1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/ValueTracking.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 201 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // This flag enables the stress testing of the VPlan H-CFG construction in the 348 // VPlan-native vectorization path. It must be used in conjuction with 349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 350 // verification of the H-CFGs built. 351 static cl::opt<bool> VPlanBuildStressTest( 352 "vplan-build-stress-test", cl::init(false), cl::Hidden, 353 cl::desc( 354 "Build VPlan for every supported loop nest in the function and bail " 355 "out right after the build (stress test the VPlan H-CFG construction " 356 "in the VPlan-native vectorization path).")); 357 358 cl::opt<bool> llvm::EnableLoopInterleaving( 359 "interleave-loops", cl::init(true), cl::Hidden, 360 cl::desc("Enable loop interleaving in Loop vectorization passes")); 361 cl::opt<bool> llvm::EnableLoopVectorization( 362 "vectorize-loops", cl::init(true), cl::Hidden, 363 cl::desc("Run the Loop vectorization passes")); 364 365 cl::opt<bool> PrintVPlansInDotFormat( 366 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 367 cl::desc("Use dot format instead of plain text when dumping VPlans")); 368 369 /// A helper function that returns true if the given type is irregular. The 370 /// type is irregular if its allocated size doesn't equal the store size of an 371 /// element of the corresponding vector type. 372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 373 // Determine if an array of N elements of type Ty is "bitcast compatible" 374 // with a <N x Ty> vector. 375 // This is only true if there is no padding between the array elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 // Forward declare GeneratedRTChecks. 418 class GeneratedRTChecks; 419 420 namespace llvm { 421 422 AnalysisKey ShouldRunExtraVectorPasses::Key; 423 424 /// InnerLoopVectorizer vectorizes loops which contain only one basic 425 /// block to a specified vectorization factor (VF). 426 /// This class performs the widening of scalars into vectors, or multiple 427 /// scalars. This class also implements the following features: 428 /// * It inserts an epilogue loop for handling loops that don't have iteration 429 /// counts that are known to be a multiple of the vectorization factor. 430 /// * It handles the code generation for reduction variables. 431 /// * Scalarization (implementation using scalars) of un-vectorizable 432 /// instructions. 433 /// InnerLoopVectorizer does not perform any vectorization-legality 434 /// checks, and relies on the caller to check for the different legality 435 /// aspects. The InnerLoopVectorizer relies on the 436 /// LoopVectorizationLegality class to provide information about the induction 437 /// and reduction variables that were found to a given vectorization factor. 438 class InnerLoopVectorizer { 439 public: 440 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 441 LoopInfo *LI, DominatorTree *DT, 442 const TargetLibraryInfo *TLI, 443 const TargetTransformInfo *TTI, AssumptionCache *AC, 444 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 445 ElementCount MinProfitableTripCount, 446 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 447 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 448 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 449 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 450 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 451 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 452 PSI(PSI), RTChecks(RTChecks) { 453 // Query this against the original loop and save it here because the profile 454 // of the original loop header may change as the transformation happens. 455 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 456 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 457 458 if (MinProfitableTripCount.isZero()) 459 this->MinProfitableTripCount = VecWidth; 460 else 461 this->MinProfitableTripCount = MinProfitableTripCount; 462 } 463 464 virtual ~InnerLoopVectorizer() = default; 465 466 /// Create a new empty loop that will contain vectorized instructions later 467 /// on, while the old loop will be used as the scalar remainder. Control flow 468 /// is generated around the vectorized (and scalar epilogue) loops consisting 469 /// of various checks and bypasses. Return the pre-header block of the new 470 /// loop and the start value for the canonical induction, if it is != 0. The 471 /// latter is the case when vectorizing the epilogue loop. In the case of 472 /// epilogue vectorization, this function is overriden to handle the more 473 /// complex control flow around the loops. 474 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 475 476 /// Widen a single call instruction within the innermost loop. 477 void widenCallInstruction(CallInst &CI, VPValue *Def, VPUser &ArgOperands, 478 VPTransformState &State); 479 480 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 481 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 482 483 // Return true if any runtime check is added. 484 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 485 486 /// A type for vectorized values in the new loop. Each value from the 487 /// original loop, when vectorized, is represented by UF vector values in the 488 /// new unrolled loop, where UF is the unroll factor. 489 using VectorParts = SmallVector<Value *, 2>; 490 491 /// A helper function to scalarize a single Instruction in the innermost loop. 492 /// Generates a sequence of scalar instances for each lane between \p MinLane 493 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 494 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 495 /// Instr's operands. 496 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 497 const VPIteration &Instance, bool IfPredicateInstr, 498 VPTransformState &State); 499 500 /// Construct the vector value of a scalarized value \p V one lane at a time. 501 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 502 VPTransformState &State); 503 504 /// Try to vectorize interleaved access group \p Group with the base address 505 /// given in \p Addr, optionally masking the vector operations if \p 506 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 507 /// values in the vectorized loop. 508 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 509 ArrayRef<VPValue *> VPDefs, 510 VPTransformState &State, VPValue *Addr, 511 ArrayRef<VPValue *> StoredValues, 512 VPValue *BlockInMask = nullptr); 513 514 /// Fix the non-induction PHIs in \p Plan. 515 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 516 517 /// Returns true if the reordering of FP operations is not allowed, but we are 518 /// able to vectorize with strict in-order reductions for the given RdxDesc. 519 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 520 521 /// Create a broadcast instruction. This method generates a broadcast 522 /// instruction (shuffle) for loop invariant values and for the induction 523 /// value. If this is the induction variable then we extend it to N, N+1, ... 524 /// this is needed because each iteration in the loop corresponds to a SIMD 525 /// element. 526 virtual Value *getBroadcastInstrs(Value *V); 527 528 // Returns the resume value (bc.merge.rdx) for a reduction as 529 // generated by fixReduction. 530 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 531 532 protected: 533 friend class LoopVectorizationPlanner; 534 535 /// A small list of PHINodes. 536 using PhiVector = SmallVector<PHINode *, 4>; 537 538 /// A type for scalarized values in the new loop. Each value from the 539 /// original loop, when scalarized, is represented by UF x VF scalar values 540 /// in the new unrolled loop, where UF is the unroll factor and VF is the 541 /// vectorization factor. 542 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 543 544 /// Set up the values of the IVs correctly when exiting the vector loop. 545 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 546 Value *VectorTripCount, Value *EndValue, 547 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 548 VPlan &Plan); 549 550 /// Handle all cross-iteration phis in the header. 551 void fixCrossIterationPHIs(VPTransformState &State); 552 553 /// Create the exit value of first order recurrences in the middle block and 554 /// update their users. 555 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 556 VPTransformState &State); 557 558 /// Create code for the loop exit value of the reduction. 559 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 560 561 /// Clear NSW/NUW flags from reduction instructions if necessary. 562 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 563 VPTransformState &State); 564 565 /// Iteratively sink the scalarized operands of a predicated instruction into 566 /// the block that was created for it. 567 void sinkScalarOperands(Instruction *PredInst); 568 569 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 570 /// represented as. 571 void truncateToMinimalBitwidths(VPTransformState &State); 572 573 /// Returns (and creates if needed) the original loop trip count. 574 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 575 576 /// Returns (and creates if needed) the trip count of the widened loop. 577 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 578 579 /// Returns a bitcasted value to the requested vector type. 580 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 581 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 582 const DataLayout &DL); 583 584 /// Emit a bypass check to see if the vector trip count is zero, including if 585 /// it overflows. 586 void emitIterationCountCheck(BasicBlock *Bypass); 587 588 /// Emit a bypass check to see if all of the SCEV assumptions we've 589 /// had to make are correct. Returns the block containing the checks or 590 /// nullptr if no checks have been added. 591 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 592 593 /// Emit bypass checks to check any memory assumptions we may have made. 594 /// Returns the block containing the checks or nullptr if no checks have been 595 /// added. 596 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 597 598 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 599 /// vector loop preheader, middle block and scalar preheader. 600 void createVectorLoopSkeleton(StringRef Prefix); 601 602 /// Create new phi nodes for the induction variables to resume iteration count 603 /// in the scalar epilogue, from where the vectorized loop left off. 604 /// In cases where the loop skeleton is more complicated (eg. epilogue 605 /// vectorization) and the resume values can come from an additional bypass 606 /// block, the \p AdditionalBypass pair provides information about the bypass 607 /// block and the end value on the edge from bypass to this loop. 608 void createInductionResumeValues( 609 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 610 611 /// Complete the loop skeleton by adding debug MDs, creating appropriate 612 /// conditional branches in the middle block, preparing the builder and 613 /// running the verifier. Return the preheader of the completed vector loop. 614 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 615 616 /// Collect poison-generating recipes that may generate a poison value that is 617 /// used after vectorization, even when their operands are not poison. Those 618 /// recipes meet the following conditions: 619 /// * Contribute to the address computation of a recipe generating a widen 620 /// memory load/store (VPWidenMemoryInstructionRecipe or 621 /// VPInterleaveRecipe). 622 /// * Such a widen memory load/store has at least one underlying Instruction 623 /// that is in a basic block that needs predication and after vectorization 624 /// the generated instruction won't be predicated. 625 void collectPoisonGeneratingRecipes(VPTransformState &State); 626 627 /// Allow subclasses to override and print debug traces before/after vplan 628 /// execution, when trace information is requested. 629 virtual void printDebugTracesAtStart(){}; 630 virtual void printDebugTracesAtEnd(){}; 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AAResults *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// The vectorization SIMD factor to use. Each vector will have this many 662 /// vector elements. 663 ElementCount VF; 664 665 ElementCount MinProfitableTripCount; 666 667 /// The vectorization unroll factor to use. Each scalar is vectorized to this 668 /// many different vector instructions. 669 unsigned UF; 670 671 /// The builder that we use 672 IRBuilder<> Builder; 673 674 // --- Vectorization state --- 675 676 /// The vector-loop preheader. 677 BasicBlock *LoopVectorPreHeader; 678 679 /// The scalar-loop preheader. 680 BasicBlock *LoopScalarPreHeader; 681 682 /// Middle Block between the vector and the scalar. 683 BasicBlock *LoopMiddleBlock; 684 685 /// The unique ExitBlock of the scalar loop if one exists. Note that 686 /// there can be multiple exiting edges reaching this block. 687 BasicBlock *LoopExitBlock; 688 689 /// The scalar loop body. 690 BasicBlock *LoopScalarBody; 691 692 /// A list of all bypass blocks. The first block is the entry of the loop. 693 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 694 695 /// Store instructions that were predicated. 696 SmallVector<Instruction *, 4> PredicatedInstructions; 697 698 /// Trip count of the original loop. 699 Value *TripCount = nullptr; 700 701 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 702 Value *VectorTripCount = nullptr; 703 704 /// The legality analysis. 705 LoopVectorizationLegality *Legal; 706 707 /// The profitablity analysis. 708 LoopVectorizationCostModel *Cost; 709 710 // Record whether runtime checks are added. 711 bool AddedSafetyChecks = false; 712 713 // Holds the end values for each induction variable. We save the end values 714 // so we can later fix-up the external users of the induction variables. 715 DenseMap<PHINode *, Value *> IVEndValues; 716 717 /// BFI and PSI are used to check for profile guided size optimizations. 718 BlockFrequencyInfo *BFI; 719 ProfileSummaryInfo *PSI; 720 721 // Whether this loop should be optimized for size based on profile guided size 722 // optimizatios. 723 bool OptForSizeBasedOnProfile; 724 725 /// Structure to hold information about generated runtime checks, responsible 726 /// for cleaning the checks, if vectorization turns out unprofitable. 727 GeneratedRTChecks &RTChecks; 728 729 // Holds the resume values for reductions in the loops, used to set the 730 // correct start value of reduction PHIs when vectorizing the epilogue. 731 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 732 ReductionResumeValues; 733 }; 734 735 class InnerLoopUnroller : public InnerLoopVectorizer { 736 public: 737 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 738 LoopInfo *LI, DominatorTree *DT, 739 const TargetLibraryInfo *TLI, 740 const TargetTransformInfo *TTI, AssumptionCache *AC, 741 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 742 LoopVectorizationLegality *LVL, 743 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 744 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 745 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 746 ElementCount::getFixed(1), 747 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 748 BFI, PSI, Check) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 }; 753 754 /// Encapsulate information regarding vectorization of a loop and its epilogue. 755 /// This information is meant to be updated and used across two stages of 756 /// epilogue vectorization. 757 struct EpilogueLoopVectorizationInfo { 758 ElementCount MainLoopVF = ElementCount::getFixed(0); 759 unsigned MainLoopUF = 0; 760 ElementCount EpilogueVF = ElementCount::getFixed(0); 761 unsigned EpilogueUF = 0; 762 BasicBlock *MainLoopIterationCountCheck = nullptr; 763 BasicBlock *EpilogueIterationCountCheck = nullptr; 764 BasicBlock *SCEVSafetyCheck = nullptr; 765 BasicBlock *MemSafetyCheck = nullptr; 766 Value *TripCount = nullptr; 767 Value *VectorTripCount = nullptr; 768 769 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 770 ElementCount EVF, unsigned EUF) 771 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 772 assert(EUF == 1 && 773 "A high UF for the epilogue loop is likely not beneficial."); 774 } 775 }; 776 777 /// An extension of the inner loop vectorizer that creates a skeleton for a 778 /// vectorized loop that has its epilogue (residual) also vectorized. 779 /// The idea is to run the vplan on a given loop twice, firstly to setup the 780 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 781 /// from the first step and vectorize the epilogue. This is achieved by 782 /// deriving two concrete strategy classes from this base class and invoking 783 /// them in succession from the loop vectorizer planner. 784 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 785 public: 786 InnerLoopAndEpilogueVectorizer( 787 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 788 DominatorTree *DT, const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 791 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 792 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 793 GeneratedRTChecks &Checks) 794 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 795 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 796 CM, BFI, PSI, Checks), 797 EPI(EPI) {} 798 799 // Override this function to handle the more complex control flow around the 800 // three loops. 801 std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton() final { 802 return createEpilogueVectorizedLoopSkeleton(); 803 } 804 805 /// The interface for creating a vectorized skeleton using one of two 806 /// different strategies, each corresponding to one execution of the vplan 807 /// as described above. 808 virtual std::pair<BasicBlock *, Value *> 809 createEpilogueVectorizedLoopSkeleton() = 0; 810 811 /// Holds and updates state information required to vectorize the main loop 812 /// and its epilogue in two separate passes. This setup helps us avoid 813 /// regenerating and recomputing runtime safety checks. It also helps us to 814 /// shorten the iteration-count-check path length for the cases where the 815 /// iteration count of the loop is so small that the main vector loop is 816 /// completely skipped. 817 EpilogueLoopVectorizationInfo &EPI; 818 }; 819 820 /// A specialized derived class of inner loop vectorizer that performs 821 /// vectorization of *main* loops in the process of vectorizing loops and their 822 /// epilogues. 823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 824 public: 825 EpilogueVectorizerMainLoop( 826 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 827 DominatorTree *DT, const TargetLibraryInfo *TLI, 828 const TargetTransformInfo *TTI, AssumptionCache *AC, 829 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 830 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 831 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 832 GeneratedRTChecks &Check) 833 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 834 EPI, LVL, CM, BFI, PSI, Check) {} 835 /// Implements the interface for creating a vectorized skeleton using the 836 /// *main loop* strategy (ie the first pass of vplan execution). 837 std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; 838 839 protected: 840 /// Emits an iteration count bypass check once for the main loop (when \p 841 /// ForEpilogue is false) and once for the epilogue loop (when \p 842 /// ForEpilogue is true). 843 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 844 void printDebugTracesAtStart() override; 845 void printDebugTracesAtEnd() override; 846 }; 847 848 // A specialized derived class of inner loop vectorizer that performs 849 // vectorization of *epilogue* loops in the process of vectorizing loops and 850 // their epilogues. 851 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 852 public: 853 EpilogueVectorizerEpilogueLoop( 854 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 855 DominatorTree *DT, const TargetLibraryInfo *TLI, 856 const TargetTransformInfo *TTI, AssumptionCache *AC, 857 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 858 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 859 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 860 GeneratedRTChecks &Checks) 861 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 862 EPI, LVL, CM, BFI, PSI, Checks) { 863 TripCount = EPI.TripCount; 864 } 865 /// Implements the interface for creating a vectorized skeleton using the 866 /// *epilogue loop* strategy (ie the second pass of vplan execution). 867 std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; 868 869 protected: 870 /// Emits an iteration count bypass check after the main vector loop has 871 /// finished to see if there are any iterations left to execute by either 872 /// the vector epilogue or the scalar epilogue. 873 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 874 BasicBlock *Bypass, 875 BasicBlock *Insert); 876 void printDebugTracesAtStart() override; 877 void printDebugTracesAtEnd() override; 878 }; 879 } // end namespace llvm 880 881 /// Look for a meaningful debug location on the instruction or it's 882 /// operands. 883 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 884 if (!I) 885 return I; 886 887 DebugLoc Empty; 888 if (I->getDebugLoc() != Empty) 889 return I; 890 891 for (Use &Op : I->operands()) { 892 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 893 if (OpInst->getDebugLoc() != Empty) 894 return OpInst; 895 } 896 897 return I; 898 } 899 900 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 901 /// is passed, the message relates to that particular instruction. 902 #ifndef NDEBUG 903 static void debugVectorizationMessage(const StringRef Prefix, 904 const StringRef DebugMsg, 905 Instruction *I) { 906 dbgs() << "LV: " << Prefix << DebugMsg; 907 if (I != nullptr) 908 dbgs() << " " << *I; 909 else 910 dbgs() << '.'; 911 dbgs() << '\n'; 912 } 913 #endif 914 915 /// Create an analysis remark that explains why vectorization failed 916 /// 917 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 918 /// RemarkName is the identifier for the remark. If \p I is passed it is an 919 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 920 /// the location of the remark. \return the remark object that can be 921 /// streamed to. 922 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 923 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 924 Value *CodeRegion = TheLoop->getHeader(); 925 DebugLoc DL = TheLoop->getStartLoc(); 926 927 if (I) { 928 CodeRegion = I->getParent(); 929 // If there is no debug location attached to the instruction, revert back to 930 // using the loop's. 931 if (I->getDebugLoc()) 932 DL = I->getDebugLoc(); 933 } 934 935 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 936 } 937 938 namespace llvm { 939 940 /// Return a value for Step multiplied by VF. 941 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 942 int64_t Step) { 943 assert(Ty->isIntegerTy() && "Expected an integer step"); 944 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 945 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 946 } 947 948 /// Return the runtime value for VF. 949 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 950 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 951 return VF.isScalable() ? B.CreateVScale(EC) : EC; 952 } 953 954 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 955 ElementCount VF) { 956 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 957 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 958 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 959 return B.CreateUIToFP(RuntimeVF, FTy); 960 } 961 962 void reportVectorizationFailure(const StringRef DebugMsg, 963 const StringRef OREMsg, const StringRef ORETag, 964 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 965 Instruction *I) { 966 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 967 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 968 ORE->emit( 969 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 970 << "loop not vectorized: " << OREMsg); 971 } 972 973 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 975 Instruction *I) { 976 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 977 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 978 ORE->emit( 979 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 980 << Msg); 981 } 982 983 } // end namespace llvm 984 985 #ifndef NDEBUG 986 /// \return string containing a file name and a line # for the given loop. 987 static std::string getDebugLocString(const Loop *L) { 988 std::string Result; 989 if (L) { 990 raw_string_ostream OS(Result); 991 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 992 LoopDbgLoc.print(OS); 993 else 994 // Just print the module name. 995 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 996 OS.flush(); 997 } 998 return Result; 999 } 1000 #endif 1001 1002 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1003 VPTransformState &State) { 1004 1005 // Collect recipes in the backward slice of `Root` that may generate a poison 1006 // value that is used after vectorization. 1007 SmallPtrSet<VPRecipeBase *, 16> Visited; 1008 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1009 SmallVector<VPRecipeBase *, 16> Worklist; 1010 Worklist.push_back(Root); 1011 1012 // Traverse the backward slice of Root through its use-def chain. 1013 while (!Worklist.empty()) { 1014 VPRecipeBase *CurRec = Worklist.back(); 1015 Worklist.pop_back(); 1016 1017 if (!Visited.insert(CurRec).second) 1018 continue; 1019 1020 // Prune search if we find another recipe generating a widen memory 1021 // instruction. Widen memory instructions involved in address computation 1022 // will lead to gather/scatter instructions, which don't need to be 1023 // handled. 1024 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1025 isa<VPInterleaveRecipe>(CurRec) || 1026 isa<VPScalarIVStepsRecipe>(CurRec) || 1027 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1028 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1029 continue; 1030 1031 // This recipe contributes to the address computation of a widen 1032 // load/store. Collect recipe if its underlying instruction has 1033 // poison-generating flags. 1034 Instruction *Instr = CurRec->getUnderlyingInstr(); 1035 if (Instr && Instr->hasPoisonGeneratingFlags()) 1036 State.MayGeneratePoisonRecipes.insert(CurRec); 1037 1038 // Add new definitions to the worklist. 1039 for (VPValue *operand : CurRec->operands()) 1040 if (VPDef *OpDef = operand->getDef()) 1041 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1042 } 1043 }); 1044 1045 // Traverse all the recipes in the VPlan and collect the poison-generating 1046 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1047 // VPInterleaveRecipe. 1048 auto Iter = depth_first( 1049 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1050 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1051 for (VPRecipeBase &Recipe : *VPBB) { 1052 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1053 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1054 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1055 if (AddrDef && WidenRec->isConsecutive() && 1056 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1057 collectPoisonGeneratingInstrsInBackwardSlice( 1058 cast<VPRecipeBase>(AddrDef)); 1059 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1060 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1061 if (AddrDef) { 1062 // Check if any member of the interleave group needs predication. 1063 const InterleaveGroup<Instruction> *InterGroup = 1064 InterleaveRec->getInterleaveGroup(); 1065 bool NeedPredication = false; 1066 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1067 I < NumMembers; ++I) { 1068 Instruction *Member = InterGroup->getMember(I); 1069 if (Member) 1070 NeedPredication |= 1071 Legal->blockNeedsPredication(Member->getParent()); 1072 } 1073 1074 if (NeedPredication) 1075 collectPoisonGeneratingInstrsInBackwardSlice( 1076 cast<VPRecipeBase>(AddrDef)); 1077 } 1078 } 1079 } 1080 } 1081 } 1082 1083 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1084 const RecurrenceDescriptor &RdxDesc) { 1085 auto It = ReductionResumeValues.find(&RdxDesc); 1086 assert(It != ReductionResumeValues.end() && 1087 "Expected to find a resume value for the reduction."); 1088 return It->second; 1089 } 1090 1091 namespace llvm { 1092 1093 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1094 // lowered. 1095 enum ScalarEpilogueLowering { 1096 1097 // The default: allowing scalar epilogues. 1098 CM_ScalarEpilogueAllowed, 1099 1100 // Vectorization with OptForSize: don't allow epilogues. 1101 CM_ScalarEpilogueNotAllowedOptSize, 1102 1103 // A special case of vectorisation with OptForSize: loops with a very small 1104 // trip count are considered for vectorization under OptForSize, thereby 1105 // making sure the cost of their loop body is dominant, free of runtime 1106 // guards and scalar iteration overheads. 1107 CM_ScalarEpilogueNotAllowedLowTripLoop, 1108 1109 // Loop hint predicate indicating an epilogue is undesired. 1110 CM_ScalarEpilogueNotNeededUsePredicate, 1111 1112 // Directive indicating we must either tail fold or not vectorize 1113 CM_ScalarEpilogueNotAllowedUsePredicate 1114 }; 1115 1116 /// ElementCountComparator creates a total ordering for ElementCount 1117 /// for the purposes of using it in a set structure. 1118 struct ElementCountComparator { 1119 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1120 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1121 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1122 } 1123 }; 1124 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1125 1126 /// LoopVectorizationCostModel - estimates the expected speedups due to 1127 /// vectorization. 1128 /// In many cases vectorization is not profitable. This can happen because of 1129 /// a number of reasons. In this class we mainly attempt to predict the 1130 /// expected speedup/slowdowns due to the supported instruction set. We use the 1131 /// TargetTransformInfo to query the different backends for the cost of 1132 /// different operations. 1133 class LoopVectorizationCostModel { 1134 public: 1135 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1136 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1137 LoopVectorizationLegality *Legal, 1138 const TargetTransformInfo &TTI, 1139 const TargetLibraryInfo *TLI, DemandedBits *DB, 1140 AssumptionCache *AC, 1141 OptimizationRemarkEmitter *ORE, const Function *F, 1142 const LoopVectorizeHints *Hints, 1143 InterleavedAccessInfo &IAI) 1144 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1145 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1146 Hints(Hints), InterleaveInfo(IAI) {} 1147 1148 /// \return An upper bound for the vectorization factors (both fixed and 1149 /// scalable). If the factors are 0, vectorization and interleaving should be 1150 /// avoided up front. 1151 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1152 1153 /// \return True if runtime checks are required for vectorization, and false 1154 /// otherwise. 1155 bool runtimeChecksRequired(); 1156 1157 /// \return The most profitable vectorization factor and the cost of that VF. 1158 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1159 /// then this vectorization factor will be selected if vectorization is 1160 /// possible. 1161 VectorizationFactor 1162 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1163 1164 VectorizationFactor 1165 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1166 const LoopVectorizationPlanner &LVP); 1167 1168 /// Setup cost-based decisions for user vectorization factor. 1169 /// \return true if the UserVF is a feasible VF to be chosen. 1170 bool selectUserVectorizationFactor(ElementCount UserVF) { 1171 collectUniformsAndScalars(UserVF); 1172 collectInstsToScalarize(UserVF); 1173 return expectedCost(UserVF).first.isValid(); 1174 } 1175 1176 /// \return The size (in bits) of the smallest and widest types in the code 1177 /// that needs to be vectorized. We ignore values that remain scalar such as 1178 /// 64 bit loop indices. 1179 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1180 1181 /// \return The desired interleave count. 1182 /// If interleave count has been specified by metadata it will be returned. 1183 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1184 /// are the selected vectorization factor and the cost of the selected VF. 1185 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1186 1187 /// Memory access instruction may be vectorized in more than one way. 1188 /// Form of instruction after vectorization depends on cost. 1189 /// This function takes cost-based decisions for Load/Store instructions 1190 /// and collects them in a map. This decisions map is used for building 1191 /// the lists of loop-uniform and loop-scalar instructions. 1192 /// The calculated cost is saved with widening decision in order to 1193 /// avoid redundant calculations. 1194 void setCostBasedWideningDecision(ElementCount VF); 1195 1196 /// A struct that represents some properties of the register usage 1197 /// of a loop. 1198 struct RegisterUsage { 1199 /// Holds the number of loop invariant values that are used in the loop. 1200 /// The key is ClassID of target-provided register class. 1201 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1202 /// Holds the maximum number of concurrent live intervals in the loop. 1203 /// The key is ClassID of target-provided register class. 1204 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1205 }; 1206 1207 /// \return Returns information about the register usages of the loop for the 1208 /// given vectorization factors. 1209 SmallVector<RegisterUsage, 8> 1210 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1211 1212 /// Collect values we want to ignore in the cost model. 1213 void collectValuesToIgnore(); 1214 1215 /// Collect all element types in the loop for which widening is needed. 1216 void collectElementTypesForWidening(); 1217 1218 /// Split reductions into those that happen in the loop, and those that happen 1219 /// outside. In loop reductions are collected into InLoopReductionChains. 1220 void collectInLoopReductions(); 1221 1222 /// Returns true if we should use strict in-order reductions for the given 1223 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1224 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1225 /// of FP operations. 1226 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1227 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1228 } 1229 1230 /// \returns The smallest bitwidth each instruction can be represented with. 1231 /// The vector equivalents of these instructions should be truncated to this 1232 /// type. 1233 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1234 return MinBWs; 1235 } 1236 1237 /// \returns True if it is more profitable to scalarize instruction \p I for 1238 /// vectorization factor \p VF. 1239 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1240 assert(VF.isVector() && 1241 "Profitable to scalarize relevant only for VF > 1."); 1242 1243 // Cost model is not run in the VPlan-native path - return conservative 1244 // result until this changes. 1245 if (EnableVPlanNativePath) 1246 return false; 1247 1248 auto Scalars = InstsToScalarize.find(VF); 1249 assert(Scalars != InstsToScalarize.end() && 1250 "VF not yet analyzed for scalarization profitability"); 1251 return Scalars->second.find(I) != Scalars->second.end(); 1252 } 1253 1254 /// Returns true if \p I is known to be uniform after vectorization. 1255 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1256 if (VF.isScalar()) 1257 return true; 1258 1259 // Cost model is not run in the VPlan-native path - return conservative 1260 // result until this changes. 1261 if (EnableVPlanNativePath) 1262 return false; 1263 1264 auto UniformsPerVF = Uniforms.find(VF); 1265 assert(UniformsPerVF != Uniforms.end() && 1266 "VF not yet analyzed for uniformity"); 1267 return UniformsPerVF->second.count(I); 1268 } 1269 1270 /// Returns true if \p I is known to be scalar after vectorization. 1271 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1272 if (VF.isScalar()) 1273 return true; 1274 1275 // Cost model is not run in the VPlan-native path - return conservative 1276 // result until this changes. 1277 if (EnableVPlanNativePath) 1278 return false; 1279 1280 auto ScalarsPerVF = Scalars.find(VF); 1281 assert(ScalarsPerVF != Scalars.end() && 1282 "Scalar values are not calculated for VF"); 1283 return ScalarsPerVF->second.count(I); 1284 } 1285 1286 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1287 /// for vectorization factor \p VF. 1288 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1289 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1290 !isProfitableToScalarize(I, VF) && 1291 !isScalarAfterVectorization(I, VF); 1292 } 1293 1294 /// Decision that was taken during cost calculation for memory instruction. 1295 enum InstWidening { 1296 CM_Unknown, 1297 CM_Widen, // For consecutive accesses with stride +1. 1298 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1299 CM_Interleave, 1300 CM_GatherScatter, 1301 CM_Scalarize 1302 }; 1303 1304 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1305 /// instruction \p I and vector width \p VF. 1306 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1307 InstructionCost Cost) { 1308 assert(VF.isVector() && "Expected VF >=2"); 1309 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1310 } 1311 1312 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1313 /// interleaving group \p Grp and vector width \p VF. 1314 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1315 ElementCount VF, InstWidening W, 1316 InstructionCost Cost) { 1317 assert(VF.isVector() && "Expected VF >=2"); 1318 /// Broadcast this decicion to all instructions inside the group. 1319 /// But the cost will be assigned to one instruction only. 1320 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1321 if (auto *I = Grp->getMember(i)) { 1322 if (Grp->getInsertPos() == I) 1323 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1324 else 1325 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1326 } 1327 } 1328 } 1329 1330 /// Return the cost model decision for the given instruction \p I and vector 1331 /// width \p VF. Return CM_Unknown if this instruction did not pass 1332 /// through the cost modeling. 1333 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && "Expected VF to be a vector VF"); 1335 // Cost model is not run in the VPlan-native path - return conservative 1336 // result until this changes. 1337 if (EnableVPlanNativePath) 1338 return CM_GatherScatter; 1339 1340 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1341 auto Itr = WideningDecisions.find(InstOnVF); 1342 if (Itr == WideningDecisions.end()) 1343 return CM_Unknown; 1344 return Itr->second.first; 1345 } 1346 1347 /// Return the vectorization cost for the given instruction \p I and vector 1348 /// width \p VF. 1349 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1350 assert(VF.isVector() && "Expected VF >=2"); 1351 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1352 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1353 "The cost is not calculated"); 1354 return WideningDecisions[InstOnVF].second; 1355 } 1356 1357 /// Return True if instruction \p I is an optimizable truncate whose operand 1358 /// is an induction variable. Such a truncate will be removed by adding a new 1359 /// induction variable with the destination type. 1360 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1361 // If the instruction is not a truncate, return false. 1362 auto *Trunc = dyn_cast<TruncInst>(I); 1363 if (!Trunc) 1364 return false; 1365 1366 // Get the source and destination types of the truncate. 1367 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1368 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1369 1370 // If the truncate is free for the given types, return false. Replacing a 1371 // free truncate with an induction variable would add an induction variable 1372 // update instruction to each iteration of the loop. We exclude from this 1373 // check the primary induction variable since it will need an update 1374 // instruction regardless. 1375 Value *Op = Trunc->getOperand(0); 1376 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1377 return false; 1378 1379 // If the truncated value is not an induction variable, return false. 1380 return Legal->isInductionPhi(Op); 1381 } 1382 1383 /// Collects the instructions to scalarize for each predicated instruction in 1384 /// the loop. 1385 void collectInstsToScalarize(ElementCount VF); 1386 1387 /// Collect Uniform and Scalar values for the given \p VF. 1388 /// The sets depend on CM decision for Load/Store instructions 1389 /// that may be vectorized as interleave, gather-scatter or scalarized. 1390 void collectUniformsAndScalars(ElementCount VF) { 1391 // Do the analysis once. 1392 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1393 return; 1394 setCostBasedWideningDecision(VF); 1395 collectLoopUniforms(VF); 1396 collectLoopScalars(VF); 1397 } 1398 1399 /// Returns true if the target machine supports masked store operation 1400 /// for the given \p DataType and kind of access to \p Ptr. 1401 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1402 return Legal->isConsecutivePtr(DataType, Ptr) && 1403 TTI.isLegalMaskedStore(DataType, Alignment); 1404 } 1405 1406 /// Returns true if the target machine supports masked load operation 1407 /// for the given \p DataType and kind of access to \p Ptr. 1408 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1409 return Legal->isConsecutivePtr(DataType, Ptr) && 1410 TTI.isLegalMaskedLoad(DataType, Alignment); 1411 } 1412 1413 /// Returns true if the target machine can represent \p V as a masked gather 1414 /// or scatter operation. 1415 bool isLegalGatherOrScatter(Value *V, 1416 ElementCount VF = ElementCount::getFixed(1)) { 1417 bool LI = isa<LoadInst>(V); 1418 bool SI = isa<StoreInst>(V); 1419 if (!LI && !SI) 1420 return false; 1421 auto *Ty = getLoadStoreType(V); 1422 Align Align = getLoadStoreAlignment(V); 1423 if (VF.isVector()) 1424 Ty = VectorType::get(Ty, VF); 1425 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1426 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1427 } 1428 1429 /// Returns true if the target machine supports all of the reduction 1430 /// variables found for the given VF. 1431 bool canVectorizeReductions(ElementCount VF) const { 1432 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1433 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1434 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1435 })); 1436 } 1437 1438 /// Returns true if \p I is an instruction that will be scalarized with 1439 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1440 /// instructions include conditional stores and instructions that may divide 1441 /// by zero. 1442 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1443 1444 // Returns true if \p I is an instruction that will be predicated either 1445 // through scalar predication or masked load/store or masked gather/scatter. 1446 // \p VF is the vectorization factor that will be used to vectorize \p I. 1447 // Superset of instructions that return true for isScalarWithPredication. 1448 bool isPredicatedInst(Instruction *I, ElementCount VF) { 1449 // When we know the load's address is loop invariant and the instruction 1450 // in the original scalar loop was unconditionally executed then we 1451 // don't need to mark it as a predicated instruction. Tail folding may 1452 // introduce additional predication, but we're guaranteed to always have 1453 // at least one active lane. We call Legal->blockNeedsPredication here 1454 // because it doesn't query tail-folding. 1455 if (Legal->isUniformMemOp(*I) && isa<LoadInst>(I) && 1456 !Legal->blockNeedsPredication(I->getParent())) 1457 return false; 1458 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1459 return false; 1460 // Loads and stores that need some form of masked operation are predicated 1461 // instructions. 1462 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1463 return Legal->isMaskRequired(I); 1464 return isScalarWithPredication(I, VF); 1465 } 1466 1467 /// Returns true if \p I is a memory instruction with consecutive memory 1468 /// access that can be widened. 1469 bool 1470 memoryInstructionCanBeWidened(Instruction *I, 1471 ElementCount VF = ElementCount::getFixed(1)); 1472 1473 /// Returns true if \p I is a memory instruction in an interleaved-group 1474 /// of memory accesses that can be vectorized with wide vector loads/stores 1475 /// and shuffles. 1476 bool 1477 interleavedAccessCanBeWidened(Instruction *I, 1478 ElementCount VF = ElementCount::getFixed(1)); 1479 1480 /// Check if \p Instr belongs to any interleaved access group. 1481 bool isAccessInterleaved(Instruction *Instr) { 1482 return InterleaveInfo.isInterleaved(Instr); 1483 } 1484 1485 /// Get the interleaved access group that \p Instr belongs to. 1486 const InterleaveGroup<Instruction> * 1487 getInterleavedAccessGroup(Instruction *Instr) { 1488 return InterleaveInfo.getInterleaveGroup(Instr); 1489 } 1490 1491 /// Returns true if we're required to use a scalar epilogue for at least 1492 /// the final iteration of the original loop. 1493 bool requiresScalarEpilogue(ElementCount VF) const { 1494 if (!isScalarEpilogueAllowed()) 1495 return false; 1496 // If we might exit from anywhere but the latch, must run the exiting 1497 // iteration in scalar form. 1498 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1499 return true; 1500 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1501 } 1502 1503 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1504 /// loop hint annotation. 1505 bool isScalarEpilogueAllowed() const { 1506 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1507 } 1508 1509 /// Returns true if all loop blocks should be masked to fold tail loop. 1510 bool foldTailByMasking() const { return FoldTailByMasking; } 1511 1512 /// Returns true if were tail-folding and want to use the active lane mask 1513 /// for vector loop control flow. 1514 bool useActiveLaneMaskForControlFlow() const { 1515 return FoldTailByMasking && 1516 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1517 } 1518 1519 /// Returns true if the instructions in this block requires predication 1520 /// for any reason, e.g. because tail folding now requires a predicate 1521 /// or because the block in the original loop was predicated. 1522 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1523 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1524 } 1525 1526 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1527 /// nodes to the chain of instructions representing the reductions. Uses a 1528 /// MapVector to ensure deterministic iteration order. 1529 using ReductionChainMap = 1530 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1531 1532 /// Return the chain of instructions representing an inloop reduction. 1533 const ReductionChainMap &getInLoopReductionChains() const { 1534 return InLoopReductionChains; 1535 } 1536 1537 /// Returns true if the Phi is part of an inloop reduction. 1538 bool isInLoopReduction(PHINode *Phi) const { 1539 return InLoopReductionChains.count(Phi); 1540 } 1541 1542 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1543 /// with factor VF. Return the cost of the instruction, including 1544 /// scalarization overhead if it's needed. 1545 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1546 1547 /// Estimate cost of a call instruction CI if it were vectorized with factor 1548 /// VF. Return the cost of the instruction, including scalarization overhead 1549 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1550 /// scalarized - 1551 /// i.e. either vector version isn't available, or is too expensive. 1552 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1553 bool &NeedToScalarize) const; 1554 1555 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1556 /// that of B. 1557 bool isMoreProfitable(const VectorizationFactor &A, 1558 const VectorizationFactor &B) const; 1559 1560 /// Invalidates decisions already taken by the cost model. 1561 void invalidateCostModelingDecisions() { 1562 WideningDecisions.clear(); 1563 Uniforms.clear(); 1564 Scalars.clear(); 1565 } 1566 1567 /// Convenience function that returns the value of vscale_range iff 1568 /// vscale_range.min == vscale_range.max or otherwise returns the value 1569 /// returned by the corresponding TLI method. 1570 Optional<unsigned> getVScaleForTuning() const; 1571 1572 private: 1573 unsigned NumPredStores = 0; 1574 1575 /// \return An upper bound for the vectorization factors for both 1576 /// fixed and scalable vectorization, where the minimum-known number of 1577 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1578 /// disabled or unsupported, then the scalable part will be equal to 1579 /// ElementCount::getScalable(0). 1580 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1581 ElementCount UserVF, 1582 bool FoldTailByMasking); 1583 1584 /// \return the maximized element count based on the targets vector 1585 /// registers and the loop trip-count, but limited to a maximum safe VF. 1586 /// This is a helper function of computeFeasibleMaxVF. 1587 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1588 unsigned SmallestType, 1589 unsigned WidestType, 1590 ElementCount MaxSafeVF, 1591 bool FoldTailByMasking); 1592 1593 /// \return the maximum legal scalable VF, based on the safe max number 1594 /// of elements. 1595 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1596 1597 /// The vectorization cost is a combination of the cost itself and a boolean 1598 /// indicating whether any of the contributing operations will actually 1599 /// operate on vector values after type legalization in the backend. If this 1600 /// latter value is false, then all operations will be scalarized (i.e. no 1601 /// vectorization has actually taken place). 1602 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1603 1604 /// Returns the expected execution cost. The unit of the cost does 1605 /// not matter because we use the 'cost' units to compare different 1606 /// vector widths. The cost that is returned is *not* normalized by 1607 /// the factor width. If \p Invalid is not nullptr, this function 1608 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1609 /// each instruction that has an Invalid cost for the given VF. 1610 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1611 VectorizationCostTy 1612 expectedCost(ElementCount VF, 1613 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1614 1615 /// Returns the execution time cost of an instruction for a given vector 1616 /// width. Vector width of one means scalar. 1617 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1618 1619 /// The cost-computation logic from getInstructionCost which provides 1620 /// the vector type as an output parameter. 1621 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1622 Type *&VectorTy); 1623 1624 /// Return the cost of instructions in an inloop reduction pattern, if I is 1625 /// part of that pattern. 1626 Optional<InstructionCost> 1627 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1628 TTI::TargetCostKind CostKind); 1629 1630 /// Calculate vectorization cost of memory instruction \p I. 1631 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1632 1633 /// The cost computation for scalarized memory instruction. 1634 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for interleaving group of memory instructions. 1637 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for Gather/Scatter instruction. 1640 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for widening instruction \p I with consecutive 1643 /// memory access. 1644 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1645 1646 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1647 /// Load: scalar load + broadcast. 1648 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1649 /// element) 1650 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1651 1652 /// Estimate the overhead of scalarizing an instruction. This is a 1653 /// convenience wrapper for the type-based getScalarizationOverhead API. 1654 InstructionCost getScalarizationOverhead(Instruction *I, 1655 ElementCount VF) const; 1656 1657 /// Returns true if an artificially high cost for emulated masked memrefs 1658 /// should be used. 1659 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1660 1661 /// Map of scalar integer values to the smallest bitwidth they can be legally 1662 /// represented as. The vector equivalents of these values should be truncated 1663 /// to this type. 1664 MapVector<Instruction *, uint64_t> MinBWs; 1665 1666 /// A type representing the costs for instructions if they were to be 1667 /// scalarized rather than vectorized. The entries are Instruction-Cost 1668 /// pairs. 1669 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1670 1671 /// A set containing all BasicBlocks that are known to present after 1672 /// vectorization as a predicated block. 1673 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1674 PredicatedBBsAfterVectorization; 1675 1676 /// Records whether it is allowed to have the original scalar loop execute at 1677 /// least once. This may be needed as a fallback loop in case runtime 1678 /// aliasing/dependence checks fail, or to handle the tail/remainder 1679 /// iterations when the trip count is unknown or doesn't divide by the VF, 1680 /// or as a peel-loop to handle gaps in interleave-groups. 1681 /// Under optsize and when the trip count is very small we don't allow any 1682 /// iterations to execute in the scalar loop. 1683 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1684 1685 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1686 bool FoldTailByMasking = false; 1687 1688 /// A map holding scalar costs for different vectorization factors. The 1689 /// presence of a cost for an instruction in the mapping indicates that the 1690 /// instruction will be scalarized when vectorizing with the associated 1691 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1692 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1693 1694 /// Holds the instructions known to be uniform after vectorization. 1695 /// The data is collected per VF. 1696 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1697 1698 /// Holds the instructions known to be scalar after vectorization. 1699 /// The data is collected per VF. 1700 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1701 1702 /// Holds the instructions (address computations) that are forced to be 1703 /// scalarized. 1704 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1705 1706 /// PHINodes of the reductions that should be expanded in-loop along with 1707 /// their associated chains of reduction operations, in program order from top 1708 /// (PHI) to bottom 1709 ReductionChainMap InLoopReductionChains; 1710 1711 /// A Map of inloop reduction operations and their immediate chain operand. 1712 /// FIXME: This can be removed once reductions can be costed correctly in 1713 /// vplan. This was added to allow quick lookup to the inloop operations, 1714 /// without having to loop through InLoopReductionChains. 1715 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1716 1717 /// Returns the expected difference in cost from scalarizing the expression 1718 /// feeding a predicated instruction \p PredInst. The instructions to 1719 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1720 /// non-negative return value implies the expression will be scalarized. 1721 /// Currently, only single-use chains are considered for scalarization. 1722 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1723 ElementCount VF); 1724 1725 /// Collect the instructions that are uniform after vectorization. An 1726 /// instruction is uniform if we represent it with a single scalar value in 1727 /// the vectorized loop corresponding to each vector iteration. Examples of 1728 /// uniform instructions include pointer operands of consecutive or 1729 /// interleaved memory accesses. Note that although uniformity implies an 1730 /// instruction will be scalar, the reverse is not true. In general, a 1731 /// scalarized instruction will be represented by VF scalar values in the 1732 /// vectorized loop, each corresponding to an iteration of the original 1733 /// scalar loop. 1734 void collectLoopUniforms(ElementCount VF); 1735 1736 /// Collect the instructions that are scalar after vectorization. An 1737 /// instruction is scalar if it is known to be uniform or will be scalarized 1738 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1739 /// to the list if they are used by a load/store instruction that is marked as 1740 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1741 /// VF values in the vectorized loop, each corresponding to an iteration of 1742 /// the original scalar loop. 1743 void collectLoopScalars(ElementCount VF); 1744 1745 /// Keeps cost model vectorization decision and cost for instructions. 1746 /// Right now it is used for memory instructions only. 1747 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1748 std::pair<InstWidening, InstructionCost>>; 1749 1750 DecisionList WideningDecisions; 1751 1752 /// Returns true if \p V is expected to be vectorized and it needs to be 1753 /// extracted. 1754 bool needsExtract(Value *V, ElementCount VF) const { 1755 Instruction *I = dyn_cast<Instruction>(V); 1756 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1757 TheLoop->isLoopInvariant(I)) 1758 return false; 1759 1760 // Assume we can vectorize V (and hence we need extraction) if the 1761 // scalars are not computed yet. This can happen, because it is called 1762 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1763 // the scalars are collected. That should be a safe assumption in most 1764 // cases, because we check if the operands have vectorizable types 1765 // beforehand in LoopVectorizationLegality. 1766 return Scalars.find(VF) == Scalars.end() || 1767 !isScalarAfterVectorization(I, VF); 1768 }; 1769 1770 /// Returns a range containing only operands needing to be extracted. 1771 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1772 ElementCount VF) const { 1773 return SmallVector<Value *, 4>(make_filter_range( 1774 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1775 } 1776 1777 /// Determines if we have the infrastructure to vectorize loop \p L and its 1778 /// epilogue, assuming the main loop is vectorized by \p VF. 1779 bool isCandidateForEpilogueVectorization(const Loop &L, 1780 const ElementCount VF) const; 1781 1782 /// Returns true if epilogue vectorization is considered profitable, and 1783 /// false otherwise. 1784 /// \p VF is the vectorization factor chosen for the original loop. 1785 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1786 1787 public: 1788 /// The loop that we evaluate. 1789 Loop *TheLoop; 1790 1791 /// Predicated scalar evolution analysis. 1792 PredicatedScalarEvolution &PSE; 1793 1794 /// Loop Info analysis. 1795 LoopInfo *LI; 1796 1797 /// Vectorization legality. 1798 LoopVectorizationLegality *Legal; 1799 1800 /// Vector target information. 1801 const TargetTransformInfo &TTI; 1802 1803 /// Target Library Info. 1804 const TargetLibraryInfo *TLI; 1805 1806 /// Demanded bits analysis. 1807 DemandedBits *DB; 1808 1809 /// Assumption cache. 1810 AssumptionCache *AC; 1811 1812 /// Interface to emit optimization remarks. 1813 OptimizationRemarkEmitter *ORE; 1814 1815 const Function *TheFunction; 1816 1817 /// Loop Vectorize Hint. 1818 const LoopVectorizeHints *Hints; 1819 1820 /// The interleave access information contains groups of interleaved accesses 1821 /// with the same stride and close to each other. 1822 InterleavedAccessInfo &InterleaveInfo; 1823 1824 /// Values to ignore in the cost model. 1825 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1826 1827 /// Values to ignore in the cost model when VF > 1. 1828 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1829 1830 /// All element types found in the loop. 1831 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1832 1833 /// Profitable vector factors. 1834 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1835 }; 1836 } // end namespace llvm 1837 1838 /// Helper struct to manage generating runtime checks for vectorization. 1839 /// 1840 /// The runtime checks are created up-front in temporary blocks to allow better 1841 /// estimating the cost and un-linked from the existing IR. After deciding to 1842 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1843 /// temporary blocks are completely removed. 1844 class GeneratedRTChecks { 1845 /// Basic block which contains the generated SCEV checks, if any. 1846 BasicBlock *SCEVCheckBlock = nullptr; 1847 1848 /// The value representing the result of the generated SCEV checks. If it is 1849 /// nullptr, either no SCEV checks have been generated or they have been used. 1850 Value *SCEVCheckCond = nullptr; 1851 1852 /// Basic block which contains the generated memory runtime checks, if any. 1853 BasicBlock *MemCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated memory runtime checks. 1856 /// If it is nullptr, either no memory runtime checks have been generated or 1857 /// they have been used. 1858 Value *MemRuntimeCheckCond = nullptr; 1859 1860 DominatorTree *DT; 1861 LoopInfo *LI; 1862 TargetTransformInfo *TTI; 1863 1864 SCEVExpander SCEVExp; 1865 SCEVExpander MemCheckExp; 1866 1867 bool CostTooHigh = false; 1868 1869 public: 1870 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1871 TargetTransformInfo *TTI, const DataLayout &DL) 1872 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1873 MemCheckExp(SE, DL, "scev.check") {} 1874 1875 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1876 /// accurately estimate the cost of the runtime checks. The blocks are 1877 /// un-linked from the IR and is added back during vector code generation. If 1878 /// there is no vector code generation, the check blocks are removed 1879 /// completely. 1880 void Create(Loop *L, const LoopAccessInfo &LAI, 1881 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1882 1883 // Hard cutoff to limit compile-time increase in case a very large number of 1884 // runtime checks needs to be generated. 1885 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1886 // profile info. 1887 CostTooHigh = 1888 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1889 if (CostTooHigh) 1890 return; 1891 1892 BasicBlock *LoopHeader = L->getHeader(); 1893 BasicBlock *Preheader = L->getLoopPreheader(); 1894 1895 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1896 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1897 // may be used by SCEVExpander. The blocks will be un-linked from their 1898 // predecessors and removed from LI & DT at the end of the function. 1899 if (!UnionPred.isAlwaysTrue()) { 1900 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1901 nullptr, "vector.scevcheck"); 1902 1903 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1904 &UnionPred, SCEVCheckBlock->getTerminator()); 1905 } 1906 1907 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1908 if (RtPtrChecking.Need) { 1909 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1910 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1911 "vector.memcheck"); 1912 1913 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1914 if (DiffChecks) { 1915 Value *RuntimeVF = nullptr; 1916 MemRuntimeCheckCond = addDiffRuntimeChecks( 1917 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1918 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1919 if (!RuntimeVF) 1920 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1921 return RuntimeVF; 1922 }, 1923 IC); 1924 } else { 1925 MemRuntimeCheckCond = 1926 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1927 RtPtrChecking.getChecks(), MemCheckExp); 1928 } 1929 assert(MemRuntimeCheckCond && 1930 "no RT checks generated although RtPtrChecking " 1931 "claimed checks are required"); 1932 } 1933 1934 if (!MemCheckBlock && !SCEVCheckBlock) 1935 return; 1936 1937 // Unhook the temporary block with the checks, update various places 1938 // accordingly. 1939 if (SCEVCheckBlock) 1940 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1941 if (MemCheckBlock) 1942 MemCheckBlock->replaceAllUsesWith(Preheader); 1943 1944 if (SCEVCheckBlock) { 1945 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1946 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1947 Preheader->getTerminator()->eraseFromParent(); 1948 } 1949 if (MemCheckBlock) { 1950 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1951 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1952 Preheader->getTerminator()->eraseFromParent(); 1953 } 1954 1955 DT->changeImmediateDominator(LoopHeader, Preheader); 1956 if (MemCheckBlock) { 1957 DT->eraseNode(MemCheckBlock); 1958 LI->removeBlock(MemCheckBlock); 1959 } 1960 if (SCEVCheckBlock) { 1961 DT->eraseNode(SCEVCheckBlock); 1962 LI->removeBlock(SCEVCheckBlock); 1963 } 1964 } 1965 1966 InstructionCost getCost() { 1967 if (SCEVCheckBlock || MemCheckBlock) 1968 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1969 1970 if (CostTooHigh) { 1971 InstructionCost Cost; 1972 Cost.setInvalid(); 1973 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1974 return Cost; 1975 } 1976 1977 InstructionCost RTCheckCost = 0; 1978 if (SCEVCheckBlock) 1979 for (Instruction &I : *SCEVCheckBlock) { 1980 if (SCEVCheckBlock->getTerminator() == &I) 1981 continue; 1982 InstructionCost C = 1983 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1984 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1985 RTCheckCost += C; 1986 } 1987 if (MemCheckBlock) 1988 for (Instruction &I : *MemCheckBlock) { 1989 if (MemCheckBlock->getTerminator() == &I) 1990 continue; 1991 InstructionCost C = 1992 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1993 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1994 RTCheckCost += C; 1995 } 1996 1997 if (SCEVCheckBlock || MemCheckBlock) 1998 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 1999 << "\n"); 2000 2001 return RTCheckCost; 2002 } 2003 2004 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2005 /// unused. 2006 ~GeneratedRTChecks() { 2007 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2008 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2009 if (!SCEVCheckCond) 2010 SCEVCleaner.markResultUsed(); 2011 2012 if (!MemRuntimeCheckCond) 2013 MemCheckCleaner.markResultUsed(); 2014 2015 if (MemRuntimeCheckCond) { 2016 auto &SE = *MemCheckExp.getSE(); 2017 // Memory runtime check generation creates compares that use expanded 2018 // values. Remove them before running the SCEVExpanderCleaners. 2019 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2020 if (MemCheckExp.isInsertedInstruction(&I)) 2021 continue; 2022 SE.forgetValue(&I); 2023 I.eraseFromParent(); 2024 } 2025 } 2026 MemCheckCleaner.cleanup(); 2027 SCEVCleaner.cleanup(); 2028 2029 if (SCEVCheckCond) 2030 SCEVCheckBlock->eraseFromParent(); 2031 if (MemRuntimeCheckCond) 2032 MemCheckBlock->eraseFromParent(); 2033 } 2034 2035 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2036 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2037 /// depending on the generated condition. 2038 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2039 BasicBlock *LoopVectorPreHeader, 2040 BasicBlock *LoopExitBlock) { 2041 if (!SCEVCheckCond) 2042 return nullptr; 2043 2044 Value *Cond = SCEVCheckCond; 2045 // Mark the check as used, to prevent it from being removed during cleanup. 2046 SCEVCheckCond = nullptr; 2047 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2048 if (C->isZero()) 2049 return nullptr; 2050 2051 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2052 2053 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2054 // Create new preheader for vector loop. 2055 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2056 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2057 2058 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2059 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2060 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2061 SCEVCheckBlock); 2062 2063 DT->addNewBlock(SCEVCheckBlock, Pred); 2064 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2065 2066 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2067 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2068 return SCEVCheckBlock; 2069 } 2070 2071 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2072 /// the branches to branch to the vector preheader or \p Bypass, depending on 2073 /// the generated condition. 2074 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2075 BasicBlock *LoopVectorPreHeader) { 2076 // Check if we generated code that checks in runtime if arrays overlap. 2077 if (!MemRuntimeCheckCond) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2082 MemCheckBlock); 2083 2084 DT->addNewBlock(MemCheckBlock, Pred); 2085 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2086 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2087 2088 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2089 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2090 2091 ReplaceInstWithInst( 2092 MemCheckBlock->getTerminator(), 2093 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2094 MemCheckBlock->getTerminator()->setDebugLoc( 2095 Pred->getTerminator()->getDebugLoc()); 2096 2097 // Mark the check as used, to prevent it from being removed during cleanup. 2098 MemRuntimeCheckCond = nullptr; 2099 return MemCheckBlock; 2100 } 2101 }; 2102 2103 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2104 // vectorization. The loop needs to be annotated with #pragma omp simd 2105 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2106 // vector length information is not provided, vectorization is not considered 2107 // explicit. Interleave hints are not allowed either. These limitations will be 2108 // relaxed in the future. 2109 // Please, note that we are currently forced to abuse the pragma 'clang 2110 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2111 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2112 // provides *explicit vectorization hints* (LV can bypass legal checks and 2113 // assume that vectorization is legal). However, both hints are implemented 2114 // using the same metadata (llvm.loop.vectorize, processed by 2115 // LoopVectorizeHints). This will be fixed in the future when the native IR 2116 // representation for pragma 'omp simd' is introduced. 2117 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2118 OptimizationRemarkEmitter *ORE) { 2119 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2120 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2121 2122 // Only outer loops with an explicit vectorization hint are supported. 2123 // Unannotated outer loops are ignored. 2124 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2125 return false; 2126 2127 Function *Fn = OuterLp->getHeader()->getParent(); 2128 if (!Hints.allowVectorization(Fn, OuterLp, 2129 true /*VectorizeOnlyWhenForced*/)) { 2130 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2131 return false; 2132 } 2133 2134 if (Hints.getInterleave() > 1) { 2135 // TODO: Interleave support is future work. 2136 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2137 "outer loops.\n"); 2138 Hints.emitRemarkWithHints(); 2139 return false; 2140 } 2141 2142 return true; 2143 } 2144 2145 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2146 OptimizationRemarkEmitter *ORE, 2147 SmallVectorImpl<Loop *> &V) { 2148 // Collect inner loops and outer loops without irreducible control flow. For 2149 // now, only collect outer loops that have explicit vectorization hints. If we 2150 // are stress testing the VPlan H-CFG construction, we collect the outermost 2151 // loop of every loop nest. 2152 if (L.isInnermost() || VPlanBuildStressTest || 2153 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2154 LoopBlocksRPO RPOT(&L); 2155 RPOT.perform(LI); 2156 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2157 V.push_back(&L); 2158 // TODO: Collect inner loops inside marked outer loops in case 2159 // vectorization fails for the outer loop. Do not invoke 2160 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2161 // already known to be reducible. We can use an inherited attribute for 2162 // that. 2163 return; 2164 } 2165 } 2166 for (Loop *InnerL : L) 2167 collectSupportedLoops(*InnerL, LI, ORE, V); 2168 } 2169 2170 namespace { 2171 2172 /// The LoopVectorize Pass. 2173 struct LoopVectorize : public FunctionPass { 2174 /// Pass identification, replacement for typeid 2175 static char ID; 2176 2177 LoopVectorizePass Impl; 2178 2179 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2180 bool VectorizeOnlyWhenForced = false) 2181 : FunctionPass(ID), 2182 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2183 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2184 } 2185 2186 bool runOnFunction(Function &F) override { 2187 if (skipFunction(F)) 2188 return false; 2189 2190 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2191 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2192 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2193 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2194 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2195 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2196 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2197 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2198 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2199 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2200 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2201 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2202 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2203 2204 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2205 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2206 2207 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2208 GetLAA, *ORE, PSI).MadeAnyChange; 2209 } 2210 2211 void getAnalysisUsage(AnalysisUsage &AU) const override { 2212 AU.addRequired<AssumptionCacheTracker>(); 2213 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2214 AU.addRequired<DominatorTreeWrapperPass>(); 2215 AU.addRequired<LoopInfoWrapperPass>(); 2216 AU.addRequired<ScalarEvolutionWrapperPass>(); 2217 AU.addRequired<TargetTransformInfoWrapperPass>(); 2218 AU.addRequired<AAResultsWrapperPass>(); 2219 AU.addRequired<LoopAccessLegacyAnalysis>(); 2220 AU.addRequired<DemandedBitsWrapperPass>(); 2221 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2222 AU.addRequired<InjectTLIMappingsLegacy>(); 2223 2224 // We currently do not preserve loopinfo/dominator analyses with outer loop 2225 // vectorization. Until this is addressed, mark these analyses as preserved 2226 // only for non-VPlan-native path. 2227 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2228 if (!EnableVPlanNativePath) { 2229 AU.addPreserved<LoopInfoWrapperPass>(); 2230 AU.addPreserved<DominatorTreeWrapperPass>(); 2231 } 2232 2233 AU.addPreserved<BasicAAWrapperPass>(); 2234 AU.addPreserved<GlobalsAAWrapperPass>(); 2235 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2236 } 2237 }; 2238 2239 } // end anonymous namespace 2240 2241 //===----------------------------------------------------------------------===// 2242 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2243 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2244 //===----------------------------------------------------------------------===// 2245 2246 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2247 // We need to place the broadcast of invariant variables outside the loop, 2248 // but only if it's proven safe to do so. Else, broadcast will be inside 2249 // vector loop body. 2250 Instruction *Instr = dyn_cast<Instruction>(V); 2251 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2252 (!Instr || 2253 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2254 // Place the code for broadcasting invariant variables in the new preheader. 2255 IRBuilder<>::InsertPointGuard Guard(Builder); 2256 if (SafeToHoist) 2257 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2258 2259 // Broadcast the scalar into all locations in the vector. 2260 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2261 2262 return Shuf; 2263 } 2264 2265 /// This function adds 2266 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2267 /// to each vector element of Val. The sequence starts at StartIndex. 2268 /// \p Opcode is relevant for FP induction variable. 2269 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2270 Instruction::BinaryOps BinOp, ElementCount VF, 2271 IRBuilderBase &Builder) { 2272 assert(VF.isVector() && "only vector VFs are supported"); 2273 2274 // Create and check the types. 2275 auto *ValVTy = cast<VectorType>(Val->getType()); 2276 ElementCount VLen = ValVTy->getElementCount(); 2277 2278 Type *STy = Val->getType()->getScalarType(); 2279 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2280 "Induction Step must be an integer or FP"); 2281 assert(Step->getType() == STy && "Step has wrong type"); 2282 2283 SmallVector<Constant *, 8> Indices; 2284 2285 // Create a vector of consecutive numbers from zero to VF. 2286 VectorType *InitVecValVTy = ValVTy; 2287 if (STy->isFloatingPointTy()) { 2288 Type *InitVecValSTy = 2289 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2290 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2291 } 2292 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2293 2294 // Splat the StartIdx 2295 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2296 2297 if (STy->isIntegerTy()) { 2298 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2299 Step = Builder.CreateVectorSplat(VLen, Step); 2300 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2301 // FIXME: The newly created binary instructions should contain nsw/nuw 2302 // flags, which can be found from the original scalar operations. 2303 Step = Builder.CreateMul(InitVec, Step); 2304 return Builder.CreateAdd(Val, Step, "induction"); 2305 } 2306 2307 // Floating point induction. 2308 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2309 "Binary Opcode should be specified for FP induction"); 2310 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2311 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2312 2313 Step = Builder.CreateVectorSplat(VLen, Step); 2314 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2315 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2316 } 2317 2318 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2319 /// variable on which to base the steps, \p Step is the size of the step. 2320 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2321 const InductionDescriptor &ID, VPValue *Def, 2322 VPTransformState &State) { 2323 IRBuilderBase &Builder = State.Builder; 2324 // We shouldn't have to build scalar steps if we aren't vectorizing. 2325 assert(State.VF.isVector() && "VF should be greater than one"); 2326 // Get the value type and ensure it and the step have the same integer type. 2327 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2328 assert(ScalarIVTy == Step->getType() && 2329 "Val and Step should have the same type"); 2330 2331 // We build scalar steps for both integer and floating-point induction 2332 // variables. Here, we determine the kind of arithmetic we will perform. 2333 Instruction::BinaryOps AddOp; 2334 Instruction::BinaryOps MulOp; 2335 if (ScalarIVTy->isIntegerTy()) { 2336 AddOp = Instruction::Add; 2337 MulOp = Instruction::Mul; 2338 } else { 2339 AddOp = ID.getInductionOpcode(); 2340 MulOp = Instruction::FMul; 2341 } 2342 2343 // Determine the number of scalars we need to generate for each unroll 2344 // iteration. 2345 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2346 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2347 // Compute the scalar steps and save the results in State. 2348 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2349 ScalarIVTy->getScalarSizeInBits()); 2350 Type *VecIVTy = nullptr; 2351 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2352 if (!FirstLaneOnly && State.VF.isScalable()) { 2353 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2354 UnitStepVec = 2355 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2356 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2357 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2358 } 2359 2360 for (unsigned Part = 0; Part < State.UF; ++Part) { 2361 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2362 2363 if (!FirstLaneOnly && State.VF.isScalable()) { 2364 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2365 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2366 if (ScalarIVTy->isFloatingPointTy()) 2367 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2368 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2369 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2370 State.set(Def, Add, Part); 2371 // It's useful to record the lane values too for the known minimum number 2372 // of elements so we do those below. This improves the code quality when 2373 // trying to extract the first element, for example. 2374 } 2375 2376 if (ScalarIVTy->isFloatingPointTy()) 2377 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2378 2379 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2380 Value *StartIdx = Builder.CreateBinOp( 2381 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2382 // The step returned by `createStepForVF` is a runtime-evaluated value 2383 // when VF is scalable. Otherwise, it should be folded into a Constant. 2384 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2385 "Expected StartIdx to be folded to a constant when VF is not " 2386 "scalable"); 2387 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2388 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2389 State.set(Def, Add, VPIteration(Part, Lane)); 2390 } 2391 } 2392 } 2393 2394 // Generate code for the induction step. Note that induction steps are 2395 // required to be loop-invariant 2396 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2397 Instruction *InsertBefore, 2398 Loop *OrigLoop = nullptr) { 2399 const DataLayout &DL = SE.getDataLayout(); 2400 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2401 "Induction step should be loop invariant"); 2402 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2403 return E->getValue(); 2404 2405 SCEVExpander Exp(SE, DL, "induction"); 2406 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2407 } 2408 2409 /// Compute the transformed value of Index at offset StartValue using step 2410 /// StepValue. 2411 /// For integer induction, returns StartValue + Index * StepValue. 2412 /// For pointer induction, returns StartValue[Index * StepValue]. 2413 /// FIXME: The newly created binary instructions should contain nsw/nuw 2414 /// flags, which can be found from the original scalar operations. 2415 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2416 Value *StartValue, Value *Step, 2417 const InductionDescriptor &ID) { 2418 assert(Index->getType()->getScalarType() == Step->getType() && 2419 "Index scalar type does not match StepValue type"); 2420 2421 // Note: the IR at this point is broken. We cannot use SE to create any new 2422 // SCEV and then expand it, hoping that SCEV's simplification will give us 2423 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2424 // lead to various SCEV crashes. So all we can do is to use builder and rely 2425 // on InstCombine for future simplifications. Here we handle some trivial 2426 // cases only. 2427 auto CreateAdd = [&B](Value *X, Value *Y) { 2428 assert(X->getType() == Y->getType() && "Types don't match!"); 2429 if (auto *CX = dyn_cast<ConstantInt>(X)) 2430 if (CX->isZero()) 2431 return Y; 2432 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2433 if (CY->isZero()) 2434 return X; 2435 return B.CreateAdd(X, Y); 2436 }; 2437 2438 // We allow X to be a vector type, in which case Y will potentially be 2439 // splatted into a vector with the same element count. 2440 auto CreateMul = [&B](Value *X, Value *Y) { 2441 assert(X->getType()->getScalarType() == Y->getType() && 2442 "Types don't match!"); 2443 if (auto *CX = dyn_cast<ConstantInt>(X)) 2444 if (CX->isOne()) 2445 return Y; 2446 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2447 if (CY->isOne()) 2448 return X; 2449 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2450 if (XVTy && !isa<VectorType>(Y->getType())) 2451 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2452 return B.CreateMul(X, Y); 2453 }; 2454 2455 switch (ID.getKind()) { 2456 case InductionDescriptor::IK_IntInduction: { 2457 assert(!isa<VectorType>(Index->getType()) && 2458 "Vector indices not supported for integer inductions yet"); 2459 assert(Index->getType() == StartValue->getType() && 2460 "Index type does not match StartValue type"); 2461 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2462 return B.CreateSub(StartValue, Index); 2463 auto *Offset = CreateMul(Index, Step); 2464 return CreateAdd(StartValue, Offset); 2465 } 2466 case InductionDescriptor::IK_PtrInduction: { 2467 assert(isa<Constant>(Step) && 2468 "Expected constant step for pointer induction"); 2469 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2470 } 2471 case InductionDescriptor::IK_FpInduction: { 2472 assert(!isa<VectorType>(Index->getType()) && 2473 "Vector indices not supported for FP inductions yet"); 2474 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2475 auto InductionBinOp = ID.getInductionBinOp(); 2476 assert(InductionBinOp && 2477 (InductionBinOp->getOpcode() == Instruction::FAdd || 2478 InductionBinOp->getOpcode() == Instruction::FSub) && 2479 "Original bin op should be defined for FP induction"); 2480 2481 Value *MulExp = B.CreateFMul(Step, Index); 2482 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2483 "induction"); 2484 } 2485 case InductionDescriptor::IK_NoInduction: 2486 return nullptr; 2487 } 2488 llvm_unreachable("invalid enum"); 2489 } 2490 2491 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2492 const VPIteration &Instance, 2493 VPTransformState &State) { 2494 Value *ScalarInst = State.get(Def, Instance); 2495 Value *VectorValue = State.get(Def, Instance.Part); 2496 VectorValue = Builder.CreateInsertElement( 2497 VectorValue, ScalarInst, 2498 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2499 State.set(Def, VectorValue, Instance.Part); 2500 } 2501 2502 // Return whether we allow using masked interleave-groups (for dealing with 2503 // strided loads/stores that reside in predicated blocks, or for dealing 2504 // with gaps). 2505 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2506 // If an override option has been passed in for interleaved accesses, use it. 2507 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2508 return EnableMaskedInterleavedMemAccesses; 2509 2510 return TTI.enableMaskedInterleavedAccessVectorization(); 2511 } 2512 2513 // Try to vectorize the interleave group that \p Instr belongs to. 2514 // 2515 // E.g. Translate following interleaved load group (factor = 3): 2516 // for (i = 0; i < N; i+=3) { 2517 // R = Pic[i]; // Member of index 0 2518 // G = Pic[i+1]; // Member of index 1 2519 // B = Pic[i+2]; // Member of index 2 2520 // ... // do something to R, G, B 2521 // } 2522 // To: 2523 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2524 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2525 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2526 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2527 // 2528 // Or translate following interleaved store group (factor = 3): 2529 // for (i = 0; i < N; i+=3) { 2530 // ... do something to R, G, B 2531 // Pic[i] = R; // Member of index 0 2532 // Pic[i+1] = G; // Member of index 1 2533 // Pic[i+2] = B; // Member of index 2 2534 // } 2535 // To: 2536 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2537 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2538 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2539 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2540 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2541 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2542 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2543 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2544 VPValue *BlockInMask) { 2545 Instruction *Instr = Group->getInsertPos(); 2546 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2547 2548 // Prepare for the vector type of the interleaved load/store. 2549 Type *ScalarTy = getLoadStoreType(Instr); 2550 unsigned InterleaveFactor = Group->getFactor(); 2551 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2552 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2553 2554 // Prepare for the new pointers. 2555 SmallVector<Value *, 2> AddrParts; 2556 unsigned Index = Group->getIndex(Instr); 2557 2558 // TODO: extend the masked interleaved-group support to reversed access. 2559 assert((!BlockInMask || !Group->isReverse()) && 2560 "Reversed masked interleave-group not supported."); 2561 2562 // If the group is reverse, adjust the index to refer to the last vector lane 2563 // instead of the first. We adjust the index from the first vector lane, 2564 // rather than directly getting the pointer for lane VF - 1, because the 2565 // pointer operand of the interleaved access is supposed to be uniform. For 2566 // uniform instructions, we're only required to generate a value for the 2567 // first vector lane in each unroll iteration. 2568 if (Group->isReverse()) 2569 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2570 2571 for (unsigned Part = 0; Part < UF; Part++) { 2572 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2573 State.setDebugLocFromInst(AddrPart); 2574 2575 // Notice current instruction could be any index. Need to adjust the address 2576 // to the member of index 0. 2577 // 2578 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2579 // b = A[i]; // Member of index 0 2580 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2581 // 2582 // E.g. A[i+1] = a; // Member of index 1 2583 // A[i] = b; // Member of index 0 2584 // A[i+2] = c; // Member of index 2 (Current instruction) 2585 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2586 2587 bool InBounds = false; 2588 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2589 InBounds = gep->isInBounds(); 2590 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2591 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2592 2593 // Cast to the vector pointer type. 2594 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2595 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2596 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2597 } 2598 2599 State.setDebugLocFromInst(Instr); 2600 Value *PoisonVec = PoisonValue::get(VecTy); 2601 2602 Value *MaskForGaps = nullptr; 2603 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2604 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2605 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2606 } 2607 2608 // Vectorize the interleaved load group. 2609 if (isa<LoadInst>(Instr)) { 2610 // For each unroll part, create a wide load for the group. 2611 SmallVector<Value *, 2> NewLoads; 2612 for (unsigned Part = 0; Part < UF; Part++) { 2613 Instruction *NewLoad; 2614 if (BlockInMask || MaskForGaps) { 2615 assert(useMaskedInterleavedAccesses(*TTI) && 2616 "masked interleaved groups are not allowed."); 2617 Value *GroupMask = MaskForGaps; 2618 if (BlockInMask) { 2619 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2620 Value *ShuffledMask = Builder.CreateShuffleVector( 2621 BlockInMaskPart, 2622 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2623 "interleaved.mask"); 2624 GroupMask = MaskForGaps 2625 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2626 MaskForGaps) 2627 : ShuffledMask; 2628 } 2629 NewLoad = 2630 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2631 GroupMask, PoisonVec, "wide.masked.vec"); 2632 } 2633 else 2634 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2635 Group->getAlign(), "wide.vec"); 2636 Group->addMetadata(NewLoad); 2637 NewLoads.push_back(NewLoad); 2638 } 2639 2640 // For each member in the group, shuffle out the appropriate data from the 2641 // wide loads. 2642 unsigned J = 0; 2643 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2644 Instruction *Member = Group->getMember(I); 2645 2646 // Skip the gaps in the group. 2647 if (!Member) 2648 continue; 2649 2650 auto StrideMask = 2651 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2652 for (unsigned Part = 0; Part < UF; Part++) { 2653 Value *StridedVec = Builder.CreateShuffleVector( 2654 NewLoads[Part], StrideMask, "strided.vec"); 2655 2656 // If this member has different type, cast the result type. 2657 if (Member->getType() != ScalarTy) { 2658 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2659 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2660 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2661 } 2662 2663 if (Group->isReverse()) 2664 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2665 2666 State.set(VPDefs[J], StridedVec, Part); 2667 } 2668 ++J; 2669 } 2670 return; 2671 } 2672 2673 // The sub vector type for current instruction. 2674 auto *SubVT = VectorType::get(ScalarTy, VF); 2675 2676 // Vectorize the interleaved store group. 2677 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2678 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2679 "masked interleaved groups are not allowed."); 2680 assert((!MaskForGaps || !VF.isScalable()) && 2681 "masking gaps for scalable vectors is not yet supported."); 2682 for (unsigned Part = 0; Part < UF; Part++) { 2683 // Collect the stored vector from each member. 2684 SmallVector<Value *, 4> StoredVecs; 2685 for (unsigned i = 0; i < InterleaveFactor; i++) { 2686 assert((Group->getMember(i) || MaskForGaps) && 2687 "Fail to get a member from an interleaved store group"); 2688 Instruction *Member = Group->getMember(i); 2689 2690 // Skip the gaps in the group. 2691 if (!Member) { 2692 Value *Undef = PoisonValue::get(SubVT); 2693 StoredVecs.push_back(Undef); 2694 continue; 2695 } 2696 2697 Value *StoredVec = State.get(StoredValues[i], Part); 2698 2699 if (Group->isReverse()) 2700 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2701 2702 // If this member has different type, cast it to a unified type. 2703 2704 if (StoredVec->getType() != SubVT) 2705 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2706 2707 StoredVecs.push_back(StoredVec); 2708 } 2709 2710 // Concatenate all vectors into a wide vector. 2711 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2712 2713 // Interleave the elements in the wide vector. 2714 Value *IVec = Builder.CreateShuffleVector( 2715 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2716 "interleaved.vec"); 2717 2718 Instruction *NewStoreInstr; 2719 if (BlockInMask || MaskForGaps) { 2720 Value *GroupMask = MaskForGaps; 2721 if (BlockInMask) { 2722 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2723 Value *ShuffledMask = Builder.CreateShuffleVector( 2724 BlockInMaskPart, 2725 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2726 "interleaved.mask"); 2727 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2728 ShuffledMask, MaskForGaps) 2729 : ShuffledMask; 2730 } 2731 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2732 Group->getAlign(), GroupMask); 2733 } else 2734 NewStoreInstr = 2735 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2736 2737 Group->addMetadata(NewStoreInstr); 2738 } 2739 } 2740 2741 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2742 VPReplicateRecipe *RepRecipe, 2743 const VPIteration &Instance, 2744 bool IfPredicateInstr, 2745 VPTransformState &State) { 2746 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2747 2748 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2749 // the first lane and part. 2750 if (isa<NoAliasScopeDeclInst>(Instr)) 2751 if (!Instance.isFirstIteration()) 2752 return; 2753 2754 // Does this instruction return a value ? 2755 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2756 2757 Instruction *Cloned = Instr->clone(); 2758 if (!IsVoidRetTy) 2759 Cloned->setName(Instr->getName() + ".cloned"); 2760 2761 // If the scalarized instruction contributes to the address computation of a 2762 // widen masked load/store which was in a basic block that needed predication 2763 // and is not predicated after vectorization, we can't propagate 2764 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2765 // instruction could feed a poison value to the base address of the widen 2766 // load/store. 2767 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2768 Cloned->dropPoisonGeneratingFlags(); 2769 2770 if (Instr->getDebugLoc()) 2771 State.setDebugLocFromInst(Instr); 2772 2773 // Replace the operands of the cloned instructions with their scalar 2774 // equivalents in the new loop. 2775 for (auto &I : enumerate(RepRecipe->operands())) { 2776 auto InputInstance = Instance; 2777 VPValue *Operand = I.value(); 2778 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2779 if (OperandR && OperandR->isUniform()) 2780 InputInstance.Lane = VPLane::getFirstLane(); 2781 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2782 } 2783 State.addNewMetadata(Cloned, Instr); 2784 2785 // Place the cloned scalar in the new loop. 2786 State.Builder.Insert(Cloned); 2787 2788 State.set(RepRecipe, Cloned, Instance); 2789 2790 // If we just cloned a new assumption, add it the assumption cache. 2791 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2792 AC->registerAssumption(II); 2793 2794 // End if-block. 2795 if (IfPredicateInstr) 2796 PredicatedInstructions.push_back(Cloned); 2797 } 2798 2799 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2800 if (TripCount) 2801 return TripCount; 2802 2803 assert(InsertBlock); 2804 IRBuilder<> Builder(InsertBlock->getTerminator()); 2805 // Find the loop boundaries. 2806 ScalarEvolution *SE = PSE.getSE(); 2807 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2808 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2809 "Invalid loop count"); 2810 2811 Type *IdxTy = Legal->getWidestInductionType(); 2812 assert(IdxTy && "No type for induction"); 2813 2814 // The exit count might have the type of i64 while the phi is i32. This can 2815 // happen if we have an induction variable that is sign extended before the 2816 // compare. The only way that we get a backedge taken count is that the 2817 // induction variable was signed and as such will not overflow. In such a case 2818 // truncation is legal. 2819 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2820 IdxTy->getPrimitiveSizeInBits()) 2821 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2822 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2823 2824 // Get the total trip count from the count by adding 1. 2825 const SCEV *ExitCount = SE->getAddExpr( 2826 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2827 2828 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2829 2830 // Expand the trip count and place the new instructions in the preheader. 2831 // Notice that the pre-header does not change, only the loop body. 2832 SCEVExpander Exp(*SE, DL, "induction"); 2833 2834 // Count holds the overall loop count (N). 2835 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2836 InsertBlock->getTerminator()); 2837 2838 if (TripCount->getType()->isPointerTy()) 2839 TripCount = 2840 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2841 InsertBlock->getTerminator()); 2842 2843 return TripCount; 2844 } 2845 2846 Value * 2847 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2848 if (VectorTripCount) 2849 return VectorTripCount; 2850 2851 Value *TC = getOrCreateTripCount(InsertBlock); 2852 IRBuilder<> Builder(InsertBlock->getTerminator()); 2853 2854 Type *Ty = TC->getType(); 2855 // This is where we can make the step a runtime constant. 2856 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2857 2858 // If the tail is to be folded by masking, round the number of iterations N 2859 // up to a multiple of Step instead of rounding down. This is done by first 2860 // adding Step-1 and then rounding down. Note that it's ok if this addition 2861 // overflows: the vector induction variable will eventually wrap to zero given 2862 // that it starts at zero and its Step is a power of two; the loop will then 2863 // exit, with the last early-exit vector comparison also producing all-true. 2864 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2865 // is accounted for in emitIterationCountCheck that adds an overflow check. 2866 if (Cost->foldTailByMasking()) { 2867 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2868 "VF*UF must be a power of 2 when folding tail by masking"); 2869 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2870 TC = Builder.CreateAdd( 2871 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2872 } 2873 2874 // Now we need to generate the expression for the part of the loop that the 2875 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2876 // iterations are not required for correctness, or N - Step, otherwise. Step 2877 // is equal to the vectorization factor (number of SIMD elements) times the 2878 // unroll factor (number of SIMD instructions). 2879 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2880 2881 // There are cases where we *must* run at least one iteration in the remainder 2882 // loop. See the cost model for when this can happen. If the step evenly 2883 // divides the trip count, we set the remainder to be equal to the step. If 2884 // the step does not evenly divide the trip count, no adjustment is necessary 2885 // since there will already be scalar iterations. Note that the minimum 2886 // iterations check ensures that N >= Step. 2887 if (Cost->requiresScalarEpilogue(VF)) { 2888 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2889 R = Builder.CreateSelect(IsZero, Step, R); 2890 } 2891 2892 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2893 2894 return VectorTripCount; 2895 } 2896 2897 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2898 const DataLayout &DL) { 2899 // Verify that V is a vector type with same number of elements as DstVTy. 2900 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2901 unsigned VF = DstFVTy->getNumElements(); 2902 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2903 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2904 Type *SrcElemTy = SrcVecTy->getElementType(); 2905 Type *DstElemTy = DstFVTy->getElementType(); 2906 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2907 "Vector elements must have same size"); 2908 2909 // Do a direct cast if element types are castable. 2910 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2911 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2912 } 2913 // V cannot be directly casted to desired vector type. 2914 // May happen when V is a floating point vector but DstVTy is a vector of 2915 // pointers or vice-versa. Handle this using a two-step bitcast using an 2916 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2917 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2918 "Only one type should be a pointer type"); 2919 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2920 "Only one type should be a floating point type"); 2921 Type *IntTy = 2922 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2923 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2924 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2925 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2926 } 2927 2928 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2929 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2930 // Reuse existing vector loop preheader for TC checks. 2931 // Note that new preheader block is generated for vector loop. 2932 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2933 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2934 2935 // Generate code to check if the loop's trip count is less than VF * UF, or 2936 // equal to it in case a scalar epilogue is required; this implies that the 2937 // vector trip count is zero. This check also covers the case where adding one 2938 // to the backedge-taken count overflowed leading to an incorrect trip count 2939 // of zero. In this case we will also jump to the scalar loop. 2940 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2941 : ICmpInst::ICMP_ULT; 2942 2943 // If tail is to be folded, vector loop takes care of all iterations. 2944 Type *CountTy = Count->getType(); 2945 Value *CheckMinIters = Builder.getFalse(); 2946 auto CreateStep = [&]() -> Value * { 2947 // Create step with max(MinProTripCount, UF * VF). 2948 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2949 return createStepForVF(Builder, CountTy, VF, UF); 2950 2951 Value *MinProfTC = 2952 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2953 if (!VF.isScalable()) 2954 return MinProfTC; 2955 return Builder.CreateBinaryIntrinsic( 2956 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2957 }; 2958 2959 if (!Cost->foldTailByMasking()) 2960 CheckMinIters = 2961 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2962 else if (VF.isScalable()) { 2963 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2964 // an overflow to zero when updating induction variables and so an 2965 // additional overflow check is required before entering the vector loop. 2966 2967 // Get the maximum unsigned value for the type. 2968 Value *MaxUIntTripCount = 2969 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2970 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2971 2972 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2973 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2974 } 2975 2976 // Create new preheader for vector loop. 2977 LoopVectorPreHeader = 2978 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2979 "vector.ph"); 2980 2981 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2982 DT->getNode(Bypass)->getIDom()) && 2983 "TC check is expected to dominate Bypass"); 2984 2985 // Update dominator for Bypass & LoopExit (if needed). 2986 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2987 if (!Cost->requiresScalarEpilogue(VF)) 2988 // If there is an epilogue which must run, there's no edge from the 2989 // middle block to exit blocks and thus no need to update the immediate 2990 // dominator of the exit blocks. 2991 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2992 2993 ReplaceInstWithInst( 2994 TCCheckBlock->getTerminator(), 2995 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2996 LoopBypassBlocks.push_back(TCCheckBlock); 2997 } 2998 2999 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3000 BasicBlock *const SCEVCheckBlock = 3001 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3002 if (!SCEVCheckBlock) 3003 return nullptr; 3004 3005 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3006 (OptForSizeBasedOnProfile && 3007 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3008 "Cannot SCEV check stride or overflow when optimizing for size"); 3009 3010 3011 // Update dominator only if this is first RT check. 3012 if (LoopBypassBlocks.empty()) { 3013 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3014 if (!Cost->requiresScalarEpilogue(VF)) 3015 // If there is an epilogue which must run, there's no edge from the 3016 // middle block to exit blocks and thus no need to update the immediate 3017 // dominator of the exit blocks. 3018 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3019 } 3020 3021 LoopBypassBlocks.push_back(SCEVCheckBlock); 3022 AddedSafetyChecks = true; 3023 return SCEVCheckBlock; 3024 } 3025 3026 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3027 // VPlan-native path does not do any analysis for runtime checks currently. 3028 if (EnableVPlanNativePath) 3029 return nullptr; 3030 3031 BasicBlock *const MemCheckBlock = 3032 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3033 3034 // Check if we generated code that checks in runtime if arrays overlap. We put 3035 // the checks into a separate block to make the more common case of few 3036 // elements faster. 3037 if (!MemCheckBlock) 3038 return nullptr; 3039 3040 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3041 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3042 "Cannot emit memory checks when optimizing for size, unless forced " 3043 "to vectorize."); 3044 ORE->emit([&]() { 3045 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3046 OrigLoop->getStartLoc(), 3047 OrigLoop->getHeader()) 3048 << "Code-size may be reduced by not forcing " 3049 "vectorization, or by source-code modifications " 3050 "eliminating the need for runtime checks " 3051 "(e.g., adding 'restrict')."; 3052 }); 3053 } 3054 3055 LoopBypassBlocks.push_back(MemCheckBlock); 3056 3057 AddedSafetyChecks = true; 3058 3059 return MemCheckBlock; 3060 } 3061 3062 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3063 LoopScalarBody = OrigLoop->getHeader(); 3064 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3065 assert(LoopVectorPreHeader && "Invalid loop structure"); 3066 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3067 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3068 "multiple exit loop without required epilogue?"); 3069 3070 LoopMiddleBlock = 3071 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3072 LI, nullptr, Twine(Prefix) + "middle.block"); 3073 LoopScalarPreHeader = 3074 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3075 nullptr, Twine(Prefix) + "scalar.ph"); 3076 3077 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3078 3079 // Set up the middle block terminator. Two cases: 3080 // 1) If we know that we must execute the scalar epilogue, emit an 3081 // unconditional branch. 3082 // 2) Otherwise, we must have a single unique exit block (due to how we 3083 // implement the multiple exit case). In this case, set up a conditonal 3084 // branch from the middle block to the loop scalar preheader, and the 3085 // exit block. completeLoopSkeleton will update the condition to use an 3086 // iteration check, if required to decide whether to execute the remainder. 3087 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3088 BranchInst::Create(LoopScalarPreHeader) : 3089 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3090 Builder.getTrue()); 3091 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3092 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3093 3094 // Update dominator for loop exit. During skeleton creation, only the vector 3095 // pre-header and the middle block are created. The vector loop is entirely 3096 // created during VPlan exection. 3097 if (!Cost->requiresScalarEpilogue(VF)) 3098 // If there is an epilogue which must run, there's no edge from the 3099 // middle block to exit blocks and thus no need to update the immediate 3100 // dominator of the exit blocks. 3101 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3102 } 3103 3104 void InnerLoopVectorizer::createInductionResumeValues( 3105 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3106 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3107 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3108 "Inconsistent information about additional bypass."); 3109 3110 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3111 assert(VectorTripCount && "Expected valid arguments"); 3112 // We are going to resume the execution of the scalar loop. 3113 // Go over all of the induction variables that we found and fix the 3114 // PHIs that are left in the scalar version of the loop. 3115 // The starting values of PHI nodes depend on the counter of the last 3116 // iteration in the vectorized loop. 3117 // If we come from a bypass edge then we need to start from the original 3118 // start value. 3119 Instruction *OldInduction = Legal->getPrimaryInduction(); 3120 for (auto &InductionEntry : Legal->getInductionVars()) { 3121 PHINode *OrigPhi = InductionEntry.first; 3122 InductionDescriptor II = InductionEntry.second; 3123 3124 Value *&EndValue = IVEndValues[OrigPhi]; 3125 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3126 if (OrigPhi == OldInduction) { 3127 // We know what the end value is. 3128 EndValue = VectorTripCount; 3129 } else { 3130 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3131 3132 // Fast-math-flags propagate from the original induction instruction. 3133 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3134 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3135 3136 Type *StepType = II.getStep()->getType(); 3137 Instruction::CastOps CastOp = 3138 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3139 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3140 Value *Step = 3141 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3142 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3143 EndValue->setName("ind.end"); 3144 3145 // Compute the end value for the additional bypass (if applicable). 3146 if (AdditionalBypass.first) { 3147 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3148 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3149 StepType, true); 3150 Value *Step = 3151 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3152 VTC = 3153 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3154 EndValueFromAdditionalBypass = 3155 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3156 EndValueFromAdditionalBypass->setName("ind.end"); 3157 } 3158 } 3159 3160 // Create phi nodes to merge from the backedge-taken check block. 3161 PHINode *BCResumeVal = 3162 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3163 LoopScalarPreHeader->getTerminator()); 3164 // Copy original phi DL over to the new one. 3165 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3166 3167 // The new PHI merges the original incoming value, in case of a bypass, 3168 // or the value at the end of the vectorized loop. 3169 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3170 3171 // Fix the scalar body counter (PHI node). 3172 // The old induction's phi node in the scalar body needs the truncated 3173 // value. 3174 for (BasicBlock *BB : LoopBypassBlocks) 3175 BCResumeVal->addIncoming(II.getStartValue(), BB); 3176 3177 if (AdditionalBypass.first) 3178 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3179 EndValueFromAdditionalBypass); 3180 3181 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3182 } 3183 } 3184 3185 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3186 // The trip counts should be cached by now. 3187 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3188 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3189 3190 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3191 3192 // Add a check in the middle block to see if we have completed 3193 // all of the iterations in the first vector loop. Three cases: 3194 // 1) If we require a scalar epilogue, there is no conditional branch as 3195 // we unconditionally branch to the scalar preheader. Do nothing. 3196 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3197 // Thus if tail is to be folded, we know we don't need to run the 3198 // remainder and we can use the previous value for the condition (true). 3199 // 3) Otherwise, construct a runtime check. 3200 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3201 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3202 Count, VectorTripCount, "cmp.n", 3203 LoopMiddleBlock->getTerminator()); 3204 3205 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3206 // of the corresponding compare because they may have ended up with 3207 // different line numbers and we want to avoid awkward line stepping while 3208 // debugging. Eg. if the compare has got a line number inside the loop. 3209 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3210 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3211 } 3212 3213 #ifdef EXPENSIVE_CHECKS 3214 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3215 #endif 3216 3217 return LoopVectorPreHeader; 3218 } 3219 3220 std::pair<BasicBlock *, Value *> 3221 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3222 /* 3223 In this function we generate a new loop. The new loop will contain 3224 the vectorized instructions while the old loop will continue to run the 3225 scalar remainder. 3226 3227 [ ] <-- loop iteration number check. 3228 / | 3229 / v 3230 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3231 | / | 3232 | / v 3233 || [ ] <-- vector pre header. 3234 |/ | 3235 | v 3236 | [ ] \ 3237 | [ ]_| <-- vector loop (created during VPlan execution). 3238 | | 3239 | v 3240 \ -[ ] <--- middle-block. 3241 \/ | 3242 /\ v 3243 | ->[ ] <--- new preheader. 3244 | | 3245 (opt) v <-- edge from middle to exit iff epilogue is not required. 3246 | [ ] \ 3247 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3248 \ | 3249 \ v 3250 >[ ] <-- exit block(s). 3251 ... 3252 */ 3253 3254 // Get the metadata of the original loop before it gets modified. 3255 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3256 3257 // Workaround! Compute the trip count of the original loop and cache it 3258 // before we start modifying the CFG. This code has a systemic problem 3259 // wherein it tries to run analysis over partially constructed IR; this is 3260 // wrong, and not simply for SCEV. The trip count of the original loop 3261 // simply happens to be prone to hitting this in practice. In theory, we 3262 // can hit the same issue for any SCEV, or ValueTracking query done during 3263 // mutation. See PR49900. 3264 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3265 3266 // Create an empty vector loop, and prepare basic blocks for the runtime 3267 // checks. 3268 createVectorLoopSkeleton(""); 3269 3270 // Now, compare the new count to zero. If it is zero skip the vector loop and 3271 // jump to the scalar loop. This check also covers the case where the 3272 // backedge-taken count is uint##_max: adding one to it will overflow leading 3273 // to an incorrect trip count of zero. In this (rare) case we will also jump 3274 // to the scalar loop. 3275 emitIterationCountCheck(LoopScalarPreHeader); 3276 3277 // Generate the code to check any assumptions that we've made for SCEV 3278 // expressions. 3279 emitSCEVChecks(LoopScalarPreHeader); 3280 3281 // Generate the code that checks in runtime if arrays overlap. We put the 3282 // checks into a separate block to make the more common case of few elements 3283 // faster. 3284 emitMemRuntimeChecks(LoopScalarPreHeader); 3285 3286 // Emit phis for the new starting index of the scalar loop. 3287 createInductionResumeValues(); 3288 3289 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3290 } 3291 3292 // Fix up external users of the induction variable. At this point, we are 3293 // in LCSSA form, with all external PHIs that use the IV having one input value, 3294 // coming from the remainder loop. We need those PHIs to also have a correct 3295 // value for the IV when arriving directly from the middle block. 3296 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3297 const InductionDescriptor &II, 3298 Value *VectorTripCount, Value *EndValue, 3299 BasicBlock *MiddleBlock, 3300 BasicBlock *VectorHeader, VPlan &Plan) { 3301 // There are two kinds of external IV usages - those that use the value 3302 // computed in the last iteration (the PHI) and those that use the penultimate 3303 // value (the value that feeds into the phi from the loop latch). 3304 // We allow both, but they, obviously, have different values. 3305 3306 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3307 3308 DenseMap<Value *, Value *> MissingVals; 3309 3310 // An external user of the last iteration's value should see the value that 3311 // the remainder loop uses to initialize its own IV. 3312 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3313 for (User *U : PostInc->users()) { 3314 Instruction *UI = cast<Instruction>(U); 3315 if (!OrigLoop->contains(UI)) { 3316 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3317 MissingVals[UI] = EndValue; 3318 } 3319 } 3320 3321 // An external user of the penultimate value need to see EndValue - Step. 3322 // The simplest way to get this is to recompute it from the constituent SCEVs, 3323 // that is Start + (Step * (CRD - 1)). 3324 for (User *U : OrigPhi->users()) { 3325 auto *UI = cast<Instruction>(U); 3326 if (!OrigLoop->contains(UI)) { 3327 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3328 3329 IRBuilder<> B(MiddleBlock->getTerminator()); 3330 3331 // Fast-math-flags propagate from the original induction instruction. 3332 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3333 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3334 3335 Value *CountMinusOne = B.CreateSub( 3336 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3337 Value *CMO = 3338 !II.getStep()->getType()->isIntegerTy() 3339 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3340 II.getStep()->getType()) 3341 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3342 CMO->setName("cast.cmo"); 3343 3344 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3345 VectorHeader->getTerminator()); 3346 Value *Escape = 3347 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3348 Escape->setName("ind.escape"); 3349 MissingVals[UI] = Escape; 3350 } 3351 } 3352 3353 for (auto &I : MissingVals) { 3354 PHINode *PHI = cast<PHINode>(I.first); 3355 // One corner case we have to handle is two IVs "chasing" each-other, 3356 // that is %IV2 = phi [...], [ %IV1, %latch ] 3357 // In this case, if IV1 has an external use, we need to avoid adding both 3358 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3359 // don't already have an incoming value for the middle block. 3360 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3361 PHI->addIncoming(I.second, MiddleBlock); 3362 Plan.removeLiveOut(PHI); 3363 } 3364 } 3365 } 3366 3367 namespace { 3368 3369 struct CSEDenseMapInfo { 3370 static bool canHandle(const Instruction *I) { 3371 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3372 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3373 } 3374 3375 static inline Instruction *getEmptyKey() { 3376 return DenseMapInfo<Instruction *>::getEmptyKey(); 3377 } 3378 3379 static inline Instruction *getTombstoneKey() { 3380 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3381 } 3382 3383 static unsigned getHashValue(const Instruction *I) { 3384 assert(canHandle(I) && "Unknown instruction!"); 3385 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3386 I->value_op_end())); 3387 } 3388 3389 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3390 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3391 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3392 return LHS == RHS; 3393 return LHS->isIdenticalTo(RHS); 3394 } 3395 }; 3396 3397 } // end anonymous namespace 3398 3399 ///Perform cse of induction variable instructions. 3400 static void cse(BasicBlock *BB) { 3401 // Perform simple cse. 3402 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3403 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3404 if (!CSEDenseMapInfo::canHandle(&In)) 3405 continue; 3406 3407 // Check if we can replace this instruction with any of the 3408 // visited instructions. 3409 if (Instruction *V = CSEMap.lookup(&In)) { 3410 In.replaceAllUsesWith(V); 3411 In.eraseFromParent(); 3412 continue; 3413 } 3414 3415 CSEMap[&In] = &In; 3416 } 3417 } 3418 3419 InstructionCost 3420 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3421 bool &NeedToScalarize) const { 3422 Function *F = CI->getCalledFunction(); 3423 Type *ScalarRetTy = CI->getType(); 3424 SmallVector<Type *, 4> Tys, ScalarTys; 3425 for (auto &ArgOp : CI->args()) 3426 ScalarTys.push_back(ArgOp->getType()); 3427 3428 // Estimate cost of scalarized vector call. The source operands are assumed 3429 // to be vectors, so we need to extract individual elements from there, 3430 // execute VF scalar calls, and then gather the result into the vector return 3431 // value. 3432 InstructionCost ScalarCallCost = 3433 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3434 if (VF.isScalar()) 3435 return ScalarCallCost; 3436 3437 // Compute corresponding vector type for return value and arguments. 3438 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3439 for (Type *ScalarTy : ScalarTys) 3440 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3441 3442 // Compute costs of unpacking argument values for the scalar calls and 3443 // packing the return values to a vector. 3444 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3445 3446 InstructionCost Cost = 3447 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3448 3449 // If we can't emit a vector call for this function, then the currently found 3450 // cost is the cost we need to return. 3451 NeedToScalarize = true; 3452 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3453 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3454 3455 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3456 return Cost; 3457 3458 // If the corresponding vector cost is cheaper, return its cost. 3459 InstructionCost VectorCallCost = 3460 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3461 if (VectorCallCost < Cost) { 3462 NeedToScalarize = false; 3463 Cost = VectorCallCost; 3464 } 3465 return Cost; 3466 } 3467 3468 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3469 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3470 return Elt; 3471 return VectorType::get(Elt, VF); 3472 } 3473 3474 InstructionCost 3475 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3476 ElementCount VF) const { 3477 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3478 assert(ID && "Expected intrinsic call!"); 3479 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3480 FastMathFlags FMF; 3481 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3482 FMF = FPMO->getFastMathFlags(); 3483 3484 SmallVector<const Value *> Arguments(CI->args()); 3485 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3486 SmallVector<Type *> ParamTys; 3487 std::transform(FTy->param_begin(), FTy->param_end(), 3488 std::back_inserter(ParamTys), 3489 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3490 3491 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3492 dyn_cast<IntrinsicInst>(CI)); 3493 return TTI.getIntrinsicInstrCost(CostAttrs, 3494 TargetTransformInfo::TCK_RecipThroughput); 3495 } 3496 3497 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3498 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3499 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3500 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3501 } 3502 3503 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3504 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3505 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3506 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3507 } 3508 3509 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3510 // For every instruction `I` in MinBWs, truncate the operands, create a 3511 // truncated version of `I` and reextend its result. InstCombine runs 3512 // later and will remove any ext/trunc pairs. 3513 SmallPtrSet<Value *, 4> Erased; 3514 for (const auto &KV : Cost->getMinimalBitwidths()) { 3515 // If the value wasn't vectorized, we must maintain the original scalar 3516 // type. The absence of the value from State indicates that it 3517 // wasn't vectorized. 3518 // FIXME: Should not rely on getVPValue at this point. 3519 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3520 if (!State.hasAnyVectorValue(Def)) 3521 continue; 3522 for (unsigned Part = 0; Part < UF; ++Part) { 3523 Value *I = State.get(Def, Part); 3524 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3525 continue; 3526 Type *OriginalTy = I->getType(); 3527 Type *ScalarTruncatedTy = 3528 IntegerType::get(OriginalTy->getContext(), KV.second); 3529 auto *TruncatedTy = VectorType::get( 3530 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3531 if (TruncatedTy == OriginalTy) 3532 continue; 3533 3534 IRBuilder<> B(cast<Instruction>(I)); 3535 auto ShrinkOperand = [&](Value *V) -> Value * { 3536 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3537 if (ZI->getSrcTy() == TruncatedTy) 3538 return ZI->getOperand(0); 3539 return B.CreateZExtOrTrunc(V, TruncatedTy); 3540 }; 3541 3542 // The actual instruction modification depends on the instruction type, 3543 // unfortunately. 3544 Value *NewI = nullptr; 3545 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3546 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3547 ShrinkOperand(BO->getOperand(1))); 3548 3549 // Any wrapping introduced by shrinking this operation shouldn't be 3550 // considered undefined behavior. So, we can't unconditionally copy 3551 // arithmetic wrapping flags to NewI. 3552 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3553 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3554 NewI = 3555 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3556 ShrinkOperand(CI->getOperand(1))); 3557 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3558 NewI = B.CreateSelect(SI->getCondition(), 3559 ShrinkOperand(SI->getTrueValue()), 3560 ShrinkOperand(SI->getFalseValue())); 3561 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3562 switch (CI->getOpcode()) { 3563 default: 3564 llvm_unreachable("Unhandled cast!"); 3565 case Instruction::Trunc: 3566 NewI = ShrinkOperand(CI->getOperand(0)); 3567 break; 3568 case Instruction::SExt: 3569 NewI = B.CreateSExtOrTrunc( 3570 CI->getOperand(0), 3571 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3572 break; 3573 case Instruction::ZExt: 3574 NewI = B.CreateZExtOrTrunc( 3575 CI->getOperand(0), 3576 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3577 break; 3578 } 3579 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3580 auto Elements0 = 3581 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3582 auto *O0 = B.CreateZExtOrTrunc( 3583 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3584 auto Elements1 = 3585 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3586 auto *O1 = B.CreateZExtOrTrunc( 3587 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3588 3589 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3590 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3591 // Don't do anything with the operands, just extend the result. 3592 continue; 3593 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3594 auto Elements = 3595 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3596 auto *O0 = B.CreateZExtOrTrunc( 3597 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3598 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3599 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3600 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3606 } else { 3607 // If we don't know what to do, be conservative and don't do anything. 3608 continue; 3609 } 3610 3611 // Lastly, extend the result. 3612 NewI->takeName(cast<Instruction>(I)); 3613 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3614 I->replaceAllUsesWith(Res); 3615 cast<Instruction>(I)->eraseFromParent(); 3616 Erased.insert(I); 3617 State.reset(Def, Res, Part); 3618 } 3619 } 3620 3621 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3622 for (const auto &KV : Cost->getMinimalBitwidths()) { 3623 // If the value wasn't vectorized, we must maintain the original scalar 3624 // type. The absence of the value from State indicates that it 3625 // wasn't vectorized. 3626 // FIXME: Should not rely on getVPValue at this point. 3627 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3628 if (!State.hasAnyVectorValue(Def)) 3629 continue; 3630 for (unsigned Part = 0; Part < UF; ++Part) { 3631 Value *I = State.get(Def, Part); 3632 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3633 if (Inst && Inst->use_empty()) { 3634 Value *NewI = Inst->getOperand(0); 3635 Inst->eraseFromParent(); 3636 State.reset(Def, NewI, Part); 3637 } 3638 } 3639 } 3640 } 3641 3642 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3643 VPlan &Plan) { 3644 // Insert truncates and extends for any truncated instructions as hints to 3645 // InstCombine. 3646 if (VF.isVector()) 3647 truncateToMinimalBitwidths(State); 3648 3649 // Fix widened non-induction PHIs by setting up the PHI operands. 3650 if (EnableVPlanNativePath) 3651 fixNonInductionPHIs(Plan, State); 3652 3653 // At this point every instruction in the original loop is widened to a 3654 // vector form. Now we need to fix the recurrences in the loop. These PHI 3655 // nodes are currently empty because we did not want to introduce cycles. 3656 // This is the second stage of vectorizing recurrences. 3657 fixCrossIterationPHIs(State); 3658 3659 // Forget the original basic block. 3660 PSE.getSE()->forgetLoop(OrigLoop); 3661 3662 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3663 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3664 if (Cost->requiresScalarEpilogue(VF)) { 3665 // No edge from the middle block to the unique exit block has been inserted 3666 // and there is nothing to fix from vector loop; phis should have incoming 3667 // from scalar loop only. 3668 Plan.clearLiveOuts(); 3669 } else { 3670 // If we inserted an edge from the middle block to the unique exit block, 3671 // update uses outside the loop (phis) to account for the newly inserted 3672 // edge. 3673 3674 // Fix-up external users of the induction variables. 3675 for (auto &Entry : Legal->getInductionVars()) 3676 fixupIVUsers(Entry.first, Entry.second, 3677 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3678 IVEndValues[Entry.first], LoopMiddleBlock, 3679 VectorLoop->getHeader(), Plan); 3680 } 3681 3682 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3683 // in the exit block, so update the builder. 3684 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3685 for (auto &KV : Plan.getLiveOuts()) 3686 KV.second->fixPhi(Plan, State); 3687 3688 for (Instruction *PI : PredicatedInstructions) 3689 sinkScalarOperands(&*PI); 3690 3691 // Remove redundant induction instructions. 3692 cse(VectorLoop->getHeader()); 3693 3694 // Set/update profile weights for the vector and remainder loops as original 3695 // loop iterations are now distributed among them. Note that original loop 3696 // represented by LoopScalarBody becomes remainder loop after vectorization. 3697 // 3698 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3699 // end up getting slightly roughened result but that should be OK since 3700 // profile is not inherently precise anyway. Note also possible bypass of 3701 // vector code caused by legality checks is ignored, assigning all the weight 3702 // to the vector loop, optimistically. 3703 // 3704 // For scalable vectorization we can't know at compile time how many iterations 3705 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3706 // vscale of '1'. 3707 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3708 LI->getLoopFor(LoopScalarBody), 3709 VF.getKnownMinValue() * UF); 3710 } 3711 3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3713 // In order to support recurrences we need to be able to vectorize Phi nodes. 3714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3715 // stage #2: We now need to fix the recurrences by adding incoming edges to 3716 // the currently empty PHI nodes. At this point every instruction in the 3717 // original loop is widened to a vector form so we can use them to construct 3718 // the incoming edges. 3719 VPBasicBlock *Header = 3720 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3721 for (VPRecipeBase &R : Header->phis()) { 3722 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3723 fixReduction(ReductionPhi, State); 3724 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3725 fixFirstOrderRecurrence(FOR, State); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3730 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3731 // This is the second phase of vectorizing first-order recurrences. An 3732 // overview of the transformation is described below. Suppose we have the 3733 // following loop. 3734 // 3735 // for (int i = 0; i < n; ++i) 3736 // b[i] = a[i] - a[i - 1]; 3737 // 3738 // There is a first-order recurrence on "a". For this loop, the shorthand 3739 // scalar IR looks like: 3740 // 3741 // scalar.ph: 3742 // s_init = a[-1] 3743 // br scalar.body 3744 // 3745 // scalar.body: 3746 // i = phi [0, scalar.ph], [i+1, scalar.body] 3747 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3748 // s2 = a[i] 3749 // b[i] = s2 - s1 3750 // br cond, scalar.body, ... 3751 // 3752 // In this example, s1 is a recurrence because it's value depends on the 3753 // previous iteration. In the first phase of vectorization, we created a 3754 // vector phi v1 for s1. We now complete the vectorization and produce the 3755 // shorthand vector IR shown below (for VF = 4, UF = 1). 3756 // 3757 // vector.ph: 3758 // v_init = vector(..., ..., ..., a[-1]) 3759 // br vector.body 3760 // 3761 // vector.body 3762 // i = phi [0, vector.ph], [i+4, vector.body] 3763 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3764 // v2 = a[i, i+1, i+2, i+3]; 3765 // v3 = vector(v1(3), v2(0, 1, 2)) 3766 // b[i, i+1, i+2, i+3] = v2 - v3 3767 // br cond, vector.body, middle.block 3768 // 3769 // middle.block: 3770 // x = v2(3) 3771 // br scalar.ph 3772 // 3773 // scalar.ph: 3774 // s_init = phi [x, middle.block], [a[-1], otherwise] 3775 // br scalar.body 3776 // 3777 // After execution completes the vector loop, we extract the next value of 3778 // the recurrence (x) to use as the initial value in the scalar loop. 3779 3780 // Extract the last vector element in the middle block. This will be the 3781 // initial value for the recurrence when jumping to the scalar loop. 3782 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3783 Value *Incoming = State.get(PreviousDef, UF - 1); 3784 auto *ExtractForScalar = Incoming; 3785 auto *IdxTy = Builder.getInt32Ty(); 3786 if (VF.isVector()) { 3787 auto *One = ConstantInt::get(IdxTy, 1); 3788 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3789 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3790 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3791 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3792 "vector.recur.extract"); 3793 } 3794 // Extract the second last element in the middle block if the 3795 // Phi is used outside the loop. We need to extract the phi itself 3796 // and not the last element (the phi update in the current iteration). This 3797 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3798 // when the scalar loop is not run at all. 3799 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3800 if (VF.isVector()) { 3801 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3802 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3803 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3804 Incoming, Idx, "vector.recur.extract.for.phi"); 3805 } else if (UF > 1) 3806 // When loop is unrolled without vectorizing, initialize 3807 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3808 // of `Incoming`. This is analogous to the vectorized case above: extracting 3809 // the second last element when VF > 1. 3810 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3811 3812 // Fix the initial value of the original recurrence in the scalar loop. 3813 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3814 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3815 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3816 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3817 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3818 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3819 Start->addIncoming(Incoming, BB); 3820 } 3821 3822 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3823 Phi->setName("scalar.recur"); 3824 3825 // Finally, fix users of the recurrence outside the loop. The users will need 3826 // either the last value of the scalar recurrence or the last value of the 3827 // vector recurrence we extracted in the middle block. Since the loop is in 3828 // LCSSA form, we just need to find all the phi nodes for the original scalar 3829 // recurrence in the exit block, and then add an edge for the middle block. 3830 // Note that LCSSA does not imply single entry when the original scalar loop 3831 // had multiple exiting edges (as we always run the last iteration in the 3832 // scalar epilogue); in that case, there is no edge from middle to exit and 3833 // and thus no phis which needed updated. 3834 if (!Cost->requiresScalarEpilogue(VF)) 3835 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3836 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3837 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3838 State.Plan->removeLiveOut(&LCSSAPhi); 3839 } 3840 } 3841 3842 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3843 VPTransformState &State) { 3844 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3845 // Get it's reduction variable descriptor. 3846 assert(Legal->isReductionVariable(OrigPhi) && 3847 "Unable to find the reduction variable"); 3848 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3849 3850 RecurKind RK = RdxDesc.getRecurrenceKind(); 3851 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3852 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3853 State.setDebugLocFromInst(ReductionStartValue); 3854 3855 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3856 // This is the vector-clone of the value that leaves the loop. 3857 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3858 3859 // Wrap flags are in general invalid after vectorization, clear them. 3860 clearReductionWrapFlags(PhiR, State); 3861 3862 // Before each round, move the insertion point right between 3863 // the PHIs and the values we are going to write. 3864 // This allows us to write both PHINodes and the extractelement 3865 // instructions. 3866 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3867 3868 State.setDebugLocFromInst(LoopExitInst); 3869 3870 Type *PhiTy = OrigPhi->getType(); 3871 3872 VPBasicBlock *LatchVPBB = 3873 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3874 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3875 // If tail is folded by masking, the vector value to leave the loop should be 3876 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3877 // instead of the former. For an inloop reduction the reduction will already 3878 // be predicated, and does not need to be handled here. 3879 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3880 for (unsigned Part = 0; Part < UF; ++Part) { 3881 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3882 SelectInst *Sel = nullptr; 3883 for (User *U : VecLoopExitInst->users()) { 3884 if (isa<SelectInst>(U)) { 3885 assert(!Sel && "Reduction exit feeding two selects"); 3886 Sel = cast<SelectInst>(U); 3887 } else 3888 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3889 } 3890 assert(Sel && "Reduction exit feeds no select"); 3891 State.reset(LoopExitInstDef, Sel, Part); 3892 3893 if (isa<FPMathOperator>(Sel)) 3894 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3895 3896 // If the target can create a predicated operator for the reduction at no 3897 // extra cost in the loop (for example a predicated vadd), it can be 3898 // cheaper for the select to remain in the loop than be sunk out of it, 3899 // and so use the select value for the phi instead of the old 3900 // LoopExitValue. 3901 if (PreferPredicatedReductionSelect || 3902 TTI->preferPredicatedReductionSelect( 3903 RdxDesc.getOpcode(), PhiTy, 3904 TargetTransformInfo::ReductionFlags())) { 3905 auto *VecRdxPhi = 3906 cast<PHINode>(State.get(PhiR, Part)); 3907 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3908 } 3909 } 3910 } 3911 3912 // If the vector reduction can be performed in a smaller type, we truncate 3913 // then extend the loop exit value to enable InstCombine to evaluate the 3914 // entire expression in the smaller type. 3915 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3916 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3917 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3918 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3919 VectorParts RdxParts(UF); 3920 for (unsigned Part = 0; Part < UF; ++Part) { 3921 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3922 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3923 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3924 : Builder.CreateZExt(Trunc, VecTy); 3925 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3926 if (U != Trunc) { 3927 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3928 RdxParts[Part] = Extnd; 3929 } 3930 } 3931 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3932 for (unsigned Part = 0; Part < UF; ++Part) { 3933 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3934 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3935 } 3936 } 3937 3938 // Reduce all of the unrolled parts into a single vector. 3939 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3940 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3941 3942 // The middle block terminator has already been assigned a DebugLoc here (the 3943 // OrigLoop's single latch terminator). We want the whole middle block to 3944 // appear to execute on this line because: (a) it is all compiler generated, 3945 // (b) these instructions are always executed after evaluating the latch 3946 // conditional branch, and (c) other passes may add new predecessors which 3947 // terminate on this line. This is the easiest way to ensure we don't 3948 // accidentally cause an extra step back into the loop while debugging. 3949 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3950 if (PhiR->isOrdered()) 3951 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3952 else { 3953 // Floating-point operations should have some FMF to enable the reduction. 3954 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3955 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3956 for (unsigned Part = 1; Part < UF; ++Part) { 3957 Value *RdxPart = State.get(LoopExitInstDef, Part); 3958 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3959 ReducedPartRdx = Builder.CreateBinOp( 3960 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3961 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3962 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3963 ReducedPartRdx, RdxPart); 3964 else 3965 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3966 } 3967 } 3968 3969 // Create the reduction after the loop. Note that inloop reductions create the 3970 // target reduction in the loop using a Reduction recipe. 3971 if (VF.isVector() && !PhiR->isInLoop()) { 3972 ReducedPartRdx = 3973 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3974 // If the reduction can be performed in a smaller type, we need to extend 3975 // the reduction to the wider type before we branch to the original loop. 3976 if (PhiTy != RdxDesc.getRecurrenceType()) 3977 ReducedPartRdx = RdxDesc.isSigned() 3978 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3979 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3980 } 3981 3982 PHINode *ResumePhi = 3983 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3984 3985 // Create a phi node that merges control-flow from the backedge-taken check 3986 // block and the middle block. 3987 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3988 LoopScalarPreHeader->getTerminator()); 3989 3990 // If we are fixing reductions in the epilogue loop then we should already 3991 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3992 // we carry over the incoming values correctly. 3993 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3994 if (Incoming == LoopMiddleBlock) 3995 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3996 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3997 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3998 Incoming); 3999 else 4000 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4001 } 4002 4003 // Set the resume value for this reduction 4004 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4005 4006 // If there were stores of the reduction value to a uniform memory address 4007 // inside the loop, create the final store here. 4008 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4009 StoreInst *NewSI = 4010 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4011 propagateMetadata(NewSI, SI); 4012 4013 // If the reduction value is used in other places, 4014 // then let the code below create PHI's for that. 4015 } 4016 4017 // Now, we need to fix the users of the reduction variable 4018 // inside and outside of the scalar remainder loop. 4019 4020 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4021 // in the exit blocks. See comment on analogous loop in 4022 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4023 if (!Cost->requiresScalarEpilogue(VF)) 4024 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4025 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4026 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4027 State.Plan->removeLiveOut(&LCSSAPhi); 4028 } 4029 4030 // Fix the scalar loop reduction variable with the incoming reduction sum 4031 // from the vector body and from the backedge value. 4032 int IncomingEdgeBlockIdx = 4033 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4034 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4035 // Pick the other block. 4036 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4037 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4038 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4039 } 4040 4041 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4042 VPTransformState &State) { 4043 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4044 RecurKind RK = RdxDesc.getRecurrenceKind(); 4045 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4046 return; 4047 4048 SmallVector<VPValue *, 8> Worklist; 4049 SmallPtrSet<VPValue *, 8> Visited; 4050 Worklist.push_back(PhiR); 4051 Visited.insert(PhiR); 4052 4053 while (!Worklist.empty()) { 4054 VPValue *Cur = Worklist.pop_back_val(); 4055 for (unsigned Part = 0; Part < UF; ++Part) { 4056 Value *V = State.get(Cur, Part); 4057 if (!isa<OverflowingBinaryOperator>(V)) 4058 break; 4059 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4060 } 4061 4062 for (VPUser *U : Cur->users()) { 4063 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4064 if (!UserRecipe) 4065 continue; 4066 for (VPValue *V : UserRecipe->definedValues()) 4067 if (Visited.insert(V).second) 4068 Worklist.push_back(V); 4069 } 4070 } 4071 } 4072 4073 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4074 // The basic block and loop containing the predicated instruction. 4075 auto *PredBB = PredInst->getParent(); 4076 auto *VectorLoop = LI->getLoopFor(PredBB); 4077 4078 // Initialize a worklist with the operands of the predicated instruction. 4079 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4080 4081 // Holds instructions that we need to analyze again. An instruction may be 4082 // reanalyzed if we don't yet know if we can sink it or not. 4083 SmallVector<Instruction *, 8> InstsToReanalyze; 4084 4085 // Returns true if a given use occurs in the predicated block. Phi nodes use 4086 // their operands in their corresponding predecessor blocks. 4087 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4088 auto *I = cast<Instruction>(U.getUser()); 4089 BasicBlock *BB = I->getParent(); 4090 if (auto *Phi = dyn_cast<PHINode>(I)) 4091 BB = Phi->getIncomingBlock( 4092 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4093 return BB == PredBB; 4094 }; 4095 4096 // Iteratively sink the scalarized operands of the predicated instruction 4097 // into the block we created for it. When an instruction is sunk, it's 4098 // operands are then added to the worklist. The algorithm ends after one pass 4099 // through the worklist doesn't sink a single instruction. 4100 bool Changed; 4101 do { 4102 // Add the instructions that need to be reanalyzed to the worklist, and 4103 // reset the changed indicator. 4104 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4105 InstsToReanalyze.clear(); 4106 Changed = false; 4107 4108 while (!Worklist.empty()) { 4109 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4110 4111 // We can't sink an instruction if it is a phi node, is not in the loop, 4112 // or may have side effects. 4113 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4114 I->mayHaveSideEffects()) 4115 continue; 4116 4117 // If the instruction is already in PredBB, check if we can sink its 4118 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4119 // sinking the scalar instruction I, hence it appears in PredBB; but it 4120 // may have failed to sink I's operands (recursively), which we try 4121 // (again) here. 4122 if (I->getParent() == PredBB) { 4123 Worklist.insert(I->op_begin(), I->op_end()); 4124 continue; 4125 } 4126 4127 // It's legal to sink the instruction if all its uses occur in the 4128 // predicated block. Otherwise, there's nothing to do yet, and we may 4129 // need to reanalyze the instruction. 4130 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4131 InstsToReanalyze.push_back(I); 4132 continue; 4133 } 4134 4135 // Move the instruction to the beginning of the predicated block, and add 4136 // it's operands to the worklist. 4137 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4138 Worklist.insert(I->op_begin(), I->op_end()); 4139 4140 // The sinking may have enabled other instructions to be sunk, so we will 4141 // need to iterate. 4142 Changed = true; 4143 } 4144 } while (Changed); 4145 } 4146 4147 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4148 VPTransformState &State) { 4149 auto Iter = depth_first( 4150 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4151 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4152 for (VPRecipeBase &P : VPBB->phis()) { 4153 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4154 if (!VPPhi) 4155 continue; 4156 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4157 // Make sure the builder has a valid insert point. 4158 Builder.SetInsertPoint(NewPhi); 4159 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4160 VPValue *Inc = VPPhi->getIncomingValue(i); 4161 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4162 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4163 } 4164 } 4165 } 4166 } 4167 4168 bool InnerLoopVectorizer::useOrderedReductions( 4169 const RecurrenceDescriptor &RdxDesc) { 4170 return Cost->useOrderedReductions(RdxDesc); 4171 } 4172 4173 void InnerLoopVectorizer::widenCallInstruction(CallInst &CI, VPValue *Def, 4174 VPUser &ArgOperands, 4175 VPTransformState &State) { 4176 assert(!isa<DbgInfoIntrinsic>(CI) && 4177 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4178 State.setDebugLocFromInst(&CI); 4179 4180 SmallVector<Type *, 4> Tys; 4181 for (Value *ArgOperand : CI.args()) 4182 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4183 4184 Intrinsic::ID ID = getVectorIntrinsicIDForCall(&CI, TLI); 4185 4186 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4187 // version of the instruction. 4188 // Is it beneficial to perform intrinsic call compared to lib call? 4189 bool NeedToScalarize = false; 4190 InstructionCost CallCost = Cost->getVectorCallCost(&CI, VF, NeedToScalarize); 4191 InstructionCost IntrinsicCost = 4192 ID ? Cost->getVectorIntrinsicCost(&CI, VF) : 0; 4193 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4194 assert((UseVectorIntrinsic || !NeedToScalarize) && 4195 "Instruction should be scalarized elsewhere."); 4196 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4197 "Either the intrinsic cost or vector call cost must be valid"); 4198 4199 for (unsigned Part = 0; Part < UF; ++Part) { 4200 SmallVector<Type *, 2> TysForDecl = {CI.getType()}; 4201 SmallVector<Value *, 4> Args; 4202 for (auto &I : enumerate(ArgOperands.operands())) { 4203 // Some intrinsics have a scalar argument - don't replace it with a 4204 // vector. 4205 Value *Arg; 4206 if (!UseVectorIntrinsic || 4207 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4208 Arg = State.get(I.value(), Part); 4209 else 4210 Arg = State.get(I.value(), VPIteration(0, 0)); 4211 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4212 TysForDecl.push_back(Arg->getType()); 4213 Args.push_back(Arg); 4214 } 4215 4216 Function *VectorF; 4217 if (UseVectorIntrinsic) { 4218 // Use vector version of the intrinsic. 4219 if (VF.isVector()) 4220 TysForDecl[0] = VectorType::get(CI.getType()->getScalarType(), VF); 4221 Module *M = State.Builder.GetInsertBlock()->getModule(); 4222 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4223 assert(VectorF && "Can't retrieve vector intrinsic."); 4224 } else { 4225 // Use vector version of the function call. 4226 const VFShape Shape = VFShape::get(CI, VF, false /*HasGlobalPred*/); 4227 #ifndef NDEBUG 4228 assert(VFDatabase(CI).getVectorizedFunction(Shape) != nullptr && 4229 "Can't create vector function."); 4230 #endif 4231 VectorF = VFDatabase(CI).getVectorizedFunction(Shape); 4232 } 4233 SmallVector<OperandBundleDef, 1> OpBundles; 4234 CI.getOperandBundlesAsDefs(OpBundles); 4235 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4236 4237 if (isa<FPMathOperator>(V)) 4238 V->copyFastMathFlags(&CI); 4239 4240 State.set(Def, V, Part); 4241 State.addMetadata(V, &CI); 4242 } 4243 } 4244 4245 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4246 // We should not collect Scalars more than once per VF. Right now, this 4247 // function is called from collectUniformsAndScalars(), which already does 4248 // this check. Collecting Scalars for VF=1 does not make any sense. 4249 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4250 "This function should not be visited twice for the same VF"); 4251 4252 // This avoids any chances of creating a REPLICATE recipe during planning 4253 // since that would result in generation of scalarized code during execution, 4254 // which is not supported for scalable vectors. 4255 if (VF.isScalable()) { 4256 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4257 return; 4258 } 4259 4260 SmallSetVector<Instruction *, 8> Worklist; 4261 4262 // These sets are used to seed the analysis with pointers used by memory 4263 // accesses that will remain scalar. 4264 SmallSetVector<Instruction *, 8> ScalarPtrs; 4265 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4266 auto *Latch = TheLoop->getLoopLatch(); 4267 4268 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4269 // The pointer operands of loads and stores will be scalar as long as the 4270 // memory access is not a gather or scatter operation. The value operand of a 4271 // store will remain scalar if the store is scalarized. 4272 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4273 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4274 assert(WideningDecision != CM_Unknown && 4275 "Widening decision should be ready at this moment"); 4276 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4277 if (Ptr == Store->getValueOperand()) 4278 return WideningDecision == CM_Scalarize; 4279 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4280 "Ptr is neither a value or pointer operand"); 4281 return WideningDecision != CM_GatherScatter; 4282 }; 4283 4284 // A helper that returns true if the given value is a bitcast or 4285 // getelementptr instruction contained in the loop. 4286 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4287 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4288 isa<GetElementPtrInst>(V)) && 4289 !TheLoop->isLoopInvariant(V); 4290 }; 4291 4292 // A helper that evaluates a memory access's use of a pointer. If the use will 4293 // be a scalar use and the pointer is only used by memory accesses, we place 4294 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4295 // PossibleNonScalarPtrs. 4296 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4297 // We only care about bitcast and getelementptr instructions contained in 4298 // the loop. 4299 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4300 return; 4301 4302 // If the pointer has already been identified as scalar (e.g., if it was 4303 // also identified as uniform), there's nothing to do. 4304 auto *I = cast<Instruction>(Ptr); 4305 if (Worklist.count(I)) 4306 return; 4307 4308 // If the use of the pointer will be a scalar use, and all users of the 4309 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4310 // place the pointer in PossibleNonScalarPtrs. 4311 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4312 return isa<LoadInst>(U) || isa<StoreInst>(U); 4313 })) 4314 ScalarPtrs.insert(I); 4315 else 4316 PossibleNonScalarPtrs.insert(I); 4317 }; 4318 4319 // We seed the scalars analysis with three classes of instructions: (1) 4320 // instructions marked uniform-after-vectorization and (2) bitcast, 4321 // getelementptr and (pointer) phi instructions used by memory accesses 4322 // requiring a scalar use. 4323 // 4324 // (1) Add to the worklist all instructions that have been identified as 4325 // uniform-after-vectorization. 4326 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4327 4328 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4329 // memory accesses requiring a scalar use. The pointer operands of loads and 4330 // stores will be scalar as long as the memory accesses is not a gather or 4331 // scatter operation. The value operand of a store will remain scalar if the 4332 // store is scalarized. 4333 for (auto *BB : TheLoop->blocks()) 4334 for (auto &I : *BB) { 4335 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4336 evaluatePtrUse(Load, Load->getPointerOperand()); 4337 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4338 evaluatePtrUse(Store, Store->getPointerOperand()); 4339 evaluatePtrUse(Store, Store->getValueOperand()); 4340 } 4341 } 4342 for (auto *I : ScalarPtrs) 4343 if (!PossibleNonScalarPtrs.count(I)) { 4344 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4345 Worklist.insert(I); 4346 } 4347 4348 // Insert the forced scalars. 4349 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4350 // induction variable when the PHI user is scalarized. 4351 auto ForcedScalar = ForcedScalars.find(VF); 4352 if (ForcedScalar != ForcedScalars.end()) 4353 for (auto *I : ForcedScalar->second) 4354 Worklist.insert(I); 4355 4356 // Expand the worklist by looking through any bitcasts and getelementptr 4357 // instructions we've already identified as scalar. This is similar to the 4358 // expansion step in collectLoopUniforms(); however, here we're only 4359 // expanding to include additional bitcasts and getelementptr instructions. 4360 unsigned Idx = 0; 4361 while (Idx != Worklist.size()) { 4362 Instruction *Dst = Worklist[Idx++]; 4363 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4364 continue; 4365 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4366 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4367 auto *J = cast<Instruction>(U); 4368 return !TheLoop->contains(J) || Worklist.count(J) || 4369 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4370 isScalarUse(J, Src)); 4371 })) { 4372 Worklist.insert(Src); 4373 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4374 } 4375 } 4376 4377 // An induction variable will remain scalar if all users of the induction 4378 // variable and induction variable update remain scalar. 4379 for (auto &Induction : Legal->getInductionVars()) { 4380 auto *Ind = Induction.first; 4381 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4382 4383 // If tail-folding is applied, the primary induction variable will be used 4384 // to feed a vector compare. 4385 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4386 continue; 4387 4388 // Returns true if \p Indvar is a pointer induction that is used directly by 4389 // load/store instruction \p I. 4390 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4391 Instruction *I) { 4392 return Induction.second.getKind() == 4393 InductionDescriptor::IK_PtrInduction && 4394 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4395 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4396 }; 4397 4398 // Determine if all users of the induction variable are scalar after 4399 // vectorization. 4400 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4401 auto *I = cast<Instruction>(U); 4402 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4403 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4404 }); 4405 if (!ScalarInd) 4406 continue; 4407 4408 // Determine if all users of the induction variable update instruction are 4409 // scalar after vectorization. 4410 auto ScalarIndUpdate = 4411 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4412 auto *I = cast<Instruction>(U); 4413 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4414 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4415 }); 4416 if (!ScalarIndUpdate) 4417 continue; 4418 4419 // The induction variable and its update instruction will remain scalar. 4420 Worklist.insert(Ind); 4421 Worklist.insert(IndUpdate); 4422 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4423 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4424 << "\n"); 4425 } 4426 4427 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4428 } 4429 4430 bool LoopVectorizationCostModel::isScalarWithPredication( 4431 Instruction *I, ElementCount VF) const { 4432 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4433 return false; 4434 switch(I->getOpcode()) { 4435 default: 4436 break; 4437 case Instruction::Load: 4438 case Instruction::Store: { 4439 if (!Legal->isMaskRequired(I)) 4440 return false; 4441 auto *Ptr = getLoadStorePointerOperand(I); 4442 auto *Ty = getLoadStoreType(I); 4443 Type *VTy = Ty; 4444 if (VF.isVector()) 4445 VTy = VectorType::get(Ty, VF); 4446 const Align Alignment = getLoadStoreAlignment(I); 4447 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4448 TTI.isLegalMaskedGather(VTy, Alignment)) 4449 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4450 TTI.isLegalMaskedScatter(VTy, Alignment)); 4451 } 4452 case Instruction::UDiv: 4453 case Instruction::SDiv: 4454 case Instruction::SRem: 4455 case Instruction::URem: 4456 // TODO: We can use the loop-preheader as context point here and get 4457 // context sensitive reasoning 4458 return !isSafeToSpeculativelyExecute(I); 4459 } 4460 return false; 4461 } 4462 4463 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4464 Instruction *I, ElementCount VF) { 4465 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4466 assert(getWideningDecision(I, VF) == CM_Unknown && 4467 "Decision should not be set yet."); 4468 auto *Group = getInterleavedAccessGroup(I); 4469 assert(Group && "Must have a group."); 4470 4471 // If the instruction's allocated size doesn't equal it's type size, it 4472 // requires padding and will be scalarized. 4473 auto &DL = I->getModule()->getDataLayout(); 4474 auto *ScalarTy = getLoadStoreType(I); 4475 if (hasIrregularType(ScalarTy, DL)) 4476 return false; 4477 4478 // If the group involves a non-integral pointer, we may not be able to 4479 // losslessly cast all values to a common type. 4480 unsigned InterleaveFactor = Group->getFactor(); 4481 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4482 for (unsigned i = 0; i < InterleaveFactor; i++) { 4483 Instruction *Member = Group->getMember(i); 4484 if (!Member) 4485 continue; 4486 auto *MemberTy = getLoadStoreType(Member); 4487 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4488 // Don't coerce non-integral pointers to integers or vice versa. 4489 if (MemberNI != ScalarNI) { 4490 // TODO: Consider adding special nullptr value case here 4491 return false; 4492 } else if (MemberNI && ScalarNI && 4493 ScalarTy->getPointerAddressSpace() != 4494 MemberTy->getPointerAddressSpace()) { 4495 return false; 4496 } 4497 } 4498 4499 // Check if masking is required. 4500 // A Group may need masking for one of two reasons: it resides in a block that 4501 // needs predication, or it was decided to use masking to deal with gaps 4502 // (either a gap at the end of a load-access that may result in a speculative 4503 // load, or any gaps in a store-access). 4504 bool PredicatedAccessRequiresMasking = 4505 blockNeedsPredicationForAnyReason(I->getParent()) && 4506 Legal->isMaskRequired(I); 4507 bool LoadAccessWithGapsRequiresEpilogMasking = 4508 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4509 !isScalarEpilogueAllowed(); 4510 bool StoreAccessWithGapsRequiresMasking = 4511 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4512 if (!PredicatedAccessRequiresMasking && 4513 !LoadAccessWithGapsRequiresEpilogMasking && 4514 !StoreAccessWithGapsRequiresMasking) 4515 return true; 4516 4517 // If masked interleaving is required, we expect that the user/target had 4518 // enabled it, because otherwise it either wouldn't have been created or 4519 // it should have been invalidated by the CostModel. 4520 assert(useMaskedInterleavedAccesses(TTI) && 4521 "Masked interleave-groups for predicated accesses are not enabled."); 4522 4523 if (Group->isReverse()) 4524 return false; 4525 4526 auto *Ty = getLoadStoreType(I); 4527 const Align Alignment = getLoadStoreAlignment(I); 4528 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4529 : TTI.isLegalMaskedStore(Ty, Alignment); 4530 } 4531 4532 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4533 Instruction *I, ElementCount VF) { 4534 // Get and ensure we have a valid memory instruction. 4535 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4536 4537 auto *Ptr = getLoadStorePointerOperand(I); 4538 auto *ScalarTy = getLoadStoreType(I); 4539 4540 // In order to be widened, the pointer should be consecutive, first of all. 4541 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4542 return false; 4543 4544 // If the instruction is a store located in a predicated block, it will be 4545 // scalarized. 4546 if (isScalarWithPredication(I, VF)) 4547 return false; 4548 4549 // If the instruction's allocated size doesn't equal it's type size, it 4550 // requires padding and will be scalarized. 4551 auto &DL = I->getModule()->getDataLayout(); 4552 if (hasIrregularType(ScalarTy, DL)) 4553 return false; 4554 4555 return true; 4556 } 4557 4558 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4559 // We should not collect Uniforms more than once per VF. Right now, 4560 // this function is called from collectUniformsAndScalars(), which 4561 // already does this check. Collecting Uniforms for VF=1 does not make any 4562 // sense. 4563 4564 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4565 "This function should not be visited twice for the same VF"); 4566 4567 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4568 // not analyze again. Uniforms.count(VF) will return 1. 4569 Uniforms[VF].clear(); 4570 4571 // We now know that the loop is vectorizable! 4572 // Collect instructions inside the loop that will remain uniform after 4573 // vectorization. 4574 4575 // Global values, params and instructions outside of current loop are out of 4576 // scope. 4577 auto isOutOfScope = [&](Value *V) -> bool { 4578 Instruction *I = dyn_cast<Instruction>(V); 4579 return (!I || !TheLoop->contains(I)); 4580 }; 4581 4582 // Worklist containing uniform instructions demanding lane 0. 4583 SetVector<Instruction *> Worklist; 4584 BasicBlock *Latch = TheLoop->getLoopLatch(); 4585 4586 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4587 // that are scalar with predication must not be considered uniform after 4588 // vectorization, because that would create an erroneous replicating region 4589 // where only a single instance out of VF should be formed. 4590 // TODO: optimize such seldom cases if found important, see PR40816. 4591 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4592 if (isOutOfScope(I)) { 4593 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4594 << *I << "\n"); 4595 return; 4596 } 4597 if (isScalarWithPredication(I, VF)) { 4598 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4599 << *I << "\n"); 4600 return; 4601 } 4602 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4603 Worklist.insert(I); 4604 }; 4605 4606 // Start with the conditional branch. If the branch condition is an 4607 // instruction contained in the loop that is only used by the branch, it is 4608 // uniform. 4609 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4610 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4611 addToWorklistIfAllowed(Cmp); 4612 4613 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4614 InstWidening WideningDecision = getWideningDecision(I, VF); 4615 assert(WideningDecision != CM_Unknown && 4616 "Widening decision should be ready at this moment"); 4617 4618 // A uniform memory op is itself uniform. We exclude uniform stores 4619 // here as they demand the last lane, not the first one. 4620 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4621 assert(WideningDecision == CM_Scalarize); 4622 return true; 4623 } 4624 4625 return (WideningDecision == CM_Widen || 4626 WideningDecision == CM_Widen_Reverse || 4627 WideningDecision == CM_Interleave); 4628 }; 4629 4630 // Returns true if Ptr is the pointer operand of a memory access instruction 4631 // I, I is known to not require scalarization, and the pointer is not also 4632 // stored. 4633 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4634 auto GetStoredValue = [I]() -> Value * { 4635 if (!isa<StoreInst>(I)) 4636 return nullptr; 4637 return I->getOperand(0); 4638 }; 4639 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF) && 4640 GetStoredValue() != Ptr; 4641 }; 4642 4643 // Holds a list of values which are known to have at least one uniform use. 4644 // Note that there may be other uses which aren't uniform. A "uniform use" 4645 // here is something which only demands lane 0 of the unrolled iterations; 4646 // it does not imply that all lanes produce the same value (e.g. this is not 4647 // the usual meaning of uniform) 4648 SetVector<Value *> HasUniformUse; 4649 4650 // Scan the loop for instructions which are either a) known to have only 4651 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4652 for (auto *BB : TheLoop->blocks()) 4653 for (auto &I : *BB) { 4654 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4655 switch (II->getIntrinsicID()) { 4656 case Intrinsic::sideeffect: 4657 case Intrinsic::experimental_noalias_scope_decl: 4658 case Intrinsic::assume: 4659 case Intrinsic::lifetime_start: 4660 case Intrinsic::lifetime_end: 4661 if (TheLoop->hasLoopInvariantOperands(&I)) 4662 addToWorklistIfAllowed(&I); 4663 break; 4664 default: 4665 break; 4666 } 4667 } 4668 4669 // ExtractValue instructions must be uniform, because the operands are 4670 // known to be loop-invariant. 4671 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4672 assert(isOutOfScope(EVI->getAggregateOperand()) && 4673 "Expected aggregate value to be loop invariant"); 4674 addToWorklistIfAllowed(EVI); 4675 continue; 4676 } 4677 4678 // If there's no pointer operand, there's nothing to do. 4679 auto *Ptr = getLoadStorePointerOperand(&I); 4680 if (!Ptr) 4681 continue; 4682 4683 // A uniform memory op is itself uniform. We exclude uniform stores 4684 // here as they demand the last lane, not the first one. 4685 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4686 addToWorklistIfAllowed(&I); 4687 4688 if (isVectorizedMemAccessUse(&I, Ptr)) { 4689 assert(isUniformDecision(&I, VF) && "consistency check"); 4690 HasUniformUse.insert(Ptr); 4691 } 4692 } 4693 4694 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4695 // demanding) users. Since loops are assumed to be in LCSSA form, this 4696 // disallows uses outside the loop as well. 4697 for (auto *V : HasUniformUse) { 4698 if (isOutOfScope(V)) 4699 continue; 4700 auto *I = cast<Instruction>(V); 4701 auto UsersAreMemAccesses = 4702 llvm::all_of(I->users(), [&](User *U) -> bool { 4703 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4704 }); 4705 if (UsersAreMemAccesses) 4706 addToWorklistIfAllowed(I); 4707 } 4708 4709 // Expand Worklist in topological order: whenever a new instruction 4710 // is added , its users should be already inside Worklist. It ensures 4711 // a uniform instruction will only be used by uniform instructions. 4712 unsigned idx = 0; 4713 while (idx != Worklist.size()) { 4714 Instruction *I = Worklist[idx++]; 4715 4716 for (auto OV : I->operand_values()) { 4717 // isOutOfScope operands cannot be uniform instructions. 4718 if (isOutOfScope(OV)) 4719 continue; 4720 // First order recurrence Phi's should typically be considered 4721 // non-uniform. 4722 auto *OP = dyn_cast<PHINode>(OV); 4723 if (OP && Legal->isFirstOrderRecurrence(OP)) 4724 continue; 4725 // If all the users of the operand are uniform, then add the 4726 // operand into the uniform worklist. 4727 auto *OI = cast<Instruction>(OV); 4728 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4729 auto *J = cast<Instruction>(U); 4730 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4731 })) 4732 addToWorklistIfAllowed(OI); 4733 } 4734 } 4735 4736 // For an instruction to be added into Worklist above, all its users inside 4737 // the loop should also be in Worklist. However, this condition cannot be 4738 // true for phi nodes that form a cyclic dependence. We must process phi 4739 // nodes separately. An induction variable will remain uniform if all users 4740 // of the induction variable and induction variable update remain uniform. 4741 // The code below handles both pointer and non-pointer induction variables. 4742 for (auto &Induction : Legal->getInductionVars()) { 4743 auto *Ind = Induction.first; 4744 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4745 4746 // Determine if all users of the induction variable are uniform after 4747 // vectorization. 4748 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4749 auto *I = cast<Instruction>(U); 4750 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4751 isVectorizedMemAccessUse(I, Ind); 4752 }); 4753 if (!UniformInd) 4754 continue; 4755 4756 // Determine if all users of the induction variable update instruction are 4757 // uniform after vectorization. 4758 auto UniformIndUpdate = 4759 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4760 auto *I = cast<Instruction>(U); 4761 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4762 isVectorizedMemAccessUse(I, IndUpdate); 4763 }); 4764 if (!UniformIndUpdate) 4765 continue; 4766 4767 // The induction variable and its update instruction will remain uniform. 4768 addToWorklistIfAllowed(Ind); 4769 addToWorklistIfAllowed(IndUpdate); 4770 } 4771 4772 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4773 } 4774 4775 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4776 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4777 4778 if (Legal->getRuntimePointerChecking()->Need) { 4779 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4780 "runtime pointer checks needed. Enable vectorization of this " 4781 "loop with '#pragma clang loop vectorize(enable)' when " 4782 "compiling with -Os/-Oz", 4783 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4784 return true; 4785 } 4786 4787 if (!PSE.getPredicate().isAlwaysTrue()) { 4788 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4789 "runtime SCEV checks needed. Enable vectorization of this " 4790 "loop with '#pragma clang loop vectorize(enable)' when " 4791 "compiling with -Os/-Oz", 4792 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4793 return true; 4794 } 4795 4796 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4797 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4798 reportVectorizationFailure("Runtime stride check for small trip count", 4799 "runtime stride == 1 checks needed. Enable vectorization of " 4800 "this loop without such check by compiling with -Os/-Oz", 4801 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4802 return true; 4803 } 4804 4805 return false; 4806 } 4807 4808 ElementCount 4809 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4810 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4811 return ElementCount::getScalable(0); 4812 4813 if (Hints->isScalableVectorizationDisabled()) { 4814 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4815 "ScalableVectorizationDisabled", ORE, TheLoop); 4816 return ElementCount::getScalable(0); 4817 } 4818 4819 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4820 4821 auto MaxScalableVF = ElementCount::getScalable( 4822 std::numeric_limits<ElementCount::ScalarTy>::max()); 4823 4824 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4825 // FIXME: While for scalable vectors this is currently sufficient, this should 4826 // be replaced by a more detailed mechanism that filters out specific VFs, 4827 // instead of invalidating vectorization for a whole set of VFs based on the 4828 // MaxVF. 4829 4830 // Disable scalable vectorization if the loop contains unsupported reductions. 4831 if (!canVectorizeReductions(MaxScalableVF)) { 4832 reportVectorizationInfo( 4833 "Scalable vectorization not supported for the reduction " 4834 "operations found in this loop.", 4835 "ScalableVFUnfeasible", ORE, TheLoop); 4836 return ElementCount::getScalable(0); 4837 } 4838 4839 // Disable scalable vectorization if the loop contains any instructions 4840 // with element types not supported for scalable vectors. 4841 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4842 return !Ty->isVoidTy() && 4843 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4844 })) { 4845 reportVectorizationInfo("Scalable vectorization is not supported " 4846 "for all element types found in this loop.", 4847 "ScalableVFUnfeasible", ORE, TheLoop); 4848 return ElementCount::getScalable(0); 4849 } 4850 4851 if (Legal->isSafeForAnyVectorWidth()) 4852 return MaxScalableVF; 4853 4854 // Limit MaxScalableVF by the maximum safe dependence distance. 4855 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4856 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4857 MaxVScale = 4858 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4859 MaxScalableVF = ElementCount::getScalable( 4860 MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0); 4861 if (!MaxScalableVF) 4862 reportVectorizationInfo( 4863 "Max legal vector width too small, scalable vectorization " 4864 "unfeasible.", 4865 "ScalableVFUnfeasible", ORE, TheLoop); 4866 4867 return MaxScalableVF; 4868 } 4869 4870 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4871 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4872 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4873 unsigned SmallestType, WidestType; 4874 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4875 4876 // Get the maximum safe dependence distance in bits computed by LAA. 4877 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4878 // the memory accesses that is most restrictive (involved in the smallest 4879 // dependence distance). 4880 unsigned MaxSafeElements = 4881 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4882 4883 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4884 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4885 4886 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4887 << ".\n"); 4888 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4889 << ".\n"); 4890 4891 // First analyze the UserVF, fall back if the UserVF should be ignored. 4892 if (UserVF) { 4893 auto MaxSafeUserVF = 4894 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4895 4896 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4897 // If `VF=vscale x N` is safe, then so is `VF=N` 4898 if (UserVF.isScalable()) 4899 return FixedScalableVFPair( 4900 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4901 else 4902 return UserVF; 4903 } 4904 4905 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4906 4907 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4908 // is better to ignore the hint and let the compiler choose a suitable VF. 4909 if (!UserVF.isScalable()) { 4910 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4911 << " is unsafe, clamping to max safe VF=" 4912 << MaxSafeFixedVF << ".\n"); 4913 ORE->emit([&]() { 4914 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4915 TheLoop->getStartLoc(), 4916 TheLoop->getHeader()) 4917 << "User-specified vectorization factor " 4918 << ore::NV("UserVectorizationFactor", UserVF) 4919 << " is unsafe, clamping to maximum safe vectorization factor " 4920 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4921 }); 4922 return MaxSafeFixedVF; 4923 } 4924 4925 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4926 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4927 << " is ignored because scalable vectors are not " 4928 "available.\n"); 4929 ORE->emit([&]() { 4930 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4931 TheLoop->getStartLoc(), 4932 TheLoop->getHeader()) 4933 << "User-specified vectorization factor " 4934 << ore::NV("UserVectorizationFactor", UserVF) 4935 << " is ignored because the target does not support scalable " 4936 "vectors. The compiler will pick a more suitable value."; 4937 }); 4938 } else { 4939 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4940 << " is unsafe. Ignoring scalable UserVF.\n"); 4941 ORE->emit([&]() { 4942 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4943 TheLoop->getStartLoc(), 4944 TheLoop->getHeader()) 4945 << "User-specified vectorization factor " 4946 << ore::NV("UserVectorizationFactor", UserVF) 4947 << " is unsafe. Ignoring the hint to let the compiler pick a " 4948 "more suitable value."; 4949 }); 4950 } 4951 } 4952 4953 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4954 << " / " << WidestType << " bits.\n"); 4955 4956 FixedScalableVFPair Result(ElementCount::getFixed(1), 4957 ElementCount::getScalable(0)); 4958 if (auto MaxVF = 4959 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4960 MaxSafeFixedVF, FoldTailByMasking)) 4961 Result.FixedVF = MaxVF; 4962 4963 if (auto MaxVF = 4964 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4965 MaxSafeScalableVF, FoldTailByMasking)) 4966 if (MaxVF.isScalable()) { 4967 Result.ScalableVF = MaxVF; 4968 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4969 << "\n"); 4970 } 4971 4972 return Result; 4973 } 4974 4975 FixedScalableVFPair 4976 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4977 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4978 // TODO: It may by useful to do since it's still likely to be dynamically 4979 // uniform if the target can skip. 4980 reportVectorizationFailure( 4981 "Not inserting runtime ptr check for divergent target", 4982 "runtime pointer checks needed. Not enabled for divergent target", 4983 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4984 return FixedScalableVFPair::getNone(); 4985 } 4986 4987 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4988 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4989 if (TC == 1) { 4990 reportVectorizationFailure("Single iteration (non) loop", 4991 "loop trip count is one, irrelevant for vectorization", 4992 "SingleIterationLoop", ORE, TheLoop); 4993 return FixedScalableVFPair::getNone(); 4994 } 4995 4996 switch (ScalarEpilogueStatus) { 4997 case CM_ScalarEpilogueAllowed: 4998 return computeFeasibleMaxVF(TC, UserVF, false); 4999 case CM_ScalarEpilogueNotAllowedUsePredicate: 5000 LLVM_FALLTHROUGH; 5001 case CM_ScalarEpilogueNotNeededUsePredicate: 5002 LLVM_DEBUG( 5003 dbgs() << "LV: vector predicate hint/switch found.\n" 5004 << "LV: Not allowing scalar epilogue, creating predicated " 5005 << "vector loop.\n"); 5006 break; 5007 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5008 // fallthrough as a special case of OptForSize 5009 case CM_ScalarEpilogueNotAllowedOptSize: 5010 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5011 LLVM_DEBUG( 5012 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5013 else 5014 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5015 << "count.\n"); 5016 5017 // Bail if runtime checks are required, which are not good when optimising 5018 // for size. 5019 if (runtimeChecksRequired()) 5020 return FixedScalableVFPair::getNone(); 5021 5022 break; 5023 } 5024 5025 // The only loops we can vectorize without a scalar epilogue, are loops with 5026 // a bottom-test and a single exiting block. We'd have to handle the fact 5027 // that not every instruction executes on the last iteration. This will 5028 // require a lane mask which varies through the vector loop body. (TODO) 5029 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5030 // If there was a tail-folding hint/switch, but we can't fold the tail by 5031 // masking, fallback to a vectorization with a scalar epilogue. 5032 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5033 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5034 "scalar epilogue instead.\n"); 5035 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5036 return computeFeasibleMaxVF(TC, UserVF, false); 5037 } 5038 return FixedScalableVFPair::getNone(); 5039 } 5040 5041 // Now try the tail folding 5042 5043 // Invalidate interleave groups that require an epilogue if we can't mask 5044 // the interleave-group. 5045 if (!useMaskedInterleavedAccesses(TTI)) { 5046 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5047 "No decisions should have been taken at this point"); 5048 // Note: There is no need to invalidate any cost modeling decisions here, as 5049 // non where taken so far. 5050 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5051 } 5052 5053 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5054 // Avoid tail folding if the trip count is known to be a multiple of any VF 5055 // we chose. 5056 // FIXME: The condition below pessimises the case for fixed-width vectors, 5057 // when scalable VFs are also candidates for vectorization. 5058 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5059 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5060 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5061 "MaxFixedVF must be a power of 2"); 5062 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5063 : MaxFixedVF.getFixedValue(); 5064 ScalarEvolution *SE = PSE.getSE(); 5065 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5066 const SCEV *ExitCount = SE->getAddExpr( 5067 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5068 const SCEV *Rem = SE->getURemExpr( 5069 SE->applyLoopGuards(ExitCount, TheLoop), 5070 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5071 if (Rem->isZero()) { 5072 // Accept MaxFixedVF if we do not have a tail. 5073 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5074 return MaxFactors; 5075 } 5076 } 5077 5078 // If we don't know the precise trip count, or if the trip count that we 5079 // found modulo the vectorization factor is not zero, try to fold the tail 5080 // by masking. 5081 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5082 if (Legal->prepareToFoldTailByMasking()) { 5083 FoldTailByMasking = true; 5084 return MaxFactors; 5085 } 5086 5087 // If there was a tail-folding hint/switch, but we can't fold the tail by 5088 // masking, fallback to a vectorization with a scalar epilogue. 5089 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5090 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5091 "scalar epilogue instead.\n"); 5092 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5093 return MaxFactors; 5094 } 5095 5096 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5097 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5098 return FixedScalableVFPair::getNone(); 5099 } 5100 5101 if (TC == 0) { 5102 reportVectorizationFailure( 5103 "Unable to calculate the loop count due to complex control flow", 5104 "unable to calculate the loop count due to complex control flow", 5105 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5106 return FixedScalableVFPair::getNone(); 5107 } 5108 5109 reportVectorizationFailure( 5110 "Cannot optimize for size and vectorize at the same time.", 5111 "cannot optimize for size and vectorize at the same time. " 5112 "Enable vectorization of this loop with '#pragma clang loop " 5113 "vectorize(enable)' when compiling with -Os/-Oz", 5114 "NoTailLoopWithOptForSize", ORE, TheLoop); 5115 return FixedScalableVFPair::getNone(); 5116 } 5117 5118 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5119 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5120 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5121 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5122 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5123 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5124 : TargetTransformInfo::RGK_FixedWidthVector); 5125 5126 // Convenience function to return the minimum of two ElementCounts. 5127 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5128 assert((LHS.isScalable() == RHS.isScalable()) && 5129 "Scalable flags must match"); 5130 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5131 }; 5132 5133 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5134 // Note that both WidestRegister and WidestType may not be a powers of 2. 5135 auto MaxVectorElementCount = ElementCount::get( 5136 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5137 ComputeScalableMaxVF); 5138 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5139 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5140 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5141 5142 if (!MaxVectorElementCount) { 5143 LLVM_DEBUG(dbgs() << "LV: The target has no " 5144 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5145 << " vector registers.\n"); 5146 return ElementCount::getFixed(1); 5147 } 5148 5149 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5150 if (ConstTripCount && 5151 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5152 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5153 // If loop trip count (TC) is known at compile time there is no point in 5154 // choosing VF greater than TC (as done in the loop below). Select maximum 5155 // power of two which doesn't exceed TC. 5156 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5157 // when the TC is less than or equal to the known number of lanes. 5158 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5159 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5160 "exceeding the constant trip count: " 5161 << ClampedConstTripCount << "\n"); 5162 return ElementCount::getFixed(ClampedConstTripCount); 5163 } 5164 5165 TargetTransformInfo::RegisterKind RegKind = 5166 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5167 : TargetTransformInfo::RGK_FixedWidthVector; 5168 ElementCount MaxVF = MaxVectorElementCount; 5169 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5170 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5171 auto MaxVectorElementCountMaxBW = ElementCount::get( 5172 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5173 ComputeScalableMaxVF); 5174 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5175 5176 // Collect all viable vectorization factors larger than the default MaxVF 5177 // (i.e. MaxVectorElementCount). 5178 SmallVector<ElementCount, 8> VFs; 5179 for (ElementCount VS = MaxVectorElementCount * 2; 5180 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5181 VFs.push_back(VS); 5182 5183 // For each VF calculate its register usage. 5184 auto RUs = calculateRegisterUsage(VFs); 5185 5186 // Select the largest VF which doesn't require more registers than existing 5187 // ones. 5188 for (int i = RUs.size() - 1; i >= 0; --i) { 5189 bool Selected = true; 5190 for (auto &pair : RUs[i].MaxLocalUsers) { 5191 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5192 if (pair.second > TargetNumRegisters) 5193 Selected = false; 5194 } 5195 if (Selected) { 5196 MaxVF = VFs[i]; 5197 break; 5198 } 5199 } 5200 if (ElementCount MinVF = 5201 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5202 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5203 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5204 << ") with target's minimum: " << MinVF << '\n'); 5205 MaxVF = MinVF; 5206 } 5207 } 5208 5209 // Invalidate any widening decisions we might have made, in case the loop 5210 // requires prediction (decided later), but we have already made some 5211 // load/store widening decisions. 5212 invalidateCostModelingDecisions(); 5213 } 5214 return MaxVF; 5215 } 5216 5217 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5218 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5219 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5220 auto Min = Attr.getVScaleRangeMin(); 5221 auto Max = Attr.getVScaleRangeMax(); 5222 if (Max && Min == Max) 5223 return Max; 5224 } 5225 5226 return TTI.getVScaleForTuning(); 5227 } 5228 5229 bool LoopVectorizationCostModel::isMoreProfitable( 5230 const VectorizationFactor &A, const VectorizationFactor &B) const { 5231 InstructionCost CostA = A.Cost; 5232 InstructionCost CostB = B.Cost; 5233 5234 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5235 5236 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5237 MaxTripCount) { 5238 // If we are folding the tail and the trip count is a known (possibly small) 5239 // constant, the trip count will be rounded up to an integer number of 5240 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5241 // which we compare directly. When not folding the tail, the total cost will 5242 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5243 // approximated with the per-lane cost below instead of using the tripcount 5244 // as here. 5245 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5246 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5247 return RTCostA < RTCostB; 5248 } 5249 5250 // Improve estimate for the vector width if it is scalable. 5251 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5252 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5253 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5254 if (A.Width.isScalable()) 5255 EstimatedWidthA *= VScale.value(); 5256 if (B.Width.isScalable()) 5257 EstimatedWidthB *= VScale.value(); 5258 } 5259 5260 // Assume vscale may be larger than 1 (or the value being tuned for), 5261 // so that scalable vectorization is slightly favorable over fixed-width 5262 // vectorization. 5263 if (A.Width.isScalable() && !B.Width.isScalable()) 5264 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5265 5266 // To avoid the need for FP division: 5267 // (CostA / A.Width) < (CostB / B.Width) 5268 // <=> (CostA * B.Width) < (CostB * A.Width) 5269 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5270 } 5271 5272 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5273 const ElementCountSet &VFCandidates) { 5274 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5275 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5276 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5277 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5278 "Expected Scalar VF to be a candidate"); 5279 5280 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5281 ExpectedCost); 5282 VectorizationFactor ChosenFactor = ScalarCost; 5283 5284 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5285 if (ForceVectorization && VFCandidates.size() > 1) { 5286 // Ignore scalar width, because the user explicitly wants vectorization. 5287 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5288 // evaluation. 5289 ChosenFactor.Cost = InstructionCost::getMax(); 5290 } 5291 5292 SmallVector<InstructionVFPair> InvalidCosts; 5293 for (const auto &i : VFCandidates) { 5294 // The cost for scalar VF=1 is already calculated, so ignore it. 5295 if (i.isScalar()) 5296 continue; 5297 5298 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5299 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5300 5301 #ifndef NDEBUG 5302 unsigned AssumedMinimumVscale = 1; 5303 if (Optional<unsigned> VScale = getVScaleForTuning()) 5304 AssumedMinimumVscale = *VScale; 5305 unsigned Width = 5306 Candidate.Width.isScalable() 5307 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5308 : Candidate.Width.getFixedValue(); 5309 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5310 << " costs: " << (Candidate.Cost / Width)); 5311 if (i.isScalable()) 5312 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5313 << AssumedMinimumVscale << ")"); 5314 LLVM_DEBUG(dbgs() << ".\n"); 5315 #endif 5316 5317 if (!C.second && !ForceVectorization) { 5318 LLVM_DEBUG( 5319 dbgs() << "LV: Not considering vector loop of width " << i 5320 << " because it will not generate any vector instructions.\n"); 5321 continue; 5322 } 5323 5324 // If profitable add it to ProfitableVF list. 5325 if (isMoreProfitable(Candidate, ScalarCost)) 5326 ProfitableVFs.push_back(Candidate); 5327 5328 if (isMoreProfitable(Candidate, ChosenFactor)) 5329 ChosenFactor = Candidate; 5330 } 5331 5332 // Emit a report of VFs with invalid costs in the loop. 5333 if (!InvalidCosts.empty()) { 5334 // Group the remarks per instruction, keeping the instruction order from 5335 // InvalidCosts. 5336 std::map<Instruction *, unsigned> Numbering; 5337 unsigned I = 0; 5338 for (auto &Pair : InvalidCosts) 5339 if (!Numbering.count(Pair.first)) 5340 Numbering[Pair.first] = I++; 5341 5342 // Sort the list, first on instruction(number) then on VF. 5343 llvm::sort(InvalidCosts, 5344 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5345 if (Numbering[A.first] != Numbering[B.first]) 5346 return Numbering[A.first] < Numbering[B.first]; 5347 ElementCountComparator ECC; 5348 return ECC(A.second, B.second); 5349 }); 5350 5351 // For a list of ordered instruction-vf pairs: 5352 // [(load, vf1), (load, vf2), (store, vf1)] 5353 // Group the instructions together to emit separate remarks for: 5354 // load (vf1, vf2) 5355 // store (vf1) 5356 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5357 auto Subset = ArrayRef<InstructionVFPair>(); 5358 do { 5359 if (Subset.empty()) 5360 Subset = Tail.take_front(1); 5361 5362 Instruction *I = Subset.front().first; 5363 5364 // If the next instruction is different, or if there are no other pairs, 5365 // emit a remark for the collated subset. e.g. 5366 // [(load, vf1), (load, vf2))] 5367 // to emit: 5368 // remark: invalid costs for 'load' at VF=(vf, vf2) 5369 if (Subset == Tail || Tail[Subset.size()].first != I) { 5370 std::string OutString; 5371 raw_string_ostream OS(OutString); 5372 assert(!Subset.empty() && "Unexpected empty range"); 5373 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5374 for (auto &Pair : Subset) 5375 OS << (Pair.second == Subset.front().second ? "" : ", ") 5376 << Pair.second; 5377 OS << "):"; 5378 if (auto *CI = dyn_cast<CallInst>(I)) 5379 OS << " call to " << CI->getCalledFunction()->getName(); 5380 else 5381 OS << " " << I->getOpcodeName(); 5382 OS.flush(); 5383 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5384 Tail = Tail.drop_front(Subset.size()); 5385 Subset = {}; 5386 } else 5387 // Grow the subset by one element 5388 Subset = Tail.take_front(Subset.size() + 1); 5389 } while (!Tail.empty()); 5390 } 5391 5392 if (!EnableCondStoresVectorization && NumPredStores) { 5393 reportVectorizationFailure("There are conditional stores.", 5394 "store that is conditionally executed prevents vectorization", 5395 "ConditionalStore", ORE, TheLoop); 5396 ChosenFactor = ScalarCost; 5397 } 5398 5399 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5400 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 5401 << "LV: Vectorization seems to be not beneficial, " 5402 << "but was forced by a user.\n"); 5403 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5404 return ChosenFactor; 5405 } 5406 5407 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5408 const Loop &L, ElementCount VF) const { 5409 // Cross iteration phis such as reductions need special handling and are 5410 // currently unsupported. 5411 if (any_of(L.getHeader()->phis(), 5412 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5413 return false; 5414 5415 // Phis with uses outside of the loop require special handling and are 5416 // currently unsupported. 5417 for (auto &Entry : Legal->getInductionVars()) { 5418 // Look for uses of the value of the induction at the last iteration. 5419 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5420 for (User *U : PostInc->users()) 5421 if (!L.contains(cast<Instruction>(U))) 5422 return false; 5423 // Look for uses of penultimate value of the induction. 5424 for (User *U : Entry.first->users()) 5425 if (!L.contains(cast<Instruction>(U))) 5426 return false; 5427 } 5428 5429 // Induction variables that are widened require special handling that is 5430 // currently not supported. 5431 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5432 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5433 this->isProfitableToScalarize(Entry.first, VF)); 5434 })) 5435 return false; 5436 5437 // Epilogue vectorization code has not been auditted to ensure it handles 5438 // non-latch exits properly. It may be fine, but it needs auditted and 5439 // tested. 5440 if (L.getExitingBlock() != L.getLoopLatch()) 5441 return false; 5442 5443 return true; 5444 } 5445 5446 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5447 const ElementCount VF) const { 5448 // FIXME: We need a much better cost-model to take different parameters such 5449 // as register pressure, code size increase and cost of extra branches into 5450 // account. For now we apply a very crude heuristic and only consider loops 5451 // with vectorization factors larger than a certain value. 5452 // We also consider epilogue vectorization unprofitable for targets that don't 5453 // consider interleaving beneficial (eg. MVE). 5454 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5455 return false; 5456 // FIXME: We should consider changing the threshold for scalable 5457 // vectors to take VScaleForTuning into account. 5458 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5459 return true; 5460 return false; 5461 } 5462 5463 VectorizationFactor 5464 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5465 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5466 VectorizationFactor Result = VectorizationFactor::Disabled(); 5467 if (!EnableEpilogueVectorization) { 5468 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5469 return Result; 5470 } 5471 5472 if (!isScalarEpilogueAllowed()) { 5473 LLVM_DEBUG( 5474 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5475 "allowed.\n";); 5476 return Result; 5477 } 5478 5479 // Not really a cost consideration, but check for unsupported cases here to 5480 // simplify the logic. 5481 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5482 LLVM_DEBUG( 5483 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5484 "not a supported candidate.\n";); 5485 return Result; 5486 } 5487 5488 if (EpilogueVectorizationForceVF > 1) { 5489 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5490 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5491 if (LVP.hasPlanWithVF(ForcedEC)) 5492 return {ForcedEC, 0, 0}; 5493 else { 5494 LLVM_DEBUG( 5495 dbgs() 5496 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5497 return Result; 5498 } 5499 } 5500 5501 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5502 TheLoop->getHeader()->getParent()->hasMinSize()) { 5503 LLVM_DEBUG( 5504 dbgs() 5505 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5506 return Result; 5507 } 5508 5509 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5510 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5511 "this loop\n"); 5512 return Result; 5513 } 5514 5515 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5516 // the main loop handles 8 lanes per iteration. We could still benefit from 5517 // vectorizing the epilogue loop with VF=4. 5518 ElementCount EstimatedRuntimeVF = MainLoopVF; 5519 if (MainLoopVF.isScalable()) { 5520 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5521 if (Optional<unsigned> VScale = getVScaleForTuning()) 5522 EstimatedRuntimeVF *= *VScale; 5523 } 5524 5525 for (auto &NextVF : ProfitableVFs) 5526 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5527 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5528 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5529 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5530 LVP.hasPlanWithVF(NextVF.Width)) 5531 Result = NextVF; 5532 5533 if (Result != VectorizationFactor::Disabled()) 5534 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5535 << Result.Width << "\n";); 5536 return Result; 5537 } 5538 5539 std::pair<unsigned, unsigned> 5540 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5541 unsigned MinWidth = -1U; 5542 unsigned MaxWidth = 8; 5543 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5544 // For in-loop reductions, no element types are added to ElementTypesInLoop 5545 // if there are no loads/stores in the loop. In this case, check through the 5546 // reduction variables to determine the maximum width. 5547 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5548 // Reset MaxWidth so that we can find the smallest type used by recurrences 5549 // in the loop. 5550 MaxWidth = -1U; 5551 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5552 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5553 // When finding the min width used by the recurrence we need to account 5554 // for casts on the input operands of the recurrence. 5555 MaxWidth = std::min<unsigned>( 5556 MaxWidth, std::min<unsigned>( 5557 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5558 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5559 } 5560 } else { 5561 for (Type *T : ElementTypesInLoop) { 5562 MinWidth = std::min<unsigned>( 5563 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5564 MaxWidth = std::max<unsigned>( 5565 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5566 } 5567 } 5568 return {MinWidth, MaxWidth}; 5569 } 5570 5571 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5572 ElementTypesInLoop.clear(); 5573 // For each block. 5574 for (BasicBlock *BB : TheLoop->blocks()) { 5575 // For each instruction in the loop. 5576 for (Instruction &I : BB->instructionsWithoutDebug()) { 5577 Type *T = I.getType(); 5578 5579 // Skip ignored values. 5580 if (ValuesToIgnore.count(&I)) 5581 continue; 5582 5583 // Only examine Loads, Stores and PHINodes. 5584 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5585 continue; 5586 5587 // Examine PHI nodes that are reduction variables. Update the type to 5588 // account for the recurrence type. 5589 if (auto *PN = dyn_cast<PHINode>(&I)) { 5590 if (!Legal->isReductionVariable(PN)) 5591 continue; 5592 const RecurrenceDescriptor &RdxDesc = 5593 Legal->getReductionVars().find(PN)->second; 5594 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5595 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5596 RdxDesc.getRecurrenceType(), 5597 TargetTransformInfo::ReductionFlags())) 5598 continue; 5599 T = RdxDesc.getRecurrenceType(); 5600 } 5601 5602 // Examine the stored values. 5603 if (auto *ST = dyn_cast<StoreInst>(&I)) 5604 T = ST->getValueOperand()->getType(); 5605 5606 assert(T->isSized() && 5607 "Expected the load/store/recurrence type to be sized"); 5608 5609 ElementTypesInLoop.insert(T); 5610 } 5611 } 5612 } 5613 5614 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5615 unsigned LoopCost) { 5616 // -- The interleave heuristics -- 5617 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5618 // There are many micro-architectural considerations that we can't predict 5619 // at this level. For example, frontend pressure (on decode or fetch) due to 5620 // code size, or the number and capabilities of the execution ports. 5621 // 5622 // We use the following heuristics to select the interleave count: 5623 // 1. If the code has reductions, then we interleave to break the cross 5624 // iteration dependency. 5625 // 2. If the loop is really small, then we interleave to reduce the loop 5626 // overhead. 5627 // 3. We don't interleave if we think that we will spill registers to memory 5628 // due to the increased register pressure. 5629 5630 if (!isScalarEpilogueAllowed()) 5631 return 1; 5632 5633 // We used the distance for the interleave count. 5634 if (Legal->getMaxSafeDepDistBytes() != -1U) 5635 return 1; 5636 5637 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5638 const bool HasReductions = !Legal->getReductionVars().empty(); 5639 // Do not interleave loops with a relatively small known or estimated trip 5640 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5641 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5642 // because with the above conditions interleaving can expose ILP and break 5643 // cross iteration dependences for reductions. 5644 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5645 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5646 return 1; 5647 5648 // If we did not calculate the cost for VF (because the user selected the VF) 5649 // then we calculate the cost of VF here. 5650 if (LoopCost == 0) { 5651 InstructionCost C = expectedCost(VF).first; 5652 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5653 LoopCost = *C.getValue(); 5654 5655 // Loop body is free and there is no need for interleaving. 5656 if (LoopCost == 0) 5657 return 1; 5658 } 5659 5660 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5661 // We divide by these constants so assume that we have at least one 5662 // instruction that uses at least one register. 5663 for (auto& pair : R.MaxLocalUsers) { 5664 pair.second = std::max(pair.second, 1U); 5665 } 5666 5667 // We calculate the interleave count using the following formula. 5668 // Subtract the number of loop invariants from the number of available 5669 // registers. These registers are used by all of the interleaved instances. 5670 // Next, divide the remaining registers by the number of registers that is 5671 // required by the loop, in order to estimate how many parallel instances 5672 // fit without causing spills. All of this is rounded down if necessary to be 5673 // a power of two. We want power of two interleave count to simplify any 5674 // addressing operations or alignment considerations. 5675 // We also want power of two interleave counts to ensure that the induction 5676 // variable of the vector loop wraps to zero, when tail is folded by masking; 5677 // this currently happens when OptForSize, in which case IC is set to 1 above. 5678 unsigned IC = UINT_MAX; 5679 5680 for (auto& pair : R.MaxLocalUsers) { 5681 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5682 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5683 << " registers of " 5684 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5685 if (VF.isScalar()) { 5686 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5687 TargetNumRegisters = ForceTargetNumScalarRegs; 5688 } else { 5689 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5690 TargetNumRegisters = ForceTargetNumVectorRegs; 5691 } 5692 unsigned MaxLocalUsers = pair.second; 5693 unsigned LoopInvariantRegs = 0; 5694 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5695 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5696 5697 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5698 // Don't count the induction variable as interleaved. 5699 if (EnableIndVarRegisterHeur) { 5700 TmpIC = 5701 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5702 std::max(1U, (MaxLocalUsers - 1))); 5703 } 5704 5705 IC = std::min(IC, TmpIC); 5706 } 5707 5708 // Clamp the interleave ranges to reasonable counts. 5709 unsigned MaxInterleaveCount = 5710 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5711 5712 // Check if the user has overridden the max. 5713 if (VF.isScalar()) { 5714 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5715 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5716 } else { 5717 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5718 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5719 } 5720 5721 // If trip count is known or estimated compile time constant, limit the 5722 // interleave count to be less than the trip count divided by VF, provided it 5723 // is at least 1. 5724 // 5725 // For scalable vectors we can't know if interleaving is beneficial. It may 5726 // not be beneficial for small loops if none of the lanes in the second vector 5727 // iterations is enabled. However, for larger loops, there is likely to be a 5728 // similar benefit as for fixed-width vectors. For now, we choose to leave 5729 // the InterleaveCount as if vscale is '1', although if some information about 5730 // the vector is known (e.g. min vector size), we can make a better decision. 5731 if (BestKnownTC) { 5732 MaxInterleaveCount = 5733 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5734 // Make sure MaxInterleaveCount is greater than 0. 5735 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5736 } 5737 5738 assert(MaxInterleaveCount > 0 && 5739 "Maximum interleave count must be greater than 0"); 5740 5741 // Clamp the calculated IC to be between the 1 and the max interleave count 5742 // that the target and trip count allows. 5743 if (IC > MaxInterleaveCount) 5744 IC = MaxInterleaveCount; 5745 else 5746 // Make sure IC is greater than 0. 5747 IC = std::max(1u, IC); 5748 5749 assert(IC > 0 && "Interleave count must be greater than 0."); 5750 5751 // Interleave if we vectorized this loop and there is a reduction that could 5752 // benefit from interleaving. 5753 if (VF.isVector() && HasReductions) { 5754 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5755 return IC; 5756 } 5757 5758 // For any scalar loop that either requires runtime checks or predication we 5759 // are better off leaving this to the unroller. Note that if we've already 5760 // vectorized the loop we will have done the runtime check and so interleaving 5761 // won't require further checks. 5762 bool ScalarInterleavingRequiresPredication = 5763 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5764 return Legal->blockNeedsPredication(BB); 5765 })); 5766 bool ScalarInterleavingRequiresRuntimePointerCheck = 5767 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5768 5769 // We want to interleave small loops in order to reduce the loop overhead and 5770 // potentially expose ILP opportunities. 5771 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5772 << "LV: IC is " << IC << '\n' 5773 << "LV: VF is " << VF << '\n'); 5774 const bool AggressivelyInterleaveReductions = 5775 TTI.enableAggressiveInterleaving(HasReductions); 5776 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5777 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5778 // We assume that the cost overhead is 1 and we use the cost model 5779 // to estimate the cost of the loop and interleave until the cost of the 5780 // loop overhead is about 5% of the cost of the loop. 5781 unsigned SmallIC = 5782 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5783 5784 // Interleave until store/load ports (estimated by max interleave count) are 5785 // saturated. 5786 unsigned NumStores = Legal->getNumStores(); 5787 unsigned NumLoads = Legal->getNumLoads(); 5788 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5789 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5790 5791 // There is little point in interleaving for reductions containing selects 5792 // and compares when VF=1 since it may just create more overhead than it's 5793 // worth for loops with small trip counts. This is because we still have to 5794 // do the final reduction after the loop. 5795 bool HasSelectCmpReductions = 5796 HasReductions && 5797 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5798 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5799 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5800 RdxDesc.getRecurrenceKind()); 5801 }); 5802 if (HasSelectCmpReductions) { 5803 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5804 return 1; 5805 } 5806 5807 // If we have a scalar reduction (vector reductions are already dealt with 5808 // by this point), we can increase the critical path length if the loop 5809 // we're interleaving is inside another loop. For tree-wise reductions 5810 // set the limit to 2, and for ordered reductions it's best to disable 5811 // interleaving entirely. 5812 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5813 bool HasOrderedReductions = 5814 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5815 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5816 return RdxDesc.isOrdered(); 5817 }); 5818 if (HasOrderedReductions) { 5819 LLVM_DEBUG( 5820 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5821 return 1; 5822 } 5823 5824 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5825 SmallIC = std::min(SmallIC, F); 5826 StoresIC = std::min(StoresIC, F); 5827 LoadsIC = std::min(LoadsIC, F); 5828 } 5829 5830 if (EnableLoadStoreRuntimeInterleave && 5831 std::max(StoresIC, LoadsIC) > SmallIC) { 5832 LLVM_DEBUG( 5833 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5834 return std::max(StoresIC, LoadsIC); 5835 } 5836 5837 // If there are scalar reductions and TTI has enabled aggressive 5838 // interleaving for reductions, we will interleave to expose ILP. 5839 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5840 AggressivelyInterleaveReductions) { 5841 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5842 // Interleave no less than SmallIC but not as aggressive as the normal IC 5843 // to satisfy the rare situation when resources are too limited. 5844 return std::max(IC / 2, SmallIC); 5845 } else { 5846 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5847 return SmallIC; 5848 } 5849 } 5850 5851 // Interleave if this is a large loop (small loops are already dealt with by 5852 // this point) that could benefit from interleaving. 5853 if (AggressivelyInterleaveReductions) { 5854 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5855 return IC; 5856 } 5857 5858 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5859 return 1; 5860 } 5861 5862 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5863 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5864 // This function calculates the register usage by measuring the highest number 5865 // of values that are alive at a single location. Obviously, this is a very 5866 // rough estimation. We scan the loop in a topological order in order and 5867 // assign a number to each instruction. We use RPO to ensure that defs are 5868 // met before their users. We assume that each instruction that has in-loop 5869 // users starts an interval. We record every time that an in-loop value is 5870 // used, so we have a list of the first and last occurrences of each 5871 // instruction. Next, we transpose this data structure into a multi map that 5872 // holds the list of intervals that *end* at a specific location. This multi 5873 // map allows us to perform a linear search. We scan the instructions linearly 5874 // and record each time that a new interval starts, by placing it in a set. 5875 // If we find this value in the multi-map then we remove it from the set. 5876 // The max register usage is the maximum size of the set. 5877 // We also search for instructions that are defined outside the loop, but are 5878 // used inside the loop. We need this number separately from the max-interval 5879 // usage number because when we unroll, loop-invariant values do not take 5880 // more register. 5881 LoopBlocksDFS DFS(TheLoop); 5882 DFS.perform(LI); 5883 5884 RegisterUsage RU; 5885 5886 // Each 'key' in the map opens a new interval. The values 5887 // of the map are the index of the 'last seen' usage of the 5888 // instruction that is the key. 5889 using IntervalMap = DenseMap<Instruction *, unsigned>; 5890 5891 // Maps instruction to its index. 5892 SmallVector<Instruction *, 64> IdxToInstr; 5893 // Marks the end of each interval. 5894 IntervalMap EndPoint; 5895 // Saves the list of instruction indices that are used in the loop. 5896 SmallPtrSet<Instruction *, 8> Ends; 5897 // Saves the list of values that are used in the loop but are 5898 // defined outside the loop, such as arguments and constants. 5899 SmallPtrSet<Value *, 8> LoopInvariants; 5900 5901 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5902 for (Instruction &I : BB->instructionsWithoutDebug()) { 5903 IdxToInstr.push_back(&I); 5904 5905 // Save the end location of each USE. 5906 for (Value *U : I.operands()) { 5907 auto *Instr = dyn_cast<Instruction>(U); 5908 5909 // Ignore non-instruction values such as arguments, constants, etc. 5910 if (!Instr) 5911 continue; 5912 5913 // If this instruction is outside the loop then record it and continue. 5914 if (!TheLoop->contains(Instr)) { 5915 LoopInvariants.insert(Instr); 5916 continue; 5917 } 5918 5919 // Overwrite previous end points. 5920 EndPoint[Instr] = IdxToInstr.size(); 5921 Ends.insert(Instr); 5922 } 5923 } 5924 } 5925 5926 // Saves the list of intervals that end with the index in 'key'. 5927 using InstrList = SmallVector<Instruction *, 2>; 5928 DenseMap<unsigned, InstrList> TransposeEnds; 5929 5930 // Transpose the EndPoints to a list of values that end at each index. 5931 for (auto &Interval : EndPoint) 5932 TransposeEnds[Interval.second].push_back(Interval.first); 5933 5934 SmallPtrSet<Instruction *, 8> OpenIntervals; 5935 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5936 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5937 5938 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5939 5940 const auto &TTICapture = TTI; 5941 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5942 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5943 return 0; 5944 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5945 }; 5946 5947 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5948 Instruction *I = IdxToInstr[i]; 5949 5950 // Remove all of the instructions that end at this location. 5951 InstrList &List = TransposeEnds[i]; 5952 for (Instruction *ToRemove : List) 5953 OpenIntervals.erase(ToRemove); 5954 5955 // Ignore instructions that are never used within the loop. 5956 if (!Ends.count(I)) 5957 continue; 5958 5959 // Skip ignored values. 5960 if (ValuesToIgnore.count(I)) 5961 continue; 5962 5963 // For each VF find the maximum usage of registers. 5964 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5965 // Count the number of live intervals. 5966 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5967 5968 if (VFs[j].isScalar()) { 5969 for (auto Inst : OpenIntervals) { 5970 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5971 if (RegUsage.find(ClassID) == RegUsage.end()) 5972 RegUsage[ClassID] = 1; 5973 else 5974 RegUsage[ClassID] += 1; 5975 } 5976 } else { 5977 collectUniformsAndScalars(VFs[j]); 5978 for (auto Inst : OpenIntervals) { 5979 // Skip ignored values for VF > 1. 5980 if (VecValuesToIgnore.count(Inst)) 5981 continue; 5982 if (isScalarAfterVectorization(Inst, VFs[j])) { 5983 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5984 if (RegUsage.find(ClassID) == RegUsage.end()) 5985 RegUsage[ClassID] = 1; 5986 else 5987 RegUsage[ClassID] += 1; 5988 } else { 5989 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5990 if (RegUsage.find(ClassID) == RegUsage.end()) 5991 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5992 else 5993 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5994 } 5995 } 5996 } 5997 5998 for (auto& pair : RegUsage) { 5999 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6000 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6001 else 6002 MaxUsages[j][pair.first] = pair.second; 6003 } 6004 } 6005 6006 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6007 << OpenIntervals.size() << '\n'); 6008 6009 // Add the current instruction to the list of open intervals. 6010 OpenIntervals.insert(I); 6011 } 6012 6013 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6014 SmallMapVector<unsigned, unsigned, 4> Invariant; 6015 6016 for (auto Inst : LoopInvariants) { 6017 unsigned Usage = 6018 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6019 unsigned ClassID = 6020 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6021 if (Invariant.find(ClassID) == Invariant.end()) 6022 Invariant[ClassID] = Usage; 6023 else 6024 Invariant[ClassID] += Usage; 6025 } 6026 6027 LLVM_DEBUG({ 6028 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6029 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6030 << " item\n"; 6031 for (const auto &pair : MaxUsages[i]) { 6032 dbgs() << "LV(REG): RegisterClass: " 6033 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6034 << " registers\n"; 6035 } 6036 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6037 << " item\n"; 6038 for (const auto &pair : Invariant) { 6039 dbgs() << "LV(REG): RegisterClass: " 6040 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6041 << " registers\n"; 6042 } 6043 }); 6044 6045 RU.LoopInvariantRegs = Invariant; 6046 RU.MaxLocalUsers = MaxUsages[i]; 6047 RUs[i] = RU; 6048 } 6049 6050 return RUs; 6051 } 6052 6053 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6054 ElementCount VF) { 6055 // TODO: Cost model for emulated masked load/store is completely 6056 // broken. This hack guides the cost model to use an artificially 6057 // high enough value to practically disable vectorization with such 6058 // operations, except where previously deployed legality hack allowed 6059 // using very low cost values. This is to avoid regressions coming simply 6060 // from moving "masked load/store" check from legality to cost model. 6061 // Masked Load/Gather emulation was previously never allowed. 6062 // Limited number of Masked Store/Scatter emulation was allowed. 6063 assert((isPredicatedInst(I, VF) || Legal->isUniformMemOp(*I)) && 6064 "Expecting a scalar emulated instruction"); 6065 return isa<LoadInst>(I) || 6066 (isa<StoreInst>(I) && 6067 NumPredStores > NumberOfStoresToPredicate); 6068 } 6069 6070 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6071 // If we aren't vectorizing the loop, or if we've already collected the 6072 // instructions to scalarize, there's nothing to do. Collection may already 6073 // have occurred if we have a user-selected VF and are now computing the 6074 // expected cost for interleaving. 6075 if (VF.isScalar() || VF.isZero() || 6076 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6077 return; 6078 6079 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6080 // not profitable to scalarize any instructions, the presence of VF in the 6081 // map will indicate that we've analyzed it already. 6082 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6083 6084 PredicatedBBsAfterVectorization[VF].clear(); 6085 6086 // Find all the instructions that are scalar with predication in the loop and 6087 // determine if it would be better to not if-convert the blocks they are in. 6088 // If so, we also record the instructions to scalarize. 6089 for (BasicBlock *BB : TheLoop->blocks()) { 6090 if (!blockNeedsPredicationForAnyReason(BB)) 6091 continue; 6092 for (Instruction &I : *BB) 6093 if (isScalarWithPredication(&I, VF)) { 6094 ScalarCostsTy ScalarCosts; 6095 // Do not apply discount if scalable, because that would lead to 6096 // invalid scalarization costs. 6097 // Do not apply discount logic if hacked cost is needed 6098 // for emulated masked memrefs. 6099 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6100 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6101 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6102 // Remember that BB will remain after vectorization. 6103 PredicatedBBsAfterVectorization[VF].insert(BB); 6104 } 6105 } 6106 } 6107 6108 int LoopVectorizationCostModel::computePredInstDiscount( 6109 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6110 assert(!isUniformAfterVectorization(PredInst, VF) && 6111 "Instruction marked uniform-after-vectorization will be predicated"); 6112 6113 // Initialize the discount to zero, meaning that the scalar version and the 6114 // vector version cost the same. 6115 InstructionCost Discount = 0; 6116 6117 // Holds instructions to analyze. The instructions we visit are mapped in 6118 // ScalarCosts. Those instructions are the ones that would be scalarized if 6119 // we find that the scalar version costs less. 6120 SmallVector<Instruction *, 8> Worklist; 6121 6122 // Returns true if the given instruction can be scalarized. 6123 auto canBeScalarized = [&](Instruction *I) -> bool { 6124 // We only attempt to scalarize instructions forming a single-use chain 6125 // from the original predicated block that would otherwise be vectorized. 6126 // Although not strictly necessary, we give up on instructions we know will 6127 // already be scalar to avoid traversing chains that are unlikely to be 6128 // beneficial. 6129 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6130 isScalarAfterVectorization(I, VF)) 6131 return false; 6132 6133 // If the instruction is scalar with predication, it will be analyzed 6134 // separately. We ignore it within the context of PredInst. 6135 if (isScalarWithPredication(I, VF)) 6136 return false; 6137 6138 // If any of the instruction's operands are uniform after vectorization, 6139 // the instruction cannot be scalarized. This prevents, for example, a 6140 // masked load from being scalarized. 6141 // 6142 // We assume we will only emit a value for lane zero of an instruction 6143 // marked uniform after vectorization, rather than VF identical values. 6144 // Thus, if we scalarize an instruction that uses a uniform, we would 6145 // create uses of values corresponding to the lanes we aren't emitting code 6146 // for. This behavior can be changed by allowing getScalarValue to clone 6147 // the lane zero values for uniforms rather than asserting. 6148 for (Use &U : I->operands()) 6149 if (auto *J = dyn_cast<Instruction>(U.get())) 6150 if (isUniformAfterVectorization(J, VF)) 6151 return false; 6152 6153 // Otherwise, we can scalarize the instruction. 6154 return true; 6155 }; 6156 6157 // Compute the expected cost discount from scalarizing the entire expression 6158 // feeding the predicated instruction. We currently only consider expressions 6159 // that are single-use instruction chains. 6160 Worklist.push_back(PredInst); 6161 while (!Worklist.empty()) { 6162 Instruction *I = Worklist.pop_back_val(); 6163 6164 // If we've already analyzed the instruction, there's nothing to do. 6165 if (ScalarCosts.find(I) != ScalarCosts.end()) 6166 continue; 6167 6168 // Compute the cost of the vector instruction. Note that this cost already 6169 // includes the scalarization overhead of the predicated instruction. 6170 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6171 6172 // Compute the cost of the scalarized instruction. This cost is the cost of 6173 // the instruction as if it wasn't if-converted and instead remained in the 6174 // predicated block. We will scale this cost by block probability after 6175 // computing the scalarization overhead. 6176 InstructionCost ScalarCost = 6177 VF.getFixedValue() * 6178 getInstructionCost(I, ElementCount::getFixed(1)).first; 6179 6180 // Compute the scalarization overhead of needed insertelement instructions 6181 // and phi nodes. 6182 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6183 ScalarCost += TTI.getScalarizationOverhead( 6184 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6185 APInt::getAllOnes(VF.getFixedValue()), true, false); 6186 ScalarCost += 6187 VF.getFixedValue() * 6188 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6189 } 6190 6191 // Compute the scalarization overhead of needed extractelement 6192 // instructions. For each of the instruction's operands, if the operand can 6193 // be scalarized, add it to the worklist; otherwise, account for the 6194 // overhead. 6195 for (Use &U : I->operands()) 6196 if (auto *J = dyn_cast<Instruction>(U.get())) { 6197 assert(VectorType::isValidElementType(J->getType()) && 6198 "Instruction has non-scalar type"); 6199 if (canBeScalarized(J)) 6200 Worklist.push_back(J); 6201 else if (needsExtract(J, VF)) { 6202 ScalarCost += TTI.getScalarizationOverhead( 6203 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6204 APInt::getAllOnes(VF.getFixedValue()), false, true); 6205 } 6206 } 6207 6208 // Scale the total scalar cost by block probability. 6209 ScalarCost /= getReciprocalPredBlockProb(); 6210 6211 // Compute the discount. A non-negative discount means the vector version 6212 // of the instruction costs more, and scalarizing would be beneficial. 6213 Discount += VectorCost - ScalarCost; 6214 ScalarCosts[I] = ScalarCost; 6215 } 6216 6217 return *Discount.getValue(); 6218 } 6219 6220 LoopVectorizationCostModel::VectorizationCostTy 6221 LoopVectorizationCostModel::expectedCost( 6222 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6223 VectorizationCostTy Cost; 6224 6225 // For each block. 6226 for (BasicBlock *BB : TheLoop->blocks()) { 6227 VectorizationCostTy BlockCost; 6228 6229 // For each instruction in the old loop. 6230 for (Instruction &I : BB->instructionsWithoutDebug()) { 6231 // Skip ignored values. 6232 if (ValuesToIgnore.count(&I) || 6233 (VF.isVector() && VecValuesToIgnore.count(&I))) 6234 continue; 6235 6236 VectorizationCostTy C = getInstructionCost(&I, VF); 6237 6238 // Check if we should override the cost. 6239 if (C.first.isValid() && 6240 ForceTargetInstructionCost.getNumOccurrences() > 0) 6241 C.first = InstructionCost(ForceTargetInstructionCost); 6242 6243 // Keep a list of instructions with invalid costs. 6244 if (Invalid && !C.first.isValid()) 6245 Invalid->emplace_back(&I, VF); 6246 6247 BlockCost.first += C.first; 6248 BlockCost.second |= C.second; 6249 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6250 << " for VF " << VF << " For instruction: " << I 6251 << '\n'); 6252 } 6253 6254 // If we are vectorizing a predicated block, it will have been 6255 // if-converted. This means that the block's instructions (aside from 6256 // stores and instructions that may divide by zero) will now be 6257 // unconditionally executed. For the scalar case, we may not always execute 6258 // the predicated block, if it is an if-else block. Thus, scale the block's 6259 // cost by the probability of executing it. blockNeedsPredication from 6260 // Legal is used so as to not include all blocks in tail folded loops. 6261 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6262 BlockCost.first /= getReciprocalPredBlockProb(); 6263 6264 Cost.first += BlockCost.first; 6265 Cost.second |= BlockCost.second; 6266 } 6267 6268 return Cost; 6269 } 6270 6271 /// Gets Address Access SCEV after verifying that the access pattern 6272 /// is loop invariant except the induction variable dependence. 6273 /// 6274 /// This SCEV can be sent to the Target in order to estimate the address 6275 /// calculation cost. 6276 static const SCEV *getAddressAccessSCEV( 6277 Value *Ptr, 6278 LoopVectorizationLegality *Legal, 6279 PredicatedScalarEvolution &PSE, 6280 const Loop *TheLoop) { 6281 6282 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6283 if (!Gep) 6284 return nullptr; 6285 6286 // We are looking for a gep with all loop invariant indices except for one 6287 // which should be an induction variable. 6288 auto SE = PSE.getSE(); 6289 unsigned NumOperands = Gep->getNumOperands(); 6290 for (unsigned i = 1; i < NumOperands; ++i) { 6291 Value *Opd = Gep->getOperand(i); 6292 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6293 !Legal->isInductionVariable(Opd)) 6294 return nullptr; 6295 } 6296 6297 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6298 return PSE.getSCEV(Ptr); 6299 } 6300 6301 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6302 return Legal->hasStride(I->getOperand(0)) || 6303 Legal->hasStride(I->getOperand(1)); 6304 } 6305 6306 InstructionCost 6307 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6308 ElementCount VF) { 6309 assert(VF.isVector() && 6310 "Scalarization cost of instruction implies vectorization."); 6311 if (VF.isScalable()) 6312 return InstructionCost::getInvalid(); 6313 6314 Type *ValTy = getLoadStoreType(I); 6315 auto SE = PSE.getSE(); 6316 6317 unsigned AS = getLoadStoreAddressSpace(I); 6318 Value *Ptr = getLoadStorePointerOperand(I); 6319 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6320 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6321 // that it is being called from this specific place. 6322 6323 // Figure out whether the access is strided and get the stride value 6324 // if it's known in compile time 6325 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6326 6327 // Get the cost of the scalar memory instruction and address computation. 6328 InstructionCost Cost = 6329 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6330 6331 // Don't pass *I here, since it is scalar but will actually be part of a 6332 // vectorized loop where the user of it is a vectorized instruction. 6333 const Align Alignment = getLoadStoreAlignment(I); 6334 Cost += VF.getKnownMinValue() * 6335 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6336 AS, TTI::TCK_RecipThroughput); 6337 6338 // Get the overhead of the extractelement and insertelement instructions 6339 // we might create due to scalarization. 6340 Cost += getScalarizationOverhead(I, VF); 6341 6342 // If we have a predicated load/store, it will need extra i1 extracts and 6343 // conditional branches, but may not be executed for each vector lane. Scale 6344 // the cost by the probability of executing the predicated block. 6345 if (isPredicatedInst(I, VF)) { 6346 Cost /= getReciprocalPredBlockProb(); 6347 6348 // Add the cost of an i1 extract and a branch 6349 auto *Vec_i1Ty = 6350 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6351 Cost += TTI.getScalarizationOverhead( 6352 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6353 /*Insert=*/false, /*Extract=*/true); 6354 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6355 6356 if (useEmulatedMaskMemRefHack(I, VF)) 6357 // Artificially setting to a high enough value to practically disable 6358 // vectorization with such operations. 6359 Cost = 3000000; 6360 } 6361 6362 return Cost; 6363 } 6364 6365 InstructionCost 6366 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6367 ElementCount VF) { 6368 Type *ValTy = getLoadStoreType(I); 6369 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6370 Value *Ptr = getLoadStorePointerOperand(I); 6371 unsigned AS = getLoadStoreAddressSpace(I); 6372 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6373 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6374 6375 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6376 "Stride should be 1 or -1 for consecutive memory access"); 6377 const Align Alignment = getLoadStoreAlignment(I); 6378 InstructionCost Cost = 0; 6379 if (Legal->isMaskRequired(I)) 6380 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6381 CostKind); 6382 else 6383 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6384 CostKind, I); 6385 6386 bool Reverse = ConsecutiveStride < 0; 6387 if (Reverse) 6388 Cost += 6389 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6390 return Cost; 6391 } 6392 6393 InstructionCost 6394 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6395 ElementCount VF) { 6396 assert(Legal->isUniformMemOp(*I)); 6397 6398 Type *ValTy = getLoadStoreType(I); 6399 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6400 const Align Alignment = getLoadStoreAlignment(I); 6401 unsigned AS = getLoadStoreAddressSpace(I); 6402 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6403 if (isa<LoadInst>(I)) { 6404 return TTI.getAddressComputationCost(ValTy) + 6405 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6406 CostKind) + 6407 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6408 } 6409 StoreInst *SI = cast<StoreInst>(I); 6410 6411 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6412 return TTI.getAddressComputationCost(ValTy) + 6413 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6414 CostKind) + 6415 (isLoopInvariantStoreValue 6416 ? 0 6417 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6418 VF.getKnownMinValue() - 1)); 6419 } 6420 6421 InstructionCost 6422 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6423 ElementCount VF) { 6424 Type *ValTy = getLoadStoreType(I); 6425 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6426 const Align Alignment = getLoadStoreAlignment(I); 6427 const Value *Ptr = getLoadStorePointerOperand(I); 6428 6429 return TTI.getAddressComputationCost(VectorTy) + 6430 TTI.getGatherScatterOpCost( 6431 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6432 TargetTransformInfo::TCK_RecipThroughput, I); 6433 } 6434 6435 InstructionCost 6436 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6437 ElementCount VF) { 6438 // TODO: Once we have support for interleaving with scalable vectors 6439 // we can calculate the cost properly here. 6440 if (VF.isScalable()) 6441 return InstructionCost::getInvalid(); 6442 6443 Type *ValTy = getLoadStoreType(I); 6444 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6445 unsigned AS = getLoadStoreAddressSpace(I); 6446 6447 auto Group = getInterleavedAccessGroup(I); 6448 assert(Group && "Fail to get an interleaved access group."); 6449 6450 unsigned InterleaveFactor = Group->getFactor(); 6451 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6452 6453 // Holds the indices of existing members in the interleaved group. 6454 SmallVector<unsigned, 4> Indices; 6455 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6456 if (Group->getMember(IF)) 6457 Indices.push_back(IF); 6458 6459 // Calculate the cost of the whole interleaved group. 6460 bool UseMaskForGaps = 6461 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6462 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6463 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6464 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6465 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6466 6467 if (Group->isReverse()) { 6468 // TODO: Add support for reversed masked interleaved access. 6469 assert(!Legal->isMaskRequired(I) && 6470 "Reverse masked interleaved access not supported."); 6471 Cost += 6472 Group->getNumMembers() * 6473 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6474 } 6475 return Cost; 6476 } 6477 6478 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6479 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6480 using namespace llvm::PatternMatch; 6481 // Early exit for no inloop reductions 6482 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6483 return None; 6484 auto *VectorTy = cast<VectorType>(Ty); 6485 6486 // We are looking for a pattern of, and finding the minimal acceptable cost: 6487 // reduce(mul(ext(A), ext(B))) or 6488 // reduce(mul(A, B)) or 6489 // reduce(ext(A)) or 6490 // reduce(A). 6491 // The basic idea is that we walk down the tree to do that, finding the root 6492 // reduction instruction in InLoopReductionImmediateChains. From there we find 6493 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6494 // of the components. If the reduction cost is lower then we return it for the 6495 // reduction instruction and 0 for the other instructions in the pattern. If 6496 // it is not we return an invalid cost specifying the orignal cost method 6497 // should be used. 6498 Instruction *RetI = I; 6499 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6500 if (!RetI->hasOneUser()) 6501 return None; 6502 RetI = RetI->user_back(); 6503 } 6504 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6505 RetI->user_back()->getOpcode() == Instruction::Add) { 6506 if (!RetI->hasOneUser()) 6507 return None; 6508 RetI = RetI->user_back(); 6509 } 6510 6511 // Test if the found instruction is a reduction, and if not return an invalid 6512 // cost specifying the parent to use the original cost modelling. 6513 if (!InLoopReductionImmediateChains.count(RetI)) 6514 return None; 6515 6516 // Find the reduction this chain is a part of and calculate the basic cost of 6517 // the reduction on its own. 6518 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6519 Instruction *ReductionPhi = LastChain; 6520 while (!isa<PHINode>(ReductionPhi)) 6521 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6522 6523 const RecurrenceDescriptor &RdxDesc = 6524 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6525 6526 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6527 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6528 6529 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6530 // normal fmul instruction to the cost of the fadd reduction. 6531 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6532 BaseCost += 6533 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6534 6535 // If we're using ordered reductions then we can just return the base cost 6536 // here, since getArithmeticReductionCost calculates the full ordered 6537 // reduction cost when FP reassociation is not allowed. 6538 if (useOrderedReductions(RdxDesc)) 6539 return BaseCost; 6540 6541 // Get the operand that was not the reduction chain and match it to one of the 6542 // patterns, returning the better cost if it is found. 6543 Instruction *RedOp = RetI->getOperand(1) == LastChain 6544 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6545 : dyn_cast<Instruction>(RetI->getOperand(1)); 6546 6547 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6548 6549 Instruction *Op0, *Op1; 6550 if (RedOp && 6551 match(RedOp, 6552 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6553 match(Op0, m_ZExtOrSExt(m_Value())) && 6554 Op0->getOpcode() == Op1->getOpcode() && 6555 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6556 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6557 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6558 6559 // Matched reduce(ext(mul(ext(A), ext(B))) 6560 // Note that the extend opcodes need to all match, or if A==B they will have 6561 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6562 // which is equally fine. 6563 bool IsUnsigned = isa<ZExtInst>(Op0); 6564 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6565 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6566 6567 InstructionCost ExtCost = 6568 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6569 TTI::CastContextHint::None, CostKind, Op0); 6570 InstructionCost MulCost = 6571 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6572 InstructionCost Ext2Cost = 6573 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6574 TTI::CastContextHint::None, CostKind, RedOp); 6575 6576 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6577 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6578 CostKind); 6579 6580 if (RedCost.isValid() && 6581 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6582 return I == RetI ? RedCost : 0; 6583 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6584 !TheLoop->isLoopInvariant(RedOp)) { 6585 // Matched reduce(ext(A)) 6586 bool IsUnsigned = isa<ZExtInst>(RedOp); 6587 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6588 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6589 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6590 CostKind); 6591 6592 InstructionCost ExtCost = 6593 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6594 TTI::CastContextHint::None, CostKind, RedOp); 6595 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6596 return I == RetI ? RedCost : 0; 6597 } else if (RedOp && 6598 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6599 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6600 Op0->getOpcode() == Op1->getOpcode() && 6601 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6602 bool IsUnsigned = isa<ZExtInst>(Op0); 6603 Type *Op0Ty = Op0->getOperand(0)->getType(); 6604 Type *Op1Ty = Op1->getOperand(0)->getType(); 6605 Type *LargestOpTy = 6606 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6607 : Op0Ty; 6608 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6609 6610 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6611 // different sizes. We take the largest type as the ext to reduce, and add 6612 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6613 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6614 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6615 TTI::CastContextHint::None, CostKind, Op0); 6616 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6617 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6618 TTI::CastContextHint::None, CostKind, Op1); 6619 InstructionCost MulCost = 6620 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6621 6622 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6623 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6624 CostKind); 6625 InstructionCost ExtraExtCost = 0; 6626 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6627 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6628 ExtraExtCost = TTI.getCastInstrCost( 6629 ExtraExtOp->getOpcode(), ExtType, 6630 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6631 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6632 } 6633 6634 if (RedCost.isValid() && 6635 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6636 return I == RetI ? RedCost : 0; 6637 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6638 // Matched reduce(mul()) 6639 InstructionCost MulCost = 6640 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6641 6642 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6643 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6644 CostKind); 6645 6646 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6647 return I == RetI ? RedCost : 0; 6648 } 6649 } 6650 6651 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6652 } 6653 6654 InstructionCost 6655 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6656 ElementCount VF) { 6657 // Calculate scalar cost only. Vectorization cost should be ready at this 6658 // moment. 6659 if (VF.isScalar()) { 6660 Type *ValTy = getLoadStoreType(I); 6661 const Align Alignment = getLoadStoreAlignment(I); 6662 unsigned AS = getLoadStoreAddressSpace(I); 6663 6664 return TTI.getAddressComputationCost(ValTy) + 6665 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6666 TTI::TCK_RecipThroughput, I); 6667 } 6668 return getWideningCost(I, VF); 6669 } 6670 6671 LoopVectorizationCostModel::VectorizationCostTy 6672 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6673 ElementCount VF) { 6674 // If we know that this instruction will remain uniform, check the cost of 6675 // the scalar version. 6676 if (isUniformAfterVectorization(I, VF)) 6677 VF = ElementCount::getFixed(1); 6678 6679 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6680 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6681 6682 // Forced scalars do not have any scalarization overhead. 6683 auto ForcedScalar = ForcedScalars.find(VF); 6684 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6685 auto InstSet = ForcedScalar->second; 6686 if (InstSet.count(I)) 6687 return VectorizationCostTy( 6688 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6689 VF.getKnownMinValue()), 6690 false); 6691 } 6692 6693 Type *VectorTy; 6694 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6695 6696 bool TypeNotScalarized = false; 6697 if (VF.isVector() && VectorTy->isVectorTy()) { 6698 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6699 if (VF.isScalable()) 6700 // <vscale x 1 x iN> is assumed to be profitable over iN because 6701 // scalable registers are a distinct register class from scalar ones. 6702 // If we ever find a target which wants to lower scalable vectors 6703 // back to scalars, we'll need to update this code to explicitly 6704 // ask TTI about the register class uses for each part. 6705 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6706 else 6707 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6708 } else 6709 C = InstructionCost::getInvalid(); 6710 } 6711 return VectorizationCostTy(C, TypeNotScalarized); 6712 } 6713 6714 InstructionCost 6715 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6716 ElementCount VF) const { 6717 6718 // There is no mechanism yet to create a scalable scalarization loop, 6719 // so this is currently Invalid. 6720 if (VF.isScalable()) 6721 return InstructionCost::getInvalid(); 6722 6723 if (VF.isScalar()) 6724 return 0; 6725 6726 InstructionCost Cost = 0; 6727 Type *RetTy = ToVectorTy(I->getType(), VF); 6728 if (!RetTy->isVoidTy() && 6729 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6730 Cost += TTI.getScalarizationOverhead( 6731 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6732 false); 6733 6734 // Some targets keep addresses scalar. 6735 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6736 return Cost; 6737 6738 // Some targets support efficient element stores. 6739 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6740 return Cost; 6741 6742 // Collect operands to consider. 6743 CallInst *CI = dyn_cast<CallInst>(I); 6744 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6745 6746 // Skip operands that do not require extraction/scalarization and do not incur 6747 // any overhead. 6748 SmallVector<Type *> Tys; 6749 for (auto *V : filterExtractingOperands(Ops, VF)) 6750 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6751 return Cost + TTI.getOperandsScalarizationOverhead( 6752 filterExtractingOperands(Ops, VF), Tys); 6753 } 6754 6755 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6756 if (VF.isScalar()) 6757 return; 6758 NumPredStores = 0; 6759 for (BasicBlock *BB : TheLoop->blocks()) { 6760 // For each instruction in the old loop. 6761 for (Instruction &I : *BB) { 6762 Value *Ptr = getLoadStorePointerOperand(&I); 6763 if (!Ptr) 6764 continue; 6765 6766 // TODO: We should generate better code and update the cost model for 6767 // predicated uniform stores. Today they are treated as any other 6768 // predicated store (see added test cases in 6769 // invariant-store-vectorization.ll). 6770 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6771 NumPredStores++; 6772 6773 if (Legal->isUniformMemOp(I)) { 6774 // Lowering story for uniform memory ops is currently a bit complicated. 6775 // Scalarization works for everything which isn't a store with scalable 6776 // VF. Fixed len VFs just scalarize and then DCE later; scalarization 6777 // knows how to handle uniform-per-part values (i.e. the first lane 6778 // in each unrolled VF) and can thus handle scalable loads too. For 6779 // scalable stores, we use a scatter if legal. If not, we have no way 6780 // to lower (currently) and thus have to abort vectorization. 6781 if (isa<StoreInst>(&I) && VF.isScalable()) { 6782 if (isLegalGatherOrScatter(&I, VF)) 6783 setWideningDecision(&I, VF, CM_GatherScatter, 6784 getGatherScatterCost(&I, VF)); 6785 else 6786 // Error case, abort vectorization 6787 setWideningDecision(&I, VF, CM_Scalarize, 6788 InstructionCost::getInvalid()); 6789 continue; 6790 } 6791 // Load: Scalar load + broadcast 6792 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6793 // TODO: Avoid replicating loads and stores instead of relying on 6794 // instcombine to remove them. 6795 setWideningDecision(&I, VF, CM_Scalarize, 6796 getUniformMemOpCost(&I, VF)); 6797 continue; 6798 } 6799 6800 // We assume that widening is the best solution when possible. 6801 if (memoryInstructionCanBeWidened(&I, VF)) { 6802 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6803 int ConsecutiveStride = Legal->isConsecutivePtr( 6804 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6805 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6806 "Expected consecutive stride."); 6807 InstWidening Decision = 6808 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6809 setWideningDecision(&I, VF, Decision, Cost); 6810 continue; 6811 } 6812 6813 // Choose between Interleaving, Gather/Scatter or Scalarization. 6814 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6815 unsigned NumAccesses = 1; 6816 if (isAccessInterleaved(&I)) { 6817 auto Group = getInterleavedAccessGroup(&I); 6818 assert(Group && "Fail to get an interleaved access group."); 6819 6820 // Make one decision for the whole group. 6821 if (getWideningDecision(&I, VF) != CM_Unknown) 6822 continue; 6823 6824 NumAccesses = Group->getNumMembers(); 6825 if (interleavedAccessCanBeWidened(&I, VF)) 6826 InterleaveCost = getInterleaveGroupCost(&I, VF); 6827 } 6828 6829 InstructionCost GatherScatterCost = 6830 isLegalGatherOrScatter(&I, VF) 6831 ? getGatherScatterCost(&I, VF) * NumAccesses 6832 : InstructionCost::getInvalid(); 6833 6834 InstructionCost ScalarizationCost = 6835 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6836 6837 // Choose better solution for the current VF, 6838 // write down this decision and use it during vectorization. 6839 InstructionCost Cost; 6840 InstWidening Decision; 6841 if (InterleaveCost <= GatherScatterCost && 6842 InterleaveCost < ScalarizationCost) { 6843 Decision = CM_Interleave; 6844 Cost = InterleaveCost; 6845 } else if (GatherScatterCost < ScalarizationCost) { 6846 Decision = CM_GatherScatter; 6847 Cost = GatherScatterCost; 6848 } else { 6849 Decision = CM_Scalarize; 6850 Cost = ScalarizationCost; 6851 } 6852 // If the instructions belongs to an interleave group, the whole group 6853 // receives the same decision. The whole group receives the cost, but 6854 // the cost will actually be assigned to one instruction. 6855 if (auto Group = getInterleavedAccessGroup(&I)) 6856 setWideningDecision(Group, VF, Decision, Cost); 6857 else 6858 setWideningDecision(&I, VF, Decision, Cost); 6859 } 6860 } 6861 6862 // Make sure that any load of address and any other address computation 6863 // remains scalar unless there is gather/scatter support. This avoids 6864 // inevitable extracts into address registers, and also has the benefit of 6865 // activating LSR more, since that pass can't optimize vectorized 6866 // addresses. 6867 if (TTI.prefersVectorizedAddressing()) 6868 return; 6869 6870 // Start with all scalar pointer uses. 6871 SmallPtrSet<Instruction *, 8> AddrDefs; 6872 for (BasicBlock *BB : TheLoop->blocks()) 6873 for (Instruction &I : *BB) { 6874 Instruction *PtrDef = 6875 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6876 if (PtrDef && TheLoop->contains(PtrDef) && 6877 getWideningDecision(&I, VF) != CM_GatherScatter) 6878 AddrDefs.insert(PtrDef); 6879 } 6880 6881 // Add all instructions used to generate the addresses. 6882 SmallVector<Instruction *, 4> Worklist; 6883 append_range(Worklist, AddrDefs); 6884 while (!Worklist.empty()) { 6885 Instruction *I = Worklist.pop_back_val(); 6886 for (auto &Op : I->operands()) 6887 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6888 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6889 AddrDefs.insert(InstOp).second) 6890 Worklist.push_back(InstOp); 6891 } 6892 6893 for (auto *I : AddrDefs) { 6894 if (isa<LoadInst>(I)) { 6895 // Setting the desired widening decision should ideally be handled in 6896 // by cost functions, but since this involves the task of finding out 6897 // if the loaded register is involved in an address computation, it is 6898 // instead changed here when we know this is the case. 6899 InstWidening Decision = getWideningDecision(I, VF); 6900 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6901 // Scalarize a widened load of address. 6902 setWideningDecision( 6903 I, VF, CM_Scalarize, 6904 (VF.getKnownMinValue() * 6905 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6906 else if (auto Group = getInterleavedAccessGroup(I)) { 6907 // Scalarize an interleave group of address loads. 6908 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6909 if (Instruction *Member = Group->getMember(I)) 6910 setWideningDecision( 6911 Member, VF, CM_Scalarize, 6912 (VF.getKnownMinValue() * 6913 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6914 } 6915 } 6916 } else 6917 // Make sure I gets scalarized and a cost estimate without 6918 // scalarization overhead. 6919 ForcedScalars[VF].insert(I); 6920 } 6921 } 6922 6923 InstructionCost 6924 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6925 Type *&VectorTy) { 6926 Type *RetTy = I->getType(); 6927 if (canTruncateToMinimalBitwidth(I, VF)) 6928 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6929 auto SE = PSE.getSE(); 6930 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6931 6932 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6933 ElementCount VF) -> bool { 6934 if (VF.isScalar()) 6935 return true; 6936 6937 auto Scalarized = InstsToScalarize.find(VF); 6938 assert(Scalarized != InstsToScalarize.end() && 6939 "VF not yet analyzed for scalarization profitability"); 6940 return !Scalarized->second.count(I) && 6941 llvm::all_of(I->users(), [&](User *U) { 6942 auto *UI = cast<Instruction>(U); 6943 return !Scalarized->second.count(UI); 6944 }); 6945 }; 6946 (void) hasSingleCopyAfterVectorization; 6947 6948 if (isScalarAfterVectorization(I, VF)) { 6949 // With the exception of GEPs and PHIs, after scalarization there should 6950 // only be one copy of the instruction generated in the loop. This is 6951 // because the VF is either 1, or any instructions that need scalarizing 6952 // have already been dealt with by the the time we get here. As a result, 6953 // it means we don't have to multiply the instruction cost by VF. 6954 assert(I->getOpcode() == Instruction::GetElementPtr || 6955 I->getOpcode() == Instruction::PHI || 6956 (I->getOpcode() == Instruction::BitCast && 6957 I->getType()->isPointerTy()) || 6958 hasSingleCopyAfterVectorization(I, VF)); 6959 VectorTy = RetTy; 6960 } else 6961 VectorTy = ToVectorTy(RetTy, VF); 6962 6963 // TODO: We need to estimate the cost of intrinsic calls. 6964 switch (I->getOpcode()) { 6965 case Instruction::GetElementPtr: 6966 // We mark this instruction as zero-cost because the cost of GEPs in 6967 // vectorized code depends on whether the corresponding memory instruction 6968 // is scalarized or not. Therefore, we handle GEPs with the memory 6969 // instruction cost. 6970 return 0; 6971 case Instruction::Br: { 6972 // In cases of scalarized and predicated instructions, there will be VF 6973 // predicated blocks in the vectorized loop. Each branch around these 6974 // blocks requires also an extract of its vector compare i1 element. 6975 bool ScalarPredicatedBB = false; 6976 BranchInst *BI = cast<BranchInst>(I); 6977 if (VF.isVector() && BI->isConditional() && 6978 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6979 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6980 ScalarPredicatedBB = true; 6981 6982 if (ScalarPredicatedBB) { 6983 // Not possible to scalarize scalable vector with predicated instructions. 6984 if (VF.isScalable()) 6985 return InstructionCost::getInvalid(); 6986 // Return cost for branches around scalarized and predicated blocks. 6987 auto *Vec_i1Ty = 6988 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6989 return ( 6990 TTI.getScalarizationOverhead( 6991 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6992 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6993 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6994 // The back-edge branch will remain, as will all scalar branches. 6995 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6996 else 6997 // This branch will be eliminated by if-conversion. 6998 return 0; 6999 // Note: We currently assume zero cost for an unconditional branch inside 7000 // a predicated block since it will become a fall-through, although we 7001 // may decide in the future to call TTI for all branches. 7002 } 7003 case Instruction::PHI: { 7004 auto *Phi = cast<PHINode>(I); 7005 7006 // First-order recurrences are replaced by vector shuffles inside the loop. 7007 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7008 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7009 return TTI.getShuffleCost( 7010 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7011 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7012 7013 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7014 // converted into select instructions. We require N - 1 selects per phi 7015 // node, where N is the number of incoming values. 7016 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7017 return (Phi->getNumIncomingValues() - 1) * 7018 TTI.getCmpSelInstrCost( 7019 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7020 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7021 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7022 7023 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7024 } 7025 case Instruction::UDiv: 7026 case Instruction::SDiv: 7027 case Instruction::URem: 7028 case Instruction::SRem: 7029 // If we have a predicated instruction, it may not be executed for each 7030 // vector lane. Get the scalarization cost and scale this amount by the 7031 // probability of executing the predicated block. If the instruction is not 7032 // predicated, we fall through to the next case. 7033 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7034 InstructionCost Cost = 0; 7035 7036 // These instructions have a non-void type, so account for the phi nodes 7037 // that we will create. This cost is likely to be zero. The phi node 7038 // cost, if any, should be scaled by the block probability because it 7039 // models a copy at the end of each predicated block. 7040 Cost += VF.getKnownMinValue() * 7041 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7042 7043 // The cost of the non-predicated instruction. 7044 Cost += VF.getKnownMinValue() * 7045 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7046 7047 // The cost of insertelement and extractelement instructions needed for 7048 // scalarization. 7049 Cost += getScalarizationOverhead(I, VF); 7050 7051 // Scale the cost by the probability of executing the predicated blocks. 7052 // This assumes the predicated block for each vector lane is equally 7053 // likely. 7054 return Cost / getReciprocalPredBlockProb(); 7055 } 7056 LLVM_FALLTHROUGH; 7057 case Instruction::Add: 7058 case Instruction::FAdd: 7059 case Instruction::Sub: 7060 case Instruction::FSub: 7061 case Instruction::Mul: 7062 case Instruction::FMul: 7063 case Instruction::FDiv: 7064 case Instruction::FRem: 7065 case Instruction::Shl: 7066 case Instruction::LShr: 7067 case Instruction::AShr: 7068 case Instruction::And: 7069 case Instruction::Or: 7070 case Instruction::Xor: { 7071 // Since we will replace the stride by 1 the multiplication should go away. 7072 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7073 return 0; 7074 7075 // Detect reduction patterns 7076 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7077 return *RedCost; 7078 7079 // Certain instructions can be cheaper to vectorize if they have a constant 7080 // second vector operand. One example of this are shifts on x86. 7081 Value *Op2 = I->getOperand(1); 7082 TargetTransformInfo::OperandValueProperties Op2VP; 7083 TargetTransformInfo::OperandValueKind Op2VK = 7084 TTI.getOperandInfo(Op2, Op2VP); 7085 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7086 Op2VK = TargetTransformInfo::OK_UniformValue; 7087 7088 SmallVector<const Value *, 4> Operands(I->operand_values()); 7089 return TTI.getArithmeticInstrCost( 7090 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7091 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7092 } 7093 case Instruction::FNeg: { 7094 return TTI.getArithmeticInstrCost( 7095 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7096 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7097 TargetTransformInfo::OP_None, I->getOperand(0), I); 7098 } 7099 case Instruction::Select: { 7100 SelectInst *SI = cast<SelectInst>(I); 7101 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7102 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7103 7104 const Value *Op0, *Op1; 7105 using namespace llvm::PatternMatch; 7106 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7107 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7108 // select x, y, false --> x & y 7109 // select x, true, y --> x | y 7110 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7111 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7112 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7113 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7114 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7115 Op1->getType()->getScalarSizeInBits() == 1); 7116 7117 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7118 return TTI.getArithmeticInstrCost( 7119 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7120 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7121 } 7122 7123 Type *CondTy = SI->getCondition()->getType(); 7124 if (!ScalarCond) 7125 CondTy = VectorType::get(CondTy, VF); 7126 7127 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7128 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7129 Pred = Cmp->getPredicate(); 7130 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7131 CostKind, I); 7132 } 7133 case Instruction::ICmp: 7134 case Instruction::FCmp: { 7135 Type *ValTy = I->getOperand(0)->getType(); 7136 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7137 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7138 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7139 VectorTy = ToVectorTy(ValTy, VF); 7140 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7141 cast<CmpInst>(I)->getPredicate(), CostKind, 7142 I); 7143 } 7144 case Instruction::Store: 7145 case Instruction::Load: { 7146 ElementCount Width = VF; 7147 if (Width.isVector()) { 7148 InstWidening Decision = getWideningDecision(I, Width); 7149 assert(Decision != CM_Unknown && 7150 "CM decision should be taken at this point"); 7151 if (getWideningCost(I, VF) == InstructionCost::getInvalid()) 7152 return InstructionCost::getInvalid(); 7153 if (Decision == CM_Scalarize) 7154 Width = ElementCount::getFixed(1); 7155 } 7156 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7157 return getMemoryInstructionCost(I, VF); 7158 } 7159 case Instruction::BitCast: 7160 if (I->getType()->isPointerTy()) 7161 return 0; 7162 LLVM_FALLTHROUGH; 7163 case Instruction::ZExt: 7164 case Instruction::SExt: 7165 case Instruction::FPToUI: 7166 case Instruction::FPToSI: 7167 case Instruction::FPExt: 7168 case Instruction::PtrToInt: 7169 case Instruction::IntToPtr: 7170 case Instruction::SIToFP: 7171 case Instruction::UIToFP: 7172 case Instruction::Trunc: 7173 case Instruction::FPTrunc: { 7174 // Computes the CastContextHint from a Load/Store instruction. 7175 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7176 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7177 "Expected a load or a store!"); 7178 7179 if (VF.isScalar() || !TheLoop->contains(I)) 7180 return TTI::CastContextHint::Normal; 7181 7182 switch (getWideningDecision(I, VF)) { 7183 case LoopVectorizationCostModel::CM_GatherScatter: 7184 return TTI::CastContextHint::GatherScatter; 7185 case LoopVectorizationCostModel::CM_Interleave: 7186 return TTI::CastContextHint::Interleave; 7187 case LoopVectorizationCostModel::CM_Scalarize: 7188 case LoopVectorizationCostModel::CM_Widen: 7189 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7190 : TTI::CastContextHint::Normal; 7191 case LoopVectorizationCostModel::CM_Widen_Reverse: 7192 return TTI::CastContextHint::Reversed; 7193 case LoopVectorizationCostModel::CM_Unknown: 7194 llvm_unreachable("Instr did not go through cost modelling?"); 7195 } 7196 7197 llvm_unreachable("Unhandled case!"); 7198 }; 7199 7200 unsigned Opcode = I->getOpcode(); 7201 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7202 // For Trunc, the context is the only user, which must be a StoreInst. 7203 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7204 if (I->hasOneUse()) 7205 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7206 CCH = ComputeCCH(Store); 7207 } 7208 // For Z/Sext, the context is the operand, which must be a LoadInst. 7209 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7210 Opcode == Instruction::FPExt) { 7211 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7212 CCH = ComputeCCH(Load); 7213 } 7214 7215 // We optimize the truncation of induction variables having constant 7216 // integer steps. The cost of these truncations is the same as the scalar 7217 // operation. 7218 if (isOptimizableIVTruncate(I, VF)) { 7219 auto *Trunc = cast<TruncInst>(I); 7220 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7221 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7222 } 7223 7224 // Detect reduction patterns 7225 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7226 return *RedCost; 7227 7228 Type *SrcScalarTy = I->getOperand(0)->getType(); 7229 Type *SrcVecTy = 7230 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7231 if (canTruncateToMinimalBitwidth(I, VF)) { 7232 // This cast is going to be shrunk. This may remove the cast or it might 7233 // turn it into slightly different cast. For example, if MinBW == 16, 7234 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7235 // 7236 // Calculate the modified src and dest types. 7237 Type *MinVecTy = VectorTy; 7238 if (Opcode == Instruction::Trunc) { 7239 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7240 VectorTy = 7241 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7242 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7243 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7244 VectorTy = 7245 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7246 } 7247 } 7248 7249 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7250 } 7251 case Instruction::Call: { 7252 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7253 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7254 return *RedCost; 7255 bool NeedToScalarize; 7256 CallInst *CI = cast<CallInst>(I); 7257 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7258 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7259 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7260 return std::min(CallCost, IntrinsicCost); 7261 } 7262 return CallCost; 7263 } 7264 case Instruction::ExtractValue: 7265 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7266 case Instruction::Alloca: 7267 // We cannot easily widen alloca to a scalable alloca, as 7268 // the result would need to be a vector of pointers. 7269 if (VF.isScalable()) 7270 return InstructionCost::getInvalid(); 7271 LLVM_FALLTHROUGH; 7272 default: 7273 // This opcode is unknown. Assume that it is the same as 'mul'. 7274 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7275 } // end of switch. 7276 } 7277 7278 char LoopVectorize::ID = 0; 7279 7280 static const char lv_name[] = "Loop Vectorization"; 7281 7282 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7283 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7284 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7285 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7286 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7288 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7289 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7290 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7293 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7295 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7297 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7298 7299 namespace llvm { 7300 7301 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7302 7303 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7304 bool VectorizeOnlyWhenForced) { 7305 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7306 } 7307 7308 } // end namespace llvm 7309 7310 void LoopVectorizationCostModel::collectValuesToIgnore() { 7311 // Ignore ephemeral values. 7312 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7313 7314 // Find all stores to invariant variables. Since they are going to sink 7315 // outside the loop we do not need calculate cost for them. 7316 for (BasicBlock *BB : TheLoop->blocks()) 7317 for (Instruction &I : *BB) { 7318 StoreInst *SI; 7319 if ((SI = dyn_cast<StoreInst>(&I)) && 7320 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7321 ValuesToIgnore.insert(&I); 7322 } 7323 7324 // Ignore type-promoting instructions we identified during reduction 7325 // detection. 7326 for (auto &Reduction : Legal->getReductionVars()) { 7327 const RecurrenceDescriptor &RedDes = Reduction.second; 7328 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7329 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7330 } 7331 // Ignore type-casting instructions we identified during induction 7332 // detection. 7333 for (auto &Induction : Legal->getInductionVars()) { 7334 const InductionDescriptor &IndDes = Induction.second; 7335 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7336 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7337 } 7338 } 7339 7340 void LoopVectorizationCostModel::collectInLoopReductions() { 7341 for (auto &Reduction : Legal->getReductionVars()) { 7342 PHINode *Phi = Reduction.first; 7343 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7344 7345 // We don't collect reductions that are type promoted (yet). 7346 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7347 continue; 7348 7349 // If the target would prefer this reduction to happen "in-loop", then we 7350 // want to record it as such. 7351 unsigned Opcode = RdxDesc.getOpcode(); 7352 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7353 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7354 TargetTransformInfo::ReductionFlags())) 7355 continue; 7356 7357 // Check that we can correctly put the reductions into the loop, by 7358 // finding the chain of operations that leads from the phi to the loop 7359 // exit value. 7360 SmallVector<Instruction *, 4> ReductionOperations = 7361 RdxDesc.getReductionOpChain(Phi, TheLoop); 7362 bool InLoop = !ReductionOperations.empty(); 7363 if (InLoop) { 7364 InLoopReductionChains[Phi] = ReductionOperations; 7365 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7366 Instruction *LastChain = Phi; 7367 for (auto *I : ReductionOperations) { 7368 InLoopReductionImmediateChains[I] = LastChain; 7369 LastChain = I; 7370 } 7371 } 7372 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7373 << " reduction for phi: " << *Phi << "\n"); 7374 } 7375 } 7376 7377 // TODO: we could return a pair of values that specify the max VF and 7378 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7379 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7380 // doesn't have a cost model that can choose which plan to execute if 7381 // more than one is generated. 7382 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7383 LoopVectorizationCostModel &CM) { 7384 unsigned WidestType; 7385 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7386 return WidestVectorRegBits / WidestType; 7387 } 7388 7389 VectorizationFactor 7390 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7391 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7392 ElementCount VF = UserVF; 7393 // Outer loop handling: They may require CFG and instruction level 7394 // transformations before even evaluating whether vectorization is profitable. 7395 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7396 // the vectorization pipeline. 7397 if (!OrigLoop->isInnermost()) { 7398 // If the user doesn't provide a vectorization factor, determine a 7399 // reasonable one. 7400 if (UserVF.isZero()) { 7401 VF = ElementCount::getFixed(determineVPlanVF( 7402 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7403 .getFixedSize(), 7404 CM)); 7405 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7406 7407 // Make sure we have a VF > 1 for stress testing. 7408 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7409 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7410 << "overriding computed VF.\n"); 7411 VF = ElementCount::getFixed(4); 7412 } 7413 } 7414 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7415 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7416 "VF needs to be a power of two"); 7417 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7418 << "VF " << VF << " to build VPlans.\n"); 7419 buildVPlans(VF, VF); 7420 7421 // For VPlan build stress testing, we bail out after VPlan construction. 7422 if (VPlanBuildStressTest) 7423 return VectorizationFactor::Disabled(); 7424 7425 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7426 } 7427 7428 LLVM_DEBUG( 7429 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7430 "VPlan-native path.\n"); 7431 return VectorizationFactor::Disabled(); 7432 } 7433 7434 Optional<VectorizationFactor> 7435 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7436 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7437 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7438 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7439 return None; 7440 7441 // Invalidate interleave groups if all blocks of loop will be predicated. 7442 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7443 !useMaskedInterleavedAccesses(*TTI)) { 7444 LLVM_DEBUG( 7445 dbgs() 7446 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7447 "which requires masked-interleaved support.\n"); 7448 if (CM.InterleaveInfo.invalidateGroups()) 7449 // Invalidating interleave groups also requires invalidating all decisions 7450 // based on them, which includes widening decisions and uniform and scalar 7451 // values. 7452 CM.invalidateCostModelingDecisions(); 7453 } 7454 7455 ElementCount MaxUserVF = 7456 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7457 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7458 if (!UserVF.isZero() && UserVFIsLegal) { 7459 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7460 "VF needs to be a power of two"); 7461 // Collect the instructions (and their associated costs) that will be more 7462 // profitable to scalarize. 7463 if (CM.selectUserVectorizationFactor(UserVF)) { 7464 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7465 CM.collectInLoopReductions(); 7466 buildVPlansWithVPRecipes(UserVF, UserVF); 7467 LLVM_DEBUG(printPlans(dbgs())); 7468 return {{UserVF, 0, 0}}; 7469 } else 7470 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7471 "InvalidCost", ORE, OrigLoop); 7472 } 7473 7474 // Populate the set of Vectorization Factor Candidates. 7475 ElementCountSet VFCandidates; 7476 for (auto VF = ElementCount::getFixed(1); 7477 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7478 VFCandidates.insert(VF); 7479 for (auto VF = ElementCount::getScalable(1); 7480 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7481 VFCandidates.insert(VF); 7482 7483 for (const auto &VF : VFCandidates) { 7484 // Collect Uniform and Scalar instructions after vectorization with VF. 7485 CM.collectUniformsAndScalars(VF); 7486 7487 // Collect the instructions (and their associated costs) that will be more 7488 // profitable to scalarize. 7489 if (VF.isVector()) 7490 CM.collectInstsToScalarize(VF); 7491 } 7492 7493 CM.collectInLoopReductions(); 7494 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7495 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7496 7497 LLVM_DEBUG(printPlans(dbgs())); 7498 if (!MaxFactors.hasVector()) 7499 return VectorizationFactor::Disabled(); 7500 7501 // Select the optimal vectorization factor. 7502 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7503 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7504 return VF; 7505 } 7506 7507 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7508 assert(count_if(VPlans, 7509 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7510 1 && 7511 "Best VF has not a single VPlan."); 7512 7513 for (const VPlanPtr &Plan : VPlans) { 7514 if (Plan->hasVF(VF)) 7515 return *Plan.get(); 7516 } 7517 llvm_unreachable("No plan found!"); 7518 } 7519 7520 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7521 SmallVector<Metadata *, 4> MDs; 7522 // Reserve first location for self reference to the LoopID metadata node. 7523 MDs.push_back(nullptr); 7524 bool IsUnrollMetadata = false; 7525 MDNode *LoopID = L->getLoopID(); 7526 if (LoopID) { 7527 // First find existing loop unrolling disable metadata. 7528 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7529 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7530 if (MD) { 7531 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7532 IsUnrollMetadata = 7533 S && S->getString().startswith("llvm.loop.unroll.disable"); 7534 } 7535 MDs.push_back(LoopID->getOperand(i)); 7536 } 7537 } 7538 7539 if (!IsUnrollMetadata) { 7540 // Add runtime unroll disable metadata. 7541 LLVMContext &Context = L->getHeader()->getContext(); 7542 SmallVector<Metadata *, 1> DisableOperands; 7543 DisableOperands.push_back( 7544 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7545 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7546 MDs.push_back(DisableNode); 7547 MDNode *NewLoopID = MDNode::get(Context, MDs); 7548 // Set operand 0 to refer to the loop id itself. 7549 NewLoopID->replaceOperandWith(0, NewLoopID); 7550 L->setLoopID(NewLoopID); 7551 } 7552 } 7553 7554 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7555 VPlan &BestVPlan, 7556 InnerLoopVectorizer &ILV, 7557 DominatorTree *DT, 7558 bool IsEpilogueVectorization) { 7559 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7560 << '\n'); 7561 7562 // Perform the actual loop transformation. 7563 7564 // 1. Set up the skeleton for vectorization, including vector pre-header and 7565 // middle block. The vector loop is created during VPlan execution. 7566 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7567 Value *CanonicalIVStartValue; 7568 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7569 ILV.createVectorizedLoopSkeleton(); 7570 7571 // Only use noalias metadata when using memory checks guaranteeing no overlap 7572 // across all iterations. 7573 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7574 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7575 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7576 7577 // We currently don't use LoopVersioning for the actual loop cloning but we 7578 // still use it to add the noalias metadata. 7579 // TODO: Find a better way to re-use LoopVersioning functionality to add 7580 // metadata. 7581 State.LVer = std::make_unique<LoopVersioning>( 7582 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7583 PSE.getSE()); 7584 State.LVer->prepareNoAliasMetadata(); 7585 } 7586 7587 ILV.collectPoisonGeneratingRecipes(State); 7588 7589 ILV.printDebugTracesAtStart(); 7590 7591 //===------------------------------------------------===// 7592 // 7593 // Notice: any optimization or new instruction that go 7594 // into the code below should also be implemented in 7595 // the cost-model. 7596 // 7597 //===------------------------------------------------===// 7598 7599 // 2. Copy and widen instructions from the old loop into the new loop. 7600 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7601 ILV.getOrCreateVectorTripCount(nullptr), 7602 CanonicalIVStartValue, State, 7603 IsEpilogueVectorization); 7604 7605 BestVPlan.execute(&State); 7606 7607 // Keep all loop hints from the original loop on the vector loop (we'll 7608 // replace the vectorizer-specific hints below). 7609 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7610 7611 Optional<MDNode *> VectorizedLoopID = 7612 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7613 LLVMLoopVectorizeFollowupVectorized}); 7614 7615 VPBasicBlock *HeaderVPBB = 7616 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7617 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7618 if (VectorizedLoopID) 7619 L->setLoopID(VectorizedLoopID.value()); 7620 else { 7621 // Keep all loop hints from the original loop on the vector loop (we'll 7622 // replace the vectorizer-specific hints below). 7623 if (MDNode *LID = OrigLoop->getLoopID()) 7624 L->setLoopID(LID); 7625 7626 LoopVectorizeHints Hints(L, true, *ORE); 7627 Hints.setAlreadyVectorized(); 7628 } 7629 // Disable runtime unrolling when vectorizing the epilogue loop. 7630 if (CanonicalIVStartValue) 7631 AddRuntimeUnrollDisableMetaData(L); 7632 7633 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7634 // predication, updating analyses. 7635 ILV.fixVectorizedLoop(State, BestVPlan); 7636 7637 ILV.printDebugTracesAtEnd(); 7638 } 7639 7640 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7641 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7642 for (const auto &Plan : VPlans) 7643 if (PrintVPlansInDotFormat) 7644 Plan->printDOT(O); 7645 else 7646 Plan->print(O); 7647 } 7648 #endif 7649 7650 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7651 7652 //===--------------------------------------------------------------------===// 7653 // EpilogueVectorizerMainLoop 7654 //===--------------------------------------------------------------------===// 7655 7656 /// This function is partially responsible for generating the control flow 7657 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7658 std::pair<BasicBlock *, Value *> 7659 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7660 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7661 7662 // Workaround! Compute the trip count of the original loop and cache it 7663 // before we start modifying the CFG. This code has a systemic problem 7664 // wherein it tries to run analysis over partially constructed IR; this is 7665 // wrong, and not simply for SCEV. The trip count of the original loop 7666 // simply happens to be prone to hitting this in practice. In theory, we 7667 // can hit the same issue for any SCEV, or ValueTracking query done during 7668 // mutation. See PR49900. 7669 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7670 createVectorLoopSkeleton(""); 7671 7672 // Generate the code to check the minimum iteration count of the vector 7673 // epilogue (see below). 7674 EPI.EpilogueIterationCountCheck = 7675 emitIterationCountCheck(LoopScalarPreHeader, true); 7676 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7677 7678 // Generate the code to check any assumptions that we've made for SCEV 7679 // expressions. 7680 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7681 7682 // Generate the code that checks at runtime if arrays overlap. We put the 7683 // checks into a separate block to make the more common case of few elements 7684 // faster. 7685 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7686 7687 // Generate the iteration count check for the main loop, *after* the check 7688 // for the epilogue loop, so that the path-length is shorter for the case 7689 // that goes directly through the vector epilogue. The longer-path length for 7690 // the main loop is compensated for, by the gain from vectorizing the larger 7691 // trip count. Note: the branch will get updated later on when we vectorize 7692 // the epilogue. 7693 EPI.MainLoopIterationCountCheck = 7694 emitIterationCountCheck(LoopScalarPreHeader, false); 7695 7696 // Generate the induction variable. 7697 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7698 7699 // Skip induction resume value creation here because they will be created in 7700 // the second pass. If we created them here, they wouldn't be used anyway, 7701 // because the vplan in the second pass still contains the inductions from the 7702 // original loop. 7703 7704 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7705 } 7706 7707 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7708 LLVM_DEBUG({ 7709 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7710 << "Main Loop VF:" << EPI.MainLoopVF 7711 << ", Main Loop UF:" << EPI.MainLoopUF 7712 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7713 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7714 }); 7715 } 7716 7717 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7718 DEBUG_WITH_TYPE(VerboseDebug, { 7719 dbgs() << "intermediate fn:\n" 7720 << *OrigLoop->getHeader()->getParent() << "\n"; 7721 }); 7722 } 7723 7724 BasicBlock * 7725 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7726 bool ForEpilogue) { 7727 assert(Bypass && "Expected valid bypass basic block."); 7728 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7729 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7730 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7731 // Reuse existing vector loop preheader for TC checks. 7732 // Note that new preheader block is generated for vector loop. 7733 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7734 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7735 7736 // Generate code to check if the loop's trip count is less than VF * UF of the 7737 // main vector loop. 7738 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7739 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7740 7741 Value *CheckMinIters = Builder.CreateICmp( 7742 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7743 "min.iters.check"); 7744 7745 if (!ForEpilogue) 7746 TCCheckBlock->setName("vector.main.loop.iter.check"); 7747 7748 // Create new preheader for vector loop. 7749 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7750 DT, LI, nullptr, "vector.ph"); 7751 7752 if (ForEpilogue) { 7753 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7754 DT->getNode(Bypass)->getIDom()) && 7755 "TC check is expected to dominate Bypass"); 7756 7757 // Update dominator for Bypass & LoopExit. 7758 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7759 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7760 // For loops with multiple exits, there's no edge from the middle block 7761 // to exit blocks (as the epilogue must run) and thus no need to update 7762 // the immediate dominator of the exit blocks. 7763 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7764 7765 LoopBypassBlocks.push_back(TCCheckBlock); 7766 7767 // Save the trip count so we don't have to regenerate it in the 7768 // vec.epilog.iter.check. This is safe to do because the trip count 7769 // generated here dominates the vector epilog iter check. 7770 EPI.TripCount = Count; 7771 } 7772 7773 ReplaceInstWithInst( 7774 TCCheckBlock->getTerminator(), 7775 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7776 7777 return TCCheckBlock; 7778 } 7779 7780 //===--------------------------------------------------------------------===// 7781 // EpilogueVectorizerEpilogueLoop 7782 //===--------------------------------------------------------------------===// 7783 7784 /// This function is partially responsible for generating the control flow 7785 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7786 std::pair<BasicBlock *, Value *> 7787 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7788 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7789 createVectorLoopSkeleton("vec.epilog."); 7790 7791 // Now, compare the remaining count and if there aren't enough iterations to 7792 // execute the vectorized epilogue skip to the scalar part. 7793 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7794 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7795 LoopVectorPreHeader = 7796 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7797 LI, nullptr, "vec.epilog.ph"); 7798 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7799 VecEpilogueIterationCountCheck); 7800 7801 // Adjust the control flow taking the state info from the main loop 7802 // vectorization into account. 7803 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7804 "expected this to be saved from the previous pass."); 7805 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7806 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7807 7808 DT->changeImmediateDominator(LoopVectorPreHeader, 7809 EPI.MainLoopIterationCountCheck); 7810 7811 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7812 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7813 7814 if (EPI.SCEVSafetyCheck) 7815 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7816 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7817 if (EPI.MemSafetyCheck) 7818 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7819 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7820 7821 DT->changeImmediateDominator( 7822 VecEpilogueIterationCountCheck, 7823 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7824 7825 DT->changeImmediateDominator(LoopScalarPreHeader, 7826 EPI.EpilogueIterationCountCheck); 7827 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7828 // If there is an epilogue which must run, there's no edge from the 7829 // middle block to exit blocks and thus no need to update the immediate 7830 // dominator of the exit blocks. 7831 DT->changeImmediateDominator(LoopExitBlock, 7832 EPI.EpilogueIterationCountCheck); 7833 7834 // Keep track of bypass blocks, as they feed start values to the induction 7835 // phis in the scalar loop preheader. 7836 if (EPI.SCEVSafetyCheck) 7837 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7838 if (EPI.MemSafetyCheck) 7839 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7840 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7841 7842 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7843 // merge control-flow from the latch block and the middle block. Update the 7844 // incoming values here and move the Phi into the preheader. 7845 SmallVector<PHINode *, 4> PhisInBlock; 7846 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7847 PhisInBlock.push_back(&Phi); 7848 7849 for (PHINode *Phi : PhisInBlock) { 7850 Phi->replaceIncomingBlockWith( 7851 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7852 VecEpilogueIterationCountCheck); 7853 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7854 if (EPI.SCEVSafetyCheck) 7855 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7856 if (EPI.MemSafetyCheck) 7857 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7858 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7859 } 7860 7861 // Generate a resume induction for the vector epilogue and put it in the 7862 // vector epilogue preheader 7863 Type *IdxTy = Legal->getWidestInductionType(); 7864 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7865 LoopVectorPreHeader->getFirstNonPHI()); 7866 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7867 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7868 EPI.MainLoopIterationCountCheck); 7869 7870 // Generate induction resume values. These variables save the new starting 7871 // indexes for the scalar loop. They are used to test if there are any tail 7872 // iterations left once the vector loop has completed. 7873 // Note that when the vectorized epilogue is skipped due to iteration count 7874 // check, then the resume value for the induction variable comes from 7875 // the trip count of the main vector loop, hence passing the AdditionalBypass 7876 // argument. 7877 createInductionResumeValues({VecEpilogueIterationCountCheck, 7878 EPI.VectorTripCount} /* AdditionalBypass */); 7879 7880 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7881 } 7882 7883 BasicBlock * 7884 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7885 BasicBlock *Bypass, BasicBlock *Insert) { 7886 7887 assert(EPI.TripCount && 7888 "Expected trip count to have been safed in the first pass."); 7889 assert( 7890 (!isa<Instruction>(EPI.TripCount) || 7891 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7892 "saved trip count does not dominate insertion point."); 7893 Value *TC = EPI.TripCount; 7894 IRBuilder<> Builder(Insert->getTerminator()); 7895 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7896 7897 // Generate code to check if the loop's trip count is less than VF * UF of the 7898 // vector epilogue loop. 7899 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7900 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7901 7902 Value *CheckMinIters = 7903 Builder.CreateICmp(P, Count, 7904 createStepForVF(Builder, Count->getType(), 7905 EPI.EpilogueVF, EPI.EpilogueUF), 7906 "min.epilog.iters.check"); 7907 7908 ReplaceInstWithInst( 7909 Insert->getTerminator(), 7910 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7911 7912 LoopBypassBlocks.push_back(Insert); 7913 return Insert; 7914 } 7915 7916 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7917 LLVM_DEBUG({ 7918 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7919 << "Epilogue Loop VF:" << EPI.EpilogueVF 7920 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7921 }); 7922 } 7923 7924 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7925 DEBUG_WITH_TYPE(VerboseDebug, { 7926 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7927 }); 7928 } 7929 7930 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7931 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7932 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7933 bool PredicateAtRangeStart = Predicate(Range.Start); 7934 7935 for (ElementCount TmpVF = Range.Start * 2; 7936 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7937 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7938 Range.End = TmpVF; 7939 break; 7940 } 7941 7942 return PredicateAtRangeStart; 7943 } 7944 7945 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7946 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7947 /// of VF's starting at a given VF and extending it as much as possible. Each 7948 /// vectorization decision can potentially shorten this sub-range during 7949 /// buildVPlan(). 7950 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7951 ElementCount MaxVF) { 7952 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7953 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7954 VFRange SubRange = {VF, MaxVFPlusOne}; 7955 VPlans.push_back(buildVPlan(SubRange)); 7956 VF = SubRange.End; 7957 } 7958 } 7959 7960 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7961 VPlanPtr &Plan) { 7962 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7963 7964 // Look for cached value. 7965 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7966 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7967 if (ECEntryIt != EdgeMaskCache.end()) 7968 return ECEntryIt->second; 7969 7970 VPValue *SrcMask = createBlockInMask(Src, Plan); 7971 7972 // The terminator has to be a branch inst! 7973 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7974 assert(BI && "Unexpected terminator found"); 7975 7976 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7977 return EdgeMaskCache[Edge] = SrcMask; 7978 7979 // If source is an exiting block, we know the exit edge is dynamically dead 7980 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7981 // adding uses of an otherwise potentially dead instruction. 7982 if (OrigLoop->isLoopExiting(Src)) 7983 return EdgeMaskCache[Edge] = SrcMask; 7984 7985 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7986 assert(EdgeMask && "No Edge Mask found for condition"); 7987 7988 if (BI->getSuccessor(0) != Dst) 7989 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 7990 7991 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 7992 // The condition is 'SrcMask && EdgeMask', which is equivalent to 7993 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 7994 // The select version does not introduce new UB if SrcMask is false and 7995 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 7996 VPValue *False = Plan->getOrAddVPValue( 7997 ConstantInt::getFalse(BI->getCondition()->getType())); 7998 EdgeMask = 7999 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8000 } 8001 8002 return EdgeMaskCache[Edge] = EdgeMask; 8003 } 8004 8005 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8006 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8007 8008 // Look for cached value. 8009 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8010 if (BCEntryIt != BlockMaskCache.end()) 8011 return BCEntryIt->second; 8012 8013 // All-one mask is modelled as no-mask following the convention for masked 8014 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8015 VPValue *BlockMask = nullptr; 8016 8017 if (OrigLoop->getHeader() == BB) { 8018 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8019 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8020 8021 assert(CM.foldTailByMasking() && "must fold the tail"); 8022 8023 // If we're using the active lane mask for control flow, then we get the 8024 // mask from the active lane mask PHI that is cached in the VPlan. 8025 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8026 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8027 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8028 8029 // Introduce the early-exit compare IV <= BTC to form header block mask. 8030 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8031 // constructing the desired canonical IV in the header block as its first 8032 // non-phi instructions. 8033 8034 VPBasicBlock *HeaderVPBB = 8035 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8036 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8037 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8038 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8039 8040 VPBuilder::InsertPointGuard Guard(Builder); 8041 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8042 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8043 VPValue *TC = Plan->getOrCreateTripCount(); 8044 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8045 nullptr, "active.lane.mask"); 8046 } else { 8047 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8048 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8049 } 8050 return BlockMaskCache[BB] = BlockMask; 8051 } 8052 8053 // This is the block mask. We OR all incoming edges. 8054 for (auto *Predecessor : predecessors(BB)) { 8055 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8056 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8057 return BlockMaskCache[BB] = EdgeMask; 8058 8059 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8060 BlockMask = EdgeMask; 8061 continue; 8062 } 8063 8064 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8065 } 8066 8067 return BlockMaskCache[BB] = BlockMask; 8068 } 8069 8070 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8071 ArrayRef<VPValue *> Operands, 8072 VFRange &Range, 8073 VPlanPtr &Plan) { 8074 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8075 "Must be called with either a load or store"); 8076 8077 auto willWiden = [&](ElementCount VF) -> bool { 8078 LoopVectorizationCostModel::InstWidening Decision = 8079 CM.getWideningDecision(I, VF); 8080 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8081 "CM decision should be taken at this point."); 8082 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8083 return true; 8084 if (CM.isScalarAfterVectorization(I, VF) || 8085 CM.isProfitableToScalarize(I, VF)) 8086 return false; 8087 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8088 }; 8089 8090 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8091 return nullptr; 8092 8093 VPValue *Mask = nullptr; 8094 if (Legal->isMaskRequired(I)) 8095 Mask = createBlockInMask(I->getParent(), Plan); 8096 8097 // Determine if the pointer operand of the access is either consecutive or 8098 // reverse consecutive. 8099 LoopVectorizationCostModel::InstWidening Decision = 8100 CM.getWideningDecision(I, Range.Start); 8101 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8102 bool Consecutive = 8103 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8104 8105 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8106 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8107 Consecutive, Reverse); 8108 8109 StoreInst *Store = cast<StoreInst>(I); 8110 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8111 Mask, Consecutive, Reverse); 8112 } 8113 8114 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8115 /// insert a recipe to expand the step for the induction recipe. 8116 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8117 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8118 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8119 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8120 // Returns true if an instruction \p I should be scalarized instead of 8121 // vectorized for the chosen vectorization factor. 8122 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8123 return CM.isScalarAfterVectorization(I, VF) || 8124 CM.isProfitableToScalarize(I, VF); 8125 }; 8126 8127 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8128 [&](ElementCount VF) { 8129 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8130 }, 8131 Range); 8132 assert(IndDesc.getStartValue() == 8133 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8134 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8135 "step must be loop invariant"); 8136 8137 VPValue *Step = 8138 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8139 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8140 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8141 !NeedsScalarIVOnly); 8142 } 8143 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8144 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8145 !NeedsScalarIVOnly); 8146 } 8147 8148 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8149 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8150 8151 // Check if this is an integer or fp induction. If so, build the recipe that 8152 // produces its scalar and vector values. 8153 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8154 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8155 *PSE.getSE(), *OrigLoop, Range); 8156 8157 // Check if this is pointer induction. If so, build the recipe for it. 8158 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { 8159 return new VPWidenPointerInductionRecipe( 8160 Phi, Operands[0], *II, *PSE.getSE(), 8161 LoopVectorizationPlanner::getDecisionAndClampRange( 8162 [&](ElementCount VF) { 8163 return CM.isScalarAfterVectorization(Phi, VF); 8164 }, 8165 Range)); 8166 } 8167 return nullptr; 8168 } 8169 8170 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8171 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8172 // Optimize the special case where the source is a constant integer 8173 // induction variable. Notice that we can only optimize the 'trunc' case 8174 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8175 // (c) other casts depend on pointer size. 8176 8177 // Determine whether \p K is a truncation based on an induction variable that 8178 // can be optimized. 8179 auto isOptimizableIVTruncate = 8180 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8181 return [=](ElementCount VF) -> bool { 8182 return CM.isOptimizableIVTruncate(K, VF); 8183 }; 8184 }; 8185 8186 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8187 isOptimizableIVTruncate(I), Range)) { 8188 8189 auto *Phi = cast<PHINode>(I->getOperand(0)); 8190 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8191 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8192 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8193 *PSE.getSE(), *OrigLoop, Range); 8194 } 8195 return nullptr; 8196 } 8197 8198 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8199 ArrayRef<VPValue *> Operands, 8200 VPlanPtr &Plan) { 8201 // If all incoming values are equal, the incoming VPValue can be used directly 8202 // instead of creating a new VPBlendRecipe. 8203 VPValue *FirstIncoming = Operands[0]; 8204 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8205 return FirstIncoming == Inc; 8206 })) { 8207 return Operands[0]; 8208 } 8209 8210 unsigned NumIncoming = Phi->getNumIncomingValues(); 8211 // For in-loop reductions, we do not need to create an additional select. 8212 VPValue *InLoopVal = nullptr; 8213 for (unsigned In = 0; In < NumIncoming; In++) { 8214 PHINode *PhiOp = 8215 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8216 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8217 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8218 InLoopVal = Operands[In]; 8219 } 8220 } 8221 8222 assert((!InLoopVal || NumIncoming == 2) && 8223 "Found an in-loop reduction for PHI with unexpected number of " 8224 "incoming values"); 8225 if (InLoopVal) 8226 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8227 8228 // We know that all PHIs in non-header blocks are converted into selects, so 8229 // we don't have to worry about the insertion order and we can just use the 8230 // builder. At this point we generate the predication tree. There may be 8231 // duplications since this is a simple recursive scan, but future 8232 // optimizations will clean it up. 8233 SmallVector<VPValue *, 2> OperandsWithMask; 8234 8235 for (unsigned In = 0; In < NumIncoming; In++) { 8236 VPValue *EdgeMask = 8237 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8238 assert((EdgeMask || NumIncoming == 1) && 8239 "Multiple predecessors with one having a full mask"); 8240 OperandsWithMask.push_back(Operands[In]); 8241 if (EdgeMask) 8242 OperandsWithMask.push_back(EdgeMask); 8243 } 8244 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8245 } 8246 8247 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8248 ArrayRef<VPValue *> Operands, 8249 VFRange &Range) const { 8250 8251 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8252 [this, CI](ElementCount VF) { 8253 return CM.isScalarWithPredication(CI, VF); 8254 }, 8255 Range); 8256 8257 if (IsPredicated) 8258 return nullptr; 8259 8260 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8261 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8262 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8263 ID == Intrinsic::pseudoprobe || 8264 ID == Intrinsic::experimental_noalias_scope_decl)) 8265 return nullptr; 8266 8267 auto willWiden = [&](ElementCount VF) -> bool { 8268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8269 // The following case may be scalarized depending on the VF. 8270 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8271 // version of the instruction. 8272 // Is it beneficial to perform intrinsic call compared to lib call? 8273 bool NeedToScalarize = false; 8274 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8275 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8276 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8277 return UseVectorIntrinsic || !NeedToScalarize; 8278 }; 8279 8280 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8281 return nullptr; 8282 8283 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8284 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8285 } 8286 8287 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8288 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8289 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8290 // Instruction should be widened, unless it is scalar after vectorization, 8291 // scalarization is profitable or it is predicated. 8292 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8293 return CM.isScalarAfterVectorization(I, VF) || 8294 CM.isProfitableToScalarize(I, VF) || 8295 CM.isScalarWithPredication(I, VF); 8296 }; 8297 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8298 Range); 8299 } 8300 8301 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8302 ArrayRef<VPValue *> Operands) const { 8303 auto IsVectorizableOpcode = [](unsigned Opcode) { 8304 switch (Opcode) { 8305 case Instruction::Add: 8306 case Instruction::And: 8307 case Instruction::AShr: 8308 case Instruction::BitCast: 8309 case Instruction::FAdd: 8310 case Instruction::FCmp: 8311 case Instruction::FDiv: 8312 case Instruction::FMul: 8313 case Instruction::FNeg: 8314 case Instruction::FPExt: 8315 case Instruction::FPToSI: 8316 case Instruction::FPToUI: 8317 case Instruction::FPTrunc: 8318 case Instruction::FRem: 8319 case Instruction::FSub: 8320 case Instruction::ICmp: 8321 case Instruction::IntToPtr: 8322 case Instruction::LShr: 8323 case Instruction::Mul: 8324 case Instruction::Or: 8325 case Instruction::PtrToInt: 8326 case Instruction::SDiv: 8327 case Instruction::Select: 8328 case Instruction::SExt: 8329 case Instruction::Shl: 8330 case Instruction::SIToFP: 8331 case Instruction::SRem: 8332 case Instruction::Sub: 8333 case Instruction::Trunc: 8334 case Instruction::UDiv: 8335 case Instruction::UIToFP: 8336 case Instruction::URem: 8337 case Instruction::Xor: 8338 case Instruction::ZExt: 8339 case Instruction::Freeze: 8340 return true; 8341 } 8342 return false; 8343 }; 8344 8345 if (!IsVectorizableOpcode(I->getOpcode())) 8346 return nullptr; 8347 8348 // Success: widen this instruction. 8349 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8350 } 8351 8352 void VPRecipeBuilder::fixHeaderPhis() { 8353 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8354 for (VPHeaderPHIRecipe *R : PhisToFix) { 8355 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8356 VPRecipeBase *IncR = 8357 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8358 R->addOperand(IncR->getVPSingleValue()); 8359 } 8360 } 8361 8362 VPBasicBlock *VPRecipeBuilder::handleReplication( 8363 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8364 VPlanPtr &Plan) { 8365 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8366 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8367 Range); 8368 8369 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8370 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, 8371 Range); 8372 8373 // Even if the instruction is not marked as uniform, there are certain 8374 // intrinsic calls that can be effectively treated as such, so we check for 8375 // them here. Conservatively, we only do this for scalable vectors, since 8376 // for fixed-width VFs we can always fall back on full scalarization. 8377 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8378 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8379 case Intrinsic::assume: 8380 case Intrinsic::lifetime_start: 8381 case Intrinsic::lifetime_end: 8382 // For scalable vectors if one of the operands is variant then we still 8383 // want to mark as uniform, which will generate one instruction for just 8384 // the first lane of the vector. We can't scalarize the call in the same 8385 // way as for fixed-width vectors because we don't know how many lanes 8386 // there are. 8387 // 8388 // The reasons for doing it this way for scalable vectors are: 8389 // 1. For the assume intrinsic generating the instruction for the first 8390 // lane is still be better than not generating any at all. For 8391 // example, the input may be a splat across all lanes. 8392 // 2. For the lifetime start/end intrinsics the pointer operand only 8393 // does anything useful when the input comes from a stack object, 8394 // which suggests it should always be uniform. For non-stack objects 8395 // the effect is to poison the object, which still allows us to 8396 // remove the call. 8397 IsUniform = true; 8398 break; 8399 default: 8400 break; 8401 } 8402 } 8403 8404 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8405 IsUniform, IsPredicated); 8406 8407 // Find if I uses a predicated instruction. If so, it will use its scalar 8408 // value. Avoid hoisting the insert-element which packs the scalar value into 8409 // a vector value, as that happens iff all users use the vector value. 8410 for (VPValue *Op : Recipe->operands()) { 8411 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8412 if (!PredR) 8413 continue; 8414 auto *RepR = 8415 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8416 assert(RepR->isPredicated() && 8417 "expected Replicate recipe to be predicated"); 8418 RepR->setAlsoPack(false); 8419 } 8420 8421 // Finalize the recipe for Instr, first if it is not predicated. 8422 if (!IsPredicated) { 8423 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8424 setRecipe(I, Recipe); 8425 Plan->addVPValue(I, Recipe); 8426 VPBB->appendRecipe(Recipe); 8427 return VPBB; 8428 } 8429 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8430 8431 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8432 assert(SingleSucc && "VPBB must have a single successor when handling " 8433 "predicated replication."); 8434 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8435 // Record predicated instructions for above packing optimizations. 8436 VPBlockBase *Region = createReplicateRegion(Recipe, Plan); 8437 VPBlockUtils::insertBlockAfter(Region, VPBB); 8438 auto *RegSucc = new VPBasicBlock(); 8439 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8440 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8441 return RegSucc; 8442 } 8443 8444 VPRegionBlock * 8445 VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, 8446 VPlanPtr &Plan) { 8447 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 8448 // Instructions marked for predication are replicated and placed under an 8449 // if-then construct to prevent side-effects. 8450 // Generate recipes to compute the block mask for this region. 8451 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8452 8453 // Build the triangular if-then region. 8454 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8455 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8456 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8457 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8458 auto *PHIRecipe = Instr->getType()->isVoidTy() 8459 ? nullptr 8460 : new VPPredInstPHIRecipe(PredRecipe); 8461 if (PHIRecipe) { 8462 setRecipe(Instr, PHIRecipe); 8463 Plan->addVPValue(Instr, PHIRecipe); 8464 } else { 8465 setRecipe(Instr, PredRecipe); 8466 Plan->addVPValue(Instr, PredRecipe); 8467 } 8468 8469 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8470 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8471 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8472 8473 // Note: first set Entry as region entry and then connect successors starting 8474 // from it in order, to propagate the "parent" of each VPBasicBlock. 8475 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8476 VPBlockUtils::connectBlocks(Pred, Exiting); 8477 8478 return Region; 8479 } 8480 8481 VPRecipeOrVPValueTy 8482 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8483 ArrayRef<VPValue *> Operands, 8484 VFRange &Range, VPlanPtr &Plan) { 8485 // First, check for specific widening recipes that deal with inductions, Phi 8486 // nodes, calls and memory operations. 8487 VPRecipeBase *Recipe; 8488 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8489 if (Phi->getParent() != OrigLoop->getHeader()) 8490 return tryToBlend(Phi, Operands, Plan); 8491 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8492 return toVPRecipeResult(Recipe); 8493 8494 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8495 assert((Legal->isReductionVariable(Phi) || 8496 Legal->isFirstOrderRecurrence(Phi)) && 8497 "can only widen reductions and first-order recurrences here"); 8498 VPValue *StartV = Operands[0]; 8499 if (Legal->isReductionVariable(Phi)) { 8500 const RecurrenceDescriptor &RdxDesc = 8501 Legal->getReductionVars().find(Phi)->second; 8502 assert(RdxDesc.getRecurrenceStartValue() == 8503 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8504 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8505 CM.isInLoopReduction(Phi), 8506 CM.useOrderedReductions(RdxDesc)); 8507 } else { 8508 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8509 } 8510 8511 // Record the incoming value from the backedge, so we can add the incoming 8512 // value from the backedge after all recipes have been created. 8513 recordRecipeOf(cast<Instruction>( 8514 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8515 PhisToFix.push_back(PhiRecipe); 8516 return toVPRecipeResult(PhiRecipe); 8517 } 8518 8519 if (isa<TruncInst>(Instr) && 8520 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8521 Range, *Plan))) 8522 return toVPRecipeResult(Recipe); 8523 8524 // All widen recipes below deal only with VF > 1. 8525 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8526 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8527 return nullptr; 8528 8529 if (auto *CI = dyn_cast<CallInst>(Instr)) 8530 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8531 8532 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8533 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8534 8535 if (!shouldWiden(Instr, Range)) 8536 return nullptr; 8537 8538 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8539 return toVPRecipeResult(new VPWidenGEPRecipe( 8540 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8541 8542 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8543 bool InvariantCond = 8544 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8545 return toVPRecipeResult(new VPWidenSelectRecipe( 8546 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8547 } 8548 8549 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8550 } 8551 8552 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8553 ElementCount MaxVF) { 8554 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8555 8556 // Add assume instructions we need to drop to DeadInstructions, to prevent 8557 // them from being added to the VPlan. 8558 // TODO: We only need to drop assumes in blocks that get flattend. If the 8559 // control flow is preserved, we should keep them. 8560 SmallPtrSet<Instruction *, 4> DeadInstructions; 8561 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8562 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8563 8564 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8565 // Dead instructions do not need sinking. Remove them from SinkAfter. 8566 for (Instruction *I : DeadInstructions) 8567 SinkAfter.erase(I); 8568 8569 // Cannot sink instructions after dead instructions (there won't be any 8570 // recipes for them). Instead, find the first non-dead previous instruction. 8571 for (auto &P : Legal->getSinkAfter()) { 8572 Instruction *SinkTarget = P.second; 8573 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8574 (void)FirstInst; 8575 while (DeadInstructions.contains(SinkTarget)) { 8576 assert( 8577 SinkTarget != FirstInst && 8578 "Must find a live instruction (at least the one feeding the " 8579 "first-order recurrence PHI) before reaching beginning of the block"); 8580 SinkTarget = SinkTarget->getPrevNode(); 8581 assert(SinkTarget != P.first && 8582 "sink source equals target, no sinking required"); 8583 } 8584 P.second = SinkTarget; 8585 } 8586 8587 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8588 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8589 VFRange SubRange = {VF, MaxVFPlusOne}; 8590 VPlans.push_back( 8591 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8592 VF = SubRange.End; 8593 } 8594 } 8595 8596 // Add the necessary canonical IV and branch recipes required to control the 8597 // loop. 8598 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8599 bool HasNUW, 8600 bool UseLaneMaskForLoopControlFlow) { 8601 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8602 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8603 8604 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8605 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8606 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8607 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8608 Header->insert(CanonicalIVPHI, Header->begin()); 8609 8610 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8611 // IV by VF * UF. 8612 auto *CanonicalIVIncrement = 8613 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8614 : VPInstruction::CanonicalIVIncrement, 8615 {CanonicalIVPHI}, DL, "index.next"); 8616 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8617 8618 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8619 EB->appendRecipe(CanonicalIVIncrement); 8620 8621 if (UseLaneMaskForLoopControlFlow) { 8622 // Create the active lane mask instruction in the vplan preheader. 8623 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8624 8625 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8626 // we have to take unrolling into account. Each part needs to start at 8627 // Part * VF 8628 auto *CanonicalIVIncrementParts = 8629 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8630 : VPInstruction::CanonicalIVIncrementForPart, 8631 {StartV}, DL, "index.part.next"); 8632 Preheader->appendRecipe(CanonicalIVIncrementParts); 8633 8634 // Create the ActiveLaneMask instruction using the correct start values. 8635 VPValue *TC = Plan.getOrCreateTripCount(); 8636 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8637 {CanonicalIVIncrementParts, TC}, DL, 8638 "active.lane.mask.entry"); 8639 Preheader->appendRecipe(EntryALM); 8640 8641 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8642 // preheader ActiveLaneMask instruction. 8643 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8644 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8645 8646 // Create the active lane mask for the next iteration of the loop. 8647 CanonicalIVIncrementParts = 8648 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8649 : VPInstruction::CanonicalIVIncrementForPart, 8650 {CanonicalIVIncrement}, DL); 8651 EB->appendRecipe(CanonicalIVIncrementParts); 8652 8653 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8654 {CanonicalIVIncrementParts, TC}, DL, 8655 "active.lane.mask.next"); 8656 EB->appendRecipe(ALM); 8657 LaneMaskPhi->addOperand(ALM); 8658 8659 // We have to invert the mask here because a true condition means jumping 8660 // to the exit block. 8661 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8662 EB->appendRecipe(NotMask); 8663 8664 VPInstruction *BranchBack = 8665 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8666 EB->appendRecipe(BranchBack); 8667 } else { 8668 // Add the BranchOnCount VPInstruction to the latch. 8669 VPInstruction *BranchBack = new VPInstruction( 8670 VPInstruction::BranchOnCount, 8671 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8672 EB->appendRecipe(BranchBack); 8673 } 8674 } 8675 8676 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8677 // original exit block. 8678 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8679 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8680 VPlan &Plan) { 8681 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8682 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8683 // Only handle single-exit loops with unique exit blocks for now. 8684 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8685 return; 8686 8687 // Introduce VPUsers modeling the exit values. 8688 for (PHINode &ExitPhi : ExitBB->phis()) { 8689 Value *IncomingValue = 8690 ExitPhi.getIncomingValueForBlock(ExitingBB); 8691 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8692 Plan.addLiveOut(&ExitPhi, V); 8693 } 8694 } 8695 8696 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8697 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8698 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8699 8700 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8701 8702 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8703 8704 // --------------------------------------------------------------------------- 8705 // Pre-construction: record ingredients whose recipes we'll need to further 8706 // process after constructing the initial VPlan. 8707 // --------------------------------------------------------------------------- 8708 8709 // Mark instructions we'll need to sink later and their targets as 8710 // ingredients whose recipe we'll need to record. 8711 for (auto &Entry : SinkAfter) { 8712 RecipeBuilder.recordRecipeOf(Entry.first); 8713 RecipeBuilder.recordRecipeOf(Entry.second); 8714 } 8715 for (auto &Reduction : CM.getInLoopReductionChains()) { 8716 PHINode *Phi = Reduction.first; 8717 RecurKind Kind = 8718 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8719 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8720 8721 RecipeBuilder.recordRecipeOf(Phi); 8722 for (auto &R : ReductionOperations) { 8723 RecipeBuilder.recordRecipeOf(R); 8724 // For min/max reductions, where we have a pair of icmp/select, we also 8725 // need to record the ICmp recipe, so it can be removed later. 8726 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8727 "Only min/max recurrences allowed for inloop reductions"); 8728 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8729 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8730 } 8731 } 8732 8733 // For each interleave group which is relevant for this (possibly trimmed) 8734 // Range, add it to the set of groups to be later applied to the VPlan and add 8735 // placeholders for its members' Recipes which we'll be replacing with a 8736 // single VPInterleaveRecipe. 8737 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8738 auto applyIG = [IG, this](ElementCount VF) -> bool { 8739 return (VF.isVector() && // Query is illegal for VF == 1 8740 CM.getWideningDecision(IG->getInsertPos(), VF) == 8741 LoopVectorizationCostModel::CM_Interleave); 8742 }; 8743 if (!getDecisionAndClampRange(applyIG, Range)) 8744 continue; 8745 InterleaveGroups.insert(IG); 8746 for (unsigned i = 0; i < IG->getFactor(); i++) 8747 if (Instruction *Member = IG->getMember(i)) 8748 RecipeBuilder.recordRecipeOf(Member); 8749 }; 8750 8751 // --------------------------------------------------------------------------- 8752 // Build initial VPlan: Scan the body of the loop in a topological order to 8753 // visit each basic block after having visited its predecessor basic blocks. 8754 // --------------------------------------------------------------------------- 8755 8756 // Create initial VPlan skeleton, starting with a block for the pre-header, 8757 // followed by a region for the vector loop, followed by the middle block. The 8758 // skeleton vector loop region contains a header and latch block. 8759 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8760 auto Plan = std::make_unique<VPlan>(Preheader); 8761 8762 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8763 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8764 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8765 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8766 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8767 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8768 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8769 8770 Instruction *DLInst = 8771 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8772 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8773 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8774 !CM.foldTailByMasking(), 8775 CM.useActiveLaneMaskForControlFlow()); 8776 8777 // Scan the body of the loop in a topological order to visit each basic block 8778 // after having visited its predecessor basic blocks. 8779 LoopBlocksDFS DFS(OrigLoop); 8780 DFS.perform(LI); 8781 8782 VPBasicBlock *VPBB = HeaderVPBB; 8783 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8784 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8785 // Relevant instructions from basic block BB will be grouped into VPRecipe 8786 // ingredients and fill a new VPBasicBlock. 8787 unsigned VPBBsForBB = 0; 8788 if (VPBB != HeaderVPBB) 8789 VPBB->setName(BB->getName()); 8790 Builder.setInsertPoint(VPBB); 8791 8792 // Introduce each ingredient into VPlan. 8793 // TODO: Model and preserve debug intrinsics in VPlan. 8794 for (Instruction &I : BB->instructionsWithoutDebug()) { 8795 Instruction *Instr = &I; 8796 8797 // First filter out irrelevant instructions, to ensure no recipes are 8798 // built for them. 8799 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8800 continue; 8801 8802 SmallVector<VPValue *, 4> Operands; 8803 auto *Phi = dyn_cast<PHINode>(Instr); 8804 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8805 Operands.push_back(Plan->getOrAddVPValue( 8806 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8807 } else { 8808 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8809 Operands = {OpRange.begin(), OpRange.end()}; 8810 } 8811 8812 // Invariant stores inside loop will be deleted and a single store 8813 // with the final reduction value will be added to the exit block 8814 StoreInst *SI; 8815 if ((SI = dyn_cast<StoreInst>(&I)) && 8816 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8817 continue; 8818 8819 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8820 Instr, Operands, Range, Plan)) { 8821 // If Instr can be simplified to an existing VPValue, use it. 8822 if (RecipeOrValue.is<VPValue *>()) { 8823 auto *VPV = RecipeOrValue.get<VPValue *>(); 8824 Plan->addVPValue(Instr, VPV); 8825 // If the re-used value is a recipe, register the recipe for the 8826 // instruction, in case the recipe for Instr needs to be recorded. 8827 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8828 RecipeBuilder.setRecipe(Instr, R); 8829 continue; 8830 } 8831 // Otherwise, add the new recipe. 8832 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8833 for (auto *Def : Recipe->definedValues()) { 8834 auto *UV = Def->getUnderlyingValue(); 8835 Plan->addVPValue(UV, Def); 8836 } 8837 8838 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8839 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8840 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8841 // of the header block. That can happen for truncates of induction 8842 // variables. Those recipes are moved to the phi section of the header 8843 // block after applying SinkAfter, which relies on the original 8844 // position of the trunc. 8845 assert(isa<TruncInst>(Instr)); 8846 InductionsToMove.push_back( 8847 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8848 } 8849 RecipeBuilder.setRecipe(Instr, Recipe); 8850 VPBB->appendRecipe(Recipe); 8851 continue; 8852 } 8853 8854 // Otherwise, if all widening options failed, Instruction is to be 8855 // replicated. This may create a successor for VPBB. 8856 VPBasicBlock *NextVPBB = 8857 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8858 if (NextVPBB != VPBB) { 8859 VPBB = NextVPBB; 8860 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8861 : ""); 8862 } 8863 } 8864 8865 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8866 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8867 } 8868 8869 HeaderVPBB->setName("vector.body"); 8870 8871 // Fold the last, empty block into its predecessor. 8872 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8873 assert(VPBB && "expected to fold last (empty) block"); 8874 // After here, VPBB should not be used. 8875 VPBB = nullptr; 8876 8877 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8878 8879 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8880 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8881 "entry block must be set to a VPRegionBlock having a non-empty entry " 8882 "VPBasicBlock"); 8883 RecipeBuilder.fixHeaderPhis(); 8884 8885 // --------------------------------------------------------------------------- 8886 // Transform initial VPlan: Apply previously taken decisions, in order, to 8887 // bring the VPlan to its final state. 8888 // --------------------------------------------------------------------------- 8889 8890 // Apply Sink-After legal constraints. 8891 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8892 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8893 if (Region && Region->isReplicator()) { 8894 assert(Region->getNumSuccessors() == 1 && 8895 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8896 assert(R->getParent()->size() == 1 && 8897 "A recipe in an original replicator region must be the only " 8898 "recipe in its block"); 8899 return Region; 8900 } 8901 return nullptr; 8902 }; 8903 for (auto &Entry : SinkAfter) { 8904 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8905 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8906 8907 auto *TargetRegion = GetReplicateRegion(Target); 8908 auto *SinkRegion = GetReplicateRegion(Sink); 8909 if (!SinkRegion) { 8910 // If the sink source is not a replicate region, sink the recipe directly. 8911 if (TargetRegion) { 8912 // The target is in a replication region, make sure to move Sink to 8913 // the block after it, not into the replication region itself. 8914 VPBasicBlock *NextBlock = 8915 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8916 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8917 } else 8918 Sink->moveAfter(Target); 8919 continue; 8920 } 8921 8922 // The sink source is in a replicate region. Unhook the region from the CFG. 8923 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8924 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8925 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8926 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8927 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8928 8929 if (TargetRegion) { 8930 // The target recipe is also in a replicate region, move the sink region 8931 // after the target region. 8932 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8933 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8934 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8935 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8936 } else { 8937 // The sink source is in a replicate region, we need to move the whole 8938 // replicate region, which should only contain a single recipe in the 8939 // main block. 8940 auto *SplitBlock = 8941 Target->getParent()->splitAt(std::next(Target->getIterator())); 8942 8943 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8944 8945 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8946 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8947 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8948 } 8949 } 8950 8951 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8952 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8953 8954 // Now that sink-after is done, move induction recipes for optimized truncates 8955 // to the phi section of the header block. 8956 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8957 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8958 8959 // Adjust the recipes for any inloop reductions. 8960 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8961 RecipeBuilder, Range.Start); 8962 8963 // Introduce a recipe to combine the incoming and previous values of a 8964 // first-order recurrence. 8965 for (VPRecipeBase &R : 8966 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8967 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8968 if (!RecurPhi) 8969 continue; 8970 8971 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8972 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8973 auto *Region = GetReplicateRegion(PrevRecipe); 8974 if (Region) 8975 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8976 if (!InsertBlock) { 8977 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8978 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8979 } 8980 if (Region || PrevRecipe->isPhi()) 8981 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8982 else 8983 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8984 8985 auto *RecurSplice = cast<VPInstruction>( 8986 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8987 {RecurPhi, RecurPhi->getBackedgeValue()})); 8988 8989 RecurPhi->replaceAllUsesWith(RecurSplice); 8990 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8991 // all users. 8992 RecurSplice->setOperand(0, RecurPhi); 8993 } 8994 8995 // Interleave memory: for each Interleave Group we marked earlier as relevant 8996 // for this VPlan, replace the Recipes widening its memory instructions with a 8997 // single VPInterleaveRecipe at its insertion point. 8998 for (auto IG : InterleaveGroups) { 8999 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9000 RecipeBuilder.getRecipe(IG->getInsertPos())); 9001 SmallVector<VPValue *, 4> StoredValues; 9002 for (unsigned i = 0; i < IG->getFactor(); ++i) 9003 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9004 auto *StoreR = 9005 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9006 StoredValues.push_back(StoreR->getStoredValue()); 9007 } 9008 9009 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9010 Recipe->getMask()); 9011 VPIG->insertBefore(Recipe); 9012 unsigned J = 0; 9013 for (unsigned i = 0; i < IG->getFactor(); ++i) 9014 if (Instruction *Member = IG->getMember(i)) { 9015 if (!Member->getType()->isVoidTy()) { 9016 VPValue *OriginalV = Plan->getVPValue(Member); 9017 Plan->removeVPValueFor(Member); 9018 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9019 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9020 J++; 9021 } 9022 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9023 } 9024 } 9025 9026 std::string PlanName; 9027 raw_string_ostream RSO(PlanName); 9028 ElementCount VF = Range.Start; 9029 Plan->addVF(VF); 9030 RSO << "Initial VPlan for VF={" << VF; 9031 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9032 Plan->addVF(VF); 9033 RSO << "," << VF; 9034 } 9035 RSO << "},UF>=1"; 9036 RSO.flush(); 9037 Plan->setName(PlanName); 9038 9039 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9040 // in ways that accessing values using original IR values is incorrect. 9041 Plan->disableValue2VPValue(); 9042 9043 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9044 VPlanTransforms::sinkScalarOperands(*Plan); 9045 VPlanTransforms::removeDeadRecipes(*Plan); 9046 VPlanTransforms::mergeReplicateRegions(*Plan); 9047 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9048 9049 // Fold Exit block into its predecessor if possible. 9050 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9051 // VPBasicBlock as exit. 9052 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9053 9054 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9055 return Plan; 9056 } 9057 9058 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9059 // Outer loop handling: They may require CFG and instruction level 9060 // transformations before even evaluating whether vectorization is profitable. 9061 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9062 // the vectorization pipeline. 9063 assert(!OrigLoop->isInnermost()); 9064 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9065 9066 // Create new empty VPlan 9067 auto Plan = std::make_unique<VPlan>(); 9068 9069 // Build hierarchical CFG 9070 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9071 HCFGBuilder.buildHierarchicalCFG(); 9072 9073 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9074 VF *= 2) 9075 Plan->addVF(VF); 9076 9077 SmallPtrSet<Instruction *, 1> DeadInstructions; 9078 VPlanTransforms::VPInstructionsToVPRecipes( 9079 OrigLoop, Plan, 9080 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9081 DeadInstructions, *PSE.getSE()); 9082 9083 // Remove the existing terminator of the exiting block of the top-most region. 9084 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9085 auto *Term = 9086 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9087 Term->eraseFromParent(); 9088 9089 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9090 true, CM.useActiveLaneMaskForControlFlow()); 9091 return Plan; 9092 } 9093 9094 // Adjust the recipes for reductions. For in-loop reductions the chain of 9095 // instructions leading from the loop exit instr to the phi need to be converted 9096 // to reductions, with one operand being vector and the other being the scalar 9097 // reduction chain. For other reductions, a select is introduced between the phi 9098 // and live-out recipes when folding the tail. 9099 void LoopVectorizationPlanner::adjustRecipesForReductions( 9100 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9101 ElementCount MinVF) { 9102 for (auto &Reduction : CM.getInLoopReductionChains()) { 9103 PHINode *Phi = Reduction.first; 9104 const RecurrenceDescriptor &RdxDesc = 9105 Legal->getReductionVars().find(Phi)->second; 9106 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9107 9108 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9109 continue; 9110 9111 // ReductionOperations are orders top-down from the phi's use to the 9112 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9113 // which of the two operands will remain scalar and which will be reduced. 9114 // For minmax the chain will be the select instructions. 9115 Instruction *Chain = Phi; 9116 for (Instruction *R : ReductionOperations) { 9117 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9118 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9119 9120 VPValue *ChainOp = Plan->getVPValue(Chain); 9121 unsigned FirstOpId; 9122 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9123 "Only min/max recurrences allowed for inloop reductions"); 9124 // Recognize a call to the llvm.fmuladd intrinsic. 9125 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9126 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9127 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9128 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9129 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9130 "Expected to replace a VPWidenSelectSC"); 9131 FirstOpId = 1; 9132 } else { 9133 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9134 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9135 "Expected to replace a VPWidenSC"); 9136 FirstOpId = 0; 9137 } 9138 unsigned VecOpId = 9139 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9140 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9141 9142 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9143 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9144 : nullptr; 9145 9146 if (IsFMulAdd) { 9147 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9148 // need to create an fmul recipe to use as the vector operand for the 9149 // fadd reduction. 9150 VPInstruction *FMulRecipe = new VPInstruction( 9151 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9152 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9153 WidenRecipe->getParent()->insert(FMulRecipe, 9154 WidenRecipe->getIterator()); 9155 VecOp = FMulRecipe; 9156 } 9157 VPReductionRecipe *RedRecipe = 9158 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9159 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9160 Plan->removeVPValueFor(R); 9161 Plan->addVPValue(R, RedRecipe); 9162 // Append the recipe to the end of the VPBasicBlock because we need to 9163 // ensure that it comes after all of it's inputs, including CondOp. 9164 WidenRecipe->getParent()->appendRecipe(RedRecipe); 9165 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9166 WidenRecipe->eraseFromParent(); 9167 9168 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9169 VPRecipeBase *CompareRecipe = 9170 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9171 assert(isa<VPWidenRecipe>(CompareRecipe) && 9172 "Expected to replace a VPWidenSC"); 9173 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9174 "Expected no remaining users"); 9175 CompareRecipe->eraseFromParent(); 9176 } 9177 Chain = R; 9178 } 9179 } 9180 9181 // If tail is folded by masking, introduce selects between the phi 9182 // and the live-out instruction of each reduction, at the beginning of the 9183 // dedicated latch block. 9184 if (CM.foldTailByMasking()) { 9185 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9186 for (VPRecipeBase &R : 9187 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9188 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9189 if (!PhiR || PhiR->isInLoop()) 9190 continue; 9191 VPValue *Cond = 9192 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9193 VPValue *Red = PhiR->getBackedgeValue(); 9194 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9195 "reduction recipe must be defined before latch"); 9196 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9197 } 9198 } 9199 } 9200 9201 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9202 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9203 VPSlotTracker &SlotTracker) const { 9204 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9205 IG->getInsertPos()->printAsOperand(O, false); 9206 O << ", "; 9207 getAddr()->printAsOperand(O, SlotTracker); 9208 VPValue *Mask = getMask(); 9209 if (Mask) { 9210 O << ", "; 9211 Mask->printAsOperand(O, SlotTracker); 9212 } 9213 9214 unsigned OpIdx = 0; 9215 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9216 if (!IG->getMember(i)) 9217 continue; 9218 if (getNumStoreOperands() > 0) { 9219 O << "\n" << Indent << " store "; 9220 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9221 O << " to index " << i; 9222 } else { 9223 O << "\n" << Indent << " "; 9224 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9225 O << " = load from index " << i; 9226 } 9227 ++OpIdx; 9228 } 9229 } 9230 #endif 9231 9232 void VPWidenCallRecipe::execute(VPTransformState &State) { 9233 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9234 *this, State); 9235 } 9236 9237 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9238 assert(!State.Instance && "Int or FP induction being replicated."); 9239 9240 Value *Start = getStartValue()->getLiveInIRValue(); 9241 const InductionDescriptor &ID = getInductionDescriptor(); 9242 TruncInst *Trunc = getTruncInst(); 9243 IRBuilderBase &Builder = State.Builder; 9244 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9245 assert(State.VF.isVector() && "must have vector VF"); 9246 9247 // The value from the original loop to which we are mapping the new induction 9248 // variable. 9249 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9250 9251 // Fast-math-flags propagate from the original induction instruction. 9252 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9253 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9254 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9255 9256 // Now do the actual transformations, and start with fetching the step value. 9257 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9258 9259 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9260 "Expected either an induction phi-node or a truncate of it!"); 9261 9262 // Construct the initial value of the vector IV in the vector loop preheader 9263 auto CurrIP = Builder.saveIP(); 9264 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9265 Builder.SetInsertPoint(VectorPH->getTerminator()); 9266 if (isa<TruncInst>(EntryVal)) { 9267 assert(Start->getType()->isIntegerTy() && 9268 "Truncation requires an integer type"); 9269 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9270 Step = Builder.CreateTrunc(Step, TruncType); 9271 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9272 } 9273 9274 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9275 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9276 Value *SteppedStart = getStepVector( 9277 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9278 9279 // We create vector phi nodes for both integer and floating-point induction 9280 // variables. Here, we determine the kind of arithmetic we will perform. 9281 Instruction::BinaryOps AddOp; 9282 Instruction::BinaryOps MulOp; 9283 if (Step->getType()->isIntegerTy()) { 9284 AddOp = Instruction::Add; 9285 MulOp = Instruction::Mul; 9286 } else { 9287 AddOp = ID.getInductionOpcode(); 9288 MulOp = Instruction::FMul; 9289 } 9290 9291 // Multiply the vectorization factor by the step using integer or 9292 // floating-point arithmetic as appropriate. 9293 Type *StepType = Step->getType(); 9294 Value *RuntimeVF; 9295 if (Step->getType()->isFloatingPointTy()) 9296 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9297 else 9298 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9299 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9300 9301 // Create a vector splat to use in the induction update. 9302 // 9303 // FIXME: If the step is non-constant, we create the vector splat with 9304 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9305 // handle a constant vector splat. 9306 Value *SplatVF = isa<Constant>(Mul) 9307 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9308 : Builder.CreateVectorSplat(State.VF, Mul); 9309 Builder.restoreIP(CurrIP); 9310 9311 // We may need to add the step a number of times, depending on the unroll 9312 // factor. The last of those goes into the PHI. 9313 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9314 &*State.CFG.PrevBB->getFirstInsertionPt()); 9315 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9316 Instruction *LastInduction = VecInd; 9317 for (unsigned Part = 0; Part < State.UF; ++Part) { 9318 State.set(this, LastInduction, Part); 9319 9320 if (isa<TruncInst>(EntryVal)) 9321 State.addMetadata(LastInduction, EntryVal); 9322 9323 LastInduction = cast<Instruction>( 9324 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9325 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9326 } 9327 9328 LastInduction->setName("vec.ind.next"); 9329 VecInd->addIncoming(SteppedStart, VectorPH); 9330 // Add induction update using an incorrect block temporarily. The phi node 9331 // will be fixed after VPlan execution. Note that at this point the latch 9332 // block cannot be used, as it does not exist yet. 9333 // TODO: Model increment value in VPlan, by turning the recipe into a 9334 // multi-def and a subclass of VPHeaderPHIRecipe. 9335 VecInd->addIncoming(LastInduction, VectorPH); 9336 } 9337 9338 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9339 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9340 "Not a pointer induction according to InductionDescriptor!"); 9341 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9342 "Unexpected type."); 9343 9344 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9345 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9346 9347 if (onlyScalarsGenerated(State.VF)) { 9348 // This is the normalized GEP that starts counting at zero. 9349 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9350 CanonicalIV, IndDesc.getStep()->getType()); 9351 // Determine the number of scalars we need to generate for each unroll 9352 // iteration. If the instruction is uniform, we only need to generate the 9353 // first lane. Otherwise, we generate all VF values. 9354 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9355 assert((IsUniform || !State.VF.isScalable()) && 9356 "Cannot scalarize a scalable VF"); 9357 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9358 9359 for (unsigned Part = 0; Part < State.UF; ++Part) { 9360 Value *PartStart = 9361 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9362 9363 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9364 Value *Idx = State.Builder.CreateAdd( 9365 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9366 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9367 9368 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9369 State.CFG.PrevBB->getTerminator()); 9370 Value *SclrGep = emitTransformedIndex( 9371 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9372 SclrGep->setName("next.gep"); 9373 State.set(this, SclrGep, VPIteration(Part, Lane)); 9374 } 9375 } 9376 return; 9377 } 9378 9379 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9380 "Induction step not a SCEV constant!"); 9381 Type *PhiType = IndDesc.getStep()->getType(); 9382 9383 // Build a pointer phi 9384 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9385 Type *ScStValueType = ScalarStartValue->getType(); 9386 PHINode *NewPointerPhi = 9387 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9388 9389 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9390 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9391 9392 // A pointer induction, performed by using a gep 9393 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9394 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9395 9396 const SCEV *ScalarStep = IndDesc.getStep(); 9397 SCEVExpander Exp(SE, DL, "induction"); 9398 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9399 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9400 Value *NumUnrolledElems = 9401 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9402 Value *InductionGEP = GetElementPtrInst::Create( 9403 IndDesc.getElementType(), NewPointerPhi, 9404 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9405 InductionLoc); 9406 // Add induction update using an incorrect block temporarily. The phi node 9407 // will be fixed after VPlan execution. Note that at this point the latch 9408 // block cannot be used, as it does not exist yet. 9409 // TODO: Model increment value in VPlan, by turning the recipe into a 9410 // multi-def and a subclass of VPHeaderPHIRecipe. 9411 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9412 9413 // Create UF many actual address geps that use the pointer 9414 // phi as base and a vectorized version of the step value 9415 // (<step*0, ..., step*N>) as offset. 9416 for (unsigned Part = 0; Part < State.UF; ++Part) { 9417 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9418 Value *StartOffsetScalar = 9419 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9420 Value *StartOffset = 9421 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9422 // Create a vector of consecutive numbers from zero to VF. 9423 StartOffset = State.Builder.CreateAdd( 9424 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9425 9426 Value *GEP = State.Builder.CreateGEP( 9427 IndDesc.getElementType(), NewPointerPhi, 9428 State.Builder.CreateMul( 9429 StartOffset, 9430 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9431 "vector.gep")); 9432 State.set(this, GEP, Part); 9433 } 9434 } 9435 9436 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9437 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9438 9439 // Fast-math-flags propagate from the original induction instruction. 9440 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9441 if (IndDesc.getInductionBinOp() && 9442 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9443 State.Builder.setFastMathFlags( 9444 IndDesc.getInductionBinOp()->getFastMathFlags()); 9445 9446 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9447 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9448 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9449 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9450 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9451 ScalarIV = 9452 Ty->isIntegerTy() 9453 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9454 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9455 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9456 getStartValue()->getLiveInIRValue(), Step, 9457 IndDesc); 9458 ScalarIV->setName("offset.idx"); 9459 } 9460 if (TruncToTy) { 9461 assert(Step->getType()->isIntegerTy() && 9462 "Truncation requires an integer step"); 9463 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9464 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9465 } 9466 return ScalarIV; 9467 }; 9468 9469 Value *ScalarIV = CreateScalarIV(Step); 9470 if (State.VF.isVector()) { 9471 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9472 return; 9473 } 9474 9475 for (unsigned Part = 0; Part < State.UF; ++Part) { 9476 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9477 Value *EntryPart; 9478 if (Step->getType()->isFloatingPointTy()) { 9479 Value *StartIdx = 9480 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9481 // Floating-point operations inherit FMF via the builder's flags. 9482 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9483 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9484 ScalarIV, MulOp); 9485 } else { 9486 Value *StartIdx = 9487 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9488 EntryPart = State.Builder.CreateAdd( 9489 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9490 } 9491 State.set(this, EntryPart, Part); 9492 } 9493 } 9494 9495 void VPInterleaveRecipe::execute(VPTransformState &State) { 9496 assert(!State.Instance && "Interleave group being replicated."); 9497 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9498 getStoredValues(), getMask()); 9499 } 9500 9501 void VPReductionRecipe::execute(VPTransformState &State) { 9502 assert(!State.Instance && "Reduction being replicated."); 9503 Value *PrevInChain = State.get(getChainOp(), 0); 9504 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9505 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9506 // Propagate the fast-math flags carried by the underlying instruction. 9507 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9508 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9509 for (unsigned Part = 0; Part < State.UF; ++Part) { 9510 Value *NewVecOp = State.get(getVecOp(), Part); 9511 if (VPValue *Cond = getCondOp()) { 9512 Value *NewCond = State.get(Cond, Part); 9513 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9514 Value *Iden = RdxDesc->getRecurrenceIdentity( 9515 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9516 Value *IdenVec = 9517 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9518 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9519 NewVecOp = Select; 9520 } 9521 Value *NewRed; 9522 Value *NextInChain; 9523 if (IsOrdered) { 9524 if (State.VF.isVector()) 9525 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9526 PrevInChain); 9527 else 9528 NewRed = State.Builder.CreateBinOp( 9529 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9530 NewVecOp); 9531 PrevInChain = NewRed; 9532 } else { 9533 PrevInChain = State.get(getChainOp(), Part); 9534 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9535 } 9536 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9537 NextInChain = 9538 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9539 NewRed, PrevInChain); 9540 } else if (IsOrdered) 9541 NextInChain = NewRed; 9542 else 9543 NextInChain = State.Builder.CreateBinOp( 9544 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9545 PrevInChain); 9546 State.set(this, NextInChain, Part); 9547 } 9548 } 9549 9550 void VPReplicateRecipe::execute(VPTransformState &State) { 9551 if (State.Instance) { // Generate a single instance. 9552 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9553 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9554 IsPredicated, State); 9555 // Insert scalar instance packing it into a vector. 9556 if (AlsoPack && State.VF.isVector()) { 9557 // If we're constructing lane 0, initialize to start from poison. 9558 if (State.Instance->Lane.isFirstLane()) { 9559 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9560 Value *Poison = PoisonValue::get( 9561 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9562 State.set(this, Poison, State.Instance->Part); 9563 } 9564 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9565 } 9566 return; 9567 } 9568 9569 if (IsUniform) { 9570 // Uniform within VL means we need to generate lane 0 only for each 9571 // unrolled copy. 9572 for (unsigned Part = 0; Part < State.UF; ++Part) 9573 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9574 VPIteration(Part, 0), IsPredicated, 9575 State); 9576 return; 9577 } 9578 9579 // Generate scalar instances for all VF lanes of all UF parts. 9580 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9581 const unsigned EndLane = State.VF.getKnownMinValue(); 9582 for (unsigned Part = 0; Part < State.UF; ++Part) 9583 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9584 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9585 VPIteration(Part, Lane), IsPredicated, 9586 State); 9587 } 9588 9589 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9590 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9591 9592 // Attempt to issue a wide load. 9593 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9594 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9595 9596 assert((LI || SI) && "Invalid Load/Store instruction"); 9597 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9598 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9599 9600 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9601 9602 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9603 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9604 bool CreateGatherScatter = !Consecutive; 9605 9606 auto &Builder = State.Builder; 9607 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9608 bool isMaskRequired = getMask(); 9609 if (isMaskRequired) 9610 for (unsigned Part = 0; Part < State.UF; ++Part) 9611 BlockInMaskParts[Part] = State.get(getMask(), Part); 9612 9613 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9614 // Calculate the pointer for the specific unroll-part. 9615 GetElementPtrInst *PartPtr = nullptr; 9616 9617 bool InBounds = false; 9618 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9619 InBounds = gep->isInBounds(); 9620 if (Reverse) { 9621 // If the address is consecutive but reversed, then the 9622 // wide store needs to start at the last vector element. 9623 // RunTimeVF = VScale * VF.getKnownMinValue() 9624 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9625 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9626 // NumElt = -Part * RunTimeVF 9627 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9628 // LastLane = 1 - RunTimeVF 9629 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9630 PartPtr = 9631 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9632 PartPtr->setIsInBounds(InBounds); 9633 PartPtr = cast<GetElementPtrInst>( 9634 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9635 PartPtr->setIsInBounds(InBounds); 9636 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9637 BlockInMaskParts[Part] = 9638 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9639 } else { 9640 Value *Increment = 9641 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9642 PartPtr = cast<GetElementPtrInst>( 9643 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9644 PartPtr->setIsInBounds(InBounds); 9645 } 9646 9647 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9648 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9649 }; 9650 9651 // Handle Stores: 9652 if (SI) { 9653 State.setDebugLocFromInst(SI); 9654 9655 for (unsigned Part = 0; Part < State.UF; ++Part) { 9656 Instruction *NewSI = nullptr; 9657 Value *StoredVal = State.get(StoredValue, Part); 9658 if (CreateGatherScatter) { 9659 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9660 Value *VectorGep = State.get(getAddr(), Part); 9661 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9662 MaskPart); 9663 } else { 9664 if (Reverse) { 9665 // If we store to reverse consecutive memory locations, then we need 9666 // to reverse the order of elements in the stored value. 9667 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9668 // We don't want to update the value in the map as it might be used in 9669 // another expression. So don't call resetVectorValue(StoredVal). 9670 } 9671 auto *VecPtr = 9672 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9673 if (isMaskRequired) 9674 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9675 BlockInMaskParts[Part]); 9676 else 9677 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9678 } 9679 State.addMetadata(NewSI, SI); 9680 } 9681 return; 9682 } 9683 9684 // Handle loads. 9685 assert(LI && "Must have a load instruction"); 9686 State.setDebugLocFromInst(LI); 9687 for (unsigned Part = 0; Part < State.UF; ++Part) { 9688 Value *NewLI; 9689 if (CreateGatherScatter) { 9690 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9691 Value *VectorGep = State.get(getAddr(), Part); 9692 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9693 nullptr, "wide.masked.gather"); 9694 State.addMetadata(NewLI, LI); 9695 } else { 9696 auto *VecPtr = 9697 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9698 if (isMaskRequired) 9699 NewLI = Builder.CreateMaskedLoad( 9700 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9701 PoisonValue::get(DataTy), "wide.masked.load"); 9702 else 9703 NewLI = 9704 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9705 9706 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9707 State.addMetadata(NewLI, LI); 9708 if (Reverse) 9709 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9710 } 9711 9712 State.set(getVPSingleValue(), NewLI, Part); 9713 } 9714 } 9715 9716 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9717 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9718 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9719 // for predication. 9720 static ScalarEpilogueLowering getScalarEpilogueLowering( 9721 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9722 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9723 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9724 LoopVectorizationLegality &LVL) { 9725 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9726 // don't look at hints or options, and don't request a scalar epilogue. 9727 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9728 // LoopAccessInfo (due to code dependency and not being able to reliably get 9729 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9730 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9731 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9732 // back to the old way and vectorize with versioning when forced. See D81345.) 9733 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9734 PGSOQueryType::IRPass) && 9735 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9736 return CM_ScalarEpilogueNotAllowedOptSize; 9737 9738 // 2) If set, obey the directives 9739 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9740 switch (PreferPredicateOverEpilogue) { 9741 case PreferPredicateTy::ScalarEpilogue: 9742 return CM_ScalarEpilogueAllowed; 9743 case PreferPredicateTy::PredicateElseScalarEpilogue: 9744 return CM_ScalarEpilogueNotNeededUsePredicate; 9745 case PreferPredicateTy::PredicateOrDontVectorize: 9746 return CM_ScalarEpilogueNotAllowedUsePredicate; 9747 }; 9748 } 9749 9750 // 3) If set, obey the hints 9751 switch (Hints.getPredicate()) { 9752 case LoopVectorizeHints::FK_Enabled: 9753 return CM_ScalarEpilogueNotNeededUsePredicate; 9754 case LoopVectorizeHints::FK_Disabled: 9755 return CM_ScalarEpilogueAllowed; 9756 }; 9757 9758 // 4) if the TTI hook indicates this is profitable, request predication. 9759 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL)) 9760 return CM_ScalarEpilogueNotNeededUsePredicate; 9761 9762 return CM_ScalarEpilogueAllowed; 9763 } 9764 9765 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9766 // If Values have been set for this Def return the one relevant for \p Part. 9767 if (hasVectorValue(Def, Part)) 9768 return Data.PerPartOutput[Def][Part]; 9769 9770 if (!hasScalarValue(Def, {Part, 0})) { 9771 Value *IRV = Def->getLiveInIRValue(); 9772 Value *B = ILV->getBroadcastInstrs(IRV); 9773 set(Def, B, Part); 9774 return B; 9775 } 9776 9777 Value *ScalarValue = get(Def, {Part, 0}); 9778 // If we aren't vectorizing, we can just copy the scalar map values over 9779 // to the vector map. 9780 if (VF.isScalar()) { 9781 set(Def, ScalarValue, Part); 9782 return ScalarValue; 9783 } 9784 9785 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9786 bool IsUniform = RepR && RepR->isUniform(); 9787 9788 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9789 // Check if there is a scalar value for the selected lane. 9790 if (!hasScalarValue(Def, {Part, LastLane})) { 9791 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9792 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9793 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9794 "unexpected recipe found to be invariant"); 9795 IsUniform = true; 9796 LastLane = 0; 9797 } 9798 9799 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9800 // Set the insert point after the last scalarized instruction or after the 9801 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9802 // will directly follow the scalar definitions. 9803 auto OldIP = Builder.saveIP(); 9804 auto NewIP = 9805 isa<PHINode>(LastInst) 9806 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9807 : std::next(BasicBlock::iterator(LastInst)); 9808 Builder.SetInsertPoint(&*NewIP); 9809 9810 // However, if we are vectorizing, we need to construct the vector values. 9811 // If the value is known to be uniform after vectorization, we can just 9812 // broadcast the scalar value corresponding to lane zero for each unroll 9813 // iteration. Otherwise, we construct the vector values using 9814 // insertelement instructions. Since the resulting vectors are stored in 9815 // State, we will only generate the insertelements once. 9816 Value *VectorValue = nullptr; 9817 if (IsUniform) { 9818 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9819 set(Def, VectorValue, Part); 9820 } else { 9821 // Initialize packing with insertelements to start from undef. 9822 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9823 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9824 set(Def, Undef, Part); 9825 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9826 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9827 VectorValue = get(Def, Part); 9828 } 9829 Builder.restoreIP(OldIP); 9830 return VectorValue; 9831 } 9832 9833 // Process the loop in the VPlan-native vectorization path. This path builds 9834 // VPlan upfront in the vectorization pipeline, which allows to apply 9835 // VPlan-to-VPlan transformations from the very beginning without modifying the 9836 // input LLVM IR. 9837 static bool processLoopInVPlanNativePath( 9838 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9839 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9840 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9841 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9842 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9843 LoopVectorizationRequirements &Requirements) { 9844 9845 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9846 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9847 return false; 9848 } 9849 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9850 Function *F = L->getHeader()->getParent(); 9851 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9852 9853 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9854 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9855 9856 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9857 &Hints, IAI); 9858 // Use the planner for outer loop vectorization. 9859 // TODO: CM is not used at this point inside the planner. Turn CM into an 9860 // optional argument if we don't need it in the future. 9861 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9862 9863 // Get user vectorization factor. 9864 ElementCount UserVF = Hints.getWidth(); 9865 9866 CM.collectElementTypesForWidening(); 9867 9868 // Plan how to best vectorize, return the best VF and its cost. 9869 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9870 9871 // If we are stress testing VPlan builds, do not attempt to generate vector 9872 // code. Masked vector code generation support will follow soon. 9873 // Also, do not attempt to vectorize if no vector code will be produced. 9874 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9875 return false; 9876 9877 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9878 9879 { 9880 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9881 F->getParent()->getDataLayout()); 9882 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9883 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9884 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9885 << L->getHeader()->getParent()->getName() << "\"\n"); 9886 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9887 } 9888 9889 // Mark the loop as already vectorized to avoid vectorizing again. 9890 Hints.setAlreadyVectorized(); 9891 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9892 return true; 9893 } 9894 9895 // Emit a remark if there are stores to floats that required a floating point 9896 // extension. If the vectorized loop was generated with floating point there 9897 // will be a performance penalty from the conversion overhead and the change in 9898 // the vector width. 9899 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9900 SmallVector<Instruction *, 4> Worklist; 9901 for (BasicBlock *BB : L->getBlocks()) { 9902 for (Instruction &Inst : *BB) { 9903 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9904 if (S->getValueOperand()->getType()->isFloatTy()) 9905 Worklist.push_back(S); 9906 } 9907 } 9908 } 9909 9910 // Traverse the floating point stores upwards searching, for floating point 9911 // conversions. 9912 SmallPtrSet<const Instruction *, 4> Visited; 9913 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9914 while (!Worklist.empty()) { 9915 auto *I = Worklist.pop_back_val(); 9916 if (!L->contains(I)) 9917 continue; 9918 if (!Visited.insert(I).second) 9919 continue; 9920 9921 // Emit a remark if the floating point store required a floating 9922 // point conversion. 9923 // TODO: More work could be done to identify the root cause such as a 9924 // constant or a function return type and point the user to it. 9925 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9926 ORE->emit([&]() { 9927 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9928 I->getDebugLoc(), L->getHeader()) 9929 << "floating point conversion changes vector width. " 9930 << "Mixed floating point precision requires an up/down " 9931 << "cast that will negatively impact performance."; 9932 }); 9933 9934 for (Use &Op : I->operands()) 9935 if (auto *OpI = dyn_cast<Instruction>(Op)) 9936 Worklist.push_back(OpI); 9937 } 9938 } 9939 9940 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 9941 VectorizationFactor &VF, 9942 Optional<unsigned> VScale, Loop *L, 9943 ScalarEvolution &SE) { 9944 InstructionCost CheckCost = Checks.getCost(); 9945 if (!CheckCost.isValid()) 9946 return false; 9947 9948 // When interleaving only scalar and vector cost will be equal, which in turn 9949 // would lead to a divide by 0. Fall back to hard threshold. 9950 if (VF.Width.isScalar()) { 9951 if (CheckCost > VectorizeMemoryCheckThreshold) { 9952 LLVM_DEBUG( 9953 dbgs() 9954 << "LV: Interleaving only is not profitable due to runtime checks\n"); 9955 return false; 9956 } 9957 return true; 9958 } 9959 9960 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 9961 double ScalarC = *VF.ScalarCost.getValue(); 9962 if (ScalarC == 0) 9963 return true; 9964 9965 // First, compute the minimum iteration count required so that the vector 9966 // loop outperforms the scalar loop. 9967 // The total cost of the scalar loop is 9968 // ScalarC * TC 9969 // where 9970 // * TC is the actual trip count of the loop. 9971 // * ScalarC is the cost of a single scalar iteration. 9972 // 9973 // The total cost of the vector loop is 9974 // RtC + VecC * (TC / VF) + EpiC 9975 // where 9976 // * RtC is the cost of the generated runtime checks 9977 // * VecC is the cost of a single vector iteration. 9978 // * TC is the actual trip count of the loop 9979 // * VF is the vectorization factor 9980 // * EpiCost is the cost of the generated epilogue, including the cost 9981 // of the remaining scalar operations. 9982 // 9983 // Vectorization is profitable once the total vector cost is less than the 9984 // total scalar cost: 9985 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 9986 // 9987 // Now we can compute the minimum required trip count TC as 9988 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 9989 // 9990 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 9991 // the computations are performed on doubles, not integers and the result 9992 // is rounded up, hence we get an upper estimate of the TC. 9993 unsigned IntVF = VF.Width.getKnownMinValue(); 9994 if (VF.Width.isScalable()) { 9995 unsigned AssumedMinimumVscale = 1; 9996 if (VScale) 9997 AssumedMinimumVscale = *VScale; 9998 IntVF *= AssumedMinimumVscale; 9999 } 10000 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 10001 double RtC = *CheckCost.getValue(); 10002 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10003 10004 // Second, compute a minimum iteration count so that the cost of the 10005 // runtime checks is only a fraction of the total scalar loop cost. This 10006 // adds a loop-dependent bound on the overhead incurred if the runtime 10007 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10008 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10009 // cost, compute 10010 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10011 double MinTC2 = RtC * 10 / ScalarC; 10012 10013 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10014 // next closest multiple of VF. This should partly compensate for ignoring 10015 // the epilogue cost. 10016 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10017 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10018 10019 LLVM_DEBUG( 10020 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10021 << VF.MinProfitableTripCount << "\n"); 10022 10023 // Skip vectorization if the expected trip count is less than the minimum 10024 // required trip count. 10025 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10026 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10027 VF.MinProfitableTripCount)) { 10028 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10029 "trip count < minimum profitable VF (" 10030 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10031 << ")\n"); 10032 10033 return false; 10034 } 10035 } 10036 return true; 10037 } 10038 10039 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10040 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10041 !EnableLoopInterleaving), 10042 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10043 !EnableLoopVectorization) {} 10044 10045 bool LoopVectorizePass::processLoop(Loop *L) { 10046 assert((EnableVPlanNativePath || L->isInnermost()) && 10047 "VPlan-native path is not enabled. Only process inner loops."); 10048 10049 #ifndef NDEBUG 10050 const std::string DebugLocStr = getDebugLocString(L); 10051 #endif /* NDEBUG */ 10052 10053 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10054 << L->getHeader()->getParent()->getName() << "' from " 10055 << DebugLocStr << "\n"); 10056 10057 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10058 10059 LLVM_DEBUG( 10060 dbgs() << "LV: Loop hints:" 10061 << " force=" 10062 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10063 ? "disabled" 10064 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10065 ? "enabled" 10066 : "?")) 10067 << " width=" << Hints.getWidth() 10068 << " interleave=" << Hints.getInterleave() << "\n"); 10069 10070 // Function containing loop 10071 Function *F = L->getHeader()->getParent(); 10072 10073 // Looking at the diagnostic output is the only way to determine if a loop 10074 // was vectorized (other than looking at the IR or machine code), so it 10075 // is important to generate an optimization remark for each loop. Most of 10076 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10077 // generated as OptimizationRemark and OptimizationRemarkMissed are 10078 // less verbose reporting vectorized loops and unvectorized loops that may 10079 // benefit from vectorization, respectively. 10080 10081 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10082 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10083 return false; 10084 } 10085 10086 PredicatedScalarEvolution PSE(*SE, *L); 10087 10088 // Check if it is legal to vectorize the loop. 10089 LoopVectorizationRequirements Requirements; 10090 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10091 &Requirements, &Hints, DB, AC, BFI, PSI); 10092 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10093 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10094 Hints.emitRemarkWithHints(); 10095 return false; 10096 } 10097 10098 // Check the function attributes and profiles to find out if this function 10099 // should be optimized for size. 10100 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10101 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10102 10103 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10104 // here. They may require CFG and instruction level transformations before 10105 // even evaluating whether vectorization is profitable. Since we cannot modify 10106 // the incoming IR, we need to build VPlan upfront in the vectorization 10107 // pipeline. 10108 if (!L->isInnermost()) 10109 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10110 ORE, BFI, PSI, Hints, Requirements); 10111 10112 assert(L->isInnermost() && "Inner loop expected."); 10113 10114 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10115 // count by optimizing for size, to minimize overheads. 10116 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10117 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10118 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10119 << "This loop is worth vectorizing only if no scalar " 10120 << "iteration overheads are incurred."); 10121 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10122 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10123 else { 10124 if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { 10125 LLVM_DEBUG(dbgs() << "\n"); 10126 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10127 } else { 10128 LLVM_DEBUG(dbgs() << " But the target considers the trip count too " 10129 "small to consider vectorizing.\n"); 10130 reportVectorizationFailure( 10131 "The trip count is below the minial threshold value.", 10132 "loop trip count is too low, avoiding vectorization", 10133 "LowTripCount", ORE, L); 10134 Hints.emitRemarkWithHints(); 10135 return false; 10136 } 10137 } 10138 } 10139 10140 // Check the function attributes to see if implicit floats are allowed. 10141 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10142 // an integer loop and the vector instructions selected are purely integer 10143 // vector instructions? 10144 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10145 reportVectorizationFailure( 10146 "Can't vectorize when the NoImplicitFloat attribute is used", 10147 "loop not vectorized due to NoImplicitFloat attribute", 10148 "NoImplicitFloat", ORE, L); 10149 Hints.emitRemarkWithHints(); 10150 return false; 10151 } 10152 10153 // Check if the target supports potentially unsafe FP vectorization. 10154 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10155 // for the target we're vectorizing for, to make sure none of the 10156 // additional fp-math flags can help. 10157 if (Hints.isPotentiallyUnsafe() && 10158 TTI->isFPVectorizationPotentiallyUnsafe()) { 10159 reportVectorizationFailure( 10160 "Potentially unsafe FP op prevents vectorization", 10161 "loop not vectorized due to unsafe FP support.", 10162 "UnsafeFP", ORE, L); 10163 Hints.emitRemarkWithHints(); 10164 return false; 10165 } 10166 10167 bool AllowOrderedReductions; 10168 // If the flag is set, use that instead and override the TTI behaviour. 10169 if (ForceOrderedReductions.getNumOccurrences() > 0) 10170 AllowOrderedReductions = ForceOrderedReductions; 10171 else 10172 AllowOrderedReductions = TTI->enableOrderedReductions(); 10173 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10174 ORE->emit([&]() { 10175 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10176 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10177 ExactFPMathInst->getDebugLoc(), 10178 ExactFPMathInst->getParent()) 10179 << "loop not vectorized: cannot prove it is safe to reorder " 10180 "floating-point operations"; 10181 }); 10182 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10183 "reorder floating-point operations\n"); 10184 Hints.emitRemarkWithHints(); 10185 return false; 10186 } 10187 10188 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10189 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10190 10191 // If an override option has been passed in for interleaved accesses, use it. 10192 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10193 UseInterleaved = EnableInterleavedMemAccesses; 10194 10195 // Analyze interleaved memory accesses. 10196 if (UseInterleaved) { 10197 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10198 } 10199 10200 // Use the cost model. 10201 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10202 F, &Hints, IAI); 10203 CM.collectValuesToIgnore(); 10204 CM.collectElementTypesForWidening(); 10205 10206 // Use the planner for vectorization. 10207 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10208 10209 // Get user vectorization factor and interleave count. 10210 ElementCount UserVF = Hints.getWidth(); 10211 unsigned UserIC = Hints.getInterleave(); 10212 10213 // Plan how to best vectorize, return the best VF and its cost. 10214 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10215 10216 VectorizationFactor VF = VectorizationFactor::Disabled(); 10217 unsigned IC = 1; 10218 10219 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10220 F->getParent()->getDataLayout()); 10221 if (MaybeVF) { 10222 VF = *MaybeVF; 10223 // Select the interleave count. 10224 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10225 10226 unsigned SelectedIC = std::max(IC, UserIC); 10227 // Optimistically generate runtime checks if they are needed. Drop them if 10228 // they turn out to not be profitable. 10229 if (VF.Width.isVector() || SelectedIC > 1) 10230 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10231 10232 // Check if it is profitable to vectorize with runtime checks. 10233 bool ForceVectorization = 10234 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10235 if (!ForceVectorization && 10236 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10237 *PSE.getSE())) { 10238 ORE->emit([&]() { 10239 return OptimizationRemarkAnalysisAliasing( 10240 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10241 L->getHeader()) 10242 << "loop not vectorized: cannot prove it is safe to reorder " 10243 "memory operations"; 10244 }); 10245 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10246 Hints.emitRemarkWithHints(); 10247 return false; 10248 } 10249 } 10250 10251 // Identify the diagnostic messages that should be produced. 10252 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10253 bool VectorizeLoop = true, InterleaveLoop = true; 10254 if (VF.Width.isScalar()) { 10255 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10256 VecDiagMsg = std::make_pair( 10257 "VectorizationNotBeneficial", 10258 "the cost-model indicates that vectorization is not beneficial"); 10259 VectorizeLoop = false; 10260 } 10261 10262 if (!MaybeVF && UserIC > 1) { 10263 // Tell the user interleaving was avoided up-front, despite being explicitly 10264 // requested. 10265 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10266 "interleaving should be avoided up front\n"); 10267 IntDiagMsg = std::make_pair( 10268 "InterleavingAvoided", 10269 "Ignoring UserIC, because interleaving was avoided up front"); 10270 InterleaveLoop = false; 10271 } else if (IC == 1 && UserIC <= 1) { 10272 // Tell the user interleaving is not beneficial. 10273 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10274 IntDiagMsg = std::make_pair( 10275 "InterleavingNotBeneficial", 10276 "the cost-model indicates that interleaving is not beneficial"); 10277 InterleaveLoop = false; 10278 if (UserIC == 1) { 10279 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10280 IntDiagMsg.second += 10281 " and is explicitly disabled or interleave count is set to 1"; 10282 } 10283 } else if (IC > 1 && UserIC == 1) { 10284 // Tell the user interleaving is beneficial, but it explicitly disabled. 10285 LLVM_DEBUG( 10286 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10287 IntDiagMsg = std::make_pair( 10288 "InterleavingBeneficialButDisabled", 10289 "the cost-model indicates that interleaving is beneficial " 10290 "but is explicitly disabled or interleave count is set to 1"); 10291 InterleaveLoop = false; 10292 } 10293 10294 // Override IC if user provided an interleave count. 10295 IC = UserIC > 0 ? UserIC : IC; 10296 10297 // Emit diagnostic messages, if any. 10298 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10299 if (!VectorizeLoop && !InterleaveLoop) { 10300 // Do not vectorize or interleaving the loop. 10301 ORE->emit([&]() { 10302 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10303 L->getStartLoc(), L->getHeader()) 10304 << VecDiagMsg.second; 10305 }); 10306 ORE->emit([&]() { 10307 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10308 L->getStartLoc(), L->getHeader()) 10309 << IntDiagMsg.second; 10310 }); 10311 return false; 10312 } else if (!VectorizeLoop && InterleaveLoop) { 10313 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10314 ORE->emit([&]() { 10315 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10316 L->getStartLoc(), L->getHeader()) 10317 << VecDiagMsg.second; 10318 }); 10319 } else if (VectorizeLoop && !InterleaveLoop) { 10320 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10321 << ") in " << DebugLocStr << '\n'); 10322 ORE->emit([&]() { 10323 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10324 L->getStartLoc(), L->getHeader()) 10325 << IntDiagMsg.second; 10326 }); 10327 } else if (VectorizeLoop && InterleaveLoop) { 10328 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10329 << ") in " << DebugLocStr << '\n'); 10330 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10331 } 10332 10333 bool DisableRuntimeUnroll = false; 10334 MDNode *OrigLoopID = L->getLoopID(); 10335 { 10336 using namespace ore; 10337 if (!VectorizeLoop) { 10338 assert(IC > 1 && "interleave count should not be 1 or 0"); 10339 // If we decided that it is not legal to vectorize the loop, then 10340 // interleave it. 10341 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10342 &CM, BFI, PSI, Checks); 10343 10344 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10345 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10346 10347 ORE->emit([&]() { 10348 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10349 L->getHeader()) 10350 << "interleaved loop (interleaved count: " 10351 << NV("InterleaveCount", IC) << ")"; 10352 }); 10353 } else { 10354 // If we decided that it is *legal* to vectorize the loop, then do it. 10355 10356 // Consider vectorizing the epilogue too if it's profitable. 10357 VectorizationFactor EpilogueVF = 10358 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10359 if (EpilogueVF.Width.isVector()) { 10360 10361 // The first pass vectorizes the main loop and creates a scalar epilogue 10362 // to be vectorized by executing the plan (potentially with a different 10363 // factor) again shortly afterwards. 10364 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10365 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10366 EPI, &LVL, &CM, BFI, PSI, Checks); 10367 10368 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10369 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10370 DT, true); 10371 ++LoopsVectorized; 10372 10373 // Second pass vectorizes the epilogue and adjusts the control flow 10374 // edges from the first pass. 10375 EPI.MainLoopVF = EPI.EpilogueVF; 10376 EPI.MainLoopUF = EPI.EpilogueUF; 10377 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10378 ORE, EPI, &LVL, &CM, BFI, PSI, 10379 Checks); 10380 10381 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10382 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10383 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10384 Header->setName("vec.epilog.vector.body"); 10385 10386 // Ensure that the start values for any VPReductionPHIRecipes are 10387 // updated before vectorising the epilogue loop. 10388 for (VPRecipeBase &R : Header->phis()) { 10389 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10390 if (auto *Resume = MainILV.getReductionResumeValue( 10391 ReductionPhi->getRecurrenceDescriptor())) { 10392 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10393 ReductionPhi->setOperand(0, StartVal); 10394 } 10395 } 10396 } 10397 10398 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10399 DT, true); 10400 ++LoopsEpilogueVectorized; 10401 10402 if (!MainILV.areSafetyChecksAdded()) 10403 DisableRuntimeUnroll = true; 10404 } else { 10405 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10406 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10407 PSI, Checks); 10408 10409 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10410 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10411 ++LoopsVectorized; 10412 10413 // Add metadata to disable runtime unrolling a scalar loop when there 10414 // are no runtime checks about strides and memory. A scalar loop that is 10415 // rarely used is not worth unrolling. 10416 if (!LB.areSafetyChecksAdded()) 10417 DisableRuntimeUnroll = true; 10418 } 10419 // Report the vectorization decision. 10420 ORE->emit([&]() { 10421 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10422 L->getHeader()) 10423 << "vectorized loop (vectorization width: " 10424 << NV("VectorizationFactor", VF.Width) 10425 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10426 }); 10427 } 10428 10429 if (ORE->allowExtraAnalysis(LV_NAME)) 10430 checkMixedPrecision(L, ORE); 10431 } 10432 10433 Optional<MDNode *> RemainderLoopID = 10434 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10435 LLVMLoopVectorizeFollowupEpilogue}); 10436 if (RemainderLoopID) { 10437 L->setLoopID(RemainderLoopID.value()); 10438 } else { 10439 if (DisableRuntimeUnroll) 10440 AddRuntimeUnrollDisableMetaData(L); 10441 10442 // Mark the loop as already vectorized to avoid vectorizing again. 10443 Hints.setAlreadyVectorized(); 10444 } 10445 10446 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10447 return true; 10448 } 10449 10450 LoopVectorizeResult LoopVectorizePass::runImpl( 10451 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10452 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10453 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10454 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10455 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10456 SE = &SE_; 10457 LI = &LI_; 10458 TTI = &TTI_; 10459 DT = &DT_; 10460 BFI = &BFI_; 10461 TLI = TLI_; 10462 AA = &AA_; 10463 AC = &AC_; 10464 GetLAA = &GetLAA_; 10465 DB = &DB_; 10466 ORE = &ORE_; 10467 PSI = PSI_; 10468 10469 // Don't attempt if 10470 // 1. the target claims to have no vector registers, and 10471 // 2. interleaving won't help ILP. 10472 // 10473 // The second condition is necessary because, even if the target has no 10474 // vector registers, loop vectorization may still enable scalar 10475 // interleaving. 10476 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10477 TTI->getMaxInterleaveFactor(1) < 2) 10478 return LoopVectorizeResult(false, false); 10479 10480 bool Changed = false, CFGChanged = false; 10481 10482 // The vectorizer requires loops to be in simplified form. 10483 // Since simplification may add new inner loops, it has to run before the 10484 // legality and profitability checks. This means running the loop vectorizer 10485 // will simplify all loops, regardless of whether anything end up being 10486 // vectorized. 10487 for (auto &L : *LI) 10488 Changed |= CFGChanged |= 10489 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10490 10491 // Build up a worklist of inner-loops to vectorize. This is necessary as 10492 // the act of vectorizing or partially unrolling a loop creates new loops 10493 // and can invalidate iterators across the loops. 10494 SmallVector<Loop *, 8> Worklist; 10495 10496 for (Loop *L : *LI) 10497 collectSupportedLoops(*L, LI, ORE, Worklist); 10498 10499 LoopsAnalyzed += Worklist.size(); 10500 10501 // Now walk the identified inner loops. 10502 while (!Worklist.empty()) { 10503 Loop *L = Worklist.pop_back_val(); 10504 10505 // For the inner loops we actually process, form LCSSA to simplify the 10506 // transform. 10507 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10508 10509 Changed |= CFGChanged |= processLoop(L); 10510 } 10511 10512 // Process each loop nest in the function. 10513 return LoopVectorizeResult(Changed, CFGChanged); 10514 } 10515 10516 PreservedAnalyses LoopVectorizePass::run(Function &F, 10517 FunctionAnalysisManager &AM) { 10518 auto &LI = AM.getResult<LoopAnalysis>(F); 10519 // There are no loops in the function. Return before computing other expensive 10520 // analyses. 10521 if (LI.empty()) 10522 return PreservedAnalyses::all(); 10523 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10524 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10525 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10526 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10527 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10528 auto &AA = AM.getResult<AAManager>(F); 10529 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10530 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10531 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10532 10533 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10534 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10535 [&](Loop &L) -> const LoopAccessInfo & { 10536 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10537 TLI, TTI, nullptr, nullptr, nullptr}; 10538 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10539 }; 10540 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10541 ProfileSummaryInfo *PSI = 10542 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10543 LoopVectorizeResult Result = 10544 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10545 if (!Result.MadeAnyChange) 10546 return PreservedAnalyses::all(); 10547 PreservedAnalyses PA; 10548 10549 // We currently do not preserve loopinfo/dominator analyses with outer loop 10550 // vectorization. Until this is addressed, mark these analyses as preserved 10551 // only for non-VPlan-native path. 10552 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10553 if (!EnableVPlanNativePath) { 10554 PA.preserve<LoopAnalysis>(); 10555 PA.preserve<DominatorTreeAnalysis>(); 10556 } 10557 10558 if (Result.MadeCFGChange) { 10559 // Making CFG changes likely means a loop got vectorized. Indicate that 10560 // extra simplification passes should be run. 10561 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10562 // be run if runtime checks have been added. 10563 AM.getResult<ShouldRunExtraVectorPasses>(F); 10564 PA.preserve<ShouldRunExtraVectorPasses>(); 10565 } else { 10566 PA.preserveSet<CFGAnalyses>(); 10567 } 10568 return PA; 10569 } 10570 10571 void LoopVectorizePass::printPipeline( 10572 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10573 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10574 OS, MapClassName2PassName); 10575 10576 OS << "<"; 10577 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10578 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10579 OS << ">"; 10580 } 10581