1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants. 198 static bool allConstant(ArrayRef<Value *> VL) { 199 for (Value *i : VL) 200 if (!isa<Constant>(i)) 201 return false; 202 return true; 203 } 204 205 /// \returns True if all of the values in \p VL are identical. 206 static bool isSplat(ArrayRef<Value *> VL) { 207 for (unsigned i = 1, e = VL.size(); i < e; ++i) 208 if (VL[i] != VL[0]) 209 return false; 210 return true; 211 } 212 213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 214 static bool isCommutative(Instruction *I) { 215 if (auto *IC = dyn_cast<CmpInst>(I)) 216 return IC->isCommutative(); 217 return I->isCommutative(); 218 } 219 220 /// Checks if the vector of instructions can be represented as a shuffle, like: 221 /// %x0 = extractelement <4 x i8> %x, i32 0 222 /// %x3 = extractelement <4 x i8> %x, i32 3 223 /// %y1 = extractelement <4 x i8> %y, i32 1 224 /// %y2 = extractelement <4 x i8> %y, i32 2 225 /// %x0x0 = mul i8 %x0, %x0 226 /// %x3x3 = mul i8 %x3, %x3 227 /// %y1y1 = mul i8 %y1, %y1 228 /// %y2y2 = mul i8 %y2, %y2 229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 233 /// ret <4 x i8> %ins4 234 /// can be transformed into: 235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 236 /// i32 6> 237 /// %2 = mul <4 x i8> %1, %1 238 /// ret <4 x i8> %2 239 /// We convert this initially to something like: 240 /// %x0 = extractelement <4 x i8> %x, i32 0 241 /// %x3 = extractelement <4 x i8> %x, i32 3 242 /// %y1 = extractelement <4 x i8> %y, i32 1 243 /// %y2 = extractelement <4 x i8> %y, i32 2 244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 248 /// %5 = mul <4 x i8> %4, %4 249 /// %6 = extractelement <4 x i8> %5, i32 0 250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 251 /// %7 = extractelement <4 x i8> %5, i32 1 252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 253 /// %8 = extractelement <4 x i8> %5, i32 2 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 255 /// %9 = extractelement <4 x i8> %5, i32 3 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 257 /// ret <4 x i8> %ins4 258 /// InstCombiner transforms this into a shuffle and vector mul 259 /// TODO: Can we split off and reuse the shuffle mask detection from 260 /// TargetTransformInfo::getInstructionThroughput? 261 static Optional<TargetTransformInfo::ShuffleKind> 262 isShuffle(ArrayRef<Value *> VL) { 263 auto *EI0 = cast<ExtractElementInst>(VL[0]); 264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 265 Value *Vec1 = nullptr; 266 Value *Vec2 = nullptr; 267 enum ShuffleMode { Unknown, Select, Permute }; 268 ShuffleMode CommonShuffleMode = Unknown; 269 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 270 auto *EI = cast<ExtractElementInst>(VL[I]); 271 auto *Vec = EI->getVectorOperand(); 272 // All vector operands must have the same number of vector elements. 273 if (Vec->getType()->getVectorNumElements() != Size) 274 return None; 275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 276 if (!Idx) 277 return None; 278 // Undefined behavior if Idx is negative or >= Size. 279 if (Idx->getValue().uge(Size)) 280 continue; 281 unsigned IntIdx = Idx->getValue().getZExtValue(); 282 // We can extractelement from undef vector. 283 if (isa<UndefValue>(Vec)) 284 continue; 285 // For correct shuffling we have to have at most 2 different vector operands 286 // in all extractelement instructions. 287 if (!Vec1 || Vec1 == Vec) 288 Vec1 = Vec; 289 else if (!Vec2 || Vec2 == Vec) 290 Vec2 = Vec; 291 else 292 return None; 293 if (CommonShuffleMode == Permute) 294 continue; 295 // If the extract index is not the same as the operation number, it is a 296 // permutation. 297 if (IntIdx != I) { 298 CommonShuffleMode = Permute; 299 continue; 300 } 301 CommonShuffleMode = Select; 302 } 303 // If we're not crossing lanes in different vectors, consider it as blending. 304 if (CommonShuffleMode == Select && Vec2) 305 return TargetTransformInfo::SK_Select; 306 // If Vec2 was never used, we have a permutation of a single vector, otherwise 307 // we have permutation of 2 vectors. 308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 309 : TargetTransformInfo::SK_PermuteSingleSrc; 310 } 311 312 namespace { 313 314 /// Main data required for vectorization of instructions. 315 struct InstructionsState { 316 /// The very first instruction in the list with the main opcode. 317 Value *OpValue = nullptr; 318 319 /// The main/alternate instruction. 320 Instruction *MainOp = nullptr; 321 Instruction *AltOp = nullptr; 322 323 /// The main/alternate opcodes for the list of instructions. 324 unsigned getOpcode() const { 325 return MainOp ? MainOp->getOpcode() : 0; 326 } 327 328 unsigned getAltOpcode() const { 329 return AltOp ? AltOp->getOpcode() : 0; 330 } 331 332 /// Some of the instructions in the list have alternate opcodes. 333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 334 335 bool isOpcodeOrAlt(Instruction *I) const { 336 unsigned CheckedOpcode = I->getOpcode(); 337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 338 } 339 340 InstructionsState() = delete; 341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 343 }; 344 345 } // end anonymous namespace 346 347 /// Chooses the correct key for scheduling data. If \p Op has the same (or 348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 349 /// OpValue. 350 static Value *isOneOf(const InstructionsState &S, Value *Op) { 351 auto *I = dyn_cast<Instruction>(Op); 352 if (I && S.isOpcodeOrAlt(I)) 353 return Op; 354 return S.OpValue; 355 } 356 357 /// \returns analysis of the Instructions in \p VL described in 358 /// InstructionsState, the Opcode that we suppose the whole list 359 /// could be vectorized even if its structure is diverse. 360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 361 unsigned BaseIndex = 0) { 362 // Make sure these are all Instructions. 363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 364 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 365 366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 369 unsigned AltOpcode = Opcode; 370 unsigned AltIndex = BaseIndex; 371 372 // Check for one alternate opcode from another BinaryOperator. 373 // TODO - generalize to support all operators (types, calls etc.). 374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 387 if (Ty0 == Ty1) { 388 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 389 continue; 390 if (Opcode == AltOpcode) { 391 AltOpcode = InstOpcode; 392 AltIndex = Cnt; 393 continue; 394 } 395 } 396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 397 continue; 398 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 399 } 400 401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 402 cast<Instruction>(VL[AltIndex])); 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static Optional<unsigned> getExtractIndex(Instruction *E) { 418 unsigned Opcode = E->getOpcode(); 419 assert((Opcode == Instruction::ExtractElement || 420 Opcode == Instruction::ExtractValue) && 421 "Expected extractelement or extractvalue instruction."); 422 if (Opcode == Instruction::ExtractElement) { 423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 424 if (!CI) 425 return None; 426 return CI->getZExtValue(); 427 } 428 ExtractValueInst *EI = cast<ExtractValueInst>(E); 429 if (EI->getNumIndices() != 1) 430 return None; 431 return *EI->idx_begin(); 432 } 433 434 /// \returns True if in-tree use also needs extract. This refers to 435 /// possible scalar operand in vectorized instruction. 436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 437 TargetLibraryInfo *TLI) { 438 unsigned Opcode = UserInst->getOpcode(); 439 switch (Opcode) { 440 case Instruction::Load: { 441 LoadInst *LI = cast<LoadInst>(UserInst); 442 return (LI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Store: { 445 StoreInst *SI = cast<StoreInst>(UserInst); 446 return (SI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Call: { 449 CallInst *CI = cast<CallInst>(UserInst); 450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 452 if (hasVectorInstrinsicScalarOpd(ID, i)) 453 return (CI->getArgOperand(i) == Scalar); 454 } 455 LLVM_FALLTHROUGH; 456 } 457 default: 458 return false; 459 } 460 } 461 462 /// \returns the AA location that is being access by the instruction. 463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return MemoryLocation::get(SI); 466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 467 return MemoryLocation::get(LI); 468 return MemoryLocation(); 469 } 470 471 /// \returns True if the instruction is not a volatile or atomic load/store. 472 static bool isSimple(Instruction *I) { 473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 474 return LI->isSimple(); 475 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 476 return SI->isSimple(); 477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 478 return !MI->isVolatile(); 479 return true; 480 } 481 482 namespace llvm { 483 484 namespace slpvectorizer { 485 486 /// Bottom Up SLP Vectorizer. 487 class BoUpSLP { 488 struct TreeEntry; 489 490 public: 491 using ValueList = SmallVector<Value *, 8>; 492 using InstrList = SmallVector<Instruction *, 16>; 493 using ValueSet = SmallPtrSet<Value *, 16>; 494 using StoreList = SmallVector<StoreInst *, 8>; 495 using ExtraValueToDebugLocsMap = 496 MapVector<Value *, SmallVector<Instruction *, 2>>; 497 498 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 499 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 500 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 501 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 502 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 503 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 504 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 505 // Use the vector register size specified by the target unless overridden 506 // by a command-line option. 507 // TODO: It would be better to limit the vectorization factor based on 508 // data type rather than just register size. For example, x86 AVX has 509 // 256-bit registers, but it does not support integer operations 510 // at that width (that requires AVX2). 511 if (MaxVectorRegSizeOption.getNumOccurrences()) 512 MaxVecRegSize = MaxVectorRegSizeOption; 513 else 514 MaxVecRegSize = TTI->getRegisterBitWidth(true); 515 516 if (MinVectorRegSizeOption.getNumOccurrences()) 517 MinVecRegSize = MinVectorRegSizeOption; 518 else 519 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 520 } 521 522 /// Vectorize the tree that starts with the elements in \p VL. 523 /// Returns the vectorized root. 524 Value *vectorizeTree(); 525 526 /// Vectorize the tree but with the list of externally used values \p 527 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 528 /// generated extractvalue instructions. 529 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 530 531 /// \returns the cost incurred by unwanted spills and fills, caused by 532 /// holding live values over call sites. 533 int getSpillCost() const; 534 535 /// \returns the vectorization cost of the subtree that starts at \p VL. 536 /// A negative number means that this is profitable. 537 int getTreeCost(); 538 539 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 540 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 541 void buildTree(ArrayRef<Value *> Roots, 542 ArrayRef<Value *> UserIgnoreLst = None); 543 544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 546 /// into account (anf updating it, if required) list of externally used 547 /// values stored in \p ExternallyUsedValues. 548 void buildTree(ArrayRef<Value *> Roots, 549 ExtraValueToDebugLocsMap &ExternallyUsedValues, 550 ArrayRef<Value *> UserIgnoreLst = None); 551 552 /// Clear the internal data structures that are created by 'buildTree'. 553 void deleteTree() { 554 VectorizableTree.clear(); 555 ScalarToTreeEntry.clear(); 556 MustGather.clear(); 557 ExternalUses.clear(); 558 NumOpsWantToKeepOrder.clear(); 559 NumOpsWantToKeepOriginalOrder = 0; 560 for (auto &Iter : BlocksSchedules) { 561 BlockScheduling *BS = Iter.second.get(); 562 BS->clear(); 563 } 564 MinBWs.clear(); 565 } 566 567 unsigned getTreeSize() const { return VectorizableTree.size(); } 568 569 /// Perform LICM and CSE on the newly generated gather sequences. 570 void optimizeGatherSequence(); 571 572 /// \returns The best order of instructions for vectorization. 573 Optional<ArrayRef<unsigned>> bestOrder() const { 574 auto I = std::max_element( 575 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 576 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 577 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 578 return D1.second < D2.second; 579 }); 580 if (I == NumOpsWantToKeepOrder.end() || 581 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 582 return None; 583 584 return makeArrayRef(I->getFirst()); 585 } 586 587 /// \return The vector element size in bits to use when vectorizing the 588 /// expression tree ending at \p V. If V is a store, the size is the width of 589 /// the stored value. Otherwise, the size is the width of the largest loaded 590 /// value reaching V. This method is used by the vectorizer to calculate 591 /// vectorization factors. 592 unsigned getVectorElementSize(Value *V) const; 593 594 /// Compute the minimum type sizes required to represent the entries in a 595 /// vectorizable tree. 596 void computeMinimumValueSizes(); 597 598 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 599 unsigned getMaxVecRegSize() const { 600 return MaxVecRegSize; 601 } 602 603 // \returns minimum vector register size as set by cl::opt. 604 unsigned getMinVecRegSize() const { 605 return MinVecRegSize; 606 } 607 608 /// Check if ArrayType or StructType is isomorphic to some VectorType. 609 /// 610 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 611 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 612 613 /// \returns True if the VectorizableTree is both tiny and not fully 614 /// vectorizable. We do not vectorize such trees. 615 bool isTreeTinyAndNotFullyVectorizable() const; 616 617 OptimizationRemarkEmitter *getORE() { return ORE; } 618 619 /// This structure holds any data we need about the edges being traversed 620 /// during buildTree_rec(). We keep track of: 621 /// (i) the user TreeEntry index, and 622 /// (ii) the index of the edge. 623 struct EdgeInfo { 624 EdgeInfo() = default; 625 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 626 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 627 /// The user TreeEntry. 628 TreeEntry *UserTE = nullptr; 629 /// The operand index of the use. 630 unsigned EdgeIdx = UINT_MAX; 631 #ifndef NDEBUG 632 friend inline raw_ostream &operator<<(raw_ostream &OS, 633 const BoUpSLP::EdgeInfo &EI) { 634 EI.dump(OS); 635 return OS; 636 } 637 /// Debug print. 638 void dump(raw_ostream &OS) const { 639 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 640 << " EdgeIdx:" << EdgeIdx << "}"; 641 } 642 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 643 #endif 644 }; 645 646 /// A helper data structure to hold the operands of a vector of instructions. 647 /// This supports a fixed vector length for all operand vectors. 648 class VLOperands { 649 /// For each operand we need (i) the value, and (ii) the opcode that it 650 /// would be attached to if the expression was in a left-linearized form. 651 /// This is required to avoid illegal operand reordering. 652 /// For example: 653 /// \verbatim 654 /// 0 Op1 655 /// |/ 656 /// Op1 Op2 Linearized + Op2 657 /// \ / ----------> |/ 658 /// - - 659 /// 660 /// Op1 - Op2 (0 + Op1) - Op2 661 /// \endverbatim 662 /// 663 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 664 /// 665 /// Another way to think of this is to track all the operations across the 666 /// path from the operand all the way to the root of the tree and to 667 /// calculate the operation that corresponds to this path. For example, the 668 /// path from Op2 to the root crosses the RHS of the '-', therefore the 669 /// corresponding operation is a '-' (which matches the one in the 670 /// linearized tree, as shown above). 671 /// 672 /// For lack of a better term, we refer to this operation as Accumulated 673 /// Path Operation (APO). 674 struct OperandData { 675 OperandData() = default; 676 OperandData(Value *V, bool APO, bool IsUsed) 677 : V(V), APO(APO), IsUsed(IsUsed) {} 678 /// The operand value. 679 Value *V = nullptr; 680 /// TreeEntries only allow a single opcode, or an alternate sequence of 681 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 682 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 683 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 684 /// (e.g., Add/Mul) 685 bool APO = false; 686 /// Helper data for the reordering function. 687 bool IsUsed = false; 688 }; 689 690 /// During operand reordering, we are trying to select the operand at lane 691 /// that matches best with the operand at the neighboring lane. Our 692 /// selection is based on the type of value we are looking for. For example, 693 /// if the neighboring lane has a load, we need to look for a load that is 694 /// accessing a consecutive address. These strategies are summarized in the 695 /// 'ReorderingMode' enumerator. 696 enum class ReorderingMode { 697 Load, ///< Matching loads to consecutive memory addresses 698 Opcode, ///< Matching instructions based on opcode (same or alternate) 699 Constant, ///< Matching constants 700 Splat, ///< Matching the same instruction multiple times (broadcast) 701 Failed, ///< We failed to create a vectorizable group 702 }; 703 704 using OperandDataVec = SmallVector<OperandData, 2>; 705 706 /// A vector of operand vectors. 707 SmallVector<OperandDataVec, 4> OpsVec; 708 709 const DataLayout &DL; 710 ScalarEvolution &SE; 711 712 /// \returns the operand data at \p OpIdx and \p Lane. 713 OperandData &getData(unsigned OpIdx, unsigned Lane) { 714 return OpsVec[OpIdx][Lane]; 715 } 716 717 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 718 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 719 return OpsVec[OpIdx][Lane]; 720 } 721 722 /// Clears the used flag for all entries. 723 void clearUsed() { 724 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 725 OpIdx != NumOperands; ++OpIdx) 726 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 727 ++Lane) 728 OpsVec[OpIdx][Lane].IsUsed = false; 729 } 730 731 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 732 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 733 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 734 } 735 736 // Search all operands in Ops[*][Lane] for the one that matches best 737 // Ops[OpIdx][LastLane] and return its opreand index. 738 // If no good match can be found, return None. 739 Optional<unsigned> 740 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 741 ArrayRef<ReorderingMode> ReorderingModes) { 742 unsigned NumOperands = getNumOperands(); 743 744 // The operand of the previous lane at OpIdx. 745 Value *OpLastLane = getData(OpIdx, LastLane).V; 746 747 // Our strategy mode for OpIdx. 748 ReorderingMode RMode = ReorderingModes[OpIdx]; 749 750 // The linearized opcode of the operand at OpIdx, Lane. 751 bool OpIdxAPO = getData(OpIdx, Lane).APO; 752 753 const unsigned BestScore = 2; 754 const unsigned GoodScore = 1; 755 756 // The best operand index and its score. 757 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 758 // are using the score to differentiate between the two. 759 struct BestOpData { 760 Optional<unsigned> Idx = None; 761 unsigned Score = 0; 762 } BestOp; 763 764 // Iterate through all unused operands and look for the best. 765 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 766 // Get the operand at Idx and Lane. 767 OperandData &OpData = getData(Idx, Lane); 768 Value *Op = OpData.V; 769 bool OpAPO = OpData.APO; 770 771 // Skip already selected operands. 772 if (OpData.IsUsed) 773 continue; 774 775 // Skip if we are trying to move the operand to a position with a 776 // different opcode in the linearized tree form. This would break the 777 // semantics. 778 if (OpAPO != OpIdxAPO) 779 continue; 780 781 // Look for an operand that matches the current mode. 782 switch (RMode) { 783 case ReorderingMode::Load: 784 if (isa<LoadInst>(Op)) { 785 // Figure out which is left and right, so that we can check for 786 // consecutive loads 787 bool LeftToRight = Lane > LastLane; 788 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 789 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 790 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 791 cast<LoadInst>(OpRight), DL, SE)) 792 BestOp.Idx = Idx; 793 } 794 break; 795 case ReorderingMode::Opcode: 796 // We accept both Instructions and Undefs, but with different scores. 797 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 798 cast<Instruction>(Op)->getOpcode() == 799 cast<Instruction>(OpLastLane)->getOpcode()) || 800 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 801 isa<UndefValue>(Op)) { 802 // An instruction has a higher score than an undef. 803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 804 if (Score > BestOp.Score) { 805 BestOp.Idx = Idx; 806 BestOp.Score = Score; 807 } 808 } 809 break; 810 case ReorderingMode::Constant: 811 if (isa<Constant>(Op)) { 812 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 813 if (Score > BestOp.Score) { 814 BestOp.Idx = Idx; 815 BestOp.Score = Score; 816 } 817 } 818 break; 819 case ReorderingMode::Splat: 820 if (Op == OpLastLane) 821 BestOp.Idx = Idx; 822 break; 823 case ReorderingMode::Failed: 824 return None; 825 } 826 } 827 828 if (BestOp.Idx) { 829 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 830 return BestOp.Idx; 831 } 832 // If we could not find a good match return None. 833 return None; 834 } 835 836 /// Helper for reorderOperandVecs. \Returns the lane that we should start 837 /// reordering from. This is the one which has the least number of operands 838 /// that can freely move about. 839 unsigned getBestLaneToStartReordering() const { 840 unsigned BestLane = 0; 841 unsigned Min = UINT_MAX; 842 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 843 ++Lane) { 844 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 845 if (NumFreeOps < Min) { 846 Min = NumFreeOps; 847 BestLane = Lane; 848 } 849 } 850 return BestLane; 851 } 852 853 /// \Returns the maximum number of operands that are allowed to be reordered 854 /// for \p Lane. This is used as a heuristic for selecting the first lane to 855 /// start operand reordering. 856 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 857 unsigned CntTrue = 0; 858 unsigned NumOperands = getNumOperands(); 859 // Operands with the same APO can be reordered. We therefore need to count 860 // how many of them we have for each APO, like this: Cnt[APO] = x. 861 // Since we only have two APOs, namely true and false, we can avoid using 862 // a map. Instead we can simply count the number of operands that 863 // correspond to one of them (in this case the 'true' APO), and calculate 864 // the other by subtracting it from the total number of operands. 865 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 866 if (getData(OpIdx, Lane).APO) 867 ++CntTrue; 868 unsigned CntFalse = NumOperands - CntTrue; 869 return std::max(CntTrue, CntFalse); 870 } 871 872 /// Go through the instructions in VL and append their operands. 873 void appendOperandsOfVL(ArrayRef<Value *> VL) { 874 assert(!VL.empty() && "Bad VL"); 875 assert((empty() || VL.size() == getNumLanes()) && 876 "Expected same number of lanes"); 877 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 878 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 879 OpsVec.resize(NumOperands); 880 unsigned NumLanes = VL.size(); 881 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 882 OpsVec[OpIdx].resize(NumLanes); 883 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 884 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 885 // Our tree has just 3 nodes: the root and two operands. 886 // It is therefore trivial to get the APO. We only need to check the 887 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 888 // RHS operand. The LHS operand of both add and sub is never attached 889 // to an inversese operation in the linearized form, therefore its APO 890 // is false. The RHS is true only if VL[Lane] is an inverse operation. 891 892 // Since operand reordering is performed on groups of commutative 893 // operations or alternating sequences (e.g., +, -), we can safely 894 // tell the inverse operations by checking commutativity. 895 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 896 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 897 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 898 APO, false}; 899 } 900 } 901 } 902 903 /// \returns the number of operands. 904 unsigned getNumOperands() const { return OpsVec.size(); } 905 906 /// \returns the number of lanes. 907 unsigned getNumLanes() const { return OpsVec[0].size(); } 908 909 /// \returns the operand value at \p OpIdx and \p Lane. 910 Value *getValue(unsigned OpIdx, unsigned Lane) const { 911 return getData(OpIdx, Lane).V; 912 } 913 914 /// \returns true if the data structure is empty. 915 bool empty() const { return OpsVec.empty(); } 916 917 /// Clears the data. 918 void clear() { OpsVec.clear(); } 919 920 /// \Returns true if there are enough operands identical to \p Op to fill 921 /// the whole vector. 922 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 923 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 924 bool OpAPO = getData(OpIdx, Lane).APO; 925 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 926 if (Ln == Lane) 927 continue; 928 // This is set to true if we found a candidate for broadcast at Lane. 929 bool FoundCandidate = false; 930 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 931 OperandData &Data = getData(OpI, Ln); 932 if (Data.APO != OpAPO || Data.IsUsed) 933 continue; 934 if (Data.V == Op) { 935 FoundCandidate = true; 936 Data.IsUsed = true; 937 break; 938 } 939 } 940 if (!FoundCandidate) 941 return false; 942 } 943 return true; 944 } 945 946 public: 947 /// Initialize with all the operands of the instruction vector \p RootVL. 948 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 949 ScalarEvolution &SE) 950 : DL(DL), SE(SE) { 951 // Append all the operands of RootVL. 952 appendOperandsOfVL(RootVL); 953 } 954 955 /// \Returns a value vector with the operands across all lanes for the 956 /// opearnd at \p OpIdx. 957 ValueList getVL(unsigned OpIdx) const { 958 ValueList OpVL(OpsVec[OpIdx].size()); 959 assert(OpsVec[OpIdx].size() == getNumLanes() && 960 "Expected same num of lanes across all operands"); 961 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 962 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 963 return OpVL; 964 } 965 966 // Performs operand reordering for 2 or more operands. 967 // The original operands are in OrigOps[OpIdx][Lane]. 968 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 969 void reorder() { 970 unsigned NumOperands = getNumOperands(); 971 unsigned NumLanes = getNumLanes(); 972 // Each operand has its own mode. We are using this mode to help us select 973 // the instructions for each lane, so that they match best with the ones 974 // we have selected so far. 975 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 976 977 // This is a greedy single-pass algorithm. We are going over each lane 978 // once and deciding on the best order right away with no back-tracking. 979 // However, in order to increase its effectiveness, we start with the lane 980 // that has operands that can move the least. For example, given the 981 // following lanes: 982 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 983 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 984 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 985 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 986 // we will start at Lane 1, since the operands of the subtraction cannot 987 // be reordered. Then we will visit the rest of the lanes in a circular 988 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 989 990 // Find the first lane that we will start our search from. 991 unsigned FirstLane = getBestLaneToStartReordering(); 992 993 // Initialize the modes. 994 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 995 Value *OpLane0 = getValue(OpIdx, FirstLane); 996 // Keep track if we have instructions with all the same opcode on one 997 // side. 998 if (isa<LoadInst>(OpLane0)) 999 ReorderingModes[OpIdx] = ReorderingMode::Load; 1000 else if (isa<Instruction>(OpLane0)) { 1001 // Check if OpLane0 should be broadcast. 1002 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1003 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1004 else 1005 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1006 } 1007 else if (isa<Constant>(OpLane0)) 1008 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1009 else if (isa<Argument>(OpLane0)) 1010 // Our best hope is a Splat. It may save some cost in some cases. 1011 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1012 else 1013 // NOTE: This should be unreachable. 1014 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1015 } 1016 1017 // If the initial strategy fails for any of the operand indexes, then we 1018 // perform reordering again in a second pass. This helps avoid assigning 1019 // high priority to the failed strategy, and should improve reordering for 1020 // the non-failed operand indexes. 1021 for (int Pass = 0; Pass != 2; ++Pass) { 1022 // Skip the second pass if the first pass did not fail. 1023 bool StrategyFailed = false; 1024 // Mark all operand data as free to use. 1025 clearUsed(); 1026 // We keep the original operand order for the FirstLane, so reorder the 1027 // rest of the lanes. We are visiting the nodes in a circular fashion, 1028 // using FirstLane as the center point and increasing the radius 1029 // distance. 1030 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1031 // Visit the lane on the right and then the lane on the left. 1032 for (int Direction : {+1, -1}) { 1033 int Lane = FirstLane + Direction * Distance; 1034 if (Lane < 0 || Lane >= (int)NumLanes) 1035 continue; 1036 int LastLane = Lane - Direction; 1037 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1038 "Out of bounds"); 1039 // Look for a good match for each operand. 1040 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1041 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1042 Optional<unsigned> BestIdx = 1043 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1044 // By not selecting a value, we allow the operands that follow to 1045 // select a better matching value. We will get a non-null value in 1046 // the next run of getBestOperand(). 1047 if (BestIdx) { 1048 // Swap the current operand with the one returned by 1049 // getBestOperand(). 1050 swap(OpIdx, BestIdx.getValue(), Lane); 1051 } else { 1052 // We failed to find a best operand, set mode to 'Failed'. 1053 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1054 // Enable the second pass. 1055 StrategyFailed = true; 1056 } 1057 } 1058 } 1059 } 1060 // Skip second pass if the strategy did not fail. 1061 if (!StrategyFailed) 1062 break; 1063 } 1064 } 1065 1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1067 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1068 switch (RMode) { 1069 case ReorderingMode::Load: 1070 return "Load"; 1071 case ReorderingMode::Opcode: 1072 return "Opcode"; 1073 case ReorderingMode::Constant: 1074 return "Constant"; 1075 case ReorderingMode::Splat: 1076 return "Splat"; 1077 case ReorderingMode::Failed: 1078 return "Failed"; 1079 } 1080 llvm_unreachable("Unimplemented Reordering Type"); 1081 } 1082 1083 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1084 raw_ostream &OS) { 1085 return OS << getModeStr(RMode); 1086 } 1087 1088 /// Debug print. 1089 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1090 printMode(RMode, dbgs()); 1091 } 1092 1093 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1094 return printMode(RMode, OS); 1095 } 1096 1097 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1098 const unsigned Indent = 2; 1099 unsigned Cnt = 0; 1100 for (const OperandDataVec &OpDataVec : OpsVec) { 1101 OS << "Operand " << Cnt++ << "\n"; 1102 for (const OperandData &OpData : OpDataVec) { 1103 OS.indent(Indent) << "{"; 1104 if (Value *V = OpData.V) 1105 OS << *V; 1106 else 1107 OS << "null"; 1108 OS << ", APO:" << OpData.APO << "}\n"; 1109 } 1110 OS << "\n"; 1111 } 1112 return OS; 1113 } 1114 1115 /// Debug print. 1116 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1117 #endif 1118 }; 1119 1120 private: 1121 /// Checks if all users of \p I are the part of the vectorization tree. 1122 bool areAllUsersVectorized(Instruction *I) const; 1123 1124 /// \returns the cost of the vectorizable entry. 1125 int getEntryCost(TreeEntry *E); 1126 1127 /// This is the recursive part of buildTree. 1128 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1129 const EdgeInfo &EI); 1130 1131 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1132 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1133 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1134 /// returns false, setting \p CurrentOrder to either an empty vector or a 1135 /// non-identity permutation that allows to reuse extract instructions. 1136 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1137 SmallVectorImpl<unsigned> &CurrentOrder) const; 1138 1139 /// Vectorize a single entry in the tree. 1140 Value *vectorizeTree(TreeEntry *E); 1141 1142 /// Vectorize a single entry in the tree, starting in \p VL. 1143 Value *vectorizeTree(ArrayRef<Value *> VL); 1144 1145 /// \returns the scalarization cost for this type. Scalarization in this 1146 /// context means the creation of vectors from a group of scalars. 1147 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1148 1149 /// \returns the scalarization cost for this list of values. Assuming that 1150 /// this subtree gets vectorized, we may need to extract the values from the 1151 /// roots. This method calculates the cost of extracting the values. 1152 int getGatherCost(ArrayRef<Value *> VL) const; 1153 1154 /// Set the Builder insert point to one after the last instruction in 1155 /// the bundle 1156 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1157 const InstructionsState &S); 1158 1159 /// \returns a vector from a collection of scalars in \p VL. 1160 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1161 1162 /// \returns whether the VectorizableTree is fully vectorizable and will 1163 /// be beneficial even the tree height is tiny. 1164 bool isFullyVectorizableTinyTree() const; 1165 1166 /// Reorder commutative or alt operands to get better probability of 1167 /// generating vectorized code. 1168 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1169 SmallVectorImpl<Value *> &Left, 1170 SmallVectorImpl<Value *> &Right, 1171 const DataLayout &DL, 1172 ScalarEvolution &SE); 1173 struct TreeEntry { 1174 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1175 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1176 1177 /// \returns true if the scalars in VL are equal to this entry. 1178 bool isSame(ArrayRef<Value *> VL) const { 1179 if (VL.size() == Scalars.size()) 1180 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1181 return VL.size() == ReuseShuffleIndices.size() && 1182 std::equal( 1183 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1184 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1185 } 1186 1187 /// A vector of scalars. 1188 ValueList Scalars; 1189 1190 /// The Scalars are vectorized into this value. It is initialized to Null. 1191 Value *VectorizedValue = nullptr; 1192 1193 /// Do we need to gather this sequence ? 1194 bool NeedToGather = false; 1195 1196 /// Does this sequence require some shuffling? 1197 SmallVector<unsigned, 4> ReuseShuffleIndices; 1198 1199 /// Does this entry require reordering? 1200 ArrayRef<unsigned> ReorderIndices; 1201 1202 /// Points back to the VectorizableTree. 1203 /// 1204 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1205 /// to be a pointer and needs to be able to initialize the child iterator. 1206 /// Thus we need a reference back to the container to translate the indices 1207 /// to entries. 1208 VecTreeTy &Container; 1209 1210 /// The TreeEntry index containing the user of this entry. We can actually 1211 /// have multiple users so the data structure is not truly a tree. 1212 SmallVector<EdgeInfo, 1> UserTreeIndices; 1213 1214 /// The index of this treeEntry in VectorizableTree. 1215 int Idx = -1; 1216 1217 private: 1218 /// The operands of each instruction in each lane Operands[op_index][lane]. 1219 /// Note: This helps avoid the replication of the code that performs the 1220 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1221 SmallVector<ValueList, 2> Operands; 1222 1223 public: 1224 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1225 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1226 ArrayRef<unsigned> ReuseShuffleIndices) { 1227 if (Operands.size() < OpIdx + 1) 1228 Operands.resize(OpIdx + 1); 1229 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1230 Operands[OpIdx].resize(Scalars.size()); 1231 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1232 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1233 ? OpVL[ReuseShuffleIndices[Lane]] 1234 : OpVL[Lane]; 1235 } 1236 1237 /// If there is a user TreeEntry, then set its operand. 1238 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1239 ArrayRef<Value *> OpVL, 1240 ArrayRef<unsigned> ReuseShuffleIndices) { 1241 if (UserTreeIdx.UserTE) 1242 UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL, 1243 ReuseShuffleIndices); 1244 } 1245 1246 /// \returns the \p OpIdx operand of this TreeEntry. 1247 ValueList &getOperand(unsigned OpIdx) { 1248 assert(OpIdx < Operands.size() && "Off bounds"); 1249 return Operands[OpIdx]; 1250 } 1251 1252 /// \return the single \p OpIdx operand. 1253 Value *getSingleOperand(unsigned OpIdx) const { 1254 assert(OpIdx < Operands.size() && "Off bounds"); 1255 assert(!Operands[OpIdx].empty() && "No operand available"); 1256 return Operands[OpIdx][0]; 1257 } 1258 1259 #ifndef NDEBUG 1260 /// Debug printer. 1261 LLVM_DUMP_METHOD void dump() const { 1262 dbgs() << Idx << ".\n"; 1263 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1264 dbgs() << "Operand " << OpI << ":\n"; 1265 for (const Value *V : Operands[OpI]) 1266 dbgs().indent(2) << *V << "\n"; 1267 } 1268 dbgs() << "Scalars: \n"; 1269 for (Value *V : Scalars) 1270 dbgs().indent(2) << *V << "\n"; 1271 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1272 dbgs() << "VectorizedValue: "; 1273 if (VectorizedValue) 1274 dbgs() << *VectorizedValue; 1275 else 1276 dbgs() << "NULL"; 1277 dbgs() << "\n"; 1278 dbgs() << "ReuseShuffleIndices: "; 1279 if (ReuseShuffleIndices.empty()) 1280 dbgs() << "Emtpy"; 1281 else 1282 for (unsigned Idx : ReuseShuffleIndices) 1283 dbgs() << Idx << ", "; 1284 dbgs() << "\n"; 1285 dbgs() << "ReorderIndices: "; 1286 for (unsigned Idx : ReorderIndices) 1287 dbgs() << Idx << ", "; 1288 dbgs() << "\n"; 1289 dbgs() << "UserTreeIndices: "; 1290 for (const auto &EInfo : UserTreeIndices) 1291 dbgs() << EInfo << ", "; 1292 dbgs() << "\n"; 1293 } 1294 #endif 1295 }; 1296 1297 /// Create a new VectorizableTree entry. 1298 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1299 const EdgeInfo &UserTreeIdx, 1300 ArrayRef<unsigned> ReuseShuffleIndices = None, 1301 ArrayRef<unsigned> ReorderIndices = None) { 1302 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); 1303 TreeEntry *Last = VectorizableTree.back().get(); 1304 Last->Idx = VectorizableTree.size() - 1; 1305 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1306 Last->NeedToGather = !Vectorized; 1307 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1308 ReuseShuffleIndices.end()); 1309 Last->ReorderIndices = ReorderIndices; 1310 if (Vectorized) { 1311 for (int i = 0, e = VL.size(); i != e; ++i) { 1312 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1313 ScalarToTreeEntry[VL[i]] = Last->Idx; 1314 } 1315 } else { 1316 MustGather.insert(VL.begin(), VL.end()); 1317 } 1318 1319 if (UserTreeIdx.UserTE) 1320 Last->UserTreeIndices.push_back(UserTreeIdx); 1321 1322 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1323 return Last; 1324 } 1325 1326 /// -- Vectorization State -- 1327 /// Holds all of the tree entries. 1328 TreeEntry::VecTreeTy VectorizableTree; 1329 1330 #ifndef NDEBUG 1331 /// Debug printer. 1332 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1333 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1334 VectorizableTree[Id]->dump(); 1335 dbgs() << "\n"; 1336 } 1337 } 1338 #endif 1339 1340 TreeEntry *getTreeEntry(Value *V) { 1341 auto I = ScalarToTreeEntry.find(V); 1342 if (I != ScalarToTreeEntry.end()) 1343 return VectorizableTree[I->second].get(); 1344 return nullptr; 1345 } 1346 1347 const TreeEntry *getTreeEntry(Value *V) const { 1348 auto I = ScalarToTreeEntry.find(V); 1349 if (I != ScalarToTreeEntry.end()) 1350 return VectorizableTree[I->second].get(); 1351 return nullptr; 1352 } 1353 1354 /// Maps a specific scalar to its tree entry. 1355 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1356 1357 /// A list of scalars that we found that we need to keep as scalars. 1358 ValueSet MustGather; 1359 1360 /// This POD struct describes one external user in the vectorized tree. 1361 struct ExternalUser { 1362 ExternalUser(Value *S, llvm::User *U, int L) 1363 : Scalar(S), User(U), Lane(L) {} 1364 1365 // Which scalar in our function. 1366 Value *Scalar; 1367 1368 // Which user that uses the scalar. 1369 llvm::User *User; 1370 1371 // Which lane does the scalar belong to. 1372 int Lane; 1373 }; 1374 using UserList = SmallVector<ExternalUser, 16>; 1375 1376 /// Checks if two instructions may access the same memory. 1377 /// 1378 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1379 /// is invariant in the calling loop. 1380 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1381 Instruction *Inst2) { 1382 // First check if the result is already in the cache. 1383 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1384 Optional<bool> &result = AliasCache[key]; 1385 if (result.hasValue()) { 1386 return result.getValue(); 1387 } 1388 MemoryLocation Loc2 = getLocation(Inst2, AA); 1389 bool aliased = true; 1390 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1391 // Do the alias check. 1392 aliased = AA->alias(Loc1, Loc2); 1393 } 1394 // Store the result in the cache. 1395 result = aliased; 1396 return aliased; 1397 } 1398 1399 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1400 1401 /// Cache for alias results. 1402 /// TODO: consider moving this to the AliasAnalysis itself. 1403 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1404 1405 /// Removes an instruction from its block and eventually deletes it. 1406 /// It's like Instruction::eraseFromParent() except that the actual deletion 1407 /// is delayed until BoUpSLP is destructed. 1408 /// This is required to ensure that there are no incorrect collisions in the 1409 /// AliasCache, which can happen if a new instruction is allocated at the 1410 /// same address as a previously deleted instruction. 1411 void eraseInstruction(Instruction *I) { 1412 I->removeFromParent(); 1413 I->dropAllReferences(); 1414 DeletedInstructions.emplace_back(I); 1415 } 1416 1417 /// Temporary store for deleted instructions. Instructions will be deleted 1418 /// eventually when the BoUpSLP is destructed. 1419 SmallVector<unique_value, 8> DeletedInstructions; 1420 1421 /// A list of values that need to extracted out of the tree. 1422 /// This list holds pairs of (Internal Scalar : External User). External User 1423 /// can be nullptr, it means that this Internal Scalar will be used later, 1424 /// after vectorization. 1425 UserList ExternalUses; 1426 1427 /// Values used only by @llvm.assume calls. 1428 SmallPtrSet<const Value *, 32> EphValues; 1429 1430 /// Holds all of the instructions that we gathered. 1431 SetVector<Instruction *> GatherSeq; 1432 1433 /// A list of blocks that we are going to CSE. 1434 SetVector<BasicBlock *> CSEBlocks; 1435 1436 /// Contains all scheduling relevant data for an instruction. 1437 /// A ScheduleData either represents a single instruction or a member of an 1438 /// instruction bundle (= a group of instructions which is combined into a 1439 /// vector instruction). 1440 struct ScheduleData { 1441 // The initial value for the dependency counters. It means that the 1442 // dependencies are not calculated yet. 1443 enum { InvalidDeps = -1 }; 1444 1445 ScheduleData() = default; 1446 1447 void init(int BlockSchedulingRegionID, Value *OpVal) { 1448 FirstInBundle = this; 1449 NextInBundle = nullptr; 1450 NextLoadStore = nullptr; 1451 IsScheduled = false; 1452 SchedulingRegionID = BlockSchedulingRegionID; 1453 UnscheduledDepsInBundle = UnscheduledDeps; 1454 clearDependencies(); 1455 OpValue = OpVal; 1456 } 1457 1458 /// Returns true if the dependency information has been calculated. 1459 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1460 1461 /// Returns true for single instructions and for bundle representatives 1462 /// (= the head of a bundle). 1463 bool isSchedulingEntity() const { return FirstInBundle == this; } 1464 1465 /// Returns true if it represents an instruction bundle and not only a 1466 /// single instruction. 1467 bool isPartOfBundle() const { 1468 return NextInBundle != nullptr || FirstInBundle != this; 1469 } 1470 1471 /// Returns true if it is ready for scheduling, i.e. it has no more 1472 /// unscheduled depending instructions/bundles. 1473 bool isReady() const { 1474 assert(isSchedulingEntity() && 1475 "can't consider non-scheduling entity for ready list"); 1476 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1477 } 1478 1479 /// Modifies the number of unscheduled dependencies, also updating it for 1480 /// the whole bundle. 1481 int incrementUnscheduledDeps(int Incr) { 1482 UnscheduledDeps += Incr; 1483 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1484 } 1485 1486 /// Sets the number of unscheduled dependencies to the number of 1487 /// dependencies. 1488 void resetUnscheduledDeps() { 1489 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1490 } 1491 1492 /// Clears all dependency information. 1493 void clearDependencies() { 1494 Dependencies = InvalidDeps; 1495 resetUnscheduledDeps(); 1496 MemoryDependencies.clear(); 1497 } 1498 1499 void dump(raw_ostream &os) const { 1500 if (!isSchedulingEntity()) { 1501 os << "/ " << *Inst; 1502 } else if (NextInBundle) { 1503 os << '[' << *Inst; 1504 ScheduleData *SD = NextInBundle; 1505 while (SD) { 1506 os << ';' << *SD->Inst; 1507 SD = SD->NextInBundle; 1508 } 1509 os << ']'; 1510 } else { 1511 os << *Inst; 1512 } 1513 } 1514 1515 Instruction *Inst = nullptr; 1516 1517 /// Points to the head in an instruction bundle (and always to this for 1518 /// single instructions). 1519 ScheduleData *FirstInBundle = nullptr; 1520 1521 /// Single linked list of all instructions in a bundle. Null if it is a 1522 /// single instruction. 1523 ScheduleData *NextInBundle = nullptr; 1524 1525 /// Single linked list of all memory instructions (e.g. load, store, call) 1526 /// in the block - until the end of the scheduling region. 1527 ScheduleData *NextLoadStore = nullptr; 1528 1529 /// The dependent memory instructions. 1530 /// This list is derived on demand in calculateDependencies(). 1531 SmallVector<ScheduleData *, 4> MemoryDependencies; 1532 1533 /// This ScheduleData is in the current scheduling region if this matches 1534 /// the current SchedulingRegionID of BlockScheduling. 1535 int SchedulingRegionID = 0; 1536 1537 /// Used for getting a "good" final ordering of instructions. 1538 int SchedulingPriority = 0; 1539 1540 /// The number of dependencies. Constitutes of the number of users of the 1541 /// instruction plus the number of dependent memory instructions (if any). 1542 /// This value is calculated on demand. 1543 /// If InvalidDeps, the number of dependencies is not calculated yet. 1544 int Dependencies = InvalidDeps; 1545 1546 /// The number of dependencies minus the number of dependencies of scheduled 1547 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1548 /// for scheduling. 1549 /// Note that this is negative as long as Dependencies is not calculated. 1550 int UnscheduledDeps = InvalidDeps; 1551 1552 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1553 /// single instructions. 1554 int UnscheduledDepsInBundle = InvalidDeps; 1555 1556 /// True if this instruction is scheduled (or considered as scheduled in the 1557 /// dry-run). 1558 bool IsScheduled = false; 1559 1560 /// Opcode of the current instruction in the schedule data. 1561 Value *OpValue = nullptr; 1562 }; 1563 1564 #ifndef NDEBUG 1565 friend inline raw_ostream &operator<<(raw_ostream &os, 1566 const BoUpSLP::ScheduleData &SD) { 1567 SD.dump(os); 1568 return os; 1569 } 1570 #endif 1571 1572 friend struct GraphTraits<BoUpSLP *>; 1573 friend struct DOTGraphTraits<BoUpSLP *>; 1574 1575 /// Contains all scheduling data for a basic block. 1576 struct BlockScheduling { 1577 BlockScheduling(BasicBlock *BB) 1578 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1579 1580 void clear() { 1581 ReadyInsts.clear(); 1582 ScheduleStart = nullptr; 1583 ScheduleEnd = nullptr; 1584 FirstLoadStoreInRegion = nullptr; 1585 LastLoadStoreInRegion = nullptr; 1586 1587 // Reduce the maximum schedule region size by the size of the 1588 // previous scheduling run. 1589 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1590 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1591 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1592 ScheduleRegionSize = 0; 1593 1594 // Make a new scheduling region, i.e. all existing ScheduleData is not 1595 // in the new region yet. 1596 ++SchedulingRegionID; 1597 } 1598 1599 ScheduleData *getScheduleData(Value *V) { 1600 ScheduleData *SD = ScheduleDataMap[V]; 1601 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1602 return SD; 1603 return nullptr; 1604 } 1605 1606 ScheduleData *getScheduleData(Value *V, Value *Key) { 1607 if (V == Key) 1608 return getScheduleData(V); 1609 auto I = ExtraScheduleDataMap.find(V); 1610 if (I != ExtraScheduleDataMap.end()) { 1611 ScheduleData *SD = I->second[Key]; 1612 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1613 return SD; 1614 } 1615 return nullptr; 1616 } 1617 1618 bool isInSchedulingRegion(ScheduleData *SD) { 1619 return SD->SchedulingRegionID == SchedulingRegionID; 1620 } 1621 1622 /// Marks an instruction as scheduled and puts all dependent ready 1623 /// instructions into the ready-list. 1624 template <typename ReadyListType> 1625 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1626 SD->IsScheduled = true; 1627 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1628 1629 ScheduleData *BundleMember = SD; 1630 while (BundleMember) { 1631 if (BundleMember->Inst != BundleMember->OpValue) { 1632 BundleMember = BundleMember->NextInBundle; 1633 continue; 1634 } 1635 // Handle the def-use chain dependencies. 1636 for (Use &U : BundleMember->Inst->operands()) { 1637 auto *I = dyn_cast<Instruction>(U.get()); 1638 if (!I) 1639 continue; 1640 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1641 if (OpDef && OpDef->hasValidDependencies() && 1642 OpDef->incrementUnscheduledDeps(-1) == 0) { 1643 // There are no more unscheduled dependencies after 1644 // decrementing, so we can put the dependent instruction 1645 // into the ready list. 1646 ScheduleData *DepBundle = OpDef->FirstInBundle; 1647 assert(!DepBundle->IsScheduled && 1648 "already scheduled bundle gets ready"); 1649 ReadyList.insert(DepBundle); 1650 LLVM_DEBUG(dbgs() 1651 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1652 } 1653 }); 1654 } 1655 // Handle the memory dependencies. 1656 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1657 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1658 // There are no more unscheduled dependencies after decrementing, 1659 // so we can put the dependent instruction into the ready list. 1660 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1661 assert(!DepBundle->IsScheduled && 1662 "already scheduled bundle gets ready"); 1663 ReadyList.insert(DepBundle); 1664 LLVM_DEBUG(dbgs() 1665 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1666 } 1667 } 1668 BundleMember = BundleMember->NextInBundle; 1669 } 1670 } 1671 1672 void doForAllOpcodes(Value *V, 1673 function_ref<void(ScheduleData *SD)> Action) { 1674 if (ScheduleData *SD = getScheduleData(V)) 1675 Action(SD); 1676 auto I = ExtraScheduleDataMap.find(V); 1677 if (I != ExtraScheduleDataMap.end()) 1678 for (auto &P : I->second) 1679 if (P.second->SchedulingRegionID == SchedulingRegionID) 1680 Action(P.second); 1681 } 1682 1683 /// Put all instructions into the ReadyList which are ready for scheduling. 1684 template <typename ReadyListType> 1685 void initialFillReadyList(ReadyListType &ReadyList) { 1686 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1687 doForAllOpcodes(I, [&](ScheduleData *SD) { 1688 if (SD->isSchedulingEntity() && SD->isReady()) { 1689 ReadyList.insert(SD); 1690 LLVM_DEBUG(dbgs() 1691 << "SLP: initially in ready list: " << *I << "\n"); 1692 } 1693 }); 1694 } 1695 } 1696 1697 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1698 /// cyclic dependencies. This is only a dry-run, no instructions are 1699 /// actually moved at this stage. 1700 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1701 const InstructionsState &S); 1702 1703 /// Un-bundles a group of instructions. 1704 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1705 1706 /// Allocates schedule data chunk. 1707 ScheduleData *allocateScheduleDataChunks(); 1708 1709 /// Extends the scheduling region so that V is inside the region. 1710 /// \returns true if the region size is within the limit. 1711 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1712 1713 /// Initialize the ScheduleData structures for new instructions in the 1714 /// scheduling region. 1715 void initScheduleData(Instruction *FromI, Instruction *ToI, 1716 ScheduleData *PrevLoadStore, 1717 ScheduleData *NextLoadStore); 1718 1719 /// Updates the dependency information of a bundle and of all instructions/ 1720 /// bundles which depend on the original bundle. 1721 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1722 BoUpSLP *SLP); 1723 1724 /// Sets all instruction in the scheduling region to un-scheduled. 1725 void resetSchedule(); 1726 1727 BasicBlock *BB; 1728 1729 /// Simple memory allocation for ScheduleData. 1730 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1731 1732 /// The size of a ScheduleData array in ScheduleDataChunks. 1733 int ChunkSize; 1734 1735 /// The allocator position in the current chunk, which is the last entry 1736 /// of ScheduleDataChunks. 1737 int ChunkPos; 1738 1739 /// Attaches ScheduleData to Instruction. 1740 /// Note that the mapping survives during all vectorization iterations, i.e. 1741 /// ScheduleData structures are recycled. 1742 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1743 1744 /// Attaches ScheduleData to Instruction with the leading key. 1745 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1746 ExtraScheduleDataMap; 1747 1748 struct ReadyList : SmallVector<ScheduleData *, 8> { 1749 void insert(ScheduleData *SD) { push_back(SD); } 1750 }; 1751 1752 /// The ready-list for scheduling (only used for the dry-run). 1753 ReadyList ReadyInsts; 1754 1755 /// The first instruction of the scheduling region. 1756 Instruction *ScheduleStart = nullptr; 1757 1758 /// The first instruction _after_ the scheduling region. 1759 Instruction *ScheduleEnd = nullptr; 1760 1761 /// The first memory accessing instruction in the scheduling region 1762 /// (can be null). 1763 ScheduleData *FirstLoadStoreInRegion = nullptr; 1764 1765 /// The last memory accessing instruction in the scheduling region 1766 /// (can be null). 1767 ScheduleData *LastLoadStoreInRegion = nullptr; 1768 1769 /// The current size of the scheduling region. 1770 int ScheduleRegionSize = 0; 1771 1772 /// The maximum size allowed for the scheduling region. 1773 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1774 1775 /// The ID of the scheduling region. For a new vectorization iteration this 1776 /// is incremented which "removes" all ScheduleData from the region. 1777 // Make sure that the initial SchedulingRegionID is greater than the 1778 // initial SchedulingRegionID in ScheduleData (which is 0). 1779 int SchedulingRegionID = 1; 1780 }; 1781 1782 /// Attaches the BlockScheduling structures to basic blocks. 1783 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1784 1785 /// Performs the "real" scheduling. Done before vectorization is actually 1786 /// performed in a basic block. 1787 void scheduleBlock(BlockScheduling *BS); 1788 1789 /// List of users to ignore during scheduling and that don't need extracting. 1790 ArrayRef<Value *> UserIgnoreList; 1791 1792 using OrdersType = SmallVector<unsigned, 4>; 1793 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1794 /// sorted SmallVectors of unsigned. 1795 struct OrdersTypeDenseMapInfo { 1796 static OrdersType getEmptyKey() { 1797 OrdersType V; 1798 V.push_back(~1U); 1799 return V; 1800 } 1801 1802 static OrdersType getTombstoneKey() { 1803 OrdersType V; 1804 V.push_back(~2U); 1805 return V; 1806 } 1807 1808 static unsigned getHashValue(const OrdersType &V) { 1809 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1810 } 1811 1812 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1813 return LHS == RHS; 1814 } 1815 }; 1816 1817 /// Contains orders of operations along with the number of bundles that have 1818 /// operations in this order. It stores only those orders that require 1819 /// reordering, if reordering is not required it is counted using \a 1820 /// NumOpsWantToKeepOriginalOrder. 1821 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1822 /// Number of bundles that do not require reordering. 1823 unsigned NumOpsWantToKeepOriginalOrder = 0; 1824 1825 // Analysis and block reference. 1826 Function *F; 1827 ScalarEvolution *SE; 1828 TargetTransformInfo *TTI; 1829 TargetLibraryInfo *TLI; 1830 AliasAnalysis *AA; 1831 LoopInfo *LI; 1832 DominatorTree *DT; 1833 AssumptionCache *AC; 1834 DemandedBits *DB; 1835 const DataLayout *DL; 1836 OptimizationRemarkEmitter *ORE; 1837 1838 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1839 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1840 1841 /// Instruction builder to construct the vectorized tree. 1842 IRBuilder<> Builder; 1843 1844 /// A map of scalar integer values to the smallest bit width with which they 1845 /// can legally be represented. The values map to (width, signed) pairs, 1846 /// where "width" indicates the minimum bit width and "signed" is True if the 1847 /// value must be signed-extended, rather than zero-extended, back to its 1848 /// original width. 1849 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1850 }; 1851 1852 } // end namespace slpvectorizer 1853 1854 template <> struct GraphTraits<BoUpSLP *> { 1855 using TreeEntry = BoUpSLP::TreeEntry; 1856 1857 /// NodeRef has to be a pointer per the GraphWriter. 1858 using NodeRef = TreeEntry *; 1859 1860 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1861 1862 /// Add the VectorizableTree to the index iterator to be able to return 1863 /// TreeEntry pointers. 1864 struct ChildIteratorType 1865 : public iterator_adaptor_base< 1866 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1867 ContainerTy &VectorizableTree; 1868 1869 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1870 ContainerTy &VT) 1871 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1872 1873 NodeRef operator*() { return I->UserTE; } 1874 }; 1875 1876 static NodeRef getEntryNode(BoUpSLP &R) { 1877 return R.VectorizableTree[0].get(); 1878 } 1879 1880 static ChildIteratorType child_begin(NodeRef N) { 1881 return {N->UserTreeIndices.begin(), N->Container}; 1882 } 1883 1884 static ChildIteratorType child_end(NodeRef N) { 1885 return {N->UserTreeIndices.end(), N->Container}; 1886 } 1887 1888 /// For the node iterator we just need to turn the TreeEntry iterator into a 1889 /// TreeEntry* iterator so that it dereferences to NodeRef. 1890 class nodes_iterator { 1891 using ItTy = ContainerTy::iterator; 1892 ItTy It; 1893 1894 public: 1895 nodes_iterator(const ItTy &It2) : It(It2) {} 1896 NodeRef operator*() { return It->get(); } 1897 nodes_iterator operator++() { 1898 ++It; 1899 return *this; 1900 } 1901 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 1902 }; 1903 1904 static nodes_iterator nodes_begin(BoUpSLP *R) { 1905 return nodes_iterator(R->VectorizableTree.begin()); 1906 } 1907 1908 static nodes_iterator nodes_end(BoUpSLP *R) { 1909 return nodes_iterator(R->VectorizableTree.end()); 1910 } 1911 1912 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1913 }; 1914 1915 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1916 using TreeEntry = BoUpSLP::TreeEntry; 1917 1918 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1919 1920 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1921 std::string Str; 1922 raw_string_ostream OS(Str); 1923 if (isSplat(Entry->Scalars)) { 1924 OS << "<splat> " << *Entry->Scalars[0]; 1925 return Str; 1926 } 1927 for (auto V : Entry->Scalars) { 1928 OS << *V; 1929 if (std::any_of( 1930 R->ExternalUses.begin(), R->ExternalUses.end(), 1931 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1932 OS << " <extract>"; 1933 OS << "\n"; 1934 } 1935 return Str; 1936 } 1937 1938 static std::string getNodeAttributes(const TreeEntry *Entry, 1939 const BoUpSLP *) { 1940 if (Entry->NeedToGather) 1941 return "color=red"; 1942 return ""; 1943 } 1944 }; 1945 1946 } // end namespace llvm 1947 1948 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1949 ArrayRef<Value *> UserIgnoreLst) { 1950 ExtraValueToDebugLocsMap ExternallyUsedValues; 1951 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1952 } 1953 1954 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1955 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1956 ArrayRef<Value *> UserIgnoreLst) { 1957 deleteTree(); 1958 UserIgnoreList = UserIgnoreLst; 1959 if (!allSameType(Roots)) 1960 return; 1961 buildTree_rec(Roots, 0, EdgeInfo()); 1962 1963 // Collect the values that we need to extract from the tree. 1964 for (auto &TEPtr : VectorizableTree) { 1965 TreeEntry *Entry = TEPtr.get(); 1966 1967 // No need to handle users of gathered values. 1968 if (Entry->NeedToGather) 1969 continue; 1970 1971 // For each lane: 1972 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1973 Value *Scalar = Entry->Scalars[Lane]; 1974 int FoundLane = Lane; 1975 if (!Entry->ReuseShuffleIndices.empty()) { 1976 FoundLane = 1977 std::distance(Entry->ReuseShuffleIndices.begin(), 1978 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1979 } 1980 1981 // Check if the scalar is externally used as an extra arg. 1982 auto ExtI = ExternallyUsedValues.find(Scalar); 1983 if (ExtI != ExternallyUsedValues.end()) { 1984 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1985 << Lane << " from " << *Scalar << ".\n"); 1986 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1987 } 1988 for (User *U : Scalar->users()) { 1989 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1990 1991 Instruction *UserInst = dyn_cast<Instruction>(U); 1992 if (!UserInst) 1993 continue; 1994 1995 // Skip in-tree scalars that become vectors 1996 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1997 Value *UseScalar = UseEntry->Scalars[0]; 1998 // Some in-tree scalars will remain as scalar in vectorized 1999 // instructions. If that is the case, the one in Lane 0 will 2000 // be used. 2001 if (UseScalar != U || 2002 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2003 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2004 << ".\n"); 2005 assert(!UseEntry->NeedToGather && "Bad state"); 2006 continue; 2007 } 2008 } 2009 2010 // Ignore users in the user ignore list. 2011 if (is_contained(UserIgnoreList, UserInst)) 2012 continue; 2013 2014 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2015 << Lane << " from " << *Scalar << ".\n"); 2016 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2017 } 2018 } 2019 } 2020 } 2021 2022 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2023 const EdgeInfo &UserTreeIdx) { 2024 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2025 2026 InstructionsState S = getSameOpcode(VL); 2027 if (Depth == RecursionMaxDepth) { 2028 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2029 newTreeEntry(VL, false, UserTreeIdx); 2030 return; 2031 } 2032 2033 // Don't handle vectors. 2034 if (S.OpValue->getType()->isVectorTy()) { 2035 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2036 newTreeEntry(VL, false, UserTreeIdx); 2037 return; 2038 } 2039 2040 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2041 if (SI->getValueOperand()->getType()->isVectorTy()) { 2042 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2043 newTreeEntry(VL, false, UserTreeIdx); 2044 return; 2045 } 2046 2047 // If all of the operands are identical or constant we have a simple solution. 2048 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2049 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2050 newTreeEntry(VL, false, UserTreeIdx); 2051 return; 2052 } 2053 2054 // We now know that this is a vector of instructions of the same type from 2055 // the same block. 2056 2057 // Don't vectorize ephemeral values. 2058 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2059 if (EphValues.count(VL[i])) { 2060 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2061 << ") is ephemeral.\n"); 2062 newTreeEntry(VL, false, UserTreeIdx); 2063 return; 2064 } 2065 } 2066 2067 // Check if this is a duplicate of another entry. 2068 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2069 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2070 if (!E->isSame(VL)) { 2071 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2072 newTreeEntry(VL, false, UserTreeIdx); 2073 return; 2074 } 2075 // Record the reuse of the tree node. FIXME, currently this is only used to 2076 // properly draw the graph rather than for the actual vectorization. 2077 E->UserTreeIndices.push_back(UserTreeIdx); 2078 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2079 << ".\n"); 2080 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2081 return; 2082 } 2083 2084 // Check that none of the instructions in the bundle are already in the tree. 2085 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2086 auto *I = dyn_cast<Instruction>(VL[i]); 2087 if (!I) 2088 continue; 2089 if (getTreeEntry(I)) { 2090 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2091 << ") is already in tree.\n"); 2092 newTreeEntry(VL, false, UserTreeIdx); 2093 return; 2094 } 2095 } 2096 2097 // If any of the scalars is marked as a value that needs to stay scalar, then 2098 // we need to gather the scalars. 2099 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2100 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2101 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2102 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2103 newTreeEntry(VL, false, UserTreeIdx); 2104 return; 2105 } 2106 } 2107 2108 // Check that all of the users of the scalars that we want to vectorize are 2109 // schedulable. 2110 auto *VL0 = cast<Instruction>(S.OpValue); 2111 BasicBlock *BB = VL0->getParent(); 2112 2113 if (!DT->isReachableFromEntry(BB)) { 2114 // Don't go into unreachable blocks. They may contain instructions with 2115 // dependency cycles which confuse the final scheduling. 2116 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2117 newTreeEntry(VL, false, UserTreeIdx); 2118 return; 2119 } 2120 2121 // Check that every instruction appears once in this bundle. 2122 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2123 SmallVector<Value *, 4> UniqueValues; 2124 DenseMap<Value *, unsigned> UniquePositions; 2125 for (Value *V : VL) { 2126 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2127 ReuseShuffleIndicies.emplace_back(Res.first->second); 2128 if (Res.second) 2129 UniqueValues.emplace_back(V); 2130 } 2131 if (UniqueValues.size() == VL.size()) { 2132 ReuseShuffleIndicies.clear(); 2133 } else { 2134 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2135 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2136 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2137 newTreeEntry(VL, false, UserTreeIdx); 2138 return; 2139 } 2140 VL = UniqueValues; 2141 } 2142 2143 auto &BSRef = BlocksSchedules[BB]; 2144 if (!BSRef) 2145 BSRef = llvm::make_unique<BlockScheduling>(BB); 2146 2147 BlockScheduling &BS = *BSRef.get(); 2148 2149 if (!BS.tryScheduleBundle(VL, this, S)) { 2150 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2151 assert((!BS.getScheduleData(VL0) || 2152 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2153 "tryScheduleBundle should cancelScheduling on failure"); 2154 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2155 return; 2156 } 2157 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2158 2159 unsigned ShuffleOrOp = S.isAltShuffle() ? 2160 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2161 switch (ShuffleOrOp) { 2162 case Instruction::PHI: { 2163 PHINode *PH = dyn_cast<PHINode>(VL0); 2164 2165 // Check for terminator values (e.g. invoke). 2166 for (unsigned j = 0; j < VL.size(); ++j) 2167 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2168 Instruction *Term = dyn_cast<Instruction>( 2169 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2170 PH->getIncomingBlock(i))); 2171 if (Term && Term->isTerminator()) { 2172 LLVM_DEBUG(dbgs() 2173 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2174 BS.cancelScheduling(VL, VL0); 2175 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2176 return; 2177 } 2178 } 2179 2180 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2181 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2182 2183 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2184 ValueList Operands; 2185 // Prepare the operand vector. 2186 for (Value *j : VL) 2187 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2188 PH->getIncomingBlock(i))); 2189 2190 buildTree_rec(Operands, Depth + 1, {TE, i}); 2191 } 2192 return; 2193 } 2194 case Instruction::ExtractValue: 2195 case Instruction::ExtractElement: { 2196 OrdersType CurrentOrder; 2197 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2198 if (Reuse) { 2199 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2200 ++NumOpsWantToKeepOriginalOrder; 2201 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2202 ReuseShuffleIndicies); 2203 // This is a special case, as it does not gather, but at the same time 2204 // we are not extending buildTree_rec() towards the operands. 2205 ValueList Op0; 2206 Op0.assign(VL.size(), VL0->getOperand(0)); 2207 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2208 return; 2209 } 2210 if (!CurrentOrder.empty()) { 2211 LLVM_DEBUG({ 2212 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2213 "with order"; 2214 for (unsigned Idx : CurrentOrder) 2215 dbgs() << " " << Idx; 2216 dbgs() << "\n"; 2217 }); 2218 // Insert new order with initial value 0, if it does not exist, 2219 // otherwise return the iterator to the existing one. 2220 auto StoredCurrentOrderAndNum = 2221 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2222 ++StoredCurrentOrderAndNum->getSecond(); 2223 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2224 StoredCurrentOrderAndNum->getFirst()); 2225 // This is a special case, as it does not gather, but at the same time 2226 // we are not extending buildTree_rec() towards the operands. 2227 ValueList Op0; 2228 Op0.assign(VL.size(), VL0->getOperand(0)); 2229 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2230 return; 2231 } 2232 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2233 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2234 BS.cancelScheduling(VL, VL0); 2235 return; 2236 } 2237 case Instruction::Load: { 2238 // Check that a vectorized load would load the same memory as a scalar 2239 // load. For example, we don't want to vectorize loads that are smaller 2240 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2241 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2242 // from such a struct, we read/write packed bits disagreeing with the 2243 // unvectorized version. 2244 Type *ScalarTy = VL0->getType(); 2245 2246 if (DL->getTypeSizeInBits(ScalarTy) != 2247 DL->getTypeAllocSizeInBits(ScalarTy)) { 2248 BS.cancelScheduling(VL, VL0); 2249 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2250 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2251 return; 2252 } 2253 2254 // Make sure all loads in the bundle are simple - we can't vectorize 2255 // atomic or volatile loads. 2256 SmallVector<Value *, 4> PointerOps(VL.size()); 2257 auto POIter = PointerOps.begin(); 2258 for (Value *V : VL) { 2259 auto *L = cast<LoadInst>(V); 2260 if (!L->isSimple()) { 2261 BS.cancelScheduling(VL, VL0); 2262 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2263 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2264 return; 2265 } 2266 *POIter = L->getPointerOperand(); 2267 ++POIter; 2268 } 2269 2270 OrdersType CurrentOrder; 2271 // Check the order of pointer operands. 2272 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2273 Value *Ptr0; 2274 Value *PtrN; 2275 if (CurrentOrder.empty()) { 2276 Ptr0 = PointerOps.front(); 2277 PtrN = PointerOps.back(); 2278 } else { 2279 Ptr0 = PointerOps[CurrentOrder.front()]; 2280 PtrN = PointerOps[CurrentOrder.back()]; 2281 } 2282 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2283 const SCEV *ScevN = SE->getSCEV(PtrN); 2284 const auto *Diff = 2285 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2286 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2287 // Check that the sorted loads are consecutive. 2288 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2289 if (CurrentOrder.empty()) { 2290 // Original loads are consecutive and does not require reordering. 2291 ++NumOpsWantToKeepOriginalOrder; 2292 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2293 ReuseShuffleIndicies); 2294 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2295 } else { 2296 // Need to reorder. 2297 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2298 ++I->getSecond(); 2299 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2300 ReuseShuffleIndicies, I->getFirst()); 2301 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2302 } 2303 return; 2304 } 2305 } 2306 2307 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2308 BS.cancelScheduling(VL, VL0); 2309 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2310 return; 2311 } 2312 case Instruction::ZExt: 2313 case Instruction::SExt: 2314 case Instruction::FPToUI: 2315 case Instruction::FPToSI: 2316 case Instruction::FPExt: 2317 case Instruction::PtrToInt: 2318 case Instruction::IntToPtr: 2319 case Instruction::SIToFP: 2320 case Instruction::UIToFP: 2321 case Instruction::Trunc: 2322 case Instruction::FPTrunc: 2323 case Instruction::BitCast: { 2324 Type *SrcTy = VL0->getOperand(0)->getType(); 2325 for (unsigned i = 0; i < VL.size(); ++i) { 2326 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2327 if (Ty != SrcTy || !isValidElementType(Ty)) { 2328 BS.cancelScheduling(VL, VL0); 2329 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2330 LLVM_DEBUG(dbgs() 2331 << "SLP: Gathering casts with different src types.\n"); 2332 return; 2333 } 2334 } 2335 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2337 2338 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2339 ValueList Operands; 2340 // Prepare the operand vector. 2341 for (Value *j : VL) 2342 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2343 2344 buildTree_rec(Operands, Depth + 1, {TE, i}); 2345 } 2346 return; 2347 } 2348 case Instruction::ICmp: 2349 case Instruction::FCmp: { 2350 // Check that all of the compares have the same predicate. 2351 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2352 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2353 Type *ComparedTy = VL0->getOperand(0)->getType(); 2354 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2355 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2356 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2357 Cmp->getOperand(0)->getType() != ComparedTy) { 2358 BS.cancelScheduling(VL, VL0); 2359 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2360 LLVM_DEBUG(dbgs() 2361 << "SLP: Gathering cmp with different predicate.\n"); 2362 return; 2363 } 2364 } 2365 2366 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2367 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2368 2369 ValueList Left, Right; 2370 if (cast<CmpInst>(VL0)->isCommutative()) { 2371 // Commutative predicate - collect + sort operands of the instructions 2372 // so that each side is more likely to have the same opcode. 2373 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2374 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2375 } else { 2376 // Collect operands - commute if it uses the swapped predicate. 2377 for (Value *V : VL) { 2378 auto *Cmp = cast<CmpInst>(V); 2379 Value *LHS = Cmp->getOperand(0); 2380 Value *RHS = Cmp->getOperand(1); 2381 if (Cmp->getPredicate() != P0) 2382 std::swap(LHS, RHS); 2383 Left.push_back(LHS); 2384 Right.push_back(RHS); 2385 } 2386 } 2387 2388 buildTree_rec(Left, Depth + 1, {TE, 0}); 2389 buildTree_rec(Right, Depth + 1, {TE, 1}); 2390 return; 2391 } 2392 case Instruction::Select: 2393 case Instruction::FNeg: 2394 case Instruction::Add: 2395 case Instruction::FAdd: 2396 case Instruction::Sub: 2397 case Instruction::FSub: 2398 case Instruction::Mul: 2399 case Instruction::FMul: 2400 case Instruction::UDiv: 2401 case Instruction::SDiv: 2402 case Instruction::FDiv: 2403 case Instruction::URem: 2404 case Instruction::SRem: 2405 case Instruction::FRem: 2406 case Instruction::Shl: 2407 case Instruction::LShr: 2408 case Instruction::AShr: 2409 case Instruction::And: 2410 case Instruction::Or: 2411 case Instruction::Xor: { 2412 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2413 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2414 2415 // Sort operands of the instructions so that each side is more likely to 2416 // have the same opcode. 2417 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2418 ValueList Left, Right; 2419 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2420 buildTree_rec(Left, Depth + 1, {TE, 0}); 2421 buildTree_rec(Right, Depth + 1, {TE, 1}); 2422 return; 2423 } 2424 2425 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2426 ValueList Operands; 2427 // Prepare the operand vector. 2428 for (Value *j : VL) 2429 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2430 2431 buildTree_rec(Operands, Depth + 1, {TE, i}); 2432 } 2433 return; 2434 } 2435 case Instruction::GetElementPtr: { 2436 // We don't combine GEPs with complicated (nested) indexing. 2437 for (unsigned j = 0; j < VL.size(); ++j) { 2438 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2439 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2440 BS.cancelScheduling(VL, VL0); 2441 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2442 return; 2443 } 2444 } 2445 2446 // We can't combine several GEPs into one vector if they operate on 2447 // different types. 2448 Type *Ty0 = VL0->getOperand(0)->getType(); 2449 for (unsigned j = 0; j < VL.size(); ++j) { 2450 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2451 if (Ty0 != CurTy) { 2452 LLVM_DEBUG(dbgs() 2453 << "SLP: not-vectorizable GEP (different types).\n"); 2454 BS.cancelScheduling(VL, VL0); 2455 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2456 return; 2457 } 2458 } 2459 2460 // We don't combine GEPs with non-constant indexes. 2461 for (unsigned j = 0; j < VL.size(); ++j) { 2462 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2463 if (!isa<ConstantInt>(Op)) { 2464 LLVM_DEBUG(dbgs() 2465 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2466 BS.cancelScheduling(VL, VL0); 2467 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2468 return; 2469 } 2470 } 2471 2472 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2473 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2474 for (unsigned i = 0, e = 2; i < e; ++i) { 2475 ValueList Operands; 2476 // Prepare the operand vector. 2477 for (Value *j : VL) 2478 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2479 2480 buildTree_rec(Operands, Depth + 1, {TE, i}); 2481 } 2482 return; 2483 } 2484 case Instruction::Store: { 2485 // Check if the stores are consecutive or of we need to swizzle them. 2486 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2487 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2488 BS.cancelScheduling(VL, VL0); 2489 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2490 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2491 return; 2492 } 2493 2494 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2495 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2496 2497 ValueList Operands; 2498 for (Value *j : VL) 2499 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2500 2501 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2502 return; 2503 } 2504 case Instruction::Call: { 2505 // Check if the calls are all to the same vectorizable intrinsic. 2506 CallInst *CI = cast<CallInst>(VL0); 2507 // Check if this is an Intrinsic call or something that can be 2508 // represented by an intrinsic call 2509 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2510 if (!isTriviallyVectorizable(ID)) { 2511 BS.cancelScheduling(VL, VL0); 2512 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2513 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2514 return; 2515 } 2516 Function *Int = CI->getCalledFunction(); 2517 unsigned NumArgs = CI->getNumArgOperands(); 2518 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2519 for (unsigned j = 0; j != NumArgs; ++j) 2520 if (hasVectorInstrinsicScalarOpd(ID, j)) 2521 ScalarArgs[j] = CI->getArgOperand(j); 2522 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2523 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2524 if (!CI2 || CI2->getCalledFunction() != Int || 2525 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2526 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2527 BS.cancelScheduling(VL, VL0); 2528 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2529 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2530 << "\n"); 2531 return; 2532 } 2533 // Some intrinsics have scalar arguments and should be same in order for 2534 // them to be vectorized. 2535 for (unsigned j = 0; j != NumArgs; ++j) { 2536 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2537 Value *A1J = CI2->getArgOperand(j); 2538 if (ScalarArgs[j] != A1J) { 2539 BS.cancelScheduling(VL, VL0); 2540 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2541 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2542 << " argument " << ScalarArgs[j] << "!=" << A1J 2543 << "\n"); 2544 return; 2545 } 2546 } 2547 } 2548 // Verify that the bundle operands are identical between the two calls. 2549 if (CI->hasOperandBundles() && 2550 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2551 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2552 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2553 BS.cancelScheduling(VL, VL0); 2554 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2555 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2556 << *CI << "!=" << *VL[i] << '\n'); 2557 return; 2558 } 2559 } 2560 2561 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2562 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2563 ValueList Operands; 2564 // Prepare the operand vector. 2565 for (Value *j : VL) { 2566 CallInst *CI2 = dyn_cast<CallInst>(j); 2567 Operands.push_back(CI2->getArgOperand(i)); 2568 } 2569 buildTree_rec(Operands, Depth + 1, {TE, i}); 2570 } 2571 return; 2572 } 2573 case Instruction::ShuffleVector: { 2574 // If this is not an alternate sequence of opcode like add-sub 2575 // then do not vectorize this instruction. 2576 if (!S.isAltShuffle()) { 2577 BS.cancelScheduling(VL, VL0); 2578 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2579 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2580 return; 2581 } 2582 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2583 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2584 2585 // Reorder operands if reordering would enable vectorization. 2586 if (isa<BinaryOperator>(VL0)) { 2587 ValueList Left, Right; 2588 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2589 buildTree_rec(Left, Depth + 1, {TE, 0}); 2590 buildTree_rec(Right, Depth + 1, {TE, 1}); 2591 return; 2592 } 2593 2594 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2595 ValueList Operands; 2596 // Prepare the operand vector. 2597 for (Value *j : VL) 2598 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2599 2600 buildTree_rec(Operands, Depth + 1, {TE, i}); 2601 } 2602 return; 2603 } 2604 default: 2605 BS.cancelScheduling(VL, VL0); 2606 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2607 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2608 return; 2609 } 2610 } 2611 2612 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2613 unsigned N; 2614 Type *EltTy; 2615 auto *ST = dyn_cast<StructType>(T); 2616 if (ST) { 2617 N = ST->getNumElements(); 2618 EltTy = *ST->element_begin(); 2619 } else { 2620 N = cast<ArrayType>(T)->getNumElements(); 2621 EltTy = cast<ArrayType>(T)->getElementType(); 2622 } 2623 if (!isValidElementType(EltTy)) 2624 return 0; 2625 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2626 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2627 return 0; 2628 if (ST) { 2629 // Check that struct is homogeneous. 2630 for (const auto *Ty : ST->elements()) 2631 if (Ty != EltTy) 2632 return 0; 2633 } 2634 return N; 2635 } 2636 2637 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2638 SmallVectorImpl<unsigned> &CurrentOrder) const { 2639 Instruction *E0 = cast<Instruction>(OpValue); 2640 assert(E0->getOpcode() == Instruction::ExtractElement || 2641 E0->getOpcode() == Instruction::ExtractValue); 2642 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2643 // Check if all of the extracts come from the same vector and from the 2644 // correct offset. 2645 Value *Vec = E0->getOperand(0); 2646 2647 CurrentOrder.clear(); 2648 2649 // We have to extract from a vector/aggregate with the same number of elements. 2650 unsigned NElts; 2651 if (E0->getOpcode() == Instruction::ExtractValue) { 2652 const DataLayout &DL = E0->getModule()->getDataLayout(); 2653 NElts = canMapToVector(Vec->getType(), DL); 2654 if (!NElts) 2655 return false; 2656 // Check if load can be rewritten as load of vector. 2657 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2658 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2659 return false; 2660 } else { 2661 NElts = Vec->getType()->getVectorNumElements(); 2662 } 2663 2664 if (NElts != VL.size()) 2665 return false; 2666 2667 // Check that all of the indices extract from the correct offset. 2668 bool ShouldKeepOrder = true; 2669 unsigned E = VL.size(); 2670 // Assign to all items the initial value E + 1 so we can check if the extract 2671 // instruction index was used already. 2672 // Also, later we can check that all the indices are used and we have a 2673 // consecutive access in the extract instructions, by checking that no 2674 // element of CurrentOrder still has value E + 1. 2675 CurrentOrder.assign(E, E + 1); 2676 unsigned I = 0; 2677 for (; I < E; ++I) { 2678 auto *Inst = cast<Instruction>(VL[I]); 2679 if (Inst->getOperand(0) != Vec) 2680 break; 2681 Optional<unsigned> Idx = getExtractIndex(Inst); 2682 if (!Idx) 2683 break; 2684 const unsigned ExtIdx = *Idx; 2685 if (ExtIdx != I) { 2686 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2687 break; 2688 ShouldKeepOrder = false; 2689 CurrentOrder[ExtIdx] = I; 2690 } else { 2691 if (CurrentOrder[I] != E + 1) 2692 break; 2693 CurrentOrder[I] = I; 2694 } 2695 } 2696 if (I < E) { 2697 CurrentOrder.clear(); 2698 return false; 2699 } 2700 2701 return ShouldKeepOrder; 2702 } 2703 2704 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2705 return I->hasOneUse() || 2706 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2707 return ScalarToTreeEntry.count(U) > 0; 2708 }); 2709 } 2710 2711 int BoUpSLP::getEntryCost(TreeEntry *E) { 2712 ArrayRef<Value*> VL = E->Scalars; 2713 2714 Type *ScalarTy = VL[0]->getType(); 2715 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2716 ScalarTy = SI->getValueOperand()->getType(); 2717 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2718 ScalarTy = CI->getOperand(0)->getType(); 2719 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2720 2721 // If we have computed a smaller type for the expression, update VecTy so 2722 // that the costs will be accurate. 2723 if (MinBWs.count(VL[0])) 2724 VecTy = VectorType::get( 2725 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2726 2727 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2728 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2729 int ReuseShuffleCost = 0; 2730 if (NeedToShuffleReuses) { 2731 ReuseShuffleCost = 2732 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2733 } 2734 if (E->NeedToGather) { 2735 if (allConstant(VL)) 2736 return 0; 2737 if (isSplat(VL)) { 2738 return ReuseShuffleCost + 2739 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2740 } 2741 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2742 allSameType(VL) && allSameBlock(VL)) { 2743 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2744 if (ShuffleKind.hasValue()) { 2745 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2746 for (auto *V : VL) { 2747 // If all users of instruction are going to be vectorized and this 2748 // instruction itself is not going to be vectorized, consider this 2749 // instruction as dead and remove its cost from the final cost of the 2750 // vectorized tree. 2751 if (areAllUsersVectorized(cast<Instruction>(V)) && 2752 !ScalarToTreeEntry.count(V)) { 2753 auto *IO = cast<ConstantInt>( 2754 cast<ExtractElementInst>(V)->getIndexOperand()); 2755 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2756 IO->getZExtValue()); 2757 } 2758 } 2759 return ReuseShuffleCost + Cost; 2760 } 2761 } 2762 return ReuseShuffleCost + getGatherCost(VL); 2763 } 2764 InstructionsState S = getSameOpcode(VL); 2765 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2766 Instruction *VL0 = cast<Instruction>(S.OpValue); 2767 unsigned ShuffleOrOp = S.isAltShuffle() ? 2768 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2769 switch (ShuffleOrOp) { 2770 case Instruction::PHI: 2771 return 0; 2772 2773 case Instruction::ExtractValue: 2774 case Instruction::ExtractElement: 2775 if (NeedToShuffleReuses) { 2776 unsigned Idx = 0; 2777 for (unsigned I : E->ReuseShuffleIndices) { 2778 if (ShuffleOrOp == Instruction::ExtractElement) { 2779 auto *IO = cast<ConstantInt>( 2780 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2781 Idx = IO->getZExtValue(); 2782 ReuseShuffleCost -= TTI->getVectorInstrCost( 2783 Instruction::ExtractElement, VecTy, Idx); 2784 } else { 2785 ReuseShuffleCost -= TTI->getVectorInstrCost( 2786 Instruction::ExtractElement, VecTy, Idx); 2787 ++Idx; 2788 } 2789 } 2790 Idx = ReuseShuffleNumbers; 2791 for (Value *V : VL) { 2792 if (ShuffleOrOp == Instruction::ExtractElement) { 2793 auto *IO = cast<ConstantInt>( 2794 cast<ExtractElementInst>(V)->getIndexOperand()); 2795 Idx = IO->getZExtValue(); 2796 } else { 2797 --Idx; 2798 } 2799 ReuseShuffleCost += 2800 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2801 } 2802 } 2803 if (!E->NeedToGather) { 2804 int DeadCost = ReuseShuffleCost; 2805 if (!E->ReorderIndices.empty()) { 2806 // TODO: Merge this shuffle with the ReuseShuffleCost. 2807 DeadCost += TTI->getShuffleCost( 2808 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2809 } 2810 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2811 Instruction *E = cast<Instruction>(VL[i]); 2812 // If all users are going to be vectorized, instruction can be 2813 // considered as dead. 2814 // The same, if have only one user, it will be vectorized for sure. 2815 if (areAllUsersVectorized(E)) { 2816 // Take credit for instruction that will become dead. 2817 if (E->hasOneUse()) { 2818 Instruction *Ext = E->user_back(); 2819 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2820 all_of(Ext->users(), 2821 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2822 // Use getExtractWithExtendCost() to calculate the cost of 2823 // extractelement/ext pair. 2824 DeadCost -= TTI->getExtractWithExtendCost( 2825 Ext->getOpcode(), Ext->getType(), VecTy, i); 2826 // Add back the cost of s|zext which is subtracted separately. 2827 DeadCost += TTI->getCastInstrCost( 2828 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2829 continue; 2830 } 2831 } 2832 DeadCost -= 2833 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2834 } 2835 } 2836 return DeadCost; 2837 } 2838 return ReuseShuffleCost + getGatherCost(VL); 2839 2840 case Instruction::ZExt: 2841 case Instruction::SExt: 2842 case Instruction::FPToUI: 2843 case Instruction::FPToSI: 2844 case Instruction::FPExt: 2845 case Instruction::PtrToInt: 2846 case Instruction::IntToPtr: 2847 case Instruction::SIToFP: 2848 case Instruction::UIToFP: 2849 case Instruction::Trunc: 2850 case Instruction::FPTrunc: 2851 case Instruction::BitCast: { 2852 Type *SrcTy = VL0->getOperand(0)->getType(); 2853 int ScalarEltCost = 2854 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2855 if (NeedToShuffleReuses) { 2856 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2857 } 2858 2859 // Calculate the cost of this instruction. 2860 int ScalarCost = VL.size() * ScalarEltCost; 2861 2862 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2863 int VecCost = 0; 2864 // Check if the values are candidates to demote. 2865 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2866 VecCost = ReuseShuffleCost + 2867 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2868 } 2869 return VecCost - ScalarCost; 2870 } 2871 case Instruction::FCmp: 2872 case Instruction::ICmp: 2873 case Instruction::Select: { 2874 // Calculate the cost of this instruction. 2875 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2876 Builder.getInt1Ty(), VL0); 2877 if (NeedToShuffleReuses) { 2878 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2879 } 2880 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2881 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2882 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2883 return ReuseShuffleCost + VecCost - ScalarCost; 2884 } 2885 case Instruction::FNeg: 2886 case Instruction::Add: 2887 case Instruction::FAdd: 2888 case Instruction::Sub: 2889 case Instruction::FSub: 2890 case Instruction::Mul: 2891 case Instruction::FMul: 2892 case Instruction::UDiv: 2893 case Instruction::SDiv: 2894 case Instruction::FDiv: 2895 case Instruction::URem: 2896 case Instruction::SRem: 2897 case Instruction::FRem: 2898 case Instruction::Shl: 2899 case Instruction::LShr: 2900 case Instruction::AShr: 2901 case Instruction::And: 2902 case Instruction::Or: 2903 case Instruction::Xor: { 2904 // Certain instructions can be cheaper to vectorize if they have a 2905 // constant second vector operand. 2906 TargetTransformInfo::OperandValueKind Op1VK = 2907 TargetTransformInfo::OK_AnyValue; 2908 TargetTransformInfo::OperandValueKind Op2VK = 2909 TargetTransformInfo::OK_UniformConstantValue; 2910 TargetTransformInfo::OperandValueProperties Op1VP = 2911 TargetTransformInfo::OP_None; 2912 TargetTransformInfo::OperandValueProperties Op2VP = 2913 TargetTransformInfo::OP_PowerOf2; 2914 2915 // If all operands are exactly the same ConstantInt then set the 2916 // operand kind to OK_UniformConstantValue. 2917 // If instead not all operands are constants, then set the operand kind 2918 // to OK_AnyValue. If all operands are constants but not the same, 2919 // then set the operand kind to OK_NonUniformConstantValue. 2920 ConstantInt *CInt0 = nullptr; 2921 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2922 const Instruction *I = cast<Instruction>(VL[i]); 2923 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 2924 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 2925 if (!CInt) { 2926 Op2VK = TargetTransformInfo::OK_AnyValue; 2927 Op2VP = TargetTransformInfo::OP_None; 2928 break; 2929 } 2930 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2931 !CInt->getValue().isPowerOf2()) 2932 Op2VP = TargetTransformInfo::OP_None; 2933 if (i == 0) { 2934 CInt0 = CInt; 2935 continue; 2936 } 2937 if (CInt0 != CInt) 2938 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2939 } 2940 2941 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2942 int ScalarEltCost = TTI->getArithmeticInstrCost( 2943 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2944 if (NeedToShuffleReuses) { 2945 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2946 } 2947 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2948 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2949 Op2VK, Op1VP, Op2VP, Operands); 2950 return ReuseShuffleCost + VecCost - ScalarCost; 2951 } 2952 case Instruction::GetElementPtr: { 2953 TargetTransformInfo::OperandValueKind Op1VK = 2954 TargetTransformInfo::OK_AnyValue; 2955 TargetTransformInfo::OperandValueKind Op2VK = 2956 TargetTransformInfo::OK_UniformConstantValue; 2957 2958 int ScalarEltCost = 2959 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2960 if (NeedToShuffleReuses) { 2961 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2962 } 2963 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2964 int VecCost = 2965 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2966 return ReuseShuffleCost + VecCost - ScalarCost; 2967 } 2968 case Instruction::Load: { 2969 // Cost of wide load - cost of scalar loads. 2970 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2971 int ScalarEltCost = 2972 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2973 if (NeedToShuffleReuses) { 2974 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2975 } 2976 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2977 int VecLdCost = 2978 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2979 if (!E->ReorderIndices.empty()) { 2980 // TODO: Merge this shuffle with the ReuseShuffleCost. 2981 VecLdCost += TTI->getShuffleCost( 2982 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2983 } 2984 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2985 } 2986 case Instruction::Store: { 2987 // We know that we can merge the stores. Calculate the cost. 2988 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2989 int ScalarEltCost = 2990 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2991 if (NeedToShuffleReuses) { 2992 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2993 } 2994 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2995 int VecStCost = 2996 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2997 return ReuseShuffleCost + VecStCost - ScalarStCost; 2998 } 2999 case Instruction::Call: { 3000 CallInst *CI = cast<CallInst>(VL0); 3001 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3002 3003 // Calculate the cost of the scalar and vector calls. 3004 SmallVector<Type *, 4> ScalarTys; 3005 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3006 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3007 3008 FastMathFlags FMF; 3009 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3010 FMF = FPMO->getFastMathFlags(); 3011 3012 int ScalarEltCost = 3013 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3014 if (NeedToShuffleReuses) { 3015 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3016 } 3017 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3018 3019 SmallVector<Value *, 4> Args(CI->arg_operands()); 3020 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3021 VecTy->getNumElements()); 3022 3023 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3024 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3025 << " for " << *CI << "\n"); 3026 3027 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3028 } 3029 case Instruction::ShuffleVector: { 3030 assert(S.isAltShuffle() && 3031 ((Instruction::isBinaryOp(S.getOpcode()) && 3032 Instruction::isBinaryOp(S.getAltOpcode())) || 3033 (Instruction::isCast(S.getOpcode()) && 3034 Instruction::isCast(S.getAltOpcode()))) && 3035 "Invalid Shuffle Vector Operand"); 3036 int ScalarCost = 0; 3037 if (NeedToShuffleReuses) { 3038 for (unsigned Idx : E->ReuseShuffleIndices) { 3039 Instruction *I = cast<Instruction>(VL[Idx]); 3040 ReuseShuffleCost -= TTI->getInstructionCost( 3041 I, TargetTransformInfo::TCK_RecipThroughput); 3042 } 3043 for (Value *V : VL) { 3044 Instruction *I = cast<Instruction>(V); 3045 ReuseShuffleCost += TTI->getInstructionCost( 3046 I, TargetTransformInfo::TCK_RecipThroughput); 3047 } 3048 } 3049 for (Value *i : VL) { 3050 Instruction *I = cast<Instruction>(i); 3051 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3052 ScalarCost += TTI->getInstructionCost( 3053 I, TargetTransformInfo::TCK_RecipThroughput); 3054 } 3055 // VecCost is equal to sum of the cost of creating 2 vectors 3056 // and the cost of creating shuffle. 3057 int VecCost = 0; 3058 if (Instruction::isBinaryOp(S.getOpcode())) { 3059 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3060 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3061 } else { 3062 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3063 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3064 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3065 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3066 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3067 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3068 } 3069 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3070 return ReuseShuffleCost + VecCost - ScalarCost; 3071 } 3072 default: 3073 llvm_unreachable("Unknown instruction"); 3074 } 3075 } 3076 3077 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3078 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3079 << VectorizableTree.size() << " is fully vectorizable .\n"); 3080 3081 // We only handle trees of heights 1 and 2. 3082 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3083 return true; 3084 3085 if (VectorizableTree.size() != 2) 3086 return false; 3087 3088 // Handle splat and all-constants stores. 3089 if (!VectorizableTree[0]->NeedToGather && 3090 (allConstant(VectorizableTree[1]->Scalars) || 3091 isSplat(VectorizableTree[1]->Scalars))) 3092 return true; 3093 3094 // Gathering cost would be too much for tiny trees. 3095 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3096 return false; 3097 3098 return true; 3099 } 3100 3101 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3102 // We can vectorize the tree if its size is greater than or equal to the 3103 // minimum size specified by the MinTreeSize command line option. 3104 if (VectorizableTree.size() >= MinTreeSize) 3105 return false; 3106 3107 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3108 // can vectorize it if we can prove it fully vectorizable. 3109 if (isFullyVectorizableTinyTree()) 3110 return false; 3111 3112 assert(VectorizableTree.empty() 3113 ? ExternalUses.empty() 3114 : true && "We shouldn't have any external users"); 3115 3116 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3117 // vectorizable. 3118 return true; 3119 } 3120 3121 int BoUpSLP::getSpillCost() const { 3122 // Walk from the bottom of the tree to the top, tracking which values are 3123 // live. When we see a call instruction that is not part of our tree, 3124 // query TTI to see if there is a cost to keeping values live over it 3125 // (for example, if spills and fills are required). 3126 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3127 int Cost = 0; 3128 3129 SmallPtrSet<Instruction*, 4> LiveValues; 3130 Instruction *PrevInst = nullptr; 3131 3132 for (const auto &TEPtr : VectorizableTree) { 3133 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3134 if (!Inst) 3135 continue; 3136 3137 if (!PrevInst) { 3138 PrevInst = Inst; 3139 continue; 3140 } 3141 3142 // Update LiveValues. 3143 LiveValues.erase(PrevInst); 3144 for (auto &J : PrevInst->operands()) { 3145 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3146 LiveValues.insert(cast<Instruction>(&*J)); 3147 } 3148 3149 LLVM_DEBUG({ 3150 dbgs() << "SLP: #LV: " << LiveValues.size(); 3151 for (auto *X : LiveValues) 3152 dbgs() << " " << X->getName(); 3153 dbgs() << ", Looking at "; 3154 Inst->dump(); 3155 }); 3156 3157 // Now find the sequence of instructions between PrevInst and Inst. 3158 unsigned NumCalls = 0; 3159 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3160 PrevInstIt = 3161 PrevInst->getIterator().getReverse(); 3162 while (InstIt != PrevInstIt) { 3163 if (PrevInstIt == PrevInst->getParent()->rend()) { 3164 PrevInstIt = Inst->getParent()->rbegin(); 3165 continue; 3166 } 3167 3168 // Debug informations don't impact spill cost. 3169 if ((isa<CallInst>(&*PrevInstIt) && 3170 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3171 &*PrevInstIt != PrevInst) 3172 NumCalls++; 3173 3174 ++PrevInstIt; 3175 } 3176 3177 if (NumCalls) { 3178 SmallVector<Type*, 4> V; 3179 for (auto *II : LiveValues) 3180 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3181 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3182 } 3183 3184 PrevInst = Inst; 3185 } 3186 3187 return Cost; 3188 } 3189 3190 int BoUpSLP::getTreeCost() { 3191 int Cost = 0; 3192 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3193 << VectorizableTree.size() << ".\n"); 3194 3195 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3196 3197 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3198 TreeEntry &TE = *VectorizableTree[I].get(); 3199 3200 // We create duplicate tree entries for gather sequences that have multiple 3201 // uses. However, we should not compute the cost of duplicate sequences. 3202 // For example, if we have a build vector (i.e., insertelement sequence) 3203 // that is used by more than one vector instruction, we only need to 3204 // compute the cost of the insertelement instructions once. The redundant 3205 // instructions will be eliminated by CSE. 3206 // 3207 // We should consider not creating duplicate tree entries for gather 3208 // sequences, and instead add additional edges to the tree representing 3209 // their uses. Since such an approach results in fewer total entries, 3210 // existing heuristics based on tree size may yield different results. 3211 // 3212 if (TE.NeedToGather && 3213 std::any_of( 3214 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3215 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3216 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3217 })) 3218 continue; 3219 3220 int C = getEntryCost(&TE); 3221 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3222 << " for bundle that starts with " << *TE.Scalars[0] 3223 << ".\n"); 3224 Cost += C; 3225 } 3226 3227 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3228 int ExtractCost = 0; 3229 for (ExternalUser &EU : ExternalUses) { 3230 // We only add extract cost once for the same scalar. 3231 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3232 continue; 3233 3234 // Uses by ephemeral values are free (because the ephemeral value will be 3235 // removed prior to code generation, and so the extraction will be 3236 // removed as well). 3237 if (EphValues.count(EU.User)) 3238 continue; 3239 3240 // If we plan to rewrite the tree in a smaller type, we will need to sign 3241 // extend the extracted value back to the original type. Here, we account 3242 // for the extract and the added cost of the sign extend if needed. 3243 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3244 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3245 if (MinBWs.count(ScalarRoot)) { 3246 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3247 auto Extend = 3248 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3249 VecTy = VectorType::get(MinTy, BundleWidth); 3250 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3251 VecTy, EU.Lane); 3252 } else { 3253 ExtractCost += 3254 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3255 } 3256 } 3257 3258 int SpillCost = getSpillCost(); 3259 Cost += SpillCost + ExtractCost; 3260 3261 std::string Str; 3262 { 3263 raw_string_ostream OS(Str); 3264 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3265 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3266 << "SLP: Total Cost = " << Cost << ".\n"; 3267 } 3268 LLVM_DEBUG(dbgs() << Str); 3269 3270 if (ViewSLPTree) 3271 ViewGraph(this, "SLP" + F->getName(), false, Str); 3272 3273 return Cost; 3274 } 3275 3276 int BoUpSLP::getGatherCost(Type *Ty, 3277 const DenseSet<unsigned> &ShuffledIndices) const { 3278 int Cost = 0; 3279 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3280 if (!ShuffledIndices.count(i)) 3281 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3282 if (!ShuffledIndices.empty()) 3283 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3284 return Cost; 3285 } 3286 3287 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3288 // Find the type of the operands in VL. 3289 Type *ScalarTy = VL[0]->getType(); 3290 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3291 ScalarTy = SI->getValueOperand()->getType(); 3292 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3293 // Find the cost of inserting/extracting values from the vector. 3294 // Check if the same elements are inserted several times and count them as 3295 // shuffle candidates. 3296 DenseSet<unsigned> ShuffledElements; 3297 DenseSet<Value *> UniqueElements; 3298 // Iterate in reverse order to consider insert elements with the high cost. 3299 for (unsigned I = VL.size(); I > 0; --I) { 3300 unsigned Idx = I - 1; 3301 if (!UniqueElements.insert(VL[Idx]).second) 3302 ShuffledElements.insert(Idx); 3303 } 3304 return getGatherCost(VecTy, ShuffledElements); 3305 } 3306 3307 // Perform operand reordering on the instructions in VL and return the reordered 3308 // operands in Left and Right. 3309 void BoUpSLP::reorderInputsAccordingToOpcode( 3310 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3311 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3312 ScalarEvolution &SE) { 3313 if (VL.empty()) 3314 return; 3315 VLOperands Ops(VL, DL, SE); 3316 // Reorder the operands in place. 3317 Ops.reorder(); 3318 Left = Ops.getVL(0); 3319 Right = Ops.getVL(1); 3320 } 3321 3322 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3323 const InstructionsState &S) { 3324 // Get the basic block this bundle is in. All instructions in the bundle 3325 // should be in this block. 3326 auto *Front = cast<Instruction>(S.OpValue); 3327 auto *BB = Front->getParent(); 3328 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3329 auto *I = cast<Instruction>(V); 3330 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3331 })); 3332 3333 // The last instruction in the bundle in program order. 3334 Instruction *LastInst = nullptr; 3335 3336 // Find the last instruction. The common case should be that BB has been 3337 // scheduled, and the last instruction is VL.back(). So we start with 3338 // VL.back() and iterate over schedule data until we reach the end of the 3339 // bundle. The end of the bundle is marked by null ScheduleData. 3340 if (BlocksSchedules.count(BB)) { 3341 auto *Bundle = 3342 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3343 if (Bundle && Bundle->isPartOfBundle()) 3344 for (; Bundle; Bundle = Bundle->NextInBundle) 3345 if (Bundle->OpValue == Bundle->Inst) 3346 LastInst = Bundle->Inst; 3347 } 3348 3349 // LastInst can still be null at this point if there's either not an entry 3350 // for BB in BlocksSchedules or there's no ScheduleData available for 3351 // VL.back(). This can be the case if buildTree_rec aborts for various 3352 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3353 // size is reached, etc.). ScheduleData is initialized in the scheduling 3354 // "dry-run". 3355 // 3356 // If this happens, we can still find the last instruction by brute force. We 3357 // iterate forwards from Front (inclusive) until we either see all 3358 // instructions in the bundle or reach the end of the block. If Front is the 3359 // last instruction in program order, LastInst will be set to Front, and we 3360 // will visit all the remaining instructions in the block. 3361 // 3362 // One of the reasons we exit early from buildTree_rec is to place an upper 3363 // bound on compile-time. Thus, taking an additional compile-time hit here is 3364 // not ideal. However, this should be exceedingly rare since it requires that 3365 // we both exit early from buildTree_rec and that the bundle be out-of-order 3366 // (causing us to iterate all the way to the end of the block). 3367 if (!LastInst) { 3368 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3369 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3370 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3371 LastInst = &I; 3372 if (Bundle.empty()) 3373 break; 3374 } 3375 } 3376 3377 // Set the insertion point after the last instruction in the bundle. Set the 3378 // debug location to Front. 3379 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3380 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3381 } 3382 3383 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3384 Value *Vec = UndefValue::get(Ty); 3385 // Generate the 'InsertElement' instruction. 3386 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3387 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3388 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3389 GatherSeq.insert(Insrt); 3390 CSEBlocks.insert(Insrt->getParent()); 3391 3392 // Add to our 'need-to-extract' list. 3393 if (TreeEntry *E = getTreeEntry(VL[i])) { 3394 // Find which lane we need to extract. 3395 int FoundLane = -1; 3396 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3397 // Is this the lane of the scalar that we are looking for ? 3398 if (E->Scalars[Lane] == VL[i]) { 3399 FoundLane = Lane; 3400 break; 3401 } 3402 } 3403 assert(FoundLane >= 0 && "Could not find the correct lane"); 3404 if (!E->ReuseShuffleIndices.empty()) { 3405 FoundLane = 3406 std::distance(E->ReuseShuffleIndices.begin(), 3407 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3408 } 3409 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3410 } 3411 } 3412 } 3413 3414 return Vec; 3415 } 3416 3417 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3418 InstructionsState S = getSameOpcode(VL); 3419 if (S.getOpcode()) { 3420 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3421 if (E->isSame(VL)) { 3422 Value *V = vectorizeTree(E); 3423 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3424 // We need to get the vectorized value but without shuffle. 3425 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3426 V = SV->getOperand(0); 3427 } else { 3428 // Reshuffle to get only unique values. 3429 SmallVector<unsigned, 4> UniqueIdxs; 3430 SmallSet<unsigned, 4> UsedIdxs; 3431 for(unsigned Idx : E->ReuseShuffleIndices) 3432 if (UsedIdxs.insert(Idx).second) 3433 UniqueIdxs.emplace_back(Idx); 3434 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3435 UniqueIdxs); 3436 } 3437 } 3438 return V; 3439 } 3440 } 3441 } 3442 3443 Type *ScalarTy = S.OpValue->getType(); 3444 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3445 ScalarTy = SI->getValueOperand()->getType(); 3446 3447 // Check that every instruction appears once in this bundle. 3448 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3449 SmallVector<Value *, 4> UniqueValues; 3450 if (VL.size() > 2) { 3451 DenseMap<Value *, unsigned> UniquePositions; 3452 for (Value *V : VL) { 3453 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3454 ReuseShuffleIndicies.emplace_back(Res.first->second); 3455 if (Res.second || isa<Constant>(V)) 3456 UniqueValues.emplace_back(V); 3457 } 3458 // Do not shuffle single element or if number of unique values is not power 3459 // of 2. 3460 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3461 !llvm::isPowerOf2_32(UniqueValues.size())) 3462 ReuseShuffleIndicies.clear(); 3463 else 3464 VL = UniqueValues; 3465 } 3466 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3467 3468 Value *V = Gather(VL, VecTy); 3469 if (!ReuseShuffleIndicies.empty()) { 3470 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3471 ReuseShuffleIndicies, "shuffle"); 3472 if (auto *I = dyn_cast<Instruction>(V)) { 3473 GatherSeq.insert(I); 3474 CSEBlocks.insert(I->getParent()); 3475 } 3476 } 3477 return V; 3478 } 3479 3480 static void inversePermutation(ArrayRef<unsigned> Indices, 3481 SmallVectorImpl<unsigned> &Mask) { 3482 Mask.clear(); 3483 const unsigned E = Indices.size(); 3484 Mask.resize(E); 3485 for (unsigned I = 0; I < E; ++I) 3486 Mask[Indices[I]] = I; 3487 } 3488 3489 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3490 IRBuilder<>::InsertPointGuard Guard(Builder); 3491 3492 if (E->VectorizedValue) { 3493 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3494 return E->VectorizedValue; 3495 } 3496 3497 InstructionsState S = getSameOpcode(E->Scalars); 3498 Instruction *VL0 = cast<Instruction>(S.OpValue); 3499 Type *ScalarTy = VL0->getType(); 3500 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3501 ScalarTy = SI->getValueOperand()->getType(); 3502 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3503 3504 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3505 3506 if (E->NeedToGather) { 3507 setInsertPointAfterBundle(E->Scalars, S); 3508 auto *V = Gather(E->Scalars, VecTy); 3509 if (NeedToShuffleReuses) { 3510 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3511 E->ReuseShuffleIndices, "shuffle"); 3512 if (auto *I = dyn_cast<Instruction>(V)) { 3513 GatherSeq.insert(I); 3514 CSEBlocks.insert(I->getParent()); 3515 } 3516 } 3517 E->VectorizedValue = V; 3518 return V; 3519 } 3520 3521 unsigned ShuffleOrOp = S.isAltShuffle() ? 3522 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3523 switch (ShuffleOrOp) { 3524 case Instruction::PHI: { 3525 PHINode *PH = dyn_cast<PHINode>(VL0); 3526 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3527 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3528 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3529 Value *V = NewPhi; 3530 if (NeedToShuffleReuses) { 3531 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3532 E->ReuseShuffleIndices, "shuffle"); 3533 } 3534 E->VectorizedValue = V; 3535 3536 // PHINodes may have multiple entries from the same block. We want to 3537 // visit every block once. 3538 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3539 3540 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3541 ValueList Operands; 3542 BasicBlock *IBB = PH->getIncomingBlock(i); 3543 3544 if (!VisitedBBs.insert(IBB).second) { 3545 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3546 continue; 3547 } 3548 3549 Builder.SetInsertPoint(IBB->getTerminator()); 3550 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3551 Value *Vec = vectorizeTree(E->getOperand(i)); 3552 NewPhi->addIncoming(Vec, IBB); 3553 } 3554 3555 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3556 "Invalid number of incoming values"); 3557 return V; 3558 } 3559 3560 case Instruction::ExtractElement: { 3561 if (!E->NeedToGather) { 3562 Value *V = E->getSingleOperand(0); 3563 if (!E->ReorderIndices.empty()) { 3564 OrdersType Mask; 3565 inversePermutation(E->ReorderIndices, Mask); 3566 Builder.SetInsertPoint(VL0); 3567 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3568 "reorder_shuffle"); 3569 } 3570 if (NeedToShuffleReuses) { 3571 // TODO: Merge this shuffle with the ReorderShuffleMask. 3572 if (E->ReorderIndices.empty()) 3573 Builder.SetInsertPoint(VL0); 3574 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3575 E->ReuseShuffleIndices, "shuffle"); 3576 } 3577 E->VectorizedValue = V; 3578 return V; 3579 } 3580 setInsertPointAfterBundle(E->Scalars, S); 3581 auto *V = Gather(E->Scalars, VecTy); 3582 if (NeedToShuffleReuses) { 3583 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3584 E->ReuseShuffleIndices, "shuffle"); 3585 if (auto *I = dyn_cast<Instruction>(V)) { 3586 GatherSeq.insert(I); 3587 CSEBlocks.insert(I->getParent()); 3588 } 3589 } 3590 E->VectorizedValue = V; 3591 return V; 3592 } 3593 case Instruction::ExtractValue: { 3594 if (!E->NeedToGather) { 3595 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3596 Builder.SetInsertPoint(LI); 3597 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3598 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3599 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3600 Value *NewV = propagateMetadata(V, E->Scalars); 3601 if (!E->ReorderIndices.empty()) { 3602 OrdersType Mask; 3603 inversePermutation(E->ReorderIndices, Mask); 3604 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3605 "reorder_shuffle"); 3606 } 3607 if (NeedToShuffleReuses) { 3608 // TODO: Merge this shuffle with the ReorderShuffleMask. 3609 NewV = Builder.CreateShuffleVector( 3610 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3611 } 3612 E->VectorizedValue = NewV; 3613 return NewV; 3614 } 3615 setInsertPointAfterBundle(E->Scalars, S); 3616 auto *V = Gather(E->Scalars, VecTy); 3617 if (NeedToShuffleReuses) { 3618 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3619 E->ReuseShuffleIndices, "shuffle"); 3620 if (auto *I = dyn_cast<Instruction>(V)) { 3621 GatherSeq.insert(I); 3622 CSEBlocks.insert(I->getParent()); 3623 } 3624 } 3625 E->VectorizedValue = V; 3626 return V; 3627 } 3628 case Instruction::ZExt: 3629 case Instruction::SExt: 3630 case Instruction::FPToUI: 3631 case Instruction::FPToSI: 3632 case Instruction::FPExt: 3633 case Instruction::PtrToInt: 3634 case Instruction::IntToPtr: 3635 case Instruction::SIToFP: 3636 case Instruction::UIToFP: 3637 case Instruction::Trunc: 3638 case Instruction::FPTrunc: 3639 case Instruction::BitCast: { 3640 setInsertPointAfterBundle(E->Scalars, S); 3641 3642 Value *InVec = vectorizeTree(E->getOperand(0)); 3643 3644 if (E->VectorizedValue) { 3645 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3646 return E->VectorizedValue; 3647 } 3648 3649 CastInst *CI = dyn_cast<CastInst>(VL0); 3650 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3651 if (NeedToShuffleReuses) { 3652 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3653 E->ReuseShuffleIndices, "shuffle"); 3654 } 3655 E->VectorizedValue = V; 3656 ++NumVectorInstructions; 3657 return V; 3658 } 3659 case Instruction::FCmp: 3660 case Instruction::ICmp: { 3661 setInsertPointAfterBundle(E->Scalars, S); 3662 3663 Value *L = vectorizeTree(E->getOperand(0)); 3664 Value *R = vectorizeTree(E->getOperand(1)); 3665 3666 if (E->VectorizedValue) { 3667 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3668 return E->VectorizedValue; 3669 } 3670 3671 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3672 Value *V; 3673 if (S.getOpcode() == Instruction::FCmp) 3674 V = Builder.CreateFCmp(P0, L, R); 3675 else 3676 V = Builder.CreateICmp(P0, L, R); 3677 3678 propagateIRFlags(V, E->Scalars, VL0); 3679 if (NeedToShuffleReuses) { 3680 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3681 E->ReuseShuffleIndices, "shuffle"); 3682 } 3683 E->VectorizedValue = V; 3684 ++NumVectorInstructions; 3685 return V; 3686 } 3687 case Instruction::Select: { 3688 setInsertPointAfterBundle(E->Scalars, S); 3689 3690 Value *Cond = vectorizeTree(E->getOperand(0)); 3691 Value *True = vectorizeTree(E->getOperand(1)); 3692 Value *False = vectorizeTree(E->getOperand(2)); 3693 3694 if (E->VectorizedValue) { 3695 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3696 return E->VectorizedValue; 3697 } 3698 3699 Value *V = Builder.CreateSelect(Cond, True, False); 3700 if (NeedToShuffleReuses) { 3701 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3702 E->ReuseShuffleIndices, "shuffle"); 3703 } 3704 E->VectorizedValue = V; 3705 ++NumVectorInstructions; 3706 return V; 3707 } 3708 case Instruction::FNeg: { 3709 setInsertPointAfterBundle(E->Scalars, S); 3710 3711 Value *Op = vectorizeTree(E->getOperand(0)); 3712 3713 if (E->VectorizedValue) { 3714 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3715 return E->VectorizedValue; 3716 } 3717 3718 Value *V = Builder.CreateUnOp( 3719 static_cast<Instruction::UnaryOps>(S.getOpcode()), Op); 3720 propagateIRFlags(V, E->Scalars, VL0); 3721 if (auto *I = dyn_cast<Instruction>(V)) 3722 V = propagateMetadata(I, E->Scalars); 3723 3724 if (NeedToShuffleReuses) { 3725 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3726 E->ReuseShuffleIndices, "shuffle"); 3727 } 3728 E->VectorizedValue = V; 3729 ++NumVectorInstructions; 3730 3731 return V; 3732 } 3733 case Instruction::Add: 3734 case Instruction::FAdd: 3735 case Instruction::Sub: 3736 case Instruction::FSub: 3737 case Instruction::Mul: 3738 case Instruction::FMul: 3739 case Instruction::UDiv: 3740 case Instruction::SDiv: 3741 case Instruction::FDiv: 3742 case Instruction::URem: 3743 case Instruction::SRem: 3744 case Instruction::FRem: 3745 case Instruction::Shl: 3746 case Instruction::LShr: 3747 case Instruction::AShr: 3748 case Instruction::And: 3749 case Instruction::Or: 3750 case Instruction::Xor: { 3751 setInsertPointAfterBundle(E->Scalars, S); 3752 3753 Value *LHS = vectorizeTree(E->getOperand(0)); 3754 Value *RHS = vectorizeTree(E->getOperand(1)); 3755 3756 if (E->VectorizedValue) { 3757 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3758 return E->VectorizedValue; 3759 } 3760 3761 Value *V = Builder.CreateBinOp( 3762 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3763 propagateIRFlags(V, E->Scalars, VL0); 3764 if (auto *I = dyn_cast<Instruction>(V)) 3765 V = propagateMetadata(I, E->Scalars); 3766 3767 if (NeedToShuffleReuses) { 3768 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3769 E->ReuseShuffleIndices, "shuffle"); 3770 } 3771 E->VectorizedValue = V; 3772 ++NumVectorInstructions; 3773 3774 return V; 3775 } 3776 case Instruction::Load: { 3777 // Loads are inserted at the head of the tree because we don't want to 3778 // sink them all the way down past store instructions. 3779 bool IsReorder = !E->ReorderIndices.empty(); 3780 if (IsReorder) { 3781 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3782 VL0 = cast<Instruction>(S.OpValue); 3783 } 3784 setInsertPointAfterBundle(E->Scalars, S); 3785 3786 LoadInst *LI = cast<LoadInst>(VL0); 3787 Type *ScalarLoadTy = LI->getType(); 3788 unsigned AS = LI->getPointerAddressSpace(); 3789 3790 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3791 VecTy->getPointerTo(AS)); 3792 3793 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3794 // ExternalUses list to make sure that an extract will be generated in the 3795 // future. 3796 Value *PO = LI->getPointerOperand(); 3797 if (getTreeEntry(PO)) 3798 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3799 3800 unsigned Alignment = LI->getAlignment(); 3801 LI = Builder.CreateLoad(VecTy, VecPtr); 3802 if (!Alignment) { 3803 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3804 } 3805 LI->setAlignment(Alignment); 3806 Value *V = propagateMetadata(LI, E->Scalars); 3807 if (IsReorder) { 3808 OrdersType Mask; 3809 inversePermutation(E->ReorderIndices, Mask); 3810 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3811 Mask, "reorder_shuffle"); 3812 } 3813 if (NeedToShuffleReuses) { 3814 // TODO: Merge this shuffle with the ReorderShuffleMask. 3815 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3816 E->ReuseShuffleIndices, "shuffle"); 3817 } 3818 E->VectorizedValue = V; 3819 ++NumVectorInstructions; 3820 return V; 3821 } 3822 case Instruction::Store: { 3823 StoreInst *SI = cast<StoreInst>(VL0); 3824 unsigned Alignment = SI->getAlignment(); 3825 unsigned AS = SI->getPointerAddressSpace(); 3826 3827 setInsertPointAfterBundle(E->Scalars, S); 3828 3829 Value *VecValue = vectorizeTree(E->getOperand(0)); 3830 Value *ScalarPtr = SI->getPointerOperand(); 3831 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3832 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3833 3834 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3835 // ExternalUses to make sure that an extract will be generated in the 3836 // future. 3837 if (getTreeEntry(ScalarPtr)) 3838 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3839 3840 if (!Alignment) 3841 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3842 3843 ST->setAlignment(Alignment); 3844 Value *V = propagateMetadata(ST, E->Scalars); 3845 if (NeedToShuffleReuses) { 3846 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3847 E->ReuseShuffleIndices, "shuffle"); 3848 } 3849 E->VectorizedValue = V; 3850 ++NumVectorInstructions; 3851 return V; 3852 } 3853 case Instruction::GetElementPtr: { 3854 setInsertPointAfterBundle(E->Scalars, S); 3855 3856 Value *Op0 = vectorizeTree(E->getOperand(0)); 3857 3858 std::vector<Value *> OpVecs; 3859 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3860 ++j) { 3861 Value *OpVec = vectorizeTree(E->getOperand(j)); 3862 OpVecs.push_back(OpVec); 3863 } 3864 3865 Value *V = Builder.CreateGEP( 3866 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3867 if (Instruction *I = dyn_cast<Instruction>(V)) 3868 V = propagateMetadata(I, E->Scalars); 3869 3870 if (NeedToShuffleReuses) { 3871 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3872 E->ReuseShuffleIndices, "shuffle"); 3873 } 3874 E->VectorizedValue = V; 3875 ++NumVectorInstructions; 3876 3877 return V; 3878 } 3879 case Instruction::Call: { 3880 CallInst *CI = cast<CallInst>(VL0); 3881 setInsertPointAfterBundle(E->Scalars, S); 3882 Function *FI; 3883 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3884 Value *ScalarArg = nullptr; 3885 if (CI && (FI = CI->getCalledFunction())) { 3886 IID = FI->getIntrinsicID(); 3887 } 3888 std::vector<Value *> OpVecs; 3889 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3890 ValueList OpVL; 3891 // Some intrinsics have scalar arguments. This argument should not be 3892 // vectorized. 3893 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3894 CallInst *CEI = cast<CallInst>(VL0); 3895 ScalarArg = CEI->getArgOperand(j); 3896 OpVecs.push_back(CEI->getArgOperand(j)); 3897 continue; 3898 } 3899 3900 Value *OpVec = vectorizeTree(E->getOperand(j)); 3901 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3902 OpVecs.push_back(OpVec); 3903 } 3904 3905 Module *M = F->getParent(); 3906 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3907 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3908 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3909 SmallVector<OperandBundleDef, 1> OpBundles; 3910 CI->getOperandBundlesAsDefs(OpBundles); 3911 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3912 3913 // The scalar argument uses an in-tree scalar so we add the new vectorized 3914 // call to ExternalUses list to make sure that an extract will be 3915 // generated in the future. 3916 if (ScalarArg && getTreeEntry(ScalarArg)) 3917 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3918 3919 propagateIRFlags(V, E->Scalars, VL0); 3920 if (NeedToShuffleReuses) { 3921 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3922 E->ReuseShuffleIndices, "shuffle"); 3923 } 3924 E->VectorizedValue = V; 3925 ++NumVectorInstructions; 3926 return V; 3927 } 3928 case Instruction::ShuffleVector: { 3929 assert(S.isAltShuffle() && 3930 ((Instruction::isBinaryOp(S.getOpcode()) && 3931 Instruction::isBinaryOp(S.getAltOpcode())) || 3932 (Instruction::isCast(S.getOpcode()) && 3933 Instruction::isCast(S.getAltOpcode()))) && 3934 "Invalid Shuffle Vector Operand"); 3935 3936 Value *LHS, *RHS; 3937 if (Instruction::isBinaryOp(S.getOpcode())) { 3938 setInsertPointAfterBundle(E->Scalars, S); 3939 LHS = vectorizeTree(E->getOperand(0)); 3940 RHS = vectorizeTree(E->getOperand(1)); 3941 } else { 3942 setInsertPointAfterBundle(E->Scalars, S); 3943 LHS = vectorizeTree(E->getOperand(0)); 3944 } 3945 3946 if (E->VectorizedValue) { 3947 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3948 return E->VectorizedValue; 3949 } 3950 3951 Value *V0, *V1; 3952 if (Instruction::isBinaryOp(S.getOpcode())) { 3953 V0 = Builder.CreateBinOp( 3954 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3955 V1 = Builder.CreateBinOp( 3956 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3957 } else { 3958 V0 = Builder.CreateCast( 3959 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3960 V1 = Builder.CreateCast( 3961 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3962 } 3963 3964 // Create shuffle to take alternate operations from the vector. 3965 // Also, gather up main and alt scalar ops to propagate IR flags to 3966 // each vector operation. 3967 ValueList OpScalars, AltScalars; 3968 unsigned e = E->Scalars.size(); 3969 SmallVector<Constant *, 8> Mask(e); 3970 for (unsigned i = 0; i < e; ++i) { 3971 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3972 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3973 if (OpInst->getOpcode() == S.getAltOpcode()) { 3974 Mask[i] = Builder.getInt32(e + i); 3975 AltScalars.push_back(E->Scalars[i]); 3976 } else { 3977 Mask[i] = Builder.getInt32(i); 3978 OpScalars.push_back(E->Scalars[i]); 3979 } 3980 } 3981 3982 Value *ShuffleMask = ConstantVector::get(Mask); 3983 propagateIRFlags(V0, OpScalars); 3984 propagateIRFlags(V1, AltScalars); 3985 3986 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3987 if (Instruction *I = dyn_cast<Instruction>(V)) 3988 V = propagateMetadata(I, E->Scalars); 3989 if (NeedToShuffleReuses) { 3990 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3991 E->ReuseShuffleIndices, "shuffle"); 3992 } 3993 E->VectorizedValue = V; 3994 ++NumVectorInstructions; 3995 3996 return V; 3997 } 3998 default: 3999 llvm_unreachable("unknown inst"); 4000 } 4001 return nullptr; 4002 } 4003 4004 Value *BoUpSLP::vectorizeTree() { 4005 ExtraValueToDebugLocsMap ExternallyUsedValues; 4006 return vectorizeTree(ExternallyUsedValues); 4007 } 4008 4009 Value * 4010 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4011 // All blocks must be scheduled before any instructions are inserted. 4012 for (auto &BSIter : BlocksSchedules) { 4013 scheduleBlock(BSIter.second.get()); 4014 } 4015 4016 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4017 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4018 4019 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4020 // vectorized root. InstCombine will then rewrite the entire expression. We 4021 // sign extend the extracted values below. 4022 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4023 if (MinBWs.count(ScalarRoot)) { 4024 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4025 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4026 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4027 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4028 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4029 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4030 VectorizableTree[0]->VectorizedValue = Trunc; 4031 } 4032 4033 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4034 << " values .\n"); 4035 4036 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4037 // specified by ScalarType. 4038 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4039 if (!MinBWs.count(ScalarRoot)) 4040 return Ex; 4041 if (MinBWs[ScalarRoot].second) 4042 return Builder.CreateSExt(Ex, ScalarType); 4043 return Builder.CreateZExt(Ex, ScalarType); 4044 }; 4045 4046 // Extract all of the elements with the external uses. 4047 for (const auto &ExternalUse : ExternalUses) { 4048 Value *Scalar = ExternalUse.Scalar; 4049 llvm::User *User = ExternalUse.User; 4050 4051 // Skip users that we already RAUW. This happens when one instruction 4052 // has multiple uses of the same value. 4053 if (User && !is_contained(Scalar->users(), User)) 4054 continue; 4055 TreeEntry *E = getTreeEntry(Scalar); 4056 assert(E && "Invalid scalar"); 4057 assert(!E->NeedToGather && "Extracting from a gather list"); 4058 4059 Value *Vec = E->VectorizedValue; 4060 assert(Vec && "Can't find vectorizable value"); 4061 4062 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4063 // If User == nullptr, the Scalar is used as extra arg. Generate 4064 // ExtractElement instruction and update the record for this scalar in 4065 // ExternallyUsedValues. 4066 if (!User) { 4067 assert(ExternallyUsedValues.count(Scalar) && 4068 "Scalar with nullptr as an external user must be registered in " 4069 "ExternallyUsedValues map"); 4070 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4071 Builder.SetInsertPoint(VecI->getParent(), 4072 std::next(VecI->getIterator())); 4073 } else { 4074 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4075 } 4076 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4077 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4078 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4079 auto &Locs = ExternallyUsedValues[Scalar]; 4080 ExternallyUsedValues.insert({Ex, Locs}); 4081 ExternallyUsedValues.erase(Scalar); 4082 // Required to update internally referenced instructions. 4083 Scalar->replaceAllUsesWith(Ex); 4084 continue; 4085 } 4086 4087 // Generate extracts for out-of-tree users. 4088 // Find the insertion point for the extractelement lane. 4089 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4090 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4091 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4092 if (PH->getIncomingValue(i) == Scalar) { 4093 Instruction *IncomingTerminator = 4094 PH->getIncomingBlock(i)->getTerminator(); 4095 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4096 Builder.SetInsertPoint(VecI->getParent(), 4097 std::next(VecI->getIterator())); 4098 } else { 4099 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4100 } 4101 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4102 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4103 CSEBlocks.insert(PH->getIncomingBlock(i)); 4104 PH->setOperand(i, Ex); 4105 } 4106 } 4107 } else { 4108 Builder.SetInsertPoint(cast<Instruction>(User)); 4109 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4110 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4111 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4112 User->replaceUsesOfWith(Scalar, Ex); 4113 } 4114 } else { 4115 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4116 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4117 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4118 CSEBlocks.insert(&F->getEntryBlock()); 4119 User->replaceUsesOfWith(Scalar, Ex); 4120 } 4121 4122 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4123 } 4124 4125 // For each vectorized value: 4126 for (auto &TEPtr : VectorizableTree) { 4127 TreeEntry *Entry = TEPtr.get(); 4128 4129 // No need to handle users of gathered values. 4130 if (Entry->NeedToGather) 4131 continue; 4132 4133 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4134 4135 // For each lane: 4136 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4137 Value *Scalar = Entry->Scalars[Lane]; 4138 4139 Type *Ty = Scalar->getType(); 4140 if (!Ty->isVoidTy()) { 4141 #ifndef NDEBUG 4142 for (User *U : Scalar->users()) { 4143 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4144 4145 // It is legal to replace users in the ignorelist by undef. 4146 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4147 "Replacing out-of-tree value with undef"); 4148 } 4149 #endif 4150 Value *Undef = UndefValue::get(Ty); 4151 Scalar->replaceAllUsesWith(Undef); 4152 } 4153 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4154 eraseInstruction(cast<Instruction>(Scalar)); 4155 } 4156 } 4157 4158 Builder.ClearInsertionPoint(); 4159 4160 return VectorizableTree[0]->VectorizedValue; 4161 } 4162 4163 void BoUpSLP::optimizeGatherSequence() { 4164 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4165 << " gather sequences instructions.\n"); 4166 // LICM InsertElementInst sequences. 4167 for (Instruction *I : GatherSeq) { 4168 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4169 continue; 4170 4171 // Check if this block is inside a loop. 4172 Loop *L = LI->getLoopFor(I->getParent()); 4173 if (!L) 4174 continue; 4175 4176 // Check if it has a preheader. 4177 BasicBlock *PreHeader = L->getLoopPreheader(); 4178 if (!PreHeader) 4179 continue; 4180 4181 // If the vector or the element that we insert into it are 4182 // instructions that are defined in this basic block then we can't 4183 // hoist this instruction. 4184 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4185 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4186 if (Op0 && L->contains(Op0)) 4187 continue; 4188 if (Op1 && L->contains(Op1)) 4189 continue; 4190 4191 // We can hoist this instruction. Move it to the pre-header. 4192 I->moveBefore(PreHeader->getTerminator()); 4193 } 4194 4195 // Make a list of all reachable blocks in our CSE queue. 4196 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4197 CSEWorkList.reserve(CSEBlocks.size()); 4198 for (BasicBlock *BB : CSEBlocks) 4199 if (DomTreeNode *N = DT->getNode(BB)) { 4200 assert(DT->isReachableFromEntry(N)); 4201 CSEWorkList.push_back(N); 4202 } 4203 4204 // Sort blocks by domination. This ensures we visit a block after all blocks 4205 // dominating it are visited. 4206 llvm::stable_sort(CSEWorkList, 4207 [this](const DomTreeNode *A, const DomTreeNode *B) { 4208 return DT->properlyDominates(A, B); 4209 }); 4210 4211 // Perform O(N^2) search over the gather sequences and merge identical 4212 // instructions. TODO: We can further optimize this scan if we split the 4213 // instructions into different buckets based on the insert lane. 4214 SmallVector<Instruction *, 16> Visited; 4215 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4216 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4217 "Worklist not sorted properly!"); 4218 BasicBlock *BB = (*I)->getBlock(); 4219 // For all instructions in blocks containing gather sequences: 4220 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4221 Instruction *In = &*it++; 4222 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4223 continue; 4224 4225 // Check if we can replace this instruction with any of the 4226 // visited instructions. 4227 for (Instruction *v : Visited) { 4228 if (In->isIdenticalTo(v) && 4229 DT->dominates(v->getParent(), In->getParent())) { 4230 In->replaceAllUsesWith(v); 4231 eraseInstruction(In); 4232 In = nullptr; 4233 break; 4234 } 4235 } 4236 if (In) { 4237 assert(!is_contained(Visited, In)); 4238 Visited.push_back(In); 4239 } 4240 } 4241 } 4242 CSEBlocks.clear(); 4243 GatherSeq.clear(); 4244 } 4245 4246 // Groups the instructions to a bundle (which is then a single scheduling entity) 4247 // and schedules instructions until the bundle gets ready. 4248 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4249 BoUpSLP *SLP, 4250 const InstructionsState &S) { 4251 if (isa<PHINode>(S.OpValue)) 4252 return true; 4253 4254 // Initialize the instruction bundle. 4255 Instruction *OldScheduleEnd = ScheduleEnd; 4256 ScheduleData *PrevInBundle = nullptr; 4257 ScheduleData *Bundle = nullptr; 4258 bool ReSchedule = false; 4259 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4260 4261 // Make sure that the scheduling region contains all 4262 // instructions of the bundle. 4263 for (Value *V : VL) { 4264 if (!extendSchedulingRegion(V, S)) 4265 return false; 4266 } 4267 4268 for (Value *V : VL) { 4269 ScheduleData *BundleMember = getScheduleData(V); 4270 assert(BundleMember && 4271 "no ScheduleData for bundle member (maybe not in same basic block)"); 4272 if (BundleMember->IsScheduled) { 4273 // A bundle member was scheduled as single instruction before and now 4274 // needs to be scheduled as part of the bundle. We just get rid of the 4275 // existing schedule. 4276 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4277 << " was already scheduled\n"); 4278 ReSchedule = true; 4279 } 4280 assert(BundleMember->isSchedulingEntity() && 4281 "bundle member already part of other bundle"); 4282 if (PrevInBundle) { 4283 PrevInBundle->NextInBundle = BundleMember; 4284 } else { 4285 Bundle = BundleMember; 4286 } 4287 BundleMember->UnscheduledDepsInBundle = 0; 4288 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4289 4290 // Group the instructions to a bundle. 4291 BundleMember->FirstInBundle = Bundle; 4292 PrevInBundle = BundleMember; 4293 } 4294 if (ScheduleEnd != OldScheduleEnd) { 4295 // The scheduling region got new instructions at the lower end (or it is a 4296 // new region for the first bundle). This makes it necessary to 4297 // recalculate all dependencies. 4298 // It is seldom that this needs to be done a second time after adding the 4299 // initial bundle to the region. 4300 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4301 doForAllOpcodes(I, [](ScheduleData *SD) { 4302 SD->clearDependencies(); 4303 }); 4304 } 4305 ReSchedule = true; 4306 } 4307 if (ReSchedule) { 4308 resetSchedule(); 4309 initialFillReadyList(ReadyInsts); 4310 } 4311 4312 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4313 << BB->getName() << "\n"); 4314 4315 calculateDependencies(Bundle, true, SLP); 4316 4317 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4318 // means that there are no cyclic dependencies and we can schedule it. 4319 // Note that's important that we don't "schedule" the bundle yet (see 4320 // cancelScheduling). 4321 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4322 4323 ScheduleData *pickedSD = ReadyInsts.back(); 4324 ReadyInsts.pop_back(); 4325 4326 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4327 schedule(pickedSD, ReadyInsts); 4328 } 4329 } 4330 if (!Bundle->isReady()) { 4331 cancelScheduling(VL, S.OpValue); 4332 return false; 4333 } 4334 return true; 4335 } 4336 4337 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4338 Value *OpValue) { 4339 if (isa<PHINode>(OpValue)) 4340 return; 4341 4342 ScheduleData *Bundle = getScheduleData(OpValue); 4343 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4344 assert(!Bundle->IsScheduled && 4345 "Can't cancel bundle which is already scheduled"); 4346 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4347 "tried to unbundle something which is not a bundle"); 4348 4349 // Un-bundle: make single instructions out of the bundle. 4350 ScheduleData *BundleMember = Bundle; 4351 while (BundleMember) { 4352 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4353 BundleMember->FirstInBundle = BundleMember; 4354 ScheduleData *Next = BundleMember->NextInBundle; 4355 BundleMember->NextInBundle = nullptr; 4356 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4357 if (BundleMember->UnscheduledDepsInBundle == 0) { 4358 ReadyInsts.insert(BundleMember); 4359 } 4360 BundleMember = Next; 4361 } 4362 } 4363 4364 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4365 // Allocate a new ScheduleData for the instruction. 4366 if (ChunkPos >= ChunkSize) { 4367 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4368 ChunkPos = 0; 4369 } 4370 return &(ScheduleDataChunks.back()[ChunkPos++]); 4371 } 4372 4373 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4374 const InstructionsState &S) { 4375 if (getScheduleData(V, isOneOf(S, V))) 4376 return true; 4377 Instruction *I = dyn_cast<Instruction>(V); 4378 assert(I && "bundle member must be an instruction"); 4379 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4380 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4381 ScheduleData *ISD = getScheduleData(I); 4382 if (!ISD) 4383 return false; 4384 assert(isInSchedulingRegion(ISD) && 4385 "ScheduleData not in scheduling region"); 4386 ScheduleData *SD = allocateScheduleDataChunks(); 4387 SD->Inst = I; 4388 SD->init(SchedulingRegionID, S.OpValue); 4389 ExtraScheduleDataMap[I][S.OpValue] = SD; 4390 return true; 4391 }; 4392 if (CheckSheduleForI(I)) 4393 return true; 4394 if (!ScheduleStart) { 4395 // It's the first instruction in the new region. 4396 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4397 ScheduleStart = I; 4398 ScheduleEnd = I->getNextNode(); 4399 if (isOneOf(S, I) != I) 4400 CheckSheduleForI(I); 4401 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4402 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4403 return true; 4404 } 4405 // Search up and down at the same time, because we don't know if the new 4406 // instruction is above or below the existing scheduling region. 4407 BasicBlock::reverse_iterator UpIter = 4408 ++ScheduleStart->getIterator().getReverse(); 4409 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4410 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4411 BasicBlock::iterator LowerEnd = BB->end(); 4412 while (true) { 4413 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4414 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4415 return false; 4416 } 4417 4418 if (UpIter != UpperEnd) { 4419 if (&*UpIter == I) { 4420 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4421 ScheduleStart = I; 4422 if (isOneOf(S, I) != I) 4423 CheckSheduleForI(I); 4424 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4425 << "\n"); 4426 return true; 4427 } 4428 ++UpIter; 4429 } 4430 if (DownIter != LowerEnd) { 4431 if (&*DownIter == I) { 4432 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4433 nullptr); 4434 ScheduleEnd = I->getNextNode(); 4435 if (isOneOf(S, I) != I) 4436 CheckSheduleForI(I); 4437 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4438 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4439 << "\n"); 4440 return true; 4441 } 4442 ++DownIter; 4443 } 4444 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4445 "instruction not found in block"); 4446 } 4447 return true; 4448 } 4449 4450 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4451 Instruction *ToI, 4452 ScheduleData *PrevLoadStore, 4453 ScheduleData *NextLoadStore) { 4454 ScheduleData *CurrentLoadStore = PrevLoadStore; 4455 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4456 ScheduleData *SD = ScheduleDataMap[I]; 4457 if (!SD) { 4458 SD = allocateScheduleDataChunks(); 4459 ScheduleDataMap[I] = SD; 4460 SD->Inst = I; 4461 } 4462 assert(!isInSchedulingRegion(SD) && 4463 "new ScheduleData already in scheduling region"); 4464 SD->init(SchedulingRegionID, I); 4465 4466 if (I->mayReadOrWriteMemory() && 4467 (!isa<IntrinsicInst>(I) || 4468 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4469 // Update the linked list of memory accessing instructions. 4470 if (CurrentLoadStore) { 4471 CurrentLoadStore->NextLoadStore = SD; 4472 } else { 4473 FirstLoadStoreInRegion = SD; 4474 } 4475 CurrentLoadStore = SD; 4476 } 4477 } 4478 if (NextLoadStore) { 4479 if (CurrentLoadStore) 4480 CurrentLoadStore->NextLoadStore = NextLoadStore; 4481 } else { 4482 LastLoadStoreInRegion = CurrentLoadStore; 4483 } 4484 } 4485 4486 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4487 bool InsertInReadyList, 4488 BoUpSLP *SLP) { 4489 assert(SD->isSchedulingEntity()); 4490 4491 SmallVector<ScheduleData *, 10> WorkList; 4492 WorkList.push_back(SD); 4493 4494 while (!WorkList.empty()) { 4495 ScheduleData *SD = WorkList.back(); 4496 WorkList.pop_back(); 4497 4498 ScheduleData *BundleMember = SD; 4499 while (BundleMember) { 4500 assert(isInSchedulingRegion(BundleMember)); 4501 if (!BundleMember->hasValidDependencies()) { 4502 4503 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4504 << "\n"); 4505 BundleMember->Dependencies = 0; 4506 BundleMember->resetUnscheduledDeps(); 4507 4508 // Handle def-use chain dependencies. 4509 if (BundleMember->OpValue != BundleMember->Inst) { 4510 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4511 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4512 BundleMember->Dependencies++; 4513 ScheduleData *DestBundle = UseSD->FirstInBundle; 4514 if (!DestBundle->IsScheduled) 4515 BundleMember->incrementUnscheduledDeps(1); 4516 if (!DestBundle->hasValidDependencies()) 4517 WorkList.push_back(DestBundle); 4518 } 4519 } else { 4520 for (User *U : BundleMember->Inst->users()) { 4521 if (isa<Instruction>(U)) { 4522 ScheduleData *UseSD = getScheduleData(U); 4523 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4524 BundleMember->Dependencies++; 4525 ScheduleData *DestBundle = UseSD->FirstInBundle; 4526 if (!DestBundle->IsScheduled) 4527 BundleMember->incrementUnscheduledDeps(1); 4528 if (!DestBundle->hasValidDependencies()) 4529 WorkList.push_back(DestBundle); 4530 } 4531 } else { 4532 // I'm not sure if this can ever happen. But we need to be safe. 4533 // This lets the instruction/bundle never be scheduled and 4534 // eventually disable vectorization. 4535 BundleMember->Dependencies++; 4536 BundleMember->incrementUnscheduledDeps(1); 4537 } 4538 } 4539 } 4540 4541 // Handle the memory dependencies. 4542 ScheduleData *DepDest = BundleMember->NextLoadStore; 4543 if (DepDest) { 4544 Instruction *SrcInst = BundleMember->Inst; 4545 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4546 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4547 unsigned numAliased = 0; 4548 unsigned DistToSrc = 1; 4549 4550 while (DepDest) { 4551 assert(isInSchedulingRegion(DepDest)); 4552 4553 // We have two limits to reduce the complexity: 4554 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4555 // SLP->isAliased (which is the expensive part in this loop). 4556 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4557 // the whole loop (even if the loop is fast, it's quadratic). 4558 // It's important for the loop break condition (see below) to 4559 // check this limit even between two read-only instructions. 4560 if (DistToSrc >= MaxMemDepDistance || 4561 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4562 (numAliased >= AliasedCheckLimit || 4563 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4564 4565 // We increment the counter only if the locations are aliased 4566 // (instead of counting all alias checks). This gives a better 4567 // balance between reduced runtime and accurate dependencies. 4568 numAliased++; 4569 4570 DepDest->MemoryDependencies.push_back(BundleMember); 4571 BundleMember->Dependencies++; 4572 ScheduleData *DestBundle = DepDest->FirstInBundle; 4573 if (!DestBundle->IsScheduled) { 4574 BundleMember->incrementUnscheduledDeps(1); 4575 } 4576 if (!DestBundle->hasValidDependencies()) { 4577 WorkList.push_back(DestBundle); 4578 } 4579 } 4580 DepDest = DepDest->NextLoadStore; 4581 4582 // Example, explaining the loop break condition: Let's assume our 4583 // starting instruction is i0 and MaxMemDepDistance = 3. 4584 // 4585 // +--------v--v--v 4586 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4587 // +--------^--^--^ 4588 // 4589 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4590 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4591 // Previously we already added dependencies from i3 to i6,i7,i8 4592 // (because of MaxMemDepDistance). As we added a dependency from 4593 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4594 // and we can abort this loop at i6. 4595 if (DistToSrc >= 2 * MaxMemDepDistance) 4596 break; 4597 DistToSrc++; 4598 } 4599 } 4600 } 4601 BundleMember = BundleMember->NextInBundle; 4602 } 4603 if (InsertInReadyList && SD->isReady()) { 4604 ReadyInsts.push_back(SD); 4605 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4606 << "\n"); 4607 } 4608 } 4609 } 4610 4611 void BoUpSLP::BlockScheduling::resetSchedule() { 4612 assert(ScheduleStart && 4613 "tried to reset schedule on block which has not been scheduled"); 4614 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4615 doForAllOpcodes(I, [&](ScheduleData *SD) { 4616 assert(isInSchedulingRegion(SD) && 4617 "ScheduleData not in scheduling region"); 4618 SD->IsScheduled = false; 4619 SD->resetUnscheduledDeps(); 4620 }); 4621 } 4622 ReadyInsts.clear(); 4623 } 4624 4625 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4626 if (!BS->ScheduleStart) 4627 return; 4628 4629 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4630 4631 BS->resetSchedule(); 4632 4633 // For the real scheduling we use a more sophisticated ready-list: it is 4634 // sorted by the original instruction location. This lets the final schedule 4635 // be as close as possible to the original instruction order. 4636 struct ScheduleDataCompare { 4637 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4638 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4639 } 4640 }; 4641 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4642 4643 // Ensure that all dependency data is updated and fill the ready-list with 4644 // initial instructions. 4645 int Idx = 0; 4646 int NumToSchedule = 0; 4647 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4648 I = I->getNextNode()) { 4649 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4650 assert(SD->isPartOfBundle() == 4651 (getTreeEntry(SD->Inst) != nullptr) && 4652 "scheduler and vectorizer bundle mismatch"); 4653 SD->FirstInBundle->SchedulingPriority = Idx++; 4654 if (SD->isSchedulingEntity()) { 4655 BS->calculateDependencies(SD, false, this); 4656 NumToSchedule++; 4657 } 4658 }); 4659 } 4660 BS->initialFillReadyList(ReadyInsts); 4661 4662 Instruction *LastScheduledInst = BS->ScheduleEnd; 4663 4664 // Do the "real" scheduling. 4665 while (!ReadyInsts.empty()) { 4666 ScheduleData *picked = *ReadyInsts.begin(); 4667 ReadyInsts.erase(ReadyInsts.begin()); 4668 4669 // Move the scheduled instruction(s) to their dedicated places, if not 4670 // there yet. 4671 ScheduleData *BundleMember = picked; 4672 while (BundleMember) { 4673 Instruction *pickedInst = BundleMember->Inst; 4674 if (LastScheduledInst->getNextNode() != pickedInst) { 4675 BS->BB->getInstList().remove(pickedInst); 4676 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4677 pickedInst); 4678 } 4679 LastScheduledInst = pickedInst; 4680 BundleMember = BundleMember->NextInBundle; 4681 } 4682 4683 BS->schedule(picked, ReadyInsts); 4684 NumToSchedule--; 4685 } 4686 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4687 4688 // Avoid duplicate scheduling of the block. 4689 BS->ScheduleStart = nullptr; 4690 } 4691 4692 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4693 // If V is a store, just return the width of the stored value without 4694 // traversing the expression tree. This is the common case. 4695 if (auto *Store = dyn_cast<StoreInst>(V)) 4696 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4697 4698 // If V is not a store, we can traverse the expression tree to find loads 4699 // that feed it. The type of the loaded value may indicate a more suitable 4700 // width than V's type. We want to base the vector element size on the width 4701 // of memory operations where possible. 4702 SmallVector<Instruction *, 16> Worklist; 4703 SmallPtrSet<Instruction *, 16> Visited; 4704 if (auto *I = dyn_cast<Instruction>(V)) 4705 Worklist.push_back(I); 4706 4707 // Traverse the expression tree in bottom-up order looking for loads. If we 4708 // encounter an instruction we don't yet handle, we give up. 4709 auto MaxWidth = 0u; 4710 auto FoundUnknownInst = false; 4711 while (!Worklist.empty() && !FoundUnknownInst) { 4712 auto *I = Worklist.pop_back_val(); 4713 Visited.insert(I); 4714 4715 // We should only be looking at scalar instructions here. If the current 4716 // instruction has a vector type, give up. 4717 auto *Ty = I->getType(); 4718 if (isa<VectorType>(Ty)) 4719 FoundUnknownInst = true; 4720 4721 // If the current instruction is a load, update MaxWidth to reflect the 4722 // width of the loaded value. 4723 else if (isa<LoadInst>(I)) 4724 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4725 4726 // Otherwise, we need to visit the operands of the instruction. We only 4727 // handle the interesting cases from buildTree here. If an operand is an 4728 // instruction we haven't yet visited, we add it to the worklist. 4729 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4730 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4731 for (Use &U : I->operands()) 4732 if (auto *J = dyn_cast<Instruction>(U.get())) 4733 if (!Visited.count(J)) 4734 Worklist.push_back(J); 4735 } 4736 4737 // If we don't yet handle the instruction, give up. 4738 else 4739 FoundUnknownInst = true; 4740 } 4741 4742 // If we didn't encounter a memory access in the expression tree, or if we 4743 // gave up for some reason, just return the width of V. 4744 if (!MaxWidth || FoundUnknownInst) 4745 return DL->getTypeSizeInBits(V->getType()); 4746 4747 // Otherwise, return the maximum width we found. 4748 return MaxWidth; 4749 } 4750 4751 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4752 // smaller type with a truncation. We collect the values that will be demoted 4753 // in ToDemote and additional roots that require investigating in Roots. 4754 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4755 SmallVectorImpl<Value *> &ToDemote, 4756 SmallVectorImpl<Value *> &Roots) { 4757 // We can always demote constants. 4758 if (isa<Constant>(V)) { 4759 ToDemote.push_back(V); 4760 return true; 4761 } 4762 4763 // If the value is not an instruction in the expression with only one use, it 4764 // cannot be demoted. 4765 auto *I = dyn_cast<Instruction>(V); 4766 if (!I || !I->hasOneUse() || !Expr.count(I)) 4767 return false; 4768 4769 switch (I->getOpcode()) { 4770 4771 // We can always demote truncations and extensions. Since truncations can 4772 // seed additional demotion, we save the truncated value. 4773 case Instruction::Trunc: 4774 Roots.push_back(I->getOperand(0)); 4775 break; 4776 case Instruction::ZExt: 4777 case Instruction::SExt: 4778 break; 4779 4780 // We can demote certain binary operations if we can demote both of their 4781 // operands. 4782 case Instruction::Add: 4783 case Instruction::Sub: 4784 case Instruction::Mul: 4785 case Instruction::And: 4786 case Instruction::Or: 4787 case Instruction::Xor: 4788 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4789 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4790 return false; 4791 break; 4792 4793 // We can demote selects if we can demote their true and false values. 4794 case Instruction::Select: { 4795 SelectInst *SI = cast<SelectInst>(I); 4796 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4797 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4798 return false; 4799 break; 4800 } 4801 4802 // We can demote phis if we can demote all their incoming operands. Note that 4803 // we don't need to worry about cycles since we ensure single use above. 4804 case Instruction::PHI: { 4805 PHINode *PN = cast<PHINode>(I); 4806 for (Value *IncValue : PN->incoming_values()) 4807 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4808 return false; 4809 break; 4810 } 4811 4812 // Otherwise, conservatively give up. 4813 default: 4814 return false; 4815 } 4816 4817 // Record the value that we can demote. 4818 ToDemote.push_back(V); 4819 return true; 4820 } 4821 4822 void BoUpSLP::computeMinimumValueSizes() { 4823 // If there are no external uses, the expression tree must be rooted by a 4824 // store. We can't demote in-memory values, so there is nothing to do here. 4825 if (ExternalUses.empty()) 4826 return; 4827 4828 // We only attempt to truncate integer expressions. 4829 auto &TreeRoot = VectorizableTree[0]->Scalars; 4830 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4831 if (!TreeRootIT) 4832 return; 4833 4834 // If the expression is not rooted by a store, these roots should have 4835 // external uses. We will rely on InstCombine to rewrite the expression in 4836 // the narrower type. However, InstCombine only rewrites single-use values. 4837 // This means that if a tree entry other than a root is used externally, it 4838 // must have multiple uses and InstCombine will not rewrite it. The code 4839 // below ensures that only the roots are used externally. 4840 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4841 for (auto &EU : ExternalUses) 4842 if (!Expr.erase(EU.Scalar)) 4843 return; 4844 if (!Expr.empty()) 4845 return; 4846 4847 // Collect the scalar values of the vectorizable expression. We will use this 4848 // context to determine which values can be demoted. If we see a truncation, 4849 // we mark it as seeding another demotion. 4850 for (auto &EntryPtr : VectorizableTree) 4851 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 4852 4853 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4854 // have a single external user that is not in the vectorizable tree. 4855 for (auto *Root : TreeRoot) 4856 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4857 return; 4858 4859 // Conservatively determine if we can actually truncate the roots of the 4860 // expression. Collect the values that can be demoted in ToDemote and 4861 // additional roots that require investigating in Roots. 4862 SmallVector<Value *, 32> ToDemote; 4863 SmallVector<Value *, 4> Roots; 4864 for (auto *Root : TreeRoot) 4865 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4866 return; 4867 4868 // The maximum bit width required to represent all the values that can be 4869 // demoted without loss of precision. It would be safe to truncate the roots 4870 // of the expression to this width. 4871 auto MaxBitWidth = 8u; 4872 4873 // We first check if all the bits of the roots are demanded. If they're not, 4874 // we can truncate the roots to this narrower type. 4875 for (auto *Root : TreeRoot) { 4876 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4877 MaxBitWidth = std::max<unsigned>( 4878 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4879 } 4880 4881 // True if the roots can be zero-extended back to their original type, rather 4882 // than sign-extended. We know that if the leading bits are not demanded, we 4883 // can safely zero-extend. So we initialize IsKnownPositive to True. 4884 bool IsKnownPositive = true; 4885 4886 // If all the bits of the roots are demanded, we can try a little harder to 4887 // compute a narrower type. This can happen, for example, if the roots are 4888 // getelementptr indices. InstCombine promotes these indices to the pointer 4889 // width. Thus, all their bits are technically demanded even though the 4890 // address computation might be vectorized in a smaller type. 4891 // 4892 // We start by looking at each entry that can be demoted. We compute the 4893 // maximum bit width required to store the scalar by using ValueTracking to 4894 // compute the number of high-order bits we can truncate. 4895 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4896 llvm::all_of(TreeRoot, [](Value *R) { 4897 assert(R->hasOneUse() && "Root should have only one use!"); 4898 return isa<GetElementPtrInst>(R->user_back()); 4899 })) { 4900 MaxBitWidth = 8u; 4901 4902 // Determine if the sign bit of all the roots is known to be zero. If not, 4903 // IsKnownPositive is set to False. 4904 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4905 KnownBits Known = computeKnownBits(R, *DL); 4906 return Known.isNonNegative(); 4907 }); 4908 4909 // Determine the maximum number of bits required to store the scalar 4910 // values. 4911 for (auto *Scalar : ToDemote) { 4912 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4913 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4914 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4915 } 4916 4917 // If we can't prove that the sign bit is zero, we must add one to the 4918 // maximum bit width to account for the unknown sign bit. This preserves 4919 // the existing sign bit so we can safely sign-extend the root back to the 4920 // original type. Otherwise, if we know the sign bit is zero, we will 4921 // zero-extend the root instead. 4922 // 4923 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4924 // one to the maximum bit width will yield a larger-than-necessary 4925 // type. In general, we need to add an extra bit only if we can't 4926 // prove that the upper bit of the original type is equal to the 4927 // upper bit of the proposed smaller type. If these two bits are the 4928 // same (either zero or one) we know that sign-extending from the 4929 // smaller type will result in the same value. Here, since we can't 4930 // yet prove this, we are just making the proposed smaller type 4931 // larger to ensure correctness. 4932 if (!IsKnownPositive) 4933 ++MaxBitWidth; 4934 } 4935 4936 // Round MaxBitWidth up to the next power-of-two. 4937 if (!isPowerOf2_64(MaxBitWidth)) 4938 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4939 4940 // If the maximum bit width we compute is less than the with of the roots' 4941 // type, we can proceed with the narrowing. Otherwise, do nothing. 4942 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4943 return; 4944 4945 // If we can truncate the root, we must collect additional values that might 4946 // be demoted as a result. That is, those seeded by truncations we will 4947 // modify. 4948 while (!Roots.empty()) 4949 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4950 4951 // Finally, map the values we can demote to the maximum bit with we computed. 4952 for (auto *Scalar : ToDemote) 4953 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4954 } 4955 4956 namespace { 4957 4958 /// The SLPVectorizer Pass. 4959 struct SLPVectorizer : public FunctionPass { 4960 SLPVectorizerPass Impl; 4961 4962 /// Pass identification, replacement for typeid 4963 static char ID; 4964 4965 explicit SLPVectorizer() : FunctionPass(ID) { 4966 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4967 } 4968 4969 bool doInitialization(Module &M) override { 4970 return false; 4971 } 4972 4973 bool runOnFunction(Function &F) override { 4974 if (skipFunction(F)) 4975 return false; 4976 4977 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4978 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4979 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4980 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4981 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4982 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4983 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4984 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4985 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4986 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4987 4988 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4989 } 4990 4991 void getAnalysisUsage(AnalysisUsage &AU) const override { 4992 FunctionPass::getAnalysisUsage(AU); 4993 AU.addRequired<AssumptionCacheTracker>(); 4994 AU.addRequired<ScalarEvolutionWrapperPass>(); 4995 AU.addRequired<AAResultsWrapperPass>(); 4996 AU.addRequired<TargetTransformInfoWrapperPass>(); 4997 AU.addRequired<LoopInfoWrapperPass>(); 4998 AU.addRequired<DominatorTreeWrapperPass>(); 4999 AU.addRequired<DemandedBitsWrapperPass>(); 5000 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5001 AU.addPreserved<LoopInfoWrapperPass>(); 5002 AU.addPreserved<DominatorTreeWrapperPass>(); 5003 AU.addPreserved<AAResultsWrapperPass>(); 5004 AU.addPreserved<GlobalsAAWrapperPass>(); 5005 AU.setPreservesCFG(); 5006 } 5007 }; 5008 5009 } // end anonymous namespace 5010 5011 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5012 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5013 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5014 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5015 auto *AA = &AM.getResult<AAManager>(F); 5016 auto *LI = &AM.getResult<LoopAnalysis>(F); 5017 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5018 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5019 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5020 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5021 5022 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5023 if (!Changed) 5024 return PreservedAnalyses::all(); 5025 5026 PreservedAnalyses PA; 5027 PA.preserveSet<CFGAnalyses>(); 5028 PA.preserve<AAManager>(); 5029 PA.preserve<GlobalsAA>(); 5030 return PA; 5031 } 5032 5033 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5034 TargetTransformInfo *TTI_, 5035 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5036 LoopInfo *LI_, DominatorTree *DT_, 5037 AssumptionCache *AC_, DemandedBits *DB_, 5038 OptimizationRemarkEmitter *ORE_) { 5039 SE = SE_; 5040 TTI = TTI_; 5041 TLI = TLI_; 5042 AA = AA_; 5043 LI = LI_; 5044 DT = DT_; 5045 AC = AC_; 5046 DB = DB_; 5047 DL = &F.getParent()->getDataLayout(); 5048 5049 Stores.clear(); 5050 GEPs.clear(); 5051 bool Changed = false; 5052 5053 // If the target claims to have no vector registers don't attempt 5054 // vectorization. 5055 if (!TTI->getNumberOfRegisters(true)) 5056 return false; 5057 5058 // Don't vectorize when the attribute NoImplicitFloat is used. 5059 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5060 return false; 5061 5062 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5063 5064 // Use the bottom up slp vectorizer to construct chains that start with 5065 // store instructions. 5066 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5067 5068 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5069 // delete instructions. 5070 5071 // Scan the blocks in the function in post order. 5072 for (auto BB : post_order(&F.getEntryBlock())) { 5073 collectSeedInstructions(BB); 5074 5075 // Vectorize trees that end at stores. 5076 if (!Stores.empty()) { 5077 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5078 << " underlying objects.\n"); 5079 Changed |= vectorizeStoreChains(R); 5080 } 5081 5082 // Vectorize trees that end at reductions. 5083 Changed |= vectorizeChainsInBlock(BB, R); 5084 5085 // Vectorize the index computations of getelementptr instructions. This 5086 // is primarily intended to catch gather-like idioms ending at 5087 // non-consecutive loads. 5088 if (!GEPs.empty()) { 5089 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5090 << " underlying objects.\n"); 5091 Changed |= vectorizeGEPIndices(BB, R); 5092 } 5093 } 5094 5095 if (Changed) { 5096 R.optimizeGatherSequence(); 5097 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5098 LLVM_DEBUG(verifyFunction(F)); 5099 } 5100 return Changed; 5101 } 5102 5103 /// Check that the Values in the slice in VL array are still existent in 5104 /// the WeakTrackingVH array. 5105 /// Vectorization of part of the VL array may cause later values in the VL array 5106 /// to become invalid. We track when this has happened in the WeakTrackingVH 5107 /// array. 5108 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5109 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5110 unsigned SliceSize) { 5111 VL = VL.slice(SliceBegin, SliceSize); 5112 VH = VH.slice(SliceBegin, SliceSize); 5113 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5114 } 5115 5116 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5117 unsigned VecRegSize) { 5118 const unsigned ChainLen = Chain.size(); 5119 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5120 << "\n"); 5121 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5122 const unsigned VF = VecRegSize / Sz; 5123 5124 if (!isPowerOf2_32(Sz) || VF < 2) 5125 return false; 5126 5127 // Keep track of values that were deleted by vectorizing in the loop below. 5128 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5129 5130 bool Changed = false; 5131 // Look for profitable vectorizable trees at all offsets, starting at zero. 5132 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5133 5134 // Check that a previous iteration of this loop did not delete the Value. 5135 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5136 continue; 5137 5138 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5139 << "\n"); 5140 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5141 5142 R.buildTree(Operands); 5143 if (R.isTreeTinyAndNotFullyVectorizable()) 5144 continue; 5145 5146 R.computeMinimumValueSizes(); 5147 5148 int Cost = R.getTreeCost(); 5149 5150 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5151 << "\n"); 5152 if (Cost < -SLPCostThreshold) { 5153 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5154 5155 using namespace ore; 5156 5157 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5158 cast<StoreInst>(Chain[i])) 5159 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5160 << " and with tree size " 5161 << NV("TreeSize", R.getTreeSize())); 5162 5163 R.vectorizeTree(); 5164 5165 // Move to the next bundle. 5166 i += VF - 1; 5167 Changed = true; 5168 } 5169 } 5170 5171 return Changed; 5172 } 5173 5174 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5175 BoUpSLP &R) { 5176 SetVector<StoreInst *> Heads; 5177 SmallDenseSet<StoreInst *> Tails; 5178 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5179 5180 // We may run into multiple chains that merge into a single chain. We mark the 5181 // stores that we vectorized so that we don't visit the same store twice. 5182 BoUpSLP::ValueSet VectorizedStores; 5183 bool Changed = false; 5184 5185 auto &&FindConsecutiveAccess = 5186 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5187 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5188 return false; 5189 5190 Tails.insert(Stores[Idx]); 5191 Heads.insert(Stores[K]); 5192 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5193 return true; 5194 }; 5195 5196 // Do a quadratic search on all of the given stores in reverse order and find 5197 // all of the pairs of stores that follow each other. 5198 int E = Stores.size(); 5199 for (int Idx = E - 1; Idx >= 0; --Idx) { 5200 // If a store has multiple consecutive store candidates, search according 5201 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5202 // This is because usually pairing with immediate succeeding or preceding 5203 // candidate create the best chance to find slp vectorization opportunity. 5204 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5205 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5206 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5207 break; 5208 } 5209 5210 // For stores that start but don't end a link in the chain: 5211 for (auto *SI : llvm::reverse(Heads)) { 5212 if (Tails.count(SI)) 5213 continue; 5214 5215 // We found a store instr that starts a chain. Now follow the chain and try 5216 // to vectorize it. 5217 BoUpSLP::ValueList Operands; 5218 StoreInst *I = SI; 5219 // Collect the chain into a list. 5220 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5221 Operands.push_back(I); 5222 // Move to the next value in the chain. 5223 I = ConsecutiveChain[I]; 5224 } 5225 5226 // FIXME: Is division-by-2 the correct step? Should we assert that the 5227 // register size is a power-of-2? 5228 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5229 Size /= 2) { 5230 if (vectorizeStoreChain(Operands, R, Size)) { 5231 // Mark the vectorized stores so that we don't vectorize them again. 5232 VectorizedStores.insert(Operands.begin(), Operands.end()); 5233 Changed = true; 5234 break; 5235 } 5236 } 5237 } 5238 5239 return Changed; 5240 } 5241 5242 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5243 // Initialize the collections. We will make a single pass over the block. 5244 Stores.clear(); 5245 GEPs.clear(); 5246 5247 // Visit the store and getelementptr instructions in BB and organize them in 5248 // Stores and GEPs according to the underlying objects of their pointer 5249 // operands. 5250 for (Instruction &I : *BB) { 5251 // Ignore store instructions that are volatile or have a pointer operand 5252 // that doesn't point to a scalar type. 5253 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5254 if (!SI->isSimple()) 5255 continue; 5256 if (!isValidElementType(SI->getValueOperand()->getType())) 5257 continue; 5258 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5259 } 5260 5261 // Ignore getelementptr instructions that have more than one index, a 5262 // constant index, or a pointer operand that doesn't point to a scalar 5263 // type. 5264 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5265 auto Idx = GEP->idx_begin()->get(); 5266 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5267 continue; 5268 if (!isValidElementType(Idx->getType())) 5269 continue; 5270 if (GEP->getType()->isVectorTy()) 5271 continue; 5272 GEPs[GEP->getPointerOperand()].push_back(GEP); 5273 } 5274 } 5275 } 5276 5277 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5278 if (!A || !B) 5279 return false; 5280 Value *VL[] = { A, B }; 5281 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5282 } 5283 5284 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5285 int UserCost, bool AllowReorder) { 5286 if (VL.size() < 2) 5287 return false; 5288 5289 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5290 << VL.size() << ".\n"); 5291 5292 // Check that all of the parts are scalar instructions of the same type, 5293 // we permit an alternate opcode via InstructionsState. 5294 InstructionsState S = getSameOpcode(VL); 5295 if (!S.getOpcode()) 5296 return false; 5297 5298 Instruction *I0 = cast<Instruction>(S.OpValue); 5299 unsigned Sz = R.getVectorElementSize(I0); 5300 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5301 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5302 if (MaxVF < 2) { 5303 R.getORE()->emit([&]() { 5304 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5305 << "Cannot SLP vectorize list: vectorization factor " 5306 << "less than 2 is not supported"; 5307 }); 5308 return false; 5309 } 5310 5311 for (Value *V : VL) { 5312 Type *Ty = V->getType(); 5313 if (!isValidElementType(Ty)) { 5314 // NOTE: the following will give user internal llvm type name, which may 5315 // not be useful. 5316 R.getORE()->emit([&]() { 5317 std::string type_str; 5318 llvm::raw_string_ostream rso(type_str); 5319 Ty->print(rso); 5320 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5321 << "Cannot SLP vectorize list: type " 5322 << rso.str() + " is unsupported by vectorizer"; 5323 }); 5324 return false; 5325 } 5326 } 5327 5328 bool Changed = false; 5329 bool CandidateFound = false; 5330 int MinCost = SLPCostThreshold; 5331 5332 // Keep track of values that were deleted by vectorizing in the loop below. 5333 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5334 5335 unsigned NextInst = 0, MaxInst = VL.size(); 5336 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5337 VF /= 2) { 5338 // No actual vectorization should happen, if number of parts is the same as 5339 // provided vectorization factor (i.e. the scalar type is used for vector 5340 // code during codegen). 5341 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5342 if (TTI->getNumberOfParts(VecTy) == VF) 5343 continue; 5344 for (unsigned I = NextInst; I < MaxInst; ++I) { 5345 unsigned OpsWidth = 0; 5346 5347 if (I + VF > MaxInst) 5348 OpsWidth = MaxInst - I; 5349 else 5350 OpsWidth = VF; 5351 5352 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5353 break; 5354 5355 // Check that a previous iteration of this loop did not delete the Value. 5356 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5357 continue; 5358 5359 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5360 << "\n"); 5361 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5362 5363 R.buildTree(Ops); 5364 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5365 // TODO: check if we can allow reordering for more cases. 5366 if (AllowReorder && Order) { 5367 // TODO: reorder tree nodes without tree rebuilding. 5368 // Conceptually, there is nothing actually preventing us from trying to 5369 // reorder a larger list. In fact, we do exactly this when vectorizing 5370 // reductions. However, at this point, we only expect to get here when 5371 // there are exactly two operations. 5372 assert(Ops.size() == 2); 5373 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5374 R.buildTree(ReorderedOps, None); 5375 } 5376 if (R.isTreeTinyAndNotFullyVectorizable()) 5377 continue; 5378 5379 R.computeMinimumValueSizes(); 5380 int Cost = R.getTreeCost() - UserCost; 5381 CandidateFound = true; 5382 MinCost = std::min(MinCost, Cost); 5383 5384 if (Cost < -SLPCostThreshold) { 5385 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5386 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5387 cast<Instruction>(Ops[0])) 5388 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5389 << " and with tree size " 5390 << ore::NV("TreeSize", R.getTreeSize())); 5391 5392 R.vectorizeTree(); 5393 // Move to the next bundle. 5394 I += VF - 1; 5395 NextInst = I + 1; 5396 Changed = true; 5397 } 5398 } 5399 } 5400 5401 if (!Changed && CandidateFound) { 5402 R.getORE()->emit([&]() { 5403 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5404 << "List vectorization was possible but not beneficial with cost " 5405 << ore::NV("Cost", MinCost) << " >= " 5406 << ore::NV("Treshold", -SLPCostThreshold); 5407 }); 5408 } else if (!Changed) { 5409 R.getORE()->emit([&]() { 5410 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5411 << "Cannot SLP vectorize list: vectorization was impossible" 5412 << " with available vectorization factors"; 5413 }); 5414 } 5415 return Changed; 5416 } 5417 5418 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5419 if (!I) 5420 return false; 5421 5422 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5423 return false; 5424 5425 Value *P = I->getParent(); 5426 5427 // Vectorize in current basic block only. 5428 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5429 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5430 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5431 return false; 5432 5433 // Try to vectorize V. 5434 if (tryToVectorizePair(Op0, Op1, R)) 5435 return true; 5436 5437 auto *A = dyn_cast<BinaryOperator>(Op0); 5438 auto *B = dyn_cast<BinaryOperator>(Op1); 5439 // Try to skip B. 5440 if (B && B->hasOneUse()) { 5441 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5442 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5443 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5444 return true; 5445 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5446 return true; 5447 } 5448 5449 // Try to skip A. 5450 if (A && A->hasOneUse()) { 5451 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5452 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5453 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5454 return true; 5455 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5456 return true; 5457 } 5458 return false; 5459 } 5460 5461 /// Generate a shuffle mask to be used in a reduction tree. 5462 /// 5463 /// \param VecLen The length of the vector to be reduced. 5464 /// \param NumEltsToRdx The number of elements that should be reduced in the 5465 /// vector. 5466 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5467 /// reduction. A pairwise reduction will generate a mask of 5468 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5469 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5470 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5471 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5472 bool IsPairwise, bool IsLeft, 5473 IRBuilder<> &Builder) { 5474 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5475 5476 SmallVector<Constant *, 32> ShuffleMask( 5477 VecLen, UndefValue::get(Builder.getInt32Ty())); 5478 5479 if (IsPairwise) 5480 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5481 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5482 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5483 else 5484 // Move the upper half of the vector to the lower half. 5485 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5486 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5487 5488 return ConstantVector::get(ShuffleMask); 5489 } 5490 5491 namespace { 5492 5493 /// Model horizontal reductions. 5494 /// 5495 /// A horizontal reduction is a tree of reduction operations (currently add and 5496 /// fadd) that has operations that can be put into a vector as its leaf. 5497 /// For example, this tree: 5498 /// 5499 /// mul mul mul mul 5500 /// \ / \ / 5501 /// + + 5502 /// \ / 5503 /// + 5504 /// This tree has "mul" as its reduced values and "+" as its reduction 5505 /// operations. A reduction might be feeding into a store or a binary operation 5506 /// feeding a phi. 5507 /// ... 5508 /// \ / 5509 /// + 5510 /// | 5511 /// phi += 5512 /// 5513 /// Or: 5514 /// ... 5515 /// \ / 5516 /// + 5517 /// | 5518 /// *p = 5519 /// 5520 class HorizontalReduction { 5521 using ReductionOpsType = SmallVector<Value *, 16>; 5522 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5523 ReductionOpsListType ReductionOps; 5524 SmallVector<Value *, 32> ReducedVals; 5525 // Use map vector to make stable output. 5526 MapVector<Instruction *, Value *> ExtraArgs; 5527 5528 /// Kind of the reduction data. 5529 enum ReductionKind { 5530 RK_None, /// Not a reduction. 5531 RK_Arithmetic, /// Binary reduction data. 5532 RK_Min, /// Minimum reduction data. 5533 RK_UMin, /// Unsigned minimum reduction data. 5534 RK_Max, /// Maximum reduction data. 5535 RK_UMax, /// Unsigned maximum reduction data. 5536 }; 5537 5538 /// Contains info about operation, like its opcode, left and right operands. 5539 class OperationData { 5540 /// Opcode of the instruction. 5541 unsigned Opcode = 0; 5542 5543 /// Left operand of the reduction operation. 5544 Value *LHS = nullptr; 5545 5546 /// Right operand of the reduction operation. 5547 Value *RHS = nullptr; 5548 5549 /// Kind of the reduction operation. 5550 ReductionKind Kind = RK_None; 5551 5552 /// True if float point min/max reduction has no NaNs. 5553 bool NoNaN = false; 5554 5555 /// Checks if the reduction operation can be vectorized. 5556 bool isVectorizable() const { 5557 return LHS && RHS && 5558 // We currently only support add/mul/logical && min/max reductions. 5559 ((Kind == RK_Arithmetic && 5560 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5561 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5562 Opcode == Instruction::And || Opcode == Instruction::Or || 5563 Opcode == Instruction::Xor)) || 5564 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5565 (Kind == RK_Min || Kind == RK_Max)) || 5566 (Opcode == Instruction::ICmp && 5567 (Kind == RK_UMin || Kind == RK_UMax))); 5568 } 5569 5570 /// Creates reduction operation with the current opcode. 5571 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5572 assert(isVectorizable() && 5573 "Expected add|fadd or min/max reduction operation."); 5574 Value *Cmp; 5575 switch (Kind) { 5576 case RK_Arithmetic: 5577 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5578 Name); 5579 case RK_Min: 5580 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5581 : Builder.CreateFCmpOLT(LHS, RHS); 5582 break; 5583 case RK_Max: 5584 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5585 : Builder.CreateFCmpOGT(LHS, RHS); 5586 break; 5587 case RK_UMin: 5588 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5589 Cmp = Builder.CreateICmpULT(LHS, RHS); 5590 break; 5591 case RK_UMax: 5592 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5593 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5594 break; 5595 case RK_None: 5596 llvm_unreachable("Unknown reduction operation."); 5597 } 5598 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5599 } 5600 5601 public: 5602 explicit OperationData() = default; 5603 5604 /// Construction for reduced values. They are identified by opcode only and 5605 /// don't have associated LHS/RHS values. 5606 explicit OperationData(Value *V) { 5607 if (auto *I = dyn_cast<Instruction>(V)) 5608 Opcode = I->getOpcode(); 5609 } 5610 5611 /// Constructor for reduction operations with opcode and its left and 5612 /// right operands. 5613 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5614 bool NoNaN = false) 5615 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5616 assert(Kind != RK_None && "One of the reduction operations is expected."); 5617 } 5618 5619 explicit operator bool() const { return Opcode; } 5620 5621 /// Get the index of the first operand. 5622 unsigned getFirstOperandIndex() const { 5623 assert(!!*this && "The opcode is not set."); 5624 switch (Kind) { 5625 case RK_Min: 5626 case RK_UMin: 5627 case RK_Max: 5628 case RK_UMax: 5629 return 1; 5630 case RK_Arithmetic: 5631 case RK_None: 5632 break; 5633 } 5634 return 0; 5635 } 5636 5637 /// Total number of operands in the reduction operation. 5638 unsigned getNumberOfOperands() const { 5639 assert(Kind != RK_None && !!*this && LHS && RHS && 5640 "Expected reduction operation."); 5641 switch (Kind) { 5642 case RK_Arithmetic: 5643 return 2; 5644 case RK_Min: 5645 case RK_UMin: 5646 case RK_Max: 5647 case RK_UMax: 5648 return 3; 5649 case RK_None: 5650 break; 5651 } 5652 llvm_unreachable("Reduction kind is not set"); 5653 } 5654 5655 /// Checks if the operation has the same parent as \p P. 5656 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5657 assert(Kind != RK_None && !!*this && LHS && RHS && 5658 "Expected reduction operation."); 5659 if (!IsRedOp) 5660 return I->getParent() == P; 5661 switch (Kind) { 5662 case RK_Arithmetic: 5663 // Arithmetic reduction operation must be used once only. 5664 return I->getParent() == P; 5665 case RK_Min: 5666 case RK_UMin: 5667 case RK_Max: 5668 case RK_UMax: { 5669 // SelectInst must be used twice while the condition op must have single 5670 // use only. 5671 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5672 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5673 } 5674 case RK_None: 5675 break; 5676 } 5677 llvm_unreachable("Reduction kind is not set"); 5678 } 5679 /// Expected number of uses for reduction operations/reduced values. 5680 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5681 assert(Kind != RK_None && !!*this && LHS && RHS && 5682 "Expected reduction operation."); 5683 switch (Kind) { 5684 case RK_Arithmetic: 5685 return I->hasOneUse(); 5686 case RK_Min: 5687 case RK_UMin: 5688 case RK_Max: 5689 case RK_UMax: 5690 return I->hasNUses(2) && 5691 (!IsReductionOp || 5692 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5693 case RK_None: 5694 break; 5695 } 5696 llvm_unreachable("Reduction kind is not set"); 5697 } 5698 5699 /// Initializes the list of reduction operations. 5700 void initReductionOps(ReductionOpsListType &ReductionOps) { 5701 assert(Kind != RK_None && !!*this && LHS && RHS && 5702 "Expected reduction operation."); 5703 switch (Kind) { 5704 case RK_Arithmetic: 5705 ReductionOps.assign(1, ReductionOpsType()); 5706 break; 5707 case RK_Min: 5708 case RK_UMin: 5709 case RK_Max: 5710 case RK_UMax: 5711 ReductionOps.assign(2, ReductionOpsType()); 5712 break; 5713 case RK_None: 5714 llvm_unreachable("Reduction kind is not set"); 5715 } 5716 } 5717 /// Add all reduction operations for the reduction instruction \p I. 5718 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5719 assert(Kind != RK_None && !!*this && LHS && RHS && 5720 "Expected reduction operation."); 5721 switch (Kind) { 5722 case RK_Arithmetic: 5723 ReductionOps[0].emplace_back(I); 5724 break; 5725 case RK_Min: 5726 case RK_UMin: 5727 case RK_Max: 5728 case RK_UMax: 5729 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5730 ReductionOps[1].emplace_back(I); 5731 break; 5732 case RK_None: 5733 llvm_unreachable("Reduction kind is not set"); 5734 } 5735 } 5736 5737 /// Checks if instruction is associative and can be vectorized. 5738 bool isAssociative(Instruction *I) const { 5739 assert(Kind != RK_None && *this && LHS && RHS && 5740 "Expected reduction operation."); 5741 switch (Kind) { 5742 case RK_Arithmetic: 5743 return I->isAssociative(); 5744 case RK_Min: 5745 case RK_Max: 5746 return Opcode == Instruction::ICmp || 5747 cast<Instruction>(I->getOperand(0))->isFast(); 5748 case RK_UMin: 5749 case RK_UMax: 5750 assert(Opcode == Instruction::ICmp && 5751 "Only integer compare operation is expected."); 5752 return true; 5753 case RK_None: 5754 break; 5755 } 5756 llvm_unreachable("Reduction kind is not set"); 5757 } 5758 5759 /// Checks if the reduction operation can be vectorized. 5760 bool isVectorizable(Instruction *I) const { 5761 return isVectorizable() && isAssociative(I); 5762 } 5763 5764 /// Checks if two operation data are both a reduction op or both a reduced 5765 /// value. 5766 bool operator==(const OperationData &OD) { 5767 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5768 "One of the comparing operations is incorrect."); 5769 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5770 } 5771 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5772 void clear() { 5773 Opcode = 0; 5774 LHS = nullptr; 5775 RHS = nullptr; 5776 Kind = RK_None; 5777 NoNaN = false; 5778 } 5779 5780 /// Get the opcode of the reduction operation. 5781 unsigned getOpcode() const { 5782 assert(isVectorizable() && "Expected vectorizable operation."); 5783 return Opcode; 5784 } 5785 5786 /// Get kind of reduction data. 5787 ReductionKind getKind() const { return Kind; } 5788 Value *getLHS() const { return LHS; } 5789 Value *getRHS() const { return RHS; } 5790 Type *getConditionType() const { 5791 switch (Kind) { 5792 case RK_Arithmetic: 5793 return nullptr; 5794 case RK_Min: 5795 case RK_Max: 5796 case RK_UMin: 5797 case RK_UMax: 5798 return CmpInst::makeCmpResultType(LHS->getType()); 5799 case RK_None: 5800 break; 5801 } 5802 llvm_unreachable("Reduction kind is not set"); 5803 } 5804 5805 /// Creates reduction operation with the current opcode with the IR flags 5806 /// from \p ReductionOps. 5807 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5808 const ReductionOpsListType &ReductionOps) const { 5809 assert(isVectorizable() && 5810 "Expected add|fadd or min/max reduction operation."); 5811 auto *Op = createOp(Builder, Name); 5812 switch (Kind) { 5813 case RK_Arithmetic: 5814 propagateIRFlags(Op, ReductionOps[0]); 5815 return Op; 5816 case RK_Min: 5817 case RK_Max: 5818 case RK_UMin: 5819 case RK_UMax: 5820 if (auto *SI = dyn_cast<SelectInst>(Op)) 5821 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5822 propagateIRFlags(Op, ReductionOps[1]); 5823 return Op; 5824 case RK_None: 5825 break; 5826 } 5827 llvm_unreachable("Unknown reduction operation."); 5828 } 5829 /// Creates reduction operation with the current opcode with the IR flags 5830 /// from \p I. 5831 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5832 Instruction *I) const { 5833 assert(isVectorizable() && 5834 "Expected add|fadd or min/max reduction operation."); 5835 auto *Op = createOp(Builder, Name); 5836 switch (Kind) { 5837 case RK_Arithmetic: 5838 propagateIRFlags(Op, I); 5839 return Op; 5840 case RK_Min: 5841 case RK_Max: 5842 case RK_UMin: 5843 case RK_UMax: 5844 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5845 propagateIRFlags(SI->getCondition(), 5846 cast<SelectInst>(I)->getCondition()); 5847 } 5848 propagateIRFlags(Op, I); 5849 return Op; 5850 case RK_None: 5851 break; 5852 } 5853 llvm_unreachable("Unknown reduction operation."); 5854 } 5855 5856 TargetTransformInfo::ReductionFlags getFlags() const { 5857 TargetTransformInfo::ReductionFlags Flags; 5858 Flags.NoNaN = NoNaN; 5859 switch (Kind) { 5860 case RK_Arithmetic: 5861 break; 5862 case RK_Min: 5863 Flags.IsSigned = Opcode == Instruction::ICmp; 5864 Flags.IsMaxOp = false; 5865 break; 5866 case RK_Max: 5867 Flags.IsSigned = Opcode == Instruction::ICmp; 5868 Flags.IsMaxOp = true; 5869 break; 5870 case RK_UMin: 5871 Flags.IsSigned = false; 5872 Flags.IsMaxOp = false; 5873 break; 5874 case RK_UMax: 5875 Flags.IsSigned = false; 5876 Flags.IsMaxOp = true; 5877 break; 5878 case RK_None: 5879 llvm_unreachable("Reduction kind is not set"); 5880 } 5881 return Flags; 5882 } 5883 }; 5884 5885 WeakTrackingVH ReductionRoot; 5886 5887 /// The operation data of the reduction operation. 5888 OperationData ReductionData; 5889 5890 /// The operation data of the values we perform a reduction on. 5891 OperationData ReducedValueData; 5892 5893 /// Should we model this reduction as a pairwise reduction tree or a tree that 5894 /// splits the vector in halves and adds those halves. 5895 bool IsPairwiseReduction = false; 5896 5897 /// Checks if the ParentStackElem.first should be marked as a reduction 5898 /// operation with an extra argument or as extra argument itself. 5899 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5900 Value *ExtraArg) { 5901 if (ExtraArgs.count(ParentStackElem.first)) { 5902 ExtraArgs[ParentStackElem.first] = nullptr; 5903 // We ran into something like: 5904 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5905 // The whole ParentStackElem.first should be considered as an extra value 5906 // in this case. 5907 // Do not perform analysis of remaining operands of ParentStackElem.first 5908 // instruction, this whole instruction is an extra argument. 5909 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5910 } else { 5911 // We ran into something like: 5912 // ParentStackElem.first += ... + ExtraArg + ... 5913 ExtraArgs[ParentStackElem.first] = ExtraArg; 5914 } 5915 } 5916 5917 static OperationData getOperationData(Value *V) { 5918 if (!V) 5919 return OperationData(); 5920 5921 Value *LHS; 5922 Value *RHS; 5923 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5924 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5925 RK_Arithmetic); 5926 } 5927 if (auto *Select = dyn_cast<SelectInst>(V)) { 5928 // Look for a min/max pattern. 5929 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5930 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5931 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5932 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5933 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5934 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5935 return OperationData( 5936 Instruction::FCmp, LHS, RHS, RK_Min, 5937 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5938 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5939 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5940 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5941 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5942 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5943 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5944 return OperationData( 5945 Instruction::FCmp, LHS, RHS, RK_Max, 5946 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5947 } else { 5948 // Try harder: look for min/max pattern based on instructions producing 5949 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5950 // During the intermediate stages of SLP, it's very common to have 5951 // pattern like this (since optimizeGatherSequence is run only once 5952 // at the end): 5953 // %1 = extractelement <2 x i32> %a, i32 0 5954 // %2 = extractelement <2 x i32> %a, i32 1 5955 // %cond = icmp sgt i32 %1, %2 5956 // %3 = extractelement <2 x i32> %a, i32 0 5957 // %4 = extractelement <2 x i32> %a, i32 1 5958 // %select = select i1 %cond, i32 %3, i32 %4 5959 CmpInst::Predicate Pred; 5960 Instruction *L1; 5961 Instruction *L2; 5962 5963 LHS = Select->getTrueValue(); 5964 RHS = Select->getFalseValue(); 5965 Value *Cond = Select->getCondition(); 5966 5967 // TODO: Support inverse predicates. 5968 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5969 if (!isa<ExtractElementInst>(RHS) || 5970 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5971 return OperationData(V); 5972 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5973 if (!isa<ExtractElementInst>(LHS) || 5974 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5975 return OperationData(V); 5976 } else { 5977 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5978 return OperationData(V); 5979 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5980 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5981 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5982 return OperationData(V); 5983 } 5984 switch (Pred) { 5985 default: 5986 return OperationData(V); 5987 5988 case CmpInst::ICMP_ULT: 5989 case CmpInst::ICMP_ULE: 5990 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5991 5992 case CmpInst::ICMP_SLT: 5993 case CmpInst::ICMP_SLE: 5994 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5995 5996 case CmpInst::FCMP_OLT: 5997 case CmpInst::FCMP_OLE: 5998 case CmpInst::FCMP_ULT: 5999 case CmpInst::FCMP_ULE: 6000 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6001 cast<Instruction>(Cond)->hasNoNaNs()); 6002 6003 case CmpInst::ICMP_UGT: 6004 case CmpInst::ICMP_UGE: 6005 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6006 6007 case CmpInst::ICMP_SGT: 6008 case CmpInst::ICMP_SGE: 6009 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6010 6011 case CmpInst::FCMP_OGT: 6012 case CmpInst::FCMP_OGE: 6013 case CmpInst::FCMP_UGT: 6014 case CmpInst::FCMP_UGE: 6015 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6016 cast<Instruction>(Cond)->hasNoNaNs()); 6017 } 6018 } 6019 } 6020 return OperationData(V); 6021 } 6022 6023 public: 6024 HorizontalReduction() = default; 6025 6026 /// Try to find a reduction tree. 6027 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6028 assert((!Phi || is_contained(Phi->operands(), B)) && 6029 "Thi phi needs to use the binary operator"); 6030 6031 ReductionData = getOperationData(B); 6032 6033 // We could have a initial reductions that is not an add. 6034 // r *= v1 + v2 + v3 + v4 6035 // In such a case start looking for a tree rooted in the first '+'. 6036 if (Phi) { 6037 if (ReductionData.getLHS() == Phi) { 6038 Phi = nullptr; 6039 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6040 ReductionData = getOperationData(B); 6041 } else if (ReductionData.getRHS() == Phi) { 6042 Phi = nullptr; 6043 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6044 ReductionData = getOperationData(B); 6045 } 6046 } 6047 6048 if (!ReductionData.isVectorizable(B)) 6049 return false; 6050 6051 Type *Ty = B->getType(); 6052 if (!isValidElementType(Ty)) 6053 return false; 6054 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6055 return false; 6056 6057 ReducedValueData.clear(); 6058 ReductionRoot = B; 6059 6060 // Post order traverse the reduction tree starting at B. We only handle true 6061 // trees containing only binary operators. 6062 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6063 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6064 ReductionData.initReductionOps(ReductionOps); 6065 while (!Stack.empty()) { 6066 Instruction *TreeN = Stack.back().first; 6067 unsigned EdgeToVist = Stack.back().second++; 6068 OperationData OpData = getOperationData(TreeN); 6069 bool IsReducedValue = OpData != ReductionData; 6070 6071 // Postorder vist. 6072 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6073 if (IsReducedValue) 6074 ReducedVals.push_back(TreeN); 6075 else { 6076 auto I = ExtraArgs.find(TreeN); 6077 if (I != ExtraArgs.end() && !I->second) { 6078 // Check if TreeN is an extra argument of its parent operation. 6079 if (Stack.size() <= 1) { 6080 // TreeN can't be an extra argument as it is a root reduction 6081 // operation. 6082 return false; 6083 } 6084 // Yes, TreeN is an extra argument, do not add it to a list of 6085 // reduction operations. 6086 // Stack[Stack.size() - 2] always points to the parent operation. 6087 markExtraArg(Stack[Stack.size() - 2], TreeN); 6088 ExtraArgs.erase(TreeN); 6089 } else 6090 ReductionData.addReductionOps(TreeN, ReductionOps); 6091 } 6092 // Retract. 6093 Stack.pop_back(); 6094 continue; 6095 } 6096 6097 // Visit left or right. 6098 Value *NextV = TreeN->getOperand(EdgeToVist); 6099 if (NextV != Phi) { 6100 auto *I = dyn_cast<Instruction>(NextV); 6101 OpData = getOperationData(I); 6102 // Continue analysis if the next operand is a reduction operation or 6103 // (possibly) a reduced value. If the reduced value opcode is not set, 6104 // the first met operation != reduction operation is considered as the 6105 // reduced value class. 6106 if (I && (!ReducedValueData || OpData == ReducedValueData || 6107 OpData == ReductionData)) { 6108 const bool IsReductionOperation = OpData == ReductionData; 6109 // Only handle trees in the current basic block. 6110 if (!ReductionData.hasSameParent(I, B->getParent(), 6111 IsReductionOperation)) { 6112 // I is an extra argument for TreeN (its parent operation). 6113 markExtraArg(Stack.back(), I); 6114 continue; 6115 } 6116 6117 // Each tree node needs to have minimal number of users except for the 6118 // ultimate reduction. 6119 if (!ReductionData.hasRequiredNumberOfUses(I, 6120 OpData == ReductionData) && 6121 I != B) { 6122 // I is an extra argument for TreeN (its parent operation). 6123 markExtraArg(Stack.back(), I); 6124 continue; 6125 } 6126 6127 if (IsReductionOperation) { 6128 // We need to be able to reassociate the reduction operations. 6129 if (!OpData.isAssociative(I)) { 6130 // I is an extra argument for TreeN (its parent operation). 6131 markExtraArg(Stack.back(), I); 6132 continue; 6133 } 6134 } else if (ReducedValueData && 6135 ReducedValueData != OpData) { 6136 // Make sure that the opcodes of the operations that we are going to 6137 // reduce match. 6138 // I is an extra argument for TreeN (its parent operation). 6139 markExtraArg(Stack.back(), I); 6140 continue; 6141 } else if (!ReducedValueData) 6142 ReducedValueData = OpData; 6143 6144 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6145 continue; 6146 } 6147 } 6148 // NextV is an extra argument for TreeN (its parent operation). 6149 markExtraArg(Stack.back(), NextV); 6150 } 6151 return true; 6152 } 6153 6154 /// Attempt to vectorize the tree found by 6155 /// matchAssociativeReduction. 6156 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6157 if (ReducedVals.empty()) 6158 return false; 6159 6160 // If there is a sufficient number of reduction values, reduce 6161 // to a nearby power-of-2. Can safely generate oversized 6162 // vectors and rely on the backend to split them to legal sizes. 6163 unsigned NumReducedVals = ReducedVals.size(); 6164 if (NumReducedVals < 4) 6165 return false; 6166 6167 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6168 6169 Value *VectorizedTree = nullptr; 6170 6171 // FIXME: Fast-math-flags should be set based on the instructions in the 6172 // reduction (not all of 'fast' are required). 6173 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6174 FastMathFlags Unsafe; 6175 Unsafe.setFast(); 6176 Builder.setFastMathFlags(Unsafe); 6177 unsigned i = 0; 6178 6179 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6180 // The same extra argument may be used several time, so log each attempt 6181 // to use it. 6182 for (auto &Pair : ExtraArgs) { 6183 assert(Pair.first && "DebugLoc must be set."); 6184 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6185 } 6186 // The reduction root is used as the insertion point for new instructions, 6187 // so set it as externally used to prevent it from being deleted. 6188 ExternallyUsedValues[ReductionRoot]; 6189 SmallVector<Value *, 16> IgnoreList; 6190 for (auto &V : ReductionOps) 6191 IgnoreList.append(V.begin(), V.end()); 6192 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6193 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6194 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6195 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6196 // TODO: Handle orders of size less than number of elements in the vector. 6197 if (Order && Order->size() == VL.size()) { 6198 // TODO: reorder tree nodes without tree rebuilding. 6199 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6200 llvm::transform(*Order, ReorderedOps.begin(), 6201 [VL](const unsigned Idx) { return VL[Idx]; }); 6202 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6203 } 6204 if (V.isTreeTinyAndNotFullyVectorizable()) 6205 break; 6206 6207 V.computeMinimumValueSizes(); 6208 6209 // Estimate cost. 6210 int TreeCost = V.getTreeCost(); 6211 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6212 int Cost = TreeCost + ReductionCost; 6213 if (Cost >= -SLPCostThreshold) { 6214 V.getORE()->emit([&]() { 6215 return OptimizationRemarkMissed( 6216 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6217 << "Vectorizing horizontal reduction is possible" 6218 << "but not beneficial with cost " 6219 << ore::NV("Cost", Cost) << " and threshold " 6220 << ore::NV("Threshold", -SLPCostThreshold); 6221 }); 6222 break; 6223 } 6224 6225 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6226 << Cost << ". (HorRdx)\n"); 6227 V.getORE()->emit([&]() { 6228 return OptimizationRemark( 6229 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6230 << "Vectorized horizontal reduction with cost " 6231 << ore::NV("Cost", Cost) << " and with tree size " 6232 << ore::NV("TreeSize", V.getTreeSize()); 6233 }); 6234 6235 // Vectorize a tree. 6236 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6237 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6238 6239 // Emit a reduction. 6240 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6241 Value *ReducedSubTree = 6242 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6243 if (VectorizedTree) { 6244 Builder.SetCurrentDebugLocation(Loc); 6245 OperationData VectReductionData(ReductionData.getOpcode(), 6246 VectorizedTree, ReducedSubTree, 6247 ReductionData.getKind()); 6248 VectorizedTree = 6249 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6250 } else 6251 VectorizedTree = ReducedSubTree; 6252 i += ReduxWidth; 6253 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6254 } 6255 6256 if (VectorizedTree) { 6257 // Finish the reduction. 6258 for (; i < NumReducedVals; ++i) { 6259 auto *I = cast<Instruction>(ReducedVals[i]); 6260 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6261 OperationData VectReductionData(ReductionData.getOpcode(), 6262 VectorizedTree, I, 6263 ReductionData.getKind()); 6264 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6265 } 6266 for (auto &Pair : ExternallyUsedValues) { 6267 // Add each externally used value to the final reduction. 6268 for (auto *I : Pair.second) { 6269 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6270 OperationData VectReductionData(ReductionData.getOpcode(), 6271 VectorizedTree, Pair.first, 6272 ReductionData.getKind()); 6273 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6274 } 6275 } 6276 // Update users. 6277 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6278 } 6279 return VectorizedTree != nullptr; 6280 } 6281 6282 unsigned numReductionValues() const { 6283 return ReducedVals.size(); 6284 } 6285 6286 private: 6287 /// Calculate the cost of a reduction. 6288 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6289 unsigned ReduxWidth) { 6290 Type *ScalarTy = FirstReducedVal->getType(); 6291 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6292 6293 int PairwiseRdxCost; 6294 int SplittingRdxCost; 6295 switch (ReductionData.getKind()) { 6296 case RK_Arithmetic: 6297 PairwiseRdxCost = 6298 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6299 /*IsPairwiseForm=*/true); 6300 SplittingRdxCost = 6301 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6302 /*IsPairwiseForm=*/false); 6303 break; 6304 case RK_Min: 6305 case RK_Max: 6306 case RK_UMin: 6307 case RK_UMax: { 6308 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6309 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6310 ReductionData.getKind() == RK_UMax; 6311 PairwiseRdxCost = 6312 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6313 /*IsPairwiseForm=*/true, IsUnsigned); 6314 SplittingRdxCost = 6315 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6316 /*IsPairwiseForm=*/false, IsUnsigned); 6317 break; 6318 } 6319 case RK_None: 6320 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6321 } 6322 6323 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6324 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6325 6326 int ScalarReduxCost; 6327 switch (ReductionData.getKind()) { 6328 case RK_Arithmetic: 6329 ScalarReduxCost = 6330 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6331 break; 6332 case RK_Min: 6333 case RK_Max: 6334 case RK_UMin: 6335 case RK_UMax: 6336 ScalarReduxCost = 6337 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6338 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6339 CmpInst::makeCmpResultType(ScalarTy)); 6340 break; 6341 case RK_None: 6342 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6343 } 6344 ScalarReduxCost *= (ReduxWidth - 1); 6345 6346 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6347 << " for reduction that starts with " << *FirstReducedVal 6348 << " (It is a " 6349 << (IsPairwiseReduction ? "pairwise" : "splitting") 6350 << " reduction)\n"); 6351 6352 return VecReduxCost - ScalarReduxCost; 6353 } 6354 6355 /// Emit a horizontal reduction of the vectorized value. 6356 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6357 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6358 assert(VectorizedValue && "Need to have a vectorized tree node"); 6359 assert(isPowerOf2_32(ReduxWidth) && 6360 "We only handle power-of-two reductions for now"); 6361 6362 if (!IsPairwiseReduction) { 6363 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6364 // to 'fast'. 6365 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6366 return createSimpleTargetReduction( 6367 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6368 ReductionData.getFlags(), ReductionOps.back()); 6369 } 6370 6371 Value *TmpVec = VectorizedValue; 6372 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6373 Value *LeftMask = 6374 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6375 Value *RightMask = 6376 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6377 6378 Value *LeftShuf = Builder.CreateShuffleVector( 6379 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6380 Value *RightShuf = Builder.CreateShuffleVector( 6381 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6382 "rdx.shuf.r"); 6383 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6384 RightShuf, ReductionData.getKind()); 6385 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6386 } 6387 6388 // The result is in the first element of the vector. 6389 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6390 } 6391 }; 6392 6393 } // end anonymous namespace 6394 6395 /// Recognize construction of vectors like 6396 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6397 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6398 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6399 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6400 /// starting from the last insertelement instruction. 6401 /// 6402 /// Returns true if it matches 6403 static bool findBuildVector(InsertElementInst *LastInsertElem, 6404 TargetTransformInfo *TTI, 6405 SmallVectorImpl<Value *> &BuildVectorOpds, 6406 int &UserCost) { 6407 UserCost = 0; 6408 Value *V = nullptr; 6409 do { 6410 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6411 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6412 LastInsertElem->getType(), 6413 CI->getZExtValue()); 6414 } 6415 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6416 V = LastInsertElem->getOperand(0); 6417 if (isa<UndefValue>(V)) 6418 break; 6419 LastInsertElem = dyn_cast<InsertElementInst>(V); 6420 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6421 return false; 6422 } while (true); 6423 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6424 return true; 6425 } 6426 6427 /// Like findBuildVector, but looks for construction of aggregate. 6428 /// 6429 /// \return true if it matches. 6430 static bool findBuildAggregate(InsertValueInst *IV, 6431 SmallVectorImpl<Value *> &BuildVectorOpds) { 6432 Value *V; 6433 do { 6434 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6435 V = IV->getAggregateOperand(); 6436 if (isa<UndefValue>(V)) 6437 break; 6438 IV = dyn_cast<InsertValueInst>(V); 6439 if (!IV || !IV->hasOneUse()) 6440 return false; 6441 } while (true); 6442 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6443 return true; 6444 } 6445 6446 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6447 return V->getType() < V2->getType(); 6448 } 6449 6450 /// Try and get a reduction value from a phi node. 6451 /// 6452 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6453 /// if they come from either \p ParentBB or a containing loop latch. 6454 /// 6455 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6456 /// if not possible. 6457 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6458 BasicBlock *ParentBB, LoopInfo *LI) { 6459 // There are situations where the reduction value is not dominated by the 6460 // reduction phi. Vectorizing such cases has been reported to cause 6461 // miscompiles. See PR25787. 6462 auto DominatedReduxValue = [&](Value *R) { 6463 return isa<Instruction>(R) && 6464 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6465 }; 6466 6467 Value *Rdx = nullptr; 6468 6469 // Return the incoming value if it comes from the same BB as the phi node. 6470 if (P->getIncomingBlock(0) == ParentBB) { 6471 Rdx = P->getIncomingValue(0); 6472 } else if (P->getIncomingBlock(1) == ParentBB) { 6473 Rdx = P->getIncomingValue(1); 6474 } 6475 6476 if (Rdx && DominatedReduxValue(Rdx)) 6477 return Rdx; 6478 6479 // Otherwise, check whether we have a loop latch to look at. 6480 Loop *BBL = LI->getLoopFor(ParentBB); 6481 if (!BBL) 6482 return nullptr; 6483 BasicBlock *BBLatch = BBL->getLoopLatch(); 6484 if (!BBLatch) 6485 return nullptr; 6486 6487 // There is a loop latch, return the incoming value if it comes from 6488 // that. This reduction pattern occasionally turns up. 6489 if (P->getIncomingBlock(0) == BBLatch) { 6490 Rdx = P->getIncomingValue(0); 6491 } else if (P->getIncomingBlock(1) == BBLatch) { 6492 Rdx = P->getIncomingValue(1); 6493 } 6494 6495 if (Rdx && DominatedReduxValue(Rdx)) 6496 return Rdx; 6497 6498 return nullptr; 6499 } 6500 6501 /// Attempt to reduce a horizontal reduction. 6502 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6503 /// with reduction operators \a Root (or one of its operands) in a basic block 6504 /// \a BB, then check if it can be done. If horizontal reduction is not found 6505 /// and root instruction is a binary operation, vectorization of the operands is 6506 /// attempted. 6507 /// \returns true if a horizontal reduction was matched and reduced or operands 6508 /// of one of the binary instruction were vectorized. 6509 /// \returns false if a horizontal reduction was not matched (or not possible) 6510 /// or no vectorization of any binary operation feeding \a Root instruction was 6511 /// performed. 6512 static bool tryToVectorizeHorReductionOrInstOperands( 6513 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6514 TargetTransformInfo *TTI, 6515 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6516 if (!ShouldVectorizeHor) 6517 return false; 6518 6519 if (!Root) 6520 return false; 6521 6522 if (Root->getParent() != BB || isa<PHINode>(Root)) 6523 return false; 6524 // Start analysis starting from Root instruction. If horizontal reduction is 6525 // found, try to vectorize it. If it is not a horizontal reduction or 6526 // vectorization is not possible or not effective, and currently analyzed 6527 // instruction is a binary operation, try to vectorize the operands, using 6528 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6529 // the same procedure considering each operand as a possible root of the 6530 // horizontal reduction. 6531 // Interrupt the process if the Root instruction itself was vectorized or all 6532 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6533 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6534 SmallPtrSet<Value *, 8> VisitedInstrs; 6535 bool Res = false; 6536 while (!Stack.empty()) { 6537 Value *V; 6538 unsigned Level; 6539 std::tie(V, Level) = Stack.pop_back_val(); 6540 if (!V) 6541 continue; 6542 auto *Inst = dyn_cast<Instruction>(V); 6543 if (!Inst) 6544 continue; 6545 auto *BI = dyn_cast<BinaryOperator>(Inst); 6546 auto *SI = dyn_cast<SelectInst>(Inst); 6547 if (BI || SI) { 6548 HorizontalReduction HorRdx; 6549 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6550 if (HorRdx.tryToReduce(R, TTI)) { 6551 Res = true; 6552 // Set P to nullptr to avoid re-analysis of phi node in 6553 // matchAssociativeReduction function unless this is the root node. 6554 P = nullptr; 6555 continue; 6556 } 6557 } 6558 if (P && BI) { 6559 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6560 if (Inst == P) 6561 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6562 if (!Inst) { 6563 // Set P to nullptr to avoid re-analysis of phi node in 6564 // matchAssociativeReduction function unless this is the root node. 6565 P = nullptr; 6566 continue; 6567 } 6568 } 6569 } 6570 // Set P to nullptr to avoid re-analysis of phi node in 6571 // matchAssociativeReduction function unless this is the root node. 6572 P = nullptr; 6573 if (Vectorize(Inst, R)) { 6574 Res = true; 6575 continue; 6576 } 6577 6578 // Try to vectorize operands. 6579 // Continue analysis for the instruction from the same basic block only to 6580 // save compile time. 6581 if (++Level < RecursionMaxDepth) 6582 for (auto *Op : Inst->operand_values()) 6583 if (VisitedInstrs.insert(Op).second) 6584 if (auto *I = dyn_cast<Instruction>(Op)) 6585 if (!isa<PHINode>(I) && I->getParent() == BB) 6586 Stack.emplace_back(Op, Level); 6587 } 6588 return Res; 6589 } 6590 6591 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6592 BasicBlock *BB, BoUpSLP &R, 6593 TargetTransformInfo *TTI) { 6594 if (!V) 6595 return false; 6596 auto *I = dyn_cast<Instruction>(V); 6597 if (!I) 6598 return false; 6599 6600 if (!isa<BinaryOperator>(I)) 6601 P = nullptr; 6602 // Try to match and vectorize a horizontal reduction. 6603 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6604 return tryToVectorize(I, R); 6605 }; 6606 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6607 ExtraVectorization); 6608 } 6609 6610 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6611 BasicBlock *BB, BoUpSLP &R) { 6612 const DataLayout &DL = BB->getModule()->getDataLayout(); 6613 if (!R.canMapToVector(IVI->getType(), DL)) 6614 return false; 6615 6616 SmallVector<Value *, 16> BuildVectorOpds; 6617 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6618 return false; 6619 6620 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6621 // Aggregate value is unlikely to be processed in vector register, we need to 6622 // extract scalars into scalar registers, so NeedExtraction is set true. 6623 return tryToVectorizeList(BuildVectorOpds, R); 6624 } 6625 6626 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6627 BasicBlock *BB, BoUpSLP &R) { 6628 int UserCost; 6629 SmallVector<Value *, 16> BuildVectorOpds; 6630 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6631 (llvm::all_of(BuildVectorOpds, 6632 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6633 isShuffle(BuildVectorOpds))) 6634 return false; 6635 6636 // Vectorize starting with the build vector operands ignoring the BuildVector 6637 // instructions for the purpose of scheduling and user extraction. 6638 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6639 } 6640 6641 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6642 BoUpSLP &R) { 6643 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6644 return true; 6645 6646 bool OpsChanged = false; 6647 for (int Idx = 0; Idx < 2; ++Idx) { 6648 OpsChanged |= 6649 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6650 } 6651 return OpsChanged; 6652 } 6653 6654 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6655 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6656 bool OpsChanged = false; 6657 for (auto &VH : reverse(Instructions)) { 6658 auto *I = dyn_cast_or_null<Instruction>(VH); 6659 if (!I) 6660 continue; 6661 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6662 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6663 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6664 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6665 else if (auto *CI = dyn_cast<CmpInst>(I)) 6666 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6667 } 6668 Instructions.clear(); 6669 return OpsChanged; 6670 } 6671 6672 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6673 bool Changed = false; 6674 SmallVector<Value *, 4> Incoming; 6675 SmallPtrSet<Value *, 16> VisitedInstrs; 6676 6677 bool HaveVectorizedPhiNodes = true; 6678 while (HaveVectorizedPhiNodes) { 6679 HaveVectorizedPhiNodes = false; 6680 6681 // Collect the incoming values from the PHIs. 6682 Incoming.clear(); 6683 for (Instruction &I : *BB) { 6684 PHINode *P = dyn_cast<PHINode>(&I); 6685 if (!P) 6686 break; 6687 6688 if (!VisitedInstrs.count(P)) 6689 Incoming.push_back(P); 6690 } 6691 6692 // Sort by type. 6693 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6694 6695 // Try to vectorize elements base on their type. 6696 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6697 E = Incoming.end(); 6698 IncIt != E;) { 6699 6700 // Look for the next elements with the same type. 6701 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6702 while (SameTypeIt != E && 6703 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6704 VisitedInstrs.insert(*SameTypeIt); 6705 ++SameTypeIt; 6706 } 6707 6708 // Try to vectorize them. 6709 unsigned NumElts = (SameTypeIt - IncIt); 6710 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6711 << NumElts << ")\n"); 6712 // The order in which the phi nodes appear in the program does not matter. 6713 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6714 // is done when there are exactly two elements since tryToVectorizeList 6715 // asserts that there are only two values when AllowReorder is true. 6716 bool AllowReorder = NumElts == 2; 6717 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6718 /*UserCost=*/0, AllowReorder)) { 6719 // Success start over because instructions might have been changed. 6720 HaveVectorizedPhiNodes = true; 6721 Changed = true; 6722 break; 6723 } 6724 6725 // Start over at the next instruction of a different type (or the end). 6726 IncIt = SameTypeIt; 6727 } 6728 } 6729 6730 VisitedInstrs.clear(); 6731 6732 SmallVector<WeakVH, 8> PostProcessInstructions; 6733 SmallDenseSet<Instruction *, 4> KeyNodes; 6734 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6735 // We may go through BB multiple times so skip the one we have checked. 6736 if (!VisitedInstrs.insert(&*it).second) { 6737 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6738 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6739 // We would like to start over since some instructions are deleted 6740 // and the iterator may become invalid value. 6741 Changed = true; 6742 it = BB->begin(); 6743 e = BB->end(); 6744 } 6745 continue; 6746 } 6747 6748 if (isa<DbgInfoIntrinsic>(it)) 6749 continue; 6750 6751 // Try to vectorize reductions that use PHINodes. 6752 if (PHINode *P = dyn_cast<PHINode>(it)) { 6753 // Check that the PHI is a reduction PHI. 6754 if (P->getNumIncomingValues() != 2) 6755 return Changed; 6756 6757 // Try to match and vectorize a horizontal reduction. 6758 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6759 TTI)) { 6760 Changed = true; 6761 it = BB->begin(); 6762 e = BB->end(); 6763 continue; 6764 } 6765 continue; 6766 } 6767 6768 // Ran into an instruction without users, like terminator, or function call 6769 // with ignored return value, store. Ignore unused instructions (basing on 6770 // instruction type, except for CallInst and InvokeInst). 6771 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6772 isa<InvokeInst>(it))) { 6773 KeyNodes.insert(&*it); 6774 bool OpsChanged = false; 6775 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6776 for (auto *V : it->operand_values()) { 6777 // Try to match and vectorize a horizontal reduction. 6778 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6779 } 6780 } 6781 // Start vectorization of post-process list of instructions from the 6782 // top-tree instructions to try to vectorize as many instructions as 6783 // possible. 6784 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6785 if (OpsChanged) { 6786 // We would like to start over since some instructions are deleted 6787 // and the iterator may become invalid value. 6788 Changed = true; 6789 it = BB->begin(); 6790 e = BB->end(); 6791 continue; 6792 } 6793 } 6794 6795 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6796 isa<InsertValueInst>(it)) 6797 PostProcessInstructions.push_back(&*it); 6798 } 6799 6800 return Changed; 6801 } 6802 6803 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6804 auto Changed = false; 6805 for (auto &Entry : GEPs) { 6806 // If the getelementptr list has fewer than two elements, there's nothing 6807 // to do. 6808 if (Entry.second.size() < 2) 6809 continue; 6810 6811 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6812 << Entry.second.size() << ".\n"); 6813 6814 // We process the getelementptr list in chunks of 16 (like we do for 6815 // stores) to minimize compile-time. 6816 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6817 auto Len = std::min<unsigned>(BE - BI, 16); 6818 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6819 6820 // Initialize a set a candidate getelementptrs. Note that we use a 6821 // SetVector here to preserve program order. If the index computations 6822 // are vectorizable and begin with loads, we want to minimize the chance 6823 // of having to reorder them later. 6824 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6825 6826 // Some of the candidates may have already been vectorized after we 6827 // initially collected them. If so, the WeakTrackingVHs will have 6828 // nullified the 6829 // values, so remove them from the set of candidates. 6830 Candidates.remove(nullptr); 6831 6832 // Remove from the set of candidates all pairs of getelementptrs with 6833 // constant differences. Such getelementptrs are likely not good 6834 // candidates for vectorization in a bottom-up phase since one can be 6835 // computed from the other. We also ensure all candidate getelementptr 6836 // indices are unique. 6837 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6838 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6839 if (!Candidates.count(GEPI)) 6840 continue; 6841 auto *SCEVI = SE->getSCEV(GEPList[I]); 6842 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6843 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6844 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6845 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6846 Candidates.remove(GEPList[I]); 6847 Candidates.remove(GEPList[J]); 6848 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6849 Candidates.remove(GEPList[J]); 6850 } 6851 } 6852 } 6853 6854 // We break out of the above computation as soon as we know there are 6855 // fewer than two candidates remaining. 6856 if (Candidates.size() < 2) 6857 continue; 6858 6859 // Add the single, non-constant index of each candidate to the bundle. We 6860 // ensured the indices met these constraints when we originally collected 6861 // the getelementptrs. 6862 SmallVector<Value *, 16> Bundle(Candidates.size()); 6863 auto BundleIndex = 0u; 6864 for (auto *V : Candidates) { 6865 auto *GEP = cast<GetElementPtrInst>(V); 6866 auto *GEPIdx = GEP->idx_begin()->get(); 6867 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6868 Bundle[BundleIndex++] = GEPIdx; 6869 } 6870 6871 // Try and vectorize the indices. We are currently only interested in 6872 // gather-like cases of the form: 6873 // 6874 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6875 // 6876 // where the loads of "a", the loads of "b", and the subtractions can be 6877 // performed in parallel. It's likely that detecting this pattern in a 6878 // bottom-up phase will be simpler and less costly than building a 6879 // full-blown top-down phase beginning at the consecutive loads. 6880 Changed |= tryToVectorizeList(Bundle, R); 6881 } 6882 } 6883 return Changed; 6884 } 6885 6886 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6887 bool Changed = false; 6888 // Attempt to sort and vectorize each of the store-groups. 6889 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6890 ++it) { 6891 if (it->second.size() < 2) 6892 continue; 6893 6894 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6895 << it->second.size() << ".\n"); 6896 6897 // Process the stores in chunks of 16. 6898 // TODO: The limit of 16 inhibits greater vectorization factors. 6899 // For example, AVX2 supports v32i8. Increasing this limit, however, 6900 // may cause a significant compile-time increase. 6901 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6902 unsigned Len = std::min<unsigned>(CE - CI, 16); 6903 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6904 } 6905 } 6906 return Changed; 6907 } 6908 6909 char SLPVectorizer::ID = 0; 6910 6911 static const char lv_name[] = "SLP Vectorizer"; 6912 6913 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6914 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6915 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6916 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6917 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6918 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6919 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6920 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6921 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6922 6923 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6924