsts.begin()); 7180 7181 // Move the scheduled instruction(s) to their dedicated places, if not 7182 // there yet. 7183 ScheduleData *BundleMember = picked; 7184 while (BundleMember) { 7185 Instruction *pickedInst = BundleMember->Inst; 7186 if (pickedInst->getNextNode() != LastScheduledInst) { 7187 BS->BB->getInstList().remove(pickedInst); 7188 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7189 pickedInst); 7190 } 7191 LastScheduledInst = pickedInst; 7192 BundleMember = BundleMember->NextInBundle; 7193 } 7194 7195 BS->schedule(picked, ReadyInsts); 7196 NumToSchedule--; 7197 } 7198 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7199 7200 // Avoid duplicate scheduling of the block. 7201 BS->ScheduleStart = nullptr; 7202 } 7203 7204 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7205 // If V is a store, just return the width of the stored value (or value 7206 // truncated just before storing) without traversing the expression tree. 7207 // This is the common case. 7208 if (auto *Store = dyn_cast<StoreInst>(V)) { 7209 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7210 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7211 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7212 } 7213 7214 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7215 return getVectorElementSize(IEI->getOperand(1)); 7216 7217 auto E = InstrElementSize.find(V); 7218 if (E != InstrElementSize.end()) 7219 return E->second; 7220 7221 // If V is not a store, we can traverse the expression tree to find loads 7222 // that feed it. The type of the loaded value may indicate a more suitable 7223 // width than V's type. We want to base the vector element size on the width 7224 // of memory operations where possible. 7225 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7226 SmallPtrSet<Instruction *, 16> Visited; 7227 if (auto *I = dyn_cast<Instruction>(V)) { 7228 Worklist.emplace_back(I, I->getParent()); 7229 Visited.insert(I); 7230 } 7231 7232 // Traverse the expression tree in bottom-up order looking for loads. If we 7233 // encounter an instruction we don't yet handle, we give up. 7234 auto Width = 0u; 7235 while (!Worklist.empty()) { 7236 Instruction *I; 7237 BasicBlock *Parent; 7238 std::tie(I, Parent) = Worklist.pop_back_val(); 7239 7240 // We should only be looking at scalar instructions here. If the current 7241 // instruction has a vector type, skip. 7242 auto *Ty = I->getType(); 7243 if (isa<VectorType>(Ty)) 7244 continue; 7245 7246 // If the current instruction is a load, update MaxWidth to reflect the 7247 // width of the loaded value. 7248 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7249 isa<ExtractValueInst>(I)) 7250 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7251 7252 // Otherwise, we need to visit the operands of the instruction. We only 7253 // handle the interesting cases from buildTree here. If an operand is an 7254 // instruction we haven't yet visited and from the same basic block as the 7255 // user or the use is a PHI node, we add it to the worklist. 7256 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7257 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7258 isa<UnaryOperator>(I)) { 7259 for (Use &U : I->operands()) 7260 if (auto *J = dyn_cast<Instruction>(U.get())) 7261 if (Visited.insert(J).second && 7262 (isa<PHINode>(I) || J->getParent() == Parent)) 7263 Worklist.emplace_back(J, J->getParent()); 7264 } else { 7265 break; 7266 } 7267 } 7268 7269 // If we didn't encounter a memory access in the expression tree, or if we 7270 // gave up for some reason, just return the width of V. Otherwise, return the 7271 // maximum width we found. 7272 if (!Width) { 7273 if (auto *CI = dyn_cast<CmpInst>(V)) 7274 V = CI->getOperand(0); 7275 Width = DL->getTypeSizeInBits(V->getType()); 7276 } 7277 7278 for (Instruction *I : Visited) 7279 InstrElementSize[I] = Width; 7280 7281 return Width; 7282 } 7283 7284 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7285 // smaller type with a truncation. We collect the values that will be demoted 7286 // in ToDemote and additional roots that require investigating in Roots. 7287 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7288 SmallVectorImpl<Value *> &ToDemote, 7289 SmallVectorImpl<Value *> &Roots) { 7290 // We can always demote constants. 7291 if (isa<Constant>(V)) { 7292 ToDemote.push_back(V); 7293 return true; 7294 } 7295 7296 // If the value is not an instruction in the expression with only one use, it 7297 // cannot be demoted. 7298 auto *I = dyn_cast<Instruction>(V); 7299 if (!I || !I->hasOneUse() || !Expr.count(I)) 7300 return false; 7301 7302 switch (I->getOpcode()) { 7303 7304 // We can always demote truncations and extensions. Since truncations can 7305 // seed additional demotion, we save the truncated value. 7306 case Instruction::Trunc: 7307 Roots.push_back(I->getOperand(0)); 7308 break; 7309 case Instruction::ZExt: 7310 case Instruction::SExt: 7311 if (isa<ExtractElementInst>(I->getOperand(0)) || 7312 isa<InsertElementInst>(I->getOperand(0))) 7313 return false; 7314 break; 7315 7316 // We can demote certain binary operations if we can demote both of their 7317 // operands. 7318 case Instruction::Add: 7319 case Instruction::Sub: 7320 case Instruction::Mul: 7321 case Instruction::And: 7322 case Instruction::Or: 7323 case Instruction::Xor: 7324 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7325 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7326 return false; 7327 break; 7328 7329 // We can demote selects if we can demote their true and false values. 7330 case Instruction::Select: { 7331 SelectInst *SI = cast<SelectInst>(I); 7332 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7333 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7334 return false; 7335 break; 7336 } 7337 7338 // We can demote phis if we can demote all their incoming operands. Note that 7339 // we don't need to worry about cycles since we ensure single use above. 7340 case Instruction::PHI: { 7341 PHINode *PN = cast<PHINode>(I); 7342 for (Value *IncValue : PN->incoming_values()) 7343 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7344 return false; 7345 break; 7346 } 7347 7348 // Otherwise, conservatively give up. 7349 default: 7350 return false; 7351 } 7352 7353 // Record the value that we can demote. 7354 ToDemote.push_back(V); 7355 return true; 7356 } 7357 7358 void BoUpSLP::computeMinimumValueSizes() { 7359 // If there are no external uses, the expression tree must be rooted by a 7360 // store. We can't demote in-memory values, so there is nothing to do here. 7361 if (ExternalUses.empty()) 7362 return; 7363 7364 // We only attempt to truncate integer expressions. 7365 auto &TreeRoot = VectorizableTree[0]->Scalars; 7366 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7367 if (!TreeRootIT) 7368 return; 7369 7370 // If the expression is not rooted by a store, these roots should have 7371 // external uses. We will rely on InstCombine to rewrite the expression in 7372 // the narrower type. However, InstCombine only rewrites single-use values. 7373 // This means that if a tree entry other than a root is used externally, it 7374 // must have multiple uses and InstCombine will not rewrite it. The code 7375 // below ensures that only the roots are used externally. 7376 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7377 for (auto &EU : ExternalUses) 7378 if (!Expr.erase(EU.Scalar)) 7379 return; 7380 if (!Expr.empty()) 7381 return; 7382 7383 // Collect the scalar values of the vectorizable expression. We will use this 7384 // context to determine which values can be demoted. If we see a truncation, 7385 // we mark it as seeding another demotion. 7386 for (auto &EntryPtr : VectorizableTree) 7387 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7388 7389 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7390 // have a single external user that is not in the vectorizable tree. 7391 for (auto *Root : TreeRoot) 7392 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7393 return; 7394 7395 // Conservatively determine if we can actually truncate the roots of the 7396 // expression. Collect the values that can be demoted in ToDemote and 7397 // additional roots that require investigating in Roots. 7398 SmallVector<Value *, 32> ToDemote; 7399 SmallVector<Value *, 4> Roots; 7400 for (auto *Root : TreeRoot) 7401 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7402 return; 7403 7404 // The maximum bit width required to represent all the values that can be 7405 // demoted without loss of precision. It would be safe to truncate the roots 7406 // of the expression to this width. 7407 auto MaxBitWidth = 8u; 7408 7409 // We first check if all the bits of the roots are demanded. If they're not, 7410 // we can truncate the roots to this narrower type. 7411 for (auto *Root : TreeRoot) { 7412 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7413 MaxBitWidth = std::max<unsigned>( 7414 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7415 } 7416 7417 // True if the roots can be zero-extended back to their original type, rather 7418 // than sign-extended. We know that if the leading bits are not demanded, we 7419 // can safely zero-extend. So we initialize IsKnownPositive to True. 7420 bool IsKnownPositive = true; 7421 7422 // If all the bits of the roots are demanded, we can try a little harder to 7423 // compute a narrower type. This can happen, for example, if the roots are 7424 // getelementptr indices. InstCombine promotes these indices to the pointer 7425 // width. Thus, all their bits are technically demanded even though the 7426 // address computation might be vectorized in a smaller type. 7427 // 7428 // We start by looking at each entry that can be demoted. We compute the 7429 // maximum bit width required to store the scalar by using ValueTracking to 7430 // compute the number of high-order bits we can truncate. 7431 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7432 llvm::all_of(TreeRoot, [](Value *R) { 7433 assert(R->hasOneUse() && "Root should have only one use!"); 7434 return isa<GetElementPtrInst>(R->user_back()); 7435 })) { 7436 MaxBitWidth = 8u; 7437 7438 // Determine if the sign bit of all the roots is known to be zero. If not, 7439 // IsKnownPositive is set to False. 7440 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7441 KnownBits Known = computeKnownBits(R, *DL); 7442 return Known.isNonNegative(); 7443 }); 7444 7445 // Determine the maximum number of bits required to store the scalar 7446 // values. 7447 for (auto *Scalar : ToDemote) { 7448 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7449 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7450 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7451 } 7452 7453 // If we can't prove that the sign bit is zero, we must add one to the 7454 // maximum bit width to account for the unknown sign bit. This preserves 7455 // the existing sign bit so we can safely sign-extend the root back to the 7456 // original type. Otherwise, if we know the sign bit is zero, we will 7457 // zero-extend the root instead. 7458 // 7459 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7460 // one to the maximum bit width will yield a larger-than-necessary 7461 // type. In general, we need to add an extra bit only if we can't 7462 // prove that the upper bit of the original type is equal to the 7463 // upper bit of the proposed smaller type. If these two bits are the 7464 // same (either zero or one) we know that sign-extending from the 7465 // smaller type will result in the same value. Here, since we can't 7466 // yet prove this, we are just making the proposed smaller type 7467 // larger to ensure correctness. 7468 if (!IsKnownPositive) 7469 ++MaxBitWidth; 7470 } 7471 7472 // Round MaxBitWidth up to the next power-of-two. 7473 if (!isPowerOf2_64(MaxBitWidth)) 7474 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7475 7476 // If the maximum bit width we compute is less than the with of the roots' 7477 // type, we can proceed with the narrowing. Otherwise, do nothing. 7478 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7479 return; 7480 7481 // If we can truncate the root, we must collect additional values that might 7482 // be demoted as a result. That is, those seeded by truncations we will 7483 // modify. 7484 while (!Roots.empty()) 7485 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7486 7487 // Finally, map the values we can demote to the maximum bit with we computed. 7488 for (auto *Scalar : ToDemote) 7489 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7490 } 7491 7492 namespace { 7493 7494 /// The SLPVectorizer Pass. 7495 struct SLPVectorizer : public FunctionPass { 7496 SLPVectorizerPass Impl; 7497 7498 /// Pass identification, replacement for typeid 7499 static char ID; 7500 7501 explicit SLPVectorizer() : FunctionPass(ID) { 7502 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7503 } 7504 7505 bool doInitialization(Module &M) override { return false; } 7506 7507 bool runOnFunction(Function &F) override { 7508 if (skipFunction(F)) 7509 return false; 7510 7511 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7512 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7513 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7514 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7515 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7516 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7517 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7518 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7519 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7520 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7521 7522 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7523 } 7524 7525 void getAnalysisUsage(AnalysisUsage &AU) const override { 7526 FunctionPass::getAnalysisUsage(AU); 7527 AU.addRequired<AssumptionCacheTracker>(); 7528 AU.addRequired<ScalarEvolutionWrapperPass>(); 7529 AU.addRequired<AAResultsWrapperPass>(); 7530 AU.addRequired<TargetTransformInfoWrapperPass>(); 7531 AU.addRequired<LoopInfoWrapperPass>(); 7532 AU.addRequired<DominatorTreeWrapperPass>(); 7533 AU.addRequired<DemandedBitsWrapperPass>(); 7534 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7535 AU.addRequired<InjectTLIMappingsLegacy>(); 7536 AU.addPreserved<LoopInfoWrapperPass>(); 7537 AU.addPreserved<DominatorTreeWrapperPass>(); 7538 AU.addPreserved<AAResultsWrapperPass>(); 7539 AU.addPreserved<GlobalsAAWrapperPass>(); 7540 AU.setPreservesCFG(); 7541 } 7542 }; 7543 7544 } // end anonymous namespace 7545 7546 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7547 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7548 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7549 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7550 auto *AA = &AM.getResult<AAManager>(F); 7551 auto *LI = &AM.getResult<LoopAnalysis>(F); 7552 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7553 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7554 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7555 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7556 7557 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7558 if (!Changed) 7559 return PreservedAnalyses::all(); 7560 7561 PreservedAnalyses PA; 7562 PA.preserveSet<CFGAnalyses>(); 7563 return PA; 7564 } 7565 7566 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7567 TargetTransformInfo *TTI_, 7568 TargetLibraryInfo *TLI_, AAResults *AA_, 7569 LoopInfo *LI_, DominatorTree *DT_, 7570 AssumptionCache *AC_, DemandedBits *DB_, 7571 OptimizationRemarkEmitter *ORE_) { 7572 if (!RunSLPVectorization) 7573 return false; 7574 SE = SE_; 7575 TTI = TTI_; 7576 TLI = TLI_; 7577 AA = AA_; 7578 LI = LI_; 7579 DT = DT_; 7580 AC = AC_; 7581 DB = DB_; 7582 DL = &F.getParent()->getDataLayout(); 7583 7584 Stores.clear(); 7585 GEPs.clear(); 7586 bool Changed = false; 7587 7588 // If the target claims to have no vector registers don't attempt 7589 // vectorization. 7590 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7591 return false; 7592 7593 // Don't vectorize when the attribute NoImplicitFloat is used. 7594 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7595 return false; 7596 7597 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7598 7599 // Use the bottom up slp vectorizer to construct chains that start with 7600 // store instructions. 7601 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7602 7603 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7604 // delete instructions. 7605 7606 // Update DFS numbers now so that we can use them for ordering. 7607 DT->updateDFSNumbers(); 7608 7609 // Scan the blocks in the function in post order. 7610 for (auto BB : post_order(&F.getEntryBlock())) { 7611 collectSeedInstructions(BB); 7612 7613 // Vectorize trees that end at stores. 7614 if (!Stores.empty()) { 7615 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7616 << " underlying objects.\n"); 7617 Changed |= vectorizeStoreChains(R); 7618 } 7619 7620 // Vectorize trees that end at reductions. 7621 Changed |= vectorizeChainsInBlock(BB, R); 7622 7623 // Vectorize the index computations of getelementptr instructions. This 7624 // is primarily intended to catch gather-like idioms ending at 7625 // non-consecutive loads. 7626 if (!GEPs.empty()) { 7627 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7628 << " underlying objects.\n"); 7629 Changed |= vectorizeGEPIndices(BB, R); 7630 } 7631 } 7632 7633 if (Changed) { 7634 R.optimizeGatherSequence(); 7635 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7636 } 7637 return Changed; 7638 } 7639 7640 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7641 unsigned Idx) { 7642 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7643 << "\n"); 7644 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7645 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7646 unsigned VF = Chain.size(); 7647 7648 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7649 return false; 7650 7651 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7652 << "\n"); 7653 7654 R.buildTree(Chain); 7655 if (R.isTreeTinyAndNotFullyVectorizable()) 7656 return false; 7657 if (R.isLoadCombineCandidate()) 7658 return false; 7659 R.reorderTopToBottom(); 7660 R.reorderBottomToTop(); 7661 R.buildExternalUses(); 7662 7663 R.computeMinimumValueSizes(); 7664 7665 InstructionCost Cost = R.getTreeCost(); 7666 7667 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7668 if (Cost < -SLPCostThreshold) { 7669 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7670 7671 using namespace ore; 7672 7673 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7674 cast<StoreInst>(Chain[0])) 7675 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7676 << " and with tree size " 7677 << NV("TreeSize", R.getTreeSize())); 7678 7679 R.vectorizeTree(); 7680 return true; 7681 } 7682 7683 return false; 7684 } 7685 7686 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7687 BoUpSLP &R) { 7688 // We may run into multiple chains that merge into a single chain. We mark the 7689 // stores that we vectorized so that we don't visit the same store twice. 7690 BoUpSLP::ValueSet VectorizedStores; 7691 bool Changed = false; 7692 7693 int E = Stores.size(); 7694 SmallBitVector Tails(E, false); 7695 int MaxIter = MaxStoreLookup.getValue(); 7696 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7697 E, std::make_pair(E, INT_MAX)); 7698 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7699 int IterCnt; 7700 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7701 &CheckedPairs, 7702 &ConsecutiveChain](int K, int Idx) { 7703 if (IterCnt >= MaxIter) 7704 return true; 7705 if (CheckedPairs[Idx].test(K)) 7706 return ConsecutiveChain[K].second == 1 && 7707 ConsecutiveChain[K].first == Idx; 7708 ++IterCnt; 7709 CheckedPairs[Idx].set(K); 7710 CheckedPairs[K].set(Idx); 7711 Optional<int> Diff = getPointersDiff( 7712 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7713 Stores[Idx]->getValueOperand()->getType(), 7714 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7715 if (!Diff || *Diff == 0) 7716 return false; 7717 int Val = *Diff; 7718 if (Val < 0) { 7719 if (ConsecutiveChain[Idx].second > -Val) { 7720 Tails.set(K); 7721 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7722 } 7723 return false; 7724 } 7725 if (ConsecutiveChain[K].second <= Val) 7726 return false; 7727 7728 Tails.set(Idx); 7729 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7730 return Val == 1; 7731 }; 7732 // Do a quadratic search on all of the given stores in reverse order and find 7733 // all of the pairs of stores that follow each other. 7734 for (int Idx = E - 1; Idx >= 0; --Idx) { 7735 // If a store has multiple consecutive store candidates, search according 7736 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7737 // This is because usually pairing with immediate succeeding or preceding 7738 // candidate create the best chance to find slp vectorization opportunity. 7739 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7740 IterCnt = 0; 7741 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7742 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7743 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7744 break; 7745 } 7746 7747 // Tracks if we tried to vectorize stores starting from the given tail 7748 // already. 7749 SmallBitVector TriedTails(E, false); 7750 // For stores that start but don't end a link in the chain: 7751 for (int Cnt = E; Cnt > 0; --Cnt) { 7752 int I = Cnt - 1; 7753 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7754 continue; 7755 // We found a store instr that starts a chain. Now follow the chain and try 7756 // to vectorize it. 7757 BoUpSLP::ValueList Operands; 7758 // Collect the chain into a list. 7759 while (I != E && !VectorizedStores.count(Stores[I])) { 7760 Operands.push_back(Stores[I]); 7761 Tails.set(I); 7762 if (ConsecutiveChain[I].second != 1) { 7763 // Mark the new end in the chain and go back, if required. It might be 7764 // required if the original stores come in reversed order, for example. 7765 if (ConsecutiveChain[I].first != E && 7766 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7767 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7768 TriedTails.set(I); 7769 Tails.reset(ConsecutiveChain[I].first); 7770 if (Cnt < ConsecutiveChain[I].first + 2) 7771 Cnt = ConsecutiveChain[I].first + 2; 7772 } 7773 break; 7774 } 7775 // Move to the next value in the chain. 7776 I = ConsecutiveChain[I].first; 7777 } 7778 assert(!Operands.empty() && "Expected non-empty list of stores."); 7779 7780 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7781 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7782 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7783 7784 unsigned MinVF = R.getMinVF(EltSize); 7785 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7786 MaxElts); 7787 7788 // FIXME: Is division-by-2 the correct step? Should we assert that the 7789 // register size is a power-of-2? 7790 unsigned StartIdx = 0; 7791 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7792 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7793 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7794 if (!VectorizedStores.count(Slice.front()) && 7795 !VectorizedStores.count(Slice.back()) && 7796 vectorizeStoreChain(Slice, R, Cnt)) { 7797 // Mark the vectorized stores so that we don't vectorize them again. 7798 VectorizedStores.insert(Slice.begin(), Slice.end()); 7799 Changed = true; 7800 // If we vectorized initial block, no need to try to vectorize it 7801 // again. 7802 if (Cnt == StartIdx) 7803 StartIdx += Size; 7804 Cnt += Size; 7805 continue; 7806 } 7807 ++Cnt; 7808 } 7809 // Check if the whole array was vectorized already - exit. 7810 if (StartIdx >= Operands.size()) 7811 break; 7812 } 7813 } 7814 7815 return Changed; 7816 } 7817 7818 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7819 // Initialize the collections. We will make a single pass over the block. 7820 Stores.clear(); 7821 GEPs.clear(); 7822 7823 // Visit the store and getelementptr instructions in BB and organize them in 7824 // Stores and GEPs according to the underlying objects of their pointer 7825 // operands. 7826 for (Instruction &I : *BB) { 7827 // Ignore store instructions that are volatile or have a pointer operand 7828 // that doesn't point to a scalar type. 7829 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7830 if (!SI->isSimple()) 7831 continue; 7832 if (!isValidElementType(SI->getValueOperand()->getType())) 7833 continue; 7834 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7835 } 7836 7837 // Ignore getelementptr instructions that have more than one index, a 7838 // constant index, or a pointer operand that doesn't point to a scalar 7839 // type. 7840 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7841 auto Idx = GEP->idx_begin()->get(); 7842 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7843 continue; 7844 if (!isValidElementType(Idx->getType())) 7845 continue; 7846 if (GEP->getType()->isVectorTy()) 7847 continue; 7848 GEPs[GEP->getPointerOperand()].push_back(GEP); 7849 } 7850 } 7851 } 7852 7853 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7854 if (!A || !B) 7855 return false; 7856 Value *VL[] = {A, B}; 7857 return tryToVectorizeList(VL, R); 7858 } 7859 7860 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7861 bool LimitForRegisterSize) { 7862 if (VL.size() < 2) 7863 return false; 7864 7865 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7866 << VL.size() << ".\n"); 7867 7868 // Check that all of the parts are instructions of the same type, 7869 // we permit an alternate opcode via InstructionsState. 7870 InstructionsState S = getSameOpcode(VL); 7871 if (!S.getOpcode()) 7872 return false; 7873 7874 Instruction *I0 = cast<Instruction>(S.OpValue); 7875 // Make sure invalid types (including vector type) are rejected before 7876 // determining vectorization factor for scalar instructions. 7877 for (Value *V : VL) { 7878 Type *Ty = V->getType(); 7879 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7880 // NOTE: the following will give user internal llvm type name, which may 7881 // not be useful. 7882 R.getORE()->emit([&]() { 7883 std::string type_str; 7884 llvm::raw_string_ostream rso(type_str); 7885 Ty->print(rso); 7886 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7887 << "Cannot SLP vectorize list: type " 7888 << rso.str() + " is unsupported by vectorizer"; 7889 }); 7890 return false; 7891 } 7892 } 7893 7894 unsigned Sz = R.getVectorElementSize(I0); 7895 unsigned MinVF = R.getMinVF(Sz); 7896 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7897 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7898 if (MaxVF < 2) { 7899 R.getORE()->emit([&]() { 7900 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7901 << "Cannot SLP vectorize list: vectorization factor " 7902 << "less than 2 is not supported"; 7903 }); 7904 return false; 7905 } 7906 7907 bool Changed = false; 7908 bool CandidateFound = false; 7909 InstructionCost MinCost = SLPCostThreshold.getValue(); 7910 Type *ScalarTy = VL[0]->getType(); 7911 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7912 ScalarTy = IE->getOperand(1)->getType(); 7913 7914 unsigned NextInst = 0, MaxInst = VL.size(); 7915 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7916 // No actual vectorization should happen, if number of parts is the same as 7917 // provided vectorization factor (i.e. the scalar type is used for vector 7918 // code during codegen). 7919 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7920 if (TTI->getNumberOfParts(VecTy) == VF) 7921 continue; 7922 for (unsigned I = NextInst; I < MaxInst; ++I) { 7923 unsigned OpsWidth = 0; 7924 7925 if (I + VF > MaxInst) 7926 OpsWidth = MaxInst - I; 7927 else 7928 OpsWidth = VF; 7929 7930 if (!isPowerOf2_32(OpsWidth)) 7931 continue; 7932 7933 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7934 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7935 break; 7936 7937 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7938 // Check that a previous iteration of this loop did not delete the Value. 7939 if (llvm::any_of(Ops, [&R](Value *V) { 7940 auto *I = dyn_cast<Instruction>(V); 7941 return I && R.isDeleted(I); 7942 })) 7943 continue; 7944 7945 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7946 << "\n"); 7947 7948 R.buildTree(Ops); 7949 if (R.isTreeTinyAndNotFullyVectorizable()) 7950 continue; 7951 R.reorderTopToBottom(); 7952 R.reorderBottomToTop(); 7953 R.buildExternalUses(); 7954 7955 R.computeMinimumValueSizes(); 7956 InstructionCost Cost = R.getTreeCost(); 7957 CandidateFound = true; 7958 MinCost = std::min(MinCost, Cost); 7959 7960 if (Cost < -SLPCostThreshold) { 7961 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7962 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7963 cast<Instruction>(Ops[0])) 7964 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7965 << " and with tree size " 7966 << ore::NV("TreeSize", R.getTreeSize())); 7967 7968 R.vectorizeTree(); 7969 // Move to the next bundle. 7970 I += VF - 1; 7971 NextInst = I + 1; 7972 Changed = true; 7973 } 7974 } 7975 } 7976 7977 if (!Changed && CandidateFound) { 7978 R.getORE()->emit([&]() { 7979 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7980 << "List vectorization was possible but not beneficial with cost " 7981 << ore::NV("Cost", MinCost) << " >= " 7982 << ore::NV("Treshold", -SLPCostThreshold); 7983 }); 7984 } else if (!Changed) { 7985 R.getORE()->emit([&]() { 7986 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7987 << "Cannot SLP vectorize list: vectorization was impossible" 7988 << " with available vectorization factors"; 7989 }); 7990 } 7991 return Changed; 7992 } 7993 7994 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7995 if (!I) 7996 return false; 7997 7998 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7999 return false; 8000 8001 Value *P = I->getParent(); 8002 8003 // Vectorize in current basic block only. 8004 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8005 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8006 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8007 return false; 8008 8009 // Try to vectorize V. 8010 if (tryToVectorizePair(Op0, Op1, R)) 8011 return true; 8012 8013 auto *A = dyn_cast<BinaryOperator>(Op0); 8014 auto *B = dyn_cast<BinaryOperator>(Op1); 8015 // Try to skip B. 8016 if (B && B->hasOneUse()) { 8017 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8018 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8019 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8020 return true; 8021 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8022 return true; 8023 } 8024 8025 // Try to skip A. 8026 if (A && A->hasOneUse()) { 8027 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8028 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8029 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8030 return true; 8031 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8032 return true; 8033 } 8034 return false; 8035 } 8036 8037 namespace { 8038 8039 /// Model horizontal reductions. 8040 /// 8041 /// A horizontal reduction is a tree of reduction instructions that has values 8042 /// that can be put into a vector as its leaves. For example: 8043 /// 8044 /// mul mul mul mul 8045 /// \ / \ / 8046 /// + + 8047 /// \ / 8048 /// + 8049 /// This tree has "mul" as its leaf values and "+" as its reduction 8050 /// instructions. A reduction can feed into a store or a binary operation 8051 /// feeding a phi. 8052 /// ... 8053 /// \ / 8054 /// + 8055 /// | 8056 /// phi += 8057 /// 8058 /// Or: 8059 /// ... 8060 /// \ / 8061 /// + 8062 /// | 8063 /// *p = 8064 /// 8065 class HorizontalReduction { 8066 using ReductionOpsType = SmallVector<Value *, 16>; 8067 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8068 ReductionOpsListType ReductionOps; 8069 SmallVector<Value *, 32> ReducedVals; 8070 // Use map vector to make stable output. 8071 MapVector<Instruction *, Value *> ExtraArgs; 8072 WeakTrackingVH ReductionRoot; 8073 /// The type of reduction operation. 8074 RecurKind RdxKind; 8075 8076 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8077 8078 static bool isCmpSelMinMax(Instruction *I) { 8079 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8080 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8081 } 8082 8083 // And/or are potentially poison-safe logical patterns like: 8084 // select x, y, false 8085 // select x, true, y 8086 static bool isBoolLogicOp(Instruction *I) { 8087 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8088 match(I, m_LogicalOr(m_Value(), m_Value())); 8089 } 8090 8091 /// Checks if instruction is associative and can be vectorized. 8092 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8093 if (Kind == RecurKind::None) 8094 return false; 8095 8096 // Integer ops that map to select instructions or intrinsics are fine. 8097 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8098 isBoolLogicOp(I)) 8099 return true; 8100 8101 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8102 // FP min/max are associative except for NaN and -0.0. We do not 8103 // have to rule out -0.0 here because the intrinsic semantics do not 8104 // specify a fixed result for it. 8105 return I->getFastMathFlags().noNaNs(); 8106 } 8107 8108 return I->isAssociative(); 8109 } 8110 8111 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8112 // Poison-safe 'or' takes the form: select X, true, Y 8113 // To make that work with the normal operand processing, we skip the 8114 // true value operand. 8115 // TODO: Change the code and data structures to handle this without a hack. 8116 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8117 return I->getOperand(2); 8118 return I->getOperand(Index); 8119 } 8120 8121 /// Checks if the ParentStackElem.first should be marked as a reduction 8122 /// operation with an extra argument or as extra argument itself. 8123 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8124 Value *ExtraArg) { 8125 if (ExtraArgs.count(ParentStackElem.first)) { 8126 ExtraArgs[ParentStackElem.first] = nullptr; 8127 // We ran into something like: 8128 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8129 // The whole ParentStackElem.first should be considered as an extra value 8130 // in this case. 8131 // Do not perform analysis of remaining operands of ParentStackElem.first 8132 // instruction, this whole instruction is an extra argument. 8133 ParentStackElem.second = INVALID_OPERAND_INDEX; 8134 } else { 8135 // We ran into something like: 8136 // ParentStackElem.first += ... + ExtraArg + ... 8137 ExtraArgs[ParentStackElem.first] = ExtraArg; 8138 } 8139 } 8140 8141 /// Creates reduction operation with the current opcode. 8142 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8143 Value *RHS, const Twine &Name, bool UseSelect) { 8144 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8145 switch (Kind) { 8146 case RecurKind::Or: 8147 if (UseSelect && 8148 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8149 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8150 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8151 Name); 8152 case RecurKind::And: 8153 if (UseSelect && 8154 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8155 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8156 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8157 Name); 8158 case RecurKind::Add: 8159 case RecurKind::Mul: 8160 case RecurKind::Xor: 8161 case RecurKind::FAdd: 8162 case RecurKind::FMul: 8163 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8164 Name); 8165 case RecurKind::FMax: 8166 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8167 case RecurKind::FMin: 8168 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8169 case RecurKind::SMax: 8170 if (UseSelect) { 8171 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8172 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8173 } 8174 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8175 case RecurKind::SMin: 8176 if (UseSelect) { 8177 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8178 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8179 } 8180 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8181 case RecurKind::UMax: 8182 if (UseSelect) { 8183 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8184 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8185 } 8186 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8187 case RecurKind::UMin: 8188 if (UseSelect) { 8189 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8190 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8191 } 8192 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8193 default: 8194 llvm_unreachable("Unknown reduction operation."); 8195 } 8196 } 8197 8198 /// Creates reduction operation with the current opcode with the IR flags 8199 /// from \p ReductionOps. 8200 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8201 Value *RHS, const Twine &Name, 8202 const ReductionOpsListType &ReductionOps) { 8203 bool UseSelect = ReductionOps.size() == 2 || 8204 // Logical or/and. 8205 (ReductionOps.size() == 1 && 8206 isa<SelectInst>(ReductionOps.front().front())); 8207 assert((!UseSelect || ReductionOps.size() != 2 || 8208 isa<SelectInst>(ReductionOps[1][0])) && 8209 "Expected cmp + select pairs for reduction"); 8210 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8211 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8212 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8213 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8214 propagateIRFlags(Op, ReductionOps[1]); 8215 return Op; 8216 } 8217 } 8218 propagateIRFlags(Op, ReductionOps[0]); 8219 return Op; 8220 } 8221 8222 /// Creates reduction operation with the current opcode with the IR flags 8223 /// from \p I. 8224 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8225 Value *RHS, const Twine &Name, Instruction *I) { 8226 auto *SelI = dyn_cast<SelectInst>(I); 8227 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8228 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8229 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8230 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8231 } 8232 propagateIRFlags(Op, I); 8233 return Op; 8234 } 8235 8236 static RecurKind getRdxKind(Instruction *I) { 8237 assert(I && "Expected instruction for reduction matching"); 8238 TargetTransformInfo::ReductionFlags RdxFlags; 8239 if (match(I, m_Add(m_Value(), m_Value()))) 8240 return RecurKind::Add; 8241 if (match(I, m_Mul(m_Value(), m_Value()))) 8242 return RecurKind::Mul; 8243 if (match(I, m_And(m_Value(), m_Value())) || 8244 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8245 return RecurKind::And; 8246 if (match(I, m_Or(m_Value(), m_Value())) || 8247 match(I, m_LogicalOr(m_Value(), m_Value()))) 8248 return RecurKind::Or; 8249 if (match(I, m_Xor(m_Value(), m_Value()))) 8250 return RecurKind::Xor; 8251 if (match(I, m_FAdd(m_Value(), m_Value()))) 8252 return RecurKind::FAdd; 8253 if (match(I, m_FMul(m_Value(), m_Value()))) 8254 return RecurKind::FMul; 8255 8256 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8257 return RecurKind::FMax; 8258 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8259 return RecurKind::FMin; 8260 8261 // This matches either cmp+select or intrinsics. SLP is expected to handle 8262 // either form. 8263 // TODO: If we are canonicalizing to intrinsics, we can remove several 8264 // special-case paths that deal with selects. 8265 if (match(I, m_SMax(m_Value(), m_Value()))) 8266 return RecurKind::SMax; 8267 if (match(I, m_SMin(m_Value(), m_Value()))) 8268 return RecurKind::SMin; 8269 if (match(I, m_UMax(m_Value(), m_Value()))) 8270 return RecurKind::UMax; 8271 if (match(I, m_UMin(m_Value(), m_Value()))) 8272 return RecurKind::UMin; 8273 8274 if (auto *Select = dyn_cast<SelectInst>(I)) { 8275 // Try harder: look for min/max pattern based on instructions producing 8276 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8277 // During the intermediate stages of SLP, it's very common to have 8278 // pattern like this (since optimizeGatherSequence is run only once 8279 // at the end): 8280 // %1 = extractelement <2 x i32> %a, i32 0 8281 // %2 = extractelement <2 x i32> %a, i32 1 8282 // %cond = icmp sgt i32 %1, %2 8283 // %3 = extractelement <2 x i32> %a, i32 0 8284 // %4 = extractelement <2 x i32> %a, i32 1 8285 // %select = select i1 %cond, i32 %3, i32 %4 8286 CmpInst::Predicate Pred; 8287 Instruction *L1; 8288 Instruction *L2; 8289 8290 Value *LHS = Select->getTrueValue(); 8291 Value *RHS = Select->getFalseValue(); 8292 Value *Cond = Select->getCondition(); 8293 8294 // TODO: Support inverse predicates. 8295 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8296 if (!isa<ExtractElementInst>(RHS) || 8297 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8298 return RecurKind::None; 8299 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8300 if (!isa<ExtractElementInst>(LHS) || 8301 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8302 return RecurKind::None; 8303 } else { 8304 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8305 return RecurKind::None; 8306 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8307 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8308 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8309 return RecurKind::None; 8310 } 8311 8312 TargetTransformInfo::ReductionFlags RdxFlags; 8313 switch (Pred) { 8314 default: 8315 return RecurKind::None; 8316 case CmpInst::ICMP_SGT: 8317 case CmpInst::ICMP_SGE: 8318 return RecurKind::SMax; 8319 case CmpInst::ICMP_SLT: 8320 case CmpInst::ICMP_SLE: 8321 return RecurKind::SMin; 8322 case CmpInst::ICMP_UGT: 8323 case CmpInst::ICMP_UGE: 8324 return RecurKind::UMax; 8325 case CmpInst::ICMP_ULT: 8326 case CmpInst::ICMP_ULE: 8327 return RecurKind::UMin; 8328 } 8329 } 8330 return RecurKind::None; 8331 } 8332 8333 /// Get the index of the first operand. 8334 static unsigned getFirstOperandIndex(Instruction *I) { 8335 return isCmpSelMinMax(I) ? 1 : 0; 8336 } 8337 8338 /// Total number of operands in the reduction operation. 8339 static unsigned getNumberOfOperands(Instruction *I) { 8340 return isCmpSelMinMax(I) ? 3 : 2; 8341 } 8342 8343 /// Checks if the instruction is in basic block \p BB. 8344 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8345 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8346 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8347 auto *Sel = cast<SelectInst>(I); 8348 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8349 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8350 } 8351 return I->getParent() == BB; 8352 } 8353 8354 /// Expected number of uses for reduction operations/reduced values. 8355 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8356 if (IsCmpSelMinMax) { 8357 // SelectInst must be used twice while the condition op must have single 8358 // use only. 8359 if (auto *Sel = dyn_cast<SelectInst>(I)) 8360 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8361 return I->hasNUses(2); 8362 } 8363 8364 // Arithmetic reduction operation must be used once only. 8365 return I->hasOneUse(); 8366 } 8367 8368 /// Initializes the list of reduction operations. 8369 void initReductionOps(Instruction *I) { 8370 if (isCmpSelMinMax(I)) 8371 ReductionOps.assign(2, ReductionOpsType()); 8372 else 8373 ReductionOps.assign(1, ReductionOpsType()); 8374 } 8375 8376 /// Add all reduction operations for the reduction instruction \p I. 8377 void addReductionOps(Instruction *I) { 8378 if (isCmpSelMinMax(I)) { 8379 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8380 ReductionOps[1].emplace_back(I); 8381 } else { 8382 ReductionOps[0].emplace_back(I); 8383 } 8384 } 8385 8386 static Value *getLHS(RecurKind Kind, Instruction *I) { 8387 if (Kind == RecurKind::None) 8388 return nullptr; 8389 return I->getOperand(getFirstOperandIndex(I)); 8390 } 8391 static Value *getRHS(RecurKind Kind, Instruction *I) { 8392 if (Kind == RecurKind::None) 8393 return nullptr; 8394 return I->getOperand(getFirstOperandIndex(I) + 1); 8395 } 8396 8397 public: 8398 HorizontalReduction() = default; 8399 8400 /// Try to find a reduction tree. 8401 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8402 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8403 "Phi needs to use the binary operator"); 8404 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8405 isa<IntrinsicInst>(Inst)) && 8406 "Expected binop, select, or intrinsic for reduction matching"); 8407 RdxKind = getRdxKind(Inst); 8408 8409 // We could have a initial reductions that is not an add. 8410 // r *= v1 + v2 + v3 + v4 8411 // In such a case start looking for a tree rooted in the first '+'. 8412 if (Phi) { 8413 if (getLHS(RdxKind, Inst) == Phi) { 8414 Phi = nullptr; 8415 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8416 if (!Inst) 8417 return false; 8418 RdxKind = getRdxKind(Inst); 8419 } else if (getRHS(RdxKind, Inst) == Phi) { 8420 Phi = nullptr; 8421 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8422 if (!Inst) 8423 return false; 8424 RdxKind = getRdxKind(Inst); 8425 } 8426 } 8427 8428 if (!isVectorizable(RdxKind, Inst)) 8429 return false; 8430 8431 // Analyze "regular" integer/FP types for reductions - no target-specific 8432 // types or pointers. 8433 Type *Ty = Inst->getType(); 8434 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8435 return false; 8436 8437 // Though the ultimate reduction may have multiple uses, its condition must 8438 // have only single use. 8439 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8440 if (!Sel->getCondition()->hasOneUse()) 8441 return false; 8442 8443 ReductionRoot = Inst; 8444 8445 // The opcode for leaf values that we perform a reduction on. 8446 // For example: load(x) + load(y) + load(z) + fptoui(w) 8447 // The leaf opcode for 'w' does not match, so we don't include it as a 8448 // potential candidate for the reduction. 8449 unsigned LeafOpcode = 0; 8450 8451 // Post-order traverse the reduction tree starting at Inst. We only handle 8452 // true trees containing binary operators or selects. 8453 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8454 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8455 initReductionOps(Inst); 8456 while (!Stack.empty()) { 8457 Instruction *TreeN = Stack.back().first; 8458 unsigned EdgeToVisit = Stack.back().second++; 8459 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8460 bool IsReducedValue = TreeRdxKind != RdxKind; 8461 8462 // Postorder visit. 8463 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8464 if (IsReducedValue) 8465 ReducedVals.push_back(TreeN); 8466 else { 8467 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8468 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8469 // Check if TreeN is an extra argument of its parent operation. 8470 if (Stack.size() <= 1) { 8471 // TreeN can't be an extra argument as it is a root reduction 8472 // operation. 8473 return false; 8474 } 8475 // Yes, TreeN is an extra argument, do not add it to a list of 8476 // reduction operations. 8477 // Stack[Stack.size() - 2] always points to the parent operation. 8478 markExtraArg(Stack[Stack.size() - 2], TreeN); 8479 ExtraArgs.erase(TreeN); 8480 } else 8481 addReductionOps(TreeN); 8482 } 8483 // Retract. 8484 Stack.pop_back(); 8485 continue; 8486 } 8487 8488 // Visit operands. 8489 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8490 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8491 if (!EdgeInst) { 8492 // Edge value is not a reduction instruction or a leaf instruction. 8493 // (It may be a constant, function argument, or something else.) 8494 markExtraArg(Stack.back(), EdgeVal); 8495 continue; 8496 } 8497 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8498 // Continue analysis if the next operand is a reduction operation or 8499 // (possibly) a leaf value. If the leaf value opcode is not set, 8500 // the first met operation != reduction operation is considered as the 8501 // leaf opcode. 8502 // Only handle trees in the current basic block. 8503 // Each tree node needs to have minimal number of users except for the 8504 // ultimate reduction. 8505 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8506 if (EdgeInst != Phi && EdgeInst != Inst && 8507 hasSameParent(EdgeInst, Inst->getParent()) && 8508 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8509 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8510 if (IsRdxInst) { 8511 // We need to be able to reassociate the reduction operations. 8512 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8513 // I is an extra argument for TreeN (its parent operation). 8514 markExtraArg(Stack.back(), EdgeInst); 8515 continue; 8516 } 8517 } else if (!LeafOpcode) { 8518 LeafOpcode = EdgeInst->getOpcode(); 8519 } 8520 Stack.push_back( 8521 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8522 continue; 8523 } 8524 // I is an extra argument for TreeN (its parent operation). 8525 markExtraArg(Stack.back(), EdgeInst); 8526 } 8527 return true; 8528 } 8529 8530 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8531 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8532 // If there are a sufficient number of reduction values, reduce 8533 // to a nearby power-of-2. We can safely generate oversized 8534 // vectors and rely on the backend to split them to legal sizes. 8535 unsigned NumReducedVals = ReducedVals.size(); 8536 if (NumReducedVals < 4) 8537 return nullptr; 8538 8539 // Intersect the fast-math-flags from all reduction operations. 8540 FastMathFlags RdxFMF; 8541 RdxFMF.set(); 8542 for (ReductionOpsType &RdxOp : ReductionOps) { 8543 for (Value *RdxVal : RdxOp) { 8544 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8545 RdxFMF &= FPMO->getFastMathFlags(); 8546 } 8547 } 8548 8549 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8550 Builder.setFastMathFlags(RdxFMF); 8551 8552 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8553 // The same extra argument may be used several times, so log each attempt 8554 // to use it. 8555 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8556 assert(Pair.first && "DebugLoc must be set."); 8557 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8558 } 8559 8560 // The compare instruction of a min/max is the insertion point for new 8561 // instructions and may be replaced with a new compare instruction. 8562 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8563 assert(isa<SelectInst>(RdxRootInst) && 8564 "Expected min/max reduction to have select root instruction"); 8565 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8566 assert(isa<Instruction>(ScalarCond) && 8567 "Expected min/max reduction to have compare condition"); 8568 return cast<Instruction>(ScalarCond); 8569 }; 8570 8571 // The reduction root is used as the insertion point for new instructions, 8572 // so set it as externally used to prevent it from being deleted. 8573 ExternallyUsedValues[ReductionRoot]; 8574 SmallVector<Value *, 16> IgnoreList; 8575 for (ReductionOpsType &RdxOp : ReductionOps) 8576 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8577 8578 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8579 if (NumReducedVals > ReduxWidth) { 8580 // In the loop below, we are building a tree based on a window of 8581 // 'ReduxWidth' values. 8582 // If the operands of those values have common traits (compare predicate, 8583 // constant operand, etc), then we want to group those together to 8584 // minimize the cost of the reduction. 8585 8586 // TODO: This should be extended to count common operands for 8587 // compares and binops. 8588 8589 // Step 1: Count the number of times each compare predicate occurs. 8590 SmallDenseMap<unsigned, unsigned> PredCountMap; 8591 for (Value *RdxVal : ReducedVals) { 8592 CmpInst::Predicate Pred; 8593 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8594 ++PredCountMap[Pred]; 8595 } 8596 // Step 2: Sort the values so the most common predicates come first. 8597 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8598 CmpInst::Predicate PredA, PredB; 8599 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8600 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8601 return PredCountMap[PredA] > PredCountMap[PredB]; 8602 } 8603 return false; 8604 }); 8605 } 8606 8607 Value *VectorizedTree = nullptr; 8608 unsigned i = 0; 8609 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8610 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8611 V.buildTree(VL, IgnoreList); 8612 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8613 break; 8614 if (V.isLoadCombineReductionCandidate(RdxKind)) 8615 break; 8616 V.reorderTopToBottom(); 8617 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8618 V.buildExternalUses(ExternallyUsedValues); 8619 8620 // For a poison-safe boolean logic reduction, do not replace select 8621 // instructions with logic ops. All reduced values will be frozen (see 8622 // below) to prevent leaking poison. 8623 if (isa<SelectInst>(ReductionRoot) && 8624 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8625 NumReducedVals != ReduxWidth) 8626 break; 8627 8628 V.computeMinimumValueSizes(); 8629 8630 // Estimate cost. 8631 InstructionCost TreeCost = 8632 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8633 InstructionCost ReductionCost = 8634 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8635 InstructionCost Cost = TreeCost + ReductionCost; 8636 if (!Cost.isValid()) { 8637 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8638 return nullptr; 8639 } 8640 if (Cost >= -SLPCostThreshold) { 8641 V.getORE()->emit([&]() { 8642 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8643 cast<Instruction>(VL[0])) 8644 << "Vectorizing horizontal reduction is possible" 8645 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8646 << " and threshold " 8647 << ore::NV("Threshold", -SLPCostThreshold); 8648 }); 8649 break; 8650 } 8651 8652 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8653 << Cost << ". (HorRdx)\n"); 8654 V.getORE()->emit([&]() { 8655 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8656 cast<Instruction>(VL[0])) 8657 << "Vectorized horizontal reduction with cost " 8658 << ore::NV("Cost", Cost) << " and with tree size " 8659 << ore::NV("TreeSize", V.getTreeSize()); 8660 }); 8661 8662 // Vectorize a tree. 8663 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8664 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8665 8666 // Emit a reduction. If the root is a select (min/max idiom), the insert 8667 // point is the compare condition of that select. 8668 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8669 if (isCmpSelMinMax(RdxRootInst)) 8670 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8671 else 8672 Builder.SetInsertPoint(RdxRootInst); 8673 8674 // To prevent poison from leaking across what used to be sequential, safe, 8675 // scalar boolean logic operations, the reduction operand must be frozen. 8676 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8677 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8678 8679 Value *ReducedSubTree = 8680 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8681 8682 if (!VectorizedTree) { 8683 // Initialize the final value in the reduction. 8684 VectorizedTree = ReducedSubTree; 8685 } else { 8686 // Update the final value in the reduction. 8687 Builder.SetCurrentDebugLocation(Loc); 8688 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8689 ReducedSubTree, "op.rdx", ReductionOps); 8690 } 8691 i += ReduxWidth; 8692 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8693 } 8694 8695 if (VectorizedTree) { 8696 // Finish the reduction. 8697 for (; i < NumReducedVals; ++i) { 8698 auto *I = cast<Instruction>(ReducedVals[i]); 8699 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8700 VectorizedTree = 8701 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8702 } 8703 for (auto &Pair : ExternallyUsedValues) { 8704 // Add each externally used value to the final reduction. 8705 for (auto *I : Pair.second) { 8706 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8707 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8708 Pair.first, "op.extra", I); 8709 } 8710 } 8711 8712 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8713 8714 // Mark all scalar reduction ops for deletion, they are replaced by the 8715 // vector reductions. 8716 V.eraseInstructions(IgnoreList); 8717 } 8718 return VectorizedTree; 8719 } 8720 8721 unsigned numReductionValues() const { return ReducedVals.size(); } 8722 8723 private: 8724 /// Calculate the cost of a reduction. 8725 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8726 Value *FirstReducedVal, unsigned ReduxWidth, 8727 FastMathFlags FMF) { 8728 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8729 Type *ScalarTy = FirstReducedVal->getType(); 8730 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8731 InstructionCost VectorCost, ScalarCost; 8732 switch (RdxKind) { 8733 case RecurKind::Add: 8734 case RecurKind::Mul: 8735 case RecurKind::Or: 8736 case RecurKind::And: 8737 case RecurKind::Xor: 8738 case RecurKind::FAdd: 8739 case RecurKind::FMul: { 8740 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8741 VectorCost = 8742 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8743 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8744 break; 8745 } 8746 case RecurKind::FMax: 8747 case RecurKind::FMin: { 8748 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8749 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8750 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8751 /*unsigned=*/false, CostKind); 8752 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8753 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8754 SclCondTy, RdxPred, CostKind) + 8755 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8756 SclCondTy, RdxPred, CostKind); 8757 break; 8758 } 8759 case RecurKind::SMax: 8760 case RecurKind::SMin: 8761 case RecurKind::UMax: 8762 case RecurKind::UMin: { 8763 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8764 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8765 bool IsUnsigned = 8766 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8767 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8768 CostKind); 8769 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8770 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8771 SclCondTy, RdxPred, CostKind) + 8772 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8773 SclCondTy, RdxPred, CostKind); 8774 break; 8775 } 8776 default: 8777 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8778 } 8779 8780 // Scalar cost is repeated for N-1 elements. 8781 ScalarCost *= (ReduxWidth - 1); 8782 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8783 << " for reduction that starts with " << *FirstReducedVal 8784 << " (It is a splitting reduction)\n"); 8785 return VectorCost - ScalarCost; 8786 } 8787 8788 /// Emit a horizontal reduction of the vectorized value. 8789 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8790 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8791 assert(VectorizedValue && "Need to have a vectorized tree node"); 8792 assert(isPowerOf2_32(ReduxWidth) && 8793 "We only handle power-of-two reductions for now"); 8794 8795 ++NumVectorInstructions; 8796 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8797 ReductionOps.back()); 8798 } 8799 }; 8800 8801 } // end anonymous namespace 8802 8803 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8804 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8805 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8806 8807 unsigned AggregateSize = 1; 8808 auto *IV = cast<InsertValueInst>(InsertInst); 8809 Type *CurrentType = IV->getType(); 8810 do { 8811 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8812 for (auto *Elt : ST->elements()) 8813 if (Elt != ST->getElementType(0)) // check homogeneity 8814 return None; 8815 AggregateSize *= ST->getNumElements(); 8816 CurrentType = ST->getElementType(0); 8817 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8818 AggregateSize *= AT->getNumElements(); 8819 CurrentType = AT->getElementType(); 8820 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8821 AggregateSize *= VT->getNumElements(); 8822 return AggregateSize; 8823 } else if (CurrentType->isSingleValueType()) { 8824 return AggregateSize; 8825 } else { 8826 return None; 8827 } 8828 } while (true); 8829 } 8830 8831 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8832 TargetTransformInfo *TTI, 8833 SmallVectorImpl<Value *> &BuildVectorOpds, 8834 SmallVectorImpl<Value *> &InsertElts, 8835 unsigned OperandOffset) { 8836 do { 8837 Value *InsertedOperand = LastInsertInst->getOperand(1); 8838 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8839 if (!OperandIndex) 8840 return false; 8841 if (isa<InsertElementInst>(InsertedOperand) || 8842 isa<InsertValueInst>(InsertedOperand)) { 8843 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8844 BuildVectorOpds, InsertElts, *OperandIndex)) 8845 return false; 8846 } else { 8847 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8848 InsertElts[*OperandIndex] = LastInsertInst; 8849 } 8850 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8851 } while (LastInsertInst != nullptr && 8852 (isa<InsertValueInst>(LastInsertInst) || 8853 isa<InsertElementInst>(LastInsertInst)) && 8854 LastInsertInst->hasOneUse()); 8855 return true; 8856 } 8857 8858 /// Recognize construction of vectors like 8859 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8860 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8861 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8862 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8863 /// starting from the last insertelement or insertvalue instruction. 8864 /// 8865 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8866 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8867 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8868 /// 8869 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8870 /// 8871 /// \return true if it matches. 8872 static bool findBuildAggregate(Instruction *LastInsertInst, 8873 TargetTransformInfo *TTI, 8874 SmallVectorImpl<Value *> &BuildVectorOpds, 8875 SmallVectorImpl<Value *> &InsertElts) { 8876 8877 assert((isa<InsertElementInst>(LastInsertInst) || 8878 isa<InsertValueInst>(LastInsertInst)) && 8879 "Expected insertelement or insertvalue instruction!"); 8880 8881 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8882 "Expected empty result vectors!"); 8883 8884 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8885 if (!AggregateSize) 8886 return false; 8887 BuildVectorOpds.resize(*AggregateSize); 8888 InsertElts.resize(*AggregateSize); 8889 8890 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8891 0)) { 8892 llvm::erase_value(BuildVectorOpds, nullptr); 8893 llvm::erase_value(InsertElts, nullptr); 8894 if (BuildVectorOpds.size() >= 2) 8895 return true; 8896 } 8897 8898 return false; 8899 } 8900 8901 /// Try and get a reduction value from a phi node. 8902 /// 8903 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8904 /// if they come from either \p ParentBB or a containing loop latch. 8905 /// 8906 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8907 /// if not possible. 8908 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8909 BasicBlock *ParentBB, LoopInfo *LI) { 8910 // There are situations where the reduction value is not dominated by the 8911 // reduction phi. Vectorizing such cases has been reported to cause 8912 // miscompiles. See PR25787. 8913 auto DominatedReduxValue = [&](Value *R) { 8914 return isa<Instruction>(R) && 8915 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8916 }; 8917 8918 Value *Rdx = nullptr; 8919 8920 // Return the incoming value if it comes from the same BB as the phi node. 8921 if (P->getIncomingBlock(0) == ParentBB) { 8922 Rdx = P->getIncomingValue(0); 8923 } else if (P->getIncomingBlock(1) == ParentBB) { 8924 Rdx = P->getIncomingValue(1); 8925 } 8926 8927 if (Rdx && DominatedReduxValue(Rdx)) 8928 return Rdx; 8929 8930 // Otherwise, check whether we have a loop latch to look at. 8931 Loop *BBL = LI->getLoopFor(ParentBB); 8932 if (!BBL) 8933 return nullptr; 8934 BasicBlock *BBLatch = BBL->getLoopLatch(); 8935 if (!BBLatch) 8936 return nullptr; 8937 8938 // There is a loop latch, return the incoming value if it comes from 8939 // that. This reduction pattern occasionally turns up. 8940 if (P->getIncomingBlock(0) == BBLatch) { 8941 Rdx = P->getIncomingValue(0); 8942 } else if (P->getIncomingBlock(1) == BBLatch) { 8943 Rdx = P->getIncomingValue(1); 8944 } 8945 8946 if (Rdx && DominatedReduxValue(Rdx)) 8947 return Rdx; 8948 8949 return nullptr; 8950 } 8951 8952 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8953 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8954 return true; 8955 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8956 return true; 8957 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8958 return true; 8959 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8960 return true; 8961 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8962 return true; 8963 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8964 return true; 8965 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8966 return true; 8967 return false; 8968 } 8969 8970 /// Attempt to reduce a horizontal reduction. 8971 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8972 /// with reduction operators \a Root (or one of its operands) in a basic block 8973 /// \a BB, then check if it can be done. If horizontal reduction is not found 8974 /// and root instruction is a binary operation, vectorization of the operands is 8975 /// attempted. 8976 /// \returns true if a horizontal reduction was matched and reduced or operands 8977 /// of one of the binary instruction were vectorized. 8978 /// \returns false if a horizontal reduction was not matched (or not possible) 8979 /// or no vectorization of any binary operation feeding \a Root instruction was 8980 /// performed. 8981 static bool tryToVectorizeHorReductionOrInstOperands( 8982 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8983 TargetTransformInfo *TTI, 8984 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8985 if (!ShouldVectorizeHor) 8986 return false; 8987 8988 if (!Root) 8989 return false; 8990 8991 if (Root->getParent() != BB || isa<PHINode>(Root)) 8992 return false; 8993 // Start analysis starting from Root instruction. If horizontal reduction is 8994 // found, try to vectorize it. If it is not a horizontal reduction or 8995 // vectorization is not possible or not effective, and currently analyzed 8996 // instruction is a binary operation, try to vectorize the operands, using 8997 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8998 // the same procedure considering each operand as a possible root of the 8999 // horizontal reduction. 9000 // Interrupt the process if the Root instruction itself was vectorized or all 9001 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9002 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9003 // CmpInsts so we can skip extra attempts in 9004 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9005 std::queue<std::pair<Instruction *, unsigned>> Stack; 9006 Stack.emplace(Root, 0); 9007 SmallPtrSet<Value *, 8> VisitedInstrs; 9008 SmallVector<WeakTrackingVH> PostponedInsts; 9009 bool Res = false; 9010 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9011 Value *&B1) -> Value * { 9012 bool IsBinop = matchRdxBop(Inst, B0, B1); 9013 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9014 if (IsBinop || IsSelect) { 9015 HorizontalReduction HorRdx; 9016 if (HorRdx.matchAssociativeReduction(P, Inst)) 9017 return HorRdx.tryToReduce(R, TTI); 9018 } 9019 return nullptr; 9020 }; 9021 while (!Stack.empty()) { 9022 Instruction *Inst; 9023 unsigned Level; 9024 std::tie(Inst, Level) = Stack.front(); 9025 Stack.pop(); 9026 // Do not try to analyze instruction that has already been vectorized. 9027 // This may happen when we vectorize instruction operands on a previous 9028 // iteration while stack was populated before that happened. 9029 if (R.isDeleted(Inst)) 9030 continue; 9031 Value *B0 = nullptr, *B1 = nullptr; 9032 if (Value *V = TryToReduce(Inst, B0, B1)) { 9033 Res = true; 9034 // Set P to nullptr to avoid re-analysis of phi node in 9035 // matchAssociativeReduction function unless this is the root node. 9036 P = nullptr; 9037 if (auto *I = dyn_cast<Instruction>(V)) { 9038 // Try to find another reduction. 9039 Stack.emplace(I, Level); 9040 continue; 9041 } 9042 } else { 9043 bool IsBinop = B0 && B1; 9044 if (P && IsBinop) { 9045 Inst = dyn_cast<Instruction>(B0); 9046 if (Inst == P) 9047 Inst = dyn_cast<Instruction>(B1); 9048 if (!Inst) { 9049 // Set P to nullptr to avoid re-analysis of phi node in 9050 // matchAssociativeReduction function unless this is the root node. 9051 P = nullptr; 9052 continue; 9053 } 9054 } 9055 // Set P to nullptr to avoid re-analysis of phi node in 9056 // matchAssociativeReduction function unless this is the root node. 9057 P = nullptr; 9058 // Do not try to vectorize CmpInst operands, this is done separately. 9059 // Final attempt for binop args vectorization should happen after the loop 9060 // to try to find reductions. 9061 if (!isa<CmpInst>(Inst)) 9062 PostponedInsts.push_back(Inst); 9063 } 9064 9065 // Try to vectorize operands. 9066 // Continue analysis for the instruction from the same basic block only to 9067 // save compile time. 9068 if (++Level < RecursionMaxDepth) 9069 for (auto *Op : Inst->operand_values()) 9070 if (VisitedInstrs.insert(Op).second) 9071 if (auto *I = dyn_cast<Instruction>(Op)) 9072 // Do not try to vectorize CmpInst operands, this is done 9073 // separately. 9074 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9075 I->getParent() == BB) 9076 Stack.emplace(I, Level); 9077 } 9078 // Try to vectorized binops where reductions were not found. 9079 for (Value *V : PostponedInsts) 9080 if (auto *Inst = dyn_cast<Instruction>(V)) 9081 if (!R.isDeleted(Inst)) 9082 Res |= Vectorize(Inst, R); 9083 return Res; 9084 } 9085 9086 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9087 BasicBlock *BB, BoUpSLP &R, 9088 TargetTransformInfo *TTI) { 9089 auto *I = dyn_cast_or_null<Instruction>(V); 9090 if (!I) 9091 return false; 9092 9093 if (!isa<BinaryOperator>(I)) 9094 P = nullptr; 9095 // Try to match and vectorize a horizontal reduction. 9096 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9097 return tryToVectorize(I, R); 9098 }; 9099 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9100 ExtraVectorization); 9101 } 9102 9103 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9104 BasicBlock *BB, BoUpSLP &R) { 9105 const DataLayout &DL = BB->getModule()->getDataLayout(); 9106 if (!R.canMapToVector(IVI->getType(), DL)) 9107 return false; 9108 9109 SmallVector<Value *, 16> BuildVectorOpds; 9110 SmallVector<Value *, 16> BuildVectorInsts; 9111 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9112 return false; 9113 9114 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9115 // Aggregate value is unlikely to be processed in vector register, we need to 9116 // extract scalars into scalar registers, so NeedExtraction is set true. 9117 return tryToVectorizeList(BuildVectorOpds, R); 9118 } 9119 9120 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9121 BasicBlock *BB, BoUpSLP &R) { 9122 SmallVector<Value *, 16> BuildVectorInsts; 9123 SmallVector<Value *, 16> BuildVectorOpds; 9124 SmallVector<int> Mask; 9125 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9126 (llvm::all_of(BuildVectorOpds, 9127 [](Value *V) { return isa<ExtractElementInst>(V); }) && 9128 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9129 return false; 9130 9131 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9132 return tryToVectorizeList(BuildVectorInsts, R); 9133 } 9134 9135 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9136 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9137 bool AtTerminator) { 9138 bool OpsChanged = false; 9139 SmallVector<Instruction *, 4> PostponedCmps; 9140 for (auto *I : reverse(Instructions)) { 9141 if (R.isDeleted(I)) 9142 continue; 9143 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9144 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9145 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9146 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9147 else if (isa<CmpInst>(I)) 9148 PostponedCmps.push_back(I); 9149 } 9150 if (AtTerminator) { 9151 // Try to find reductions first. 9152 for (Instruction *I : PostponedCmps) { 9153 if (R.isDeleted(I)) 9154 continue; 9155 for (Value *Op : I->operands()) 9156 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9157 } 9158 // Try to vectorize operands as vector bundles. 9159 for (Instruction *I : PostponedCmps) { 9160 if (R.isDeleted(I)) 9161 continue; 9162 OpsChanged |= tryToVectorize(I, R); 9163 } 9164 Instructions.clear(); 9165 } else { 9166 // Insert in reverse order since the PostponedCmps vector was filled in 9167 // reverse order. 9168 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9169 } 9170 return OpsChanged; 9171 } 9172 9173 template <typename T> 9174 static bool 9175 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9176 function_ref<unsigned(T *)> Limit, 9177 function_ref<bool(T *, T *)> Comparator, 9178 function_ref<bool(T *, T *)> AreCompatible, 9179 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9180 bool LimitForRegisterSize) { 9181 bool Changed = false; 9182 // Sort by type, parent, operands. 9183 stable_sort(Incoming, Comparator); 9184 9185 // Try to vectorize elements base on their type. 9186 SmallVector<T *> Candidates; 9187 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9188 // Look for the next elements with the same type, parent and operand 9189 // kinds. 9190 auto *SameTypeIt = IncIt; 9191 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9192 ++SameTypeIt; 9193 9194 // Try to vectorize them. 9195 unsigned NumElts = (SameTypeIt - IncIt); 9196 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9197 << NumElts << ")\n"); 9198 // The vectorization is a 3-state attempt: 9199 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9200 // size of maximal register at first. 9201 // 2. Try to vectorize remaining instructions with the same type, if 9202 // possible. This may result in the better vectorization results rather than 9203 // if we try just to vectorize instructions with the same/alternate opcodes. 9204 // 3. Final attempt to try to vectorize all instructions with the 9205 // same/alternate ops only, this may result in some extra final 9206 // vectorization. 9207 if (NumElts > 1 && 9208 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9209 // Success start over because instructions might have been changed. 9210 Changed = true; 9211 } else if (NumElts < Limit(*IncIt) && 9212 (Candidates.empty() || 9213 Candidates.front()->getType() == (*IncIt)->getType())) { 9214 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9215 } 9216 // Final attempt to vectorize instructions with the same types. 9217 if (Candidates.size() > 1 && 9218 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9219 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9220 // Success start over because instructions might have been changed. 9221 Changed = true; 9222 } else if (LimitForRegisterSize) { 9223 // Try to vectorize using small vectors. 9224 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9225 It != End;) { 9226 auto *SameTypeIt = It; 9227 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9228 ++SameTypeIt; 9229 unsigned NumElts = (SameTypeIt - It); 9230 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9231 /*LimitForRegisterSize=*/false)) 9232 Changed = true; 9233 It = SameTypeIt; 9234 } 9235 } 9236 Candidates.clear(); 9237 } 9238 9239 // Start over at the next instruction of a different type (or the end). 9240 IncIt = SameTypeIt; 9241 } 9242 return Changed; 9243 } 9244 9245 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9246 bool Changed = false; 9247 SmallVector<Value *, 4> Incoming; 9248 SmallPtrSet<Value *, 16> VisitedInstrs; 9249 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9250 // node. Allows better to identify the chains that can be vectorized in the 9251 // better way. 9252 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9253 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9254 assert(isValidElementType(V1->getType()) && 9255 isValidElementType(V2->getType()) && 9256 "Expected vectorizable types only."); 9257 // It is fine to compare type IDs here, since we expect only vectorizable 9258 // types, like ints, floats and pointers, we don't care about other type. 9259 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9260 return true; 9261 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9262 return false; 9263 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9264 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9265 if (Opcodes1.size() < Opcodes2.size()) 9266 return true; 9267 if (Opcodes1.size() > Opcodes2.size()) 9268 return false; 9269 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9270 // Undefs are compatible with any other value. 9271 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9272 continue; 9273 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9274 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9275 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9276 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9277 if (!NodeI1) 9278 return NodeI2 != nullptr; 9279 if (!NodeI2) 9280 return false; 9281 assert((NodeI1 == NodeI2) == 9282 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9283 "Different nodes should have different DFS numbers"); 9284 if (NodeI1 != NodeI2) 9285 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9286 InstructionsState S = getSameOpcode({I1, I2}); 9287 if (S.getOpcode()) 9288 continue; 9289 return I1->getOpcode() < I2->getOpcode(); 9290 } 9291 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9292 continue; 9293 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9294 return true; 9295 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9296 return false; 9297 } 9298 return false; 9299 }; 9300 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9301 if (V1 == V2) 9302 return true; 9303 if (V1->getType() != V2->getType()) 9304 return false; 9305 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9306 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9307 if (Opcodes1.size() != Opcodes2.size()) 9308 return false; 9309 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9310 // Undefs are compatible with any other value. 9311 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9312 continue; 9313 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9314 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9315 if (I1->getParent() != I2->getParent()) 9316 return false; 9317 InstructionsState S = getSameOpcode({I1, I2}); 9318 if (S.getOpcode()) 9319 continue; 9320 return false; 9321 } 9322 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9323 continue; 9324 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9325 return false; 9326 } 9327 return true; 9328 }; 9329 auto Limit = [&R](Value *V) { 9330 unsigned EltSize = R.getVectorElementSize(V); 9331 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9332 }; 9333 9334 bool HaveVectorizedPhiNodes = false; 9335 do { 9336 // Collect the incoming values from the PHIs. 9337 Incoming.clear(); 9338 for (Instruction &I : *BB) { 9339 PHINode *P = dyn_cast<PHINode>(&I); 9340 if (!P) 9341 break; 9342 9343 // No need to analyze deleted, vectorized and non-vectorizable 9344 // instructions. 9345 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9346 isValidElementType(P->getType())) 9347 Incoming.push_back(P); 9348 } 9349 9350 // Find the corresponding non-phi nodes for better matching when trying to 9351 // build the tree. 9352 for (Value *V : Incoming) { 9353 SmallVectorImpl<Value *> &Opcodes = 9354 PHIToOpcodes.try_emplace(V).first->getSecond(); 9355 if (!Opcodes.empty()) 9356 continue; 9357 SmallVector<Value *, 4> Nodes(1, V); 9358 SmallPtrSet<Value *, 4> Visited; 9359 while (!Nodes.empty()) { 9360 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9361 if (!Visited.insert(PHI).second) 9362 continue; 9363 for (Value *V : PHI->incoming_values()) { 9364 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9365 Nodes.push_back(PHI1); 9366 continue; 9367 } 9368 Opcodes.emplace_back(V); 9369 } 9370 } 9371 } 9372 9373 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9374 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9375 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9376 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9377 }, 9378 /*LimitForRegisterSize=*/true); 9379 Changed |= HaveVectorizedPhiNodes; 9380 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9381 } while (HaveVectorizedPhiNodes); 9382 9383 VisitedInstrs.clear(); 9384 9385 SmallVector<Instruction *, 8> PostProcessInstructions; 9386 SmallDenseSet<Instruction *, 4> KeyNodes; 9387 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9388 // Skip instructions with scalable type. The num of elements is unknown at 9389 // compile-time for scalable type. 9390 if (isa<ScalableVectorType>(it->getType())) 9391 continue; 9392 9393 // Skip instructions marked for the deletion. 9394 if (R.isDeleted(&*it)) 9395 continue; 9396 // We may go through BB multiple times so skip the one we have checked. 9397 if (!VisitedInstrs.insert(&*it).second) { 9398 if (it->use_empty() && KeyNodes.contains(&*it) && 9399 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9400 it->isTerminator())) { 9401 // We would like to start over since some instructions are deleted 9402 // and the iterator may become invalid value. 9403 Changed = true; 9404 it = BB->begin(); 9405 e = BB->end(); 9406 } 9407 continue; 9408 } 9409 9410 if (isa<DbgInfoIntrinsic>(it)) 9411 continue; 9412 9413 // Try to vectorize reductions that use PHINodes. 9414 if (PHINode *P = dyn_cast<PHINode>(it)) { 9415 // Check that the PHI is a reduction PHI. 9416 if (P->getNumIncomingValues() == 2) { 9417 // Try to match and vectorize a horizontal reduction. 9418 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9419 TTI)) { 9420 Changed = true; 9421 it = BB->begin(); 9422 e = BB->end(); 9423 continue; 9424 } 9425 } 9426 // Try to vectorize the incoming values of the PHI, to catch reductions 9427 // that feed into PHIs. 9428 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9429 // Skip if the incoming block is the current BB for now. Also, bypass 9430 // unreachable IR for efficiency and to avoid crashing. 9431 // TODO: Collect the skipped incoming values and try to vectorize them 9432 // after processing BB. 9433 if (BB == P->getIncomingBlock(I) || 9434 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9435 continue; 9436 9437 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9438 P->getIncomingBlock(I), R, TTI); 9439 } 9440 continue; 9441 } 9442 9443 // Ran into an instruction without users, like terminator, or function call 9444 // with ignored return value, store. Ignore unused instructions (basing on 9445 // instruction type, except for CallInst and InvokeInst). 9446 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9447 isa<InvokeInst>(it))) { 9448 KeyNodes.insert(&*it); 9449 bool OpsChanged = false; 9450 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9451 for (auto *V : it->operand_values()) { 9452 // Try to match and vectorize a horizontal reduction. 9453 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9454 } 9455 } 9456 // Start vectorization of post-process list of instructions from the 9457 // top-tree instructions to try to vectorize as many instructions as 9458 // possible. 9459 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9460 it->isTerminator()); 9461 if (OpsChanged) { 9462 // We would like to start over since some instructions are deleted 9463 // and the iterator may become invalid value. 9464 Changed = true; 9465 it = BB->begin(); 9466 e = BB->end(); 9467 continue; 9468 } 9469 } 9470 9471 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9472 isa<InsertValueInst>(it)) 9473 PostProcessInstructions.push_back(&*it); 9474 } 9475 9476 return Changed; 9477 } 9478 9479 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9480 auto Changed = false; 9481 for (auto &Entry : GEPs) { 9482 // If the getelementptr list has fewer than two elements, there's nothing 9483 // to do. 9484 if (Entry.second.size() < 2) 9485 continue; 9486 9487 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9488 << Entry.second.size() << ".\n"); 9489 9490 // Process the GEP list in chunks suitable for the target's supported 9491 // vector size. If a vector register can't hold 1 element, we are done. We 9492 // are trying to vectorize the index computations, so the maximum number of 9493 // elements is based on the size of the index expression, rather than the 9494 // size of the GEP itself (the target's pointer size). 9495 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9496 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9497 if (MaxVecRegSize < EltSize) 9498 continue; 9499 9500 unsigned MaxElts = MaxVecRegSize / EltSize; 9501 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9502 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9503 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9504 9505 // Initialize a set a candidate getelementptrs. Note that we use a 9506 // SetVector here to preserve program order. If the index computations 9507 // are vectorizable and begin with loads, we want to minimize the chance 9508 // of having to reorder them later. 9509 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9510 9511 // Some of the candidates may have already been vectorized after we 9512 // initially collected them. If so, they are marked as deleted, so remove 9513 // them from the set of candidates. 9514 Candidates.remove_if( 9515 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9516 9517 // Remove from the set of candidates all pairs of getelementptrs with 9518 // constant differences. Such getelementptrs are likely not good 9519 // candidates for vectorization in a bottom-up phase since one can be 9520 // computed from the other. We also ensure all candidate getelementptr 9521 // indices are unique. 9522 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9523 auto *GEPI = GEPList[I]; 9524 if (!Candidates.count(GEPI)) 9525 continue; 9526 auto *SCEVI = SE->getSCEV(GEPList[I]); 9527 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9528 auto *GEPJ = GEPList[J]; 9529 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9530 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9531 Candidates.remove(GEPI); 9532 Candidates.remove(GEPJ); 9533 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9534 Candidates.remove(GEPJ); 9535 } 9536 } 9537 } 9538 9539 // We break out of the above computation as soon as we know there are 9540 // fewer than two candidates remaining. 9541 if (Candidates.size() < 2) 9542 continue; 9543 9544 // Add the single, non-constant index of each candidate to the bundle. We 9545 // ensured the indices met these constraints when we originally collected 9546 // the getelementptrs. 9547 SmallVector<Value *, 16> Bundle(Candidates.size()); 9548 auto BundleIndex = 0u; 9549 for (auto *V : Candidates) { 9550 auto *GEP = cast<GetElementPtrInst>(V); 9551 auto *GEPIdx = GEP->idx_begin()->get(); 9552 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9553 Bundle[BundleIndex++] = GEPIdx; 9554 } 9555 9556 // Try and vectorize the indices. We are currently only interested in 9557 // gather-like cases of the form: 9558 // 9559 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9560 // 9561 // where the loads of "a", the loads of "b", and the subtractions can be 9562 // performed in parallel. It's likely that detecting this pattern in a 9563 // bottom-up phase will be simpler and less costly than building a 9564 // full-blown top-down phase beginning at the consecutive loads. 9565 Changed |= tryToVectorizeList(Bundle, R); 9566 } 9567 } 9568 return Changed; 9569 } 9570 9571 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9572 bool Changed = false; 9573 // Sort by type, base pointers and values operand. Value operands must be 9574 // compatible (have the same opcode, same parent), otherwise it is 9575 // definitely not profitable to try to vectorize them. 9576 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9577 if (V->getPointerOperandType()->getTypeID() < 9578 V2->getPointerOperandType()->getTypeID()) 9579 return true; 9580 if (V->getPointerOperandType()->getTypeID() > 9581 V2->getPointerOperandType()->getTypeID()) 9582 return false; 9583 // UndefValues are compatible with all other values. 9584 if (isa<UndefValue>(V->getValueOperand()) || 9585 isa<UndefValue>(V2->getValueOperand())) 9586 return false; 9587 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9588 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9589 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9590 DT->getNode(I1->getParent()); 9591 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9592 DT->getNode(I2->getParent()); 9593 assert(NodeI1 && "Should only process reachable instructions"); 9594 assert(NodeI1 && "Should only process reachable instructions"); 9595 assert((NodeI1 == NodeI2) == 9596 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9597 "Different nodes should have different DFS numbers"); 9598 if (NodeI1 != NodeI2) 9599 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9600 InstructionsState S = getSameOpcode({I1, I2}); 9601 if (S.getOpcode()) 9602 return false; 9603 return I1->getOpcode() < I2->getOpcode(); 9604 } 9605 if (isa<Constant>(V->getValueOperand()) && 9606 isa<Constant>(V2->getValueOperand())) 9607 return false; 9608 return V->getValueOperand()->getValueID() < 9609 V2->getValueOperand()->getValueID(); 9610 }; 9611 9612 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9613 if (V1 == V2) 9614 return true; 9615 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9616 return false; 9617 // Undefs are compatible with any other value. 9618 if (isa<UndefValue>(V1->getValueOperand()) || 9619 isa<UndefValue>(V2->getValueOperand())) 9620 return true; 9621 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9622 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9623 if (I1->getParent() != I2->getParent()) 9624 return false; 9625 InstructionsState S = getSameOpcode({I1, I2}); 9626 return S.getOpcode() > 0; 9627 } 9628 if (isa<Constant>(V1->getValueOperand()) && 9629 isa<Constant>(V2->getValueOperand())) 9630 return true; 9631 return V1->getValueOperand()->getValueID() == 9632 V2->getValueOperand()->getValueID(); 9633 }; 9634 auto Limit = [&R, this](StoreInst *SI) { 9635 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9636 return R.getMinVF(EltSize); 9637 }; 9638 9639 // Attempt to sort and vectorize each of the store-groups. 9640 for (auto &Pair : Stores) { 9641 if (Pair.second.size() < 2) 9642 continue; 9643 9644 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9645 << Pair.second.size() << ".\n"); 9646 9647 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9648 continue; 9649 9650 Changed |= tryToVectorizeSequence<StoreInst>( 9651 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9652 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9653 return vectorizeStores(Candidates, R); 9654 }, 9655 /*LimitForRegisterSize=*/false); 9656 } 9657 return Changed; 9658 } 9659 9660 char SLPVectorizer::ID = 0; 9661 9662 static const char lv_name[] = "SLP Vectorizer"; 9663 9664 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9665 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9666 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9667 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9668 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9669 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9670 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9671 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9672 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9673 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9674 9675 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9676