1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UsedIndices(Sz); 635 SmallVector<int> MaskedIndices; 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UsedIndices.set(Order[I]); 639 else 640 MaskedIndices.push_back(I); 641 } 642 if (MaskedIndices.empty()) 643 return; 644 SmallVector<int> AvailableIndices(MaskedIndices.size()); 645 unsigned Cnt = 0; 646 int Idx = UsedIndices.find_first(); 647 do { 648 AvailableIndices[Cnt] = Idx; 649 Idx = UsedIndices.find_next(Idx); 650 ++Cnt; 651 } while (Idx > 0); 652 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 653 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 654 Order[MaskedIndices[I]] = AvailableIndices[I]; 655 } 656 657 namespace llvm { 658 659 static void inversePermutation(ArrayRef<unsigned> Indices, 660 SmallVectorImpl<int> &Mask) { 661 Mask.clear(); 662 const unsigned E = Indices.size(); 663 Mask.resize(E, UndefMaskElem); 664 for (unsigned I = 0; I < E; ++I) 665 Mask[Indices[I]] = I; 666 } 667 668 /// \returns inserting index of InsertElement or InsertValue instruction, 669 /// using Offset as base offset for index. 670 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 671 int Index = Offset; 672 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 673 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 674 auto *VT = cast<FixedVectorType>(IE->getType()); 675 if (CI->getValue().uge(VT->getNumElements())) 676 return UndefMaskElem; 677 Index *= VT->getNumElements(); 678 Index += CI->getZExtValue(); 679 return Index; 680 } 681 if (isa<UndefValue>(IE->getOperand(2))) 682 return UndefMaskElem; 683 return None; 684 } 685 686 auto *IV = cast<InsertValueInst>(InsertInst); 687 Type *CurrentType = IV->getType(); 688 for (unsigned I : IV->indices()) { 689 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 690 Index *= ST->getNumElements(); 691 CurrentType = ST->getElementType(I); 692 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 693 Index *= AT->getNumElements(); 694 CurrentType = AT->getElementType(); 695 } else { 696 return None; 697 } 698 Index += I; 699 } 700 return Index; 701 } 702 703 /// Reorders the list of scalars in accordance with the given \p Order and then 704 /// the \p Mask. \p Order - is the original order of the scalars, need to 705 /// reorder scalars into an unordered state at first according to the given 706 /// order. Then the ordered scalars are shuffled once again in accordance with 707 /// the provided mask. 708 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 709 ArrayRef<int> Mask) { 710 assert(!Mask.empty() && "Expected non-empty mask."); 711 SmallVector<Value *> Prev(Scalars.size(), 712 UndefValue::get(Scalars.front()->getType())); 713 Prev.swap(Scalars); 714 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 715 if (Mask[I] != UndefMaskElem) 716 Scalars[Mask[I]] = Prev[I]; 717 } 718 719 namespace slpvectorizer { 720 721 /// Bottom Up SLP Vectorizer. 722 class BoUpSLP { 723 struct TreeEntry; 724 struct ScheduleData; 725 726 public: 727 using ValueList = SmallVector<Value *, 8>; 728 using InstrList = SmallVector<Instruction *, 16>; 729 using ValueSet = SmallPtrSet<Value *, 16>; 730 using StoreList = SmallVector<StoreInst *, 8>; 731 using ExtraValueToDebugLocsMap = 732 MapVector<Value *, SmallVector<Instruction *, 2>>; 733 using OrdersType = SmallVector<unsigned, 4>; 734 735 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 736 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 737 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 738 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 739 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 740 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 741 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 742 // Use the vector register size specified by the target unless overridden 743 // by a command-line option. 744 // TODO: It would be better to limit the vectorization factor based on 745 // data type rather than just register size. For example, x86 AVX has 746 // 256-bit registers, but it does not support integer operations 747 // at that width (that requires AVX2). 748 if (MaxVectorRegSizeOption.getNumOccurrences()) 749 MaxVecRegSize = MaxVectorRegSizeOption; 750 else 751 MaxVecRegSize = 752 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 753 .getFixedSize(); 754 755 if (MinVectorRegSizeOption.getNumOccurrences()) 756 MinVecRegSize = MinVectorRegSizeOption; 757 else 758 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 759 } 760 761 /// Vectorize the tree that starts with the elements in \p VL. 762 /// Returns the vectorized root. 763 Value *vectorizeTree(); 764 765 /// Vectorize the tree but with the list of externally used values \p 766 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 767 /// generated extractvalue instructions. 768 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 769 770 /// \returns the cost incurred by unwanted spills and fills, caused by 771 /// holding live values over call sites. 772 InstructionCost getSpillCost() const; 773 774 /// \returns the vectorization cost of the subtree that starts at \p VL. 775 /// A negative number means that this is profitable. 776 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 777 778 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 779 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 780 void buildTree(ArrayRef<Value *> Roots, 781 ArrayRef<Value *> UserIgnoreLst = None); 782 783 /// Builds external uses of the vectorized scalars, i.e. the list of 784 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 785 /// ExternallyUsedValues contains additional list of external uses to handle 786 /// vectorization of reductions. 787 void 788 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 789 790 /// Clear the internal data structures that are created by 'buildTree'. 791 void deleteTree() { 792 VectorizableTree.clear(); 793 ScalarToTreeEntry.clear(); 794 MustGather.clear(); 795 ExternalUses.clear(); 796 for (auto &Iter : BlocksSchedules) { 797 BlockScheduling *BS = Iter.second.get(); 798 BS->clear(); 799 } 800 MinBWs.clear(); 801 InstrElementSize.clear(); 802 } 803 804 unsigned getTreeSize() const { return VectorizableTree.size(); } 805 806 /// Perform LICM and CSE on the newly generated gather sequences. 807 void optimizeGatherSequence(); 808 809 /// Checks if the specified gather tree entry \p TE can be represented as a 810 /// shuffled vector entry + (possibly) permutation with other gathers. It 811 /// implements the checks only for possibly ordered scalars (Loads, 812 /// ExtractElement, ExtractValue), which can be part of the graph. 813 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 814 815 /// Reorders the current graph to the most profitable order starting from the 816 /// root node to the leaf nodes. The best order is chosen only from the nodes 817 /// of the same size (vectorization factor). Smaller nodes are considered 818 /// parts of subgraph with smaller VF and they are reordered independently. We 819 /// can make it because we still need to extend smaller nodes to the wider VF 820 /// and we can merge reordering shuffles with the widening shuffles. 821 void reorderTopToBottom(); 822 823 /// Reorders the current graph to the most profitable order starting from 824 /// leaves to the root. It allows to rotate small subgraphs and reduce the 825 /// number of reshuffles if the leaf nodes use the same order. In this case we 826 /// can merge the orders and just shuffle user node instead of shuffling its 827 /// operands. Plus, even the leaf nodes have different orders, it allows to 828 /// sink reordering in the graph closer to the root node and merge it later 829 /// during analysis. 830 void reorderBottomToTop(bool IgnoreReorder = false); 831 832 /// \return The vector element size in bits to use when vectorizing the 833 /// expression tree ending at \p V. If V is a store, the size is the width of 834 /// the stored value. Otherwise, the size is the width of the largest loaded 835 /// value reaching V. This method is used by the vectorizer to calculate 836 /// vectorization factors. 837 unsigned getVectorElementSize(Value *V); 838 839 /// Compute the minimum type sizes required to represent the entries in a 840 /// vectorizable tree. 841 void computeMinimumValueSizes(); 842 843 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 844 unsigned getMaxVecRegSize() const { 845 return MaxVecRegSize; 846 } 847 848 // \returns minimum vector register size as set by cl::opt. 849 unsigned getMinVecRegSize() const { 850 return MinVecRegSize; 851 } 852 853 unsigned getMinVF(unsigned Sz) const { 854 return std::max(2U, getMinVecRegSize() / Sz); 855 } 856 857 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 858 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 859 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 860 return MaxVF ? MaxVF : UINT_MAX; 861 } 862 863 /// Check if homogeneous aggregate is isomorphic to some VectorType. 864 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 865 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 866 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 867 /// 868 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 869 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 870 871 /// \returns True if the VectorizableTree is both tiny and not fully 872 /// vectorizable. We do not vectorize such trees. 873 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 874 875 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 876 /// can be load combined in the backend. Load combining may not be allowed in 877 /// the IR optimizer, so we do not want to alter the pattern. For example, 878 /// partially transforming a scalar bswap() pattern into vector code is 879 /// effectively impossible for the backend to undo. 880 /// TODO: If load combining is allowed in the IR optimizer, this analysis 881 /// may not be necessary. 882 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 883 884 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 885 /// can be load combined in the backend. Load combining may not be allowed in 886 /// the IR optimizer, so we do not want to alter the pattern. For example, 887 /// partially transforming a scalar bswap() pattern into vector code is 888 /// effectively impossible for the backend to undo. 889 /// TODO: If load combining is allowed in the IR optimizer, this analysis 890 /// may not be necessary. 891 bool isLoadCombineCandidate() const; 892 893 OptimizationRemarkEmitter *getORE() { return ORE; } 894 895 /// This structure holds any data we need about the edges being traversed 896 /// during buildTree_rec(). We keep track of: 897 /// (i) the user TreeEntry index, and 898 /// (ii) the index of the edge. 899 struct EdgeInfo { 900 EdgeInfo() = default; 901 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 902 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 903 /// The user TreeEntry. 904 TreeEntry *UserTE = nullptr; 905 /// The operand index of the use. 906 unsigned EdgeIdx = UINT_MAX; 907 #ifndef NDEBUG 908 friend inline raw_ostream &operator<<(raw_ostream &OS, 909 const BoUpSLP::EdgeInfo &EI) { 910 EI.dump(OS); 911 return OS; 912 } 913 /// Debug print. 914 void dump(raw_ostream &OS) const { 915 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 916 << " EdgeIdx:" << EdgeIdx << "}"; 917 } 918 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 919 #endif 920 }; 921 922 /// A helper data structure to hold the operands of a vector of instructions. 923 /// This supports a fixed vector length for all operand vectors. 924 class VLOperands { 925 /// For each operand we need (i) the value, and (ii) the opcode that it 926 /// would be attached to if the expression was in a left-linearized form. 927 /// This is required to avoid illegal operand reordering. 928 /// For example: 929 /// \verbatim 930 /// 0 Op1 931 /// |/ 932 /// Op1 Op2 Linearized + Op2 933 /// \ / ----------> |/ 934 /// - - 935 /// 936 /// Op1 - Op2 (0 + Op1) - Op2 937 /// \endverbatim 938 /// 939 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 940 /// 941 /// Another way to think of this is to track all the operations across the 942 /// path from the operand all the way to the root of the tree and to 943 /// calculate the operation that corresponds to this path. For example, the 944 /// path from Op2 to the root crosses the RHS of the '-', therefore the 945 /// corresponding operation is a '-' (which matches the one in the 946 /// linearized tree, as shown above). 947 /// 948 /// For lack of a better term, we refer to this operation as Accumulated 949 /// Path Operation (APO). 950 struct OperandData { 951 OperandData() = default; 952 OperandData(Value *V, bool APO, bool IsUsed) 953 : V(V), APO(APO), IsUsed(IsUsed) {} 954 /// The operand value. 955 Value *V = nullptr; 956 /// TreeEntries only allow a single opcode, or an alternate sequence of 957 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 958 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 959 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 960 /// (e.g., Add/Mul) 961 bool APO = false; 962 /// Helper data for the reordering function. 963 bool IsUsed = false; 964 }; 965 966 /// During operand reordering, we are trying to select the operand at lane 967 /// that matches best with the operand at the neighboring lane. Our 968 /// selection is based on the type of value we are looking for. For example, 969 /// if the neighboring lane has a load, we need to look for a load that is 970 /// accessing a consecutive address. These strategies are summarized in the 971 /// 'ReorderingMode' enumerator. 972 enum class ReorderingMode { 973 Load, ///< Matching loads to consecutive memory addresses 974 Opcode, ///< Matching instructions based on opcode (same or alternate) 975 Constant, ///< Matching constants 976 Splat, ///< Matching the same instruction multiple times (broadcast) 977 Failed, ///< We failed to create a vectorizable group 978 }; 979 980 using OperandDataVec = SmallVector<OperandData, 2>; 981 982 /// A vector of operand vectors. 983 SmallVector<OperandDataVec, 4> OpsVec; 984 985 const DataLayout &DL; 986 ScalarEvolution &SE; 987 const BoUpSLP &R; 988 989 /// \returns the operand data at \p OpIdx and \p Lane. 990 OperandData &getData(unsigned OpIdx, unsigned Lane) { 991 return OpsVec[OpIdx][Lane]; 992 } 993 994 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 995 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 996 return OpsVec[OpIdx][Lane]; 997 } 998 999 /// Clears the used flag for all entries. 1000 void clearUsed() { 1001 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1002 OpIdx != NumOperands; ++OpIdx) 1003 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1004 ++Lane) 1005 OpsVec[OpIdx][Lane].IsUsed = false; 1006 } 1007 1008 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1009 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1010 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1011 } 1012 1013 // The hard-coded scores listed here are not very important. When computing 1014 // the scores of matching one sub-tree with another, we are basically 1015 // counting the number of values that are matching. So even if all scores 1016 // are set to 1, we would still get a decent matching result. 1017 // However, sometimes we have to break ties. For example we may have to 1018 // choose between matching loads vs matching opcodes. This is what these 1019 // scores are helping us with: they provide the order of preference. 1020 1021 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1022 static const int ScoreConsecutiveLoads = 3; 1023 /// ExtractElementInst from same vector and consecutive indexes. 1024 static const int ScoreConsecutiveExtracts = 3; 1025 /// Constants. 1026 static const int ScoreConstants = 2; 1027 /// Instructions with the same opcode. 1028 static const int ScoreSameOpcode = 2; 1029 /// Instructions with alt opcodes (e.g, add + sub). 1030 static const int ScoreAltOpcodes = 1; 1031 /// Identical instructions (a.k.a. splat or broadcast). 1032 static const int ScoreSplat = 1; 1033 /// Matching with an undef is preferable to failing. 1034 static const int ScoreUndef = 1; 1035 /// Score for failing to find a decent match. 1036 static const int ScoreFail = 0; 1037 /// User exteranl to the vectorized code. 1038 static const int ExternalUseCost = 1; 1039 /// The user is internal but in a different lane. 1040 static const int UserInDiffLaneCost = ExternalUseCost; 1041 1042 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1043 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1044 ScalarEvolution &SE) { 1045 auto *LI1 = dyn_cast<LoadInst>(V1); 1046 auto *LI2 = dyn_cast<LoadInst>(V2); 1047 if (LI1 && LI2) { 1048 if (LI1->getParent() != LI2->getParent()) 1049 return VLOperands::ScoreFail; 1050 1051 Optional<int> Dist = getPointersDiff( 1052 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1053 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1054 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1055 : VLOperands::ScoreFail; 1056 } 1057 1058 auto *C1 = dyn_cast<Constant>(V1); 1059 auto *C2 = dyn_cast<Constant>(V2); 1060 if (C1 && C2) 1061 return VLOperands::ScoreConstants; 1062 1063 // Extracts from consecutive indexes of the same vector better score as 1064 // the extracts could be optimized away. 1065 Value *EV; 1066 ConstantInt *Ex1Idx, *Ex2Idx; 1067 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1068 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1069 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1070 return VLOperands::ScoreConsecutiveExtracts; 1071 1072 auto *I1 = dyn_cast<Instruction>(V1); 1073 auto *I2 = dyn_cast<Instruction>(V2); 1074 if (I1 && I2) { 1075 if (I1 == I2) 1076 return VLOperands::ScoreSplat; 1077 InstructionsState S = getSameOpcode({I1, I2}); 1078 // Note: Only consider instructions with <= 2 operands to avoid 1079 // complexity explosion. 1080 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1081 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1082 : VLOperands::ScoreSameOpcode; 1083 } 1084 1085 if (isa<UndefValue>(V2)) 1086 return VLOperands::ScoreUndef; 1087 1088 return VLOperands::ScoreFail; 1089 } 1090 1091 /// Holds the values and their lane that are taking part in the look-ahead 1092 /// score calculation. This is used in the external uses cost calculation. 1093 SmallDenseMap<Value *, int> InLookAheadValues; 1094 1095 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1096 /// either external to the vectorized code, or require shuffling. 1097 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1098 const std::pair<Value *, int> &RHS) { 1099 int Cost = 0; 1100 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1101 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1102 Value *V = Values[Idx].first; 1103 if (isa<Constant>(V)) { 1104 // Since this is a function pass, it doesn't make semantic sense to 1105 // walk the users of a subclass of Constant. The users could be in 1106 // another function, or even another module that happens to be in 1107 // the same LLVMContext. 1108 continue; 1109 } 1110 1111 // Calculate the absolute lane, using the minimum relative lane of LHS 1112 // and RHS as base and Idx as the offset. 1113 int Ln = std::min(LHS.second, RHS.second) + Idx; 1114 assert(Ln >= 0 && "Bad lane calculation"); 1115 unsigned UsersBudget = LookAheadUsersBudget; 1116 for (User *U : V->users()) { 1117 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1118 // The user is in the VectorizableTree. Check if we need to insert. 1119 auto It = llvm::find(UserTE->Scalars, U); 1120 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1121 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1122 assert(UserLn >= 0 && "Bad lane"); 1123 if (UserLn != Ln) 1124 Cost += UserInDiffLaneCost; 1125 } else { 1126 // Check if the user is in the look-ahead code. 1127 auto It2 = InLookAheadValues.find(U); 1128 if (It2 != InLookAheadValues.end()) { 1129 // The user is in the look-ahead code. Check the lane. 1130 if (It2->second != Ln) 1131 Cost += UserInDiffLaneCost; 1132 } else { 1133 // The user is neither in SLP tree nor in the look-ahead code. 1134 Cost += ExternalUseCost; 1135 } 1136 } 1137 // Limit the number of visited uses to cap compilation time. 1138 if (--UsersBudget == 0) 1139 break; 1140 } 1141 } 1142 return Cost; 1143 } 1144 1145 /// Go through the operands of \p LHS and \p RHS recursively until \p 1146 /// MaxLevel, and return the cummulative score. For example: 1147 /// \verbatim 1148 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1149 /// \ / \ / \ / \ / 1150 /// + + + + 1151 /// G1 G2 G3 G4 1152 /// \endverbatim 1153 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1154 /// each level recursively, accumulating the score. It starts from matching 1155 /// the additions at level 0, then moves on to the loads (level 1). The 1156 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1157 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1158 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1159 /// Please note that the order of the operands does not matter, as we 1160 /// evaluate the score of all profitable combinations of operands. In 1161 /// other words the score of G1 and G4 is the same as G1 and G2. This 1162 /// heuristic is based on ideas described in: 1163 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1164 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1165 /// Luís F. W. Góes 1166 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1167 const std::pair<Value *, int> &RHS, int CurrLevel, 1168 int MaxLevel) { 1169 1170 Value *V1 = LHS.first; 1171 Value *V2 = RHS.first; 1172 // Get the shallow score of V1 and V2. 1173 int ShallowScoreAtThisLevel = 1174 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1175 getExternalUsesCost(LHS, RHS)); 1176 int Lane1 = LHS.second; 1177 int Lane2 = RHS.second; 1178 1179 // If reached MaxLevel, 1180 // or if V1 and V2 are not instructions, 1181 // or if they are SPLAT, 1182 // or if they are not consecutive, early return the current cost. 1183 auto *I1 = dyn_cast<Instruction>(V1); 1184 auto *I2 = dyn_cast<Instruction>(V2); 1185 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1186 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1187 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1188 return ShallowScoreAtThisLevel; 1189 assert(I1 && I2 && "Should have early exited."); 1190 1191 // Keep track of in-tree values for determining the external-use cost. 1192 InLookAheadValues[V1] = Lane1; 1193 InLookAheadValues[V2] = Lane2; 1194 1195 // Contains the I2 operand indexes that got matched with I1 operands. 1196 SmallSet<unsigned, 4> Op2Used; 1197 1198 // Recursion towards the operands of I1 and I2. We are trying all possbile 1199 // operand pairs, and keeping track of the best score. 1200 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1201 OpIdx1 != NumOperands1; ++OpIdx1) { 1202 // Try to pair op1I with the best operand of I2. 1203 int MaxTmpScore = 0; 1204 unsigned MaxOpIdx2 = 0; 1205 bool FoundBest = false; 1206 // If I2 is commutative try all combinations. 1207 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1208 unsigned ToIdx = isCommutative(I2) 1209 ? I2->getNumOperands() 1210 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1211 assert(FromIdx <= ToIdx && "Bad index"); 1212 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1213 // Skip operands already paired with OpIdx1. 1214 if (Op2Used.count(OpIdx2)) 1215 continue; 1216 // Recursively calculate the cost at each level 1217 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1218 {I2->getOperand(OpIdx2), Lane2}, 1219 CurrLevel + 1, MaxLevel); 1220 // Look for the best score. 1221 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1222 MaxTmpScore = TmpScore; 1223 MaxOpIdx2 = OpIdx2; 1224 FoundBest = true; 1225 } 1226 } 1227 if (FoundBest) { 1228 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1229 Op2Used.insert(MaxOpIdx2); 1230 ShallowScoreAtThisLevel += MaxTmpScore; 1231 } 1232 } 1233 return ShallowScoreAtThisLevel; 1234 } 1235 1236 /// \Returns the look-ahead score, which tells us how much the sub-trees 1237 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1238 /// score. This helps break ties in an informed way when we cannot decide on 1239 /// the order of the operands by just considering the immediate 1240 /// predecessors. 1241 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1242 const std::pair<Value *, int> &RHS) { 1243 InLookAheadValues.clear(); 1244 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1245 } 1246 1247 // Search all operands in Ops[*][Lane] for the one that matches best 1248 // Ops[OpIdx][LastLane] and return its opreand index. 1249 // If no good match can be found, return None. 1250 Optional<unsigned> 1251 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1252 ArrayRef<ReorderingMode> ReorderingModes) { 1253 unsigned NumOperands = getNumOperands(); 1254 1255 // The operand of the previous lane at OpIdx. 1256 Value *OpLastLane = getData(OpIdx, LastLane).V; 1257 1258 // Our strategy mode for OpIdx. 1259 ReorderingMode RMode = ReorderingModes[OpIdx]; 1260 1261 // The linearized opcode of the operand at OpIdx, Lane. 1262 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1263 1264 // The best operand index and its score. 1265 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1266 // are using the score to differentiate between the two. 1267 struct BestOpData { 1268 Optional<unsigned> Idx = None; 1269 unsigned Score = 0; 1270 } BestOp; 1271 1272 // Iterate through all unused operands and look for the best. 1273 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1274 // Get the operand at Idx and Lane. 1275 OperandData &OpData = getData(Idx, Lane); 1276 Value *Op = OpData.V; 1277 bool OpAPO = OpData.APO; 1278 1279 // Skip already selected operands. 1280 if (OpData.IsUsed) 1281 continue; 1282 1283 // Skip if we are trying to move the operand to a position with a 1284 // different opcode in the linearized tree form. This would break the 1285 // semantics. 1286 if (OpAPO != OpIdxAPO) 1287 continue; 1288 1289 // Look for an operand that matches the current mode. 1290 switch (RMode) { 1291 case ReorderingMode::Load: 1292 case ReorderingMode::Constant: 1293 case ReorderingMode::Opcode: { 1294 bool LeftToRight = Lane > LastLane; 1295 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1296 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1297 unsigned Score = 1298 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1299 if (Score > BestOp.Score) { 1300 BestOp.Idx = Idx; 1301 BestOp.Score = Score; 1302 } 1303 break; 1304 } 1305 case ReorderingMode::Splat: 1306 if (Op == OpLastLane) 1307 BestOp.Idx = Idx; 1308 break; 1309 case ReorderingMode::Failed: 1310 return None; 1311 } 1312 } 1313 1314 if (BestOp.Idx) { 1315 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1316 return BestOp.Idx; 1317 } 1318 // If we could not find a good match return None. 1319 return None; 1320 } 1321 1322 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1323 /// reordering from. This is the one which has the least number of operands 1324 /// that can freely move about. 1325 unsigned getBestLaneToStartReordering() const { 1326 unsigned BestLane = 0; 1327 unsigned Min = UINT_MAX; 1328 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1329 ++Lane) { 1330 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1331 if (NumFreeOps < Min) { 1332 Min = NumFreeOps; 1333 BestLane = Lane; 1334 } 1335 } 1336 return BestLane; 1337 } 1338 1339 /// \Returns the maximum number of operands that are allowed to be reordered 1340 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1341 /// start operand reordering. 1342 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1343 unsigned CntTrue = 0; 1344 unsigned NumOperands = getNumOperands(); 1345 // Operands with the same APO can be reordered. We therefore need to count 1346 // how many of them we have for each APO, like this: Cnt[APO] = x. 1347 // Since we only have two APOs, namely true and false, we can avoid using 1348 // a map. Instead we can simply count the number of operands that 1349 // correspond to one of them (in this case the 'true' APO), and calculate 1350 // the other by subtracting it from the total number of operands. 1351 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1352 if (getData(OpIdx, Lane).APO) 1353 ++CntTrue; 1354 unsigned CntFalse = NumOperands - CntTrue; 1355 return std::max(CntTrue, CntFalse); 1356 } 1357 1358 /// Go through the instructions in VL and append their operands. 1359 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1360 assert(!VL.empty() && "Bad VL"); 1361 assert((empty() || VL.size() == getNumLanes()) && 1362 "Expected same number of lanes"); 1363 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1364 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1365 OpsVec.resize(NumOperands); 1366 unsigned NumLanes = VL.size(); 1367 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1368 OpsVec[OpIdx].resize(NumLanes); 1369 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1370 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1371 // Our tree has just 3 nodes: the root and two operands. 1372 // It is therefore trivial to get the APO. We only need to check the 1373 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1374 // RHS operand. The LHS operand of both add and sub is never attached 1375 // to an inversese operation in the linearized form, therefore its APO 1376 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1377 1378 // Since operand reordering is performed on groups of commutative 1379 // operations or alternating sequences (e.g., +, -), we can safely 1380 // tell the inverse operations by checking commutativity. 1381 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1382 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1383 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1384 APO, false}; 1385 } 1386 } 1387 } 1388 1389 /// \returns the number of operands. 1390 unsigned getNumOperands() const { return OpsVec.size(); } 1391 1392 /// \returns the number of lanes. 1393 unsigned getNumLanes() const { return OpsVec[0].size(); } 1394 1395 /// \returns the operand value at \p OpIdx and \p Lane. 1396 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1397 return getData(OpIdx, Lane).V; 1398 } 1399 1400 /// \returns true if the data structure is empty. 1401 bool empty() const { return OpsVec.empty(); } 1402 1403 /// Clears the data. 1404 void clear() { OpsVec.clear(); } 1405 1406 /// \Returns true if there are enough operands identical to \p Op to fill 1407 /// the whole vector. 1408 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1409 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1410 bool OpAPO = getData(OpIdx, Lane).APO; 1411 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1412 if (Ln == Lane) 1413 continue; 1414 // This is set to true if we found a candidate for broadcast at Lane. 1415 bool FoundCandidate = false; 1416 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1417 OperandData &Data = getData(OpI, Ln); 1418 if (Data.APO != OpAPO || Data.IsUsed) 1419 continue; 1420 if (Data.V == Op) { 1421 FoundCandidate = true; 1422 Data.IsUsed = true; 1423 break; 1424 } 1425 } 1426 if (!FoundCandidate) 1427 return false; 1428 } 1429 return true; 1430 } 1431 1432 public: 1433 /// Initialize with all the operands of the instruction vector \p RootVL. 1434 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1435 ScalarEvolution &SE, const BoUpSLP &R) 1436 : DL(DL), SE(SE), R(R) { 1437 // Append all the operands of RootVL. 1438 appendOperandsOfVL(RootVL); 1439 } 1440 1441 /// \Returns a value vector with the operands across all lanes for the 1442 /// opearnd at \p OpIdx. 1443 ValueList getVL(unsigned OpIdx) const { 1444 ValueList OpVL(OpsVec[OpIdx].size()); 1445 assert(OpsVec[OpIdx].size() == getNumLanes() && 1446 "Expected same num of lanes across all operands"); 1447 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1448 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1449 return OpVL; 1450 } 1451 1452 // Performs operand reordering for 2 or more operands. 1453 // The original operands are in OrigOps[OpIdx][Lane]. 1454 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1455 void reorder() { 1456 unsigned NumOperands = getNumOperands(); 1457 unsigned NumLanes = getNumLanes(); 1458 // Each operand has its own mode. We are using this mode to help us select 1459 // the instructions for each lane, so that they match best with the ones 1460 // we have selected so far. 1461 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1462 1463 // This is a greedy single-pass algorithm. We are going over each lane 1464 // once and deciding on the best order right away with no back-tracking. 1465 // However, in order to increase its effectiveness, we start with the lane 1466 // that has operands that can move the least. For example, given the 1467 // following lanes: 1468 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1469 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1470 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1471 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1472 // we will start at Lane 1, since the operands of the subtraction cannot 1473 // be reordered. Then we will visit the rest of the lanes in a circular 1474 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1475 1476 // Find the first lane that we will start our search from. 1477 unsigned FirstLane = getBestLaneToStartReordering(); 1478 1479 // Initialize the modes. 1480 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1481 Value *OpLane0 = getValue(OpIdx, FirstLane); 1482 // Keep track if we have instructions with all the same opcode on one 1483 // side. 1484 if (isa<LoadInst>(OpLane0)) 1485 ReorderingModes[OpIdx] = ReorderingMode::Load; 1486 else if (isa<Instruction>(OpLane0)) { 1487 // Check if OpLane0 should be broadcast. 1488 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1489 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1490 else 1491 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1492 } 1493 else if (isa<Constant>(OpLane0)) 1494 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1495 else if (isa<Argument>(OpLane0)) 1496 // Our best hope is a Splat. It may save some cost in some cases. 1497 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1498 else 1499 // NOTE: This should be unreachable. 1500 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1501 } 1502 1503 // If the initial strategy fails for any of the operand indexes, then we 1504 // perform reordering again in a second pass. This helps avoid assigning 1505 // high priority to the failed strategy, and should improve reordering for 1506 // the non-failed operand indexes. 1507 for (int Pass = 0; Pass != 2; ++Pass) { 1508 // Skip the second pass if the first pass did not fail. 1509 bool StrategyFailed = false; 1510 // Mark all operand data as free to use. 1511 clearUsed(); 1512 // We keep the original operand order for the FirstLane, so reorder the 1513 // rest of the lanes. We are visiting the nodes in a circular fashion, 1514 // using FirstLane as the center point and increasing the radius 1515 // distance. 1516 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1517 // Visit the lane on the right and then the lane on the left. 1518 for (int Direction : {+1, -1}) { 1519 int Lane = FirstLane + Direction * Distance; 1520 if (Lane < 0 || Lane >= (int)NumLanes) 1521 continue; 1522 int LastLane = Lane - Direction; 1523 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1524 "Out of bounds"); 1525 // Look for a good match for each operand. 1526 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1527 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1528 Optional<unsigned> BestIdx = 1529 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1530 // By not selecting a value, we allow the operands that follow to 1531 // select a better matching value. We will get a non-null value in 1532 // the next run of getBestOperand(). 1533 if (BestIdx) { 1534 // Swap the current operand with the one returned by 1535 // getBestOperand(). 1536 swap(OpIdx, BestIdx.getValue(), Lane); 1537 } else { 1538 // We failed to find a best operand, set mode to 'Failed'. 1539 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1540 // Enable the second pass. 1541 StrategyFailed = true; 1542 } 1543 } 1544 } 1545 } 1546 // Skip second pass if the strategy did not fail. 1547 if (!StrategyFailed) 1548 break; 1549 } 1550 } 1551 1552 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1553 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1554 switch (RMode) { 1555 case ReorderingMode::Load: 1556 return "Load"; 1557 case ReorderingMode::Opcode: 1558 return "Opcode"; 1559 case ReorderingMode::Constant: 1560 return "Constant"; 1561 case ReorderingMode::Splat: 1562 return "Splat"; 1563 case ReorderingMode::Failed: 1564 return "Failed"; 1565 } 1566 llvm_unreachable("Unimplemented Reordering Type"); 1567 } 1568 1569 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1570 raw_ostream &OS) { 1571 return OS << getModeStr(RMode); 1572 } 1573 1574 /// Debug print. 1575 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1576 printMode(RMode, dbgs()); 1577 } 1578 1579 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1580 return printMode(RMode, OS); 1581 } 1582 1583 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1584 const unsigned Indent = 2; 1585 unsigned Cnt = 0; 1586 for (const OperandDataVec &OpDataVec : OpsVec) { 1587 OS << "Operand " << Cnt++ << "\n"; 1588 for (const OperandData &OpData : OpDataVec) { 1589 OS.indent(Indent) << "{"; 1590 if (Value *V = OpData.V) 1591 OS << *V; 1592 else 1593 OS << "null"; 1594 OS << ", APO:" << OpData.APO << "}\n"; 1595 } 1596 OS << "\n"; 1597 } 1598 return OS; 1599 } 1600 1601 /// Debug print. 1602 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1603 #endif 1604 }; 1605 1606 /// Checks if the instruction is marked for deletion. 1607 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1608 1609 /// Marks values operands for later deletion by replacing them with Undefs. 1610 void eraseInstructions(ArrayRef<Value *> AV); 1611 1612 ~BoUpSLP(); 1613 1614 private: 1615 /// Checks if all users of \p I are the part of the vectorization tree. 1616 bool areAllUsersVectorized(Instruction *I, 1617 ArrayRef<Value *> VectorizedVals) const; 1618 1619 /// \returns the cost of the vectorizable entry. 1620 InstructionCost getEntryCost(const TreeEntry *E, 1621 ArrayRef<Value *> VectorizedVals); 1622 1623 /// This is the recursive part of buildTree. 1624 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1625 const EdgeInfo &EI); 1626 1627 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1628 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1629 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1630 /// returns false, setting \p CurrentOrder to either an empty vector or a 1631 /// non-identity permutation that allows to reuse extract instructions. 1632 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1633 SmallVectorImpl<unsigned> &CurrentOrder) const; 1634 1635 /// Vectorize a single entry in the tree. 1636 Value *vectorizeTree(TreeEntry *E); 1637 1638 /// Vectorize a single entry in the tree, starting in \p VL. 1639 Value *vectorizeTree(ArrayRef<Value *> VL); 1640 1641 /// \returns the scalarization cost for this type. Scalarization in this 1642 /// context means the creation of vectors from a group of scalars. If \p 1643 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1644 /// vector elements. 1645 InstructionCost getGatherCost(FixedVectorType *Ty, 1646 const DenseSet<unsigned> &ShuffledIndices, 1647 bool NeedToShuffle) const; 1648 1649 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1650 /// tree entries. 1651 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1652 /// previous tree entries. \p Mask is filled with the shuffle mask. 1653 Optional<TargetTransformInfo::ShuffleKind> 1654 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1655 SmallVectorImpl<const TreeEntry *> &Entries); 1656 1657 /// \returns the scalarization cost for this list of values. Assuming that 1658 /// this subtree gets vectorized, we may need to extract the values from the 1659 /// roots. This method calculates the cost of extracting the values. 1660 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1661 1662 /// Set the Builder insert point to one after the last instruction in 1663 /// the bundle 1664 void setInsertPointAfterBundle(const TreeEntry *E); 1665 1666 /// \returns a vector from a collection of scalars in \p VL. 1667 Value *gather(ArrayRef<Value *> VL); 1668 1669 /// \returns whether the VectorizableTree is fully vectorizable and will 1670 /// be beneficial even the tree height is tiny. 1671 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1672 1673 /// Reorder commutative or alt operands to get better probability of 1674 /// generating vectorized code. 1675 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1676 SmallVectorImpl<Value *> &Left, 1677 SmallVectorImpl<Value *> &Right, 1678 const DataLayout &DL, 1679 ScalarEvolution &SE, 1680 const BoUpSLP &R); 1681 struct TreeEntry { 1682 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1683 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1684 1685 /// \returns true if the scalars in VL are equal to this entry. 1686 bool isSame(ArrayRef<Value *> VL) const { 1687 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1688 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1689 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1690 return VL.size() == Mask.size() && 1691 std::equal(VL.begin(), VL.end(), Mask.begin(), 1692 [Scalars](Value *V, int Idx) { 1693 return (isa<UndefValue>(V) && 1694 Idx == UndefMaskElem) || 1695 (Idx != UndefMaskElem && V == Scalars[Idx]); 1696 }); 1697 }; 1698 if (!ReorderIndices.empty()) { 1699 // TODO: implement matching if the nodes are just reordered, still can 1700 // treat the vector as the same if the list of scalars matches VL 1701 // directly, without reordering. 1702 SmallVector<int> Mask; 1703 inversePermutation(ReorderIndices, Mask); 1704 if (VL.size() == Scalars.size()) 1705 return IsSame(Scalars, Mask); 1706 if (VL.size() == ReuseShuffleIndices.size()) { 1707 ::addMask(Mask, ReuseShuffleIndices); 1708 return IsSame(Scalars, Mask); 1709 } 1710 return false; 1711 } 1712 return IsSame(Scalars, ReuseShuffleIndices); 1713 } 1714 1715 /// \returns true if current entry has same operands as \p TE. 1716 bool hasEqualOperands(const TreeEntry &TE) const { 1717 if (TE.getNumOperands() != getNumOperands()) 1718 return false; 1719 SmallBitVector Used(getNumOperands()); 1720 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1721 unsigned PrevCount = Used.count(); 1722 for (unsigned K = 0; K < E; ++K) { 1723 if (Used.test(K)) 1724 continue; 1725 if (getOperand(K) == TE.getOperand(I)) { 1726 Used.set(K); 1727 break; 1728 } 1729 } 1730 // Check if we actually found the matching operand. 1731 if (PrevCount == Used.count()) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// \return Final vectorization factor for the node. Defined by the total 1738 /// number of vectorized scalars, including those, used several times in the 1739 /// entry and counted in the \a ReuseShuffleIndices, if any. 1740 unsigned getVectorFactor() const { 1741 if (!ReuseShuffleIndices.empty()) 1742 return ReuseShuffleIndices.size(); 1743 return Scalars.size(); 1744 }; 1745 1746 /// A vector of scalars. 1747 ValueList Scalars; 1748 1749 /// The Scalars are vectorized into this value. It is initialized to Null. 1750 Value *VectorizedValue = nullptr; 1751 1752 /// Do we need to gather this sequence or vectorize it 1753 /// (either with vector instruction or with scatter/gather 1754 /// intrinsics for store/load)? 1755 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1756 EntryState State; 1757 1758 /// Does this sequence require some shuffling? 1759 SmallVector<int, 4> ReuseShuffleIndices; 1760 1761 /// Does this entry require reordering? 1762 SmallVector<unsigned, 4> ReorderIndices; 1763 1764 /// Points back to the VectorizableTree. 1765 /// 1766 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1767 /// to be a pointer and needs to be able to initialize the child iterator. 1768 /// Thus we need a reference back to the container to translate the indices 1769 /// to entries. 1770 VecTreeTy &Container; 1771 1772 /// The TreeEntry index containing the user of this entry. We can actually 1773 /// have multiple users so the data structure is not truly a tree. 1774 SmallVector<EdgeInfo, 1> UserTreeIndices; 1775 1776 /// The index of this treeEntry in VectorizableTree. 1777 int Idx = -1; 1778 1779 private: 1780 /// The operands of each instruction in each lane Operands[op_index][lane]. 1781 /// Note: This helps avoid the replication of the code that performs the 1782 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1783 SmallVector<ValueList, 2> Operands; 1784 1785 /// The main/alternate instruction. 1786 Instruction *MainOp = nullptr; 1787 Instruction *AltOp = nullptr; 1788 1789 public: 1790 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1791 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1792 if (Operands.size() < OpIdx + 1) 1793 Operands.resize(OpIdx + 1); 1794 assert(Operands[OpIdx].empty() && "Already resized?"); 1795 Operands[OpIdx].resize(Scalars.size()); 1796 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1797 Operands[OpIdx][Lane] = OpVL[Lane]; 1798 } 1799 1800 /// Set the operands of this bundle in their original order. 1801 void setOperandsInOrder() { 1802 assert(Operands.empty() && "Already initialized?"); 1803 auto *I0 = cast<Instruction>(Scalars[0]); 1804 Operands.resize(I0->getNumOperands()); 1805 unsigned NumLanes = Scalars.size(); 1806 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1807 OpIdx != NumOperands; ++OpIdx) { 1808 Operands[OpIdx].resize(NumLanes); 1809 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1810 auto *I = cast<Instruction>(Scalars[Lane]); 1811 assert(I->getNumOperands() == NumOperands && 1812 "Expected same number of operands"); 1813 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1814 } 1815 } 1816 } 1817 1818 /// Reorders operands of the node to the given mask \p Mask. 1819 void reorderOperands(ArrayRef<int> Mask) { 1820 for (ValueList &Operand : Operands) 1821 reorderScalars(Operand, Mask); 1822 } 1823 1824 /// \returns the \p OpIdx operand of this TreeEntry. 1825 ValueList &getOperand(unsigned OpIdx) { 1826 assert(OpIdx < Operands.size() && "Off bounds"); 1827 return Operands[OpIdx]; 1828 } 1829 1830 /// \returns the \p OpIdx operand of this TreeEntry. 1831 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1832 assert(OpIdx < Operands.size() && "Off bounds"); 1833 return Operands[OpIdx]; 1834 } 1835 1836 /// \returns the number of operands. 1837 unsigned getNumOperands() const { return Operands.size(); } 1838 1839 /// \return the single \p OpIdx operand. 1840 Value *getSingleOperand(unsigned OpIdx) const { 1841 assert(OpIdx < Operands.size() && "Off bounds"); 1842 assert(!Operands[OpIdx].empty() && "No operand available"); 1843 return Operands[OpIdx][0]; 1844 } 1845 1846 /// Some of the instructions in the list have alternate opcodes. 1847 bool isAltShuffle() const { 1848 return getOpcode() != getAltOpcode(); 1849 } 1850 1851 bool isOpcodeOrAlt(Instruction *I) const { 1852 unsigned CheckedOpcode = I->getOpcode(); 1853 return (getOpcode() == CheckedOpcode || 1854 getAltOpcode() == CheckedOpcode); 1855 } 1856 1857 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1858 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1859 /// \p OpValue. 1860 Value *isOneOf(Value *Op) const { 1861 auto *I = dyn_cast<Instruction>(Op); 1862 if (I && isOpcodeOrAlt(I)) 1863 return Op; 1864 return MainOp; 1865 } 1866 1867 void setOperations(const InstructionsState &S) { 1868 MainOp = S.MainOp; 1869 AltOp = S.AltOp; 1870 } 1871 1872 Instruction *getMainOp() const { 1873 return MainOp; 1874 } 1875 1876 Instruction *getAltOp() const { 1877 return AltOp; 1878 } 1879 1880 /// The main/alternate opcodes for the list of instructions. 1881 unsigned getOpcode() const { 1882 return MainOp ? MainOp->getOpcode() : 0; 1883 } 1884 1885 unsigned getAltOpcode() const { 1886 return AltOp ? AltOp->getOpcode() : 0; 1887 } 1888 1889 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1890 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1891 int findLaneForValue(Value *V) const { 1892 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1893 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1894 if (!ReorderIndices.empty()) 1895 FoundLane = ReorderIndices[FoundLane]; 1896 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1897 if (!ReuseShuffleIndices.empty()) { 1898 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1899 find(ReuseShuffleIndices, FoundLane)); 1900 } 1901 return FoundLane; 1902 } 1903 1904 #ifndef NDEBUG 1905 /// Debug printer. 1906 LLVM_DUMP_METHOD void dump() const { 1907 dbgs() << Idx << ".\n"; 1908 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1909 dbgs() << "Operand " << OpI << ":\n"; 1910 for (const Value *V : Operands[OpI]) 1911 dbgs().indent(2) << *V << "\n"; 1912 } 1913 dbgs() << "Scalars: \n"; 1914 for (Value *V : Scalars) 1915 dbgs().indent(2) << *V << "\n"; 1916 dbgs() << "State: "; 1917 switch (State) { 1918 case Vectorize: 1919 dbgs() << "Vectorize\n"; 1920 break; 1921 case ScatterVectorize: 1922 dbgs() << "ScatterVectorize\n"; 1923 break; 1924 case NeedToGather: 1925 dbgs() << "NeedToGather\n"; 1926 break; 1927 } 1928 dbgs() << "MainOp: "; 1929 if (MainOp) 1930 dbgs() << *MainOp << "\n"; 1931 else 1932 dbgs() << "NULL\n"; 1933 dbgs() << "AltOp: "; 1934 if (AltOp) 1935 dbgs() << *AltOp << "\n"; 1936 else 1937 dbgs() << "NULL\n"; 1938 dbgs() << "VectorizedValue: "; 1939 if (VectorizedValue) 1940 dbgs() << *VectorizedValue << "\n"; 1941 else 1942 dbgs() << "NULL\n"; 1943 dbgs() << "ReuseShuffleIndices: "; 1944 if (ReuseShuffleIndices.empty()) 1945 dbgs() << "Empty"; 1946 else 1947 for (unsigned ReuseIdx : ReuseShuffleIndices) 1948 dbgs() << ReuseIdx << ", "; 1949 dbgs() << "\n"; 1950 dbgs() << "ReorderIndices: "; 1951 for (unsigned ReorderIdx : ReorderIndices) 1952 dbgs() << ReorderIdx << ", "; 1953 dbgs() << "\n"; 1954 dbgs() << "UserTreeIndices: "; 1955 for (const auto &EInfo : UserTreeIndices) 1956 dbgs() << EInfo << ", "; 1957 dbgs() << "\n"; 1958 } 1959 #endif 1960 }; 1961 1962 #ifndef NDEBUG 1963 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1964 InstructionCost VecCost, 1965 InstructionCost ScalarCost) const { 1966 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1967 dbgs() << "SLP: Costs:\n"; 1968 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1969 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1970 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1971 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1972 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1973 } 1974 #endif 1975 1976 /// Create a new VectorizableTree entry. 1977 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1978 const InstructionsState &S, 1979 const EdgeInfo &UserTreeIdx, 1980 ArrayRef<int> ReuseShuffleIndices = None, 1981 ArrayRef<unsigned> ReorderIndices = None) { 1982 TreeEntry::EntryState EntryState = 1983 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1984 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1985 ReuseShuffleIndices, ReorderIndices); 1986 } 1987 1988 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1989 TreeEntry::EntryState EntryState, 1990 Optional<ScheduleData *> Bundle, 1991 const InstructionsState &S, 1992 const EdgeInfo &UserTreeIdx, 1993 ArrayRef<int> ReuseShuffleIndices = None, 1994 ArrayRef<unsigned> ReorderIndices = None) { 1995 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1996 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1997 "Need to vectorize gather entry?"); 1998 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1999 TreeEntry *Last = VectorizableTree.back().get(); 2000 Last->Idx = VectorizableTree.size() - 1; 2001 Last->State = EntryState; 2002 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2003 ReuseShuffleIndices.end()); 2004 if (ReorderIndices.empty()) { 2005 Last->Scalars.assign(VL.begin(), VL.end()); 2006 Last->setOperations(S); 2007 } else { 2008 // Reorder scalars and build final mask. 2009 Last->Scalars.assign(VL.size(), nullptr); 2010 transform(ReorderIndices, Last->Scalars.begin(), 2011 [VL](unsigned Idx) -> Value * { 2012 if (Idx >= VL.size()) 2013 return UndefValue::get(VL.front()->getType()); 2014 return VL[Idx]; 2015 }); 2016 InstructionsState S = getSameOpcode(Last->Scalars); 2017 Last->setOperations(S); 2018 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2019 } 2020 if (Last->State != TreeEntry::NeedToGather) { 2021 for (Value *V : VL) { 2022 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2023 ScalarToTreeEntry[V] = Last; 2024 } 2025 // Update the scheduler bundle to point to this TreeEntry. 2026 unsigned Lane = 0; 2027 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2028 BundleMember = BundleMember->NextInBundle) { 2029 BundleMember->TE = Last; 2030 BundleMember->Lane = Lane; 2031 ++Lane; 2032 } 2033 assert((!Bundle.getValue() || Lane == VL.size()) && 2034 "Bundle and VL out of sync"); 2035 } else { 2036 MustGather.insert(VL.begin(), VL.end()); 2037 } 2038 2039 if (UserTreeIdx.UserTE) 2040 Last->UserTreeIndices.push_back(UserTreeIdx); 2041 2042 return Last; 2043 } 2044 2045 /// -- Vectorization State -- 2046 /// Holds all of the tree entries. 2047 TreeEntry::VecTreeTy VectorizableTree; 2048 2049 #ifndef NDEBUG 2050 /// Debug printer. 2051 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2052 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2053 VectorizableTree[Id]->dump(); 2054 dbgs() << "\n"; 2055 } 2056 } 2057 #endif 2058 2059 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2060 2061 const TreeEntry *getTreeEntry(Value *V) const { 2062 return ScalarToTreeEntry.lookup(V); 2063 } 2064 2065 /// Maps a specific scalar to its tree entry. 2066 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2067 2068 /// Maps a value to the proposed vectorizable size. 2069 SmallDenseMap<Value *, unsigned> InstrElementSize; 2070 2071 /// A list of scalars that we found that we need to keep as scalars. 2072 ValueSet MustGather; 2073 2074 /// This POD struct describes one external user in the vectorized tree. 2075 struct ExternalUser { 2076 ExternalUser(Value *S, llvm::User *U, int L) 2077 : Scalar(S), User(U), Lane(L) {} 2078 2079 // Which scalar in our function. 2080 Value *Scalar; 2081 2082 // Which user that uses the scalar. 2083 llvm::User *User; 2084 2085 // Which lane does the scalar belong to. 2086 int Lane; 2087 }; 2088 using UserList = SmallVector<ExternalUser, 16>; 2089 2090 /// Checks if two instructions may access the same memory. 2091 /// 2092 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2093 /// is invariant in the calling loop. 2094 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2095 Instruction *Inst2) { 2096 // First check if the result is already in the cache. 2097 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2098 Optional<bool> &result = AliasCache[key]; 2099 if (result.hasValue()) { 2100 return result.getValue(); 2101 } 2102 bool aliased = true; 2103 if (Loc1.Ptr && isSimple(Inst1)) 2104 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2105 // Store the result in the cache. 2106 result = aliased; 2107 return aliased; 2108 } 2109 2110 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2111 2112 /// Cache for alias results. 2113 /// TODO: consider moving this to the AliasAnalysis itself. 2114 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2115 2116 /// Removes an instruction from its block and eventually deletes it. 2117 /// It's like Instruction::eraseFromParent() except that the actual deletion 2118 /// is delayed until BoUpSLP is destructed. 2119 /// This is required to ensure that there are no incorrect collisions in the 2120 /// AliasCache, which can happen if a new instruction is allocated at the 2121 /// same address as a previously deleted instruction. 2122 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2123 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2124 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2125 } 2126 2127 /// Temporary store for deleted instructions. Instructions will be deleted 2128 /// eventually when the BoUpSLP is destructed. 2129 DenseMap<Instruction *, bool> DeletedInstructions; 2130 2131 /// A list of values that need to extracted out of the tree. 2132 /// This list holds pairs of (Internal Scalar : External User). External User 2133 /// can be nullptr, it means that this Internal Scalar will be used later, 2134 /// after vectorization. 2135 UserList ExternalUses; 2136 2137 /// Values used only by @llvm.assume calls. 2138 SmallPtrSet<const Value *, 32> EphValues; 2139 2140 /// Holds all of the instructions that we gathered. 2141 SetVector<Instruction *> GatherShuffleSeq; 2142 2143 /// A list of blocks that we are going to CSE. 2144 SetVector<BasicBlock *> CSEBlocks; 2145 2146 /// Contains all scheduling relevant data for an instruction. 2147 /// A ScheduleData either represents a single instruction or a member of an 2148 /// instruction bundle (= a group of instructions which is combined into a 2149 /// vector instruction). 2150 struct ScheduleData { 2151 // The initial value for the dependency counters. It means that the 2152 // dependencies are not calculated yet. 2153 enum { InvalidDeps = -1 }; 2154 2155 ScheduleData() = default; 2156 2157 void init(int BlockSchedulingRegionID, Value *OpVal) { 2158 FirstInBundle = this; 2159 NextInBundle = nullptr; 2160 NextLoadStore = nullptr; 2161 IsScheduled = false; 2162 SchedulingRegionID = BlockSchedulingRegionID; 2163 UnscheduledDepsInBundle = UnscheduledDeps; 2164 clearDependencies(); 2165 OpValue = OpVal; 2166 TE = nullptr; 2167 Lane = -1; 2168 } 2169 2170 /// Returns true if the dependency information has been calculated. 2171 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2172 2173 /// Returns true for single instructions and for bundle representatives 2174 /// (= the head of a bundle). 2175 bool isSchedulingEntity() const { return FirstInBundle == this; } 2176 2177 /// Returns true if it represents an instruction bundle and not only a 2178 /// single instruction. 2179 bool isPartOfBundle() const { 2180 return NextInBundle != nullptr || FirstInBundle != this; 2181 } 2182 2183 /// Returns true if it is ready for scheduling, i.e. it has no more 2184 /// unscheduled depending instructions/bundles. 2185 bool isReady() const { 2186 assert(isSchedulingEntity() && 2187 "can't consider non-scheduling entity for ready list"); 2188 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2189 } 2190 2191 /// Modifies the number of unscheduled dependencies, also updating it for 2192 /// the whole bundle. 2193 int incrementUnscheduledDeps(int Incr) { 2194 UnscheduledDeps += Incr; 2195 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2196 } 2197 2198 /// Sets the number of unscheduled dependencies to the number of 2199 /// dependencies. 2200 void resetUnscheduledDeps() { 2201 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2202 } 2203 2204 /// Clears all dependency information. 2205 void clearDependencies() { 2206 Dependencies = InvalidDeps; 2207 resetUnscheduledDeps(); 2208 MemoryDependencies.clear(); 2209 } 2210 2211 void dump(raw_ostream &os) const { 2212 if (!isSchedulingEntity()) { 2213 os << "/ " << *Inst; 2214 } else if (NextInBundle) { 2215 os << '[' << *Inst; 2216 ScheduleData *SD = NextInBundle; 2217 while (SD) { 2218 os << ';' << *SD->Inst; 2219 SD = SD->NextInBundle; 2220 } 2221 os << ']'; 2222 } else { 2223 os << *Inst; 2224 } 2225 } 2226 2227 Instruction *Inst = nullptr; 2228 2229 /// Points to the head in an instruction bundle (and always to this for 2230 /// single instructions). 2231 ScheduleData *FirstInBundle = nullptr; 2232 2233 /// Single linked list of all instructions in a bundle. Null if it is a 2234 /// single instruction. 2235 ScheduleData *NextInBundle = nullptr; 2236 2237 /// Single linked list of all memory instructions (e.g. load, store, call) 2238 /// in the block - until the end of the scheduling region. 2239 ScheduleData *NextLoadStore = nullptr; 2240 2241 /// The dependent memory instructions. 2242 /// This list is derived on demand in calculateDependencies(). 2243 SmallVector<ScheduleData *, 4> MemoryDependencies; 2244 2245 /// This ScheduleData is in the current scheduling region if this matches 2246 /// the current SchedulingRegionID of BlockScheduling. 2247 int SchedulingRegionID = 0; 2248 2249 /// Used for getting a "good" final ordering of instructions. 2250 int SchedulingPriority = 0; 2251 2252 /// The number of dependencies. Constitutes of the number of users of the 2253 /// instruction plus the number of dependent memory instructions (if any). 2254 /// This value is calculated on demand. 2255 /// If InvalidDeps, the number of dependencies is not calculated yet. 2256 int Dependencies = InvalidDeps; 2257 2258 /// The number of dependencies minus the number of dependencies of scheduled 2259 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2260 /// for scheduling. 2261 /// Note that this is negative as long as Dependencies is not calculated. 2262 int UnscheduledDeps = InvalidDeps; 2263 2264 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2265 /// single instructions. 2266 int UnscheduledDepsInBundle = InvalidDeps; 2267 2268 /// True if this instruction is scheduled (or considered as scheduled in the 2269 /// dry-run). 2270 bool IsScheduled = false; 2271 2272 /// Opcode of the current instruction in the schedule data. 2273 Value *OpValue = nullptr; 2274 2275 /// The TreeEntry that this instruction corresponds to. 2276 TreeEntry *TE = nullptr; 2277 2278 /// The lane of this node in the TreeEntry. 2279 int Lane = -1; 2280 }; 2281 2282 #ifndef NDEBUG 2283 friend inline raw_ostream &operator<<(raw_ostream &os, 2284 const BoUpSLP::ScheduleData &SD) { 2285 SD.dump(os); 2286 return os; 2287 } 2288 #endif 2289 2290 friend struct GraphTraits<BoUpSLP *>; 2291 friend struct DOTGraphTraits<BoUpSLP *>; 2292 2293 /// Contains all scheduling data for a basic block. 2294 struct BlockScheduling { 2295 BlockScheduling(BasicBlock *BB) 2296 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2297 2298 void clear() { 2299 ReadyInsts.clear(); 2300 ScheduleStart = nullptr; 2301 ScheduleEnd = nullptr; 2302 FirstLoadStoreInRegion = nullptr; 2303 LastLoadStoreInRegion = nullptr; 2304 2305 // Reduce the maximum schedule region size by the size of the 2306 // previous scheduling run. 2307 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2308 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2309 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2310 ScheduleRegionSize = 0; 2311 2312 // Make a new scheduling region, i.e. all existing ScheduleData is not 2313 // in the new region yet. 2314 ++SchedulingRegionID; 2315 } 2316 2317 ScheduleData *getScheduleData(Value *V) { 2318 ScheduleData *SD = ScheduleDataMap[V]; 2319 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2320 return SD; 2321 return nullptr; 2322 } 2323 2324 ScheduleData *getScheduleData(Value *V, Value *Key) { 2325 if (V == Key) 2326 return getScheduleData(V); 2327 auto I = ExtraScheduleDataMap.find(V); 2328 if (I != ExtraScheduleDataMap.end()) { 2329 ScheduleData *SD = I->second[Key]; 2330 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2331 return SD; 2332 } 2333 return nullptr; 2334 } 2335 2336 bool isInSchedulingRegion(ScheduleData *SD) const { 2337 return SD->SchedulingRegionID == SchedulingRegionID; 2338 } 2339 2340 /// Marks an instruction as scheduled and puts all dependent ready 2341 /// instructions into the ready-list. 2342 template <typename ReadyListType> 2343 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2344 SD->IsScheduled = true; 2345 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2346 2347 ScheduleData *BundleMember = SD; 2348 while (BundleMember) { 2349 if (BundleMember->Inst != BundleMember->OpValue) { 2350 BundleMember = BundleMember->NextInBundle; 2351 continue; 2352 } 2353 // Handle the def-use chain dependencies. 2354 2355 // Decrement the unscheduled counter and insert to ready list if ready. 2356 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2357 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2358 if (OpDef && OpDef->hasValidDependencies() && 2359 OpDef->incrementUnscheduledDeps(-1) == 0) { 2360 // There are no more unscheduled dependencies after 2361 // decrementing, so we can put the dependent instruction 2362 // into the ready list. 2363 ScheduleData *DepBundle = OpDef->FirstInBundle; 2364 assert(!DepBundle->IsScheduled && 2365 "already scheduled bundle gets ready"); 2366 ReadyList.insert(DepBundle); 2367 LLVM_DEBUG(dbgs() 2368 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2369 } 2370 }); 2371 }; 2372 2373 // If BundleMember is a vector bundle, its operands may have been 2374 // reordered duiring buildTree(). We therefore need to get its operands 2375 // through the TreeEntry. 2376 if (TreeEntry *TE = BundleMember->TE) { 2377 int Lane = BundleMember->Lane; 2378 assert(Lane >= 0 && "Lane not set"); 2379 2380 // Since vectorization tree is being built recursively this assertion 2381 // ensures that the tree entry has all operands set before reaching 2382 // this code. Couple of exceptions known at the moment are extracts 2383 // where their second (immediate) operand is not added. Since 2384 // immediates do not affect scheduler behavior this is considered 2385 // okay. 2386 auto *In = TE->getMainOp(); 2387 assert(In && 2388 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2389 In->getNumOperands() == TE->getNumOperands()) && 2390 "Missed TreeEntry operands?"); 2391 (void)In; // fake use to avoid build failure when assertions disabled 2392 2393 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2394 OpIdx != NumOperands; ++OpIdx) 2395 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2396 DecrUnsched(I); 2397 } else { 2398 // If BundleMember is a stand-alone instruction, no operand reordering 2399 // has taken place, so we directly access its operands. 2400 for (Use &U : BundleMember->Inst->operands()) 2401 if (auto *I = dyn_cast<Instruction>(U.get())) 2402 DecrUnsched(I); 2403 } 2404 // Handle the memory dependencies. 2405 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2406 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2407 // There are no more unscheduled dependencies after decrementing, 2408 // so we can put the dependent instruction into the ready list. 2409 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2410 assert(!DepBundle->IsScheduled && 2411 "already scheduled bundle gets ready"); 2412 ReadyList.insert(DepBundle); 2413 LLVM_DEBUG(dbgs() 2414 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2415 } 2416 } 2417 BundleMember = BundleMember->NextInBundle; 2418 } 2419 } 2420 2421 void doForAllOpcodes(Value *V, 2422 function_ref<void(ScheduleData *SD)> Action) { 2423 if (ScheduleData *SD = getScheduleData(V)) 2424 Action(SD); 2425 auto I = ExtraScheduleDataMap.find(V); 2426 if (I != ExtraScheduleDataMap.end()) 2427 for (auto &P : I->second) 2428 if (P.second->SchedulingRegionID == SchedulingRegionID) 2429 Action(P.second); 2430 } 2431 2432 /// Put all instructions into the ReadyList which are ready for scheduling. 2433 template <typename ReadyListType> 2434 void initialFillReadyList(ReadyListType &ReadyList) { 2435 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2436 doForAllOpcodes(I, [&](ScheduleData *SD) { 2437 if (SD->isSchedulingEntity() && SD->isReady()) { 2438 ReadyList.insert(SD); 2439 LLVM_DEBUG(dbgs() 2440 << "SLP: initially in ready list: " << *I << "\n"); 2441 } 2442 }); 2443 } 2444 } 2445 2446 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2447 /// cyclic dependencies. This is only a dry-run, no instructions are 2448 /// actually moved at this stage. 2449 /// \returns the scheduling bundle. The returned Optional value is non-None 2450 /// if \p VL is allowed to be scheduled. 2451 Optional<ScheduleData *> 2452 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2453 const InstructionsState &S); 2454 2455 /// Un-bundles a group of instructions. 2456 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2457 2458 /// Allocates schedule data chunk. 2459 ScheduleData *allocateScheduleDataChunks(); 2460 2461 /// Extends the scheduling region so that V is inside the region. 2462 /// \returns true if the region size is within the limit. 2463 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2464 2465 /// Initialize the ScheduleData structures for new instructions in the 2466 /// scheduling region. 2467 void initScheduleData(Instruction *FromI, Instruction *ToI, 2468 ScheduleData *PrevLoadStore, 2469 ScheduleData *NextLoadStore); 2470 2471 /// Updates the dependency information of a bundle and of all instructions/ 2472 /// bundles which depend on the original bundle. 2473 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2474 BoUpSLP *SLP); 2475 2476 /// Sets all instruction in the scheduling region to un-scheduled. 2477 void resetSchedule(); 2478 2479 BasicBlock *BB; 2480 2481 /// Simple memory allocation for ScheduleData. 2482 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2483 2484 /// The size of a ScheduleData array in ScheduleDataChunks. 2485 int ChunkSize; 2486 2487 /// The allocator position in the current chunk, which is the last entry 2488 /// of ScheduleDataChunks. 2489 int ChunkPos; 2490 2491 /// Attaches ScheduleData to Instruction. 2492 /// Note that the mapping survives during all vectorization iterations, i.e. 2493 /// ScheduleData structures are recycled. 2494 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2495 2496 /// Attaches ScheduleData to Instruction with the leading key. 2497 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2498 ExtraScheduleDataMap; 2499 2500 struct ReadyList : SmallVector<ScheduleData *, 8> { 2501 void insert(ScheduleData *SD) { push_back(SD); } 2502 }; 2503 2504 /// The ready-list for scheduling (only used for the dry-run). 2505 ReadyList ReadyInsts; 2506 2507 /// The first instruction of the scheduling region. 2508 Instruction *ScheduleStart = nullptr; 2509 2510 /// The first instruction _after_ the scheduling region. 2511 Instruction *ScheduleEnd = nullptr; 2512 2513 /// The first memory accessing instruction in the scheduling region 2514 /// (can be null). 2515 ScheduleData *FirstLoadStoreInRegion = nullptr; 2516 2517 /// The last memory accessing instruction in the scheduling region 2518 /// (can be null). 2519 ScheduleData *LastLoadStoreInRegion = nullptr; 2520 2521 /// The current size of the scheduling region. 2522 int ScheduleRegionSize = 0; 2523 2524 /// The maximum size allowed for the scheduling region. 2525 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2526 2527 /// The ID of the scheduling region. For a new vectorization iteration this 2528 /// is incremented which "removes" all ScheduleData from the region. 2529 // Make sure that the initial SchedulingRegionID is greater than the 2530 // initial SchedulingRegionID in ScheduleData (which is 0). 2531 int SchedulingRegionID = 1; 2532 }; 2533 2534 /// Attaches the BlockScheduling structures to basic blocks. 2535 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2536 2537 /// Performs the "real" scheduling. Done before vectorization is actually 2538 /// performed in a basic block. 2539 void scheduleBlock(BlockScheduling *BS); 2540 2541 /// List of users to ignore during scheduling and that don't need extracting. 2542 ArrayRef<Value *> UserIgnoreList; 2543 2544 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2545 /// sorted SmallVectors of unsigned. 2546 struct OrdersTypeDenseMapInfo { 2547 static OrdersType getEmptyKey() { 2548 OrdersType V; 2549 V.push_back(~1U); 2550 return V; 2551 } 2552 2553 static OrdersType getTombstoneKey() { 2554 OrdersType V; 2555 V.push_back(~2U); 2556 return V; 2557 } 2558 2559 static unsigned getHashValue(const OrdersType &V) { 2560 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2561 } 2562 2563 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2564 return LHS == RHS; 2565 } 2566 }; 2567 2568 // Analysis and block reference. 2569 Function *F; 2570 ScalarEvolution *SE; 2571 TargetTransformInfo *TTI; 2572 TargetLibraryInfo *TLI; 2573 AAResults *AA; 2574 LoopInfo *LI; 2575 DominatorTree *DT; 2576 AssumptionCache *AC; 2577 DemandedBits *DB; 2578 const DataLayout *DL; 2579 OptimizationRemarkEmitter *ORE; 2580 2581 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2582 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2583 2584 /// Instruction builder to construct the vectorized tree. 2585 IRBuilder<> Builder; 2586 2587 /// A map of scalar integer values to the smallest bit width with which they 2588 /// can legally be represented. The values map to (width, signed) pairs, 2589 /// where "width" indicates the minimum bit width and "signed" is True if the 2590 /// value must be signed-extended, rather than zero-extended, back to its 2591 /// original width. 2592 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2593 }; 2594 2595 } // end namespace slpvectorizer 2596 2597 template <> struct GraphTraits<BoUpSLP *> { 2598 using TreeEntry = BoUpSLP::TreeEntry; 2599 2600 /// NodeRef has to be a pointer per the GraphWriter. 2601 using NodeRef = TreeEntry *; 2602 2603 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2604 2605 /// Add the VectorizableTree to the index iterator to be able to return 2606 /// TreeEntry pointers. 2607 struct ChildIteratorType 2608 : public iterator_adaptor_base< 2609 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2610 ContainerTy &VectorizableTree; 2611 2612 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2613 ContainerTy &VT) 2614 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2615 2616 NodeRef operator*() { return I->UserTE; } 2617 }; 2618 2619 static NodeRef getEntryNode(BoUpSLP &R) { 2620 return R.VectorizableTree[0].get(); 2621 } 2622 2623 static ChildIteratorType child_begin(NodeRef N) { 2624 return {N->UserTreeIndices.begin(), N->Container}; 2625 } 2626 2627 static ChildIteratorType child_end(NodeRef N) { 2628 return {N->UserTreeIndices.end(), N->Container}; 2629 } 2630 2631 /// For the node iterator we just need to turn the TreeEntry iterator into a 2632 /// TreeEntry* iterator so that it dereferences to NodeRef. 2633 class nodes_iterator { 2634 using ItTy = ContainerTy::iterator; 2635 ItTy It; 2636 2637 public: 2638 nodes_iterator(const ItTy &It2) : It(It2) {} 2639 NodeRef operator*() { return It->get(); } 2640 nodes_iterator operator++() { 2641 ++It; 2642 return *this; 2643 } 2644 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2645 }; 2646 2647 static nodes_iterator nodes_begin(BoUpSLP *R) { 2648 return nodes_iterator(R->VectorizableTree.begin()); 2649 } 2650 2651 static nodes_iterator nodes_end(BoUpSLP *R) { 2652 return nodes_iterator(R->VectorizableTree.end()); 2653 } 2654 2655 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2656 }; 2657 2658 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2659 using TreeEntry = BoUpSLP::TreeEntry; 2660 2661 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2662 2663 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2664 std::string Str; 2665 raw_string_ostream OS(Str); 2666 if (isSplat(Entry->Scalars)) 2667 OS << "<splat> "; 2668 for (auto V : Entry->Scalars) { 2669 OS << *V; 2670 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2671 return EU.Scalar == V; 2672 })) 2673 OS << " <extract>"; 2674 OS << "\n"; 2675 } 2676 return Str; 2677 } 2678 2679 static std::string getNodeAttributes(const TreeEntry *Entry, 2680 const BoUpSLP *) { 2681 if (Entry->State == TreeEntry::NeedToGather) 2682 return "color=red"; 2683 return ""; 2684 } 2685 }; 2686 2687 } // end namespace llvm 2688 2689 BoUpSLP::~BoUpSLP() { 2690 for (const auto &Pair : DeletedInstructions) { 2691 // Replace operands of ignored instructions with Undefs in case if they were 2692 // marked for deletion. 2693 if (Pair.getSecond()) { 2694 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2695 Pair.getFirst()->replaceAllUsesWith(Undef); 2696 } 2697 Pair.getFirst()->dropAllReferences(); 2698 } 2699 for (const auto &Pair : DeletedInstructions) { 2700 assert(Pair.getFirst()->use_empty() && 2701 "trying to erase instruction with users."); 2702 Pair.getFirst()->eraseFromParent(); 2703 } 2704 #ifdef EXPENSIVE_CHECKS 2705 // If we could guarantee that this call is not extremely slow, we could 2706 // remove the ifdef limitation (see PR47712). 2707 assert(!verifyFunction(*F, &dbgs())); 2708 #endif 2709 } 2710 2711 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2712 for (auto *V : AV) { 2713 if (auto *I = dyn_cast<Instruction>(V)) 2714 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2715 }; 2716 } 2717 2718 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2719 /// contains original mask for the scalars reused in the node. Procedure 2720 /// transform this mask in accordance with the given \p Mask. 2721 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2722 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2723 "Expected non-empty mask."); 2724 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2725 Prev.swap(Reuses); 2726 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2727 if (Mask[I] != UndefMaskElem) 2728 Reuses[Mask[I]] = Prev[I]; 2729 } 2730 2731 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2732 /// the original order of the scalars. Procedure transforms the provided order 2733 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2734 /// identity order, \p Order is cleared. 2735 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2736 assert(!Mask.empty() && "Expected non-empty mask."); 2737 SmallVector<int> MaskOrder; 2738 if (Order.empty()) { 2739 MaskOrder.resize(Mask.size()); 2740 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2741 } else { 2742 inversePermutation(Order, MaskOrder); 2743 } 2744 reorderReuses(MaskOrder, Mask); 2745 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2746 Order.clear(); 2747 return; 2748 } 2749 Order.assign(Mask.size(), Mask.size()); 2750 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2751 if (MaskOrder[I] != UndefMaskElem) 2752 Order[MaskOrder[I]] = I; 2753 fixupOrderingIndices(Order); 2754 } 2755 2756 Optional<BoUpSLP::OrdersType> 2757 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2758 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2759 unsigned NumScalars = TE.Scalars.size(); 2760 OrdersType CurrentOrder(NumScalars, NumScalars); 2761 SmallVector<int> Positions; 2762 SmallBitVector UsedPositions(NumScalars); 2763 const TreeEntry *STE = nullptr; 2764 // Try to find all gathered scalars that are gets vectorized in other 2765 // vectorize node. Here we can have only one single tree vector node to 2766 // correctly identify order of the gathered scalars. 2767 for (unsigned I = 0; I < NumScalars; ++I) { 2768 Value *V = TE.Scalars[I]; 2769 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2770 continue; 2771 if (const auto *LocalSTE = getTreeEntry(V)) { 2772 if (!STE) 2773 STE = LocalSTE; 2774 else if (STE != LocalSTE) 2775 // Take the order only from the single vector node. 2776 return None; 2777 unsigned Lane = 2778 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2779 if (Lane >= NumScalars) 2780 return None; 2781 if (CurrentOrder[Lane] != NumScalars) { 2782 if (Lane != I) 2783 continue; 2784 UsedPositions.reset(CurrentOrder[Lane]); 2785 } 2786 // The partial identity (where only some elements of the gather node are 2787 // in the identity order) is good. 2788 CurrentOrder[Lane] = I; 2789 UsedPositions.set(I); 2790 } 2791 } 2792 // Need to keep the order if we have a vector entry and at least 2 scalars or 2793 // the vectorized entry has just 2 scalars. 2794 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2795 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2796 for (unsigned I = 0; I < NumScalars; ++I) 2797 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2798 return false; 2799 return true; 2800 }; 2801 if (IsIdentityOrder(CurrentOrder)) { 2802 CurrentOrder.clear(); 2803 return CurrentOrder; 2804 } 2805 auto *It = CurrentOrder.begin(); 2806 for (unsigned I = 0; I < NumScalars;) { 2807 if (UsedPositions.test(I)) { 2808 ++I; 2809 continue; 2810 } 2811 if (*It == NumScalars) { 2812 *It = I; 2813 ++I; 2814 } 2815 ++It; 2816 } 2817 return CurrentOrder; 2818 } 2819 return None; 2820 } 2821 2822 void BoUpSLP::reorderTopToBottom() { 2823 // Maps VF to the graph nodes. 2824 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2825 // ExtractElement gather nodes which can be vectorized and need to handle 2826 // their ordering. 2827 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2828 // Find all reorderable nodes with the given VF. 2829 // Currently the are vectorized loads,extracts + some gathering of extracts. 2830 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2831 const std::unique_ptr<TreeEntry> &TE) { 2832 // No need to reorder if need to shuffle reuses, still need to shuffle the 2833 // node. 2834 if (!TE->ReuseShuffleIndices.empty()) 2835 return; 2836 if (TE->State == TreeEntry::Vectorize && 2837 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2838 InsertElementInst>(TE->getMainOp()) && 2839 !TE->isAltShuffle()) { 2840 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2841 return; 2842 } 2843 if (TE->State == TreeEntry::NeedToGather) { 2844 if (TE->getOpcode() == Instruction::ExtractElement && 2845 !TE->isAltShuffle() && 2846 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2847 ->getVectorOperandType()) && 2848 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2849 // Check that gather of extractelements can be represented as 2850 // just a shuffle of a single vector. 2851 OrdersType CurrentOrder; 2852 bool Reuse = 2853 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2854 if (Reuse || !CurrentOrder.empty()) { 2855 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2856 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2857 return; 2858 } 2859 } 2860 if (Optional<OrdersType> CurrentOrder = 2861 findReusedOrderedScalars(*TE.get())) { 2862 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2863 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2864 } 2865 } 2866 }); 2867 2868 // Reorder the graph nodes according to their vectorization factor. 2869 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2870 VF /= 2) { 2871 auto It = VFToOrderedEntries.find(VF); 2872 if (It == VFToOrderedEntries.end()) 2873 continue; 2874 // Try to find the most profitable order. We just are looking for the most 2875 // used order and reorder scalar elements in the nodes according to this 2876 // mostly used order. 2877 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2878 // All operands are reordered and used only in this node - propagate the 2879 // most used order to the user node. 2880 MapVector<OrdersType, unsigned, 2881 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2882 OrdersUses; 2883 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2884 for (const TreeEntry *OpTE : OrderedEntries) { 2885 // No need to reorder this nodes, still need to extend and to use shuffle, 2886 // just need to merge reordering shuffle and the reuse shuffle. 2887 if (!OpTE->ReuseShuffleIndices.empty()) 2888 continue; 2889 // Count number of orders uses. 2890 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2891 if (OpTE->State == TreeEntry::NeedToGather) 2892 return GathersToOrders.find(OpTE)->second; 2893 return OpTE->ReorderIndices; 2894 }(); 2895 // Stores actually store the mask, not the order, need to invert. 2896 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2897 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2898 SmallVector<int> Mask; 2899 inversePermutation(Order, Mask); 2900 unsigned E = Order.size(); 2901 OrdersType CurrentOrder(E, E); 2902 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2903 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2904 }); 2905 fixupOrderingIndices(CurrentOrder); 2906 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2907 } else { 2908 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2909 } 2910 } 2911 // Set order of the user node. 2912 if (OrdersUses.empty()) 2913 continue; 2914 // Choose the most used order. 2915 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2916 unsigned Cnt = OrdersUses.front().second; 2917 for (const auto &Pair : drop_begin(OrdersUses)) { 2918 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2919 BestOrder = Pair.first; 2920 Cnt = Pair.second; 2921 } 2922 } 2923 // Set order of the user node. 2924 if (BestOrder.empty()) 2925 continue; 2926 SmallVector<int> Mask; 2927 inversePermutation(BestOrder, Mask); 2928 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2929 unsigned E = BestOrder.size(); 2930 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2931 return I < E ? static_cast<int>(I) : UndefMaskElem; 2932 }); 2933 // Do an actual reordering, if profitable. 2934 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2935 // Just do the reordering for the nodes with the given VF. 2936 if (TE->Scalars.size() != VF) { 2937 if (TE->ReuseShuffleIndices.size() == VF) { 2938 // Need to reorder the reuses masks of the operands with smaller VF to 2939 // be able to find the match between the graph nodes and scalar 2940 // operands of the given node during vectorization/cost estimation. 2941 assert(all_of(TE->UserTreeIndices, 2942 [VF, &TE](const EdgeInfo &EI) { 2943 return EI.UserTE->Scalars.size() == VF || 2944 EI.UserTE->Scalars.size() == 2945 TE->Scalars.size(); 2946 }) && 2947 "All users must be of VF size."); 2948 // Update ordering of the operands with the smaller VF than the given 2949 // one. 2950 reorderReuses(TE->ReuseShuffleIndices, Mask); 2951 } 2952 continue; 2953 } 2954 if (TE->State == TreeEntry::Vectorize && 2955 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2956 InsertElementInst>(TE->getMainOp()) && 2957 !TE->isAltShuffle()) { 2958 // Build correct orders for extract{element,value}, loads and 2959 // stores. 2960 reorderOrder(TE->ReorderIndices, Mask); 2961 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2962 TE->reorderOperands(Mask); 2963 } else { 2964 // Reorder the node and its operands. 2965 TE->reorderOperands(Mask); 2966 assert(TE->ReorderIndices.empty() && 2967 "Expected empty reorder sequence."); 2968 reorderScalars(TE->Scalars, Mask); 2969 } 2970 if (!TE->ReuseShuffleIndices.empty()) { 2971 // Apply reversed order to keep the original ordering of the reused 2972 // elements to avoid extra reorder indices shuffling. 2973 OrdersType CurrentOrder; 2974 reorderOrder(CurrentOrder, MaskOrder); 2975 SmallVector<int> NewReuses; 2976 inversePermutation(CurrentOrder, NewReuses); 2977 addMask(NewReuses, TE->ReuseShuffleIndices); 2978 TE->ReuseShuffleIndices.swap(NewReuses); 2979 } 2980 } 2981 } 2982 } 2983 2984 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2985 SetVector<TreeEntry *> OrderedEntries; 2986 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2987 // Find all reorderable leaf nodes with the given VF. 2988 // Currently the are vectorized loads,extracts without alternate operands + 2989 // some gathering of extracts. 2990 SmallVector<TreeEntry *> NonVectorized; 2991 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2992 &NonVectorized]( 2993 const std::unique_ptr<TreeEntry> &TE) { 2994 if (TE->State != TreeEntry::Vectorize) 2995 NonVectorized.push_back(TE.get()); 2996 // No need to reorder if need to shuffle reuses, still need to shuffle the 2997 // node. 2998 if (!TE->ReuseShuffleIndices.empty()) 2999 return; 3000 if (TE->State == TreeEntry::Vectorize && 3001 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 3002 !TE->isAltShuffle()) { 3003 OrderedEntries.insert(TE.get()); 3004 return; 3005 } 3006 if (TE->State == TreeEntry::NeedToGather) { 3007 if (TE->getOpcode() == Instruction::ExtractElement && 3008 !TE->isAltShuffle() && 3009 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 3010 ->getVectorOperandType()) && 3011 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 3012 // Check that gather of extractelements can be represented as 3013 // just a shuffle of a single vector with a single user only. 3014 OrdersType CurrentOrder; 3015 bool Reuse = 3016 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 3017 if ((Reuse || !CurrentOrder.empty()) && 3018 !any_of(VectorizableTree, 3019 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 3020 return Entry->State == TreeEntry::NeedToGather && 3021 Entry.get() != TE.get() && 3022 Entry->isSame(TE->Scalars); 3023 })) { 3024 OrderedEntries.insert(TE.get()); 3025 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 3026 return; 3027 } 3028 } 3029 if (Optional<OrdersType> CurrentOrder = 3030 findReusedOrderedScalars(*TE.get())) { 3031 OrderedEntries.insert(TE.get()); 3032 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3033 } 3034 } 3035 }); 3036 3037 // Checks if the operands of the users are reordarable and have only single 3038 // use. 3039 auto &&CheckOperands = 3040 [this, &NonVectorized](const auto &Data, 3041 SmallVectorImpl<TreeEntry *> &GatherOps) { 3042 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3043 if (any_of(Data.second, 3044 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3045 return OpData.first == I && 3046 OpData.second->State == TreeEntry::Vectorize; 3047 })) 3048 continue; 3049 ArrayRef<Value *> VL = Data.first->getOperand(I); 3050 const TreeEntry *TE = nullptr; 3051 const auto *It = find_if(VL, [this, &TE](Value *V) { 3052 TE = getTreeEntry(V); 3053 return TE; 3054 }); 3055 if (It != VL.end() && TE->isSame(VL)) 3056 return false; 3057 TreeEntry *Gather = nullptr; 3058 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3059 assert(TE->State != TreeEntry::Vectorize && 3060 "Only non-vectorized nodes are expected."); 3061 if (TE->isSame(VL)) { 3062 Gather = TE; 3063 return true; 3064 } 3065 return false; 3066 }) > 1) 3067 return false; 3068 if (Gather) 3069 GatherOps.push_back(Gather); 3070 } 3071 return true; 3072 }; 3073 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3074 // I.e., if the node has operands, that are reordered, try to make at least 3075 // one operand order in the natural order and reorder others + reorder the 3076 // user node itself. 3077 SmallPtrSet<const TreeEntry *, 4> Visited; 3078 while (!OrderedEntries.empty()) { 3079 // 1. Filter out only reordered nodes. 3080 // 2. If the entry has multiple uses - skip it and jump to the next node. 3081 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3082 SmallVector<TreeEntry *> Filtered; 3083 for (TreeEntry *TE : OrderedEntries) { 3084 if (!(TE->State == TreeEntry::Vectorize || 3085 (TE->State == TreeEntry::NeedToGather && 3086 GathersToOrders.count(TE))) || 3087 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3088 !all_of(drop_begin(TE->UserTreeIndices), 3089 [TE](const EdgeInfo &EI) { 3090 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3091 }) || 3092 !Visited.insert(TE).second) { 3093 Filtered.push_back(TE); 3094 continue; 3095 } 3096 // Build a map between user nodes and their operands order to speedup 3097 // search. The graph currently does not provide this dependency directly. 3098 for (EdgeInfo &EI : TE->UserTreeIndices) { 3099 TreeEntry *UserTE = EI.UserTE; 3100 auto It = Users.find(UserTE); 3101 if (It == Users.end()) 3102 It = Users.insert({UserTE, {}}).first; 3103 It->second.emplace_back(EI.EdgeIdx, TE); 3104 } 3105 } 3106 // Erase filtered entries. 3107 for_each(Filtered, 3108 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3109 for (const auto &Data : Users) { 3110 // Check that operands are used only in the User node. 3111 SmallVector<TreeEntry *> GatherOps; 3112 if (!CheckOperands(Data, GatherOps)) { 3113 for_each(Data.second, 3114 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3115 OrderedEntries.remove(Op.second); 3116 }); 3117 continue; 3118 } 3119 // All operands are reordered and used only in this node - propagate the 3120 // most used order to the user node. 3121 MapVector<OrdersType, unsigned, 3122 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3123 OrdersUses; 3124 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3125 for (const auto &Op : Data.second) { 3126 TreeEntry *OpTE = Op.second; 3127 if (!OpTE->ReuseShuffleIndices.empty() || 3128 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3129 continue; 3130 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3131 if (OpTE->State == TreeEntry::NeedToGather) 3132 return GathersToOrders.find(OpTE)->second; 3133 return OpTE->ReorderIndices; 3134 }(); 3135 // Stores actually store the mask, not the order, need to invert. 3136 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3137 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3138 SmallVector<int> Mask; 3139 inversePermutation(Order, Mask); 3140 unsigned E = Order.size(); 3141 OrdersType CurrentOrder(E, E); 3142 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3143 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3144 }); 3145 fixupOrderingIndices(CurrentOrder); 3146 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3147 } else { 3148 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3149 } 3150 if (VisitedOps.insert(OpTE).second) 3151 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3152 OpTE->UserTreeIndices.size(); 3153 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3154 --OrdersUses[{}]; 3155 } 3156 // If no orders - skip current nodes and jump to the next one, if any. 3157 if (OrdersUses.empty()) { 3158 for_each(Data.second, 3159 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3160 OrderedEntries.remove(Op.second); 3161 }); 3162 continue; 3163 } 3164 // Choose the best order. 3165 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3166 unsigned Cnt = OrdersUses.front().second; 3167 for (const auto &Pair : drop_begin(OrdersUses)) { 3168 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3169 BestOrder = Pair.first; 3170 Cnt = Pair.second; 3171 } 3172 } 3173 // Set order of the user node (reordering of operands and user nodes). 3174 if (BestOrder.empty()) { 3175 for_each(Data.second, 3176 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3177 OrderedEntries.remove(Op.second); 3178 }); 3179 continue; 3180 } 3181 // Erase operands from OrderedEntries list and adjust their orders. 3182 VisitedOps.clear(); 3183 SmallVector<int> Mask; 3184 inversePermutation(BestOrder, Mask); 3185 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3186 unsigned E = BestOrder.size(); 3187 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3188 return I < E ? static_cast<int>(I) : UndefMaskElem; 3189 }); 3190 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3191 TreeEntry *TE = Op.second; 3192 OrderedEntries.remove(TE); 3193 if (!VisitedOps.insert(TE).second) 3194 continue; 3195 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3196 // Just reorder reuses indices. 3197 reorderReuses(TE->ReuseShuffleIndices, Mask); 3198 continue; 3199 } 3200 // Gathers are processed separately. 3201 if (TE->State != TreeEntry::Vectorize) 3202 continue; 3203 assert((BestOrder.size() == TE->ReorderIndices.size() || 3204 TE->ReorderIndices.empty()) && 3205 "Non-matching sizes of user/operand entries."); 3206 reorderOrder(TE->ReorderIndices, Mask); 3207 } 3208 // For gathers just need to reorder its scalars. 3209 for (TreeEntry *Gather : GatherOps) { 3210 assert(Gather->ReorderIndices.empty() && 3211 "Unexpected reordering of gathers."); 3212 if (!Gather->ReuseShuffleIndices.empty()) { 3213 // Just reorder reuses indices. 3214 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3215 continue; 3216 } 3217 reorderScalars(Gather->Scalars, Mask); 3218 OrderedEntries.remove(Gather); 3219 } 3220 // Reorder operands of the user node and set the ordering for the user 3221 // node itself. 3222 if (Data.first->State != TreeEntry::Vectorize || 3223 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3224 Data.first->getMainOp()) || 3225 Data.first->isAltShuffle()) 3226 Data.first->reorderOperands(Mask); 3227 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3228 Data.first->isAltShuffle()) { 3229 reorderScalars(Data.first->Scalars, Mask); 3230 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3231 if (Data.first->ReuseShuffleIndices.empty() && 3232 !Data.first->ReorderIndices.empty() && 3233 !Data.first->isAltShuffle()) { 3234 // Insert user node to the list to try to sink reordering deeper in 3235 // the graph. 3236 OrderedEntries.insert(Data.first); 3237 } 3238 } else { 3239 reorderOrder(Data.first->ReorderIndices, Mask); 3240 } 3241 } 3242 } 3243 // If the reordering is unnecessary, just remove the reorder. 3244 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3245 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3246 VectorizableTree.front()->ReorderIndices.clear(); 3247 } 3248 3249 void BoUpSLP::buildExternalUses( 3250 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3251 // Collect the values that we need to extract from the tree. 3252 for (auto &TEPtr : VectorizableTree) { 3253 TreeEntry *Entry = TEPtr.get(); 3254 3255 // No need to handle users of gathered values. 3256 if (Entry->State == TreeEntry::NeedToGather) 3257 continue; 3258 3259 // For each lane: 3260 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3261 Value *Scalar = Entry->Scalars[Lane]; 3262 int FoundLane = Entry->findLaneForValue(Scalar); 3263 3264 // Check if the scalar is externally used as an extra arg. 3265 auto ExtI = ExternallyUsedValues.find(Scalar); 3266 if (ExtI != ExternallyUsedValues.end()) { 3267 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3268 << Lane << " from " << *Scalar << ".\n"); 3269 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3270 } 3271 for (User *U : Scalar->users()) { 3272 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3273 3274 Instruction *UserInst = dyn_cast<Instruction>(U); 3275 if (!UserInst) 3276 continue; 3277 3278 if (isDeleted(UserInst)) 3279 continue; 3280 3281 // Skip in-tree scalars that become vectors 3282 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3283 Value *UseScalar = UseEntry->Scalars[0]; 3284 // Some in-tree scalars will remain as scalar in vectorized 3285 // instructions. If that is the case, the one in Lane 0 will 3286 // be used. 3287 if (UseScalar != U || 3288 UseEntry->State == TreeEntry::ScatterVectorize || 3289 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3290 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3291 << ".\n"); 3292 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3293 continue; 3294 } 3295 } 3296 3297 // Ignore users in the user ignore list. 3298 if (is_contained(UserIgnoreList, UserInst)) 3299 continue; 3300 3301 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3302 << Lane << " from " << *Scalar << ".\n"); 3303 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3304 } 3305 } 3306 } 3307 } 3308 3309 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3310 ArrayRef<Value *> UserIgnoreLst) { 3311 deleteTree(); 3312 UserIgnoreList = UserIgnoreLst; 3313 if (!allSameType(Roots)) 3314 return; 3315 buildTree_rec(Roots, 0, EdgeInfo()); 3316 } 3317 3318 namespace { 3319 /// Tracks the state we can represent the loads in the given sequence. 3320 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3321 } // anonymous namespace 3322 3323 /// Checks if the given array of loads can be represented as a vectorized, 3324 /// scatter or just simple gather. 3325 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3326 const TargetTransformInfo &TTI, 3327 const DataLayout &DL, ScalarEvolution &SE, 3328 SmallVectorImpl<unsigned> &Order, 3329 SmallVectorImpl<Value *> &PointerOps) { 3330 // Check that a vectorized load would load the same memory as a scalar 3331 // load. For example, we don't want to vectorize loads that are smaller 3332 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3333 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3334 // from such a struct, we read/write packed bits disagreeing with the 3335 // unvectorized version. 3336 Type *ScalarTy = VL0->getType(); 3337 3338 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3339 return LoadsState::Gather; 3340 3341 // Make sure all loads in the bundle are simple - we can't vectorize 3342 // atomic or volatile loads. 3343 PointerOps.clear(); 3344 PointerOps.resize(VL.size()); 3345 auto *POIter = PointerOps.begin(); 3346 for (Value *V : VL) { 3347 auto *L = cast<LoadInst>(V); 3348 if (!L->isSimple()) 3349 return LoadsState::Gather; 3350 *POIter = L->getPointerOperand(); 3351 ++POIter; 3352 } 3353 3354 Order.clear(); 3355 // Check the order of pointer operands. 3356 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3357 Value *Ptr0; 3358 Value *PtrN; 3359 if (Order.empty()) { 3360 Ptr0 = PointerOps.front(); 3361 PtrN = PointerOps.back(); 3362 } else { 3363 Ptr0 = PointerOps[Order.front()]; 3364 PtrN = PointerOps[Order.back()]; 3365 } 3366 Optional<int> Diff = 3367 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3368 // Check that the sorted loads are consecutive. 3369 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3370 return LoadsState::Vectorize; 3371 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3372 for (Value *V : VL) 3373 CommonAlignment = 3374 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3375 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3376 CommonAlignment)) 3377 return LoadsState::ScatterVectorize; 3378 } 3379 3380 return LoadsState::Gather; 3381 } 3382 3383 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3384 const EdgeInfo &UserTreeIdx) { 3385 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3386 3387 SmallVector<int> ReuseShuffleIndicies; 3388 SmallVector<Value *> UniqueValues; 3389 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3390 &UserTreeIdx, 3391 this](const InstructionsState &S) { 3392 // Check that every instruction appears once in this bundle. 3393 DenseMap<Value *, unsigned> UniquePositions; 3394 for (Value *V : VL) { 3395 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3396 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3397 : Res.first->second); 3398 if (Res.second) 3399 UniqueValues.emplace_back(V); 3400 } 3401 size_t NumUniqueScalarValues = UniqueValues.size(); 3402 if (NumUniqueScalarValues == VL.size()) { 3403 ReuseShuffleIndicies.clear(); 3404 } else { 3405 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3406 if (NumUniqueScalarValues <= 1 || 3407 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3408 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3409 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3410 return false; 3411 } 3412 VL = UniqueValues; 3413 } 3414 return true; 3415 }; 3416 3417 InstructionsState S = getSameOpcode(VL); 3418 if (Depth == RecursionMaxDepth) { 3419 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3420 if (TryToFindDuplicates(S)) 3421 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3422 ReuseShuffleIndicies); 3423 return; 3424 } 3425 3426 // Don't handle scalable vectors 3427 if (S.getOpcode() == Instruction::ExtractElement && 3428 isa<ScalableVectorType>( 3429 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3430 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3431 if (TryToFindDuplicates(S)) 3432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3433 ReuseShuffleIndicies); 3434 return; 3435 } 3436 3437 // Don't handle vectors. 3438 if (S.OpValue->getType()->isVectorTy() && 3439 !isa<InsertElementInst>(S.OpValue)) { 3440 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3441 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3442 return; 3443 } 3444 3445 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3446 if (SI->getValueOperand()->getType()->isVectorTy()) { 3447 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3448 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3449 return; 3450 } 3451 3452 // If all of the operands are identical or constant we have a simple solution. 3453 // If we deal with insert/extract instructions, they all must have constant 3454 // indices, otherwise we should gather them, not try to vectorize. 3455 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3456 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3457 !all_of(VL, isVectorLikeInstWithConstOps))) { 3458 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3459 if (TryToFindDuplicates(S)) 3460 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3461 ReuseShuffleIndicies); 3462 return; 3463 } 3464 3465 // We now know that this is a vector of instructions of the same type from 3466 // the same block. 3467 3468 // Don't vectorize ephemeral values. 3469 for (Value *V : VL) { 3470 if (EphValues.count(V)) { 3471 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3472 << ") is ephemeral.\n"); 3473 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3474 return; 3475 } 3476 } 3477 3478 // Check if this is a duplicate of another entry. 3479 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3480 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3481 if (!E->isSame(VL)) { 3482 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3483 if (TryToFindDuplicates(S)) 3484 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3485 ReuseShuffleIndicies); 3486 return; 3487 } 3488 // Record the reuse of the tree node. FIXME, currently this is only used to 3489 // properly draw the graph rather than for the actual vectorization. 3490 E->UserTreeIndices.push_back(UserTreeIdx); 3491 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3492 << ".\n"); 3493 return; 3494 } 3495 3496 // Check that none of the instructions in the bundle are already in the tree. 3497 for (Value *V : VL) { 3498 auto *I = dyn_cast<Instruction>(V); 3499 if (!I) 3500 continue; 3501 if (getTreeEntry(I)) { 3502 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3503 << ") is already in tree.\n"); 3504 if (TryToFindDuplicates(S)) 3505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3506 ReuseShuffleIndicies); 3507 return; 3508 } 3509 } 3510 3511 // If any of the scalars is marked as a value that needs to stay scalar, then 3512 // we need to gather the scalars. 3513 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3514 for (Value *V : VL) { 3515 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3516 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3517 if (TryToFindDuplicates(S)) 3518 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3519 ReuseShuffleIndicies); 3520 return; 3521 } 3522 } 3523 3524 // Check that all of the users of the scalars that we want to vectorize are 3525 // schedulable. 3526 auto *VL0 = cast<Instruction>(S.OpValue); 3527 BasicBlock *BB = VL0->getParent(); 3528 3529 if (!DT->isReachableFromEntry(BB)) { 3530 // Don't go into unreachable blocks. They may contain instructions with 3531 // dependency cycles which confuse the final scheduling. 3532 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3534 return; 3535 } 3536 3537 // Check that every instruction appears once in this bundle. 3538 if (!TryToFindDuplicates(S)) 3539 return; 3540 3541 auto &BSRef = BlocksSchedules[BB]; 3542 if (!BSRef) 3543 BSRef = std::make_unique<BlockScheduling>(BB); 3544 3545 BlockScheduling &BS = *BSRef.get(); 3546 3547 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3548 if (!Bundle) { 3549 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3550 assert((!BS.getScheduleData(VL0) || 3551 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3552 "tryScheduleBundle should cancelScheduling on failure"); 3553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3554 ReuseShuffleIndicies); 3555 return; 3556 } 3557 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3558 3559 unsigned ShuffleOrOp = S.isAltShuffle() ? 3560 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3561 switch (ShuffleOrOp) { 3562 case Instruction::PHI: { 3563 auto *PH = cast<PHINode>(VL0); 3564 3565 // Check for terminator values (e.g. invoke). 3566 for (Value *V : VL) 3567 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3568 Instruction *Term = dyn_cast<Instruction>( 3569 cast<PHINode>(V)->getIncomingValueForBlock( 3570 PH->getIncomingBlock(I))); 3571 if (Term && Term->isTerminator()) { 3572 LLVM_DEBUG(dbgs() 3573 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3574 BS.cancelScheduling(VL, VL0); 3575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3576 ReuseShuffleIndicies); 3577 return; 3578 } 3579 } 3580 3581 TreeEntry *TE = 3582 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3583 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3584 3585 // Keeps the reordered operands to avoid code duplication. 3586 SmallVector<ValueList, 2> OperandsVec; 3587 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3588 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3589 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3590 TE->setOperand(I, Operands); 3591 OperandsVec.push_back(Operands); 3592 continue; 3593 } 3594 ValueList Operands; 3595 // Prepare the operand vector. 3596 for (Value *V : VL) 3597 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3598 PH->getIncomingBlock(I))); 3599 TE->setOperand(I, Operands); 3600 OperandsVec.push_back(Operands); 3601 } 3602 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3603 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3604 return; 3605 } 3606 case Instruction::ExtractValue: 3607 case Instruction::ExtractElement: { 3608 OrdersType CurrentOrder; 3609 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3610 if (Reuse) { 3611 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3612 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3613 ReuseShuffleIndicies); 3614 // This is a special case, as it does not gather, but at the same time 3615 // we are not extending buildTree_rec() towards the operands. 3616 ValueList Op0; 3617 Op0.assign(VL.size(), VL0->getOperand(0)); 3618 VectorizableTree.back()->setOperand(0, Op0); 3619 return; 3620 } 3621 if (!CurrentOrder.empty()) { 3622 LLVM_DEBUG({ 3623 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3624 "with order"; 3625 for (unsigned Idx : CurrentOrder) 3626 dbgs() << " " << Idx; 3627 dbgs() << "\n"; 3628 }); 3629 fixupOrderingIndices(CurrentOrder); 3630 // Insert new order with initial value 0, if it does not exist, 3631 // otherwise return the iterator to the existing one. 3632 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3633 ReuseShuffleIndicies, CurrentOrder); 3634 // This is a special case, as it does not gather, but at the same time 3635 // we are not extending buildTree_rec() towards the operands. 3636 ValueList Op0; 3637 Op0.assign(VL.size(), VL0->getOperand(0)); 3638 VectorizableTree.back()->setOperand(0, Op0); 3639 return; 3640 } 3641 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3642 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3643 ReuseShuffleIndicies); 3644 BS.cancelScheduling(VL, VL0); 3645 return; 3646 } 3647 case Instruction::InsertElement: { 3648 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3649 3650 // Check that we have a buildvector and not a shuffle of 2 or more 3651 // different vectors. 3652 ValueSet SourceVectors; 3653 int MinIdx = std::numeric_limits<int>::max(); 3654 for (Value *V : VL) { 3655 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3656 Optional<int> Idx = *getInsertIndex(V, 0); 3657 if (!Idx || *Idx == UndefMaskElem) 3658 continue; 3659 MinIdx = std::min(MinIdx, *Idx); 3660 } 3661 3662 if (count_if(VL, [&SourceVectors](Value *V) { 3663 return !SourceVectors.contains(V); 3664 }) >= 2) { 3665 // Found 2nd source vector - cancel. 3666 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3667 "different source vectors.\n"); 3668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3669 BS.cancelScheduling(VL, VL0); 3670 return; 3671 } 3672 3673 auto OrdCompare = [](const std::pair<int, int> &P1, 3674 const std::pair<int, int> &P2) { 3675 return P1.first > P2.first; 3676 }; 3677 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3678 decltype(OrdCompare)> 3679 Indices(OrdCompare); 3680 for (int I = 0, E = VL.size(); I < E; ++I) { 3681 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3682 if (!Idx || *Idx == UndefMaskElem) 3683 continue; 3684 Indices.emplace(*Idx, I); 3685 } 3686 OrdersType CurrentOrder(VL.size(), VL.size()); 3687 bool IsIdentity = true; 3688 for (int I = 0, E = VL.size(); I < E; ++I) { 3689 CurrentOrder[Indices.top().second] = I; 3690 IsIdentity &= Indices.top().second == I; 3691 Indices.pop(); 3692 } 3693 if (IsIdentity) 3694 CurrentOrder.clear(); 3695 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3696 None, CurrentOrder); 3697 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3698 3699 constexpr int NumOps = 2; 3700 ValueList VectorOperands[NumOps]; 3701 for (int I = 0; I < NumOps; ++I) { 3702 for (Value *V : VL) 3703 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3704 3705 TE->setOperand(I, VectorOperands[I]); 3706 } 3707 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3708 return; 3709 } 3710 case Instruction::Load: { 3711 // Check that a vectorized load would load the same memory as a scalar 3712 // load. For example, we don't want to vectorize loads that are smaller 3713 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3714 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3715 // from such a struct, we read/write packed bits disagreeing with the 3716 // unvectorized version. 3717 SmallVector<Value *> PointerOps; 3718 OrdersType CurrentOrder; 3719 TreeEntry *TE = nullptr; 3720 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3721 PointerOps)) { 3722 case LoadsState::Vectorize: 3723 if (CurrentOrder.empty()) { 3724 // Original loads are consecutive and does not require reordering. 3725 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3726 ReuseShuffleIndicies); 3727 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3728 } else { 3729 fixupOrderingIndices(CurrentOrder); 3730 // Need to reorder. 3731 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3732 ReuseShuffleIndicies, CurrentOrder); 3733 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3734 } 3735 TE->setOperandsInOrder(); 3736 break; 3737 case LoadsState::ScatterVectorize: 3738 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3739 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3740 UserTreeIdx, ReuseShuffleIndicies); 3741 TE->setOperandsInOrder(); 3742 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3743 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3744 break; 3745 case LoadsState::Gather: 3746 BS.cancelScheduling(VL, VL0); 3747 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3748 ReuseShuffleIndicies); 3749 #ifndef NDEBUG 3750 Type *ScalarTy = VL0->getType(); 3751 if (DL->getTypeSizeInBits(ScalarTy) != 3752 DL->getTypeAllocSizeInBits(ScalarTy)) 3753 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3754 else if (any_of(VL, [](Value *V) { 3755 return !cast<LoadInst>(V)->isSimple(); 3756 })) 3757 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3758 else 3759 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3760 #endif // NDEBUG 3761 break; 3762 } 3763 return; 3764 } 3765 case Instruction::ZExt: 3766 case Instruction::SExt: 3767 case Instruction::FPToUI: 3768 case Instruction::FPToSI: 3769 case Instruction::FPExt: 3770 case Instruction::PtrToInt: 3771 case Instruction::IntToPtr: 3772 case Instruction::SIToFP: 3773 case Instruction::UIToFP: 3774 case Instruction::Trunc: 3775 case Instruction::FPTrunc: 3776 case Instruction::BitCast: { 3777 Type *SrcTy = VL0->getOperand(0)->getType(); 3778 for (Value *V : VL) { 3779 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3780 if (Ty != SrcTy || !isValidElementType(Ty)) { 3781 BS.cancelScheduling(VL, VL0); 3782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3783 ReuseShuffleIndicies); 3784 LLVM_DEBUG(dbgs() 3785 << "SLP: Gathering casts with different src types.\n"); 3786 return; 3787 } 3788 } 3789 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3790 ReuseShuffleIndicies); 3791 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3792 3793 TE->setOperandsInOrder(); 3794 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3795 ValueList Operands; 3796 // Prepare the operand vector. 3797 for (Value *V : VL) 3798 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3799 3800 buildTree_rec(Operands, Depth + 1, {TE, i}); 3801 } 3802 return; 3803 } 3804 case Instruction::ICmp: 3805 case Instruction::FCmp: { 3806 // Check that all of the compares have the same predicate. 3807 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3808 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3809 Type *ComparedTy = VL0->getOperand(0)->getType(); 3810 for (Value *V : VL) { 3811 CmpInst *Cmp = cast<CmpInst>(V); 3812 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3813 Cmp->getOperand(0)->getType() != ComparedTy) { 3814 BS.cancelScheduling(VL, VL0); 3815 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3816 ReuseShuffleIndicies); 3817 LLVM_DEBUG(dbgs() 3818 << "SLP: Gathering cmp with different predicate.\n"); 3819 return; 3820 } 3821 } 3822 3823 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3824 ReuseShuffleIndicies); 3825 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3826 3827 ValueList Left, Right; 3828 if (cast<CmpInst>(VL0)->isCommutative()) { 3829 // Commutative predicate - collect + sort operands of the instructions 3830 // so that each side is more likely to have the same opcode. 3831 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3832 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3833 } else { 3834 // Collect operands - commute if it uses the swapped predicate. 3835 for (Value *V : VL) { 3836 auto *Cmp = cast<CmpInst>(V); 3837 Value *LHS = Cmp->getOperand(0); 3838 Value *RHS = Cmp->getOperand(1); 3839 if (Cmp->getPredicate() != P0) 3840 std::swap(LHS, RHS); 3841 Left.push_back(LHS); 3842 Right.push_back(RHS); 3843 } 3844 } 3845 TE->setOperand(0, Left); 3846 TE->setOperand(1, Right); 3847 buildTree_rec(Left, Depth + 1, {TE, 0}); 3848 buildTree_rec(Right, Depth + 1, {TE, 1}); 3849 return; 3850 } 3851 case Instruction::Select: 3852 case Instruction::FNeg: 3853 case Instruction::Add: 3854 case Instruction::FAdd: 3855 case Instruction::Sub: 3856 case Instruction::FSub: 3857 case Instruction::Mul: 3858 case Instruction::FMul: 3859 case Instruction::UDiv: 3860 case Instruction::SDiv: 3861 case Instruction::FDiv: 3862 case Instruction::URem: 3863 case Instruction::SRem: 3864 case Instruction::FRem: 3865 case Instruction::Shl: 3866 case Instruction::LShr: 3867 case Instruction::AShr: 3868 case Instruction::And: 3869 case Instruction::Or: 3870 case Instruction::Xor: { 3871 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3872 ReuseShuffleIndicies); 3873 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3874 3875 // Sort operands of the instructions so that each side is more likely to 3876 // have the same opcode. 3877 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3878 ValueList Left, Right; 3879 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3880 TE->setOperand(0, Left); 3881 TE->setOperand(1, Right); 3882 buildTree_rec(Left, Depth + 1, {TE, 0}); 3883 buildTree_rec(Right, Depth + 1, {TE, 1}); 3884 return; 3885 } 3886 3887 TE->setOperandsInOrder(); 3888 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3889 ValueList Operands; 3890 // Prepare the operand vector. 3891 for (Value *V : VL) 3892 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3893 3894 buildTree_rec(Operands, Depth + 1, {TE, i}); 3895 } 3896 return; 3897 } 3898 case Instruction::GetElementPtr: { 3899 // We don't combine GEPs with complicated (nested) indexing. 3900 for (Value *V : VL) { 3901 if (cast<Instruction>(V)->getNumOperands() != 2) { 3902 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3903 BS.cancelScheduling(VL, VL0); 3904 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3905 ReuseShuffleIndicies); 3906 return; 3907 } 3908 } 3909 3910 // We can't combine several GEPs into one vector if they operate on 3911 // different types. 3912 Type *Ty0 = VL0->getOperand(0)->getType(); 3913 for (Value *V : VL) { 3914 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3915 if (Ty0 != CurTy) { 3916 LLVM_DEBUG(dbgs() 3917 << "SLP: not-vectorizable GEP (different types).\n"); 3918 BS.cancelScheduling(VL, VL0); 3919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3920 ReuseShuffleIndicies); 3921 return; 3922 } 3923 } 3924 3925 // We don't combine GEPs with non-constant indexes. 3926 Type *Ty1 = VL0->getOperand(1)->getType(); 3927 for (Value *V : VL) { 3928 auto Op = cast<Instruction>(V)->getOperand(1); 3929 if (!isa<ConstantInt>(Op) || 3930 (Op->getType() != Ty1 && 3931 Op->getType()->getScalarSizeInBits() > 3932 DL->getIndexSizeInBits( 3933 V->getType()->getPointerAddressSpace()))) { 3934 LLVM_DEBUG(dbgs() 3935 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3936 BS.cancelScheduling(VL, VL0); 3937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3938 ReuseShuffleIndicies); 3939 return; 3940 } 3941 } 3942 3943 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3944 ReuseShuffleIndicies); 3945 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3946 SmallVector<ValueList, 2> Operands(2); 3947 // Prepare the operand vector for pointer operands. 3948 for (Value *V : VL) 3949 Operands.front().push_back( 3950 cast<GetElementPtrInst>(V)->getPointerOperand()); 3951 TE->setOperand(0, Operands.front()); 3952 // Need to cast all indices to the same type before vectorization to 3953 // avoid crash. 3954 // Required to be able to find correct matches between different gather 3955 // nodes and reuse the vectorized values rather than trying to gather them 3956 // again. 3957 int IndexIdx = 1; 3958 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3959 Type *Ty = all_of(VL, 3960 [VL0Ty, IndexIdx](Value *V) { 3961 return VL0Ty == cast<GetElementPtrInst>(V) 3962 ->getOperand(IndexIdx) 3963 ->getType(); 3964 }) 3965 ? VL0Ty 3966 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3967 ->getPointerOperandType() 3968 ->getScalarType()); 3969 // Prepare the operand vector. 3970 for (Value *V : VL) { 3971 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3972 auto *CI = cast<ConstantInt>(Op); 3973 Operands.back().push_back(ConstantExpr::getIntegerCast( 3974 CI, Ty, CI->getValue().isSignBitSet())); 3975 } 3976 TE->setOperand(IndexIdx, Operands.back()); 3977 3978 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3979 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3980 return; 3981 } 3982 case Instruction::Store: { 3983 // Check if the stores are consecutive or if we need to swizzle them. 3984 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3985 // Avoid types that are padded when being allocated as scalars, while 3986 // being packed together in a vector (such as i1). 3987 if (DL->getTypeSizeInBits(ScalarTy) != 3988 DL->getTypeAllocSizeInBits(ScalarTy)) { 3989 BS.cancelScheduling(VL, VL0); 3990 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3991 ReuseShuffleIndicies); 3992 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3993 return; 3994 } 3995 // Make sure all stores in the bundle are simple - we can't vectorize 3996 // atomic or volatile stores. 3997 SmallVector<Value *, 4> PointerOps(VL.size()); 3998 ValueList Operands(VL.size()); 3999 auto POIter = PointerOps.begin(); 4000 auto OIter = Operands.begin(); 4001 for (Value *V : VL) { 4002 auto *SI = cast<StoreInst>(V); 4003 if (!SI->isSimple()) { 4004 BS.cancelScheduling(VL, VL0); 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4008 return; 4009 } 4010 *POIter = SI->getPointerOperand(); 4011 *OIter = SI->getValueOperand(); 4012 ++POIter; 4013 ++OIter; 4014 } 4015 4016 OrdersType CurrentOrder; 4017 // Check the order of pointer operands. 4018 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4019 Value *Ptr0; 4020 Value *PtrN; 4021 if (CurrentOrder.empty()) { 4022 Ptr0 = PointerOps.front(); 4023 PtrN = PointerOps.back(); 4024 } else { 4025 Ptr0 = PointerOps[CurrentOrder.front()]; 4026 PtrN = PointerOps[CurrentOrder.back()]; 4027 } 4028 Optional<int> Dist = 4029 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4030 // Check that the sorted pointer operands are consecutive. 4031 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4032 if (CurrentOrder.empty()) { 4033 // Original stores are consecutive and does not require reordering. 4034 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4035 UserTreeIdx, ReuseShuffleIndicies); 4036 TE->setOperandsInOrder(); 4037 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4038 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4039 } else { 4040 fixupOrderingIndices(CurrentOrder); 4041 TreeEntry *TE = 4042 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4043 ReuseShuffleIndicies, CurrentOrder); 4044 TE->setOperandsInOrder(); 4045 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4046 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4047 } 4048 return; 4049 } 4050 } 4051 4052 BS.cancelScheduling(VL, VL0); 4053 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4054 ReuseShuffleIndicies); 4055 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4056 return; 4057 } 4058 case Instruction::Call: { 4059 // Check if the calls are all to the same vectorizable intrinsic or 4060 // library function. 4061 CallInst *CI = cast<CallInst>(VL0); 4062 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4063 4064 VFShape Shape = VFShape::get( 4065 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4066 false /*HasGlobalPred*/); 4067 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4068 4069 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4070 BS.cancelScheduling(VL, VL0); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4072 ReuseShuffleIndicies); 4073 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4074 return; 4075 } 4076 Function *F = CI->getCalledFunction(); 4077 unsigned NumArgs = CI->arg_size(); 4078 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4079 for (unsigned j = 0; j != NumArgs; ++j) 4080 if (hasVectorInstrinsicScalarOpd(ID, j)) 4081 ScalarArgs[j] = CI->getArgOperand(j); 4082 for (Value *V : VL) { 4083 CallInst *CI2 = dyn_cast<CallInst>(V); 4084 if (!CI2 || CI2->getCalledFunction() != F || 4085 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4086 (VecFunc && 4087 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4088 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4089 BS.cancelScheduling(VL, VL0); 4090 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4091 ReuseShuffleIndicies); 4092 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4093 << "\n"); 4094 return; 4095 } 4096 // Some intrinsics have scalar arguments and should be same in order for 4097 // them to be vectorized. 4098 for (unsigned j = 0; j != NumArgs; ++j) { 4099 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4100 Value *A1J = CI2->getArgOperand(j); 4101 if (ScalarArgs[j] != A1J) { 4102 BS.cancelScheduling(VL, VL0); 4103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4104 ReuseShuffleIndicies); 4105 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4106 << " argument " << ScalarArgs[j] << "!=" << A1J 4107 << "\n"); 4108 return; 4109 } 4110 } 4111 } 4112 // Verify that the bundle operands are identical between the two calls. 4113 if (CI->hasOperandBundles() && 4114 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4115 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4116 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4117 BS.cancelScheduling(VL, VL0); 4118 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4119 ReuseShuffleIndicies); 4120 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4121 << *CI << "!=" << *V << '\n'); 4122 return; 4123 } 4124 } 4125 4126 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4127 ReuseShuffleIndicies); 4128 TE->setOperandsInOrder(); 4129 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4130 // For scalar operands no need to to create an entry since no need to 4131 // vectorize it. 4132 if (hasVectorInstrinsicScalarOpd(ID, i)) 4133 continue; 4134 ValueList Operands; 4135 // Prepare the operand vector. 4136 for (Value *V : VL) { 4137 auto *CI2 = cast<CallInst>(V); 4138 Operands.push_back(CI2->getArgOperand(i)); 4139 } 4140 buildTree_rec(Operands, Depth + 1, {TE, i}); 4141 } 4142 return; 4143 } 4144 case Instruction::ShuffleVector: { 4145 // If this is not an alternate sequence of opcode like add-sub 4146 // then do not vectorize this instruction. 4147 if (!S.isAltShuffle()) { 4148 BS.cancelScheduling(VL, VL0); 4149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4150 ReuseShuffleIndicies); 4151 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4152 return; 4153 } 4154 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4157 4158 // Reorder operands if reordering would enable vectorization. 4159 if (isa<BinaryOperator>(VL0)) { 4160 ValueList Left, Right; 4161 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4162 TE->setOperand(0, Left); 4163 TE->setOperand(1, Right); 4164 buildTree_rec(Left, Depth + 1, {TE, 0}); 4165 buildTree_rec(Right, Depth + 1, {TE, 1}); 4166 return; 4167 } 4168 4169 TE->setOperandsInOrder(); 4170 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4171 ValueList Operands; 4172 // Prepare the operand vector. 4173 for (Value *V : VL) 4174 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4175 4176 buildTree_rec(Operands, Depth + 1, {TE, i}); 4177 } 4178 return; 4179 } 4180 default: 4181 BS.cancelScheduling(VL, VL0); 4182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4183 ReuseShuffleIndicies); 4184 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4185 return; 4186 } 4187 } 4188 4189 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4190 unsigned N = 1; 4191 Type *EltTy = T; 4192 4193 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4194 isa<VectorType>(EltTy)) { 4195 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4196 // Check that struct is homogeneous. 4197 for (const auto *Ty : ST->elements()) 4198 if (Ty != *ST->element_begin()) 4199 return 0; 4200 N *= ST->getNumElements(); 4201 EltTy = *ST->element_begin(); 4202 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4203 N *= AT->getNumElements(); 4204 EltTy = AT->getElementType(); 4205 } else { 4206 auto *VT = cast<FixedVectorType>(EltTy); 4207 N *= VT->getNumElements(); 4208 EltTy = VT->getElementType(); 4209 } 4210 } 4211 4212 if (!isValidElementType(EltTy)) 4213 return 0; 4214 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4215 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4216 return 0; 4217 return N; 4218 } 4219 4220 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4221 SmallVectorImpl<unsigned> &CurrentOrder) const { 4222 Instruction *E0 = cast<Instruction>(OpValue); 4223 assert(E0->getOpcode() == Instruction::ExtractElement || 4224 E0->getOpcode() == Instruction::ExtractValue); 4225 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4226 // Check if all of the extracts come from the same vector and from the 4227 // correct offset. 4228 Value *Vec = E0->getOperand(0); 4229 4230 CurrentOrder.clear(); 4231 4232 // We have to extract from a vector/aggregate with the same number of elements. 4233 unsigned NElts; 4234 if (E0->getOpcode() == Instruction::ExtractValue) { 4235 const DataLayout &DL = E0->getModule()->getDataLayout(); 4236 NElts = canMapToVector(Vec->getType(), DL); 4237 if (!NElts) 4238 return false; 4239 // Check if load can be rewritten as load of vector. 4240 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4241 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4242 return false; 4243 } else { 4244 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4245 } 4246 4247 if (NElts != VL.size()) 4248 return false; 4249 4250 // Check that all of the indices extract from the correct offset. 4251 bool ShouldKeepOrder = true; 4252 unsigned E = VL.size(); 4253 // Assign to all items the initial value E + 1 so we can check if the extract 4254 // instruction index was used already. 4255 // Also, later we can check that all the indices are used and we have a 4256 // consecutive access in the extract instructions, by checking that no 4257 // element of CurrentOrder still has value E + 1. 4258 CurrentOrder.assign(E, E + 1); 4259 unsigned I = 0; 4260 for (; I < E; ++I) { 4261 auto *Inst = cast<Instruction>(VL[I]); 4262 if (Inst->getOperand(0) != Vec) 4263 break; 4264 Optional<unsigned> Idx = getExtractIndex(Inst); 4265 if (!Idx) 4266 break; 4267 const unsigned ExtIdx = *Idx; 4268 if (ExtIdx != I) { 4269 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4270 break; 4271 ShouldKeepOrder = false; 4272 CurrentOrder[ExtIdx] = I; 4273 } else { 4274 if (CurrentOrder[I] != E + 1) 4275 break; 4276 CurrentOrder[I] = I; 4277 } 4278 } 4279 if (I < E) { 4280 CurrentOrder.clear(); 4281 return false; 4282 } 4283 4284 return ShouldKeepOrder; 4285 } 4286 4287 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4288 ArrayRef<Value *> VectorizedVals) const { 4289 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4290 llvm::all_of(I->users(), [this](User *U) { 4291 return ScalarToTreeEntry.count(U) > 0; 4292 }); 4293 } 4294 4295 static std::pair<InstructionCost, InstructionCost> 4296 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4297 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4298 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4299 4300 // Calculate the cost of the scalar and vector calls. 4301 SmallVector<Type *, 4> VecTys; 4302 for (Use &Arg : CI->args()) 4303 VecTys.push_back( 4304 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4305 FastMathFlags FMF; 4306 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4307 FMF = FPCI->getFastMathFlags(); 4308 SmallVector<const Value *> Arguments(CI->args()); 4309 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4310 dyn_cast<IntrinsicInst>(CI)); 4311 auto IntrinsicCost = 4312 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4313 4314 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4315 VecTy->getNumElements())), 4316 false /*HasGlobalPred*/); 4317 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4318 auto LibCost = IntrinsicCost; 4319 if (!CI->isNoBuiltin() && VecFunc) { 4320 // Calculate the cost of the vector library call. 4321 // If the corresponding vector call is cheaper, return its cost. 4322 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4323 TTI::TCK_RecipThroughput); 4324 } 4325 return {IntrinsicCost, LibCost}; 4326 } 4327 4328 /// Compute the cost of creating a vector of type \p VecTy containing the 4329 /// extracted values from \p VL. 4330 static InstructionCost 4331 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4332 TargetTransformInfo::ShuffleKind ShuffleKind, 4333 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4334 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4335 4336 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4337 VecTy->getNumElements() < NumOfParts) 4338 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4339 4340 bool AllConsecutive = true; 4341 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4342 unsigned Idx = -1; 4343 InstructionCost Cost = 0; 4344 4345 // Process extracts in blocks of EltsPerVector to check if the source vector 4346 // operand can be re-used directly. If not, add the cost of creating a shuffle 4347 // to extract the values into a vector register. 4348 for (auto *V : VL) { 4349 ++Idx; 4350 4351 // Reached the start of a new vector registers. 4352 if (Idx % EltsPerVector == 0) { 4353 AllConsecutive = true; 4354 continue; 4355 } 4356 4357 // Check all extracts for a vector register on the target directly 4358 // extract values in order. 4359 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4360 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4361 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4362 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4363 4364 if (AllConsecutive) 4365 continue; 4366 4367 // Skip all indices, except for the last index per vector block. 4368 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4369 continue; 4370 4371 // If we have a series of extracts which are not consecutive and hence 4372 // cannot re-use the source vector register directly, compute the shuffle 4373 // cost to extract the a vector with EltsPerVector elements. 4374 Cost += TTI.getShuffleCost( 4375 TargetTransformInfo::SK_PermuteSingleSrc, 4376 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4377 } 4378 return Cost; 4379 } 4380 4381 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4382 /// operations operands. 4383 static void 4384 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4385 ArrayRef<int> ReusesIndices, 4386 const function_ref<bool(Instruction *)> IsAltOp, 4387 SmallVectorImpl<int> &Mask, 4388 SmallVectorImpl<Value *> *OpScalars = nullptr, 4389 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4390 unsigned Sz = VL.size(); 4391 Mask.assign(Sz, UndefMaskElem); 4392 SmallVector<int> OrderMask; 4393 if (!ReorderIndices.empty()) 4394 inversePermutation(ReorderIndices, OrderMask); 4395 for (unsigned I = 0; I < Sz; ++I) { 4396 unsigned Idx = I; 4397 if (!ReorderIndices.empty()) 4398 Idx = OrderMask[I]; 4399 auto *OpInst = cast<Instruction>(VL[Idx]); 4400 if (IsAltOp(OpInst)) { 4401 Mask[I] = Sz + Idx; 4402 if (AltScalars) 4403 AltScalars->push_back(OpInst); 4404 } else { 4405 Mask[I] = Idx; 4406 if (OpScalars) 4407 OpScalars->push_back(OpInst); 4408 } 4409 } 4410 if (!ReusesIndices.empty()) { 4411 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4412 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4413 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4414 }); 4415 Mask.swap(NewMask); 4416 } 4417 } 4418 4419 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4420 ArrayRef<Value *> VectorizedVals) { 4421 ArrayRef<Value*> VL = E->Scalars; 4422 4423 Type *ScalarTy = VL[0]->getType(); 4424 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4425 ScalarTy = SI->getValueOperand()->getType(); 4426 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4427 ScalarTy = CI->getOperand(0)->getType(); 4428 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4429 ScalarTy = IE->getOperand(1)->getType(); 4430 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4431 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4432 4433 // If we have computed a smaller type for the expression, update VecTy so 4434 // that the costs will be accurate. 4435 if (MinBWs.count(VL[0])) 4436 VecTy = FixedVectorType::get( 4437 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4438 unsigned EntryVF = E->getVectorFactor(); 4439 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4440 4441 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4442 // FIXME: it tries to fix a problem with MSVC buildbots. 4443 TargetTransformInfo &TTIRef = *TTI; 4444 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4445 VectorizedVals](InstructionCost &Cost, 4446 bool IsGather) { 4447 DenseMap<Value *, int> ExtractVectorsTys; 4448 for (auto *V : VL) { 4449 if (isa<UndefValue>(V)) 4450 continue; 4451 // If all users of instruction are going to be vectorized and this 4452 // instruction itself is not going to be vectorized, consider this 4453 // instruction as dead and remove its cost from the final cost of the 4454 // vectorized tree. 4455 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals)) 4456 continue; 4457 auto *EE = cast<ExtractElementInst>(V); 4458 Optional<unsigned> EEIdx = getExtractIndex(EE); 4459 if (!EEIdx) 4460 continue; 4461 unsigned Idx = *EEIdx; 4462 if (TTIRef.getNumberOfParts(VecTy) != 4463 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4464 auto It = 4465 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4466 It->getSecond() = std::min<int>(It->second, Idx); 4467 } 4468 // Take credit for instruction that will become dead. 4469 if (EE->hasOneUse()) { 4470 Instruction *Ext = EE->user_back(); 4471 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4472 all_of(Ext->users(), 4473 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4474 // Use getExtractWithExtendCost() to calculate the cost of 4475 // extractelement/ext pair. 4476 Cost -= 4477 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4478 EE->getVectorOperandType(), Idx); 4479 // Add back the cost of s|zext which is subtracted separately. 4480 Cost += TTIRef.getCastInstrCost( 4481 Ext->getOpcode(), Ext->getType(), EE->getType(), 4482 TTI::getCastContextHint(Ext), CostKind, Ext); 4483 continue; 4484 } 4485 } 4486 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4487 EE->getVectorOperandType(), Idx); 4488 } 4489 // Add a cost for subvector extracts/inserts if required. 4490 for (const auto &Data : ExtractVectorsTys) { 4491 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4492 unsigned NumElts = VecTy->getNumElements(); 4493 if (Data.second % NumElts == 0) 4494 continue; 4495 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4496 unsigned Idx = (Data.second / NumElts) * NumElts; 4497 unsigned EENumElts = EEVTy->getNumElements(); 4498 if (Idx + NumElts <= EENumElts) { 4499 Cost += 4500 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4501 EEVTy, None, Idx, VecTy); 4502 } else { 4503 // Need to round up the subvector type vectorization factor to avoid a 4504 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4505 // <= EENumElts. 4506 auto *SubVT = 4507 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4508 Cost += 4509 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4510 EEVTy, None, Idx, SubVT); 4511 } 4512 } else { 4513 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4514 VecTy, None, 0, EEVTy); 4515 } 4516 } 4517 }; 4518 if (E->State == TreeEntry::NeedToGather) { 4519 if (allConstant(VL)) 4520 return 0; 4521 if (isa<InsertElementInst>(VL[0])) 4522 return InstructionCost::getInvalid(); 4523 SmallVector<int> Mask; 4524 SmallVector<const TreeEntry *> Entries; 4525 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4526 isGatherShuffledEntry(E, Mask, Entries); 4527 if (Shuffle.hasValue()) { 4528 InstructionCost GatherCost = 0; 4529 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4530 // Perfect match in the graph, will reuse the previously vectorized 4531 // node. Cost is 0. 4532 LLVM_DEBUG( 4533 dbgs() 4534 << "SLP: perfect diamond match for gather bundle that starts with " 4535 << *VL.front() << ".\n"); 4536 if (NeedToShuffleReuses) 4537 GatherCost = 4538 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4539 FinalVecTy, E->ReuseShuffleIndices); 4540 } else { 4541 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4542 << " entries for bundle that starts with " 4543 << *VL.front() << ".\n"); 4544 // Detected that instead of gather we can emit a shuffle of single/two 4545 // previously vectorized nodes. Add the cost of the permutation rather 4546 // than gather. 4547 ::addMask(Mask, E->ReuseShuffleIndices); 4548 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4549 } 4550 return GatherCost; 4551 } 4552 if (isSplat(VL)) { 4553 // Found the broadcasting of the single scalar, calculate the cost as the 4554 // broadcast. 4555 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4556 } 4557 if ((E->getOpcode() == Instruction::ExtractElement || 4558 all_of(E->Scalars, 4559 [](Value *V) { 4560 return isa<ExtractElementInst, UndefValue>(V); 4561 })) && 4562 allSameType(VL)) { 4563 // Check that gather of extractelements can be represented as just a 4564 // shuffle of a single/two vectors the scalars are extracted from. 4565 SmallVector<int> Mask; 4566 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4567 isFixedVectorShuffle(VL, Mask); 4568 if (ShuffleKind.hasValue()) { 4569 // Found the bunch of extractelement instructions that must be gathered 4570 // into a vector and can be represented as a permutation elements in a 4571 // single input vector or of 2 input vectors. 4572 InstructionCost Cost = 4573 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4574 AdjustExtractsCost(Cost, /*IsGather=*/true); 4575 if (NeedToShuffleReuses) 4576 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4577 FinalVecTy, E->ReuseShuffleIndices); 4578 return Cost; 4579 } 4580 } 4581 InstructionCost ReuseShuffleCost = 0; 4582 if (NeedToShuffleReuses) 4583 ReuseShuffleCost = TTI->getShuffleCost( 4584 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4585 // Improve gather cost for gather of loads, if we can group some of the 4586 // loads into vector loads. 4587 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4588 !E->isAltShuffle()) { 4589 BoUpSLP::ValueSet VectorizedLoads; 4590 unsigned StartIdx = 0; 4591 unsigned VF = VL.size() / 2; 4592 unsigned VectorizedCnt = 0; 4593 unsigned ScatterVectorizeCnt = 0; 4594 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4595 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4596 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4597 Cnt += VF) { 4598 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4599 if (!VectorizedLoads.count(Slice.front()) && 4600 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4601 SmallVector<Value *> PointerOps; 4602 OrdersType CurrentOrder; 4603 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4604 *SE, CurrentOrder, PointerOps); 4605 switch (LS) { 4606 case LoadsState::Vectorize: 4607 case LoadsState::ScatterVectorize: 4608 // Mark the vectorized loads so that we don't vectorize them 4609 // again. 4610 if (LS == LoadsState::Vectorize) 4611 ++VectorizedCnt; 4612 else 4613 ++ScatterVectorizeCnt; 4614 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4615 // If we vectorized initial block, no need to try to vectorize it 4616 // again. 4617 if (Cnt == StartIdx) 4618 StartIdx += VF; 4619 break; 4620 case LoadsState::Gather: 4621 break; 4622 } 4623 } 4624 } 4625 // Check if the whole array was vectorized already - exit. 4626 if (StartIdx >= VL.size()) 4627 break; 4628 // Found vectorizable parts - exit. 4629 if (!VectorizedLoads.empty()) 4630 break; 4631 } 4632 if (!VectorizedLoads.empty()) { 4633 InstructionCost GatherCost = 0; 4634 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4635 bool NeedInsertSubvectorAnalysis = 4636 !NumParts || (VL.size() / VF) > NumParts; 4637 // Get the cost for gathered loads. 4638 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4639 if (VectorizedLoads.contains(VL[I])) 4640 continue; 4641 GatherCost += getGatherCost(VL.slice(I, VF)); 4642 } 4643 // The cost for vectorized loads. 4644 InstructionCost ScalarsCost = 0; 4645 for (Value *V : VectorizedLoads) { 4646 auto *LI = cast<LoadInst>(V); 4647 ScalarsCost += TTI->getMemoryOpCost( 4648 Instruction::Load, LI->getType(), LI->getAlign(), 4649 LI->getPointerAddressSpace(), CostKind, LI); 4650 } 4651 auto *LI = cast<LoadInst>(E->getMainOp()); 4652 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4653 Align Alignment = LI->getAlign(); 4654 GatherCost += 4655 VectorizedCnt * 4656 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4657 LI->getPointerAddressSpace(), CostKind, LI); 4658 GatherCost += ScatterVectorizeCnt * 4659 TTI->getGatherScatterOpCost( 4660 Instruction::Load, LoadTy, LI->getPointerOperand(), 4661 /*VariableMask=*/false, Alignment, CostKind, LI); 4662 if (NeedInsertSubvectorAnalysis) { 4663 // Add the cost for the subvectors insert. 4664 for (int I = VF, E = VL.size(); I < E; I += VF) 4665 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4666 None, I, LoadTy); 4667 } 4668 return ReuseShuffleCost + GatherCost - ScalarsCost; 4669 } 4670 } 4671 return ReuseShuffleCost + getGatherCost(VL); 4672 } 4673 InstructionCost CommonCost = 0; 4674 SmallVector<int> Mask; 4675 if (!E->ReorderIndices.empty()) { 4676 SmallVector<int> NewMask; 4677 if (E->getOpcode() == Instruction::Store) { 4678 // For stores the order is actually a mask. 4679 NewMask.resize(E->ReorderIndices.size()); 4680 copy(E->ReorderIndices, NewMask.begin()); 4681 } else { 4682 inversePermutation(E->ReorderIndices, NewMask); 4683 } 4684 ::addMask(Mask, NewMask); 4685 } 4686 if (NeedToShuffleReuses) 4687 ::addMask(Mask, E->ReuseShuffleIndices); 4688 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4689 CommonCost = 4690 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4691 assert((E->State == TreeEntry::Vectorize || 4692 E->State == TreeEntry::ScatterVectorize) && 4693 "Unhandled state"); 4694 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4695 Instruction *VL0 = E->getMainOp(); 4696 unsigned ShuffleOrOp = 4697 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4698 switch (ShuffleOrOp) { 4699 case Instruction::PHI: 4700 return 0; 4701 4702 case Instruction::ExtractValue: 4703 case Instruction::ExtractElement: { 4704 // The common cost of removal ExtractElement/ExtractValue instructions + 4705 // the cost of shuffles, if required to resuffle the original vector. 4706 if (NeedToShuffleReuses) { 4707 unsigned Idx = 0; 4708 for (unsigned I : E->ReuseShuffleIndices) { 4709 if (ShuffleOrOp == Instruction::ExtractElement) { 4710 auto *EE = cast<ExtractElementInst>(VL[I]); 4711 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4712 EE->getVectorOperandType(), 4713 *getExtractIndex(EE)); 4714 } else { 4715 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4716 VecTy, Idx); 4717 ++Idx; 4718 } 4719 } 4720 Idx = EntryVF; 4721 for (Value *V : VL) { 4722 if (ShuffleOrOp == Instruction::ExtractElement) { 4723 auto *EE = cast<ExtractElementInst>(V); 4724 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4725 EE->getVectorOperandType(), 4726 *getExtractIndex(EE)); 4727 } else { 4728 --Idx; 4729 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4730 VecTy, Idx); 4731 } 4732 } 4733 } 4734 if (ShuffleOrOp == Instruction::ExtractValue) { 4735 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4736 auto *EI = cast<Instruction>(VL[I]); 4737 // Take credit for instruction that will become dead. 4738 if (EI->hasOneUse()) { 4739 Instruction *Ext = EI->user_back(); 4740 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4741 all_of(Ext->users(), 4742 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4743 // Use getExtractWithExtendCost() to calculate the cost of 4744 // extractelement/ext pair. 4745 CommonCost -= TTI->getExtractWithExtendCost( 4746 Ext->getOpcode(), Ext->getType(), VecTy, I); 4747 // Add back the cost of s|zext which is subtracted separately. 4748 CommonCost += TTI->getCastInstrCost( 4749 Ext->getOpcode(), Ext->getType(), EI->getType(), 4750 TTI::getCastContextHint(Ext), CostKind, Ext); 4751 continue; 4752 } 4753 } 4754 CommonCost -= 4755 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4756 } 4757 } else { 4758 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4759 } 4760 return CommonCost; 4761 } 4762 case Instruction::InsertElement: { 4763 assert(E->ReuseShuffleIndices.empty() && 4764 "Unique insertelements only are expected."); 4765 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4766 4767 unsigned const NumElts = SrcVecTy->getNumElements(); 4768 unsigned const NumScalars = VL.size(); 4769 APInt DemandedElts = APInt::getZero(NumElts); 4770 // TODO: Add support for Instruction::InsertValue. 4771 SmallVector<int> Mask; 4772 if (!E->ReorderIndices.empty()) { 4773 inversePermutation(E->ReorderIndices, Mask); 4774 Mask.append(NumElts - NumScalars, UndefMaskElem); 4775 } else { 4776 Mask.assign(NumElts, UndefMaskElem); 4777 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4778 } 4779 unsigned Offset = *getInsertIndex(VL0, 0); 4780 bool IsIdentity = true; 4781 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4782 Mask.swap(PrevMask); 4783 for (unsigned I = 0; I < NumScalars; ++I) { 4784 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4785 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4786 continue; 4787 DemandedElts.setBit(*InsertIdx); 4788 IsIdentity &= *InsertIdx - Offset == I; 4789 Mask[*InsertIdx - Offset] = I; 4790 } 4791 assert(Offset < NumElts && "Failed to find vector index offset"); 4792 4793 InstructionCost Cost = 0; 4794 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4795 /*Insert*/ true, /*Extract*/ false); 4796 4797 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4798 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4799 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4800 Cost += TTI->getShuffleCost( 4801 TargetTransformInfo::SK_PermuteSingleSrc, 4802 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4803 } else if (!IsIdentity) { 4804 auto *FirstInsert = 4805 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4806 return !is_contained(E->Scalars, 4807 cast<Instruction>(V)->getOperand(0)); 4808 })); 4809 if (isUndefVector(FirstInsert->getOperand(0))) { 4810 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4811 } else { 4812 SmallVector<int> InsertMask(NumElts); 4813 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4814 for (unsigned I = 0; I < NumElts; I++) { 4815 if (Mask[I] != UndefMaskElem) 4816 InsertMask[Offset + I] = NumElts + I; 4817 } 4818 Cost += 4819 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4820 } 4821 } 4822 4823 return Cost; 4824 } 4825 case Instruction::ZExt: 4826 case Instruction::SExt: 4827 case Instruction::FPToUI: 4828 case Instruction::FPToSI: 4829 case Instruction::FPExt: 4830 case Instruction::PtrToInt: 4831 case Instruction::IntToPtr: 4832 case Instruction::SIToFP: 4833 case Instruction::UIToFP: 4834 case Instruction::Trunc: 4835 case Instruction::FPTrunc: 4836 case Instruction::BitCast: { 4837 Type *SrcTy = VL0->getOperand(0)->getType(); 4838 InstructionCost ScalarEltCost = 4839 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4840 TTI::getCastContextHint(VL0), CostKind, VL0); 4841 if (NeedToShuffleReuses) { 4842 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4843 } 4844 4845 // Calculate the cost of this instruction. 4846 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4847 4848 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4849 InstructionCost VecCost = 0; 4850 // Check if the values are candidates to demote. 4851 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4852 VecCost = CommonCost + TTI->getCastInstrCost( 4853 E->getOpcode(), VecTy, SrcVecTy, 4854 TTI::getCastContextHint(VL0), CostKind, VL0); 4855 } 4856 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4857 return VecCost - ScalarCost; 4858 } 4859 case Instruction::FCmp: 4860 case Instruction::ICmp: 4861 case Instruction::Select: { 4862 // Calculate the cost of this instruction. 4863 InstructionCost ScalarEltCost = 4864 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4865 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4866 if (NeedToShuffleReuses) { 4867 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4868 } 4869 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4870 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4871 4872 // Check if all entries in VL are either compares or selects with compares 4873 // as condition that have the same predicates. 4874 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4875 bool First = true; 4876 for (auto *V : VL) { 4877 CmpInst::Predicate CurrentPred; 4878 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4879 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4880 !match(V, MatchCmp)) || 4881 (!First && VecPred != CurrentPred)) { 4882 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4883 break; 4884 } 4885 First = false; 4886 VecPred = CurrentPred; 4887 } 4888 4889 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4890 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4891 // Check if it is possible and profitable to use min/max for selects in 4892 // VL. 4893 // 4894 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4895 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4896 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4897 {VecTy, VecTy}); 4898 InstructionCost IntrinsicCost = 4899 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4900 // If the selects are the only uses of the compares, they will be dead 4901 // and we can adjust the cost by removing their cost. 4902 if (IntrinsicAndUse.second) 4903 IntrinsicCost -= 4904 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4905 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4906 VecCost = std::min(VecCost, IntrinsicCost); 4907 } 4908 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4909 return CommonCost + VecCost - ScalarCost; 4910 } 4911 case Instruction::FNeg: 4912 case Instruction::Add: 4913 case Instruction::FAdd: 4914 case Instruction::Sub: 4915 case Instruction::FSub: 4916 case Instruction::Mul: 4917 case Instruction::FMul: 4918 case Instruction::UDiv: 4919 case Instruction::SDiv: 4920 case Instruction::FDiv: 4921 case Instruction::URem: 4922 case Instruction::SRem: 4923 case Instruction::FRem: 4924 case Instruction::Shl: 4925 case Instruction::LShr: 4926 case Instruction::AShr: 4927 case Instruction::And: 4928 case Instruction::Or: 4929 case Instruction::Xor: { 4930 // Certain instructions can be cheaper to vectorize if they have a 4931 // constant second vector operand. 4932 TargetTransformInfo::OperandValueKind Op1VK = 4933 TargetTransformInfo::OK_AnyValue; 4934 TargetTransformInfo::OperandValueKind Op2VK = 4935 TargetTransformInfo::OK_UniformConstantValue; 4936 TargetTransformInfo::OperandValueProperties Op1VP = 4937 TargetTransformInfo::OP_None; 4938 TargetTransformInfo::OperandValueProperties Op2VP = 4939 TargetTransformInfo::OP_PowerOf2; 4940 4941 // If all operands are exactly the same ConstantInt then set the 4942 // operand kind to OK_UniformConstantValue. 4943 // If instead not all operands are constants, then set the operand kind 4944 // to OK_AnyValue. If all operands are constants but not the same, 4945 // then set the operand kind to OK_NonUniformConstantValue. 4946 ConstantInt *CInt0 = nullptr; 4947 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4948 const Instruction *I = cast<Instruction>(VL[i]); 4949 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4950 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4951 if (!CInt) { 4952 Op2VK = TargetTransformInfo::OK_AnyValue; 4953 Op2VP = TargetTransformInfo::OP_None; 4954 break; 4955 } 4956 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4957 !CInt->getValue().isPowerOf2()) 4958 Op2VP = TargetTransformInfo::OP_None; 4959 if (i == 0) { 4960 CInt0 = CInt; 4961 continue; 4962 } 4963 if (CInt0 != CInt) 4964 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4965 } 4966 4967 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4968 InstructionCost ScalarEltCost = 4969 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4970 Op2VK, Op1VP, Op2VP, Operands, VL0); 4971 if (NeedToShuffleReuses) { 4972 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4973 } 4974 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4975 InstructionCost VecCost = 4976 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4977 Op2VK, Op1VP, Op2VP, Operands, VL0); 4978 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4979 return CommonCost + VecCost - ScalarCost; 4980 } 4981 case Instruction::GetElementPtr: { 4982 TargetTransformInfo::OperandValueKind Op1VK = 4983 TargetTransformInfo::OK_AnyValue; 4984 TargetTransformInfo::OperandValueKind Op2VK = 4985 TargetTransformInfo::OK_UniformConstantValue; 4986 4987 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4988 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4989 if (NeedToShuffleReuses) { 4990 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4991 } 4992 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4993 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4994 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4995 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4996 return CommonCost + VecCost - ScalarCost; 4997 } 4998 case Instruction::Load: { 4999 // Cost of wide load - cost of scalar loads. 5000 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5001 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5002 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5003 if (NeedToShuffleReuses) { 5004 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5005 } 5006 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5007 InstructionCost VecLdCost; 5008 if (E->State == TreeEntry::Vectorize) { 5009 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5010 CostKind, VL0); 5011 } else { 5012 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5013 Align CommonAlignment = Alignment; 5014 for (Value *V : VL) 5015 CommonAlignment = 5016 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5017 VecLdCost = TTI->getGatherScatterOpCost( 5018 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5019 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5020 } 5021 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5022 return CommonCost + VecLdCost - ScalarLdCost; 5023 } 5024 case Instruction::Store: { 5025 // We know that we can merge the stores. Calculate the cost. 5026 bool IsReorder = !E->ReorderIndices.empty(); 5027 auto *SI = 5028 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5029 Align Alignment = SI->getAlign(); 5030 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5031 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5032 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5033 InstructionCost VecStCost = TTI->getMemoryOpCost( 5034 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5035 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5036 return CommonCost + VecStCost - ScalarStCost; 5037 } 5038 case Instruction::Call: { 5039 CallInst *CI = cast<CallInst>(VL0); 5040 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5041 5042 // Calculate the cost of the scalar and vector calls. 5043 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5044 InstructionCost ScalarEltCost = 5045 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5046 if (NeedToShuffleReuses) { 5047 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5048 } 5049 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5050 5051 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5052 InstructionCost VecCallCost = 5053 std::min(VecCallCosts.first, VecCallCosts.second); 5054 5055 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5056 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5057 << " for " << *CI << "\n"); 5058 5059 return CommonCost + VecCallCost - ScalarCallCost; 5060 } 5061 case Instruction::ShuffleVector: { 5062 assert(E->isAltShuffle() && 5063 ((Instruction::isBinaryOp(E->getOpcode()) && 5064 Instruction::isBinaryOp(E->getAltOpcode())) || 5065 (Instruction::isCast(E->getOpcode()) && 5066 Instruction::isCast(E->getAltOpcode()))) && 5067 "Invalid Shuffle Vector Operand"); 5068 InstructionCost ScalarCost = 0; 5069 if (NeedToShuffleReuses) { 5070 for (unsigned Idx : E->ReuseShuffleIndices) { 5071 Instruction *I = cast<Instruction>(VL[Idx]); 5072 CommonCost -= TTI->getInstructionCost(I, CostKind); 5073 } 5074 for (Value *V : VL) { 5075 Instruction *I = cast<Instruction>(V); 5076 CommonCost += TTI->getInstructionCost(I, CostKind); 5077 } 5078 } 5079 for (Value *V : VL) { 5080 Instruction *I = cast<Instruction>(V); 5081 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5082 ScalarCost += TTI->getInstructionCost(I, CostKind); 5083 } 5084 // VecCost is equal to sum of the cost of creating 2 vectors 5085 // and the cost of creating shuffle. 5086 InstructionCost VecCost = 0; 5087 // Try to find the previous shuffle node with the same operands and same 5088 // main/alternate ops. 5089 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5090 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5091 if (TE.get() == E) 5092 break; 5093 if (TE->isAltShuffle() && 5094 ((TE->getOpcode() == E->getOpcode() && 5095 TE->getAltOpcode() == E->getAltOpcode()) || 5096 (TE->getOpcode() == E->getAltOpcode() && 5097 TE->getAltOpcode() == E->getOpcode())) && 5098 TE->hasEqualOperands(*E)) 5099 return true; 5100 } 5101 return false; 5102 }; 5103 if (TryFindNodeWithEqualOperands()) { 5104 LLVM_DEBUG({ 5105 dbgs() << "SLP: diamond match for alternate node found.\n"; 5106 E->dump(); 5107 }); 5108 // No need to add new vector costs here since we're going to reuse 5109 // same main/alternate vector ops, just do different shuffling. 5110 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5111 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5112 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5113 CostKind); 5114 } else { 5115 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5116 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5117 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5118 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5119 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5120 TTI::CastContextHint::None, CostKind); 5121 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5122 TTI::CastContextHint::None, CostKind); 5123 } 5124 5125 SmallVector<int> Mask; 5126 buildSuffleEntryMask( 5127 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5128 [E](Instruction *I) { 5129 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5130 return I->getOpcode() == E->getAltOpcode(); 5131 }, 5132 Mask); 5133 CommonCost = 5134 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5135 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5136 return CommonCost + VecCost - ScalarCost; 5137 } 5138 default: 5139 llvm_unreachable("Unknown instruction"); 5140 } 5141 } 5142 5143 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5144 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5145 << VectorizableTree.size() << " is fully vectorizable .\n"); 5146 5147 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5148 SmallVector<int> Mask; 5149 return TE->State == TreeEntry::NeedToGather && 5150 !any_of(TE->Scalars, 5151 [this](Value *V) { return EphValues.contains(V); }) && 5152 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5153 TE->Scalars.size() < Limit || 5154 ((TE->getOpcode() == Instruction::ExtractElement || 5155 all_of(TE->Scalars, 5156 [](Value *V) { 5157 return isa<ExtractElementInst, UndefValue>(V); 5158 })) && 5159 isFixedVectorShuffle(TE->Scalars, Mask)) || 5160 (TE->State == TreeEntry::NeedToGather && 5161 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5162 }; 5163 5164 // We only handle trees of heights 1 and 2. 5165 if (VectorizableTree.size() == 1 && 5166 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5167 (ForReduction && 5168 AreVectorizableGathers(VectorizableTree[0].get(), 5169 VectorizableTree[0]->Scalars.size()) && 5170 VectorizableTree[0]->getVectorFactor() > 2))) 5171 return true; 5172 5173 if (VectorizableTree.size() != 2) 5174 return false; 5175 5176 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5177 // with the second gather nodes if they have less scalar operands rather than 5178 // the initial tree element (may be profitable to shuffle the second gather) 5179 // or they are extractelements, which form shuffle. 5180 SmallVector<int> Mask; 5181 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5182 AreVectorizableGathers(VectorizableTree[1].get(), 5183 VectorizableTree[0]->Scalars.size())) 5184 return true; 5185 5186 // Gathering cost would be too much for tiny trees. 5187 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5188 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5189 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5190 return false; 5191 5192 return true; 5193 } 5194 5195 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5196 TargetTransformInfo *TTI, 5197 bool MustMatchOrInst) { 5198 // Look past the root to find a source value. Arbitrarily follow the 5199 // path through operand 0 of any 'or'. Also, peek through optional 5200 // shift-left-by-multiple-of-8-bits. 5201 Value *ZextLoad = Root; 5202 const APInt *ShAmtC; 5203 bool FoundOr = false; 5204 while (!isa<ConstantExpr>(ZextLoad) && 5205 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5206 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5207 ShAmtC->urem(8) == 0))) { 5208 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5209 ZextLoad = BinOp->getOperand(0); 5210 if (BinOp->getOpcode() == Instruction::Or) 5211 FoundOr = true; 5212 } 5213 // Check if the input is an extended load of the required or/shift expression. 5214 Value *LoadPtr; 5215 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5216 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5217 return false; 5218 5219 // Require that the total load bit width is a legal integer type. 5220 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5221 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5222 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5223 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5224 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5225 return false; 5226 5227 // Everything matched - assume that we can fold the whole sequence using 5228 // load combining. 5229 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5230 << *(cast<Instruction>(Root)) << "\n"); 5231 5232 return true; 5233 } 5234 5235 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5236 if (RdxKind != RecurKind::Or) 5237 return false; 5238 5239 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5240 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5241 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5242 /* MatchOr */ false); 5243 } 5244 5245 bool BoUpSLP::isLoadCombineCandidate() const { 5246 // Peek through a final sequence of stores and check if all operations are 5247 // likely to be load-combined. 5248 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5249 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5250 Value *X; 5251 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5252 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5253 return false; 5254 } 5255 return true; 5256 } 5257 5258 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5259 // No need to vectorize inserts of gathered values. 5260 if (VectorizableTree.size() == 2 && 5261 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5262 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5263 return true; 5264 5265 // We can vectorize the tree if its size is greater than or equal to the 5266 // minimum size specified by the MinTreeSize command line option. 5267 if (VectorizableTree.size() >= MinTreeSize) 5268 return false; 5269 5270 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5271 // can vectorize it if we can prove it fully vectorizable. 5272 if (isFullyVectorizableTinyTree(ForReduction)) 5273 return false; 5274 5275 assert(VectorizableTree.empty() 5276 ? ExternalUses.empty() 5277 : true && "We shouldn't have any external users"); 5278 5279 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5280 // vectorizable. 5281 return true; 5282 } 5283 5284 InstructionCost BoUpSLP::getSpillCost() const { 5285 // Walk from the bottom of the tree to the top, tracking which values are 5286 // live. When we see a call instruction that is not part of our tree, 5287 // query TTI to see if there is a cost to keeping values live over it 5288 // (for example, if spills and fills are required). 5289 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5290 InstructionCost Cost = 0; 5291 5292 SmallPtrSet<Instruction*, 4> LiveValues; 5293 Instruction *PrevInst = nullptr; 5294 5295 // The entries in VectorizableTree are not necessarily ordered by their 5296 // position in basic blocks. Collect them and order them by dominance so later 5297 // instructions are guaranteed to be visited first. For instructions in 5298 // different basic blocks, we only scan to the beginning of the block, so 5299 // their order does not matter, as long as all instructions in a basic block 5300 // are grouped together. Using dominance ensures a deterministic order. 5301 SmallVector<Instruction *, 16> OrderedScalars; 5302 for (const auto &TEPtr : VectorizableTree) { 5303 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5304 if (!Inst) 5305 continue; 5306 OrderedScalars.push_back(Inst); 5307 } 5308 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5309 auto *NodeA = DT->getNode(A->getParent()); 5310 auto *NodeB = DT->getNode(B->getParent()); 5311 assert(NodeA && "Should only process reachable instructions"); 5312 assert(NodeB && "Should only process reachable instructions"); 5313 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5314 "Different nodes should have different DFS numbers"); 5315 if (NodeA != NodeB) 5316 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5317 return B->comesBefore(A); 5318 }); 5319 5320 for (Instruction *Inst : OrderedScalars) { 5321 if (!PrevInst) { 5322 PrevInst = Inst; 5323 continue; 5324 } 5325 5326 // Update LiveValues. 5327 LiveValues.erase(PrevInst); 5328 for (auto &J : PrevInst->operands()) { 5329 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5330 LiveValues.insert(cast<Instruction>(&*J)); 5331 } 5332 5333 LLVM_DEBUG({ 5334 dbgs() << "SLP: #LV: " << LiveValues.size(); 5335 for (auto *X : LiveValues) 5336 dbgs() << " " << X->getName(); 5337 dbgs() << ", Looking at "; 5338 Inst->dump(); 5339 }); 5340 5341 // Now find the sequence of instructions between PrevInst and Inst. 5342 unsigned NumCalls = 0; 5343 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5344 PrevInstIt = 5345 PrevInst->getIterator().getReverse(); 5346 while (InstIt != PrevInstIt) { 5347 if (PrevInstIt == PrevInst->getParent()->rend()) { 5348 PrevInstIt = Inst->getParent()->rbegin(); 5349 continue; 5350 } 5351 5352 // Debug information does not impact spill cost. 5353 if ((isa<CallInst>(&*PrevInstIt) && 5354 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5355 &*PrevInstIt != PrevInst) 5356 NumCalls++; 5357 5358 ++PrevInstIt; 5359 } 5360 5361 if (NumCalls) { 5362 SmallVector<Type*, 4> V; 5363 for (auto *II : LiveValues) { 5364 auto *ScalarTy = II->getType(); 5365 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5366 ScalarTy = VectorTy->getElementType(); 5367 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5368 } 5369 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5370 } 5371 5372 PrevInst = Inst; 5373 } 5374 5375 return Cost; 5376 } 5377 5378 /// Check if two insertelement instructions are from the same buildvector. 5379 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5380 InsertElementInst *V) { 5381 // Instructions must be from the same basic blocks. 5382 if (VU->getParent() != V->getParent()) 5383 return false; 5384 // Checks if 2 insertelements are from the same buildvector. 5385 if (VU->getType() != V->getType()) 5386 return false; 5387 // Multiple used inserts are separate nodes. 5388 if (!VU->hasOneUse() && !V->hasOneUse()) 5389 return false; 5390 auto *IE1 = VU; 5391 auto *IE2 = V; 5392 // Go through the vector operand of insertelement instructions trying to find 5393 // either VU as the original vector for IE2 or V as the original vector for 5394 // IE1. 5395 do { 5396 if (IE2 == VU || IE1 == V) 5397 return true; 5398 if (IE1) { 5399 if (IE1 != VU && !IE1->hasOneUse()) 5400 IE1 = nullptr; 5401 else 5402 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5403 } 5404 if (IE2) { 5405 if (IE2 != V && !IE2->hasOneUse()) 5406 IE2 = nullptr; 5407 else 5408 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5409 } 5410 } while (IE1 || IE2); 5411 return false; 5412 } 5413 5414 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5415 InstructionCost Cost = 0; 5416 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5417 << VectorizableTree.size() << ".\n"); 5418 5419 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5420 5421 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5422 TreeEntry &TE = *VectorizableTree[I].get(); 5423 5424 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5425 Cost += C; 5426 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5427 << " for bundle that starts with " << *TE.Scalars[0] 5428 << ".\n" 5429 << "SLP: Current total cost = " << Cost << "\n"); 5430 } 5431 5432 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5433 InstructionCost ExtractCost = 0; 5434 SmallVector<unsigned> VF; 5435 SmallVector<SmallVector<int>> ShuffleMask; 5436 SmallVector<Value *> FirstUsers; 5437 SmallVector<APInt> DemandedElts; 5438 for (ExternalUser &EU : ExternalUses) { 5439 // We only add extract cost once for the same scalar. 5440 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5441 !ExtractCostCalculated.insert(EU.Scalar).second) 5442 continue; 5443 5444 // Uses by ephemeral values are free (because the ephemeral value will be 5445 // removed prior to code generation, and so the extraction will be 5446 // removed as well). 5447 if (EphValues.count(EU.User)) 5448 continue; 5449 5450 // No extract cost for vector "scalar" 5451 if (isa<FixedVectorType>(EU.Scalar->getType())) 5452 continue; 5453 5454 // Already counted the cost for external uses when tried to adjust the cost 5455 // for extractelements, no need to add it again. 5456 if (isa<ExtractElementInst>(EU.Scalar)) 5457 continue; 5458 5459 // If found user is an insertelement, do not calculate extract cost but try 5460 // to detect it as a final shuffled/identity match. 5461 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5462 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5463 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5464 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5465 continue; 5466 auto *It = find_if(FirstUsers, [VU](Value *V) { 5467 return areTwoInsertFromSameBuildVector(VU, 5468 cast<InsertElementInst>(V)); 5469 }); 5470 int VecId = -1; 5471 if (It == FirstUsers.end()) { 5472 VF.push_back(FTy->getNumElements()); 5473 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5474 // Find the insertvector, vectorized in tree, if any. 5475 Value *Base = VU; 5476 while (isa<InsertElementInst>(Base)) { 5477 // Build the mask for the vectorized insertelement instructions. 5478 if (const TreeEntry *E = getTreeEntry(Base)) { 5479 VU = cast<InsertElementInst>(Base); 5480 do { 5481 int Idx = E->findLaneForValue(Base); 5482 ShuffleMask.back()[Idx] = Idx; 5483 Base = cast<InsertElementInst>(Base)->getOperand(0); 5484 } while (E == getTreeEntry(Base)); 5485 break; 5486 } 5487 Base = cast<InsertElementInst>(Base)->getOperand(0); 5488 } 5489 FirstUsers.push_back(VU); 5490 DemandedElts.push_back(APInt::getZero(VF.back())); 5491 VecId = FirstUsers.size() - 1; 5492 } else { 5493 VecId = std::distance(FirstUsers.begin(), It); 5494 } 5495 int Idx = *InsertIdx; 5496 ShuffleMask[VecId][Idx] = EU.Lane; 5497 DemandedElts[VecId].setBit(Idx); 5498 continue; 5499 } 5500 } 5501 5502 // If we plan to rewrite the tree in a smaller type, we will need to sign 5503 // extend the extracted value back to the original type. Here, we account 5504 // for the extract and the added cost of the sign extend if needed. 5505 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5506 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5507 if (MinBWs.count(ScalarRoot)) { 5508 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5509 auto Extend = 5510 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5511 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5512 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5513 VecTy, EU.Lane); 5514 } else { 5515 ExtractCost += 5516 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5517 } 5518 } 5519 5520 InstructionCost SpillCost = getSpillCost(); 5521 Cost += SpillCost + ExtractCost; 5522 if (FirstUsers.size() == 1) { 5523 int Limit = ShuffleMask.front().size() * 2; 5524 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5525 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5526 InstructionCost C = TTI->getShuffleCost( 5527 TTI::SK_PermuteSingleSrc, 5528 cast<FixedVectorType>(FirstUsers.front()->getType()), 5529 ShuffleMask.front()); 5530 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5531 << " for final shuffle of insertelement external users " 5532 << *VectorizableTree.front()->Scalars.front() << ".\n" 5533 << "SLP: Current total cost = " << Cost << "\n"); 5534 Cost += C; 5535 } 5536 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5537 cast<FixedVectorType>(FirstUsers.front()->getType()), 5538 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5539 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5540 << " for insertelements gather.\n" 5541 << "SLP: Current total cost = " << Cost << "\n"); 5542 Cost -= InsertCost; 5543 } else if (FirstUsers.size() >= 2) { 5544 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5545 // Combined masks of the first 2 vectors. 5546 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5547 copy(ShuffleMask.front(), CombinedMask.begin()); 5548 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5549 auto *VecTy = FixedVectorType::get( 5550 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5551 MaxVF); 5552 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5553 if (ShuffleMask[1][I] != UndefMaskElem) { 5554 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5555 CombinedDemandedElts.setBit(I); 5556 } 5557 } 5558 InstructionCost C = 5559 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5560 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5561 << " for final shuffle of vector node and external " 5562 "insertelement users " 5563 << *VectorizableTree.front()->Scalars.front() << ".\n" 5564 << "SLP: Current total cost = " << Cost << "\n"); 5565 Cost += C; 5566 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5567 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5568 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5569 << " for insertelements gather.\n" 5570 << "SLP: Current total cost = " << Cost << "\n"); 5571 Cost -= InsertCost; 5572 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5573 // Other elements - permutation of 2 vectors (the initial one and the 5574 // next Ith incoming vector). 5575 unsigned VF = ShuffleMask[I].size(); 5576 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5577 int Mask = ShuffleMask[I][Idx]; 5578 if (Mask != UndefMaskElem) 5579 CombinedMask[Idx] = MaxVF + Mask; 5580 else if (CombinedMask[Idx] != UndefMaskElem) 5581 CombinedMask[Idx] = Idx; 5582 } 5583 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5584 if (CombinedMask[Idx] != UndefMaskElem) 5585 CombinedMask[Idx] = Idx; 5586 InstructionCost C = 5587 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5588 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5589 << " for final shuffle of vector node and external " 5590 "insertelement users " 5591 << *VectorizableTree.front()->Scalars.front() << ".\n" 5592 << "SLP: Current total cost = " << Cost << "\n"); 5593 Cost += C; 5594 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5595 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5596 /*Insert*/ true, /*Extract*/ false); 5597 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5598 << " for insertelements gather.\n" 5599 << "SLP: Current total cost = " << Cost << "\n"); 5600 Cost -= InsertCost; 5601 } 5602 } 5603 5604 #ifndef NDEBUG 5605 SmallString<256> Str; 5606 { 5607 raw_svector_ostream OS(Str); 5608 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5609 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5610 << "SLP: Total Cost = " << Cost << ".\n"; 5611 } 5612 LLVM_DEBUG(dbgs() << Str); 5613 if (ViewSLPTree) 5614 ViewGraph(this, "SLP" + F->getName(), false, Str); 5615 #endif 5616 5617 return Cost; 5618 } 5619 5620 Optional<TargetTransformInfo::ShuffleKind> 5621 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5622 SmallVectorImpl<const TreeEntry *> &Entries) { 5623 // TODO: currently checking only for Scalars in the tree entry, need to count 5624 // reused elements too for better cost estimation. 5625 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5626 Entries.clear(); 5627 // Build a lists of values to tree entries. 5628 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5629 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5630 if (EntryPtr.get() == TE) 5631 break; 5632 if (EntryPtr->State != TreeEntry::NeedToGather) 5633 continue; 5634 for (Value *V : EntryPtr->Scalars) 5635 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5636 } 5637 // Find all tree entries used by the gathered values. If no common entries 5638 // found - not a shuffle. 5639 // Here we build a set of tree nodes for each gathered value and trying to 5640 // find the intersection between these sets. If we have at least one common 5641 // tree node for each gathered value - we have just a permutation of the 5642 // single vector. If we have 2 different sets, we're in situation where we 5643 // have a permutation of 2 input vectors. 5644 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5645 DenseMap<Value *, int> UsedValuesEntry; 5646 for (Value *V : TE->Scalars) { 5647 if (isa<UndefValue>(V)) 5648 continue; 5649 // Build a list of tree entries where V is used. 5650 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5651 auto It = ValueToTEs.find(V); 5652 if (It != ValueToTEs.end()) 5653 VToTEs = It->second; 5654 if (const TreeEntry *VTE = getTreeEntry(V)) 5655 VToTEs.insert(VTE); 5656 if (VToTEs.empty()) 5657 return None; 5658 if (UsedTEs.empty()) { 5659 // The first iteration, just insert the list of nodes to vector. 5660 UsedTEs.push_back(VToTEs); 5661 } else { 5662 // Need to check if there are any previously used tree nodes which use V. 5663 // If there are no such nodes, consider that we have another one input 5664 // vector. 5665 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5666 unsigned Idx = 0; 5667 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5668 // Do we have a non-empty intersection of previously listed tree entries 5669 // and tree entries using current V? 5670 set_intersect(VToTEs, Set); 5671 if (!VToTEs.empty()) { 5672 // Yes, write the new subset and continue analysis for the next 5673 // scalar. 5674 Set.swap(VToTEs); 5675 break; 5676 } 5677 VToTEs = SavedVToTEs; 5678 ++Idx; 5679 } 5680 // No non-empty intersection found - need to add a second set of possible 5681 // source vectors. 5682 if (Idx == UsedTEs.size()) { 5683 // If the number of input vectors is greater than 2 - not a permutation, 5684 // fallback to the regular gather. 5685 if (UsedTEs.size() == 2) 5686 return None; 5687 UsedTEs.push_back(SavedVToTEs); 5688 Idx = UsedTEs.size() - 1; 5689 } 5690 UsedValuesEntry.try_emplace(V, Idx); 5691 } 5692 } 5693 5694 unsigned VF = 0; 5695 if (UsedTEs.size() == 1) { 5696 // Try to find the perfect match in another gather node at first. 5697 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5698 return EntryPtr->isSame(TE->Scalars); 5699 }); 5700 if (It != UsedTEs.front().end()) { 5701 Entries.push_back(*It); 5702 std::iota(Mask.begin(), Mask.end(), 0); 5703 return TargetTransformInfo::SK_PermuteSingleSrc; 5704 } 5705 // No perfect match, just shuffle, so choose the first tree node. 5706 Entries.push_back(*UsedTEs.front().begin()); 5707 } else { 5708 // Try to find nodes with the same vector factor. 5709 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5710 DenseMap<int, const TreeEntry *> VFToTE; 5711 for (const TreeEntry *TE : UsedTEs.front()) 5712 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5713 for (const TreeEntry *TE : UsedTEs.back()) { 5714 auto It = VFToTE.find(TE->getVectorFactor()); 5715 if (It != VFToTE.end()) { 5716 VF = It->first; 5717 Entries.push_back(It->second); 5718 Entries.push_back(TE); 5719 break; 5720 } 5721 } 5722 // No 2 source vectors with the same vector factor - give up and do regular 5723 // gather. 5724 if (Entries.empty()) 5725 return None; 5726 } 5727 5728 // Build a shuffle mask for better cost estimation and vector emission. 5729 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5730 Value *V = TE->Scalars[I]; 5731 if (isa<UndefValue>(V)) 5732 continue; 5733 unsigned Idx = UsedValuesEntry.lookup(V); 5734 const TreeEntry *VTE = Entries[Idx]; 5735 int FoundLane = VTE->findLaneForValue(V); 5736 Mask[I] = Idx * VF + FoundLane; 5737 // Extra check required by isSingleSourceMaskImpl function (called by 5738 // ShuffleVectorInst::isSingleSourceMask). 5739 if (Mask[I] >= 2 * E) 5740 return None; 5741 } 5742 switch (Entries.size()) { 5743 case 1: 5744 return TargetTransformInfo::SK_PermuteSingleSrc; 5745 case 2: 5746 return TargetTransformInfo::SK_PermuteTwoSrc; 5747 default: 5748 break; 5749 } 5750 return None; 5751 } 5752 5753 InstructionCost 5754 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5755 const DenseSet<unsigned> &ShuffledIndices, 5756 bool NeedToShuffle) const { 5757 unsigned NumElts = Ty->getNumElements(); 5758 APInt DemandedElts = APInt::getZero(NumElts); 5759 for (unsigned I = 0; I < NumElts; ++I) 5760 if (!ShuffledIndices.count(I)) 5761 DemandedElts.setBit(I); 5762 InstructionCost Cost = 5763 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5764 /*Extract*/ false); 5765 if (NeedToShuffle) 5766 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5767 return Cost; 5768 } 5769 5770 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5771 // Find the type of the operands in VL. 5772 Type *ScalarTy = VL[0]->getType(); 5773 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5774 ScalarTy = SI->getValueOperand()->getType(); 5775 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5776 bool DuplicateNonConst = false; 5777 // Find the cost of inserting/extracting values from the vector. 5778 // Check if the same elements are inserted several times and count them as 5779 // shuffle candidates. 5780 DenseSet<unsigned> ShuffledElements; 5781 DenseSet<Value *> UniqueElements; 5782 // Iterate in reverse order to consider insert elements with the high cost. 5783 for (unsigned I = VL.size(); I > 0; --I) { 5784 unsigned Idx = I - 1; 5785 // No need to shuffle duplicates for constants. 5786 if (isConstant(VL[Idx])) { 5787 ShuffledElements.insert(Idx); 5788 continue; 5789 } 5790 if (!UniqueElements.insert(VL[Idx]).second) { 5791 DuplicateNonConst = true; 5792 ShuffledElements.insert(Idx); 5793 } 5794 } 5795 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5796 } 5797 5798 // Perform operand reordering on the instructions in VL and return the reordered 5799 // operands in Left and Right. 5800 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5801 SmallVectorImpl<Value *> &Left, 5802 SmallVectorImpl<Value *> &Right, 5803 const DataLayout &DL, 5804 ScalarEvolution &SE, 5805 const BoUpSLP &R) { 5806 if (VL.empty()) 5807 return; 5808 VLOperands Ops(VL, DL, SE, R); 5809 // Reorder the operands in place. 5810 Ops.reorder(); 5811 Left = Ops.getVL(0); 5812 Right = Ops.getVL(1); 5813 } 5814 5815 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5816 // Get the basic block this bundle is in. All instructions in the bundle 5817 // should be in this block. 5818 auto *Front = E->getMainOp(); 5819 auto *BB = Front->getParent(); 5820 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5821 auto *I = cast<Instruction>(V); 5822 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5823 })); 5824 5825 // The last instruction in the bundle in program order. 5826 Instruction *LastInst = nullptr; 5827 5828 // Find the last instruction. The common case should be that BB has been 5829 // scheduled, and the last instruction is VL.back(). So we start with 5830 // VL.back() and iterate over schedule data until we reach the end of the 5831 // bundle. The end of the bundle is marked by null ScheduleData. 5832 if (BlocksSchedules.count(BB)) { 5833 auto *Bundle = 5834 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5835 if (Bundle && Bundle->isPartOfBundle()) 5836 for (; Bundle; Bundle = Bundle->NextInBundle) 5837 if (Bundle->OpValue == Bundle->Inst) 5838 LastInst = Bundle->Inst; 5839 } 5840 5841 // LastInst can still be null at this point if there's either not an entry 5842 // for BB in BlocksSchedules or there's no ScheduleData available for 5843 // VL.back(). This can be the case if buildTree_rec aborts for various 5844 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5845 // size is reached, etc.). ScheduleData is initialized in the scheduling 5846 // "dry-run". 5847 // 5848 // If this happens, we can still find the last instruction by brute force. We 5849 // iterate forwards from Front (inclusive) until we either see all 5850 // instructions in the bundle or reach the end of the block. If Front is the 5851 // last instruction in program order, LastInst will be set to Front, and we 5852 // will visit all the remaining instructions in the block. 5853 // 5854 // One of the reasons we exit early from buildTree_rec is to place an upper 5855 // bound on compile-time. Thus, taking an additional compile-time hit here is 5856 // not ideal. However, this should be exceedingly rare since it requires that 5857 // we both exit early from buildTree_rec and that the bundle be out-of-order 5858 // (causing us to iterate all the way to the end of the block). 5859 if (!LastInst) { 5860 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5861 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5862 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5863 LastInst = &I; 5864 if (Bundle.empty()) 5865 break; 5866 } 5867 } 5868 assert(LastInst && "Failed to find last instruction in bundle"); 5869 5870 // Set the insertion point after the last instruction in the bundle. Set the 5871 // debug location to Front. 5872 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5873 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5874 } 5875 5876 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5877 // List of instructions/lanes from current block and/or the blocks which are 5878 // part of the current loop. These instructions will be inserted at the end to 5879 // make it possible to optimize loops and hoist invariant instructions out of 5880 // the loops body with better chances for success. 5881 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5882 SmallSet<int, 4> PostponedIndices; 5883 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5884 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5885 SmallPtrSet<BasicBlock *, 4> Visited; 5886 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5887 InsertBB = InsertBB->getSinglePredecessor(); 5888 return InsertBB && InsertBB == InstBB; 5889 }; 5890 for (int I = 0, E = VL.size(); I < E; ++I) { 5891 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5892 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5893 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5894 PostponedIndices.insert(I).second) 5895 PostponedInsts.emplace_back(Inst, I); 5896 } 5897 5898 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5899 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5900 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5901 if (!InsElt) 5902 return Vec; 5903 GatherShuffleSeq.insert(InsElt); 5904 CSEBlocks.insert(InsElt->getParent()); 5905 // Add to our 'need-to-extract' list. 5906 if (TreeEntry *Entry = getTreeEntry(V)) { 5907 // Find which lane we need to extract. 5908 unsigned FoundLane = Entry->findLaneForValue(V); 5909 ExternalUses.emplace_back(V, InsElt, FoundLane); 5910 } 5911 return Vec; 5912 }; 5913 Value *Val0 = 5914 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5915 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5916 Value *Vec = PoisonValue::get(VecTy); 5917 SmallVector<int> NonConsts; 5918 // Insert constant values at first. 5919 for (int I = 0, E = VL.size(); I < E; ++I) { 5920 if (PostponedIndices.contains(I)) 5921 continue; 5922 if (!isConstant(VL[I])) { 5923 NonConsts.push_back(I); 5924 continue; 5925 } 5926 Vec = CreateInsertElement(Vec, VL[I], I); 5927 } 5928 // Insert non-constant values. 5929 for (int I : NonConsts) 5930 Vec = CreateInsertElement(Vec, VL[I], I); 5931 // Append instructions, which are/may be part of the loop, in the end to make 5932 // it possible to hoist non-loop-based instructions. 5933 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5934 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5935 5936 return Vec; 5937 } 5938 5939 namespace { 5940 /// Merges shuffle masks and emits final shuffle instruction, if required. 5941 class ShuffleInstructionBuilder { 5942 IRBuilderBase &Builder; 5943 const unsigned VF = 0; 5944 bool IsFinalized = false; 5945 SmallVector<int, 4> Mask; 5946 /// Holds all of the instructions that we gathered. 5947 SetVector<Instruction *> &GatherShuffleSeq; 5948 /// A list of blocks that we are going to CSE. 5949 SetVector<BasicBlock *> &CSEBlocks; 5950 5951 public: 5952 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 5953 SetVector<Instruction *> &GatherShuffleSeq, 5954 SetVector<BasicBlock *> &CSEBlocks) 5955 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 5956 CSEBlocks(CSEBlocks) {} 5957 5958 /// Adds a mask, inverting it before applying. 5959 void addInversedMask(ArrayRef<unsigned> SubMask) { 5960 if (SubMask.empty()) 5961 return; 5962 SmallVector<int, 4> NewMask; 5963 inversePermutation(SubMask, NewMask); 5964 addMask(NewMask); 5965 } 5966 5967 /// Functions adds masks, merging them into single one. 5968 void addMask(ArrayRef<unsigned> SubMask) { 5969 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5970 addMask(NewMask); 5971 } 5972 5973 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5974 5975 Value *finalize(Value *V) { 5976 IsFinalized = true; 5977 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5978 if (VF == ValueVF && Mask.empty()) 5979 return V; 5980 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5981 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5982 addMask(NormalizedMask); 5983 5984 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5985 return V; 5986 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 5987 if (auto *I = dyn_cast<Instruction>(Vec)) { 5988 GatherShuffleSeq.insert(I); 5989 CSEBlocks.insert(I->getParent()); 5990 } 5991 return Vec; 5992 } 5993 5994 ~ShuffleInstructionBuilder() { 5995 assert((IsFinalized || Mask.empty()) && 5996 "Shuffle construction must be finalized."); 5997 } 5998 }; 5999 } // namespace 6000 6001 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6002 unsigned VF = VL.size(); 6003 InstructionsState S = getSameOpcode(VL); 6004 if (S.getOpcode()) { 6005 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6006 if (E->isSame(VL)) { 6007 Value *V = vectorizeTree(E); 6008 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6009 if (!E->ReuseShuffleIndices.empty()) { 6010 // Reshuffle to get only unique values. 6011 // If some of the scalars are duplicated in the vectorization tree 6012 // entry, we do not vectorize them but instead generate a mask for 6013 // the reuses. But if there are several users of the same entry, 6014 // they may have different vectorization factors. This is especially 6015 // important for PHI nodes. In this case, we need to adapt the 6016 // resulting instruction for the user vectorization factor and have 6017 // to reshuffle it again to take only unique elements of the vector. 6018 // Without this code the function incorrectly returns reduced vector 6019 // instruction with the same elements, not with the unique ones. 6020 6021 // block: 6022 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6023 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6024 // ... (use %2) 6025 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6026 // br %block 6027 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6028 SmallSet<int, 4> UsedIdxs; 6029 int Pos = 0; 6030 int Sz = VL.size(); 6031 for (int Idx : E->ReuseShuffleIndices) { 6032 if (Idx != Sz && Idx != UndefMaskElem && 6033 UsedIdxs.insert(Idx).second) 6034 UniqueIdxs[Idx] = Pos; 6035 ++Pos; 6036 } 6037 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6038 "less than original vector size."); 6039 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6040 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6041 } else { 6042 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6043 "Expected vectorization factor less " 6044 "than original vector size."); 6045 SmallVector<int> UniformMask(VF, 0); 6046 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6047 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6048 } 6049 if (auto *I = dyn_cast<Instruction>(V)) { 6050 GatherShuffleSeq.insert(I); 6051 CSEBlocks.insert(I->getParent()); 6052 } 6053 } 6054 return V; 6055 } 6056 } 6057 6058 // Check that every instruction appears once in this bundle. 6059 SmallVector<int> ReuseShuffleIndicies; 6060 SmallVector<Value *> UniqueValues; 6061 if (VL.size() > 2) { 6062 DenseMap<Value *, unsigned> UniquePositions; 6063 unsigned NumValues = 6064 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6065 return !isa<UndefValue>(V); 6066 }).base()); 6067 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6068 int UniqueVals = 0; 6069 for (Value *V : VL.drop_back(VL.size() - VF)) { 6070 if (isa<UndefValue>(V)) { 6071 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6072 continue; 6073 } 6074 if (isConstant(V)) { 6075 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6076 UniqueValues.emplace_back(V); 6077 continue; 6078 } 6079 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6080 ReuseShuffleIndicies.emplace_back(Res.first->second); 6081 if (Res.second) { 6082 UniqueValues.emplace_back(V); 6083 ++UniqueVals; 6084 } 6085 } 6086 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6087 // Emit pure splat vector. 6088 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6089 UndefMaskElem); 6090 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6091 ReuseShuffleIndicies.clear(); 6092 UniqueValues.clear(); 6093 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6094 } 6095 UniqueValues.append(VF - UniqueValues.size(), 6096 PoisonValue::get(VL[0]->getType())); 6097 VL = UniqueValues; 6098 } 6099 6100 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6101 CSEBlocks); 6102 Value *Vec = gather(VL); 6103 if (!ReuseShuffleIndicies.empty()) { 6104 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6105 Vec = ShuffleBuilder.finalize(Vec); 6106 } 6107 return Vec; 6108 } 6109 6110 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6111 IRBuilder<>::InsertPointGuard Guard(Builder); 6112 6113 if (E->VectorizedValue) { 6114 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6115 return E->VectorizedValue; 6116 } 6117 6118 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6119 unsigned VF = E->getVectorFactor(); 6120 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6121 CSEBlocks); 6122 if (E->State == TreeEntry::NeedToGather) { 6123 if (E->getMainOp()) 6124 setInsertPointAfterBundle(E); 6125 Value *Vec; 6126 SmallVector<int> Mask; 6127 SmallVector<const TreeEntry *> Entries; 6128 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6129 isGatherShuffledEntry(E, Mask, Entries); 6130 if (Shuffle.hasValue()) { 6131 assert((Entries.size() == 1 || Entries.size() == 2) && 6132 "Expected shuffle of 1 or 2 entries."); 6133 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6134 Entries.back()->VectorizedValue, Mask); 6135 if (auto *I = dyn_cast<Instruction>(Vec)) { 6136 GatherShuffleSeq.insert(I); 6137 CSEBlocks.insert(I->getParent()); 6138 } 6139 } else { 6140 Vec = gather(E->Scalars); 6141 } 6142 if (NeedToShuffleReuses) { 6143 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6144 Vec = ShuffleBuilder.finalize(Vec); 6145 } 6146 E->VectorizedValue = Vec; 6147 return Vec; 6148 } 6149 6150 assert((E->State == TreeEntry::Vectorize || 6151 E->State == TreeEntry::ScatterVectorize) && 6152 "Unhandled state"); 6153 unsigned ShuffleOrOp = 6154 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6155 Instruction *VL0 = E->getMainOp(); 6156 Type *ScalarTy = VL0->getType(); 6157 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6158 ScalarTy = Store->getValueOperand()->getType(); 6159 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6160 ScalarTy = IE->getOperand(1)->getType(); 6161 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6162 switch (ShuffleOrOp) { 6163 case Instruction::PHI: { 6164 assert( 6165 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6166 "PHI reordering is free."); 6167 auto *PH = cast<PHINode>(VL0); 6168 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6169 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6170 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6171 Value *V = NewPhi; 6172 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6173 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6174 V = ShuffleBuilder.finalize(V); 6175 6176 E->VectorizedValue = V; 6177 6178 // PHINodes may have multiple entries from the same block. We want to 6179 // visit every block once. 6180 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6181 6182 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6183 ValueList Operands; 6184 BasicBlock *IBB = PH->getIncomingBlock(i); 6185 6186 if (!VisitedBBs.insert(IBB).second) { 6187 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6188 continue; 6189 } 6190 6191 Builder.SetInsertPoint(IBB->getTerminator()); 6192 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6193 Value *Vec = vectorizeTree(E->getOperand(i)); 6194 NewPhi->addIncoming(Vec, IBB); 6195 } 6196 6197 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6198 "Invalid number of incoming values"); 6199 return V; 6200 } 6201 6202 case Instruction::ExtractElement: { 6203 Value *V = E->getSingleOperand(0); 6204 Builder.SetInsertPoint(VL0); 6205 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6206 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6207 V = ShuffleBuilder.finalize(V); 6208 E->VectorizedValue = V; 6209 return V; 6210 } 6211 case Instruction::ExtractValue: { 6212 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6213 Builder.SetInsertPoint(LI); 6214 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6215 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6216 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6217 Value *NewV = propagateMetadata(V, E->Scalars); 6218 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6219 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6220 NewV = ShuffleBuilder.finalize(NewV); 6221 E->VectorizedValue = NewV; 6222 return NewV; 6223 } 6224 case Instruction::InsertElement: { 6225 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6226 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6227 Value *V = vectorizeTree(E->getOperand(1)); 6228 6229 // Create InsertVector shuffle if necessary 6230 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6231 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6232 })); 6233 const unsigned NumElts = 6234 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6235 const unsigned NumScalars = E->Scalars.size(); 6236 6237 unsigned Offset = *getInsertIndex(VL0, 0); 6238 assert(Offset < NumElts && "Failed to find vector index offset"); 6239 6240 // Create shuffle to resize vector 6241 SmallVector<int> Mask; 6242 if (!E->ReorderIndices.empty()) { 6243 inversePermutation(E->ReorderIndices, Mask); 6244 Mask.append(NumElts - NumScalars, UndefMaskElem); 6245 } else { 6246 Mask.assign(NumElts, UndefMaskElem); 6247 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6248 } 6249 // Create InsertVector shuffle if necessary 6250 bool IsIdentity = true; 6251 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6252 Mask.swap(PrevMask); 6253 for (unsigned I = 0; I < NumScalars; ++I) { 6254 Value *Scalar = E->Scalars[PrevMask[I]]; 6255 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6256 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6257 continue; 6258 IsIdentity &= *InsertIdx - Offset == I; 6259 Mask[*InsertIdx - Offset] = I; 6260 } 6261 if (!IsIdentity || NumElts != NumScalars) { 6262 V = Builder.CreateShuffleVector(V, Mask); 6263 if (auto *I = dyn_cast<Instruction>(V)) { 6264 GatherShuffleSeq.insert(I); 6265 CSEBlocks.insert(I->getParent()); 6266 } 6267 } 6268 6269 if ((!IsIdentity || Offset != 0 || 6270 !isUndefVector(FirstInsert->getOperand(0))) && 6271 NumElts != NumScalars) { 6272 SmallVector<int> InsertMask(NumElts); 6273 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6274 for (unsigned I = 0; I < NumElts; I++) { 6275 if (Mask[I] != UndefMaskElem) 6276 InsertMask[Offset + I] = NumElts + I; 6277 } 6278 6279 V = Builder.CreateShuffleVector( 6280 FirstInsert->getOperand(0), V, InsertMask, 6281 cast<Instruction>(E->Scalars.back())->getName()); 6282 if (auto *I = dyn_cast<Instruction>(V)) { 6283 GatherShuffleSeq.insert(I); 6284 CSEBlocks.insert(I->getParent()); 6285 } 6286 } 6287 6288 ++NumVectorInstructions; 6289 E->VectorizedValue = V; 6290 return V; 6291 } 6292 case Instruction::ZExt: 6293 case Instruction::SExt: 6294 case Instruction::FPToUI: 6295 case Instruction::FPToSI: 6296 case Instruction::FPExt: 6297 case Instruction::PtrToInt: 6298 case Instruction::IntToPtr: 6299 case Instruction::SIToFP: 6300 case Instruction::UIToFP: 6301 case Instruction::Trunc: 6302 case Instruction::FPTrunc: 6303 case Instruction::BitCast: { 6304 setInsertPointAfterBundle(E); 6305 6306 Value *InVec = vectorizeTree(E->getOperand(0)); 6307 6308 if (E->VectorizedValue) { 6309 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6310 return E->VectorizedValue; 6311 } 6312 6313 auto *CI = cast<CastInst>(VL0); 6314 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6315 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6316 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6317 V = ShuffleBuilder.finalize(V); 6318 6319 E->VectorizedValue = V; 6320 ++NumVectorInstructions; 6321 return V; 6322 } 6323 case Instruction::FCmp: 6324 case Instruction::ICmp: { 6325 setInsertPointAfterBundle(E); 6326 6327 Value *L = vectorizeTree(E->getOperand(0)); 6328 Value *R = vectorizeTree(E->getOperand(1)); 6329 6330 if (E->VectorizedValue) { 6331 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6332 return E->VectorizedValue; 6333 } 6334 6335 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6336 Value *V = Builder.CreateCmp(P0, L, R); 6337 propagateIRFlags(V, E->Scalars, VL0); 6338 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6339 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6340 V = ShuffleBuilder.finalize(V); 6341 6342 E->VectorizedValue = V; 6343 ++NumVectorInstructions; 6344 return V; 6345 } 6346 case Instruction::Select: { 6347 setInsertPointAfterBundle(E); 6348 6349 Value *Cond = vectorizeTree(E->getOperand(0)); 6350 Value *True = vectorizeTree(E->getOperand(1)); 6351 Value *False = vectorizeTree(E->getOperand(2)); 6352 6353 if (E->VectorizedValue) { 6354 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6355 return E->VectorizedValue; 6356 } 6357 6358 Value *V = Builder.CreateSelect(Cond, True, False); 6359 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6360 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6361 V = ShuffleBuilder.finalize(V); 6362 6363 E->VectorizedValue = V; 6364 ++NumVectorInstructions; 6365 return V; 6366 } 6367 case Instruction::FNeg: { 6368 setInsertPointAfterBundle(E); 6369 6370 Value *Op = vectorizeTree(E->getOperand(0)); 6371 6372 if (E->VectorizedValue) { 6373 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6374 return E->VectorizedValue; 6375 } 6376 6377 Value *V = Builder.CreateUnOp( 6378 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6379 propagateIRFlags(V, E->Scalars, VL0); 6380 if (auto *I = dyn_cast<Instruction>(V)) 6381 V = propagateMetadata(I, E->Scalars); 6382 6383 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6384 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6385 V = ShuffleBuilder.finalize(V); 6386 6387 E->VectorizedValue = V; 6388 ++NumVectorInstructions; 6389 6390 return V; 6391 } 6392 case Instruction::Add: 6393 case Instruction::FAdd: 6394 case Instruction::Sub: 6395 case Instruction::FSub: 6396 case Instruction::Mul: 6397 case Instruction::FMul: 6398 case Instruction::UDiv: 6399 case Instruction::SDiv: 6400 case Instruction::FDiv: 6401 case Instruction::URem: 6402 case Instruction::SRem: 6403 case Instruction::FRem: 6404 case Instruction::Shl: 6405 case Instruction::LShr: 6406 case Instruction::AShr: 6407 case Instruction::And: 6408 case Instruction::Or: 6409 case Instruction::Xor: { 6410 setInsertPointAfterBundle(E); 6411 6412 Value *LHS = vectorizeTree(E->getOperand(0)); 6413 Value *RHS = vectorizeTree(E->getOperand(1)); 6414 6415 if (E->VectorizedValue) { 6416 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6417 return E->VectorizedValue; 6418 } 6419 6420 Value *V = Builder.CreateBinOp( 6421 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6422 RHS); 6423 propagateIRFlags(V, E->Scalars, VL0); 6424 if (auto *I = dyn_cast<Instruction>(V)) 6425 V = propagateMetadata(I, E->Scalars); 6426 6427 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6428 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6429 V = ShuffleBuilder.finalize(V); 6430 6431 E->VectorizedValue = V; 6432 ++NumVectorInstructions; 6433 6434 return V; 6435 } 6436 case Instruction::Load: { 6437 // Loads are inserted at the head of the tree because we don't want to 6438 // sink them all the way down past store instructions. 6439 setInsertPointAfterBundle(E); 6440 6441 LoadInst *LI = cast<LoadInst>(VL0); 6442 Instruction *NewLI; 6443 unsigned AS = LI->getPointerAddressSpace(); 6444 Value *PO = LI->getPointerOperand(); 6445 if (E->State == TreeEntry::Vectorize) { 6446 6447 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6448 6449 // The pointer operand uses an in-tree scalar so we add the new BitCast 6450 // to ExternalUses list to make sure that an extract will be generated 6451 // in the future. 6452 if (TreeEntry *Entry = getTreeEntry(PO)) { 6453 // Find which lane we need to extract. 6454 unsigned FoundLane = Entry->findLaneForValue(PO); 6455 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6456 } 6457 6458 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6459 } else { 6460 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6461 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6462 // Use the minimum alignment of the gathered loads. 6463 Align CommonAlignment = LI->getAlign(); 6464 for (Value *V : E->Scalars) 6465 CommonAlignment = 6466 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6467 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6468 } 6469 Value *V = propagateMetadata(NewLI, E->Scalars); 6470 6471 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6472 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6473 V = ShuffleBuilder.finalize(V); 6474 E->VectorizedValue = V; 6475 ++NumVectorInstructions; 6476 return V; 6477 } 6478 case Instruction::Store: { 6479 auto *SI = cast<StoreInst>(VL0); 6480 unsigned AS = SI->getPointerAddressSpace(); 6481 6482 setInsertPointAfterBundle(E); 6483 6484 Value *VecValue = vectorizeTree(E->getOperand(0)); 6485 ShuffleBuilder.addMask(E->ReorderIndices); 6486 VecValue = ShuffleBuilder.finalize(VecValue); 6487 6488 Value *ScalarPtr = SI->getPointerOperand(); 6489 Value *VecPtr = Builder.CreateBitCast( 6490 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6491 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6492 SI->getAlign()); 6493 6494 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6495 // ExternalUses to make sure that an extract will be generated in the 6496 // future. 6497 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6498 // Find which lane we need to extract. 6499 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6500 ExternalUses.push_back( 6501 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6502 } 6503 6504 Value *V = propagateMetadata(ST, E->Scalars); 6505 6506 E->VectorizedValue = V; 6507 ++NumVectorInstructions; 6508 return V; 6509 } 6510 case Instruction::GetElementPtr: { 6511 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6512 setInsertPointAfterBundle(E); 6513 6514 Value *Op0 = vectorizeTree(E->getOperand(0)); 6515 6516 SmallVector<Value *> OpVecs; 6517 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6518 Value *OpVec = vectorizeTree(E->getOperand(J)); 6519 OpVecs.push_back(OpVec); 6520 } 6521 6522 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6523 if (Instruction *I = dyn_cast<Instruction>(V)) 6524 V = propagateMetadata(I, E->Scalars); 6525 6526 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6527 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6528 V = ShuffleBuilder.finalize(V); 6529 6530 E->VectorizedValue = V; 6531 ++NumVectorInstructions; 6532 6533 return V; 6534 } 6535 case Instruction::Call: { 6536 CallInst *CI = cast<CallInst>(VL0); 6537 setInsertPointAfterBundle(E); 6538 6539 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6540 if (Function *FI = CI->getCalledFunction()) 6541 IID = FI->getIntrinsicID(); 6542 6543 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6544 6545 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6546 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6547 VecCallCosts.first <= VecCallCosts.second; 6548 6549 Value *ScalarArg = nullptr; 6550 std::vector<Value *> OpVecs; 6551 SmallVector<Type *, 2> TysForDecl = 6552 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6553 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6554 ValueList OpVL; 6555 // Some intrinsics have scalar arguments. This argument should not be 6556 // vectorized. 6557 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6558 CallInst *CEI = cast<CallInst>(VL0); 6559 ScalarArg = CEI->getArgOperand(j); 6560 OpVecs.push_back(CEI->getArgOperand(j)); 6561 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6562 TysForDecl.push_back(ScalarArg->getType()); 6563 continue; 6564 } 6565 6566 Value *OpVec = vectorizeTree(E->getOperand(j)); 6567 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6568 OpVecs.push_back(OpVec); 6569 } 6570 6571 Function *CF; 6572 if (!UseIntrinsic) { 6573 VFShape Shape = 6574 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6575 VecTy->getNumElements())), 6576 false /*HasGlobalPred*/); 6577 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6578 } else { 6579 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6580 } 6581 6582 SmallVector<OperandBundleDef, 1> OpBundles; 6583 CI->getOperandBundlesAsDefs(OpBundles); 6584 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6585 6586 // The scalar argument uses an in-tree scalar so we add the new vectorized 6587 // call to ExternalUses list to make sure that an extract will be 6588 // generated in the future. 6589 if (ScalarArg) { 6590 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6591 // Find which lane we need to extract. 6592 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6593 ExternalUses.push_back( 6594 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6595 } 6596 } 6597 6598 propagateIRFlags(V, E->Scalars, VL0); 6599 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6600 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6601 V = ShuffleBuilder.finalize(V); 6602 6603 E->VectorizedValue = V; 6604 ++NumVectorInstructions; 6605 return V; 6606 } 6607 case Instruction::ShuffleVector: { 6608 assert(E->isAltShuffle() && 6609 ((Instruction::isBinaryOp(E->getOpcode()) && 6610 Instruction::isBinaryOp(E->getAltOpcode())) || 6611 (Instruction::isCast(E->getOpcode()) && 6612 Instruction::isCast(E->getAltOpcode()))) && 6613 "Invalid Shuffle Vector Operand"); 6614 6615 Value *LHS = nullptr, *RHS = nullptr; 6616 if (Instruction::isBinaryOp(E->getOpcode())) { 6617 setInsertPointAfterBundle(E); 6618 LHS = vectorizeTree(E->getOperand(0)); 6619 RHS = vectorizeTree(E->getOperand(1)); 6620 } else { 6621 setInsertPointAfterBundle(E); 6622 LHS = vectorizeTree(E->getOperand(0)); 6623 } 6624 6625 if (E->VectorizedValue) { 6626 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6627 return E->VectorizedValue; 6628 } 6629 6630 Value *V0, *V1; 6631 if (Instruction::isBinaryOp(E->getOpcode())) { 6632 V0 = Builder.CreateBinOp( 6633 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6634 V1 = Builder.CreateBinOp( 6635 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6636 } else { 6637 V0 = Builder.CreateCast( 6638 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6639 V1 = Builder.CreateCast( 6640 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6641 } 6642 // Add V0 and V1 to later analysis to try to find and remove matching 6643 // instruction, if any. 6644 for (Value *V : {V0, V1}) { 6645 if (auto *I = dyn_cast<Instruction>(V)) { 6646 GatherShuffleSeq.insert(I); 6647 CSEBlocks.insert(I->getParent()); 6648 } 6649 } 6650 6651 // Create shuffle to take alternate operations from the vector. 6652 // Also, gather up main and alt scalar ops to propagate IR flags to 6653 // each vector operation. 6654 ValueList OpScalars, AltScalars; 6655 SmallVector<int> Mask; 6656 buildSuffleEntryMask( 6657 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6658 [E](Instruction *I) { 6659 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6660 return I->getOpcode() == E->getAltOpcode(); 6661 }, 6662 Mask, &OpScalars, &AltScalars); 6663 6664 propagateIRFlags(V0, OpScalars); 6665 propagateIRFlags(V1, AltScalars); 6666 6667 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6668 if (auto *I = dyn_cast<Instruction>(V)) { 6669 V = propagateMetadata(I, E->Scalars); 6670 GatherShuffleSeq.insert(I); 6671 CSEBlocks.insert(I->getParent()); 6672 } 6673 V = ShuffleBuilder.finalize(V); 6674 6675 E->VectorizedValue = V; 6676 ++NumVectorInstructions; 6677 6678 return V; 6679 } 6680 default: 6681 llvm_unreachable("unknown inst"); 6682 } 6683 return nullptr; 6684 } 6685 6686 Value *BoUpSLP::vectorizeTree() { 6687 ExtraValueToDebugLocsMap ExternallyUsedValues; 6688 return vectorizeTree(ExternallyUsedValues); 6689 } 6690 6691 Value * 6692 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6693 // All blocks must be scheduled before any instructions are inserted. 6694 for (auto &BSIter : BlocksSchedules) { 6695 scheduleBlock(BSIter.second.get()); 6696 } 6697 6698 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6699 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6700 6701 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6702 // vectorized root. InstCombine will then rewrite the entire expression. We 6703 // sign extend the extracted values below. 6704 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6705 if (MinBWs.count(ScalarRoot)) { 6706 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6707 // If current instr is a phi and not the last phi, insert it after the 6708 // last phi node. 6709 if (isa<PHINode>(I)) 6710 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6711 else 6712 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6713 } 6714 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6715 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6716 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6717 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6718 VectorizableTree[0]->VectorizedValue = Trunc; 6719 } 6720 6721 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6722 << " values .\n"); 6723 6724 // Extract all of the elements with the external uses. 6725 for (const auto &ExternalUse : ExternalUses) { 6726 Value *Scalar = ExternalUse.Scalar; 6727 llvm::User *User = ExternalUse.User; 6728 6729 // Skip users that we already RAUW. This happens when one instruction 6730 // has multiple uses of the same value. 6731 if (User && !is_contained(Scalar->users(), User)) 6732 continue; 6733 TreeEntry *E = getTreeEntry(Scalar); 6734 assert(E && "Invalid scalar"); 6735 assert(E->State != TreeEntry::NeedToGather && 6736 "Extracting from a gather list"); 6737 6738 Value *Vec = E->VectorizedValue; 6739 assert(Vec && "Can't find vectorizable value"); 6740 6741 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6742 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6743 if (Scalar->getType() != Vec->getType()) { 6744 Value *Ex; 6745 // "Reuse" the existing extract to improve final codegen. 6746 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6747 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6748 ES->getOperand(1)); 6749 } else { 6750 Ex = Builder.CreateExtractElement(Vec, Lane); 6751 } 6752 // If necessary, sign-extend or zero-extend ScalarRoot 6753 // to the larger type. 6754 if (!MinBWs.count(ScalarRoot)) 6755 return Ex; 6756 if (MinBWs[ScalarRoot].second) 6757 return Builder.CreateSExt(Ex, Scalar->getType()); 6758 return Builder.CreateZExt(Ex, Scalar->getType()); 6759 } 6760 assert(isa<FixedVectorType>(Scalar->getType()) && 6761 isa<InsertElementInst>(Scalar) && 6762 "In-tree scalar of vector type is not insertelement?"); 6763 return Vec; 6764 }; 6765 // If User == nullptr, the Scalar is used as extra arg. Generate 6766 // ExtractElement instruction and update the record for this scalar in 6767 // ExternallyUsedValues. 6768 if (!User) { 6769 assert(ExternallyUsedValues.count(Scalar) && 6770 "Scalar with nullptr as an external user must be registered in " 6771 "ExternallyUsedValues map"); 6772 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6773 Builder.SetInsertPoint(VecI->getParent(), 6774 std::next(VecI->getIterator())); 6775 } else { 6776 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6777 } 6778 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6779 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6780 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6781 auto It = ExternallyUsedValues.find(Scalar); 6782 assert(It != ExternallyUsedValues.end() && 6783 "Externally used scalar is not found in ExternallyUsedValues"); 6784 NewInstLocs.append(It->second); 6785 ExternallyUsedValues.erase(Scalar); 6786 // Required to update internally referenced instructions. 6787 Scalar->replaceAllUsesWith(NewInst); 6788 continue; 6789 } 6790 6791 // Generate extracts for out-of-tree users. 6792 // Find the insertion point for the extractelement lane. 6793 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6794 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6795 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6796 if (PH->getIncomingValue(i) == Scalar) { 6797 Instruction *IncomingTerminator = 6798 PH->getIncomingBlock(i)->getTerminator(); 6799 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6800 Builder.SetInsertPoint(VecI->getParent(), 6801 std::next(VecI->getIterator())); 6802 } else { 6803 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6804 } 6805 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6806 CSEBlocks.insert(PH->getIncomingBlock(i)); 6807 PH->setOperand(i, NewInst); 6808 } 6809 } 6810 } else { 6811 Builder.SetInsertPoint(cast<Instruction>(User)); 6812 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6813 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6814 User->replaceUsesOfWith(Scalar, NewInst); 6815 } 6816 } else { 6817 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6818 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6819 CSEBlocks.insert(&F->getEntryBlock()); 6820 User->replaceUsesOfWith(Scalar, NewInst); 6821 } 6822 6823 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6824 } 6825 6826 // For each vectorized value: 6827 for (auto &TEPtr : VectorizableTree) { 6828 TreeEntry *Entry = TEPtr.get(); 6829 6830 // No need to handle users of gathered values. 6831 if (Entry->State == TreeEntry::NeedToGather) 6832 continue; 6833 6834 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6835 6836 // For each lane: 6837 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6838 Value *Scalar = Entry->Scalars[Lane]; 6839 6840 #ifndef NDEBUG 6841 Type *Ty = Scalar->getType(); 6842 if (!Ty->isVoidTy()) { 6843 for (User *U : Scalar->users()) { 6844 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6845 6846 // It is legal to delete users in the ignorelist. 6847 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6848 (isa_and_nonnull<Instruction>(U) && 6849 isDeleted(cast<Instruction>(U)))) && 6850 "Deleting out-of-tree value"); 6851 } 6852 } 6853 #endif 6854 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6855 eraseInstruction(cast<Instruction>(Scalar)); 6856 } 6857 } 6858 6859 Builder.ClearInsertionPoint(); 6860 InstrElementSize.clear(); 6861 6862 return VectorizableTree[0]->VectorizedValue; 6863 } 6864 6865 void BoUpSLP::optimizeGatherSequence() { 6866 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 6867 << " gather sequences instructions.\n"); 6868 // LICM InsertElementInst sequences. 6869 for (Instruction *I : GatherShuffleSeq) { 6870 if (isDeleted(I)) 6871 continue; 6872 6873 // Check if this block is inside a loop. 6874 Loop *L = LI->getLoopFor(I->getParent()); 6875 if (!L) 6876 continue; 6877 6878 // Check if it has a preheader. 6879 BasicBlock *PreHeader = L->getLoopPreheader(); 6880 if (!PreHeader) 6881 continue; 6882 6883 // If the vector or the element that we insert into it are 6884 // instructions that are defined in this basic block then we can't 6885 // hoist this instruction. 6886 if (any_of(I->operands(), [L](Value *V) { 6887 auto *OpI = dyn_cast<Instruction>(V); 6888 return OpI && L->contains(OpI); 6889 })) 6890 continue; 6891 6892 // We can hoist this instruction. Move it to the pre-header. 6893 I->moveBefore(PreHeader->getTerminator()); 6894 } 6895 6896 // Make a list of all reachable blocks in our CSE queue. 6897 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6898 CSEWorkList.reserve(CSEBlocks.size()); 6899 for (BasicBlock *BB : CSEBlocks) 6900 if (DomTreeNode *N = DT->getNode(BB)) { 6901 assert(DT->isReachableFromEntry(N)); 6902 CSEWorkList.push_back(N); 6903 } 6904 6905 // Sort blocks by domination. This ensures we visit a block after all blocks 6906 // dominating it are visited. 6907 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6908 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6909 "Different nodes should have different DFS numbers"); 6910 return A->getDFSNumIn() < B->getDFSNumIn(); 6911 }); 6912 6913 // Less defined shuffles can be replaced by the more defined copies. 6914 // Between two shuffles one is less defined if it has the same vector operands 6915 // and its mask indeces are the same as in the first one or undefs. E.g. 6916 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 6917 // poison, <0, 0, 0, 0>. 6918 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 6919 SmallVectorImpl<int> &NewMask) { 6920 if (I1->getType() != I2->getType()) 6921 return false; 6922 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 6923 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 6924 if (!SI1 || !SI2) 6925 return I1->isIdenticalTo(I2); 6926 if (SI1->isIdenticalTo(SI2)) 6927 return true; 6928 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 6929 if (SI1->getOperand(I) != SI2->getOperand(I)) 6930 return false; 6931 // Check if the second instruction is more defined than the first one. 6932 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 6933 ArrayRef<int> SM1 = SI1->getShuffleMask(); 6934 // Count trailing undefs in the mask to check the final number of used 6935 // registers. 6936 unsigned LastUndefsCnt = 0; 6937 for (int I = 0, E = NewMask.size(); I < E; ++I) { 6938 if (SM1[I] == UndefMaskElem) 6939 ++LastUndefsCnt; 6940 else 6941 LastUndefsCnt = 0; 6942 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 6943 NewMask[I] != SM1[I]) 6944 return false; 6945 if (NewMask[I] == UndefMaskElem) 6946 NewMask[I] = SM1[I]; 6947 } 6948 // Check if the last undefs actually change the final number of used vector 6949 // registers. 6950 return SM1.size() - LastUndefsCnt > 1 && 6951 TTI->getNumberOfParts(SI1->getType()) == 6952 TTI->getNumberOfParts( 6953 FixedVectorType::get(SI1->getType()->getElementType(), 6954 SM1.size() - LastUndefsCnt)); 6955 }; 6956 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 6957 // instructions. TODO: We can further optimize this scan if we split the 6958 // instructions into different buckets based on the insert lane. 6959 SmallVector<Instruction *, 16> Visited; 6960 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6961 assert(*I && 6962 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6963 "Worklist not sorted properly!"); 6964 BasicBlock *BB = (*I)->getBlock(); 6965 // For all instructions in blocks containing gather sequences: 6966 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6967 if (isDeleted(&In)) 6968 continue; 6969 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6970 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 6971 continue; 6972 6973 // Check if we can replace this instruction with any of the 6974 // visited instructions. 6975 bool Replaced = false; 6976 for (Instruction *&V : Visited) { 6977 SmallVector<int> NewMask; 6978 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 6979 DT->dominates(V->getParent(), In.getParent())) { 6980 In.replaceAllUsesWith(V); 6981 eraseInstruction(&In); 6982 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 6983 if (!NewMask.empty()) 6984 SI->setShuffleMask(NewMask); 6985 Replaced = true; 6986 break; 6987 } 6988 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 6989 GatherShuffleSeq.contains(V) && 6990 IsIdenticalOrLessDefined(V, &In, NewMask) && 6991 DT->dominates(In.getParent(), V->getParent())) { 6992 In.moveAfter(V); 6993 V->replaceAllUsesWith(&In); 6994 eraseInstruction(V); 6995 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 6996 if (!NewMask.empty()) 6997 SI->setShuffleMask(NewMask); 6998 V = &In; 6999 Replaced = true; 7000 break; 7001 } 7002 } 7003 if (!Replaced) { 7004 assert(!is_contained(Visited, &In)); 7005 Visited.push_back(&In); 7006 } 7007 } 7008 } 7009 CSEBlocks.clear(); 7010 GatherShuffleSeq.clear(); 7011 } 7012 7013 // Groups the instructions to a bundle (which is then a single scheduling entity) 7014 // and schedules instructions until the bundle gets ready. 7015 Optional<BoUpSLP::ScheduleData *> 7016 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7017 const InstructionsState &S) { 7018 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7019 // instructions. 7020 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7021 return nullptr; 7022 7023 // Initialize the instruction bundle. 7024 Instruction *OldScheduleEnd = ScheduleEnd; 7025 ScheduleData *PrevInBundle = nullptr; 7026 ScheduleData *Bundle = nullptr; 7027 bool ReSchedule = false; 7028 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7029 7030 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7031 ScheduleData *Bundle) { 7032 // The scheduling region got new instructions at the lower end (or it is a 7033 // new region for the first bundle). This makes it necessary to 7034 // recalculate all dependencies. 7035 // It is seldom that this needs to be done a second time after adding the 7036 // initial bundle to the region. 7037 if (ScheduleEnd != OldScheduleEnd) { 7038 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7039 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7040 ReSchedule = true; 7041 } 7042 if (ReSchedule) { 7043 resetSchedule(); 7044 initialFillReadyList(ReadyInsts); 7045 } 7046 if (Bundle) { 7047 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7048 << " in block " << BB->getName() << "\n"); 7049 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7050 } 7051 7052 // Now try to schedule the new bundle or (if no bundle) just calculate 7053 // dependencies. As soon as the bundle is "ready" it means that there are no 7054 // cyclic dependencies and we can schedule it. Note that's important that we 7055 // don't "schedule" the bundle yet (see cancelScheduling). 7056 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7057 !ReadyInsts.empty()) { 7058 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7059 if (Picked->isSchedulingEntity() && Picked->isReady()) 7060 schedule(Picked, ReadyInsts); 7061 } 7062 }; 7063 7064 // Make sure that the scheduling region contains all 7065 // instructions of the bundle. 7066 for (Value *V : VL) { 7067 if (!extendSchedulingRegion(V, S)) { 7068 // If the scheduling region got new instructions at the lower end (or it 7069 // is a new region for the first bundle). This makes it necessary to 7070 // recalculate all dependencies. 7071 // Otherwise the compiler may crash trying to incorrectly calculate 7072 // dependencies and emit instruction in the wrong order at the actual 7073 // scheduling. 7074 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7075 return None; 7076 } 7077 } 7078 7079 for (Value *V : VL) { 7080 ScheduleData *BundleMember = getScheduleData(V); 7081 assert(BundleMember && 7082 "no ScheduleData for bundle member (maybe not in same basic block)"); 7083 if (BundleMember->IsScheduled) { 7084 // A bundle member was scheduled as single instruction before and now 7085 // needs to be scheduled as part of the bundle. We just get rid of the 7086 // existing schedule. 7087 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7088 << " was already scheduled\n"); 7089 ReSchedule = true; 7090 } 7091 assert(BundleMember->isSchedulingEntity() && 7092 "bundle member already part of other bundle"); 7093 if (PrevInBundle) { 7094 PrevInBundle->NextInBundle = BundleMember; 7095 } else { 7096 Bundle = BundleMember; 7097 } 7098 BundleMember->UnscheduledDepsInBundle = 0; 7099 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7100 7101 // Group the instructions to a bundle. 7102 BundleMember->FirstInBundle = Bundle; 7103 PrevInBundle = BundleMember; 7104 } 7105 assert(Bundle && "Failed to find schedule bundle"); 7106 TryScheduleBundle(ReSchedule, Bundle); 7107 if (!Bundle->isReady()) { 7108 cancelScheduling(VL, S.OpValue); 7109 return None; 7110 } 7111 return Bundle; 7112 } 7113 7114 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7115 Value *OpValue) { 7116 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7117 return; 7118 7119 ScheduleData *Bundle = getScheduleData(OpValue); 7120 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7121 assert(!Bundle->IsScheduled && 7122 "Can't cancel bundle which is already scheduled"); 7123 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7124 "tried to unbundle something which is not a bundle"); 7125 7126 // Un-bundle: make single instructions out of the bundle. 7127 ScheduleData *BundleMember = Bundle; 7128 while (BundleMember) { 7129 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7130 BundleMember->FirstInBundle = BundleMember; 7131 ScheduleData *Next = BundleMember->NextInBundle; 7132 BundleMember->NextInBundle = nullptr; 7133 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7134 if (BundleMember->UnscheduledDepsInBundle == 0) { 7135 ReadyInsts.insert(BundleMember); 7136 } 7137 BundleMember = Next; 7138 } 7139 } 7140 7141 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7142 // Allocate a new ScheduleData for the instruction. 7143 if (ChunkPos >= ChunkSize) { 7144 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7145 ChunkPos = 0; 7146 } 7147 return &(ScheduleDataChunks.back()[ChunkPos++]); 7148 } 7149 7150 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7151 const InstructionsState &S) { 7152 if (getScheduleData(V, isOneOf(S, V))) 7153 return true; 7154 Instruction *I = dyn_cast<Instruction>(V); 7155 assert(I && "bundle member must be an instruction"); 7156 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7157 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7158 "be scheduled"); 7159 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7160 ScheduleData *ISD = getScheduleData(I); 7161 if (!ISD) 7162 return false; 7163 assert(isInSchedulingRegion(ISD) && 7164 "ScheduleData not in scheduling region"); 7165 ScheduleData *SD = allocateScheduleDataChunks(); 7166 SD->Inst = I; 7167 SD->init(SchedulingRegionID, S.OpValue); 7168 ExtraScheduleDataMap[I][S.OpValue] = SD; 7169 return true; 7170 }; 7171 if (CheckSheduleForI(I)) 7172 return true; 7173 if (!ScheduleStart) { 7174 // It's the first instruction in the new region. 7175 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7176 ScheduleStart = I; 7177 ScheduleEnd = I->getNextNode(); 7178 if (isOneOf(S, I) != I) 7179 CheckSheduleForI(I); 7180 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7181 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7182 return true; 7183 } 7184 // Search up and down at the same time, because we don't know if the new 7185 // instruction is above or below the existing scheduling region. 7186 BasicBlock::reverse_iterator UpIter = 7187 ++ScheduleStart->getIterator().getReverse(); 7188 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7189 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7190 BasicBlock::iterator LowerEnd = BB->end(); 7191 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7192 &*DownIter != I) { 7193 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7194 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7195 return false; 7196 } 7197 7198 ++UpIter; 7199 ++DownIter; 7200 } 7201 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7202 assert(I->getParent() == ScheduleStart->getParent() && 7203 "Instruction is in wrong basic block."); 7204 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7205 ScheduleStart = I; 7206 if (isOneOf(S, I) != I) 7207 CheckSheduleForI(I); 7208 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7209 << "\n"); 7210 return true; 7211 } 7212 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7213 "Expected to reach top of the basic block or instruction down the " 7214 "lower end."); 7215 assert(I->getParent() == ScheduleEnd->getParent() && 7216 "Instruction is in wrong basic block."); 7217 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7218 nullptr); 7219 ScheduleEnd = I->getNextNode(); 7220 if (isOneOf(S, I) != I) 7221 CheckSheduleForI(I); 7222 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7223 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7224 return true; 7225 } 7226 7227 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7228 Instruction *ToI, 7229 ScheduleData *PrevLoadStore, 7230 ScheduleData *NextLoadStore) { 7231 ScheduleData *CurrentLoadStore = PrevLoadStore; 7232 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7233 ScheduleData *SD = ScheduleDataMap[I]; 7234 if (!SD) { 7235 SD = allocateScheduleDataChunks(); 7236 ScheduleDataMap[I] = SD; 7237 SD->Inst = I; 7238 } 7239 assert(!isInSchedulingRegion(SD) && 7240 "new ScheduleData already in scheduling region"); 7241 SD->init(SchedulingRegionID, I); 7242 7243 if (I->mayReadOrWriteMemory() && 7244 (!isa<IntrinsicInst>(I) || 7245 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7246 cast<IntrinsicInst>(I)->getIntrinsicID() != 7247 Intrinsic::pseudoprobe))) { 7248 // Update the linked list of memory accessing instructions. 7249 if (CurrentLoadStore) { 7250 CurrentLoadStore->NextLoadStore = SD; 7251 } else { 7252 FirstLoadStoreInRegion = SD; 7253 } 7254 CurrentLoadStore = SD; 7255 } 7256 } 7257 if (NextLoadStore) { 7258 if (CurrentLoadStore) 7259 CurrentLoadStore->NextLoadStore = NextLoadStore; 7260 } else { 7261 LastLoadStoreInRegion = CurrentLoadStore; 7262 } 7263 } 7264 7265 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7266 bool InsertInReadyList, 7267 BoUpSLP *SLP) { 7268 assert(SD->isSchedulingEntity()); 7269 7270 SmallVector<ScheduleData *, 10> WorkList; 7271 WorkList.push_back(SD); 7272 7273 while (!WorkList.empty()) { 7274 ScheduleData *SD = WorkList.pop_back_val(); 7275 7276 ScheduleData *BundleMember = SD; 7277 while (BundleMember) { 7278 assert(isInSchedulingRegion(BundleMember)); 7279 if (!BundleMember->hasValidDependencies()) { 7280 7281 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7282 << "\n"); 7283 BundleMember->Dependencies = 0; 7284 BundleMember->resetUnscheduledDeps(); 7285 7286 // Handle def-use chain dependencies. 7287 if (BundleMember->OpValue != BundleMember->Inst) { 7288 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7289 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7290 BundleMember->Dependencies++; 7291 ScheduleData *DestBundle = UseSD->FirstInBundle; 7292 if (!DestBundle->IsScheduled) 7293 BundleMember->incrementUnscheduledDeps(1); 7294 if (!DestBundle->hasValidDependencies()) 7295 WorkList.push_back(DestBundle); 7296 } 7297 } else { 7298 for (User *U : BundleMember->Inst->users()) { 7299 if (isa<Instruction>(U)) { 7300 ScheduleData *UseSD = getScheduleData(U); 7301 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7302 BundleMember->Dependencies++; 7303 ScheduleData *DestBundle = UseSD->FirstInBundle; 7304 if (!DestBundle->IsScheduled) 7305 BundleMember->incrementUnscheduledDeps(1); 7306 if (!DestBundle->hasValidDependencies()) 7307 WorkList.push_back(DestBundle); 7308 } 7309 } else { 7310 // I'm not sure if this can ever happen. But we need to be safe. 7311 // This lets the instruction/bundle never be scheduled and 7312 // eventually disable vectorization. 7313 BundleMember->Dependencies++; 7314 BundleMember->incrementUnscheduledDeps(1); 7315 } 7316 } 7317 } 7318 7319 // Handle the memory dependencies. 7320 ScheduleData *DepDest = BundleMember->NextLoadStore; 7321 if (DepDest) { 7322 Instruction *SrcInst = BundleMember->Inst; 7323 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7324 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7325 unsigned numAliased = 0; 7326 unsigned DistToSrc = 1; 7327 7328 while (DepDest) { 7329 assert(isInSchedulingRegion(DepDest)); 7330 7331 // We have two limits to reduce the complexity: 7332 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7333 // SLP->isAliased (which is the expensive part in this loop). 7334 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7335 // the whole loop (even if the loop is fast, it's quadratic). 7336 // It's important for the loop break condition (see below) to 7337 // check this limit even between two read-only instructions. 7338 if (DistToSrc >= MaxMemDepDistance || 7339 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7340 (numAliased >= AliasedCheckLimit || 7341 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7342 7343 // We increment the counter only if the locations are aliased 7344 // (instead of counting all alias checks). This gives a better 7345 // balance between reduced runtime and accurate dependencies. 7346 numAliased++; 7347 7348 DepDest->MemoryDependencies.push_back(BundleMember); 7349 BundleMember->Dependencies++; 7350 ScheduleData *DestBundle = DepDest->FirstInBundle; 7351 if (!DestBundle->IsScheduled) { 7352 BundleMember->incrementUnscheduledDeps(1); 7353 } 7354 if (!DestBundle->hasValidDependencies()) { 7355 WorkList.push_back(DestBundle); 7356 } 7357 } 7358 DepDest = DepDest->NextLoadStore; 7359 7360 // Example, explaining the loop break condition: Let's assume our 7361 // starting instruction is i0 and MaxMemDepDistance = 3. 7362 // 7363 // +--------v--v--v 7364 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7365 // +--------^--^--^ 7366 // 7367 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7368 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7369 // Previously we already added dependencies from i3 to i6,i7,i8 7370 // (because of MaxMemDepDistance). As we added a dependency from 7371 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7372 // and we can abort this loop at i6. 7373 if (DistToSrc >= 2 * MaxMemDepDistance) 7374 break; 7375 DistToSrc++; 7376 } 7377 } 7378 } 7379 BundleMember = BundleMember->NextInBundle; 7380 } 7381 if (InsertInReadyList && SD->isReady()) { 7382 ReadyInsts.push_back(SD); 7383 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7384 << "\n"); 7385 } 7386 } 7387 } 7388 7389 void BoUpSLP::BlockScheduling::resetSchedule() { 7390 assert(ScheduleStart && 7391 "tried to reset schedule on block which has not been scheduled"); 7392 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7393 doForAllOpcodes(I, [&](ScheduleData *SD) { 7394 assert(isInSchedulingRegion(SD) && 7395 "ScheduleData not in scheduling region"); 7396 SD->IsScheduled = false; 7397 SD->resetUnscheduledDeps(); 7398 }); 7399 } 7400 ReadyInsts.clear(); 7401 } 7402 7403 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7404 if (!BS->ScheduleStart) 7405 return; 7406 7407 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7408 7409 BS->resetSchedule(); 7410 7411 // For the real scheduling we use a more sophisticated ready-list: it is 7412 // sorted by the original instruction location. This lets the final schedule 7413 // be as close as possible to the original instruction order. 7414 struct ScheduleDataCompare { 7415 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7416 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7417 } 7418 }; 7419 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7420 7421 // Ensure that all dependency data is updated and fill the ready-list with 7422 // initial instructions. 7423 int Idx = 0; 7424 int NumToSchedule = 0; 7425 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7426 I = I->getNextNode()) { 7427 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7428 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7429 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7430 "scheduler and vectorizer bundle mismatch"); 7431 SD->FirstInBundle->SchedulingPriority = Idx++; 7432 if (SD->isSchedulingEntity()) { 7433 BS->calculateDependencies(SD, false, this); 7434 NumToSchedule++; 7435 } 7436 }); 7437 } 7438 BS->initialFillReadyList(ReadyInsts); 7439 7440 Instruction *LastScheduledInst = BS->ScheduleEnd; 7441 7442 // Do the "real" scheduling. 7443 while (!ReadyInsts.empty()) { 7444 ScheduleData *picked = *ReadyInsts.begin(); 7445 ReadyInsts.erase(ReadyInsts.begin()); 7446 7447 // Move the scheduled instruction(s) to their dedicated places, if not 7448 // there yet. 7449 ScheduleData *BundleMember = picked; 7450 while (BundleMember) { 7451 Instruction *pickedInst = BundleMember->Inst; 7452 if (pickedInst->getNextNode() != LastScheduledInst) { 7453 BS->BB->getInstList().remove(pickedInst); 7454 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7455 pickedInst); 7456 } 7457 LastScheduledInst = pickedInst; 7458 BundleMember = BundleMember->NextInBundle; 7459 } 7460 7461 BS->schedule(picked, ReadyInsts); 7462 NumToSchedule--; 7463 } 7464 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7465 7466 // Avoid duplicate scheduling of the block. 7467 BS->ScheduleStart = nullptr; 7468 } 7469 7470 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7471 // If V is a store, just return the width of the stored value (or value 7472 // truncated just before storing) without traversing the expression tree. 7473 // This is the common case. 7474 if (auto *Store = dyn_cast<StoreInst>(V)) { 7475 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7476 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7477 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7478 } 7479 7480 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7481 return getVectorElementSize(IEI->getOperand(1)); 7482 7483 auto E = InstrElementSize.find(V); 7484 if (E != InstrElementSize.end()) 7485 return E->second; 7486 7487 // If V is not a store, we can traverse the expression tree to find loads 7488 // that feed it. The type of the loaded value may indicate a more suitable 7489 // width than V's type. We want to base the vector element size on the width 7490 // of memory operations where possible. 7491 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7492 SmallPtrSet<Instruction *, 16> Visited; 7493 if (auto *I = dyn_cast<Instruction>(V)) { 7494 Worklist.emplace_back(I, I->getParent()); 7495 Visited.insert(I); 7496 } 7497 7498 // Traverse the expression tree in bottom-up order looking for loads. If we 7499 // encounter an instruction we don't yet handle, we give up. 7500 auto Width = 0u; 7501 while (!Worklist.empty()) { 7502 Instruction *I; 7503 BasicBlock *Parent; 7504 std::tie(I, Parent) = Worklist.pop_back_val(); 7505 7506 // We should only be looking at scalar instructions here. If the current 7507 // instruction has a vector type, skip. 7508 auto *Ty = I->getType(); 7509 if (isa<VectorType>(Ty)) 7510 continue; 7511 7512 // If the current instruction is a load, update MaxWidth to reflect the 7513 // width of the loaded value. 7514 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7515 isa<ExtractValueInst>(I)) 7516 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7517 7518 // Otherwise, we need to visit the operands of the instruction. We only 7519 // handle the interesting cases from buildTree here. If an operand is an 7520 // instruction we haven't yet visited and from the same basic block as the 7521 // user or the use is a PHI node, we add it to the worklist. 7522 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7523 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7524 isa<UnaryOperator>(I)) { 7525 for (Use &U : I->operands()) 7526 if (auto *J = dyn_cast<Instruction>(U.get())) 7527 if (Visited.insert(J).second && 7528 (isa<PHINode>(I) || J->getParent() == Parent)) 7529 Worklist.emplace_back(J, J->getParent()); 7530 } else { 7531 break; 7532 } 7533 } 7534 7535 // If we didn't encounter a memory access in the expression tree, or if we 7536 // gave up for some reason, just return the width of V. Otherwise, return the 7537 // maximum width we found. 7538 if (!Width) { 7539 if (auto *CI = dyn_cast<CmpInst>(V)) 7540 V = CI->getOperand(0); 7541 Width = DL->getTypeSizeInBits(V->getType()); 7542 } 7543 7544 for (Instruction *I : Visited) 7545 InstrElementSize[I] = Width; 7546 7547 return Width; 7548 } 7549 7550 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7551 // smaller type with a truncation. We collect the values that will be demoted 7552 // in ToDemote and additional roots that require investigating in Roots. 7553 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7554 SmallVectorImpl<Value *> &ToDemote, 7555 SmallVectorImpl<Value *> &Roots) { 7556 // We can always demote constants. 7557 if (isa<Constant>(V)) { 7558 ToDemote.push_back(V); 7559 return true; 7560 } 7561 7562 // If the value is not an instruction in the expression with only one use, it 7563 // cannot be demoted. 7564 auto *I = dyn_cast<Instruction>(V); 7565 if (!I || !I->hasOneUse() || !Expr.count(I)) 7566 return false; 7567 7568 switch (I->getOpcode()) { 7569 7570 // We can always demote truncations and extensions. Since truncations can 7571 // seed additional demotion, we save the truncated value. 7572 case Instruction::Trunc: 7573 Roots.push_back(I->getOperand(0)); 7574 break; 7575 case Instruction::ZExt: 7576 case Instruction::SExt: 7577 if (isa<ExtractElementInst>(I->getOperand(0)) || 7578 isa<InsertElementInst>(I->getOperand(0))) 7579 return false; 7580 break; 7581 7582 // We can demote certain binary operations if we can demote both of their 7583 // operands. 7584 case Instruction::Add: 7585 case Instruction::Sub: 7586 case Instruction::Mul: 7587 case Instruction::And: 7588 case Instruction::Or: 7589 case Instruction::Xor: 7590 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7591 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7592 return false; 7593 break; 7594 7595 // We can demote selects if we can demote their true and false values. 7596 case Instruction::Select: { 7597 SelectInst *SI = cast<SelectInst>(I); 7598 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7599 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7600 return false; 7601 break; 7602 } 7603 7604 // We can demote phis if we can demote all their incoming operands. Note that 7605 // we don't need to worry about cycles since we ensure single use above. 7606 case Instruction::PHI: { 7607 PHINode *PN = cast<PHINode>(I); 7608 for (Value *IncValue : PN->incoming_values()) 7609 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7610 return false; 7611 break; 7612 } 7613 7614 // Otherwise, conservatively give up. 7615 default: 7616 return false; 7617 } 7618 7619 // Record the value that we can demote. 7620 ToDemote.push_back(V); 7621 return true; 7622 } 7623 7624 void BoUpSLP::computeMinimumValueSizes() { 7625 // If there are no external uses, the expression tree must be rooted by a 7626 // store. We can't demote in-memory values, so there is nothing to do here. 7627 if (ExternalUses.empty()) 7628 return; 7629 7630 // We only attempt to truncate integer expressions. 7631 auto &TreeRoot = VectorizableTree[0]->Scalars; 7632 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7633 if (!TreeRootIT) 7634 return; 7635 7636 // If the expression is not rooted by a store, these roots should have 7637 // external uses. We will rely on InstCombine to rewrite the expression in 7638 // the narrower type. However, InstCombine only rewrites single-use values. 7639 // This means that if a tree entry other than a root is used externally, it 7640 // must have multiple uses and InstCombine will not rewrite it. The code 7641 // below ensures that only the roots are used externally. 7642 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7643 for (auto &EU : ExternalUses) 7644 if (!Expr.erase(EU.Scalar)) 7645 return; 7646 if (!Expr.empty()) 7647 return; 7648 7649 // Collect the scalar values of the vectorizable expression. We will use this 7650 // context to determine which values can be demoted. If we see a truncation, 7651 // we mark it as seeding another demotion. 7652 for (auto &EntryPtr : VectorizableTree) 7653 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7654 7655 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7656 // have a single external user that is not in the vectorizable tree. 7657 for (auto *Root : TreeRoot) 7658 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7659 return; 7660 7661 // Conservatively determine if we can actually truncate the roots of the 7662 // expression. Collect the values that can be demoted in ToDemote and 7663 // additional roots that require investigating in Roots. 7664 SmallVector<Value *, 32> ToDemote; 7665 SmallVector<Value *, 4> Roots; 7666 for (auto *Root : TreeRoot) 7667 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7668 return; 7669 7670 // The maximum bit width required to represent all the values that can be 7671 // demoted without loss of precision. It would be safe to truncate the roots 7672 // of the expression to this width. 7673 auto MaxBitWidth = 8u; 7674 7675 // We first check if all the bits of the roots are demanded. If they're not, 7676 // we can truncate the roots to this narrower type. 7677 for (auto *Root : TreeRoot) { 7678 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7679 MaxBitWidth = std::max<unsigned>( 7680 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7681 } 7682 7683 // True if the roots can be zero-extended back to their original type, rather 7684 // than sign-extended. We know that if the leading bits are not demanded, we 7685 // can safely zero-extend. So we initialize IsKnownPositive to True. 7686 bool IsKnownPositive = true; 7687 7688 // If all the bits of the roots are demanded, we can try a little harder to 7689 // compute a narrower type. This can happen, for example, if the roots are 7690 // getelementptr indices. InstCombine promotes these indices to the pointer 7691 // width. Thus, all their bits are technically demanded even though the 7692 // address computation might be vectorized in a smaller type. 7693 // 7694 // We start by looking at each entry that can be demoted. We compute the 7695 // maximum bit width required to store the scalar by using ValueTracking to 7696 // compute the number of high-order bits we can truncate. 7697 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7698 llvm::all_of(TreeRoot, [](Value *R) { 7699 assert(R->hasOneUse() && "Root should have only one use!"); 7700 return isa<GetElementPtrInst>(R->user_back()); 7701 })) { 7702 MaxBitWidth = 8u; 7703 7704 // Determine if the sign bit of all the roots is known to be zero. If not, 7705 // IsKnownPositive is set to False. 7706 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7707 KnownBits Known = computeKnownBits(R, *DL); 7708 return Known.isNonNegative(); 7709 }); 7710 7711 // Determine the maximum number of bits required to store the scalar 7712 // values. 7713 for (auto *Scalar : ToDemote) { 7714 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7715 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7716 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7717 } 7718 7719 // If we can't prove that the sign bit is zero, we must add one to the 7720 // maximum bit width to account for the unknown sign bit. This preserves 7721 // the existing sign bit so we can safely sign-extend the root back to the 7722 // original type. Otherwise, if we know the sign bit is zero, we will 7723 // zero-extend the root instead. 7724 // 7725 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7726 // one to the maximum bit width will yield a larger-than-necessary 7727 // type. In general, we need to add an extra bit only if we can't 7728 // prove that the upper bit of the original type is equal to the 7729 // upper bit of the proposed smaller type. If these two bits are the 7730 // same (either zero or one) we know that sign-extending from the 7731 // smaller type will result in the same value. Here, since we can't 7732 // yet prove this, we are just making the proposed smaller type 7733 // larger to ensure correctness. 7734 if (!IsKnownPositive) 7735 ++MaxBitWidth; 7736 } 7737 7738 // Round MaxBitWidth up to the next power-of-two. 7739 if (!isPowerOf2_64(MaxBitWidth)) 7740 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7741 7742 // If the maximum bit width we compute is less than the with of the roots' 7743 // type, we can proceed with the narrowing. Otherwise, do nothing. 7744 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7745 return; 7746 7747 // If we can truncate the root, we must collect additional values that might 7748 // be demoted as a result. That is, those seeded by truncations we will 7749 // modify. 7750 while (!Roots.empty()) 7751 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7752 7753 // Finally, map the values we can demote to the maximum bit with we computed. 7754 for (auto *Scalar : ToDemote) 7755 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7756 } 7757 7758 namespace { 7759 7760 /// The SLPVectorizer Pass. 7761 struct SLPVectorizer : public FunctionPass { 7762 SLPVectorizerPass Impl; 7763 7764 /// Pass identification, replacement for typeid 7765 static char ID; 7766 7767 explicit SLPVectorizer() : FunctionPass(ID) { 7768 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7769 } 7770 7771 bool doInitialization(Module &M) override { return false; } 7772 7773 bool runOnFunction(Function &F) override { 7774 if (skipFunction(F)) 7775 return false; 7776 7777 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7778 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7779 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7780 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7781 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7782 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7783 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7784 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7785 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7786 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7787 7788 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7789 } 7790 7791 void getAnalysisUsage(AnalysisUsage &AU) const override { 7792 FunctionPass::getAnalysisUsage(AU); 7793 AU.addRequired<AssumptionCacheTracker>(); 7794 AU.addRequired<ScalarEvolutionWrapperPass>(); 7795 AU.addRequired<AAResultsWrapperPass>(); 7796 AU.addRequired<TargetTransformInfoWrapperPass>(); 7797 AU.addRequired<LoopInfoWrapperPass>(); 7798 AU.addRequired<DominatorTreeWrapperPass>(); 7799 AU.addRequired<DemandedBitsWrapperPass>(); 7800 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7801 AU.addRequired<InjectTLIMappingsLegacy>(); 7802 AU.addPreserved<LoopInfoWrapperPass>(); 7803 AU.addPreserved<DominatorTreeWrapperPass>(); 7804 AU.addPreserved<AAResultsWrapperPass>(); 7805 AU.addPreserved<GlobalsAAWrapperPass>(); 7806 AU.setPreservesCFG(); 7807 } 7808 }; 7809 7810 } // end anonymous namespace 7811 7812 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7813 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7814 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7815 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7816 auto *AA = &AM.getResult<AAManager>(F); 7817 auto *LI = &AM.getResult<LoopAnalysis>(F); 7818 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7819 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7820 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7821 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7822 7823 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7824 if (!Changed) 7825 return PreservedAnalyses::all(); 7826 7827 PreservedAnalyses PA; 7828 PA.preserveSet<CFGAnalyses>(); 7829 return PA; 7830 } 7831 7832 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7833 TargetTransformInfo *TTI_, 7834 TargetLibraryInfo *TLI_, AAResults *AA_, 7835 LoopInfo *LI_, DominatorTree *DT_, 7836 AssumptionCache *AC_, DemandedBits *DB_, 7837 OptimizationRemarkEmitter *ORE_) { 7838 if (!RunSLPVectorization) 7839 return false; 7840 SE = SE_; 7841 TTI = TTI_; 7842 TLI = TLI_; 7843 AA = AA_; 7844 LI = LI_; 7845 DT = DT_; 7846 AC = AC_; 7847 DB = DB_; 7848 DL = &F.getParent()->getDataLayout(); 7849 7850 Stores.clear(); 7851 GEPs.clear(); 7852 bool Changed = false; 7853 7854 // If the target claims to have no vector registers don't attempt 7855 // vectorization. 7856 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7857 return false; 7858 7859 // Don't vectorize when the attribute NoImplicitFloat is used. 7860 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7861 return false; 7862 7863 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7864 7865 // Use the bottom up slp vectorizer to construct chains that start with 7866 // store instructions. 7867 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7868 7869 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7870 // delete instructions. 7871 7872 // Update DFS numbers now so that we can use them for ordering. 7873 DT->updateDFSNumbers(); 7874 7875 // Scan the blocks in the function in post order. 7876 for (auto BB : post_order(&F.getEntryBlock())) { 7877 collectSeedInstructions(BB); 7878 7879 // Vectorize trees that end at stores. 7880 if (!Stores.empty()) { 7881 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7882 << " underlying objects.\n"); 7883 Changed |= vectorizeStoreChains(R); 7884 } 7885 7886 // Vectorize trees that end at reductions. 7887 Changed |= vectorizeChainsInBlock(BB, R); 7888 7889 // Vectorize the index computations of getelementptr instructions. This 7890 // is primarily intended to catch gather-like idioms ending at 7891 // non-consecutive loads. 7892 if (!GEPs.empty()) { 7893 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7894 << " underlying objects.\n"); 7895 Changed |= vectorizeGEPIndices(BB, R); 7896 } 7897 } 7898 7899 if (Changed) { 7900 R.optimizeGatherSequence(); 7901 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7902 } 7903 return Changed; 7904 } 7905 7906 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7907 unsigned Idx) { 7908 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7909 << "\n"); 7910 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7911 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7912 unsigned VF = Chain.size(); 7913 7914 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7915 return false; 7916 7917 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7918 << "\n"); 7919 7920 R.buildTree(Chain); 7921 if (R.isTreeTinyAndNotFullyVectorizable()) 7922 return false; 7923 if (R.isLoadCombineCandidate()) 7924 return false; 7925 R.reorderTopToBottom(); 7926 R.reorderBottomToTop(); 7927 R.buildExternalUses(); 7928 7929 R.computeMinimumValueSizes(); 7930 7931 InstructionCost Cost = R.getTreeCost(); 7932 7933 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7934 if (Cost < -SLPCostThreshold) { 7935 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7936 7937 using namespace ore; 7938 7939 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7940 cast<StoreInst>(Chain[0])) 7941 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7942 << " and with tree size " 7943 << NV("TreeSize", R.getTreeSize())); 7944 7945 R.vectorizeTree(); 7946 return true; 7947 } 7948 7949 return false; 7950 } 7951 7952 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7953 BoUpSLP &R) { 7954 // We may run into multiple chains that merge into a single chain. We mark the 7955 // stores that we vectorized so that we don't visit the same store twice. 7956 BoUpSLP::ValueSet VectorizedStores; 7957 bool Changed = false; 7958 7959 int E = Stores.size(); 7960 SmallBitVector Tails(E, false); 7961 int MaxIter = MaxStoreLookup.getValue(); 7962 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7963 E, std::make_pair(E, INT_MAX)); 7964 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7965 int IterCnt; 7966 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7967 &CheckedPairs, 7968 &ConsecutiveChain](int K, int Idx) { 7969 if (IterCnt >= MaxIter) 7970 return true; 7971 if (CheckedPairs[Idx].test(K)) 7972 return ConsecutiveChain[K].second == 1 && 7973 ConsecutiveChain[K].first == Idx; 7974 ++IterCnt; 7975 CheckedPairs[Idx].set(K); 7976 CheckedPairs[K].set(Idx); 7977 Optional<int> Diff = getPointersDiff( 7978 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7979 Stores[Idx]->getValueOperand()->getType(), 7980 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7981 if (!Diff || *Diff == 0) 7982 return false; 7983 int Val = *Diff; 7984 if (Val < 0) { 7985 if (ConsecutiveChain[Idx].second > -Val) { 7986 Tails.set(K); 7987 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7988 } 7989 return false; 7990 } 7991 if (ConsecutiveChain[K].second <= Val) 7992 return false; 7993 7994 Tails.set(Idx); 7995 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7996 return Val == 1; 7997 }; 7998 // Do a quadratic search on all of the given stores in reverse order and find 7999 // all of the pairs of stores that follow each other. 8000 for (int Idx = E - 1; Idx >= 0; --Idx) { 8001 // If a store has multiple consecutive store candidates, search according 8002 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8003 // This is because usually pairing with immediate succeeding or preceding 8004 // candidate create the best chance to find slp vectorization opportunity. 8005 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8006 IterCnt = 0; 8007 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8008 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8009 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8010 break; 8011 } 8012 8013 // Tracks if we tried to vectorize stores starting from the given tail 8014 // already. 8015 SmallBitVector TriedTails(E, false); 8016 // For stores that start but don't end a link in the chain: 8017 for (int Cnt = E; Cnt > 0; --Cnt) { 8018 int I = Cnt - 1; 8019 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8020 continue; 8021 // We found a store instr that starts a chain. Now follow the chain and try 8022 // to vectorize it. 8023 BoUpSLP::ValueList Operands; 8024 // Collect the chain into a list. 8025 while (I != E && !VectorizedStores.count(Stores[I])) { 8026 Operands.push_back(Stores[I]); 8027 Tails.set(I); 8028 if (ConsecutiveChain[I].second != 1) { 8029 // Mark the new end in the chain and go back, if required. It might be 8030 // required if the original stores come in reversed order, for example. 8031 if (ConsecutiveChain[I].first != E && 8032 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8033 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8034 TriedTails.set(I); 8035 Tails.reset(ConsecutiveChain[I].first); 8036 if (Cnt < ConsecutiveChain[I].first + 2) 8037 Cnt = ConsecutiveChain[I].first + 2; 8038 } 8039 break; 8040 } 8041 // Move to the next value in the chain. 8042 I = ConsecutiveChain[I].first; 8043 } 8044 assert(!Operands.empty() && "Expected non-empty list of stores."); 8045 8046 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8047 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8048 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8049 8050 unsigned MinVF = R.getMinVF(EltSize); 8051 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8052 MaxElts); 8053 8054 // FIXME: Is division-by-2 the correct step? Should we assert that the 8055 // register size is a power-of-2? 8056 unsigned StartIdx = 0; 8057 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8058 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8059 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8060 if (!VectorizedStores.count(Slice.front()) && 8061 !VectorizedStores.count(Slice.back()) && 8062 vectorizeStoreChain(Slice, R, Cnt)) { 8063 // Mark the vectorized stores so that we don't vectorize them again. 8064 VectorizedStores.insert(Slice.begin(), Slice.end()); 8065 Changed = true; 8066 // If we vectorized initial block, no need to try to vectorize it 8067 // again. 8068 if (Cnt == StartIdx) 8069 StartIdx += Size; 8070 Cnt += Size; 8071 continue; 8072 } 8073 ++Cnt; 8074 } 8075 // Check if the whole array was vectorized already - exit. 8076 if (StartIdx >= Operands.size()) 8077 break; 8078 } 8079 } 8080 8081 return Changed; 8082 } 8083 8084 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8085 // Initialize the collections. We will make a single pass over the block. 8086 Stores.clear(); 8087 GEPs.clear(); 8088 8089 // Visit the store and getelementptr instructions in BB and organize them in 8090 // Stores and GEPs according to the underlying objects of their pointer 8091 // operands. 8092 for (Instruction &I : *BB) { 8093 // Ignore store instructions that are volatile or have a pointer operand 8094 // that doesn't point to a scalar type. 8095 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8096 if (!SI->isSimple()) 8097 continue; 8098 if (!isValidElementType(SI->getValueOperand()->getType())) 8099 continue; 8100 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8101 } 8102 8103 // Ignore getelementptr instructions that have more than one index, a 8104 // constant index, or a pointer operand that doesn't point to a scalar 8105 // type. 8106 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8107 auto Idx = GEP->idx_begin()->get(); 8108 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8109 continue; 8110 if (!isValidElementType(Idx->getType())) 8111 continue; 8112 if (GEP->getType()->isVectorTy()) 8113 continue; 8114 GEPs[GEP->getPointerOperand()].push_back(GEP); 8115 } 8116 } 8117 } 8118 8119 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8120 if (!A || !B) 8121 return false; 8122 Value *VL[] = {A, B}; 8123 return tryToVectorizeList(VL, R); 8124 } 8125 8126 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8127 bool LimitForRegisterSize) { 8128 if (VL.size() < 2) 8129 return false; 8130 8131 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8132 << VL.size() << ".\n"); 8133 8134 // Check that all of the parts are instructions of the same type, 8135 // we permit an alternate opcode via InstructionsState. 8136 InstructionsState S = getSameOpcode(VL); 8137 if (!S.getOpcode()) 8138 return false; 8139 8140 Instruction *I0 = cast<Instruction>(S.OpValue); 8141 // Make sure invalid types (including vector type) are rejected before 8142 // determining vectorization factor for scalar instructions. 8143 for (Value *V : VL) { 8144 Type *Ty = V->getType(); 8145 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8146 // NOTE: the following will give user internal llvm type name, which may 8147 // not be useful. 8148 R.getORE()->emit([&]() { 8149 std::string type_str; 8150 llvm::raw_string_ostream rso(type_str); 8151 Ty->print(rso); 8152 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8153 << "Cannot SLP vectorize list: type " 8154 << rso.str() + " is unsupported by vectorizer"; 8155 }); 8156 return false; 8157 } 8158 } 8159 8160 unsigned Sz = R.getVectorElementSize(I0); 8161 unsigned MinVF = R.getMinVF(Sz); 8162 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8163 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8164 if (MaxVF < 2) { 8165 R.getORE()->emit([&]() { 8166 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8167 << "Cannot SLP vectorize list: vectorization factor " 8168 << "less than 2 is not supported"; 8169 }); 8170 return false; 8171 } 8172 8173 bool Changed = false; 8174 bool CandidateFound = false; 8175 InstructionCost MinCost = SLPCostThreshold.getValue(); 8176 Type *ScalarTy = VL[0]->getType(); 8177 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8178 ScalarTy = IE->getOperand(1)->getType(); 8179 8180 unsigned NextInst = 0, MaxInst = VL.size(); 8181 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8182 // No actual vectorization should happen, if number of parts is the same as 8183 // provided vectorization factor (i.e. the scalar type is used for vector 8184 // code during codegen). 8185 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8186 if (TTI->getNumberOfParts(VecTy) == VF) 8187 continue; 8188 for (unsigned I = NextInst; I < MaxInst; ++I) { 8189 unsigned OpsWidth = 0; 8190 8191 if (I + VF > MaxInst) 8192 OpsWidth = MaxInst - I; 8193 else 8194 OpsWidth = VF; 8195 8196 if (!isPowerOf2_32(OpsWidth)) 8197 continue; 8198 8199 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8200 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8201 break; 8202 8203 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8204 // Check that a previous iteration of this loop did not delete the Value. 8205 if (llvm::any_of(Ops, [&R](Value *V) { 8206 auto *I = dyn_cast<Instruction>(V); 8207 return I && R.isDeleted(I); 8208 })) 8209 continue; 8210 8211 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8212 << "\n"); 8213 8214 R.buildTree(Ops); 8215 if (R.isTreeTinyAndNotFullyVectorizable()) 8216 continue; 8217 R.reorderTopToBottom(); 8218 R.reorderBottomToTop(); 8219 R.buildExternalUses(); 8220 8221 R.computeMinimumValueSizes(); 8222 InstructionCost Cost = R.getTreeCost(); 8223 CandidateFound = true; 8224 MinCost = std::min(MinCost, Cost); 8225 8226 if (Cost < -SLPCostThreshold) { 8227 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8228 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8229 cast<Instruction>(Ops[0])) 8230 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8231 << " and with tree size " 8232 << ore::NV("TreeSize", R.getTreeSize())); 8233 8234 R.vectorizeTree(); 8235 // Move to the next bundle. 8236 I += VF - 1; 8237 NextInst = I + 1; 8238 Changed = true; 8239 } 8240 } 8241 } 8242 8243 if (!Changed && CandidateFound) { 8244 R.getORE()->emit([&]() { 8245 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8246 << "List vectorization was possible but not beneficial with cost " 8247 << ore::NV("Cost", MinCost) << " >= " 8248 << ore::NV("Treshold", -SLPCostThreshold); 8249 }); 8250 } else if (!Changed) { 8251 R.getORE()->emit([&]() { 8252 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8253 << "Cannot SLP vectorize list: vectorization was impossible" 8254 << " with available vectorization factors"; 8255 }); 8256 } 8257 return Changed; 8258 } 8259 8260 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8261 if (!I) 8262 return false; 8263 8264 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8265 return false; 8266 8267 Value *P = I->getParent(); 8268 8269 // Vectorize in current basic block only. 8270 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8271 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8272 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8273 return false; 8274 8275 // Try to vectorize V. 8276 if (tryToVectorizePair(Op0, Op1, R)) 8277 return true; 8278 8279 auto *A = dyn_cast<BinaryOperator>(Op0); 8280 auto *B = dyn_cast<BinaryOperator>(Op1); 8281 // Try to skip B. 8282 if (B && B->hasOneUse()) { 8283 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8284 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8285 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8286 return true; 8287 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8288 return true; 8289 } 8290 8291 // Try to skip A. 8292 if (A && A->hasOneUse()) { 8293 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8294 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8295 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8296 return true; 8297 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8298 return true; 8299 } 8300 return false; 8301 } 8302 8303 namespace { 8304 8305 /// Model horizontal reductions. 8306 /// 8307 /// A horizontal reduction is a tree of reduction instructions that has values 8308 /// that can be put into a vector as its leaves. For example: 8309 /// 8310 /// mul mul mul mul 8311 /// \ / \ / 8312 /// + + 8313 /// \ / 8314 /// + 8315 /// This tree has "mul" as its leaf values and "+" as its reduction 8316 /// instructions. A reduction can feed into a store or a binary operation 8317 /// feeding a phi. 8318 /// ... 8319 /// \ / 8320 /// + 8321 /// | 8322 /// phi += 8323 /// 8324 /// Or: 8325 /// ... 8326 /// \ / 8327 /// + 8328 /// | 8329 /// *p = 8330 /// 8331 class HorizontalReduction { 8332 using ReductionOpsType = SmallVector<Value *, 16>; 8333 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8334 ReductionOpsListType ReductionOps; 8335 SmallVector<Value *, 32> ReducedVals; 8336 // Use map vector to make stable output. 8337 MapVector<Instruction *, Value *> ExtraArgs; 8338 WeakTrackingVH ReductionRoot; 8339 /// The type of reduction operation. 8340 RecurKind RdxKind; 8341 8342 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8343 8344 static bool isCmpSelMinMax(Instruction *I) { 8345 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8346 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8347 } 8348 8349 // And/or are potentially poison-safe logical patterns like: 8350 // select x, y, false 8351 // select x, true, y 8352 static bool isBoolLogicOp(Instruction *I) { 8353 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8354 match(I, m_LogicalOr(m_Value(), m_Value())); 8355 } 8356 8357 /// Checks if instruction is associative and can be vectorized. 8358 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8359 if (Kind == RecurKind::None) 8360 return false; 8361 8362 // Integer ops that map to select instructions or intrinsics are fine. 8363 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8364 isBoolLogicOp(I)) 8365 return true; 8366 8367 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8368 // FP min/max are associative except for NaN and -0.0. We do not 8369 // have to rule out -0.0 here because the intrinsic semantics do not 8370 // specify a fixed result for it. 8371 return I->getFastMathFlags().noNaNs(); 8372 } 8373 8374 return I->isAssociative(); 8375 } 8376 8377 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8378 // Poison-safe 'or' takes the form: select X, true, Y 8379 // To make that work with the normal operand processing, we skip the 8380 // true value operand. 8381 // TODO: Change the code and data structures to handle this without a hack. 8382 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8383 return I->getOperand(2); 8384 return I->getOperand(Index); 8385 } 8386 8387 /// Checks if the ParentStackElem.first should be marked as a reduction 8388 /// operation with an extra argument or as extra argument itself. 8389 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8390 Value *ExtraArg) { 8391 if (ExtraArgs.count(ParentStackElem.first)) { 8392 ExtraArgs[ParentStackElem.first] = nullptr; 8393 // We ran into something like: 8394 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8395 // The whole ParentStackElem.first should be considered as an extra value 8396 // in this case. 8397 // Do not perform analysis of remaining operands of ParentStackElem.first 8398 // instruction, this whole instruction is an extra argument. 8399 ParentStackElem.second = INVALID_OPERAND_INDEX; 8400 } else { 8401 // We ran into something like: 8402 // ParentStackElem.first += ... + ExtraArg + ... 8403 ExtraArgs[ParentStackElem.first] = ExtraArg; 8404 } 8405 } 8406 8407 /// Creates reduction operation with the current opcode. 8408 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8409 Value *RHS, const Twine &Name, bool UseSelect) { 8410 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8411 switch (Kind) { 8412 case RecurKind::Or: 8413 if (UseSelect && 8414 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8415 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8416 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8417 Name); 8418 case RecurKind::And: 8419 if (UseSelect && 8420 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8421 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8422 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8423 Name); 8424 case RecurKind::Add: 8425 case RecurKind::Mul: 8426 case RecurKind::Xor: 8427 case RecurKind::FAdd: 8428 case RecurKind::FMul: 8429 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8430 Name); 8431 case RecurKind::FMax: 8432 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8433 case RecurKind::FMin: 8434 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8435 case RecurKind::SMax: 8436 if (UseSelect) { 8437 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8438 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8439 } 8440 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8441 case RecurKind::SMin: 8442 if (UseSelect) { 8443 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8444 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8445 } 8446 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8447 case RecurKind::UMax: 8448 if (UseSelect) { 8449 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8450 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8451 } 8452 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8453 case RecurKind::UMin: 8454 if (UseSelect) { 8455 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8456 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8457 } 8458 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8459 default: 8460 llvm_unreachable("Unknown reduction operation."); 8461 } 8462 } 8463 8464 /// Creates reduction operation with the current opcode with the IR flags 8465 /// from \p ReductionOps. 8466 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8467 Value *RHS, const Twine &Name, 8468 const ReductionOpsListType &ReductionOps) { 8469 bool UseSelect = ReductionOps.size() == 2 || 8470 // Logical or/and. 8471 (ReductionOps.size() == 1 && 8472 isa<SelectInst>(ReductionOps.front().front())); 8473 assert((!UseSelect || ReductionOps.size() != 2 || 8474 isa<SelectInst>(ReductionOps[1][0])) && 8475 "Expected cmp + select pairs for reduction"); 8476 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8477 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8478 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8479 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8480 propagateIRFlags(Op, ReductionOps[1]); 8481 return Op; 8482 } 8483 } 8484 propagateIRFlags(Op, ReductionOps[0]); 8485 return Op; 8486 } 8487 8488 /// Creates reduction operation with the current opcode with the IR flags 8489 /// from \p I. 8490 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8491 Value *RHS, const Twine &Name, Instruction *I) { 8492 auto *SelI = dyn_cast<SelectInst>(I); 8493 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8494 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8495 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8496 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8497 } 8498 propagateIRFlags(Op, I); 8499 return Op; 8500 } 8501 8502 static RecurKind getRdxKind(Instruction *I) { 8503 assert(I && "Expected instruction for reduction matching"); 8504 TargetTransformInfo::ReductionFlags RdxFlags; 8505 if (match(I, m_Add(m_Value(), m_Value()))) 8506 return RecurKind::Add; 8507 if (match(I, m_Mul(m_Value(), m_Value()))) 8508 return RecurKind::Mul; 8509 if (match(I, m_And(m_Value(), m_Value())) || 8510 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8511 return RecurKind::And; 8512 if (match(I, m_Or(m_Value(), m_Value())) || 8513 match(I, m_LogicalOr(m_Value(), m_Value()))) 8514 return RecurKind::Or; 8515 if (match(I, m_Xor(m_Value(), m_Value()))) 8516 return RecurKind::Xor; 8517 if (match(I, m_FAdd(m_Value(), m_Value()))) 8518 return RecurKind::FAdd; 8519 if (match(I, m_FMul(m_Value(), m_Value()))) 8520 return RecurKind::FMul; 8521 8522 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8523 return RecurKind::FMax; 8524 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8525 return RecurKind::FMin; 8526 8527 // This matches either cmp+select or intrinsics. SLP is expected to handle 8528 // either form. 8529 // TODO: If we are canonicalizing to intrinsics, we can remove several 8530 // special-case paths that deal with selects. 8531 if (match(I, m_SMax(m_Value(), m_Value()))) 8532 return RecurKind::SMax; 8533 if (match(I, m_SMin(m_Value(), m_Value()))) 8534 return RecurKind::SMin; 8535 if (match(I, m_UMax(m_Value(), m_Value()))) 8536 return RecurKind::UMax; 8537 if (match(I, m_UMin(m_Value(), m_Value()))) 8538 return RecurKind::UMin; 8539 8540 if (auto *Select = dyn_cast<SelectInst>(I)) { 8541 // Try harder: look for min/max pattern based on instructions producing 8542 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8543 // During the intermediate stages of SLP, it's very common to have 8544 // pattern like this (since optimizeGatherSequence is run only once 8545 // at the end): 8546 // %1 = extractelement <2 x i32> %a, i32 0 8547 // %2 = extractelement <2 x i32> %a, i32 1 8548 // %cond = icmp sgt i32 %1, %2 8549 // %3 = extractelement <2 x i32> %a, i32 0 8550 // %4 = extractelement <2 x i32> %a, i32 1 8551 // %select = select i1 %cond, i32 %3, i32 %4 8552 CmpInst::Predicate Pred; 8553 Instruction *L1; 8554 Instruction *L2; 8555 8556 Value *LHS = Select->getTrueValue(); 8557 Value *RHS = Select->getFalseValue(); 8558 Value *Cond = Select->getCondition(); 8559 8560 // TODO: Support inverse predicates. 8561 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8562 if (!isa<ExtractElementInst>(RHS) || 8563 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8564 return RecurKind::None; 8565 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8566 if (!isa<ExtractElementInst>(LHS) || 8567 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8568 return RecurKind::None; 8569 } else { 8570 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8571 return RecurKind::None; 8572 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8573 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8574 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8575 return RecurKind::None; 8576 } 8577 8578 TargetTransformInfo::ReductionFlags RdxFlags; 8579 switch (Pred) { 8580 default: 8581 return RecurKind::None; 8582 case CmpInst::ICMP_SGT: 8583 case CmpInst::ICMP_SGE: 8584 return RecurKind::SMax; 8585 case CmpInst::ICMP_SLT: 8586 case CmpInst::ICMP_SLE: 8587 return RecurKind::SMin; 8588 case CmpInst::ICMP_UGT: 8589 case CmpInst::ICMP_UGE: 8590 return RecurKind::UMax; 8591 case CmpInst::ICMP_ULT: 8592 case CmpInst::ICMP_ULE: 8593 return RecurKind::UMin; 8594 } 8595 } 8596 return RecurKind::None; 8597 } 8598 8599 /// Get the index of the first operand. 8600 static unsigned getFirstOperandIndex(Instruction *I) { 8601 return isCmpSelMinMax(I) ? 1 : 0; 8602 } 8603 8604 /// Total number of operands in the reduction operation. 8605 static unsigned getNumberOfOperands(Instruction *I) { 8606 return isCmpSelMinMax(I) ? 3 : 2; 8607 } 8608 8609 /// Checks if the instruction is in basic block \p BB. 8610 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8611 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8612 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8613 auto *Sel = cast<SelectInst>(I); 8614 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8615 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8616 } 8617 return I->getParent() == BB; 8618 } 8619 8620 /// Expected number of uses for reduction operations/reduced values. 8621 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8622 if (IsCmpSelMinMax) { 8623 // SelectInst must be used twice while the condition op must have single 8624 // use only. 8625 if (auto *Sel = dyn_cast<SelectInst>(I)) 8626 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8627 return I->hasNUses(2); 8628 } 8629 8630 // Arithmetic reduction operation must be used once only. 8631 return I->hasOneUse(); 8632 } 8633 8634 /// Initializes the list of reduction operations. 8635 void initReductionOps(Instruction *I) { 8636 if (isCmpSelMinMax(I)) 8637 ReductionOps.assign(2, ReductionOpsType()); 8638 else 8639 ReductionOps.assign(1, ReductionOpsType()); 8640 } 8641 8642 /// Add all reduction operations for the reduction instruction \p I. 8643 void addReductionOps(Instruction *I) { 8644 if (isCmpSelMinMax(I)) { 8645 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8646 ReductionOps[1].emplace_back(I); 8647 } else { 8648 ReductionOps[0].emplace_back(I); 8649 } 8650 } 8651 8652 static Value *getLHS(RecurKind Kind, Instruction *I) { 8653 if (Kind == RecurKind::None) 8654 return nullptr; 8655 return I->getOperand(getFirstOperandIndex(I)); 8656 } 8657 static Value *getRHS(RecurKind Kind, Instruction *I) { 8658 if (Kind == RecurKind::None) 8659 return nullptr; 8660 return I->getOperand(getFirstOperandIndex(I) + 1); 8661 } 8662 8663 public: 8664 HorizontalReduction() = default; 8665 8666 /// Try to find a reduction tree. 8667 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8668 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8669 "Phi needs to use the binary operator"); 8670 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8671 isa<IntrinsicInst>(Inst)) && 8672 "Expected binop, select, or intrinsic for reduction matching"); 8673 RdxKind = getRdxKind(Inst); 8674 8675 // We could have a initial reductions that is not an add. 8676 // r *= v1 + v2 + v3 + v4 8677 // In such a case start looking for a tree rooted in the first '+'. 8678 if (Phi) { 8679 if (getLHS(RdxKind, Inst) == Phi) { 8680 Phi = nullptr; 8681 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8682 if (!Inst) 8683 return false; 8684 RdxKind = getRdxKind(Inst); 8685 } else if (getRHS(RdxKind, Inst) == Phi) { 8686 Phi = nullptr; 8687 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8688 if (!Inst) 8689 return false; 8690 RdxKind = getRdxKind(Inst); 8691 } 8692 } 8693 8694 if (!isVectorizable(RdxKind, Inst)) 8695 return false; 8696 8697 // Analyze "regular" integer/FP types for reductions - no target-specific 8698 // types or pointers. 8699 Type *Ty = Inst->getType(); 8700 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8701 return false; 8702 8703 // Though the ultimate reduction may have multiple uses, its condition must 8704 // have only single use. 8705 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8706 if (!Sel->getCondition()->hasOneUse()) 8707 return false; 8708 8709 ReductionRoot = Inst; 8710 8711 // The opcode for leaf values that we perform a reduction on. 8712 // For example: load(x) + load(y) + load(z) + fptoui(w) 8713 // The leaf opcode for 'w' does not match, so we don't include it as a 8714 // potential candidate for the reduction. 8715 unsigned LeafOpcode = 0; 8716 8717 // Post-order traverse the reduction tree starting at Inst. We only handle 8718 // true trees containing binary operators or selects. 8719 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8720 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8721 initReductionOps(Inst); 8722 while (!Stack.empty()) { 8723 Instruction *TreeN = Stack.back().first; 8724 unsigned EdgeToVisit = Stack.back().second++; 8725 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8726 bool IsReducedValue = TreeRdxKind != RdxKind; 8727 8728 // Postorder visit. 8729 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8730 if (IsReducedValue) 8731 ReducedVals.push_back(TreeN); 8732 else { 8733 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8734 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8735 // Check if TreeN is an extra argument of its parent operation. 8736 if (Stack.size() <= 1) { 8737 // TreeN can't be an extra argument as it is a root reduction 8738 // operation. 8739 return false; 8740 } 8741 // Yes, TreeN is an extra argument, do not add it to a list of 8742 // reduction operations. 8743 // Stack[Stack.size() - 2] always points to the parent operation. 8744 markExtraArg(Stack[Stack.size() - 2], TreeN); 8745 ExtraArgs.erase(TreeN); 8746 } else 8747 addReductionOps(TreeN); 8748 } 8749 // Retract. 8750 Stack.pop_back(); 8751 continue; 8752 } 8753 8754 // Visit operands. 8755 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8756 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8757 if (!EdgeInst) { 8758 // Edge value is not a reduction instruction or a leaf instruction. 8759 // (It may be a constant, function argument, or something else.) 8760 markExtraArg(Stack.back(), EdgeVal); 8761 continue; 8762 } 8763 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8764 // Continue analysis if the next operand is a reduction operation or 8765 // (possibly) a leaf value. If the leaf value opcode is not set, 8766 // the first met operation != reduction operation is considered as the 8767 // leaf opcode. 8768 // Only handle trees in the current basic block. 8769 // Each tree node needs to have minimal number of users except for the 8770 // ultimate reduction. 8771 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8772 if (EdgeInst != Phi && EdgeInst != Inst && 8773 hasSameParent(EdgeInst, Inst->getParent()) && 8774 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8775 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8776 if (IsRdxInst) { 8777 // We need to be able to reassociate the reduction operations. 8778 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8779 // I is an extra argument for TreeN (its parent operation). 8780 markExtraArg(Stack.back(), EdgeInst); 8781 continue; 8782 } 8783 } else if (!LeafOpcode) { 8784 LeafOpcode = EdgeInst->getOpcode(); 8785 } 8786 Stack.push_back( 8787 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8788 continue; 8789 } 8790 // I is an extra argument for TreeN (its parent operation). 8791 markExtraArg(Stack.back(), EdgeInst); 8792 } 8793 return true; 8794 } 8795 8796 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8797 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8798 // If there are a sufficient number of reduction values, reduce 8799 // to a nearby power-of-2. We can safely generate oversized 8800 // vectors and rely on the backend to split them to legal sizes. 8801 unsigned NumReducedVals = ReducedVals.size(); 8802 if (NumReducedVals < 4) 8803 return nullptr; 8804 8805 // Intersect the fast-math-flags from all reduction operations. 8806 FastMathFlags RdxFMF; 8807 RdxFMF.set(); 8808 for (ReductionOpsType &RdxOp : ReductionOps) { 8809 for (Value *RdxVal : RdxOp) { 8810 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8811 RdxFMF &= FPMO->getFastMathFlags(); 8812 } 8813 } 8814 8815 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8816 Builder.setFastMathFlags(RdxFMF); 8817 8818 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8819 // The same extra argument may be used several times, so log each attempt 8820 // to use it. 8821 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8822 assert(Pair.first && "DebugLoc must be set."); 8823 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8824 } 8825 8826 // The compare instruction of a min/max is the insertion point for new 8827 // instructions and may be replaced with a new compare instruction. 8828 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8829 assert(isa<SelectInst>(RdxRootInst) && 8830 "Expected min/max reduction to have select root instruction"); 8831 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8832 assert(isa<Instruction>(ScalarCond) && 8833 "Expected min/max reduction to have compare condition"); 8834 return cast<Instruction>(ScalarCond); 8835 }; 8836 8837 // The reduction root is used as the insertion point for new instructions, 8838 // so set it as externally used to prevent it from being deleted. 8839 ExternallyUsedValues[ReductionRoot]; 8840 SmallVector<Value *, 16> IgnoreList; 8841 for (ReductionOpsType &RdxOp : ReductionOps) 8842 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8843 8844 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8845 if (NumReducedVals > ReduxWidth) { 8846 // In the loop below, we are building a tree based on a window of 8847 // 'ReduxWidth' values. 8848 // If the operands of those values have common traits (compare predicate, 8849 // constant operand, etc), then we want to group those together to 8850 // minimize the cost of the reduction. 8851 8852 // TODO: This should be extended to count common operands for 8853 // compares and binops. 8854 8855 // Step 1: Count the number of times each compare predicate occurs. 8856 SmallDenseMap<unsigned, unsigned> PredCountMap; 8857 for (Value *RdxVal : ReducedVals) { 8858 CmpInst::Predicate Pred; 8859 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8860 ++PredCountMap[Pred]; 8861 } 8862 // Step 2: Sort the values so the most common predicates come first. 8863 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8864 CmpInst::Predicate PredA, PredB; 8865 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8866 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8867 return PredCountMap[PredA] > PredCountMap[PredB]; 8868 } 8869 return false; 8870 }); 8871 } 8872 8873 Value *VectorizedTree = nullptr; 8874 unsigned i = 0; 8875 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8876 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8877 V.buildTree(VL, IgnoreList); 8878 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8879 break; 8880 if (V.isLoadCombineReductionCandidate(RdxKind)) 8881 break; 8882 V.reorderTopToBottom(); 8883 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8884 V.buildExternalUses(ExternallyUsedValues); 8885 8886 // For a poison-safe boolean logic reduction, do not replace select 8887 // instructions with logic ops. All reduced values will be frozen (see 8888 // below) to prevent leaking poison. 8889 if (isa<SelectInst>(ReductionRoot) && 8890 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8891 NumReducedVals != ReduxWidth) 8892 break; 8893 8894 V.computeMinimumValueSizes(); 8895 8896 // Estimate cost. 8897 InstructionCost TreeCost = 8898 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8899 InstructionCost ReductionCost = 8900 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8901 InstructionCost Cost = TreeCost + ReductionCost; 8902 if (!Cost.isValid()) { 8903 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8904 return nullptr; 8905 } 8906 if (Cost >= -SLPCostThreshold) { 8907 V.getORE()->emit([&]() { 8908 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8909 cast<Instruction>(VL[0])) 8910 << "Vectorizing horizontal reduction is possible" 8911 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8912 << " and threshold " 8913 << ore::NV("Threshold", -SLPCostThreshold); 8914 }); 8915 break; 8916 } 8917 8918 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8919 << Cost << ". (HorRdx)\n"); 8920 V.getORE()->emit([&]() { 8921 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8922 cast<Instruction>(VL[0])) 8923 << "Vectorized horizontal reduction with cost " 8924 << ore::NV("Cost", Cost) << " and with tree size " 8925 << ore::NV("TreeSize", V.getTreeSize()); 8926 }); 8927 8928 // Vectorize a tree. 8929 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8930 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8931 8932 // Emit a reduction. If the root is a select (min/max idiom), the insert 8933 // point is the compare condition of that select. 8934 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8935 if (isCmpSelMinMax(RdxRootInst)) 8936 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8937 else 8938 Builder.SetInsertPoint(RdxRootInst); 8939 8940 // To prevent poison from leaking across what used to be sequential, safe, 8941 // scalar boolean logic operations, the reduction operand must be frozen. 8942 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8943 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8944 8945 Value *ReducedSubTree = 8946 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8947 8948 if (!VectorizedTree) { 8949 // Initialize the final value in the reduction. 8950 VectorizedTree = ReducedSubTree; 8951 } else { 8952 // Update the final value in the reduction. 8953 Builder.SetCurrentDebugLocation(Loc); 8954 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8955 ReducedSubTree, "op.rdx", ReductionOps); 8956 } 8957 i += ReduxWidth; 8958 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8959 } 8960 8961 if (VectorizedTree) { 8962 // Finish the reduction. 8963 for (; i < NumReducedVals; ++i) { 8964 auto *I = cast<Instruction>(ReducedVals[i]); 8965 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8966 VectorizedTree = 8967 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8968 } 8969 for (auto &Pair : ExternallyUsedValues) { 8970 // Add each externally used value to the final reduction. 8971 for (auto *I : Pair.second) { 8972 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8973 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8974 Pair.first, "op.extra", I); 8975 } 8976 } 8977 8978 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8979 8980 // Mark all scalar reduction ops for deletion, they are replaced by the 8981 // vector reductions. 8982 V.eraseInstructions(IgnoreList); 8983 } 8984 return VectorizedTree; 8985 } 8986 8987 unsigned numReductionValues() const { return ReducedVals.size(); } 8988 8989 private: 8990 /// Calculate the cost of a reduction. 8991 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8992 Value *FirstReducedVal, unsigned ReduxWidth, 8993 FastMathFlags FMF) { 8994 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8995 Type *ScalarTy = FirstReducedVal->getType(); 8996 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8997 InstructionCost VectorCost, ScalarCost; 8998 switch (RdxKind) { 8999 case RecurKind::Add: 9000 case RecurKind::Mul: 9001 case RecurKind::Or: 9002 case RecurKind::And: 9003 case RecurKind::Xor: 9004 case RecurKind::FAdd: 9005 case RecurKind::FMul: { 9006 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9007 VectorCost = 9008 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9009 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9010 break; 9011 } 9012 case RecurKind::FMax: 9013 case RecurKind::FMin: { 9014 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9015 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9016 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9017 /*unsigned=*/false, CostKind); 9018 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9019 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9020 SclCondTy, RdxPred, CostKind) + 9021 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9022 SclCondTy, RdxPred, CostKind); 9023 break; 9024 } 9025 case RecurKind::SMax: 9026 case RecurKind::SMin: 9027 case RecurKind::UMax: 9028 case RecurKind::UMin: { 9029 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9030 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9031 bool IsUnsigned = 9032 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9033 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9034 CostKind); 9035 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9036 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9037 SclCondTy, RdxPred, CostKind) + 9038 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9039 SclCondTy, RdxPred, CostKind); 9040 break; 9041 } 9042 default: 9043 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9044 } 9045 9046 // Scalar cost is repeated for N-1 elements. 9047 ScalarCost *= (ReduxWidth - 1); 9048 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9049 << " for reduction that starts with " << *FirstReducedVal 9050 << " (It is a splitting reduction)\n"); 9051 return VectorCost - ScalarCost; 9052 } 9053 9054 /// Emit a horizontal reduction of the vectorized value. 9055 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9056 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9057 assert(VectorizedValue && "Need to have a vectorized tree node"); 9058 assert(isPowerOf2_32(ReduxWidth) && 9059 "We only handle power-of-two reductions for now"); 9060 assert(RdxKind != RecurKind::FMulAdd && 9061 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9062 9063 ++NumVectorInstructions; 9064 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 9065 ReductionOps.back()); 9066 } 9067 }; 9068 9069 } // end anonymous namespace 9070 9071 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9072 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9073 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9074 9075 unsigned AggregateSize = 1; 9076 auto *IV = cast<InsertValueInst>(InsertInst); 9077 Type *CurrentType = IV->getType(); 9078 do { 9079 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9080 for (auto *Elt : ST->elements()) 9081 if (Elt != ST->getElementType(0)) // check homogeneity 9082 return None; 9083 AggregateSize *= ST->getNumElements(); 9084 CurrentType = ST->getElementType(0); 9085 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9086 AggregateSize *= AT->getNumElements(); 9087 CurrentType = AT->getElementType(); 9088 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9089 AggregateSize *= VT->getNumElements(); 9090 return AggregateSize; 9091 } else if (CurrentType->isSingleValueType()) { 9092 return AggregateSize; 9093 } else { 9094 return None; 9095 } 9096 } while (true); 9097 } 9098 9099 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9100 TargetTransformInfo *TTI, 9101 SmallVectorImpl<Value *> &BuildVectorOpds, 9102 SmallVectorImpl<Value *> &InsertElts, 9103 unsigned OperandOffset) { 9104 do { 9105 Value *InsertedOperand = LastInsertInst->getOperand(1); 9106 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9107 if (!OperandIndex) 9108 return false; 9109 if (isa<InsertElementInst>(InsertedOperand) || 9110 isa<InsertValueInst>(InsertedOperand)) { 9111 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9112 BuildVectorOpds, InsertElts, *OperandIndex)) 9113 return false; 9114 } else { 9115 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9116 InsertElts[*OperandIndex] = LastInsertInst; 9117 } 9118 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9119 } while (LastInsertInst != nullptr && 9120 (isa<InsertValueInst>(LastInsertInst) || 9121 isa<InsertElementInst>(LastInsertInst)) && 9122 LastInsertInst->hasOneUse()); 9123 return true; 9124 } 9125 9126 /// Recognize construction of vectors like 9127 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9128 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9129 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9130 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9131 /// starting from the last insertelement or insertvalue instruction. 9132 /// 9133 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9134 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9135 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9136 /// 9137 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9138 /// 9139 /// \return true if it matches. 9140 static bool findBuildAggregate(Instruction *LastInsertInst, 9141 TargetTransformInfo *TTI, 9142 SmallVectorImpl<Value *> &BuildVectorOpds, 9143 SmallVectorImpl<Value *> &InsertElts) { 9144 9145 assert((isa<InsertElementInst>(LastInsertInst) || 9146 isa<InsertValueInst>(LastInsertInst)) && 9147 "Expected insertelement or insertvalue instruction!"); 9148 9149 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9150 "Expected empty result vectors!"); 9151 9152 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9153 if (!AggregateSize) 9154 return false; 9155 BuildVectorOpds.resize(*AggregateSize); 9156 InsertElts.resize(*AggregateSize); 9157 9158 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9159 0)) { 9160 llvm::erase_value(BuildVectorOpds, nullptr); 9161 llvm::erase_value(InsertElts, nullptr); 9162 if (BuildVectorOpds.size() >= 2) 9163 return true; 9164 } 9165 9166 return false; 9167 } 9168 9169 /// Try and get a reduction value from a phi node. 9170 /// 9171 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9172 /// if they come from either \p ParentBB or a containing loop latch. 9173 /// 9174 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9175 /// if not possible. 9176 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9177 BasicBlock *ParentBB, LoopInfo *LI) { 9178 // There are situations where the reduction value is not dominated by the 9179 // reduction phi. Vectorizing such cases has been reported to cause 9180 // miscompiles. See PR25787. 9181 auto DominatedReduxValue = [&](Value *R) { 9182 return isa<Instruction>(R) && 9183 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9184 }; 9185 9186 Value *Rdx = nullptr; 9187 9188 // Return the incoming value if it comes from the same BB as the phi node. 9189 if (P->getIncomingBlock(0) == ParentBB) { 9190 Rdx = P->getIncomingValue(0); 9191 } else if (P->getIncomingBlock(1) == ParentBB) { 9192 Rdx = P->getIncomingValue(1); 9193 } 9194 9195 if (Rdx && DominatedReduxValue(Rdx)) 9196 return Rdx; 9197 9198 // Otherwise, check whether we have a loop latch to look at. 9199 Loop *BBL = LI->getLoopFor(ParentBB); 9200 if (!BBL) 9201 return nullptr; 9202 BasicBlock *BBLatch = BBL->getLoopLatch(); 9203 if (!BBLatch) 9204 return nullptr; 9205 9206 // There is a loop latch, return the incoming value if it comes from 9207 // that. This reduction pattern occasionally turns up. 9208 if (P->getIncomingBlock(0) == BBLatch) { 9209 Rdx = P->getIncomingValue(0); 9210 } else if (P->getIncomingBlock(1) == BBLatch) { 9211 Rdx = P->getIncomingValue(1); 9212 } 9213 9214 if (Rdx && DominatedReduxValue(Rdx)) 9215 return Rdx; 9216 9217 return nullptr; 9218 } 9219 9220 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9221 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9222 return true; 9223 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9224 return true; 9225 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9226 return true; 9227 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9228 return true; 9229 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9230 return true; 9231 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9232 return true; 9233 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9234 return true; 9235 return false; 9236 } 9237 9238 /// Attempt to reduce a horizontal reduction. 9239 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9240 /// with reduction operators \a Root (or one of its operands) in a basic block 9241 /// \a BB, then check if it can be done. If horizontal reduction is not found 9242 /// and root instruction is a binary operation, vectorization of the operands is 9243 /// attempted. 9244 /// \returns true if a horizontal reduction was matched and reduced or operands 9245 /// of one of the binary instruction were vectorized. 9246 /// \returns false if a horizontal reduction was not matched (or not possible) 9247 /// or no vectorization of any binary operation feeding \a Root instruction was 9248 /// performed. 9249 static bool tryToVectorizeHorReductionOrInstOperands( 9250 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9251 TargetTransformInfo *TTI, 9252 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9253 if (!ShouldVectorizeHor) 9254 return false; 9255 9256 if (!Root) 9257 return false; 9258 9259 if (Root->getParent() != BB || isa<PHINode>(Root)) 9260 return false; 9261 // Start analysis starting from Root instruction. If horizontal reduction is 9262 // found, try to vectorize it. If it is not a horizontal reduction or 9263 // vectorization is not possible or not effective, and currently analyzed 9264 // instruction is a binary operation, try to vectorize the operands, using 9265 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9266 // the same procedure considering each operand as a possible root of the 9267 // horizontal reduction. 9268 // Interrupt the process if the Root instruction itself was vectorized or all 9269 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9270 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9271 // CmpInsts so we can skip extra attempts in 9272 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9273 std::queue<std::pair<Instruction *, unsigned>> Stack; 9274 Stack.emplace(Root, 0); 9275 SmallPtrSet<Value *, 8> VisitedInstrs; 9276 SmallVector<WeakTrackingVH> PostponedInsts; 9277 bool Res = false; 9278 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9279 Value *&B1) -> Value * { 9280 bool IsBinop = matchRdxBop(Inst, B0, B1); 9281 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9282 if (IsBinop || IsSelect) { 9283 HorizontalReduction HorRdx; 9284 if (HorRdx.matchAssociativeReduction(P, Inst)) 9285 return HorRdx.tryToReduce(R, TTI); 9286 } 9287 return nullptr; 9288 }; 9289 while (!Stack.empty()) { 9290 Instruction *Inst; 9291 unsigned Level; 9292 std::tie(Inst, Level) = Stack.front(); 9293 Stack.pop(); 9294 // Do not try to analyze instruction that has already been vectorized. 9295 // This may happen when we vectorize instruction operands on a previous 9296 // iteration while stack was populated before that happened. 9297 if (R.isDeleted(Inst)) 9298 continue; 9299 Value *B0 = nullptr, *B1 = nullptr; 9300 if (Value *V = TryToReduce(Inst, B0, B1)) { 9301 Res = true; 9302 // Set P to nullptr to avoid re-analysis of phi node in 9303 // matchAssociativeReduction function unless this is the root node. 9304 P = nullptr; 9305 if (auto *I = dyn_cast<Instruction>(V)) { 9306 // Try to find another reduction. 9307 Stack.emplace(I, Level); 9308 continue; 9309 } 9310 } else { 9311 bool IsBinop = B0 && B1; 9312 if (P && IsBinop) { 9313 Inst = dyn_cast<Instruction>(B0); 9314 if (Inst == P) 9315 Inst = dyn_cast<Instruction>(B1); 9316 if (!Inst) { 9317 // Set P to nullptr to avoid re-analysis of phi node in 9318 // matchAssociativeReduction function unless this is the root node. 9319 P = nullptr; 9320 continue; 9321 } 9322 } 9323 // Set P to nullptr to avoid re-analysis of phi node in 9324 // matchAssociativeReduction function unless this is the root node. 9325 P = nullptr; 9326 // Do not try to vectorize CmpInst operands, this is done separately. 9327 // Final attempt for binop args vectorization should happen after the loop 9328 // to try to find reductions. 9329 if (!isa<CmpInst>(Inst)) 9330 PostponedInsts.push_back(Inst); 9331 } 9332 9333 // Try to vectorize operands. 9334 // Continue analysis for the instruction from the same basic block only to 9335 // save compile time. 9336 if (++Level < RecursionMaxDepth) 9337 for (auto *Op : Inst->operand_values()) 9338 if (VisitedInstrs.insert(Op).second) 9339 if (auto *I = dyn_cast<Instruction>(Op)) 9340 // Do not try to vectorize CmpInst operands, this is done 9341 // separately. 9342 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9343 I->getParent() == BB) 9344 Stack.emplace(I, Level); 9345 } 9346 // Try to vectorized binops where reductions were not found. 9347 for (Value *V : PostponedInsts) 9348 if (auto *Inst = dyn_cast<Instruction>(V)) 9349 if (!R.isDeleted(Inst)) 9350 Res |= Vectorize(Inst, R); 9351 return Res; 9352 } 9353 9354 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9355 BasicBlock *BB, BoUpSLP &R, 9356 TargetTransformInfo *TTI) { 9357 auto *I = dyn_cast_or_null<Instruction>(V); 9358 if (!I) 9359 return false; 9360 9361 if (!isa<BinaryOperator>(I)) 9362 P = nullptr; 9363 // Try to match and vectorize a horizontal reduction. 9364 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9365 return tryToVectorize(I, R); 9366 }; 9367 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9368 ExtraVectorization); 9369 } 9370 9371 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9372 BasicBlock *BB, BoUpSLP &R) { 9373 const DataLayout &DL = BB->getModule()->getDataLayout(); 9374 if (!R.canMapToVector(IVI->getType(), DL)) 9375 return false; 9376 9377 SmallVector<Value *, 16> BuildVectorOpds; 9378 SmallVector<Value *, 16> BuildVectorInsts; 9379 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9380 return false; 9381 9382 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9383 // Aggregate value is unlikely to be processed in vector register, we need to 9384 // extract scalars into scalar registers, so NeedExtraction is set true. 9385 return tryToVectorizeList(BuildVectorOpds, R); 9386 } 9387 9388 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9389 BasicBlock *BB, BoUpSLP &R) { 9390 SmallVector<Value *, 16> BuildVectorInsts; 9391 SmallVector<Value *, 16> BuildVectorOpds; 9392 SmallVector<int> Mask; 9393 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9394 (llvm::all_of( 9395 BuildVectorOpds, 9396 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9397 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9398 return false; 9399 9400 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9401 return tryToVectorizeList(BuildVectorInsts, R); 9402 } 9403 9404 template <typename T> 9405 static bool 9406 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9407 function_ref<unsigned(T *)> Limit, 9408 function_ref<bool(T *, T *)> Comparator, 9409 function_ref<bool(T *, T *)> AreCompatible, 9410 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9411 bool LimitForRegisterSize) { 9412 bool Changed = false; 9413 // Sort by type, parent, operands. 9414 stable_sort(Incoming, Comparator); 9415 9416 // Try to vectorize elements base on their type. 9417 SmallVector<T *> Candidates; 9418 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9419 // Look for the next elements with the same type, parent and operand 9420 // kinds. 9421 auto *SameTypeIt = IncIt; 9422 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9423 ++SameTypeIt; 9424 9425 // Try to vectorize them. 9426 unsigned NumElts = (SameTypeIt - IncIt); 9427 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9428 << NumElts << ")\n"); 9429 // The vectorization is a 3-state attempt: 9430 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9431 // size of maximal register at first. 9432 // 2. Try to vectorize remaining instructions with the same type, if 9433 // possible. This may result in the better vectorization results rather than 9434 // if we try just to vectorize instructions with the same/alternate opcodes. 9435 // 3. Final attempt to try to vectorize all instructions with the 9436 // same/alternate ops only, this may result in some extra final 9437 // vectorization. 9438 if (NumElts > 1 && 9439 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9440 // Success start over because instructions might have been changed. 9441 Changed = true; 9442 } else if (NumElts < Limit(*IncIt) && 9443 (Candidates.empty() || 9444 Candidates.front()->getType() == (*IncIt)->getType())) { 9445 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9446 } 9447 // Final attempt to vectorize instructions with the same types. 9448 if (Candidates.size() > 1 && 9449 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9450 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9451 // Success start over because instructions might have been changed. 9452 Changed = true; 9453 } else if (LimitForRegisterSize) { 9454 // Try to vectorize using small vectors. 9455 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9456 It != End;) { 9457 auto *SameTypeIt = It; 9458 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9459 ++SameTypeIt; 9460 unsigned NumElts = (SameTypeIt - It); 9461 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9462 /*LimitForRegisterSize=*/false)) 9463 Changed = true; 9464 It = SameTypeIt; 9465 } 9466 } 9467 Candidates.clear(); 9468 } 9469 9470 // Start over at the next instruction of a different type (or the end). 9471 IncIt = SameTypeIt; 9472 } 9473 return Changed; 9474 } 9475 9476 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9477 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9478 bool AtTerminator) { 9479 bool OpsChanged = false; 9480 SmallVector<Instruction *, 4> PostponedCmps; 9481 for (auto *I : reverse(Instructions)) { 9482 if (R.isDeleted(I)) 9483 continue; 9484 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9485 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9486 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9487 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9488 else if (isa<CmpInst>(I)) 9489 PostponedCmps.push_back(I); 9490 } 9491 if (AtTerminator) { 9492 // Try to find reductions first. 9493 for (Instruction *I : PostponedCmps) { 9494 if (R.isDeleted(I)) 9495 continue; 9496 for (Value *Op : I->operands()) 9497 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9498 } 9499 // Try to vectorize operands as vector bundles. 9500 for (Instruction *I : PostponedCmps) { 9501 if (R.isDeleted(I)) 9502 continue; 9503 OpsChanged |= tryToVectorize(I, R); 9504 } 9505 // Try to vectorize list of compares. 9506 // Sort by type, compare predicate, etc. 9507 // TODO: Add analysis on the operand opcodes (profitable to vectorize 9508 // instructions with same/alternate opcodes/const values). 9509 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9510 auto *CI1 = cast<CmpInst>(V); 9511 auto *CI2 = cast<CmpInst>(V2); 9512 if (R.isDeleted(CI2) || !isValidElementType(CI2->getType())) 9513 return false; 9514 if (CI1->getOperand(0)->getType()->getTypeID() < 9515 CI2->getOperand(0)->getType()->getTypeID()) 9516 return true; 9517 if (CI1->getOperand(0)->getType()->getTypeID() > 9518 CI2->getOperand(0)->getType()->getTypeID()) 9519 return false; 9520 return CI1->getPredicate() < CI2->getPredicate() || 9521 (CI1->getPredicate() > CI2->getPredicate() && 9522 CI1->getPredicate() < 9523 CmpInst::getSwappedPredicate(CI2->getPredicate())); 9524 }; 9525 9526 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9527 if (V1 == V2) 9528 return true; 9529 auto *CI1 = cast<CmpInst>(V1); 9530 auto *CI2 = cast<CmpInst>(V2); 9531 if (R.isDeleted(CI2) || !isValidElementType(CI2->getType())) 9532 return false; 9533 if (CI1->getOperand(0)->getType() != CI2->getOperand(0)->getType()) 9534 return false; 9535 return CI1->getPredicate() == CI2->getPredicate() || 9536 CI1->getPredicate() == 9537 CmpInst::getSwappedPredicate(CI2->getPredicate()); 9538 }; 9539 auto Limit = [&R](Value *V) { 9540 unsigned EltSize = R.getVectorElementSize(V); 9541 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9542 }; 9543 9544 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9545 OpsChanged |= tryToVectorizeSequence<Value>( 9546 Vals, Limit, CompareSorter, AreCompatibleCompares, 9547 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9548 // Exclude possible reductions from other blocks. 9549 bool ArePossiblyReducedInOtherBlock = 9550 any_of(Candidates, [](Value *V) { 9551 return any_of(V->users(), [V](User *U) { 9552 return isa<SelectInst>(U) && 9553 cast<SelectInst>(U)->getParent() != 9554 cast<Instruction>(V)->getParent(); 9555 }); 9556 }); 9557 if (ArePossiblyReducedInOtherBlock) 9558 return false; 9559 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9560 }, 9561 /*LimitForRegisterSize=*/true); 9562 Instructions.clear(); 9563 } else { 9564 // Insert in reverse order since the PostponedCmps vector was filled in 9565 // reverse order. 9566 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9567 } 9568 return OpsChanged; 9569 } 9570 9571 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9572 bool Changed = false; 9573 SmallVector<Value *, 4> Incoming; 9574 SmallPtrSet<Value *, 16> VisitedInstrs; 9575 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9576 // node. Allows better to identify the chains that can be vectorized in the 9577 // better way. 9578 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9579 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9580 assert(isValidElementType(V1->getType()) && 9581 isValidElementType(V2->getType()) && 9582 "Expected vectorizable types only."); 9583 // It is fine to compare type IDs here, since we expect only vectorizable 9584 // types, like ints, floats and pointers, we don't care about other type. 9585 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9586 return true; 9587 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9588 return false; 9589 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9590 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9591 if (Opcodes1.size() < Opcodes2.size()) 9592 return true; 9593 if (Opcodes1.size() > Opcodes2.size()) 9594 return false; 9595 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9596 // Undefs are compatible with any other value. 9597 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9598 continue; 9599 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9600 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9601 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9602 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9603 if (!NodeI1) 9604 return NodeI2 != nullptr; 9605 if (!NodeI2) 9606 return false; 9607 assert((NodeI1 == NodeI2) == 9608 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9609 "Different nodes should have different DFS numbers"); 9610 if (NodeI1 != NodeI2) 9611 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9612 InstructionsState S = getSameOpcode({I1, I2}); 9613 if (S.getOpcode()) 9614 continue; 9615 return I1->getOpcode() < I2->getOpcode(); 9616 } 9617 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9618 continue; 9619 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9620 return true; 9621 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9622 return false; 9623 } 9624 return false; 9625 }; 9626 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9627 if (V1 == V2) 9628 return true; 9629 if (V1->getType() != V2->getType()) 9630 return false; 9631 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9632 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9633 if (Opcodes1.size() != Opcodes2.size()) 9634 return false; 9635 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9636 // Undefs are compatible with any other value. 9637 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9638 continue; 9639 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9640 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9641 if (I1->getParent() != I2->getParent()) 9642 return false; 9643 InstructionsState S = getSameOpcode({I1, I2}); 9644 if (S.getOpcode()) 9645 continue; 9646 return false; 9647 } 9648 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9649 continue; 9650 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9651 return false; 9652 } 9653 return true; 9654 }; 9655 auto Limit = [&R](Value *V) { 9656 unsigned EltSize = R.getVectorElementSize(V); 9657 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9658 }; 9659 9660 bool HaveVectorizedPhiNodes = false; 9661 do { 9662 // Collect the incoming values from the PHIs. 9663 Incoming.clear(); 9664 for (Instruction &I : *BB) { 9665 PHINode *P = dyn_cast<PHINode>(&I); 9666 if (!P) 9667 break; 9668 9669 // No need to analyze deleted, vectorized and non-vectorizable 9670 // instructions. 9671 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9672 isValidElementType(P->getType())) 9673 Incoming.push_back(P); 9674 } 9675 9676 // Find the corresponding non-phi nodes for better matching when trying to 9677 // build the tree. 9678 for (Value *V : Incoming) { 9679 SmallVectorImpl<Value *> &Opcodes = 9680 PHIToOpcodes.try_emplace(V).first->getSecond(); 9681 if (!Opcodes.empty()) 9682 continue; 9683 SmallVector<Value *, 4> Nodes(1, V); 9684 SmallPtrSet<Value *, 4> Visited; 9685 while (!Nodes.empty()) { 9686 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9687 if (!Visited.insert(PHI).second) 9688 continue; 9689 for (Value *V : PHI->incoming_values()) { 9690 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9691 Nodes.push_back(PHI1); 9692 continue; 9693 } 9694 Opcodes.emplace_back(V); 9695 } 9696 } 9697 } 9698 9699 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9700 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9701 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9702 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9703 }, 9704 /*LimitForRegisterSize=*/true); 9705 Changed |= HaveVectorizedPhiNodes; 9706 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9707 } while (HaveVectorizedPhiNodes); 9708 9709 VisitedInstrs.clear(); 9710 9711 SmallVector<Instruction *, 8> PostProcessInstructions; 9712 SmallDenseSet<Instruction *, 4> KeyNodes; 9713 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9714 // Skip instructions with scalable type. The num of elements is unknown at 9715 // compile-time for scalable type. 9716 if (isa<ScalableVectorType>(it->getType())) 9717 continue; 9718 9719 // Skip instructions marked for the deletion. 9720 if (R.isDeleted(&*it)) 9721 continue; 9722 // We may go through BB multiple times so skip the one we have checked. 9723 if (!VisitedInstrs.insert(&*it).second) { 9724 if (it->use_empty() && KeyNodes.contains(&*it) && 9725 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9726 it->isTerminator())) { 9727 // We would like to start over since some instructions are deleted 9728 // and the iterator may become invalid value. 9729 Changed = true; 9730 it = BB->begin(); 9731 e = BB->end(); 9732 } 9733 continue; 9734 } 9735 9736 if (isa<DbgInfoIntrinsic>(it)) 9737 continue; 9738 9739 // Try to vectorize reductions that use PHINodes. 9740 if (PHINode *P = dyn_cast<PHINode>(it)) { 9741 // Check that the PHI is a reduction PHI. 9742 if (P->getNumIncomingValues() == 2) { 9743 // Try to match and vectorize a horizontal reduction. 9744 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9745 TTI)) { 9746 Changed = true; 9747 it = BB->begin(); 9748 e = BB->end(); 9749 continue; 9750 } 9751 } 9752 // Try to vectorize the incoming values of the PHI, to catch reductions 9753 // that feed into PHIs. 9754 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9755 // Skip if the incoming block is the current BB for now. Also, bypass 9756 // unreachable IR for efficiency and to avoid crashing. 9757 // TODO: Collect the skipped incoming values and try to vectorize them 9758 // after processing BB. 9759 if (BB == P->getIncomingBlock(I) || 9760 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9761 continue; 9762 9763 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9764 P->getIncomingBlock(I), R, TTI); 9765 } 9766 continue; 9767 } 9768 9769 // Ran into an instruction without users, like terminator, or function call 9770 // with ignored return value, store. Ignore unused instructions (basing on 9771 // instruction type, except for CallInst and InvokeInst). 9772 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9773 isa<InvokeInst>(it))) { 9774 KeyNodes.insert(&*it); 9775 bool OpsChanged = false; 9776 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9777 for (auto *V : it->operand_values()) { 9778 // Try to match and vectorize a horizontal reduction. 9779 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9780 } 9781 } 9782 // Start vectorization of post-process list of instructions from the 9783 // top-tree instructions to try to vectorize as many instructions as 9784 // possible. 9785 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9786 it->isTerminator()); 9787 if (OpsChanged) { 9788 // We would like to start over since some instructions are deleted 9789 // and the iterator may become invalid value. 9790 Changed = true; 9791 it = BB->begin(); 9792 e = BB->end(); 9793 continue; 9794 } 9795 } 9796 9797 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9798 isa<InsertValueInst>(it)) 9799 PostProcessInstructions.push_back(&*it); 9800 } 9801 9802 return Changed; 9803 } 9804 9805 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9806 auto Changed = false; 9807 for (auto &Entry : GEPs) { 9808 // If the getelementptr list has fewer than two elements, there's nothing 9809 // to do. 9810 if (Entry.second.size() < 2) 9811 continue; 9812 9813 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9814 << Entry.second.size() << ".\n"); 9815 9816 // Process the GEP list in chunks suitable for the target's supported 9817 // vector size. If a vector register can't hold 1 element, we are done. We 9818 // are trying to vectorize the index computations, so the maximum number of 9819 // elements is based on the size of the index expression, rather than the 9820 // size of the GEP itself (the target's pointer size). 9821 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9822 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9823 if (MaxVecRegSize < EltSize) 9824 continue; 9825 9826 unsigned MaxElts = MaxVecRegSize / EltSize; 9827 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9828 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9829 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9830 9831 // Initialize a set a candidate getelementptrs. Note that we use a 9832 // SetVector here to preserve program order. If the index computations 9833 // are vectorizable and begin with loads, we want to minimize the chance 9834 // of having to reorder them later. 9835 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9836 9837 // Some of the candidates may have already been vectorized after we 9838 // initially collected them. If so, they are marked as deleted, so remove 9839 // them from the set of candidates. 9840 Candidates.remove_if( 9841 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9842 9843 // Remove from the set of candidates all pairs of getelementptrs with 9844 // constant differences. Such getelementptrs are likely not good 9845 // candidates for vectorization in a bottom-up phase since one can be 9846 // computed from the other. We also ensure all candidate getelementptr 9847 // indices are unique. 9848 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9849 auto *GEPI = GEPList[I]; 9850 if (!Candidates.count(GEPI)) 9851 continue; 9852 auto *SCEVI = SE->getSCEV(GEPList[I]); 9853 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9854 auto *GEPJ = GEPList[J]; 9855 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9856 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9857 Candidates.remove(GEPI); 9858 Candidates.remove(GEPJ); 9859 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9860 Candidates.remove(GEPJ); 9861 } 9862 } 9863 } 9864 9865 // We break out of the above computation as soon as we know there are 9866 // fewer than two candidates remaining. 9867 if (Candidates.size() < 2) 9868 continue; 9869 9870 // Add the single, non-constant index of each candidate to the bundle. We 9871 // ensured the indices met these constraints when we originally collected 9872 // the getelementptrs. 9873 SmallVector<Value *, 16> Bundle(Candidates.size()); 9874 auto BundleIndex = 0u; 9875 for (auto *V : Candidates) { 9876 auto *GEP = cast<GetElementPtrInst>(V); 9877 auto *GEPIdx = GEP->idx_begin()->get(); 9878 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9879 Bundle[BundleIndex++] = GEPIdx; 9880 } 9881 9882 // Try and vectorize the indices. We are currently only interested in 9883 // gather-like cases of the form: 9884 // 9885 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9886 // 9887 // where the loads of "a", the loads of "b", and the subtractions can be 9888 // performed in parallel. It's likely that detecting this pattern in a 9889 // bottom-up phase will be simpler and less costly than building a 9890 // full-blown top-down phase beginning at the consecutive loads. 9891 Changed |= tryToVectorizeList(Bundle, R); 9892 } 9893 } 9894 return Changed; 9895 } 9896 9897 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9898 bool Changed = false; 9899 // Sort by type, base pointers and values operand. Value operands must be 9900 // compatible (have the same opcode, same parent), otherwise it is 9901 // definitely not profitable to try to vectorize them. 9902 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9903 if (V->getPointerOperandType()->getTypeID() < 9904 V2->getPointerOperandType()->getTypeID()) 9905 return true; 9906 if (V->getPointerOperandType()->getTypeID() > 9907 V2->getPointerOperandType()->getTypeID()) 9908 return false; 9909 // UndefValues are compatible with all other values. 9910 if (isa<UndefValue>(V->getValueOperand()) || 9911 isa<UndefValue>(V2->getValueOperand())) 9912 return false; 9913 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9914 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9915 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9916 DT->getNode(I1->getParent()); 9917 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9918 DT->getNode(I2->getParent()); 9919 assert(NodeI1 && "Should only process reachable instructions"); 9920 assert(NodeI1 && "Should only process reachable instructions"); 9921 assert((NodeI1 == NodeI2) == 9922 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9923 "Different nodes should have different DFS numbers"); 9924 if (NodeI1 != NodeI2) 9925 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9926 InstructionsState S = getSameOpcode({I1, I2}); 9927 if (S.getOpcode()) 9928 return false; 9929 return I1->getOpcode() < I2->getOpcode(); 9930 } 9931 if (isa<Constant>(V->getValueOperand()) && 9932 isa<Constant>(V2->getValueOperand())) 9933 return false; 9934 return V->getValueOperand()->getValueID() < 9935 V2->getValueOperand()->getValueID(); 9936 }; 9937 9938 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9939 if (V1 == V2) 9940 return true; 9941 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9942 return false; 9943 // Undefs are compatible with any other value. 9944 if (isa<UndefValue>(V1->getValueOperand()) || 9945 isa<UndefValue>(V2->getValueOperand())) 9946 return true; 9947 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9948 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9949 if (I1->getParent() != I2->getParent()) 9950 return false; 9951 InstructionsState S = getSameOpcode({I1, I2}); 9952 return S.getOpcode() > 0; 9953 } 9954 if (isa<Constant>(V1->getValueOperand()) && 9955 isa<Constant>(V2->getValueOperand())) 9956 return true; 9957 return V1->getValueOperand()->getValueID() == 9958 V2->getValueOperand()->getValueID(); 9959 }; 9960 auto Limit = [&R, this](StoreInst *SI) { 9961 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9962 return R.getMinVF(EltSize); 9963 }; 9964 9965 // Attempt to sort and vectorize each of the store-groups. 9966 for (auto &Pair : Stores) { 9967 if (Pair.second.size() < 2) 9968 continue; 9969 9970 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9971 << Pair.second.size() << ".\n"); 9972 9973 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9974 continue; 9975 9976 Changed |= tryToVectorizeSequence<StoreInst>( 9977 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9978 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9979 return vectorizeStores(Candidates, R); 9980 }, 9981 /*LimitForRegisterSize=*/false); 9982 } 9983 return Changed; 9984 } 9985 9986 char SLPVectorizer::ID = 0; 9987 9988 static const char lv_name[] = "SLP Vectorizer"; 9989 9990 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9991 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9992 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9993 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9994 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9995 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9996 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9997 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9998 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9999 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10000 10001 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10002