1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return AltOp != MainOp; } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 auto It = HashMap.find(NumFreeOpsHash.Hash); 1421 if (It == HashMap.end()) 1422 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1423 else 1424 ++It->second.first; 1425 } 1426 } 1427 // Select the lane with the minimum counter. 1428 unsigned BestLane = 0; 1429 unsigned CntMin = UINT_MAX; 1430 for (const auto &Data : reverse(HashMap)) { 1431 if (Data.second.first < CntMin) { 1432 CntMin = Data.second.first; 1433 BestLane = Data.second.second; 1434 } 1435 } 1436 return BestLane; 1437 } 1438 1439 /// Data structure that helps to reorder operands. 1440 struct OperandsOrderData { 1441 /// The best number of operands with the same APOs, which can be 1442 /// reordered. 1443 unsigned NumOfAPOs = UINT_MAX; 1444 /// Number of operands with the same/alternate instruction opcode and 1445 /// parent. 1446 unsigned NumOpsWithSameOpcodeParent = 0; 1447 /// Hash for the actual operands ordering. 1448 /// Used to count operands, actually their position id and opcode 1449 /// value. It is used in the voting mechanism to find the lane with the 1450 /// least number of operands that can freely move about or less profitable 1451 /// because it already has the most optimal set of operands. Can be 1452 /// replaced with SmallVector<unsigned> instead but hash code is faster 1453 /// and requires less memory. 1454 unsigned Hash = 0; 1455 }; 1456 /// \returns the maximum number of operands that are allowed to be reordered 1457 /// for \p Lane and the number of compatible instructions(with the same 1458 /// parent/opcode). This is used as a heuristic for selecting the first lane 1459 /// to start operand reordering. 1460 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1461 unsigned CntTrue = 0; 1462 unsigned NumOperands = getNumOperands(); 1463 // Operands with the same APO can be reordered. We therefore need to count 1464 // how many of them we have for each APO, like this: Cnt[APO] = x. 1465 // Since we only have two APOs, namely true and false, we can avoid using 1466 // a map. Instead we can simply count the number of operands that 1467 // correspond to one of them (in this case the 'true' APO), and calculate 1468 // the other by subtracting it from the total number of operands. 1469 // Operands with the same instruction opcode and parent are more 1470 // profitable since we don't need to move them in many cases, with a high 1471 // probability such lane already can be vectorized effectively. 1472 bool AllUndefs = true; 1473 unsigned NumOpsWithSameOpcodeParent = 0; 1474 Instruction *OpcodeI = nullptr; 1475 BasicBlock *Parent = nullptr; 1476 unsigned Hash = 0; 1477 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1478 const OperandData &OpData = getData(OpIdx, Lane); 1479 if (OpData.APO) 1480 ++CntTrue; 1481 // Use Boyer-Moore majority voting for finding the majority opcode and 1482 // the number of times it occurs. 1483 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1484 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1485 I->getParent() != Parent) { 1486 if (NumOpsWithSameOpcodeParent == 0) { 1487 NumOpsWithSameOpcodeParent = 1; 1488 OpcodeI = I; 1489 Parent = I->getParent(); 1490 } else { 1491 --NumOpsWithSameOpcodeParent; 1492 } 1493 } else { 1494 ++NumOpsWithSameOpcodeParent; 1495 } 1496 } 1497 Hash = hash_combine( 1498 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1499 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1500 } 1501 if (AllUndefs) 1502 return {}; 1503 OperandsOrderData Data; 1504 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1505 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1506 Data.Hash = Hash; 1507 return Data; 1508 } 1509 1510 /// Go through the instructions in VL and append their operands. 1511 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1512 assert(!VL.empty() && "Bad VL"); 1513 assert((empty() || VL.size() == getNumLanes()) && 1514 "Expected same number of lanes"); 1515 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1516 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1517 OpsVec.resize(NumOperands); 1518 unsigned NumLanes = VL.size(); 1519 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1520 OpsVec[OpIdx].resize(NumLanes); 1521 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1522 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1523 // Our tree has just 3 nodes: the root and two operands. 1524 // It is therefore trivial to get the APO. We only need to check the 1525 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1526 // RHS operand. The LHS operand of both add and sub is never attached 1527 // to an inversese operation in the linearized form, therefore its APO 1528 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1529 1530 // Since operand reordering is performed on groups of commutative 1531 // operations or alternating sequences (e.g., +, -), we can safely 1532 // tell the inverse operations by checking commutativity. 1533 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1534 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1535 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1536 APO, false}; 1537 } 1538 } 1539 } 1540 1541 /// \returns the number of operands. 1542 unsigned getNumOperands() const { return OpsVec.size(); } 1543 1544 /// \returns the number of lanes. 1545 unsigned getNumLanes() const { return OpsVec[0].size(); } 1546 1547 /// \returns the operand value at \p OpIdx and \p Lane. 1548 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1549 return getData(OpIdx, Lane).V; 1550 } 1551 1552 /// \returns true if the data structure is empty. 1553 bool empty() const { return OpsVec.empty(); } 1554 1555 /// Clears the data. 1556 void clear() { OpsVec.clear(); } 1557 1558 /// \Returns true if there are enough operands identical to \p Op to fill 1559 /// the whole vector. 1560 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1561 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1562 bool OpAPO = getData(OpIdx, Lane).APO; 1563 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1564 if (Ln == Lane) 1565 continue; 1566 // This is set to true if we found a candidate for broadcast at Lane. 1567 bool FoundCandidate = false; 1568 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1569 OperandData &Data = getData(OpI, Ln); 1570 if (Data.APO != OpAPO || Data.IsUsed) 1571 continue; 1572 if (Data.V == Op) { 1573 FoundCandidate = true; 1574 Data.IsUsed = true; 1575 break; 1576 } 1577 } 1578 if (!FoundCandidate) 1579 return false; 1580 } 1581 return true; 1582 } 1583 1584 public: 1585 /// Initialize with all the operands of the instruction vector \p RootVL. 1586 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1587 ScalarEvolution &SE, const BoUpSLP &R) 1588 : DL(DL), SE(SE), R(R) { 1589 // Append all the operands of RootVL. 1590 appendOperandsOfVL(RootVL); 1591 } 1592 1593 /// \Returns a value vector with the operands across all lanes for the 1594 /// opearnd at \p OpIdx. 1595 ValueList getVL(unsigned OpIdx) const { 1596 ValueList OpVL(OpsVec[OpIdx].size()); 1597 assert(OpsVec[OpIdx].size() == getNumLanes() && 1598 "Expected same num of lanes across all operands"); 1599 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1600 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1601 return OpVL; 1602 } 1603 1604 // Performs operand reordering for 2 or more operands. 1605 // The original operands are in OrigOps[OpIdx][Lane]. 1606 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1607 void reorder() { 1608 unsigned NumOperands = getNumOperands(); 1609 unsigned NumLanes = getNumLanes(); 1610 // Each operand has its own mode. We are using this mode to help us select 1611 // the instructions for each lane, so that they match best with the ones 1612 // we have selected so far. 1613 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1614 1615 // This is a greedy single-pass algorithm. We are going over each lane 1616 // once and deciding on the best order right away with no back-tracking. 1617 // However, in order to increase its effectiveness, we start with the lane 1618 // that has operands that can move the least. For example, given the 1619 // following lanes: 1620 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1621 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1622 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1623 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1624 // we will start at Lane 1, since the operands of the subtraction cannot 1625 // be reordered. Then we will visit the rest of the lanes in a circular 1626 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1627 1628 // Find the first lane that we will start our search from. 1629 unsigned FirstLane = getBestLaneToStartReordering(); 1630 1631 // Initialize the modes. 1632 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1633 Value *OpLane0 = getValue(OpIdx, FirstLane); 1634 // Keep track if we have instructions with all the same opcode on one 1635 // side. 1636 if (isa<LoadInst>(OpLane0)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Load; 1638 else if (isa<Instruction>(OpLane0)) { 1639 // Check if OpLane0 should be broadcast. 1640 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1641 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1642 else 1643 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1644 } 1645 else if (isa<Constant>(OpLane0)) 1646 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1647 else if (isa<Argument>(OpLane0)) 1648 // Our best hope is a Splat. It may save some cost in some cases. 1649 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1650 else 1651 // NOTE: This should be unreachable. 1652 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1653 } 1654 1655 // Check that we don't have same operands. No need to reorder if operands 1656 // are just perfect diamond or shuffled diamond match. Do not do it only 1657 // for possible broadcasts or non-power of 2 number of scalars (just for 1658 // now). 1659 auto &&SkipReordering = [this]() { 1660 SmallPtrSet<Value *, 4> UniqueValues; 1661 ArrayRef<OperandData> Op0 = OpsVec.front(); 1662 for (const OperandData &Data : Op0) 1663 UniqueValues.insert(Data.V); 1664 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1665 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1666 return !UniqueValues.contains(Data.V); 1667 })) 1668 return false; 1669 } 1670 // TODO: Check if we can remove a check for non-power-2 number of 1671 // scalars after full support of non-power-2 vectorization. 1672 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1673 }; 1674 1675 // If the initial strategy fails for any of the operand indexes, then we 1676 // perform reordering again in a second pass. This helps avoid assigning 1677 // high priority to the failed strategy, and should improve reordering for 1678 // the non-failed operand indexes. 1679 for (int Pass = 0; Pass != 2; ++Pass) { 1680 // Check if no need to reorder operands since they're are perfect or 1681 // shuffled diamond match. 1682 // Need to to do it to avoid extra external use cost counting for 1683 // shuffled matches, which may cause regressions. 1684 if (SkipReordering()) 1685 break; 1686 // Skip the second pass if the first pass did not fail. 1687 bool StrategyFailed = false; 1688 // Mark all operand data as free to use. 1689 clearUsed(); 1690 // We keep the original operand order for the FirstLane, so reorder the 1691 // rest of the lanes. We are visiting the nodes in a circular fashion, 1692 // using FirstLane as the center point and increasing the radius 1693 // distance. 1694 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1695 // Visit the lane on the right and then the lane on the left. 1696 for (int Direction : {+1, -1}) { 1697 int Lane = FirstLane + Direction * Distance; 1698 if (Lane < 0 || Lane >= (int)NumLanes) 1699 continue; 1700 int LastLane = Lane - Direction; 1701 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1702 "Out of bounds"); 1703 // Look for a good match for each operand. 1704 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1705 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1706 Optional<unsigned> BestIdx = 1707 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1708 // By not selecting a value, we allow the operands that follow to 1709 // select a better matching value. We will get a non-null value in 1710 // the next run of getBestOperand(). 1711 if (BestIdx) { 1712 // Swap the current operand with the one returned by 1713 // getBestOperand(). 1714 swap(OpIdx, BestIdx.getValue(), Lane); 1715 } else { 1716 // We failed to find a best operand, set mode to 'Failed'. 1717 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1718 // Enable the second pass. 1719 StrategyFailed = true; 1720 } 1721 } 1722 } 1723 } 1724 // Skip second pass if the strategy did not fail. 1725 if (!StrategyFailed) 1726 break; 1727 } 1728 } 1729 1730 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1731 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1732 switch (RMode) { 1733 case ReorderingMode::Load: 1734 return "Load"; 1735 case ReorderingMode::Opcode: 1736 return "Opcode"; 1737 case ReorderingMode::Constant: 1738 return "Constant"; 1739 case ReorderingMode::Splat: 1740 return "Splat"; 1741 case ReorderingMode::Failed: 1742 return "Failed"; 1743 } 1744 llvm_unreachable("Unimplemented Reordering Type"); 1745 } 1746 1747 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1748 raw_ostream &OS) { 1749 return OS << getModeStr(RMode); 1750 } 1751 1752 /// Debug print. 1753 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1754 printMode(RMode, dbgs()); 1755 } 1756 1757 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1758 return printMode(RMode, OS); 1759 } 1760 1761 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1762 const unsigned Indent = 2; 1763 unsigned Cnt = 0; 1764 for (const OperandDataVec &OpDataVec : OpsVec) { 1765 OS << "Operand " << Cnt++ << "\n"; 1766 for (const OperandData &OpData : OpDataVec) { 1767 OS.indent(Indent) << "{"; 1768 if (Value *V = OpData.V) 1769 OS << *V; 1770 else 1771 OS << "null"; 1772 OS << ", APO:" << OpData.APO << "}\n"; 1773 } 1774 OS << "\n"; 1775 } 1776 return OS; 1777 } 1778 1779 /// Debug print. 1780 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1781 #endif 1782 }; 1783 1784 /// Checks if the instruction is marked for deletion. 1785 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1786 1787 /// Marks values operands for later deletion by replacing them with Undefs. 1788 void eraseInstructions(ArrayRef<Value *> AV); 1789 1790 ~BoUpSLP(); 1791 1792 private: 1793 /// Checks if all users of \p I are the part of the vectorization tree. 1794 bool areAllUsersVectorized(Instruction *I, 1795 ArrayRef<Value *> VectorizedVals) const; 1796 1797 /// \returns the cost of the vectorizable entry. 1798 InstructionCost getEntryCost(const TreeEntry *E, 1799 ArrayRef<Value *> VectorizedVals); 1800 1801 /// This is the recursive part of buildTree. 1802 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1803 const EdgeInfo &EI); 1804 1805 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1806 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1807 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1808 /// returns false, setting \p CurrentOrder to either an empty vector or a 1809 /// non-identity permutation that allows to reuse extract instructions. 1810 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1811 SmallVectorImpl<unsigned> &CurrentOrder) const; 1812 1813 /// Vectorize a single entry in the tree. 1814 Value *vectorizeTree(TreeEntry *E); 1815 1816 /// Vectorize a single entry in the tree, starting in \p VL. 1817 Value *vectorizeTree(ArrayRef<Value *> VL); 1818 1819 /// \returns the scalarization cost for this type. Scalarization in this 1820 /// context means the creation of vectors from a group of scalars. If \p 1821 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1822 /// vector elements. 1823 InstructionCost getGatherCost(FixedVectorType *Ty, 1824 const DenseSet<unsigned> &ShuffledIndices, 1825 bool NeedToShuffle) const; 1826 1827 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1828 /// tree entries. 1829 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1830 /// previous tree entries. \p Mask is filled with the shuffle mask. 1831 Optional<TargetTransformInfo::ShuffleKind> 1832 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1833 SmallVectorImpl<const TreeEntry *> &Entries); 1834 1835 /// \returns the scalarization cost for this list of values. Assuming that 1836 /// this subtree gets vectorized, we may need to extract the values from the 1837 /// roots. This method calculates the cost of extracting the values. 1838 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1839 1840 /// Set the Builder insert point to one after the last instruction in 1841 /// the bundle 1842 void setInsertPointAfterBundle(const TreeEntry *E); 1843 1844 /// \returns a vector from a collection of scalars in \p VL. 1845 Value *gather(ArrayRef<Value *> VL); 1846 1847 /// \returns whether the VectorizableTree is fully vectorizable and will 1848 /// be beneficial even the tree height is tiny. 1849 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1850 1851 /// Reorder commutative or alt operands to get better probability of 1852 /// generating vectorized code. 1853 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1854 SmallVectorImpl<Value *> &Left, 1855 SmallVectorImpl<Value *> &Right, 1856 const DataLayout &DL, 1857 ScalarEvolution &SE, 1858 const BoUpSLP &R); 1859 struct TreeEntry { 1860 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1861 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1862 1863 /// \returns true if the scalars in VL are equal to this entry. 1864 bool isSame(ArrayRef<Value *> VL) const { 1865 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1866 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1867 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1868 return VL.size() == Mask.size() && 1869 std::equal(VL.begin(), VL.end(), Mask.begin(), 1870 [Scalars](Value *V, int Idx) { 1871 return (isa<UndefValue>(V) && 1872 Idx == UndefMaskElem) || 1873 (Idx != UndefMaskElem && V == Scalars[Idx]); 1874 }); 1875 }; 1876 if (!ReorderIndices.empty()) { 1877 // TODO: implement matching if the nodes are just reordered, still can 1878 // treat the vector as the same if the list of scalars matches VL 1879 // directly, without reordering. 1880 SmallVector<int> Mask; 1881 inversePermutation(ReorderIndices, Mask); 1882 if (VL.size() == Scalars.size()) 1883 return IsSame(Scalars, Mask); 1884 if (VL.size() == ReuseShuffleIndices.size()) { 1885 ::addMask(Mask, ReuseShuffleIndices); 1886 return IsSame(Scalars, Mask); 1887 } 1888 return false; 1889 } 1890 return IsSame(Scalars, ReuseShuffleIndices); 1891 } 1892 1893 /// \returns true if current entry has same operands as \p TE. 1894 bool hasEqualOperands(const TreeEntry &TE) const { 1895 if (TE.getNumOperands() != getNumOperands()) 1896 return false; 1897 SmallBitVector Used(getNumOperands()); 1898 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1899 unsigned PrevCount = Used.count(); 1900 for (unsigned K = 0; K < E; ++K) { 1901 if (Used.test(K)) 1902 continue; 1903 if (getOperand(K) == TE.getOperand(I)) { 1904 Used.set(K); 1905 break; 1906 } 1907 } 1908 // Check if we actually found the matching operand. 1909 if (PrevCount == Used.count()) 1910 return false; 1911 } 1912 return true; 1913 } 1914 1915 /// \return Final vectorization factor for the node. Defined by the total 1916 /// number of vectorized scalars, including those, used several times in the 1917 /// entry and counted in the \a ReuseShuffleIndices, if any. 1918 unsigned getVectorFactor() const { 1919 if (!ReuseShuffleIndices.empty()) 1920 return ReuseShuffleIndices.size(); 1921 return Scalars.size(); 1922 }; 1923 1924 /// A vector of scalars. 1925 ValueList Scalars; 1926 1927 /// The Scalars are vectorized into this value. It is initialized to Null. 1928 Value *VectorizedValue = nullptr; 1929 1930 /// Do we need to gather this sequence or vectorize it 1931 /// (either with vector instruction or with scatter/gather 1932 /// intrinsics for store/load)? 1933 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1934 EntryState State; 1935 1936 /// Does this sequence require some shuffling? 1937 SmallVector<int, 4> ReuseShuffleIndices; 1938 1939 /// Does this entry require reordering? 1940 SmallVector<unsigned, 4> ReorderIndices; 1941 1942 /// Points back to the VectorizableTree. 1943 /// 1944 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1945 /// to be a pointer and needs to be able to initialize the child iterator. 1946 /// Thus we need a reference back to the container to translate the indices 1947 /// to entries. 1948 VecTreeTy &Container; 1949 1950 /// The TreeEntry index containing the user of this entry. We can actually 1951 /// have multiple users so the data structure is not truly a tree. 1952 SmallVector<EdgeInfo, 1> UserTreeIndices; 1953 1954 /// The index of this treeEntry in VectorizableTree. 1955 int Idx = -1; 1956 1957 private: 1958 /// The operands of each instruction in each lane Operands[op_index][lane]. 1959 /// Note: This helps avoid the replication of the code that performs the 1960 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1961 SmallVector<ValueList, 2> Operands; 1962 1963 /// The main/alternate instruction. 1964 Instruction *MainOp = nullptr; 1965 Instruction *AltOp = nullptr; 1966 1967 public: 1968 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1969 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1970 if (Operands.size() < OpIdx + 1) 1971 Operands.resize(OpIdx + 1); 1972 assert(Operands[OpIdx].empty() && "Already resized?"); 1973 assert(OpVL.size() <= Scalars.size() && 1974 "Number of operands is greater than the number of scalars."); 1975 Operands[OpIdx].resize(OpVL.size()); 1976 copy(OpVL, Operands[OpIdx].begin()); 1977 } 1978 1979 /// Set the operands of this bundle in their original order. 1980 void setOperandsInOrder() { 1981 assert(Operands.empty() && "Already initialized?"); 1982 auto *I0 = cast<Instruction>(Scalars[0]); 1983 Operands.resize(I0->getNumOperands()); 1984 unsigned NumLanes = Scalars.size(); 1985 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1986 OpIdx != NumOperands; ++OpIdx) { 1987 Operands[OpIdx].resize(NumLanes); 1988 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1989 auto *I = cast<Instruction>(Scalars[Lane]); 1990 assert(I->getNumOperands() == NumOperands && 1991 "Expected same number of operands"); 1992 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1993 } 1994 } 1995 } 1996 1997 /// Reorders operands of the node to the given mask \p Mask. 1998 void reorderOperands(ArrayRef<int> Mask) { 1999 for (ValueList &Operand : Operands) 2000 reorderScalars(Operand, Mask); 2001 } 2002 2003 /// \returns the \p OpIdx operand of this TreeEntry. 2004 ValueList &getOperand(unsigned OpIdx) { 2005 assert(OpIdx < Operands.size() && "Off bounds"); 2006 return Operands[OpIdx]; 2007 } 2008 2009 /// \returns the \p OpIdx operand of this TreeEntry. 2010 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2011 assert(OpIdx < Operands.size() && "Off bounds"); 2012 return Operands[OpIdx]; 2013 } 2014 2015 /// \returns the number of operands. 2016 unsigned getNumOperands() const { return Operands.size(); } 2017 2018 /// \return the single \p OpIdx operand. 2019 Value *getSingleOperand(unsigned OpIdx) const { 2020 assert(OpIdx < Operands.size() && "Off bounds"); 2021 assert(!Operands[OpIdx].empty() && "No operand available"); 2022 return Operands[OpIdx][0]; 2023 } 2024 2025 /// Some of the instructions in the list have alternate opcodes. 2026 bool isAltShuffle() const { return MainOp != AltOp; } 2027 2028 bool isOpcodeOrAlt(Instruction *I) const { 2029 unsigned CheckedOpcode = I->getOpcode(); 2030 return (getOpcode() == CheckedOpcode || 2031 getAltOpcode() == CheckedOpcode); 2032 } 2033 2034 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2035 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2036 /// \p OpValue. 2037 Value *isOneOf(Value *Op) const { 2038 auto *I = dyn_cast<Instruction>(Op); 2039 if (I && isOpcodeOrAlt(I)) 2040 return Op; 2041 return MainOp; 2042 } 2043 2044 void setOperations(const InstructionsState &S) { 2045 MainOp = S.MainOp; 2046 AltOp = S.AltOp; 2047 } 2048 2049 Instruction *getMainOp() const { 2050 return MainOp; 2051 } 2052 2053 Instruction *getAltOp() const { 2054 return AltOp; 2055 } 2056 2057 /// The main/alternate opcodes for the list of instructions. 2058 unsigned getOpcode() const { 2059 return MainOp ? MainOp->getOpcode() : 0; 2060 } 2061 2062 unsigned getAltOpcode() const { 2063 return AltOp ? AltOp->getOpcode() : 0; 2064 } 2065 2066 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2067 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2068 int findLaneForValue(Value *V) const { 2069 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2070 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2071 if (!ReorderIndices.empty()) 2072 FoundLane = ReorderIndices[FoundLane]; 2073 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2074 if (!ReuseShuffleIndices.empty()) { 2075 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2076 find(ReuseShuffleIndices, FoundLane)); 2077 } 2078 return FoundLane; 2079 } 2080 2081 #ifndef NDEBUG 2082 /// Debug printer. 2083 LLVM_DUMP_METHOD void dump() const { 2084 dbgs() << Idx << ".\n"; 2085 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2086 dbgs() << "Operand " << OpI << ":\n"; 2087 for (const Value *V : Operands[OpI]) 2088 dbgs().indent(2) << *V << "\n"; 2089 } 2090 dbgs() << "Scalars: \n"; 2091 for (Value *V : Scalars) 2092 dbgs().indent(2) << *V << "\n"; 2093 dbgs() << "State: "; 2094 switch (State) { 2095 case Vectorize: 2096 dbgs() << "Vectorize\n"; 2097 break; 2098 case ScatterVectorize: 2099 dbgs() << "ScatterVectorize\n"; 2100 break; 2101 case NeedToGather: 2102 dbgs() << "NeedToGather\n"; 2103 break; 2104 } 2105 dbgs() << "MainOp: "; 2106 if (MainOp) 2107 dbgs() << *MainOp << "\n"; 2108 else 2109 dbgs() << "NULL\n"; 2110 dbgs() << "AltOp: "; 2111 if (AltOp) 2112 dbgs() << *AltOp << "\n"; 2113 else 2114 dbgs() << "NULL\n"; 2115 dbgs() << "VectorizedValue: "; 2116 if (VectorizedValue) 2117 dbgs() << *VectorizedValue << "\n"; 2118 else 2119 dbgs() << "NULL\n"; 2120 dbgs() << "ReuseShuffleIndices: "; 2121 if (ReuseShuffleIndices.empty()) 2122 dbgs() << "Empty"; 2123 else 2124 for (int ReuseIdx : ReuseShuffleIndices) 2125 dbgs() << ReuseIdx << ", "; 2126 dbgs() << "\n"; 2127 dbgs() << "ReorderIndices: "; 2128 for (unsigned ReorderIdx : ReorderIndices) 2129 dbgs() << ReorderIdx << ", "; 2130 dbgs() << "\n"; 2131 dbgs() << "UserTreeIndices: "; 2132 for (const auto &EInfo : UserTreeIndices) 2133 dbgs() << EInfo << ", "; 2134 dbgs() << "\n"; 2135 } 2136 #endif 2137 }; 2138 2139 #ifndef NDEBUG 2140 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2141 InstructionCost VecCost, 2142 InstructionCost ScalarCost) const { 2143 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2144 dbgs() << "SLP: Costs:\n"; 2145 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2146 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2147 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2148 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2149 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2150 } 2151 #endif 2152 2153 /// Create a new VectorizableTree entry. 2154 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2155 const InstructionsState &S, 2156 const EdgeInfo &UserTreeIdx, 2157 ArrayRef<int> ReuseShuffleIndices = None, 2158 ArrayRef<unsigned> ReorderIndices = None) { 2159 TreeEntry::EntryState EntryState = 2160 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2161 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2162 ReuseShuffleIndices, ReorderIndices); 2163 } 2164 2165 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2166 TreeEntry::EntryState EntryState, 2167 Optional<ScheduleData *> Bundle, 2168 const InstructionsState &S, 2169 const EdgeInfo &UserTreeIdx, 2170 ArrayRef<int> ReuseShuffleIndices = None, 2171 ArrayRef<unsigned> ReorderIndices = None) { 2172 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2173 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2174 "Need to vectorize gather entry?"); 2175 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2176 TreeEntry *Last = VectorizableTree.back().get(); 2177 Last->Idx = VectorizableTree.size() - 1; 2178 Last->State = EntryState; 2179 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2180 ReuseShuffleIndices.end()); 2181 if (ReorderIndices.empty()) { 2182 Last->Scalars.assign(VL.begin(), VL.end()); 2183 Last->setOperations(S); 2184 } else { 2185 // Reorder scalars and build final mask. 2186 Last->Scalars.assign(VL.size(), nullptr); 2187 transform(ReorderIndices, Last->Scalars.begin(), 2188 [VL](unsigned Idx) -> Value * { 2189 if (Idx >= VL.size()) 2190 return UndefValue::get(VL.front()->getType()); 2191 return VL[Idx]; 2192 }); 2193 InstructionsState S = getSameOpcode(Last->Scalars); 2194 Last->setOperations(S); 2195 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2196 } 2197 if (Last->State != TreeEntry::NeedToGather) { 2198 for (Value *V : VL) { 2199 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2200 ScalarToTreeEntry[V] = Last; 2201 } 2202 // Update the scheduler bundle to point to this TreeEntry. 2203 unsigned Lane = 0; 2204 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2205 BundleMember = BundleMember->NextInBundle) { 2206 BundleMember->TE = Last; 2207 BundleMember->Lane = Lane; 2208 ++Lane; 2209 } 2210 assert((!Bundle.getValue() || Lane == VL.size()) && 2211 "Bundle and VL out of sync"); 2212 } else { 2213 MustGather.insert(VL.begin(), VL.end()); 2214 } 2215 2216 if (UserTreeIdx.UserTE) 2217 Last->UserTreeIndices.push_back(UserTreeIdx); 2218 2219 return Last; 2220 } 2221 2222 /// -- Vectorization State -- 2223 /// Holds all of the tree entries. 2224 TreeEntry::VecTreeTy VectorizableTree; 2225 2226 #ifndef NDEBUG 2227 /// Debug printer. 2228 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2229 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2230 VectorizableTree[Id]->dump(); 2231 dbgs() << "\n"; 2232 } 2233 } 2234 #endif 2235 2236 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2237 2238 const TreeEntry *getTreeEntry(Value *V) const { 2239 return ScalarToTreeEntry.lookup(V); 2240 } 2241 2242 /// Maps a specific scalar to its tree entry. 2243 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2244 2245 /// Maps a value to the proposed vectorizable size. 2246 SmallDenseMap<Value *, unsigned> InstrElementSize; 2247 2248 /// A list of scalars that we found that we need to keep as scalars. 2249 ValueSet MustGather; 2250 2251 /// This POD struct describes one external user in the vectorized tree. 2252 struct ExternalUser { 2253 ExternalUser(Value *S, llvm::User *U, int L) 2254 : Scalar(S), User(U), Lane(L) {} 2255 2256 // Which scalar in our function. 2257 Value *Scalar; 2258 2259 // Which user that uses the scalar. 2260 llvm::User *User; 2261 2262 // Which lane does the scalar belong to. 2263 int Lane; 2264 }; 2265 using UserList = SmallVector<ExternalUser, 16>; 2266 2267 /// Checks if two instructions may access the same memory. 2268 /// 2269 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2270 /// is invariant in the calling loop. 2271 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2272 Instruction *Inst2) { 2273 // First check if the result is already in the cache. 2274 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2275 Optional<bool> &result = AliasCache[key]; 2276 if (result.hasValue()) { 2277 return result.getValue(); 2278 } 2279 bool aliased = true; 2280 if (Loc1.Ptr && isSimple(Inst1)) 2281 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2282 // Store the result in the cache. 2283 result = aliased; 2284 return aliased; 2285 } 2286 2287 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2288 2289 /// Cache for alias results. 2290 /// TODO: consider moving this to the AliasAnalysis itself. 2291 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2292 2293 /// Removes an instruction from its block and eventually deletes it. 2294 /// It's like Instruction::eraseFromParent() except that the actual deletion 2295 /// is delayed until BoUpSLP is destructed. 2296 /// This is required to ensure that there are no incorrect collisions in the 2297 /// AliasCache, which can happen if a new instruction is allocated at the 2298 /// same address as a previously deleted instruction. 2299 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2300 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2301 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2302 } 2303 2304 /// Temporary store for deleted instructions. Instructions will be deleted 2305 /// eventually when the BoUpSLP is destructed. 2306 DenseMap<Instruction *, bool> DeletedInstructions; 2307 2308 /// A list of values that need to extracted out of the tree. 2309 /// This list holds pairs of (Internal Scalar : External User). External User 2310 /// can be nullptr, it means that this Internal Scalar will be used later, 2311 /// after vectorization. 2312 UserList ExternalUses; 2313 2314 /// Values used only by @llvm.assume calls. 2315 SmallPtrSet<const Value *, 32> EphValues; 2316 2317 /// Holds all of the instructions that we gathered. 2318 SetVector<Instruction *> GatherShuffleSeq; 2319 2320 /// A list of blocks that we are going to CSE. 2321 SetVector<BasicBlock *> CSEBlocks; 2322 2323 /// Contains all scheduling relevant data for an instruction. 2324 /// A ScheduleData either represents a single instruction or a member of an 2325 /// instruction bundle (= a group of instructions which is combined into a 2326 /// vector instruction). 2327 struct ScheduleData { 2328 // The initial value for the dependency counters. It means that the 2329 // dependencies are not calculated yet. 2330 enum { InvalidDeps = -1 }; 2331 2332 ScheduleData() = default; 2333 2334 void init(int BlockSchedulingRegionID, Value *OpVal) { 2335 FirstInBundle = this; 2336 NextInBundle = nullptr; 2337 NextLoadStore = nullptr; 2338 IsScheduled = false; 2339 SchedulingRegionID = BlockSchedulingRegionID; 2340 UnscheduledDepsInBundle = UnscheduledDeps; 2341 clearDependencies(); 2342 OpValue = OpVal; 2343 TE = nullptr; 2344 Lane = -1; 2345 } 2346 2347 /// Returns true if the dependency information has been calculated. 2348 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2349 2350 /// Returns true for single instructions and for bundle representatives 2351 /// (= the head of a bundle). 2352 bool isSchedulingEntity() const { return FirstInBundle == this; } 2353 2354 /// Returns true if it represents an instruction bundle and not only a 2355 /// single instruction. 2356 bool isPartOfBundle() const { 2357 return NextInBundle != nullptr || FirstInBundle != this; 2358 } 2359 2360 /// Returns true if it is ready for scheduling, i.e. it has no more 2361 /// unscheduled depending instructions/bundles. 2362 bool isReady() const { 2363 assert(isSchedulingEntity() && 2364 "can't consider non-scheduling entity for ready list"); 2365 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2366 } 2367 2368 /// Modifies the number of unscheduled dependencies, also updating it for 2369 /// the whole bundle. 2370 int incrementUnscheduledDeps(int Incr) { 2371 UnscheduledDeps += Incr; 2372 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2373 } 2374 2375 /// Sets the number of unscheduled dependencies to the number of 2376 /// dependencies. 2377 void resetUnscheduledDeps() { 2378 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2379 } 2380 2381 /// Clears all dependency information. 2382 void clearDependencies() { 2383 Dependencies = InvalidDeps; 2384 resetUnscheduledDeps(); 2385 MemoryDependencies.clear(); 2386 } 2387 2388 void dump(raw_ostream &os) const { 2389 if (!isSchedulingEntity()) { 2390 os << "/ " << *Inst; 2391 } else if (NextInBundle) { 2392 os << '[' << *Inst; 2393 ScheduleData *SD = NextInBundle; 2394 while (SD) { 2395 os << ';' << *SD->Inst; 2396 SD = SD->NextInBundle; 2397 } 2398 os << ']'; 2399 } else { 2400 os << *Inst; 2401 } 2402 } 2403 2404 Instruction *Inst = nullptr; 2405 2406 /// Points to the head in an instruction bundle (and always to this for 2407 /// single instructions). 2408 ScheduleData *FirstInBundle = nullptr; 2409 2410 /// Single linked list of all instructions in a bundle. Null if it is a 2411 /// single instruction. 2412 ScheduleData *NextInBundle = nullptr; 2413 2414 /// Single linked list of all memory instructions (e.g. load, store, call) 2415 /// in the block - until the end of the scheduling region. 2416 ScheduleData *NextLoadStore = nullptr; 2417 2418 /// The dependent memory instructions. 2419 /// This list is derived on demand in calculateDependencies(). 2420 SmallVector<ScheduleData *, 4> MemoryDependencies; 2421 2422 /// This ScheduleData is in the current scheduling region if this matches 2423 /// the current SchedulingRegionID of BlockScheduling. 2424 int SchedulingRegionID = 0; 2425 2426 /// Used for getting a "good" final ordering of instructions. 2427 int SchedulingPriority = 0; 2428 2429 /// The number of dependencies. Constitutes of the number of users of the 2430 /// instruction plus the number of dependent memory instructions (if any). 2431 /// This value is calculated on demand. 2432 /// If InvalidDeps, the number of dependencies is not calculated yet. 2433 int Dependencies = InvalidDeps; 2434 2435 /// The number of dependencies minus the number of dependencies of scheduled 2436 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2437 /// for scheduling. 2438 /// Note that this is negative as long as Dependencies is not calculated. 2439 int UnscheduledDeps = InvalidDeps; 2440 2441 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2442 /// single instructions. 2443 int UnscheduledDepsInBundle = InvalidDeps; 2444 2445 /// True if this instruction is scheduled (or considered as scheduled in the 2446 /// dry-run). 2447 bool IsScheduled = false; 2448 2449 /// Opcode of the current instruction in the schedule data. 2450 Value *OpValue = nullptr; 2451 2452 /// The TreeEntry that this instruction corresponds to. 2453 TreeEntry *TE = nullptr; 2454 2455 /// The lane of this node in the TreeEntry. 2456 int Lane = -1; 2457 }; 2458 2459 #ifndef NDEBUG 2460 friend inline raw_ostream &operator<<(raw_ostream &os, 2461 const BoUpSLP::ScheduleData &SD) { 2462 SD.dump(os); 2463 return os; 2464 } 2465 #endif 2466 2467 friend struct GraphTraits<BoUpSLP *>; 2468 friend struct DOTGraphTraits<BoUpSLP *>; 2469 2470 /// Contains all scheduling data for a basic block. 2471 struct BlockScheduling { 2472 BlockScheduling(BasicBlock *BB) 2473 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2474 2475 void clear() { 2476 ReadyInsts.clear(); 2477 ScheduleStart = nullptr; 2478 ScheduleEnd = nullptr; 2479 FirstLoadStoreInRegion = nullptr; 2480 LastLoadStoreInRegion = nullptr; 2481 2482 // Reduce the maximum schedule region size by the size of the 2483 // previous scheduling run. 2484 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2485 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2486 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2487 ScheduleRegionSize = 0; 2488 2489 // Make a new scheduling region, i.e. all existing ScheduleData is not 2490 // in the new region yet. 2491 ++SchedulingRegionID; 2492 } 2493 2494 ScheduleData *getScheduleData(Value *V) { 2495 ScheduleData *SD = ScheduleDataMap[V]; 2496 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2497 return SD; 2498 return nullptr; 2499 } 2500 2501 ScheduleData *getScheduleData(Value *V, Value *Key) { 2502 if (V == Key) 2503 return getScheduleData(V); 2504 auto I = ExtraScheduleDataMap.find(V); 2505 if (I != ExtraScheduleDataMap.end()) { 2506 ScheduleData *SD = I->second[Key]; 2507 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2508 return SD; 2509 } 2510 return nullptr; 2511 } 2512 2513 bool isInSchedulingRegion(ScheduleData *SD) const { 2514 return SD->SchedulingRegionID == SchedulingRegionID; 2515 } 2516 2517 /// Marks an instruction as scheduled and puts all dependent ready 2518 /// instructions into the ready-list. 2519 template <typename ReadyListType> 2520 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2521 SD->IsScheduled = true; 2522 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2523 2524 for (ScheduleData *BundleMember = SD; BundleMember; 2525 BundleMember = BundleMember->NextInBundle) { 2526 if (BundleMember->Inst != BundleMember->OpValue) 2527 continue; 2528 2529 // Handle the def-use chain dependencies. 2530 2531 // Decrement the unscheduled counter and insert to ready list if ready. 2532 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2533 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2534 if (OpDef && OpDef->hasValidDependencies() && 2535 OpDef->incrementUnscheduledDeps(-1) == 0) { 2536 // There are no more unscheduled dependencies after 2537 // decrementing, so we can put the dependent instruction 2538 // into the ready list. 2539 ScheduleData *DepBundle = OpDef->FirstInBundle; 2540 assert(!DepBundle->IsScheduled && 2541 "already scheduled bundle gets ready"); 2542 ReadyList.insert(DepBundle); 2543 LLVM_DEBUG(dbgs() 2544 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2545 } 2546 }); 2547 }; 2548 2549 // If BundleMember is a vector bundle, its operands may have been 2550 // reordered duiring buildTree(). We therefore need to get its operands 2551 // through the TreeEntry. 2552 if (TreeEntry *TE = BundleMember->TE) { 2553 int Lane = BundleMember->Lane; 2554 assert(Lane >= 0 && "Lane not set"); 2555 2556 // Since vectorization tree is being built recursively this assertion 2557 // ensures that the tree entry has all operands set before reaching 2558 // this code. Couple of exceptions known at the moment are extracts 2559 // where their second (immediate) operand is not added. Since 2560 // immediates do not affect scheduler behavior this is considered 2561 // okay. 2562 auto *In = TE->getMainOp(); 2563 assert(In && 2564 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2565 In->getNumOperands() == TE->getNumOperands()) && 2566 "Missed TreeEntry operands?"); 2567 (void)In; // fake use to avoid build failure when assertions disabled 2568 2569 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2570 OpIdx != NumOperands; ++OpIdx) 2571 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2572 DecrUnsched(I); 2573 } else { 2574 // If BundleMember is a stand-alone instruction, no operand reordering 2575 // has taken place, so we directly access its operands. 2576 for (Use &U : BundleMember->Inst->operands()) 2577 if (auto *I = dyn_cast<Instruction>(U.get())) 2578 DecrUnsched(I); 2579 } 2580 // Handle the memory dependencies. 2581 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2582 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2583 // There are no more unscheduled dependencies after decrementing, 2584 // so we can put the dependent instruction into the ready list. 2585 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2586 assert(!DepBundle->IsScheduled && 2587 "already scheduled bundle gets ready"); 2588 ReadyList.insert(DepBundle); 2589 LLVM_DEBUG(dbgs() 2590 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2591 } 2592 } 2593 } 2594 } 2595 2596 void doForAllOpcodes(Value *V, 2597 function_ref<void(ScheduleData *SD)> Action) { 2598 if (ScheduleData *SD = getScheduleData(V)) 2599 Action(SD); 2600 auto I = ExtraScheduleDataMap.find(V); 2601 if (I != ExtraScheduleDataMap.end()) 2602 for (auto &P : I->second) 2603 if (P.second->SchedulingRegionID == SchedulingRegionID) 2604 Action(P.second); 2605 } 2606 2607 /// Put all instructions into the ReadyList which are ready for scheduling. 2608 template <typename ReadyListType> 2609 void initialFillReadyList(ReadyListType &ReadyList) { 2610 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2611 doForAllOpcodes(I, [&](ScheduleData *SD) { 2612 if (SD->isSchedulingEntity() && SD->isReady()) { 2613 ReadyList.insert(SD); 2614 LLVM_DEBUG(dbgs() 2615 << "SLP: initially in ready list: " << *I << "\n"); 2616 } 2617 }); 2618 } 2619 } 2620 2621 /// Build a bundle from the ScheduleData nodes corresponding to the 2622 /// scalar instruction for each lane. 2623 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2624 2625 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2626 /// cyclic dependencies. This is only a dry-run, no instructions are 2627 /// actually moved at this stage. 2628 /// \returns the scheduling bundle. The returned Optional value is non-None 2629 /// if \p VL is allowed to be scheduled. 2630 Optional<ScheduleData *> 2631 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2632 const InstructionsState &S); 2633 2634 /// Un-bundles a group of instructions. 2635 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2636 2637 /// Allocates schedule data chunk. 2638 ScheduleData *allocateScheduleDataChunks(); 2639 2640 /// Extends the scheduling region so that V is inside the region. 2641 /// \returns true if the region size is within the limit. 2642 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2643 2644 /// Initialize the ScheduleData structures for new instructions in the 2645 /// scheduling region. 2646 void initScheduleData(Instruction *FromI, Instruction *ToI, 2647 ScheduleData *PrevLoadStore, 2648 ScheduleData *NextLoadStore); 2649 2650 /// Updates the dependency information of a bundle and of all instructions/ 2651 /// bundles which depend on the original bundle. 2652 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2653 BoUpSLP *SLP); 2654 2655 /// Sets all instruction in the scheduling region to un-scheduled. 2656 void resetSchedule(); 2657 2658 BasicBlock *BB; 2659 2660 /// Simple memory allocation for ScheduleData. 2661 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2662 2663 /// The size of a ScheduleData array in ScheduleDataChunks. 2664 int ChunkSize; 2665 2666 /// The allocator position in the current chunk, which is the last entry 2667 /// of ScheduleDataChunks. 2668 int ChunkPos; 2669 2670 /// Attaches ScheduleData to Instruction. 2671 /// Note that the mapping survives during all vectorization iterations, i.e. 2672 /// ScheduleData structures are recycled. 2673 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2674 2675 /// Attaches ScheduleData to Instruction with the leading key. 2676 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2677 ExtraScheduleDataMap; 2678 2679 struct ReadyList : SmallVector<ScheduleData *, 8> { 2680 void insert(ScheduleData *SD) { push_back(SD); } 2681 }; 2682 2683 /// The ready-list for scheduling (only used for the dry-run). 2684 ReadyList ReadyInsts; 2685 2686 /// The first instruction of the scheduling region. 2687 Instruction *ScheduleStart = nullptr; 2688 2689 /// The first instruction _after_ the scheduling region. 2690 Instruction *ScheduleEnd = nullptr; 2691 2692 /// The first memory accessing instruction in the scheduling region 2693 /// (can be null). 2694 ScheduleData *FirstLoadStoreInRegion = nullptr; 2695 2696 /// The last memory accessing instruction in the scheduling region 2697 /// (can be null). 2698 ScheduleData *LastLoadStoreInRegion = nullptr; 2699 2700 /// The current size of the scheduling region. 2701 int ScheduleRegionSize = 0; 2702 2703 /// The maximum size allowed for the scheduling region. 2704 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2705 2706 /// The ID of the scheduling region. For a new vectorization iteration this 2707 /// is incremented which "removes" all ScheduleData from the region. 2708 // Make sure that the initial SchedulingRegionID is greater than the 2709 // initial SchedulingRegionID in ScheduleData (which is 0). 2710 int SchedulingRegionID = 1; 2711 }; 2712 2713 /// Attaches the BlockScheduling structures to basic blocks. 2714 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2715 2716 /// Performs the "real" scheduling. Done before vectorization is actually 2717 /// performed in a basic block. 2718 void scheduleBlock(BlockScheduling *BS); 2719 2720 /// List of users to ignore during scheduling and that don't need extracting. 2721 ArrayRef<Value *> UserIgnoreList; 2722 2723 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2724 /// sorted SmallVectors of unsigned. 2725 struct OrdersTypeDenseMapInfo { 2726 static OrdersType getEmptyKey() { 2727 OrdersType V; 2728 V.push_back(~1U); 2729 return V; 2730 } 2731 2732 static OrdersType getTombstoneKey() { 2733 OrdersType V; 2734 V.push_back(~2U); 2735 return V; 2736 } 2737 2738 static unsigned getHashValue(const OrdersType &V) { 2739 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2740 } 2741 2742 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2743 return LHS == RHS; 2744 } 2745 }; 2746 2747 // Analysis and block reference. 2748 Function *F; 2749 ScalarEvolution *SE; 2750 TargetTransformInfo *TTI; 2751 TargetLibraryInfo *TLI; 2752 AAResults *AA; 2753 LoopInfo *LI; 2754 DominatorTree *DT; 2755 AssumptionCache *AC; 2756 DemandedBits *DB; 2757 const DataLayout *DL; 2758 OptimizationRemarkEmitter *ORE; 2759 2760 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2761 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2762 2763 /// Instruction builder to construct the vectorized tree. 2764 IRBuilder<> Builder; 2765 2766 /// A map of scalar integer values to the smallest bit width with which they 2767 /// can legally be represented. The values map to (width, signed) pairs, 2768 /// where "width" indicates the minimum bit width and "signed" is True if the 2769 /// value must be signed-extended, rather than zero-extended, back to its 2770 /// original width. 2771 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2772 }; 2773 2774 } // end namespace slpvectorizer 2775 2776 template <> struct GraphTraits<BoUpSLP *> { 2777 using TreeEntry = BoUpSLP::TreeEntry; 2778 2779 /// NodeRef has to be a pointer per the GraphWriter. 2780 using NodeRef = TreeEntry *; 2781 2782 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2783 2784 /// Add the VectorizableTree to the index iterator to be able to return 2785 /// TreeEntry pointers. 2786 struct ChildIteratorType 2787 : public iterator_adaptor_base< 2788 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2789 ContainerTy &VectorizableTree; 2790 2791 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2792 ContainerTy &VT) 2793 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2794 2795 NodeRef operator*() { return I->UserTE; } 2796 }; 2797 2798 static NodeRef getEntryNode(BoUpSLP &R) { 2799 return R.VectorizableTree[0].get(); 2800 } 2801 2802 static ChildIteratorType child_begin(NodeRef N) { 2803 return {N->UserTreeIndices.begin(), N->Container}; 2804 } 2805 2806 static ChildIteratorType child_end(NodeRef N) { 2807 return {N->UserTreeIndices.end(), N->Container}; 2808 } 2809 2810 /// For the node iterator we just need to turn the TreeEntry iterator into a 2811 /// TreeEntry* iterator so that it dereferences to NodeRef. 2812 class nodes_iterator { 2813 using ItTy = ContainerTy::iterator; 2814 ItTy It; 2815 2816 public: 2817 nodes_iterator(const ItTy &It2) : It(It2) {} 2818 NodeRef operator*() { return It->get(); } 2819 nodes_iterator operator++() { 2820 ++It; 2821 return *this; 2822 } 2823 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2824 }; 2825 2826 static nodes_iterator nodes_begin(BoUpSLP *R) { 2827 return nodes_iterator(R->VectorizableTree.begin()); 2828 } 2829 2830 static nodes_iterator nodes_end(BoUpSLP *R) { 2831 return nodes_iterator(R->VectorizableTree.end()); 2832 } 2833 2834 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2835 }; 2836 2837 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2838 using TreeEntry = BoUpSLP::TreeEntry; 2839 2840 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2841 2842 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2843 std::string Str; 2844 raw_string_ostream OS(Str); 2845 if (isSplat(Entry->Scalars)) 2846 OS << "<splat> "; 2847 for (auto V : Entry->Scalars) { 2848 OS << *V; 2849 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2850 return EU.Scalar == V; 2851 })) 2852 OS << " <extract>"; 2853 OS << "\n"; 2854 } 2855 return Str; 2856 } 2857 2858 static std::string getNodeAttributes(const TreeEntry *Entry, 2859 const BoUpSLP *) { 2860 if (Entry->State == TreeEntry::NeedToGather) 2861 return "color=red"; 2862 return ""; 2863 } 2864 }; 2865 2866 } // end namespace llvm 2867 2868 BoUpSLP::~BoUpSLP() { 2869 for (const auto &Pair : DeletedInstructions) { 2870 // Replace operands of ignored instructions with Undefs in case if they were 2871 // marked for deletion. 2872 if (Pair.getSecond()) { 2873 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2874 Pair.getFirst()->replaceAllUsesWith(Undef); 2875 } 2876 Pair.getFirst()->dropAllReferences(); 2877 } 2878 for (const auto &Pair : DeletedInstructions) { 2879 assert(Pair.getFirst()->use_empty() && 2880 "trying to erase instruction with users."); 2881 Pair.getFirst()->eraseFromParent(); 2882 } 2883 #ifdef EXPENSIVE_CHECKS 2884 // If we could guarantee that this call is not extremely slow, we could 2885 // remove the ifdef limitation (see PR47712). 2886 assert(!verifyFunction(*F, &dbgs())); 2887 #endif 2888 } 2889 2890 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2891 for (auto *V : AV) { 2892 if (auto *I = dyn_cast<Instruction>(V)) 2893 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2894 }; 2895 } 2896 2897 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2898 /// contains original mask for the scalars reused in the node. Procedure 2899 /// transform this mask in accordance with the given \p Mask. 2900 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2901 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2902 "Expected non-empty mask."); 2903 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2904 Prev.swap(Reuses); 2905 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2906 if (Mask[I] != UndefMaskElem) 2907 Reuses[Mask[I]] = Prev[I]; 2908 } 2909 2910 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2911 /// the original order of the scalars. Procedure transforms the provided order 2912 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2913 /// identity order, \p Order is cleared. 2914 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2915 assert(!Mask.empty() && "Expected non-empty mask."); 2916 SmallVector<int> MaskOrder; 2917 if (Order.empty()) { 2918 MaskOrder.resize(Mask.size()); 2919 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2920 } else { 2921 inversePermutation(Order, MaskOrder); 2922 } 2923 reorderReuses(MaskOrder, Mask); 2924 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2925 Order.clear(); 2926 return; 2927 } 2928 Order.assign(Mask.size(), Mask.size()); 2929 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2930 if (MaskOrder[I] != UndefMaskElem) 2931 Order[MaskOrder[I]] = I; 2932 fixupOrderingIndices(Order); 2933 } 2934 2935 Optional<BoUpSLP::OrdersType> 2936 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2937 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2938 unsigned NumScalars = TE.Scalars.size(); 2939 OrdersType CurrentOrder(NumScalars, NumScalars); 2940 SmallVector<int> Positions; 2941 SmallBitVector UsedPositions(NumScalars); 2942 const TreeEntry *STE = nullptr; 2943 // Try to find all gathered scalars that are gets vectorized in other 2944 // vectorize node. Here we can have only one single tree vector node to 2945 // correctly identify order of the gathered scalars. 2946 for (unsigned I = 0; I < NumScalars; ++I) { 2947 Value *V = TE.Scalars[I]; 2948 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2949 continue; 2950 if (const auto *LocalSTE = getTreeEntry(V)) { 2951 if (!STE) 2952 STE = LocalSTE; 2953 else if (STE != LocalSTE) 2954 // Take the order only from the single vector node. 2955 return None; 2956 unsigned Lane = 2957 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2958 if (Lane >= NumScalars) 2959 return None; 2960 if (CurrentOrder[Lane] != NumScalars) { 2961 if (Lane != I) 2962 continue; 2963 UsedPositions.reset(CurrentOrder[Lane]); 2964 } 2965 // The partial identity (where only some elements of the gather node are 2966 // in the identity order) is good. 2967 CurrentOrder[Lane] = I; 2968 UsedPositions.set(I); 2969 } 2970 } 2971 // Need to keep the order if we have a vector entry and at least 2 scalars or 2972 // the vectorized entry has just 2 scalars. 2973 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2974 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2975 for (unsigned I = 0; I < NumScalars; ++I) 2976 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2977 return false; 2978 return true; 2979 }; 2980 if (IsIdentityOrder(CurrentOrder)) { 2981 CurrentOrder.clear(); 2982 return CurrentOrder; 2983 } 2984 auto *It = CurrentOrder.begin(); 2985 for (unsigned I = 0; I < NumScalars;) { 2986 if (UsedPositions.test(I)) { 2987 ++I; 2988 continue; 2989 } 2990 if (*It == NumScalars) { 2991 *It = I; 2992 ++I; 2993 } 2994 ++It; 2995 } 2996 return CurrentOrder; 2997 } 2998 return None; 2999 } 3000 3001 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3002 bool TopToBottom) { 3003 // No need to reorder if need to shuffle reuses, still need to shuffle the 3004 // node. 3005 if (!TE.ReuseShuffleIndices.empty()) 3006 return None; 3007 if (TE.State == TreeEntry::Vectorize && 3008 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3009 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3010 !TE.isAltShuffle()) 3011 return TE.ReorderIndices; 3012 if (TE.State == TreeEntry::NeedToGather) { 3013 // TODO: add analysis of other gather nodes with extractelement 3014 // instructions and other values/instructions, not only undefs. 3015 if (((TE.getOpcode() == Instruction::ExtractElement && 3016 !TE.isAltShuffle()) || 3017 (all_of(TE.Scalars, 3018 [](Value *V) { 3019 return isa<UndefValue, ExtractElementInst>(V); 3020 }) && 3021 any_of(TE.Scalars, 3022 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3023 all_of(TE.Scalars, 3024 [](Value *V) { 3025 auto *EE = dyn_cast<ExtractElementInst>(V); 3026 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3027 }) && 3028 allSameType(TE.Scalars)) { 3029 // Check that gather of extractelements can be represented as 3030 // just a shuffle of a single vector. 3031 OrdersType CurrentOrder; 3032 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3033 if (Reuse || !CurrentOrder.empty()) { 3034 if (!CurrentOrder.empty()) 3035 fixupOrderingIndices(CurrentOrder); 3036 return CurrentOrder; 3037 } 3038 } 3039 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3040 return CurrentOrder; 3041 } 3042 return None; 3043 } 3044 3045 void BoUpSLP::reorderTopToBottom() { 3046 // Maps VF to the graph nodes. 3047 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3048 // ExtractElement gather nodes which can be vectorized and need to handle 3049 // their ordering. 3050 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3051 // Find all reorderable nodes with the given VF. 3052 // Currently the are vectorized stores,loads,extracts + some gathering of 3053 // extracts. 3054 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3055 const std::unique_ptr<TreeEntry> &TE) { 3056 if (Optional<OrdersType> CurrentOrder = 3057 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3058 // Do not include ordering for nodes used in the alt opcode vectorization, 3059 // better to reorder them during bottom-to-top stage. If follow the order 3060 // here, it causes reordering of the whole graph though actually it is 3061 // profitable just to reorder the subgraph that starts from the alternate 3062 // opcode vectorization node. Such nodes already end-up with the shuffle 3063 // instruction and it is just enough to change this shuffle rather than 3064 // rotate the scalars for the whole graph. 3065 unsigned Cnt = 0; 3066 const TreeEntry *UserTE = TE.get(); 3067 while (UserTE && Cnt < RecursionMaxDepth) { 3068 if (UserTE->UserTreeIndices.size() != 1) 3069 break; 3070 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3071 return EI.UserTE->State == TreeEntry::Vectorize && 3072 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3073 })) 3074 return; 3075 if (UserTE->UserTreeIndices.empty()) 3076 UserTE = nullptr; 3077 else 3078 UserTE = UserTE->UserTreeIndices.back().UserTE; 3079 ++Cnt; 3080 } 3081 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3082 if (TE->State != TreeEntry::Vectorize) 3083 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3084 } 3085 }); 3086 3087 // Reorder the graph nodes according to their vectorization factor. 3088 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3089 VF /= 2) { 3090 auto It = VFToOrderedEntries.find(VF); 3091 if (It == VFToOrderedEntries.end()) 3092 continue; 3093 // Try to find the most profitable order. We just are looking for the most 3094 // used order and reorder scalar elements in the nodes according to this 3095 // mostly used order. 3096 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3097 // All operands are reordered and used only in this node - propagate the 3098 // most used order to the user node. 3099 MapVector<OrdersType, unsigned, 3100 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3101 OrdersUses; 3102 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3103 for (const TreeEntry *OpTE : OrderedEntries) { 3104 // No need to reorder this nodes, still need to extend and to use shuffle, 3105 // just need to merge reordering shuffle and the reuse shuffle. 3106 if (!OpTE->ReuseShuffleIndices.empty()) 3107 continue; 3108 // Count number of orders uses. 3109 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3110 if (OpTE->State == TreeEntry::NeedToGather) 3111 return GathersToOrders.find(OpTE)->second; 3112 return OpTE->ReorderIndices; 3113 }(); 3114 // Stores actually store the mask, not the order, need to invert. 3115 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3116 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3117 SmallVector<int> Mask; 3118 inversePermutation(Order, Mask); 3119 unsigned E = Order.size(); 3120 OrdersType CurrentOrder(E, E); 3121 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3122 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3123 }); 3124 fixupOrderingIndices(CurrentOrder); 3125 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3126 } else { 3127 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3128 } 3129 } 3130 // Set order of the user node. 3131 if (OrdersUses.empty()) 3132 continue; 3133 // Choose the most used order. 3134 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3135 unsigned Cnt = OrdersUses.front().second; 3136 for (const auto &Pair : drop_begin(OrdersUses)) { 3137 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3138 BestOrder = Pair.first; 3139 Cnt = Pair.second; 3140 } 3141 } 3142 // Set order of the user node. 3143 if (BestOrder.empty()) 3144 continue; 3145 SmallVector<int> Mask; 3146 inversePermutation(BestOrder, Mask); 3147 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3148 unsigned E = BestOrder.size(); 3149 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3150 return I < E ? static_cast<int>(I) : UndefMaskElem; 3151 }); 3152 // Do an actual reordering, if profitable. 3153 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3154 // Just do the reordering for the nodes with the given VF. 3155 if (TE->Scalars.size() != VF) { 3156 if (TE->ReuseShuffleIndices.size() == VF) { 3157 // Need to reorder the reuses masks of the operands with smaller VF to 3158 // be able to find the match between the graph nodes and scalar 3159 // operands of the given node during vectorization/cost estimation. 3160 assert(all_of(TE->UserTreeIndices, 3161 [VF, &TE](const EdgeInfo &EI) { 3162 return EI.UserTE->Scalars.size() == VF || 3163 EI.UserTE->Scalars.size() == 3164 TE->Scalars.size(); 3165 }) && 3166 "All users must be of VF size."); 3167 // Update ordering of the operands with the smaller VF than the given 3168 // one. 3169 reorderReuses(TE->ReuseShuffleIndices, Mask); 3170 } 3171 continue; 3172 } 3173 if (TE->State == TreeEntry::Vectorize && 3174 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3175 InsertElementInst>(TE->getMainOp()) && 3176 !TE->isAltShuffle()) { 3177 // Build correct orders for extract{element,value}, loads and 3178 // stores. 3179 reorderOrder(TE->ReorderIndices, Mask); 3180 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3181 TE->reorderOperands(Mask); 3182 } else { 3183 // Reorder the node and its operands. 3184 TE->reorderOperands(Mask); 3185 assert(TE->ReorderIndices.empty() && 3186 "Expected empty reorder sequence."); 3187 reorderScalars(TE->Scalars, Mask); 3188 } 3189 if (!TE->ReuseShuffleIndices.empty()) { 3190 // Apply reversed order to keep the original ordering of the reused 3191 // elements to avoid extra reorder indices shuffling. 3192 OrdersType CurrentOrder; 3193 reorderOrder(CurrentOrder, MaskOrder); 3194 SmallVector<int> NewReuses; 3195 inversePermutation(CurrentOrder, NewReuses); 3196 addMask(NewReuses, TE->ReuseShuffleIndices); 3197 TE->ReuseShuffleIndices.swap(NewReuses); 3198 } 3199 } 3200 } 3201 } 3202 3203 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3204 SetVector<TreeEntry *> OrderedEntries; 3205 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3206 // Find all reorderable leaf nodes with the given VF. 3207 // Currently the are vectorized loads,extracts without alternate operands + 3208 // some gathering of extracts. 3209 SmallVector<TreeEntry *> NonVectorized; 3210 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3211 &NonVectorized]( 3212 const std::unique_ptr<TreeEntry> &TE) { 3213 if (TE->State != TreeEntry::Vectorize) 3214 NonVectorized.push_back(TE.get()); 3215 if (Optional<OrdersType> CurrentOrder = 3216 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3217 OrderedEntries.insert(TE.get()); 3218 if (TE->State != TreeEntry::Vectorize) 3219 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3220 } 3221 }); 3222 3223 // Checks if the operands of the users are reordarable and have only single 3224 // use. 3225 auto &&CheckOperands = 3226 [this, &NonVectorized](const auto &Data, 3227 SmallVectorImpl<TreeEntry *> &GatherOps) { 3228 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3229 if (any_of(Data.second, 3230 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3231 return OpData.first == I && 3232 OpData.second->State == TreeEntry::Vectorize; 3233 })) 3234 continue; 3235 ArrayRef<Value *> VL = Data.first->getOperand(I); 3236 const TreeEntry *TE = nullptr; 3237 const auto *It = find_if(VL, [this, &TE](Value *V) { 3238 TE = getTreeEntry(V); 3239 return TE; 3240 }); 3241 if (It != VL.end() && TE->isSame(VL)) 3242 return false; 3243 TreeEntry *Gather = nullptr; 3244 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3245 assert(TE->State != TreeEntry::Vectorize && 3246 "Only non-vectorized nodes are expected."); 3247 if (TE->isSame(VL)) { 3248 Gather = TE; 3249 return true; 3250 } 3251 return false; 3252 }) > 1) 3253 return false; 3254 if (Gather) 3255 GatherOps.push_back(Gather); 3256 } 3257 return true; 3258 }; 3259 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3260 // I.e., if the node has operands, that are reordered, try to make at least 3261 // one operand order in the natural order and reorder others + reorder the 3262 // user node itself. 3263 SmallPtrSet<const TreeEntry *, 4> Visited; 3264 while (!OrderedEntries.empty()) { 3265 // 1. Filter out only reordered nodes. 3266 // 2. If the entry has multiple uses - skip it and jump to the next node. 3267 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3268 SmallVector<TreeEntry *> Filtered; 3269 for (TreeEntry *TE : OrderedEntries) { 3270 if (!(TE->State == TreeEntry::Vectorize || 3271 (TE->State == TreeEntry::NeedToGather && 3272 GathersToOrders.count(TE))) || 3273 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3274 !all_of(drop_begin(TE->UserTreeIndices), 3275 [TE](const EdgeInfo &EI) { 3276 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3277 }) || 3278 !Visited.insert(TE).second) { 3279 Filtered.push_back(TE); 3280 continue; 3281 } 3282 // Build a map between user nodes and their operands order to speedup 3283 // search. The graph currently does not provide this dependency directly. 3284 for (EdgeInfo &EI : TE->UserTreeIndices) { 3285 TreeEntry *UserTE = EI.UserTE; 3286 auto It = Users.find(UserTE); 3287 if (It == Users.end()) 3288 It = Users.insert({UserTE, {}}).first; 3289 It->second.emplace_back(EI.EdgeIdx, TE); 3290 } 3291 } 3292 // Erase filtered entries. 3293 for_each(Filtered, 3294 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3295 for (const auto &Data : Users) { 3296 // Check that operands are used only in the User node. 3297 SmallVector<TreeEntry *> GatherOps; 3298 if (!CheckOperands(Data, GatherOps)) { 3299 for_each(Data.second, 3300 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3301 OrderedEntries.remove(Op.second); 3302 }); 3303 continue; 3304 } 3305 // All operands are reordered and used only in this node - propagate the 3306 // most used order to the user node. 3307 MapVector<OrdersType, unsigned, 3308 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3309 OrdersUses; 3310 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3311 for (const auto &Op : Data.second) { 3312 TreeEntry *OpTE = Op.second; 3313 if (!OpTE->ReuseShuffleIndices.empty() || 3314 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3315 continue; 3316 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3317 if (OpTE->State == TreeEntry::NeedToGather) 3318 return GathersToOrders.find(OpTE)->second; 3319 return OpTE->ReorderIndices; 3320 }(); 3321 // Stores actually store the mask, not the order, need to invert. 3322 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3323 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3324 SmallVector<int> Mask; 3325 inversePermutation(Order, Mask); 3326 unsigned E = Order.size(); 3327 OrdersType CurrentOrder(E, E); 3328 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3329 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3330 }); 3331 fixupOrderingIndices(CurrentOrder); 3332 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3333 } else { 3334 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3335 } 3336 if (VisitedOps.insert(OpTE).second) 3337 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3338 OpTE->UserTreeIndices.size(); 3339 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3340 --OrdersUses[{}]; 3341 } 3342 // If no orders - skip current nodes and jump to the next one, if any. 3343 if (OrdersUses.empty()) { 3344 for_each(Data.second, 3345 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3346 OrderedEntries.remove(Op.second); 3347 }); 3348 continue; 3349 } 3350 // Choose the best order. 3351 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3352 unsigned Cnt = OrdersUses.front().second; 3353 for (const auto &Pair : drop_begin(OrdersUses)) { 3354 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3355 BestOrder = Pair.first; 3356 Cnt = Pair.second; 3357 } 3358 } 3359 // Set order of the user node (reordering of operands and user nodes). 3360 if (BestOrder.empty()) { 3361 for_each(Data.second, 3362 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3363 OrderedEntries.remove(Op.second); 3364 }); 3365 continue; 3366 } 3367 // Erase operands from OrderedEntries list and adjust their orders. 3368 VisitedOps.clear(); 3369 SmallVector<int> Mask; 3370 inversePermutation(BestOrder, Mask); 3371 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3372 unsigned E = BestOrder.size(); 3373 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3374 return I < E ? static_cast<int>(I) : UndefMaskElem; 3375 }); 3376 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3377 TreeEntry *TE = Op.second; 3378 OrderedEntries.remove(TE); 3379 if (!VisitedOps.insert(TE).second) 3380 continue; 3381 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3382 // Just reorder reuses indices. 3383 reorderReuses(TE->ReuseShuffleIndices, Mask); 3384 continue; 3385 } 3386 // Gathers are processed separately. 3387 if (TE->State != TreeEntry::Vectorize) 3388 continue; 3389 assert((BestOrder.size() == TE->ReorderIndices.size() || 3390 TE->ReorderIndices.empty()) && 3391 "Non-matching sizes of user/operand entries."); 3392 reorderOrder(TE->ReorderIndices, Mask); 3393 } 3394 // For gathers just need to reorder its scalars. 3395 for (TreeEntry *Gather : GatherOps) { 3396 assert(Gather->ReorderIndices.empty() && 3397 "Unexpected reordering of gathers."); 3398 if (!Gather->ReuseShuffleIndices.empty()) { 3399 // Just reorder reuses indices. 3400 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3401 continue; 3402 } 3403 reorderScalars(Gather->Scalars, Mask); 3404 OrderedEntries.remove(Gather); 3405 } 3406 // Reorder operands of the user node and set the ordering for the user 3407 // node itself. 3408 if (Data.first->State != TreeEntry::Vectorize || 3409 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3410 Data.first->getMainOp()) || 3411 Data.first->isAltShuffle()) 3412 Data.first->reorderOperands(Mask); 3413 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3414 Data.first->isAltShuffle()) { 3415 reorderScalars(Data.first->Scalars, Mask); 3416 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3417 if (Data.first->ReuseShuffleIndices.empty() && 3418 !Data.first->ReorderIndices.empty() && 3419 !Data.first->isAltShuffle()) { 3420 // Insert user node to the list to try to sink reordering deeper in 3421 // the graph. 3422 OrderedEntries.insert(Data.first); 3423 } 3424 } else { 3425 reorderOrder(Data.first->ReorderIndices, Mask); 3426 } 3427 } 3428 } 3429 // If the reordering is unnecessary, just remove the reorder. 3430 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3431 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3432 VectorizableTree.front()->ReorderIndices.clear(); 3433 } 3434 3435 void BoUpSLP::buildExternalUses( 3436 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3437 // Collect the values that we need to extract from the tree. 3438 for (auto &TEPtr : VectorizableTree) { 3439 TreeEntry *Entry = TEPtr.get(); 3440 3441 // No need to handle users of gathered values. 3442 if (Entry->State == TreeEntry::NeedToGather) 3443 continue; 3444 3445 // For each lane: 3446 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3447 Value *Scalar = Entry->Scalars[Lane]; 3448 int FoundLane = Entry->findLaneForValue(Scalar); 3449 3450 // Check if the scalar is externally used as an extra arg. 3451 auto ExtI = ExternallyUsedValues.find(Scalar); 3452 if (ExtI != ExternallyUsedValues.end()) { 3453 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3454 << Lane << " from " << *Scalar << ".\n"); 3455 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3456 } 3457 for (User *U : Scalar->users()) { 3458 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3459 3460 Instruction *UserInst = dyn_cast<Instruction>(U); 3461 if (!UserInst) 3462 continue; 3463 3464 if (isDeleted(UserInst)) 3465 continue; 3466 3467 // Skip in-tree scalars that become vectors 3468 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3469 Value *UseScalar = UseEntry->Scalars[0]; 3470 // Some in-tree scalars will remain as scalar in vectorized 3471 // instructions. If that is the case, the one in Lane 0 will 3472 // be used. 3473 if (UseScalar != U || 3474 UseEntry->State == TreeEntry::ScatterVectorize || 3475 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3476 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3477 << ".\n"); 3478 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3479 continue; 3480 } 3481 } 3482 3483 // Ignore users in the user ignore list. 3484 if (is_contained(UserIgnoreList, UserInst)) 3485 continue; 3486 3487 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3488 << Lane << " from " << *Scalar << ".\n"); 3489 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3490 } 3491 } 3492 } 3493 } 3494 3495 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3496 ArrayRef<Value *> UserIgnoreLst) { 3497 deleteTree(); 3498 UserIgnoreList = UserIgnoreLst; 3499 if (!allSameType(Roots)) 3500 return; 3501 buildTree_rec(Roots, 0, EdgeInfo()); 3502 } 3503 3504 namespace { 3505 /// Tracks the state we can represent the loads in the given sequence. 3506 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3507 } // anonymous namespace 3508 3509 /// Checks if the given array of loads can be represented as a vectorized, 3510 /// scatter or just simple gather. 3511 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3512 const TargetTransformInfo &TTI, 3513 const DataLayout &DL, ScalarEvolution &SE, 3514 SmallVectorImpl<unsigned> &Order, 3515 SmallVectorImpl<Value *> &PointerOps) { 3516 // Check that a vectorized load would load the same memory as a scalar 3517 // load. For example, we don't want to vectorize loads that are smaller 3518 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3519 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3520 // from such a struct, we read/write packed bits disagreeing with the 3521 // unvectorized version. 3522 Type *ScalarTy = VL0->getType(); 3523 3524 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3525 return LoadsState::Gather; 3526 3527 // Make sure all loads in the bundle are simple - we can't vectorize 3528 // atomic or volatile loads. 3529 PointerOps.clear(); 3530 PointerOps.resize(VL.size()); 3531 auto *POIter = PointerOps.begin(); 3532 for (Value *V : VL) { 3533 auto *L = cast<LoadInst>(V); 3534 if (!L->isSimple()) 3535 return LoadsState::Gather; 3536 *POIter = L->getPointerOperand(); 3537 ++POIter; 3538 } 3539 3540 Order.clear(); 3541 // Check the order of pointer operands. 3542 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3543 Value *Ptr0; 3544 Value *PtrN; 3545 if (Order.empty()) { 3546 Ptr0 = PointerOps.front(); 3547 PtrN = PointerOps.back(); 3548 } else { 3549 Ptr0 = PointerOps[Order.front()]; 3550 PtrN = PointerOps[Order.back()]; 3551 } 3552 Optional<int> Diff = 3553 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3554 // Check that the sorted loads are consecutive. 3555 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3556 return LoadsState::Vectorize; 3557 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3558 for (Value *V : VL) 3559 CommonAlignment = 3560 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3561 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3562 CommonAlignment)) 3563 return LoadsState::ScatterVectorize; 3564 } 3565 3566 return LoadsState::Gather; 3567 } 3568 3569 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3570 const EdgeInfo &UserTreeIdx) { 3571 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3572 3573 SmallVector<int> ReuseShuffleIndicies; 3574 SmallVector<Value *> UniqueValues; 3575 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3576 &UserTreeIdx, 3577 this](const InstructionsState &S) { 3578 // Check that every instruction appears once in this bundle. 3579 DenseMap<Value *, unsigned> UniquePositions; 3580 for (Value *V : VL) { 3581 if (isConstant(V)) { 3582 ReuseShuffleIndicies.emplace_back( 3583 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3584 UniqueValues.emplace_back(V); 3585 continue; 3586 } 3587 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3588 ReuseShuffleIndicies.emplace_back(Res.first->second); 3589 if (Res.second) 3590 UniqueValues.emplace_back(V); 3591 } 3592 size_t NumUniqueScalarValues = UniqueValues.size(); 3593 if (NumUniqueScalarValues == VL.size()) { 3594 ReuseShuffleIndicies.clear(); 3595 } else { 3596 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3597 if (NumUniqueScalarValues <= 1 || 3598 (UniquePositions.size() == 1 && all_of(UniqueValues, 3599 [](Value *V) { 3600 return isa<UndefValue>(V) || 3601 !isConstant(V); 3602 })) || 3603 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3604 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3605 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3606 return false; 3607 } 3608 VL = UniqueValues; 3609 } 3610 return true; 3611 }; 3612 3613 InstructionsState S = getSameOpcode(VL); 3614 if (Depth == RecursionMaxDepth) { 3615 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3616 if (TryToFindDuplicates(S)) 3617 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3618 ReuseShuffleIndicies); 3619 return; 3620 } 3621 3622 // Don't handle scalable vectors 3623 if (S.getOpcode() == Instruction::ExtractElement && 3624 isa<ScalableVectorType>( 3625 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3626 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3627 if (TryToFindDuplicates(S)) 3628 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3629 ReuseShuffleIndicies); 3630 return; 3631 } 3632 3633 // Don't handle vectors. 3634 if (S.OpValue->getType()->isVectorTy() && 3635 !isa<InsertElementInst>(S.OpValue)) { 3636 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3638 return; 3639 } 3640 3641 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3642 if (SI->getValueOperand()->getType()->isVectorTy()) { 3643 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3644 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3645 return; 3646 } 3647 3648 // If all of the operands are identical or constant we have a simple solution. 3649 // If we deal with insert/extract instructions, they all must have constant 3650 // indices, otherwise we should gather them, not try to vectorize. 3651 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3652 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3653 !all_of(VL, isVectorLikeInstWithConstOps))) { 3654 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3655 if (TryToFindDuplicates(S)) 3656 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3657 ReuseShuffleIndicies); 3658 return; 3659 } 3660 3661 // We now know that this is a vector of instructions of the same type from 3662 // the same block. 3663 3664 // Don't vectorize ephemeral values. 3665 for (Value *V : VL) { 3666 if (EphValues.count(V)) { 3667 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3668 << ") is ephemeral.\n"); 3669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3670 return; 3671 } 3672 } 3673 3674 // Check if this is a duplicate of another entry. 3675 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3676 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3677 if (!E->isSame(VL)) { 3678 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3679 if (TryToFindDuplicates(S)) 3680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3681 ReuseShuffleIndicies); 3682 return; 3683 } 3684 // Record the reuse of the tree node. FIXME, currently this is only used to 3685 // properly draw the graph rather than for the actual vectorization. 3686 E->UserTreeIndices.push_back(UserTreeIdx); 3687 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3688 << ".\n"); 3689 return; 3690 } 3691 3692 // Check that none of the instructions in the bundle are already in the tree. 3693 for (Value *V : VL) { 3694 auto *I = dyn_cast<Instruction>(V); 3695 if (!I) 3696 continue; 3697 if (getTreeEntry(I)) { 3698 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3699 << ") is already in tree.\n"); 3700 if (TryToFindDuplicates(S)) 3701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3702 ReuseShuffleIndicies); 3703 return; 3704 } 3705 } 3706 3707 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3708 for (Value *V : VL) { 3709 if (is_contained(UserIgnoreList, V)) { 3710 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3711 if (TryToFindDuplicates(S)) 3712 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3713 ReuseShuffleIndicies); 3714 return; 3715 } 3716 } 3717 3718 // Check that all of the users of the scalars that we want to vectorize are 3719 // schedulable. 3720 auto *VL0 = cast<Instruction>(S.OpValue); 3721 BasicBlock *BB = VL0->getParent(); 3722 3723 if (!DT->isReachableFromEntry(BB)) { 3724 // Don't go into unreachable blocks. They may contain instructions with 3725 // dependency cycles which confuse the final scheduling. 3726 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3728 return; 3729 } 3730 3731 // Check that every instruction appears once in this bundle. 3732 if (!TryToFindDuplicates(S)) 3733 return; 3734 3735 auto &BSRef = BlocksSchedules[BB]; 3736 if (!BSRef) 3737 BSRef = std::make_unique<BlockScheduling>(BB); 3738 3739 BlockScheduling &BS = *BSRef.get(); 3740 3741 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3742 if (!Bundle) { 3743 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3744 assert((!BS.getScheduleData(VL0) || 3745 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3746 "tryScheduleBundle should cancelScheduling on failure"); 3747 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3748 ReuseShuffleIndicies); 3749 return; 3750 } 3751 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3752 3753 unsigned ShuffleOrOp = S.isAltShuffle() ? 3754 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3755 switch (ShuffleOrOp) { 3756 case Instruction::PHI: { 3757 auto *PH = cast<PHINode>(VL0); 3758 3759 // Check for terminator values (e.g. invoke). 3760 for (Value *V : VL) 3761 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3762 Instruction *Term = dyn_cast<Instruction>( 3763 cast<PHINode>(V)->getIncomingValueForBlock( 3764 PH->getIncomingBlock(I))); 3765 if (Term && Term->isTerminator()) { 3766 LLVM_DEBUG(dbgs() 3767 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3768 BS.cancelScheduling(VL, VL0); 3769 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3770 ReuseShuffleIndicies); 3771 return; 3772 } 3773 } 3774 3775 TreeEntry *TE = 3776 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3777 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3778 3779 // Keeps the reordered operands to avoid code duplication. 3780 SmallVector<ValueList, 2> OperandsVec; 3781 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3782 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3783 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3784 TE->setOperand(I, Operands); 3785 OperandsVec.push_back(Operands); 3786 continue; 3787 } 3788 ValueList Operands; 3789 // Prepare the operand vector. 3790 for (Value *V : VL) 3791 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3792 PH->getIncomingBlock(I))); 3793 TE->setOperand(I, Operands); 3794 OperandsVec.push_back(Operands); 3795 } 3796 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3797 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3798 return; 3799 } 3800 case Instruction::ExtractValue: 3801 case Instruction::ExtractElement: { 3802 OrdersType CurrentOrder; 3803 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3804 if (Reuse) { 3805 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3806 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3807 ReuseShuffleIndicies); 3808 // This is a special case, as it does not gather, but at the same time 3809 // we are not extending buildTree_rec() towards the operands. 3810 ValueList Op0; 3811 Op0.assign(VL.size(), VL0->getOperand(0)); 3812 VectorizableTree.back()->setOperand(0, Op0); 3813 return; 3814 } 3815 if (!CurrentOrder.empty()) { 3816 LLVM_DEBUG({ 3817 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3818 "with order"; 3819 for (unsigned Idx : CurrentOrder) 3820 dbgs() << " " << Idx; 3821 dbgs() << "\n"; 3822 }); 3823 fixupOrderingIndices(CurrentOrder); 3824 // Insert new order with initial value 0, if it does not exist, 3825 // otherwise return the iterator to the existing one. 3826 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3827 ReuseShuffleIndicies, CurrentOrder); 3828 // This is a special case, as it does not gather, but at the same time 3829 // we are not extending buildTree_rec() towards the operands. 3830 ValueList Op0; 3831 Op0.assign(VL.size(), VL0->getOperand(0)); 3832 VectorizableTree.back()->setOperand(0, Op0); 3833 return; 3834 } 3835 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3836 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3837 ReuseShuffleIndicies); 3838 BS.cancelScheduling(VL, VL0); 3839 return; 3840 } 3841 case Instruction::InsertElement: { 3842 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3843 3844 // Check that we have a buildvector and not a shuffle of 2 or more 3845 // different vectors. 3846 ValueSet SourceVectors; 3847 int MinIdx = std::numeric_limits<int>::max(); 3848 for (Value *V : VL) { 3849 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3850 Optional<int> Idx = *getInsertIndex(V, 0); 3851 if (!Idx || *Idx == UndefMaskElem) 3852 continue; 3853 MinIdx = std::min(MinIdx, *Idx); 3854 } 3855 3856 if (count_if(VL, [&SourceVectors](Value *V) { 3857 return !SourceVectors.contains(V); 3858 }) >= 2) { 3859 // Found 2nd source vector - cancel. 3860 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3861 "different source vectors.\n"); 3862 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3863 BS.cancelScheduling(VL, VL0); 3864 return; 3865 } 3866 3867 auto OrdCompare = [](const std::pair<int, int> &P1, 3868 const std::pair<int, int> &P2) { 3869 return P1.first > P2.first; 3870 }; 3871 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3872 decltype(OrdCompare)> 3873 Indices(OrdCompare); 3874 for (int I = 0, E = VL.size(); I < E; ++I) { 3875 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3876 if (!Idx || *Idx == UndefMaskElem) 3877 continue; 3878 Indices.emplace(*Idx, I); 3879 } 3880 OrdersType CurrentOrder(VL.size(), VL.size()); 3881 bool IsIdentity = true; 3882 for (int I = 0, E = VL.size(); I < E; ++I) { 3883 CurrentOrder[Indices.top().second] = I; 3884 IsIdentity &= Indices.top().second == I; 3885 Indices.pop(); 3886 } 3887 if (IsIdentity) 3888 CurrentOrder.clear(); 3889 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3890 None, CurrentOrder); 3891 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3892 3893 constexpr int NumOps = 2; 3894 ValueList VectorOperands[NumOps]; 3895 for (int I = 0; I < NumOps; ++I) { 3896 for (Value *V : VL) 3897 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3898 3899 TE->setOperand(I, VectorOperands[I]); 3900 } 3901 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3902 return; 3903 } 3904 case Instruction::Load: { 3905 // Check that a vectorized load would load the same memory as a scalar 3906 // load. For example, we don't want to vectorize loads that are smaller 3907 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3908 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3909 // from such a struct, we read/write packed bits disagreeing with the 3910 // unvectorized version. 3911 SmallVector<Value *> PointerOps; 3912 OrdersType CurrentOrder; 3913 TreeEntry *TE = nullptr; 3914 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3915 PointerOps)) { 3916 case LoadsState::Vectorize: 3917 if (CurrentOrder.empty()) { 3918 // Original loads are consecutive and does not require reordering. 3919 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3920 ReuseShuffleIndicies); 3921 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3922 } else { 3923 fixupOrderingIndices(CurrentOrder); 3924 // Need to reorder. 3925 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3926 ReuseShuffleIndicies, CurrentOrder); 3927 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3928 } 3929 TE->setOperandsInOrder(); 3930 break; 3931 case LoadsState::ScatterVectorize: 3932 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3933 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3934 UserTreeIdx, ReuseShuffleIndicies); 3935 TE->setOperandsInOrder(); 3936 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3937 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3938 break; 3939 case LoadsState::Gather: 3940 BS.cancelScheduling(VL, VL0); 3941 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3942 ReuseShuffleIndicies); 3943 #ifndef NDEBUG 3944 Type *ScalarTy = VL0->getType(); 3945 if (DL->getTypeSizeInBits(ScalarTy) != 3946 DL->getTypeAllocSizeInBits(ScalarTy)) 3947 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3948 else if (any_of(VL, [](Value *V) { 3949 return !cast<LoadInst>(V)->isSimple(); 3950 })) 3951 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3952 else 3953 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3954 #endif // NDEBUG 3955 break; 3956 } 3957 return; 3958 } 3959 case Instruction::ZExt: 3960 case Instruction::SExt: 3961 case Instruction::FPToUI: 3962 case Instruction::FPToSI: 3963 case Instruction::FPExt: 3964 case Instruction::PtrToInt: 3965 case Instruction::IntToPtr: 3966 case Instruction::SIToFP: 3967 case Instruction::UIToFP: 3968 case Instruction::Trunc: 3969 case Instruction::FPTrunc: 3970 case Instruction::BitCast: { 3971 Type *SrcTy = VL0->getOperand(0)->getType(); 3972 for (Value *V : VL) { 3973 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3974 if (Ty != SrcTy || !isValidElementType(Ty)) { 3975 BS.cancelScheduling(VL, VL0); 3976 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3977 ReuseShuffleIndicies); 3978 LLVM_DEBUG(dbgs() 3979 << "SLP: Gathering casts with different src types.\n"); 3980 return; 3981 } 3982 } 3983 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3984 ReuseShuffleIndicies); 3985 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3986 3987 TE->setOperandsInOrder(); 3988 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3989 ValueList Operands; 3990 // Prepare the operand vector. 3991 for (Value *V : VL) 3992 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3993 3994 buildTree_rec(Operands, Depth + 1, {TE, i}); 3995 } 3996 return; 3997 } 3998 case Instruction::ICmp: 3999 case Instruction::FCmp: { 4000 // Check that all of the compares have the same predicate. 4001 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4002 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4003 Type *ComparedTy = VL0->getOperand(0)->getType(); 4004 for (Value *V : VL) { 4005 CmpInst *Cmp = cast<CmpInst>(V); 4006 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4007 Cmp->getOperand(0)->getType() != ComparedTy) { 4008 BS.cancelScheduling(VL, VL0); 4009 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4010 ReuseShuffleIndicies); 4011 LLVM_DEBUG(dbgs() 4012 << "SLP: Gathering cmp with different predicate.\n"); 4013 return; 4014 } 4015 } 4016 4017 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4018 ReuseShuffleIndicies); 4019 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4020 4021 ValueList Left, Right; 4022 if (cast<CmpInst>(VL0)->isCommutative()) { 4023 // Commutative predicate - collect + sort operands of the instructions 4024 // so that each side is more likely to have the same opcode. 4025 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4026 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4027 } else { 4028 // Collect operands - commute if it uses the swapped predicate. 4029 for (Value *V : VL) { 4030 auto *Cmp = cast<CmpInst>(V); 4031 Value *LHS = Cmp->getOperand(0); 4032 Value *RHS = Cmp->getOperand(1); 4033 if (Cmp->getPredicate() != P0) 4034 std::swap(LHS, RHS); 4035 Left.push_back(LHS); 4036 Right.push_back(RHS); 4037 } 4038 } 4039 TE->setOperand(0, Left); 4040 TE->setOperand(1, Right); 4041 buildTree_rec(Left, Depth + 1, {TE, 0}); 4042 buildTree_rec(Right, Depth + 1, {TE, 1}); 4043 return; 4044 } 4045 case Instruction::Select: 4046 case Instruction::FNeg: 4047 case Instruction::Add: 4048 case Instruction::FAdd: 4049 case Instruction::Sub: 4050 case Instruction::FSub: 4051 case Instruction::Mul: 4052 case Instruction::FMul: 4053 case Instruction::UDiv: 4054 case Instruction::SDiv: 4055 case Instruction::FDiv: 4056 case Instruction::URem: 4057 case Instruction::SRem: 4058 case Instruction::FRem: 4059 case Instruction::Shl: 4060 case Instruction::LShr: 4061 case Instruction::AShr: 4062 case Instruction::And: 4063 case Instruction::Or: 4064 case Instruction::Xor: { 4065 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4066 ReuseShuffleIndicies); 4067 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4068 4069 // Sort operands of the instructions so that each side is more likely to 4070 // have the same opcode. 4071 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4072 ValueList Left, Right; 4073 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4074 TE->setOperand(0, Left); 4075 TE->setOperand(1, Right); 4076 buildTree_rec(Left, Depth + 1, {TE, 0}); 4077 buildTree_rec(Right, Depth + 1, {TE, 1}); 4078 return; 4079 } 4080 4081 TE->setOperandsInOrder(); 4082 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4083 ValueList Operands; 4084 // Prepare the operand vector. 4085 for (Value *V : VL) 4086 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4087 4088 buildTree_rec(Operands, Depth + 1, {TE, i}); 4089 } 4090 return; 4091 } 4092 case Instruction::GetElementPtr: { 4093 // We don't combine GEPs with complicated (nested) indexing. 4094 for (Value *V : VL) { 4095 if (cast<Instruction>(V)->getNumOperands() != 2) { 4096 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4097 BS.cancelScheduling(VL, VL0); 4098 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4099 ReuseShuffleIndicies); 4100 return; 4101 } 4102 } 4103 4104 // We can't combine several GEPs into one vector if they operate on 4105 // different types. 4106 Type *Ty0 = VL0->getOperand(0)->getType(); 4107 for (Value *V : VL) { 4108 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4109 if (Ty0 != CurTy) { 4110 LLVM_DEBUG(dbgs() 4111 << "SLP: not-vectorizable GEP (different types).\n"); 4112 BS.cancelScheduling(VL, VL0); 4113 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4114 ReuseShuffleIndicies); 4115 return; 4116 } 4117 } 4118 4119 // We don't combine GEPs with non-constant indexes. 4120 Type *Ty1 = VL0->getOperand(1)->getType(); 4121 for (Value *V : VL) { 4122 auto Op = cast<Instruction>(V)->getOperand(1); 4123 if (!isa<ConstantInt>(Op) || 4124 (Op->getType() != Ty1 && 4125 Op->getType()->getScalarSizeInBits() > 4126 DL->getIndexSizeInBits( 4127 V->getType()->getPointerAddressSpace()))) { 4128 LLVM_DEBUG(dbgs() 4129 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4130 BS.cancelScheduling(VL, VL0); 4131 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4132 ReuseShuffleIndicies); 4133 return; 4134 } 4135 } 4136 4137 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4138 ReuseShuffleIndicies); 4139 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4140 SmallVector<ValueList, 2> Operands(2); 4141 // Prepare the operand vector for pointer operands. 4142 for (Value *V : VL) 4143 Operands.front().push_back( 4144 cast<GetElementPtrInst>(V)->getPointerOperand()); 4145 TE->setOperand(0, Operands.front()); 4146 // Need to cast all indices to the same type before vectorization to 4147 // avoid crash. 4148 // Required to be able to find correct matches between different gather 4149 // nodes and reuse the vectorized values rather than trying to gather them 4150 // again. 4151 int IndexIdx = 1; 4152 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4153 Type *Ty = all_of(VL, 4154 [VL0Ty, IndexIdx](Value *V) { 4155 return VL0Ty == cast<GetElementPtrInst>(V) 4156 ->getOperand(IndexIdx) 4157 ->getType(); 4158 }) 4159 ? VL0Ty 4160 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4161 ->getPointerOperandType() 4162 ->getScalarType()); 4163 // Prepare the operand vector. 4164 for (Value *V : VL) { 4165 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4166 auto *CI = cast<ConstantInt>(Op); 4167 Operands.back().push_back(ConstantExpr::getIntegerCast( 4168 CI, Ty, CI->getValue().isSignBitSet())); 4169 } 4170 TE->setOperand(IndexIdx, Operands.back()); 4171 4172 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4173 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4174 return; 4175 } 4176 case Instruction::Store: { 4177 // Check if the stores are consecutive or if we need to swizzle them. 4178 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4179 // Avoid types that are padded when being allocated as scalars, while 4180 // being packed together in a vector (such as i1). 4181 if (DL->getTypeSizeInBits(ScalarTy) != 4182 DL->getTypeAllocSizeInBits(ScalarTy)) { 4183 BS.cancelScheduling(VL, VL0); 4184 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4185 ReuseShuffleIndicies); 4186 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4187 return; 4188 } 4189 // Make sure all stores in the bundle are simple - we can't vectorize 4190 // atomic or volatile stores. 4191 SmallVector<Value *, 4> PointerOps(VL.size()); 4192 ValueList Operands(VL.size()); 4193 auto POIter = PointerOps.begin(); 4194 auto OIter = Operands.begin(); 4195 for (Value *V : VL) { 4196 auto *SI = cast<StoreInst>(V); 4197 if (!SI->isSimple()) { 4198 BS.cancelScheduling(VL, VL0); 4199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4200 ReuseShuffleIndicies); 4201 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4202 return; 4203 } 4204 *POIter = SI->getPointerOperand(); 4205 *OIter = SI->getValueOperand(); 4206 ++POIter; 4207 ++OIter; 4208 } 4209 4210 OrdersType CurrentOrder; 4211 // Check the order of pointer operands. 4212 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4213 Value *Ptr0; 4214 Value *PtrN; 4215 if (CurrentOrder.empty()) { 4216 Ptr0 = PointerOps.front(); 4217 PtrN = PointerOps.back(); 4218 } else { 4219 Ptr0 = PointerOps[CurrentOrder.front()]; 4220 PtrN = PointerOps[CurrentOrder.back()]; 4221 } 4222 Optional<int> Dist = 4223 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4224 // Check that the sorted pointer operands are consecutive. 4225 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4226 if (CurrentOrder.empty()) { 4227 // Original stores are consecutive and does not require reordering. 4228 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4229 UserTreeIdx, ReuseShuffleIndicies); 4230 TE->setOperandsInOrder(); 4231 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4232 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4233 } else { 4234 fixupOrderingIndices(CurrentOrder); 4235 TreeEntry *TE = 4236 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4237 ReuseShuffleIndicies, CurrentOrder); 4238 TE->setOperandsInOrder(); 4239 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4240 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4241 } 4242 return; 4243 } 4244 } 4245 4246 BS.cancelScheduling(VL, VL0); 4247 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4248 ReuseShuffleIndicies); 4249 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4250 return; 4251 } 4252 case Instruction::Call: { 4253 // Check if the calls are all to the same vectorizable intrinsic or 4254 // library function. 4255 CallInst *CI = cast<CallInst>(VL0); 4256 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4257 4258 VFShape Shape = VFShape::get( 4259 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4260 false /*HasGlobalPred*/); 4261 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4262 4263 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4264 BS.cancelScheduling(VL, VL0); 4265 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4266 ReuseShuffleIndicies); 4267 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4268 return; 4269 } 4270 Function *F = CI->getCalledFunction(); 4271 unsigned NumArgs = CI->arg_size(); 4272 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4273 for (unsigned j = 0; j != NumArgs; ++j) 4274 if (hasVectorInstrinsicScalarOpd(ID, j)) 4275 ScalarArgs[j] = CI->getArgOperand(j); 4276 for (Value *V : VL) { 4277 CallInst *CI2 = dyn_cast<CallInst>(V); 4278 if (!CI2 || CI2->getCalledFunction() != F || 4279 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4280 (VecFunc && 4281 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4282 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4283 BS.cancelScheduling(VL, VL0); 4284 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4285 ReuseShuffleIndicies); 4286 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4287 << "\n"); 4288 return; 4289 } 4290 // Some intrinsics have scalar arguments and should be same in order for 4291 // them to be vectorized. 4292 for (unsigned j = 0; j != NumArgs; ++j) { 4293 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4294 Value *A1J = CI2->getArgOperand(j); 4295 if (ScalarArgs[j] != A1J) { 4296 BS.cancelScheduling(VL, VL0); 4297 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4298 ReuseShuffleIndicies); 4299 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4300 << " argument " << ScalarArgs[j] << "!=" << A1J 4301 << "\n"); 4302 return; 4303 } 4304 } 4305 } 4306 // Verify that the bundle operands are identical between the two calls. 4307 if (CI->hasOperandBundles() && 4308 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4309 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4310 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4311 BS.cancelScheduling(VL, VL0); 4312 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4313 ReuseShuffleIndicies); 4314 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4315 << *CI << "!=" << *V << '\n'); 4316 return; 4317 } 4318 } 4319 4320 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4321 ReuseShuffleIndicies); 4322 TE->setOperandsInOrder(); 4323 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4324 // For scalar operands no need to to create an entry since no need to 4325 // vectorize it. 4326 if (hasVectorInstrinsicScalarOpd(ID, i)) 4327 continue; 4328 ValueList Operands; 4329 // Prepare the operand vector. 4330 for (Value *V : VL) { 4331 auto *CI2 = cast<CallInst>(V); 4332 Operands.push_back(CI2->getArgOperand(i)); 4333 } 4334 buildTree_rec(Operands, Depth + 1, {TE, i}); 4335 } 4336 return; 4337 } 4338 case Instruction::ShuffleVector: { 4339 // If this is not an alternate sequence of opcode like add-sub 4340 // then do not vectorize this instruction. 4341 if (!S.isAltShuffle()) { 4342 BS.cancelScheduling(VL, VL0); 4343 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4344 ReuseShuffleIndicies); 4345 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4346 return; 4347 } 4348 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4349 ReuseShuffleIndicies); 4350 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4351 4352 // Reorder operands if reordering would enable vectorization. 4353 if (isa<BinaryOperator>(VL0)) { 4354 ValueList Left, Right; 4355 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4356 TE->setOperand(0, Left); 4357 TE->setOperand(1, Right); 4358 buildTree_rec(Left, Depth + 1, {TE, 0}); 4359 buildTree_rec(Right, Depth + 1, {TE, 1}); 4360 return; 4361 } 4362 4363 TE->setOperandsInOrder(); 4364 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4365 ValueList Operands; 4366 // Prepare the operand vector. 4367 for (Value *V : VL) 4368 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4369 4370 buildTree_rec(Operands, Depth + 1, {TE, i}); 4371 } 4372 return; 4373 } 4374 default: 4375 BS.cancelScheduling(VL, VL0); 4376 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4377 ReuseShuffleIndicies); 4378 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4379 return; 4380 } 4381 } 4382 4383 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4384 unsigned N = 1; 4385 Type *EltTy = T; 4386 4387 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4388 isa<VectorType>(EltTy)) { 4389 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4390 // Check that struct is homogeneous. 4391 for (const auto *Ty : ST->elements()) 4392 if (Ty != *ST->element_begin()) 4393 return 0; 4394 N *= ST->getNumElements(); 4395 EltTy = *ST->element_begin(); 4396 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4397 N *= AT->getNumElements(); 4398 EltTy = AT->getElementType(); 4399 } else { 4400 auto *VT = cast<FixedVectorType>(EltTy); 4401 N *= VT->getNumElements(); 4402 EltTy = VT->getElementType(); 4403 } 4404 } 4405 4406 if (!isValidElementType(EltTy)) 4407 return 0; 4408 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4409 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4410 return 0; 4411 return N; 4412 } 4413 4414 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4415 SmallVectorImpl<unsigned> &CurrentOrder) const { 4416 const auto *It = find_if(VL, [](Value *V) { 4417 return isa<ExtractElementInst, ExtractValueInst>(V); 4418 }); 4419 assert(It != VL.end() && "Expected at least one extract instruction."); 4420 auto *E0 = cast<Instruction>(*It); 4421 assert(all_of(VL, 4422 [](Value *V) { 4423 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4424 V); 4425 }) && 4426 "Invalid opcode"); 4427 // Check if all of the extracts come from the same vector and from the 4428 // correct offset. 4429 Value *Vec = E0->getOperand(0); 4430 4431 CurrentOrder.clear(); 4432 4433 // We have to extract from a vector/aggregate with the same number of elements. 4434 unsigned NElts; 4435 if (E0->getOpcode() == Instruction::ExtractValue) { 4436 const DataLayout &DL = E0->getModule()->getDataLayout(); 4437 NElts = canMapToVector(Vec->getType(), DL); 4438 if (!NElts) 4439 return false; 4440 // Check if load can be rewritten as load of vector. 4441 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4442 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4443 return false; 4444 } else { 4445 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4446 } 4447 4448 if (NElts != VL.size()) 4449 return false; 4450 4451 // Check that all of the indices extract from the correct offset. 4452 bool ShouldKeepOrder = true; 4453 unsigned E = VL.size(); 4454 // Assign to all items the initial value E + 1 so we can check if the extract 4455 // instruction index was used already. 4456 // Also, later we can check that all the indices are used and we have a 4457 // consecutive access in the extract instructions, by checking that no 4458 // element of CurrentOrder still has value E + 1. 4459 CurrentOrder.assign(E, E); 4460 unsigned I = 0; 4461 for (; I < E; ++I) { 4462 auto *Inst = dyn_cast<Instruction>(VL[I]); 4463 if (!Inst) 4464 continue; 4465 if (Inst->getOperand(0) != Vec) 4466 break; 4467 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4468 if (isa<UndefValue>(EE->getIndexOperand())) 4469 continue; 4470 Optional<unsigned> Idx = getExtractIndex(Inst); 4471 if (!Idx) 4472 break; 4473 const unsigned ExtIdx = *Idx; 4474 if (ExtIdx != I) { 4475 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4476 break; 4477 ShouldKeepOrder = false; 4478 CurrentOrder[ExtIdx] = I; 4479 } else { 4480 if (CurrentOrder[I] != E) 4481 break; 4482 CurrentOrder[I] = I; 4483 } 4484 } 4485 if (I < E) { 4486 CurrentOrder.clear(); 4487 return false; 4488 } 4489 if (ShouldKeepOrder) 4490 CurrentOrder.clear(); 4491 4492 return ShouldKeepOrder; 4493 } 4494 4495 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4496 ArrayRef<Value *> VectorizedVals) const { 4497 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4498 all_of(I->users(), [this](User *U) { 4499 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4500 }); 4501 } 4502 4503 static std::pair<InstructionCost, InstructionCost> 4504 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4505 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4507 4508 // Calculate the cost of the scalar and vector calls. 4509 SmallVector<Type *, 4> VecTys; 4510 for (Use &Arg : CI->args()) 4511 VecTys.push_back( 4512 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4513 FastMathFlags FMF; 4514 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4515 FMF = FPCI->getFastMathFlags(); 4516 SmallVector<const Value *> Arguments(CI->args()); 4517 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4518 dyn_cast<IntrinsicInst>(CI)); 4519 auto IntrinsicCost = 4520 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4521 4522 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4523 VecTy->getNumElements())), 4524 false /*HasGlobalPred*/); 4525 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4526 auto LibCost = IntrinsicCost; 4527 if (!CI->isNoBuiltin() && VecFunc) { 4528 // Calculate the cost of the vector library call. 4529 // If the corresponding vector call is cheaper, return its cost. 4530 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4531 TTI::TCK_RecipThroughput); 4532 } 4533 return {IntrinsicCost, LibCost}; 4534 } 4535 4536 /// Compute the cost of creating a vector of type \p VecTy containing the 4537 /// extracted values from \p VL. 4538 static InstructionCost 4539 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4540 TargetTransformInfo::ShuffleKind ShuffleKind, 4541 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4542 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4543 4544 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4545 VecTy->getNumElements() < NumOfParts) 4546 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4547 4548 bool AllConsecutive = true; 4549 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4550 unsigned Idx = -1; 4551 InstructionCost Cost = 0; 4552 4553 // Process extracts in blocks of EltsPerVector to check if the source vector 4554 // operand can be re-used directly. If not, add the cost of creating a shuffle 4555 // to extract the values into a vector register. 4556 for (auto *V : VL) { 4557 ++Idx; 4558 4559 // Need to exclude undefs from analysis. 4560 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4561 continue; 4562 4563 // Reached the start of a new vector registers. 4564 if (Idx % EltsPerVector == 0) { 4565 AllConsecutive = true; 4566 continue; 4567 } 4568 4569 // Check all extracts for a vector register on the target directly 4570 // extract values in order. 4571 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4572 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4573 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4574 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4575 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4576 } 4577 4578 if (AllConsecutive) 4579 continue; 4580 4581 // Skip all indices, except for the last index per vector block. 4582 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4583 continue; 4584 4585 // If we have a series of extracts which are not consecutive and hence 4586 // cannot re-use the source vector register directly, compute the shuffle 4587 // cost to extract the a vector with EltsPerVector elements. 4588 Cost += TTI.getShuffleCost( 4589 TargetTransformInfo::SK_PermuteSingleSrc, 4590 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4591 } 4592 return Cost; 4593 } 4594 4595 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4596 /// operations operands. 4597 static void 4598 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4599 ArrayRef<int> ReusesIndices, 4600 const function_ref<bool(Instruction *)> IsAltOp, 4601 SmallVectorImpl<int> &Mask, 4602 SmallVectorImpl<Value *> *OpScalars = nullptr, 4603 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4604 unsigned Sz = VL.size(); 4605 Mask.assign(Sz, UndefMaskElem); 4606 SmallVector<int> OrderMask; 4607 if (!ReorderIndices.empty()) 4608 inversePermutation(ReorderIndices, OrderMask); 4609 for (unsigned I = 0; I < Sz; ++I) { 4610 unsigned Idx = I; 4611 if (!ReorderIndices.empty()) 4612 Idx = OrderMask[I]; 4613 auto *OpInst = cast<Instruction>(VL[Idx]); 4614 if (IsAltOp(OpInst)) { 4615 Mask[I] = Sz + Idx; 4616 if (AltScalars) 4617 AltScalars->push_back(OpInst); 4618 } else { 4619 Mask[I] = Idx; 4620 if (OpScalars) 4621 OpScalars->push_back(OpInst); 4622 } 4623 } 4624 if (!ReusesIndices.empty()) { 4625 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4626 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4627 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4628 }); 4629 Mask.swap(NewMask); 4630 } 4631 } 4632 4633 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4634 ArrayRef<Value *> VectorizedVals) { 4635 ArrayRef<Value*> VL = E->Scalars; 4636 4637 Type *ScalarTy = VL[0]->getType(); 4638 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4639 ScalarTy = SI->getValueOperand()->getType(); 4640 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4641 ScalarTy = CI->getOperand(0)->getType(); 4642 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4643 ScalarTy = IE->getOperand(1)->getType(); 4644 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4645 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4646 4647 // If we have computed a smaller type for the expression, update VecTy so 4648 // that the costs will be accurate. 4649 if (MinBWs.count(VL[0])) 4650 VecTy = FixedVectorType::get( 4651 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4652 unsigned EntryVF = E->getVectorFactor(); 4653 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4654 4655 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4656 // FIXME: it tries to fix a problem with MSVC buildbots. 4657 TargetTransformInfo &TTIRef = *TTI; 4658 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4659 VectorizedVals, E](InstructionCost &Cost) { 4660 DenseMap<Value *, int> ExtractVectorsTys; 4661 SmallPtrSet<Value *, 4> CheckedExtracts; 4662 for (auto *V : VL) { 4663 if (isa<UndefValue>(V)) 4664 continue; 4665 // If all users of instruction are going to be vectorized and this 4666 // instruction itself is not going to be vectorized, consider this 4667 // instruction as dead and remove its cost from the final cost of the 4668 // vectorized tree. 4669 // Also, avoid adjusting the cost for extractelements with multiple uses 4670 // in different graph entries. 4671 const TreeEntry *VE = getTreeEntry(V); 4672 if (!CheckedExtracts.insert(V).second || 4673 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4674 (VE && VE != E)) 4675 continue; 4676 auto *EE = cast<ExtractElementInst>(V); 4677 Optional<unsigned> EEIdx = getExtractIndex(EE); 4678 if (!EEIdx) 4679 continue; 4680 unsigned Idx = *EEIdx; 4681 if (TTIRef.getNumberOfParts(VecTy) != 4682 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4683 auto It = 4684 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4685 It->getSecond() = std::min<int>(It->second, Idx); 4686 } 4687 // Take credit for instruction that will become dead. 4688 if (EE->hasOneUse()) { 4689 Instruction *Ext = EE->user_back(); 4690 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4691 all_of(Ext->users(), 4692 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4693 // Use getExtractWithExtendCost() to calculate the cost of 4694 // extractelement/ext pair. 4695 Cost -= 4696 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4697 EE->getVectorOperandType(), Idx); 4698 // Add back the cost of s|zext which is subtracted separately. 4699 Cost += TTIRef.getCastInstrCost( 4700 Ext->getOpcode(), Ext->getType(), EE->getType(), 4701 TTI::getCastContextHint(Ext), CostKind, Ext); 4702 continue; 4703 } 4704 } 4705 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4706 EE->getVectorOperandType(), Idx); 4707 } 4708 // Add a cost for subvector extracts/inserts if required. 4709 for (const auto &Data : ExtractVectorsTys) { 4710 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4711 unsigned NumElts = VecTy->getNumElements(); 4712 if (Data.second % NumElts == 0) 4713 continue; 4714 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4715 unsigned Idx = (Data.second / NumElts) * NumElts; 4716 unsigned EENumElts = EEVTy->getNumElements(); 4717 if (Idx + NumElts <= EENumElts) { 4718 Cost += 4719 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4720 EEVTy, None, Idx, VecTy); 4721 } else { 4722 // Need to round up the subvector type vectorization factor to avoid a 4723 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4724 // <= EENumElts. 4725 auto *SubVT = 4726 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4727 Cost += 4728 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4729 EEVTy, None, Idx, SubVT); 4730 } 4731 } else { 4732 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4733 VecTy, None, 0, EEVTy); 4734 } 4735 } 4736 }; 4737 if (E->State == TreeEntry::NeedToGather) { 4738 if (allConstant(VL)) 4739 return 0; 4740 if (isa<InsertElementInst>(VL[0])) 4741 return InstructionCost::getInvalid(); 4742 SmallVector<int> Mask; 4743 SmallVector<const TreeEntry *> Entries; 4744 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4745 isGatherShuffledEntry(E, Mask, Entries); 4746 if (Shuffle.hasValue()) { 4747 InstructionCost GatherCost = 0; 4748 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4749 // Perfect match in the graph, will reuse the previously vectorized 4750 // node. Cost is 0. 4751 LLVM_DEBUG( 4752 dbgs() 4753 << "SLP: perfect diamond match for gather bundle that starts with " 4754 << *VL.front() << ".\n"); 4755 if (NeedToShuffleReuses) 4756 GatherCost = 4757 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4758 FinalVecTy, E->ReuseShuffleIndices); 4759 } else { 4760 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4761 << " entries for bundle that starts with " 4762 << *VL.front() << ".\n"); 4763 // Detected that instead of gather we can emit a shuffle of single/two 4764 // previously vectorized nodes. Add the cost of the permutation rather 4765 // than gather. 4766 ::addMask(Mask, E->ReuseShuffleIndices); 4767 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4768 } 4769 return GatherCost; 4770 } 4771 if ((E->getOpcode() == Instruction::ExtractElement || 4772 all_of(E->Scalars, 4773 [](Value *V) { 4774 return isa<ExtractElementInst, UndefValue>(V); 4775 })) && 4776 allSameType(VL)) { 4777 // Check that gather of extractelements can be represented as just a 4778 // shuffle of a single/two vectors the scalars are extracted from. 4779 SmallVector<int> Mask; 4780 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4781 isFixedVectorShuffle(VL, Mask); 4782 if (ShuffleKind.hasValue()) { 4783 // Found the bunch of extractelement instructions that must be gathered 4784 // into a vector and can be represented as a permutation elements in a 4785 // single input vector or of 2 input vectors. 4786 InstructionCost Cost = 4787 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4788 AdjustExtractsCost(Cost); 4789 if (NeedToShuffleReuses) 4790 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4791 FinalVecTy, E->ReuseShuffleIndices); 4792 return Cost; 4793 } 4794 } 4795 if (isSplat(VL)) { 4796 // Found the broadcasting of the single scalar, calculate the cost as the 4797 // broadcast. 4798 assert(VecTy == FinalVecTy && 4799 "No reused scalars expected for broadcast."); 4800 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4801 } 4802 InstructionCost ReuseShuffleCost = 0; 4803 if (NeedToShuffleReuses) 4804 ReuseShuffleCost = TTI->getShuffleCost( 4805 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4806 // Improve gather cost for gather of loads, if we can group some of the 4807 // loads into vector loads. 4808 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4809 !E->isAltShuffle()) { 4810 BoUpSLP::ValueSet VectorizedLoads; 4811 unsigned StartIdx = 0; 4812 unsigned VF = VL.size() / 2; 4813 unsigned VectorizedCnt = 0; 4814 unsigned ScatterVectorizeCnt = 0; 4815 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4816 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4817 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4818 Cnt += VF) { 4819 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4820 if (!VectorizedLoads.count(Slice.front()) && 4821 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4822 SmallVector<Value *> PointerOps; 4823 OrdersType CurrentOrder; 4824 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4825 *SE, CurrentOrder, PointerOps); 4826 switch (LS) { 4827 case LoadsState::Vectorize: 4828 case LoadsState::ScatterVectorize: 4829 // Mark the vectorized loads so that we don't vectorize them 4830 // again. 4831 if (LS == LoadsState::Vectorize) 4832 ++VectorizedCnt; 4833 else 4834 ++ScatterVectorizeCnt; 4835 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4836 // If we vectorized initial block, no need to try to vectorize it 4837 // again. 4838 if (Cnt == StartIdx) 4839 StartIdx += VF; 4840 break; 4841 case LoadsState::Gather: 4842 break; 4843 } 4844 } 4845 } 4846 // Check if the whole array was vectorized already - exit. 4847 if (StartIdx >= VL.size()) 4848 break; 4849 // Found vectorizable parts - exit. 4850 if (!VectorizedLoads.empty()) 4851 break; 4852 } 4853 if (!VectorizedLoads.empty()) { 4854 InstructionCost GatherCost = 0; 4855 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4856 bool NeedInsertSubvectorAnalysis = 4857 !NumParts || (VL.size() / VF) > NumParts; 4858 // Get the cost for gathered loads. 4859 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4860 if (VectorizedLoads.contains(VL[I])) 4861 continue; 4862 GatherCost += getGatherCost(VL.slice(I, VF)); 4863 } 4864 // The cost for vectorized loads. 4865 InstructionCost ScalarsCost = 0; 4866 for (Value *V : VectorizedLoads) { 4867 auto *LI = cast<LoadInst>(V); 4868 ScalarsCost += TTI->getMemoryOpCost( 4869 Instruction::Load, LI->getType(), LI->getAlign(), 4870 LI->getPointerAddressSpace(), CostKind, LI); 4871 } 4872 auto *LI = cast<LoadInst>(E->getMainOp()); 4873 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4874 Align Alignment = LI->getAlign(); 4875 GatherCost += 4876 VectorizedCnt * 4877 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4878 LI->getPointerAddressSpace(), CostKind, LI); 4879 GatherCost += ScatterVectorizeCnt * 4880 TTI->getGatherScatterOpCost( 4881 Instruction::Load, LoadTy, LI->getPointerOperand(), 4882 /*VariableMask=*/false, Alignment, CostKind, LI); 4883 if (NeedInsertSubvectorAnalysis) { 4884 // Add the cost for the subvectors insert. 4885 for (int I = VF, E = VL.size(); I < E; I += VF) 4886 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4887 None, I, LoadTy); 4888 } 4889 return ReuseShuffleCost + GatherCost - ScalarsCost; 4890 } 4891 } 4892 return ReuseShuffleCost + getGatherCost(VL); 4893 } 4894 InstructionCost CommonCost = 0; 4895 SmallVector<int> Mask; 4896 if (!E->ReorderIndices.empty()) { 4897 SmallVector<int> NewMask; 4898 if (E->getOpcode() == Instruction::Store) { 4899 // For stores the order is actually a mask. 4900 NewMask.resize(E->ReorderIndices.size()); 4901 copy(E->ReorderIndices, NewMask.begin()); 4902 } else { 4903 inversePermutation(E->ReorderIndices, NewMask); 4904 } 4905 ::addMask(Mask, NewMask); 4906 } 4907 if (NeedToShuffleReuses) 4908 ::addMask(Mask, E->ReuseShuffleIndices); 4909 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4910 CommonCost = 4911 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4912 assert((E->State == TreeEntry::Vectorize || 4913 E->State == TreeEntry::ScatterVectorize) && 4914 "Unhandled state"); 4915 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4916 Instruction *VL0 = E->getMainOp(); 4917 unsigned ShuffleOrOp = 4918 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4919 switch (ShuffleOrOp) { 4920 case Instruction::PHI: 4921 return 0; 4922 4923 case Instruction::ExtractValue: 4924 case Instruction::ExtractElement: { 4925 // The common cost of removal ExtractElement/ExtractValue instructions + 4926 // the cost of shuffles, if required to resuffle the original vector. 4927 if (NeedToShuffleReuses) { 4928 unsigned Idx = 0; 4929 for (unsigned I : E->ReuseShuffleIndices) { 4930 if (ShuffleOrOp == Instruction::ExtractElement) { 4931 auto *EE = cast<ExtractElementInst>(VL[I]); 4932 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4933 EE->getVectorOperandType(), 4934 *getExtractIndex(EE)); 4935 } else { 4936 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4937 VecTy, Idx); 4938 ++Idx; 4939 } 4940 } 4941 Idx = EntryVF; 4942 for (Value *V : VL) { 4943 if (ShuffleOrOp == Instruction::ExtractElement) { 4944 auto *EE = cast<ExtractElementInst>(V); 4945 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4946 EE->getVectorOperandType(), 4947 *getExtractIndex(EE)); 4948 } else { 4949 --Idx; 4950 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4951 VecTy, Idx); 4952 } 4953 } 4954 } 4955 if (ShuffleOrOp == Instruction::ExtractValue) { 4956 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4957 auto *EI = cast<Instruction>(VL[I]); 4958 // Take credit for instruction that will become dead. 4959 if (EI->hasOneUse()) { 4960 Instruction *Ext = EI->user_back(); 4961 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4962 all_of(Ext->users(), 4963 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4964 // Use getExtractWithExtendCost() to calculate the cost of 4965 // extractelement/ext pair. 4966 CommonCost -= TTI->getExtractWithExtendCost( 4967 Ext->getOpcode(), Ext->getType(), VecTy, I); 4968 // Add back the cost of s|zext which is subtracted separately. 4969 CommonCost += TTI->getCastInstrCost( 4970 Ext->getOpcode(), Ext->getType(), EI->getType(), 4971 TTI::getCastContextHint(Ext), CostKind, Ext); 4972 continue; 4973 } 4974 } 4975 CommonCost -= 4976 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4977 } 4978 } else { 4979 AdjustExtractsCost(CommonCost); 4980 } 4981 return CommonCost; 4982 } 4983 case Instruction::InsertElement: { 4984 assert(E->ReuseShuffleIndices.empty() && 4985 "Unique insertelements only are expected."); 4986 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4987 4988 unsigned const NumElts = SrcVecTy->getNumElements(); 4989 unsigned const NumScalars = VL.size(); 4990 APInt DemandedElts = APInt::getZero(NumElts); 4991 // TODO: Add support for Instruction::InsertValue. 4992 SmallVector<int> Mask; 4993 if (!E->ReorderIndices.empty()) { 4994 inversePermutation(E->ReorderIndices, Mask); 4995 Mask.append(NumElts - NumScalars, UndefMaskElem); 4996 } else { 4997 Mask.assign(NumElts, UndefMaskElem); 4998 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4999 } 5000 unsigned Offset = *getInsertIndex(VL0, 0); 5001 bool IsIdentity = true; 5002 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5003 Mask.swap(PrevMask); 5004 for (unsigned I = 0; I < NumScalars; ++I) { 5005 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5006 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5007 continue; 5008 DemandedElts.setBit(*InsertIdx); 5009 IsIdentity &= *InsertIdx - Offset == I; 5010 Mask[*InsertIdx - Offset] = I; 5011 } 5012 assert(Offset < NumElts && "Failed to find vector index offset"); 5013 5014 InstructionCost Cost = 0; 5015 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5016 /*Insert*/ true, /*Extract*/ false); 5017 5018 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5019 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5020 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5021 Cost += TTI->getShuffleCost( 5022 TargetTransformInfo::SK_PermuteSingleSrc, 5023 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5024 } else if (!IsIdentity) { 5025 auto *FirstInsert = 5026 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5027 return !is_contained(E->Scalars, 5028 cast<Instruction>(V)->getOperand(0)); 5029 })); 5030 if (isUndefVector(FirstInsert->getOperand(0))) { 5031 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5032 } else { 5033 SmallVector<int> InsertMask(NumElts); 5034 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5035 for (unsigned I = 0; I < NumElts; I++) { 5036 if (Mask[I] != UndefMaskElem) 5037 InsertMask[Offset + I] = NumElts + I; 5038 } 5039 Cost += 5040 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5041 } 5042 } 5043 5044 return Cost; 5045 } 5046 case Instruction::ZExt: 5047 case Instruction::SExt: 5048 case Instruction::FPToUI: 5049 case Instruction::FPToSI: 5050 case Instruction::FPExt: 5051 case Instruction::PtrToInt: 5052 case Instruction::IntToPtr: 5053 case Instruction::SIToFP: 5054 case Instruction::UIToFP: 5055 case Instruction::Trunc: 5056 case Instruction::FPTrunc: 5057 case Instruction::BitCast: { 5058 Type *SrcTy = VL0->getOperand(0)->getType(); 5059 InstructionCost ScalarEltCost = 5060 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5061 TTI::getCastContextHint(VL0), CostKind, VL0); 5062 if (NeedToShuffleReuses) { 5063 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5064 } 5065 5066 // Calculate the cost of this instruction. 5067 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5068 5069 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5070 InstructionCost VecCost = 0; 5071 // Check if the values are candidates to demote. 5072 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5073 VecCost = CommonCost + TTI->getCastInstrCost( 5074 E->getOpcode(), VecTy, SrcVecTy, 5075 TTI::getCastContextHint(VL0), CostKind, VL0); 5076 } 5077 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5078 return VecCost - ScalarCost; 5079 } 5080 case Instruction::FCmp: 5081 case Instruction::ICmp: 5082 case Instruction::Select: { 5083 // Calculate the cost of this instruction. 5084 InstructionCost ScalarEltCost = 5085 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5086 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5087 if (NeedToShuffleReuses) { 5088 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5089 } 5090 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5091 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5092 5093 // Check if all entries in VL are either compares or selects with compares 5094 // as condition that have the same predicates. 5095 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5096 bool First = true; 5097 for (auto *V : VL) { 5098 CmpInst::Predicate CurrentPred; 5099 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5100 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5101 !match(V, MatchCmp)) || 5102 (!First && VecPred != CurrentPred)) { 5103 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5104 break; 5105 } 5106 First = false; 5107 VecPred = CurrentPred; 5108 } 5109 5110 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5111 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5112 // Check if it is possible and profitable to use min/max for selects in 5113 // VL. 5114 // 5115 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5116 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5117 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5118 {VecTy, VecTy}); 5119 InstructionCost IntrinsicCost = 5120 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5121 // If the selects are the only uses of the compares, they will be dead 5122 // and we can adjust the cost by removing their cost. 5123 if (IntrinsicAndUse.second) 5124 IntrinsicCost -= 5125 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5126 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5127 VecCost = std::min(VecCost, IntrinsicCost); 5128 } 5129 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5130 return CommonCost + VecCost - ScalarCost; 5131 } 5132 case Instruction::FNeg: 5133 case Instruction::Add: 5134 case Instruction::FAdd: 5135 case Instruction::Sub: 5136 case Instruction::FSub: 5137 case Instruction::Mul: 5138 case Instruction::FMul: 5139 case Instruction::UDiv: 5140 case Instruction::SDiv: 5141 case Instruction::FDiv: 5142 case Instruction::URem: 5143 case Instruction::SRem: 5144 case Instruction::FRem: 5145 case Instruction::Shl: 5146 case Instruction::LShr: 5147 case Instruction::AShr: 5148 case Instruction::And: 5149 case Instruction::Or: 5150 case Instruction::Xor: { 5151 // Certain instructions can be cheaper to vectorize if they have a 5152 // constant second vector operand. 5153 TargetTransformInfo::OperandValueKind Op1VK = 5154 TargetTransformInfo::OK_AnyValue; 5155 TargetTransformInfo::OperandValueKind Op2VK = 5156 TargetTransformInfo::OK_UniformConstantValue; 5157 TargetTransformInfo::OperandValueProperties Op1VP = 5158 TargetTransformInfo::OP_None; 5159 TargetTransformInfo::OperandValueProperties Op2VP = 5160 TargetTransformInfo::OP_PowerOf2; 5161 5162 // If all operands are exactly the same ConstantInt then set the 5163 // operand kind to OK_UniformConstantValue. 5164 // If instead not all operands are constants, then set the operand kind 5165 // to OK_AnyValue. If all operands are constants but not the same, 5166 // then set the operand kind to OK_NonUniformConstantValue. 5167 ConstantInt *CInt0 = nullptr; 5168 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5169 const Instruction *I = cast<Instruction>(VL[i]); 5170 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5171 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5172 if (!CInt) { 5173 Op2VK = TargetTransformInfo::OK_AnyValue; 5174 Op2VP = TargetTransformInfo::OP_None; 5175 break; 5176 } 5177 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5178 !CInt->getValue().isPowerOf2()) 5179 Op2VP = TargetTransformInfo::OP_None; 5180 if (i == 0) { 5181 CInt0 = CInt; 5182 continue; 5183 } 5184 if (CInt0 != CInt) 5185 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5186 } 5187 5188 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5189 InstructionCost ScalarEltCost = 5190 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5191 Op2VK, Op1VP, Op2VP, Operands, VL0); 5192 if (NeedToShuffleReuses) { 5193 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5194 } 5195 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5196 InstructionCost VecCost = 5197 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5198 Op2VK, Op1VP, Op2VP, Operands, VL0); 5199 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5200 return CommonCost + VecCost - ScalarCost; 5201 } 5202 case Instruction::GetElementPtr: { 5203 TargetTransformInfo::OperandValueKind Op1VK = 5204 TargetTransformInfo::OK_AnyValue; 5205 TargetTransformInfo::OperandValueKind Op2VK = 5206 TargetTransformInfo::OK_UniformConstantValue; 5207 5208 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5209 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5210 if (NeedToShuffleReuses) { 5211 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5212 } 5213 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5214 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5215 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5216 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5217 return CommonCost + VecCost - ScalarCost; 5218 } 5219 case Instruction::Load: { 5220 // Cost of wide load - cost of scalar loads. 5221 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5222 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5223 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5224 if (NeedToShuffleReuses) { 5225 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5226 } 5227 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5228 InstructionCost VecLdCost; 5229 if (E->State == TreeEntry::Vectorize) { 5230 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5231 CostKind, VL0); 5232 } else { 5233 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5234 Align CommonAlignment = Alignment; 5235 for (Value *V : VL) 5236 CommonAlignment = 5237 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5238 VecLdCost = TTI->getGatherScatterOpCost( 5239 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5240 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5241 } 5242 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5243 return CommonCost + VecLdCost - ScalarLdCost; 5244 } 5245 case Instruction::Store: { 5246 // We know that we can merge the stores. Calculate the cost. 5247 bool IsReorder = !E->ReorderIndices.empty(); 5248 auto *SI = 5249 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5250 Align Alignment = SI->getAlign(); 5251 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5252 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5253 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5254 InstructionCost VecStCost = TTI->getMemoryOpCost( 5255 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5256 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5257 return CommonCost + VecStCost - ScalarStCost; 5258 } 5259 case Instruction::Call: { 5260 CallInst *CI = cast<CallInst>(VL0); 5261 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5262 5263 // Calculate the cost of the scalar and vector calls. 5264 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5265 InstructionCost ScalarEltCost = 5266 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5267 if (NeedToShuffleReuses) { 5268 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5269 } 5270 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5271 5272 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5273 InstructionCost VecCallCost = 5274 std::min(VecCallCosts.first, VecCallCosts.second); 5275 5276 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5277 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5278 << " for " << *CI << "\n"); 5279 5280 return CommonCost + VecCallCost - ScalarCallCost; 5281 } 5282 case Instruction::ShuffleVector: { 5283 assert(E->isAltShuffle() && 5284 ((Instruction::isBinaryOp(E->getOpcode()) && 5285 Instruction::isBinaryOp(E->getAltOpcode())) || 5286 (Instruction::isCast(E->getOpcode()) && 5287 Instruction::isCast(E->getAltOpcode()))) && 5288 "Invalid Shuffle Vector Operand"); 5289 InstructionCost ScalarCost = 0; 5290 if (NeedToShuffleReuses) { 5291 for (unsigned Idx : E->ReuseShuffleIndices) { 5292 Instruction *I = cast<Instruction>(VL[Idx]); 5293 CommonCost -= TTI->getInstructionCost(I, CostKind); 5294 } 5295 for (Value *V : VL) { 5296 Instruction *I = cast<Instruction>(V); 5297 CommonCost += TTI->getInstructionCost(I, CostKind); 5298 } 5299 } 5300 for (Value *V : VL) { 5301 Instruction *I = cast<Instruction>(V); 5302 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5303 ScalarCost += TTI->getInstructionCost(I, CostKind); 5304 } 5305 // VecCost is equal to sum of the cost of creating 2 vectors 5306 // and the cost of creating shuffle. 5307 InstructionCost VecCost = 0; 5308 // Try to find the previous shuffle node with the same operands and same 5309 // main/alternate ops. 5310 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5311 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5312 if (TE.get() == E) 5313 break; 5314 if (TE->isAltShuffle() && 5315 ((TE->getOpcode() == E->getOpcode() && 5316 TE->getAltOpcode() == E->getAltOpcode()) || 5317 (TE->getOpcode() == E->getAltOpcode() && 5318 TE->getAltOpcode() == E->getOpcode())) && 5319 TE->hasEqualOperands(*E)) 5320 return true; 5321 } 5322 return false; 5323 }; 5324 if (TryFindNodeWithEqualOperands()) { 5325 LLVM_DEBUG({ 5326 dbgs() << "SLP: diamond match for alternate node found.\n"; 5327 E->dump(); 5328 }); 5329 // No need to add new vector costs here since we're going to reuse 5330 // same main/alternate vector ops, just do different shuffling. 5331 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5332 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5333 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5334 CostKind); 5335 } else { 5336 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5337 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5338 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5339 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5340 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5341 TTI::CastContextHint::None, CostKind); 5342 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5343 TTI::CastContextHint::None, CostKind); 5344 } 5345 5346 SmallVector<int> Mask; 5347 buildSuffleEntryMask( 5348 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5349 [E](Instruction *I) { 5350 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5351 return I->getOpcode() == E->getAltOpcode(); 5352 }, 5353 Mask); 5354 CommonCost = 5355 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5356 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5357 return CommonCost + VecCost - ScalarCost; 5358 } 5359 default: 5360 llvm_unreachable("Unknown instruction"); 5361 } 5362 } 5363 5364 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5365 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5366 << VectorizableTree.size() << " is fully vectorizable .\n"); 5367 5368 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5369 SmallVector<int> Mask; 5370 return TE->State == TreeEntry::NeedToGather && 5371 !any_of(TE->Scalars, 5372 [this](Value *V) { return EphValues.contains(V); }) && 5373 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5374 TE->Scalars.size() < Limit || 5375 ((TE->getOpcode() == Instruction::ExtractElement || 5376 all_of(TE->Scalars, 5377 [](Value *V) { 5378 return isa<ExtractElementInst, UndefValue>(V); 5379 })) && 5380 isFixedVectorShuffle(TE->Scalars, Mask)) || 5381 (TE->State == TreeEntry::NeedToGather && 5382 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5383 }; 5384 5385 // We only handle trees of heights 1 and 2. 5386 if (VectorizableTree.size() == 1 && 5387 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5388 (ForReduction && 5389 AreVectorizableGathers(VectorizableTree[0].get(), 5390 VectorizableTree[0]->Scalars.size()) && 5391 VectorizableTree[0]->getVectorFactor() > 2))) 5392 return true; 5393 5394 if (VectorizableTree.size() != 2) 5395 return false; 5396 5397 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5398 // with the second gather nodes if they have less scalar operands rather than 5399 // the initial tree element (may be profitable to shuffle the second gather) 5400 // or they are extractelements, which form shuffle. 5401 SmallVector<int> Mask; 5402 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5403 AreVectorizableGathers(VectorizableTree[1].get(), 5404 VectorizableTree[0]->Scalars.size())) 5405 return true; 5406 5407 // Gathering cost would be too much for tiny trees. 5408 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5409 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5410 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5411 return false; 5412 5413 return true; 5414 } 5415 5416 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5417 TargetTransformInfo *TTI, 5418 bool MustMatchOrInst) { 5419 // Look past the root to find a source value. Arbitrarily follow the 5420 // path through operand 0 of any 'or'. Also, peek through optional 5421 // shift-left-by-multiple-of-8-bits. 5422 Value *ZextLoad = Root; 5423 const APInt *ShAmtC; 5424 bool FoundOr = false; 5425 while (!isa<ConstantExpr>(ZextLoad) && 5426 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5427 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5428 ShAmtC->urem(8) == 0))) { 5429 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5430 ZextLoad = BinOp->getOperand(0); 5431 if (BinOp->getOpcode() == Instruction::Or) 5432 FoundOr = true; 5433 } 5434 // Check if the input is an extended load of the required or/shift expression. 5435 Value *Load; 5436 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5437 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5438 return false; 5439 5440 // Require that the total load bit width is a legal integer type. 5441 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5442 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5443 Type *SrcTy = Load->getType(); 5444 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5445 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5446 return false; 5447 5448 // Everything matched - assume that we can fold the whole sequence using 5449 // load combining. 5450 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5451 << *(cast<Instruction>(Root)) << "\n"); 5452 5453 return true; 5454 } 5455 5456 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5457 if (RdxKind != RecurKind::Or) 5458 return false; 5459 5460 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5461 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5462 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5463 /* MatchOr */ false); 5464 } 5465 5466 bool BoUpSLP::isLoadCombineCandidate() const { 5467 // Peek through a final sequence of stores and check if all operations are 5468 // likely to be load-combined. 5469 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5470 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5471 Value *X; 5472 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5473 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5474 return false; 5475 } 5476 return true; 5477 } 5478 5479 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5480 // No need to vectorize inserts of gathered values. 5481 if (VectorizableTree.size() == 2 && 5482 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5483 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5484 return true; 5485 5486 // We can vectorize the tree if its size is greater than or equal to the 5487 // minimum size specified by the MinTreeSize command line option. 5488 if (VectorizableTree.size() >= MinTreeSize) 5489 return false; 5490 5491 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5492 // can vectorize it if we can prove it fully vectorizable. 5493 if (isFullyVectorizableTinyTree(ForReduction)) 5494 return false; 5495 5496 assert(VectorizableTree.empty() 5497 ? ExternalUses.empty() 5498 : true && "We shouldn't have any external users"); 5499 5500 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5501 // vectorizable. 5502 return true; 5503 } 5504 5505 InstructionCost BoUpSLP::getSpillCost() const { 5506 // Walk from the bottom of the tree to the top, tracking which values are 5507 // live. When we see a call instruction that is not part of our tree, 5508 // query TTI to see if there is a cost to keeping values live over it 5509 // (for example, if spills and fills are required). 5510 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5511 InstructionCost Cost = 0; 5512 5513 SmallPtrSet<Instruction*, 4> LiveValues; 5514 Instruction *PrevInst = nullptr; 5515 5516 // The entries in VectorizableTree are not necessarily ordered by their 5517 // position in basic blocks. Collect them and order them by dominance so later 5518 // instructions are guaranteed to be visited first. For instructions in 5519 // different basic blocks, we only scan to the beginning of the block, so 5520 // their order does not matter, as long as all instructions in a basic block 5521 // are grouped together. Using dominance ensures a deterministic order. 5522 SmallVector<Instruction *, 16> OrderedScalars; 5523 for (const auto &TEPtr : VectorizableTree) { 5524 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5525 if (!Inst) 5526 continue; 5527 OrderedScalars.push_back(Inst); 5528 } 5529 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5530 auto *NodeA = DT->getNode(A->getParent()); 5531 auto *NodeB = DT->getNode(B->getParent()); 5532 assert(NodeA && "Should only process reachable instructions"); 5533 assert(NodeB && "Should only process reachable instructions"); 5534 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5535 "Different nodes should have different DFS numbers"); 5536 if (NodeA != NodeB) 5537 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5538 return B->comesBefore(A); 5539 }); 5540 5541 for (Instruction *Inst : OrderedScalars) { 5542 if (!PrevInst) { 5543 PrevInst = Inst; 5544 continue; 5545 } 5546 5547 // Update LiveValues. 5548 LiveValues.erase(PrevInst); 5549 for (auto &J : PrevInst->operands()) { 5550 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5551 LiveValues.insert(cast<Instruction>(&*J)); 5552 } 5553 5554 LLVM_DEBUG({ 5555 dbgs() << "SLP: #LV: " << LiveValues.size(); 5556 for (auto *X : LiveValues) 5557 dbgs() << " " << X->getName(); 5558 dbgs() << ", Looking at "; 5559 Inst->dump(); 5560 }); 5561 5562 // Now find the sequence of instructions between PrevInst and Inst. 5563 unsigned NumCalls = 0; 5564 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5565 PrevInstIt = 5566 PrevInst->getIterator().getReverse(); 5567 while (InstIt != PrevInstIt) { 5568 if (PrevInstIt == PrevInst->getParent()->rend()) { 5569 PrevInstIt = Inst->getParent()->rbegin(); 5570 continue; 5571 } 5572 5573 // Debug information does not impact spill cost. 5574 if ((isa<CallInst>(&*PrevInstIt) && 5575 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5576 &*PrevInstIt != PrevInst) 5577 NumCalls++; 5578 5579 ++PrevInstIt; 5580 } 5581 5582 if (NumCalls) { 5583 SmallVector<Type*, 4> V; 5584 for (auto *II : LiveValues) { 5585 auto *ScalarTy = II->getType(); 5586 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5587 ScalarTy = VectorTy->getElementType(); 5588 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5589 } 5590 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5591 } 5592 5593 PrevInst = Inst; 5594 } 5595 5596 return Cost; 5597 } 5598 5599 /// Check if two insertelement instructions are from the same buildvector. 5600 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5601 InsertElementInst *V) { 5602 // Instructions must be from the same basic blocks. 5603 if (VU->getParent() != V->getParent()) 5604 return false; 5605 // Checks if 2 insertelements are from the same buildvector. 5606 if (VU->getType() != V->getType()) 5607 return false; 5608 // Multiple used inserts are separate nodes. 5609 if (!VU->hasOneUse() && !V->hasOneUse()) 5610 return false; 5611 auto *IE1 = VU; 5612 auto *IE2 = V; 5613 // Go through the vector operand of insertelement instructions trying to find 5614 // either VU as the original vector for IE2 or V as the original vector for 5615 // IE1. 5616 do { 5617 if (IE2 == VU || IE1 == V) 5618 return true; 5619 if (IE1) { 5620 if (IE1 != VU && !IE1->hasOneUse()) 5621 IE1 = nullptr; 5622 else 5623 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5624 } 5625 if (IE2) { 5626 if (IE2 != V && !IE2->hasOneUse()) 5627 IE2 = nullptr; 5628 else 5629 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5630 } 5631 } while (IE1 || IE2); 5632 return false; 5633 } 5634 5635 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5636 InstructionCost Cost = 0; 5637 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5638 << VectorizableTree.size() << ".\n"); 5639 5640 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5641 5642 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5643 TreeEntry &TE = *VectorizableTree[I].get(); 5644 5645 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5646 Cost += C; 5647 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5648 << " for bundle that starts with " << *TE.Scalars[0] 5649 << ".\n" 5650 << "SLP: Current total cost = " << Cost << "\n"); 5651 } 5652 5653 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5654 InstructionCost ExtractCost = 0; 5655 SmallVector<unsigned> VF; 5656 SmallVector<SmallVector<int>> ShuffleMask; 5657 SmallVector<Value *> FirstUsers; 5658 SmallVector<APInt> DemandedElts; 5659 for (ExternalUser &EU : ExternalUses) { 5660 // We only add extract cost once for the same scalar. 5661 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5662 !ExtractCostCalculated.insert(EU.Scalar).second) 5663 continue; 5664 5665 // Uses by ephemeral values are free (because the ephemeral value will be 5666 // removed prior to code generation, and so the extraction will be 5667 // removed as well). 5668 if (EphValues.count(EU.User)) 5669 continue; 5670 5671 // No extract cost for vector "scalar" 5672 if (isa<FixedVectorType>(EU.Scalar->getType())) 5673 continue; 5674 5675 // Already counted the cost for external uses when tried to adjust the cost 5676 // for extractelements, no need to add it again. 5677 if (isa<ExtractElementInst>(EU.Scalar)) 5678 continue; 5679 5680 // If found user is an insertelement, do not calculate extract cost but try 5681 // to detect it as a final shuffled/identity match. 5682 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5683 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5684 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5685 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5686 continue; 5687 auto *It = find_if(FirstUsers, [VU](Value *V) { 5688 return areTwoInsertFromSameBuildVector(VU, 5689 cast<InsertElementInst>(V)); 5690 }); 5691 int VecId = -1; 5692 if (It == FirstUsers.end()) { 5693 VF.push_back(FTy->getNumElements()); 5694 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5695 // Find the insertvector, vectorized in tree, if any. 5696 Value *Base = VU; 5697 while (isa<InsertElementInst>(Base)) { 5698 // Build the mask for the vectorized insertelement instructions. 5699 if (const TreeEntry *E = getTreeEntry(Base)) { 5700 VU = cast<InsertElementInst>(Base); 5701 do { 5702 int Idx = E->findLaneForValue(Base); 5703 ShuffleMask.back()[Idx] = Idx; 5704 Base = cast<InsertElementInst>(Base)->getOperand(0); 5705 } while (E == getTreeEntry(Base)); 5706 break; 5707 } 5708 Base = cast<InsertElementInst>(Base)->getOperand(0); 5709 } 5710 FirstUsers.push_back(VU); 5711 DemandedElts.push_back(APInt::getZero(VF.back())); 5712 VecId = FirstUsers.size() - 1; 5713 } else { 5714 VecId = std::distance(FirstUsers.begin(), It); 5715 } 5716 int Idx = *InsertIdx; 5717 ShuffleMask[VecId][Idx] = EU.Lane; 5718 DemandedElts[VecId].setBit(Idx); 5719 continue; 5720 } 5721 } 5722 5723 // If we plan to rewrite the tree in a smaller type, we will need to sign 5724 // extend the extracted value back to the original type. Here, we account 5725 // for the extract and the added cost of the sign extend if needed. 5726 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5727 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5728 if (MinBWs.count(ScalarRoot)) { 5729 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5730 auto Extend = 5731 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5732 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5733 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5734 VecTy, EU.Lane); 5735 } else { 5736 ExtractCost += 5737 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5738 } 5739 } 5740 5741 InstructionCost SpillCost = getSpillCost(); 5742 Cost += SpillCost + ExtractCost; 5743 if (FirstUsers.size() == 1) { 5744 int Limit = ShuffleMask.front().size() * 2; 5745 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5746 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5747 InstructionCost C = TTI->getShuffleCost( 5748 TTI::SK_PermuteSingleSrc, 5749 cast<FixedVectorType>(FirstUsers.front()->getType()), 5750 ShuffleMask.front()); 5751 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5752 << " for final shuffle of insertelement external users " 5753 << *VectorizableTree.front()->Scalars.front() << ".\n" 5754 << "SLP: Current total cost = " << Cost << "\n"); 5755 Cost += C; 5756 } 5757 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5758 cast<FixedVectorType>(FirstUsers.front()->getType()), 5759 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5760 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5761 << " for insertelements gather.\n" 5762 << "SLP: Current total cost = " << Cost << "\n"); 5763 Cost -= InsertCost; 5764 } else if (FirstUsers.size() >= 2) { 5765 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5766 // Combined masks of the first 2 vectors. 5767 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5768 copy(ShuffleMask.front(), CombinedMask.begin()); 5769 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5770 auto *VecTy = FixedVectorType::get( 5771 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5772 MaxVF); 5773 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5774 if (ShuffleMask[1][I] != UndefMaskElem) { 5775 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5776 CombinedDemandedElts.setBit(I); 5777 } 5778 } 5779 InstructionCost C = 5780 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5781 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5782 << " for final shuffle of vector node and external " 5783 "insertelement users " 5784 << *VectorizableTree.front()->Scalars.front() << ".\n" 5785 << "SLP: Current total cost = " << Cost << "\n"); 5786 Cost += C; 5787 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5788 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5789 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5790 << " for insertelements gather.\n" 5791 << "SLP: Current total cost = " << Cost << "\n"); 5792 Cost -= InsertCost; 5793 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5794 // Other elements - permutation of 2 vectors (the initial one and the 5795 // next Ith incoming vector). 5796 unsigned VF = ShuffleMask[I].size(); 5797 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5798 int Mask = ShuffleMask[I][Idx]; 5799 if (Mask != UndefMaskElem) 5800 CombinedMask[Idx] = MaxVF + Mask; 5801 else if (CombinedMask[Idx] != UndefMaskElem) 5802 CombinedMask[Idx] = Idx; 5803 } 5804 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5805 if (CombinedMask[Idx] != UndefMaskElem) 5806 CombinedMask[Idx] = Idx; 5807 InstructionCost C = 5808 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5809 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5810 << " for final shuffle of vector node and external " 5811 "insertelement users " 5812 << *VectorizableTree.front()->Scalars.front() << ".\n" 5813 << "SLP: Current total cost = " << Cost << "\n"); 5814 Cost += C; 5815 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5816 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5817 /*Insert*/ true, /*Extract*/ false); 5818 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5819 << " for insertelements gather.\n" 5820 << "SLP: Current total cost = " << Cost << "\n"); 5821 Cost -= InsertCost; 5822 } 5823 } 5824 5825 #ifndef NDEBUG 5826 SmallString<256> Str; 5827 { 5828 raw_svector_ostream OS(Str); 5829 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5830 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5831 << "SLP: Total Cost = " << Cost << ".\n"; 5832 } 5833 LLVM_DEBUG(dbgs() << Str); 5834 if (ViewSLPTree) 5835 ViewGraph(this, "SLP" + F->getName(), false, Str); 5836 #endif 5837 5838 return Cost; 5839 } 5840 5841 Optional<TargetTransformInfo::ShuffleKind> 5842 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5843 SmallVectorImpl<const TreeEntry *> &Entries) { 5844 // TODO: currently checking only for Scalars in the tree entry, need to count 5845 // reused elements too for better cost estimation. 5846 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5847 Entries.clear(); 5848 // Build a lists of values to tree entries. 5849 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5850 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5851 if (EntryPtr.get() == TE) 5852 break; 5853 if (EntryPtr->State != TreeEntry::NeedToGather) 5854 continue; 5855 for (Value *V : EntryPtr->Scalars) 5856 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5857 } 5858 // Find all tree entries used by the gathered values. If no common entries 5859 // found - not a shuffle. 5860 // Here we build a set of tree nodes for each gathered value and trying to 5861 // find the intersection between these sets. If we have at least one common 5862 // tree node for each gathered value - we have just a permutation of the 5863 // single vector. If we have 2 different sets, we're in situation where we 5864 // have a permutation of 2 input vectors. 5865 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5866 DenseMap<Value *, int> UsedValuesEntry; 5867 for (Value *V : TE->Scalars) { 5868 if (isa<UndefValue>(V)) 5869 continue; 5870 // Build a list of tree entries where V is used. 5871 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5872 auto It = ValueToTEs.find(V); 5873 if (It != ValueToTEs.end()) 5874 VToTEs = It->second; 5875 if (const TreeEntry *VTE = getTreeEntry(V)) 5876 VToTEs.insert(VTE); 5877 if (VToTEs.empty()) 5878 return None; 5879 if (UsedTEs.empty()) { 5880 // The first iteration, just insert the list of nodes to vector. 5881 UsedTEs.push_back(VToTEs); 5882 } else { 5883 // Need to check if there are any previously used tree nodes which use V. 5884 // If there are no such nodes, consider that we have another one input 5885 // vector. 5886 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5887 unsigned Idx = 0; 5888 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5889 // Do we have a non-empty intersection of previously listed tree entries 5890 // and tree entries using current V? 5891 set_intersect(VToTEs, Set); 5892 if (!VToTEs.empty()) { 5893 // Yes, write the new subset and continue analysis for the next 5894 // scalar. 5895 Set.swap(VToTEs); 5896 break; 5897 } 5898 VToTEs = SavedVToTEs; 5899 ++Idx; 5900 } 5901 // No non-empty intersection found - need to add a second set of possible 5902 // source vectors. 5903 if (Idx == UsedTEs.size()) { 5904 // If the number of input vectors is greater than 2 - not a permutation, 5905 // fallback to the regular gather. 5906 if (UsedTEs.size() == 2) 5907 return None; 5908 UsedTEs.push_back(SavedVToTEs); 5909 Idx = UsedTEs.size() - 1; 5910 } 5911 UsedValuesEntry.try_emplace(V, Idx); 5912 } 5913 } 5914 5915 unsigned VF = 0; 5916 if (UsedTEs.size() == 1) { 5917 // Try to find the perfect match in another gather node at first. 5918 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5919 return EntryPtr->isSame(TE->Scalars); 5920 }); 5921 if (It != UsedTEs.front().end()) { 5922 Entries.push_back(*It); 5923 std::iota(Mask.begin(), Mask.end(), 0); 5924 return TargetTransformInfo::SK_PermuteSingleSrc; 5925 } 5926 // No perfect match, just shuffle, so choose the first tree node. 5927 Entries.push_back(*UsedTEs.front().begin()); 5928 } else { 5929 // Try to find nodes with the same vector factor. 5930 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5931 DenseMap<int, const TreeEntry *> VFToTE; 5932 for (const TreeEntry *TE : UsedTEs.front()) 5933 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5934 for (const TreeEntry *TE : UsedTEs.back()) { 5935 auto It = VFToTE.find(TE->getVectorFactor()); 5936 if (It != VFToTE.end()) { 5937 VF = It->first; 5938 Entries.push_back(It->second); 5939 Entries.push_back(TE); 5940 break; 5941 } 5942 } 5943 // No 2 source vectors with the same vector factor - give up and do regular 5944 // gather. 5945 if (Entries.empty()) 5946 return None; 5947 } 5948 5949 // Build a shuffle mask for better cost estimation and vector emission. 5950 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5951 Value *V = TE->Scalars[I]; 5952 if (isa<UndefValue>(V)) 5953 continue; 5954 unsigned Idx = UsedValuesEntry.lookup(V); 5955 const TreeEntry *VTE = Entries[Idx]; 5956 int FoundLane = VTE->findLaneForValue(V); 5957 Mask[I] = Idx * VF + FoundLane; 5958 // Extra check required by isSingleSourceMaskImpl function (called by 5959 // ShuffleVectorInst::isSingleSourceMask). 5960 if (Mask[I] >= 2 * E) 5961 return None; 5962 } 5963 switch (Entries.size()) { 5964 case 1: 5965 return TargetTransformInfo::SK_PermuteSingleSrc; 5966 case 2: 5967 return TargetTransformInfo::SK_PermuteTwoSrc; 5968 default: 5969 break; 5970 } 5971 return None; 5972 } 5973 5974 InstructionCost 5975 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5976 const DenseSet<unsigned> &ShuffledIndices, 5977 bool NeedToShuffle) const { 5978 unsigned NumElts = Ty->getNumElements(); 5979 APInt DemandedElts = APInt::getZero(NumElts); 5980 for (unsigned I = 0; I < NumElts; ++I) 5981 if (!ShuffledIndices.count(I)) 5982 DemandedElts.setBit(I); 5983 InstructionCost Cost = 5984 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5985 /*Extract*/ false); 5986 if (NeedToShuffle) 5987 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5988 return Cost; 5989 } 5990 5991 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5992 // Find the type of the operands in VL. 5993 Type *ScalarTy = VL[0]->getType(); 5994 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5995 ScalarTy = SI->getValueOperand()->getType(); 5996 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5997 bool DuplicateNonConst = false; 5998 // Find the cost of inserting/extracting values from the vector. 5999 // Check if the same elements are inserted several times and count them as 6000 // shuffle candidates. 6001 DenseSet<unsigned> ShuffledElements; 6002 DenseSet<Value *> UniqueElements; 6003 // Iterate in reverse order to consider insert elements with the high cost. 6004 for (unsigned I = VL.size(); I > 0; --I) { 6005 unsigned Idx = I - 1; 6006 // No need to shuffle duplicates for constants. 6007 if (isConstant(VL[Idx])) { 6008 ShuffledElements.insert(Idx); 6009 continue; 6010 } 6011 if (!UniqueElements.insert(VL[Idx]).second) { 6012 DuplicateNonConst = true; 6013 ShuffledElements.insert(Idx); 6014 } 6015 } 6016 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6017 } 6018 6019 // Perform operand reordering on the instructions in VL and return the reordered 6020 // operands in Left and Right. 6021 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6022 SmallVectorImpl<Value *> &Left, 6023 SmallVectorImpl<Value *> &Right, 6024 const DataLayout &DL, 6025 ScalarEvolution &SE, 6026 const BoUpSLP &R) { 6027 if (VL.empty()) 6028 return; 6029 VLOperands Ops(VL, DL, SE, R); 6030 // Reorder the operands in place. 6031 Ops.reorder(); 6032 Left = Ops.getVL(0); 6033 Right = Ops.getVL(1); 6034 } 6035 6036 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6037 // Get the basic block this bundle is in. All instructions in the bundle 6038 // should be in this block. 6039 auto *Front = E->getMainOp(); 6040 auto *BB = Front->getParent(); 6041 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6042 auto *I = cast<Instruction>(V); 6043 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6044 })); 6045 6046 // The last instruction in the bundle in program order. 6047 Instruction *LastInst = nullptr; 6048 6049 // Find the last instruction. The common case should be that BB has been 6050 // scheduled, and the last instruction is VL.back(). So we start with 6051 // VL.back() and iterate over schedule data until we reach the end of the 6052 // bundle. The end of the bundle is marked by null ScheduleData. 6053 if (BlocksSchedules.count(BB)) { 6054 auto *Bundle = 6055 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6056 if (Bundle && Bundle->isPartOfBundle()) 6057 for (; Bundle; Bundle = Bundle->NextInBundle) 6058 if (Bundle->OpValue == Bundle->Inst) 6059 LastInst = Bundle->Inst; 6060 } 6061 6062 // LastInst can still be null at this point if there's either not an entry 6063 // for BB in BlocksSchedules or there's no ScheduleData available for 6064 // VL.back(). This can be the case if buildTree_rec aborts for various 6065 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6066 // size is reached, etc.). ScheduleData is initialized in the scheduling 6067 // "dry-run". 6068 // 6069 // If this happens, we can still find the last instruction by brute force. We 6070 // iterate forwards from Front (inclusive) until we either see all 6071 // instructions in the bundle or reach the end of the block. If Front is the 6072 // last instruction in program order, LastInst will be set to Front, and we 6073 // will visit all the remaining instructions in the block. 6074 // 6075 // One of the reasons we exit early from buildTree_rec is to place an upper 6076 // bound on compile-time. Thus, taking an additional compile-time hit here is 6077 // not ideal. However, this should be exceedingly rare since it requires that 6078 // we both exit early from buildTree_rec and that the bundle be out-of-order 6079 // (causing us to iterate all the way to the end of the block). 6080 if (!LastInst) { 6081 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6082 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6083 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6084 LastInst = &I; 6085 if (Bundle.empty()) 6086 break; 6087 } 6088 } 6089 assert(LastInst && "Failed to find last instruction in bundle"); 6090 6091 // Set the insertion point after the last instruction in the bundle. Set the 6092 // debug location to Front. 6093 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6094 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6095 } 6096 6097 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6098 // List of instructions/lanes from current block and/or the blocks which are 6099 // part of the current loop. These instructions will be inserted at the end to 6100 // make it possible to optimize loops and hoist invariant instructions out of 6101 // the loops body with better chances for success. 6102 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6103 SmallSet<int, 4> PostponedIndices; 6104 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6105 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6106 SmallPtrSet<BasicBlock *, 4> Visited; 6107 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6108 InsertBB = InsertBB->getSinglePredecessor(); 6109 return InsertBB && InsertBB == InstBB; 6110 }; 6111 for (int I = 0, E = VL.size(); I < E; ++I) { 6112 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6113 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6114 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6115 PostponedIndices.insert(I).second) 6116 PostponedInsts.emplace_back(Inst, I); 6117 } 6118 6119 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6120 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6121 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6122 if (!InsElt) 6123 return Vec; 6124 GatherShuffleSeq.insert(InsElt); 6125 CSEBlocks.insert(InsElt->getParent()); 6126 // Add to our 'need-to-extract' list. 6127 if (TreeEntry *Entry = getTreeEntry(V)) { 6128 // Find which lane we need to extract. 6129 unsigned FoundLane = Entry->findLaneForValue(V); 6130 ExternalUses.emplace_back(V, InsElt, FoundLane); 6131 } 6132 return Vec; 6133 }; 6134 Value *Val0 = 6135 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6136 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6137 Value *Vec = PoisonValue::get(VecTy); 6138 SmallVector<int> NonConsts; 6139 // Insert constant values at first. 6140 for (int I = 0, E = VL.size(); I < E; ++I) { 6141 if (PostponedIndices.contains(I)) 6142 continue; 6143 if (!isConstant(VL[I])) { 6144 NonConsts.push_back(I); 6145 continue; 6146 } 6147 Vec = CreateInsertElement(Vec, VL[I], I); 6148 } 6149 // Insert non-constant values. 6150 for (int I : NonConsts) 6151 Vec = CreateInsertElement(Vec, VL[I], I); 6152 // Append instructions, which are/may be part of the loop, in the end to make 6153 // it possible to hoist non-loop-based instructions. 6154 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6155 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6156 6157 return Vec; 6158 } 6159 6160 namespace { 6161 /// Merges shuffle masks and emits final shuffle instruction, if required. 6162 class ShuffleInstructionBuilder { 6163 IRBuilderBase &Builder; 6164 const unsigned VF = 0; 6165 bool IsFinalized = false; 6166 SmallVector<int, 4> Mask; 6167 /// Holds all of the instructions that we gathered. 6168 SetVector<Instruction *> &GatherShuffleSeq; 6169 /// A list of blocks that we are going to CSE. 6170 SetVector<BasicBlock *> &CSEBlocks; 6171 6172 public: 6173 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6174 SetVector<Instruction *> &GatherShuffleSeq, 6175 SetVector<BasicBlock *> &CSEBlocks) 6176 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6177 CSEBlocks(CSEBlocks) {} 6178 6179 /// Adds a mask, inverting it before applying. 6180 void addInversedMask(ArrayRef<unsigned> SubMask) { 6181 if (SubMask.empty()) 6182 return; 6183 SmallVector<int, 4> NewMask; 6184 inversePermutation(SubMask, NewMask); 6185 addMask(NewMask); 6186 } 6187 6188 /// Functions adds masks, merging them into single one. 6189 void addMask(ArrayRef<unsigned> SubMask) { 6190 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6191 addMask(NewMask); 6192 } 6193 6194 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6195 6196 Value *finalize(Value *V) { 6197 IsFinalized = true; 6198 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6199 if (VF == ValueVF && Mask.empty()) 6200 return V; 6201 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6202 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6203 addMask(NormalizedMask); 6204 6205 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6206 return V; 6207 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6208 if (auto *I = dyn_cast<Instruction>(Vec)) { 6209 GatherShuffleSeq.insert(I); 6210 CSEBlocks.insert(I->getParent()); 6211 } 6212 return Vec; 6213 } 6214 6215 ~ShuffleInstructionBuilder() { 6216 assert((IsFinalized || Mask.empty()) && 6217 "Shuffle construction must be finalized."); 6218 } 6219 }; 6220 } // namespace 6221 6222 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6223 unsigned VF = VL.size(); 6224 InstructionsState S = getSameOpcode(VL); 6225 if (S.getOpcode()) { 6226 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6227 if (E->isSame(VL)) { 6228 Value *V = vectorizeTree(E); 6229 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6230 if (!E->ReuseShuffleIndices.empty()) { 6231 // Reshuffle to get only unique values. 6232 // If some of the scalars are duplicated in the vectorization tree 6233 // entry, we do not vectorize them but instead generate a mask for 6234 // the reuses. But if there are several users of the same entry, 6235 // they may have different vectorization factors. This is especially 6236 // important for PHI nodes. In this case, we need to adapt the 6237 // resulting instruction for the user vectorization factor and have 6238 // to reshuffle it again to take only unique elements of the vector. 6239 // Without this code the function incorrectly returns reduced vector 6240 // instruction with the same elements, not with the unique ones. 6241 6242 // block: 6243 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6244 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6245 // ... (use %2) 6246 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6247 // br %block 6248 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6249 SmallSet<int, 4> UsedIdxs; 6250 int Pos = 0; 6251 int Sz = VL.size(); 6252 for (int Idx : E->ReuseShuffleIndices) { 6253 if (Idx != Sz && Idx != UndefMaskElem && 6254 UsedIdxs.insert(Idx).second) 6255 UniqueIdxs[Idx] = Pos; 6256 ++Pos; 6257 } 6258 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6259 "less than original vector size."); 6260 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6261 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6262 } else { 6263 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6264 "Expected vectorization factor less " 6265 "than original vector size."); 6266 SmallVector<int> UniformMask(VF, 0); 6267 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6268 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6269 } 6270 if (auto *I = dyn_cast<Instruction>(V)) { 6271 GatherShuffleSeq.insert(I); 6272 CSEBlocks.insert(I->getParent()); 6273 } 6274 } 6275 return V; 6276 } 6277 } 6278 6279 // Check that every instruction appears once in this bundle. 6280 SmallVector<int> ReuseShuffleIndicies; 6281 SmallVector<Value *> UniqueValues; 6282 if (VL.size() > 2) { 6283 DenseMap<Value *, unsigned> UniquePositions; 6284 unsigned NumValues = 6285 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6286 return !isa<UndefValue>(V); 6287 }).base()); 6288 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6289 int UniqueVals = 0; 6290 for (Value *V : VL.drop_back(VL.size() - VF)) { 6291 if (isa<UndefValue>(V)) { 6292 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6293 continue; 6294 } 6295 if (isConstant(V)) { 6296 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6297 UniqueValues.emplace_back(V); 6298 continue; 6299 } 6300 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6301 ReuseShuffleIndicies.emplace_back(Res.first->second); 6302 if (Res.second) { 6303 UniqueValues.emplace_back(V); 6304 ++UniqueVals; 6305 } 6306 } 6307 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6308 // Emit pure splat vector. 6309 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6310 UndefMaskElem); 6311 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6312 ReuseShuffleIndicies.clear(); 6313 UniqueValues.clear(); 6314 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6315 } 6316 UniqueValues.append(VF - UniqueValues.size(), 6317 PoisonValue::get(VL[0]->getType())); 6318 VL = UniqueValues; 6319 } 6320 6321 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6322 CSEBlocks); 6323 Value *Vec = gather(VL); 6324 if (!ReuseShuffleIndicies.empty()) { 6325 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6326 Vec = ShuffleBuilder.finalize(Vec); 6327 } 6328 return Vec; 6329 } 6330 6331 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6332 IRBuilder<>::InsertPointGuard Guard(Builder); 6333 6334 if (E->VectorizedValue) { 6335 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6336 return E->VectorizedValue; 6337 } 6338 6339 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6340 unsigned VF = E->getVectorFactor(); 6341 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6342 CSEBlocks); 6343 if (E->State == TreeEntry::NeedToGather) { 6344 if (E->getMainOp()) 6345 setInsertPointAfterBundle(E); 6346 Value *Vec; 6347 SmallVector<int> Mask; 6348 SmallVector<const TreeEntry *> Entries; 6349 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6350 isGatherShuffledEntry(E, Mask, Entries); 6351 if (Shuffle.hasValue()) { 6352 assert((Entries.size() == 1 || Entries.size() == 2) && 6353 "Expected shuffle of 1 or 2 entries."); 6354 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6355 Entries.back()->VectorizedValue, Mask); 6356 if (auto *I = dyn_cast<Instruction>(Vec)) { 6357 GatherShuffleSeq.insert(I); 6358 CSEBlocks.insert(I->getParent()); 6359 } 6360 } else { 6361 Vec = gather(E->Scalars); 6362 } 6363 if (NeedToShuffleReuses) { 6364 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6365 Vec = ShuffleBuilder.finalize(Vec); 6366 } 6367 E->VectorizedValue = Vec; 6368 return Vec; 6369 } 6370 6371 assert((E->State == TreeEntry::Vectorize || 6372 E->State == TreeEntry::ScatterVectorize) && 6373 "Unhandled state"); 6374 unsigned ShuffleOrOp = 6375 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6376 Instruction *VL0 = E->getMainOp(); 6377 Type *ScalarTy = VL0->getType(); 6378 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6379 ScalarTy = Store->getValueOperand()->getType(); 6380 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6381 ScalarTy = IE->getOperand(1)->getType(); 6382 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6383 switch (ShuffleOrOp) { 6384 case Instruction::PHI: { 6385 assert( 6386 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6387 "PHI reordering is free."); 6388 auto *PH = cast<PHINode>(VL0); 6389 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6390 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6391 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6392 Value *V = NewPhi; 6393 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6394 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6395 V = ShuffleBuilder.finalize(V); 6396 6397 E->VectorizedValue = V; 6398 6399 // PHINodes may have multiple entries from the same block. We want to 6400 // visit every block once. 6401 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6402 6403 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6404 ValueList Operands; 6405 BasicBlock *IBB = PH->getIncomingBlock(i); 6406 6407 if (!VisitedBBs.insert(IBB).second) { 6408 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6409 continue; 6410 } 6411 6412 Builder.SetInsertPoint(IBB->getTerminator()); 6413 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6414 Value *Vec = vectorizeTree(E->getOperand(i)); 6415 NewPhi->addIncoming(Vec, IBB); 6416 } 6417 6418 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6419 "Invalid number of incoming values"); 6420 return V; 6421 } 6422 6423 case Instruction::ExtractElement: { 6424 Value *V = E->getSingleOperand(0); 6425 Builder.SetInsertPoint(VL0); 6426 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6427 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6428 V = ShuffleBuilder.finalize(V); 6429 E->VectorizedValue = V; 6430 return V; 6431 } 6432 case Instruction::ExtractValue: { 6433 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6434 Builder.SetInsertPoint(LI); 6435 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6436 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6437 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6438 Value *NewV = propagateMetadata(V, E->Scalars); 6439 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6440 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6441 NewV = ShuffleBuilder.finalize(NewV); 6442 E->VectorizedValue = NewV; 6443 return NewV; 6444 } 6445 case Instruction::InsertElement: { 6446 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6447 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6448 Value *V = vectorizeTree(E->getOperand(1)); 6449 6450 // Create InsertVector shuffle if necessary 6451 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6452 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6453 })); 6454 const unsigned NumElts = 6455 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6456 const unsigned NumScalars = E->Scalars.size(); 6457 6458 unsigned Offset = *getInsertIndex(VL0, 0); 6459 assert(Offset < NumElts && "Failed to find vector index offset"); 6460 6461 // Create shuffle to resize vector 6462 SmallVector<int> Mask; 6463 if (!E->ReorderIndices.empty()) { 6464 inversePermutation(E->ReorderIndices, Mask); 6465 Mask.append(NumElts - NumScalars, UndefMaskElem); 6466 } else { 6467 Mask.assign(NumElts, UndefMaskElem); 6468 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6469 } 6470 // Create InsertVector shuffle if necessary 6471 bool IsIdentity = true; 6472 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6473 Mask.swap(PrevMask); 6474 for (unsigned I = 0; I < NumScalars; ++I) { 6475 Value *Scalar = E->Scalars[PrevMask[I]]; 6476 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6477 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6478 continue; 6479 IsIdentity &= *InsertIdx - Offset == I; 6480 Mask[*InsertIdx - Offset] = I; 6481 } 6482 if (!IsIdentity || NumElts != NumScalars) { 6483 V = Builder.CreateShuffleVector(V, Mask); 6484 if (auto *I = dyn_cast<Instruction>(V)) { 6485 GatherShuffleSeq.insert(I); 6486 CSEBlocks.insert(I->getParent()); 6487 } 6488 } 6489 6490 if ((!IsIdentity || Offset != 0 || 6491 !isUndefVector(FirstInsert->getOperand(0))) && 6492 NumElts != NumScalars) { 6493 SmallVector<int> InsertMask(NumElts); 6494 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6495 for (unsigned I = 0; I < NumElts; I++) { 6496 if (Mask[I] != UndefMaskElem) 6497 InsertMask[Offset + I] = NumElts + I; 6498 } 6499 6500 V = Builder.CreateShuffleVector( 6501 FirstInsert->getOperand(0), V, InsertMask, 6502 cast<Instruction>(E->Scalars.back())->getName()); 6503 if (auto *I = dyn_cast<Instruction>(V)) { 6504 GatherShuffleSeq.insert(I); 6505 CSEBlocks.insert(I->getParent()); 6506 } 6507 } 6508 6509 ++NumVectorInstructions; 6510 E->VectorizedValue = V; 6511 return V; 6512 } 6513 case Instruction::ZExt: 6514 case Instruction::SExt: 6515 case Instruction::FPToUI: 6516 case Instruction::FPToSI: 6517 case Instruction::FPExt: 6518 case Instruction::PtrToInt: 6519 case Instruction::IntToPtr: 6520 case Instruction::SIToFP: 6521 case Instruction::UIToFP: 6522 case Instruction::Trunc: 6523 case Instruction::FPTrunc: 6524 case Instruction::BitCast: { 6525 setInsertPointAfterBundle(E); 6526 6527 Value *InVec = vectorizeTree(E->getOperand(0)); 6528 6529 if (E->VectorizedValue) { 6530 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6531 return E->VectorizedValue; 6532 } 6533 6534 auto *CI = cast<CastInst>(VL0); 6535 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6536 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6537 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6538 V = ShuffleBuilder.finalize(V); 6539 6540 E->VectorizedValue = V; 6541 ++NumVectorInstructions; 6542 return V; 6543 } 6544 case Instruction::FCmp: 6545 case Instruction::ICmp: { 6546 setInsertPointAfterBundle(E); 6547 6548 Value *L = vectorizeTree(E->getOperand(0)); 6549 Value *R = vectorizeTree(E->getOperand(1)); 6550 6551 if (E->VectorizedValue) { 6552 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6553 return E->VectorizedValue; 6554 } 6555 6556 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6557 Value *V = Builder.CreateCmp(P0, L, R); 6558 propagateIRFlags(V, E->Scalars, VL0); 6559 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6560 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6561 V = ShuffleBuilder.finalize(V); 6562 6563 E->VectorizedValue = V; 6564 ++NumVectorInstructions; 6565 return V; 6566 } 6567 case Instruction::Select: { 6568 setInsertPointAfterBundle(E); 6569 6570 Value *Cond = vectorizeTree(E->getOperand(0)); 6571 Value *True = vectorizeTree(E->getOperand(1)); 6572 Value *False = vectorizeTree(E->getOperand(2)); 6573 6574 if (E->VectorizedValue) { 6575 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6576 return E->VectorizedValue; 6577 } 6578 6579 Value *V = Builder.CreateSelect(Cond, True, False); 6580 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6581 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6582 V = ShuffleBuilder.finalize(V); 6583 6584 E->VectorizedValue = V; 6585 ++NumVectorInstructions; 6586 return V; 6587 } 6588 case Instruction::FNeg: { 6589 setInsertPointAfterBundle(E); 6590 6591 Value *Op = vectorizeTree(E->getOperand(0)); 6592 6593 if (E->VectorizedValue) { 6594 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6595 return E->VectorizedValue; 6596 } 6597 6598 Value *V = Builder.CreateUnOp( 6599 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6600 propagateIRFlags(V, E->Scalars, VL0); 6601 if (auto *I = dyn_cast<Instruction>(V)) 6602 V = propagateMetadata(I, E->Scalars); 6603 6604 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6605 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6606 V = ShuffleBuilder.finalize(V); 6607 6608 E->VectorizedValue = V; 6609 ++NumVectorInstructions; 6610 6611 return V; 6612 } 6613 case Instruction::Add: 6614 case Instruction::FAdd: 6615 case Instruction::Sub: 6616 case Instruction::FSub: 6617 case Instruction::Mul: 6618 case Instruction::FMul: 6619 case Instruction::UDiv: 6620 case Instruction::SDiv: 6621 case Instruction::FDiv: 6622 case Instruction::URem: 6623 case Instruction::SRem: 6624 case Instruction::FRem: 6625 case Instruction::Shl: 6626 case Instruction::LShr: 6627 case Instruction::AShr: 6628 case Instruction::And: 6629 case Instruction::Or: 6630 case Instruction::Xor: { 6631 setInsertPointAfterBundle(E); 6632 6633 Value *LHS = vectorizeTree(E->getOperand(0)); 6634 Value *RHS = vectorizeTree(E->getOperand(1)); 6635 6636 if (E->VectorizedValue) { 6637 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6638 return E->VectorizedValue; 6639 } 6640 6641 Value *V = Builder.CreateBinOp( 6642 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6643 RHS); 6644 propagateIRFlags(V, E->Scalars, VL0); 6645 if (auto *I = dyn_cast<Instruction>(V)) 6646 V = propagateMetadata(I, E->Scalars); 6647 6648 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6649 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6650 V = ShuffleBuilder.finalize(V); 6651 6652 E->VectorizedValue = V; 6653 ++NumVectorInstructions; 6654 6655 return V; 6656 } 6657 case Instruction::Load: { 6658 // Loads are inserted at the head of the tree because we don't want to 6659 // sink them all the way down past store instructions. 6660 setInsertPointAfterBundle(E); 6661 6662 LoadInst *LI = cast<LoadInst>(VL0); 6663 Instruction *NewLI; 6664 unsigned AS = LI->getPointerAddressSpace(); 6665 Value *PO = LI->getPointerOperand(); 6666 if (E->State == TreeEntry::Vectorize) { 6667 6668 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6669 6670 // The pointer operand uses an in-tree scalar so we add the new BitCast 6671 // to ExternalUses list to make sure that an extract will be generated 6672 // in the future. 6673 if (TreeEntry *Entry = getTreeEntry(PO)) { 6674 // Find which lane we need to extract. 6675 unsigned FoundLane = Entry->findLaneForValue(PO); 6676 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6677 } 6678 6679 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6680 } else { 6681 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6682 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6683 // Use the minimum alignment of the gathered loads. 6684 Align CommonAlignment = LI->getAlign(); 6685 for (Value *V : E->Scalars) 6686 CommonAlignment = 6687 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6688 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6689 } 6690 Value *V = propagateMetadata(NewLI, E->Scalars); 6691 6692 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6693 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6694 V = ShuffleBuilder.finalize(V); 6695 E->VectorizedValue = V; 6696 ++NumVectorInstructions; 6697 return V; 6698 } 6699 case Instruction::Store: { 6700 auto *SI = cast<StoreInst>(VL0); 6701 unsigned AS = SI->getPointerAddressSpace(); 6702 6703 setInsertPointAfterBundle(E); 6704 6705 Value *VecValue = vectorizeTree(E->getOperand(0)); 6706 ShuffleBuilder.addMask(E->ReorderIndices); 6707 VecValue = ShuffleBuilder.finalize(VecValue); 6708 6709 Value *ScalarPtr = SI->getPointerOperand(); 6710 Value *VecPtr = Builder.CreateBitCast( 6711 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6712 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6713 SI->getAlign()); 6714 6715 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6716 // ExternalUses to make sure that an extract will be generated in the 6717 // future. 6718 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6719 // Find which lane we need to extract. 6720 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6721 ExternalUses.push_back( 6722 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6723 } 6724 6725 Value *V = propagateMetadata(ST, E->Scalars); 6726 6727 E->VectorizedValue = V; 6728 ++NumVectorInstructions; 6729 return V; 6730 } 6731 case Instruction::GetElementPtr: { 6732 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6733 setInsertPointAfterBundle(E); 6734 6735 Value *Op0 = vectorizeTree(E->getOperand(0)); 6736 6737 SmallVector<Value *> OpVecs; 6738 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6739 Value *OpVec = vectorizeTree(E->getOperand(J)); 6740 OpVecs.push_back(OpVec); 6741 } 6742 6743 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6744 if (Instruction *I = dyn_cast<Instruction>(V)) 6745 V = propagateMetadata(I, E->Scalars); 6746 6747 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6748 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6749 V = ShuffleBuilder.finalize(V); 6750 6751 E->VectorizedValue = V; 6752 ++NumVectorInstructions; 6753 6754 return V; 6755 } 6756 case Instruction::Call: { 6757 CallInst *CI = cast<CallInst>(VL0); 6758 setInsertPointAfterBundle(E); 6759 6760 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6761 if (Function *FI = CI->getCalledFunction()) 6762 IID = FI->getIntrinsicID(); 6763 6764 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6765 6766 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6767 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6768 VecCallCosts.first <= VecCallCosts.second; 6769 6770 Value *ScalarArg = nullptr; 6771 std::vector<Value *> OpVecs; 6772 SmallVector<Type *, 2> TysForDecl = 6773 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6774 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6775 ValueList OpVL; 6776 // Some intrinsics have scalar arguments. This argument should not be 6777 // vectorized. 6778 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6779 CallInst *CEI = cast<CallInst>(VL0); 6780 ScalarArg = CEI->getArgOperand(j); 6781 OpVecs.push_back(CEI->getArgOperand(j)); 6782 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6783 TysForDecl.push_back(ScalarArg->getType()); 6784 continue; 6785 } 6786 6787 Value *OpVec = vectorizeTree(E->getOperand(j)); 6788 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6789 OpVecs.push_back(OpVec); 6790 } 6791 6792 Function *CF; 6793 if (!UseIntrinsic) { 6794 VFShape Shape = 6795 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6796 VecTy->getNumElements())), 6797 false /*HasGlobalPred*/); 6798 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6799 } else { 6800 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6801 } 6802 6803 SmallVector<OperandBundleDef, 1> OpBundles; 6804 CI->getOperandBundlesAsDefs(OpBundles); 6805 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6806 6807 // The scalar argument uses an in-tree scalar so we add the new vectorized 6808 // call to ExternalUses list to make sure that an extract will be 6809 // generated in the future. 6810 if (ScalarArg) { 6811 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6812 // Find which lane we need to extract. 6813 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6814 ExternalUses.push_back( 6815 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6816 } 6817 } 6818 6819 propagateIRFlags(V, E->Scalars, VL0); 6820 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6821 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6822 V = ShuffleBuilder.finalize(V); 6823 6824 E->VectorizedValue = V; 6825 ++NumVectorInstructions; 6826 return V; 6827 } 6828 case Instruction::ShuffleVector: { 6829 assert(E->isAltShuffle() && 6830 ((Instruction::isBinaryOp(E->getOpcode()) && 6831 Instruction::isBinaryOp(E->getAltOpcode())) || 6832 (Instruction::isCast(E->getOpcode()) && 6833 Instruction::isCast(E->getAltOpcode()))) && 6834 "Invalid Shuffle Vector Operand"); 6835 6836 Value *LHS = nullptr, *RHS = nullptr; 6837 if (Instruction::isBinaryOp(E->getOpcode())) { 6838 setInsertPointAfterBundle(E); 6839 LHS = vectorizeTree(E->getOperand(0)); 6840 RHS = vectorizeTree(E->getOperand(1)); 6841 } else { 6842 setInsertPointAfterBundle(E); 6843 LHS = vectorizeTree(E->getOperand(0)); 6844 } 6845 6846 if (E->VectorizedValue) { 6847 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6848 return E->VectorizedValue; 6849 } 6850 6851 Value *V0, *V1; 6852 if (Instruction::isBinaryOp(E->getOpcode())) { 6853 V0 = Builder.CreateBinOp( 6854 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6855 V1 = Builder.CreateBinOp( 6856 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6857 } else { 6858 V0 = Builder.CreateCast( 6859 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6860 V1 = Builder.CreateCast( 6861 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6862 } 6863 // Add V0 and V1 to later analysis to try to find and remove matching 6864 // instruction, if any. 6865 for (Value *V : {V0, V1}) { 6866 if (auto *I = dyn_cast<Instruction>(V)) { 6867 GatherShuffleSeq.insert(I); 6868 CSEBlocks.insert(I->getParent()); 6869 } 6870 } 6871 6872 // Create shuffle to take alternate operations from the vector. 6873 // Also, gather up main and alt scalar ops to propagate IR flags to 6874 // each vector operation. 6875 ValueList OpScalars, AltScalars; 6876 SmallVector<int> Mask; 6877 buildSuffleEntryMask( 6878 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6879 [E](Instruction *I) { 6880 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6881 return I->getOpcode() == E->getAltOpcode(); 6882 }, 6883 Mask, &OpScalars, &AltScalars); 6884 6885 propagateIRFlags(V0, OpScalars); 6886 propagateIRFlags(V1, AltScalars); 6887 6888 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6889 if (auto *I = dyn_cast<Instruction>(V)) { 6890 V = propagateMetadata(I, E->Scalars); 6891 GatherShuffleSeq.insert(I); 6892 CSEBlocks.insert(I->getParent()); 6893 } 6894 V = ShuffleBuilder.finalize(V); 6895 6896 E->VectorizedValue = V; 6897 ++NumVectorInstructions; 6898 6899 return V; 6900 } 6901 default: 6902 llvm_unreachable("unknown inst"); 6903 } 6904 return nullptr; 6905 } 6906 6907 Value *BoUpSLP::vectorizeTree() { 6908 ExtraValueToDebugLocsMap ExternallyUsedValues; 6909 return vectorizeTree(ExternallyUsedValues); 6910 } 6911 6912 Value * 6913 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6914 // All blocks must be scheduled before any instructions are inserted. 6915 for (auto &BSIter : BlocksSchedules) { 6916 scheduleBlock(BSIter.second.get()); 6917 } 6918 6919 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6920 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6921 6922 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6923 // vectorized root. InstCombine will then rewrite the entire expression. We 6924 // sign extend the extracted values below. 6925 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6926 if (MinBWs.count(ScalarRoot)) { 6927 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6928 // If current instr is a phi and not the last phi, insert it after the 6929 // last phi node. 6930 if (isa<PHINode>(I)) 6931 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6932 else 6933 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6934 } 6935 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6936 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6937 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6938 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6939 VectorizableTree[0]->VectorizedValue = Trunc; 6940 } 6941 6942 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6943 << " values .\n"); 6944 6945 // Extract all of the elements with the external uses. 6946 for (const auto &ExternalUse : ExternalUses) { 6947 Value *Scalar = ExternalUse.Scalar; 6948 llvm::User *User = ExternalUse.User; 6949 6950 // Skip users that we already RAUW. This happens when one instruction 6951 // has multiple uses of the same value. 6952 if (User && !is_contained(Scalar->users(), User)) 6953 continue; 6954 TreeEntry *E = getTreeEntry(Scalar); 6955 assert(E && "Invalid scalar"); 6956 assert(E->State != TreeEntry::NeedToGather && 6957 "Extracting from a gather list"); 6958 6959 Value *Vec = E->VectorizedValue; 6960 assert(Vec && "Can't find vectorizable value"); 6961 6962 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6963 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6964 if (Scalar->getType() != Vec->getType()) { 6965 Value *Ex; 6966 // "Reuse" the existing extract to improve final codegen. 6967 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6968 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6969 ES->getOperand(1)); 6970 } else { 6971 Ex = Builder.CreateExtractElement(Vec, Lane); 6972 } 6973 // If necessary, sign-extend or zero-extend ScalarRoot 6974 // to the larger type. 6975 if (!MinBWs.count(ScalarRoot)) 6976 return Ex; 6977 if (MinBWs[ScalarRoot].second) 6978 return Builder.CreateSExt(Ex, Scalar->getType()); 6979 return Builder.CreateZExt(Ex, Scalar->getType()); 6980 } 6981 assert(isa<FixedVectorType>(Scalar->getType()) && 6982 isa<InsertElementInst>(Scalar) && 6983 "In-tree scalar of vector type is not insertelement?"); 6984 return Vec; 6985 }; 6986 // If User == nullptr, the Scalar is used as extra arg. Generate 6987 // ExtractElement instruction and update the record for this scalar in 6988 // ExternallyUsedValues. 6989 if (!User) { 6990 assert(ExternallyUsedValues.count(Scalar) && 6991 "Scalar with nullptr as an external user must be registered in " 6992 "ExternallyUsedValues map"); 6993 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6994 Builder.SetInsertPoint(VecI->getParent(), 6995 std::next(VecI->getIterator())); 6996 } else { 6997 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6998 } 6999 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7000 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7001 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7002 auto It = ExternallyUsedValues.find(Scalar); 7003 assert(It != ExternallyUsedValues.end() && 7004 "Externally used scalar is not found in ExternallyUsedValues"); 7005 NewInstLocs.append(It->second); 7006 ExternallyUsedValues.erase(Scalar); 7007 // Required to update internally referenced instructions. 7008 Scalar->replaceAllUsesWith(NewInst); 7009 continue; 7010 } 7011 7012 // Generate extracts for out-of-tree users. 7013 // Find the insertion point for the extractelement lane. 7014 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7015 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7016 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7017 if (PH->getIncomingValue(i) == Scalar) { 7018 Instruction *IncomingTerminator = 7019 PH->getIncomingBlock(i)->getTerminator(); 7020 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7021 Builder.SetInsertPoint(VecI->getParent(), 7022 std::next(VecI->getIterator())); 7023 } else { 7024 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7025 } 7026 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7027 CSEBlocks.insert(PH->getIncomingBlock(i)); 7028 PH->setOperand(i, NewInst); 7029 } 7030 } 7031 } else { 7032 Builder.SetInsertPoint(cast<Instruction>(User)); 7033 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7034 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7035 User->replaceUsesOfWith(Scalar, NewInst); 7036 } 7037 } else { 7038 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7039 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7040 CSEBlocks.insert(&F->getEntryBlock()); 7041 User->replaceUsesOfWith(Scalar, NewInst); 7042 } 7043 7044 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7045 } 7046 7047 // For each vectorized value: 7048 for (auto &TEPtr : VectorizableTree) { 7049 TreeEntry *Entry = TEPtr.get(); 7050 7051 // No need to handle users of gathered values. 7052 if (Entry->State == TreeEntry::NeedToGather) 7053 continue; 7054 7055 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7056 7057 // For each lane: 7058 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7059 Value *Scalar = Entry->Scalars[Lane]; 7060 7061 #ifndef NDEBUG 7062 Type *Ty = Scalar->getType(); 7063 if (!Ty->isVoidTy()) { 7064 for (User *U : Scalar->users()) { 7065 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7066 7067 // It is legal to delete users in the ignorelist. 7068 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7069 (isa_and_nonnull<Instruction>(U) && 7070 isDeleted(cast<Instruction>(U)))) && 7071 "Deleting out-of-tree value"); 7072 } 7073 } 7074 #endif 7075 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7076 eraseInstruction(cast<Instruction>(Scalar)); 7077 } 7078 } 7079 7080 Builder.ClearInsertionPoint(); 7081 InstrElementSize.clear(); 7082 7083 return VectorizableTree[0]->VectorizedValue; 7084 } 7085 7086 void BoUpSLP::optimizeGatherSequence() { 7087 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7088 << " gather sequences instructions.\n"); 7089 // LICM InsertElementInst sequences. 7090 for (Instruction *I : GatherShuffleSeq) { 7091 if (isDeleted(I)) 7092 continue; 7093 7094 // Check if this block is inside a loop. 7095 Loop *L = LI->getLoopFor(I->getParent()); 7096 if (!L) 7097 continue; 7098 7099 // Check if it has a preheader. 7100 BasicBlock *PreHeader = L->getLoopPreheader(); 7101 if (!PreHeader) 7102 continue; 7103 7104 // If the vector or the element that we insert into it are 7105 // instructions that are defined in this basic block then we can't 7106 // hoist this instruction. 7107 if (any_of(I->operands(), [L](Value *V) { 7108 auto *OpI = dyn_cast<Instruction>(V); 7109 return OpI && L->contains(OpI); 7110 })) 7111 continue; 7112 7113 // We can hoist this instruction. Move it to the pre-header. 7114 I->moveBefore(PreHeader->getTerminator()); 7115 } 7116 7117 // Make a list of all reachable blocks in our CSE queue. 7118 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7119 CSEWorkList.reserve(CSEBlocks.size()); 7120 for (BasicBlock *BB : CSEBlocks) 7121 if (DomTreeNode *N = DT->getNode(BB)) { 7122 assert(DT->isReachableFromEntry(N)); 7123 CSEWorkList.push_back(N); 7124 } 7125 7126 // Sort blocks by domination. This ensures we visit a block after all blocks 7127 // dominating it are visited. 7128 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7129 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7130 "Different nodes should have different DFS numbers"); 7131 return A->getDFSNumIn() < B->getDFSNumIn(); 7132 }); 7133 7134 // Less defined shuffles can be replaced by the more defined copies. 7135 // Between two shuffles one is less defined if it has the same vector operands 7136 // and its mask indeces are the same as in the first one or undefs. E.g. 7137 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7138 // poison, <0, 0, 0, 0>. 7139 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7140 SmallVectorImpl<int> &NewMask) { 7141 if (I1->getType() != I2->getType()) 7142 return false; 7143 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7144 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7145 if (!SI1 || !SI2) 7146 return I1->isIdenticalTo(I2); 7147 if (SI1->isIdenticalTo(SI2)) 7148 return true; 7149 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7150 if (SI1->getOperand(I) != SI2->getOperand(I)) 7151 return false; 7152 // Check if the second instruction is more defined than the first one. 7153 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7154 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7155 // Count trailing undefs in the mask to check the final number of used 7156 // registers. 7157 unsigned LastUndefsCnt = 0; 7158 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7159 if (SM1[I] == UndefMaskElem) 7160 ++LastUndefsCnt; 7161 else 7162 LastUndefsCnt = 0; 7163 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7164 NewMask[I] != SM1[I]) 7165 return false; 7166 if (NewMask[I] == UndefMaskElem) 7167 NewMask[I] = SM1[I]; 7168 } 7169 // Check if the last undefs actually change the final number of used vector 7170 // registers. 7171 return SM1.size() - LastUndefsCnt > 1 && 7172 TTI->getNumberOfParts(SI1->getType()) == 7173 TTI->getNumberOfParts( 7174 FixedVectorType::get(SI1->getType()->getElementType(), 7175 SM1.size() - LastUndefsCnt)); 7176 }; 7177 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7178 // instructions. TODO: We can further optimize this scan if we split the 7179 // instructions into different buckets based on the insert lane. 7180 SmallVector<Instruction *, 16> Visited; 7181 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7182 assert(*I && 7183 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7184 "Worklist not sorted properly!"); 7185 BasicBlock *BB = (*I)->getBlock(); 7186 // For all instructions in blocks containing gather sequences: 7187 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7188 if (isDeleted(&In)) 7189 continue; 7190 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7191 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7192 continue; 7193 7194 // Check if we can replace this instruction with any of the 7195 // visited instructions. 7196 bool Replaced = false; 7197 for (Instruction *&V : Visited) { 7198 SmallVector<int> NewMask; 7199 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7200 DT->dominates(V->getParent(), In.getParent())) { 7201 In.replaceAllUsesWith(V); 7202 eraseInstruction(&In); 7203 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7204 if (!NewMask.empty()) 7205 SI->setShuffleMask(NewMask); 7206 Replaced = true; 7207 break; 7208 } 7209 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7210 GatherShuffleSeq.contains(V) && 7211 IsIdenticalOrLessDefined(V, &In, NewMask) && 7212 DT->dominates(In.getParent(), V->getParent())) { 7213 In.moveAfter(V); 7214 V->replaceAllUsesWith(&In); 7215 eraseInstruction(V); 7216 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7217 if (!NewMask.empty()) 7218 SI->setShuffleMask(NewMask); 7219 V = &In; 7220 Replaced = true; 7221 break; 7222 } 7223 } 7224 if (!Replaced) { 7225 assert(!is_contained(Visited, &In)); 7226 Visited.push_back(&In); 7227 } 7228 } 7229 } 7230 CSEBlocks.clear(); 7231 GatherShuffleSeq.clear(); 7232 } 7233 7234 BoUpSLP::ScheduleData * 7235 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7236 ScheduleData *Bundle = nullptr; 7237 ScheduleData *PrevInBundle = nullptr; 7238 for (Value *V : VL) { 7239 ScheduleData *BundleMember = getScheduleData(V); 7240 assert(BundleMember && 7241 "no ScheduleData for bundle member " 7242 "(maybe not in same basic block)"); 7243 assert(BundleMember->isSchedulingEntity() && 7244 "bundle member already part of other bundle"); 7245 if (PrevInBundle) { 7246 PrevInBundle->NextInBundle = BundleMember; 7247 } else { 7248 Bundle = BundleMember; 7249 } 7250 BundleMember->UnscheduledDepsInBundle = 0; 7251 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7252 7253 // Group the instructions to a bundle. 7254 BundleMember->FirstInBundle = Bundle; 7255 PrevInBundle = BundleMember; 7256 } 7257 assert(Bundle && "Failed to find schedule bundle"); 7258 return Bundle; 7259 } 7260 7261 // Groups the instructions to a bundle (which is then a single scheduling entity) 7262 // and schedules instructions until the bundle gets ready. 7263 Optional<BoUpSLP::ScheduleData *> 7264 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7265 const InstructionsState &S) { 7266 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7267 // instructions. 7268 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7269 return nullptr; 7270 7271 // Initialize the instruction bundle. 7272 Instruction *OldScheduleEnd = ScheduleEnd; 7273 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7274 7275 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7276 ScheduleData *Bundle) { 7277 // The scheduling region got new instructions at the lower end (or it is a 7278 // new region for the first bundle). This makes it necessary to 7279 // recalculate all dependencies. 7280 // It is seldom that this needs to be done a second time after adding the 7281 // initial bundle to the region. 7282 if (ScheduleEnd != OldScheduleEnd) { 7283 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7284 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7285 ReSchedule = true; 7286 } 7287 if (ReSchedule) { 7288 resetSchedule(); 7289 initialFillReadyList(ReadyInsts); 7290 } 7291 if (Bundle) { 7292 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7293 << " in block " << BB->getName() << "\n"); 7294 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7295 } 7296 7297 // Now try to schedule the new bundle or (if no bundle) just calculate 7298 // dependencies. As soon as the bundle is "ready" it means that there are no 7299 // cyclic dependencies and we can schedule it. Note that's important that we 7300 // don't "schedule" the bundle yet (see cancelScheduling). 7301 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7302 !ReadyInsts.empty()) { 7303 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7304 if (Picked->isSchedulingEntity() && Picked->isReady()) 7305 schedule(Picked, ReadyInsts); 7306 } 7307 }; 7308 7309 // Make sure that the scheduling region contains all 7310 // instructions of the bundle. 7311 for (Value *V : VL) { 7312 if (!extendSchedulingRegion(V, S)) { 7313 // If the scheduling region got new instructions at the lower end (or it 7314 // is a new region for the first bundle). This makes it necessary to 7315 // recalculate all dependencies. 7316 // Otherwise the compiler may crash trying to incorrectly calculate 7317 // dependencies and emit instruction in the wrong order at the actual 7318 // scheduling. 7319 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7320 return None; 7321 } 7322 } 7323 7324 bool ReSchedule = false; 7325 for (Value *V : VL) { 7326 ScheduleData *BundleMember = getScheduleData(V); 7327 assert(BundleMember && 7328 "no ScheduleData for bundle member (maybe not in same basic block)"); 7329 if (!BundleMember->IsScheduled) 7330 continue; 7331 // A bundle member was scheduled as single instruction before and now 7332 // needs to be scheduled as part of the bundle. We just get rid of the 7333 // existing schedule. 7334 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7335 << " was already scheduled\n"); 7336 ReSchedule = true; 7337 } 7338 7339 auto *Bundle = buildBundle(VL); 7340 TryScheduleBundleImpl(ReSchedule, Bundle); 7341 if (!Bundle->isReady()) { 7342 cancelScheduling(VL, S.OpValue); 7343 return None; 7344 } 7345 return Bundle; 7346 } 7347 7348 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7349 Value *OpValue) { 7350 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7351 return; 7352 7353 ScheduleData *Bundle = getScheduleData(OpValue); 7354 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7355 assert(!Bundle->IsScheduled && 7356 "Can't cancel bundle which is already scheduled"); 7357 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7358 "tried to unbundle something which is not a bundle"); 7359 7360 // Un-bundle: make single instructions out of the bundle. 7361 ScheduleData *BundleMember = Bundle; 7362 while (BundleMember) { 7363 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7364 BundleMember->FirstInBundle = BundleMember; 7365 ScheduleData *Next = BundleMember->NextInBundle; 7366 BundleMember->NextInBundle = nullptr; 7367 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7368 if (BundleMember->UnscheduledDepsInBundle == 0) { 7369 ReadyInsts.insert(BundleMember); 7370 } 7371 BundleMember = Next; 7372 } 7373 } 7374 7375 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7376 // Allocate a new ScheduleData for the instruction. 7377 if (ChunkPos >= ChunkSize) { 7378 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7379 ChunkPos = 0; 7380 } 7381 return &(ScheduleDataChunks.back()[ChunkPos++]); 7382 } 7383 7384 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7385 const InstructionsState &S) { 7386 if (getScheduleData(V, isOneOf(S, V))) 7387 return true; 7388 Instruction *I = dyn_cast<Instruction>(V); 7389 assert(I && "bundle member must be an instruction"); 7390 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7391 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7392 "be scheduled"); 7393 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7394 ScheduleData *ISD = getScheduleData(I); 7395 if (!ISD) 7396 return false; 7397 assert(isInSchedulingRegion(ISD) && 7398 "ScheduleData not in scheduling region"); 7399 ScheduleData *SD = allocateScheduleDataChunks(); 7400 SD->Inst = I; 7401 SD->init(SchedulingRegionID, S.OpValue); 7402 ExtraScheduleDataMap[I][S.OpValue] = SD; 7403 return true; 7404 }; 7405 if (CheckSheduleForI(I)) 7406 return true; 7407 if (!ScheduleStart) { 7408 // It's the first instruction in the new region. 7409 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7410 ScheduleStart = I; 7411 ScheduleEnd = I->getNextNode(); 7412 if (isOneOf(S, I) != I) 7413 CheckSheduleForI(I); 7414 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7415 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7416 return true; 7417 } 7418 // Search up and down at the same time, because we don't know if the new 7419 // instruction is above or below the existing scheduling region. 7420 BasicBlock::reverse_iterator UpIter = 7421 ++ScheduleStart->getIterator().getReverse(); 7422 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7423 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7424 BasicBlock::iterator LowerEnd = BB->end(); 7425 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7426 &*DownIter != I) { 7427 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7428 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7429 return false; 7430 } 7431 7432 ++UpIter; 7433 ++DownIter; 7434 } 7435 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7436 assert(I->getParent() == ScheduleStart->getParent() && 7437 "Instruction is in wrong basic block."); 7438 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7439 ScheduleStart = I; 7440 if (isOneOf(S, I) != I) 7441 CheckSheduleForI(I); 7442 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7443 << "\n"); 7444 return true; 7445 } 7446 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7447 "Expected to reach top of the basic block or instruction down the " 7448 "lower end."); 7449 assert(I->getParent() == ScheduleEnd->getParent() && 7450 "Instruction is in wrong basic block."); 7451 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7452 nullptr); 7453 ScheduleEnd = I->getNextNode(); 7454 if (isOneOf(S, I) != I) 7455 CheckSheduleForI(I); 7456 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7457 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7458 return true; 7459 } 7460 7461 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7462 Instruction *ToI, 7463 ScheduleData *PrevLoadStore, 7464 ScheduleData *NextLoadStore) { 7465 ScheduleData *CurrentLoadStore = PrevLoadStore; 7466 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7467 ScheduleData *SD = ScheduleDataMap[I]; 7468 if (!SD) { 7469 SD = allocateScheduleDataChunks(); 7470 ScheduleDataMap[I] = SD; 7471 SD->Inst = I; 7472 } 7473 assert(!isInSchedulingRegion(SD) && 7474 "new ScheduleData already in scheduling region"); 7475 SD->init(SchedulingRegionID, I); 7476 7477 if (I->mayReadOrWriteMemory() && 7478 (!isa<IntrinsicInst>(I) || 7479 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7480 cast<IntrinsicInst>(I)->getIntrinsicID() != 7481 Intrinsic::pseudoprobe))) { 7482 // Update the linked list of memory accessing instructions. 7483 if (CurrentLoadStore) { 7484 CurrentLoadStore->NextLoadStore = SD; 7485 } else { 7486 FirstLoadStoreInRegion = SD; 7487 } 7488 CurrentLoadStore = SD; 7489 } 7490 } 7491 if (NextLoadStore) { 7492 if (CurrentLoadStore) 7493 CurrentLoadStore->NextLoadStore = NextLoadStore; 7494 } else { 7495 LastLoadStoreInRegion = CurrentLoadStore; 7496 } 7497 } 7498 7499 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7500 bool InsertInReadyList, 7501 BoUpSLP *SLP) { 7502 assert(SD->isSchedulingEntity()); 7503 7504 SmallVector<ScheduleData *, 10> WorkList; 7505 WorkList.push_back(SD); 7506 7507 while (!WorkList.empty()) { 7508 ScheduleData *SD = WorkList.pop_back_val(); 7509 for (ScheduleData *BundleMember = SD; BundleMember; 7510 BundleMember = BundleMember->NextInBundle) { 7511 assert(isInSchedulingRegion(BundleMember)); 7512 if (BundleMember->hasValidDependencies()) 7513 continue; 7514 7515 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7516 << "\n"); 7517 BundleMember->Dependencies = 0; 7518 BundleMember->resetUnscheduledDeps(); 7519 7520 // Handle def-use chain dependencies. 7521 if (BundleMember->OpValue != BundleMember->Inst) { 7522 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7523 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7524 BundleMember->Dependencies++; 7525 ScheduleData *DestBundle = UseSD->FirstInBundle; 7526 if (!DestBundle->IsScheduled) 7527 BundleMember->incrementUnscheduledDeps(1); 7528 if (!DestBundle->hasValidDependencies()) 7529 WorkList.push_back(DestBundle); 7530 } 7531 } else { 7532 for (User *U : BundleMember->Inst->users()) { 7533 assert(isa<Instruction>(U) && 7534 "user of instruction must be instruction"); 7535 ScheduleData *UseSD = getScheduleData(U); 7536 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7537 BundleMember->Dependencies++; 7538 ScheduleData *DestBundle = UseSD->FirstInBundle; 7539 if (!DestBundle->IsScheduled) 7540 BundleMember->incrementUnscheduledDeps(1); 7541 if (!DestBundle->hasValidDependencies()) 7542 WorkList.push_back(DestBundle); 7543 } 7544 } 7545 } 7546 7547 // Handle the memory dependencies (if any). 7548 ScheduleData *DepDest = BundleMember->NextLoadStore; 7549 if (!DepDest) 7550 continue; 7551 Instruction *SrcInst = BundleMember->Inst; 7552 assert(SrcInst->mayReadOrWriteMemory() && 7553 "NextLoadStore list for non memory effecting bundle?"); 7554 MemoryLocation SrcLoc = getLocation(SrcInst); 7555 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7556 unsigned numAliased = 0; 7557 unsigned DistToSrc = 1; 7558 7559 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7560 assert(isInSchedulingRegion(DepDest)); 7561 7562 // We have two limits to reduce the complexity: 7563 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7564 // SLP->isAliased (which is the expensive part in this loop). 7565 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7566 // the whole loop (even if the loop is fast, it's quadratic). 7567 // It's important for the loop break condition (see below) to 7568 // check this limit even between two read-only instructions. 7569 if (DistToSrc >= MaxMemDepDistance || 7570 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7571 (numAliased >= AliasedCheckLimit || 7572 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7573 7574 // We increment the counter only if the locations are aliased 7575 // (instead of counting all alias checks). This gives a better 7576 // balance between reduced runtime and accurate dependencies. 7577 numAliased++; 7578 7579 DepDest->MemoryDependencies.push_back(BundleMember); 7580 BundleMember->Dependencies++; 7581 ScheduleData *DestBundle = DepDest->FirstInBundle; 7582 if (!DestBundle->IsScheduled) { 7583 BundleMember->incrementUnscheduledDeps(1); 7584 } 7585 if (!DestBundle->hasValidDependencies()) { 7586 WorkList.push_back(DestBundle); 7587 } 7588 } 7589 7590 // Example, explaining the loop break condition: Let's assume our 7591 // starting instruction is i0 and MaxMemDepDistance = 3. 7592 // 7593 // +--------v--v--v 7594 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7595 // +--------^--^--^ 7596 // 7597 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7598 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7599 // Previously we already added dependencies from i3 to i6,i7,i8 7600 // (because of MaxMemDepDistance). As we added a dependency from 7601 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7602 // and we can abort this loop at i6. 7603 if (DistToSrc >= 2 * MaxMemDepDistance) 7604 break; 7605 DistToSrc++; 7606 } 7607 } 7608 if (InsertInReadyList && SD->isReady()) { 7609 ReadyInsts.push_back(SD); 7610 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7611 << "\n"); 7612 } 7613 } 7614 } 7615 7616 void BoUpSLP::BlockScheduling::resetSchedule() { 7617 assert(ScheduleStart && 7618 "tried to reset schedule on block which has not been scheduled"); 7619 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7620 doForAllOpcodes(I, [&](ScheduleData *SD) { 7621 assert(isInSchedulingRegion(SD) && 7622 "ScheduleData not in scheduling region"); 7623 SD->IsScheduled = false; 7624 SD->resetUnscheduledDeps(); 7625 }); 7626 } 7627 ReadyInsts.clear(); 7628 } 7629 7630 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7631 if (!BS->ScheduleStart) 7632 return; 7633 7634 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7635 7636 BS->resetSchedule(); 7637 7638 // For the real scheduling we use a more sophisticated ready-list: it is 7639 // sorted by the original instruction location. This lets the final schedule 7640 // be as close as possible to the original instruction order. 7641 struct ScheduleDataCompare { 7642 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7643 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7644 } 7645 }; 7646 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7647 7648 // Ensure that all dependency data is updated and fill the ready-list with 7649 // initial instructions. 7650 int Idx = 0; 7651 int NumToSchedule = 0; 7652 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7653 I = I->getNextNode()) { 7654 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7655 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7656 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7657 "scheduler and vectorizer bundle mismatch"); 7658 SD->FirstInBundle->SchedulingPriority = Idx++; 7659 if (SD->isSchedulingEntity()) { 7660 BS->calculateDependencies(SD, false, this); 7661 NumToSchedule++; 7662 } 7663 }); 7664 } 7665 BS->initialFillReadyList(ReadyInsts); 7666 7667 Instruction *LastScheduledInst = BS->ScheduleEnd; 7668 7669 // Do the "real" scheduling. 7670 while (!ReadyInsts.empty()) { 7671 ScheduleData *picked = *ReadyInsts.begin(); 7672 ReadyInsts.erase(ReadyInsts.begin()); 7673 7674 // Move the scheduled instruction(s) to their dedicated places, if not 7675 // there yet. 7676 for (ScheduleData *BundleMember = picked; BundleMember; 7677 BundleMember = BundleMember->NextInBundle) { 7678 Instruction *pickedInst = BundleMember->Inst; 7679 if (pickedInst->getNextNode() != LastScheduledInst) { 7680 BS->BB->getInstList().remove(pickedInst); 7681 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7682 pickedInst); 7683 } 7684 LastScheduledInst = pickedInst; 7685 } 7686 7687 BS->schedule(picked, ReadyInsts); 7688 NumToSchedule--; 7689 } 7690 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7691 7692 // Avoid duplicate scheduling of the block. 7693 BS->ScheduleStart = nullptr; 7694 } 7695 7696 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7697 // If V is a store, just return the width of the stored value (or value 7698 // truncated just before storing) without traversing the expression tree. 7699 // This is the common case. 7700 if (auto *Store = dyn_cast<StoreInst>(V)) { 7701 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7702 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7703 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7704 } 7705 7706 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7707 return getVectorElementSize(IEI->getOperand(1)); 7708 7709 auto E = InstrElementSize.find(V); 7710 if (E != InstrElementSize.end()) 7711 return E->second; 7712 7713 // If V is not a store, we can traverse the expression tree to find loads 7714 // that feed it. The type of the loaded value may indicate a more suitable 7715 // width than V's type. We want to base the vector element size on the width 7716 // of memory operations where possible. 7717 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7718 SmallPtrSet<Instruction *, 16> Visited; 7719 if (auto *I = dyn_cast<Instruction>(V)) { 7720 Worklist.emplace_back(I, I->getParent()); 7721 Visited.insert(I); 7722 } 7723 7724 // Traverse the expression tree in bottom-up order looking for loads. If we 7725 // encounter an instruction we don't yet handle, we give up. 7726 auto Width = 0u; 7727 while (!Worklist.empty()) { 7728 Instruction *I; 7729 BasicBlock *Parent; 7730 std::tie(I, Parent) = Worklist.pop_back_val(); 7731 7732 // We should only be looking at scalar instructions here. If the current 7733 // instruction has a vector type, skip. 7734 auto *Ty = I->getType(); 7735 if (isa<VectorType>(Ty)) 7736 continue; 7737 7738 // If the current instruction is a load, update MaxWidth to reflect the 7739 // width of the loaded value. 7740 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7741 isa<ExtractValueInst>(I)) 7742 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7743 7744 // Otherwise, we need to visit the operands of the instruction. We only 7745 // handle the interesting cases from buildTree here. If an operand is an 7746 // instruction we haven't yet visited and from the same basic block as the 7747 // user or the use is a PHI node, we add it to the worklist. 7748 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7749 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7750 isa<UnaryOperator>(I)) { 7751 for (Use &U : I->operands()) 7752 if (auto *J = dyn_cast<Instruction>(U.get())) 7753 if (Visited.insert(J).second && 7754 (isa<PHINode>(I) || J->getParent() == Parent)) 7755 Worklist.emplace_back(J, J->getParent()); 7756 } else { 7757 break; 7758 } 7759 } 7760 7761 // If we didn't encounter a memory access in the expression tree, or if we 7762 // gave up for some reason, just return the width of V. Otherwise, return the 7763 // maximum width we found. 7764 if (!Width) { 7765 if (auto *CI = dyn_cast<CmpInst>(V)) 7766 V = CI->getOperand(0); 7767 Width = DL->getTypeSizeInBits(V->getType()); 7768 } 7769 7770 for (Instruction *I : Visited) 7771 InstrElementSize[I] = Width; 7772 7773 return Width; 7774 } 7775 7776 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7777 // smaller type with a truncation. We collect the values that will be demoted 7778 // in ToDemote and additional roots that require investigating in Roots. 7779 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7780 SmallVectorImpl<Value *> &ToDemote, 7781 SmallVectorImpl<Value *> &Roots) { 7782 // We can always demote constants. 7783 if (isa<Constant>(V)) { 7784 ToDemote.push_back(V); 7785 return true; 7786 } 7787 7788 // If the value is not an instruction in the expression with only one use, it 7789 // cannot be demoted. 7790 auto *I = dyn_cast<Instruction>(V); 7791 if (!I || !I->hasOneUse() || !Expr.count(I)) 7792 return false; 7793 7794 switch (I->getOpcode()) { 7795 7796 // We can always demote truncations and extensions. Since truncations can 7797 // seed additional demotion, we save the truncated value. 7798 case Instruction::Trunc: 7799 Roots.push_back(I->getOperand(0)); 7800 break; 7801 case Instruction::ZExt: 7802 case Instruction::SExt: 7803 if (isa<ExtractElementInst>(I->getOperand(0)) || 7804 isa<InsertElementInst>(I->getOperand(0))) 7805 return false; 7806 break; 7807 7808 // We can demote certain binary operations if we can demote both of their 7809 // operands. 7810 case Instruction::Add: 7811 case Instruction::Sub: 7812 case Instruction::Mul: 7813 case Instruction::And: 7814 case Instruction::Or: 7815 case Instruction::Xor: 7816 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7817 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7818 return false; 7819 break; 7820 7821 // We can demote selects if we can demote their true and false values. 7822 case Instruction::Select: { 7823 SelectInst *SI = cast<SelectInst>(I); 7824 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7825 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7826 return false; 7827 break; 7828 } 7829 7830 // We can demote phis if we can demote all their incoming operands. Note that 7831 // we don't need to worry about cycles since we ensure single use above. 7832 case Instruction::PHI: { 7833 PHINode *PN = cast<PHINode>(I); 7834 for (Value *IncValue : PN->incoming_values()) 7835 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7836 return false; 7837 break; 7838 } 7839 7840 // Otherwise, conservatively give up. 7841 default: 7842 return false; 7843 } 7844 7845 // Record the value that we can demote. 7846 ToDemote.push_back(V); 7847 return true; 7848 } 7849 7850 void BoUpSLP::computeMinimumValueSizes() { 7851 // If there are no external uses, the expression tree must be rooted by a 7852 // store. We can't demote in-memory values, so there is nothing to do here. 7853 if (ExternalUses.empty()) 7854 return; 7855 7856 // We only attempt to truncate integer expressions. 7857 auto &TreeRoot = VectorizableTree[0]->Scalars; 7858 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7859 if (!TreeRootIT) 7860 return; 7861 7862 // If the expression is not rooted by a store, these roots should have 7863 // external uses. We will rely on InstCombine to rewrite the expression in 7864 // the narrower type. However, InstCombine only rewrites single-use values. 7865 // This means that if a tree entry other than a root is used externally, it 7866 // must have multiple uses and InstCombine will not rewrite it. The code 7867 // below ensures that only the roots are used externally. 7868 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7869 for (auto &EU : ExternalUses) 7870 if (!Expr.erase(EU.Scalar)) 7871 return; 7872 if (!Expr.empty()) 7873 return; 7874 7875 // Collect the scalar values of the vectorizable expression. We will use this 7876 // context to determine which values can be demoted. If we see a truncation, 7877 // we mark it as seeding another demotion. 7878 for (auto &EntryPtr : VectorizableTree) 7879 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7880 7881 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7882 // have a single external user that is not in the vectorizable tree. 7883 for (auto *Root : TreeRoot) 7884 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7885 return; 7886 7887 // Conservatively determine if we can actually truncate the roots of the 7888 // expression. Collect the values that can be demoted in ToDemote and 7889 // additional roots that require investigating in Roots. 7890 SmallVector<Value *, 32> ToDemote; 7891 SmallVector<Value *, 4> Roots; 7892 for (auto *Root : TreeRoot) 7893 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7894 return; 7895 7896 // The maximum bit width required to represent all the values that can be 7897 // demoted without loss of precision. It would be safe to truncate the roots 7898 // of the expression to this width. 7899 auto MaxBitWidth = 8u; 7900 7901 // We first check if all the bits of the roots are demanded. If they're not, 7902 // we can truncate the roots to this narrower type. 7903 for (auto *Root : TreeRoot) { 7904 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7905 MaxBitWidth = std::max<unsigned>( 7906 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7907 } 7908 7909 // True if the roots can be zero-extended back to their original type, rather 7910 // than sign-extended. We know that if the leading bits are not demanded, we 7911 // can safely zero-extend. So we initialize IsKnownPositive to True. 7912 bool IsKnownPositive = true; 7913 7914 // If all the bits of the roots are demanded, we can try a little harder to 7915 // compute a narrower type. This can happen, for example, if the roots are 7916 // getelementptr indices. InstCombine promotes these indices to the pointer 7917 // width. Thus, all their bits are technically demanded even though the 7918 // address computation might be vectorized in a smaller type. 7919 // 7920 // We start by looking at each entry that can be demoted. We compute the 7921 // maximum bit width required to store the scalar by using ValueTracking to 7922 // compute the number of high-order bits we can truncate. 7923 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7924 llvm::all_of(TreeRoot, [](Value *R) { 7925 assert(R->hasOneUse() && "Root should have only one use!"); 7926 return isa<GetElementPtrInst>(R->user_back()); 7927 })) { 7928 MaxBitWidth = 8u; 7929 7930 // Determine if the sign bit of all the roots is known to be zero. If not, 7931 // IsKnownPositive is set to False. 7932 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7933 KnownBits Known = computeKnownBits(R, *DL); 7934 return Known.isNonNegative(); 7935 }); 7936 7937 // Determine the maximum number of bits required to store the scalar 7938 // values. 7939 for (auto *Scalar : ToDemote) { 7940 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7941 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7942 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7943 } 7944 7945 // If we can't prove that the sign bit is zero, we must add one to the 7946 // maximum bit width to account for the unknown sign bit. This preserves 7947 // the existing sign bit so we can safely sign-extend the root back to the 7948 // original type. Otherwise, if we know the sign bit is zero, we will 7949 // zero-extend the root instead. 7950 // 7951 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7952 // one to the maximum bit width will yield a larger-than-necessary 7953 // type. In general, we need to add an extra bit only if we can't 7954 // prove that the upper bit of the original type is equal to the 7955 // upper bit of the proposed smaller type. If these two bits are the 7956 // same (either zero or one) we know that sign-extending from the 7957 // smaller type will result in the same value. Here, since we can't 7958 // yet prove this, we are just making the proposed smaller type 7959 // larger to ensure correctness. 7960 if (!IsKnownPositive) 7961 ++MaxBitWidth; 7962 } 7963 7964 // Round MaxBitWidth up to the next power-of-two. 7965 if (!isPowerOf2_64(MaxBitWidth)) 7966 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7967 7968 // If the maximum bit width we compute is less than the with of the roots' 7969 // type, we can proceed with the narrowing. Otherwise, do nothing. 7970 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7971 return; 7972 7973 // If we can truncate the root, we must collect additional values that might 7974 // be demoted as a result. That is, those seeded by truncations we will 7975 // modify. 7976 while (!Roots.empty()) 7977 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7978 7979 // Finally, map the values we can demote to the maximum bit with we computed. 7980 for (auto *Scalar : ToDemote) 7981 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7982 } 7983 7984 namespace { 7985 7986 /// The SLPVectorizer Pass. 7987 struct SLPVectorizer : public FunctionPass { 7988 SLPVectorizerPass Impl; 7989 7990 /// Pass identification, replacement for typeid 7991 static char ID; 7992 7993 explicit SLPVectorizer() : FunctionPass(ID) { 7994 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7995 } 7996 7997 bool doInitialization(Module &M) override { return false; } 7998 7999 bool runOnFunction(Function &F) override { 8000 if (skipFunction(F)) 8001 return false; 8002 8003 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8004 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8005 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8006 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8007 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8008 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8009 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8010 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8011 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8012 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8013 8014 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8015 } 8016 8017 void getAnalysisUsage(AnalysisUsage &AU) const override { 8018 FunctionPass::getAnalysisUsage(AU); 8019 AU.addRequired<AssumptionCacheTracker>(); 8020 AU.addRequired<ScalarEvolutionWrapperPass>(); 8021 AU.addRequired<AAResultsWrapperPass>(); 8022 AU.addRequired<TargetTransformInfoWrapperPass>(); 8023 AU.addRequired<LoopInfoWrapperPass>(); 8024 AU.addRequired<DominatorTreeWrapperPass>(); 8025 AU.addRequired<DemandedBitsWrapperPass>(); 8026 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8027 AU.addRequired<InjectTLIMappingsLegacy>(); 8028 AU.addPreserved<LoopInfoWrapperPass>(); 8029 AU.addPreserved<DominatorTreeWrapperPass>(); 8030 AU.addPreserved<AAResultsWrapperPass>(); 8031 AU.addPreserved<GlobalsAAWrapperPass>(); 8032 AU.setPreservesCFG(); 8033 } 8034 }; 8035 8036 } // end anonymous namespace 8037 8038 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8039 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8040 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8041 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8042 auto *AA = &AM.getResult<AAManager>(F); 8043 auto *LI = &AM.getResult<LoopAnalysis>(F); 8044 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8045 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8046 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8047 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8048 8049 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8050 if (!Changed) 8051 return PreservedAnalyses::all(); 8052 8053 PreservedAnalyses PA; 8054 PA.preserveSet<CFGAnalyses>(); 8055 return PA; 8056 } 8057 8058 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8059 TargetTransformInfo *TTI_, 8060 TargetLibraryInfo *TLI_, AAResults *AA_, 8061 LoopInfo *LI_, DominatorTree *DT_, 8062 AssumptionCache *AC_, DemandedBits *DB_, 8063 OptimizationRemarkEmitter *ORE_) { 8064 if (!RunSLPVectorization) 8065 return false; 8066 SE = SE_; 8067 TTI = TTI_; 8068 TLI = TLI_; 8069 AA = AA_; 8070 LI = LI_; 8071 DT = DT_; 8072 AC = AC_; 8073 DB = DB_; 8074 DL = &F.getParent()->getDataLayout(); 8075 8076 Stores.clear(); 8077 GEPs.clear(); 8078 bool Changed = false; 8079 8080 // If the target claims to have no vector registers don't attempt 8081 // vectorization. 8082 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8083 LLVM_DEBUG( 8084 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8085 return false; 8086 } 8087 8088 // Don't vectorize when the attribute NoImplicitFloat is used. 8089 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8090 return false; 8091 8092 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8093 8094 // Use the bottom up slp vectorizer to construct chains that start with 8095 // store instructions. 8096 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8097 8098 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8099 // delete instructions. 8100 8101 // Update DFS numbers now so that we can use them for ordering. 8102 DT->updateDFSNumbers(); 8103 8104 // Scan the blocks in the function in post order. 8105 for (auto BB : post_order(&F.getEntryBlock())) { 8106 collectSeedInstructions(BB); 8107 8108 // Vectorize trees that end at stores. 8109 if (!Stores.empty()) { 8110 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8111 << " underlying objects.\n"); 8112 Changed |= vectorizeStoreChains(R); 8113 } 8114 8115 // Vectorize trees that end at reductions. 8116 Changed |= vectorizeChainsInBlock(BB, R); 8117 8118 // Vectorize the index computations of getelementptr instructions. This 8119 // is primarily intended to catch gather-like idioms ending at 8120 // non-consecutive loads. 8121 if (!GEPs.empty()) { 8122 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8123 << " underlying objects.\n"); 8124 Changed |= vectorizeGEPIndices(BB, R); 8125 } 8126 } 8127 8128 if (Changed) { 8129 R.optimizeGatherSequence(); 8130 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8131 } 8132 return Changed; 8133 } 8134 8135 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8136 unsigned Idx) { 8137 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8138 << "\n"); 8139 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8140 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8141 unsigned VF = Chain.size(); 8142 8143 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8144 return false; 8145 8146 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8147 << "\n"); 8148 8149 R.buildTree(Chain); 8150 if (R.isTreeTinyAndNotFullyVectorizable()) 8151 return false; 8152 if (R.isLoadCombineCandidate()) 8153 return false; 8154 R.reorderTopToBottom(); 8155 R.reorderBottomToTop(); 8156 R.buildExternalUses(); 8157 8158 R.computeMinimumValueSizes(); 8159 8160 InstructionCost Cost = R.getTreeCost(); 8161 8162 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8163 if (Cost < -SLPCostThreshold) { 8164 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8165 8166 using namespace ore; 8167 8168 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8169 cast<StoreInst>(Chain[0])) 8170 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8171 << " and with tree size " 8172 << NV("TreeSize", R.getTreeSize())); 8173 8174 R.vectorizeTree(); 8175 return true; 8176 } 8177 8178 return false; 8179 } 8180 8181 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8182 BoUpSLP &R) { 8183 // We may run into multiple chains that merge into a single chain. We mark the 8184 // stores that we vectorized so that we don't visit the same store twice. 8185 BoUpSLP::ValueSet VectorizedStores; 8186 bool Changed = false; 8187 8188 int E = Stores.size(); 8189 SmallBitVector Tails(E, false); 8190 int MaxIter = MaxStoreLookup.getValue(); 8191 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8192 E, std::make_pair(E, INT_MAX)); 8193 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8194 int IterCnt; 8195 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8196 &CheckedPairs, 8197 &ConsecutiveChain](int K, int Idx) { 8198 if (IterCnt >= MaxIter) 8199 return true; 8200 if (CheckedPairs[Idx].test(K)) 8201 return ConsecutiveChain[K].second == 1 && 8202 ConsecutiveChain[K].first == Idx; 8203 ++IterCnt; 8204 CheckedPairs[Idx].set(K); 8205 CheckedPairs[K].set(Idx); 8206 Optional<int> Diff = getPointersDiff( 8207 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8208 Stores[Idx]->getValueOperand()->getType(), 8209 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8210 if (!Diff || *Diff == 0) 8211 return false; 8212 int Val = *Diff; 8213 if (Val < 0) { 8214 if (ConsecutiveChain[Idx].second > -Val) { 8215 Tails.set(K); 8216 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8217 } 8218 return false; 8219 } 8220 if (ConsecutiveChain[K].second <= Val) 8221 return false; 8222 8223 Tails.set(Idx); 8224 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8225 return Val == 1; 8226 }; 8227 // Do a quadratic search on all of the given stores in reverse order and find 8228 // all of the pairs of stores that follow each other. 8229 for (int Idx = E - 1; Idx >= 0; --Idx) { 8230 // If a store has multiple consecutive store candidates, search according 8231 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8232 // This is because usually pairing with immediate succeeding or preceding 8233 // candidate create the best chance to find slp vectorization opportunity. 8234 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8235 IterCnt = 0; 8236 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8237 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8238 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8239 break; 8240 } 8241 8242 // Tracks if we tried to vectorize stores starting from the given tail 8243 // already. 8244 SmallBitVector TriedTails(E, false); 8245 // For stores that start but don't end a link in the chain: 8246 for (int Cnt = E; Cnt > 0; --Cnt) { 8247 int I = Cnt - 1; 8248 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8249 continue; 8250 // We found a store instr that starts a chain. Now follow the chain and try 8251 // to vectorize it. 8252 BoUpSLP::ValueList Operands; 8253 // Collect the chain into a list. 8254 while (I != E && !VectorizedStores.count(Stores[I])) { 8255 Operands.push_back(Stores[I]); 8256 Tails.set(I); 8257 if (ConsecutiveChain[I].second != 1) { 8258 // Mark the new end in the chain and go back, if required. It might be 8259 // required if the original stores come in reversed order, for example. 8260 if (ConsecutiveChain[I].first != E && 8261 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8262 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8263 TriedTails.set(I); 8264 Tails.reset(ConsecutiveChain[I].first); 8265 if (Cnt < ConsecutiveChain[I].first + 2) 8266 Cnt = ConsecutiveChain[I].first + 2; 8267 } 8268 break; 8269 } 8270 // Move to the next value in the chain. 8271 I = ConsecutiveChain[I].first; 8272 } 8273 assert(!Operands.empty() && "Expected non-empty list of stores."); 8274 8275 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8276 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8277 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8278 8279 unsigned MinVF = R.getMinVF(EltSize); 8280 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8281 MaxElts); 8282 8283 // FIXME: Is division-by-2 the correct step? Should we assert that the 8284 // register size is a power-of-2? 8285 unsigned StartIdx = 0; 8286 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8287 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8288 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8289 if (!VectorizedStores.count(Slice.front()) && 8290 !VectorizedStores.count(Slice.back()) && 8291 vectorizeStoreChain(Slice, R, Cnt)) { 8292 // Mark the vectorized stores so that we don't vectorize them again. 8293 VectorizedStores.insert(Slice.begin(), Slice.end()); 8294 Changed = true; 8295 // If we vectorized initial block, no need to try to vectorize it 8296 // again. 8297 if (Cnt == StartIdx) 8298 StartIdx += Size; 8299 Cnt += Size; 8300 continue; 8301 } 8302 ++Cnt; 8303 } 8304 // Check if the whole array was vectorized already - exit. 8305 if (StartIdx >= Operands.size()) 8306 break; 8307 } 8308 } 8309 8310 return Changed; 8311 } 8312 8313 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8314 // Initialize the collections. We will make a single pass over the block. 8315 Stores.clear(); 8316 GEPs.clear(); 8317 8318 // Visit the store and getelementptr instructions in BB and organize them in 8319 // Stores and GEPs according to the underlying objects of their pointer 8320 // operands. 8321 for (Instruction &I : *BB) { 8322 // Ignore store instructions that are volatile or have a pointer operand 8323 // that doesn't point to a scalar type. 8324 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8325 if (!SI->isSimple()) 8326 continue; 8327 if (!isValidElementType(SI->getValueOperand()->getType())) 8328 continue; 8329 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8330 } 8331 8332 // Ignore getelementptr instructions that have more than one index, a 8333 // constant index, or a pointer operand that doesn't point to a scalar 8334 // type. 8335 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8336 auto Idx = GEP->idx_begin()->get(); 8337 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8338 continue; 8339 if (!isValidElementType(Idx->getType())) 8340 continue; 8341 if (GEP->getType()->isVectorTy()) 8342 continue; 8343 GEPs[GEP->getPointerOperand()].push_back(GEP); 8344 } 8345 } 8346 } 8347 8348 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8349 if (!A || !B) 8350 return false; 8351 Value *VL[] = {A, B}; 8352 return tryToVectorizeList(VL, R); 8353 } 8354 8355 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8356 bool LimitForRegisterSize) { 8357 if (VL.size() < 2) 8358 return false; 8359 8360 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8361 << VL.size() << ".\n"); 8362 8363 // Check that all of the parts are instructions of the same type, 8364 // we permit an alternate opcode via InstructionsState. 8365 InstructionsState S = getSameOpcode(VL); 8366 if (!S.getOpcode()) 8367 return false; 8368 8369 Instruction *I0 = cast<Instruction>(S.OpValue); 8370 // Make sure invalid types (including vector type) are rejected before 8371 // determining vectorization factor for scalar instructions. 8372 for (Value *V : VL) { 8373 Type *Ty = V->getType(); 8374 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8375 // NOTE: the following will give user internal llvm type name, which may 8376 // not be useful. 8377 R.getORE()->emit([&]() { 8378 std::string type_str; 8379 llvm::raw_string_ostream rso(type_str); 8380 Ty->print(rso); 8381 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8382 << "Cannot SLP vectorize list: type " 8383 << rso.str() + " is unsupported by vectorizer"; 8384 }); 8385 return false; 8386 } 8387 } 8388 8389 unsigned Sz = R.getVectorElementSize(I0); 8390 unsigned MinVF = R.getMinVF(Sz); 8391 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8392 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8393 if (MaxVF < 2) { 8394 R.getORE()->emit([&]() { 8395 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8396 << "Cannot SLP vectorize list: vectorization factor " 8397 << "less than 2 is not supported"; 8398 }); 8399 return false; 8400 } 8401 8402 bool Changed = false; 8403 bool CandidateFound = false; 8404 InstructionCost MinCost = SLPCostThreshold.getValue(); 8405 Type *ScalarTy = VL[0]->getType(); 8406 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8407 ScalarTy = IE->getOperand(1)->getType(); 8408 8409 unsigned NextInst = 0, MaxInst = VL.size(); 8410 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8411 // No actual vectorization should happen, if number of parts is the same as 8412 // provided vectorization factor (i.e. the scalar type is used for vector 8413 // code during codegen). 8414 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8415 if (TTI->getNumberOfParts(VecTy) == VF) 8416 continue; 8417 for (unsigned I = NextInst; I < MaxInst; ++I) { 8418 unsigned OpsWidth = 0; 8419 8420 if (I + VF > MaxInst) 8421 OpsWidth = MaxInst - I; 8422 else 8423 OpsWidth = VF; 8424 8425 if (!isPowerOf2_32(OpsWidth)) 8426 continue; 8427 8428 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8429 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8430 break; 8431 8432 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8433 // Check that a previous iteration of this loop did not delete the Value. 8434 if (llvm::any_of(Ops, [&R](Value *V) { 8435 auto *I = dyn_cast<Instruction>(V); 8436 return I && R.isDeleted(I); 8437 })) 8438 continue; 8439 8440 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8441 << "\n"); 8442 8443 R.buildTree(Ops); 8444 if (R.isTreeTinyAndNotFullyVectorizable()) 8445 continue; 8446 R.reorderTopToBottom(); 8447 R.reorderBottomToTop(); 8448 R.buildExternalUses(); 8449 8450 R.computeMinimumValueSizes(); 8451 InstructionCost Cost = R.getTreeCost(); 8452 CandidateFound = true; 8453 MinCost = std::min(MinCost, Cost); 8454 8455 if (Cost < -SLPCostThreshold) { 8456 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8457 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8458 cast<Instruction>(Ops[0])) 8459 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8460 << " and with tree size " 8461 << ore::NV("TreeSize", R.getTreeSize())); 8462 8463 R.vectorizeTree(); 8464 // Move to the next bundle. 8465 I += VF - 1; 8466 NextInst = I + 1; 8467 Changed = true; 8468 } 8469 } 8470 } 8471 8472 if (!Changed && CandidateFound) { 8473 R.getORE()->emit([&]() { 8474 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8475 << "List vectorization was possible but not beneficial with cost " 8476 << ore::NV("Cost", MinCost) << " >= " 8477 << ore::NV("Treshold", -SLPCostThreshold); 8478 }); 8479 } else if (!Changed) { 8480 R.getORE()->emit([&]() { 8481 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8482 << "Cannot SLP vectorize list: vectorization was impossible" 8483 << " with available vectorization factors"; 8484 }); 8485 } 8486 return Changed; 8487 } 8488 8489 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8490 if (!I) 8491 return false; 8492 8493 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8494 return false; 8495 8496 Value *P = I->getParent(); 8497 8498 // Vectorize in current basic block only. 8499 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8500 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8501 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8502 return false; 8503 8504 // Try to vectorize V. 8505 if (tryToVectorizePair(Op0, Op1, R)) 8506 return true; 8507 8508 auto *A = dyn_cast<BinaryOperator>(Op0); 8509 auto *B = dyn_cast<BinaryOperator>(Op1); 8510 // Try to skip B. 8511 if (B && B->hasOneUse()) { 8512 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8513 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8514 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8515 return true; 8516 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8517 return true; 8518 } 8519 8520 // Try to skip A. 8521 if (A && A->hasOneUse()) { 8522 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8523 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8524 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8525 return true; 8526 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8527 return true; 8528 } 8529 return false; 8530 } 8531 8532 namespace { 8533 8534 /// Model horizontal reductions. 8535 /// 8536 /// A horizontal reduction is a tree of reduction instructions that has values 8537 /// that can be put into a vector as its leaves. For example: 8538 /// 8539 /// mul mul mul mul 8540 /// \ / \ / 8541 /// + + 8542 /// \ / 8543 /// + 8544 /// This tree has "mul" as its leaf values and "+" as its reduction 8545 /// instructions. A reduction can feed into a store or a binary operation 8546 /// feeding a phi. 8547 /// ... 8548 /// \ / 8549 /// + 8550 /// | 8551 /// phi += 8552 /// 8553 /// Or: 8554 /// ... 8555 /// \ / 8556 /// + 8557 /// | 8558 /// *p = 8559 /// 8560 class HorizontalReduction { 8561 using ReductionOpsType = SmallVector<Value *, 16>; 8562 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8563 ReductionOpsListType ReductionOps; 8564 SmallVector<Value *, 32> ReducedVals; 8565 // Use map vector to make stable output. 8566 MapVector<Instruction *, Value *> ExtraArgs; 8567 WeakTrackingVH ReductionRoot; 8568 /// The type of reduction operation. 8569 RecurKind RdxKind; 8570 8571 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8572 8573 static bool isCmpSelMinMax(Instruction *I) { 8574 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8575 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8576 } 8577 8578 // And/or are potentially poison-safe logical patterns like: 8579 // select x, y, false 8580 // select x, true, y 8581 static bool isBoolLogicOp(Instruction *I) { 8582 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8583 match(I, m_LogicalOr(m_Value(), m_Value())); 8584 } 8585 8586 /// Checks if instruction is associative and can be vectorized. 8587 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8588 if (Kind == RecurKind::None) 8589 return false; 8590 8591 // Integer ops that map to select instructions or intrinsics are fine. 8592 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8593 isBoolLogicOp(I)) 8594 return true; 8595 8596 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8597 // FP min/max are associative except for NaN and -0.0. We do not 8598 // have to rule out -0.0 here because the intrinsic semantics do not 8599 // specify a fixed result for it. 8600 return I->getFastMathFlags().noNaNs(); 8601 } 8602 8603 return I->isAssociative(); 8604 } 8605 8606 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8607 // Poison-safe 'or' takes the form: select X, true, Y 8608 // To make that work with the normal operand processing, we skip the 8609 // true value operand. 8610 // TODO: Change the code and data structures to handle this without a hack. 8611 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8612 return I->getOperand(2); 8613 return I->getOperand(Index); 8614 } 8615 8616 /// Checks if the ParentStackElem.first should be marked as a reduction 8617 /// operation with an extra argument or as extra argument itself. 8618 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8619 Value *ExtraArg) { 8620 if (ExtraArgs.count(ParentStackElem.first)) { 8621 ExtraArgs[ParentStackElem.first] = nullptr; 8622 // We ran into something like: 8623 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8624 // The whole ParentStackElem.first should be considered as an extra value 8625 // in this case. 8626 // Do not perform analysis of remaining operands of ParentStackElem.first 8627 // instruction, this whole instruction is an extra argument. 8628 ParentStackElem.second = INVALID_OPERAND_INDEX; 8629 } else { 8630 // We ran into something like: 8631 // ParentStackElem.first += ... + ExtraArg + ... 8632 ExtraArgs[ParentStackElem.first] = ExtraArg; 8633 } 8634 } 8635 8636 /// Creates reduction operation with the current opcode. 8637 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8638 Value *RHS, const Twine &Name, bool UseSelect) { 8639 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8640 switch (Kind) { 8641 case RecurKind::Or: 8642 if (UseSelect && 8643 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8644 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8645 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8646 Name); 8647 case RecurKind::And: 8648 if (UseSelect && 8649 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8650 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8651 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8652 Name); 8653 case RecurKind::Add: 8654 case RecurKind::Mul: 8655 case RecurKind::Xor: 8656 case RecurKind::FAdd: 8657 case RecurKind::FMul: 8658 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8659 Name); 8660 case RecurKind::FMax: 8661 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8662 case RecurKind::FMin: 8663 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8664 case RecurKind::SMax: 8665 if (UseSelect) { 8666 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8667 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8668 } 8669 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8670 case RecurKind::SMin: 8671 if (UseSelect) { 8672 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8673 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8674 } 8675 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8676 case RecurKind::UMax: 8677 if (UseSelect) { 8678 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8679 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8680 } 8681 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8682 case RecurKind::UMin: 8683 if (UseSelect) { 8684 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8685 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8686 } 8687 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8688 default: 8689 llvm_unreachable("Unknown reduction operation."); 8690 } 8691 } 8692 8693 /// Creates reduction operation with the current opcode with the IR flags 8694 /// from \p ReductionOps. 8695 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8696 Value *RHS, const Twine &Name, 8697 const ReductionOpsListType &ReductionOps) { 8698 bool UseSelect = ReductionOps.size() == 2 || 8699 // Logical or/and. 8700 (ReductionOps.size() == 1 && 8701 isa<SelectInst>(ReductionOps.front().front())); 8702 assert((!UseSelect || ReductionOps.size() != 2 || 8703 isa<SelectInst>(ReductionOps[1][0])) && 8704 "Expected cmp + select pairs for reduction"); 8705 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8706 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8707 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8708 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8709 propagateIRFlags(Op, ReductionOps[1]); 8710 return Op; 8711 } 8712 } 8713 propagateIRFlags(Op, ReductionOps[0]); 8714 return Op; 8715 } 8716 8717 /// Creates reduction operation with the current opcode with the IR flags 8718 /// from \p I. 8719 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8720 Value *RHS, const Twine &Name, Instruction *I) { 8721 auto *SelI = dyn_cast<SelectInst>(I); 8722 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8723 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8724 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8725 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8726 } 8727 propagateIRFlags(Op, I); 8728 return Op; 8729 } 8730 8731 static RecurKind getRdxKind(Instruction *I) { 8732 assert(I && "Expected instruction for reduction matching"); 8733 if (match(I, m_Add(m_Value(), m_Value()))) 8734 return RecurKind::Add; 8735 if (match(I, m_Mul(m_Value(), m_Value()))) 8736 return RecurKind::Mul; 8737 if (match(I, m_And(m_Value(), m_Value())) || 8738 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8739 return RecurKind::And; 8740 if (match(I, m_Or(m_Value(), m_Value())) || 8741 match(I, m_LogicalOr(m_Value(), m_Value()))) 8742 return RecurKind::Or; 8743 if (match(I, m_Xor(m_Value(), m_Value()))) 8744 return RecurKind::Xor; 8745 if (match(I, m_FAdd(m_Value(), m_Value()))) 8746 return RecurKind::FAdd; 8747 if (match(I, m_FMul(m_Value(), m_Value()))) 8748 return RecurKind::FMul; 8749 8750 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8751 return RecurKind::FMax; 8752 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8753 return RecurKind::FMin; 8754 8755 // This matches either cmp+select or intrinsics. SLP is expected to handle 8756 // either form. 8757 // TODO: If we are canonicalizing to intrinsics, we can remove several 8758 // special-case paths that deal with selects. 8759 if (match(I, m_SMax(m_Value(), m_Value()))) 8760 return RecurKind::SMax; 8761 if (match(I, m_SMin(m_Value(), m_Value()))) 8762 return RecurKind::SMin; 8763 if (match(I, m_UMax(m_Value(), m_Value()))) 8764 return RecurKind::UMax; 8765 if (match(I, m_UMin(m_Value(), m_Value()))) 8766 return RecurKind::UMin; 8767 8768 if (auto *Select = dyn_cast<SelectInst>(I)) { 8769 // Try harder: look for min/max pattern based on instructions producing 8770 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8771 // During the intermediate stages of SLP, it's very common to have 8772 // pattern like this (since optimizeGatherSequence is run only once 8773 // at the end): 8774 // %1 = extractelement <2 x i32> %a, i32 0 8775 // %2 = extractelement <2 x i32> %a, i32 1 8776 // %cond = icmp sgt i32 %1, %2 8777 // %3 = extractelement <2 x i32> %a, i32 0 8778 // %4 = extractelement <2 x i32> %a, i32 1 8779 // %select = select i1 %cond, i32 %3, i32 %4 8780 CmpInst::Predicate Pred; 8781 Instruction *L1; 8782 Instruction *L2; 8783 8784 Value *LHS = Select->getTrueValue(); 8785 Value *RHS = Select->getFalseValue(); 8786 Value *Cond = Select->getCondition(); 8787 8788 // TODO: Support inverse predicates. 8789 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8790 if (!isa<ExtractElementInst>(RHS) || 8791 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8792 return RecurKind::None; 8793 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8794 if (!isa<ExtractElementInst>(LHS) || 8795 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8796 return RecurKind::None; 8797 } else { 8798 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8799 return RecurKind::None; 8800 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8801 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8802 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8803 return RecurKind::None; 8804 } 8805 8806 switch (Pred) { 8807 default: 8808 return RecurKind::None; 8809 case CmpInst::ICMP_SGT: 8810 case CmpInst::ICMP_SGE: 8811 return RecurKind::SMax; 8812 case CmpInst::ICMP_SLT: 8813 case CmpInst::ICMP_SLE: 8814 return RecurKind::SMin; 8815 case CmpInst::ICMP_UGT: 8816 case CmpInst::ICMP_UGE: 8817 return RecurKind::UMax; 8818 case CmpInst::ICMP_ULT: 8819 case CmpInst::ICMP_ULE: 8820 return RecurKind::UMin; 8821 } 8822 } 8823 return RecurKind::None; 8824 } 8825 8826 /// Get the index of the first operand. 8827 static unsigned getFirstOperandIndex(Instruction *I) { 8828 return isCmpSelMinMax(I) ? 1 : 0; 8829 } 8830 8831 /// Total number of operands in the reduction operation. 8832 static unsigned getNumberOfOperands(Instruction *I) { 8833 return isCmpSelMinMax(I) ? 3 : 2; 8834 } 8835 8836 /// Checks if the instruction is in basic block \p BB. 8837 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8838 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8839 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8840 auto *Sel = cast<SelectInst>(I); 8841 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8842 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8843 } 8844 return I->getParent() == BB; 8845 } 8846 8847 /// Expected number of uses for reduction operations/reduced values. 8848 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8849 if (IsCmpSelMinMax) { 8850 // SelectInst must be used twice while the condition op must have single 8851 // use only. 8852 if (auto *Sel = dyn_cast<SelectInst>(I)) 8853 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8854 return I->hasNUses(2); 8855 } 8856 8857 // Arithmetic reduction operation must be used once only. 8858 return I->hasOneUse(); 8859 } 8860 8861 /// Initializes the list of reduction operations. 8862 void initReductionOps(Instruction *I) { 8863 if (isCmpSelMinMax(I)) 8864 ReductionOps.assign(2, ReductionOpsType()); 8865 else 8866 ReductionOps.assign(1, ReductionOpsType()); 8867 } 8868 8869 /// Add all reduction operations for the reduction instruction \p I. 8870 void addReductionOps(Instruction *I) { 8871 if (isCmpSelMinMax(I)) { 8872 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8873 ReductionOps[1].emplace_back(I); 8874 } else { 8875 ReductionOps[0].emplace_back(I); 8876 } 8877 } 8878 8879 static Value *getLHS(RecurKind Kind, Instruction *I) { 8880 if (Kind == RecurKind::None) 8881 return nullptr; 8882 return I->getOperand(getFirstOperandIndex(I)); 8883 } 8884 static Value *getRHS(RecurKind Kind, Instruction *I) { 8885 if (Kind == RecurKind::None) 8886 return nullptr; 8887 return I->getOperand(getFirstOperandIndex(I) + 1); 8888 } 8889 8890 public: 8891 HorizontalReduction() = default; 8892 8893 /// Try to find a reduction tree. 8894 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8895 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8896 "Phi needs to use the binary operator"); 8897 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8898 isa<IntrinsicInst>(Inst)) && 8899 "Expected binop, select, or intrinsic for reduction matching"); 8900 RdxKind = getRdxKind(Inst); 8901 8902 // We could have a initial reductions that is not an add. 8903 // r *= v1 + v2 + v3 + v4 8904 // In such a case start looking for a tree rooted in the first '+'. 8905 if (Phi) { 8906 if (getLHS(RdxKind, Inst) == Phi) { 8907 Phi = nullptr; 8908 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8909 if (!Inst) 8910 return false; 8911 RdxKind = getRdxKind(Inst); 8912 } else if (getRHS(RdxKind, Inst) == Phi) { 8913 Phi = nullptr; 8914 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8915 if (!Inst) 8916 return false; 8917 RdxKind = getRdxKind(Inst); 8918 } 8919 } 8920 8921 if (!isVectorizable(RdxKind, Inst)) 8922 return false; 8923 8924 // Analyze "regular" integer/FP types for reductions - no target-specific 8925 // types or pointers. 8926 Type *Ty = Inst->getType(); 8927 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8928 return false; 8929 8930 // Though the ultimate reduction may have multiple uses, its condition must 8931 // have only single use. 8932 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8933 if (!Sel->getCondition()->hasOneUse()) 8934 return false; 8935 8936 ReductionRoot = Inst; 8937 8938 // The opcode for leaf values that we perform a reduction on. 8939 // For example: load(x) + load(y) + load(z) + fptoui(w) 8940 // The leaf opcode for 'w' does not match, so we don't include it as a 8941 // potential candidate for the reduction. 8942 unsigned LeafOpcode = 0; 8943 8944 // Post-order traverse the reduction tree starting at Inst. We only handle 8945 // true trees containing binary operators or selects. 8946 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8947 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8948 initReductionOps(Inst); 8949 while (!Stack.empty()) { 8950 Instruction *TreeN = Stack.back().first; 8951 unsigned EdgeToVisit = Stack.back().second++; 8952 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8953 bool IsReducedValue = TreeRdxKind != RdxKind; 8954 8955 // Postorder visit. 8956 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8957 if (IsReducedValue) 8958 ReducedVals.push_back(TreeN); 8959 else { 8960 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8961 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8962 // Check if TreeN is an extra argument of its parent operation. 8963 if (Stack.size() <= 1) { 8964 // TreeN can't be an extra argument as it is a root reduction 8965 // operation. 8966 return false; 8967 } 8968 // Yes, TreeN is an extra argument, do not add it to a list of 8969 // reduction operations. 8970 // Stack[Stack.size() - 2] always points to the parent operation. 8971 markExtraArg(Stack[Stack.size() - 2], TreeN); 8972 ExtraArgs.erase(TreeN); 8973 } else 8974 addReductionOps(TreeN); 8975 } 8976 // Retract. 8977 Stack.pop_back(); 8978 continue; 8979 } 8980 8981 // Visit operands. 8982 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8983 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8984 if (!EdgeInst) { 8985 // Edge value is not a reduction instruction or a leaf instruction. 8986 // (It may be a constant, function argument, or something else.) 8987 markExtraArg(Stack.back(), EdgeVal); 8988 continue; 8989 } 8990 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8991 // Continue analysis if the next operand is a reduction operation or 8992 // (possibly) a leaf value. If the leaf value opcode is not set, 8993 // the first met operation != reduction operation is considered as the 8994 // leaf opcode. 8995 // Only handle trees in the current basic block. 8996 // Each tree node needs to have minimal number of users except for the 8997 // ultimate reduction. 8998 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8999 if (EdgeInst != Phi && EdgeInst != Inst && 9000 hasSameParent(EdgeInst, Inst->getParent()) && 9001 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9002 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9003 if (IsRdxInst) { 9004 // We need to be able to reassociate the reduction operations. 9005 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9006 // I is an extra argument for TreeN (its parent operation). 9007 markExtraArg(Stack.back(), EdgeInst); 9008 continue; 9009 } 9010 } else if (!LeafOpcode) { 9011 LeafOpcode = EdgeInst->getOpcode(); 9012 } 9013 Stack.push_back( 9014 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9015 continue; 9016 } 9017 // I is an extra argument for TreeN (its parent operation). 9018 markExtraArg(Stack.back(), EdgeInst); 9019 } 9020 return true; 9021 } 9022 9023 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9024 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9025 // If there are a sufficient number of reduction values, reduce 9026 // to a nearby power-of-2. We can safely generate oversized 9027 // vectors and rely on the backend to split them to legal sizes. 9028 unsigned NumReducedVals = ReducedVals.size(); 9029 if (NumReducedVals < 4) 9030 return nullptr; 9031 9032 // Intersect the fast-math-flags from all reduction operations. 9033 FastMathFlags RdxFMF; 9034 RdxFMF.set(); 9035 for (ReductionOpsType &RdxOp : ReductionOps) { 9036 for (Value *RdxVal : RdxOp) { 9037 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9038 RdxFMF &= FPMO->getFastMathFlags(); 9039 } 9040 } 9041 9042 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9043 Builder.setFastMathFlags(RdxFMF); 9044 9045 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9046 // The same extra argument may be used several times, so log each attempt 9047 // to use it. 9048 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9049 assert(Pair.first && "DebugLoc must be set."); 9050 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9051 } 9052 9053 // The compare instruction of a min/max is the insertion point for new 9054 // instructions and may be replaced with a new compare instruction. 9055 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9056 assert(isa<SelectInst>(RdxRootInst) && 9057 "Expected min/max reduction to have select root instruction"); 9058 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9059 assert(isa<Instruction>(ScalarCond) && 9060 "Expected min/max reduction to have compare condition"); 9061 return cast<Instruction>(ScalarCond); 9062 }; 9063 9064 // The reduction root is used as the insertion point for new instructions, 9065 // so set it as externally used to prevent it from being deleted. 9066 ExternallyUsedValues[ReductionRoot]; 9067 SmallVector<Value *, 16> IgnoreList; 9068 for (ReductionOpsType &RdxOp : ReductionOps) 9069 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9070 9071 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9072 if (NumReducedVals > ReduxWidth) { 9073 // In the loop below, we are building a tree based on a window of 9074 // 'ReduxWidth' values. 9075 // If the operands of those values have common traits (compare predicate, 9076 // constant operand, etc), then we want to group those together to 9077 // minimize the cost of the reduction. 9078 9079 // TODO: This should be extended to count common operands for 9080 // compares and binops. 9081 9082 // Step 1: Count the number of times each compare predicate occurs. 9083 SmallDenseMap<unsigned, unsigned> PredCountMap; 9084 for (Value *RdxVal : ReducedVals) { 9085 CmpInst::Predicate Pred; 9086 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9087 ++PredCountMap[Pred]; 9088 } 9089 // Step 2: Sort the values so the most common predicates come first. 9090 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9091 CmpInst::Predicate PredA, PredB; 9092 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9093 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9094 return PredCountMap[PredA] > PredCountMap[PredB]; 9095 } 9096 return false; 9097 }); 9098 } 9099 9100 Value *VectorizedTree = nullptr; 9101 unsigned i = 0; 9102 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9103 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9104 V.buildTree(VL, IgnoreList); 9105 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9106 break; 9107 if (V.isLoadCombineReductionCandidate(RdxKind)) 9108 break; 9109 V.reorderTopToBottom(); 9110 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9111 V.buildExternalUses(ExternallyUsedValues); 9112 9113 // For a poison-safe boolean logic reduction, do not replace select 9114 // instructions with logic ops. All reduced values will be frozen (see 9115 // below) to prevent leaking poison. 9116 if (isa<SelectInst>(ReductionRoot) && 9117 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9118 NumReducedVals != ReduxWidth) 9119 break; 9120 9121 V.computeMinimumValueSizes(); 9122 9123 // Estimate cost. 9124 InstructionCost TreeCost = 9125 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9126 InstructionCost ReductionCost = 9127 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9128 InstructionCost Cost = TreeCost + ReductionCost; 9129 if (!Cost.isValid()) { 9130 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9131 return nullptr; 9132 } 9133 if (Cost >= -SLPCostThreshold) { 9134 V.getORE()->emit([&]() { 9135 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9136 cast<Instruction>(VL[0])) 9137 << "Vectorizing horizontal reduction is possible" 9138 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9139 << " and threshold " 9140 << ore::NV("Threshold", -SLPCostThreshold); 9141 }); 9142 break; 9143 } 9144 9145 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9146 << Cost << ". (HorRdx)\n"); 9147 V.getORE()->emit([&]() { 9148 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9149 cast<Instruction>(VL[0])) 9150 << "Vectorized horizontal reduction with cost " 9151 << ore::NV("Cost", Cost) << " and with tree size " 9152 << ore::NV("TreeSize", V.getTreeSize()); 9153 }); 9154 9155 // Vectorize a tree. 9156 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9157 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9158 9159 // Emit a reduction. If the root is a select (min/max idiom), the insert 9160 // point is the compare condition of that select. 9161 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9162 if (isCmpSelMinMax(RdxRootInst)) 9163 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9164 else 9165 Builder.SetInsertPoint(RdxRootInst); 9166 9167 // To prevent poison from leaking across what used to be sequential, safe, 9168 // scalar boolean logic operations, the reduction operand must be frozen. 9169 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9170 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9171 9172 Value *ReducedSubTree = 9173 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9174 9175 if (!VectorizedTree) { 9176 // Initialize the final value in the reduction. 9177 VectorizedTree = ReducedSubTree; 9178 } else { 9179 // Update the final value in the reduction. 9180 Builder.SetCurrentDebugLocation(Loc); 9181 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9182 ReducedSubTree, "op.rdx", ReductionOps); 9183 } 9184 i += ReduxWidth; 9185 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9186 } 9187 9188 if (VectorizedTree) { 9189 // Finish the reduction. 9190 for (; i < NumReducedVals; ++i) { 9191 auto *I = cast<Instruction>(ReducedVals[i]); 9192 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9193 VectorizedTree = 9194 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9195 } 9196 for (auto &Pair : ExternallyUsedValues) { 9197 // Add each externally used value to the final reduction. 9198 for (auto *I : Pair.second) { 9199 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9200 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9201 Pair.first, "op.extra", I); 9202 } 9203 } 9204 9205 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9206 9207 // Mark all scalar reduction ops for deletion, they are replaced by the 9208 // vector reductions. 9209 V.eraseInstructions(IgnoreList); 9210 } 9211 return VectorizedTree; 9212 } 9213 9214 unsigned numReductionValues() const { return ReducedVals.size(); } 9215 9216 private: 9217 /// Calculate the cost of a reduction. 9218 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9219 Value *FirstReducedVal, unsigned ReduxWidth, 9220 FastMathFlags FMF) { 9221 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9222 Type *ScalarTy = FirstReducedVal->getType(); 9223 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9224 InstructionCost VectorCost, ScalarCost; 9225 switch (RdxKind) { 9226 case RecurKind::Add: 9227 case RecurKind::Mul: 9228 case RecurKind::Or: 9229 case RecurKind::And: 9230 case RecurKind::Xor: 9231 case RecurKind::FAdd: 9232 case RecurKind::FMul: { 9233 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9234 VectorCost = 9235 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9236 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9237 break; 9238 } 9239 case RecurKind::FMax: 9240 case RecurKind::FMin: { 9241 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9242 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9243 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9244 /*IsUnsigned=*/false, CostKind); 9245 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9246 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9247 SclCondTy, RdxPred, CostKind) + 9248 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9249 SclCondTy, RdxPred, CostKind); 9250 break; 9251 } 9252 case RecurKind::SMax: 9253 case RecurKind::SMin: 9254 case RecurKind::UMax: 9255 case RecurKind::UMin: { 9256 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9257 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9258 bool IsUnsigned = 9259 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9260 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9261 CostKind); 9262 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9263 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9264 SclCondTy, RdxPred, CostKind) + 9265 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9266 SclCondTy, RdxPred, CostKind); 9267 break; 9268 } 9269 default: 9270 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9271 } 9272 9273 // Scalar cost is repeated for N-1 elements. 9274 ScalarCost *= (ReduxWidth - 1); 9275 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9276 << " for reduction that starts with " << *FirstReducedVal 9277 << " (It is a splitting reduction)\n"); 9278 return VectorCost - ScalarCost; 9279 } 9280 9281 /// Emit a horizontal reduction of the vectorized value. 9282 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9283 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9284 assert(VectorizedValue && "Need to have a vectorized tree node"); 9285 assert(isPowerOf2_32(ReduxWidth) && 9286 "We only handle power-of-two reductions for now"); 9287 assert(RdxKind != RecurKind::FMulAdd && 9288 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9289 9290 ++NumVectorInstructions; 9291 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9292 } 9293 }; 9294 9295 } // end anonymous namespace 9296 9297 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9298 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9299 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9300 9301 unsigned AggregateSize = 1; 9302 auto *IV = cast<InsertValueInst>(InsertInst); 9303 Type *CurrentType = IV->getType(); 9304 do { 9305 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9306 for (auto *Elt : ST->elements()) 9307 if (Elt != ST->getElementType(0)) // check homogeneity 9308 return None; 9309 AggregateSize *= ST->getNumElements(); 9310 CurrentType = ST->getElementType(0); 9311 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9312 AggregateSize *= AT->getNumElements(); 9313 CurrentType = AT->getElementType(); 9314 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9315 AggregateSize *= VT->getNumElements(); 9316 return AggregateSize; 9317 } else if (CurrentType->isSingleValueType()) { 9318 return AggregateSize; 9319 } else { 9320 return None; 9321 } 9322 } while (true); 9323 } 9324 9325 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9326 TargetTransformInfo *TTI, 9327 SmallVectorImpl<Value *> &BuildVectorOpds, 9328 SmallVectorImpl<Value *> &InsertElts, 9329 unsigned OperandOffset) { 9330 do { 9331 Value *InsertedOperand = LastInsertInst->getOperand(1); 9332 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9333 if (!OperandIndex) 9334 return false; 9335 if (isa<InsertElementInst>(InsertedOperand) || 9336 isa<InsertValueInst>(InsertedOperand)) { 9337 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9338 BuildVectorOpds, InsertElts, *OperandIndex)) 9339 return false; 9340 } else { 9341 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9342 InsertElts[*OperandIndex] = LastInsertInst; 9343 } 9344 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9345 } while (LastInsertInst != nullptr && 9346 (isa<InsertValueInst>(LastInsertInst) || 9347 isa<InsertElementInst>(LastInsertInst)) && 9348 LastInsertInst->hasOneUse()); 9349 return true; 9350 } 9351 9352 /// Recognize construction of vectors like 9353 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9354 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9355 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9356 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9357 /// starting from the last insertelement or insertvalue instruction. 9358 /// 9359 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9360 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9361 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9362 /// 9363 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9364 /// 9365 /// \return true if it matches. 9366 static bool findBuildAggregate(Instruction *LastInsertInst, 9367 TargetTransformInfo *TTI, 9368 SmallVectorImpl<Value *> &BuildVectorOpds, 9369 SmallVectorImpl<Value *> &InsertElts) { 9370 9371 assert((isa<InsertElementInst>(LastInsertInst) || 9372 isa<InsertValueInst>(LastInsertInst)) && 9373 "Expected insertelement or insertvalue instruction!"); 9374 9375 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9376 "Expected empty result vectors!"); 9377 9378 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9379 if (!AggregateSize) 9380 return false; 9381 BuildVectorOpds.resize(*AggregateSize); 9382 InsertElts.resize(*AggregateSize); 9383 9384 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9385 0)) { 9386 llvm::erase_value(BuildVectorOpds, nullptr); 9387 llvm::erase_value(InsertElts, nullptr); 9388 if (BuildVectorOpds.size() >= 2) 9389 return true; 9390 } 9391 9392 return false; 9393 } 9394 9395 /// Try and get a reduction value from a phi node. 9396 /// 9397 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9398 /// if they come from either \p ParentBB or a containing loop latch. 9399 /// 9400 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9401 /// if not possible. 9402 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9403 BasicBlock *ParentBB, LoopInfo *LI) { 9404 // There are situations where the reduction value is not dominated by the 9405 // reduction phi. Vectorizing such cases has been reported to cause 9406 // miscompiles. See PR25787. 9407 auto DominatedReduxValue = [&](Value *R) { 9408 return isa<Instruction>(R) && 9409 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9410 }; 9411 9412 Value *Rdx = nullptr; 9413 9414 // Return the incoming value if it comes from the same BB as the phi node. 9415 if (P->getIncomingBlock(0) == ParentBB) { 9416 Rdx = P->getIncomingValue(0); 9417 } else if (P->getIncomingBlock(1) == ParentBB) { 9418 Rdx = P->getIncomingValue(1); 9419 } 9420 9421 if (Rdx && DominatedReduxValue(Rdx)) 9422 return Rdx; 9423 9424 // Otherwise, check whether we have a loop latch to look at. 9425 Loop *BBL = LI->getLoopFor(ParentBB); 9426 if (!BBL) 9427 return nullptr; 9428 BasicBlock *BBLatch = BBL->getLoopLatch(); 9429 if (!BBLatch) 9430 return nullptr; 9431 9432 // There is a loop latch, return the incoming value if it comes from 9433 // that. This reduction pattern occasionally turns up. 9434 if (P->getIncomingBlock(0) == BBLatch) { 9435 Rdx = P->getIncomingValue(0); 9436 } else if (P->getIncomingBlock(1) == BBLatch) { 9437 Rdx = P->getIncomingValue(1); 9438 } 9439 9440 if (Rdx && DominatedReduxValue(Rdx)) 9441 return Rdx; 9442 9443 return nullptr; 9444 } 9445 9446 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9447 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9448 return true; 9449 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9450 return true; 9451 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9452 return true; 9453 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9454 return true; 9455 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9456 return true; 9457 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9458 return true; 9459 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9460 return true; 9461 return false; 9462 } 9463 9464 /// Attempt to reduce a horizontal reduction. 9465 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9466 /// with reduction operators \a Root (or one of its operands) in a basic block 9467 /// \a BB, then check if it can be done. If horizontal reduction is not found 9468 /// and root instruction is a binary operation, vectorization of the operands is 9469 /// attempted. 9470 /// \returns true if a horizontal reduction was matched and reduced or operands 9471 /// of one of the binary instruction were vectorized. 9472 /// \returns false if a horizontal reduction was not matched (or not possible) 9473 /// or no vectorization of any binary operation feeding \a Root instruction was 9474 /// performed. 9475 static bool tryToVectorizeHorReductionOrInstOperands( 9476 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9477 TargetTransformInfo *TTI, 9478 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9479 if (!ShouldVectorizeHor) 9480 return false; 9481 9482 if (!Root) 9483 return false; 9484 9485 if (Root->getParent() != BB || isa<PHINode>(Root)) 9486 return false; 9487 // Start analysis starting from Root instruction. If horizontal reduction is 9488 // found, try to vectorize it. If it is not a horizontal reduction or 9489 // vectorization is not possible or not effective, and currently analyzed 9490 // instruction is a binary operation, try to vectorize the operands, using 9491 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9492 // the same procedure considering each operand as a possible root of the 9493 // horizontal reduction. 9494 // Interrupt the process if the Root instruction itself was vectorized or all 9495 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9496 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9497 // CmpInsts so we can skip extra attempts in 9498 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9499 std::queue<std::pair<Instruction *, unsigned>> Stack; 9500 Stack.emplace(Root, 0); 9501 SmallPtrSet<Value *, 8> VisitedInstrs; 9502 SmallVector<WeakTrackingVH> PostponedInsts; 9503 bool Res = false; 9504 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9505 Value *&B1) -> Value * { 9506 bool IsBinop = matchRdxBop(Inst, B0, B1); 9507 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9508 if (IsBinop || IsSelect) { 9509 HorizontalReduction HorRdx; 9510 if (HorRdx.matchAssociativeReduction(P, Inst)) 9511 return HorRdx.tryToReduce(R, TTI); 9512 } 9513 return nullptr; 9514 }; 9515 while (!Stack.empty()) { 9516 Instruction *Inst; 9517 unsigned Level; 9518 std::tie(Inst, Level) = Stack.front(); 9519 Stack.pop(); 9520 // Do not try to analyze instruction that has already been vectorized. 9521 // This may happen when we vectorize instruction operands on a previous 9522 // iteration while stack was populated before that happened. 9523 if (R.isDeleted(Inst)) 9524 continue; 9525 Value *B0 = nullptr, *B1 = nullptr; 9526 if (Value *V = TryToReduce(Inst, B0, B1)) { 9527 Res = true; 9528 // Set P to nullptr to avoid re-analysis of phi node in 9529 // matchAssociativeReduction function unless this is the root node. 9530 P = nullptr; 9531 if (auto *I = dyn_cast<Instruction>(V)) { 9532 // Try to find another reduction. 9533 Stack.emplace(I, Level); 9534 continue; 9535 } 9536 } else { 9537 bool IsBinop = B0 && B1; 9538 if (P && IsBinop) { 9539 Inst = dyn_cast<Instruction>(B0); 9540 if (Inst == P) 9541 Inst = dyn_cast<Instruction>(B1); 9542 if (!Inst) { 9543 // Set P to nullptr to avoid re-analysis of phi node in 9544 // matchAssociativeReduction function unless this is the root node. 9545 P = nullptr; 9546 continue; 9547 } 9548 } 9549 // Set P to nullptr to avoid re-analysis of phi node in 9550 // matchAssociativeReduction function unless this is the root node. 9551 P = nullptr; 9552 // Do not try to vectorize CmpInst operands, this is done separately. 9553 // Final attempt for binop args vectorization should happen after the loop 9554 // to try to find reductions. 9555 if (!isa<CmpInst>(Inst)) 9556 PostponedInsts.push_back(Inst); 9557 } 9558 9559 // Try to vectorize operands. 9560 // Continue analysis for the instruction from the same basic block only to 9561 // save compile time. 9562 if (++Level < RecursionMaxDepth) 9563 for (auto *Op : Inst->operand_values()) 9564 if (VisitedInstrs.insert(Op).second) 9565 if (auto *I = dyn_cast<Instruction>(Op)) 9566 // Do not try to vectorize CmpInst operands, this is done 9567 // separately. 9568 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9569 I->getParent() == BB) 9570 Stack.emplace(I, Level); 9571 } 9572 // Try to vectorized binops where reductions were not found. 9573 for (Value *V : PostponedInsts) 9574 if (auto *Inst = dyn_cast<Instruction>(V)) 9575 if (!R.isDeleted(Inst)) 9576 Res |= Vectorize(Inst, R); 9577 return Res; 9578 } 9579 9580 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9581 BasicBlock *BB, BoUpSLP &R, 9582 TargetTransformInfo *TTI) { 9583 auto *I = dyn_cast_or_null<Instruction>(V); 9584 if (!I) 9585 return false; 9586 9587 if (!isa<BinaryOperator>(I)) 9588 P = nullptr; 9589 // Try to match and vectorize a horizontal reduction. 9590 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9591 return tryToVectorize(I, R); 9592 }; 9593 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9594 ExtraVectorization); 9595 } 9596 9597 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9598 BasicBlock *BB, BoUpSLP &R) { 9599 const DataLayout &DL = BB->getModule()->getDataLayout(); 9600 if (!R.canMapToVector(IVI->getType(), DL)) 9601 return false; 9602 9603 SmallVector<Value *, 16> BuildVectorOpds; 9604 SmallVector<Value *, 16> BuildVectorInsts; 9605 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9606 return false; 9607 9608 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9609 // Aggregate value is unlikely to be processed in vector register. 9610 return tryToVectorizeList(BuildVectorOpds, R); 9611 } 9612 9613 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9614 BasicBlock *BB, BoUpSLP &R) { 9615 SmallVector<Value *, 16> BuildVectorInsts; 9616 SmallVector<Value *, 16> BuildVectorOpds; 9617 SmallVector<int> Mask; 9618 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9619 (llvm::all_of( 9620 BuildVectorOpds, 9621 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9622 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9623 return false; 9624 9625 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9626 return tryToVectorizeList(BuildVectorInsts, R); 9627 } 9628 9629 template <typename T> 9630 static bool 9631 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9632 function_ref<unsigned(T *)> Limit, 9633 function_ref<bool(T *, T *)> Comparator, 9634 function_ref<bool(T *, T *)> AreCompatible, 9635 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9636 bool LimitForRegisterSize) { 9637 bool Changed = false; 9638 // Sort by type, parent, operands. 9639 stable_sort(Incoming, Comparator); 9640 9641 // Try to vectorize elements base on their type. 9642 SmallVector<T *> Candidates; 9643 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9644 // Look for the next elements with the same type, parent and operand 9645 // kinds. 9646 auto *SameTypeIt = IncIt; 9647 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9648 ++SameTypeIt; 9649 9650 // Try to vectorize them. 9651 unsigned NumElts = (SameTypeIt - IncIt); 9652 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9653 << NumElts << ")\n"); 9654 // The vectorization is a 3-state attempt: 9655 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9656 // size of maximal register at first. 9657 // 2. Try to vectorize remaining instructions with the same type, if 9658 // possible. This may result in the better vectorization results rather than 9659 // if we try just to vectorize instructions with the same/alternate opcodes. 9660 // 3. Final attempt to try to vectorize all instructions with the 9661 // same/alternate ops only, this may result in some extra final 9662 // vectorization. 9663 if (NumElts > 1 && 9664 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9665 // Success start over because instructions might have been changed. 9666 Changed = true; 9667 } else if (NumElts < Limit(*IncIt) && 9668 (Candidates.empty() || 9669 Candidates.front()->getType() == (*IncIt)->getType())) { 9670 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9671 } 9672 // Final attempt to vectorize instructions with the same types. 9673 if (Candidates.size() > 1 && 9674 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9675 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9676 // Success start over because instructions might have been changed. 9677 Changed = true; 9678 } else if (LimitForRegisterSize) { 9679 // Try to vectorize using small vectors. 9680 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9681 It != End;) { 9682 auto *SameTypeIt = It; 9683 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9684 ++SameTypeIt; 9685 unsigned NumElts = (SameTypeIt - It); 9686 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9687 /*LimitForRegisterSize=*/false)) 9688 Changed = true; 9689 It = SameTypeIt; 9690 } 9691 } 9692 Candidates.clear(); 9693 } 9694 9695 // Start over at the next instruction of a different type (or the end). 9696 IncIt = SameTypeIt; 9697 } 9698 return Changed; 9699 } 9700 9701 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9702 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9703 /// operands. If IsCompatibility is false, function implements strict weak 9704 /// ordering relation between two cmp instructions, returning true if the first 9705 /// instruction is "less" than the second, i.e. its predicate is less than the 9706 /// predicate of the second or the operands IDs are less than the operands IDs 9707 /// of the second cmp instruction. 9708 template <bool IsCompatibility> 9709 static bool compareCmp(Value *V, Value *V2, 9710 function_ref<bool(Instruction *)> IsDeleted) { 9711 auto *CI1 = cast<CmpInst>(V); 9712 auto *CI2 = cast<CmpInst>(V2); 9713 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9714 return false; 9715 if (CI1->getOperand(0)->getType()->getTypeID() < 9716 CI2->getOperand(0)->getType()->getTypeID()) 9717 return !IsCompatibility; 9718 if (CI1->getOperand(0)->getType()->getTypeID() > 9719 CI2->getOperand(0)->getType()->getTypeID()) 9720 return false; 9721 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9722 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9723 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9724 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9725 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9726 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9727 if (BasePred1 < BasePred2) 9728 return !IsCompatibility; 9729 if (BasePred1 > BasePred2) 9730 return false; 9731 // Compare operands. 9732 bool LEPreds = Pred1 <= Pred2; 9733 bool GEPreds = Pred1 >= Pred2; 9734 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9735 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9736 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9737 if (Op1->getValueID() < Op2->getValueID()) 9738 return !IsCompatibility; 9739 if (Op1->getValueID() > Op2->getValueID()) 9740 return false; 9741 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9742 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9743 if (I1->getParent() != I2->getParent()) 9744 return false; 9745 InstructionsState S = getSameOpcode({I1, I2}); 9746 if (S.getOpcode()) 9747 continue; 9748 return false; 9749 } 9750 } 9751 return IsCompatibility; 9752 } 9753 9754 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9755 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9756 bool AtTerminator) { 9757 bool OpsChanged = false; 9758 SmallVector<Instruction *, 4> PostponedCmps; 9759 for (auto *I : reverse(Instructions)) { 9760 if (R.isDeleted(I)) 9761 continue; 9762 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9763 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9764 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9765 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9766 else if (isa<CmpInst>(I)) 9767 PostponedCmps.push_back(I); 9768 } 9769 if (AtTerminator) { 9770 // Try to find reductions first. 9771 for (Instruction *I : PostponedCmps) { 9772 if (R.isDeleted(I)) 9773 continue; 9774 for (Value *Op : I->operands()) 9775 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9776 } 9777 // Try to vectorize operands as vector bundles. 9778 for (Instruction *I : PostponedCmps) { 9779 if (R.isDeleted(I)) 9780 continue; 9781 OpsChanged |= tryToVectorize(I, R); 9782 } 9783 // Try to vectorize list of compares. 9784 // Sort by type, compare predicate, etc. 9785 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9786 return compareCmp<false>(V, V2, 9787 [&R](Instruction *I) { return R.isDeleted(I); }); 9788 }; 9789 9790 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9791 if (V1 == V2) 9792 return true; 9793 return compareCmp<true>(V1, V2, 9794 [&R](Instruction *I) { return R.isDeleted(I); }); 9795 }; 9796 auto Limit = [&R](Value *V) { 9797 unsigned EltSize = R.getVectorElementSize(V); 9798 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9799 }; 9800 9801 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9802 OpsChanged |= tryToVectorizeSequence<Value>( 9803 Vals, Limit, CompareSorter, AreCompatibleCompares, 9804 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9805 // Exclude possible reductions from other blocks. 9806 bool ArePossiblyReducedInOtherBlock = 9807 any_of(Candidates, [](Value *V) { 9808 return any_of(V->users(), [V](User *U) { 9809 return isa<SelectInst>(U) && 9810 cast<SelectInst>(U)->getParent() != 9811 cast<Instruction>(V)->getParent(); 9812 }); 9813 }); 9814 if (ArePossiblyReducedInOtherBlock) 9815 return false; 9816 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9817 }, 9818 /*LimitForRegisterSize=*/true); 9819 Instructions.clear(); 9820 } else { 9821 // Insert in reverse order since the PostponedCmps vector was filled in 9822 // reverse order. 9823 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9824 } 9825 return OpsChanged; 9826 } 9827 9828 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9829 bool Changed = false; 9830 SmallVector<Value *, 4> Incoming; 9831 SmallPtrSet<Value *, 16> VisitedInstrs; 9832 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9833 // node. Allows better to identify the chains that can be vectorized in the 9834 // better way. 9835 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9836 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9837 assert(isValidElementType(V1->getType()) && 9838 isValidElementType(V2->getType()) && 9839 "Expected vectorizable types only."); 9840 // It is fine to compare type IDs here, since we expect only vectorizable 9841 // types, like ints, floats and pointers, we don't care about other type. 9842 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9843 return true; 9844 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9845 return false; 9846 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9847 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9848 if (Opcodes1.size() < Opcodes2.size()) 9849 return true; 9850 if (Opcodes1.size() > Opcodes2.size()) 9851 return false; 9852 Optional<bool> ConstOrder; 9853 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9854 // Undefs are compatible with any other value. 9855 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 9856 if (!ConstOrder) 9857 ConstOrder = 9858 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 9859 continue; 9860 } 9861 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9862 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9863 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9864 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9865 if (!NodeI1) 9866 return NodeI2 != nullptr; 9867 if (!NodeI2) 9868 return false; 9869 assert((NodeI1 == NodeI2) == 9870 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9871 "Different nodes should have different DFS numbers"); 9872 if (NodeI1 != NodeI2) 9873 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9874 InstructionsState S = getSameOpcode({I1, I2}); 9875 if (S.getOpcode()) 9876 continue; 9877 return I1->getOpcode() < I2->getOpcode(); 9878 } 9879 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 9880 if (!ConstOrder) 9881 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 9882 continue; 9883 } 9884 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9885 return true; 9886 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9887 return false; 9888 } 9889 return ConstOrder && *ConstOrder; 9890 }; 9891 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9892 if (V1 == V2) 9893 return true; 9894 if (V1->getType() != V2->getType()) 9895 return false; 9896 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9897 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9898 if (Opcodes1.size() != Opcodes2.size()) 9899 return false; 9900 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9901 // Undefs are compatible with any other value. 9902 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9903 continue; 9904 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9905 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9906 if (I1->getParent() != I2->getParent()) 9907 return false; 9908 InstructionsState S = getSameOpcode({I1, I2}); 9909 if (S.getOpcode()) 9910 continue; 9911 return false; 9912 } 9913 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9914 continue; 9915 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9916 return false; 9917 } 9918 return true; 9919 }; 9920 auto Limit = [&R](Value *V) { 9921 unsigned EltSize = R.getVectorElementSize(V); 9922 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9923 }; 9924 9925 bool HaveVectorizedPhiNodes = false; 9926 do { 9927 // Collect the incoming values from the PHIs. 9928 Incoming.clear(); 9929 for (Instruction &I : *BB) { 9930 PHINode *P = dyn_cast<PHINode>(&I); 9931 if (!P) 9932 break; 9933 9934 // No need to analyze deleted, vectorized and non-vectorizable 9935 // instructions. 9936 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9937 isValidElementType(P->getType())) 9938 Incoming.push_back(P); 9939 } 9940 9941 // Find the corresponding non-phi nodes for better matching when trying to 9942 // build the tree. 9943 for (Value *V : Incoming) { 9944 SmallVectorImpl<Value *> &Opcodes = 9945 PHIToOpcodes.try_emplace(V).first->getSecond(); 9946 if (!Opcodes.empty()) 9947 continue; 9948 SmallVector<Value *, 4> Nodes(1, V); 9949 SmallPtrSet<Value *, 4> Visited; 9950 while (!Nodes.empty()) { 9951 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9952 if (!Visited.insert(PHI).second) 9953 continue; 9954 for (Value *V : PHI->incoming_values()) { 9955 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9956 Nodes.push_back(PHI1); 9957 continue; 9958 } 9959 Opcodes.emplace_back(V); 9960 } 9961 } 9962 } 9963 9964 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9965 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9966 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9967 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9968 }, 9969 /*LimitForRegisterSize=*/true); 9970 Changed |= HaveVectorizedPhiNodes; 9971 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9972 } while (HaveVectorizedPhiNodes); 9973 9974 VisitedInstrs.clear(); 9975 9976 SmallVector<Instruction *, 8> PostProcessInstructions; 9977 SmallDenseSet<Instruction *, 4> KeyNodes; 9978 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9979 // Skip instructions with scalable type. The num of elements is unknown at 9980 // compile-time for scalable type. 9981 if (isa<ScalableVectorType>(it->getType())) 9982 continue; 9983 9984 // Skip instructions marked for the deletion. 9985 if (R.isDeleted(&*it)) 9986 continue; 9987 // We may go through BB multiple times so skip the one we have checked. 9988 if (!VisitedInstrs.insert(&*it).second) { 9989 if (it->use_empty() && KeyNodes.contains(&*it) && 9990 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9991 it->isTerminator())) { 9992 // We would like to start over since some instructions are deleted 9993 // and the iterator may become invalid value. 9994 Changed = true; 9995 it = BB->begin(); 9996 e = BB->end(); 9997 } 9998 continue; 9999 } 10000 10001 if (isa<DbgInfoIntrinsic>(it)) 10002 continue; 10003 10004 // Try to vectorize reductions that use PHINodes. 10005 if (PHINode *P = dyn_cast<PHINode>(it)) { 10006 // Check that the PHI is a reduction PHI. 10007 if (P->getNumIncomingValues() == 2) { 10008 // Try to match and vectorize a horizontal reduction. 10009 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10010 TTI)) { 10011 Changed = true; 10012 it = BB->begin(); 10013 e = BB->end(); 10014 continue; 10015 } 10016 } 10017 // Try to vectorize the incoming values of the PHI, to catch reductions 10018 // that feed into PHIs. 10019 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10020 // Skip if the incoming block is the current BB for now. Also, bypass 10021 // unreachable IR for efficiency and to avoid crashing. 10022 // TODO: Collect the skipped incoming values and try to vectorize them 10023 // after processing BB. 10024 if (BB == P->getIncomingBlock(I) || 10025 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10026 continue; 10027 10028 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10029 P->getIncomingBlock(I), R, TTI); 10030 } 10031 continue; 10032 } 10033 10034 // Ran into an instruction without users, like terminator, or function call 10035 // with ignored return value, store. Ignore unused instructions (basing on 10036 // instruction type, except for CallInst and InvokeInst). 10037 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10038 isa<InvokeInst>(it))) { 10039 KeyNodes.insert(&*it); 10040 bool OpsChanged = false; 10041 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10042 for (auto *V : it->operand_values()) { 10043 // Try to match and vectorize a horizontal reduction. 10044 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10045 } 10046 } 10047 // Start vectorization of post-process list of instructions from the 10048 // top-tree instructions to try to vectorize as many instructions as 10049 // possible. 10050 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10051 it->isTerminator()); 10052 if (OpsChanged) { 10053 // We would like to start over since some instructions are deleted 10054 // and the iterator may become invalid value. 10055 Changed = true; 10056 it = BB->begin(); 10057 e = BB->end(); 10058 continue; 10059 } 10060 } 10061 10062 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10063 isa<InsertValueInst>(it)) 10064 PostProcessInstructions.push_back(&*it); 10065 } 10066 10067 return Changed; 10068 } 10069 10070 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10071 auto Changed = false; 10072 for (auto &Entry : GEPs) { 10073 // If the getelementptr list has fewer than two elements, there's nothing 10074 // to do. 10075 if (Entry.second.size() < 2) 10076 continue; 10077 10078 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10079 << Entry.second.size() << ".\n"); 10080 10081 // Process the GEP list in chunks suitable for the target's supported 10082 // vector size. If a vector register can't hold 1 element, we are done. We 10083 // are trying to vectorize the index computations, so the maximum number of 10084 // elements is based on the size of the index expression, rather than the 10085 // size of the GEP itself (the target's pointer size). 10086 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10087 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10088 if (MaxVecRegSize < EltSize) 10089 continue; 10090 10091 unsigned MaxElts = MaxVecRegSize / EltSize; 10092 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10093 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10094 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10095 10096 // Initialize a set a candidate getelementptrs. Note that we use a 10097 // SetVector here to preserve program order. If the index computations 10098 // are vectorizable and begin with loads, we want to minimize the chance 10099 // of having to reorder them later. 10100 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10101 10102 // Some of the candidates may have already been vectorized after we 10103 // initially collected them. If so, they are marked as deleted, so remove 10104 // them from the set of candidates. 10105 Candidates.remove_if( 10106 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10107 10108 // Remove from the set of candidates all pairs of getelementptrs with 10109 // constant differences. Such getelementptrs are likely not good 10110 // candidates for vectorization in a bottom-up phase since one can be 10111 // computed from the other. We also ensure all candidate getelementptr 10112 // indices are unique. 10113 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10114 auto *GEPI = GEPList[I]; 10115 if (!Candidates.count(GEPI)) 10116 continue; 10117 auto *SCEVI = SE->getSCEV(GEPList[I]); 10118 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10119 auto *GEPJ = GEPList[J]; 10120 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10121 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10122 Candidates.remove(GEPI); 10123 Candidates.remove(GEPJ); 10124 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10125 Candidates.remove(GEPJ); 10126 } 10127 } 10128 } 10129 10130 // We break out of the above computation as soon as we know there are 10131 // fewer than two candidates remaining. 10132 if (Candidates.size() < 2) 10133 continue; 10134 10135 // Add the single, non-constant index of each candidate to the bundle. We 10136 // ensured the indices met these constraints when we originally collected 10137 // the getelementptrs. 10138 SmallVector<Value *, 16> Bundle(Candidates.size()); 10139 auto BundleIndex = 0u; 10140 for (auto *V : Candidates) { 10141 auto *GEP = cast<GetElementPtrInst>(V); 10142 auto *GEPIdx = GEP->idx_begin()->get(); 10143 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10144 Bundle[BundleIndex++] = GEPIdx; 10145 } 10146 10147 // Try and vectorize the indices. We are currently only interested in 10148 // gather-like cases of the form: 10149 // 10150 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10151 // 10152 // where the loads of "a", the loads of "b", and the subtractions can be 10153 // performed in parallel. It's likely that detecting this pattern in a 10154 // bottom-up phase will be simpler and less costly than building a 10155 // full-blown top-down phase beginning at the consecutive loads. 10156 Changed |= tryToVectorizeList(Bundle, R); 10157 } 10158 } 10159 return Changed; 10160 } 10161 10162 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10163 bool Changed = false; 10164 // Sort by type, base pointers and values operand. Value operands must be 10165 // compatible (have the same opcode, same parent), otherwise it is 10166 // definitely not profitable to try to vectorize them. 10167 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10168 if (V->getPointerOperandType()->getTypeID() < 10169 V2->getPointerOperandType()->getTypeID()) 10170 return true; 10171 if (V->getPointerOperandType()->getTypeID() > 10172 V2->getPointerOperandType()->getTypeID()) 10173 return false; 10174 // UndefValues are compatible with all other values. 10175 if (isa<UndefValue>(V->getValueOperand()) || 10176 isa<UndefValue>(V2->getValueOperand())) 10177 return false; 10178 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10179 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10180 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10181 DT->getNode(I1->getParent()); 10182 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10183 DT->getNode(I2->getParent()); 10184 assert(NodeI1 && "Should only process reachable instructions"); 10185 assert(NodeI1 && "Should only process reachable instructions"); 10186 assert((NodeI1 == NodeI2) == 10187 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10188 "Different nodes should have different DFS numbers"); 10189 if (NodeI1 != NodeI2) 10190 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10191 InstructionsState S = getSameOpcode({I1, I2}); 10192 if (S.getOpcode()) 10193 return false; 10194 return I1->getOpcode() < I2->getOpcode(); 10195 } 10196 if (isa<Constant>(V->getValueOperand()) && 10197 isa<Constant>(V2->getValueOperand())) 10198 return false; 10199 return V->getValueOperand()->getValueID() < 10200 V2->getValueOperand()->getValueID(); 10201 }; 10202 10203 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10204 if (V1 == V2) 10205 return true; 10206 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10207 return false; 10208 // Undefs are compatible with any other value. 10209 if (isa<UndefValue>(V1->getValueOperand()) || 10210 isa<UndefValue>(V2->getValueOperand())) 10211 return true; 10212 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10213 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10214 if (I1->getParent() != I2->getParent()) 10215 return false; 10216 InstructionsState S = getSameOpcode({I1, I2}); 10217 return S.getOpcode() > 0; 10218 } 10219 if (isa<Constant>(V1->getValueOperand()) && 10220 isa<Constant>(V2->getValueOperand())) 10221 return true; 10222 return V1->getValueOperand()->getValueID() == 10223 V2->getValueOperand()->getValueID(); 10224 }; 10225 auto Limit = [&R, this](StoreInst *SI) { 10226 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10227 return R.getMinVF(EltSize); 10228 }; 10229 10230 // Attempt to sort and vectorize each of the store-groups. 10231 for (auto &Pair : Stores) { 10232 if (Pair.second.size() < 2) 10233 continue; 10234 10235 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10236 << Pair.second.size() << ".\n"); 10237 10238 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10239 continue; 10240 10241 Changed |= tryToVectorizeSequence<StoreInst>( 10242 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10243 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10244 return vectorizeStores(Candidates, R); 10245 }, 10246 /*LimitForRegisterSize=*/false); 10247 } 10248 return Changed; 10249 } 10250 10251 char SLPVectorizer::ID = 0; 10252 10253 static const char lv_name[] = "SLP Vectorizer"; 10254 10255 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10256 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10257 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10259 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10260 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10261 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10262 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10263 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10264 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10265 10266 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10267