1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return AltOp != MainOp; } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 475 unsigned BaseIndex = 0); 476 477 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 478 /// compatible instructions or constants, or just some other regular values. 479 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 480 Value *Op1) { 481 return (isConstant(BaseOp0) && isConstant(Op0)) || 482 (isConstant(BaseOp1) && isConstant(Op1)) || 483 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 484 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 485 getSameOpcode({BaseOp0, Op0}).getOpcode() || 486 getSameOpcode({BaseOp1, Op1}).getOpcode(); 487 } 488 489 /// \returns analysis of the Instructions in \p VL described in 490 /// InstructionsState, the Opcode that we suppose the whole list 491 /// could be vectorized even if its structure is diverse. 492 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 493 unsigned BaseIndex) { 494 // Make sure these are all Instructions. 495 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 496 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 497 498 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 499 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 500 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 501 CmpInst::Predicate BasePred = 502 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 503 : CmpInst::BAD_ICMP_PREDICATE; 504 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 505 unsigned AltOpcode = Opcode; 506 unsigned AltIndex = BaseIndex; 507 508 // Check for one alternate opcode from another BinaryOperator. 509 // TODO - generalize to support all operators (types, calls etc.). 510 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 511 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 512 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 513 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 514 continue; 515 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 516 isValidForAlternation(Opcode)) { 517 AltOpcode = InstOpcode; 518 AltIndex = Cnt; 519 continue; 520 } 521 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 522 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 523 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 524 if (Ty0 == Ty1) { 525 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 526 continue; 527 if (Opcode == AltOpcode) { 528 assert(isValidForAlternation(Opcode) && 529 isValidForAlternation(InstOpcode) && 530 "Cast isn't safe for alternation, logic needs to be updated!"); 531 AltOpcode = InstOpcode; 532 AltIndex = Cnt; 533 continue; 534 } 535 } 536 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 537 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 538 auto *Inst = cast<Instruction>(VL[Cnt]); 539 Type *Ty0 = BaseInst->getOperand(0)->getType(); 540 Type *Ty1 = Inst->getOperand(0)->getType(); 541 if (Ty0 == Ty1) { 542 Value *BaseOp0 = BaseInst->getOperand(0); 543 Value *BaseOp1 = BaseInst->getOperand(1); 544 Value *Op0 = Inst->getOperand(0); 545 Value *Op1 = Inst->getOperand(1); 546 CmpInst::Predicate CurrentPred = 547 cast<CmpInst>(VL[Cnt])->getPredicate(); 548 CmpInst::Predicate SwappedCurrentPred = 549 CmpInst::getSwappedPredicate(CurrentPred); 550 // Check for compatible operands. If the corresponding operands are not 551 // compatible - need to perform alternate vectorization. 552 if (InstOpcode == Opcode) { 553 if (BasePred == CurrentPred && 554 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 555 continue; 556 if (BasePred == SwappedCurrentPred && 557 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 558 continue; 559 if (E == 2 && 560 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 561 continue; 562 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 563 CmpInst::Predicate AltPred = AltInst->getPredicate(); 564 Value *AltOp0 = AltInst->getOperand(0); 565 Value *AltOp1 = AltInst->getOperand(1); 566 // Check if operands are compatible with alternate operands. 567 if (AltPred == CurrentPred && 568 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 569 continue; 570 if (AltPred == SwappedCurrentPred && 571 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 572 continue; 573 } 574 if (BaseIndex == AltIndex) { 575 assert(isValidForAlternation(Opcode) && 576 isValidForAlternation(InstOpcode) && 577 "Cast isn't safe for alternation, logic needs to be updated!"); 578 AltIndex = Cnt; 579 continue; 580 } 581 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 582 CmpInst::Predicate AltPred = AltInst->getPredicate(); 583 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 584 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 585 continue; 586 } 587 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 588 continue; 589 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 590 } 591 592 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 593 cast<Instruction>(VL[AltIndex])); 594 } 595 596 /// \returns true if all of the values in \p VL have the same type or false 597 /// otherwise. 598 static bool allSameType(ArrayRef<Value *> VL) { 599 Type *Ty = VL[0]->getType(); 600 for (int i = 1, e = VL.size(); i < e; i++) 601 if (VL[i]->getType() != Ty) 602 return false; 603 604 return true; 605 } 606 607 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 608 static Optional<unsigned> getExtractIndex(Instruction *E) { 609 unsigned Opcode = E->getOpcode(); 610 assert((Opcode == Instruction::ExtractElement || 611 Opcode == Instruction::ExtractValue) && 612 "Expected extractelement or extractvalue instruction."); 613 if (Opcode == Instruction::ExtractElement) { 614 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 615 if (!CI) 616 return None; 617 return CI->getZExtValue(); 618 } 619 ExtractValueInst *EI = cast<ExtractValueInst>(E); 620 if (EI->getNumIndices() != 1) 621 return None; 622 return *EI->idx_begin(); 623 } 624 625 /// \returns True if in-tree use also needs extract. This refers to 626 /// possible scalar operand in vectorized instruction. 627 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 628 TargetLibraryInfo *TLI) { 629 unsigned Opcode = UserInst->getOpcode(); 630 switch (Opcode) { 631 case Instruction::Load: { 632 LoadInst *LI = cast<LoadInst>(UserInst); 633 return (LI->getPointerOperand() == Scalar); 634 } 635 case Instruction::Store: { 636 StoreInst *SI = cast<StoreInst>(UserInst); 637 return (SI->getPointerOperand() == Scalar); 638 } 639 case Instruction::Call: { 640 CallInst *CI = cast<CallInst>(UserInst); 641 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 642 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 643 if (hasVectorInstrinsicScalarOpd(ID, i)) 644 return (CI->getArgOperand(i) == Scalar); 645 } 646 LLVM_FALLTHROUGH; 647 } 648 default: 649 return false; 650 } 651 } 652 653 /// \returns the AA location that is being access by the instruction. 654 static MemoryLocation getLocation(Instruction *I) { 655 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 656 return MemoryLocation::get(SI); 657 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 658 return MemoryLocation::get(LI); 659 return MemoryLocation(); 660 } 661 662 /// \returns True if the instruction is not a volatile or atomic load/store. 663 static bool isSimple(Instruction *I) { 664 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 665 return LI->isSimple(); 666 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 667 return SI->isSimple(); 668 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 669 return !MI->isVolatile(); 670 return true; 671 } 672 673 /// Shuffles \p Mask in accordance with the given \p SubMask. 674 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 675 if (SubMask.empty()) 676 return; 677 if (Mask.empty()) { 678 Mask.append(SubMask.begin(), SubMask.end()); 679 return; 680 } 681 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 682 int TermValue = std::min(Mask.size(), SubMask.size()); 683 for (int I = 0, E = SubMask.size(); I < E; ++I) { 684 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 685 Mask[SubMask[I]] >= TermValue) 686 continue; 687 NewMask[I] = Mask[SubMask[I]]; 688 } 689 Mask.swap(NewMask); 690 } 691 692 /// Order may have elements assigned special value (size) which is out of 693 /// bounds. Such indices only appear on places which correspond to undef values 694 /// (see canReuseExtract for details) and used in order to avoid undef values 695 /// have effect on operands ordering. 696 /// The first loop below simply finds all unused indices and then the next loop 697 /// nest assigns these indices for undef values positions. 698 /// As an example below Order has two undef positions and they have assigned 699 /// values 3 and 7 respectively: 700 /// before: 6 9 5 4 9 2 1 0 701 /// after: 6 3 5 4 7 2 1 0 702 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 703 const unsigned Sz = Order.size(); 704 SmallBitVector UnusedIndices(Sz, /*t=*/true); 705 SmallBitVector MaskedIndices(Sz); 706 for (unsigned I = 0; I < Sz; ++I) { 707 if (Order[I] < Sz) 708 UnusedIndices.reset(Order[I]); 709 else 710 MaskedIndices.set(I); 711 } 712 if (MaskedIndices.none()) 713 return; 714 assert(UnusedIndices.count() == MaskedIndices.count() && 715 "Non-synced masked/available indices."); 716 int Idx = UnusedIndices.find_first(); 717 int MIdx = MaskedIndices.find_first(); 718 while (MIdx >= 0) { 719 assert(Idx >= 0 && "Indices must be synced."); 720 Order[MIdx] = Idx; 721 Idx = UnusedIndices.find_next(Idx); 722 MIdx = MaskedIndices.find_next(MIdx); 723 } 724 } 725 726 namespace llvm { 727 728 static void inversePermutation(ArrayRef<unsigned> Indices, 729 SmallVectorImpl<int> &Mask) { 730 Mask.clear(); 731 const unsigned E = Indices.size(); 732 Mask.resize(E, UndefMaskElem); 733 for (unsigned I = 0; I < E; ++I) 734 Mask[Indices[I]] = I; 735 } 736 737 /// \returns inserting index of InsertElement or InsertValue instruction, 738 /// using Offset as base offset for index. 739 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 740 int Index = Offset; 741 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 742 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 743 auto *VT = cast<FixedVectorType>(IE->getType()); 744 if (CI->getValue().uge(VT->getNumElements())) 745 return UndefMaskElem; 746 Index *= VT->getNumElements(); 747 Index += CI->getZExtValue(); 748 return Index; 749 } 750 if (isa<UndefValue>(IE->getOperand(2))) 751 return UndefMaskElem; 752 return None; 753 } 754 755 auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Order and then 773 /// the \p Mask. \p Order - is the original order of the scalars, need to 774 /// reorder scalars into an unordered state at first according to the given 775 /// order. Then the ordered scalars are shuffled once again in accordance with 776 /// the provided mask. 777 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 778 ArrayRef<int> Mask) { 779 assert(!Mask.empty() && "Expected non-empty mask."); 780 SmallVector<Value *> Prev(Scalars.size(), 781 UndefValue::get(Scalars.front()->getType())); 782 Prev.swap(Scalars); 783 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 784 if (Mask[I] != UndefMaskElem) 785 Scalars[Mask[I]] = Prev[I]; 786 } 787 788 namespace slpvectorizer { 789 790 /// Bottom Up SLP Vectorizer. 791 class BoUpSLP { 792 struct TreeEntry; 793 struct ScheduleData; 794 795 public: 796 using ValueList = SmallVector<Value *, 8>; 797 using InstrList = SmallVector<Instruction *, 16>; 798 using ValueSet = SmallPtrSet<Value *, 16>; 799 using StoreList = SmallVector<StoreInst *, 8>; 800 using ExtraValueToDebugLocsMap = 801 MapVector<Value *, SmallVector<Instruction *, 2>>; 802 using OrdersType = SmallVector<unsigned, 4>; 803 804 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 805 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 806 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 807 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 808 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 809 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 810 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 811 // Use the vector register size specified by the target unless overridden 812 // by a command-line option. 813 // TODO: It would be better to limit the vectorization factor based on 814 // data type rather than just register size. For example, x86 AVX has 815 // 256-bit registers, but it does not support integer operations 816 // at that width (that requires AVX2). 817 if (MaxVectorRegSizeOption.getNumOccurrences()) 818 MaxVecRegSize = MaxVectorRegSizeOption; 819 else 820 MaxVecRegSize = 821 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 822 .getFixedSize(); 823 824 if (MinVectorRegSizeOption.getNumOccurrences()) 825 MinVecRegSize = MinVectorRegSizeOption; 826 else 827 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 828 } 829 830 /// Vectorize the tree that starts with the elements in \p VL. 831 /// Returns the vectorized root. 832 Value *vectorizeTree(); 833 834 /// Vectorize the tree but with the list of externally used values \p 835 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 836 /// generated extractvalue instructions. 837 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 838 839 /// \returns the cost incurred by unwanted spills and fills, caused by 840 /// holding live values over call sites. 841 InstructionCost getSpillCost() const; 842 843 /// \returns the vectorization cost of the subtree that starts at \p VL. 844 /// A negative number means that this is profitable. 845 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 846 847 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 848 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 849 void buildTree(ArrayRef<Value *> Roots, 850 ArrayRef<Value *> UserIgnoreLst = None); 851 852 /// Builds external uses of the vectorized scalars, i.e. the list of 853 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 854 /// ExternallyUsedValues contains additional list of external uses to handle 855 /// vectorization of reductions. 856 void 857 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 858 859 /// Clear the internal data structures that are created by 'buildTree'. 860 void deleteTree() { 861 VectorizableTree.clear(); 862 ScalarToTreeEntry.clear(); 863 MustGather.clear(); 864 ExternalUses.clear(); 865 for (auto &Iter : BlocksSchedules) { 866 BlockScheduling *BS = Iter.second.get(); 867 BS->clear(); 868 } 869 MinBWs.clear(); 870 InstrElementSize.clear(); 871 } 872 873 unsigned getTreeSize() const { return VectorizableTree.size(); } 874 875 /// Perform LICM and CSE on the newly generated gather sequences. 876 void optimizeGatherSequence(); 877 878 /// Checks if the specified gather tree entry \p TE can be represented as a 879 /// shuffled vector entry + (possibly) permutation with other gathers. It 880 /// implements the checks only for possibly ordered scalars (Loads, 881 /// ExtractElement, ExtractValue), which can be part of the graph. 882 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 883 884 /// Gets reordering data for the given tree entry. If the entry is vectorized 885 /// - just return ReorderIndices, otherwise check if the scalars can be 886 /// reordered and return the most optimal order. 887 /// \param TopToBottom If true, include the order of vectorized stores and 888 /// insertelement nodes, otherwise skip them. 889 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 890 891 /// Reorders the current graph to the most profitable order starting from the 892 /// root node to the leaf nodes. The best order is chosen only from the nodes 893 /// of the same size (vectorization factor). Smaller nodes are considered 894 /// parts of subgraph with smaller VF and they are reordered independently. We 895 /// can make it because we still need to extend smaller nodes to the wider VF 896 /// and we can merge reordering shuffles with the widening shuffles. 897 void reorderTopToBottom(); 898 899 /// Reorders the current graph to the most profitable order starting from 900 /// leaves to the root. It allows to rotate small subgraphs and reduce the 901 /// number of reshuffles if the leaf nodes use the same order. In this case we 902 /// can merge the orders and just shuffle user node instead of shuffling its 903 /// operands. Plus, even the leaf nodes have different orders, it allows to 904 /// sink reordering in the graph closer to the root node and merge it later 905 /// during analysis. 906 void reorderBottomToTop(bool IgnoreReorder = false); 907 908 /// \return The vector element size in bits to use when vectorizing the 909 /// expression tree ending at \p V. If V is a store, the size is the width of 910 /// the stored value. Otherwise, the size is the width of the largest loaded 911 /// value reaching V. This method is used by the vectorizer to calculate 912 /// vectorization factors. 913 unsigned getVectorElementSize(Value *V); 914 915 /// Compute the minimum type sizes required to represent the entries in a 916 /// vectorizable tree. 917 void computeMinimumValueSizes(); 918 919 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 920 unsigned getMaxVecRegSize() const { 921 return MaxVecRegSize; 922 } 923 924 // \returns minimum vector register size as set by cl::opt. 925 unsigned getMinVecRegSize() const { 926 return MinVecRegSize; 927 } 928 929 unsigned getMinVF(unsigned Sz) const { 930 return std::max(2U, getMinVecRegSize() / Sz); 931 } 932 933 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 934 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 935 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 936 return MaxVF ? MaxVF : UINT_MAX; 937 } 938 939 /// Check if homogeneous aggregate is isomorphic to some VectorType. 940 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 941 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 942 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 943 /// 944 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 945 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 946 947 /// \returns True if the VectorizableTree is both tiny and not fully 948 /// vectorizable. We do not vectorize such trees. 949 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 950 951 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 952 /// can be load combined in the backend. Load combining may not be allowed in 953 /// the IR optimizer, so we do not want to alter the pattern. For example, 954 /// partially transforming a scalar bswap() pattern into vector code is 955 /// effectively impossible for the backend to undo. 956 /// TODO: If load combining is allowed in the IR optimizer, this analysis 957 /// may not be necessary. 958 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 959 960 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 961 /// can be load combined in the backend. Load combining may not be allowed in 962 /// the IR optimizer, so we do not want to alter the pattern. For example, 963 /// partially transforming a scalar bswap() pattern into vector code is 964 /// effectively impossible for the backend to undo. 965 /// TODO: If load combining is allowed in the IR optimizer, this analysis 966 /// may not be necessary. 967 bool isLoadCombineCandidate() const; 968 969 OptimizationRemarkEmitter *getORE() { return ORE; } 970 971 /// This structure holds any data we need about the edges being traversed 972 /// during buildTree_rec(). We keep track of: 973 /// (i) the user TreeEntry index, and 974 /// (ii) the index of the edge. 975 struct EdgeInfo { 976 EdgeInfo() = default; 977 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 978 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 979 /// The user TreeEntry. 980 TreeEntry *UserTE = nullptr; 981 /// The operand index of the use. 982 unsigned EdgeIdx = UINT_MAX; 983 #ifndef NDEBUG 984 friend inline raw_ostream &operator<<(raw_ostream &OS, 985 const BoUpSLP::EdgeInfo &EI) { 986 EI.dump(OS); 987 return OS; 988 } 989 /// Debug print. 990 void dump(raw_ostream &OS) const { 991 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 992 << " EdgeIdx:" << EdgeIdx << "}"; 993 } 994 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 995 #endif 996 }; 997 998 /// A helper data structure to hold the operands of a vector of instructions. 999 /// This supports a fixed vector length for all operand vectors. 1000 class VLOperands { 1001 /// For each operand we need (i) the value, and (ii) the opcode that it 1002 /// would be attached to if the expression was in a left-linearized form. 1003 /// This is required to avoid illegal operand reordering. 1004 /// For example: 1005 /// \verbatim 1006 /// 0 Op1 1007 /// |/ 1008 /// Op1 Op2 Linearized + Op2 1009 /// \ / ----------> |/ 1010 /// - - 1011 /// 1012 /// Op1 - Op2 (0 + Op1) - Op2 1013 /// \endverbatim 1014 /// 1015 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1016 /// 1017 /// Another way to think of this is to track all the operations across the 1018 /// path from the operand all the way to the root of the tree and to 1019 /// calculate the operation that corresponds to this path. For example, the 1020 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1021 /// corresponding operation is a '-' (which matches the one in the 1022 /// linearized tree, as shown above). 1023 /// 1024 /// For lack of a better term, we refer to this operation as Accumulated 1025 /// Path Operation (APO). 1026 struct OperandData { 1027 OperandData() = default; 1028 OperandData(Value *V, bool APO, bool IsUsed) 1029 : V(V), APO(APO), IsUsed(IsUsed) {} 1030 /// The operand value. 1031 Value *V = nullptr; 1032 /// TreeEntries only allow a single opcode, or an alternate sequence of 1033 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1034 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1035 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1036 /// (e.g., Add/Mul) 1037 bool APO = false; 1038 /// Helper data for the reordering function. 1039 bool IsUsed = false; 1040 }; 1041 1042 /// During operand reordering, we are trying to select the operand at lane 1043 /// that matches best with the operand at the neighboring lane. Our 1044 /// selection is based on the type of value we are looking for. For example, 1045 /// if the neighboring lane has a load, we need to look for a load that is 1046 /// accessing a consecutive address. These strategies are summarized in the 1047 /// 'ReorderingMode' enumerator. 1048 enum class ReorderingMode { 1049 Load, ///< Matching loads to consecutive memory addresses 1050 Opcode, ///< Matching instructions based on opcode (same or alternate) 1051 Constant, ///< Matching constants 1052 Splat, ///< Matching the same instruction multiple times (broadcast) 1053 Failed, ///< We failed to create a vectorizable group 1054 }; 1055 1056 using OperandDataVec = SmallVector<OperandData, 2>; 1057 1058 /// A vector of operand vectors. 1059 SmallVector<OperandDataVec, 4> OpsVec; 1060 1061 const DataLayout &DL; 1062 ScalarEvolution &SE; 1063 const BoUpSLP &R; 1064 1065 /// \returns the operand data at \p OpIdx and \p Lane. 1066 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1067 return OpsVec[OpIdx][Lane]; 1068 } 1069 1070 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1071 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1072 return OpsVec[OpIdx][Lane]; 1073 } 1074 1075 /// Clears the used flag for all entries. 1076 void clearUsed() { 1077 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1078 OpIdx != NumOperands; ++OpIdx) 1079 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1080 ++Lane) 1081 OpsVec[OpIdx][Lane].IsUsed = false; 1082 } 1083 1084 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1085 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1086 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1087 } 1088 1089 // The hard-coded scores listed here are not very important, though it shall 1090 // be higher for better matches to improve the resulting cost. When 1091 // computing the scores of matching one sub-tree with another, we are 1092 // basically counting the number of values that are matching. So even if all 1093 // scores are set to 1, we would still get a decent matching result. 1094 // However, sometimes we have to break ties. For example we may have to 1095 // choose between matching loads vs matching opcodes. This is what these 1096 // scores are helping us with: they provide the order of preference. Also, 1097 // this is important if the scalar is externally used or used in another 1098 // tree entry node in the different lane. 1099 1100 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1101 static const int ScoreConsecutiveLoads = 4; 1102 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1103 static const int ScoreReversedLoads = 3; 1104 /// ExtractElementInst from same vector and consecutive indexes. 1105 static const int ScoreConsecutiveExtracts = 4; 1106 /// ExtractElementInst from same vector and reversed indices. 1107 static const int ScoreReversedExtracts = 3; 1108 /// Constants. 1109 static const int ScoreConstants = 2; 1110 /// Instructions with the same opcode. 1111 static const int ScoreSameOpcode = 2; 1112 /// Instructions with alt opcodes (e.g, add + sub). 1113 static const int ScoreAltOpcodes = 1; 1114 /// Identical instructions (a.k.a. splat or broadcast). 1115 static const int ScoreSplat = 1; 1116 /// Matching with an undef is preferable to failing. 1117 static const int ScoreUndef = 1; 1118 /// Score for failing to find a decent match. 1119 static const int ScoreFail = 0; 1120 /// User exteranl to the vectorized code. 1121 static const int ExternalUseCost = 1; 1122 /// The user is internal but in a different lane. 1123 static const int UserInDiffLaneCost = ExternalUseCost; 1124 1125 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1126 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1127 ScalarEvolution &SE, int NumLanes) { 1128 if (V1 == V2) 1129 return VLOperands::ScoreSplat; 1130 1131 auto *LI1 = dyn_cast<LoadInst>(V1); 1132 auto *LI2 = dyn_cast<LoadInst>(V2); 1133 if (LI1 && LI2) { 1134 if (LI1->getParent() != LI2->getParent()) 1135 return VLOperands::ScoreFail; 1136 1137 Optional<int> Dist = getPointersDiff( 1138 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1139 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1140 if (!Dist) 1141 return VLOperands::ScoreFail; 1142 // The distance is too large - still may be profitable to use masked 1143 // loads/gathers. 1144 if (std::abs(*Dist) > NumLanes / 2) 1145 return VLOperands::ScoreAltOpcodes; 1146 // This still will detect consecutive loads, but we might have "holes" 1147 // in some cases. It is ok for non-power-2 vectorization and may produce 1148 // better results. It should not affect current vectorization. 1149 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1150 : VLOperands::ScoreReversedLoads; 1151 } 1152 1153 auto *C1 = dyn_cast<Constant>(V1); 1154 auto *C2 = dyn_cast<Constant>(V2); 1155 if (C1 && C2) 1156 return VLOperands::ScoreConstants; 1157 1158 // Extracts from consecutive indexes of the same vector better score as 1159 // the extracts could be optimized away. 1160 Value *EV1; 1161 ConstantInt *Ex1Idx; 1162 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1163 // Undefs are always profitable for extractelements. 1164 if (isa<UndefValue>(V2)) 1165 return VLOperands::ScoreConsecutiveExtracts; 1166 Value *EV2 = nullptr; 1167 ConstantInt *Ex2Idx = nullptr; 1168 if (match(V2, 1169 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1170 m_Undef())))) { 1171 // Undefs are always profitable for extractelements. 1172 if (!Ex2Idx) 1173 return VLOperands::ScoreConsecutiveExtracts; 1174 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1175 return VLOperands::ScoreConsecutiveExtracts; 1176 if (EV2 == EV1) { 1177 int Idx1 = Ex1Idx->getZExtValue(); 1178 int Idx2 = Ex2Idx->getZExtValue(); 1179 int Dist = Idx2 - Idx1; 1180 // The distance is too large - still may be profitable to use 1181 // shuffles. 1182 if (std::abs(Dist) > NumLanes / 2) 1183 return VLOperands::ScoreAltOpcodes; 1184 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1185 : VLOperands::ScoreReversedExtracts; 1186 } 1187 } 1188 } 1189 1190 auto *I1 = dyn_cast<Instruction>(V1); 1191 auto *I2 = dyn_cast<Instruction>(V2); 1192 if (I1 && I2) { 1193 if (I1->getParent() != I2->getParent()) 1194 return VLOperands::ScoreFail; 1195 InstructionsState S = getSameOpcode({I1, I2}); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1199 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1200 : VLOperands::ScoreSameOpcode; 1201 } 1202 1203 if (isa<UndefValue>(V2)) 1204 return VLOperands::ScoreUndef; 1205 1206 return VLOperands::ScoreFail; 1207 } 1208 1209 /// Holds the values and their lanes that are taking part in the look-ahead 1210 /// score calculation. This is used in the external uses cost calculation. 1211 /// Need to hold all the lanes in case of splat/broadcast at least to 1212 /// correctly check for the use in the different lane. 1213 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1214 1215 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1216 /// either external to the vectorized code, or require shuffling. 1217 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1218 const std::pair<Value *, int> &RHS) { 1219 int Cost = 0; 1220 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1221 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1222 Value *V = Values[Idx].first; 1223 if (isa<Constant>(V)) { 1224 // Since this is a function pass, it doesn't make semantic sense to 1225 // walk the users of a subclass of Constant. The users could be in 1226 // another function, or even another module that happens to be in 1227 // the same LLVMContext. 1228 continue; 1229 } 1230 1231 // Calculate the absolute lane, using the minimum relative lane of LHS 1232 // and RHS as base and Idx as the offset. 1233 int Ln = std::min(LHS.second, RHS.second) + Idx; 1234 assert(Ln >= 0 && "Bad lane calculation"); 1235 unsigned UsersBudget = LookAheadUsersBudget; 1236 for (User *U : V->users()) { 1237 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1238 // The user is in the VectorizableTree. Check if we need to insert. 1239 int UserLn = UserTE->findLaneForValue(U); 1240 assert(UserLn >= 0 && "Bad lane"); 1241 // If the values are different, check just the line of the current 1242 // value. If the values are the same, need to add UserInDiffLaneCost 1243 // only if UserLn does not match both line numbers. 1244 if ((LHS.first != RHS.first && UserLn != Ln) || 1245 (LHS.first == RHS.first && UserLn != LHS.second && 1246 UserLn != RHS.second)) { 1247 Cost += UserInDiffLaneCost; 1248 break; 1249 } 1250 } else { 1251 // Check if the user is in the look-ahead code. 1252 auto It2 = InLookAheadValues.find(U); 1253 if (It2 != InLookAheadValues.end()) { 1254 // The user is in the look-ahead code. Check the lane. 1255 if (!It2->getSecond().contains(Ln)) { 1256 Cost += UserInDiffLaneCost; 1257 break; 1258 } 1259 } else { 1260 // The user is neither in SLP tree nor in the look-ahead code. 1261 Cost += ExternalUseCost; 1262 break; 1263 } 1264 } 1265 // Limit the number of visited uses to cap compilation time. 1266 if (--UsersBudget == 0) 1267 break; 1268 } 1269 } 1270 return Cost; 1271 } 1272 1273 /// Go through the operands of \p LHS and \p RHS recursively until \p 1274 /// MaxLevel, and return the cummulative score. For example: 1275 /// \verbatim 1276 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1277 /// \ / \ / \ / \ / 1278 /// + + + + 1279 /// G1 G2 G3 G4 1280 /// \endverbatim 1281 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1282 /// each level recursively, accumulating the score. It starts from matching 1283 /// the additions at level 0, then moves on to the loads (level 1). The 1284 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1285 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1286 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1287 /// Please note that the order of the operands does not matter, as we 1288 /// evaluate the score of all profitable combinations of operands. In 1289 /// other words the score of G1 and G4 is the same as G1 and G2. This 1290 /// heuristic is based on ideas described in: 1291 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1292 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1293 /// Luís F. W. Góes 1294 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1295 const std::pair<Value *, int> &RHS, int CurrLevel, 1296 int MaxLevel) { 1297 1298 Value *V1 = LHS.first; 1299 Value *V2 = RHS.first; 1300 // Get the shallow score of V1 and V2. 1301 int ShallowScoreAtThisLevel = std::max( 1302 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1303 getExternalUsesCost(LHS, RHS)); 1304 int Lane1 = LHS.second; 1305 int Lane2 = RHS.second; 1306 1307 // If reached MaxLevel, 1308 // or if V1 and V2 are not instructions, 1309 // or if they are SPLAT, 1310 // or if they are not consecutive, 1311 // or if profitable to vectorize loads or extractelements, early return 1312 // the current cost. 1313 auto *I1 = dyn_cast<Instruction>(V1); 1314 auto *I2 = dyn_cast<Instruction>(V2); 1315 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1316 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1317 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1318 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1319 ShallowScoreAtThisLevel)) 1320 return ShallowScoreAtThisLevel; 1321 assert(I1 && I2 && "Should have early exited."); 1322 1323 // Keep track of in-tree values for determining the external-use cost. 1324 InLookAheadValues[V1].insert(Lane1); 1325 InLookAheadValues[V2].insert(Lane2); 1326 1327 // Contains the I2 operand indexes that got matched with I1 operands. 1328 SmallSet<unsigned, 4> Op2Used; 1329 1330 // Recursion towards the operands of I1 and I2. We are trying all possible 1331 // operand pairs, and keeping track of the best score. 1332 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1333 OpIdx1 != NumOperands1; ++OpIdx1) { 1334 // Try to pair op1I with the best operand of I2. 1335 int MaxTmpScore = 0; 1336 unsigned MaxOpIdx2 = 0; 1337 bool FoundBest = false; 1338 // If I2 is commutative try all combinations. 1339 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1340 unsigned ToIdx = isCommutative(I2) 1341 ? I2->getNumOperands() 1342 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1343 assert(FromIdx <= ToIdx && "Bad index"); 1344 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1345 // Skip operands already paired with OpIdx1. 1346 if (Op2Used.count(OpIdx2)) 1347 continue; 1348 // Recursively calculate the cost at each level 1349 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1350 {I2->getOperand(OpIdx2), Lane2}, 1351 CurrLevel + 1, MaxLevel); 1352 // Look for the best score. 1353 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1354 MaxTmpScore = TmpScore; 1355 MaxOpIdx2 = OpIdx2; 1356 FoundBest = true; 1357 } 1358 } 1359 if (FoundBest) { 1360 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1361 Op2Used.insert(MaxOpIdx2); 1362 ShallowScoreAtThisLevel += MaxTmpScore; 1363 } 1364 } 1365 return ShallowScoreAtThisLevel; 1366 } 1367 1368 /// \Returns the look-ahead score, which tells us how much the sub-trees 1369 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1370 /// score. This helps break ties in an informed way when we cannot decide on 1371 /// the order of the operands by just considering the immediate 1372 /// predecessors. 1373 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1374 const std::pair<Value *, int> &RHS) { 1375 InLookAheadValues.clear(); 1376 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1377 } 1378 1379 // Search all operands in Ops[*][Lane] for the one that matches best 1380 // Ops[OpIdx][LastLane] and return its opreand index. 1381 // If no good match can be found, return None. 1382 Optional<unsigned> 1383 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1384 ArrayRef<ReorderingMode> ReorderingModes) { 1385 unsigned NumOperands = getNumOperands(); 1386 1387 // The operand of the previous lane at OpIdx. 1388 Value *OpLastLane = getData(OpIdx, LastLane).V; 1389 1390 // Our strategy mode for OpIdx. 1391 ReorderingMode RMode = ReorderingModes[OpIdx]; 1392 1393 // The linearized opcode of the operand at OpIdx, Lane. 1394 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1395 1396 // The best operand index and its score. 1397 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1398 // are using the score to differentiate between the two. 1399 struct BestOpData { 1400 Optional<unsigned> Idx = None; 1401 unsigned Score = 0; 1402 } BestOp; 1403 1404 // Iterate through all unused operands and look for the best. 1405 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1406 // Get the operand at Idx and Lane. 1407 OperandData &OpData = getData(Idx, Lane); 1408 Value *Op = OpData.V; 1409 bool OpAPO = OpData.APO; 1410 1411 // Skip already selected operands. 1412 if (OpData.IsUsed) 1413 continue; 1414 1415 // Skip if we are trying to move the operand to a position with a 1416 // different opcode in the linearized tree form. This would break the 1417 // semantics. 1418 if (OpAPO != OpIdxAPO) 1419 continue; 1420 1421 // Look for an operand that matches the current mode. 1422 switch (RMode) { 1423 case ReorderingMode::Load: 1424 case ReorderingMode::Constant: 1425 case ReorderingMode::Opcode: { 1426 bool LeftToRight = Lane > LastLane; 1427 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1428 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1429 unsigned Score = 1430 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1431 if (Score > BestOp.Score) { 1432 BestOp.Idx = Idx; 1433 BestOp.Score = Score; 1434 } 1435 break; 1436 } 1437 case ReorderingMode::Splat: 1438 if (Op == OpLastLane) 1439 BestOp.Idx = Idx; 1440 break; 1441 case ReorderingMode::Failed: 1442 return None; 1443 } 1444 } 1445 1446 if (BestOp.Idx) { 1447 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1448 return BestOp.Idx; 1449 } 1450 // If we could not find a good match return None. 1451 return None; 1452 } 1453 1454 /// Helper for reorderOperandVecs. 1455 /// \returns the lane that we should start reordering from. This is the one 1456 /// which has the least number of operands that can freely move about or 1457 /// less profitable because it already has the most optimal set of operands. 1458 unsigned getBestLaneToStartReordering() const { 1459 unsigned Min = UINT_MAX; 1460 unsigned SameOpNumber = 0; 1461 // std::pair<unsigned, unsigned> is used to implement a simple voting 1462 // algorithm and choose the lane with the least number of operands that 1463 // can freely move about or less profitable because it already has the 1464 // most optimal set of operands. The first unsigned is a counter for 1465 // voting, the second unsigned is the counter of lanes with instructions 1466 // with same/alternate opcodes and same parent basic block. 1467 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1468 // Try to be closer to the original results, if we have multiple lanes 1469 // with same cost. If 2 lanes have the same cost, use the one with the 1470 // lowest index. 1471 for (int I = getNumLanes(); I > 0; --I) { 1472 unsigned Lane = I - 1; 1473 OperandsOrderData NumFreeOpsHash = 1474 getMaxNumOperandsThatCanBeReordered(Lane); 1475 // Compare the number of operands that can move and choose the one with 1476 // the least number. 1477 if (NumFreeOpsHash.NumOfAPOs < Min) { 1478 Min = NumFreeOpsHash.NumOfAPOs; 1479 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1480 HashMap.clear(); 1481 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1482 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1483 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1484 // Select the most optimal lane in terms of number of operands that 1485 // should be moved around. 1486 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1487 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1488 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1489 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1490 auto It = HashMap.find(NumFreeOpsHash.Hash); 1491 if (It == HashMap.end()) 1492 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1493 else 1494 ++It->second.first; 1495 } 1496 } 1497 // Select the lane with the minimum counter. 1498 unsigned BestLane = 0; 1499 unsigned CntMin = UINT_MAX; 1500 for (const auto &Data : reverse(HashMap)) { 1501 if (Data.second.first < CntMin) { 1502 CntMin = Data.second.first; 1503 BestLane = Data.second.second; 1504 } 1505 } 1506 return BestLane; 1507 } 1508 1509 /// Data structure that helps to reorder operands. 1510 struct OperandsOrderData { 1511 /// The best number of operands with the same APOs, which can be 1512 /// reordered. 1513 unsigned NumOfAPOs = UINT_MAX; 1514 /// Number of operands with the same/alternate instruction opcode and 1515 /// parent. 1516 unsigned NumOpsWithSameOpcodeParent = 0; 1517 /// Hash for the actual operands ordering. 1518 /// Used to count operands, actually their position id and opcode 1519 /// value. It is used in the voting mechanism to find the lane with the 1520 /// least number of operands that can freely move about or less profitable 1521 /// because it already has the most optimal set of operands. Can be 1522 /// replaced with SmallVector<unsigned> instead but hash code is faster 1523 /// and requires less memory. 1524 unsigned Hash = 0; 1525 }; 1526 /// \returns the maximum number of operands that are allowed to be reordered 1527 /// for \p Lane and the number of compatible instructions(with the same 1528 /// parent/opcode). This is used as a heuristic for selecting the first lane 1529 /// to start operand reordering. 1530 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1531 unsigned CntTrue = 0; 1532 unsigned NumOperands = getNumOperands(); 1533 // Operands with the same APO can be reordered. We therefore need to count 1534 // how many of them we have for each APO, like this: Cnt[APO] = x. 1535 // Since we only have two APOs, namely true and false, we can avoid using 1536 // a map. Instead we can simply count the number of operands that 1537 // correspond to one of them (in this case the 'true' APO), and calculate 1538 // the other by subtracting it from the total number of operands. 1539 // Operands with the same instruction opcode and parent are more 1540 // profitable since we don't need to move them in many cases, with a high 1541 // probability such lane already can be vectorized effectively. 1542 bool AllUndefs = true; 1543 unsigned NumOpsWithSameOpcodeParent = 0; 1544 Instruction *OpcodeI = nullptr; 1545 BasicBlock *Parent = nullptr; 1546 unsigned Hash = 0; 1547 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1548 const OperandData &OpData = getData(OpIdx, Lane); 1549 if (OpData.APO) 1550 ++CntTrue; 1551 // Use Boyer-Moore majority voting for finding the majority opcode and 1552 // the number of times it occurs. 1553 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1554 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1555 I->getParent() != Parent) { 1556 if (NumOpsWithSameOpcodeParent == 0) { 1557 NumOpsWithSameOpcodeParent = 1; 1558 OpcodeI = I; 1559 Parent = I->getParent(); 1560 } else { 1561 --NumOpsWithSameOpcodeParent; 1562 } 1563 } else { 1564 ++NumOpsWithSameOpcodeParent; 1565 } 1566 } 1567 Hash = hash_combine( 1568 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1569 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1570 } 1571 if (AllUndefs) 1572 return {}; 1573 OperandsOrderData Data; 1574 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1575 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1576 Data.Hash = Hash; 1577 return Data; 1578 } 1579 1580 /// Go through the instructions in VL and append their operands. 1581 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1582 assert(!VL.empty() && "Bad VL"); 1583 assert((empty() || VL.size() == getNumLanes()) && 1584 "Expected same number of lanes"); 1585 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1586 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1587 OpsVec.resize(NumOperands); 1588 unsigned NumLanes = VL.size(); 1589 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1590 OpsVec[OpIdx].resize(NumLanes); 1591 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1592 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1593 // Our tree has just 3 nodes: the root and two operands. 1594 // It is therefore trivial to get the APO. We only need to check the 1595 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1596 // RHS operand. The LHS operand of both add and sub is never attached 1597 // to an inversese operation in the linearized form, therefore its APO 1598 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1599 1600 // Since operand reordering is performed on groups of commutative 1601 // operations or alternating sequences (e.g., +, -), we can safely 1602 // tell the inverse operations by checking commutativity. 1603 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1604 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1605 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1606 APO, false}; 1607 } 1608 } 1609 } 1610 1611 /// \returns the number of operands. 1612 unsigned getNumOperands() const { return OpsVec.size(); } 1613 1614 /// \returns the number of lanes. 1615 unsigned getNumLanes() const { return OpsVec[0].size(); } 1616 1617 /// \returns the operand value at \p OpIdx and \p Lane. 1618 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1619 return getData(OpIdx, Lane).V; 1620 } 1621 1622 /// \returns true if the data structure is empty. 1623 bool empty() const { return OpsVec.empty(); } 1624 1625 /// Clears the data. 1626 void clear() { OpsVec.clear(); } 1627 1628 /// \Returns true if there are enough operands identical to \p Op to fill 1629 /// the whole vector. 1630 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1631 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1632 bool OpAPO = getData(OpIdx, Lane).APO; 1633 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1634 if (Ln == Lane) 1635 continue; 1636 // This is set to true if we found a candidate for broadcast at Lane. 1637 bool FoundCandidate = false; 1638 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1639 OperandData &Data = getData(OpI, Ln); 1640 if (Data.APO != OpAPO || Data.IsUsed) 1641 continue; 1642 if (Data.V == Op) { 1643 FoundCandidate = true; 1644 Data.IsUsed = true; 1645 break; 1646 } 1647 } 1648 if (!FoundCandidate) 1649 return false; 1650 } 1651 return true; 1652 } 1653 1654 public: 1655 /// Initialize with all the operands of the instruction vector \p RootVL. 1656 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1657 ScalarEvolution &SE, const BoUpSLP &R) 1658 : DL(DL), SE(SE), R(R) { 1659 // Append all the operands of RootVL. 1660 appendOperandsOfVL(RootVL); 1661 } 1662 1663 /// \Returns a value vector with the operands across all lanes for the 1664 /// opearnd at \p OpIdx. 1665 ValueList getVL(unsigned OpIdx) const { 1666 ValueList OpVL(OpsVec[OpIdx].size()); 1667 assert(OpsVec[OpIdx].size() == getNumLanes() && 1668 "Expected same num of lanes across all operands"); 1669 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1670 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1671 return OpVL; 1672 } 1673 1674 // Performs operand reordering for 2 or more operands. 1675 // The original operands are in OrigOps[OpIdx][Lane]. 1676 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1677 void reorder() { 1678 unsigned NumOperands = getNumOperands(); 1679 unsigned NumLanes = getNumLanes(); 1680 // Each operand has its own mode. We are using this mode to help us select 1681 // the instructions for each lane, so that they match best with the ones 1682 // we have selected so far. 1683 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1684 1685 // This is a greedy single-pass algorithm. We are going over each lane 1686 // once and deciding on the best order right away with no back-tracking. 1687 // However, in order to increase its effectiveness, we start with the lane 1688 // that has operands that can move the least. For example, given the 1689 // following lanes: 1690 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1691 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1692 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1693 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1694 // we will start at Lane 1, since the operands of the subtraction cannot 1695 // be reordered. Then we will visit the rest of the lanes in a circular 1696 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1697 1698 // Find the first lane that we will start our search from. 1699 unsigned FirstLane = getBestLaneToStartReordering(); 1700 1701 // Initialize the modes. 1702 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1703 Value *OpLane0 = getValue(OpIdx, FirstLane); 1704 // Keep track if we have instructions with all the same opcode on one 1705 // side. 1706 if (isa<LoadInst>(OpLane0)) 1707 ReorderingModes[OpIdx] = ReorderingMode::Load; 1708 else if (isa<Instruction>(OpLane0)) { 1709 // Check if OpLane0 should be broadcast. 1710 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1711 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1712 else 1713 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1714 } 1715 else if (isa<Constant>(OpLane0)) 1716 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1717 else if (isa<Argument>(OpLane0)) 1718 // Our best hope is a Splat. It may save some cost in some cases. 1719 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1720 else 1721 // NOTE: This should be unreachable. 1722 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1723 } 1724 1725 // Check that we don't have same operands. No need to reorder if operands 1726 // are just perfect diamond or shuffled diamond match. Do not do it only 1727 // for possible broadcasts or non-power of 2 number of scalars (just for 1728 // now). 1729 auto &&SkipReordering = [this]() { 1730 SmallPtrSet<Value *, 4> UniqueValues; 1731 ArrayRef<OperandData> Op0 = OpsVec.front(); 1732 for (const OperandData &Data : Op0) 1733 UniqueValues.insert(Data.V); 1734 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1735 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1736 return !UniqueValues.contains(Data.V); 1737 })) 1738 return false; 1739 } 1740 // TODO: Check if we can remove a check for non-power-2 number of 1741 // scalars after full support of non-power-2 vectorization. 1742 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1743 }; 1744 1745 // If the initial strategy fails for any of the operand indexes, then we 1746 // perform reordering again in a second pass. This helps avoid assigning 1747 // high priority to the failed strategy, and should improve reordering for 1748 // the non-failed operand indexes. 1749 for (int Pass = 0; Pass != 2; ++Pass) { 1750 // Check if no need to reorder operands since they're are perfect or 1751 // shuffled diamond match. 1752 // Need to to do it to avoid extra external use cost counting for 1753 // shuffled matches, which may cause regressions. 1754 if (SkipReordering()) 1755 break; 1756 // Skip the second pass if the first pass did not fail. 1757 bool StrategyFailed = false; 1758 // Mark all operand data as free to use. 1759 clearUsed(); 1760 // We keep the original operand order for the FirstLane, so reorder the 1761 // rest of the lanes. We are visiting the nodes in a circular fashion, 1762 // using FirstLane as the center point and increasing the radius 1763 // distance. 1764 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1765 // Visit the lane on the right and then the lane on the left. 1766 for (int Direction : {+1, -1}) { 1767 int Lane = FirstLane + Direction * Distance; 1768 if (Lane < 0 || Lane >= (int)NumLanes) 1769 continue; 1770 int LastLane = Lane - Direction; 1771 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1772 "Out of bounds"); 1773 // Look for a good match for each operand. 1774 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1775 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1776 Optional<unsigned> BestIdx = 1777 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1778 // By not selecting a value, we allow the operands that follow to 1779 // select a better matching value. We will get a non-null value in 1780 // the next run of getBestOperand(). 1781 if (BestIdx) { 1782 // Swap the current operand with the one returned by 1783 // getBestOperand(). 1784 swap(OpIdx, BestIdx.getValue(), Lane); 1785 } else { 1786 // We failed to find a best operand, set mode to 'Failed'. 1787 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1788 // Enable the second pass. 1789 StrategyFailed = true; 1790 } 1791 } 1792 } 1793 } 1794 // Skip second pass if the strategy did not fail. 1795 if (!StrategyFailed) 1796 break; 1797 } 1798 } 1799 1800 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1801 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1802 switch (RMode) { 1803 case ReorderingMode::Load: 1804 return "Load"; 1805 case ReorderingMode::Opcode: 1806 return "Opcode"; 1807 case ReorderingMode::Constant: 1808 return "Constant"; 1809 case ReorderingMode::Splat: 1810 return "Splat"; 1811 case ReorderingMode::Failed: 1812 return "Failed"; 1813 } 1814 llvm_unreachable("Unimplemented Reordering Type"); 1815 } 1816 1817 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1818 raw_ostream &OS) { 1819 return OS << getModeStr(RMode); 1820 } 1821 1822 /// Debug print. 1823 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1824 printMode(RMode, dbgs()); 1825 } 1826 1827 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1828 return printMode(RMode, OS); 1829 } 1830 1831 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1832 const unsigned Indent = 2; 1833 unsigned Cnt = 0; 1834 for (const OperandDataVec &OpDataVec : OpsVec) { 1835 OS << "Operand " << Cnt++ << "\n"; 1836 for (const OperandData &OpData : OpDataVec) { 1837 OS.indent(Indent) << "{"; 1838 if (Value *V = OpData.V) 1839 OS << *V; 1840 else 1841 OS << "null"; 1842 OS << ", APO:" << OpData.APO << "}\n"; 1843 } 1844 OS << "\n"; 1845 } 1846 return OS; 1847 } 1848 1849 /// Debug print. 1850 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1851 #endif 1852 }; 1853 1854 /// Checks if the instruction is marked for deletion. 1855 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1856 1857 /// Marks values operands for later deletion by replacing them with Undefs. 1858 void eraseInstructions(ArrayRef<Value *> AV); 1859 1860 ~BoUpSLP(); 1861 1862 private: 1863 /// Checks if all users of \p I are the part of the vectorization tree. 1864 bool areAllUsersVectorized(Instruction *I, 1865 ArrayRef<Value *> VectorizedVals) const; 1866 1867 /// \returns the cost of the vectorizable entry. 1868 InstructionCost getEntryCost(const TreeEntry *E, 1869 ArrayRef<Value *> VectorizedVals); 1870 1871 /// This is the recursive part of buildTree. 1872 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1873 const EdgeInfo &EI); 1874 1875 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1876 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1877 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1878 /// returns false, setting \p CurrentOrder to either an empty vector or a 1879 /// non-identity permutation that allows to reuse extract instructions. 1880 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1881 SmallVectorImpl<unsigned> &CurrentOrder) const; 1882 1883 /// Vectorize a single entry in the tree. 1884 Value *vectorizeTree(TreeEntry *E); 1885 1886 /// Vectorize a single entry in the tree, starting in \p VL. 1887 Value *vectorizeTree(ArrayRef<Value *> VL); 1888 1889 /// \returns the scalarization cost for this type. Scalarization in this 1890 /// context means the creation of vectors from a group of scalars. If \p 1891 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1892 /// vector elements. 1893 InstructionCost getGatherCost(FixedVectorType *Ty, 1894 const DenseSet<unsigned> &ShuffledIndices, 1895 bool NeedToShuffle) const; 1896 1897 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1898 /// tree entries. 1899 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1900 /// previous tree entries. \p Mask is filled with the shuffle mask. 1901 Optional<TargetTransformInfo::ShuffleKind> 1902 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1903 SmallVectorImpl<const TreeEntry *> &Entries); 1904 1905 /// \returns the scalarization cost for this list of values. Assuming that 1906 /// this subtree gets vectorized, we may need to extract the values from the 1907 /// roots. This method calculates the cost of extracting the values. 1908 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1909 1910 /// Set the Builder insert point to one after the last instruction in 1911 /// the bundle 1912 void setInsertPointAfterBundle(const TreeEntry *E); 1913 1914 /// \returns a vector from a collection of scalars in \p VL. 1915 Value *gather(ArrayRef<Value *> VL); 1916 1917 /// \returns whether the VectorizableTree is fully vectorizable and will 1918 /// be beneficial even the tree height is tiny. 1919 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1920 1921 /// Reorder commutative or alt operands to get better probability of 1922 /// generating vectorized code. 1923 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1924 SmallVectorImpl<Value *> &Left, 1925 SmallVectorImpl<Value *> &Right, 1926 const DataLayout &DL, 1927 ScalarEvolution &SE, 1928 const BoUpSLP &R); 1929 struct TreeEntry { 1930 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1931 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1932 1933 /// \returns true if the scalars in VL are equal to this entry. 1934 bool isSame(ArrayRef<Value *> VL) const { 1935 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1936 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1937 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1938 return VL.size() == Mask.size() && 1939 std::equal(VL.begin(), VL.end(), Mask.begin(), 1940 [Scalars](Value *V, int Idx) { 1941 return (isa<UndefValue>(V) && 1942 Idx == UndefMaskElem) || 1943 (Idx != UndefMaskElem && V == Scalars[Idx]); 1944 }); 1945 }; 1946 if (!ReorderIndices.empty()) { 1947 // TODO: implement matching if the nodes are just reordered, still can 1948 // treat the vector as the same if the list of scalars matches VL 1949 // directly, without reordering. 1950 SmallVector<int> Mask; 1951 inversePermutation(ReorderIndices, Mask); 1952 if (VL.size() == Scalars.size()) 1953 return IsSame(Scalars, Mask); 1954 if (VL.size() == ReuseShuffleIndices.size()) { 1955 ::addMask(Mask, ReuseShuffleIndices); 1956 return IsSame(Scalars, Mask); 1957 } 1958 return false; 1959 } 1960 return IsSame(Scalars, ReuseShuffleIndices); 1961 } 1962 1963 /// \returns true if current entry has same operands as \p TE. 1964 bool hasEqualOperands(const TreeEntry &TE) const { 1965 if (TE.getNumOperands() != getNumOperands()) 1966 return false; 1967 SmallBitVector Used(getNumOperands()); 1968 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1969 unsigned PrevCount = Used.count(); 1970 for (unsigned K = 0; K < E; ++K) { 1971 if (Used.test(K)) 1972 continue; 1973 if (getOperand(K) == TE.getOperand(I)) { 1974 Used.set(K); 1975 break; 1976 } 1977 } 1978 // Check if we actually found the matching operand. 1979 if (PrevCount == Used.count()) 1980 return false; 1981 } 1982 return true; 1983 } 1984 1985 /// \return Final vectorization factor for the node. Defined by the total 1986 /// number of vectorized scalars, including those, used several times in the 1987 /// entry and counted in the \a ReuseShuffleIndices, if any. 1988 unsigned getVectorFactor() const { 1989 if (!ReuseShuffleIndices.empty()) 1990 return ReuseShuffleIndices.size(); 1991 return Scalars.size(); 1992 }; 1993 1994 /// A vector of scalars. 1995 ValueList Scalars; 1996 1997 /// The Scalars are vectorized into this value. It is initialized to Null. 1998 Value *VectorizedValue = nullptr; 1999 2000 /// Do we need to gather this sequence or vectorize it 2001 /// (either with vector instruction or with scatter/gather 2002 /// intrinsics for store/load)? 2003 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2004 EntryState State; 2005 2006 /// Does this sequence require some shuffling? 2007 SmallVector<int, 4> ReuseShuffleIndices; 2008 2009 /// Does this entry require reordering? 2010 SmallVector<unsigned, 4> ReorderIndices; 2011 2012 /// Points back to the VectorizableTree. 2013 /// 2014 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2015 /// to be a pointer and needs to be able to initialize the child iterator. 2016 /// Thus we need a reference back to the container to translate the indices 2017 /// to entries. 2018 VecTreeTy &Container; 2019 2020 /// The TreeEntry index containing the user of this entry. We can actually 2021 /// have multiple users so the data structure is not truly a tree. 2022 SmallVector<EdgeInfo, 1> UserTreeIndices; 2023 2024 /// The index of this treeEntry in VectorizableTree. 2025 int Idx = -1; 2026 2027 private: 2028 /// The operands of each instruction in each lane Operands[op_index][lane]. 2029 /// Note: This helps avoid the replication of the code that performs the 2030 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2031 SmallVector<ValueList, 2> Operands; 2032 2033 /// The main/alternate instruction. 2034 Instruction *MainOp = nullptr; 2035 Instruction *AltOp = nullptr; 2036 2037 public: 2038 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2039 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2040 if (Operands.size() < OpIdx + 1) 2041 Operands.resize(OpIdx + 1); 2042 assert(Operands[OpIdx].empty() && "Already resized?"); 2043 assert(OpVL.size() <= Scalars.size() && 2044 "Number of operands is greater than the number of scalars."); 2045 Operands[OpIdx].resize(OpVL.size()); 2046 copy(OpVL, Operands[OpIdx].begin()); 2047 } 2048 2049 /// Set the operands of this bundle in their original order. 2050 void setOperandsInOrder() { 2051 assert(Operands.empty() && "Already initialized?"); 2052 auto *I0 = cast<Instruction>(Scalars[0]); 2053 Operands.resize(I0->getNumOperands()); 2054 unsigned NumLanes = Scalars.size(); 2055 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2056 OpIdx != NumOperands; ++OpIdx) { 2057 Operands[OpIdx].resize(NumLanes); 2058 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2059 auto *I = cast<Instruction>(Scalars[Lane]); 2060 assert(I->getNumOperands() == NumOperands && 2061 "Expected same number of operands"); 2062 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2063 } 2064 } 2065 } 2066 2067 /// Reorders operands of the node to the given mask \p Mask. 2068 void reorderOperands(ArrayRef<int> Mask) { 2069 for (ValueList &Operand : Operands) 2070 reorderScalars(Operand, Mask); 2071 } 2072 2073 /// \returns the \p OpIdx operand of this TreeEntry. 2074 ValueList &getOperand(unsigned OpIdx) { 2075 assert(OpIdx < Operands.size() && "Off bounds"); 2076 return Operands[OpIdx]; 2077 } 2078 2079 /// \returns the \p OpIdx operand of this TreeEntry. 2080 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2081 assert(OpIdx < Operands.size() && "Off bounds"); 2082 return Operands[OpIdx]; 2083 } 2084 2085 /// \returns the number of operands. 2086 unsigned getNumOperands() const { return Operands.size(); } 2087 2088 /// \return the single \p OpIdx operand. 2089 Value *getSingleOperand(unsigned OpIdx) const { 2090 assert(OpIdx < Operands.size() && "Off bounds"); 2091 assert(!Operands[OpIdx].empty() && "No operand available"); 2092 return Operands[OpIdx][0]; 2093 } 2094 2095 /// Some of the instructions in the list have alternate opcodes. 2096 bool isAltShuffle() const { return MainOp != AltOp; } 2097 2098 bool isOpcodeOrAlt(Instruction *I) const { 2099 unsigned CheckedOpcode = I->getOpcode(); 2100 return (getOpcode() == CheckedOpcode || 2101 getAltOpcode() == CheckedOpcode); 2102 } 2103 2104 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2105 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2106 /// \p OpValue. 2107 Value *isOneOf(Value *Op) const { 2108 auto *I = dyn_cast<Instruction>(Op); 2109 if (I && isOpcodeOrAlt(I)) 2110 return Op; 2111 return MainOp; 2112 } 2113 2114 void setOperations(const InstructionsState &S) { 2115 MainOp = S.MainOp; 2116 AltOp = S.AltOp; 2117 } 2118 2119 Instruction *getMainOp() const { 2120 return MainOp; 2121 } 2122 2123 Instruction *getAltOp() const { 2124 return AltOp; 2125 } 2126 2127 /// The main/alternate opcodes for the list of instructions. 2128 unsigned getOpcode() const { 2129 return MainOp ? MainOp->getOpcode() : 0; 2130 } 2131 2132 unsigned getAltOpcode() const { 2133 return AltOp ? AltOp->getOpcode() : 0; 2134 } 2135 2136 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2137 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2138 int findLaneForValue(Value *V) const { 2139 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2140 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2141 if (!ReorderIndices.empty()) 2142 FoundLane = ReorderIndices[FoundLane]; 2143 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2144 if (!ReuseShuffleIndices.empty()) { 2145 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2146 find(ReuseShuffleIndices, FoundLane)); 2147 } 2148 return FoundLane; 2149 } 2150 2151 #ifndef NDEBUG 2152 /// Debug printer. 2153 LLVM_DUMP_METHOD void dump() const { 2154 dbgs() << Idx << ".\n"; 2155 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2156 dbgs() << "Operand " << OpI << ":\n"; 2157 for (const Value *V : Operands[OpI]) 2158 dbgs().indent(2) << *V << "\n"; 2159 } 2160 dbgs() << "Scalars: \n"; 2161 for (Value *V : Scalars) 2162 dbgs().indent(2) << *V << "\n"; 2163 dbgs() << "State: "; 2164 switch (State) { 2165 case Vectorize: 2166 dbgs() << "Vectorize\n"; 2167 break; 2168 case ScatterVectorize: 2169 dbgs() << "ScatterVectorize\n"; 2170 break; 2171 case NeedToGather: 2172 dbgs() << "NeedToGather\n"; 2173 break; 2174 } 2175 dbgs() << "MainOp: "; 2176 if (MainOp) 2177 dbgs() << *MainOp << "\n"; 2178 else 2179 dbgs() << "NULL\n"; 2180 dbgs() << "AltOp: "; 2181 if (AltOp) 2182 dbgs() << *AltOp << "\n"; 2183 else 2184 dbgs() << "NULL\n"; 2185 dbgs() << "VectorizedValue: "; 2186 if (VectorizedValue) 2187 dbgs() << *VectorizedValue << "\n"; 2188 else 2189 dbgs() << "NULL\n"; 2190 dbgs() << "ReuseShuffleIndices: "; 2191 if (ReuseShuffleIndices.empty()) 2192 dbgs() << "Empty"; 2193 else 2194 for (int ReuseIdx : ReuseShuffleIndices) 2195 dbgs() << ReuseIdx << ", "; 2196 dbgs() << "\n"; 2197 dbgs() << "ReorderIndices: "; 2198 for (unsigned ReorderIdx : ReorderIndices) 2199 dbgs() << ReorderIdx << ", "; 2200 dbgs() << "\n"; 2201 dbgs() << "UserTreeIndices: "; 2202 for (const auto &EInfo : UserTreeIndices) 2203 dbgs() << EInfo << ", "; 2204 dbgs() << "\n"; 2205 } 2206 #endif 2207 }; 2208 2209 #ifndef NDEBUG 2210 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2211 InstructionCost VecCost, 2212 InstructionCost ScalarCost) const { 2213 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2214 dbgs() << "SLP: Costs:\n"; 2215 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2216 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2217 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2218 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2219 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2220 } 2221 #endif 2222 2223 /// Create a new VectorizableTree entry. 2224 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2225 const InstructionsState &S, 2226 const EdgeInfo &UserTreeIdx, 2227 ArrayRef<int> ReuseShuffleIndices = None, 2228 ArrayRef<unsigned> ReorderIndices = None) { 2229 TreeEntry::EntryState EntryState = 2230 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2231 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2232 ReuseShuffleIndices, ReorderIndices); 2233 } 2234 2235 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2236 TreeEntry::EntryState EntryState, 2237 Optional<ScheduleData *> Bundle, 2238 const InstructionsState &S, 2239 const EdgeInfo &UserTreeIdx, 2240 ArrayRef<int> ReuseShuffleIndices = None, 2241 ArrayRef<unsigned> ReorderIndices = None) { 2242 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2243 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2244 "Need to vectorize gather entry?"); 2245 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2246 TreeEntry *Last = VectorizableTree.back().get(); 2247 Last->Idx = VectorizableTree.size() - 1; 2248 Last->State = EntryState; 2249 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2250 ReuseShuffleIndices.end()); 2251 if (ReorderIndices.empty()) { 2252 Last->Scalars.assign(VL.begin(), VL.end()); 2253 Last->setOperations(S); 2254 } else { 2255 // Reorder scalars and build final mask. 2256 Last->Scalars.assign(VL.size(), nullptr); 2257 transform(ReorderIndices, Last->Scalars.begin(), 2258 [VL](unsigned Idx) -> Value * { 2259 if (Idx >= VL.size()) 2260 return UndefValue::get(VL.front()->getType()); 2261 return VL[Idx]; 2262 }); 2263 InstructionsState S = getSameOpcode(Last->Scalars); 2264 Last->setOperations(S); 2265 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2266 } 2267 if (Last->State != TreeEntry::NeedToGather) { 2268 for (Value *V : VL) { 2269 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2270 ScalarToTreeEntry[V] = Last; 2271 } 2272 // Update the scheduler bundle to point to this TreeEntry. 2273 unsigned Lane = 0; 2274 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2275 BundleMember = BundleMember->NextInBundle) { 2276 BundleMember->TE = Last; 2277 BundleMember->Lane = Lane; 2278 ++Lane; 2279 } 2280 assert((!Bundle.getValue() || Lane == VL.size()) && 2281 "Bundle and VL out of sync"); 2282 } else { 2283 MustGather.insert(VL.begin(), VL.end()); 2284 } 2285 2286 if (UserTreeIdx.UserTE) 2287 Last->UserTreeIndices.push_back(UserTreeIdx); 2288 2289 return Last; 2290 } 2291 2292 /// -- Vectorization State -- 2293 /// Holds all of the tree entries. 2294 TreeEntry::VecTreeTy VectorizableTree; 2295 2296 #ifndef NDEBUG 2297 /// Debug printer. 2298 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2299 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2300 VectorizableTree[Id]->dump(); 2301 dbgs() << "\n"; 2302 } 2303 } 2304 #endif 2305 2306 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2307 2308 const TreeEntry *getTreeEntry(Value *V) const { 2309 return ScalarToTreeEntry.lookup(V); 2310 } 2311 2312 /// Maps a specific scalar to its tree entry. 2313 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2314 2315 /// Maps a value to the proposed vectorizable size. 2316 SmallDenseMap<Value *, unsigned> InstrElementSize; 2317 2318 /// A list of scalars that we found that we need to keep as scalars. 2319 ValueSet MustGather; 2320 2321 /// This POD struct describes one external user in the vectorized tree. 2322 struct ExternalUser { 2323 ExternalUser(Value *S, llvm::User *U, int L) 2324 : Scalar(S), User(U), Lane(L) {} 2325 2326 // Which scalar in our function. 2327 Value *Scalar; 2328 2329 // Which user that uses the scalar. 2330 llvm::User *User; 2331 2332 // Which lane does the scalar belong to. 2333 int Lane; 2334 }; 2335 using UserList = SmallVector<ExternalUser, 16>; 2336 2337 /// Checks if two instructions may access the same memory. 2338 /// 2339 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2340 /// is invariant in the calling loop. 2341 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2342 Instruction *Inst2) { 2343 // First check if the result is already in the cache. 2344 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2345 Optional<bool> &result = AliasCache[key]; 2346 if (result.hasValue()) { 2347 return result.getValue(); 2348 } 2349 bool aliased = true; 2350 if (Loc1.Ptr && isSimple(Inst1)) 2351 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2352 // Store the result in the cache. 2353 result = aliased; 2354 return aliased; 2355 } 2356 2357 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2358 2359 /// Cache for alias results. 2360 /// TODO: consider moving this to the AliasAnalysis itself. 2361 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2362 2363 /// Removes an instruction from its block and eventually deletes it. 2364 /// It's like Instruction::eraseFromParent() except that the actual deletion 2365 /// is delayed until BoUpSLP is destructed. 2366 /// This is required to ensure that there are no incorrect collisions in the 2367 /// AliasCache, which can happen if a new instruction is allocated at the 2368 /// same address as a previously deleted instruction. 2369 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2370 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2371 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2372 } 2373 2374 /// Temporary store for deleted instructions. Instructions will be deleted 2375 /// eventually when the BoUpSLP is destructed. 2376 DenseMap<Instruction *, bool> DeletedInstructions; 2377 2378 /// A list of values that need to extracted out of the tree. 2379 /// This list holds pairs of (Internal Scalar : External User). External User 2380 /// can be nullptr, it means that this Internal Scalar will be used later, 2381 /// after vectorization. 2382 UserList ExternalUses; 2383 2384 /// Values used only by @llvm.assume calls. 2385 SmallPtrSet<const Value *, 32> EphValues; 2386 2387 /// Holds all of the instructions that we gathered. 2388 SetVector<Instruction *> GatherShuffleSeq; 2389 2390 /// A list of blocks that we are going to CSE. 2391 SetVector<BasicBlock *> CSEBlocks; 2392 2393 /// Contains all scheduling relevant data for an instruction. 2394 /// A ScheduleData either represents a single instruction or a member of an 2395 /// instruction bundle (= a group of instructions which is combined into a 2396 /// vector instruction). 2397 struct ScheduleData { 2398 // The initial value for the dependency counters. It means that the 2399 // dependencies are not calculated yet. 2400 enum { InvalidDeps = -1 }; 2401 2402 ScheduleData() = default; 2403 2404 void init(int BlockSchedulingRegionID, Value *OpVal) { 2405 FirstInBundle = this; 2406 NextInBundle = nullptr; 2407 NextLoadStore = nullptr; 2408 IsScheduled = false; 2409 SchedulingRegionID = BlockSchedulingRegionID; 2410 UnscheduledDepsInBundle = UnscheduledDeps; 2411 clearDependencies(); 2412 OpValue = OpVal; 2413 TE = nullptr; 2414 Lane = -1; 2415 } 2416 2417 /// Returns true if the dependency information has been calculated. 2418 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2419 2420 /// Returns true for single instructions and for bundle representatives 2421 /// (= the head of a bundle). 2422 bool isSchedulingEntity() const { return FirstInBundle == this; } 2423 2424 /// Returns true if it represents an instruction bundle and not only a 2425 /// single instruction. 2426 bool isPartOfBundle() const { 2427 return NextInBundle != nullptr || FirstInBundle != this; 2428 } 2429 2430 /// Returns true if it is ready for scheduling, i.e. it has no more 2431 /// unscheduled depending instructions/bundles. 2432 bool isReady() const { 2433 assert(isSchedulingEntity() && 2434 "can't consider non-scheduling entity for ready list"); 2435 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2436 } 2437 2438 /// Modifies the number of unscheduled dependencies, also updating it for 2439 /// the whole bundle. 2440 int incrementUnscheduledDeps(int Incr) { 2441 UnscheduledDeps += Incr; 2442 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2443 } 2444 2445 /// Sets the number of unscheduled dependencies to the number of 2446 /// dependencies. 2447 void resetUnscheduledDeps() { 2448 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2449 } 2450 2451 /// Clears all dependency information. 2452 void clearDependencies() { 2453 Dependencies = InvalidDeps; 2454 resetUnscheduledDeps(); 2455 MemoryDependencies.clear(); 2456 } 2457 2458 void dump(raw_ostream &os) const { 2459 if (!isSchedulingEntity()) { 2460 os << "/ " << *Inst; 2461 } else if (NextInBundle) { 2462 os << '[' << *Inst; 2463 ScheduleData *SD = NextInBundle; 2464 while (SD) { 2465 os << ';' << *SD->Inst; 2466 SD = SD->NextInBundle; 2467 } 2468 os << ']'; 2469 } else { 2470 os << *Inst; 2471 } 2472 } 2473 2474 Instruction *Inst = nullptr; 2475 2476 /// Points to the head in an instruction bundle (and always to this for 2477 /// single instructions). 2478 ScheduleData *FirstInBundle = nullptr; 2479 2480 /// Single linked list of all instructions in a bundle. Null if it is a 2481 /// single instruction. 2482 ScheduleData *NextInBundle = nullptr; 2483 2484 /// Single linked list of all memory instructions (e.g. load, store, call) 2485 /// in the block - until the end of the scheduling region. 2486 ScheduleData *NextLoadStore = nullptr; 2487 2488 /// The dependent memory instructions. 2489 /// This list is derived on demand in calculateDependencies(). 2490 SmallVector<ScheduleData *, 4> MemoryDependencies; 2491 2492 /// This ScheduleData is in the current scheduling region if this matches 2493 /// the current SchedulingRegionID of BlockScheduling. 2494 int SchedulingRegionID = 0; 2495 2496 /// Used for getting a "good" final ordering of instructions. 2497 int SchedulingPriority = 0; 2498 2499 /// The number of dependencies. Constitutes of the number of users of the 2500 /// instruction plus the number of dependent memory instructions (if any). 2501 /// This value is calculated on demand. 2502 /// If InvalidDeps, the number of dependencies is not calculated yet. 2503 int Dependencies = InvalidDeps; 2504 2505 /// The number of dependencies minus the number of dependencies of scheduled 2506 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2507 /// for scheduling. 2508 /// Note that this is negative as long as Dependencies is not calculated. 2509 int UnscheduledDeps = InvalidDeps; 2510 2511 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2512 /// single instructions. 2513 int UnscheduledDepsInBundle = InvalidDeps; 2514 2515 /// True if this instruction is scheduled (or considered as scheduled in the 2516 /// dry-run). 2517 bool IsScheduled = false; 2518 2519 /// Opcode of the current instruction in the schedule data. 2520 Value *OpValue = nullptr; 2521 2522 /// The TreeEntry that this instruction corresponds to. 2523 TreeEntry *TE = nullptr; 2524 2525 /// The lane of this node in the TreeEntry. 2526 int Lane = -1; 2527 }; 2528 2529 #ifndef NDEBUG 2530 friend inline raw_ostream &operator<<(raw_ostream &os, 2531 const BoUpSLP::ScheduleData &SD) { 2532 SD.dump(os); 2533 return os; 2534 } 2535 #endif 2536 2537 friend struct GraphTraits<BoUpSLP *>; 2538 friend struct DOTGraphTraits<BoUpSLP *>; 2539 2540 /// Contains all scheduling data for a basic block. 2541 struct BlockScheduling { 2542 BlockScheduling(BasicBlock *BB) 2543 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2544 2545 void clear() { 2546 ReadyInsts.clear(); 2547 ScheduleStart = nullptr; 2548 ScheduleEnd = nullptr; 2549 FirstLoadStoreInRegion = nullptr; 2550 LastLoadStoreInRegion = nullptr; 2551 2552 // Reduce the maximum schedule region size by the size of the 2553 // previous scheduling run. 2554 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2555 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2556 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2557 ScheduleRegionSize = 0; 2558 2559 // Make a new scheduling region, i.e. all existing ScheduleData is not 2560 // in the new region yet. 2561 ++SchedulingRegionID; 2562 } 2563 2564 ScheduleData *getScheduleData(Value *V) { 2565 ScheduleData *SD = ScheduleDataMap[V]; 2566 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2567 return SD; 2568 return nullptr; 2569 } 2570 2571 ScheduleData *getScheduleData(Value *V, Value *Key) { 2572 if (V == Key) 2573 return getScheduleData(V); 2574 auto I = ExtraScheduleDataMap.find(V); 2575 if (I != ExtraScheduleDataMap.end()) { 2576 ScheduleData *SD = I->second[Key]; 2577 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2578 return SD; 2579 } 2580 return nullptr; 2581 } 2582 2583 bool isInSchedulingRegion(ScheduleData *SD) const { 2584 return SD->SchedulingRegionID == SchedulingRegionID; 2585 } 2586 2587 /// Marks an instruction as scheduled and puts all dependent ready 2588 /// instructions into the ready-list. 2589 template <typename ReadyListType> 2590 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2591 SD->IsScheduled = true; 2592 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2593 2594 for (ScheduleData *BundleMember = SD; BundleMember; 2595 BundleMember = BundleMember->NextInBundle) { 2596 if (BundleMember->Inst != BundleMember->OpValue) 2597 continue; 2598 2599 // Handle the def-use chain dependencies. 2600 2601 // Decrement the unscheduled counter and insert to ready list if ready. 2602 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2603 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2604 if (OpDef && OpDef->hasValidDependencies() && 2605 OpDef->incrementUnscheduledDeps(-1) == 0) { 2606 // There are no more unscheduled dependencies after 2607 // decrementing, so we can put the dependent instruction 2608 // into the ready list. 2609 ScheduleData *DepBundle = OpDef->FirstInBundle; 2610 assert(!DepBundle->IsScheduled && 2611 "already scheduled bundle gets ready"); 2612 ReadyList.insert(DepBundle); 2613 LLVM_DEBUG(dbgs() 2614 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2615 } 2616 }); 2617 }; 2618 2619 // If BundleMember is a vector bundle, its operands may have been 2620 // reordered duiring buildTree(). We therefore need to get its operands 2621 // through the TreeEntry. 2622 if (TreeEntry *TE = BundleMember->TE) { 2623 int Lane = BundleMember->Lane; 2624 assert(Lane >= 0 && "Lane not set"); 2625 2626 // Since vectorization tree is being built recursively this assertion 2627 // ensures that the tree entry has all operands set before reaching 2628 // this code. Couple of exceptions known at the moment are extracts 2629 // where their second (immediate) operand is not added. Since 2630 // immediates do not affect scheduler behavior this is considered 2631 // okay. 2632 auto *In = TE->getMainOp(); 2633 assert(In && 2634 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2635 In->getNumOperands() == TE->getNumOperands()) && 2636 "Missed TreeEntry operands?"); 2637 (void)In; // fake use to avoid build failure when assertions disabled 2638 2639 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2640 OpIdx != NumOperands; ++OpIdx) 2641 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2642 DecrUnsched(I); 2643 } else { 2644 // If BundleMember is a stand-alone instruction, no operand reordering 2645 // has taken place, so we directly access its operands. 2646 for (Use &U : BundleMember->Inst->operands()) 2647 if (auto *I = dyn_cast<Instruction>(U.get())) 2648 DecrUnsched(I); 2649 } 2650 // Handle the memory dependencies. 2651 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2652 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2653 // There are no more unscheduled dependencies after decrementing, 2654 // so we can put the dependent instruction into the ready list. 2655 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2656 assert(!DepBundle->IsScheduled && 2657 "already scheduled bundle gets ready"); 2658 ReadyList.insert(DepBundle); 2659 LLVM_DEBUG(dbgs() 2660 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2661 } 2662 } 2663 } 2664 } 2665 2666 void doForAllOpcodes(Value *V, 2667 function_ref<void(ScheduleData *SD)> Action) { 2668 if (ScheduleData *SD = getScheduleData(V)) 2669 Action(SD); 2670 auto I = ExtraScheduleDataMap.find(V); 2671 if (I != ExtraScheduleDataMap.end()) 2672 for (auto &P : I->second) 2673 if (P.second->SchedulingRegionID == SchedulingRegionID) 2674 Action(P.second); 2675 } 2676 2677 /// Put all instructions into the ReadyList which are ready for scheduling. 2678 template <typename ReadyListType> 2679 void initialFillReadyList(ReadyListType &ReadyList) { 2680 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2681 doForAllOpcodes(I, [&](ScheduleData *SD) { 2682 if (SD->isSchedulingEntity() && SD->isReady()) { 2683 ReadyList.insert(SD); 2684 LLVM_DEBUG(dbgs() 2685 << "SLP: initially in ready list: " << *I << "\n"); 2686 } 2687 }); 2688 } 2689 } 2690 2691 /// Build a bundle from the ScheduleData nodes corresponding to the 2692 /// scalar instruction for each lane. 2693 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2694 2695 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2696 /// cyclic dependencies. This is only a dry-run, no instructions are 2697 /// actually moved at this stage. 2698 /// \returns the scheduling bundle. The returned Optional value is non-None 2699 /// if \p VL is allowed to be scheduled. 2700 Optional<ScheduleData *> 2701 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2702 const InstructionsState &S); 2703 2704 /// Un-bundles a group of instructions. 2705 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2706 2707 /// Allocates schedule data chunk. 2708 ScheduleData *allocateScheduleDataChunks(); 2709 2710 /// Extends the scheduling region so that V is inside the region. 2711 /// \returns true if the region size is within the limit. 2712 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2713 2714 /// Initialize the ScheduleData structures for new instructions in the 2715 /// scheduling region. 2716 void initScheduleData(Instruction *FromI, Instruction *ToI, 2717 ScheduleData *PrevLoadStore, 2718 ScheduleData *NextLoadStore); 2719 2720 /// Updates the dependency information of a bundle and of all instructions/ 2721 /// bundles which depend on the original bundle. 2722 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2723 BoUpSLP *SLP); 2724 2725 /// Sets all instruction in the scheduling region to un-scheduled. 2726 void resetSchedule(); 2727 2728 BasicBlock *BB; 2729 2730 /// Simple memory allocation for ScheduleData. 2731 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2732 2733 /// The size of a ScheduleData array in ScheduleDataChunks. 2734 int ChunkSize; 2735 2736 /// The allocator position in the current chunk, which is the last entry 2737 /// of ScheduleDataChunks. 2738 int ChunkPos; 2739 2740 /// Attaches ScheduleData to Instruction. 2741 /// Note that the mapping survives during all vectorization iterations, i.e. 2742 /// ScheduleData structures are recycled. 2743 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2744 2745 /// Attaches ScheduleData to Instruction with the leading key. 2746 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2747 ExtraScheduleDataMap; 2748 2749 struct ReadyList : SmallVector<ScheduleData *, 8> { 2750 void insert(ScheduleData *SD) { push_back(SD); } 2751 }; 2752 2753 /// The ready-list for scheduling (only used for the dry-run). 2754 ReadyList ReadyInsts; 2755 2756 /// The first instruction of the scheduling region. 2757 Instruction *ScheduleStart = nullptr; 2758 2759 /// The first instruction _after_ the scheduling region. 2760 Instruction *ScheduleEnd = nullptr; 2761 2762 /// The first memory accessing instruction in the scheduling region 2763 /// (can be null). 2764 ScheduleData *FirstLoadStoreInRegion = nullptr; 2765 2766 /// The last memory accessing instruction in the scheduling region 2767 /// (can be null). 2768 ScheduleData *LastLoadStoreInRegion = nullptr; 2769 2770 /// The current size of the scheduling region. 2771 int ScheduleRegionSize = 0; 2772 2773 /// The maximum size allowed for the scheduling region. 2774 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2775 2776 /// The ID of the scheduling region. For a new vectorization iteration this 2777 /// is incremented which "removes" all ScheduleData from the region. 2778 // Make sure that the initial SchedulingRegionID is greater than the 2779 // initial SchedulingRegionID in ScheduleData (which is 0). 2780 int SchedulingRegionID = 1; 2781 }; 2782 2783 /// Attaches the BlockScheduling structures to basic blocks. 2784 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2785 2786 /// Performs the "real" scheduling. Done before vectorization is actually 2787 /// performed in a basic block. 2788 void scheduleBlock(BlockScheduling *BS); 2789 2790 /// List of users to ignore during scheduling and that don't need extracting. 2791 ArrayRef<Value *> UserIgnoreList; 2792 2793 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2794 /// sorted SmallVectors of unsigned. 2795 struct OrdersTypeDenseMapInfo { 2796 static OrdersType getEmptyKey() { 2797 OrdersType V; 2798 V.push_back(~1U); 2799 return V; 2800 } 2801 2802 static OrdersType getTombstoneKey() { 2803 OrdersType V; 2804 V.push_back(~2U); 2805 return V; 2806 } 2807 2808 static unsigned getHashValue(const OrdersType &V) { 2809 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2810 } 2811 2812 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2813 return LHS == RHS; 2814 } 2815 }; 2816 2817 // Analysis and block reference. 2818 Function *F; 2819 ScalarEvolution *SE; 2820 TargetTransformInfo *TTI; 2821 TargetLibraryInfo *TLI; 2822 AAResults *AA; 2823 LoopInfo *LI; 2824 DominatorTree *DT; 2825 AssumptionCache *AC; 2826 DemandedBits *DB; 2827 const DataLayout *DL; 2828 OptimizationRemarkEmitter *ORE; 2829 2830 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2831 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2832 2833 /// Instruction builder to construct the vectorized tree. 2834 IRBuilder<> Builder; 2835 2836 /// A map of scalar integer values to the smallest bit width with which they 2837 /// can legally be represented. The values map to (width, signed) pairs, 2838 /// where "width" indicates the minimum bit width and "signed" is True if the 2839 /// value must be signed-extended, rather than zero-extended, back to its 2840 /// original width. 2841 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2842 }; 2843 2844 } // end namespace slpvectorizer 2845 2846 template <> struct GraphTraits<BoUpSLP *> { 2847 using TreeEntry = BoUpSLP::TreeEntry; 2848 2849 /// NodeRef has to be a pointer per the GraphWriter. 2850 using NodeRef = TreeEntry *; 2851 2852 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2853 2854 /// Add the VectorizableTree to the index iterator to be able to return 2855 /// TreeEntry pointers. 2856 struct ChildIteratorType 2857 : public iterator_adaptor_base< 2858 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2859 ContainerTy &VectorizableTree; 2860 2861 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2862 ContainerTy &VT) 2863 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2864 2865 NodeRef operator*() { return I->UserTE; } 2866 }; 2867 2868 static NodeRef getEntryNode(BoUpSLP &R) { 2869 return R.VectorizableTree[0].get(); 2870 } 2871 2872 static ChildIteratorType child_begin(NodeRef N) { 2873 return {N->UserTreeIndices.begin(), N->Container}; 2874 } 2875 2876 static ChildIteratorType child_end(NodeRef N) { 2877 return {N->UserTreeIndices.end(), N->Container}; 2878 } 2879 2880 /// For the node iterator we just need to turn the TreeEntry iterator into a 2881 /// TreeEntry* iterator so that it dereferences to NodeRef. 2882 class nodes_iterator { 2883 using ItTy = ContainerTy::iterator; 2884 ItTy It; 2885 2886 public: 2887 nodes_iterator(const ItTy &It2) : It(It2) {} 2888 NodeRef operator*() { return It->get(); } 2889 nodes_iterator operator++() { 2890 ++It; 2891 return *this; 2892 } 2893 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2894 }; 2895 2896 static nodes_iterator nodes_begin(BoUpSLP *R) { 2897 return nodes_iterator(R->VectorizableTree.begin()); 2898 } 2899 2900 static nodes_iterator nodes_end(BoUpSLP *R) { 2901 return nodes_iterator(R->VectorizableTree.end()); 2902 } 2903 2904 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2905 }; 2906 2907 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2908 using TreeEntry = BoUpSLP::TreeEntry; 2909 2910 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2911 2912 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2913 std::string Str; 2914 raw_string_ostream OS(Str); 2915 if (isSplat(Entry->Scalars)) 2916 OS << "<splat> "; 2917 for (auto V : Entry->Scalars) { 2918 OS << *V; 2919 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2920 return EU.Scalar == V; 2921 })) 2922 OS << " <extract>"; 2923 OS << "\n"; 2924 } 2925 return Str; 2926 } 2927 2928 static std::string getNodeAttributes(const TreeEntry *Entry, 2929 const BoUpSLP *) { 2930 if (Entry->State == TreeEntry::NeedToGather) 2931 return "color=red"; 2932 return ""; 2933 } 2934 }; 2935 2936 } // end namespace llvm 2937 2938 BoUpSLP::~BoUpSLP() { 2939 for (const auto &Pair : DeletedInstructions) { 2940 // Replace operands of ignored instructions with Undefs in case if they were 2941 // marked for deletion. 2942 if (Pair.getSecond()) { 2943 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2944 Pair.getFirst()->replaceAllUsesWith(Undef); 2945 } 2946 Pair.getFirst()->dropAllReferences(); 2947 } 2948 for (const auto &Pair : DeletedInstructions) { 2949 assert(Pair.getFirst()->use_empty() && 2950 "trying to erase instruction with users."); 2951 Pair.getFirst()->eraseFromParent(); 2952 } 2953 #ifdef EXPENSIVE_CHECKS 2954 // If we could guarantee that this call is not extremely slow, we could 2955 // remove the ifdef limitation (see PR47712). 2956 assert(!verifyFunction(*F, &dbgs())); 2957 #endif 2958 } 2959 2960 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2961 for (auto *V : AV) { 2962 if (auto *I = dyn_cast<Instruction>(V)) 2963 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2964 }; 2965 } 2966 2967 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2968 /// contains original mask for the scalars reused in the node. Procedure 2969 /// transform this mask in accordance with the given \p Mask. 2970 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2971 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2972 "Expected non-empty mask."); 2973 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2974 Prev.swap(Reuses); 2975 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2976 if (Mask[I] != UndefMaskElem) 2977 Reuses[Mask[I]] = Prev[I]; 2978 } 2979 2980 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2981 /// the original order of the scalars. Procedure transforms the provided order 2982 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2983 /// identity order, \p Order is cleared. 2984 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2985 assert(!Mask.empty() && "Expected non-empty mask."); 2986 SmallVector<int> MaskOrder; 2987 if (Order.empty()) { 2988 MaskOrder.resize(Mask.size()); 2989 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2990 } else { 2991 inversePermutation(Order, MaskOrder); 2992 } 2993 reorderReuses(MaskOrder, Mask); 2994 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2995 Order.clear(); 2996 return; 2997 } 2998 Order.assign(Mask.size(), Mask.size()); 2999 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3000 if (MaskOrder[I] != UndefMaskElem) 3001 Order[MaskOrder[I]] = I; 3002 fixupOrderingIndices(Order); 3003 } 3004 3005 Optional<BoUpSLP::OrdersType> 3006 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3007 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3008 unsigned NumScalars = TE.Scalars.size(); 3009 OrdersType CurrentOrder(NumScalars, NumScalars); 3010 SmallVector<int> Positions; 3011 SmallBitVector UsedPositions(NumScalars); 3012 const TreeEntry *STE = nullptr; 3013 // Try to find all gathered scalars that are gets vectorized in other 3014 // vectorize node. Here we can have only one single tree vector node to 3015 // correctly identify order of the gathered scalars. 3016 for (unsigned I = 0; I < NumScalars; ++I) { 3017 Value *V = TE.Scalars[I]; 3018 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3019 continue; 3020 if (const auto *LocalSTE = getTreeEntry(V)) { 3021 if (!STE) 3022 STE = LocalSTE; 3023 else if (STE != LocalSTE) 3024 // Take the order only from the single vector node. 3025 return None; 3026 unsigned Lane = 3027 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3028 if (Lane >= NumScalars) 3029 return None; 3030 if (CurrentOrder[Lane] != NumScalars) { 3031 if (Lane != I) 3032 continue; 3033 UsedPositions.reset(CurrentOrder[Lane]); 3034 } 3035 // The partial identity (where only some elements of the gather node are 3036 // in the identity order) is good. 3037 CurrentOrder[Lane] = I; 3038 UsedPositions.set(I); 3039 } 3040 } 3041 // Need to keep the order if we have a vector entry and at least 2 scalars or 3042 // the vectorized entry has just 2 scalars. 3043 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3044 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3045 for (unsigned I = 0; I < NumScalars; ++I) 3046 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3047 return false; 3048 return true; 3049 }; 3050 if (IsIdentityOrder(CurrentOrder)) { 3051 CurrentOrder.clear(); 3052 return CurrentOrder; 3053 } 3054 auto *It = CurrentOrder.begin(); 3055 for (unsigned I = 0; I < NumScalars;) { 3056 if (UsedPositions.test(I)) { 3057 ++I; 3058 continue; 3059 } 3060 if (*It == NumScalars) { 3061 *It = I; 3062 ++I; 3063 } 3064 ++It; 3065 } 3066 return CurrentOrder; 3067 } 3068 return None; 3069 } 3070 3071 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3072 bool TopToBottom) { 3073 // No need to reorder if need to shuffle reuses, still need to shuffle the 3074 // node. 3075 if (!TE.ReuseShuffleIndices.empty()) 3076 return None; 3077 if (TE.State == TreeEntry::Vectorize && 3078 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3079 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3080 !TE.isAltShuffle()) 3081 return TE.ReorderIndices; 3082 if (TE.State == TreeEntry::NeedToGather) { 3083 // TODO: add analysis of other gather nodes with extractelement 3084 // instructions and other values/instructions, not only undefs. 3085 if (((TE.getOpcode() == Instruction::ExtractElement && 3086 !TE.isAltShuffle()) || 3087 (all_of(TE.Scalars, 3088 [](Value *V) { 3089 return isa<UndefValue, ExtractElementInst>(V); 3090 }) && 3091 any_of(TE.Scalars, 3092 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3093 all_of(TE.Scalars, 3094 [](Value *V) { 3095 auto *EE = dyn_cast<ExtractElementInst>(V); 3096 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3097 }) && 3098 allSameType(TE.Scalars)) { 3099 // Check that gather of extractelements can be represented as 3100 // just a shuffle of a single vector. 3101 OrdersType CurrentOrder; 3102 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3103 if (Reuse || !CurrentOrder.empty()) { 3104 if (!CurrentOrder.empty()) 3105 fixupOrderingIndices(CurrentOrder); 3106 return CurrentOrder; 3107 } 3108 } 3109 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3110 return CurrentOrder; 3111 } 3112 return None; 3113 } 3114 3115 void BoUpSLP::reorderTopToBottom() { 3116 // Maps VF to the graph nodes. 3117 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3118 // ExtractElement gather nodes which can be vectorized and need to handle 3119 // their ordering. 3120 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3121 // Find all reorderable nodes with the given VF. 3122 // Currently the are vectorized stores,loads,extracts + some gathering of 3123 // extracts. 3124 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3125 const std::unique_ptr<TreeEntry> &TE) { 3126 if (Optional<OrdersType> CurrentOrder = 3127 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3128 // Do not include ordering for nodes used in the alt opcode vectorization, 3129 // better to reorder them during bottom-to-top stage. If follow the order 3130 // here, it causes reordering of the whole graph though actually it is 3131 // profitable just to reorder the subgraph that starts from the alternate 3132 // opcode vectorization node. Such nodes already end-up with the shuffle 3133 // instruction and it is just enough to change this shuffle rather than 3134 // rotate the scalars for the whole graph. 3135 unsigned Cnt = 0; 3136 const TreeEntry *UserTE = TE.get(); 3137 while (UserTE && Cnt < RecursionMaxDepth) { 3138 if (UserTE->UserTreeIndices.size() != 1) 3139 break; 3140 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3141 return EI.UserTE->State == TreeEntry::Vectorize && 3142 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3143 })) 3144 return; 3145 if (UserTE->UserTreeIndices.empty()) 3146 UserTE = nullptr; 3147 else 3148 UserTE = UserTE->UserTreeIndices.back().UserTE; 3149 ++Cnt; 3150 } 3151 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3152 if (TE->State != TreeEntry::Vectorize) 3153 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3154 } 3155 }); 3156 3157 // Reorder the graph nodes according to their vectorization factor. 3158 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3159 VF /= 2) { 3160 auto It = VFToOrderedEntries.find(VF); 3161 if (It == VFToOrderedEntries.end()) 3162 continue; 3163 // Try to find the most profitable order. We just are looking for the most 3164 // used order and reorder scalar elements in the nodes according to this 3165 // mostly used order. 3166 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3167 // All operands are reordered and used only in this node - propagate the 3168 // most used order to the user node. 3169 MapVector<OrdersType, unsigned, 3170 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3171 OrdersUses; 3172 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3173 for (const TreeEntry *OpTE : OrderedEntries) { 3174 // No need to reorder this nodes, still need to extend and to use shuffle, 3175 // just need to merge reordering shuffle and the reuse shuffle. 3176 if (!OpTE->ReuseShuffleIndices.empty()) 3177 continue; 3178 // Count number of orders uses. 3179 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3180 if (OpTE->State == TreeEntry::NeedToGather) 3181 return GathersToOrders.find(OpTE)->second; 3182 return OpTE->ReorderIndices; 3183 }(); 3184 // Stores actually store the mask, not the order, need to invert. 3185 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3186 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3187 SmallVector<int> Mask; 3188 inversePermutation(Order, Mask); 3189 unsigned E = Order.size(); 3190 OrdersType CurrentOrder(E, E); 3191 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3192 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3193 }); 3194 fixupOrderingIndices(CurrentOrder); 3195 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3196 } else { 3197 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3198 } 3199 } 3200 // Set order of the user node. 3201 if (OrdersUses.empty()) 3202 continue; 3203 // Choose the most used order. 3204 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3205 unsigned Cnt = OrdersUses.front().second; 3206 for (const auto &Pair : drop_begin(OrdersUses)) { 3207 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3208 BestOrder = Pair.first; 3209 Cnt = Pair.second; 3210 } 3211 } 3212 // Set order of the user node. 3213 if (BestOrder.empty()) 3214 continue; 3215 SmallVector<int> Mask; 3216 inversePermutation(BestOrder, Mask); 3217 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3218 unsigned E = BestOrder.size(); 3219 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3220 return I < E ? static_cast<int>(I) : UndefMaskElem; 3221 }); 3222 // Do an actual reordering, if profitable. 3223 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3224 // Just do the reordering for the nodes with the given VF. 3225 if (TE->Scalars.size() != VF) { 3226 if (TE->ReuseShuffleIndices.size() == VF) { 3227 // Need to reorder the reuses masks of the operands with smaller VF to 3228 // be able to find the match between the graph nodes and scalar 3229 // operands of the given node during vectorization/cost estimation. 3230 assert(all_of(TE->UserTreeIndices, 3231 [VF, &TE](const EdgeInfo &EI) { 3232 return EI.UserTE->Scalars.size() == VF || 3233 EI.UserTE->Scalars.size() == 3234 TE->Scalars.size(); 3235 }) && 3236 "All users must be of VF size."); 3237 // Update ordering of the operands with the smaller VF than the given 3238 // one. 3239 reorderReuses(TE->ReuseShuffleIndices, Mask); 3240 } 3241 continue; 3242 } 3243 if (TE->State == TreeEntry::Vectorize && 3244 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3245 InsertElementInst>(TE->getMainOp()) && 3246 !TE->isAltShuffle()) { 3247 // Build correct orders for extract{element,value}, loads and 3248 // stores. 3249 reorderOrder(TE->ReorderIndices, Mask); 3250 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3251 TE->reorderOperands(Mask); 3252 } else { 3253 // Reorder the node and its operands. 3254 TE->reorderOperands(Mask); 3255 assert(TE->ReorderIndices.empty() && 3256 "Expected empty reorder sequence."); 3257 reorderScalars(TE->Scalars, Mask); 3258 } 3259 if (!TE->ReuseShuffleIndices.empty()) { 3260 // Apply reversed order to keep the original ordering of the reused 3261 // elements to avoid extra reorder indices shuffling. 3262 OrdersType CurrentOrder; 3263 reorderOrder(CurrentOrder, MaskOrder); 3264 SmallVector<int> NewReuses; 3265 inversePermutation(CurrentOrder, NewReuses); 3266 addMask(NewReuses, TE->ReuseShuffleIndices); 3267 TE->ReuseShuffleIndices.swap(NewReuses); 3268 } 3269 } 3270 } 3271 } 3272 3273 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3274 SetVector<TreeEntry *> OrderedEntries; 3275 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3276 // Find all reorderable leaf nodes with the given VF. 3277 // Currently the are vectorized loads,extracts without alternate operands + 3278 // some gathering of extracts. 3279 SmallVector<TreeEntry *> NonVectorized; 3280 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3281 &NonVectorized]( 3282 const std::unique_ptr<TreeEntry> &TE) { 3283 if (TE->State != TreeEntry::Vectorize) 3284 NonVectorized.push_back(TE.get()); 3285 if (Optional<OrdersType> CurrentOrder = 3286 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3287 OrderedEntries.insert(TE.get()); 3288 if (TE->State != TreeEntry::Vectorize) 3289 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3290 } 3291 }); 3292 3293 // Checks if the operands of the users are reordarable and have only single 3294 // use. 3295 auto &&CheckOperands = 3296 [this, &NonVectorized](const auto &Data, 3297 SmallVectorImpl<TreeEntry *> &GatherOps) { 3298 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3299 if (any_of(Data.second, 3300 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3301 return OpData.first == I && 3302 OpData.second->State == TreeEntry::Vectorize; 3303 })) 3304 continue; 3305 ArrayRef<Value *> VL = Data.first->getOperand(I); 3306 const TreeEntry *TE = nullptr; 3307 const auto *It = find_if(VL, [this, &TE](Value *V) { 3308 TE = getTreeEntry(V); 3309 return TE; 3310 }); 3311 if (It != VL.end() && TE->isSame(VL)) 3312 return false; 3313 TreeEntry *Gather = nullptr; 3314 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3315 assert(TE->State != TreeEntry::Vectorize && 3316 "Only non-vectorized nodes are expected."); 3317 if (TE->isSame(VL)) { 3318 Gather = TE; 3319 return true; 3320 } 3321 return false; 3322 }) > 1) 3323 return false; 3324 if (Gather) 3325 GatherOps.push_back(Gather); 3326 } 3327 return true; 3328 }; 3329 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3330 // I.e., if the node has operands, that are reordered, try to make at least 3331 // one operand order in the natural order and reorder others + reorder the 3332 // user node itself. 3333 SmallPtrSet<const TreeEntry *, 4> Visited; 3334 while (!OrderedEntries.empty()) { 3335 // 1. Filter out only reordered nodes. 3336 // 2. If the entry has multiple uses - skip it and jump to the next node. 3337 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3338 SmallVector<TreeEntry *> Filtered; 3339 for (TreeEntry *TE : OrderedEntries) { 3340 if (!(TE->State == TreeEntry::Vectorize || 3341 (TE->State == TreeEntry::NeedToGather && 3342 GathersToOrders.count(TE))) || 3343 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3344 !all_of(drop_begin(TE->UserTreeIndices), 3345 [TE](const EdgeInfo &EI) { 3346 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3347 }) || 3348 !Visited.insert(TE).second) { 3349 Filtered.push_back(TE); 3350 continue; 3351 } 3352 // Build a map between user nodes and their operands order to speedup 3353 // search. The graph currently does not provide this dependency directly. 3354 for (EdgeInfo &EI : TE->UserTreeIndices) { 3355 TreeEntry *UserTE = EI.UserTE; 3356 auto It = Users.find(UserTE); 3357 if (It == Users.end()) 3358 It = Users.insert({UserTE, {}}).first; 3359 It->second.emplace_back(EI.EdgeIdx, TE); 3360 } 3361 } 3362 // Erase filtered entries. 3363 for_each(Filtered, 3364 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3365 for (const auto &Data : Users) { 3366 // Check that operands are used only in the User node. 3367 SmallVector<TreeEntry *> GatherOps; 3368 if (!CheckOperands(Data, GatherOps)) { 3369 for_each(Data.second, 3370 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3371 OrderedEntries.remove(Op.second); 3372 }); 3373 continue; 3374 } 3375 // All operands are reordered and used only in this node - propagate the 3376 // most used order to the user node. 3377 MapVector<OrdersType, unsigned, 3378 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3379 OrdersUses; 3380 // Do the analysis for each tree entry only once, otherwise the order of 3381 // the same node my be considered several times, though might be not 3382 // profitable. 3383 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3384 for (const auto &Op : Data.second) { 3385 TreeEntry *OpTE = Op.second; 3386 if (!VisitedOps.insert(OpTE).second) 3387 continue; 3388 if (!OpTE->ReuseShuffleIndices.empty() || 3389 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3390 continue; 3391 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3392 if (OpTE->State == TreeEntry::NeedToGather) 3393 return GathersToOrders.find(OpTE)->second; 3394 return OpTE->ReorderIndices; 3395 }(); 3396 // Stores actually store the mask, not the order, need to invert. 3397 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3398 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3399 SmallVector<int> Mask; 3400 inversePermutation(Order, Mask); 3401 unsigned E = Order.size(); 3402 OrdersType CurrentOrder(E, E); 3403 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3404 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3405 }); 3406 fixupOrderingIndices(CurrentOrder); 3407 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3408 } else { 3409 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3410 } 3411 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3412 OpTE->UserTreeIndices.size(); 3413 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3414 --OrdersUses[{}]; 3415 } 3416 // If no orders - skip current nodes and jump to the next one, if any. 3417 if (OrdersUses.empty()) { 3418 for_each(Data.second, 3419 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3420 OrderedEntries.remove(Op.second); 3421 }); 3422 continue; 3423 } 3424 // Choose the best order. 3425 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3426 unsigned Cnt = OrdersUses.front().second; 3427 for (const auto &Pair : drop_begin(OrdersUses)) { 3428 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3429 BestOrder = Pair.first; 3430 Cnt = Pair.second; 3431 } 3432 } 3433 // Set order of the user node (reordering of operands and user nodes). 3434 if (BestOrder.empty()) { 3435 for_each(Data.second, 3436 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3437 OrderedEntries.remove(Op.second); 3438 }); 3439 continue; 3440 } 3441 // Erase operands from OrderedEntries list and adjust their orders. 3442 VisitedOps.clear(); 3443 SmallVector<int> Mask; 3444 inversePermutation(BestOrder, Mask); 3445 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3446 unsigned E = BestOrder.size(); 3447 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3448 return I < E ? static_cast<int>(I) : UndefMaskElem; 3449 }); 3450 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3451 TreeEntry *TE = Op.second; 3452 OrderedEntries.remove(TE); 3453 if (!VisitedOps.insert(TE).second) 3454 continue; 3455 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3456 // Just reorder reuses indices. 3457 reorderReuses(TE->ReuseShuffleIndices, Mask); 3458 continue; 3459 } 3460 // Gathers are processed separately. 3461 if (TE->State != TreeEntry::Vectorize) 3462 continue; 3463 assert((BestOrder.size() == TE->ReorderIndices.size() || 3464 TE->ReorderIndices.empty()) && 3465 "Non-matching sizes of user/operand entries."); 3466 reorderOrder(TE->ReorderIndices, Mask); 3467 } 3468 // For gathers just need to reorder its scalars. 3469 for (TreeEntry *Gather : GatherOps) { 3470 assert(Gather->ReorderIndices.empty() && 3471 "Unexpected reordering of gathers."); 3472 if (!Gather->ReuseShuffleIndices.empty()) { 3473 // Just reorder reuses indices. 3474 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3475 continue; 3476 } 3477 reorderScalars(Gather->Scalars, Mask); 3478 OrderedEntries.remove(Gather); 3479 } 3480 // Reorder operands of the user node and set the ordering for the user 3481 // node itself. 3482 if (Data.first->State != TreeEntry::Vectorize || 3483 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3484 Data.first->getMainOp()) || 3485 Data.first->isAltShuffle()) 3486 Data.first->reorderOperands(Mask); 3487 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3488 Data.first->isAltShuffle()) { 3489 reorderScalars(Data.first->Scalars, Mask); 3490 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3491 if (Data.first->ReuseShuffleIndices.empty() && 3492 !Data.first->ReorderIndices.empty() && 3493 !Data.first->isAltShuffle()) { 3494 // Insert user node to the list to try to sink reordering deeper in 3495 // the graph. 3496 OrderedEntries.insert(Data.first); 3497 } 3498 } else { 3499 reorderOrder(Data.first->ReorderIndices, Mask); 3500 } 3501 } 3502 } 3503 // If the reordering is unnecessary, just remove the reorder. 3504 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3505 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3506 VectorizableTree.front()->ReorderIndices.clear(); 3507 } 3508 3509 void BoUpSLP::buildExternalUses( 3510 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3511 // Collect the values that we need to extract from the tree. 3512 for (auto &TEPtr : VectorizableTree) { 3513 TreeEntry *Entry = TEPtr.get(); 3514 3515 // No need to handle users of gathered values. 3516 if (Entry->State == TreeEntry::NeedToGather) 3517 continue; 3518 3519 // For each lane: 3520 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3521 Value *Scalar = Entry->Scalars[Lane]; 3522 int FoundLane = Entry->findLaneForValue(Scalar); 3523 3524 // Check if the scalar is externally used as an extra arg. 3525 auto ExtI = ExternallyUsedValues.find(Scalar); 3526 if (ExtI != ExternallyUsedValues.end()) { 3527 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3528 << Lane << " from " << *Scalar << ".\n"); 3529 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3530 } 3531 for (User *U : Scalar->users()) { 3532 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3533 3534 Instruction *UserInst = dyn_cast<Instruction>(U); 3535 if (!UserInst) 3536 continue; 3537 3538 if (isDeleted(UserInst)) 3539 continue; 3540 3541 // Skip in-tree scalars that become vectors 3542 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3543 Value *UseScalar = UseEntry->Scalars[0]; 3544 // Some in-tree scalars will remain as scalar in vectorized 3545 // instructions. If that is the case, the one in Lane 0 will 3546 // be used. 3547 if (UseScalar != U || 3548 UseEntry->State == TreeEntry::ScatterVectorize || 3549 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3550 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3551 << ".\n"); 3552 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3553 continue; 3554 } 3555 } 3556 3557 // Ignore users in the user ignore list. 3558 if (is_contained(UserIgnoreList, UserInst)) 3559 continue; 3560 3561 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3562 << Lane << " from " << *Scalar << ".\n"); 3563 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3564 } 3565 } 3566 } 3567 } 3568 3569 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3570 ArrayRef<Value *> UserIgnoreLst) { 3571 deleteTree(); 3572 UserIgnoreList = UserIgnoreLst; 3573 if (!allSameType(Roots)) 3574 return; 3575 buildTree_rec(Roots, 0, EdgeInfo()); 3576 } 3577 3578 namespace { 3579 /// Tracks the state we can represent the loads in the given sequence. 3580 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3581 } // anonymous namespace 3582 3583 /// Checks if the given array of loads can be represented as a vectorized, 3584 /// scatter or just simple gather. 3585 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3586 const TargetTransformInfo &TTI, 3587 const DataLayout &DL, ScalarEvolution &SE, 3588 SmallVectorImpl<unsigned> &Order, 3589 SmallVectorImpl<Value *> &PointerOps) { 3590 // Check that a vectorized load would load the same memory as a scalar 3591 // load. For example, we don't want to vectorize loads that are smaller 3592 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3593 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3594 // from such a struct, we read/write packed bits disagreeing with the 3595 // unvectorized version. 3596 Type *ScalarTy = VL0->getType(); 3597 3598 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3599 return LoadsState::Gather; 3600 3601 // Make sure all loads in the bundle are simple - we can't vectorize 3602 // atomic or volatile loads. 3603 PointerOps.clear(); 3604 PointerOps.resize(VL.size()); 3605 auto *POIter = PointerOps.begin(); 3606 for (Value *V : VL) { 3607 auto *L = cast<LoadInst>(V); 3608 if (!L->isSimple()) 3609 return LoadsState::Gather; 3610 *POIter = L->getPointerOperand(); 3611 ++POIter; 3612 } 3613 3614 Order.clear(); 3615 // Check the order of pointer operands. 3616 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3617 Value *Ptr0; 3618 Value *PtrN; 3619 if (Order.empty()) { 3620 Ptr0 = PointerOps.front(); 3621 PtrN = PointerOps.back(); 3622 } else { 3623 Ptr0 = PointerOps[Order.front()]; 3624 PtrN = PointerOps[Order.back()]; 3625 } 3626 Optional<int> Diff = 3627 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3628 // Check that the sorted loads are consecutive. 3629 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3630 return LoadsState::Vectorize; 3631 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3632 for (Value *V : VL) 3633 CommonAlignment = 3634 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3635 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3636 CommonAlignment)) 3637 return LoadsState::ScatterVectorize; 3638 } 3639 3640 return LoadsState::Gather; 3641 } 3642 3643 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3644 const EdgeInfo &UserTreeIdx) { 3645 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3646 3647 SmallVector<int> ReuseShuffleIndicies; 3648 SmallVector<Value *> UniqueValues; 3649 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3650 &UserTreeIdx, 3651 this](const InstructionsState &S) { 3652 // Check that every instruction appears once in this bundle. 3653 DenseMap<Value *, unsigned> UniquePositions; 3654 for (Value *V : VL) { 3655 if (isConstant(V)) { 3656 ReuseShuffleIndicies.emplace_back( 3657 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3658 UniqueValues.emplace_back(V); 3659 continue; 3660 } 3661 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3662 ReuseShuffleIndicies.emplace_back(Res.first->second); 3663 if (Res.second) 3664 UniqueValues.emplace_back(V); 3665 } 3666 size_t NumUniqueScalarValues = UniqueValues.size(); 3667 if (NumUniqueScalarValues == VL.size()) { 3668 ReuseShuffleIndicies.clear(); 3669 } else { 3670 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3671 if (NumUniqueScalarValues <= 1 || 3672 (UniquePositions.size() == 1 && all_of(UniqueValues, 3673 [](Value *V) { 3674 return isa<UndefValue>(V) || 3675 !isConstant(V); 3676 })) || 3677 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3678 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3679 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3680 return false; 3681 } 3682 VL = UniqueValues; 3683 } 3684 return true; 3685 }; 3686 3687 InstructionsState S = getSameOpcode(VL); 3688 if (Depth == RecursionMaxDepth) { 3689 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3690 if (TryToFindDuplicates(S)) 3691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3692 ReuseShuffleIndicies); 3693 return; 3694 } 3695 3696 // Don't handle scalable vectors 3697 if (S.getOpcode() == Instruction::ExtractElement && 3698 isa<ScalableVectorType>( 3699 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3700 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3701 if (TryToFindDuplicates(S)) 3702 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3703 ReuseShuffleIndicies); 3704 return; 3705 } 3706 3707 // Don't handle vectors. 3708 if (S.OpValue->getType()->isVectorTy() && 3709 !isa<InsertElementInst>(S.OpValue)) { 3710 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3711 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3712 return; 3713 } 3714 3715 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3716 if (SI->getValueOperand()->getType()->isVectorTy()) { 3717 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3718 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3719 return; 3720 } 3721 3722 // If all of the operands are identical or constant we have a simple solution. 3723 // If we deal with insert/extract instructions, they all must have constant 3724 // indices, otherwise we should gather them, not try to vectorize. 3725 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3726 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3727 !all_of(VL, isVectorLikeInstWithConstOps))) { 3728 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3729 if (TryToFindDuplicates(S)) 3730 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3731 ReuseShuffleIndicies); 3732 return; 3733 } 3734 3735 // We now know that this is a vector of instructions of the same type from 3736 // the same block. 3737 3738 // Don't vectorize ephemeral values. 3739 for (Value *V : VL) { 3740 if (EphValues.count(V)) { 3741 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3742 << ") is ephemeral.\n"); 3743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3744 return; 3745 } 3746 } 3747 3748 // Check if this is a duplicate of another entry. 3749 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3750 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3751 if (!E->isSame(VL)) { 3752 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3753 if (TryToFindDuplicates(S)) 3754 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3755 ReuseShuffleIndicies); 3756 return; 3757 } 3758 // Record the reuse of the tree node. FIXME, currently this is only used to 3759 // properly draw the graph rather than for the actual vectorization. 3760 E->UserTreeIndices.push_back(UserTreeIdx); 3761 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3762 << ".\n"); 3763 return; 3764 } 3765 3766 // Check that none of the instructions in the bundle are already in the tree. 3767 for (Value *V : VL) { 3768 auto *I = dyn_cast<Instruction>(V); 3769 if (!I) 3770 continue; 3771 if (getTreeEntry(I)) { 3772 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3773 << ") is already in tree.\n"); 3774 if (TryToFindDuplicates(S)) 3775 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3776 ReuseShuffleIndicies); 3777 return; 3778 } 3779 } 3780 3781 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3782 for (Value *V : VL) { 3783 if (is_contained(UserIgnoreList, V)) { 3784 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3785 if (TryToFindDuplicates(S)) 3786 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3787 ReuseShuffleIndicies); 3788 return; 3789 } 3790 } 3791 3792 // Check that all of the users of the scalars that we want to vectorize are 3793 // schedulable. 3794 auto *VL0 = cast<Instruction>(S.OpValue); 3795 BasicBlock *BB = VL0->getParent(); 3796 3797 if (!DT->isReachableFromEntry(BB)) { 3798 // Don't go into unreachable blocks. They may contain instructions with 3799 // dependency cycles which confuse the final scheduling. 3800 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3802 return; 3803 } 3804 3805 // Check that every instruction appears once in this bundle. 3806 if (!TryToFindDuplicates(S)) 3807 return; 3808 3809 auto &BSRef = BlocksSchedules[BB]; 3810 if (!BSRef) 3811 BSRef = std::make_unique<BlockScheduling>(BB); 3812 3813 BlockScheduling &BS = *BSRef.get(); 3814 3815 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3816 if (!Bundle) { 3817 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3818 assert((!BS.getScheduleData(VL0) || 3819 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3820 "tryScheduleBundle should cancelScheduling on failure"); 3821 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3822 ReuseShuffleIndicies); 3823 return; 3824 } 3825 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3826 3827 unsigned ShuffleOrOp = S.isAltShuffle() ? 3828 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3829 switch (ShuffleOrOp) { 3830 case Instruction::PHI: { 3831 auto *PH = cast<PHINode>(VL0); 3832 3833 // Check for terminator values (e.g. invoke). 3834 for (Value *V : VL) 3835 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3836 Instruction *Term = dyn_cast<Instruction>( 3837 cast<PHINode>(V)->getIncomingValueForBlock( 3838 PH->getIncomingBlock(I))); 3839 if (Term && Term->isTerminator()) { 3840 LLVM_DEBUG(dbgs() 3841 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3842 BS.cancelScheduling(VL, VL0); 3843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3844 ReuseShuffleIndicies); 3845 return; 3846 } 3847 } 3848 3849 TreeEntry *TE = 3850 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3851 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3852 3853 // Keeps the reordered operands to avoid code duplication. 3854 SmallVector<ValueList, 2> OperandsVec; 3855 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3856 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3857 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3858 TE->setOperand(I, Operands); 3859 OperandsVec.push_back(Operands); 3860 continue; 3861 } 3862 ValueList Operands; 3863 // Prepare the operand vector. 3864 for (Value *V : VL) 3865 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3866 PH->getIncomingBlock(I))); 3867 TE->setOperand(I, Operands); 3868 OperandsVec.push_back(Operands); 3869 } 3870 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3871 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3872 return; 3873 } 3874 case Instruction::ExtractValue: 3875 case Instruction::ExtractElement: { 3876 OrdersType CurrentOrder; 3877 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3878 if (Reuse) { 3879 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3880 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3881 ReuseShuffleIndicies); 3882 // This is a special case, as it does not gather, but at the same time 3883 // we are not extending buildTree_rec() towards the operands. 3884 ValueList Op0; 3885 Op0.assign(VL.size(), VL0->getOperand(0)); 3886 VectorizableTree.back()->setOperand(0, Op0); 3887 return; 3888 } 3889 if (!CurrentOrder.empty()) { 3890 LLVM_DEBUG({ 3891 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3892 "with order"; 3893 for (unsigned Idx : CurrentOrder) 3894 dbgs() << " " << Idx; 3895 dbgs() << "\n"; 3896 }); 3897 fixupOrderingIndices(CurrentOrder); 3898 // Insert new order with initial value 0, if it does not exist, 3899 // otherwise return the iterator to the existing one. 3900 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3901 ReuseShuffleIndicies, CurrentOrder); 3902 // This is a special case, as it does not gather, but at the same time 3903 // we are not extending buildTree_rec() towards the operands. 3904 ValueList Op0; 3905 Op0.assign(VL.size(), VL0->getOperand(0)); 3906 VectorizableTree.back()->setOperand(0, Op0); 3907 return; 3908 } 3909 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3910 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3911 ReuseShuffleIndicies); 3912 BS.cancelScheduling(VL, VL0); 3913 return; 3914 } 3915 case Instruction::InsertElement: { 3916 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3917 3918 // Check that we have a buildvector and not a shuffle of 2 or more 3919 // different vectors. 3920 ValueSet SourceVectors; 3921 int MinIdx = std::numeric_limits<int>::max(); 3922 for (Value *V : VL) { 3923 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3924 Optional<int> Idx = *getInsertIndex(V, 0); 3925 if (!Idx || *Idx == UndefMaskElem) 3926 continue; 3927 MinIdx = std::min(MinIdx, *Idx); 3928 } 3929 3930 if (count_if(VL, [&SourceVectors](Value *V) { 3931 return !SourceVectors.contains(V); 3932 }) >= 2) { 3933 // Found 2nd source vector - cancel. 3934 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3935 "different source vectors.\n"); 3936 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3937 BS.cancelScheduling(VL, VL0); 3938 return; 3939 } 3940 3941 auto OrdCompare = [](const std::pair<int, int> &P1, 3942 const std::pair<int, int> &P2) { 3943 return P1.first > P2.first; 3944 }; 3945 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3946 decltype(OrdCompare)> 3947 Indices(OrdCompare); 3948 for (int I = 0, E = VL.size(); I < E; ++I) { 3949 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3950 if (!Idx || *Idx == UndefMaskElem) 3951 continue; 3952 Indices.emplace(*Idx, I); 3953 } 3954 OrdersType CurrentOrder(VL.size(), VL.size()); 3955 bool IsIdentity = true; 3956 for (int I = 0, E = VL.size(); I < E; ++I) { 3957 CurrentOrder[Indices.top().second] = I; 3958 IsIdentity &= Indices.top().second == I; 3959 Indices.pop(); 3960 } 3961 if (IsIdentity) 3962 CurrentOrder.clear(); 3963 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3964 None, CurrentOrder); 3965 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3966 3967 constexpr int NumOps = 2; 3968 ValueList VectorOperands[NumOps]; 3969 for (int I = 0; I < NumOps; ++I) { 3970 for (Value *V : VL) 3971 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3972 3973 TE->setOperand(I, VectorOperands[I]); 3974 } 3975 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3976 return; 3977 } 3978 case Instruction::Load: { 3979 // Check that a vectorized load would load the same memory as a scalar 3980 // load. For example, we don't want to vectorize loads that are smaller 3981 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3982 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3983 // from such a struct, we read/write packed bits disagreeing with the 3984 // unvectorized version. 3985 SmallVector<Value *> PointerOps; 3986 OrdersType CurrentOrder; 3987 TreeEntry *TE = nullptr; 3988 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3989 PointerOps)) { 3990 case LoadsState::Vectorize: 3991 if (CurrentOrder.empty()) { 3992 // Original loads are consecutive and does not require reordering. 3993 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3994 ReuseShuffleIndicies); 3995 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3996 } else { 3997 fixupOrderingIndices(CurrentOrder); 3998 // Need to reorder. 3999 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4000 ReuseShuffleIndicies, CurrentOrder); 4001 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4002 } 4003 TE->setOperandsInOrder(); 4004 break; 4005 case LoadsState::ScatterVectorize: 4006 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4007 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4008 UserTreeIdx, ReuseShuffleIndicies); 4009 TE->setOperandsInOrder(); 4010 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4011 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4012 break; 4013 case LoadsState::Gather: 4014 BS.cancelScheduling(VL, VL0); 4015 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4016 ReuseShuffleIndicies); 4017 #ifndef NDEBUG 4018 Type *ScalarTy = VL0->getType(); 4019 if (DL->getTypeSizeInBits(ScalarTy) != 4020 DL->getTypeAllocSizeInBits(ScalarTy)) 4021 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4022 else if (any_of(VL, [](Value *V) { 4023 return !cast<LoadInst>(V)->isSimple(); 4024 })) 4025 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4026 else 4027 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4028 #endif // NDEBUG 4029 break; 4030 } 4031 return; 4032 } 4033 case Instruction::ZExt: 4034 case Instruction::SExt: 4035 case Instruction::FPToUI: 4036 case Instruction::FPToSI: 4037 case Instruction::FPExt: 4038 case Instruction::PtrToInt: 4039 case Instruction::IntToPtr: 4040 case Instruction::SIToFP: 4041 case Instruction::UIToFP: 4042 case Instruction::Trunc: 4043 case Instruction::FPTrunc: 4044 case Instruction::BitCast: { 4045 Type *SrcTy = VL0->getOperand(0)->getType(); 4046 for (Value *V : VL) { 4047 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4048 if (Ty != SrcTy || !isValidElementType(Ty)) { 4049 BS.cancelScheduling(VL, VL0); 4050 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4051 ReuseShuffleIndicies); 4052 LLVM_DEBUG(dbgs() 4053 << "SLP: Gathering casts with different src types.\n"); 4054 return; 4055 } 4056 } 4057 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4058 ReuseShuffleIndicies); 4059 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4060 4061 TE->setOperandsInOrder(); 4062 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4063 ValueList Operands; 4064 // Prepare the operand vector. 4065 for (Value *V : VL) 4066 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4067 4068 buildTree_rec(Operands, Depth + 1, {TE, i}); 4069 } 4070 return; 4071 } 4072 case Instruction::ICmp: 4073 case Instruction::FCmp: { 4074 // Check that all of the compares have the same predicate. 4075 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4076 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4077 Type *ComparedTy = VL0->getOperand(0)->getType(); 4078 for (Value *V : VL) { 4079 CmpInst *Cmp = cast<CmpInst>(V); 4080 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4081 Cmp->getOperand(0)->getType() != ComparedTy) { 4082 BS.cancelScheduling(VL, VL0); 4083 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4084 ReuseShuffleIndicies); 4085 LLVM_DEBUG(dbgs() 4086 << "SLP: Gathering cmp with different predicate.\n"); 4087 return; 4088 } 4089 } 4090 4091 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4092 ReuseShuffleIndicies); 4093 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4094 4095 ValueList Left, Right; 4096 if (cast<CmpInst>(VL0)->isCommutative()) { 4097 // Commutative predicate - collect + sort operands of the instructions 4098 // so that each side is more likely to have the same opcode. 4099 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4100 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4101 } else { 4102 // Collect operands - commute if it uses the swapped predicate. 4103 for (Value *V : VL) { 4104 auto *Cmp = cast<CmpInst>(V); 4105 Value *LHS = Cmp->getOperand(0); 4106 Value *RHS = Cmp->getOperand(1); 4107 if (Cmp->getPredicate() != P0) 4108 std::swap(LHS, RHS); 4109 Left.push_back(LHS); 4110 Right.push_back(RHS); 4111 } 4112 } 4113 TE->setOperand(0, Left); 4114 TE->setOperand(1, Right); 4115 buildTree_rec(Left, Depth + 1, {TE, 0}); 4116 buildTree_rec(Right, Depth + 1, {TE, 1}); 4117 return; 4118 } 4119 case Instruction::Select: 4120 case Instruction::FNeg: 4121 case Instruction::Add: 4122 case Instruction::FAdd: 4123 case Instruction::Sub: 4124 case Instruction::FSub: 4125 case Instruction::Mul: 4126 case Instruction::FMul: 4127 case Instruction::UDiv: 4128 case Instruction::SDiv: 4129 case Instruction::FDiv: 4130 case Instruction::URem: 4131 case Instruction::SRem: 4132 case Instruction::FRem: 4133 case Instruction::Shl: 4134 case Instruction::LShr: 4135 case Instruction::AShr: 4136 case Instruction::And: 4137 case Instruction::Or: 4138 case Instruction::Xor: { 4139 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4140 ReuseShuffleIndicies); 4141 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4142 4143 // Sort operands of the instructions so that each side is more likely to 4144 // have the same opcode. 4145 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4146 ValueList Left, Right; 4147 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4148 TE->setOperand(0, Left); 4149 TE->setOperand(1, Right); 4150 buildTree_rec(Left, Depth + 1, {TE, 0}); 4151 buildTree_rec(Right, Depth + 1, {TE, 1}); 4152 return; 4153 } 4154 4155 TE->setOperandsInOrder(); 4156 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4157 ValueList Operands; 4158 // Prepare the operand vector. 4159 for (Value *V : VL) 4160 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4161 4162 buildTree_rec(Operands, Depth + 1, {TE, i}); 4163 } 4164 return; 4165 } 4166 case Instruction::GetElementPtr: { 4167 // We don't combine GEPs with complicated (nested) indexing. 4168 for (Value *V : VL) { 4169 if (cast<Instruction>(V)->getNumOperands() != 2) { 4170 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4171 BS.cancelScheduling(VL, VL0); 4172 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4173 ReuseShuffleIndicies); 4174 return; 4175 } 4176 } 4177 4178 // We can't combine several GEPs into one vector if they operate on 4179 // different types. 4180 Type *Ty0 = VL0->getOperand(0)->getType(); 4181 for (Value *V : VL) { 4182 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4183 if (Ty0 != CurTy) { 4184 LLVM_DEBUG(dbgs() 4185 << "SLP: not-vectorizable GEP (different types).\n"); 4186 BS.cancelScheduling(VL, VL0); 4187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4188 ReuseShuffleIndicies); 4189 return; 4190 } 4191 } 4192 4193 // We don't combine GEPs with non-constant indexes. 4194 Type *Ty1 = VL0->getOperand(1)->getType(); 4195 for (Value *V : VL) { 4196 auto Op = cast<Instruction>(V)->getOperand(1); 4197 if (!isa<ConstantInt>(Op) || 4198 (Op->getType() != Ty1 && 4199 Op->getType()->getScalarSizeInBits() > 4200 DL->getIndexSizeInBits( 4201 V->getType()->getPointerAddressSpace()))) { 4202 LLVM_DEBUG(dbgs() 4203 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4204 BS.cancelScheduling(VL, VL0); 4205 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4206 ReuseShuffleIndicies); 4207 return; 4208 } 4209 } 4210 4211 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4212 ReuseShuffleIndicies); 4213 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4214 SmallVector<ValueList, 2> Operands(2); 4215 // Prepare the operand vector for pointer operands. 4216 for (Value *V : VL) 4217 Operands.front().push_back( 4218 cast<GetElementPtrInst>(V)->getPointerOperand()); 4219 TE->setOperand(0, Operands.front()); 4220 // Need to cast all indices to the same type before vectorization to 4221 // avoid crash. 4222 // Required to be able to find correct matches between different gather 4223 // nodes and reuse the vectorized values rather than trying to gather them 4224 // again. 4225 int IndexIdx = 1; 4226 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4227 Type *Ty = all_of(VL, 4228 [VL0Ty, IndexIdx](Value *V) { 4229 return VL0Ty == cast<GetElementPtrInst>(V) 4230 ->getOperand(IndexIdx) 4231 ->getType(); 4232 }) 4233 ? VL0Ty 4234 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4235 ->getPointerOperandType() 4236 ->getScalarType()); 4237 // Prepare the operand vector. 4238 for (Value *V : VL) { 4239 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4240 auto *CI = cast<ConstantInt>(Op); 4241 Operands.back().push_back(ConstantExpr::getIntegerCast( 4242 CI, Ty, CI->getValue().isSignBitSet())); 4243 } 4244 TE->setOperand(IndexIdx, Operands.back()); 4245 4246 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4247 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4248 return; 4249 } 4250 case Instruction::Store: { 4251 // Check if the stores are consecutive or if we need to swizzle them. 4252 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4253 // Avoid types that are padded when being allocated as scalars, while 4254 // being packed together in a vector (such as i1). 4255 if (DL->getTypeSizeInBits(ScalarTy) != 4256 DL->getTypeAllocSizeInBits(ScalarTy)) { 4257 BS.cancelScheduling(VL, VL0); 4258 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4259 ReuseShuffleIndicies); 4260 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4261 return; 4262 } 4263 // Make sure all stores in the bundle are simple - we can't vectorize 4264 // atomic or volatile stores. 4265 SmallVector<Value *, 4> PointerOps(VL.size()); 4266 ValueList Operands(VL.size()); 4267 auto POIter = PointerOps.begin(); 4268 auto OIter = Operands.begin(); 4269 for (Value *V : VL) { 4270 auto *SI = cast<StoreInst>(V); 4271 if (!SI->isSimple()) { 4272 BS.cancelScheduling(VL, VL0); 4273 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4274 ReuseShuffleIndicies); 4275 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4276 return; 4277 } 4278 *POIter = SI->getPointerOperand(); 4279 *OIter = SI->getValueOperand(); 4280 ++POIter; 4281 ++OIter; 4282 } 4283 4284 OrdersType CurrentOrder; 4285 // Check the order of pointer operands. 4286 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4287 Value *Ptr0; 4288 Value *PtrN; 4289 if (CurrentOrder.empty()) { 4290 Ptr0 = PointerOps.front(); 4291 PtrN = PointerOps.back(); 4292 } else { 4293 Ptr0 = PointerOps[CurrentOrder.front()]; 4294 PtrN = PointerOps[CurrentOrder.back()]; 4295 } 4296 Optional<int> Dist = 4297 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4298 // Check that the sorted pointer operands are consecutive. 4299 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4300 if (CurrentOrder.empty()) { 4301 // Original stores are consecutive and does not require reordering. 4302 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4303 UserTreeIdx, ReuseShuffleIndicies); 4304 TE->setOperandsInOrder(); 4305 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4306 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4307 } else { 4308 fixupOrderingIndices(CurrentOrder); 4309 TreeEntry *TE = 4310 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4311 ReuseShuffleIndicies, CurrentOrder); 4312 TE->setOperandsInOrder(); 4313 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4314 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4315 } 4316 return; 4317 } 4318 } 4319 4320 BS.cancelScheduling(VL, VL0); 4321 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4322 ReuseShuffleIndicies); 4323 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4324 return; 4325 } 4326 case Instruction::Call: { 4327 // Check if the calls are all to the same vectorizable intrinsic or 4328 // library function. 4329 CallInst *CI = cast<CallInst>(VL0); 4330 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4331 4332 VFShape Shape = VFShape::get( 4333 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4334 false /*HasGlobalPred*/); 4335 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4336 4337 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4338 BS.cancelScheduling(VL, VL0); 4339 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4340 ReuseShuffleIndicies); 4341 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4342 return; 4343 } 4344 Function *F = CI->getCalledFunction(); 4345 unsigned NumArgs = CI->arg_size(); 4346 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4347 for (unsigned j = 0; j != NumArgs; ++j) 4348 if (hasVectorInstrinsicScalarOpd(ID, j)) 4349 ScalarArgs[j] = CI->getArgOperand(j); 4350 for (Value *V : VL) { 4351 CallInst *CI2 = dyn_cast<CallInst>(V); 4352 if (!CI2 || CI2->getCalledFunction() != F || 4353 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4354 (VecFunc && 4355 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4356 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4357 BS.cancelScheduling(VL, VL0); 4358 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4359 ReuseShuffleIndicies); 4360 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4361 << "\n"); 4362 return; 4363 } 4364 // Some intrinsics have scalar arguments and should be same in order for 4365 // them to be vectorized. 4366 for (unsigned j = 0; j != NumArgs; ++j) { 4367 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4368 Value *A1J = CI2->getArgOperand(j); 4369 if (ScalarArgs[j] != A1J) { 4370 BS.cancelScheduling(VL, VL0); 4371 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4372 ReuseShuffleIndicies); 4373 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4374 << " argument " << ScalarArgs[j] << "!=" << A1J 4375 << "\n"); 4376 return; 4377 } 4378 } 4379 } 4380 // Verify that the bundle operands are identical between the two calls. 4381 if (CI->hasOperandBundles() && 4382 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4383 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4384 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4385 BS.cancelScheduling(VL, VL0); 4386 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4387 ReuseShuffleIndicies); 4388 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4389 << *CI << "!=" << *V << '\n'); 4390 return; 4391 } 4392 } 4393 4394 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4395 ReuseShuffleIndicies); 4396 TE->setOperandsInOrder(); 4397 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4398 // For scalar operands no need to to create an entry since no need to 4399 // vectorize it. 4400 if (hasVectorInstrinsicScalarOpd(ID, i)) 4401 continue; 4402 ValueList Operands; 4403 // Prepare the operand vector. 4404 for (Value *V : VL) { 4405 auto *CI2 = cast<CallInst>(V); 4406 Operands.push_back(CI2->getArgOperand(i)); 4407 } 4408 buildTree_rec(Operands, Depth + 1, {TE, i}); 4409 } 4410 return; 4411 } 4412 case Instruction::ShuffleVector: { 4413 // If this is not an alternate sequence of opcode like add-sub 4414 // then do not vectorize this instruction. 4415 if (!S.isAltShuffle()) { 4416 BS.cancelScheduling(VL, VL0); 4417 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4418 ReuseShuffleIndicies); 4419 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4420 return; 4421 } 4422 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4423 ReuseShuffleIndicies); 4424 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4425 4426 // Reorder operands if reordering would enable vectorization. 4427 auto *CI = dyn_cast<CmpInst>(VL0); 4428 if (isa<BinaryOperator>(VL0) || CI) { 4429 ValueList Left, Right; 4430 if (!CI || all_of(VL, [](Value *V) { 4431 return cast<CmpInst>(V)->isCommutative(); 4432 })) { 4433 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4434 } else { 4435 CmpInst::Predicate P0 = CI->getPredicate(); 4436 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4437 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4438 Value *BaseOp0 = VL0->getOperand(0); 4439 Value *BaseOp1 = VL0->getOperand(1); 4440 // Collect operands - commute if it uses the swapped predicate or 4441 // alternate operation. 4442 for (Value *V : VL) { 4443 auto *Cmp = cast<CmpInst>(V); 4444 Value *LHS = Cmp->getOperand(0); 4445 Value *RHS = Cmp->getOperand(1); 4446 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4447 CmpInst::Predicate CurrentPredSwapped = 4448 CmpInst::getSwappedPredicate(CurrentPred); 4449 if (P0 == AltP0 || P0 == AltP0Swapped) { 4450 if ((P0 == CurrentPred && 4451 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4452 (P0 == CurrentPredSwapped && 4453 !areCompatibleCmpOps(BaseOp0, BaseOp1, RHS, LHS))) 4454 std::swap(LHS, RHS); 4455 } else if (!areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) { 4456 std::swap(LHS, RHS); 4457 } 4458 Left.push_back(LHS); 4459 Right.push_back(RHS); 4460 } 4461 } 4462 TE->setOperand(0, Left); 4463 TE->setOperand(1, Right); 4464 buildTree_rec(Left, Depth + 1, {TE, 0}); 4465 buildTree_rec(Right, Depth + 1, {TE, 1}); 4466 return; 4467 } 4468 4469 TE->setOperandsInOrder(); 4470 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4471 ValueList Operands; 4472 // Prepare the operand vector. 4473 for (Value *V : VL) 4474 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4475 4476 buildTree_rec(Operands, Depth + 1, {TE, i}); 4477 } 4478 return; 4479 } 4480 default: 4481 BS.cancelScheduling(VL, VL0); 4482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4483 ReuseShuffleIndicies); 4484 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4485 return; 4486 } 4487 } 4488 4489 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4490 unsigned N = 1; 4491 Type *EltTy = T; 4492 4493 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4494 isa<VectorType>(EltTy)) { 4495 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4496 // Check that struct is homogeneous. 4497 for (const auto *Ty : ST->elements()) 4498 if (Ty != *ST->element_begin()) 4499 return 0; 4500 N *= ST->getNumElements(); 4501 EltTy = *ST->element_begin(); 4502 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4503 N *= AT->getNumElements(); 4504 EltTy = AT->getElementType(); 4505 } else { 4506 auto *VT = cast<FixedVectorType>(EltTy); 4507 N *= VT->getNumElements(); 4508 EltTy = VT->getElementType(); 4509 } 4510 } 4511 4512 if (!isValidElementType(EltTy)) 4513 return 0; 4514 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4515 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4516 return 0; 4517 return N; 4518 } 4519 4520 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4521 SmallVectorImpl<unsigned> &CurrentOrder) const { 4522 const auto *It = find_if(VL, [](Value *V) { 4523 return isa<ExtractElementInst, ExtractValueInst>(V); 4524 }); 4525 assert(It != VL.end() && "Expected at least one extract instruction."); 4526 auto *E0 = cast<Instruction>(*It); 4527 assert(all_of(VL, 4528 [](Value *V) { 4529 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4530 V); 4531 }) && 4532 "Invalid opcode"); 4533 // Check if all of the extracts come from the same vector and from the 4534 // correct offset. 4535 Value *Vec = E0->getOperand(0); 4536 4537 CurrentOrder.clear(); 4538 4539 // We have to extract from a vector/aggregate with the same number of elements. 4540 unsigned NElts; 4541 if (E0->getOpcode() == Instruction::ExtractValue) { 4542 const DataLayout &DL = E0->getModule()->getDataLayout(); 4543 NElts = canMapToVector(Vec->getType(), DL); 4544 if (!NElts) 4545 return false; 4546 // Check if load can be rewritten as load of vector. 4547 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4548 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4549 return false; 4550 } else { 4551 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4552 } 4553 4554 if (NElts != VL.size()) 4555 return false; 4556 4557 // Check that all of the indices extract from the correct offset. 4558 bool ShouldKeepOrder = true; 4559 unsigned E = VL.size(); 4560 // Assign to all items the initial value E + 1 so we can check if the extract 4561 // instruction index was used already. 4562 // Also, later we can check that all the indices are used and we have a 4563 // consecutive access in the extract instructions, by checking that no 4564 // element of CurrentOrder still has value E + 1. 4565 CurrentOrder.assign(E, E); 4566 unsigned I = 0; 4567 for (; I < E; ++I) { 4568 auto *Inst = dyn_cast<Instruction>(VL[I]); 4569 if (!Inst) 4570 continue; 4571 if (Inst->getOperand(0) != Vec) 4572 break; 4573 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4574 if (isa<UndefValue>(EE->getIndexOperand())) 4575 continue; 4576 Optional<unsigned> Idx = getExtractIndex(Inst); 4577 if (!Idx) 4578 break; 4579 const unsigned ExtIdx = *Idx; 4580 if (ExtIdx != I) { 4581 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4582 break; 4583 ShouldKeepOrder = false; 4584 CurrentOrder[ExtIdx] = I; 4585 } else { 4586 if (CurrentOrder[I] != E) 4587 break; 4588 CurrentOrder[I] = I; 4589 } 4590 } 4591 if (I < E) { 4592 CurrentOrder.clear(); 4593 return false; 4594 } 4595 if (ShouldKeepOrder) 4596 CurrentOrder.clear(); 4597 4598 return ShouldKeepOrder; 4599 } 4600 4601 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4602 ArrayRef<Value *> VectorizedVals) const { 4603 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4604 all_of(I->users(), [this](User *U) { 4605 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4606 }); 4607 } 4608 4609 static std::pair<InstructionCost, InstructionCost> 4610 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4611 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4612 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4613 4614 // Calculate the cost of the scalar and vector calls. 4615 SmallVector<Type *, 4> VecTys; 4616 for (Use &Arg : CI->args()) 4617 VecTys.push_back( 4618 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4619 FastMathFlags FMF; 4620 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4621 FMF = FPCI->getFastMathFlags(); 4622 SmallVector<const Value *> Arguments(CI->args()); 4623 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4624 dyn_cast<IntrinsicInst>(CI)); 4625 auto IntrinsicCost = 4626 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4627 4628 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4629 VecTy->getNumElements())), 4630 false /*HasGlobalPred*/); 4631 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4632 auto LibCost = IntrinsicCost; 4633 if (!CI->isNoBuiltin() && VecFunc) { 4634 // Calculate the cost of the vector library call. 4635 // If the corresponding vector call is cheaper, return its cost. 4636 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4637 TTI::TCK_RecipThroughput); 4638 } 4639 return {IntrinsicCost, LibCost}; 4640 } 4641 4642 /// Compute the cost of creating a vector of type \p VecTy containing the 4643 /// extracted values from \p VL. 4644 static InstructionCost 4645 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4646 TargetTransformInfo::ShuffleKind ShuffleKind, 4647 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4648 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4649 4650 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4651 VecTy->getNumElements() < NumOfParts) 4652 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4653 4654 bool AllConsecutive = true; 4655 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4656 unsigned Idx = -1; 4657 InstructionCost Cost = 0; 4658 4659 // Process extracts in blocks of EltsPerVector to check if the source vector 4660 // operand can be re-used directly. If not, add the cost of creating a shuffle 4661 // to extract the values into a vector register. 4662 for (auto *V : VL) { 4663 ++Idx; 4664 4665 // Need to exclude undefs from analysis. 4666 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4667 continue; 4668 4669 // Reached the start of a new vector registers. 4670 if (Idx % EltsPerVector == 0) { 4671 AllConsecutive = true; 4672 continue; 4673 } 4674 4675 // Check all extracts for a vector register on the target directly 4676 // extract values in order. 4677 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4678 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4679 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4680 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4681 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4682 } 4683 4684 if (AllConsecutive) 4685 continue; 4686 4687 // Skip all indices, except for the last index per vector block. 4688 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4689 continue; 4690 4691 // If we have a series of extracts which are not consecutive and hence 4692 // cannot re-use the source vector register directly, compute the shuffle 4693 // cost to extract the a vector with EltsPerVector elements. 4694 Cost += TTI.getShuffleCost( 4695 TargetTransformInfo::SK_PermuteSingleSrc, 4696 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4697 } 4698 return Cost; 4699 } 4700 4701 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4702 /// operations operands. 4703 static void 4704 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4705 ArrayRef<int> ReusesIndices, 4706 const function_ref<bool(Instruction *)> IsAltOp, 4707 SmallVectorImpl<int> &Mask, 4708 SmallVectorImpl<Value *> *OpScalars = nullptr, 4709 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4710 unsigned Sz = VL.size(); 4711 Mask.assign(Sz, UndefMaskElem); 4712 SmallVector<int> OrderMask; 4713 if (!ReorderIndices.empty()) 4714 inversePermutation(ReorderIndices, OrderMask); 4715 for (unsigned I = 0; I < Sz; ++I) { 4716 unsigned Idx = I; 4717 if (!ReorderIndices.empty()) 4718 Idx = OrderMask[I]; 4719 auto *OpInst = cast<Instruction>(VL[Idx]); 4720 if (IsAltOp(OpInst)) { 4721 Mask[I] = Sz + Idx; 4722 if (AltScalars) 4723 AltScalars->push_back(OpInst); 4724 } else { 4725 Mask[I] = Idx; 4726 if (OpScalars) 4727 OpScalars->push_back(OpInst); 4728 } 4729 } 4730 if (!ReusesIndices.empty()) { 4731 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4732 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4733 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4734 }); 4735 Mask.swap(NewMask); 4736 } 4737 } 4738 4739 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4740 ArrayRef<Value *> VectorizedVals) { 4741 ArrayRef<Value*> VL = E->Scalars; 4742 4743 Type *ScalarTy = VL[0]->getType(); 4744 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4745 ScalarTy = SI->getValueOperand()->getType(); 4746 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4747 ScalarTy = CI->getOperand(0)->getType(); 4748 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4749 ScalarTy = IE->getOperand(1)->getType(); 4750 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4751 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4752 4753 // If we have computed a smaller type for the expression, update VecTy so 4754 // that the costs will be accurate. 4755 if (MinBWs.count(VL[0])) 4756 VecTy = FixedVectorType::get( 4757 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4758 unsigned EntryVF = E->getVectorFactor(); 4759 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4760 4761 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4762 // FIXME: it tries to fix a problem with MSVC buildbots. 4763 TargetTransformInfo &TTIRef = *TTI; 4764 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4765 VectorizedVals, E](InstructionCost &Cost) { 4766 DenseMap<Value *, int> ExtractVectorsTys; 4767 SmallPtrSet<Value *, 4> CheckedExtracts; 4768 for (auto *V : VL) { 4769 if (isa<UndefValue>(V)) 4770 continue; 4771 // If all users of instruction are going to be vectorized and this 4772 // instruction itself is not going to be vectorized, consider this 4773 // instruction as dead and remove its cost from the final cost of the 4774 // vectorized tree. 4775 // Also, avoid adjusting the cost for extractelements with multiple uses 4776 // in different graph entries. 4777 const TreeEntry *VE = getTreeEntry(V); 4778 if (!CheckedExtracts.insert(V).second || 4779 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4780 (VE && VE != E)) 4781 continue; 4782 auto *EE = cast<ExtractElementInst>(V); 4783 Optional<unsigned> EEIdx = getExtractIndex(EE); 4784 if (!EEIdx) 4785 continue; 4786 unsigned Idx = *EEIdx; 4787 if (TTIRef.getNumberOfParts(VecTy) != 4788 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4789 auto It = 4790 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4791 It->getSecond() = std::min<int>(It->second, Idx); 4792 } 4793 // Take credit for instruction that will become dead. 4794 if (EE->hasOneUse()) { 4795 Instruction *Ext = EE->user_back(); 4796 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4797 all_of(Ext->users(), 4798 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4799 // Use getExtractWithExtendCost() to calculate the cost of 4800 // extractelement/ext pair. 4801 Cost -= 4802 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4803 EE->getVectorOperandType(), Idx); 4804 // Add back the cost of s|zext which is subtracted separately. 4805 Cost += TTIRef.getCastInstrCost( 4806 Ext->getOpcode(), Ext->getType(), EE->getType(), 4807 TTI::getCastContextHint(Ext), CostKind, Ext); 4808 continue; 4809 } 4810 } 4811 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4812 EE->getVectorOperandType(), Idx); 4813 } 4814 // Add a cost for subvector extracts/inserts if required. 4815 for (const auto &Data : ExtractVectorsTys) { 4816 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4817 unsigned NumElts = VecTy->getNumElements(); 4818 if (Data.second % NumElts == 0) 4819 continue; 4820 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4821 unsigned Idx = (Data.second / NumElts) * NumElts; 4822 unsigned EENumElts = EEVTy->getNumElements(); 4823 if (Idx + NumElts <= EENumElts) { 4824 Cost += 4825 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4826 EEVTy, None, Idx, VecTy); 4827 } else { 4828 // Need to round up the subvector type vectorization factor to avoid a 4829 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4830 // <= EENumElts. 4831 auto *SubVT = 4832 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4833 Cost += 4834 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4835 EEVTy, None, Idx, SubVT); 4836 } 4837 } else { 4838 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4839 VecTy, None, 0, EEVTy); 4840 } 4841 } 4842 }; 4843 if (E->State == TreeEntry::NeedToGather) { 4844 if (allConstant(VL)) 4845 return 0; 4846 if (isa<InsertElementInst>(VL[0])) 4847 return InstructionCost::getInvalid(); 4848 SmallVector<int> Mask; 4849 SmallVector<const TreeEntry *> Entries; 4850 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4851 isGatherShuffledEntry(E, Mask, Entries); 4852 if (Shuffle.hasValue()) { 4853 InstructionCost GatherCost = 0; 4854 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4855 // Perfect match in the graph, will reuse the previously vectorized 4856 // node. Cost is 0. 4857 LLVM_DEBUG( 4858 dbgs() 4859 << "SLP: perfect diamond match for gather bundle that starts with " 4860 << *VL.front() << ".\n"); 4861 if (NeedToShuffleReuses) 4862 GatherCost = 4863 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4864 FinalVecTy, E->ReuseShuffleIndices); 4865 } else { 4866 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4867 << " entries for bundle that starts with " 4868 << *VL.front() << ".\n"); 4869 // Detected that instead of gather we can emit a shuffle of single/two 4870 // previously vectorized nodes. Add the cost of the permutation rather 4871 // than gather. 4872 ::addMask(Mask, E->ReuseShuffleIndices); 4873 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4874 } 4875 return GatherCost; 4876 } 4877 if ((E->getOpcode() == Instruction::ExtractElement || 4878 all_of(E->Scalars, 4879 [](Value *V) { 4880 return isa<ExtractElementInst, UndefValue>(V); 4881 })) && 4882 allSameType(VL)) { 4883 // Check that gather of extractelements can be represented as just a 4884 // shuffle of a single/two vectors the scalars are extracted from. 4885 SmallVector<int> Mask; 4886 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4887 isFixedVectorShuffle(VL, Mask); 4888 if (ShuffleKind.hasValue()) { 4889 // Found the bunch of extractelement instructions that must be gathered 4890 // into a vector and can be represented as a permutation elements in a 4891 // single input vector or of 2 input vectors. 4892 InstructionCost Cost = 4893 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4894 AdjustExtractsCost(Cost); 4895 if (NeedToShuffleReuses) 4896 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4897 FinalVecTy, E->ReuseShuffleIndices); 4898 return Cost; 4899 } 4900 } 4901 if (isSplat(VL)) { 4902 // Found the broadcasting of the single scalar, calculate the cost as the 4903 // broadcast. 4904 assert(VecTy == FinalVecTy && 4905 "No reused scalars expected for broadcast."); 4906 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4907 } 4908 InstructionCost ReuseShuffleCost = 0; 4909 if (NeedToShuffleReuses) 4910 ReuseShuffleCost = TTI->getShuffleCost( 4911 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4912 // Improve gather cost for gather of loads, if we can group some of the 4913 // loads into vector loads. 4914 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4915 !E->isAltShuffle()) { 4916 BoUpSLP::ValueSet VectorizedLoads; 4917 unsigned StartIdx = 0; 4918 unsigned VF = VL.size() / 2; 4919 unsigned VectorizedCnt = 0; 4920 unsigned ScatterVectorizeCnt = 0; 4921 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4922 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4923 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4924 Cnt += VF) { 4925 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4926 if (!VectorizedLoads.count(Slice.front()) && 4927 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4928 SmallVector<Value *> PointerOps; 4929 OrdersType CurrentOrder; 4930 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4931 *SE, CurrentOrder, PointerOps); 4932 switch (LS) { 4933 case LoadsState::Vectorize: 4934 case LoadsState::ScatterVectorize: 4935 // Mark the vectorized loads so that we don't vectorize them 4936 // again. 4937 if (LS == LoadsState::Vectorize) 4938 ++VectorizedCnt; 4939 else 4940 ++ScatterVectorizeCnt; 4941 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4942 // If we vectorized initial block, no need to try to vectorize it 4943 // again. 4944 if (Cnt == StartIdx) 4945 StartIdx += VF; 4946 break; 4947 case LoadsState::Gather: 4948 break; 4949 } 4950 } 4951 } 4952 // Check if the whole array was vectorized already - exit. 4953 if (StartIdx >= VL.size()) 4954 break; 4955 // Found vectorizable parts - exit. 4956 if (!VectorizedLoads.empty()) 4957 break; 4958 } 4959 if (!VectorizedLoads.empty()) { 4960 InstructionCost GatherCost = 0; 4961 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4962 bool NeedInsertSubvectorAnalysis = 4963 !NumParts || (VL.size() / VF) > NumParts; 4964 // Get the cost for gathered loads. 4965 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4966 if (VectorizedLoads.contains(VL[I])) 4967 continue; 4968 GatherCost += getGatherCost(VL.slice(I, VF)); 4969 } 4970 // The cost for vectorized loads. 4971 InstructionCost ScalarsCost = 0; 4972 for (Value *V : VectorizedLoads) { 4973 auto *LI = cast<LoadInst>(V); 4974 ScalarsCost += TTI->getMemoryOpCost( 4975 Instruction::Load, LI->getType(), LI->getAlign(), 4976 LI->getPointerAddressSpace(), CostKind, LI); 4977 } 4978 auto *LI = cast<LoadInst>(E->getMainOp()); 4979 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4980 Align Alignment = LI->getAlign(); 4981 GatherCost += 4982 VectorizedCnt * 4983 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4984 LI->getPointerAddressSpace(), CostKind, LI); 4985 GatherCost += ScatterVectorizeCnt * 4986 TTI->getGatherScatterOpCost( 4987 Instruction::Load, LoadTy, LI->getPointerOperand(), 4988 /*VariableMask=*/false, Alignment, CostKind, LI); 4989 if (NeedInsertSubvectorAnalysis) { 4990 // Add the cost for the subvectors insert. 4991 for (int I = VF, E = VL.size(); I < E; I += VF) 4992 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4993 None, I, LoadTy); 4994 } 4995 return ReuseShuffleCost + GatherCost - ScalarsCost; 4996 } 4997 } 4998 return ReuseShuffleCost + getGatherCost(VL); 4999 } 5000 InstructionCost CommonCost = 0; 5001 SmallVector<int> Mask; 5002 if (!E->ReorderIndices.empty()) { 5003 SmallVector<int> NewMask; 5004 if (E->getOpcode() == Instruction::Store) { 5005 // For stores the order is actually a mask. 5006 NewMask.resize(E->ReorderIndices.size()); 5007 copy(E->ReorderIndices, NewMask.begin()); 5008 } else { 5009 inversePermutation(E->ReorderIndices, NewMask); 5010 } 5011 ::addMask(Mask, NewMask); 5012 } 5013 if (NeedToShuffleReuses) 5014 ::addMask(Mask, E->ReuseShuffleIndices); 5015 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5016 CommonCost = 5017 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5018 assert((E->State == TreeEntry::Vectorize || 5019 E->State == TreeEntry::ScatterVectorize) && 5020 "Unhandled state"); 5021 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5022 Instruction *VL0 = E->getMainOp(); 5023 unsigned ShuffleOrOp = 5024 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5025 switch (ShuffleOrOp) { 5026 case Instruction::PHI: 5027 return 0; 5028 5029 case Instruction::ExtractValue: 5030 case Instruction::ExtractElement: { 5031 // The common cost of removal ExtractElement/ExtractValue instructions + 5032 // the cost of shuffles, if required to resuffle the original vector. 5033 if (NeedToShuffleReuses) { 5034 unsigned Idx = 0; 5035 for (unsigned I : E->ReuseShuffleIndices) { 5036 if (ShuffleOrOp == Instruction::ExtractElement) { 5037 auto *EE = cast<ExtractElementInst>(VL[I]); 5038 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5039 EE->getVectorOperandType(), 5040 *getExtractIndex(EE)); 5041 } else { 5042 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5043 VecTy, Idx); 5044 ++Idx; 5045 } 5046 } 5047 Idx = EntryVF; 5048 for (Value *V : VL) { 5049 if (ShuffleOrOp == Instruction::ExtractElement) { 5050 auto *EE = cast<ExtractElementInst>(V); 5051 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5052 EE->getVectorOperandType(), 5053 *getExtractIndex(EE)); 5054 } else { 5055 --Idx; 5056 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5057 VecTy, Idx); 5058 } 5059 } 5060 } 5061 if (ShuffleOrOp == Instruction::ExtractValue) { 5062 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5063 auto *EI = cast<Instruction>(VL[I]); 5064 // Take credit for instruction that will become dead. 5065 if (EI->hasOneUse()) { 5066 Instruction *Ext = EI->user_back(); 5067 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5068 all_of(Ext->users(), 5069 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5070 // Use getExtractWithExtendCost() to calculate the cost of 5071 // extractelement/ext pair. 5072 CommonCost -= TTI->getExtractWithExtendCost( 5073 Ext->getOpcode(), Ext->getType(), VecTy, I); 5074 // Add back the cost of s|zext which is subtracted separately. 5075 CommonCost += TTI->getCastInstrCost( 5076 Ext->getOpcode(), Ext->getType(), EI->getType(), 5077 TTI::getCastContextHint(Ext), CostKind, Ext); 5078 continue; 5079 } 5080 } 5081 CommonCost -= 5082 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5083 } 5084 } else { 5085 AdjustExtractsCost(CommonCost); 5086 } 5087 return CommonCost; 5088 } 5089 case Instruction::InsertElement: { 5090 assert(E->ReuseShuffleIndices.empty() && 5091 "Unique insertelements only are expected."); 5092 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5093 5094 unsigned const NumElts = SrcVecTy->getNumElements(); 5095 unsigned const NumScalars = VL.size(); 5096 APInt DemandedElts = APInt::getZero(NumElts); 5097 // TODO: Add support for Instruction::InsertValue. 5098 SmallVector<int> Mask; 5099 if (!E->ReorderIndices.empty()) { 5100 inversePermutation(E->ReorderIndices, Mask); 5101 Mask.append(NumElts - NumScalars, UndefMaskElem); 5102 } else { 5103 Mask.assign(NumElts, UndefMaskElem); 5104 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5105 } 5106 unsigned Offset = *getInsertIndex(VL0, 0); 5107 bool IsIdentity = true; 5108 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5109 Mask.swap(PrevMask); 5110 for (unsigned I = 0; I < NumScalars; ++I) { 5111 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5112 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5113 continue; 5114 DemandedElts.setBit(*InsertIdx); 5115 IsIdentity &= *InsertIdx - Offset == I; 5116 Mask[*InsertIdx - Offset] = I; 5117 } 5118 assert(Offset < NumElts && "Failed to find vector index offset"); 5119 5120 InstructionCost Cost = 0; 5121 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5122 /*Insert*/ true, /*Extract*/ false); 5123 5124 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5125 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5126 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5127 Cost += TTI->getShuffleCost( 5128 TargetTransformInfo::SK_PermuteSingleSrc, 5129 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5130 } else if (!IsIdentity) { 5131 auto *FirstInsert = 5132 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5133 return !is_contained(E->Scalars, 5134 cast<Instruction>(V)->getOperand(0)); 5135 })); 5136 if (isUndefVector(FirstInsert->getOperand(0))) { 5137 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5138 } else { 5139 SmallVector<int> InsertMask(NumElts); 5140 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5141 for (unsigned I = 0; I < NumElts; I++) { 5142 if (Mask[I] != UndefMaskElem) 5143 InsertMask[Offset + I] = NumElts + I; 5144 } 5145 Cost += 5146 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5147 } 5148 } 5149 5150 return Cost; 5151 } 5152 case Instruction::ZExt: 5153 case Instruction::SExt: 5154 case Instruction::FPToUI: 5155 case Instruction::FPToSI: 5156 case Instruction::FPExt: 5157 case Instruction::PtrToInt: 5158 case Instruction::IntToPtr: 5159 case Instruction::SIToFP: 5160 case Instruction::UIToFP: 5161 case Instruction::Trunc: 5162 case Instruction::FPTrunc: 5163 case Instruction::BitCast: { 5164 Type *SrcTy = VL0->getOperand(0)->getType(); 5165 InstructionCost ScalarEltCost = 5166 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5167 TTI::getCastContextHint(VL0), CostKind, VL0); 5168 if (NeedToShuffleReuses) { 5169 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5170 } 5171 5172 // Calculate the cost of this instruction. 5173 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5174 5175 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5176 InstructionCost VecCost = 0; 5177 // Check if the values are candidates to demote. 5178 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5179 VecCost = CommonCost + TTI->getCastInstrCost( 5180 E->getOpcode(), VecTy, SrcVecTy, 5181 TTI::getCastContextHint(VL0), CostKind, VL0); 5182 } 5183 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5184 return VecCost - ScalarCost; 5185 } 5186 case Instruction::FCmp: 5187 case Instruction::ICmp: 5188 case Instruction::Select: { 5189 // Calculate the cost of this instruction. 5190 InstructionCost ScalarEltCost = 5191 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5192 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5193 if (NeedToShuffleReuses) { 5194 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5195 } 5196 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5197 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5198 5199 // Check if all entries in VL are either compares or selects with compares 5200 // as condition that have the same predicates. 5201 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5202 bool First = true; 5203 for (auto *V : VL) { 5204 CmpInst::Predicate CurrentPred; 5205 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5206 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5207 !match(V, MatchCmp)) || 5208 (!First && VecPred != CurrentPred)) { 5209 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5210 break; 5211 } 5212 First = false; 5213 VecPred = CurrentPred; 5214 } 5215 5216 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5217 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5218 // Check if it is possible and profitable to use min/max for selects in 5219 // VL. 5220 // 5221 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5222 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5223 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5224 {VecTy, VecTy}); 5225 InstructionCost IntrinsicCost = 5226 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5227 // If the selects are the only uses of the compares, they will be dead 5228 // and we can adjust the cost by removing their cost. 5229 if (IntrinsicAndUse.second) 5230 IntrinsicCost -= 5231 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5232 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5233 VecCost = std::min(VecCost, IntrinsicCost); 5234 } 5235 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5236 return CommonCost + VecCost - ScalarCost; 5237 } 5238 case Instruction::FNeg: 5239 case Instruction::Add: 5240 case Instruction::FAdd: 5241 case Instruction::Sub: 5242 case Instruction::FSub: 5243 case Instruction::Mul: 5244 case Instruction::FMul: 5245 case Instruction::UDiv: 5246 case Instruction::SDiv: 5247 case Instruction::FDiv: 5248 case Instruction::URem: 5249 case Instruction::SRem: 5250 case Instruction::FRem: 5251 case Instruction::Shl: 5252 case Instruction::LShr: 5253 case Instruction::AShr: 5254 case Instruction::And: 5255 case Instruction::Or: 5256 case Instruction::Xor: { 5257 // Certain instructions can be cheaper to vectorize if they have a 5258 // constant second vector operand. 5259 TargetTransformInfo::OperandValueKind Op1VK = 5260 TargetTransformInfo::OK_AnyValue; 5261 TargetTransformInfo::OperandValueKind Op2VK = 5262 TargetTransformInfo::OK_UniformConstantValue; 5263 TargetTransformInfo::OperandValueProperties Op1VP = 5264 TargetTransformInfo::OP_None; 5265 TargetTransformInfo::OperandValueProperties Op2VP = 5266 TargetTransformInfo::OP_PowerOf2; 5267 5268 // If all operands are exactly the same ConstantInt then set the 5269 // operand kind to OK_UniformConstantValue. 5270 // If instead not all operands are constants, then set the operand kind 5271 // to OK_AnyValue. If all operands are constants but not the same, 5272 // then set the operand kind to OK_NonUniformConstantValue. 5273 ConstantInt *CInt0 = nullptr; 5274 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5275 const Instruction *I = cast<Instruction>(VL[i]); 5276 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5277 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5278 if (!CInt) { 5279 Op2VK = TargetTransformInfo::OK_AnyValue; 5280 Op2VP = TargetTransformInfo::OP_None; 5281 break; 5282 } 5283 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5284 !CInt->getValue().isPowerOf2()) 5285 Op2VP = TargetTransformInfo::OP_None; 5286 if (i == 0) { 5287 CInt0 = CInt; 5288 continue; 5289 } 5290 if (CInt0 != CInt) 5291 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5292 } 5293 5294 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5295 InstructionCost ScalarEltCost = 5296 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5297 Op2VK, Op1VP, Op2VP, Operands, VL0); 5298 if (NeedToShuffleReuses) { 5299 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5300 } 5301 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5302 InstructionCost VecCost = 5303 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5304 Op2VK, Op1VP, Op2VP, Operands, VL0); 5305 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5306 return CommonCost + VecCost - ScalarCost; 5307 } 5308 case Instruction::GetElementPtr: { 5309 TargetTransformInfo::OperandValueKind Op1VK = 5310 TargetTransformInfo::OK_AnyValue; 5311 TargetTransformInfo::OperandValueKind Op2VK = 5312 TargetTransformInfo::OK_UniformConstantValue; 5313 5314 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5315 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5316 if (NeedToShuffleReuses) { 5317 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5318 } 5319 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5320 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5321 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5322 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5323 return CommonCost + VecCost - ScalarCost; 5324 } 5325 case Instruction::Load: { 5326 // Cost of wide load - cost of scalar loads. 5327 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5328 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5329 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5330 if (NeedToShuffleReuses) { 5331 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5332 } 5333 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5334 InstructionCost VecLdCost; 5335 if (E->State == TreeEntry::Vectorize) { 5336 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5337 CostKind, VL0); 5338 } else { 5339 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5340 Align CommonAlignment = Alignment; 5341 for (Value *V : VL) 5342 CommonAlignment = 5343 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5344 VecLdCost = TTI->getGatherScatterOpCost( 5345 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5346 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5347 } 5348 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5349 return CommonCost + VecLdCost - ScalarLdCost; 5350 } 5351 case Instruction::Store: { 5352 // We know that we can merge the stores. Calculate the cost. 5353 bool IsReorder = !E->ReorderIndices.empty(); 5354 auto *SI = 5355 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5356 Align Alignment = SI->getAlign(); 5357 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5358 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5359 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5360 InstructionCost VecStCost = TTI->getMemoryOpCost( 5361 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5362 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5363 return CommonCost + VecStCost - ScalarStCost; 5364 } 5365 case Instruction::Call: { 5366 CallInst *CI = cast<CallInst>(VL0); 5367 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5368 5369 // Calculate the cost of the scalar and vector calls. 5370 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5371 InstructionCost ScalarEltCost = 5372 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5373 if (NeedToShuffleReuses) { 5374 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5375 } 5376 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5377 5378 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5379 InstructionCost VecCallCost = 5380 std::min(VecCallCosts.first, VecCallCosts.second); 5381 5382 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5383 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5384 << " for " << *CI << "\n"); 5385 5386 return CommonCost + VecCallCost - ScalarCallCost; 5387 } 5388 case Instruction::ShuffleVector: { 5389 assert(E->isAltShuffle() && 5390 ((Instruction::isBinaryOp(E->getOpcode()) && 5391 Instruction::isBinaryOp(E->getAltOpcode())) || 5392 (Instruction::isCast(E->getOpcode()) && 5393 Instruction::isCast(E->getAltOpcode())) || 5394 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5395 "Invalid Shuffle Vector Operand"); 5396 InstructionCost ScalarCost = 0; 5397 if (NeedToShuffleReuses) { 5398 for (unsigned Idx : E->ReuseShuffleIndices) { 5399 Instruction *I = cast<Instruction>(VL[Idx]); 5400 CommonCost -= TTI->getInstructionCost(I, CostKind); 5401 } 5402 for (Value *V : VL) { 5403 Instruction *I = cast<Instruction>(V); 5404 CommonCost += TTI->getInstructionCost(I, CostKind); 5405 } 5406 } 5407 for (Value *V : VL) { 5408 Instruction *I = cast<Instruction>(V); 5409 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5410 ScalarCost += TTI->getInstructionCost(I, CostKind); 5411 } 5412 // VecCost is equal to sum of the cost of creating 2 vectors 5413 // and the cost of creating shuffle. 5414 InstructionCost VecCost = 0; 5415 // Try to find the previous shuffle node with the same operands and same 5416 // main/alternate ops. 5417 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5418 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5419 if (TE.get() == E) 5420 break; 5421 if (TE->isAltShuffle() && 5422 ((TE->getOpcode() == E->getOpcode() && 5423 TE->getAltOpcode() == E->getAltOpcode()) || 5424 (TE->getOpcode() == E->getAltOpcode() && 5425 TE->getAltOpcode() == E->getOpcode())) && 5426 TE->hasEqualOperands(*E)) 5427 return true; 5428 } 5429 return false; 5430 }; 5431 if (TryFindNodeWithEqualOperands()) { 5432 LLVM_DEBUG({ 5433 dbgs() << "SLP: diamond match for alternate node found.\n"; 5434 E->dump(); 5435 }); 5436 // No need to add new vector costs here since we're going to reuse 5437 // same main/alternate vector ops, just do different shuffling. 5438 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5439 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5440 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5441 CostKind); 5442 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5443 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5444 Builder.getInt1Ty(), 5445 CI0->getPredicate(), CostKind, VL0); 5446 VecCost += TTI->getCmpSelInstrCost( 5447 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5448 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5449 E->getAltOp()); 5450 } else { 5451 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5452 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5453 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5454 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5455 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5456 TTI::CastContextHint::None, CostKind); 5457 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5458 TTI::CastContextHint::None, CostKind); 5459 } 5460 5461 SmallVector<int> Mask; 5462 buildSuffleEntryMask( 5463 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5464 [E](Instruction *I) { 5465 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5466 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5467 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5468 auto *CI = cast<CmpInst>(I); 5469 CmpInst::Predicate P0 = CI0->getPredicate(); 5470 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5471 CmpInst::Predicate AltP0Swapped = 5472 CmpInst::getSwappedPredicate(AltP0); 5473 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5474 CmpInst::Predicate CurrentPredSwapped = 5475 CmpInst::getSwappedPredicate(CurrentPred); 5476 if (P0 == AltP0 || P0 == AltP0Swapped) { 5477 // Alternate cmps have same/swapped predicate as main cmps but 5478 // different order of compatible operands. 5479 return !( 5480 (P0 == CurrentPred && 5481 areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5482 I->getOperand(0), I->getOperand(1))) || 5483 (P0 == CurrentPredSwapped && 5484 areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5485 I->getOperand(1), I->getOperand(0)))); 5486 } 5487 return CurrentPred != P0 && CurrentPredSwapped != P0; 5488 } 5489 return I->getOpcode() == E->getAltOpcode(); 5490 }, 5491 Mask); 5492 CommonCost = 5493 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5494 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5495 return CommonCost + VecCost - ScalarCost; 5496 } 5497 default: 5498 llvm_unreachable("Unknown instruction"); 5499 } 5500 } 5501 5502 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5503 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5504 << VectorizableTree.size() << " is fully vectorizable .\n"); 5505 5506 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5507 SmallVector<int> Mask; 5508 return TE->State == TreeEntry::NeedToGather && 5509 !any_of(TE->Scalars, 5510 [this](Value *V) { return EphValues.contains(V); }) && 5511 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5512 TE->Scalars.size() < Limit || 5513 ((TE->getOpcode() == Instruction::ExtractElement || 5514 all_of(TE->Scalars, 5515 [](Value *V) { 5516 return isa<ExtractElementInst, UndefValue>(V); 5517 })) && 5518 isFixedVectorShuffle(TE->Scalars, Mask)) || 5519 (TE->State == TreeEntry::NeedToGather && 5520 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5521 }; 5522 5523 // We only handle trees of heights 1 and 2. 5524 if (VectorizableTree.size() == 1 && 5525 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5526 (ForReduction && 5527 AreVectorizableGathers(VectorizableTree[0].get(), 5528 VectorizableTree[0]->Scalars.size()) && 5529 VectorizableTree[0]->getVectorFactor() > 2))) 5530 return true; 5531 5532 if (VectorizableTree.size() != 2) 5533 return false; 5534 5535 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5536 // with the second gather nodes if they have less scalar operands rather than 5537 // the initial tree element (may be profitable to shuffle the second gather) 5538 // or they are extractelements, which form shuffle. 5539 SmallVector<int> Mask; 5540 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5541 AreVectorizableGathers(VectorizableTree[1].get(), 5542 VectorizableTree[0]->Scalars.size())) 5543 return true; 5544 5545 // Gathering cost would be too much for tiny trees. 5546 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5547 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5548 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5549 return false; 5550 5551 return true; 5552 } 5553 5554 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5555 TargetTransformInfo *TTI, 5556 bool MustMatchOrInst) { 5557 // Look past the root to find a source value. Arbitrarily follow the 5558 // path through operand 0 of any 'or'. Also, peek through optional 5559 // shift-left-by-multiple-of-8-bits. 5560 Value *ZextLoad = Root; 5561 const APInt *ShAmtC; 5562 bool FoundOr = false; 5563 while (!isa<ConstantExpr>(ZextLoad) && 5564 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5565 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5566 ShAmtC->urem(8) == 0))) { 5567 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5568 ZextLoad = BinOp->getOperand(0); 5569 if (BinOp->getOpcode() == Instruction::Or) 5570 FoundOr = true; 5571 } 5572 // Check if the input is an extended load of the required or/shift expression. 5573 Value *Load; 5574 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5575 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5576 return false; 5577 5578 // Require that the total load bit width is a legal integer type. 5579 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5580 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5581 Type *SrcTy = Load->getType(); 5582 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5583 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5584 return false; 5585 5586 // Everything matched - assume that we can fold the whole sequence using 5587 // load combining. 5588 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5589 << *(cast<Instruction>(Root)) << "\n"); 5590 5591 return true; 5592 } 5593 5594 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5595 if (RdxKind != RecurKind::Or) 5596 return false; 5597 5598 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5599 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5600 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5601 /* MatchOr */ false); 5602 } 5603 5604 bool BoUpSLP::isLoadCombineCandidate() const { 5605 // Peek through a final sequence of stores and check if all operations are 5606 // likely to be load-combined. 5607 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5608 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5609 Value *X; 5610 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5611 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5612 return false; 5613 } 5614 return true; 5615 } 5616 5617 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5618 // No need to vectorize inserts of gathered values. 5619 if (VectorizableTree.size() == 2 && 5620 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5621 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5622 return true; 5623 5624 // We can vectorize the tree if its size is greater than or equal to the 5625 // minimum size specified by the MinTreeSize command line option. 5626 if (VectorizableTree.size() >= MinTreeSize) 5627 return false; 5628 5629 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5630 // can vectorize it if we can prove it fully vectorizable. 5631 if (isFullyVectorizableTinyTree(ForReduction)) 5632 return false; 5633 5634 assert(VectorizableTree.empty() 5635 ? ExternalUses.empty() 5636 : true && "We shouldn't have any external users"); 5637 5638 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5639 // vectorizable. 5640 return true; 5641 } 5642 5643 InstructionCost BoUpSLP::getSpillCost() const { 5644 // Walk from the bottom of the tree to the top, tracking which values are 5645 // live. When we see a call instruction that is not part of our tree, 5646 // query TTI to see if there is a cost to keeping values live over it 5647 // (for example, if spills and fills are required). 5648 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5649 InstructionCost Cost = 0; 5650 5651 SmallPtrSet<Instruction*, 4> LiveValues; 5652 Instruction *PrevInst = nullptr; 5653 5654 // The entries in VectorizableTree are not necessarily ordered by their 5655 // position in basic blocks. Collect them and order them by dominance so later 5656 // instructions are guaranteed to be visited first. For instructions in 5657 // different basic blocks, we only scan to the beginning of the block, so 5658 // their order does not matter, as long as all instructions in a basic block 5659 // are grouped together. Using dominance ensures a deterministic order. 5660 SmallVector<Instruction *, 16> OrderedScalars; 5661 for (const auto &TEPtr : VectorizableTree) { 5662 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5663 if (!Inst) 5664 continue; 5665 OrderedScalars.push_back(Inst); 5666 } 5667 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5668 auto *NodeA = DT->getNode(A->getParent()); 5669 auto *NodeB = DT->getNode(B->getParent()); 5670 assert(NodeA && "Should only process reachable instructions"); 5671 assert(NodeB && "Should only process reachable instructions"); 5672 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5673 "Different nodes should have different DFS numbers"); 5674 if (NodeA != NodeB) 5675 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5676 return B->comesBefore(A); 5677 }); 5678 5679 for (Instruction *Inst : OrderedScalars) { 5680 if (!PrevInst) { 5681 PrevInst = Inst; 5682 continue; 5683 } 5684 5685 // Update LiveValues. 5686 LiveValues.erase(PrevInst); 5687 for (auto &J : PrevInst->operands()) { 5688 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5689 LiveValues.insert(cast<Instruction>(&*J)); 5690 } 5691 5692 LLVM_DEBUG({ 5693 dbgs() << "SLP: #LV: " << LiveValues.size(); 5694 for (auto *X : LiveValues) 5695 dbgs() << " " << X->getName(); 5696 dbgs() << ", Looking at "; 5697 Inst->dump(); 5698 }); 5699 5700 // Now find the sequence of instructions between PrevInst and Inst. 5701 unsigned NumCalls = 0; 5702 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5703 PrevInstIt = 5704 PrevInst->getIterator().getReverse(); 5705 while (InstIt != PrevInstIt) { 5706 if (PrevInstIt == PrevInst->getParent()->rend()) { 5707 PrevInstIt = Inst->getParent()->rbegin(); 5708 continue; 5709 } 5710 5711 // Debug information does not impact spill cost. 5712 if ((isa<CallInst>(&*PrevInstIt) && 5713 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5714 &*PrevInstIt != PrevInst) 5715 NumCalls++; 5716 5717 ++PrevInstIt; 5718 } 5719 5720 if (NumCalls) { 5721 SmallVector<Type*, 4> V; 5722 for (auto *II : LiveValues) { 5723 auto *ScalarTy = II->getType(); 5724 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5725 ScalarTy = VectorTy->getElementType(); 5726 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5727 } 5728 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5729 } 5730 5731 PrevInst = Inst; 5732 } 5733 5734 return Cost; 5735 } 5736 5737 /// Check if two insertelement instructions are from the same buildvector. 5738 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5739 InsertElementInst *V) { 5740 // Instructions must be from the same basic blocks. 5741 if (VU->getParent() != V->getParent()) 5742 return false; 5743 // Checks if 2 insertelements are from the same buildvector. 5744 if (VU->getType() != V->getType()) 5745 return false; 5746 // Multiple used inserts are separate nodes. 5747 if (!VU->hasOneUse() && !V->hasOneUse()) 5748 return false; 5749 auto *IE1 = VU; 5750 auto *IE2 = V; 5751 // Go through the vector operand of insertelement instructions trying to find 5752 // either VU as the original vector for IE2 or V as the original vector for 5753 // IE1. 5754 do { 5755 if (IE2 == VU || IE1 == V) 5756 return true; 5757 if (IE1) { 5758 if (IE1 != VU && !IE1->hasOneUse()) 5759 IE1 = nullptr; 5760 else 5761 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5762 } 5763 if (IE2) { 5764 if (IE2 != V && !IE2->hasOneUse()) 5765 IE2 = nullptr; 5766 else 5767 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5768 } 5769 } while (IE1 || IE2); 5770 return false; 5771 } 5772 5773 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5774 InstructionCost Cost = 0; 5775 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5776 << VectorizableTree.size() << ".\n"); 5777 5778 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5779 5780 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5781 TreeEntry &TE = *VectorizableTree[I].get(); 5782 5783 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5784 Cost += C; 5785 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5786 << " for bundle that starts with " << *TE.Scalars[0] 5787 << ".\n" 5788 << "SLP: Current total cost = " << Cost << "\n"); 5789 } 5790 5791 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5792 InstructionCost ExtractCost = 0; 5793 SmallVector<unsigned> VF; 5794 SmallVector<SmallVector<int>> ShuffleMask; 5795 SmallVector<Value *> FirstUsers; 5796 SmallVector<APInt> DemandedElts; 5797 for (ExternalUser &EU : ExternalUses) { 5798 // We only add extract cost once for the same scalar. 5799 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5800 !ExtractCostCalculated.insert(EU.Scalar).second) 5801 continue; 5802 5803 // Uses by ephemeral values are free (because the ephemeral value will be 5804 // removed prior to code generation, and so the extraction will be 5805 // removed as well). 5806 if (EphValues.count(EU.User)) 5807 continue; 5808 5809 // No extract cost for vector "scalar" 5810 if (isa<FixedVectorType>(EU.Scalar->getType())) 5811 continue; 5812 5813 // Already counted the cost for external uses when tried to adjust the cost 5814 // for extractelements, no need to add it again. 5815 if (isa<ExtractElementInst>(EU.Scalar)) 5816 continue; 5817 5818 // If found user is an insertelement, do not calculate extract cost but try 5819 // to detect it as a final shuffled/identity match. 5820 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5821 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5822 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5823 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5824 continue; 5825 auto *It = find_if(FirstUsers, [VU](Value *V) { 5826 return areTwoInsertFromSameBuildVector(VU, 5827 cast<InsertElementInst>(V)); 5828 }); 5829 int VecId = -1; 5830 if (It == FirstUsers.end()) { 5831 VF.push_back(FTy->getNumElements()); 5832 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5833 // Find the insertvector, vectorized in tree, if any. 5834 Value *Base = VU; 5835 while (isa<InsertElementInst>(Base)) { 5836 // Build the mask for the vectorized insertelement instructions. 5837 if (const TreeEntry *E = getTreeEntry(Base)) { 5838 VU = cast<InsertElementInst>(Base); 5839 do { 5840 int Idx = E->findLaneForValue(Base); 5841 ShuffleMask.back()[Idx] = Idx; 5842 Base = cast<InsertElementInst>(Base)->getOperand(0); 5843 } while (E == getTreeEntry(Base)); 5844 break; 5845 } 5846 Base = cast<InsertElementInst>(Base)->getOperand(0); 5847 } 5848 FirstUsers.push_back(VU); 5849 DemandedElts.push_back(APInt::getZero(VF.back())); 5850 VecId = FirstUsers.size() - 1; 5851 } else { 5852 VecId = std::distance(FirstUsers.begin(), It); 5853 } 5854 int Idx = *InsertIdx; 5855 ShuffleMask[VecId][Idx] = EU.Lane; 5856 DemandedElts[VecId].setBit(Idx); 5857 continue; 5858 } 5859 } 5860 5861 // If we plan to rewrite the tree in a smaller type, we will need to sign 5862 // extend the extracted value back to the original type. Here, we account 5863 // for the extract and the added cost of the sign extend if needed. 5864 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5865 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5866 if (MinBWs.count(ScalarRoot)) { 5867 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5868 auto Extend = 5869 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5870 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5871 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5872 VecTy, EU.Lane); 5873 } else { 5874 ExtractCost += 5875 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5876 } 5877 } 5878 5879 InstructionCost SpillCost = getSpillCost(); 5880 Cost += SpillCost + ExtractCost; 5881 if (FirstUsers.size() == 1) { 5882 int Limit = ShuffleMask.front().size() * 2; 5883 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5884 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5885 InstructionCost C = TTI->getShuffleCost( 5886 TTI::SK_PermuteSingleSrc, 5887 cast<FixedVectorType>(FirstUsers.front()->getType()), 5888 ShuffleMask.front()); 5889 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5890 << " for final shuffle of insertelement external users " 5891 << *VectorizableTree.front()->Scalars.front() << ".\n" 5892 << "SLP: Current total cost = " << Cost << "\n"); 5893 Cost += C; 5894 } 5895 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5896 cast<FixedVectorType>(FirstUsers.front()->getType()), 5897 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5898 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5899 << " for insertelements gather.\n" 5900 << "SLP: Current total cost = " << Cost << "\n"); 5901 Cost -= InsertCost; 5902 } else if (FirstUsers.size() >= 2) { 5903 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5904 // Combined masks of the first 2 vectors. 5905 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5906 copy(ShuffleMask.front(), CombinedMask.begin()); 5907 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5908 auto *VecTy = FixedVectorType::get( 5909 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5910 MaxVF); 5911 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5912 if (ShuffleMask[1][I] != UndefMaskElem) { 5913 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5914 CombinedDemandedElts.setBit(I); 5915 } 5916 } 5917 InstructionCost C = 5918 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5919 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5920 << " for final shuffle of vector node and external " 5921 "insertelement users " 5922 << *VectorizableTree.front()->Scalars.front() << ".\n" 5923 << "SLP: Current total cost = " << Cost << "\n"); 5924 Cost += C; 5925 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5926 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5927 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5928 << " for insertelements gather.\n" 5929 << "SLP: Current total cost = " << Cost << "\n"); 5930 Cost -= InsertCost; 5931 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5932 // Other elements - permutation of 2 vectors (the initial one and the 5933 // next Ith incoming vector). 5934 unsigned VF = ShuffleMask[I].size(); 5935 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5936 int Mask = ShuffleMask[I][Idx]; 5937 if (Mask != UndefMaskElem) 5938 CombinedMask[Idx] = MaxVF + Mask; 5939 else if (CombinedMask[Idx] != UndefMaskElem) 5940 CombinedMask[Idx] = Idx; 5941 } 5942 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5943 if (CombinedMask[Idx] != UndefMaskElem) 5944 CombinedMask[Idx] = Idx; 5945 InstructionCost C = 5946 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5947 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5948 << " for final shuffle of vector node and external " 5949 "insertelement users " 5950 << *VectorizableTree.front()->Scalars.front() << ".\n" 5951 << "SLP: Current total cost = " << Cost << "\n"); 5952 Cost += C; 5953 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5954 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5955 /*Insert*/ true, /*Extract*/ false); 5956 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5957 << " for insertelements gather.\n" 5958 << "SLP: Current total cost = " << Cost << "\n"); 5959 Cost -= InsertCost; 5960 } 5961 } 5962 5963 #ifndef NDEBUG 5964 SmallString<256> Str; 5965 { 5966 raw_svector_ostream OS(Str); 5967 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5968 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5969 << "SLP: Total Cost = " << Cost << ".\n"; 5970 } 5971 LLVM_DEBUG(dbgs() << Str); 5972 if (ViewSLPTree) 5973 ViewGraph(this, "SLP" + F->getName(), false, Str); 5974 #endif 5975 5976 return Cost; 5977 } 5978 5979 Optional<TargetTransformInfo::ShuffleKind> 5980 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5981 SmallVectorImpl<const TreeEntry *> &Entries) { 5982 // TODO: currently checking only for Scalars in the tree entry, need to count 5983 // reused elements too for better cost estimation. 5984 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5985 Entries.clear(); 5986 // Build a lists of values to tree entries. 5987 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5988 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5989 if (EntryPtr.get() == TE) 5990 break; 5991 if (EntryPtr->State != TreeEntry::NeedToGather) 5992 continue; 5993 for (Value *V : EntryPtr->Scalars) 5994 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5995 } 5996 // Find all tree entries used by the gathered values. If no common entries 5997 // found - not a shuffle. 5998 // Here we build a set of tree nodes for each gathered value and trying to 5999 // find the intersection between these sets. If we have at least one common 6000 // tree node for each gathered value - we have just a permutation of the 6001 // single vector. If we have 2 different sets, we're in situation where we 6002 // have a permutation of 2 input vectors. 6003 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6004 DenseMap<Value *, int> UsedValuesEntry; 6005 for (Value *V : TE->Scalars) { 6006 if (isa<UndefValue>(V)) 6007 continue; 6008 // Build a list of tree entries where V is used. 6009 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6010 auto It = ValueToTEs.find(V); 6011 if (It != ValueToTEs.end()) 6012 VToTEs = It->second; 6013 if (const TreeEntry *VTE = getTreeEntry(V)) 6014 VToTEs.insert(VTE); 6015 if (VToTEs.empty()) 6016 return None; 6017 if (UsedTEs.empty()) { 6018 // The first iteration, just insert the list of nodes to vector. 6019 UsedTEs.push_back(VToTEs); 6020 } else { 6021 // Need to check if there are any previously used tree nodes which use V. 6022 // If there are no such nodes, consider that we have another one input 6023 // vector. 6024 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6025 unsigned Idx = 0; 6026 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6027 // Do we have a non-empty intersection of previously listed tree entries 6028 // and tree entries using current V? 6029 set_intersect(VToTEs, Set); 6030 if (!VToTEs.empty()) { 6031 // Yes, write the new subset and continue analysis for the next 6032 // scalar. 6033 Set.swap(VToTEs); 6034 break; 6035 } 6036 VToTEs = SavedVToTEs; 6037 ++Idx; 6038 } 6039 // No non-empty intersection found - need to add a second set of possible 6040 // source vectors. 6041 if (Idx == UsedTEs.size()) { 6042 // If the number of input vectors is greater than 2 - not a permutation, 6043 // fallback to the regular gather. 6044 if (UsedTEs.size() == 2) 6045 return None; 6046 UsedTEs.push_back(SavedVToTEs); 6047 Idx = UsedTEs.size() - 1; 6048 } 6049 UsedValuesEntry.try_emplace(V, Idx); 6050 } 6051 } 6052 6053 unsigned VF = 0; 6054 if (UsedTEs.size() == 1) { 6055 // Try to find the perfect match in another gather node at first. 6056 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6057 return EntryPtr->isSame(TE->Scalars); 6058 }); 6059 if (It != UsedTEs.front().end()) { 6060 Entries.push_back(*It); 6061 std::iota(Mask.begin(), Mask.end(), 0); 6062 return TargetTransformInfo::SK_PermuteSingleSrc; 6063 } 6064 // No perfect match, just shuffle, so choose the first tree node. 6065 Entries.push_back(*UsedTEs.front().begin()); 6066 } else { 6067 // Try to find nodes with the same vector factor. 6068 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6069 DenseMap<int, const TreeEntry *> VFToTE; 6070 for (const TreeEntry *TE : UsedTEs.front()) 6071 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6072 for (const TreeEntry *TE : UsedTEs.back()) { 6073 auto It = VFToTE.find(TE->getVectorFactor()); 6074 if (It != VFToTE.end()) { 6075 VF = It->first; 6076 Entries.push_back(It->second); 6077 Entries.push_back(TE); 6078 break; 6079 } 6080 } 6081 // No 2 source vectors with the same vector factor - give up and do regular 6082 // gather. 6083 if (Entries.empty()) 6084 return None; 6085 } 6086 6087 // Build a shuffle mask for better cost estimation and vector emission. 6088 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6089 Value *V = TE->Scalars[I]; 6090 if (isa<UndefValue>(V)) 6091 continue; 6092 unsigned Idx = UsedValuesEntry.lookup(V); 6093 const TreeEntry *VTE = Entries[Idx]; 6094 int FoundLane = VTE->findLaneForValue(V); 6095 Mask[I] = Idx * VF + FoundLane; 6096 // Extra check required by isSingleSourceMaskImpl function (called by 6097 // ShuffleVectorInst::isSingleSourceMask). 6098 if (Mask[I] >= 2 * E) 6099 return None; 6100 } 6101 switch (Entries.size()) { 6102 case 1: 6103 return TargetTransformInfo::SK_PermuteSingleSrc; 6104 case 2: 6105 return TargetTransformInfo::SK_PermuteTwoSrc; 6106 default: 6107 break; 6108 } 6109 return None; 6110 } 6111 6112 InstructionCost 6113 BoUpSLP::getGatherCost(FixedVectorType *Ty, 6114 const DenseSet<unsigned> &ShuffledIndices, 6115 bool NeedToShuffle) const { 6116 unsigned NumElts = Ty->getNumElements(); 6117 APInt DemandedElts = APInt::getZero(NumElts); 6118 for (unsigned I = 0; I < NumElts; ++I) 6119 if (!ShuffledIndices.count(I)) 6120 DemandedElts.setBit(I); 6121 InstructionCost Cost = 6122 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 6123 /*Extract*/ false); 6124 if (NeedToShuffle) 6125 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6126 return Cost; 6127 } 6128 6129 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6130 // Find the type of the operands in VL. 6131 Type *ScalarTy = VL[0]->getType(); 6132 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6133 ScalarTy = SI->getValueOperand()->getType(); 6134 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6135 bool DuplicateNonConst = false; 6136 // Find the cost of inserting/extracting values from the vector. 6137 // Check if the same elements are inserted several times and count them as 6138 // shuffle candidates. 6139 DenseSet<unsigned> ShuffledElements; 6140 DenseSet<Value *> UniqueElements; 6141 // Iterate in reverse order to consider insert elements with the high cost. 6142 for (unsigned I = VL.size(); I > 0; --I) { 6143 unsigned Idx = I - 1; 6144 // No need to shuffle duplicates for constants. 6145 if (isConstant(VL[Idx])) { 6146 ShuffledElements.insert(Idx); 6147 continue; 6148 } 6149 if (!UniqueElements.insert(VL[Idx]).second) { 6150 DuplicateNonConst = true; 6151 ShuffledElements.insert(Idx); 6152 } 6153 } 6154 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6155 } 6156 6157 // Perform operand reordering on the instructions in VL and return the reordered 6158 // operands in Left and Right. 6159 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6160 SmallVectorImpl<Value *> &Left, 6161 SmallVectorImpl<Value *> &Right, 6162 const DataLayout &DL, 6163 ScalarEvolution &SE, 6164 const BoUpSLP &R) { 6165 if (VL.empty()) 6166 return; 6167 VLOperands Ops(VL, DL, SE, R); 6168 // Reorder the operands in place. 6169 Ops.reorder(); 6170 Left = Ops.getVL(0); 6171 Right = Ops.getVL(1); 6172 } 6173 6174 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6175 // Get the basic block this bundle is in. All instructions in the bundle 6176 // should be in this block. 6177 auto *Front = E->getMainOp(); 6178 auto *BB = Front->getParent(); 6179 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6180 auto *I = cast<Instruction>(V); 6181 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6182 })); 6183 6184 // The last instruction in the bundle in program order. 6185 Instruction *LastInst = nullptr; 6186 6187 // Find the last instruction. The common case should be that BB has been 6188 // scheduled, and the last instruction is VL.back(). So we start with 6189 // VL.back() and iterate over schedule data until we reach the end of the 6190 // bundle. The end of the bundle is marked by null ScheduleData. 6191 if (BlocksSchedules.count(BB)) { 6192 auto *Bundle = 6193 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6194 if (Bundle && Bundle->isPartOfBundle()) 6195 for (; Bundle; Bundle = Bundle->NextInBundle) 6196 if (Bundle->OpValue == Bundle->Inst) 6197 LastInst = Bundle->Inst; 6198 } 6199 6200 // LastInst can still be null at this point if there's either not an entry 6201 // for BB in BlocksSchedules or there's no ScheduleData available for 6202 // VL.back(). This can be the case if buildTree_rec aborts for various 6203 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6204 // size is reached, etc.). ScheduleData is initialized in the scheduling 6205 // "dry-run". 6206 // 6207 // If this happens, we can still find the last instruction by brute force. We 6208 // iterate forwards from Front (inclusive) until we either see all 6209 // instructions in the bundle or reach the end of the block. If Front is the 6210 // last instruction in program order, LastInst will be set to Front, and we 6211 // will visit all the remaining instructions in the block. 6212 // 6213 // One of the reasons we exit early from buildTree_rec is to place an upper 6214 // bound on compile-time. Thus, taking an additional compile-time hit here is 6215 // not ideal. However, this should be exceedingly rare since it requires that 6216 // we both exit early from buildTree_rec and that the bundle be out-of-order 6217 // (causing us to iterate all the way to the end of the block). 6218 if (!LastInst) { 6219 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6220 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6221 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6222 LastInst = &I; 6223 if (Bundle.empty()) 6224 break; 6225 } 6226 } 6227 assert(LastInst && "Failed to find last instruction in bundle"); 6228 6229 // Set the insertion point after the last instruction in the bundle. Set the 6230 // debug location to Front. 6231 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6232 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6233 } 6234 6235 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6236 // List of instructions/lanes from current block and/or the blocks which are 6237 // part of the current loop. These instructions will be inserted at the end to 6238 // make it possible to optimize loops and hoist invariant instructions out of 6239 // the loops body with better chances for success. 6240 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6241 SmallSet<int, 4> PostponedIndices; 6242 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6243 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6244 SmallPtrSet<BasicBlock *, 4> Visited; 6245 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6246 InsertBB = InsertBB->getSinglePredecessor(); 6247 return InsertBB && InsertBB == InstBB; 6248 }; 6249 for (int I = 0, E = VL.size(); I < E; ++I) { 6250 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6251 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6252 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6253 PostponedIndices.insert(I).second) 6254 PostponedInsts.emplace_back(Inst, I); 6255 } 6256 6257 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6258 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6259 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6260 if (!InsElt) 6261 return Vec; 6262 GatherShuffleSeq.insert(InsElt); 6263 CSEBlocks.insert(InsElt->getParent()); 6264 // Add to our 'need-to-extract' list. 6265 if (TreeEntry *Entry = getTreeEntry(V)) { 6266 // Find which lane we need to extract. 6267 unsigned FoundLane = Entry->findLaneForValue(V); 6268 ExternalUses.emplace_back(V, InsElt, FoundLane); 6269 } 6270 return Vec; 6271 }; 6272 Value *Val0 = 6273 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6274 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6275 Value *Vec = PoisonValue::get(VecTy); 6276 SmallVector<int> NonConsts; 6277 // Insert constant values at first. 6278 for (int I = 0, E = VL.size(); I < E; ++I) { 6279 if (PostponedIndices.contains(I)) 6280 continue; 6281 if (!isConstant(VL[I])) { 6282 NonConsts.push_back(I); 6283 continue; 6284 } 6285 Vec = CreateInsertElement(Vec, VL[I], I); 6286 } 6287 // Insert non-constant values. 6288 for (int I : NonConsts) 6289 Vec = CreateInsertElement(Vec, VL[I], I); 6290 // Append instructions, which are/may be part of the loop, in the end to make 6291 // it possible to hoist non-loop-based instructions. 6292 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6293 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6294 6295 return Vec; 6296 } 6297 6298 namespace { 6299 /// Merges shuffle masks and emits final shuffle instruction, if required. 6300 class ShuffleInstructionBuilder { 6301 IRBuilderBase &Builder; 6302 const unsigned VF = 0; 6303 bool IsFinalized = false; 6304 SmallVector<int, 4> Mask; 6305 /// Holds all of the instructions that we gathered. 6306 SetVector<Instruction *> &GatherShuffleSeq; 6307 /// A list of blocks that we are going to CSE. 6308 SetVector<BasicBlock *> &CSEBlocks; 6309 6310 public: 6311 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6312 SetVector<Instruction *> &GatherShuffleSeq, 6313 SetVector<BasicBlock *> &CSEBlocks) 6314 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6315 CSEBlocks(CSEBlocks) {} 6316 6317 /// Adds a mask, inverting it before applying. 6318 void addInversedMask(ArrayRef<unsigned> SubMask) { 6319 if (SubMask.empty()) 6320 return; 6321 SmallVector<int, 4> NewMask; 6322 inversePermutation(SubMask, NewMask); 6323 addMask(NewMask); 6324 } 6325 6326 /// Functions adds masks, merging them into single one. 6327 void addMask(ArrayRef<unsigned> SubMask) { 6328 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6329 addMask(NewMask); 6330 } 6331 6332 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6333 6334 Value *finalize(Value *V) { 6335 IsFinalized = true; 6336 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6337 if (VF == ValueVF && Mask.empty()) 6338 return V; 6339 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6340 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6341 addMask(NormalizedMask); 6342 6343 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6344 return V; 6345 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6346 if (auto *I = dyn_cast<Instruction>(Vec)) { 6347 GatherShuffleSeq.insert(I); 6348 CSEBlocks.insert(I->getParent()); 6349 } 6350 return Vec; 6351 } 6352 6353 ~ShuffleInstructionBuilder() { 6354 assert((IsFinalized || Mask.empty()) && 6355 "Shuffle construction must be finalized."); 6356 } 6357 }; 6358 } // namespace 6359 6360 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6361 unsigned VF = VL.size(); 6362 InstructionsState S = getSameOpcode(VL); 6363 if (S.getOpcode()) { 6364 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6365 if (E->isSame(VL)) { 6366 Value *V = vectorizeTree(E); 6367 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6368 if (!E->ReuseShuffleIndices.empty()) { 6369 // Reshuffle to get only unique values. 6370 // If some of the scalars are duplicated in the vectorization tree 6371 // entry, we do not vectorize them but instead generate a mask for 6372 // the reuses. But if there are several users of the same entry, 6373 // they may have different vectorization factors. This is especially 6374 // important for PHI nodes. In this case, we need to adapt the 6375 // resulting instruction for the user vectorization factor and have 6376 // to reshuffle it again to take only unique elements of the vector. 6377 // Without this code the function incorrectly returns reduced vector 6378 // instruction with the same elements, not with the unique ones. 6379 6380 // block: 6381 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6382 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6383 // ... (use %2) 6384 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6385 // br %block 6386 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6387 SmallSet<int, 4> UsedIdxs; 6388 int Pos = 0; 6389 int Sz = VL.size(); 6390 for (int Idx : E->ReuseShuffleIndices) { 6391 if (Idx != Sz && Idx != UndefMaskElem && 6392 UsedIdxs.insert(Idx).second) 6393 UniqueIdxs[Idx] = Pos; 6394 ++Pos; 6395 } 6396 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6397 "less than original vector size."); 6398 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6399 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6400 } else { 6401 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6402 "Expected vectorization factor less " 6403 "than original vector size."); 6404 SmallVector<int> UniformMask(VF, 0); 6405 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6406 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6407 } 6408 if (auto *I = dyn_cast<Instruction>(V)) { 6409 GatherShuffleSeq.insert(I); 6410 CSEBlocks.insert(I->getParent()); 6411 } 6412 } 6413 return V; 6414 } 6415 } 6416 6417 // Check that every instruction appears once in this bundle. 6418 SmallVector<int> ReuseShuffleIndicies; 6419 SmallVector<Value *> UniqueValues; 6420 if (VL.size() > 2) { 6421 DenseMap<Value *, unsigned> UniquePositions; 6422 unsigned NumValues = 6423 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6424 return !isa<UndefValue>(V); 6425 }).base()); 6426 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6427 int UniqueVals = 0; 6428 for (Value *V : VL.drop_back(VL.size() - VF)) { 6429 if (isa<UndefValue>(V)) { 6430 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6431 continue; 6432 } 6433 if (isConstant(V)) { 6434 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6435 UniqueValues.emplace_back(V); 6436 continue; 6437 } 6438 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6439 ReuseShuffleIndicies.emplace_back(Res.first->second); 6440 if (Res.second) { 6441 UniqueValues.emplace_back(V); 6442 ++UniqueVals; 6443 } 6444 } 6445 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6446 // Emit pure splat vector. 6447 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6448 UndefMaskElem); 6449 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6450 ReuseShuffleIndicies.clear(); 6451 UniqueValues.clear(); 6452 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6453 } 6454 UniqueValues.append(VF - UniqueValues.size(), 6455 PoisonValue::get(VL[0]->getType())); 6456 VL = UniqueValues; 6457 } 6458 6459 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6460 CSEBlocks); 6461 Value *Vec = gather(VL); 6462 if (!ReuseShuffleIndicies.empty()) { 6463 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6464 Vec = ShuffleBuilder.finalize(Vec); 6465 } 6466 return Vec; 6467 } 6468 6469 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6470 IRBuilder<>::InsertPointGuard Guard(Builder); 6471 6472 if (E->VectorizedValue) { 6473 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6474 return E->VectorizedValue; 6475 } 6476 6477 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6478 unsigned VF = E->getVectorFactor(); 6479 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6480 CSEBlocks); 6481 if (E->State == TreeEntry::NeedToGather) { 6482 if (E->getMainOp()) 6483 setInsertPointAfterBundle(E); 6484 Value *Vec; 6485 SmallVector<int> Mask; 6486 SmallVector<const TreeEntry *> Entries; 6487 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6488 isGatherShuffledEntry(E, Mask, Entries); 6489 if (Shuffle.hasValue()) { 6490 assert((Entries.size() == 1 || Entries.size() == 2) && 6491 "Expected shuffle of 1 or 2 entries."); 6492 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6493 Entries.back()->VectorizedValue, Mask); 6494 if (auto *I = dyn_cast<Instruction>(Vec)) { 6495 GatherShuffleSeq.insert(I); 6496 CSEBlocks.insert(I->getParent()); 6497 } 6498 } else { 6499 Vec = gather(E->Scalars); 6500 } 6501 if (NeedToShuffleReuses) { 6502 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6503 Vec = ShuffleBuilder.finalize(Vec); 6504 } 6505 E->VectorizedValue = Vec; 6506 return Vec; 6507 } 6508 6509 assert((E->State == TreeEntry::Vectorize || 6510 E->State == TreeEntry::ScatterVectorize) && 6511 "Unhandled state"); 6512 unsigned ShuffleOrOp = 6513 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6514 Instruction *VL0 = E->getMainOp(); 6515 Type *ScalarTy = VL0->getType(); 6516 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6517 ScalarTy = Store->getValueOperand()->getType(); 6518 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6519 ScalarTy = IE->getOperand(1)->getType(); 6520 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6521 switch (ShuffleOrOp) { 6522 case Instruction::PHI: { 6523 assert( 6524 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6525 "PHI reordering is free."); 6526 auto *PH = cast<PHINode>(VL0); 6527 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6528 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6529 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6530 Value *V = NewPhi; 6531 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6532 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6533 V = ShuffleBuilder.finalize(V); 6534 6535 E->VectorizedValue = V; 6536 6537 // PHINodes may have multiple entries from the same block. We want to 6538 // visit every block once. 6539 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6540 6541 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6542 ValueList Operands; 6543 BasicBlock *IBB = PH->getIncomingBlock(i); 6544 6545 if (!VisitedBBs.insert(IBB).second) { 6546 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6547 continue; 6548 } 6549 6550 Builder.SetInsertPoint(IBB->getTerminator()); 6551 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6552 Value *Vec = vectorizeTree(E->getOperand(i)); 6553 NewPhi->addIncoming(Vec, IBB); 6554 } 6555 6556 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6557 "Invalid number of incoming values"); 6558 return V; 6559 } 6560 6561 case Instruction::ExtractElement: { 6562 Value *V = E->getSingleOperand(0); 6563 Builder.SetInsertPoint(VL0); 6564 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6565 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6566 V = ShuffleBuilder.finalize(V); 6567 E->VectorizedValue = V; 6568 return V; 6569 } 6570 case Instruction::ExtractValue: { 6571 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6572 Builder.SetInsertPoint(LI); 6573 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6574 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6575 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6576 Value *NewV = propagateMetadata(V, E->Scalars); 6577 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6578 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6579 NewV = ShuffleBuilder.finalize(NewV); 6580 E->VectorizedValue = NewV; 6581 return NewV; 6582 } 6583 case Instruction::InsertElement: { 6584 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6585 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6586 Value *V = vectorizeTree(E->getOperand(1)); 6587 6588 // Create InsertVector shuffle if necessary 6589 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6590 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6591 })); 6592 const unsigned NumElts = 6593 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6594 const unsigned NumScalars = E->Scalars.size(); 6595 6596 unsigned Offset = *getInsertIndex(VL0, 0); 6597 assert(Offset < NumElts && "Failed to find vector index offset"); 6598 6599 // Create shuffle to resize vector 6600 SmallVector<int> Mask; 6601 if (!E->ReorderIndices.empty()) { 6602 inversePermutation(E->ReorderIndices, Mask); 6603 Mask.append(NumElts - NumScalars, UndefMaskElem); 6604 } else { 6605 Mask.assign(NumElts, UndefMaskElem); 6606 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6607 } 6608 // Create InsertVector shuffle if necessary 6609 bool IsIdentity = true; 6610 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6611 Mask.swap(PrevMask); 6612 for (unsigned I = 0; I < NumScalars; ++I) { 6613 Value *Scalar = E->Scalars[PrevMask[I]]; 6614 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6615 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6616 continue; 6617 IsIdentity &= *InsertIdx - Offset == I; 6618 Mask[*InsertIdx - Offset] = I; 6619 } 6620 if (!IsIdentity || NumElts != NumScalars) { 6621 V = Builder.CreateShuffleVector(V, Mask); 6622 if (auto *I = dyn_cast<Instruction>(V)) { 6623 GatherShuffleSeq.insert(I); 6624 CSEBlocks.insert(I->getParent()); 6625 } 6626 } 6627 6628 if ((!IsIdentity || Offset != 0 || 6629 !isUndefVector(FirstInsert->getOperand(0))) && 6630 NumElts != NumScalars) { 6631 SmallVector<int> InsertMask(NumElts); 6632 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6633 for (unsigned I = 0; I < NumElts; I++) { 6634 if (Mask[I] != UndefMaskElem) 6635 InsertMask[Offset + I] = NumElts + I; 6636 } 6637 6638 V = Builder.CreateShuffleVector( 6639 FirstInsert->getOperand(0), V, InsertMask, 6640 cast<Instruction>(E->Scalars.back())->getName()); 6641 if (auto *I = dyn_cast<Instruction>(V)) { 6642 GatherShuffleSeq.insert(I); 6643 CSEBlocks.insert(I->getParent()); 6644 } 6645 } 6646 6647 ++NumVectorInstructions; 6648 E->VectorizedValue = V; 6649 return V; 6650 } 6651 case Instruction::ZExt: 6652 case Instruction::SExt: 6653 case Instruction::FPToUI: 6654 case Instruction::FPToSI: 6655 case Instruction::FPExt: 6656 case Instruction::PtrToInt: 6657 case Instruction::IntToPtr: 6658 case Instruction::SIToFP: 6659 case Instruction::UIToFP: 6660 case Instruction::Trunc: 6661 case Instruction::FPTrunc: 6662 case Instruction::BitCast: { 6663 setInsertPointAfterBundle(E); 6664 6665 Value *InVec = vectorizeTree(E->getOperand(0)); 6666 6667 if (E->VectorizedValue) { 6668 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6669 return E->VectorizedValue; 6670 } 6671 6672 auto *CI = cast<CastInst>(VL0); 6673 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6674 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6675 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6676 V = ShuffleBuilder.finalize(V); 6677 6678 E->VectorizedValue = V; 6679 ++NumVectorInstructions; 6680 return V; 6681 } 6682 case Instruction::FCmp: 6683 case Instruction::ICmp: { 6684 setInsertPointAfterBundle(E); 6685 6686 Value *L = vectorizeTree(E->getOperand(0)); 6687 Value *R = vectorizeTree(E->getOperand(1)); 6688 6689 if (E->VectorizedValue) { 6690 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6691 return E->VectorizedValue; 6692 } 6693 6694 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6695 Value *V = Builder.CreateCmp(P0, L, R); 6696 propagateIRFlags(V, E->Scalars, VL0); 6697 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6698 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6699 V = ShuffleBuilder.finalize(V); 6700 6701 E->VectorizedValue = V; 6702 ++NumVectorInstructions; 6703 return V; 6704 } 6705 case Instruction::Select: { 6706 setInsertPointAfterBundle(E); 6707 6708 Value *Cond = vectorizeTree(E->getOperand(0)); 6709 Value *True = vectorizeTree(E->getOperand(1)); 6710 Value *False = vectorizeTree(E->getOperand(2)); 6711 6712 if (E->VectorizedValue) { 6713 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6714 return E->VectorizedValue; 6715 } 6716 6717 Value *V = Builder.CreateSelect(Cond, True, False); 6718 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6719 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6720 V = ShuffleBuilder.finalize(V); 6721 6722 E->VectorizedValue = V; 6723 ++NumVectorInstructions; 6724 return V; 6725 } 6726 case Instruction::FNeg: { 6727 setInsertPointAfterBundle(E); 6728 6729 Value *Op = vectorizeTree(E->getOperand(0)); 6730 6731 if (E->VectorizedValue) { 6732 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6733 return E->VectorizedValue; 6734 } 6735 6736 Value *V = Builder.CreateUnOp( 6737 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6738 propagateIRFlags(V, E->Scalars, VL0); 6739 if (auto *I = dyn_cast<Instruction>(V)) 6740 V = propagateMetadata(I, E->Scalars); 6741 6742 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6743 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6744 V = ShuffleBuilder.finalize(V); 6745 6746 E->VectorizedValue = V; 6747 ++NumVectorInstructions; 6748 6749 return V; 6750 } 6751 case Instruction::Add: 6752 case Instruction::FAdd: 6753 case Instruction::Sub: 6754 case Instruction::FSub: 6755 case Instruction::Mul: 6756 case Instruction::FMul: 6757 case Instruction::UDiv: 6758 case Instruction::SDiv: 6759 case Instruction::FDiv: 6760 case Instruction::URem: 6761 case Instruction::SRem: 6762 case Instruction::FRem: 6763 case Instruction::Shl: 6764 case Instruction::LShr: 6765 case Instruction::AShr: 6766 case Instruction::And: 6767 case Instruction::Or: 6768 case Instruction::Xor: { 6769 setInsertPointAfterBundle(E); 6770 6771 Value *LHS = vectorizeTree(E->getOperand(0)); 6772 Value *RHS = vectorizeTree(E->getOperand(1)); 6773 6774 if (E->VectorizedValue) { 6775 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6776 return E->VectorizedValue; 6777 } 6778 6779 Value *V = Builder.CreateBinOp( 6780 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6781 RHS); 6782 propagateIRFlags(V, E->Scalars, VL0); 6783 if (auto *I = dyn_cast<Instruction>(V)) 6784 V = propagateMetadata(I, E->Scalars); 6785 6786 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6787 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6788 V = ShuffleBuilder.finalize(V); 6789 6790 E->VectorizedValue = V; 6791 ++NumVectorInstructions; 6792 6793 return V; 6794 } 6795 case Instruction::Load: { 6796 // Loads are inserted at the head of the tree because we don't want to 6797 // sink them all the way down past store instructions. 6798 setInsertPointAfterBundle(E); 6799 6800 LoadInst *LI = cast<LoadInst>(VL0); 6801 Instruction *NewLI; 6802 unsigned AS = LI->getPointerAddressSpace(); 6803 Value *PO = LI->getPointerOperand(); 6804 if (E->State == TreeEntry::Vectorize) { 6805 6806 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6807 6808 // The pointer operand uses an in-tree scalar so we add the new BitCast 6809 // to ExternalUses list to make sure that an extract will be generated 6810 // in the future. 6811 if (TreeEntry *Entry = getTreeEntry(PO)) { 6812 // Find which lane we need to extract. 6813 unsigned FoundLane = Entry->findLaneForValue(PO); 6814 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6815 } 6816 6817 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6818 } else { 6819 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6820 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6821 // Use the minimum alignment of the gathered loads. 6822 Align CommonAlignment = LI->getAlign(); 6823 for (Value *V : E->Scalars) 6824 CommonAlignment = 6825 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6826 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6827 } 6828 Value *V = propagateMetadata(NewLI, E->Scalars); 6829 6830 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6831 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6832 V = ShuffleBuilder.finalize(V); 6833 E->VectorizedValue = V; 6834 ++NumVectorInstructions; 6835 return V; 6836 } 6837 case Instruction::Store: { 6838 auto *SI = cast<StoreInst>(VL0); 6839 unsigned AS = SI->getPointerAddressSpace(); 6840 6841 setInsertPointAfterBundle(E); 6842 6843 Value *VecValue = vectorizeTree(E->getOperand(0)); 6844 ShuffleBuilder.addMask(E->ReorderIndices); 6845 VecValue = ShuffleBuilder.finalize(VecValue); 6846 6847 Value *ScalarPtr = SI->getPointerOperand(); 6848 Value *VecPtr = Builder.CreateBitCast( 6849 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6850 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6851 SI->getAlign()); 6852 6853 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6854 // ExternalUses to make sure that an extract will be generated in the 6855 // future. 6856 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6857 // Find which lane we need to extract. 6858 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6859 ExternalUses.push_back( 6860 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6861 } 6862 6863 Value *V = propagateMetadata(ST, E->Scalars); 6864 6865 E->VectorizedValue = V; 6866 ++NumVectorInstructions; 6867 return V; 6868 } 6869 case Instruction::GetElementPtr: { 6870 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6871 setInsertPointAfterBundle(E); 6872 6873 Value *Op0 = vectorizeTree(E->getOperand(0)); 6874 6875 SmallVector<Value *> OpVecs; 6876 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6877 Value *OpVec = vectorizeTree(E->getOperand(J)); 6878 OpVecs.push_back(OpVec); 6879 } 6880 6881 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6882 if (Instruction *I = dyn_cast<Instruction>(V)) 6883 V = propagateMetadata(I, E->Scalars); 6884 6885 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6886 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6887 V = ShuffleBuilder.finalize(V); 6888 6889 E->VectorizedValue = V; 6890 ++NumVectorInstructions; 6891 6892 return V; 6893 } 6894 case Instruction::Call: { 6895 CallInst *CI = cast<CallInst>(VL0); 6896 setInsertPointAfterBundle(E); 6897 6898 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6899 if (Function *FI = CI->getCalledFunction()) 6900 IID = FI->getIntrinsicID(); 6901 6902 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6903 6904 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6905 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6906 VecCallCosts.first <= VecCallCosts.second; 6907 6908 Value *ScalarArg = nullptr; 6909 std::vector<Value *> OpVecs; 6910 SmallVector<Type *, 2> TysForDecl = 6911 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6912 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6913 ValueList OpVL; 6914 // Some intrinsics have scalar arguments. This argument should not be 6915 // vectorized. 6916 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6917 CallInst *CEI = cast<CallInst>(VL0); 6918 ScalarArg = CEI->getArgOperand(j); 6919 OpVecs.push_back(CEI->getArgOperand(j)); 6920 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6921 TysForDecl.push_back(ScalarArg->getType()); 6922 continue; 6923 } 6924 6925 Value *OpVec = vectorizeTree(E->getOperand(j)); 6926 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6927 OpVecs.push_back(OpVec); 6928 } 6929 6930 Function *CF; 6931 if (!UseIntrinsic) { 6932 VFShape Shape = 6933 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6934 VecTy->getNumElements())), 6935 false /*HasGlobalPred*/); 6936 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6937 } else { 6938 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6939 } 6940 6941 SmallVector<OperandBundleDef, 1> OpBundles; 6942 CI->getOperandBundlesAsDefs(OpBundles); 6943 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6944 6945 // The scalar argument uses an in-tree scalar so we add the new vectorized 6946 // call to ExternalUses list to make sure that an extract will be 6947 // generated in the future. 6948 if (ScalarArg) { 6949 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6950 // Find which lane we need to extract. 6951 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6952 ExternalUses.push_back( 6953 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6954 } 6955 } 6956 6957 propagateIRFlags(V, E->Scalars, VL0); 6958 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6959 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6960 V = ShuffleBuilder.finalize(V); 6961 6962 E->VectorizedValue = V; 6963 ++NumVectorInstructions; 6964 return V; 6965 } 6966 case Instruction::ShuffleVector: { 6967 assert(E->isAltShuffle() && 6968 ((Instruction::isBinaryOp(E->getOpcode()) && 6969 Instruction::isBinaryOp(E->getAltOpcode())) || 6970 (Instruction::isCast(E->getOpcode()) && 6971 Instruction::isCast(E->getAltOpcode())) || 6972 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6973 "Invalid Shuffle Vector Operand"); 6974 6975 Value *LHS = nullptr, *RHS = nullptr; 6976 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 6977 setInsertPointAfterBundle(E); 6978 LHS = vectorizeTree(E->getOperand(0)); 6979 RHS = vectorizeTree(E->getOperand(1)); 6980 } else { 6981 setInsertPointAfterBundle(E); 6982 LHS = vectorizeTree(E->getOperand(0)); 6983 } 6984 6985 if (E->VectorizedValue) { 6986 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6987 return E->VectorizedValue; 6988 } 6989 6990 Value *V0, *V1; 6991 if (Instruction::isBinaryOp(E->getOpcode())) { 6992 V0 = Builder.CreateBinOp( 6993 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6994 V1 = Builder.CreateBinOp( 6995 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6996 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6997 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 6998 auto *AltCI = cast<CmpInst>(E->getAltOp()); 6999 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7000 unsigned AltIdx = 7001 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 7002 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 7003 AltPred = CmpInst::getSwappedPredicate(AltPred); 7004 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7005 } else { 7006 V0 = Builder.CreateCast( 7007 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7008 V1 = Builder.CreateCast( 7009 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7010 } 7011 // Add V0 and V1 to later analysis to try to find and remove matching 7012 // instruction, if any. 7013 for (Value *V : {V0, V1}) { 7014 if (auto *I = dyn_cast<Instruction>(V)) { 7015 GatherShuffleSeq.insert(I); 7016 CSEBlocks.insert(I->getParent()); 7017 } 7018 } 7019 7020 // Create shuffle to take alternate operations from the vector. 7021 // Also, gather up main and alt scalar ops to propagate IR flags to 7022 // each vector operation. 7023 ValueList OpScalars, AltScalars; 7024 SmallVector<int> Mask; 7025 buildSuffleEntryMask( 7026 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7027 [E](Instruction *I) { 7028 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7029 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7030 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7031 auto *CI = cast<CmpInst>(I); 7032 CmpInst::Predicate P0 = CI0->getPredicate(); 7033 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7034 CmpInst::Predicate AltP0Swapped = 7035 CmpInst::getSwappedPredicate(AltP0); 7036 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7037 CmpInst::Predicate CurrentPredSwapped = 7038 CmpInst::getSwappedPredicate(CurrentPred); 7039 if (P0 == AltP0 || P0 == AltP0Swapped) { 7040 // Alternate cmps have same/swapped predicate as main cmps but 7041 // different order of compatible operands. 7042 return !( 7043 (P0 == CurrentPred && 7044 areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 7045 I->getOperand(0), I->getOperand(1))) || 7046 (P0 == CurrentPredSwapped && 7047 areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 7048 I->getOperand(1), I->getOperand(0)))); 7049 } 7050 return CurrentPred != P0 && CurrentPredSwapped != P0; 7051 } 7052 return I->getOpcode() == E->getAltOpcode(); 7053 }, 7054 Mask, &OpScalars, &AltScalars); 7055 7056 propagateIRFlags(V0, OpScalars); 7057 propagateIRFlags(V1, AltScalars); 7058 7059 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7060 if (auto *I = dyn_cast<Instruction>(V)) { 7061 V = propagateMetadata(I, E->Scalars); 7062 GatherShuffleSeq.insert(I); 7063 CSEBlocks.insert(I->getParent()); 7064 } 7065 V = ShuffleBuilder.finalize(V); 7066 7067 E->VectorizedValue = V; 7068 ++NumVectorInstructions; 7069 7070 return V; 7071 } 7072 default: 7073 llvm_unreachable("unknown inst"); 7074 } 7075 return nullptr; 7076 } 7077 7078 Value *BoUpSLP::vectorizeTree() { 7079 ExtraValueToDebugLocsMap ExternallyUsedValues; 7080 return vectorizeTree(ExternallyUsedValues); 7081 } 7082 7083 Value * 7084 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7085 // All blocks must be scheduled before any instructions are inserted. 7086 for (auto &BSIter : BlocksSchedules) { 7087 scheduleBlock(BSIter.second.get()); 7088 } 7089 7090 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7091 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7092 7093 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7094 // vectorized root. InstCombine will then rewrite the entire expression. We 7095 // sign extend the extracted values below. 7096 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7097 if (MinBWs.count(ScalarRoot)) { 7098 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7099 // If current instr is a phi and not the last phi, insert it after the 7100 // last phi node. 7101 if (isa<PHINode>(I)) 7102 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7103 else 7104 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7105 } 7106 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7107 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7108 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7109 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7110 VectorizableTree[0]->VectorizedValue = Trunc; 7111 } 7112 7113 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7114 << " values .\n"); 7115 7116 // Extract all of the elements with the external uses. 7117 for (const auto &ExternalUse : ExternalUses) { 7118 Value *Scalar = ExternalUse.Scalar; 7119 llvm::User *User = ExternalUse.User; 7120 7121 // Skip users that we already RAUW. This happens when one instruction 7122 // has multiple uses of the same value. 7123 if (User && !is_contained(Scalar->users(), User)) 7124 continue; 7125 TreeEntry *E = getTreeEntry(Scalar); 7126 assert(E && "Invalid scalar"); 7127 assert(E->State != TreeEntry::NeedToGather && 7128 "Extracting from a gather list"); 7129 7130 Value *Vec = E->VectorizedValue; 7131 assert(Vec && "Can't find vectorizable value"); 7132 7133 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7134 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7135 if (Scalar->getType() != Vec->getType()) { 7136 Value *Ex; 7137 // "Reuse" the existing extract to improve final codegen. 7138 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7139 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7140 ES->getOperand(1)); 7141 } else { 7142 Ex = Builder.CreateExtractElement(Vec, Lane); 7143 } 7144 // If necessary, sign-extend or zero-extend ScalarRoot 7145 // to the larger type. 7146 if (!MinBWs.count(ScalarRoot)) 7147 return Ex; 7148 if (MinBWs[ScalarRoot].second) 7149 return Builder.CreateSExt(Ex, Scalar->getType()); 7150 return Builder.CreateZExt(Ex, Scalar->getType()); 7151 } 7152 assert(isa<FixedVectorType>(Scalar->getType()) && 7153 isa<InsertElementInst>(Scalar) && 7154 "In-tree scalar of vector type is not insertelement?"); 7155 return Vec; 7156 }; 7157 // If User == nullptr, the Scalar is used as extra arg. Generate 7158 // ExtractElement instruction and update the record for this scalar in 7159 // ExternallyUsedValues. 7160 if (!User) { 7161 assert(ExternallyUsedValues.count(Scalar) && 7162 "Scalar with nullptr as an external user must be registered in " 7163 "ExternallyUsedValues map"); 7164 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7165 Builder.SetInsertPoint(VecI->getParent(), 7166 std::next(VecI->getIterator())); 7167 } else { 7168 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7169 } 7170 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7171 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7172 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7173 auto It = ExternallyUsedValues.find(Scalar); 7174 assert(It != ExternallyUsedValues.end() && 7175 "Externally used scalar is not found in ExternallyUsedValues"); 7176 NewInstLocs.append(It->second); 7177 ExternallyUsedValues.erase(Scalar); 7178 // Required to update internally referenced instructions. 7179 Scalar->replaceAllUsesWith(NewInst); 7180 continue; 7181 } 7182 7183 // Generate extracts for out-of-tree users. 7184 // Find the insertion point for the extractelement lane. 7185 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7186 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7187 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7188 if (PH->getIncomingValue(i) == Scalar) { 7189 Instruction *IncomingTerminator = 7190 PH->getIncomingBlock(i)->getTerminator(); 7191 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7192 Builder.SetInsertPoint(VecI->getParent(), 7193 std::next(VecI->getIterator())); 7194 } else { 7195 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7196 } 7197 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7198 CSEBlocks.insert(PH->getIncomingBlock(i)); 7199 PH->setOperand(i, NewInst); 7200 } 7201 } 7202 } else { 7203 Builder.SetInsertPoint(cast<Instruction>(User)); 7204 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7205 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7206 User->replaceUsesOfWith(Scalar, NewInst); 7207 } 7208 } else { 7209 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7210 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7211 CSEBlocks.insert(&F->getEntryBlock()); 7212 User->replaceUsesOfWith(Scalar, NewInst); 7213 } 7214 7215 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7216 } 7217 7218 // For each vectorized value: 7219 for (auto &TEPtr : VectorizableTree) { 7220 TreeEntry *Entry = TEPtr.get(); 7221 7222 // No need to handle users of gathered values. 7223 if (Entry->State == TreeEntry::NeedToGather) 7224 continue; 7225 7226 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7227 7228 // For each lane: 7229 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7230 Value *Scalar = Entry->Scalars[Lane]; 7231 7232 #ifndef NDEBUG 7233 Type *Ty = Scalar->getType(); 7234 if (!Ty->isVoidTy()) { 7235 for (User *U : Scalar->users()) { 7236 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7237 7238 // It is legal to delete users in the ignorelist. 7239 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7240 (isa_and_nonnull<Instruction>(U) && 7241 isDeleted(cast<Instruction>(U)))) && 7242 "Deleting out-of-tree value"); 7243 } 7244 } 7245 #endif 7246 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7247 eraseInstruction(cast<Instruction>(Scalar)); 7248 } 7249 } 7250 7251 Builder.ClearInsertionPoint(); 7252 InstrElementSize.clear(); 7253 7254 return VectorizableTree[0]->VectorizedValue; 7255 } 7256 7257 void BoUpSLP::optimizeGatherSequence() { 7258 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7259 << " gather sequences instructions.\n"); 7260 // LICM InsertElementInst sequences. 7261 for (Instruction *I : GatherShuffleSeq) { 7262 if (isDeleted(I)) 7263 continue; 7264 7265 // Check if this block is inside a loop. 7266 Loop *L = LI->getLoopFor(I->getParent()); 7267 if (!L) 7268 continue; 7269 7270 // Check if it has a preheader. 7271 BasicBlock *PreHeader = L->getLoopPreheader(); 7272 if (!PreHeader) 7273 continue; 7274 7275 // If the vector or the element that we insert into it are 7276 // instructions that are defined in this basic block then we can't 7277 // hoist this instruction. 7278 if (any_of(I->operands(), [L](Value *V) { 7279 auto *OpI = dyn_cast<Instruction>(V); 7280 return OpI && L->contains(OpI); 7281 })) 7282 continue; 7283 7284 // We can hoist this instruction. Move it to the pre-header. 7285 I->moveBefore(PreHeader->getTerminator()); 7286 } 7287 7288 // Make a list of all reachable blocks in our CSE queue. 7289 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7290 CSEWorkList.reserve(CSEBlocks.size()); 7291 for (BasicBlock *BB : CSEBlocks) 7292 if (DomTreeNode *N = DT->getNode(BB)) { 7293 assert(DT->isReachableFromEntry(N)); 7294 CSEWorkList.push_back(N); 7295 } 7296 7297 // Sort blocks by domination. This ensures we visit a block after all blocks 7298 // dominating it are visited. 7299 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7300 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7301 "Different nodes should have different DFS numbers"); 7302 return A->getDFSNumIn() < B->getDFSNumIn(); 7303 }); 7304 7305 // Less defined shuffles can be replaced by the more defined copies. 7306 // Between two shuffles one is less defined if it has the same vector operands 7307 // and its mask indeces are the same as in the first one or undefs. E.g. 7308 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7309 // poison, <0, 0, 0, 0>. 7310 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7311 SmallVectorImpl<int> &NewMask) { 7312 if (I1->getType() != I2->getType()) 7313 return false; 7314 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7315 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7316 if (!SI1 || !SI2) 7317 return I1->isIdenticalTo(I2); 7318 if (SI1->isIdenticalTo(SI2)) 7319 return true; 7320 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7321 if (SI1->getOperand(I) != SI2->getOperand(I)) 7322 return false; 7323 // Check if the second instruction is more defined than the first one. 7324 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7325 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7326 // Count trailing undefs in the mask to check the final number of used 7327 // registers. 7328 unsigned LastUndefsCnt = 0; 7329 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7330 if (SM1[I] == UndefMaskElem) 7331 ++LastUndefsCnt; 7332 else 7333 LastUndefsCnt = 0; 7334 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7335 NewMask[I] != SM1[I]) 7336 return false; 7337 if (NewMask[I] == UndefMaskElem) 7338 NewMask[I] = SM1[I]; 7339 } 7340 // Check if the last undefs actually change the final number of used vector 7341 // registers. 7342 return SM1.size() - LastUndefsCnt > 1 && 7343 TTI->getNumberOfParts(SI1->getType()) == 7344 TTI->getNumberOfParts( 7345 FixedVectorType::get(SI1->getType()->getElementType(), 7346 SM1.size() - LastUndefsCnt)); 7347 }; 7348 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7349 // instructions. TODO: We can further optimize this scan if we split the 7350 // instructions into different buckets based on the insert lane. 7351 SmallVector<Instruction *, 16> Visited; 7352 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7353 assert(*I && 7354 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7355 "Worklist not sorted properly!"); 7356 BasicBlock *BB = (*I)->getBlock(); 7357 // For all instructions in blocks containing gather sequences: 7358 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7359 if (isDeleted(&In)) 7360 continue; 7361 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7362 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7363 continue; 7364 7365 // Check if we can replace this instruction with any of the 7366 // visited instructions. 7367 bool Replaced = false; 7368 for (Instruction *&V : Visited) { 7369 SmallVector<int> NewMask; 7370 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7371 DT->dominates(V->getParent(), In.getParent())) { 7372 In.replaceAllUsesWith(V); 7373 eraseInstruction(&In); 7374 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7375 if (!NewMask.empty()) 7376 SI->setShuffleMask(NewMask); 7377 Replaced = true; 7378 break; 7379 } 7380 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7381 GatherShuffleSeq.contains(V) && 7382 IsIdenticalOrLessDefined(V, &In, NewMask) && 7383 DT->dominates(In.getParent(), V->getParent())) { 7384 In.moveAfter(V); 7385 V->replaceAllUsesWith(&In); 7386 eraseInstruction(V); 7387 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7388 if (!NewMask.empty()) 7389 SI->setShuffleMask(NewMask); 7390 V = &In; 7391 Replaced = true; 7392 break; 7393 } 7394 } 7395 if (!Replaced) { 7396 assert(!is_contained(Visited, &In)); 7397 Visited.push_back(&In); 7398 } 7399 } 7400 } 7401 CSEBlocks.clear(); 7402 GatherShuffleSeq.clear(); 7403 } 7404 7405 BoUpSLP::ScheduleData * 7406 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7407 ScheduleData *Bundle = nullptr; 7408 ScheduleData *PrevInBundle = nullptr; 7409 for (Value *V : VL) { 7410 ScheduleData *BundleMember = getScheduleData(V); 7411 assert(BundleMember && 7412 "no ScheduleData for bundle member " 7413 "(maybe not in same basic block)"); 7414 assert(BundleMember->isSchedulingEntity() && 7415 "bundle member already part of other bundle"); 7416 if (PrevInBundle) { 7417 PrevInBundle->NextInBundle = BundleMember; 7418 } else { 7419 Bundle = BundleMember; 7420 } 7421 BundleMember->UnscheduledDepsInBundle = 0; 7422 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7423 7424 // Group the instructions to a bundle. 7425 BundleMember->FirstInBundle = Bundle; 7426 PrevInBundle = BundleMember; 7427 } 7428 assert(Bundle && "Failed to find schedule bundle"); 7429 return Bundle; 7430 } 7431 7432 // Groups the instructions to a bundle (which is then a single scheduling entity) 7433 // and schedules instructions until the bundle gets ready. 7434 Optional<BoUpSLP::ScheduleData *> 7435 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7436 const InstructionsState &S) { 7437 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7438 // instructions. 7439 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7440 return nullptr; 7441 7442 // Initialize the instruction bundle. 7443 Instruction *OldScheduleEnd = ScheduleEnd; 7444 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7445 7446 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7447 ScheduleData *Bundle) { 7448 // The scheduling region got new instructions at the lower end (or it is a 7449 // new region for the first bundle). This makes it necessary to 7450 // recalculate all dependencies. 7451 // It is seldom that this needs to be done a second time after adding the 7452 // initial bundle to the region. 7453 if (ScheduleEnd != OldScheduleEnd) { 7454 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7455 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7456 ReSchedule = true; 7457 } 7458 if (ReSchedule) { 7459 resetSchedule(); 7460 initialFillReadyList(ReadyInsts); 7461 } 7462 if (Bundle) { 7463 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7464 << " in block " << BB->getName() << "\n"); 7465 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7466 } 7467 7468 // Now try to schedule the new bundle or (if no bundle) just calculate 7469 // dependencies. As soon as the bundle is "ready" it means that there are no 7470 // cyclic dependencies and we can schedule it. Note that's important that we 7471 // don't "schedule" the bundle yet (see cancelScheduling). 7472 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7473 !ReadyInsts.empty()) { 7474 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7475 if (Picked->isSchedulingEntity() && Picked->isReady()) 7476 schedule(Picked, ReadyInsts); 7477 } 7478 }; 7479 7480 // Make sure that the scheduling region contains all 7481 // instructions of the bundle. 7482 for (Value *V : VL) { 7483 if (!extendSchedulingRegion(V, S)) { 7484 // If the scheduling region got new instructions at the lower end (or it 7485 // is a new region for the first bundle). This makes it necessary to 7486 // recalculate all dependencies. 7487 // Otherwise the compiler may crash trying to incorrectly calculate 7488 // dependencies and emit instruction in the wrong order at the actual 7489 // scheduling. 7490 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7491 return None; 7492 } 7493 } 7494 7495 bool ReSchedule = false; 7496 for (Value *V : VL) { 7497 ScheduleData *BundleMember = getScheduleData(V); 7498 assert(BundleMember && 7499 "no ScheduleData for bundle member (maybe not in same basic block)"); 7500 if (!BundleMember->IsScheduled) 7501 continue; 7502 // A bundle member was scheduled as single instruction before and now 7503 // needs to be scheduled as part of the bundle. We just get rid of the 7504 // existing schedule. 7505 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7506 << " was already scheduled\n"); 7507 ReSchedule = true; 7508 } 7509 7510 auto *Bundle = buildBundle(VL); 7511 TryScheduleBundleImpl(ReSchedule, Bundle); 7512 if (!Bundle->isReady()) { 7513 cancelScheduling(VL, S.OpValue); 7514 return None; 7515 } 7516 return Bundle; 7517 } 7518 7519 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7520 Value *OpValue) { 7521 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7522 return; 7523 7524 ScheduleData *Bundle = getScheduleData(OpValue); 7525 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7526 assert(!Bundle->IsScheduled && 7527 "Can't cancel bundle which is already scheduled"); 7528 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7529 "tried to unbundle something which is not a bundle"); 7530 7531 // Un-bundle: make single instructions out of the bundle. 7532 ScheduleData *BundleMember = Bundle; 7533 while (BundleMember) { 7534 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7535 BundleMember->FirstInBundle = BundleMember; 7536 ScheduleData *Next = BundleMember->NextInBundle; 7537 BundleMember->NextInBundle = nullptr; 7538 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7539 if (BundleMember->UnscheduledDepsInBundle == 0) { 7540 ReadyInsts.insert(BundleMember); 7541 } 7542 BundleMember = Next; 7543 } 7544 } 7545 7546 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7547 // Allocate a new ScheduleData for the instruction. 7548 if (ChunkPos >= ChunkSize) { 7549 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7550 ChunkPos = 0; 7551 } 7552 return &(ScheduleDataChunks.back()[ChunkPos++]); 7553 } 7554 7555 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7556 const InstructionsState &S) { 7557 if (getScheduleData(V, isOneOf(S, V))) 7558 return true; 7559 Instruction *I = dyn_cast<Instruction>(V); 7560 assert(I && "bundle member must be an instruction"); 7561 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7562 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7563 "be scheduled"); 7564 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7565 ScheduleData *ISD = getScheduleData(I); 7566 if (!ISD) 7567 return false; 7568 assert(isInSchedulingRegion(ISD) && 7569 "ScheduleData not in scheduling region"); 7570 ScheduleData *SD = allocateScheduleDataChunks(); 7571 SD->Inst = I; 7572 SD->init(SchedulingRegionID, S.OpValue); 7573 ExtraScheduleDataMap[I][S.OpValue] = SD; 7574 return true; 7575 }; 7576 if (CheckSheduleForI(I)) 7577 return true; 7578 if (!ScheduleStart) { 7579 // It's the first instruction in the new region. 7580 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7581 ScheduleStart = I; 7582 ScheduleEnd = I->getNextNode(); 7583 if (isOneOf(S, I) != I) 7584 CheckSheduleForI(I); 7585 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7586 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7587 return true; 7588 } 7589 // Search up and down at the same time, because we don't know if the new 7590 // instruction is above or below the existing scheduling region. 7591 BasicBlock::reverse_iterator UpIter = 7592 ++ScheduleStart->getIterator().getReverse(); 7593 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7594 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7595 BasicBlock::iterator LowerEnd = BB->end(); 7596 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7597 &*DownIter != I) { 7598 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7599 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7600 return false; 7601 } 7602 7603 ++UpIter; 7604 ++DownIter; 7605 } 7606 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7607 assert(I->getParent() == ScheduleStart->getParent() && 7608 "Instruction is in wrong basic block."); 7609 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7610 ScheduleStart = I; 7611 if (isOneOf(S, I) != I) 7612 CheckSheduleForI(I); 7613 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7614 << "\n"); 7615 return true; 7616 } 7617 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7618 "Expected to reach top of the basic block or instruction down the " 7619 "lower end."); 7620 assert(I->getParent() == ScheduleEnd->getParent() && 7621 "Instruction is in wrong basic block."); 7622 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7623 nullptr); 7624 ScheduleEnd = I->getNextNode(); 7625 if (isOneOf(S, I) != I) 7626 CheckSheduleForI(I); 7627 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7628 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7629 return true; 7630 } 7631 7632 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7633 Instruction *ToI, 7634 ScheduleData *PrevLoadStore, 7635 ScheduleData *NextLoadStore) { 7636 ScheduleData *CurrentLoadStore = PrevLoadStore; 7637 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7638 ScheduleData *SD = ScheduleDataMap[I]; 7639 if (!SD) { 7640 SD = allocateScheduleDataChunks(); 7641 ScheduleDataMap[I] = SD; 7642 SD->Inst = I; 7643 } 7644 assert(!isInSchedulingRegion(SD) && 7645 "new ScheduleData already in scheduling region"); 7646 SD->init(SchedulingRegionID, I); 7647 7648 if (I->mayReadOrWriteMemory() && 7649 (!isa<IntrinsicInst>(I) || 7650 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7651 cast<IntrinsicInst>(I)->getIntrinsicID() != 7652 Intrinsic::pseudoprobe))) { 7653 // Update the linked list of memory accessing instructions. 7654 if (CurrentLoadStore) { 7655 CurrentLoadStore->NextLoadStore = SD; 7656 } else { 7657 FirstLoadStoreInRegion = SD; 7658 } 7659 CurrentLoadStore = SD; 7660 } 7661 } 7662 if (NextLoadStore) { 7663 if (CurrentLoadStore) 7664 CurrentLoadStore->NextLoadStore = NextLoadStore; 7665 } else { 7666 LastLoadStoreInRegion = CurrentLoadStore; 7667 } 7668 } 7669 7670 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7671 bool InsertInReadyList, 7672 BoUpSLP *SLP) { 7673 assert(SD->isSchedulingEntity()); 7674 7675 SmallVector<ScheduleData *, 10> WorkList; 7676 WorkList.push_back(SD); 7677 7678 while (!WorkList.empty()) { 7679 ScheduleData *SD = WorkList.pop_back_val(); 7680 for (ScheduleData *BundleMember = SD; BundleMember; 7681 BundleMember = BundleMember->NextInBundle) { 7682 assert(isInSchedulingRegion(BundleMember)); 7683 if (BundleMember->hasValidDependencies()) 7684 continue; 7685 7686 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7687 << "\n"); 7688 BundleMember->Dependencies = 0; 7689 BundleMember->resetUnscheduledDeps(); 7690 7691 // Handle def-use chain dependencies. 7692 if (BundleMember->OpValue != BundleMember->Inst) { 7693 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7694 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7695 BundleMember->Dependencies++; 7696 ScheduleData *DestBundle = UseSD->FirstInBundle; 7697 if (!DestBundle->IsScheduled) 7698 BundleMember->incrementUnscheduledDeps(1); 7699 if (!DestBundle->hasValidDependencies()) 7700 WorkList.push_back(DestBundle); 7701 } 7702 } else { 7703 for (User *U : BundleMember->Inst->users()) { 7704 assert(isa<Instruction>(U) && 7705 "user of instruction must be instruction"); 7706 ScheduleData *UseSD = getScheduleData(U); 7707 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7708 BundleMember->Dependencies++; 7709 ScheduleData *DestBundle = UseSD->FirstInBundle; 7710 if (!DestBundle->IsScheduled) 7711 BundleMember->incrementUnscheduledDeps(1); 7712 if (!DestBundle->hasValidDependencies()) 7713 WorkList.push_back(DestBundle); 7714 } 7715 } 7716 } 7717 7718 // Handle the memory dependencies (if any). 7719 ScheduleData *DepDest = BundleMember->NextLoadStore; 7720 if (!DepDest) 7721 continue; 7722 Instruction *SrcInst = BundleMember->Inst; 7723 assert(SrcInst->mayReadOrWriteMemory() && 7724 "NextLoadStore list for non memory effecting bundle?"); 7725 MemoryLocation SrcLoc = getLocation(SrcInst); 7726 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7727 unsigned numAliased = 0; 7728 unsigned DistToSrc = 1; 7729 7730 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7731 assert(isInSchedulingRegion(DepDest)); 7732 7733 // We have two limits to reduce the complexity: 7734 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7735 // SLP->isAliased (which is the expensive part in this loop). 7736 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7737 // the whole loop (even if the loop is fast, it's quadratic). 7738 // It's important for the loop break condition (see below) to 7739 // check this limit even between two read-only instructions. 7740 if (DistToSrc >= MaxMemDepDistance || 7741 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7742 (numAliased >= AliasedCheckLimit || 7743 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7744 7745 // We increment the counter only if the locations are aliased 7746 // (instead of counting all alias checks). This gives a better 7747 // balance between reduced runtime and accurate dependencies. 7748 numAliased++; 7749 7750 DepDest->MemoryDependencies.push_back(BundleMember); 7751 BundleMember->Dependencies++; 7752 ScheduleData *DestBundle = DepDest->FirstInBundle; 7753 if (!DestBundle->IsScheduled) { 7754 BundleMember->incrementUnscheduledDeps(1); 7755 } 7756 if (!DestBundle->hasValidDependencies()) { 7757 WorkList.push_back(DestBundle); 7758 } 7759 } 7760 7761 // Example, explaining the loop break condition: Let's assume our 7762 // starting instruction is i0 and MaxMemDepDistance = 3. 7763 // 7764 // +--------v--v--v 7765 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7766 // +--------^--^--^ 7767 // 7768 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7769 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7770 // Previously we already added dependencies from i3 to i6,i7,i8 7771 // (because of MaxMemDepDistance). As we added a dependency from 7772 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7773 // and we can abort this loop at i6. 7774 if (DistToSrc >= 2 * MaxMemDepDistance) 7775 break; 7776 DistToSrc++; 7777 } 7778 } 7779 if (InsertInReadyList && SD->isReady()) { 7780 ReadyInsts.push_back(SD); 7781 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7782 << "\n"); 7783 } 7784 } 7785 } 7786 7787 void BoUpSLP::BlockScheduling::resetSchedule() { 7788 assert(ScheduleStart && 7789 "tried to reset schedule on block which has not been scheduled"); 7790 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7791 doForAllOpcodes(I, [&](ScheduleData *SD) { 7792 assert(isInSchedulingRegion(SD) && 7793 "ScheduleData not in scheduling region"); 7794 SD->IsScheduled = false; 7795 SD->resetUnscheduledDeps(); 7796 }); 7797 } 7798 ReadyInsts.clear(); 7799 } 7800 7801 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7802 if (!BS->ScheduleStart) 7803 return; 7804 7805 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7806 7807 BS->resetSchedule(); 7808 7809 // For the real scheduling we use a more sophisticated ready-list: it is 7810 // sorted by the original instruction location. This lets the final schedule 7811 // be as close as possible to the original instruction order. 7812 struct ScheduleDataCompare { 7813 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7814 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7815 } 7816 }; 7817 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7818 7819 // Ensure that all dependency data is updated and fill the ready-list with 7820 // initial instructions. 7821 int Idx = 0; 7822 int NumToSchedule = 0; 7823 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7824 I = I->getNextNode()) { 7825 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7826 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7827 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7828 "scheduler and vectorizer bundle mismatch"); 7829 SD->FirstInBundle->SchedulingPriority = Idx++; 7830 if (SD->isSchedulingEntity()) { 7831 BS->calculateDependencies(SD, false, this); 7832 NumToSchedule++; 7833 } 7834 }); 7835 } 7836 BS->initialFillReadyList(ReadyInsts); 7837 7838 Instruction *LastScheduledInst = BS->ScheduleEnd; 7839 7840 // Do the "real" scheduling. 7841 while (!ReadyInsts.empty()) { 7842 ScheduleData *picked = *ReadyInsts.begin(); 7843 ReadyInsts.erase(ReadyInsts.begin()); 7844 7845 // Move the scheduled instruction(s) to their dedicated places, if not 7846 // there yet. 7847 for (ScheduleData *BundleMember = picked; BundleMember; 7848 BundleMember = BundleMember->NextInBundle) { 7849 Instruction *pickedInst = BundleMember->Inst; 7850 if (pickedInst->getNextNode() != LastScheduledInst) 7851 pickedInst->moveBefore(LastScheduledInst); 7852 LastScheduledInst = pickedInst; 7853 } 7854 7855 BS->schedule(picked, ReadyInsts); 7856 NumToSchedule--; 7857 } 7858 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7859 7860 // Avoid duplicate scheduling of the block. 7861 BS->ScheduleStart = nullptr; 7862 } 7863 7864 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7865 // If V is a store, just return the width of the stored value (or value 7866 // truncated just before storing) without traversing the expression tree. 7867 // This is the common case. 7868 if (auto *Store = dyn_cast<StoreInst>(V)) { 7869 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7870 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7871 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7872 } 7873 7874 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7875 return getVectorElementSize(IEI->getOperand(1)); 7876 7877 auto E = InstrElementSize.find(V); 7878 if (E != InstrElementSize.end()) 7879 return E->second; 7880 7881 // If V is not a store, we can traverse the expression tree to find loads 7882 // that feed it. The type of the loaded value may indicate a more suitable 7883 // width than V's type. We want to base the vector element size on the width 7884 // of memory operations where possible. 7885 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7886 SmallPtrSet<Instruction *, 16> Visited; 7887 if (auto *I = dyn_cast<Instruction>(V)) { 7888 Worklist.emplace_back(I, I->getParent()); 7889 Visited.insert(I); 7890 } 7891 7892 // Traverse the expression tree in bottom-up order looking for loads. If we 7893 // encounter an instruction we don't yet handle, we give up. 7894 auto Width = 0u; 7895 while (!Worklist.empty()) { 7896 Instruction *I; 7897 BasicBlock *Parent; 7898 std::tie(I, Parent) = Worklist.pop_back_val(); 7899 7900 // We should only be looking at scalar instructions here. If the current 7901 // instruction has a vector type, skip. 7902 auto *Ty = I->getType(); 7903 if (isa<VectorType>(Ty)) 7904 continue; 7905 7906 // If the current instruction is a load, update MaxWidth to reflect the 7907 // width of the loaded value. 7908 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7909 isa<ExtractValueInst>(I)) 7910 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7911 7912 // Otherwise, we need to visit the operands of the instruction. We only 7913 // handle the interesting cases from buildTree here. If an operand is an 7914 // instruction we haven't yet visited and from the same basic block as the 7915 // user or the use is a PHI node, we add it to the worklist. 7916 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7917 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7918 isa<UnaryOperator>(I)) { 7919 for (Use &U : I->operands()) 7920 if (auto *J = dyn_cast<Instruction>(U.get())) 7921 if (Visited.insert(J).second && 7922 (isa<PHINode>(I) || J->getParent() == Parent)) 7923 Worklist.emplace_back(J, J->getParent()); 7924 } else { 7925 break; 7926 } 7927 } 7928 7929 // If we didn't encounter a memory access in the expression tree, or if we 7930 // gave up for some reason, just return the width of V. Otherwise, return the 7931 // maximum width we found. 7932 if (!Width) { 7933 if (auto *CI = dyn_cast<CmpInst>(V)) 7934 V = CI->getOperand(0); 7935 Width = DL->getTypeSizeInBits(V->getType()); 7936 } 7937 7938 for (Instruction *I : Visited) 7939 InstrElementSize[I] = Width; 7940 7941 return Width; 7942 } 7943 7944 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7945 // smaller type with a truncation. We collect the values that will be demoted 7946 // in ToDemote and additional roots that require investigating in Roots. 7947 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7948 SmallVectorImpl<Value *> &ToDemote, 7949 SmallVectorImpl<Value *> &Roots) { 7950 // We can always demote constants. 7951 if (isa<Constant>(V)) { 7952 ToDemote.push_back(V); 7953 return true; 7954 } 7955 7956 // If the value is not an instruction in the expression with only one use, it 7957 // cannot be demoted. 7958 auto *I = dyn_cast<Instruction>(V); 7959 if (!I || !I->hasOneUse() || !Expr.count(I)) 7960 return false; 7961 7962 switch (I->getOpcode()) { 7963 7964 // We can always demote truncations and extensions. Since truncations can 7965 // seed additional demotion, we save the truncated value. 7966 case Instruction::Trunc: 7967 Roots.push_back(I->getOperand(0)); 7968 break; 7969 case Instruction::ZExt: 7970 case Instruction::SExt: 7971 if (isa<ExtractElementInst>(I->getOperand(0)) || 7972 isa<InsertElementInst>(I->getOperand(0))) 7973 return false; 7974 break; 7975 7976 // We can demote certain binary operations if we can demote both of their 7977 // operands. 7978 case Instruction::Add: 7979 case Instruction::Sub: 7980 case Instruction::Mul: 7981 case Instruction::And: 7982 case Instruction::Or: 7983 case Instruction::Xor: 7984 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7985 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7986 return false; 7987 break; 7988 7989 // We can demote selects if we can demote their true and false values. 7990 case Instruction::Select: { 7991 SelectInst *SI = cast<SelectInst>(I); 7992 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7993 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7994 return false; 7995 break; 7996 } 7997 7998 // We can demote phis if we can demote all their incoming operands. Note that 7999 // we don't need to worry about cycles since we ensure single use above. 8000 case Instruction::PHI: { 8001 PHINode *PN = cast<PHINode>(I); 8002 for (Value *IncValue : PN->incoming_values()) 8003 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8004 return false; 8005 break; 8006 } 8007 8008 // Otherwise, conservatively give up. 8009 default: 8010 return false; 8011 } 8012 8013 // Record the value that we can demote. 8014 ToDemote.push_back(V); 8015 return true; 8016 } 8017 8018 void BoUpSLP::computeMinimumValueSizes() { 8019 // If there are no external uses, the expression tree must be rooted by a 8020 // store. We can't demote in-memory values, so there is nothing to do here. 8021 if (ExternalUses.empty()) 8022 return; 8023 8024 // We only attempt to truncate integer expressions. 8025 auto &TreeRoot = VectorizableTree[0]->Scalars; 8026 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8027 if (!TreeRootIT) 8028 return; 8029 8030 // If the expression is not rooted by a store, these roots should have 8031 // external uses. We will rely on InstCombine to rewrite the expression in 8032 // the narrower type. However, InstCombine only rewrites single-use values. 8033 // This means that if a tree entry other than a root is used externally, it 8034 // must have multiple uses and InstCombine will not rewrite it. The code 8035 // below ensures that only the roots are used externally. 8036 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8037 for (auto &EU : ExternalUses) 8038 if (!Expr.erase(EU.Scalar)) 8039 return; 8040 if (!Expr.empty()) 8041 return; 8042 8043 // Collect the scalar values of the vectorizable expression. We will use this 8044 // context to determine which values can be demoted. If we see a truncation, 8045 // we mark it as seeding another demotion. 8046 for (auto &EntryPtr : VectorizableTree) 8047 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8048 8049 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8050 // have a single external user that is not in the vectorizable tree. 8051 for (auto *Root : TreeRoot) 8052 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8053 return; 8054 8055 // Conservatively determine if we can actually truncate the roots of the 8056 // expression. Collect the values that can be demoted in ToDemote and 8057 // additional roots that require investigating in Roots. 8058 SmallVector<Value *, 32> ToDemote; 8059 SmallVector<Value *, 4> Roots; 8060 for (auto *Root : TreeRoot) 8061 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8062 return; 8063 8064 // The maximum bit width required to represent all the values that can be 8065 // demoted without loss of precision. It would be safe to truncate the roots 8066 // of the expression to this width. 8067 auto MaxBitWidth = 8u; 8068 8069 // We first check if all the bits of the roots are demanded. If they're not, 8070 // we can truncate the roots to this narrower type. 8071 for (auto *Root : TreeRoot) { 8072 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8073 MaxBitWidth = std::max<unsigned>( 8074 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8075 } 8076 8077 // True if the roots can be zero-extended back to their original type, rather 8078 // than sign-extended. We know that if the leading bits are not demanded, we 8079 // can safely zero-extend. So we initialize IsKnownPositive to True. 8080 bool IsKnownPositive = true; 8081 8082 // If all the bits of the roots are demanded, we can try a little harder to 8083 // compute a narrower type. This can happen, for example, if the roots are 8084 // getelementptr indices. InstCombine promotes these indices to the pointer 8085 // width. Thus, all their bits are technically demanded even though the 8086 // address computation might be vectorized in a smaller type. 8087 // 8088 // We start by looking at each entry that can be demoted. We compute the 8089 // maximum bit width required to store the scalar by using ValueTracking to 8090 // compute the number of high-order bits we can truncate. 8091 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8092 llvm::all_of(TreeRoot, [](Value *R) { 8093 assert(R->hasOneUse() && "Root should have only one use!"); 8094 return isa<GetElementPtrInst>(R->user_back()); 8095 })) { 8096 MaxBitWidth = 8u; 8097 8098 // Determine if the sign bit of all the roots is known to be zero. If not, 8099 // IsKnownPositive is set to False. 8100 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8101 KnownBits Known = computeKnownBits(R, *DL); 8102 return Known.isNonNegative(); 8103 }); 8104 8105 // Determine the maximum number of bits required to store the scalar 8106 // values. 8107 for (auto *Scalar : ToDemote) { 8108 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8109 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8110 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8111 } 8112 8113 // If we can't prove that the sign bit is zero, we must add one to the 8114 // maximum bit width to account for the unknown sign bit. This preserves 8115 // the existing sign bit so we can safely sign-extend the root back to the 8116 // original type. Otherwise, if we know the sign bit is zero, we will 8117 // zero-extend the root instead. 8118 // 8119 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8120 // one to the maximum bit width will yield a larger-than-necessary 8121 // type. In general, we need to add an extra bit only if we can't 8122 // prove that the upper bit of the original type is equal to the 8123 // upper bit of the proposed smaller type. If these two bits are the 8124 // same (either zero or one) we know that sign-extending from the 8125 // smaller type will result in the same value. Here, since we can't 8126 // yet prove this, we are just making the proposed smaller type 8127 // larger to ensure correctness. 8128 if (!IsKnownPositive) 8129 ++MaxBitWidth; 8130 } 8131 8132 // Round MaxBitWidth up to the next power-of-two. 8133 if (!isPowerOf2_64(MaxBitWidth)) 8134 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8135 8136 // If the maximum bit width we compute is less than the with of the roots' 8137 // type, we can proceed with the narrowing. Otherwise, do nothing. 8138 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8139 return; 8140 8141 // If we can truncate the root, we must collect additional values that might 8142 // be demoted as a result. That is, those seeded by truncations we will 8143 // modify. 8144 while (!Roots.empty()) 8145 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8146 8147 // Finally, map the values we can demote to the maximum bit with we computed. 8148 for (auto *Scalar : ToDemote) 8149 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8150 } 8151 8152 namespace { 8153 8154 /// The SLPVectorizer Pass. 8155 struct SLPVectorizer : public FunctionPass { 8156 SLPVectorizerPass Impl; 8157 8158 /// Pass identification, replacement for typeid 8159 static char ID; 8160 8161 explicit SLPVectorizer() : FunctionPass(ID) { 8162 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8163 } 8164 8165 bool doInitialization(Module &M) override { return false; } 8166 8167 bool runOnFunction(Function &F) override { 8168 if (skipFunction(F)) 8169 return false; 8170 8171 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8172 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8173 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8174 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8175 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8176 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8177 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8178 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8179 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8180 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8181 8182 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8183 } 8184 8185 void getAnalysisUsage(AnalysisUsage &AU) const override { 8186 FunctionPass::getAnalysisUsage(AU); 8187 AU.addRequired<AssumptionCacheTracker>(); 8188 AU.addRequired<ScalarEvolutionWrapperPass>(); 8189 AU.addRequired<AAResultsWrapperPass>(); 8190 AU.addRequired<TargetTransformInfoWrapperPass>(); 8191 AU.addRequired<LoopInfoWrapperPass>(); 8192 AU.addRequired<DominatorTreeWrapperPass>(); 8193 AU.addRequired<DemandedBitsWrapperPass>(); 8194 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8195 AU.addRequired<InjectTLIMappingsLegacy>(); 8196 AU.addPreserved<LoopInfoWrapperPass>(); 8197 AU.addPreserved<DominatorTreeWrapperPass>(); 8198 AU.addPreserved<AAResultsWrapperPass>(); 8199 AU.addPreserved<GlobalsAAWrapperPass>(); 8200 AU.setPreservesCFG(); 8201 } 8202 }; 8203 8204 } // end anonymous namespace 8205 8206 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8207 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8208 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8209 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8210 auto *AA = &AM.getResult<AAManager>(F); 8211 auto *LI = &AM.getResult<LoopAnalysis>(F); 8212 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8213 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8214 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8215 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8216 8217 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8218 if (!Changed) 8219 return PreservedAnalyses::all(); 8220 8221 PreservedAnalyses PA; 8222 PA.preserveSet<CFGAnalyses>(); 8223 return PA; 8224 } 8225 8226 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8227 TargetTransformInfo *TTI_, 8228 TargetLibraryInfo *TLI_, AAResults *AA_, 8229 LoopInfo *LI_, DominatorTree *DT_, 8230 AssumptionCache *AC_, DemandedBits *DB_, 8231 OptimizationRemarkEmitter *ORE_) { 8232 if (!RunSLPVectorization) 8233 return false; 8234 SE = SE_; 8235 TTI = TTI_; 8236 TLI = TLI_; 8237 AA = AA_; 8238 LI = LI_; 8239 DT = DT_; 8240 AC = AC_; 8241 DB = DB_; 8242 DL = &F.getParent()->getDataLayout(); 8243 8244 Stores.clear(); 8245 GEPs.clear(); 8246 bool Changed = false; 8247 8248 // If the target claims to have no vector registers don't attempt 8249 // vectorization. 8250 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8251 LLVM_DEBUG( 8252 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8253 return false; 8254 } 8255 8256 // Don't vectorize when the attribute NoImplicitFloat is used. 8257 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8258 return false; 8259 8260 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8261 8262 // Use the bottom up slp vectorizer to construct chains that start with 8263 // store instructions. 8264 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8265 8266 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8267 // delete instructions. 8268 8269 // Update DFS numbers now so that we can use them for ordering. 8270 DT->updateDFSNumbers(); 8271 8272 // Scan the blocks in the function in post order. 8273 for (auto BB : post_order(&F.getEntryBlock())) { 8274 collectSeedInstructions(BB); 8275 8276 // Vectorize trees that end at stores. 8277 if (!Stores.empty()) { 8278 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8279 << " underlying objects.\n"); 8280 Changed |= vectorizeStoreChains(R); 8281 } 8282 8283 // Vectorize trees that end at reductions. 8284 Changed |= vectorizeChainsInBlock(BB, R); 8285 8286 // Vectorize the index computations of getelementptr instructions. This 8287 // is primarily intended to catch gather-like idioms ending at 8288 // non-consecutive loads. 8289 if (!GEPs.empty()) { 8290 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8291 << " underlying objects.\n"); 8292 Changed |= vectorizeGEPIndices(BB, R); 8293 } 8294 } 8295 8296 if (Changed) { 8297 R.optimizeGatherSequence(); 8298 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8299 } 8300 return Changed; 8301 } 8302 8303 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8304 unsigned Idx) { 8305 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8306 << "\n"); 8307 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8308 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8309 unsigned VF = Chain.size(); 8310 8311 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8312 return false; 8313 8314 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8315 << "\n"); 8316 8317 R.buildTree(Chain); 8318 if (R.isTreeTinyAndNotFullyVectorizable()) 8319 return false; 8320 if (R.isLoadCombineCandidate()) 8321 return false; 8322 R.reorderTopToBottom(); 8323 R.reorderBottomToTop(); 8324 R.buildExternalUses(); 8325 8326 R.computeMinimumValueSizes(); 8327 8328 InstructionCost Cost = R.getTreeCost(); 8329 8330 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8331 if (Cost < -SLPCostThreshold) { 8332 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8333 8334 using namespace ore; 8335 8336 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8337 cast<StoreInst>(Chain[0])) 8338 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8339 << " and with tree size " 8340 << NV("TreeSize", R.getTreeSize())); 8341 8342 R.vectorizeTree(); 8343 return true; 8344 } 8345 8346 return false; 8347 } 8348 8349 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8350 BoUpSLP &R) { 8351 // We may run into multiple chains that merge into a single chain. We mark the 8352 // stores that we vectorized so that we don't visit the same store twice. 8353 BoUpSLP::ValueSet VectorizedStores; 8354 bool Changed = false; 8355 8356 int E = Stores.size(); 8357 SmallBitVector Tails(E, false); 8358 int MaxIter = MaxStoreLookup.getValue(); 8359 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8360 E, std::make_pair(E, INT_MAX)); 8361 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8362 int IterCnt; 8363 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8364 &CheckedPairs, 8365 &ConsecutiveChain](int K, int Idx) { 8366 if (IterCnt >= MaxIter) 8367 return true; 8368 if (CheckedPairs[Idx].test(K)) 8369 return ConsecutiveChain[K].second == 1 && 8370 ConsecutiveChain[K].first == Idx; 8371 ++IterCnt; 8372 CheckedPairs[Idx].set(K); 8373 CheckedPairs[K].set(Idx); 8374 Optional<int> Diff = getPointersDiff( 8375 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8376 Stores[Idx]->getValueOperand()->getType(), 8377 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8378 if (!Diff || *Diff == 0) 8379 return false; 8380 int Val = *Diff; 8381 if (Val < 0) { 8382 if (ConsecutiveChain[Idx].second > -Val) { 8383 Tails.set(K); 8384 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8385 } 8386 return false; 8387 } 8388 if (ConsecutiveChain[K].second <= Val) 8389 return false; 8390 8391 Tails.set(Idx); 8392 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8393 return Val == 1; 8394 }; 8395 // Do a quadratic search on all of the given stores in reverse order and find 8396 // all of the pairs of stores that follow each other. 8397 for (int Idx = E - 1; Idx >= 0; --Idx) { 8398 // If a store has multiple consecutive store candidates, search according 8399 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8400 // This is because usually pairing with immediate succeeding or preceding 8401 // candidate create the best chance to find slp vectorization opportunity. 8402 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8403 IterCnt = 0; 8404 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8405 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8406 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8407 break; 8408 } 8409 8410 // Tracks if we tried to vectorize stores starting from the given tail 8411 // already. 8412 SmallBitVector TriedTails(E, false); 8413 // For stores that start but don't end a link in the chain: 8414 for (int Cnt = E; Cnt > 0; --Cnt) { 8415 int I = Cnt - 1; 8416 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8417 continue; 8418 // We found a store instr that starts a chain. Now follow the chain and try 8419 // to vectorize it. 8420 BoUpSLP::ValueList Operands; 8421 // Collect the chain into a list. 8422 while (I != E && !VectorizedStores.count(Stores[I])) { 8423 Operands.push_back(Stores[I]); 8424 Tails.set(I); 8425 if (ConsecutiveChain[I].second != 1) { 8426 // Mark the new end in the chain and go back, if required. It might be 8427 // required if the original stores come in reversed order, for example. 8428 if (ConsecutiveChain[I].first != E && 8429 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8430 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8431 TriedTails.set(I); 8432 Tails.reset(ConsecutiveChain[I].first); 8433 if (Cnt < ConsecutiveChain[I].first + 2) 8434 Cnt = ConsecutiveChain[I].first + 2; 8435 } 8436 break; 8437 } 8438 // Move to the next value in the chain. 8439 I = ConsecutiveChain[I].first; 8440 } 8441 assert(!Operands.empty() && "Expected non-empty list of stores."); 8442 8443 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8444 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8445 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8446 8447 unsigned MinVF = R.getMinVF(EltSize); 8448 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8449 MaxElts); 8450 8451 // FIXME: Is division-by-2 the correct step? Should we assert that the 8452 // register size is a power-of-2? 8453 unsigned StartIdx = 0; 8454 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8455 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8456 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8457 if (!VectorizedStores.count(Slice.front()) && 8458 !VectorizedStores.count(Slice.back()) && 8459 vectorizeStoreChain(Slice, R, Cnt)) { 8460 // Mark the vectorized stores so that we don't vectorize them again. 8461 VectorizedStores.insert(Slice.begin(), Slice.end()); 8462 Changed = true; 8463 // If we vectorized initial block, no need to try to vectorize it 8464 // again. 8465 if (Cnt == StartIdx) 8466 StartIdx += Size; 8467 Cnt += Size; 8468 continue; 8469 } 8470 ++Cnt; 8471 } 8472 // Check if the whole array was vectorized already - exit. 8473 if (StartIdx >= Operands.size()) 8474 break; 8475 } 8476 } 8477 8478 return Changed; 8479 } 8480 8481 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8482 // Initialize the collections. We will make a single pass over the block. 8483 Stores.clear(); 8484 GEPs.clear(); 8485 8486 // Visit the store and getelementptr instructions in BB and organize them in 8487 // Stores and GEPs according to the underlying objects of their pointer 8488 // operands. 8489 for (Instruction &I : *BB) { 8490 // Ignore store instructions that are volatile or have a pointer operand 8491 // that doesn't point to a scalar type. 8492 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8493 if (!SI->isSimple()) 8494 continue; 8495 if (!isValidElementType(SI->getValueOperand()->getType())) 8496 continue; 8497 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8498 } 8499 8500 // Ignore getelementptr instructions that have more than one index, a 8501 // constant index, or a pointer operand that doesn't point to a scalar 8502 // type. 8503 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8504 auto Idx = GEP->idx_begin()->get(); 8505 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8506 continue; 8507 if (!isValidElementType(Idx->getType())) 8508 continue; 8509 if (GEP->getType()->isVectorTy()) 8510 continue; 8511 GEPs[GEP->getPointerOperand()].push_back(GEP); 8512 } 8513 } 8514 } 8515 8516 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8517 if (!A || !B) 8518 return false; 8519 Value *VL[] = {A, B}; 8520 return tryToVectorizeList(VL, R); 8521 } 8522 8523 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8524 bool LimitForRegisterSize) { 8525 if (VL.size() < 2) 8526 return false; 8527 8528 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8529 << VL.size() << ".\n"); 8530 8531 // Check that all of the parts are instructions of the same type, 8532 // we permit an alternate opcode via InstructionsState. 8533 InstructionsState S = getSameOpcode(VL); 8534 if (!S.getOpcode()) 8535 return false; 8536 8537 Instruction *I0 = cast<Instruction>(S.OpValue); 8538 // Make sure invalid types (including vector type) are rejected before 8539 // determining vectorization factor for scalar instructions. 8540 for (Value *V : VL) { 8541 Type *Ty = V->getType(); 8542 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8543 // NOTE: the following will give user internal llvm type name, which may 8544 // not be useful. 8545 R.getORE()->emit([&]() { 8546 std::string type_str; 8547 llvm::raw_string_ostream rso(type_str); 8548 Ty->print(rso); 8549 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8550 << "Cannot SLP vectorize list: type " 8551 << rso.str() + " is unsupported by vectorizer"; 8552 }); 8553 return false; 8554 } 8555 } 8556 8557 unsigned Sz = R.getVectorElementSize(I0); 8558 unsigned MinVF = R.getMinVF(Sz); 8559 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8560 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8561 if (MaxVF < 2) { 8562 R.getORE()->emit([&]() { 8563 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8564 << "Cannot SLP vectorize list: vectorization factor " 8565 << "less than 2 is not supported"; 8566 }); 8567 return false; 8568 } 8569 8570 bool Changed = false; 8571 bool CandidateFound = false; 8572 InstructionCost MinCost = SLPCostThreshold.getValue(); 8573 Type *ScalarTy = VL[0]->getType(); 8574 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8575 ScalarTy = IE->getOperand(1)->getType(); 8576 8577 unsigned NextInst = 0, MaxInst = VL.size(); 8578 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8579 // No actual vectorization should happen, if number of parts is the same as 8580 // provided vectorization factor (i.e. the scalar type is used for vector 8581 // code during codegen). 8582 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8583 if (TTI->getNumberOfParts(VecTy) == VF) 8584 continue; 8585 for (unsigned I = NextInst; I < MaxInst; ++I) { 8586 unsigned OpsWidth = 0; 8587 8588 if (I + VF > MaxInst) 8589 OpsWidth = MaxInst - I; 8590 else 8591 OpsWidth = VF; 8592 8593 if (!isPowerOf2_32(OpsWidth)) 8594 continue; 8595 8596 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8597 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8598 break; 8599 8600 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8601 // Check that a previous iteration of this loop did not delete the Value. 8602 if (llvm::any_of(Ops, [&R](Value *V) { 8603 auto *I = dyn_cast<Instruction>(V); 8604 return I && R.isDeleted(I); 8605 })) 8606 continue; 8607 8608 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8609 << "\n"); 8610 8611 R.buildTree(Ops); 8612 if (R.isTreeTinyAndNotFullyVectorizable()) 8613 continue; 8614 R.reorderTopToBottom(); 8615 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8616 R.buildExternalUses(); 8617 8618 R.computeMinimumValueSizes(); 8619 InstructionCost Cost = R.getTreeCost(); 8620 CandidateFound = true; 8621 MinCost = std::min(MinCost, Cost); 8622 8623 if (Cost < -SLPCostThreshold) { 8624 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8625 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8626 cast<Instruction>(Ops[0])) 8627 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8628 << " and with tree size " 8629 << ore::NV("TreeSize", R.getTreeSize())); 8630 8631 R.vectorizeTree(); 8632 // Move to the next bundle. 8633 I += VF - 1; 8634 NextInst = I + 1; 8635 Changed = true; 8636 } 8637 } 8638 } 8639 8640 if (!Changed && CandidateFound) { 8641 R.getORE()->emit([&]() { 8642 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8643 << "List vectorization was possible but not beneficial with cost " 8644 << ore::NV("Cost", MinCost) << " >= " 8645 << ore::NV("Treshold", -SLPCostThreshold); 8646 }); 8647 } else if (!Changed) { 8648 R.getORE()->emit([&]() { 8649 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8650 << "Cannot SLP vectorize list: vectorization was impossible" 8651 << " with available vectorization factors"; 8652 }); 8653 } 8654 return Changed; 8655 } 8656 8657 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8658 if (!I) 8659 return false; 8660 8661 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8662 return false; 8663 8664 Value *P = I->getParent(); 8665 8666 // Vectorize in current basic block only. 8667 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8668 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8669 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8670 return false; 8671 8672 // Try to vectorize V. 8673 if (tryToVectorizePair(Op0, Op1, R)) 8674 return true; 8675 8676 auto *A = dyn_cast<BinaryOperator>(Op0); 8677 auto *B = dyn_cast<BinaryOperator>(Op1); 8678 // Try to skip B. 8679 if (B && B->hasOneUse()) { 8680 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8681 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8682 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8683 return true; 8684 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8685 return true; 8686 } 8687 8688 // Try to skip A. 8689 if (A && A->hasOneUse()) { 8690 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8691 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8692 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8693 return true; 8694 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8695 return true; 8696 } 8697 return false; 8698 } 8699 8700 namespace { 8701 8702 /// Model horizontal reductions. 8703 /// 8704 /// A horizontal reduction is a tree of reduction instructions that has values 8705 /// that can be put into a vector as its leaves. For example: 8706 /// 8707 /// mul mul mul mul 8708 /// \ / \ / 8709 /// + + 8710 /// \ / 8711 /// + 8712 /// This tree has "mul" as its leaf values and "+" as its reduction 8713 /// instructions. A reduction can feed into a store or a binary operation 8714 /// feeding a phi. 8715 /// ... 8716 /// \ / 8717 /// + 8718 /// | 8719 /// phi += 8720 /// 8721 /// Or: 8722 /// ... 8723 /// \ / 8724 /// + 8725 /// | 8726 /// *p = 8727 /// 8728 class HorizontalReduction { 8729 using ReductionOpsType = SmallVector<Value *, 16>; 8730 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8731 ReductionOpsListType ReductionOps; 8732 SmallVector<Value *, 32> ReducedVals; 8733 // Use map vector to make stable output. 8734 MapVector<Instruction *, Value *> ExtraArgs; 8735 WeakTrackingVH ReductionRoot; 8736 /// The type of reduction operation. 8737 RecurKind RdxKind; 8738 8739 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8740 8741 static bool isCmpSelMinMax(Instruction *I) { 8742 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8743 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8744 } 8745 8746 // And/or are potentially poison-safe logical patterns like: 8747 // select x, y, false 8748 // select x, true, y 8749 static bool isBoolLogicOp(Instruction *I) { 8750 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8751 match(I, m_LogicalOr(m_Value(), m_Value())); 8752 } 8753 8754 /// Checks if instruction is associative and can be vectorized. 8755 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8756 if (Kind == RecurKind::None) 8757 return false; 8758 8759 // Integer ops that map to select instructions or intrinsics are fine. 8760 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8761 isBoolLogicOp(I)) 8762 return true; 8763 8764 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8765 // FP min/max are associative except for NaN and -0.0. We do not 8766 // have to rule out -0.0 here because the intrinsic semantics do not 8767 // specify a fixed result for it. 8768 return I->getFastMathFlags().noNaNs(); 8769 } 8770 8771 return I->isAssociative(); 8772 } 8773 8774 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8775 // Poison-safe 'or' takes the form: select X, true, Y 8776 // To make that work with the normal operand processing, we skip the 8777 // true value operand. 8778 // TODO: Change the code and data structures to handle this without a hack. 8779 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8780 return I->getOperand(2); 8781 return I->getOperand(Index); 8782 } 8783 8784 /// Checks if the ParentStackElem.first should be marked as a reduction 8785 /// operation with an extra argument or as extra argument itself. 8786 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8787 Value *ExtraArg) { 8788 if (ExtraArgs.count(ParentStackElem.first)) { 8789 ExtraArgs[ParentStackElem.first] = nullptr; 8790 // We ran into something like: 8791 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8792 // The whole ParentStackElem.first should be considered as an extra value 8793 // in this case. 8794 // Do not perform analysis of remaining operands of ParentStackElem.first 8795 // instruction, this whole instruction is an extra argument. 8796 ParentStackElem.second = INVALID_OPERAND_INDEX; 8797 } else { 8798 // We ran into something like: 8799 // ParentStackElem.first += ... + ExtraArg + ... 8800 ExtraArgs[ParentStackElem.first] = ExtraArg; 8801 } 8802 } 8803 8804 /// Creates reduction operation with the current opcode. 8805 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8806 Value *RHS, const Twine &Name, bool UseSelect) { 8807 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8808 switch (Kind) { 8809 case RecurKind::Or: 8810 if (UseSelect && 8811 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8812 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8813 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8814 Name); 8815 case RecurKind::And: 8816 if (UseSelect && 8817 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8818 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8819 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8820 Name); 8821 case RecurKind::Add: 8822 case RecurKind::Mul: 8823 case RecurKind::Xor: 8824 case RecurKind::FAdd: 8825 case RecurKind::FMul: 8826 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8827 Name); 8828 case RecurKind::FMax: 8829 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8830 case RecurKind::FMin: 8831 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8832 case RecurKind::SMax: 8833 if (UseSelect) { 8834 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8835 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8836 } 8837 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8838 case RecurKind::SMin: 8839 if (UseSelect) { 8840 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8841 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8842 } 8843 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8844 case RecurKind::UMax: 8845 if (UseSelect) { 8846 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8847 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8848 } 8849 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8850 case RecurKind::UMin: 8851 if (UseSelect) { 8852 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8853 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8854 } 8855 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8856 default: 8857 llvm_unreachable("Unknown reduction operation."); 8858 } 8859 } 8860 8861 /// Creates reduction operation with the current opcode with the IR flags 8862 /// from \p ReductionOps. 8863 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8864 Value *RHS, const Twine &Name, 8865 const ReductionOpsListType &ReductionOps) { 8866 bool UseSelect = ReductionOps.size() == 2 || 8867 // Logical or/and. 8868 (ReductionOps.size() == 1 && 8869 isa<SelectInst>(ReductionOps.front().front())); 8870 assert((!UseSelect || ReductionOps.size() != 2 || 8871 isa<SelectInst>(ReductionOps[1][0])) && 8872 "Expected cmp + select pairs for reduction"); 8873 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8874 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8875 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8876 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8877 propagateIRFlags(Op, ReductionOps[1]); 8878 return Op; 8879 } 8880 } 8881 propagateIRFlags(Op, ReductionOps[0]); 8882 return Op; 8883 } 8884 8885 /// Creates reduction operation with the current opcode with the IR flags 8886 /// from \p I. 8887 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8888 Value *RHS, const Twine &Name, Instruction *I) { 8889 auto *SelI = dyn_cast<SelectInst>(I); 8890 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8891 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8892 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8893 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8894 } 8895 propagateIRFlags(Op, I); 8896 return Op; 8897 } 8898 8899 static RecurKind getRdxKind(Instruction *I) { 8900 assert(I && "Expected instruction for reduction matching"); 8901 if (match(I, m_Add(m_Value(), m_Value()))) 8902 return RecurKind::Add; 8903 if (match(I, m_Mul(m_Value(), m_Value()))) 8904 return RecurKind::Mul; 8905 if (match(I, m_And(m_Value(), m_Value())) || 8906 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8907 return RecurKind::And; 8908 if (match(I, m_Or(m_Value(), m_Value())) || 8909 match(I, m_LogicalOr(m_Value(), m_Value()))) 8910 return RecurKind::Or; 8911 if (match(I, m_Xor(m_Value(), m_Value()))) 8912 return RecurKind::Xor; 8913 if (match(I, m_FAdd(m_Value(), m_Value()))) 8914 return RecurKind::FAdd; 8915 if (match(I, m_FMul(m_Value(), m_Value()))) 8916 return RecurKind::FMul; 8917 8918 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8919 return RecurKind::FMax; 8920 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8921 return RecurKind::FMin; 8922 8923 // This matches either cmp+select or intrinsics. SLP is expected to handle 8924 // either form. 8925 // TODO: If we are canonicalizing to intrinsics, we can remove several 8926 // special-case paths that deal with selects. 8927 if (match(I, m_SMax(m_Value(), m_Value()))) 8928 return RecurKind::SMax; 8929 if (match(I, m_SMin(m_Value(), m_Value()))) 8930 return RecurKind::SMin; 8931 if (match(I, m_UMax(m_Value(), m_Value()))) 8932 return RecurKind::UMax; 8933 if (match(I, m_UMin(m_Value(), m_Value()))) 8934 return RecurKind::UMin; 8935 8936 if (auto *Select = dyn_cast<SelectInst>(I)) { 8937 // Try harder: look for min/max pattern based on instructions producing 8938 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8939 // During the intermediate stages of SLP, it's very common to have 8940 // pattern like this (since optimizeGatherSequence is run only once 8941 // at the end): 8942 // %1 = extractelement <2 x i32> %a, i32 0 8943 // %2 = extractelement <2 x i32> %a, i32 1 8944 // %cond = icmp sgt i32 %1, %2 8945 // %3 = extractelement <2 x i32> %a, i32 0 8946 // %4 = extractelement <2 x i32> %a, i32 1 8947 // %select = select i1 %cond, i32 %3, i32 %4 8948 CmpInst::Predicate Pred; 8949 Instruction *L1; 8950 Instruction *L2; 8951 8952 Value *LHS = Select->getTrueValue(); 8953 Value *RHS = Select->getFalseValue(); 8954 Value *Cond = Select->getCondition(); 8955 8956 // TODO: Support inverse predicates. 8957 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8958 if (!isa<ExtractElementInst>(RHS) || 8959 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8960 return RecurKind::None; 8961 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8962 if (!isa<ExtractElementInst>(LHS) || 8963 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8964 return RecurKind::None; 8965 } else { 8966 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8967 return RecurKind::None; 8968 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8969 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8970 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8971 return RecurKind::None; 8972 } 8973 8974 switch (Pred) { 8975 default: 8976 return RecurKind::None; 8977 case CmpInst::ICMP_SGT: 8978 case CmpInst::ICMP_SGE: 8979 return RecurKind::SMax; 8980 case CmpInst::ICMP_SLT: 8981 case CmpInst::ICMP_SLE: 8982 return RecurKind::SMin; 8983 case CmpInst::ICMP_UGT: 8984 case CmpInst::ICMP_UGE: 8985 return RecurKind::UMax; 8986 case CmpInst::ICMP_ULT: 8987 case CmpInst::ICMP_ULE: 8988 return RecurKind::UMin; 8989 } 8990 } 8991 return RecurKind::None; 8992 } 8993 8994 /// Get the index of the first operand. 8995 static unsigned getFirstOperandIndex(Instruction *I) { 8996 return isCmpSelMinMax(I) ? 1 : 0; 8997 } 8998 8999 /// Total number of operands in the reduction operation. 9000 static unsigned getNumberOfOperands(Instruction *I) { 9001 return isCmpSelMinMax(I) ? 3 : 2; 9002 } 9003 9004 /// Checks if the instruction is in basic block \p BB. 9005 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9006 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9007 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9008 auto *Sel = cast<SelectInst>(I); 9009 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9010 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9011 } 9012 return I->getParent() == BB; 9013 } 9014 9015 /// Expected number of uses for reduction operations/reduced values. 9016 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9017 if (IsCmpSelMinMax) { 9018 // SelectInst must be used twice while the condition op must have single 9019 // use only. 9020 if (auto *Sel = dyn_cast<SelectInst>(I)) 9021 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9022 return I->hasNUses(2); 9023 } 9024 9025 // Arithmetic reduction operation must be used once only. 9026 return I->hasOneUse(); 9027 } 9028 9029 /// Initializes the list of reduction operations. 9030 void initReductionOps(Instruction *I) { 9031 if (isCmpSelMinMax(I)) 9032 ReductionOps.assign(2, ReductionOpsType()); 9033 else 9034 ReductionOps.assign(1, ReductionOpsType()); 9035 } 9036 9037 /// Add all reduction operations for the reduction instruction \p I. 9038 void addReductionOps(Instruction *I) { 9039 if (isCmpSelMinMax(I)) { 9040 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9041 ReductionOps[1].emplace_back(I); 9042 } else { 9043 ReductionOps[0].emplace_back(I); 9044 } 9045 } 9046 9047 static Value *getLHS(RecurKind Kind, Instruction *I) { 9048 if (Kind == RecurKind::None) 9049 return nullptr; 9050 return I->getOperand(getFirstOperandIndex(I)); 9051 } 9052 static Value *getRHS(RecurKind Kind, Instruction *I) { 9053 if (Kind == RecurKind::None) 9054 return nullptr; 9055 return I->getOperand(getFirstOperandIndex(I) + 1); 9056 } 9057 9058 public: 9059 HorizontalReduction() = default; 9060 9061 /// Try to find a reduction tree. 9062 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9063 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9064 "Phi needs to use the binary operator"); 9065 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9066 isa<IntrinsicInst>(Inst)) && 9067 "Expected binop, select, or intrinsic for reduction matching"); 9068 RdxKind = getRdxKind(Inst); 9069 9070 // We could have a initial reductions that is not an add. 9071 // r *= v1 + v2 + v3 + v4 9072 // In such a case start looking for a tree rooted in the first '+'. 9073 if (Phi) { 9074 if (getLHS(RdxKind, Inst) == Phi) { 9075 Phi = nullptr; 9076 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9077 if (!Inst) 9078 return false; 9079 RdxKind = getRdxKind(Inst); 9080 } else if (getRHS(RdxKind, Inst) == Phi) { 9081 Phi = nullptr; 9082 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9083 if (!Inst) 9084 return false; 9085 RdxKind = getRdxKind(Inst); 9086 } 9087 } 9088 9089 if (!isVectorizable(RdxKind, Inst)) 9090 return false; 9091 9092 // Analyze "regular" integer/FP types for reductions - no target-specific 9093 // types or pointers. 9094 Type *Ty = Inst->getType(); 9095 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9096 return false; 9097 9098 // Though the ultimate reduction may have multiple uses, its condition must 9099 // have only single use. 9100 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9101 if (!Sel->getCondition()->hasOneUse()) 9102 return false; 9103 9104 ReductionRoot = Inst; 9105 9106 // The opcode for leaf values that we perform a reduction on. 9107 // For example: load(x) + load(y) + load(z) + fptoui(w) 9108 // The leaf opcode for 'w' does not match, so we don't include it as a 9109 // potential candidate for the reduction. 9110 unsigned LeafOpcode = 0; 9111 9112 // Post-order traverse the reduction tree starting at Inst. We only handle 9113 // true trees containing binary operators or selects. 9114 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9115 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9116 initReductionOps(Inst); 9117 while (!Stack.empty()) { 9118 Instruction *TreeN = Stack.back().first; 9119 unsigned EdgeToVisit = Stack.back().second++; 9120 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9121 bool IsReducedValue = TreeRdxKind != RdxKind; 9122 9123 // Postorder visit. 9124 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9125 if (IsReducedValue) 9126 ReducedVals.push_back(TreeN); 9127 else { 9128 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9129 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9130 // Check if TreeN is an extra argument of its parent operation. 9131 if (Stack.size() <= 1) { 9132 // TreeN can't be an extra argument as it is a root reduction 9133 // operation. 9134 return false; 9135 } 9136 // Yes, TreeN is an extra argument, do not add it to a list of 9137 // reduction operations. 9138 // Stack[Stack.size() - 2] always points to the parent operation. 9139 markExtraArg(Stack[Stack.size() - 2], TreeN); 9140 ExtraArgs.erase(TreeN); 9141 } else 9142 addReductionOps(TreeN); 9143 } 9144 // Retract. 9145 Stack.pop_back(); 9146 continue; 9147 } 9148 9149 // Visit operands. 9150 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9151 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9152 if (!EdgeInst) { 9153 // Edge value is not a reduction instruction or a leaf instruction. 9154 // (It may be a constant, function argument, or something else.) 9155 markExtraArg(Stack.back(), EdgeVal); 9156 continue; 9157 } 9158 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9159 // Continue analysis if the next operand is a reduction operation or 9160 // (possibly) a leaf value. If the leaf value opcode is not set, 9161 // the first met operation != reduction operation is considered as the 9162 // leaf opcode. 9163 // Only handle trees in the current basic block. 9164 // Each tree node needs to have minimal number of users except for the 9165 // ultimate reduction. 9166 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9167 if (EdgeInst != Phi && EdgeInst != Inst && 9168 hasSameParent(EdgeInst, Inst->getParent()) && 9169 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9170 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9171 if (IsRdxInst) { 9172 // We need to be able to reassociate the reduction operations. 9173 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9174 // I is an extra argument for TreeN (its parent operation). 9175 markExtraArg(Stack.back(), EdgeInst); 9176 continue; 9177 } 9178 } else if (!LeafOpcode) { 9179 LeafOpcode = EdgeInst->getOpcode(); 9180 } 9181 Stack.push_back( 9182 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9183 continue; 9184 } 9185 // I is an extra argument for TreeN (its parent operation). 9186 markExtraArg(Stack.back(), EdgeInst); 9187 } 9188 return true; 9189 } 9190 9191 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9192 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9193 // If there are a sufficient number of reduction values, reduce 9194 // to a nearby power-of-2. We can safely generate oversized 9195 // vectors and rely on the backend to split them to legal sizes. 9196 unsigned NumReducedVals = ReducedVals.size(); 9197 if (NumReducedVals < 4) 9198 return nullptr; 9199 9200 // Intersect the fast-math-flags from all reduction operations. 9201 FastMathFlags RdxFMF; 9202 RdxFMF.set(); 9203 for (ReductionOpsType &RdxOp : ReductionOps) { 9204 for (Value *RdxVal : RdxOp) { 9205 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9206 RdxFMF &= FPMO->getFastMathFlags(); 9207 } 9208 } 9209 9210 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9211 Builder.setFastMathFlags(RdxFMF); 9212 9213 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9214 // The same extra argument may be used several times, so log each attempt 9215 // to use it. 9216 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9217 assert(Pair.first && "DebugLoc must be set."); 9218 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9219 } 9220 9221 // The compare instruction of a min/max is the insertion point for new 9222 // instructions and may be replaced with a new compare instruction. 9223 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9224 assert(isa<SelectInst>(RdxRootInst) && 9225 "Expected min/max reduction to have select root instruction"); 9226 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9227 assert(isa<Instruction>(ScalarCond) && 9228 "Expected min/max reduction to have compare condition"); 9229 return cast<Instruction>(ScalarCond); 9230 }; 9231 9232 // The reduction root is used as the insertion point for new instructions, 9233 // so set it as externally used to prevent it from being deleted. 9234 ExternallyUsedValues[ReductionRoot]; 9235 SmallVector<Value *, 16> IgnoreList; 9236 for (ReductionOpsType &RdxOp : ReductionOps) 9237 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9238 9239 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9240 if (NumReducedVals > ReduxWidth) { 9241 // In the loop below, we are building a tree based on a window of 9242 // 'ReduxWidth' values. 9243 // If the operands of those values have common traits (compare predicate, 9244 // constant operand, etc), then we want to group those together to 9245 // minimize the cost of the reduction. 9246 9247 // TODO: This should be extended to count common operands for 9248 // compares and binops. 9249 9250 // Step 1: Count the number of times each compare predicate occurs. 9251 SmallDenseMap<unsigned, unsigned> PredCountMap; 9252 for (Value *RdxVal : ReducedVals) { 9253 CmpInst::Predicate Pred; 9254 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9255 ++PredCountMap[Pred]; 9256 } 9257 // Step 2: Sort the values so the most common predicates come first. 9258 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9259 CmpInst::Predicate PredA, PredB; 9260 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9261 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9262 return PredCountMap[PredA] > PredCountMap[PredB]; 9263 } 9264 return false; 9265 }); 9266 } 9267 9268 Value *VectorizedTree = nullptr; 9269 unsigned i = 0; 9270 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9271 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9272 V.buildTree(VL, IgnoreList); 9273 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9274 break; 9275 if (V.isLoadCombineReductionCandidate(RdxKind)) 9276 break; 9277 V.reorderTopToBottom(); 9278 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9279 V.buildExternalUses(ExternallyUsedValues); 9280 9281 // For a poison-safe boolean logic reduction, do not replace select 9282 // instructions with logic ops. All reduced values will be frozen (see 9283 // below) to prevent leaking poison. 9284 if (isa<SelectInst>(ReductionRoot) && 9285 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9286 NumReducedVals != ReduxWidth) 9287 break; 9288 9289 V.computeMinimumValueSizes(); 9290 9291 // Estimate cost. 9292 InstructionCost TreeCost = 9293 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9294 InstructionCost ReductionCost = 9295 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9296 InstructionCost Cost = TreeCost + ReductionCost; 9297 if (!Cost.isValid()) { 9298 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9299 return nullptr; 9300 } 9301 if (Cost >= -SLPCostThreshold) { 9302 V.getORE()->emit([&]() { 9303 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9304 cast<Instruction>(VL[0])) 9305 << "Vectorizing horizontal reduction is possible" 9306 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9307 << " and threshold " 9308 << ore::NV("Threshold", -SLPCostThreshold); 9309 }); 9310 break; 9311 } 9312 9313 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9314 << Cost << ". (HorRdx)\n"); 9315 V.getORE()->emit([&]() { 9316 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9317 cast<Instruction>(VL[0])) 9318 << "Vectorized horizontal reduction with cost " 9319 << ore::NV("Cost", Cost) << " and with tree size " 9320 << ore::NV("TreeSize", V.getTreeSize()); 9321 }); 9322 9323 // Vectorize a tree. 9324 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9325 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9326 9327 // Emit a reduction. If the root is a select (min/max idiom), the insert 9328 // point is the compare condition of that select. 9329 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9330 if (isCmpSelMinMax(RdxRootInst)) 9331 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9332 else 9333 Builder.SetInsertPoint(RdxRootInst); 9334 9335 // To prevent poison from leaking across what used to be sequential, safe, 9336 // scalar boolean logic operations, the reduction operand must be frozen. 9337 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9338 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9339 9340 Value *ReducedSubTree = 9341 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9342 9343 if (!VectorizedTree) { 9344 // Initialize the final value in the reduction. 9345 VectorizedTree = ReducedSubTree; 9346 } else { 9347 // Update the final value in the reduction. 9348 Builder.SetCurrentDebugLocation(Loc); 9349 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9350 ReducedSubTree, "op.rdx", ReductionOps); 9351 } 9352 i += ReduxWidth; 9353 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9354 } 9355 9356 if (VectorizedTree) { 9357 // Finish the reduction. 9358 for (; i < NumReducedVals; ++i) { 9359 auto *I = cast<Instruction>(ReducedVals[i]); 9360 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9361 VectorizedTree = 9362 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9363 } 9364 for (auto &Pair : ExternallyUsedValues) { 9365 // Add each externally used value to the final reduction. 9366 for (auto *I : Pair.second) { 9367 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9368 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9369 Pair.first, "op.extra", I); 9370 } 9371 } 9372 9373 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9374 9375 // Mark all scalar reduction ops for deletion, they are replaced by the 9376 // vector reductions. 9377 V.eraseInstructions(IgnoreList); 9378 } 9379 return VectorizedTree; 9380 } 9381 9382 unsigned numReductionValues() const { return ReducedVals.size(); } 9383 9384 private: 9385 /// Calculate the cost of a reduction. 9386 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9387 Value *FirstReducedVal, unsigned ReduxWidth, 9388 FastMathFlags FMF) { 9389 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9390 Type *ScalarTy = FirstReducedVal->getType(); 9391 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9392 InstructionCost VectorCost, ScalarCost; 9393 switch (RdxKind) { 9394 case RecurKind::Add: 9395 case RecurKind::Mul: 9396 case RecurKind::Or: 9397 case RecurKind::And: 9398 case RecurKind::Xor: 9399 case RecurKind::FAdd: 9400 case RecurKind::FMul: { 9401 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9402 VectorCost = 9403 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9404 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9405 break; 9406 } 9407 case RecurKind::FMax: 9408 case RecurKind::FMin: { 9409 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9410 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9411 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9412 /*IsUnsigned=*/false, CostKind); 9413 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9414 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9415 SclCondTy, RdxPred, CostKind) + 9416 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9417 SclCondTy, RdxPred, CostKind); 9418 break; 9419 } 9420 case RecurKind::SMax: 9421 case RecurKind::SMin: 9422 case RecurKind::UMax: 9423 case RecurKind::UMin: { 9424 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9425 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9426 bool IsUnsigned = 9427 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9428 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9429 CostKind); 9430 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9431 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9432 SclCondTy, RdxPred, CostKind) + 9433 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9434 SclCondTy, RdxPred, CostKind); 9435 break; 9436 } 9437 default: 9438 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9439 } 9440 9441 // Scalar cost is repeated for N-1 elements. 9442 ScalarCost *= (ReduxWidth - 1); 9443 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9444 << " for reduction that starts with " << *FirstReducedVal 9445 << " (It is a splitting reduction)\n"); 9446 return VectorCost - ScalarCost; 9447 } 9448 9449 /// Emit a horizontal reduction of the vectorized value. 9450 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9451 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9452 assert(VectorizedValue && "Need to have a vectorized tree node"); 9453 assert(isPowerOf2_32(ReduxWidth) && 9454 "We only handle power-of-two reductions for now"); 9455 assert(RdxKind != RecurKind::FMulAdd && 9456 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9457 9458 ++NumVectorInstructions; 9459 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9460 } 9461 }; 9462 9463 } // end anonymous namespace 9464 9465 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9466 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9467 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9468 9469 unsigned AggregateSize = 1; 9470 auto *IV = cast<InsertValueInst>(InsertInst); 9471 Type *CurrentType = IV->getType(); 9472 do { 9473 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9474 for (auto *Elt : ST->elements()) 9475 if (Elt != ST->getElementType(0)) // check homogeneity 9476 return None; 9477 AggregateSize *= ST->getNumElements(); 9478 CurrentType = ST->getElementType(0); 9479 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9480 AggregateSize *= AT->getNumElements(); 9481 CurrentType = AT->getElementType(); 9482 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9483 AggregateSize *= VT->getNumElements(); 9484 return AggregateSize; 9485 } else if (CurrentType->isSingleValueType()) { 9486 return AggregateSize; 9487 } else { 9488 return None; 9489 } 9490 } while (true); 9491 } 9492 9493 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9494 TargetTransformInfo *TTI, 9495 SmallVectorImpl<Value *> &BuildVectorOpds, 9496 SmallVectorImpl<Value *> &InsertElts, 9497 unsigned OperandOffset) { 9498 do { 9499 Value *InsertedOperand = LastInsertInst->getOperand(1); 9500 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9501 if (!OperandIndex) 9502 return false; 9503 if (isa<InsertElementInst>(InsertedOperand) || 9504 isa<InsertValueInst>(InsertedOperand)) { 9505 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9506 BuildVectorOpds, InsertElts, *OperandIndex)) 9507 return false; 9508 } else { 9509 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9510 InsertElts[*OperandIndex] = LastInsertInst; 9511 } 9512 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9513 } while (LastInsertInst != nullptr && 9514 (isa<InsertValueInst>(LastInsertInst) || 9515 isa<InsertElementInst>(LastInsertInst)) && 9516 LastInsertInst->hasOneUse()); 9517 return true; 9518 } 9519 9520 /// Recognize construction of vectors like 9521 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9522 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9523 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9524 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9525 /// starting from the last insertelement or insertvalue instruction. 9526 /// 9527 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9528 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9529 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9530 /// 9531 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9532 /// 9533 /// \return true if it matches. 9534 static bool findBuildAggregate(Instruction *LastInsertInst, 9535 TargetTransformInfo *TTI, 9536 SmallVectorImpl<Value *> &BuildVectorOpds, 9537 SmallVectorImpl<Value *> &InsertElts) { 9538 9539 assert((isa<InsertElementInst>(LastInsertInst) || 9540 isa<InsertValueInst>(LastInsertInst)) && 9541 "Expected insertelement or insertvalue instruction!"); 9542 9543 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9544 "Expected empty result vectors!"); 9545 9546 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9547 if (!AggregateSize) 9548 return false; 9549 BuildVectorOpds.resize(*AggregateSize); 9550 InsertElts.resize(*AggregateSize); 9551 9552 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9553 0)) { 9554 llvm::erase_value(BuildVectorOpds, nullptr); 9555 llvm::erase_value(InsertElts, nullptr); 9556 if (BuildVectorOpds.size() >= 2) 9557 return true; 9558 } 9559 9560 return false; 9561 } 9562 9563 /// Try and get a reduction value from a phi node. 9564 /// 9565 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9566 /// if they come from either \p ParentBB or a containing loop latch. 9567 /// 9568 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9569 /// if not possible. 9570 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9571 BasicBlock *ParentBB, LoopInfo *LI) { 9572 // There are situations where the reduction value is not dominated by the 9573 // reduction phi. Vectorizing such cases has been reported to cause 9574 // miscompiles. See PR25787. 9575 auto DominatedReduxValue = [&](Value *R) { 9576 return isa<Instruction>(R) && 9577 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9578 }; 9579 9580 Value *Rdx = nullptr; 9581 9582 // Return the incoming value if it comes from the same BB as the phi node. 9583 if (P->getIncomingBlock(0) == ParentBB) { 9584 Rdx = P->getIncomingValue(0); 9585 } else if (P->getIncomingBlock(1) == ParentBB) { 9586 Rdx = P->getIncomingValue(1); 9587 } 9588 9589 if (Rdx && DominatedReduxValue(Rdx)) 9590 return Rdx; 9591 9592 // Otherwise, check whether we have a loop latch to look at. 9593 Loop *BBL = LI->getLoopFor(ParentBB); 9594 if (!BBL) 9595 return nullptr; 9596 BasicBlock *BBLatch = BBL->getLoopLatch(); 9597 if (!BBLatch) 9598 return nullptr; 9599 9600 // There is a loop latch, return the incoming value if it comes from 9601 // that. This reduction pattern occasionally turns up. 9602 if (P->getIncomingBlock(0) == BBLatch) { 9603 Rdx = P->getIncomingValue(0); 9604 } else if (P->getIncomingBlock(1) == BBLatch) { 9605 Rdx = P->getIncomingValue(1); 9606 } 9607 9608 if (Rdx && DominatedReduxValue(Rdx)) 9609 return Rdx; 9610 9611 return nullptr; 9612 } 9613 9614 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9615 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9616 return true; 9617 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9618 return true; 9619 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9620 return true; 9621 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9622 return true; 9623 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9624 return true; 9625 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9626 return true; 9627 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9628 return true; 9629 return false; 9630 } 9631 9632 /// Attempt to reduce a horizontal reduction. 9633 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9634 /// with reduction operators \a Root (or one of its operands) in a basic block 9635 /// \a BB, then check if it can be done. If horizontal reduction is not found 9636 /// and root instruction is a binary operation, vectorization of the operands is 9637 /// attempted. 9638 /// \returns true if a horizontal reduction was matched and reduced or operands 9639 /// of one of the binary instruction were vectorized. 9640 /// \returns false if a horizontal reduction was not matched (or not possible) 9641 /// or no vectorization of any binary operation feeding \a Root instruction was 9642 /// performed. 9643 static bool tryToVectorizeHorReductionOrInstOperands( 9644 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9645 TargetTransformInfo *TTI, 9646 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9647 if (!ShouldVectorizeHor) 9648 return false; 9649 9650 if (!Root) 9651 return false; 9652 9653 if (Root->getParent() != BB || isa<PHINode>(Root)) 9654 return false; 9655 // Start analysis starting from Root instruction. If horizontal reduction is 9656 // found, try to vectorize it. If it is not a horizontal reduction or 9657 // vectorization is not possible or not effective, and currently analyzed 9658 // instruction is a binary operation, try to vectorize the operands, using 9659 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9660 // the same procedure considering each operand as a possible root of the 9661 // horizontal reduction. 9662 // Interrupt the process if the Root instruction itself was vectorized or all 9663 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9664 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9665 // CmpInsts so we can skip extra attempts in 9666 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9667 std::queue<std::pair<Instruction *, unsigned>> Stack; 9668 Stack.emplace(Root, 0); 9669 SmallPtrSet<Value *, 8> VisitedInstrs; 9670 SmallVector<WeakTrackingVH> PostponedInsts; 9671 bool Res = false; 9672 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9673 Value *&B1) -> Value * { 9674 bool IsBinop = matchRdxBop(Inst, B0, B1); 9675 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9676 if (IsBinop || IsSelect) { 9677 HorizontalReduction HorRdx; 9678 if (HorRdx.matchAssociativeReduction(P, Inst)) 9679 return HorRdx.tryToReduce(R, TTI); 9680 } 9681 return nullptr; 9682 }; 9683 while (!Stack.empty()) { 9684 Instruction *Inst; 9685 unsigned Level; 9686 std::tie(Inst, Level) = Stack.front(); 9687 Stack.pop(); 9688 // Do not try to analyze instruction that has already been vectorized. 9689 // This may happen when we vectorize instruction operands on a previous 9690 // iteration while stack was populated before that happened. 9691 if (R.isDeleted(Inst)) 9692 continue; 9693 Value *B0 = nullptr, *B1 = nullptr; 9694 if (Value *V = TryToReduce(Inst, B0, B1)) { 9695 Res = true; 9696 // Set P to nullptr to avoid re-analysis of phi node in 9697 // matchAssociativeReduction function unless this is the root node. 9698 P = nullptr; 9699 if (auto *I = dyn_cast<Instruction>(V)) { 9700 // Try to find another reduction. 9701 Stack.emplace(I, Level); 9702 continue; 9703 } 9704 } else { 9705 bool IsBinop = B0 && B1; 9706 if (P && IsBinop) { 9707 Inst = dyn_cast<Instruction>(B0); 9708 if (Inst == P) 9709 Inst = dyn_cast<Instruction>(B1); 9710 if (!Inst) { 9711 // Set P to nullptr to avoid re-analysis of phi node in 9712 // matchAssociativeReduction function unless this is the root node. 9713 P = nullptr; 9714 continue; 9715 } 9716 } 9717 // Set P to nullptr to avoid re-analysis of phi node in 9718 // matchAssociativeReduction function unless this is the root node. 9719 P = nullptr; 9720 // Do not try to vectorize CmpInst operands, this is done separately. 9721 // Final attempt for binop args vectorization should happen after the loop 9722 // to try to find reductions. 9723 if (!isa<CmpInst>(Inst)) 9724 PostponedInsts.push_back(Inst); 9725 } 9726 9727 // Try to vectorize operands. 9728 // Continue analysis for the instruction from the same basic block only to 9729 // save compile time. 9730 if (++Level < RecursionMaxDepth) 9731 for (auto *Op : Inst->operand_values()) 9732 if (VisitedInstrs.insert(Op).second) 9733 if (auto *I = dyn_cast<Instruction>(Op)) 9734 // Do not try to vectorize CmpInst operands, this is done 9735 // separately. 9736 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9737 I->getParent() == BB) 9738 Stack.emplace(I, Level); 9739 } 9740 // Try to vectorized binops where reductions were not found. 9741 for (Value *V : PostponedInsts) 9742 if (auto *Inst = dyn_cast<Instruction>(V)) 9743 if (!R.isDeleted(Inst)) 9744 Res |= Vectorize(Inst, R); 9745 return Res; 9746 } 9747 9748 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9749 BasicBlock *BB, BoUpSLP &R, 9750 TargetTransformInfo *TTI) { 9751 auto *I = dyn_cast_or_null<Instruction>(V); 9752 if (!I) 9753 return false; 9754 9755 if (!isa<BinaryOperator>(I)) 9756 P = nullptr; 9757 // Try to match and vectorize a horizontal reduction. 9758 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9759 return tryToVectorize(I, R); 9760 }; 9761 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9762 ExtraVectorization); 9763 } 9764 9765 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9766 BasicBlock *BB, BoUpSLP &R) { 9767 const DataLayout &DL = BB->getModule()->getDataLayout(); 9768 if (!R.canMapToVector(IVI->getType(), DL)) 9769 return false; 9770 9771 SmallVector<Value *, 16> BuildVectorOpds; 9772 SmallVector<Value *, 16> BuildVectorInsts; 9773 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9774 return false; 9775 9776 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9777 // Aggregate value is unlikely to be processed in vector register. 9778 return tryToVectorizeList(BuildVectorOpds, R); 9779 } 9780 9781 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9782 BasicBlock *BB, BoUpSLP &R) { 9783 SmallVector<Value *, 16> BuildVectorInsts; 9784 SmallVector<Value *, 16> BuildVectorOpds; 9785 SmallVector<int> Mask; 9786 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9787 (llvm::all_of( 9788 BuildVectorOpds, 9789 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9790 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9791 return false; 9792 9793 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9794 return tryToVectorizeList(BuildVectorInsts, R); 9795 } 9796 9797 template <typename T> 9798 static bool 9799 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9800 function_ref<unsigned(T *)> Limit, 9801 function_ref<bool(T *, T *)> Comparator, 9802 function_ref<bool(T *, T *)> AreCompatible, 9803 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9804 bool LimitForRegisterSize) { 9805 bool Changed = false; 9806 // Sort by type, parent, operands. 9807 stable_sort(Incoming, Comparator); 9808 9809 // Try to vectorize elements base on their type. 9810 SmallVector<T *> Candidates; 9811 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9812 // Look for the next elements with the same type, parent and operand 9813 // kinds. 9814 auto *SameTypeIt = IncIt; 9815 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9816 ++SameTypeIt; 9817 9818 // Try to vectorize them. 9819 unsigned NumElts = (SameTypeIt - IncIt); 9820 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9821 << NumElts << ")\n"); 9822 // The vectorization is a 3-state attempt: 9823 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9824 // size of maximal register at first. 9825 // 2. Try to vectorize remaining instructions with the same type, if 9826 // possible. This may result in the better vectorization results rather than 9827 // if we try just to vectorize instructions with the same/alternate opcodes. 9828 // 3. Final attempt to try to vectorize all instructions with the 9829 // same/alternate ops only, this may result in some extra final 9830 // vectorization. 9831 if (NumElts > 1 && 9832 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9833 // Success start over because instructions might have been changed. 9834 Changed = true; 9835 } else if (NumElts < Limit(*IncIt) && 9836 (Candidates.empty() || 9837 Candidates.front()->getType() == (*IncIt)->getType())) { 9838 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9839 } 9840 // Final attempt to vectorize instructions with the same types. 9841 if (Candidates.size() > 1 && 9842 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9843 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9844 // Success start over because instructions might have been changed. 9845 Changed = true; 9846 } else if (LimitForRegisterSize) { 9847 // Try to vectorize using small vectors. 9848 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9849 It != End;) { 9850 auto *SameTypeIt = It; 9851 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9852 ++SameTypeIt; 9853 unsigned NumElts = (SameTypeIt - It); 9854 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9855 /*LimitForRegisterSize=*/false)) 9856 Changed = true; 9857 It = SameTypeIt; 9858 } 9859 } 9860 Candidates.clear(); 9861 } 9862 9863 // Start over at the next instruction of a different type (or the end). 9864 IncIt = SameTypeIt; 9865 } 9866 return Changed; 9867 } 9868 9869 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9870 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9871 /// operands. If IsCompatibility is false, function implements strict weak 9872 /// ordering relation between two cmp instructions, returning true if the first 9873 /// instruction is "less" than the second, i.e. its predicate is less than the 9874 /// predicate of the second or the operands IDs are less than the operands IDs 9875 /// of the second cmp instruction. 9876 template <bool IsCompatibility> 9877 static bool compareCmp(Value *V, Value *V2, 9878 function_ref<bool(Instruction *)> IsDeleted) { 9879 auto *CI1 = cast<CmpInst>(V); 9880 auto *CI2 = cast<CmpInst>(V2); 9881 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9882 return false; 9883 if (CI1->getOperand(0)->getType()->getTypeID() < 9884 CI2->getOperand(0)->getType()->getTypeID()) 9885 return !IsCompatibility; 9886 if (CI1->getOperand(0)->getType()->getTypeID() > 9887 CI2->getOperand(0)->getType()->getTypeID()) 9888 return false; 9889 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9890 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9891 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9892 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9893 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9894 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9895 if (BasePred1 < BasePred2) 9896 return !IsCompatibility; 9897 if (BasePred1 > BasePred2) 9898 return false; 9899 // Compare operands. 9900 bool LEPreds = Pred1 <= Pred2; 9901 bool GEPreds = Pred1 >= Pred2; 9902 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9903 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9904 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9905 if (Op1->getValueID() < Op2->getValueID()) 9906 return !IsCompatibility; 9907 if (Op1->getValueID() > Op2->getValueID()) 9908 return false; 9909 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9910 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9911 if (I1->getParent() != I2->getParent()) 9912 return false; 9913 InstructionsState S = getSameOpcode({I1, I2}); 9914 if (S.getOpcode()) 9915 continue; 9916 return false; 9917 } 9918 } 9919 return IsCompatibility; 9920 } 9921 9922 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9923 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9924 bool AtTerminator) { 9925 bool OpsChanged = false; 9926 SmallVector<Instruction *, 4> PostponedCmps; 9927 for (auto *I : reverse(Instructions)) { 9928 if (R.isDeleted(I)) 9929 continue; 9930 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9931 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9932 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9933 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9934 else if (isa<CmpInst>(I)) 9935 PostponedCmps.push_back(I); 9936 } 9937 if (AtTerminator) { 9938 // Try to find reductions first. 9939 for (Instruction *I : PostponedCmps) { 9940 if (R.isDeleted(I)) 9941 continue; 9942 for (Value *Op : I->operands()) 9943 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9944 } 9945 // Try to vectorize operands as vector bundles. 9946 for (Instruction *I : PostponedCmps) { 9947 if (R.isDeleted(I)) 9948 continue; 9949 OpsChanged |= tryToVectorize(I, R); 9950 } 9951 // Try to vectorize list of compares. 9952 // Sort by type, compare predicate, etc. 9953 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9954 return compareCmp<false>(V, V2, 9955 [&R](Instruction *I) { return R.isDeleted(I); }); 9956 }; 9957 9958 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9959 if (V1 == V2) 9960 return true; 9961 return compareCmp<true>(V1, V2, 9962 [&R](Instruction *I) { return R.isDeleted(I); }); 9963 }; 9964 auto Limit = [&R](Value *V) { 9965 unsigned EltSize = R.getVectorElementSize(V); 9966 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9967 }; 9968 9969 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9970 OpsChanged |= tryToVectorizeSequence<Value>( 9971 Vals, Limit, CompareSorter, AreCompatibleCompares, 9972 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9973 // Exclude possible reductions from other blocks. 9974 bool ArePossiblyReducedInOtherBlock = 9975 any_of(Candidates, [](Value *V) { 9976 return any_of(V->users(), [V](User *U) { 9977 return isa<SelectInst>(U) && 9978 cast<SelectInst>(U)->getParent() != 9979 cast<Instruction>(V)->getParent(); 9980 }); 9981 }); 9982 if (ArePossiblyReducedInOtherBlock) 9983 return false; 9984 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9985 }, 9986 /*LimitForRegisterSize=*/true); 9987 Instructions.clear(); 9988 } else { 9989 // Insert in reverse order since the PostponedCmps vector was filled in 9990 // reverse order. 9991 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9992 } 9993 return OpsChanged; 9994 } 9995 9996 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9997 bool Changed = false; 9998 SmallVector<Value *, 4> Incoming; 9999 SmallPtrSet<Value *, 16> VisitedInstrs; 10000 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10001 // node. Allows better to identify the chains that can be vectorized in the 10002 // better way. 10003 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10004 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10005 assert(isValidElementType(V1->getType()) && 10006 isValidElementType(V2->getType()) && 10007 "Expected vectorizable types only."); 10008 // It is fine to compare type IDs here, since we expect only vectorizable 10009 // types, like ints, floats and pointers, we don't care about other type. 10010 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10011 return true; 10012 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10013 return false; 10014 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10015 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10016 if (Opcodes1.size() < Opcodes2.size()) 10017 return true; 10018 if (Opcodes1.size() > Opcodes2.size()) 10019 return false; 10020 Optional<bool> ConstOrder; 10021 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10022 // Undefs are compatible with any other value. 10023 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10024 if (!ConstOrder) 10025 ConstOrder = 10026 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10027 continue; 10028 } 10029 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10030 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10031 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10032 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10033 if (!NodeI1) 10034 return NodeI2 != nullptr; 10035 if (!NodeI2) 10036 return false; 10037 assert((NodeI1 == NodeI2) == 10038 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10039 "Different nodes should have different DFS numbers"); 10040 if (NodeI1 != NodeI2) 10041 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10042 InstructionsState S = getSameOpcode({I1, I2}); 10043 if (S.getOpcode()) 10044 continue; 10045 return I1->getOpcode() < I2->getOpcode(); 10046 } 10047 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10048 if (!ConstOrder) 10049 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10050 continue; 10051 } 10052 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10053 return true; 10054 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10055 return false; 10056 } 10057 return ConstOrder && *ConstOrder; 10058 }; 10059 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10060 if (V1 == V2) 10061 return true; 10062 if (V1->getType() != V2->getType()) 10063 return false; 10064 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10065 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10066 if (Opcodes1.size() != Opcodes2.size()) 10067 return false; 10068 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10069 // Undefs are compatible with any other value. 10070 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10071 continue; 10072 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10073 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10074 if (I1->getParent() != I2->getParent()) 10075 return false; 10076 InstructionsState S = getSameOpcode({I1, I2}); 10077 if (S.getOpcode()) 10078 continue; 10079 return false; 10080 } 10081 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10082 continue; 10083 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10084 return false; 10085 } 10086 return true; 10087 }; 10088 auto Limit = [&R](Value *V) { 10089 unsigned EltSize = R.getVectorElementSize(V); 10090 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10091 }; 10092 10093 bool HaveVectorizedPhiNodes = false; 10094 do { 10095 // Collect the incoming values from the PHIs. 10096 Incoming.clear(); 10097 for (Instruction &I : *BB) { 10098 PHINode *P = dyn_cast<PHINode>(&I); 10099 if (!P) 10100 break; 10101 10102 // No need to analyze deleted, vectorized and non-vectorizable 10103 // instructions. 10104 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10105 isValidElementType(P->getType())) 10106 Incoming.push_back(P); 10107 } 10108 10109 // Find the corresponding non-phi nodes for better matching when trying to 10110 // build the tree. 10111 for (Value *V : Incoming) { 10112 SmallVectorImpl<Value *> &Opcodes = 10113 PHIToOpcodes.try_emplace(V).first->getSecond(); 10114 if (!Opcodes.empty()) 10115 continue; 10116 SmallVector<Value *, 4> Nodes(1, V); 10117 SmallPtrSet<Value *, 4> Visited; 10118 while (!Nodes.empty()) { 10119 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10120 if (!Visited.insert(PHI).second) 10121 continue; 10122 for (Value *V : PHI->incoming_values()) { 10123 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10124 Nodes.push_back(PHI1); 10125 continue; 10126 } 10127 Opcodes.emplace_back(V); 10128 } 10129 } 10130 } 10131 10132 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10133 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10134 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10135 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10136 }, 10137 /*LimitForRegisterSize=*/true); 10138 Changed |= HaveVectorizedPhiNodes; 10139 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10140 } while (HaveVectorizedPhiNodes); 10141 10142 VisitedInstrs.clear(); 10143 10144 SmallVector<Instruction *, 8> PostProcessInstructions; 10145 SmallDenseSet<Instruction *, 4> KeyNodes; 10146 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10147 // Skip instructions with scalable type. The num of elements is unknown at 10148 // compile-time for scalable type. 10149 if (isa<ScalableVectorType>(it->getType())) 10150 continue; 10151 10152 // Skip instructions marked for the deletion. 10153 if (R.isDeleted(&*it)) 10154 continue; 10155 // We may go through BB multiple times so skip the one we have checked. 10156 if (!VisitedInstrs.insert(&*it).second) { 10157 if (it->use_empty() && KeyNodes.contains(&*it) && 10158 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10159 it->isTerminator())) { 10160 // We would like to start over since some instructions are deleted 10161 // and the iterator may become invalid value. 10162 Changed = true; 10163 it = BB->begin(); 10164 e = BB->end(); 10165 } 10166 continue; 10167 } 10168 10169 if (isa<DbgInfoIntrinsic>(it)) 10170 continue; 10171 10172 // Try to vectorize reductions that use PHINodes. 10173 if (PHINode *P = dyn_cast<PHINode>(it)) { 10174 // Check that the PHI is a reduction PHI. 10175 if (P->getNumIncomingValues() == 2) { 10176 // Try to match and vectorize a horizontal reduction. 10177 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10178 TTI)) { 10179 Changed = true; 10180 it = BB->begin(); 10181 e = BB->end(); 10182 continue; 10183 } 10184 } 10185 // Try to vectorize the incoming values of the PHI, to catch reductions 10186 // that feed into PHIs. 10187 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10188 // Skip if the incoming block is the current BB for now. Also, bypass 10189 // unreachable IR for efficiency and to avoid crashing. 10190 // TODO: Collect the skipped incoming values and try to vectorize them 10191 // after processing BB. 10192 if (BB == P->getIncomingBlock(I) || 10193 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10194 continue; 10195 10196 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10197 P->getIncomingBlock(I), R, TTI); 10198 } 10199 continue; 10200 } 10201 10202 // Ran into an instruction without users, like terminator, or function call 10203 // with ignored return value, store. Ignore unused instructions (basing on 10204 // instruction type, except for CallInst and InvokeInst). 10205 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10206 isa<InvokeInst>(it))) { 10207 KeyNodes.insert(&*it); 10208 bool OpsChanged = false; 10209 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10210 for (auto *V : it->operand_values()) { 10211 // Try to match and vectorize a horizontal reduction. 10212 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10213 } 10214 } 10215 // Start vectorization of post-process list of instructions from the 10216 // top-tree instructions to try to vectorize as many instructions as 10217 // possible. 10218 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10219 it->isTerminator()); 10220 if (OpsChanged) { 10221 // We would like to start over since some instructions are deleted 10222 // and the iterator may become invalid value. 10223 Changed = true; 10224 it = BB->begin(); 10225 e = BB->end(); 10226 continue; 10227 } 10228 } 10229 10230 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10231 isa<InsertValueInst>(it)) 10232 PostProcessInstructions.push_back(&*it); 10233 } 10234 10235 return Changed; 10236 } 10237 10238 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10239 auto Changed = false; 10240 for (auto &Entry : GEPs) { 10241 // If the getelementptr list has fewer than two elements, there's nothing 10242 // to do. 10243 if (Entry.second.size() < 2) 10244 continue; 10245 10246 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10247 << Entry.second.size() << ".\n"); 10248 10249 // Process the GEP list in chunks suitable for the target's supported 10250 // vector size. If a vector register can't hold 1 element, we are done. We 10251 // are trying to vectorize the index computations, so the maximum number of 10252 // elements is based on the size of the index expression, rather than the 10253 // size of the GEP itself (the target's pointer size). 10254 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10255 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10256 if (MaxVecRegSize < EltSize) 10257 continue; 10258 10259 unsigned MaxElts = MaxVecRegSize / EltSize; 10260 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10261 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10262 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10263 10264 // Initialize a set a candidate getelementptrs. Note that we use a 10265 // SetVector here to preserve program order. If the index computations 10266 // are vectorizable and begin with loads, we want to minimize the chance 10267 // of having to reorder them later. 10268 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10269 10270 // Some of the candidates may have already been vectorized after we 10271 // initially collected them. If so, they are marked as deleted, so remove 10272 // them from the set of candidates. 10273 Candidates.remove_if( 10274 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10275 10276 // Remove from the set of candidates all pairs of getelementptrs with 10277 // constant differences. Such getelementptrs are likely not good 10278 // candidates for vectorization in a bottom-up phase since one can be 10279 // computed from the other. We also ensure all candidate getelementptr 10280 // indices are unique. 10281 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10282 auto *GEPI = GEPList[I]; 10283 if (!Candidates.count(GEPI)) 10284 continue; 10285 auto *SCEVI = SE->getSCEV(GEPList[I]); 10286 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10287 auto *GEPJ = GEPList[J]; 10288 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10289 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10290 Candidates.remove(GEPI); 10291 Candidates.remove(GEPJ); 10292 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10293 Candidates.remove(GEPJ); 10294 } 10295 } 10296 } 10297 10298 // We break out of the above computation as soon as we know there are 10299 // fewer than two candidates remaining. 10300 if (Candidates.size() < 2) 10301 continue; 10302 10303 // Add the single, non-constant index of each candidate to the bundle. We 10304 // ensured the indices met these constraints when we originally collected 10305 // the getelementptrs. 10306 SmallVector<Value *, 16> Bundle(Candidates.size()); 10307 auto BundleIndex = 0u; 10308 for (auto *V : Candidates) { 10309 auto *GEP = cast<GetElementPtrInst>(V); 10310 auto *GEPIdx = GEP->idx_begin()->get(); 10311 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10312 Bundle[BundleIndex++] = GEPIdx; 10313 } 10314 10315 // Try and vectorize the indices. We are currently only interested in 10316 // gather-like cases of the form: 10317 // 10318 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10319 // 10320 // where the loads of "a", the loads of "b", and the subtractions can be 10321 // performed in parallel. It's likely that detecting this pattern in a 10322 // bottom-up phase will be simpler and less costly than building a 10323 // full-blown top-down phase beginning at the consecutive loads. 10324 Changed |= tryToVectorizeList(Bundle, R); 10325 } 10326 } 10327 return Changed; 10328 } 10329 10330 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10331 bool Changed = false; 10332 // Sort by type, base pointers and values operand. Value operands must be 10333 // compatible (have the same opcode, same parent), otherwise it is 10334 // definitely not profitable to try to vectorize them. 10335 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10336 if (V->getPointerOperandType()->getTypeID() < 10337 V2->getPointerOperandType()->getTypeID()) 10338 return true; 10339 if (V->getPointerOperandType()->getTypeID() > 10340 V2->getPointerOperandType()->getTypeID()) 10341 return false; 10342 // UndefValues are compatible with all other values. 10343 if (isa<UndefValue>(V->getValueOperand()) || 10344 isa<UndefValue>(V2->getValueOperand())) 10345 return false; 10346 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10347 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10348 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10349 DT->getNode(I1->getParent()); 10350 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10351 DT->getNode(I2->getParent()); 10352 assert(NodeI1 && "Should only process reachable instructions"); 10353 assert(NodeI1 && "Should only process reachable instructions"); 10354 assert((NodeI1 == NodeI2) == 10355 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10356 "Different nodes should have different DFS numbers"); 10357 if (NodeI1 != NodeI2) 10358 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10359 InstructionsState S = getSameOpcode({I1, I2}); 10360 if (S.getOpcode()) 10361 return false; 10362 return I1->getOpcode() < I2->getOpcode(); 10363 } 10364 if (isa<Constant>(V->getValueOperand()) && 10365 isa<Constant>(V2->getValueOperand())) 10366 return false; 10367 return V->getValueOperand()->getValueID() < 10368 V2->getValueOperand()->getValueID(); 10369 }; 10370 10371 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10372 if (V1 == V2) 10373 return true; 10374 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10375 return false; 10376 // Undefs are compatible with any other value. 10377 if (isa<UndefValue>(V1->getValueOperand()) || 10378 isa<UndefValue>(V2->getValueOperand())) 10379 return true; 10380 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10381 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10382 if (I1->getParent() != I2->getParent()) 10383 return false; 10384 InstructionsState S = getSameOpcode({I1, I2}); 10385 return S.getOpcode() > 0; 10386 } 10387 if (isa<Constant>(V1->getValueOperand()) && 10388 isa<Constant>(V2->getValueOperand())) 10389 return true; 10390 return V1->getValueOperand()->getValueID() == 10391 V2->getValueOperand()->getValueID(); 10392 }; 10393 auto Limit = [&R, this](StoreInst *SI) { 10394 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10395 return R.getMinVF(EltSize); 10396 }; 10397 10398 // Attempt to sort and vectorize each of the store-groups. 10399 for (auto &Pair : Stores) { 10400 if (Pair.second.size() < 2) 10401 continue; 10402 10403 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10404 << Pair.second.size() << ".\n"); 10405 10406 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10407 continue; 10408 10409 Changed |= tryToVectorizeSequence<StoreInst>( 10410 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10411 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10412 return vectorizeStores(Candidates, R); 10413 }, 10414 /*LimitForRegisterSize=*/false); 10415 } 10416 return Changed; 10417 } 10418 10419 char SLPVectorizer::ID = 0; 10420 10421 static const char lv_name[] = "SLP Vectorizer"; 10422 10423 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10424 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10425 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10426 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10427 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10428 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10429 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10430 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10431 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10432 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10433 10434 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10435