xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask,
548                                   bool ConsecutiveStride, bool Reverse);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Create code for the loop exit value of the reduction.
598   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *
624   getStepVector(Value *Val, Value *StartIdx, Value *Step,
625                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The unique ExitBlock of the scalar loop if one exists.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(
893       Value *Val, Value *StartIdx, Value *Step,
894       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
914                                 ElementCount EVF, unsigned EUF)
915       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1107                               int64_t Step) {
1108   assert(Ty->isIntegerTy() && "Expected an integer step");
1109   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1122   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1123   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1124   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1125   return B.CreateUIToFP(RuntimeVF, FTy);
1126 }
1127 
1128 void reportVectorizationFailure(const StringRef DebugMsg,
1129                                 const StringRef OREMsg, const StringRef ORETag,
1130                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1131                                 Instruction *I) {
1132   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1133   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1134   ORE->emit(
1135       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1136       << "loop not vectorized: " << OREMsg);
1137 }
1138 
1139 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1140                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1141                              Instruction *I) {
1142   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1143   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1144   ORE->emit(
1145       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1146       << Msg);
1147 }
1148 
1149 } // end namespace llvm
1150 
1151 #ifndef NDEBUG
1152 /// \return string containing a file name and a line # for the given loop.
1153 static std::string getDebugLocString(const Loop *L) {
1154   std::string Result;
1155   if (L) {
1156     raw_string_ostream OS(Result);
1157     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1158       LoopDbgLoc.print(OS);
1159     else
1160       // Just print the module name.
1161       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1162     OS.flush();
1163   }
1164   return Result;
1165 }
1166 #endif
1167 
1168 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1169                                          const Instruction *Orig) {
1170   // If the loop was versioned with memchecks, add the corresponding no-alias
1171   // metadata.
1172   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1173     LVer->annotateInstWithNoAlias(To, Orig);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(Instruction *To,
1177                                       Instruction *From) {
1178   propagateMetadata(To, From);
1179   addNewMetadata(To, From);
1180 }
1181 
1182 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1183                                       Instruction *From) {
1184   for (Value *V : To) {
1185     if (Instruction *I = dyn_cast<Instruction>(V))
1186       addMetadata(I, From);
1187   }
1188 }
1189 
1190 namespace llvm {
1191 
1192 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1193 // lowered.
1194 enum ScalarEpilogueLowering {
1195 
1196   // The default: allowing scalar epilogues.
1197   CM_ScalarEpilogueAllowed,
1198 
1199   // Vectorization with OptForSize: don't allow epilogues.
1200   CM_ScalarEpilogueNotAllowedOptSize,
1201 
1202   // A special case of vectorisation with OptForSize: loops with a very small
1203   // trip count are considered for vectorization under OptForSize, thereby
1204   // making sure the cost of their loop body is dominant, free of runtime
1205   // guards and scalar iteration overheads.
1206   CM_ScalarEpilogueNotAllowedLowTripLoop,
1207 
1208   // Loop hint predicate indicating an epilogue is undesired.
1209   CM_ScalarEpilogueNotNeededUsePredicate,
1210 
1211   // Directive indicating we must either tail fold or not vectorize
1212   CM_ScalarEpilogueNotAllowedUsePredicate
1213 };
1214 
1215 /// ElementCountComparator creates a total ordering for ElementCount
1216 /// for the purposes of using it in a set structure.
1217 struct ElementCountComparator {
1218   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1219     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1220            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1221   }
1222 };
1223 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1224 
1225 /// LoopVectorizationCostModel - estimates the expected speedups due to
1226 /// vectorization.
1227 /// In many cases vectorization is not profitable. This can happen because of
1228 /// a number of reasons. In this class we mainly attempt to predict the
1229 /// expected speedup/slowdowns due to the supported instruction set. We use the
1230 /// TargetTransformInfo to query the different backends for the cost of
1231 /// different operations.
1232 class LoopVectorizationCostModel {
1233 public:
1234   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1235                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1236                              LoopVectorizationLegality *Legal,
1237                              const TargetTransformInfo &TTI,
1238                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1239                              AssumptionCache *AC,
1240                              OptimizationRemarkEmitter *ORE, const Function *F,
1241                              const LoopVectorizeHints *Hints,
1242                              InterleavedAccessInfo &IAI)
1243       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1244         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1245         Hints(Hints), InterleaveInfo(IAI) {}
1246 
1247   /// \return An upper bound for the vectorization factors (both fixed and
1248   /// scalable). If the factors are 0, vectorization and interleaving should be
1249   /// avoided up front.
1250   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1251 
1252   /// \return True if runtime checks are required for vectorization, and false
1253   /// otherwise.
1254   bool runtimeChecksRequired();
1255 
1256   /// \return The most profitable vectorization factor and the cost of that VF.
1257   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1258   /// then this vectorization factor will be selected if vectorization is
1259   /// possible.
1260   VectorizationFactor
1261   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1262 
1263   VectorizationFactor
1264   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1265                                     const LoopVectorizationPlanner &LVP);
1266 
1267   /// Setup cost-based decisions for user vectorization factor.
1268   /// \return true if the UserVF is a feasible VF to be chosen.
1269   bool selectUserVectorizationFactor(ElementCount UserVF) {
1270     collectUniformsAndScalars(UserVF);
1271     collectInstsToScalarize(UserVF);
1272     return expectedCost(UserVF).first.isValid();
1273   }
1274 
1275   /// \return The size (in bits) of the smallest and widest types in the code
1276   /// that needs to be vectorized. We ignore values that remain scalar such as
1277   /// 64 bit loop indices.
1278   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1279 
1280   /// \return The desired interleave count.
1281   /// If interleave count has been specified by metadata it will be returned.
1282   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1283   /// are the selected vectorization factor and the cost of the selected VF.
1284   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1285 
1286   /// Memory access instruction may be vectorized in more than one way.
1287   /// Form of instruction after vectorization depends on cost.
1288   /// This function takes cost-based decisions for Load/Store instructions
1289   /// and collects them in a map. This decisions map is used for building
1290   /// the lists of loop-uniform and loop-scalar instructions.
1291   /// The calculated cost is saved with widening decision in order to
1292   /// avoid redundant calculations.
1293   void setCostBasedWideningDecision(ElementCount VF);
1294 
1295   /// A struct that represents some properties of the register usage
1296   /// of a loop.
1297   struct RegisterUsage {
1298     /// Holds the number of loop invariant values that are used in the loop.
1299     /// The key is ClassID of target-provided register class.
1300     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1301     /// Holds the maximum number of concurrent live intervals in the loop.
1302     /// The key is ClassID of target-provided register class.
1303     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1304   };
1305 
1306   /// \return Returns information about the register usages of the loop for the
1307   /// given vectorization factors.
1308   SmallVector<RegisterUsage, 8>
1309   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1310 
1311   /// Collect values we want to ignore in the cost model.
1312   void collectValuesToIgnore();
1313 
1314   /// Collect all element types in the loop for which widening is needed.
1315   void collectElementTypesForWidening();
1316 
1317   /// Split reductions into those that happen in the loop, and those that happen
1318   /// outside. In loop reductions are collected into InLoopReductionChains.
1319   void collectInLoopReductions();
1320 
1321   /// Returns true if we should use strict in-order reductions for the given
1322   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1323   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1324   /// of FP operations.
1325   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1326     return !Hints->allowReordering() && RdxDesc.isOrdered();
1327   }
1328 
1329   /// \returns The smallest bitwidth each instruction can be represented with.
1330   /// The vector equivalents of these instructions should be truncated to this
1331   /// type.
1332   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1333     return MinBWs;
1334   }
1335 
1336   /// \returns True if it is more profitable to scalarize instruction \p I for
1337   /// vectorization factor \p VF.
1338   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1339     assert(VF.isVector() &&
1340            "Profitable to scalarize relevant only for VF > 1.");
1341 
1342     // Cost model is not run in the VPlan-native path - return conservative
1343     // result until this changes.
1344     if (EnableVPlanNativePath)
1345       return false;
1346 
1347     auto Scalars = InstsToScalarize.find(VF);
1348     assert(Scalars != InstsToScalarize.end() &&
1349            "VF not yet analyzed for scalarization profitability");
1350     return Scalars->second.find(I) != Scalars->second.end();
1351   }
1352 
1353   /// Returns true if \p I is known to be uniform after vectorization.
1354   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1355     if (VF.isScalar())
1356       return true;
1357 
1358     // Cost model is not run in the VPlan-native path - return conservative
1359     // result until this changes.
1360     if (EnableVPlanNativePath)
1361       return false;
1362 
1363     auto UniformsPerVF = Uniforms.find(VF);
1364     assert(UniformsPerVF != Uniforms.end() &&
1365            "VF not yet analyzed for uniformity");
1366     return UniformsPerVF->second.count(I);
1367   }
1368 
1369   /// Returns true if \p I is known to be scalar after vectorization.
1370   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1371     if (VF.isScalar())
1372       return true;
1373 
1374     // Cost model is not run in the VPlan-native path - return conservative
1375     // result until this changes.
1376     if (EnableVPlanNativePath)
1377       return false;
1378 
1379     auto ScalarsPerVF = Scalars.find(VF);
1380     assert(ScalarsPerVF != Scalars.end() &&
1381            "Scalar values are not calculated for VF");
1382     return ScalarsPerVF->second.count(I);
1383   }
1384 
1385   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1386   /// for vectorization factor \p VF.
1387   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1388     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1389            !isProfitableToScalarize(I, VF) &&
1390            !isScalarAfterVectorization(I, VF);
1391   }
1392 
1393   /// Decision that was taken during cost calculation for memory instruction.
1394   enum InstWidening {
1395     CM_Unknown,
1396     CM_Widen,         // For consecutive accesses with stride +1.
1397     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1398     CM_Interleave,
1399     CM_GatherScatter,
1400     CM_Scalarize
1401   };
1402 
1403   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1404   /// instruction \p I and vector width \p VF.
1405   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1406                            InstructionCost Cost) {
1407     assert(VF.isVector() && "Expected VF >=2");
1408     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1409   }
1410 
1411   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1412   /// interleaving group \p Grp and vector width \p VF.
1413   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1414                            ElementCount VF, InstWidening W,
1415                            InstructionCost Cost) {
1416     assert(VF.isVector() && "Expected VF >=2");
1417     /// Broadcast this decicion to all instructions inside the group.
1418     /// But the cost will be assigned to one instruction only.
1419     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1420       if (auto *I = Grp->getMember(i)) {
1421         if (Grp->getInsertPos() == I)
1422           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1423         else
1424           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1425       }
1426     }
1427   }
1428 
1429   /// Return the cost model decision for the given instruction \p I and vector
1430   /// width \p VF. Return CM_Unknown if this instruction did not pass
1431   /// through the cost modeling.
1432   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1433     assert(VF.isVector() && "Expected VF to be a vector VF");
1434     // Cost model is not run in the VPlan-native path - return conservative
1435     // result until this changes.
1436     if (EnableVPlanNativePath)
1437       return CM_GatherScatter;
1438 
1439     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1440     auto Itr = WideningDecisions.find(InstOnVF);
1441     if (Itr == WideningDecisions.end())
1442       return CM_Unknown;
1443     return Itr->second.first;
1444   }
1445 
1446   /// Return the vectorization cost for the given instruction \p I and vector
1447   /// width \p VF.
1448   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1449     assert(VF.isVector() && "Expected VF >=2");
1450     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1451     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1452            "The cost is not calculated");
1453     return WideningDecisions[InstOnVF].second;
1454   }
1455 
1456   /// Return True if instruction \p I is an optimizable truncate whose operand
1457   /// is an induction variable. Such a truncate will be removed by adding a new
1458   /// induction variable with the destination type.
1459   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1460     // If the instruction is not a truncate, return false.
1461     auto *Trunc = dyn_cast<TruncInst>(I);
1462     if (!Trunc)
1463       return false;
1464 
1465     // Get the source and destination types of the truncate.
1466     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1467     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1468 
1469     // If the truncate is free for the given types, return false. Replacing a
1470     // free truncate with an induction variable would add an induction variable
1471     // update instruction to each iteration of the loop. We exclude from this
1472     // check the primary induction variable since it will need an update
1473     // instruction regardless.
1474     Value *Op = Trunc->getOperand(0);
1475     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1476       return false;
1477 
1478     // If the truncated value is not an induction variable, return false.
1479     return Legal->isInductionPhi(Op);
1480   }
1481 
1482   /// Collects the instructions to scalarize for each predicated instruction in
1483   /// the loop.
1484   void collectInstsToScalarize(ElementCount VF);
1485 
1486   /// Collect Uniform and Scalar values for the given \p VF.
1487   /// The sets depend on CM decision for Load/Store instructions
1488   /// that may be vectorized as interleave, gather-scatter or scalarized.
1489   void collectUniformsAndScalars(ElementCount VF) {
1490     // Do the analysis once.
1491     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1492       return;
1493     setCostBasedWideningDecision(VF);
1494     collectLoopUniforms(VF);
1495     collectLoopScalars(VF);
1496   }
1497 
1498   /// Returns true if the target machine supports masked store operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedStore(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine supports masked load operation
1506   /// for the given \p DataType and kind of access to \p Ptr.
1507   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1508     return Legal->isConsecutivePtr(DataType, Ptr) &&
1509            TTI.isLegalMaskedLoad(DataType, Alignment);
1510   }
1511 
1512   /// Returns true if the target machine can represent \p V as a masked gather
1513   /// or scatter operation.
1514   bool isLegalGatherOrScatter(Value *V) {
1515     bool LI = isa<LoadInst>(V);
1516     bool SI = isa<StoreInst>(V);
1517     if (!LI && !SI)
1518       return false;
1519     auto *Ty = getLoadStoreType(V);
1520     Align Align = getLoadStoreAlignment(V);
1521     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1522            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1523   }
1524 
1525   /// Returns true if the target machine supports all of the reduction
1526   /// variables found for the given VF.
1527   bool canVectorizeReductions(ElementCount VF) const {
1528     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1529       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1530       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1531     }));
1532   }
1533 
1534   /// Returns true if \p I is an instruction that will be scalarized with
1535   /// predication. Such instructions include conditional stores and
1536   /// instructions that may divide by zero.
1537   /// If a non-zero VF has been calculated, we check if I will be scalarized
1538   /// predication for that VF.
1539   bool isScalarWithPredication(Instruction *I) const;
1540 
1541   // Returns true if \p I is an instruction that will be predicated either
1542   // through scalar predication or masked load/store or masked gather/scatter.
1543   // Superset of instructions that return true for isScalarWithPredication.
1544   bool isPredicatedInst(Instruction *I) {
1545     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1546       return false;
1547     // Loads and stores that need some form of masked operation are predicated
1548     // instructions.
1549     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1550       return Legal->isMaskRequired(I);
1551     return isScalarWithPredication(I);
1552   }
1553 
1554   /// Returns true if \p I is a memory instruction with consecutive memory
1555   /// access that can be widened.
1556   bool
1557   memoryInstructionCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Returns true if \p I is a memory instruction in an interleaved-group
1561   /// of memory accesses that can be vectorized with wide vector loads/stores
1562   /// and shuffles.
1563   bool
1564   interleavedAccessCanBeWidened(Instruction *I,
1565                                 ElementCount VF = ElementCount::getFixed(1));
1566 
1567   /// Check if \p Instr belongs to any interleaved access group.
1568   bool isAccessInterleaved(Instruction *Instr) {
1569     return InterleaveInfo.isInterleaved(Instr);
1570   }
1571 
1572   /// Get the interleaved access group that \p Instr belongs to.
1573   const InterleaveGroup<Instruction> *
1574   getInterleavedAccessGroup(Instruction *Instr) {
1575     return InterleaveInfo.getInterleaveGroup(Instr);
1576   }
1577 
1578   /// Returns true if we're required to use a scalar epilogue for at least
1579   /// the final iteration of the original loop.
1580   bool requiresScalarEpilogue(ElementCount VF) const {
1581     if (!isScalarEpilogueAllowed())
1582       return false;
1583     // If we might exit from anywhere but the latch, must run the exiting
1584     // iteration in scalar form.
1585     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1586       return true;
1587     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1588   }
1589 
1590   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1591   /// loop hint annotation.
1592   bool isScalarEpilogueAllowed() const {
1593     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1594   }
1595 
1596   /// Returns true if all loop blocks should be masked to fold tail loop.
1597   bool foldTailByMasking() const { return FoldTailByMasking; }
1598 
1599   /// Returns true if the instructions in this block requires predication
1600   /// for any reason, e.g. because tail folding now requires a predicate
1601   /// or because the block in the original loop was predicated.
1602   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1603     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1604   }
1605 
1606   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1607   /// nodes to the chain of instructions representing the reductions. Uses a
1608   /// MapVector to ensure deterministic iteration order.
1609   using ReductionChainMap =
1610       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1611 
1612   /// Return the chain of instructions representing an inloop reduction.
1613   const ReductionChainMap &getInLoopReductionChains() const {
1614     return InLoopReductionChains;
1615   }
1616 
1617   /// Returns true if the Phi is part of an inloop reduction.
1618   bool isInLoopReduction(PHINode *Phi) const {
1619     return InLoopReductionChains.count(Phi);
1620   }
1621 
1622   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1623   /// with factor VF.  Return the cost of the instruction, including
1624   /// scalarization overhead if it's needed.
1625   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1626 
1627   /// Estimate cost of a call instruction CI if it were vectorized with factor
1628   /// VF. Return the cost of the instruction, including scalarization overhead
1629   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1630   /// scalarized -
1631   /// i.e. either vector version isn't available, or is too expensive.
1632   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1633                                     bool &NeedToScalarize) const;
1634 
1635   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1636   /// that of B.
1637   bool isMoreProfitable(const VectorizationFactor &A,
1638                         const VectorizationFactor &B) const;
1639 
1640   /// Invalidates decisions already taken by the cost model.
1641   void invalidateCostModelingDecisions() {
1642     WideningDecisions.clear();
1643     Uniforms.clear();
1644     Scalars.clear();
1645   }
1646 
1647 private:
1648   unsigned NumPredStores = 0;
1649 
1650   /// \return An upper bound for the vectorization factors for both
1651   /// fixed and scalable vectorization, where the minimum-known number of
1652   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1653   /// disabled or unsupported, then the scalable part will be equal to
1654   /// ElementCount::getScalable(0).
1655   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1656                                            ElementCount UserVF);
1657 
1658   /// \return the maximized element count based on the targets vector
1659   /// registers and the loop trip-count, but limited to a maximum safe VF.
1660   /// This is a helper function of computeFeasibleMaxVF.
1661   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1662   /// issue that occurred on one of the buildbots which cannot be reproduced
1663   /// without having access to the properietary compiler (see comments on
1664   /// D98509). The issue is currently under investigation and this workaround
1665   /// will be removed as soon as possible.
1666   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1667                                        unsigned SmallestType,
1668                                        unsigned WidestType,
1669                                        const ElementCount &MaxSafeVF);
1670 
1671   /// \return the maximum legal scalable VF, based on the safe max number
1672   /// of elements.
1673   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1674 
1675   /// The vectorization cost is a combination of the cost itself and a boolean
1676   /// indicating whether any of the contributing operations will actually
1677   /// operate on vector values after type legalization in the backend. If this
1678   /// latter value is false, then all operations will be scalarized (i.e. no
1679   /// vectorization has actually taken place).
1680   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1681 
1682   /// Returns the expected execution cost. The unit of the cost does
1683   /// not matter because we use the 'cost' units to compare different
1684   /// vector widths. The cost that is returned is *not* normalized by
1685   /// the factor width. If \p Invalid is not nullptr, this function
1686   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1687   /// each instruction that has an Invalid cost for the given VF.
1688   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1689   VectorizationCostTy
1690   expectedCost(ElementCount VF,
1691                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1692 
1693   /// Returns the execution time cost of an instruction for a given vector
1694   /// width. Vector width of one means scalar.
1695   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1696 
1697   /// The cost-computation logic from getInstructionCost which provides
1698   /// the vector type as an output parameter.
1699   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1700                                      Type *&VectorTy);
1701 
1702   /// Return the cost of instructions in an inloop reduction pattern, if I is
1703   /// part of that pattern.
1704   Optional<InstructionCost>
1705   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1706                           TTI::TargetCostKind CostKind);
1707 
1708   /// Calculate vectorization cost of memory instruction \p I.
1709   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for scalarized memory instruction.
1712   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for interleaving group of memory instructions.
1715   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1716 
1717   /// The cost computation for Gather/Scatter instruction.
1718   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1719 
1720   /// The cost computation for widening instruction \p I with consecutive
1721   /// memory access.
1722   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1725   /// Load: scalar load + broadcast.
1726   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1727   /// element)
1728   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1729 
1730   /// Estimate the overhead of scalarizing an instruction. This is a
1731   /// convenience wrapper for the type-based getScalarizationOverhead API.
1732   InstructionCost getScalarizationOverhead(Instruction *I,
1733                                            ElementCount VF) const;
1734 
1735   /// Returns whether the instruction is a load or store and will be a emitted
1736   /// as a vector operation.
1737   bool isConsecutiveLoadOrStore(Instruction *I);
1738 
1739   /// Returns true if an artificially high cost for emulated masked memrefs
1740   /// should be used.
1741   bool useEmulatedMaskMemRefHack(Instruction *I);
1742 
1743   /// Map of scalar integer values to the smallest bitwidth they can be legally
1744   /// represented as. The vector equivalents of these values should be truncated
1745   /// to this type.
1746   MapVector<Instruction *, uint64_t> MinBWs;
1747 
1748   /// A type representing the costs for instructions if they were to be
1749   /// scalarized rather than vectorized. The entries are Instruction-Cost
1750   /// pairs.
1751   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1752 
1753   /// A set containing all BasicBlocks that are known to present after
1754   /// vectorization as a predicated block.
1755   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1756 
1757   /// Records whether it is allowed to have the original scalar loop execute at
1758   /// least once. This may be needed as a fallback loop in case runtime
1759   /// aliasing/dependence checks fail, or to handle the tail/remainder
1760   /// iterations when the trip count is unknown or doesn't divide by the VF,
1761   /// or as a peel-loop to handle gaps in interleave-groups.
1762   /// Under optsize and when the trip count is very small we don't allow any
1763   /// iterations to execute in the scalar loop.
1764   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1765 
1766   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1767   bool FoldTailByMasking = false;
1768 
1769   /// A map holding scalar costs for different vectorization factors. The
1770   /// presence of a cost for an instruction in the mapping indicates that the
1771   /// instruction will be scalarized when vectorizing with the associated
1772   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1773   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1774 
1775   /// Holds the instructions known to be uniform after vectorization.
1776   /// The data is collected per VF.
1777   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1778 
1779   /// Holds the instructions known to be scalar after vectorization.
1780   /// The data is collected per VF.
1781   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1782 
1783   /// Holds the instructions (address computations) that are forced to be
1784   /// scalarized.
1785   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1786 
1787   /// PHINodes of the reductions that should be expanded in-loop along with
1788   /// their associated chains of reduction operations, in program order from top
1789   /// (PHI) to bottom
1790   ReductionChainMap InLoopReductionChains;
1791 
1792   /// A Map of inloop reduction operations and their immediate chain operand.
1793   /// FIXME: This can be removed once reductions can be costed correctly in
1794   /// vplan. This was added to allow quick lookup to the inloop operations,
1795   /// without having to loop through InLoopReductionChains.
1796   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1797 
1798   /// Returns the expected difference in cost from scalarizing the expression
1799   /// feeding a predicated instruction \p PredInst. The instructions to
1800   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1801   /// non-negative return value implies the expression will be scalarized.
1802   /// Currently, only single-use chains are considered for scalarization.
1803   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1804                               ElementCount VF);
1805 
1806   /// Collect the instructions that are uniform after vectorization. An
1807   /// instruction is uniform if we represent it with a single scalar value in
1808   /// the vectorized loop corresponding to each vector iteration. Examples of
1809   /// uniform instructions include pointer operands of consecutive or
1810   /// interleaved memory accesses. Note that although uniformity implies an
1811   /// instruction will be scalar, the reverse is not true. In general, a
1812   /// scalarized instruction will be represented by VF scalar values in the
1813   /// vectorized loop, each corresponding to an iteration of the original
1814   /// scalar loop.
1815   void collectLoopUniforms(ElementCount VF);
1816 
1817   /// Collect the instructions that are scalar after vectorization. An
1818   /// instruction is scalar if it is known to be uniform or will be scalarized
1819   /// during vectorization. Non-uniform scalarized instructions will be
1820   /// represented by VF values in the vectorized loop, each corresponding to an
1821   /// iteration of the original scalar loop.
1822   void collectLoopScalars(ElementCount VF);
1823 
1824   /// Keeps cost model vectorization decision and cost for instructions.
1825   /// Right now it is used for memory instructions only.
1826   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1827                                 std::pair<InstWidening, InstructionCost>>;
1828 
1829   DecisionList WideningDecisions;
1830 
1831   /// Returns true if \p V is expected to be vectorized and it needs to be
1832   /// extracted.
1833   bool needsExtract(Value *V, ElementCount VF) const {
1834     Instruction *I = dyn_cast<Instruction>(V);
1835     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1836         TheLoop->isLoopInvariant(I))
1837       return false;
1838 
1839     // Assume we can vectorize V (and hence we need extraction) if the
1840     // scalars are not computed yet. This can happen, because it is called
1841     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1842     // the scalars are collected. That should be a safe assumption in most
1843     // cases, because we check if the operands have vectorizable types
1844     // beforehand in LoopVectorizationLegality.
1845     return Scalars.find(VF) == Scalars.end() ||
1846            !isScalarAfterVectorization(I, VF);
1847   };
1848 
1849   /// Returns a range containing only operands needing to be extracted.
1850   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1851                                                    ElementCount VF) const {
1852     return SmallVector<Value *, 4>(make_filter_range(
1853         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1854   }
1855 
1856   /// Determines if we have the infrastructure to vectorize loop \p L and its
1857   /// epilogue, assuming the main loop is vectorized by \p VF.
1858   bool isCandidateForEpilogueVectorization(const Loop &L,
1859                                            const ElementCount VF) const;
1860 
1861   /// Returns true if epilogue vectorization is considered profitable, and
1862   /// false otherwise.
1863   /// \p VF is the vectorization factor chosen for the original loop.
1864   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1865 
1866 public:
1867   /// The loop that we evaluate.
1868   Loop *TheLoop;
1869 
1870   /// Predicated scalar evolution analysis.
1871   PredicatedScalarEvolution &PSE;
1872 
1873   /// Loop Info analysis.
1874   LoopInfo *LI;
1875 
1876   /// Vectorization legality.
1877   LoopVectorizationLegality *Legal;
1878 
1879   /// Vector target information.
1880   const TargetTransformInfo &TTI;
1881 
1882   /// Target Library Info.
1883   const TargetLibraryInfo *TLI;
1884 
1885   /// Demanded bits analysis.
1886   DemandedBits *DB;
1887 
1888   /// Assumption cache.
1889   AssumptionCache *AC;
1890 
1891   /// Interface to emit optimization remarks.
1892   OptimizationRemarkEmitter *ORE;
1893 
1894   const Function *TheFunction;
1895 
1896   /// Loop Vectorize Hint.
1897   const LoopVectorizeHints *Hints;
1898 
1899   /// The interleave access information contains groups of interleaved accesses
1900   /// with the same stride and close to each other.
1901   InterleavedAccessInfo &InterleaveInfo;
1902 
1903   /// Values to ignore in the cost model.
1904   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1905 
1906   /// Values to ignore in the cost model when VF > 1.
1907   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1908 
1909   /// All element types found in the loop.
1910   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1911 
1912   /// Profitable vector factors.
1913   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1914 };
1915 } // end namespace llvm
1916 
1917 /// Helper struct to manage generating runtime checks for vectorization.
1918 ///
1919 /// The runtime checks are created up-front in temporary blocks to allow better
1920 /// estimating the cost and un-linked from the existing IR. After deciding to
1921 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1922 /// temporary blocks are completely removed.
1923 class GeneratedRTChecks {
1924   /// Basic block which contains the generated SCEV checks, if any.
1925   BasicBlock *SCEVCheckBlock = nullptr;
1926 
1927   /// The value representing the result of the generated SCEV checks. If it is
1928   /// nullptr, either no SCEV checks have been generated or they have been used.
1929   Value *SCEVCheckCond = nullptr;
1930 
1931   /// Basic block which contains the generated memory runtime checks, if any.
1932   BasicBlock *MemCheckBlock = nullptr;
1933 
1934   /// The value representing the result of the generated memory runtime checks.
1935   /// If it is nullptr, either no memory runtime checks have been generated or
1936   /// they have been used.
1937   Value *MemRuntimeCheckCond = nullptr;
1938 
1939   DominatorTree *DT;
1940   LoopInfo *LI;
1941 
1942   SCEVExpander SCEVExp;
1943   SCEVExpander MemCheckExp;
1944 
1945 public:
1946   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1947                     const DataLayout &DL)
1948       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1949         MemCheckExp(SE, DL, "scev.check") {}
1950 
1951   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1952   /// accurately estimate the cost of the runtime checks. The blocks are
1953   /// un-linked from the IR and is added back during vector code generation. If
1954   /// there is no vector code generation, the check blocks are removed
1955   /// completely.
1956   void Create(Loop *L, const LoopAccessInfo &LAI,
1957               const SCEVUnionPredicate &UnionPred) {
1958 
1959     BasicBlock *LoopHeader = L->getHeader();
1960     BasicBlock *Preheader = L->getLoopPreheader();
1961 
1962     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1963     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1964     // may be used by SCEVExpander. The blocks will be un-linked from their
1965     // predecessors and removed from LI & DT at the end of the function.
1966     if (!UnionPred.isAlwaysTrue()) {
1967       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1968                                   nullptr, "vector.scevcheck");
1969 
1970       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1971           &UnionPred, SCEVCheckBlock->getTerminator());
1972     }
1973 
1974     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1975     if (RtPtrChecking.Need) {
1976       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1977       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1978                                  "vector.memcheck");
1979 
1980       MemRuntimeCheckCond =
1981           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1982                            RtPtrChecking.getChecks(), MemCheckExp);
1983       assert(MemRuntimeCheckCond &&
1984              "no RT checks generated although RtPtrChecking "
1985              "claimed checks are required");
1986     }
1987 
1988     if (!MemCheckBlock && !SCEVCheckBlock)
1989       return;
1990 
1991     // Unhook the temporary block with the checks, update various places
1992     // accordingly.
1993     if (SCEVCheckBlock)
1994       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1995     if (MemCheckBlock)
1996       MemCheckBlock->replaceAllUsesWith(Preheader);
1997 
1998     if (SCEVCheckBlock) {
1999       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2000       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2001       Preheader->getTerminator()->eraseFromParent();
2002     }
2003     if (MemCheckBlock) {
2004       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2005       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2006       Preheader->getTerminator()->eraseFromParent();
2007     }
2008 
2009     DT->changeImmediateDominator(LoopHeader, Preheader);
2010     if (MemCheckBlock) {
2011       DT->eraseNode(MemCheckBlock);
2012       LI->removeBlock(MemCheckBlock);
2013     }
2014     if (SCEVCheckBlock) {
2015       DT->eraseNode(SCEVCheckBlock);
2016       LI->removeBlock(SCEVCheckBlock);
2017     }
2018   }
2019 
2020   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2021   /// unused.
2022   ~GeneratedRTChecks() {
2023     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2024     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2025     if (!SCEVCheckCond)
2026       SCEVCleaner.markResultUsed();
2027 
2028     if (!MemRuntimeCheckCond)
2029       MemCheckCleaner.markResultUsed();
2030 
2031     if (MemRuntimeCheckCond) {
2032       auto &SE = *MemCheckExp.getSE();
2033       // Memory runtime check generation creates compares that use expanded
2034       // values. Remove them before running the SCEVExpanderCleaners.
2035       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2036         if (MemCheckExp.isInsertedInstruction(&I))
2037           continue;
2038         SE.forgetValue(&I);
2039         I.eraseFromParent();
2040       }
2041     }
2042     MemCheckCleaner.cleanup();
2043     SCEVCleaner.cleanup();
2044 
2045     if (SCEVCheckCond)
2046       SCEVCheckBlock->eraseFromParent();
2047     if (MemRuntimeCheckCond)
2048       MemCheckBlock->eraseFromParent();
2049   }
2050 
2051   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2052   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2053   /// depending on the generated condition.
2054   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2055                              BasicBlock *LoopVectorPreHeader,
2056                              BasicBlock *LoopExitBlock) {
2057     if (!SCEVCheckCond)
2058       return nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(
2079         SCEVCheckBlock->getTerminator(),
2080         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2081     // Mark the check as used, to prevent it from being removed during cleanup.
2082     SCEVCheckCond = nullptr;
2083     return SCEVCheckBlock;
2084   }
2085 
2086   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2087   /// the branches to branch to the vector preheader or \p Bypass, depending on
2088   /// the generated condition.
2089   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2090                                    BasicBlock *LoopVectorPreHeader) {
2091     // Check if we generated code that checks in runtime if arrays overlap.
2092     if (!MemRuntimeCheckCond)
2093       return nullptr;
2094 
2095     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2096     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2097                                                 MemCheckBlock);
2098 
2099     DT->addNewBlock(MemCheckBlock, Pred);
2100     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2101     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2102 
2103     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2104       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2105 
2106     ReplaceInstWithInst(
2107         MemCheckBlock->getTerminator(),
2108         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2109     MemCheckBlock->getTerminator()->setDebugLoc(
2110         Pred->getTerminator()->getDebugLoc());
2111 
2112     // Mark the check as used, to prevent it from being removed during cleanup.
2113     MemRuntimeCheckCond = nullptr;
2114     return MemCheckBlock;
2115   }
2116 };
2117 
2118 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2119 // vectorization. The loop needs to be annotated with #pragma omp simd
2120 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2121 // vector length information is not provided, vectorization is not considered
2122 // explicit. Interleave hints are not allowed either. These limitations will be
2123 // relaxed in the future.
2124 // Please, note that we are currently forced to abuse the pragma 'clang
2125 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2126 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2127 // provides *explicit vectorization hints* (LV can bypass legal checks and
2128 // assume that vectorization is legal). However, both hints are implemented
2129 // using the same metadata (llvm.loop.vectorize, processed by
2130 // LoopVectorizeHints). This will be fixed in the future when the native IR
2131 // representation for pragma 'omp simd' is introduced.
2132 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2133                                    OptimizationRemarkEmitter *ORE) {
2134   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2135   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2136 
2137   // Only outer loops with an explicit vectorization hint are supported.
2138   // Unannotated outer loops are ignored.
2139   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2140     return false;
2141 
2142   Function *Fn = OuterLp->getHeader()->getParent();
2143   if (!Hints.allowVectorization(Fn, OuterLp,
2144                                 true /*VectorizeOnlyWhenForced*/)) {
2145     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2146     return false;
2147   }
2148 
2149   if (Hints.getInterleave() > 1) {
2150     // TODO: Interleave support is future work.
2151     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2152                          "outer loops.\n");
2153     Hints.emitRemarkWithHints();
2154     return false;
2155   }
2156 
2157   return true;
2158 }
2159 
2160 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2161                                   OptimizationRemarkEmitter *ORE,
2162                                   SmallVectorImpl<Loop *> &V) {
2163   // Collect inner loops and outer loops without irreducible control flow. For
2164   // now, only collect outer loops that have explicit vectorization hints. If we
2165   // are stress testing the VPlan H-CFG construction, we collect the outermost
2166   // loop of every loop nest.
2167   if (L.isInnermost() || VPlanBuildStressTest ||
2168       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2169     LoopBlocksRPO RPOT(&L);
2170     RPOT.perform(LI);
2171     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2172       V.push_back(&L);
2173       // TODO: Collect inner loops inside marked outer loops in case
2174       // vectorization fails for the outer loop. Do not invoke
2175       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2176       // already known to be reducible. We can use an inherited attribute for
2177       // that.
2178       return;
2179     }
2180   }
2181   for (Loop *InnerL : L)
2182     collectSupportedLoops(*InnerL, LI, ORE, V);
2183 }
2184 
2185 namespace {
2186 
2187 /// The LoopVectorize Pass.
2188 struct LoopVectorize : public FunctionPass {
2189   /// Pass identification, replacement for typeid
2190   static char ID;
2191 
2192   LoopVectorizePass Impl;
2193 
2194   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2195                          bool VectorizeOnlyWhenForced = false)
2196       : FunctionPass(ID),
2197         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2198     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2199   }
2200 
2201   bool runOnFunction(Function &F) override {
2202     if (skipFunction(F))
2203       return false;
2204 
2205     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2206     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2207     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2208     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2209     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2210     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2211     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2212     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2213     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2214     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2215     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2216     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2217     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2218 
2219     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2220         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2221 
2222     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2223                         GetLAA, *ORE, PSI).MadeAnyChange;
2224   }
2225 
2226   void getAnalysisUsage(AnalysisUsage &AU) const override {
2227     AU.addRequired<AssumptionCacheTracker>();
2228     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2229     AU.addRequired<DominatorTreeWrapperPass>();
2230     AU.addRequired<LoopInfoWrapperPass>();
2231     AU.addRequired<ScalarEvolutionWrapperPass>();
2232     AU.addRequired<TargetTransformInfoWrapperPass>();
2233     AU.addRequired<AAResultsWrapperPass>();
2234     AU.addRequired<LoopAccessLegacyAnalysis>();
2235     AU.addRequired<DemandedBitsWrapperPass>();
2236     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2237     AU.addRequired<InjectTLIMappingsLegacy>();
2238 
2239     // We currently do not preserve loopinfo/dominator analyses with outer loop
2240     // vectorization. Until this is addressed, mark these analyses as preserved
2241     // only for non-VPlan-native path.
2242     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2243     if (!EnableVPlanNativePath) {
2244       AU.addPreserved<LoopInfoWrapperPass>();
2245       AU.addPreserved<DominatorTreeWrapperPass>();
2246     }
2247 
2248     AU.addPreserved<BasicAAWrapperPass>();
2249     AU.addPreserved<GlobalsAAWrapperPass>();
2250     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2251   }
2252 };
2253 
2254 } // end anonymous namespace
2255 
2256 //===----------------------------------------------------------------------===//
2257 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2258 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2259 //===----------------------------------------------------------------------===//
2260 
2261 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2262   // We need to place the broadcast of invariant variables outside the loop,
2263   // but only if it's proven safe to do so. Else, broadcast will be inside
2264   // vector loop body.
2265   Instruction *Instr = dyn_cast<Instruction>(V);
2266   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2267                      (!Instr ||
2268                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2269   // Place the code for broadcasting invariant variables in the new preheader.
2270   IRBuilder<>::InsertPointGuard Guard(Builder);
2271   if (SafeToHoist)
2272     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2273 
2274   // Broadcast the scalar into all locations in the vector.
2275   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2276 
2277   return Shuf;
2278 }
2279 
2280 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2281     const InductionDescriptor &II, Value *Step, Value *Start,
2282     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2283     VPTransformState &State) {
2284   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2285          "Expected either an induction phi-node or a truncate of it!");
2286 
2287   // Construct the initial value of the vector IV in the vector loop preheader
2288   auto CurrIP = Builder.saveIP();
2289   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2290   if (isa<TruncInst>(EntryVal)) {
2291     assert(Start->getType()->isIntegerTy() &&
2292            "Truncation requires an integer type");
2293     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2294     Step = Builder.CreateTrunc(Step, TruncType);
2295     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2296   }
2297 
2298   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2299   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2300   Value *SteppedStart =
2301       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2302 
2303   // We create vector phi nodes for both integer and floating-point induction
2304   // variables. Here, we determine the kind of arithmetic we will perform.
2305   Instruction::BinaryOps AddOp;
2306   Instruction::BinaryOps MulOp;
2307   if (Step->getType()->isIntegerTy()) {
2308     AddOp = Instruction::Add;
2309     MulOp = Instruction::Mul;
2310   } else {
2311     AddOp = II.getInductionOpcode();
2312     MulOp = Instruction::FMul;
2313   }
2314 
2315   // Multiply the vectorization factor by the step using integer or
2316   // floating-point arithmetic as appropriate.
2317   Type *StepType = Step->getType();
2318   Value *RuntimeVF;
2319   if (Step->getType()->isFloatingPointTy())
2320     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2321   else
2322     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2323   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2324 
2325   // Create a vector splat to use in the induction update.
2326   //
2327   // FIXME: If the step is non-constant, we create the vector splat with
2328   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2329   //        handle a constant vector splat.
2330   Value *SplatVF = isa<Constant>(Mul)
2331                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2332                        : Builder.CreateVectorSplat(VF, Mul);
2333   Builder.restoreIP(CurrIP);
2334 
2335   // We may need to add the step a number of times, depending on the unroll
2336   // factor. The last of those goes into the PHI.
2337   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2338                                     &*LoopVectorBody->getFirstInsertionPt());
2339   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2340   Instruction *LastInduction = VecInd;
2341   for (unsigned Part = 0; Part < UF; ++Part) {
2342     State.set(Def, LastInduction, Part);
2343 
2344     if (isa<TruncInst>(EntryVal))
2345       addMetadata(LastInduction, EntryVal);
2346     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2347                                           State, Part);
2348 
2349     LastInduction = cast<Instruction>(
2350         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2351     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2352   }
2353 
2354   // Move the last step to the end of the latch block. This ensures consistent
2355   // placement of all induction updates.
2356   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2357   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2358   auto *ICmp = cast<Instruction>(Br->getCondition());
2359   LastInduction->moveBefore(ICmp);
2360   LastInduction->setName("vec.ind.next");
2361 
2362   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2363   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2364 }
2365 
2366 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2367   return Cost->isScalarAfterVectorization(I, VF) ||
2368          Cost->isProfitableToScalarize(I, VF);
2369 }
2370 
2371 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2372   if (shouldScalarizeInstruction(IV))
2373     return true;
2374   auto isScalarInst = [&](User *U) -> bool {
2375     auto *I = cast<Instruction>(U);
2376     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2377   };
2378   return llvm::any_of(IV->users(), isScalarInst);
2379 }
2380 
2381 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2382     const InductionDescriptor &ID, const Instruction *EntryVal,
2383     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2384     unsigned Part, unsigned Lane) {
2385   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2386          "Expected either an induction phi-node or a truncate of it!");
2387 
2388   // This induction variable is not the phi from the original loop but the
2389   // newly-created IV based on the proof that casted Phi is equal to the
2390   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2391   // re-uses the same InductionDescriptor that original IV uses but we don't
2392   // have to do any recording in this case - that is done when original IV is
2393   // processed.
2394   if (isa<TruncInst>(EntryVal))
2395     return;
2396 
2397   if (!CastDef) {
2398     assert(ID.getCastInsts().empty() &&
2399            "there are casts for ID, but no CastDef");
2400     return;
2401   }
2402   assert(!ID.getCastInsts().empty() &&
2403          "there is a CastDef, but no casts for ID");
2404   // Only the first Cast instruction in the Casts vector is of interest.
2405   // The rest of the Casts (if exist) have no uses outside the
2406   // induction update chain itself.
2407   if (Lane < UINT_MAX)
2408     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2409   else
2410     State.set(CastDef, VectorLoopVal, Part);
2411 }
2412 
2413 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2414                                                 TruncInst *Trunc, VPValue *Def,
2415                                                 VPValue *CastDef,
2416                                                 VPTransformState &State) {
2417   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2418          "Primary induction variable must have an integer type");
2419 
2420   auto II = Legal->getInductionVars().find(IV);
2421   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2422 
2423   auto ID = II->second;
2424   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2425 
2426   // The value from the original loop to which we are mapping the new induction
2427   // variable.
2428   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2429 
2430   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2431 
2432   // Generate code for the induction step. Note that induction steps are
2433   // required to be loop-invariant
2434   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2435     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2436            "Induction step should be loop invariant");
2437     if (PSE.getSE()->isSCEVable(IV->getType())) {
2438       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2439       return Exp.expandCodeFor(Step, Step->getType(),
2440                                LoopVectorPreHeader->getTerminator());
2441     }
2442     return cast<SCEVUnknown>(Step)->getValue();
2443   };
2444 
2445   // The scalar value to broadcast. This is derived from the canonical
2446   // induction variable. If a truncation type is given, truncate the canonical
2447   // induction variable and step. Otherwise, derive these values from the
2448   // induction descriptor.
2449   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2450     Value *ScalarIV = Induction;
2451     if (IV != OldInduction) {
2452       ScalarIV = IV->getType()->isIntegerTy()
2453                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2454                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2455                                           IV->getType());
2456       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2457       ScalarIV->setName("offset.idx");
2458     }
2459     if (Trunc) {
2460       auto *TruncType = cast<IntegerType>(Trunc->getType());
2461       assert(Step->getType()->isIntegerTy() &&
2462              "Truncation requires an integer step");
2463       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2464       Step = Builder.CreateTrunc(Step, TruncType);
2465     }
2466     return ScalarIV;
2467   };
2468 
2469   // Create the vector values from the scalar IV, in the absence of creating a
2470   // vector IV.
2471   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2472     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2473     for (unsigned Part = 0; Part < UF; ++Part) {
2474       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2475       Value *StartIdx;
2476       if (Step->getType()->isFloatingPointTy())
2477         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2478       else
2479         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2480 
2481       Value *EntryPart =
2482           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2483       State.set(Def, EntryPart, Part);
2484       if (Trunc)
2485         addMetadata(EntryPart, Trunc);
2486       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2487                                             State, Part);
2488     }
2489   };
2490 
2491   // Fast-math-flags propagate from the original induction instruction.
2492   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2493   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2494     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2495 
2496   // Now do the actual transformations, and start with creating the step value.
2497   Value *Step = CreateStepValue(ID.getStep());
2498   if (VF.isZero() || VF.isScalar()) {
2499     Value *ScalarIV = CreateScalarIV(Step);
2500     CreateSplatIV(ScalarIV, Step);
2501     return;
2502   }
2503 
2504   // Determine if we want a scalar version of the induction variable. This is
2505   // true if the induction variable itself is not widened, or if it has at
2506   // least one user in the loop that is not widened.
2507   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2508   if (!NeedsScalarIV) {
2509     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2510                                     State);
2511     return;
2512   }
2513 
2514   // Try to create a new independent vector induction variable. If we can't
2515   // create the phi node, we will splat the scalar induction variable in each
2516   // loop iteration.
2517   if (!shouldScalarizeInstruction(EntryVal)) {
2518     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2519                                     State);
2520     Value *ScalarIV = CreateScalarIV(Step);
2521     // Create scalar steps that can be used by instructions we will later
2522     // scalarize. Note that the addition of the scalar steps will not increase
2523     // the number of instructions in the loop in the common case prior to
2524     // InstCombine. We will be trading one vector extract for each scalar step.
2525     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2526     return;
2527   }
2528 
2529   // All IV users are scalar instructions, so only emit a scalar IV, not a
2530   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2531   // predicate used by the masked loads/stores.
2532   Value *ScalarIV = CreateScalarIV(Step);
2533   if (!Cost->isScalarEpilogueAllowed())
2534     CreateSplatIV(ScalarIV, Step);
2535   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2536 }
2537 
2538 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2539                                           Value *Step,
2540                                           Instruction::BinaryOps BinOp) {
2541   // Create and check the types.
2542   auto *ValVTy = cast<VectorType>(Val->getType());
2543   ElementCount VLen = ValVTy->getElementCount();
2544 
2545   Type *STy = Val->getType()->getScalarType();
2546   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2547          "Induction Step must be an integer or FP");
2548   assert(Step->getType() == STy && "Step has wrong type");
2549 
2550   SmallVector<Constant *, 8> Indices;
2551 
2552   // Create a vector of consecutive numbers from zero to VF.
2553   VectorType *InitVecValVTy = ValVTy;
2554   Type *InitVecValSTy = STy;
2555   if (STy->isFloatingPointTy()) {
2556     InitVecValSTy =
2557         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2558     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2559   }
2560   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2561 
2562   // Splat the StartIdx
2563   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2564 
2565   if (STy->isIntegerTy()) {
2566     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2567     Step = Builder.CreateVectorSplat(VLen, Step);
2568     assert(Step->getType() == Val->getType() && "Invalid step vec");
2569     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2570     // which can be found from the original scalar operations.
2571     Step = Builder.CreateMul(InitVec, Step);
2572     return Builder.CreateAdd(Val, Step, "induction");
2573   }
2574 
2575   // Floating point induction.
2576   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2577          "Binary Opcode should be specified for FP induction");
2578   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2579   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2580 
2581   Step = Builder.CreateVectorSplat(VLen, Step);
2582   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2583   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2584 }
2585 
2586 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2587                                            Instruction *EntryVal,
2588                                            const InductionDescriptor &ID,
2589                                            VPValue *Def, VPValue *CastDef,
2590                                            VPTransformState &State) {
2591   // We shouldn't have to build scalar steps if we aren't vectorizing.
2592   assert(VF.isVector() && "VF should be greater than one");
2593   // Get the value type and ensure it and the step have the same integer type.
2594   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2595   assert(ScalarIVTy == Step->getType() &&
2596          "Val and Step should have the same type");
2597 
2598   // We build scalar steps for both integer and floating-point induction
2599   // variables. Here, we determine the kind of arithmetic we will perform.
2600   Instruction::BinaryOps AddOp;
2601   Instruction::BinaryOps MulOp;
2602   if (ScalarIVTy->isIntegerTy()) {
2603     AddOp = Instruction::Add;
2604     MulOp = Instruction::Mul;
2605   } else {
2606     AddOp = ID.getInductionOpcode();
2607     MulOp = Instruction::FMul;
2608   }
2609 
2610   // Determine the number of scalars we need to generate for each unroll
2611   // iteration. If EntryVal is uniform, we only need to generate the first
2612   // lane. Otherwise, we generate all VF values.
2613   bool IsUniform =
2614       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2615   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2616   // Compute the scalar steps and save the results in State.
2617   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2618                                      ScalarIVTy->getScalarSizeInBits());
2619   Type *VecIVTy = nullptr;
2620   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2621   if (!IsUniform && VF.isScalable()) {
2622     VecIVTy = VectorType::get(ScalarIVTy, VF);
2623     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2624     SplatStep = Builder.CreateVectorSplat(VF, Step);
2625     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2626   }
2627 
2628   for (unsigned Part = 0; Part < UF; ++Part) {
2629     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part);
2630 
2631     if (!IsUniform && VF.isScalable()) {
2632       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2633       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2634       if (ScalarIVTy->isFloatingPointTy())
2635         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2636       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2637       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2638       State.set(Def, Add, Part);
2639       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2640                                             Part);
2641       // It's useful to record the lane values too for the known minimum number
2642       // of elements so we do those below. This improves the code quality when
2643       // trying to extract the first element, for example.
2644     }
2645 
2646     if (ScalarIVTy->isFloatingPointTy())
2647       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2648 
2649     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2650       Value *StartIdx = Builder.CreateBinOp(
2651           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2652       // The step returned by `createStepForVF` is a runtime-evaluated value
2653       // when VF is scalable. Otherwise, it should be folded into a Constant.
2654       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2655              "Expected StartIdx to be folded to a constant when VF is not "
2656              "scalable");
2657       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2658       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2659       State.set(Def, Add, VPIteration(Part, Lane));
2660       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2661                                             Part, Lane);
2662     }
2663   }
2664 }
2665 
2666 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2667                                                     const VPIteration &Instance,
2668                                                     VPTransformState &State) {
2669   Value *ScalarInst = State.get(Def, Instance);
2670   Value *VectorValue = State.get(Def, Instance.Part);
2671   VectorValue = Builder.CreateInsertElement(
2672       VectorValue, ScalarInst,
2673       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2674   State.set(Def, VectorValue, Instance.Part);
2675 }
2676 
2677 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2678   assert(Vec->getType()->isVectorTy() && "Invalid type");
2679   return Builder.CreateVectorReverse(Vec, "reverse");
2680 }
2681 
2682 // Return whether we allow using masked interleave-groups (for dealing with
2683 // strided loads/stores that reside in predicated blocks, or for dealing
2684 // with gaps).
2685 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2686   // If an override option has been passed in for interleaved accesses, use it.
2687   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2688     return EnableMaskedInterleavedMemAccesses;
2689 
2690   return TTI.enableMaskedInterleavedAccessVectorization();
2691 }
2692 
2693 // Try to vectorize the interleave group that \p Instr belongs to.
2694 //
2695 // E.g. Translate following interleaved load group (factor = 3):
2696 //   for (i = 0; i < N; i+=3) {
2697 //     R = Pic[i];             // Member of index 0
2698 //     G = Pic[i+1];           // Member of index 1
2699 //     B = Pic[i+2];           // Member of index 2
2700 //     ... // do something to R, G, B
2701 //   }
2702 // To:
2703 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2704 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2705 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2706 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2707 //
2708 // Or translate following interleaved store group (factor = 3):
2709 //   for (i = 0; i < N; i+=3) {
2710 //     ... do something to R, G, B
2711 //     Pic[i]   = R;           // Member of index 0
2712 //     Pic[i+1] = G;           // Member of index 1
2713 //     Pic[i+2] = B;           // Member of index 2
2714 //   }
2715 // To:
2716 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2717 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2718 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2719 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2720 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2721 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2722     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2723     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2724     VPValue *BlockInMask) {
2725   Instruction *Instr = Group->getInsertPos();
2726   const DataLayout &DL = Instr->getModule()->getDataLayout();
2727 
2728   // Prepare for the vector type of the interleaved load/store.
2729   Type *ScalarTy = getLoadStoreType(Instr);
2730   unsigned InterleaveFactor = Group->getFactor();
2731   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2732   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2733 
2734   // Prepare for the new pointers.
2735   SmallVector<Value *, 2> AddrParts;
2736   unsigned Index = Group->getIndex(Instr);
2737 
2738   // TODO: extend the masked interleaved-group support to reversed access.
2739   assert((!BlockInMask || !Group->isReverse()) &&
2740          "Reversed masked interleave-group not supported.");
2741 
2742   // If the group is reverse, adjust the index to refer to the last vector lane
2743   // instead of the first. We adjust the index from the first vector lane,
2744   // rather than directly getting the pointer for lane VF - 1, because the
2745   // pointer operand of the interleaved access is supposed to be uniform. For
2746   // uniform instructions, we're only required to generate a value for the
2747   // first vector lane in each unroll iteration.
2748   if (Group->isReverse())
2749     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2750 
2751   for (unsigned Part = 0; Part < UF; Part++) {
2752     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2753     setDebugLocFromInst(AddrPart);
2754 
2755     // Notice current instruction could be any index. Need to adjust the address
2756     // to the member of index 0.
2757     //
2758     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2759     //       b = A[i];       // Member of index 0
2760     // Current pointer is pointed to A[i+1], adjust it to A[i].
2761     //
2762     // E.g.  A[i+1] = a;     // Member of index 1
2763     //       A[i]   = b;     // Member of index 0
2764     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2765     // Current pointer is pointed to A[i+2], adjust it to A[i].
2766 
2767     bool InBounds = false;
2768     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2769       InBounds = gep->isInBounds();
2770     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2771     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2772 
2773     // Cast to the vector pointer type.
2774     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2775     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2776     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2777   }
2778 
2779   setDebugLocFromInst(Instr);
2780   Value *PoisonVec = PoisonValue::get(VecTy);
2781 
2782   Value *MaskForGaps = nullptr;
2783   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2784     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2785     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2786   }
2787 
2788   // Vectorize the interleaved load group.
2789   if (isa<LoadInst>(Instr)) {
2790     // For each unroll part, create a wide load for the group.
2791     SmallVector<Value *, 2> NewLoads;
2792     for (unsigned Part = 0; Part < UF; Part++) {
2793       Instruction *NewLoad;
2794       if (BlockInMask || MaskForGaps) {
2795         assert(useMaskedInterleavedAccesses(*TTI) &&
2796                "masked interleaved groups are not allowed.");
2797         Value *GroupMask = MaskForGaps;
2798         if (BlockInMask) {
2799           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2800           Value *ShuffledMask = Builder.CreateShuffleVector(
2801               BlockInMaskPart,
2802               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2803               "interleaved.mask");
2804           GroupMask = MaskForGaps
2805                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2806                                                 MaskForGaps)
2807                           : ShuffledMask;
2808         }
2809         NewLoad =
2810             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2811                                      GroupMask, PoisonVec, "wide.masked.vec");
2812       }
2813       else
2814         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2815                                             Group->getAlign(), "wide.vec");
2816       Group->addMetadata(NewLoad);
2817       NewLoads.push_back(NewLoad);
2818     }
2819 
2820     // For each member in the group, shuffle out the appropriate data from the
2821     // wide loads.
2822     unsigned J = 0;
2823     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2824       Instruction *Member = Group->getMember(I);
2825 
2826       // Skip the gaps in the group.
2827       if (!Member)
2828         continue;
2829 
2830       auto StrideMask =
2831           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2832       for (unsigned Part = 0; Part < UF; Part++) {
2833         Value *StridedVec = Builder.CreateShuffleVector(
2834             NewLoads[Part], StrideMask, "strided.vec");
2835 
2836         // If this member has different type, cast the result type.
2837         if (Member->getType() != ScalarTy) {
2838           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2839           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2840           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2841         }
2842 
2843         if (Group->isReverse())
2844           StridedVec = reverseVector(StridedVec);
2845 
2846         State.set(VPDefs[J], StridedVec, Part);
2847       }
2848       ++J;
2849     }
2850     return;
2851   }
2852 
2853   // The sub vector type for current instruction.
2854   auto *SubVT = VectorType::get(ScalarTy, VF);
2855 
2856   // Vectorize the interleaved store group.
2857   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2858   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2859          "masked interleaved groups are not allowed.");
2860   assert((!MaskForGaps || !VF.isScalable()) &&
2861          "masking gaps for scalable vectors is not yet supported.");
2862   for (unsigned Part = 0; Part < UF; Part++) {
2863     // Collect the stored vector from each member.
2864     SmallVector<Value *, 4> StoredVecs;
2865     for (unsigned i = 0; i < InterleaveFactor; i++) {
2866       assert((Group->getMember(i) || MaskForGaps) &&
2867              "Fail to get a member from an interleaved store group");
2868       Instruction *Member = Group->getMember(i);
2869 
2870       // Skip the gaps in the group.
2871       if (!Member) {
2872         Value *Undef = PoisonValue::get(SubVT);
2873         StoredVecs.push_back(Undef);
2874         continue;
2875       }
2876 
2877       Value *StoredVec = State.get(StoredValues[i], Part);
2878 
2879       if (Group->isReverse())
2880         StoredVec = reverseVector(StoredVec);
2881 
2882       // If this member has different type, cast it to a unified type.
2883 
2884       if (StoredVec->getType() != SubVT)
2885         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2886 
2887       StoredVecs.push_back(StoredVec);
2888     }
2889 
2890     // Concatenate all vectors into a wide vector.
2891     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2892 
2893     // Interleave the elements in the wide vector.
2894     Value *IVec = Builder.CreateShuffleVector(
2895         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2896         "interleaved.vec");
2897 
2898     Instruction *NewStoreInstr;
2899     if (BlockInMask || MaskForGaps) {
2900       Value *GroupMask = MaskForGaps;
2901       if (BlockInMask) {
2902         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2903         Value *ShuffledMask = Builder.CreateShuffleVector(
2904             BlockInMaskPart,
2905             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2906             "interleaved.mask");
2907         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2908                                                       ShuffledMask, MaskForGaps)
2909                                 : ShuffledMask;
2910       }
2911       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2912                                                 Group->getAlign(), GroupMask);
2913     } else
2914       NewStoreInstr =
2915           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2916 
2917     Group->addMetadata(NewStoreInstr);
2918   }
2919 }
2920 
2921 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2922     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2923     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
2924     bool Reverse) {
2925   // Attempt to issue a wide load.
2926   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2927   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2928 
2929   assert((LI || SI) && "Invalid Load/Store instruction");
2930   assert((!SI || StoredValue) && "No stored value provided for widened store");
2931   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2932 
2933   Type *ScalarDataTy = getLoadStoreType(Instr);
2934 
2935   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2936   const Align Alignment = getLoadStoreAlignment(Instr);
2937   bool CreateGatherScatter = !ConsecutiveStride;
2938 
2939   VectorParts BlockInMaskParts(UF);
2940   bool isMaskRequired = BlockInMask;
2941   if (isMaskRequired)
2942     for (unsigned Part = 0; Part < UF; ++Part)
2943       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2944 
2945   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2946     // Calculate the pointer for the specific unroll-part.
2947     GetElementPtrInst *PartPtr = nullptr;
2948 
2949     bool InBounds = false;
2950     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2951       InBounds = gep->isInBounds();
2952     if (Reverse) {
2953       // If the address is consecutive but reversed, then the
2954       // wide store needs to start at the last vector element.
2955       // RunTimeVF =  VScale * VF.getKnownMinValue()
2956       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2957       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2958       // NumElt = -Part * RunTimeVF
2959       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2960       // LastLane = 1 - RunTimeVF
2961       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2962       PartPtr =
2963           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2964       PartPtr->setIsInBounds(InBounds);
2965       PartPtr = cast<GetElementPtrInst>(
2966           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2967       PartPtr->setIsInBounds(InBounds);
2968       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2969         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2970     } else {
2971       Value *Increment =
2972           createStepForVF(Builder, Builder.getInt32Ty(), VF, Part);
2973       PartPtr = cast<GetElementPtrInst>(
2974           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2975       PartPtr->setIsInBounds(InBounds);
2976     }
2977 
2978     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2979     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2980   };
2981 
2982   // Handle Stores:
2983   if (SI) {
2984     setDebugLocFromInst(SI);
2985 
2986     for (unsigned Part = 0; Part < UF; ++Part) {
2987       Instruction *NewSI = nullptr;
2988       Value *StoredVal = State.get(StoredValue, Part);
2989       if (CreateGatherScatter) {
2990         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2991         Value *VectorGep = State.get(Addr, Part);
2992         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2993                                             MaskPart);
2994       } else {
2995         if (Reverse) {
2996           // If we store to reverse consecutive memory locations, then we need
2997           // to reverse the order of elements in the stored value.
2998           StoredVal = reverseVector(StoredVal);
2999           // We don't want to update the value in the map as it might be used in
3000           // another expression. So don't call resetVectorValue(StoredVal).
3001         }
3002         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3003         if (isMaskRequired)
3004           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3005                                             BlockInMaskParts[Part]);
3006         else
3007           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3008       }
3009       addMetadata(NewSI, SI);
3010     }
3011     return;
3012   }
3013 
3014   // Handle loads.
3015   assert(LI && "Must have a load instruction");
3016   setDebugLocFromInst(LI);
3017   for (unsigned Part = 0; Part < UF; ++Part) {
3018     Value *NewLI;
3019     if (CreateGatherScatter) {
3020       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3021       Value *VectorGep = State.get(Addr, Part);
3022       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3023                                          nullptr, "wide.masked.gather");
3024       addMetadata(NewLI, LI);
3025     } else {
3026       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3027       if (isMaskRequired)
3028         NewLI = Builder.CreateMaskedLoad(
3029             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3030             PoisonValue::get(DataTy), "wide.masked.load");
3031       else
3032         NewLI =
3033             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3034 
3035       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3036       addMetadata(NewLI, LI);
3037       if (Reverse)
3038         NewLI = reverseVector(NewLI);
3039     }
3040 
3041     State.set(Def, NewLI, Part);
3042   }
3043 }
3044 
3045 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3046                                                VPUser &User,
3047                                                const VPIteration &Instance,
3048                                                bool IfPredicateInstr,
3049                                                VPTransformState &State) {
3050   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3051 
3052   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3053   // the first lane and part.
3054   if (isa<NoAliasScopeDeclInst>(Instr))
3055     if (!Instance.isFirstIteration())
3056       return;
3057 
3058   setDebugLocFromInst(Instr);
3059 
3060   // Does this instruction return a value ?
3061   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3062 
3063   Instruction *Cloned = Instr->clone();
3064   if (!IsVoidRetTy)
3065     Cloned->setName(Instr->getName() + ".cloned");
3066 
3067   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3068                                Builder.GetInsertPoint());
3069   // Replace the operands of the cloned instructions with their scalar
3070   // equivalents in the new loop.
3071   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3072     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3073     auto InputInstance = Instance;
3074     if (!Operand || !OrigLoop->contains(Operand) ||
3075         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3076       InputInstance.Lane = VPLane::getFirstLane();
3077     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3078     Cloned->setOperand(op, NewOp);
3079   }
3080   addNewMetadata(Cloned, Instr);
3081 
3082   // Place the cloned scalar in the new loop.
3083   Builder.Insert(Cloned);
3084 
3085   State.set(Def, Cloned, Instance);
3086 
3087   // If we just cloned a new assumption, add it the assumption cache.
3088   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3089     AC->registerAssumption(II);
3090 
3091   // End if-block.
3092   if (IfPredicateInstr)
3093     PredicatedInstructions.push_back(Cloned);
3094 }
3095 
3096 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3097                                                       Value *End, Value *Step,
3098                                                       Instruction *DL) {
3099   BasicBlock *Header = L->getHeader();
3100   BasicBlock *Latch = L->getLoopLatch();
3101   // As we're just creating this loop, it's possible no latch exists
3102   // yet. If so, use the header as this will be a single block loop.
3103   if (!Latch)
3104     Latch = Header;
3105 
3106   IRBuilder<> B(&*Header->getFirstInsertionPt());
3107   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3108   setDebugLocFromInst(OldInst, &B);
3109   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3110 
3111   B.SetInsertPoint(Latch->getTerminator());
3112   setDebugLocFromInst(OldInst, &B);
3113 
3114   // Create i+1 and fill the PHINode.
3115   //
3116   // If the tail is not folded, we know that End - Start >= Step (either
3117   // statically or through the minimum iteration checks). We also know that both
3118   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3119   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3120   // overflows and we can mark the induction increment as NUW.
3121   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3122                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3123   Induction->addIncoming(Start, L->getLoopPreheader());
3124   Induction->addIncoming(Next, Latch);
3125   // Create the compare.
3126   Value *ICmp = B.CreateICmpEQ(Next, End);
3127   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3128 
3129   // Now we have two terminators. Remove the old one from the block.
3130   Latch->getTerminator()->eraseFromParent();
3131 
3132   return Induction;
3133 }
3134 
3135 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3136   if (TripCount)
3137     return TripCount;
3138 
3139   assert(L && "Create Trip Count for null loop.");
3140   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3141   // Find the loop boundaries.
3142   ScalarEvolution *SE = PSE.getSE();
3143   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3144   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3145          "Invalid loop count");
3146 
3147   Type *IdxTy = Legal->getWidestInductionType();
3148   assert(IdxTy && "No type for induction");
3149 
3150   // The exit count might have the type of i64 while the phi is i32. This can
3151   // happen if we have an induction variable that is sign extended before the
3152   // compare. The only way that we get a backedge taken count is that the
3153   // induction variable was signed and as such will not overflow. In such a case
3154   // truncation is legal.
3155   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3156       IdxTy->getPrimitiveSizeInBits())
3157     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3158   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3159 
3160   // Get the total trip count from the count by adding 1.
3161   const SCEV *ExitCount = SE->getAddExpr(
3162       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3163 
3164   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3165 
3166   // Expand the trip count and place the new instructions in the preheader.
3167   // Notice that the pre-header does not change, only the loop body.
3168   SCEVExpander Exp(*SE, DL, "induction");
3169 
3170   // Count holds the overall loop count (N).
3171   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3172                                 L->getLoopPreheader()->getTerminator());
3173 
3174   if (TripCount->getType()->isPointerTy())
3175     TripCount =
3176         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3177                                     L->getLoopPreheader()->getTerminator());
3178 
3179   return TripCount;
3180 }
3181 
3182 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3183   if (VectorTripCount)
3184     return VectorTripCount;
3185 
3186   Value *TC = getOrCreateTripCount(L);
3187   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3188 
3189   Type *Ty = TC->getType();
3190   // This is where we can make the step a runtime constant.
3191   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3192 
3193   // If the tail is to be folded by masking, round the number of iterations N
3194   // up to a multiple of Step instead of rounding down. This is done by first
3195   // adding Step-1 and then rounding down. Note that it's ok if this addition
3196   // overflows: the vector induction variable will eventually wrap to zero given
3197   // that it starts at zero and its Step is a power of two; the loop will then
3198   // exit, with the last early-exit vector comparison also producing all-true.
3199   if (Cost->foldTailByMasking()) {
3200     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3201            "VF*UF must be a power of 2 when folding tail by masking");
3202     assert(!VF.isScalable() &&
3203            "Tail folding not yet supported for scalable vectors");
3204     TC = Builder.CreateAdd(
3205         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3206   }
3207 
3208   // Now we need to generate the expression for the part of the loop that the
3209   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3210   // iterations are not required for correctness, or N - Step, otherwise. Step
3211   // is equal to the vectorization factor (number of SIMD elements) times the
3212   // unroll factor (number of SIMD instructions).
3213   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3214 
3215   // There are cases where we *must* run at least one iteration in the remainder
3216   // loop.  See the cost model for when this can happen.  If the step evenly
3217   // divides the trip count, we set the remainder to be equal to the step. If
3218   // the step does not evenly divide the trip count, no adjustment is necessary
3219   // since there will already be scalar iterations. Note that the minimum
3220   // iterations check ensures that N >= Step.
3221   if (Cost->requiresScalarEpilogue(VF)) {
3222     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3223     R = Builder.CreateSelect(IsZero, Step, R);
3224   }
3225 
3226   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3227 
3228   return VectorTripCount;
3229 }
3230 
3231 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3232                                                    const DataLayout &DL) {
3233   // Verify that V is a vector type with same number of elements as DstVTy.
3234   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3235   unsigned VF = DstFVTy->getNumElements();
3236   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3237   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3238   Type *SrcElemTy = SrcVecTy->getElementType();
3239   Type *DstElemTy = DstFVTy->getElementType();
3240   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3241          "Vector elements must have same size");
3242 
3243   // Do a direct cast if element types are castable.
3244   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3245     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3246   }
3247   // V cannot be directly casted to desired vector type.
3248   // May happen when V is a floating point vector but DstVTy is a vector of
3249   // pointers or vice-versa. Handle this using a two-step bitcast using an
3250   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3251   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3252          "Only one type should be a pointer type");
3253   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3254          "Only one type should be a floating point type");
3255   Type *IntTy =
3256       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3257   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3258   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3259   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3260 }
3261 
3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3263                                                          BasicBlock *Bypass) {
3264   Value *Count = getOrCreateTripCount(L);
3265   // Reuse existing vector loop preheader for TC checks.
3266   // Note that new preheader block is generated for vector loop.
3267   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3268   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3269 
3270   // Generate code to check if the loop's trip count is less than VF * UF, or
3271   // equal to it in case a scalar epilogue is required; this implies that the
3272   // vector trip count is zero. This check also covers the case where adding one
3273   // to the backedge-taken count overflowed leading to an incorrect trip count
3274   // of zero. In this case we will also jump to the scalar loop.
3275   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3276                                             : ICmpInst::ICMP_ULT;
3277 
3278   // If tail is to be folded, vector loop takes care of all iterations.
3279   Value *CheckMinIters = Builder.getFalse();
3280   if (!Cost->foldTailByMasking()) {
3281     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3282     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3283   }
3284   // Create new preheader for vector loop.
3285   LoopVectorPreHeader =
3286       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3287                  "vector.ph");
3288 
3289   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3290                                DT->getNode(Bypass)->getIDom()) &&
3291          "TC check is expected to dominate Bypass");
3292 
3293   // Update dominator for Bypass & LoopExit (if needed).
3294   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3295   if (!Cost->requiresScalarEpilogue(VF))
3296     // If there is an epilogue which must run, there's no edge from the
3297     // middle block to exit blocks  and thus no need to update the immediate
3298     // dominator of the exit blocks.
3299     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3300 
3301   ReplaceInstWithInst(
3302       TCCheckBlock->getTerminator(),
3303       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3304   LoopBypassBlocks.push_back(TCCheckBlock);
3305 }
3306 
3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3308 
3309   BasicBlock *const SCEVCheckBlock =
3310       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3311   if (!SCEVCheckBlock)
3312     return nullptr;
3313 
3314   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3315            (OptForSizeBasedOnProfile &&
3316             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3317          "Cannot SCEV check stride or overflow when optimizing for size");
3318 
3319 
3320   // Update dominator only if this is first RT check.
3321   if (LoopBypassBlocks.empty()) {
3322     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3323     if (!Cost->requiresScalarEpilogue(VF))
3324       // If there is an epilogue which must run, there's no edge from the
3325       // middle block to exit blocks  and thus no need to update the immediate
3326       // dominator of the exit blocks.
3327       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3328   }
3329 
3330   LoopBypassBlocks.push_back(SCEVCheckBlock);
3331   AddedSafetyChecks = true;
3332   return SCEVCheckBlock;
3333 }
3334 
3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3336                                                       BasicBlock *Bypass) {
3337   // VPlan-native path does not do any analysis for runtime checks currently.
3338   if (EnableVPlanNativePath)
3339     return nullptr;
3340 
3341   BasicBlock *const MemCheckBlock =
3342       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3343 
3344   // Check if we generated code that checks in runtime if arrays overlap. We put
3345   // the checks into a separate block to make the more common case of few
3346   // elements faster.
3347   if (!MemCheckBlock)
3348     return nullptr;
3349 
3350   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3351     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3352            "Cannot emit memory checks when optimizing for size, unless forced "
3353            "to vectorize.");
3354     ORE->emit([&]() {
3355       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3356                                         L->getStartLoc(), L->getHeader())
3357              << "Code-size may be reduced by not forcing "
3358                 "vectorization, or by source-code modifications "
3359                 "eliminating the need for runtime checks "
3360                 "(e.g., adding 'restrict').";
3361     });
3362   }
3363 
3364   LoopBypassBlocks.push_back(MemCheckBlock);
3365 
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = std::make_unique<LoopVersioning>(
3371       *Legal->getLAI(),
3372       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3373       DT, PSE.getSE());
3374   LVer->prepareNoAliasMetadata();
3375   return MemCheckBlock;
3376 }
3377 
3378 Value *InnerLoopVectorizer::emitTransformedIndex(
3379     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3380     const InductionDescriptor &ID) const {
3381 
3382   SCEVExpander Exp(*SE, DL, "induction");
3383   auto Step = ID.getStep();
3384   auto StartValue = ID.getStartValue();
3385   assert(Index->getType()->getScalarType() == Step->getType() &&
3386          "Index scalar type does not match StepValue type");
3387 
3388   // Note: the IR at this point is broken. We cannot use SE to create any new
3389   // SCEV and then expand it, hoping that SCEV's simplification will give us
3390   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3391   // lead to various SCEV crashes. So all we can do is to use builder and rely
3392   // on InstCombine for future simplifications. Here we handle some trivial
3393   // cases only.
3394   auto CreateAdd = [&B](Value *X, Value *Y) {
3395     assert(X->getType() == Y->getType() && "Types don't match!");
3396     if (auto *CX = dyn_cast<ConstantInt>(X))
3397       if (CX->isZero())
3398         return Y;
3399     if (auto *CY = dyn_cast<ConstantInt>(Y))
3400       if (CY->isZero())
3401         return X;
3402     return B.CreateAdd(X, Y);
3403   };
3404 
3405   // We allow X to be a vector type, in which case Y will potentially be
3406   // splatted into a vector with the same element count.
3407   auto CreateMul = [&B](Value *X, Value *Y) {
3408     assert(X->getType()->getScalarType() == Y->getType() &&
3409            "Types don't match!");
3410     if (auto *CX = dyn_cast<ConstantInt>(X))
3411       if (CX->isOne())
3412         return Y;
3413     if (auto *CY = dyn_cast<ConstantInt>(Y))
3414       if (CY->isOne())
3415         return X;
3416     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3417     if (XVTy && !isa<VectorType>(Y->getType()))
3418       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3419     return B.CreateMul(X, Y);
3420   };
3421 
3422   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3423   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3424   // the DomTree is not kept up-to-date for additional blocks generated in the
3425   // vector loop. By using the header as insertion point, we guarantee that the
3426   // expanded instructions dominate all their uses.
3427   auto GetInsertPoint = [this, &B]() {
3428     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3429     if (InsertBB != LoopVectorBody &&
3430         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3431       return LoopVectorBody->getTerminator();
3432     return &*B.GetInsertPoint();
3433   };
3434 
3435   switch (ID.getKind()) {
3436   case InductionDescriptor::IK_IntInduction: {
3437     assert(!isa<VectorType>(Index->getType()) &&
3438            "Vector indices not supported for integer inductions yet");
3439     assert(Index->getType() == StartValue->getType() &&
3440            "Index type does not match StartValue type");
3441     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3442       return B.CreateSub(StartValue, Index);
3443     auto *Offset = CreateMul(
3444         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3445     return CreateAdd(StartValue, Offset);
3446   }
3447   case InductionDescriptor::IK_PtrInduction: {
3448     assert(isa<SCEVConstant>(Step) &&
3449            "Expected constant step for pointer induction");
3450     return B.CreateGEP(
3451         ID.getElementType(), StartValue,
3452         CreateMul(Index,
3453                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3454                                     GetInsertPoint())));
3455   }
3456   case InductionDescriptor::IK_FpInduction: {
3457     assert(!isa<VectorType>(Index->getType()) &&
3458            "Vector indices not supported for FP inductions yet");
3459     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3460     auto InductionBinOp = ID.getInductionBinOp();
3461     assert(InductionBinOp &&
3462            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3463             InductionBinOp->getOpcode() == Instruction::FSub) &&
3464            "Original bin op should be defined for FP induction");
3465 
3466     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3467     Value *MulExp = B.CreateFMul(StepValue, Index);
3468     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3469                          "induction");
3470   }
3471   case InductionDescriptor::IK_NoInduction:
3472     return nullptr;
3473   }
3474   llvm_unreachable("invalid enum");
3475 }
3476 
3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3478   LoopScalarBody = OrigLoop->getHeader();
3479   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3480   assert(LoopVectorPreHeader && "Invalid loop structure");
3481   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3482   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3483          "multiple exit loop without required epilogue?");
3484 
3485   LoopMiddleBlock =
3486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3487                  LI, nullptr, Twine(Prefix) + "middle.block");
3488   LoopScalarPreHeader =
3489       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3490                  nullptr, Twine(Prefix) + "scalar.ph");
3491 
3492   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3493 
3494   // Set up the middle block terminator.  Two cases:
3495   // 1) If we know that we must execute the scalar epilogue, emit an
3496   //    unconditional branch.
3497   // 2) Otherwise, we must have a single unique exit block (due to how we
3498   //    implement the multiple exit case).  In this case, set up a conditonal
3499   //    branch from the middle block to the loop scalar preheader, and the
3500   //    exit block.  completeLoopSkeleton will update the condition to use an
3501   //    iteration check, if required to decide whether to execute the remainder.
3502   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3503     BranchInst::Create(LoopScalarPreHeader) :
3504     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3505                        Builder.getTrue());
3506   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3507   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3508 
3509   // We intentionally don't let SplitBlock to update LoopInfo since
3510   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3511   // LoopVectorBody is explicitly added to the correct place few lines later.
3512   LoopVectorBody =
3513       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3514                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3515 
3516   // Update dominator for loop exit.
3517   if (!Cost->requiresScalarEpilogue(VF))
3518     // If there is an epilogue which must run, there's no edge from the
3519     // middle block to exit blocks  and thus no need to update the immediate
3520     // dominator of the exit blocks.
3521     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3522 
3523   // Create and register the new vector loop.
3524   Loop *Lp = LI->AllocateLoop();
3525   Loop *ParentLoop = OrigLoop->getParentLoop();
3526 
3527   // Insert the new loop into the loop nest and register the new basic blocks
3528   // before calling any utilities such as SCEV that require valid LoopInfo.
3529   if (ParentLoop) {
3530     ParentLoop->addChildLoop(Lp);
3531   } else {
3532     LI->addTopLevelLoop(Lp);
3533   }
3534   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3535   return Lp;
3536 }
3537 
3538 void InnerLoopVectorizer::createInductionResumeValues(
3539     Loop *L, Value *VectorTripCount,
3540     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3541   assert(VectorTripCount && L && "Expected valid arguments");
3542   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3543           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3544          "Inconsistent information about additional bypass.");
3545   // We are going to resume the execution of the scalar loop.
3546   // Go over all of the induction variables that we found and fix the
3547   // PHIs that are left in the scalar version of the loop.
3548   // The starting values of PHI nodes depend on the counter of the last
3549   // iteration in the vectorized loop.
3550   // If we come from a bypass edge then we need to start from the original
3551   // start value.
3552   for (auto &InductionEntry : Legal->getInductionVars()) {
3553     PHINode *OrigPhi = InductionEntry.first;
3554     InductionDescriptor II = InductionEntry.second;
3555 
3556     // Create phi nodes to merge from the  backedge-taken check block.
3557     PHINode *BCResumeVal =
3558         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3559                         LoopScalarPreHeader->getTerminator());
3560     // Copy original phi DL over to the new one.
3561     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3562     Value *&EndValue = IVEndValues[OrigPhi];
3563     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3564     if (OrigPhi == OldInduction) {
3565       // We know what the end value is.
3566       EndValue = VectorTripCount;
3567     } else {
3568       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3569 
3570       // Fast-math-flags propagate from the original induction instruction.
3571       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3572         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3573 
3574       Type *StepType = II.getStep()->getType();
3575       Instruction::CastOps CastOp =
3576           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3577       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3578       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3579       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3580       EndValue->setName("ind.end");
3581 
3582       // Compute the end value for the additional bypass (if applicable).
3583       if (AdditionalBypass.first) {
3584         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3585         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3586                                          StepType, true);
3587         CRD =
3588             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3589         EndValueFromAdditionalBypass =
3590             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3591         EndValueFromAdditionalBypass->setName("ind.end");
3592       }
3593     }
3594     // The new PHI merges the original incoming value, in case of a bypass,
3595     // or the value at the end of the vectorized loop.
3596     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3597 
3598     // Fix the scalar body counter (PHI node).
3599     // The old induction's phi node in the scalar body needs the truncated
3600     // value.
3601     for (BasicBlock *BB : LoopBypassBlocks)
3602       BCResumeVal->addIncoming(II.getStartValue(), BB);
3603 
3604     if (AdditionalBypass.first)
3605       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3606                                             EndValueFromAdditionalBypass);
3607 
3608     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3609   }
3610 }
3611 
3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3613                                                       MDNode *OrigLoopID) {
3614   assert(L && "Expected valid loop.");
3615 
3616   // The trip counts should be cached by now.
3617   Value *Count = getOrCreateTripCount(L);
3618   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3619 
3620   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3621 
3622   // Add a check in the middle block to see if we have completed
3623   // all of the iterations in the first vector loop.  Three cases:
3624   // 1) If we require a scalar epilogue, there is no conditional branch as
3625   //    we unconditionally branch to the scalar preheader.  Do nothing.
3626   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3627   //    Thus if tail is to be folded, we know we don't need to run the
3628   //    remainder and we can use the previous value for the condition (true).
3629   // 3) Otherwise, construct a runtime check.
3630   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3631     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3632                                         Count, VectorTripCount, "cmp.n",
3633                                         LoopMiddleBlock->getTerminator());
3634 
3635     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3636     // of the corresponding compare because they may have ended up with
3637     // different line numbers and we want to avoid awkward line stepping while
3638     // debugging. Eg. if the compare has got a line number inside the loop.
3639     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3640     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3641   }
3642 
3643   // Get ready to start creating new instructions into the vectorized body.
3644   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3645          "Inconsistent vector loop preheader");
3646   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3647 
3648   Optional<MDNode *> VectorizedLoopID =
3649       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3650                                       LLVMLoopVectorizeFollowupVectorized});
3651   if (VectorizedLoopID.hasValue()) {
3652     L->setLoopID(VectorizedLoopID.getValue());
3653 
3654     // Do not setAlreadyVectorized if loop attributes have been defined
3655     // explicitly.
3656     return LoopVectorPreHeader;
3657   }
3658 
3659   // Keep all loop hints from the original loop on the vector loop (we'll
3660   // replace the vectorizer-specific hints below).
3661   if (MDNode *LID = OrigLoop->getLoopID())
3662     L->setLoopID(LID);
3663 
3664   LoopVectorizeHints Hints(L, true, *ORE);
3665   Hints.setAlreadyVectorized();
3666 
3667 #ifdef EXPENSIVE_CHECKS
3668   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3669   LI->verify(*DT);
3670 #endif
3671 
3672   return LoopVectorPreHeader;
3673 }
3674 
3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3676   /*
3677    In this function we generate a new loop. The new loop will contain
3678    the vectorized instructions while the old loop will continue to run the
3679    scalar remainder.
3680 
3681        [ ] <-- loop iteration number check.
3682     /   |
3683    /    v
3684   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3685   |  /  |
3686   | /   v
3687   ||   [ ]     <-- vector pre header.
3688   |/    |
3689   |     v
3690   |    [  ] \
3691   |    [  ]_|   <-- vector loop.
3692   |     |
3693   |     v
3694   \   -[ ]   <--- middle-block.
3695    \/   |
3696    /\   v
3697    | ->[ ]     <--- new preheader.
3698    |    |
3699  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3700    |   [ ] \
3701    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3702     \   |
3703      \  v
3704       >[ ]     <-- exit block(s).
3705    ...
3706    */
3707 
3708   // Get the metadata of the original loop before it gets modified.
3709   MDNode *OrigLoopID = OrigLoop->getLoopID();
3710 
3711   // Workaround!  Compute the trip count of the original loop and cache it
3712   // before we start modifying the CFG.  This code has a systemic problem
3713   // wherein it tries to run analysis over partially constructed IR; this is
3714   // wrong, and not simply for SCEV.  The trip count of the original loop
3715   // simply happens to be prone to hitting this in practice.  In theory, we
3716   // can hit the same issue for any SCEV, or ValueTracking query done during
3717   // mutation.  See PR49900.
3718   getOrCreateTripCount(OrigLoop);
3719 
3720   // Create an empty vector loop, and prepare basic blocks for the runtime
3721   // checks.
3722   Loop *Lp = createVectorLoopSkeleton("");
3723 
3724   // Now, compare the new count to zero. If it is zero skip the vector loop and
3725   // jump to the scalar loop. This check also covers the case where the
3726   // backedge-taken count is uint##_max: adding one to it will overflow leading
3727   // to an incorrect trip count of zero. In this (rare) case we will also jump
3728   // to the scalar loop.
3729   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code to check any assumptions that we've made for SCEV
3732   // expressions.
3733   emitSCEVChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Generate the code that checks in runtime if arrays overlap. We put the
3736   // checks into a separate block to make the more common case of few elements
3737   // faster.
3738   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3739 
3740   // Some loops have a single integer induction variable, while other loops
3741   // don't. One example is c++ iterators that often have multiple pointer
3742   // induction variables. In the code below we also support a case where we
3743   // don't have a single induction variable.
3744   //
3745   // We try to obtain an induction variable from the original loop as hard
3746   // as possible. However if we don't find one that:
3747   //   - is an integer
3748   //   - counts from zero, stepping by one
3749   //   - is the size of the widest induction variable type
3750   // then we create a new one.
3751   OldInduction = Legal->getPrimaryInduction();
3752   Type *IdxTy = Legal->getWidestInductionType();
3753   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3754   // The loop step is equal to the vectorization factor (num of SIMD elements)
3755   // times the unroll factor (num of SIMD instructions).
3756   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3757   Value *Step = createStepForVF(Builder, IdxTy, VF, UF);
3758   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3759   Induction =
3760       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3761                               getDebugLocFromInstOrOperands(OldInduction));
3762 
3763   // Emit phis for the new starting index of the scalar loop.
3764   createInductionResumeValues(Lp, CountRoundDown);
3765 
3766   return completeLoopSkeleton(Lp, OrigLoopID);
3767 }
3768 
3769 // Fix up external users of the induction variable. At this point, we are
3770 // in LCSSA form, with all external PHIs that use the IV having one input value,
3771 // coming from the remainder loop. We need those PHIs to also have a correct
3772 // value for the IV when arriving directly from the middle block.
3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3774                                        const InductionDescriptor &II,
3775                                        Value *CountRoundDown, Value *EndValue,
3776                                        BasicBlock *MiddleBlock) {
3777   // There are two kinds of external IV usages - those that use the value
3778   // computed in the last iteration (the PHI) and those that use the penultimate
3779   // value (the value that feeds into the phi from the loop latch).
3780   // We allow both, but they, obviously, have different values.
3781 
3782   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3783 
3784   DenseMap<Value *, Value *> MissingVals;
3785 
3786   // An external user of the last iteration's value should see the value that
3787   // the remainder loop uses to initialize its own IV.
3788   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3789   for (User *U : PostInc->users()) {
3790     Instruction *UI = cast<Instruction>(U);
3791     if (!OrigLoop->contains(UI)) {
3792       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3793       MissingVals[UI] = EndValue;
3794     }
3795   }
3796 
3797   // An external user of the penultimate value need to see EndValue - Step.
3798   // The simplest way to get this is to recompute it from the constituent SCEVs,
3799   // that is Start + (Step * (CRD - 1)).
3800   for (User *U : OrigPhi->users()) {
3801     auto *UI = cast<Instruction>(U);
3802     if (!OrigLoop->contains(UI)) {
3803       const DataLayout &DL =
3804           OrigLoop->getHeader()->getModule()->getDataLayout();
3805       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3806 
3807       IRBuilder<> B(MiddleBlock->getTerminator());
3808 
3809       // Fast-math-flags propagate from the original induction instruction.
3810       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3811         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3812 
3813       Value *CountMinusOne = B.CreateSub(
3814           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3815       Value *CMO =
3816           !II.getStep()->getType()->isIntegerTy()
3817               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3818                              II.getStep()->getType())
3819               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3820       CMO->setName("cast.cmo");
3821       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3822       Escape->setName("ind.escape");
3823       MissingVals[UI] = Escape;
3824     }
3825   }
3826 
3827   for (auto &I : MissingVals) {
3828     PHINode *PHI = cast<PHINode>(I.first);
3829     // One corner case we have to handle is two IVs "chasing" each-other,
3830     // that is %IV2 = phi [...], [ %IV1, %latch ]
3831     // In this case, if IV1 has an external use, we need to avoid adding both
3832     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3833     // don't already have an incoming value for the middle block.
3834     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3835       PHI->addIncoming(I.second, MiddleBlock);
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 struct CSEDenseMapInfo {
3842   static bool canHandle(const Instruction *I) {
3843     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3844            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3845   }
3846 
3847   static inline Instruction *getEmptyKey() {
3848     return DenseMapInfo<Instruction *>::getEmptyKey();
3849   }
3850 
3851   static inline Instruction *getTombstoneKey() {
3852     return DenseMapInfo<Instruction *>::getTombstoneKey();
3853   }
3854 
3855   static unsigned getHashValue(const Instruction *I) {
3856     assert(canHandle(I) && "Unknown instruction!");
3857     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3858                                                            I->value_op_end()));
3859   }
3860 
3861   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3862     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3863         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3864       return LHS == RHS;
3865     return LHS->isIdenticalTo(RHS);
3866   }
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 ///Perform cse of induction variable instructions.
3872 static void cse(BasicBlock *BB) {
3873   // Perform simple cse.
3874   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3875   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3876     if (!CSEDenseMapInfo::canHandle(&In))
3877       continue;
3878 
3879     // Check if we can replace this instruction with any of the
3880     // visited instructions.
3881     if (Instruction *V = CSEMap.lookup(&In)) {
3882       In.replaceAllUsesWith(V);
3883       In.eraseFromParent();
3884       continue;
3885     }
3886 
3887     CSEMap[&In] = &In;
3888   }
3889 }
3890 
3891 InstructionCost
3892 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3893                                               bool &NeedToScalarize) const {
3894   Function *F = CI->getCalledFunction();
3895   Type *ScalarRetTy = CI->getType();
3896   SmallVector<Type *, 4> Tys, ScalarTys;
3897   for (auto &ArgOp : CI->args())
3898     ScalarTys.push_back(ArgOp->getType());
3899 
3900   // Estimate cost of scalarized vector call. The source operands are assumed
3901   // to be vectors, so we need to extract individual elements from there,
3902   // execute VF scalar calls, and then gather the result into the vector return
3903   // value.
3904   InstructionCost ScalarCallCost =
3905       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3906   if (VF.isScalar())
3907     return ScalarCallCost;
3908 
3909   // Compute corresponding vector type for return value and arguments.
3910   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3911   for (Type *ScalarTy : ScalarTys)
3912     Tys.push_back(ToVectorTy(ScalarTy, VF));
3913 
3914   // Compute costs of unpacking argument values for the scalar calls and
3915   // packing the return values to a vector.
3916   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3917 
3918   InstructionCost Cost =
3919       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3920 
3921   // If we can't emit a vector call for this function, then the currently found
3922   // cost is the cost we need to return.
3923   NeedToScalarize = true;
3924   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3925   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3926 
3927   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3928     return Cost;
3929 
3930   // If the corresponding vector cost is cheaper, return its cost.
3931   InstructionCost VectorCallCost =
3932       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3933   if (VectorCallCost < Cost) {
3934     NeedToScalarize = false;
3935     Cost = VectorCallCost;
3936   }
3937   return Cost;
3938 }
3939 
3940 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3941   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3942     return Elt;
3943   return VectorType::get(Elt, VF);
3944 }
3945 
3946 InstructionCost
3947 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3948                                                    ElementCount VF) const {
3949   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3950   assert(ID && "Expected intrinsic call!");
3951   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3952   FastMathFlags FMF;
3953   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3954     FMF = FPMO->getFastMathFlags();
3955 
3956   SmallVector<const Value *> Arguments(CI->args());
3957   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3958   SmallVector<Type *> ParamTys;
3959   std::transform(FTy->param_begin(), FTy->param_end(),
3960                  std::back_inserter(ParamTys),
3961                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3962 
3963   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3964                                     dyn_cast<IntrinsicInst>(CI));
3965   return TTI.getIntrinsicInstrCost(CostAttrs,
3966                                    TargetTransformInfo::TCK_RecipThroughput);
3967 }
3968 
3969 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3970   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3971   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3972   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3973 }
3974 
3975 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3976   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3977   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3978   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3979 }
3980 
3981 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3982   // For every instruction `I` in MinBWs, truncate the operands, create a
3983   // truncated version of `I` and reextend its result. InstCombine runs
3984   // later and will remove any ext/trunc pairs.
3985   SmallPtrSet<Value *, 4> Erased;
3986   for (const auto &KV : Cost->getMinimalBitwidths()) {
3987     // If the value wasn't vectorized, we must maintain the original scalar
3988     // type. The absence of the value from State indicates that it
3989     // wasn't vectorized.
3990     // FIXME: Should not rely on getVPValue at this point.
3991     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3992     if (!State.hasAnyVectorValue(Def))
3993       continue;
3994     for (unsigned Part = 0; Part < UF; ++Part) {
3995       Value *I = State.get(Def, Part);
3996       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3997         continue;
3998       Type *OriginalTy = I->getType();
3999       Type *ScalarTruncatedTy =
4000           IntegerType::get(OriginalTy->getContext(), KV.second);
4001       auto *TruncatedTy = VectorType::get(
4002           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4003       if (TruncatedTy == OriginalTy)
4004         continue;
4005 
4006       IRBuilder<> B(cast<Instruction>(I));
4007       auto ShrinkOperand = [&](Value *V) -> Value * {
4008         if (auto *ZI = dyn_cast<ZExtInst>(V))
4009           if (ZI->getSrcTy() == TruncatedTy)
4010             return ZI->getOperand(0);
4011         return B.CreateZExtOrTrunc(V, TruncatedTy);
4012       };
4013 
4014       // The actual instruction modification depends on the instruction type,
4015       // unfortunately.
4016       Value *NewI = nullptr;
4017       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4018         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4019                              ShrinkOperand(BO->getOperand(1)));
4020 
4021         // Any wrapping introduced by shrinking this operation shouldn't be
4022         // considered undefined behavior. So, we can't unconditionally copy
4023         // arithmetic wrapping flags to NewI.
4024         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4025       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4026         NewI =
4027             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4028                          ShrinkOperand(CI->getOperand(1)));
4029       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4030         NewI = B.CreateSelect(SI->getCondition(),
4031                               ShrinkOperand(SI->getTrueValue()),
4032                               ShrinkOperand(SI->getFalseValue()));
4033       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4034         switch (CI->getOpcode()) {
4035         default:
4036           llvm_unreachable("Unhandled cast!");
4037         case Instruction::Trunc:
4038           NewI = ShrinkOperand(CI->getOperand(0));
4039           break;
4040         case Instruction::SExt:
4041           NewI = B.CreateSExtOrTrunc(
4042               CI->getOperand(0),
4043               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4044           break;
4045         case Instruction::ZExt:
4046           NewI = B.CreateZExtOrTrunc(
4047               CI->getOperand(0),
4048               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4049           break;
4050         }
4051       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4052         auto Elements0 =
4053             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4056         auto Elements1 =
4057             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4058         auto *O1 = B.CreateZExtOrTrunc(
4059             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4060 
4061         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4062       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4063         // Don't do anything with the operands, just extend the result.
4064         continue;
4065       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4066         auto Elements =
4067             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4068         auto *O0 = B.CreateZExtOrTrunc(
4069             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4070         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4071         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4072       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4073         auto Elements =
4074             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4075         auto *O0 = B.CreateZExtOrTrunc(
4076             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4077         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4078       } else {
4079         // If we don't know what to do, be conservative and don't do anything.
4080         continue;
4081       }
4082 
4083       // Lastly, extend the result.
4084       NewI->takeName(cast<Instruction>(I));
4085       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4086       I->replaceAllUsesWith(Res);
4087       cast<Instruction>(I)->eraseFromParent();
4088       Erased.insert(I);
4089       State.reset(Def, Res, Part);
4090     }
4091   }
4092 
4093   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4094   for (const auto &KV : Cost->getMinimalBitwidths()) {
4095     // If the value wasn't vectorized, we must maintain the original scalar
4096     // type. The absence of the value from State indicates that it
4097     // wasn't vectorized.
4098     // FIXME: Should not rely on getVPValue at this point.
4099     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4100     if (!State.hasAnyVectorValue(Def))
4101       continue;
4102     for (unsigned Part = 0; Part < UF; ++Part) {
4103       Value *I = State.get(Def, Part);
4104       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4105       if (Inst && Inst->use_empty()) {
4106         Value *NewI = Inst->getOperand(0);
4107         Inst->eraseFromParent();
4108         State.reset(Def, NewI, Part);
4109       }
4110     }
4111   }
4112 }
4113 
4114 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4115   // Insert truncates and extends for any truncated instructions as hints to
4116   // InstCombine.
4117   if (VF.isVector())
4118     truncateToMinimalBitwidths(State);
4119 
4120   // Fix widened non-induction PHIs by setting up the PHI operands.
4121   if (OrigPHIsToFix.size()) {
4122     assert(EnableVPlanNativePath &&
4123            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4124     fixNonInductionPHIs(State);
4125   }
4126 
4127   // At this point every instruction in the original loop is widened to a
4128   // vector form. Now we need to fix the recurrences in the loop. These PHI
4129   // nodes are currently empty because we did not want to introduce cycles.
4130   // This is the second stage of vectorizing recurrences.
4131   fixCrossIterationPHIs(State);
4132 
4133   // Forget the original basic block.
4134   PSE.getSE()->forgetLoop(OrigLoop);
4135 
4136   // If we inserted an edge from the middle block to the unique exit block,
4137   // update uses outside the loop (phis) to account for the newly inserted
4138   // edge.
4139   if (!Cost->requiresScalarEpilogue(VF)) {
4140     // Fix-up external users of the induction variables.
4141     for (auto &Entry : Legal->getInductionVars())
4142       fixupIVUsers(Entry.first, Entry.second,
4143                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4144                    IVEndValues[Entry.first], LoopMiddleBlock);
4145 
4146     fixLCSSAPHIs(State);
4147   }
4148 
4149   for (Instruction *PI : PredicatedInstructions)
4150     sinkScalarOperands(&*PI);
4151 
4152   // Remove redundant induction instructions.
4153   cse(LoopVectorBody);
4154 
4155   // Set/update profile weights for the vector and remainder loops as original
4156   // loop iterations are now distributed among them. Note that original loop
4157   // represented by LoopScalarBody becomes remainder loop after vectorization.
4158   //
4159   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4160   // end up getting slightly roughened result but that should be OK since
4161   // profile is not inherently precise anyway. Note also possible bypass of
4162   // vector code caused by legality checks is ignored, assigning all the weight
4163   // to the vector loop, optimistically.
4164   //
4165   // For scalable vectorization we can't know at compile time how many iterations
4166   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4167   // vscale of '1'.
4168   setProfileInfoAfterUnrolling(
4169       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4170       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4171 }
4172 
4173 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4174   // In order to support recurrences we need to be able to vectorize Phi nodes.
4175   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4176   // stage #2: We now need to fix the recurrences by adding incoming edges to
4177   // the currently empty PHI nodes. At this point every instruction in the
4178   // original loop is widened to a vector form so we can use them to construct
4179   // the incoming edges.
4180   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4181   for (VPRecipeBase &R : Header->phis()) {
4182     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4183       fixReduction(ReductionPhi, State);
4184     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4185       fixFirstOrderRecurrence(FOR, State);
4186   }
4187 }
4188 
4189 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4190                                                   VPTransformState &State) {
4191   // This is the second phase of vectorizing first-order recurrences. An
4192   // overview of the transformation is described below. Suppose we have the
4193   // following loop.
4194   //
4195   //   for (int i = 0; i < n; ++i)
4196   //     b[i] = a[i] - a[i - 1];
4197   //
4198   // There is a first-order recurrence on "a". For this loop, the shorthand
4199   // scalar IR looks like:
4200   //
4201   //   scalar.ph:
4202   //     s_init = a[-1]
4203   //     br scalar.body
4204   //
4205   //   scalar.body:
4206   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4207   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4208   //     s2 = a[i]
4209   //     b[i] = s2 - s1
4210   //     br cond, scalar.body, ...
4211   //
4212   // In this example, s1 is a recurrence because it's value depends on the
4213   // previous iteration. In the first phase of vectorization, we created a
4214   // vector phi v1 for s1. We now complete the vectorization and produce the
4215   // shorthand vector IR shown below (for VF = 4, UF = 1).
4216   //
4217   //   vector.ph:
4218   //     v_init = vector(..., ..., ..., a[-1])
4219   //     br vector.body
4220   //
4221   //   vector.body
4222   //     i = phi [0, vector.ph], [i+4, vector.body]
4223   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4224   //     v2 = a[i, i+1, i+2, i+3];
4225   //     v3 = vector(v1(3), v2(0, 1, 2))
4226   //     b[i, i+1, i+2, i+3] = v2 - v3
4227   //     br cond, vector.body, middle.block
4228   //
4229   //   middle.block:
4230   //     x = v2(3)
4231   //     br scalar.ph
4232   //
4233   //   scalar.ph:
4234   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4235   //     br scalar.body
4236   //
4237   // After execution completes the vector loop, we extract the next value of
4238   // the recurrence (x) to use as the initial value in the scalar loop.
4239 
4240   // Extract the last vector element in the middle block. This will be the
4241   // initial value for the recurrence when jumping to the scalar loop.
4242   VPValue *PreviousDef = PhiR->getBackedgeValue();
4243   Value *Incoming = State.get(PreviousDef, UF - 1);
4244   auto *ExtractForScalar = Incoming;
4245   auto *IdxTy = Builder.getInt32Ty();
4246   if (VF.isVector()) {
4247     auto *One = ConstantInt::get(IdxTy, 1);
4248     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4249     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4250     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4251     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4252                                                     "vector.recur.extract");
4253   }
4254   // Extract the second last element in the middle block if the
4255   // Phi is used outside the loop. We need to extract the phi itself
4256   // and not the last element (the phi update in the current iteration). This
4257   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4258   // when the scalar loop is not run at all.
4259   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4260   if (VF.isVector()) {
4261     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4262     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4263     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4264         Incoming, Idx, "vector.recur.extract.for.phi");
4265   } else if (UF > 1)
4266     // When loop is unrolled without vectorizing, initialize
4267     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4268     // of `Incoming`. This is analogous to the vectorized case above: extracting
4269     // the second last element when VF > 1.
4270     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4271 
4272   // Fix the initial value of the original recurrence in the scalar loop.
4273   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4274   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4275   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4276   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4277   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4278     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4279     Start->addIncoming(Incoming, BB);
4280   }
4281 
4282   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4283   Phi->setName("scalar.recur");
4284 
4285   // Finally, fix users of the recurrence outside the loop. The users will need
4286   // either the last value of the scalar recurrence or the last value of the
4287   // vector recurrence we extracted in the middle block. Since the loop is in
4288   // LCSSA form, we just need to find all the phi nodes for the original scalar
4289   // recurrence in the exit block, and then add an edge for the middle block.
4290   // Note that LCSSA does not imply single entry when the original scalar loop
4291   // had multiple exiting edges (as we always run the last iteration in the
4292   // scalar epilogue); in that case, there is no edge from middle to exit and
4293   // and thus no phis which needed updated.
4294   if (!Cost->requiresScalarEpilogue(VF))
4295     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4296       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4297         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4298 }
4299 
4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4301                                        VPTransformState &State) {
4302   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4303   // Get it's reduction variable descriptor.
4304   assert(Legal->isReductionVariable(OrigPhi) &&
4305          "Unable to find the reduction variable");
4306   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4307 
4308   RecurKind RK = RdxDesc.getRecurrenceKind();
4309   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4310   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4311   setDebugLocFromInst(ReductionStartValue);
4312 
4313   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4314   // This is the vector-clone of the value that leaves the loop.
4315   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4316 
4317   // Wrap flags are in general invalid after vectorization, clear them.
4318   clearReductionWrapFlags(RdxDesc, State);
4319 
4320   // Before each round, move the insertion point right between
4321   // the PHIs and the values we are going to write.
4322   // This allows us to write both PHINodes and the extractelement
4323   // instructions.
4324   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4325 
4326   setDebugLocFromInst(LoopExitInst);
4327 
4328   Type *PhiTy = OrigPhi->getType();
4329   // If tail is folded by masking, the vector value to leave the loop should be
4330   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4331   // instead of the former. For an inloop reduction the reduction will already
4332   // be predicated, and does not need to be handled here.
4333   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4336       Value *Sel = nullptr;
4337       for (User *U : VecLoopExitInst->users()) {
4338         if (isa<SelectInst>(U)) {
4339           assert(!Sel && "Reduction exit feeding two selects");
4340           Sel = U;
4341         } else
4342           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4343       }
4344       assert(Sel && "Reduction exit feeds no select");
4345       State.reset(LoopExitInstDef, Sel, Part);
4346 
4347       // If the target can create a predicated operator for the reduction at no
4348       // extra cost in the loop (for example a predicated vadd), it can be
4349       // cheaper for the select to remain in the loop than be sunk out of it,
4350       // and so use the select value for the phi instead of the old
4351       // LoopExitValue.
4352       if (PreferPredicatedReductionSelect ||
4353           TTI->preferPredicatedReductionSelect(
4354               RdxDesc.getOpcode(), PhiTy,
4355               TargetTransformInfo::ReductionFlags())) {
4356         auto *VecRdxPhi =
4357             cast<PHINode>(State.get(PhiR, Part));
4358         VecRdxPhi->setIncomingValueForBlock(
4359             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4360       }
4361     }
4362   }
4363 
4364   // If the vector reduction can be performed in a smaller type, we truncate
4365   // then extend the loop exit value to enable InstCombine to evaluate the
4366   // entire expression in the smaller type.
4367   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4368     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4369     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4370     Builder.SetInsertPoint(
4371         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4372     VectorParts RdxParts(UF);
4373     for (unsigned Part = 0; Part < UF; ++Part) {
4374       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4375       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4376       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4377                                         : Builder.CreateZExt(Trunc, VecTy);
4378       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4379         if (U != Trunc) {
4380           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4381           RdxParts[Part] = Extnd;
4382         }
4383     }
4384     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4385     for (unsigned Part = 0; Part < UF; ++Part) {
4386       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4387       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4388     }
4389   }
4390 
4391   // Reduce all of the unrolled parts into a single vector.
4392   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4393   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4394 
4395   // The middle block terminator has already been assigned a DebugLoc here (the
4396   // OrigLoop's single latch terminator). We want the whole middle block to
4397   // appear to execute on this line because: (a) it is all compiler generated,
4398   // (b) these instructions are always executed after evaluating the latch
4399   // conditional branch, and (c) other passes may add new predecessors which
4400   // terminate on this line. This is the easiest way to ensure we don't
4401   // accidentally cause an extra step back into the loop while debugging.
4402   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4403   if (PhiR->isOrdered())
4404     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4405   else {
4406     // Floating-point operations should have some FMF to enable the reduction.
4407     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4408     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4409     for (unsigned Part = 1; Part < UF; ++Part) {
4410       Value *RdxPart = State.get(LoopExitInstDef, Part);
4411       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4412         ReducedPartRdx = Builder.CreateBinOp(
4413             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4414       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4415         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4416                                            ReducedPartRdx, RdxPart);
4417       else
4418         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4419     }
4420   }
4421 
4422   // Create the reduction after the loop. Note that inloop reductions create the
4423   // target reduction in the loop using a Reduction recipe.
4424   if (VF.isVector() && !PhiR->isInLoop()) {
4425     ReducedPartRdx =
4426         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4427     // If the reduction can be performed in a smaller type, we need to extend
4428     // the reduction to the wider type before we branch to the original loop.
4429     if (PhiTy != RdxDesc.getRecurrenceType())
4430       ReducedPartRdx = RdxDesc.isSigned()
4431                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4432                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4433   }
4434 
4435   // Create a phi node that merges control-flow from the backedge-taken check
4436   // block and the middle block.
4437   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4438                                         LoopScalarPreHeader->getTerminator());
4439   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4440     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4441   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4442 
4443   // Now, we need to fix the users of the reduction variable
4444   // inside and outside of the scalar remainder loop.
4445 
4446   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4447   // in the exit blocks.  See comment on analogous loop in
4448   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4449   if (!Cost->requiresScalarEpilogue(VF))
4450     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4451       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4452         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4453 
4454   // Fix the scalar loop reduction variable with the incoming reduction sum
4455   // from the vector body and from the backedge value.
4456   int IncomingEdgeBlockIdx =
4457       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4458   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4459   // Pick the other block.
4460   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4461   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4462   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4463 }
4464 
4465 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4466                                                   VPTransformState &State) {
4467   RecurKind RK = RdxDesc.getRecurrenceKind();
4468   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4469     return;
4470 
4471   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4472   assert(LoopExitInstr && "null loop exit instruction");
4473   SmallVector<Instruction *, 8> Worklist;
4474   SmallPtrSet<Instruction *, 8> Visited;
4475   Worklist.push_back(LoopExitInstr);
4476   Visited.insert(LoopExitInstr);
4477 
4478   while (!Worklist.empty()) {
4479     Instruction *Cur = Worklist.pop_back_val();
4480     if (isa<OverflowingBinaryOperator>(Cur))
4481       for (unsigned Part = 0; Part < UF; ++Part) {
4482         // FIXME: Should not rely on getVPValue at this point.
4483         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4484         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4485       }
4486 
4487     for (User *U : Cur->users()) {
4488       Instruction *UI = cast<Instruction>(U);
4489       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4490           Visited.insert(UI).second)
4491         Worklist.push_back(UI);
4492     }
4493   }
4494 }
4495 
4496 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4497   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4498     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4499       // Some phis were already hand updated by the reduction and recurrence
4500       // code above, leave them alone.
4501       continue;
4502 
4503     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4504     // Non-instruction incoming values will have only one value.
4505 
4506     VPLane Lane = VPLane::getFirstLane();
4507     if (isa<Instruction>(IncomingValue) &&
4508         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4509                                            VF))
4510       Lane = VPLane::getLastLaneForVF(VF);
4511 
4512     // Can be a loop invariant incoming value or the last scalar value to be
4513     // extracted from the vectorized loop.
4514     // FIXME: Should not rely on getVPValue at this point.
4515     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4516     Value *lastIncomingValue =
4517         OrigLoop->isLoopInvariant(IncomingValue)
4518             ? IncomingValue
4519             : State.get(State.Plan->getVPValue(IncomingValue, true),
4520                         VPIteration(UF - 1, Lane));
4521     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4522   }
4523 }
4524 
4525 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4526   // The basic block and loop containing the predicated instruction.
4527   auto *PredBB = PredInst->getParent();
4528   auto *VectorLoop = LI->getLoopFor(PredBB);
4529 
4530   // Initialize a worklist with the operands of the predicated instruction.
4531   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4532 
4533   // Holds instructions that we need to analyze again. An instruction may be
4534   // reanalyzed if we don't yet know if we can sink it or not.
4535   SmallVector<Instruction *, 8> InstsToReanalyze;
4536 
4537   // Returns true if a given use occurs in the predicated block. Phi nodes use
4538   // their operands in their corresponding predecessor blocks.
4539   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4540     auto *I = cast<Instruction>(U.getUser());
4541     BasicBlock *BB = I->getParent();
4542     if (auto *Phi = dyn_cast<PHINode>(I))
4543       BB = Phi->getIncomingBlock(
4544           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4545     return BB == PredBB;
4546   };
4547 
4548   // Iteratively sink the scalarized operands of the predicated instruction
4549   // into the block we created for it. When an instruction is sunk, it's
4550   // operands are then added to the worklist. The algorithm ends after one pass
4551   // through the worklist doesn't sink a single instruction.
4552   bool Changed;
4553   do {
4554     // Add the instructions that need to be reanalyzed to the worklist, and
4555     // reset the changed indicator.
4556     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4557     InstsToReanalyze.clear();
4558     Changed = false;
4559 
4560     while (!Worklist.empty()) {
4561       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4562 
4563       // We can't sink an instruction if it is a phi node, is not in the loop,
4564       // or may have side effects.
4565       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4566           I->mayHaveSideEffects())
4567         continue;
4568 
4569       // If the instruction is already in PredBB, check if we can sink its
4570       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4571       // sinking the scalar instruction I, hence it appears in PredBB; but it
4572       // may have failed to sink I's operands (recursively), which we try
4573       // (again) here.
4574       if (I->getParent() == PredBB) {
4575         Worklist.insert(I->op_begin(), I->op_end());
4576         continue;
4577       }
4578 
4579       // It's legal to sink the instruction if all its uses occur in the
4580       // predicated block. Otherwise, there's nothing to do yet, and we may
4581       // need to reanalyze the instruction.
4582       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4583         InstsToReanalyze.push_back(I);
4584         continue;
4585       }
4586 
4587       // Move the instruction to the beginning of the predicated block, and add
4588       // it's operands to the worklist.
4589       I->moveBefore(&*PredBB->getFirstInsertionPt());
4590       Worklist.insert(I->op_begin(), I->op_end());
4591 
4592       // The sinking may have enabled other instructions to be sunk, so we will
4593       // need to iterate.
4594       Changed = true;
4595     }
4596   } while (Changed);
4597 }
4598 
4599 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4600   for (PHINode *OrigPhi : OrigPHIsToFix) {
4601     VPWidenPHIRecipe *VPPhi =
4602         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4603     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4604     // Make sure the builder has a valid insert point.
4605     Builder.SetInsertPoint(NewPhi);
4606     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4607       VPValue *Inc = VPPhi->getIncomingValue(i);
4608       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4609       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4610     }
4611   }
4612 }
4613 
4614 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4615   return Cost->useOrderedReductions(RdxDesc);
4616 }
4617 
4618 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4619                                    VPUser &Operands, unsigned UF,
4620                                    ElementCount VF, bool IsPtrLoopInvariant,
4621                                    SmallBitVector &IsIndexLoopInvariant,
4622                                    VPTransformState &State) {
4623   // Construct a vector GEP by widening the operands of the scalar GEP as
4624   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4625   // results in a vector of pointers when at least one operand of the GEP
4626   // is vector-typed. Thus, to keep the representation compact, we only use
4627   // vector-typed operands for loop-varying values.
4628 
4629   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4630     // If we are vectorizing, but the GEP has only loop-invariant operands,
4631     // the GEP we build (by only using vector-typed operands for
4632     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4633     // produce a vector of pointers, we need to either arbitrarily pick an
4634     // operand to broadcast, or broadcast a clone of the original GEP.
4635     // Here, we broadcast a clone of the original.
4636     //
4637     // TODO: If at some point we decide to scalarize instructions having
4638     //       loop-invariant operands, this special case will no longer be
4639     //       required. We would add the scalarization decision to
4640     //       collectLoopScalars() and teach getVectorValue() to broadcast
4641     //       the lane-zero scalar value.
4642     auto *Clone = Builder.Insert(GEP->clone());
4643     for (unsigned Part = 0; Part < UF; ++Part) {
4644       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4645       State.set(VPDef, EntryPart, Part);
4646       addMetadata(EntryPart, GEP);
4647     }
4648   } else {
4649     // If the GEP has at least one loop-varying operand, we are sure to
4650     // produce a vector of pointers. But if we are only unrolling, we want
4651     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4652     // produce with the code below will be scalar (if VF == 1) or vector
4653     // (otherwise). Note that for the unroll-only case, we still maintain
4654     // values in the vector mapping with initVector, as we do for other
4655     // instructions.
4656     for (unsigned Part = 0; Part < UF; ++Part) {
4657       // The pointer operand of the new GEP. If it's loop-invariant, we
4658       // won't broadcast it.
4659       auto *Ptr = IsPtrLoopInvariant
4660                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4661                       : State.get(Operands.getOperand(0), Part);
4662 
4663       // Collect all the indices for the new GEP. If any index is
4664       // loop-invariant, we won't broadcast it.
4665       SmallVector<Value *, 4> Indices;
4666       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4667         VPValue *Operand = Operands.getOperand(I);
4668         if (IsIndexLoopInvariant[I - 1])
4669           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4670         else
4671           Indices.push_back(State.get(Operand, Part));
4672       }
4673 
4674       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4675       // but it should be a vector, otherwise.
4676       auto *NewGEP =
4677           GEP->isInBounds()
4678               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4679                                           Indices)
4680               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4681       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4682              "NewGEP is not a pointer vector");
4683       State.set(VPDef, NewGEP, Part);
4684       addMetadata(NewGEP, GEP);
4685     }
4686   }
4687 }
4688 
4689 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4690                                               VPWidenPHIRecipe *PhiR,
4691                                               VPTransformState &State) {
4692   PHINode *P = cast<PHINode>(PN);
4693   if (EnableVPlanNativePath) {
4694     // Currently we enter here in the VPlan-native path for non-induction
4695     // PHIs where all control flow is uniform. We simply widen these PHIs.
4696     // Create a vector phi with no operands - the vector phi operands will be
4697     // set at the end of vector code generation.
4698     Type *VecTy = (State.VF.isScalar())
4699                       ? PN->getType()
4700                       : VectorType::get(PN->getType(), State.VF);
4701     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4702     State.set(PhiR, VecPhi, 0);
4703     OrigPHIsToFix.push_back(P);
4704 
4705     return;
4706   }
4707 
4708   assert(PN->getParent() == OrigLoop->getHeader() &&
4709          "Non-header phis should have been handled elsewhere");
4710 
4711   // In order to support recurrences we need to be able to vectorize Phi nodes.
4712   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4713   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4714   // this value when we vectorize all of the instructions that use the PHI.
4715 
4716   assert(!Legal->isReductionVariable(P) &&
4717          "reductions should be handled elsewhere");
4718 
4719   setDebugLocFromInst(P);
4720 
4721   // This PHINode must be an induction variable.
4722   // Make sure that we know about it.
4723   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4724 
4725   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4726   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4727 
4728   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4729   // which can be found from the original scalar operations.
4730   switch (II.getKind()) {
4731   case InductionDescriptor::IK_NoInduction:
4732     llvm_unreachable("Unknown induction");
4733   case InductionDescriptor::IK_IntInduction:
4734   case InductionDescriptor::IK_FpInduction:
4735     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4736   case InductionDescriptor::IK_PtrInduction: {
4737     // Handle the pointer induction variable case.
4738     assert(P->getType()->isPointerTy() && "Unexpected type.");
4739 
4740     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4741       // This is the normalized GEP that starts counting at zero.
4742       Value *PtrInd =
4743           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4744       // Determine the number of scalars we need to generate for each unroll
4745       // iteration. If the instruction is uniform, we only need to generate the
4746       // first lane. Otherwise, we generate all VF values.
4747       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4748       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4749 
4750       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4751       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4752       if (NeedsVectorIndex) {
4753         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4754         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4755         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4756       }
4757 
4758       for (unsigned Part = 0; Part < UF; ++Part) {
4759         Value *PartStart =
4760             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4761 
4762         if (NeedsVectorIndex) {
4763           // Here we cache the whole vector, which means we can support the
4764           // extraction of any lane. However, in some cases the extractelement
4765           // instruction that is generated for scalar uses of this vector (e.g.
4766           // a load instruction) is not folded away. Therefore we still
4767           // calculate values for the first n lanes to avoid redundant moves
4768           // (when extracting the 0th element) and to produce scalar code (i.e.
4769           // additional add/gep instructions instead of expensive extractelement
4770           // instructions) when extracting higher-order elements.
4771           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4772           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4773           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4774           Value *SclrGep =
4775               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4776           SclrGep->setName("next.gep");
4777           State.set(PhiR, SclrGep, Part);
4778         }
4779 
4780         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4781           Value *Idx = Builder.CreateAdd(
4782               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4783           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4784           Value *SclrGep =
4785               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4786           SclrGep->setName("next.gep");
4787           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4788         }
4789       }
4790       return;
4791     }
4792     assert(isa<SCEVConstant>(II.getStep()) &&
4793            "Induction step not a SCEV constant!");
4794     Type *PhiType = II.getStep()->getType();
4795 
4796     // Build a pointer phi
4797     Value *ScalarStartValue = II.getStartValue();
4798     Type *ScStValueType = ScalarStartValue->getType();
4799     PHINode *NewPointerPhi =
4800         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4801     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4802 
4803     // A pointer induction, performed by using a gep
4804     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4805     Instruction *InductionLoc = LoopLatch->getTerminator();
4806     const SCEV *ScalarStep = II.getStep();
4807     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4808     Value *ScalarStepValue =
4809         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4810     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4811     Value *NumUnrolledElems =
4812         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4813     Value *InductionGEP = GetElementPtrInst::Create(
4814         II.getElementType(), NewPointerPhi,
4815         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4816         InductionLoc);
4817     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4818 
4819     // Create UF many actual address geps that use the pointer
4820     // phi as base and a vectorized version of the step value
4821     // (<step*0, ..., step*N>) as offset.
4822     for (unsigned Part = 0; Part < State.UF; ++Part) {
4823       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4824       Value *StartOffsetScalar =
4825           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4826       Value *StartOffset =
4827           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4828       // Create a vector of consecutive numbers from zero to VF.
4829       StartOffset =
4830           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4831 
4832       Value *GEP = Builder.CreateGEP(
4833           II.getElementType(), NewPointerPhi,
4834           Builder.CreateMul(
4835               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4836               "vector.gep"));
4837       State.set(PhiR, GEP, Part);
4838     }
4839   }
4840   }
4841 }
4842 
4843 /// A helper function for checking whether an integer division-related
4844 /// instruction may divide by zero (in which case it must be predicated if
4845 /// executed conditionally in the scalar code).
4846 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4847 /// Non-zero divisors that are non compile-time constants will not be
4848 /// converted into multiplication, so we will still end up scalarizing
4849 /// the division, but can do so w/o predication.
4850 static bool mayDivideByZero(Instruction &I) {
4851   assert((I.getOpcode() == Instruction::UDiv ||
4852           I.getOpcode() == Instruction::SDiv ||
4853           I.getOpcode() == Instruction::URem ||
4854           I.getOpcode() == Instruction::SRem) &&
4855          "Unexpected instruction");
4856   Value *Divisor = I.getOperand(1);
4857   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4858   return !CInt || CInt->isZero();
4859 }
4860 
4861 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4862                                            VPUser &User,
4863                                            VPTransformState &State) {
4864   switch (I.getOpcode()) {
4865   case Instruction::Call:
4866   case Instruction::Br:
4867   case Instruction::PHI:
4868   case Instruction::GetElementPtr:
4869   case Instruction::Select:
4870     llvm_unreachable("This instruction is handled by a different recipe.");
4871   case Instruction::UDiv:
4872   case Instruction::SDiv:
4873   case Instruction::SRem:
4874   case Instruction::URem:
4875   case Instruction::Add:
4876   case Instruction::FAdd:
4877   case Instruction::Sub:
4878   case Instruction::FSub:
4879   case Instruction::FNeg:
4880   case Instruction::Mul:
4881   case Instruction::FMul:
4882   case Instruction::FDiv:
4883   case Instruction::FRem:
4884   case Instruction::Shl:
4885   case Instruction::LShr:
4886   case Instruction::AShr:
4887   case Instruction::And:
4888   case Instruction::Or:
4889   case Instruction::Xor: {
4890     // Just widen unops and binops.
4891     setDebugLocFromInst(&I);
4892 
4893     for (unsigned Part = 0; Part < UF; ++Part) {
4894       SmallVector<Value *, 2> Ops;
4895       for (VPValue *VPOp : User.operands())
4896         Ops.push_back(State.get(VPOp, Part));
4897 
4898       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4899 
4900       if (auto *VecOp = dyn_cast<Instruction>(V))
4901         VecOp->copyIRFlags(&I);
4902 
4903       // Use this vector value for all users of the original instruction.
4904       State.set(Def, V, Part);
4905       addMetadata(V, &I);
4906     }
4907 
4908     break;
4909   }
4910   case Instruction::ICmp:
4911   case Instruction::FCmp: {
4912     // Widen compares. Generate vector compares.
4913     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4914     auto *Cmp = cast<CmpInst>(&I);
4915     setDebugLocFromInst(Cmp);
4916     for (unsigned Part = 0; Part < UF; ++Part) {
4917       Value *A = State.get(User.getOperand(0), Part);
4918       Value *B = State.get(User.getOperand(1), Part);
4919       Value *C = nullptr;
4920       if (FCmp) {
4921         // Propagate fast math flags.
4922         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4923         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4924         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4925       } else {
4926         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4927       }
4928       State.set(Def, C, Part);
4929       addMetadata(C, &I);
4930     }
4931 
4932     break;
4933   }
4934 
4935   case Instruction::ZExt:
4936   case Instruction::SExt:
4937   case Instruction::FPToUI:
4938   case Instruction::FPToSI:
4939   case Instruction::FPExt:
4940   case Instruction::PtrToInt:
4941   case Instruction::IntToPtr:
4942   case Instruction::SIToFP:
4943   case Instruction::UIToFP:
4944   case Instruction::Trunc:
4945   case Instruction::FPTrunc:
4946   case Instruction::BitCast: {
4947     auto *CI = cast<CastInst>(&I);
4948     setDebugLocFromInst(CI);
4949 
4950     /// Vectorize casts.
4951     Type *DestTy =
4952         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4953 
4954     for (unsigned Part = 0; Part < UF; ++Part) {
4955       Value *A = State.get(User.getOperand(0), Part);
4956       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4957       State.set(Def, Cast, Part);
4958       addMetadata(Cast, &I);
4959     }
4960     break;
4961   }
4962   default:
4963     // This instruction is not vectorized by simple widening.
4964     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4965     llvm_unreachable("Unhandled instruction!");
4966   } // end of switch.
4967 }
4968 
4969 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4970                                                VPUser &ArgOperands,
4971                                                VPTransformState &State) {
4972   assert(!isa<DbgInfoIntrinsic>(I) &&
4973          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4974   setDebugLocFromInst(&I);
4975 
4976   Module *M = I.getParent()->getParent()->getParent();
4977   auto *CI = cast<CallInst>(&I);
4978 
4979   SmallVector<Type *, 4> Tys;
4980   for (Value *ArgOperand : CI->args())
4981     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4982 
4983   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4984 
4985   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4986   // version of the instruction.
4987   // Is it beneficial to perform intrinsic call compared to lib call?
4988   bool NeedToScalarize = false;
4989   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4990   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4991   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4992   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4993          "Instruction should be scalarized elsewhere.");
4994   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4995          "Either the intrinsic cost or vector call cost must be valid");
4996 
4997   for (unsigned Part = 0; Part < UF; ++Part) {
4998     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4999     SmallVector<Value *, 4> Args;
5000     for (auto &I : enumerate(ArgOperands.operands())) {
5001       // Some intrinsics have a scalar argument - don't replace it with a
5002       // vector.
5003       Value *Arg;
5004       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5005         Arg = State.get(I.value(), Part);
5006       else {
5007         Arg = State.get(I.value(), VPIteration(0, 0));
5008         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5009           TysForDecl.push_back(Arg->getType());
5010       }
5011       Args.push_back(Arg);
5012     }
5013 
5014     Function *VectorF;
5015     if (UseVectorIntrinsic) {
5016       // Use vector version of the intrinsic.
5017       if (VF.isVector())
5018         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5019       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5020       assert(VectorF && "Can't retrieve vector intrinsic.");
5021     } else {
5022       // Use vector version of the function call.
5023       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5024 #ifndef NDEBUG
5025       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5026              "Can't create vector function.");
5027 #endif
5028         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5029     }
5030       SmallVector<OperandBundleDef, 1> OpBundles;
5031       CI->getOperandBundlesAsDefs(OpBundles);
5032       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5033 
5034       if (isa<FPMathOperator>(V))
5035         V->copyFastMathFlags(CI);
5036 
5037       State.set(Def, V, Part);
5038       addMetadata(V, &I);
5039   }
5040 }
5041 
5042 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5043                                                  VPUser &Operands,
5044                                                  bool InvariantCond,
5045                                                  VPTransformState &State) {
5046   setDebugLocFromInst(&I);
5047 
5048   // The condition can be loop invariant  but still defined inside the
5049   // loop. This means that we can't just use the original 'cond' value.
5050   // We have to take the 'vectorized' value and pick the first lane.
5051   // Instcombine will make this a no-op.
5052   auto *InvarCond = InvariantCond
5053                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5054                         : nullptr;
5055 
5056   for (unsigned Part = 0; Part < UF; ++Part) {
5057     Value *Cond =
5058         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5059     Value *Op0 = State.get(Operands.getOperand(1), Part);
5060     Value *Op1 = State.get(Operands.getOperand(2), Part);
5061     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5062     State.set(VPDef, Sel, Part);
5063     addMetadata(Sel, &I);
5064   }
5065 }
5066 
5067 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5068   // We should not collect Scalars more than once per VF. Right now, this
5069   // function is called from collectUniformsAndScalars(), which already does
5070   // this check. Collecting Scalars for VF=1 does not make any sense.
5071   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5072          "This function should not be visited twice for the same VF");
5073 
5074   SmallSetVector<Instruction *, 8> Worklist;
5075 
5076   // These sets are used to seed the analysis with pointers used by memory
5077   // accesses that will remain scalar.
5078   SmallSetVector<Instruction *, 8> ScalarPtrs;
5079   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5080   auto *Latch = TheLoop->getLoopLatch();
5081 
5082   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5083   // The pointer operands of loads and stores will be scalar as long as the
5084   // memory access is not a gather or scatter operation. The value operand of a
5085   // store will remain scalar if the store is scalarized.
5086   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5087     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5088     assert(WideningDecision != CM_Unknown &&
5089            "Widening decision should be ready at this moment");
5090     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5091       if (Ptr == Store->getValueOperand())
5092         return WideningDecision == CM_Scalarize;
5093     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5094            "Ptr is neither a value or pointer operand");
5095     return WideningDecision != CM_GatherScatter;
5096   };
5097 
5098   // A helper that returns true if the given value is a bitcast or
5099   // getelementptr instruction contained in the loop.
5100   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5101     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5102             isa<GetElementPtrInst>(V)) &&
5103            !TheLoop->isLoopInvariant(V);
5104   };
5105 
5106   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5107     if (!isa<PHINode>(Ptr) ||
5108         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5109       return false;
5110     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5111     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5112       return false;
5113     return isScalarUse(MemAccess, Ptr);
5114   };
5115 
5116   // A helper that evaluates a memory access's use of a pointer. If the
5117   // pointer is actually the pointer induction of a loop, it is being
5118   // inserted into Worklist. If the use will be a scalar use, and the
5119   // pointer is only used by memory accesses, we place the pointer in
5120   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5121   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5122     if (isScalarPtrInduction(MemAccess, Ptr)) {
5123       Worklist.insert(cast<Instruction>(Ptr));
5124       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5125                         << "\n");
5126 
5127       Instruction *Update = cast<Instruction>(
5128           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5129 
5130       // If there is more than one user of Update (Ptr), we shouldn't assume it
5131       // will be scalar after vectorisation as other users of the instruction
5132       // may require widening. Otherwise, add it to ScalarPtrs.
5133       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5134         ScalarPtrs.insert(Update);
5135         return;
5136       }
5137     }
5138     // We only care about bitcast and getelementptr instructions contained in
5139     // the loop.
5140     if (!isLoopVaryingBitCastOrGEP(Ptr))
5141       return;
5142 
5143     // If the pointer has already been identified as scalar (e.g., if it was
5144     // also identified as uniform), there's nothing to do.
5145     auto *I = cast<Instruction>(Ptr);
5146     if (Worklist.count(I))
5147       return;
5148 
5149     // If the use of the pointer will be a scalar use, and all users of the
5150     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5151     // place the pointer in PossibleNonScalarPtrs.
5152     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5153           return isa<LoadInst>(U) || isa<StoreInst>(U);
5154         }))
5155       ScalarPtrs.insert(I);
5156     else
5157       PossibleNonScalarPtrs.insert(I);
5158   };
5159 
5160   // We seed the scalars analysis with three classes of instructions: (1)
5161   // instructions marked uniform-after-vectorization and (2) bitcast,
5162   // getelementptr and (pointer) phi instructions used by memory accesses
5163   // requiring a scalar use.
5164   //
5165   // (1) Add to the worklist all instructions that have been identified as
5166   // uniform-after-vectorization.
5167   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5168 
5169   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5170   // memory accesses requiring a scalar use. The pointer operands of loads and
5171   // stores will be scalar as long as the memory accesses is not a gather or
5172   // scatter operation. The value operand of a store will remain scalar if the
5173   // store is scalarized.
5174   for (auto *BB : TheLoop->blocks())
5175     for (auto &I : *BB) {
5176       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5177         evaluatePtrUse(Load, Load->getPointerOperand());
5178       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5179         evaluatePtrUse(Store, Store->getPointerOperand());
5180         evaluatePtrUse(Store, Store->getValueOperand());
5181       }
5182     }
5183   for (auto *I : ScalarPtrs)
5184     if (!PossibleNonScalarPtrs.count(I)) {
5185       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5186       Worklist.insert(I);
5187     }
5188 
5189   // Insert the forced scalars.
5190   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5191   // induction variable when the PHI user is scalarized.
5192   auto ForcedScalar = ForcedScalars.find(VF);
5193   if (ForcedScalar != ForcedScalars.end())
5194     for (auto *I : ForcedScalar->second)
5195       Worklist.insert(I);
5196 
5197   // Expand the worklist by looking through any bitcasts and getelementptr
5198   // instructions we've already identified as scalar. This is similar to the
5199   // expansion step in collectLoopUniforms(); however, here we're only
5200   // expanding to include additional bitcasts and getelementptr instructions.
5201   unsigned Idx = 0;
5202   while (Idx != Worklist.size()) {
5203     Instruction *Dst = Worklist[Idx++];
5204     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5205       continue;
5206     auto *Src = cast<Instruction>(Dst->getOperand(0));
5207     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5208           auto *J = cast<Instruction>(U);
5209           return !TheLoop->contains(J) || Worklist.count(J) ||
5210                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5211                   isScalarUse(J, Src));
5212         })) {
5213       Worklist.insert(Src);
5214       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5215     }
5216   }
5217 
5218   // An induction variable will remain scalar if all users of the induction
5219   // variable and induction variable update remain scalar.
5220   for (auto &Induction : Legal->getInductionVars()) {
5221     auto *Ind = Induction.first;
5222     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5223 
5224     // If tail-folding is applied, the primary induction variable will be used
5225     // to feed a vector compare.
5226     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5227       continue;
5228 
5229     // Determine if all users of the induction variable are scalar after
5230     // vectorization.
5231     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5232       auto *I = cast<Instruction>(U);
5233       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5234     });
5235     if (!ScalarInd)
5236       continue;
5237 
5238     // Determine if all users of the induction variable update instruction are
5239     // scalar after vectorization.
5240     auto ScalarIndUpdate =
5241         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5242           auto *I = cast<Instruction>(U);
5243           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5244         });
5245     if (!ScalarIndUpdate)
5246       continue;
5247 
5248     // The induction variable and its update instruction will remain scalar.
5249     Worklist.insert(Ind);
5250     Worklist.insert(IndUpdate);
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5252     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5253                       << "\n");
5254   }
5255 
5256   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5257 }
5258 
5259 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5260   if (!blockNeedsPredicationForAnyReason(I->getParent()))
5261     return false;
5262   switch(I->getOpcode()) {
5263   default:
5264     break;
5265   case Instruction::Load:
5266   case Instruction::Store: {
5267     if (!Legal->isMaskRequired(I))
5268       return false;
5269     auto *Ptr = getLoadStorePointerOperand(I);
5270     auto *Ty = getLoadStoreType(I);
5271     const Align Alignment = getLoadStoreAlignment(I);
5272     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5273                                 TTI.isLegalMaskedGather(Ty, Alignment))
5274                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5275                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5276   }
5277   case Instruction::UDiv:
5278   case Instruction::SDiv:
5279   case Instruction::SRem:
5280   case Instruction::URem:
5281     return mayDivideByZero(*I);
5282   }
5283   return false;
5284 }
5285 
5286 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5287     Instruction *I, ElementCount VF) {
5288   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5289   assert(getWideningDecision(I, VF) == CM_Unknown &&
5290          "Decision should not be set yet.");
5291   auto *Group = getInterleavedAccessGroup(I);
5292   assert(Group && "Must have a group.");
5293 
5294   // If the instruction's allocated size doesn't equal it's type size, it
5295   // requires padding and will be scalarized.
5296   auto &DL = I->getModule()->getDataLayout();
5297   auto *ScalarTy = getLoadStoreType(I);
5298   if (hasIrregularType(ScalarTy, DL))
5299     return false;
5300 
5301   // Check if masking is required.
5302   // A Group may need masking for one of two reasons: it resides in a block that
5303   // needs predication, or it was decided to use masking to deal with gaps
5304   // (either a gap at the end of a load-access that may result in a speculative
5305   // load, or any gaps in a store-access).
5306   bool PredicatedAccessRequiresMasking =
5307       blockNeedsPredicationForAnyReason(I->getParent()) &&
5308       Legal->isMaskRequired(I);
5309   bool LoadAccessWithGapsRequiresEpilogMasking =
5310       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5311       !isScalarEpilogueAllowed();
5312   bool StoreAccessWithGapsRequiresMasking =
5313       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5314   if (!PredicatedAccessRequiresMasking &&
5315       !LoadAccessWithGapsRequiresEpilogMasking &&
5316       !StoreAccessWithGapsRequiresMasking)
5317     return true;
5318 
5319   // If masked interleaving is required, we expect that the user/target had
5320   // enabled it, because otherwise it either wouldn't have been created or
5321   // it should have been invalidated by the CostModel.
5322   assert(useMaskedInterleavedAccesses(TTI) &&
5323          "Masked interleave-groups for predicated accesses are not enabled.");
5324 
5325   if (Group->isReverse())
5326     return false;
5327 
5328   auto *Ty = getLoadStoreType(I);
5329   const Align Alignment = getLoadStoreAlignment(I);
5330   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5331                           : TTI.isLegalMaskedStore(Ty, Alignment);
5332 }
5333 
5334 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5335     Instruction *I, ElementCount VF) {
5336   // Get and ensure we have a valid memory instruction.
5337   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5338 
5339   auto *Ptr = getLoadStorePointerOperand(I);
5340   auto *ScalarTy = getLoadStoreType(I);
5341 
5342   // In order to be widened, the pointer should be consecutive, first of all.
5343   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5344     return false;
5345 
5346   // If the instruction is a store located in a predicated block, it will be
5347   // scalarized.
5348   if (isScalarWithPredication(I))
5349     return false;
5350 
5351   // If the instruction's allocated size doesn't equal it's type size, it
5352   // requires padding and will be scalarized.
5353   auto &DL = I->getModule()->getDataLayout();
5354   if (hasIrregularType(ScalarTy, DL))
5355     return false;
5356 
5357   return true;
5358 }
5359 
5360 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5361   // We should not collect Uniforms more than once per VF. Right now,
5362   // this function is called from collectUniformsAndScalars(), which
5363   // already does this check. Collecting Uniforms for VF=1 does not make any
5364   // sense.
5365 
5366   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5367          "This function should not be visited twice for the same VF");
5368 
5369   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5370   // not analyze again.  Uniforms.count(VF) will return 1.
5371   Uniforms[VF].clear();
5372 
5373   // We now know that the loop is vectorizable!
5374   // Collect instructions inside the loop that will remain uniform after
5375   // vectorization.
5376 
5377   // Global values, params and instructions outside of current loop are out of
5378   // scope.
5379   auto isOutOfScope = [&](Value *V) -> bool {
5380     Instruction *I = dyn_cast<Instruction>(V);
5381     return (!I || !TheLoop->contains(I));
5382   };
5383 
5384   // Worklist containing uniform instructions demanding lane 0.
5385   SetVector<Instruction *> Worklist;
5386   BasicBlock *Latch = TheLoop->getLoopLatch();
5387 
5388   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5389   // that are scalar with predication must not be considered uniform after
5390   // vectorization, because that would create an erroneous replicating region
5391   // where only a single instance out of VF should be formed.
5392   // TODO: optimize such seldom cases if found important, see PR40816.
5393   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5394     if (isOutOfScope(I)) {
5395       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5396                         << *I << "\n");
5397       return;
5398     }
5399     if (isScalarWithPredication(I)) {
5400       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5401                         << *I << "\n");
5402       return;
5403     }
5404     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5405     Worklist.insert(I);
5406   };
5407 
5408   // Start with the conditional branch. If the branch condition is an
5409   // instruction contained in the loop that is only used by the branch, it is
5410   // uniform.
5411   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5412   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5413     addToWorklistIfAllowed(Cmp);
5414 
5415   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5416     InstWidening WideningDecision = getWideningDecision(I, VF);
5417     assert(WideningDecision != CM_Unknown &&
5418            "Widening decision should be ready at this moment");
5419 
5420     // A uniform memory op is itself uniform.  We exclude uniform stores
5421     // here as they demand the last lane, not the first one.
5422     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5423       assert(WideningDecision == CM_Scalarize);
5424       return true;
5425     }
5426 
5427     return (WideningDecision == CM_Widen ||
5428             WideningDecision == CM_Widen_Reverse ||
5429             WideningDecision == CM_Interleave);
5430   };
5431 
5432 
5433   // Returns true if Ptr is the pointer operand of a memory access instruction
5434   // I, and I is known to not require scalarization.
5435   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5436     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5437   };
5438 
5439   // Holds a list of values which are known to have at least one uniform use.
5440   // Note that there may be other uses which aren't uniform.  A "uniform use"
5441   // here is something which only demands lane 0 of the unrolled iterations;
5442   // it does not imply that all lanes produce the same value (e.g. this is not
5443   // the usual meaning of uniform)
5444   SetVector<Value *> HasUniformUse;
5445 
5446   // Scan the loop for instructions which are either a) known to have only
5447   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5448   for (auto *BB : TheLoop->blocks())
5449     for (auto &I : *BB) {
5450       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5451         switch (II->getIntrinsicID()) {
5452         case Intrinsic::sideeffect:
5453         case Intrinsic::experimental_noalias_scope_decl:
5454         case Intrinsic::assume:
5455         case Intrinsic::lifetime_start:
5456         case Intrinsic::lifetime_end:
5457           if (TheLoop->hasLoopInvariantOperands(&I))
5458             addToWorklistIfAllowed(&I);
5459           break;
5460         default:
5461           break;
5462         }
5463       }
5464 
5465       // ExtractValue instructions must be uniform, because the operands are
5466       // known to be loop-invariant.
5467       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5468         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5469                "Expected aggregate value to be loop invariant");
5470         addToWorklistIfAllowed(EVI);
5471         continue;
5472       }
5473 
5474       // If there's no pointer operand, there's nothing to do.
5475       auto *Ptr = getLoadStorePointerOperand(&I);
5476       if (!Ptr)
5477         continue;
5478 
5479       // A uniform memory op is itself uniform.  We exclude uniform stores
5480       // here as they demand the last lane, not the first one.
5481       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5482         addToWorklistIfAllowed(&I);
5483 
5484       if (isUniformDecision(&I, VF)) {
5485         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5486         HasUniformUse.insert(Ptr);
5487       }
5488     }
5489 
5490   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5491   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5492   // disallows uses outside the loop as well.
5493   for (auto *V : HasUniformUse) {
5494     if (isOutOfScope(V))
5495       continue;
5496     auto *I = cast<Instruction>(V);
5497     auto UsersAreMemAccesses =
5498       llvm::all_of(I->users(), [&](User *U) -> bool {
5499         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5500       });
5501     if (UsersAreMemAccesses)
5502       addToWorklistIfAllowed(I);
5503   }
5504 
5505   // Expand Worklist in topological order: whenever a new instruction
5506   // is added , its users should be already inside Worklist.  It ensures
5507   // a uniform instruction will only be used by uniform instructions.
5508   unsigned idx = 0;
5509   while (idx != Worklist.size()) {
5510     Instruction *I = Worklist[idx++];
5511 
5512     for (auto OV : I->operand_values()) {
5513       // isOutOfScope operands cannot be uniform instructions.
5514       if (isOutOfScope(OV))
5515         continue;
5516       // First order recurrence Phi's should typically be considered
5517       // non-uniform.
5518       auto *OP = dyn_cast<PHINode>(OV);
5519       if (OP && Legal->isFirstOrderRecurrence(OP))
5520         continue;
5521       // If all the users of the operand are uniform, then add the
5522       // operand into the uniform worklist.
5523       auto *OI = cast<Instruction>(OV);
5524       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5525             auto *J = cast<Instruction>(U);
5526             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5527           }))
5528         addToWorklistIfAllowed(OI);
5529     }
5530   }
5531 
5532   // For an instruction to be added into Worklist above, all its users inside
5533   // the loop should also be in Worklist. However, this condition cannot be
5534   // true for phi nodes that form a cyclic dependence. We must process phi
5535   // nodes separately. An induction variable will remain uniform if all users
5536   // of the induction variable and induction variable update remain uniform.
5537   // The code below handles both pointer and non-pointer induction variables.
5538   for (auto &Induction : Legal->getInductionVars()) {
5539     auto *Ind = Induction.first;
5540     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5541 
5542     // Determine if all users of the induction variable are uniform after
5543     // vectorization.
5544     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5545       auto *I = cast<Instruction>(U);
5546       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5547              isVectorizedMemAccessUse(I, Ind);
5548     });
5549     if (!UniformInd)
5550       continue;
5551 
5552     // Determine if all users of the induction variable update instruction are
5553     // uniform after vectorization.
5554     auto UniformIndUpdate =
5555         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5556           auto *I = cast<Instruction>(U);
5557           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5558                  isVectorizedMemAccessUse(I, IndUpdate);
5559         });
5560     if (!UniformIndUpdate)
5561       continue;
5562 
5563     // The induction variable and its update instruction will remain uniform.
5564     addToWorklistIfAllowed(Ind);
5565     addToWorklistIfAllowed(IndUpdate);
5566   }
5567 
5568   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5569 }
5570 
5571 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5572   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5573 
5574   if (Legal->getRuntimePointerChecking()->Need) {
5575     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5576         "runtime pointer checks needed. Enable vectorization of this "
5577         "loop with '#pragma clang loop vectorize(enable)' when "
5578         "compiling with -Os/-Oz",
5579         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5580     return true;
5581   }
5582 
5583   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5584     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5585         "runtime SCEV checks needed. Enable vectorization of this "
5586         "loop with '#pragma clang loop vectorize(enable)' when "
5587         "compiling with -Os/-Oz",
5588         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5589     return true;
5590   }
5591 
5592   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5593   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5594     reportVectorizationFailure("Runtime stride check for small trip count",
5595         "runtime stride == 1 checks needed. Enable vectorization of "
5596         "this loop without such check by compiling with -Os/-Oz",
5597         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5598     return true;
5599   }
5600 
5601   return false;
5602 }
5603 
5604 ElementCount
5605 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5606   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5607     return ElementCount::getScalable(0);
5608 
5609   if (Hints->isScalableVectorizationDisabled()) {
5610     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5611                             "ScalableVectorizationDisabled", ORE, TheLoop);
5612     return ElementCount::getScalable(0);
5613   }
5614 
5615   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5616 
5617   auto MaxScalableVF = ElementCount::getScalable(
5618       std::numeric_limits<ElementCount::ScalarTy>::max());
5619 
5620   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5621   // FIXME: While for scalable vectors this is currently sufficient, this should
5622   // be replaced by a more detailed mechanism that filters out specific VFs,
5623   // instead of invalidating vectorization for a whole set of VFs based on the
5624   // MaxVF.
5625 
5626   // Disable scalable vectorization if the loop contains unsupported reductions.
5627   if (!canVectorizeReductions(MaxScalableVF)) {
5628     reportVectorizationInfo(
5629         "Scalable vectorization not supported for the reduction "
5630         "operations found in this loop.",
5631         "ScalableVFUnfeasible", ORE, TheLoop);
5632     return ElementCount::getScalable(0);
5633   }
5634 
5635   // Disable scalable vectorization if the loop contains any instructions
5636   // with element types not supported for scalable vectors.
5637   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5638         return !Ty->isVoidTy() &&
5639                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5640       })) {
5641     reportVectorizationInfo("Scalable vectorization is not supported "
5642                             "for all element types found in this loop.",
5643                             "ScalableVFUnfeasible", ORE, TheLoop);
5644     return ElementCount::getScalable(0);
5645   }
5646 
5647   if (Legal->isSafeForAnyVectorWidth())
5648     return MaxScalableVF;
5649 
5650   // Limit MaxScalableVF by the maximum safe dependence distance.
5651   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5652   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5653     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5654                              .getVScaleRangeArgs()
5655                              .second;
5656     if (VScaleMax > 0)
5657       MaxVScale = VScaleMax;
5658   }
5659   MaxScalableVF = ElementCount::getScalable(
5660       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5661   if (!MaxScalableVF)
5662     reportVectorizationInfo(
5663         "Max legal vector width too small, scalable vectorization "
5664         "unfeasible.",
5665         "ScalableVFUnfeasible", ORE, TheLoop);
5666 
5667   return MaxScalableVF;
5668 }
5669 
5670 FixedScalableVFPair
5671 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5672                                                  ElementCount UserVF) {
5673   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5674   unsigned SmallestType, WidestType;
5675   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5676 
5677   // Get the maximum safe dependence distance in bits computed by LAA.
5678   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5679   // the memory accesses that is most restrictive (involved in the smallest
5680   // dependence distance).
5681   unsigned MaxSafeElements =
5682       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5683 
5684   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5685   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5686 
5687   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5688                     << ".\n");
5689   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5690                     << ".\n");
5691 
5692   // First analyze the UserVF, fall back if the UserVF should be ignored.
5693   if (UserVF) {
5694     auto MaxSafeUserVF =
5695         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5696 
5697     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5698       // If `VF=vscale x N` is safe, then so is `VF=N`
5699       if (UserVF.isScalable())
5700         return FixedScalableVFPair(
5701             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5702       else
5703         return UserVF;
5704     }
5705 
5706     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5707 
5708     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5709     // is better to ignore the hint and let the compiler choose a suitable VF.
5710     if (!UserVF.isScalable()) {
5711       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5712                         << " is unsafe, clamping to max safe VF="
5713                         << MaxSafeFixedVF << ".\n");
5714       ORE->emit([&]() {
5715         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5716                                           TheLoop->getStartLoc(),
5717                                           TheLoop->getHeader())
5718                << "User-specified vectorization factor "
5719                << ore::NV("UserVectorizationFactor", UserVF)
5720                << " is unsafe, clamping to maximum safe vectorization factor "
5721                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5722       });
5723       return MaxSafeFixedVF;
5724     }
5725 
5726     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5727       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5728                         << " is ignored because scalable vectors are not "
5729                            "available.\n");
5730       ORE->emit([&]() {
5731         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5732                                           TheLoop->getStartLoc(),
5733                                           TheLoop->getHeader())
5734                << "User-specified vectorization factor "
5735                << ore::NV("UserVectorizationFactor", UserVF)
5736                << " is ignored because the target does not support scalable "
5737                   "vectors. The compiler will pick a more suitable value.";
5738       });
5739     } else {
5740       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5741                         << " is unsafe. Ignoring scalable UserVF.\n");
5742       ORE->emit([&]() {
5743         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5744                                           TheLoop->getStartLoc(),
5745                                           TheLoop->getHeader())
5746                << "User-specified vectorization factor "
5747                << ore::NV("UserVectorizationFactor", UserVF)
5748                << " is unsafe. Ignoring the hint to let the compiler pick a "
5749                   "more suitable value.";
5750       });
5751     }
5752   }
5753 
5754   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5755                     << " / " << WidestType << " bits.\n");
5756 
5757   FixedScalableVFPair Result(ElementCount::getFixed(1),
5758                              ElementCount::getScalable(0));
5759   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5760                                            WidestType, MaxSafeFixedVF))
5761     Result.FixedVF = MaxVF;
5762 
5763   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5764                                            WidestType, MaxSafeScalableVF))
5765     if (MaxVF.isScalable()) {
5766       Result.ScalableVF = MaxVF;
5767       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5768                         << "\n");
5769     }
5770 
5771   return Result;
5772 }
5773 
5774 FixedScalableVFPair
5775 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5776   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5777     // TODO: It may by useful to do since it's still likely to be dynamically
5778     // uniform if the target can skip.
5779     reportVectorizationFailure(
5780         "Not inserting runtime ptr check for divergent target",
5781         "runtime pointer checks needed. Not enabled for divergent target",
5782         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5783     return FixedScalableVFPair::getNone();
5784   }
5785 
5786   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5787   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5788   if (TC == 1) {
5789     reportVectorizationFailure("Single iteration (non) loop",
5790         "loop trip count is one, irrelevant for vectorization",
5791         "SingleIterationLoop", ORE, TheLoop);
5792     return FixedScalableVFPair::getNone();
5793   }
5794 
5795   switch (ScalarEpilogueStatus) {
5796   case CM_ScalarEpilogueAllowed:
5797     return computeFeasibleMaxVF(TC, UserVF);
5798   case CM_ScalarEpilogueNotAllowedUsePredicate:
5799     LLVM_FALLTHROUGH;
5800   case CM_ScalarEpilogueNotNeededUsePredicate:
5801     LLVM_DEBUG(
5802         dbgs() << "LV: vector predicate hint/switch found.\n"
5803                << "LV: Not allowing scalar epilogue, creating predicated "
5804                << "vector loop.\n");
5805     break;
5806   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5807     // fallthrough as a special case of OptForSize
5808   case CM_ScalarEpilogueNotAllowedOptSize:
5809     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5810       LLVM_DEBUG(
5811           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5812     else
5813       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5814                         << "count.\n");
5815 
5816     // Bail if runtime checks are required, which are not good when optimising
5817     // for size.
5818     if (runtimeChecksRequired())
5819       return FixedScalableVFPair::getNone();
5820 
5821     break;
5822   }
5823 
5824   // The only loops we can vectorize without a scalar epilogue, are loops with
5825   // a bottom-test and a single exiting block. We'd have to handle the fact
5826   // that not every instruction executes on the last iteration.  This will
5827   // require a lane mask which varies through the vector loop body.  (TODO)
5828   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5829     // If there was a tail-folding hint/switch, but we can't fold the tail by
5830     // masking, fallback to a vectorization with a scalar epilogue.
5831     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5832       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5833                            "scalar epilogue instead.\n");
5834       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5835       return computeFeasibleMaxVF(TC, UserVF);
5836     }
5837     return FixedScalableVFPair::getNone();
5838   }
5839 
5840   // Now try the tail folding
5841 
5842   // Invalidate interleave groups that require an epilogue if we can't mask
5843   // the interleave-group.
5844   if (!useMaskedInterleavedAccesses(TTI)) {
5845     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5846            "No decisions should have been taken at this point");
5847     // Note: There is no need to invalidate any cost modeling decisions here, as
5848     // non where taken so far.
5849     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5850   }
5851 
5852   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5853   // Avoid tail folding if the trip count is known to be a multiple of any VF
5854   // we chose.
5855   // FIXME: The condition below pessimises the case for fixed-width vectors,
5856   // when scalable VFs are also candidates for vectorization.
5857   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5858     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5859     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5860            "MaxFixedVF must be a power of 2");
5861     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5862                                    : MaxFixedVF.getFixedValue();
5863     ScalarEvolution *SE = PSE.getSE();
5864     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5865     const SCEV *ExitCount = SE->getAddExpr(
5866         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5867     const SCEV *Rem = SE->getURemExpr(
5868         SE->applyLoopGuards(ExitCount, TheLoop),
5869         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5870     if (Rem->isZero()) {
5871       // Accept MaxFixedVF if we do not have a tail.
5872       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5873       return MaxFactors;
5874     }
5875   }
5876 
5877   // For scalable vectors, don't use tail folding as this is currently not yet
5878   // supported. The code is likely to have ended up here if the tripcount is
5879   // low, in which case it makes sense not to use scalable vectors.
5880   if (MaxFactors.ScalableVF.isVector())
5881     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5882 
5883   // If we don't know the precise trip count, or if the trip count that we
5884   // found modulo the vectorization factor is not zero, try to fold the tail
5885   // by masking.
5886   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5887   if (Legal->prepareToFoldTailByMasking()) {
5888     FoldTailByMasking = true;
5889     return MaxFactors;
5890   }
5891 
5892   // If there was a tail-folding hint/switch, but we can't fold the tail by
5893   // masking, fallback to a vectorization with a scalar epilogue.
5894   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5895     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5896                          "scalar epilogue instead.\n");
5897     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5898     return MaxFactors;
5899   }
5900 
5901   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5902     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5903     return FixedScalableVFPair::getNone();
5904   }
5905 
5906   if (TC == 0) {
5907     reportVectorizationFailure(
5908         "Unable to calculate the loop count due to complex control flow",
5909         "unable to calculate the loop count due to complex control flow",
5910         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5911     return FixedScalableVFPair::getNone();
5912   }
5913 
5914   reportVectorizationFailure(
5915       "Cannot optimize for size and vectorize at the same time.",
5916       "cannot optimize for size and vectorize at the same time. "
5917       "Enable vectorization of this loop with '#pragma clang loop "
5918       "vectorize(enable)' when compiling with -Os/-Oz",
5919       "NoTailLoopWithOptForSize", ORE, TheLoop);
5920   return FixedScalableVFPair::getNone();
5921 }
5922 
5923 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5924     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5925     const ElementCount &MaxSafeVF) {
5926   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5927   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5928       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5929                            : TargetTransformInfo::RGK_FixedWidthVector);
5930 
5931   // Convenience function to return the minimum of two ElementCounts.
5932   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5933     assert((LHS.isScalable() == RHS.isScalable()) &&
5934            "Scalable flags must match");
5935     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5936   };
5937 
5938   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5939   // Note that both WidestRegister and WidestType may not be a powers of 2.
5940   auto MaxVectorElementCount = ElementCount::get(
5941       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5942       ComputeScalableMaxVF);
5943   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5944   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5945                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5946 
5947   if (!MaxVectorElementCount) {
5948     LLVM_DEBUG(dbgs() << "LV: The target has no "
5949                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5950                       << " vector registers.\n");
5951     return ElementCount::getFixed(1);
5952   }
5953 
5954   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5955   if (ConstTripCount &&
5956       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5957       isPowerOf2_32(ConstTripCount)) {
5958     // We need to clamp the VF to be the ConstTripCount. There is no point in
5959     // choosing a higher viable VF as done in the loop below. If
5960     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5961     // the TC is less than or equal to the known number of lanes.
5962     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5963                       << ConstTripCount << "\n");
5964     return TripCountEC;
5965   }
5966 
5967   ElementCount MaxVF = MaxVectorElementCount;
5968   if (TTI.shouldMaximizeVectorBandwidth() ||
5969       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5970     auto MaxVectorElementCountMaxBW = ElementCount::get(
5971         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5972         ComputeScalableMaxVF);
5973     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5974 
5975     // Collect all viable vectorization factors larger than the default MaxVF
5976     // (i.e. MaxVectorElementCount).
5977     SmallVector<ElementCount, 8> VFs;
5978     for (ElementCount VS = MaxVectorElementCount * 2;
5979          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5980       VFs.push_back(VS);
5981 
5982     // For each VF calculate its register usage.
5983     auto RUs = calculateRegisterUsage(VFs);
5984 
5985     // Select the largest VF which doesn't require more registers than existing
5986     // ones.
5987     for (int i = RUs.size() - 1; i >= 0; --i) {
5988       bool Selected = true;
5989       for (auto &pair : RUs[i].MaxLocalUsers) {
5990         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5991         if (pair.second > TargetNumRegisters)
5992           Selected = false;
5993       }
5994       if (Selected) {
5995         MaxVF = VFs[i];
5996         break;
5997       }
5998     }
5999     if (ElementCount MinVF =
6000             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6001       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6002         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6003                           << ") with target's minimum: " << MinVF << '\n');
6004         MaxVF = MinVF;
6005       }
6006     }
6007   }
6008   return MaxVF;
6009 }
6010 
6011 bool LoopVectorizationCostModel::isMoreProfitable(
6012     const VectorizationFactor &A, const VectorizationFactor &B) const {
6013   InstructionCost CostA = A.Cost;
6014   InstructionCost CostB = B.Cost;
6015 
6016   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6017 
6018   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6019       MaxTripCount) {
6020     // If we are folding the tail and the trip count is a known (possibly small)
6021     // constant, the trip count will be rounded up to an integer number of
6022     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6023     // which we compare directly. When not folding the tail, the total cost will
6024     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6025     // approximated with the per-lane cost below instead of using the tripcount
6026     // as here.
6027     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6028     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6029     return RTCostA < RTCostB;
6030   }
6031 
6032   // Improve estimate for the vector width if it is scalable.
6033   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
6034   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
6035   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
6036     if (A.Width.isScalable())
6037       EstimatedWidthA *= VScale.getValue();
6038     if (B.Width.isScalable())
6039       EstimatedWidthB *= VScale.getValue();
6040   }
6041 
6042   // When set to preferred, for now assume vscale may be larger than 1 (or the
6043   // one being tuned for), so that scalable vectorization is slightly favorable
6044   // over fixed-width vectorization.
6045   if (Hints->isScalableVectorizationPreferred())
6046     if (A.Width.isScalable() && !B.Width.isScalable())
6047       return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
6048 
6049   // To avoid the need for FP division:
6050   //      (CostA / A.Width) < (CostB / B.Width)
6051   // <=>  (CostA * B.Width) < (CostB * A.Width)
6052   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
6053 }
6054 
6055 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6056     const ElementCountSet &VFCandidates) {
6057   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6058   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6059   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6060   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6061          "Expected Scalar VF to be a candidate");
6062 
6063   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6064   VectorizationFactor ChosenFactor = ScalarCost;
6065 
6066   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6067   if (ForceVectorization && VFCandidates.size() > 1) {
6068     // Ignore scalar width, because the user explicitly wants vectorization.
6069     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6070     // evaluation.
6071     ChosenFactor.Cost = InstructionCost::getMax();
6072   }
6073 
6074   SmallVector<InstructionVFPair> InvalidCosts;
6075   for (const auto &i : VFCandidates) {
6076     // The cost for scalar VF=1 is already calculated, so ignore it.
6077     if (i.isScalar())
6078       continue;
6079 
6080     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6081     VectorizationFactor Candidate(i, C.first);
6082 
6083 #ifndef NDEBUG
6084     unsigned AssumedMinimumVscale = 1;
6085     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
6086       AssumedMinimumVscale = VScale.getValue();
6087     unsigned Width =
6088         Candidate.Width.isScalable()
6089             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
6090             : Candidate.Width.getFixedValue();
6091     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
6092                       << " costs: " << (Candidate.Cost / Width));
6093     if (i.isScalable())
6094       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
6095                         << AssumedMinimumVscale << ")");
6096     LLVM_DEBUG(dbgs() << ".\n");
6097 #endif
6098 
6099     if (!C.second && !ForceVectorization) {
6100       LLVM_DEBUG(
6101           dbgs() << "LV: Not considering vector loop of width " << i
6102                  << " because it will not generate any vector instructions.\n");
6103       continue;
6104     }
6105 
6106     // If profitable add it to ProfitableVF list.
6107     if (isMoreProfitable(Candidate, ScalarCost))
6108       ProfitableVFs.push_back(Candidate);
6109 
6110     if (isMoreProfitable(Candidate, ChosenFactor))
6111       ChosenFactor = Candidate;
6112   }
6113 
6114   // Emit a report of VFs with invalid costs in the loop.
6115   if (!InvalidCosts.empty()) {
6116     // Group the remarks per instruction, keeping the instruction order from
6117     // InvalidCosts.
6118     std::map<Instruction *, unsigned> Numbering;
6119     unsigned I = 0;
6120     for (auto &Pair : InvalidCosts)
6121       if (!Numbering.count(Pair.first))
6122         Numbering[Pair.first] = I++;
6123 
6124     // Sort the list, first on instruction(number) then on VF.
6125     llvm::sort(InvalidCosts,
6126                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6127                  if (Numbering[A.first] != Numbering[B.first])
6128                    return Numbering[A.first] < Numbering[B.first];
6129                  ElementCountComparator ECC;
6130                  return ECC(A.second, B.second);
6131                });
6132 
6133     // For a list of ordered instruction-vf pairs:
6134     //   [(load, vf1), (load, vf2), (store, vf1)]
6135     // Group the instructions together to emit separate remarks for:
6136     //   load  (vf1, vf2)
6137     //   store (vf1)
6138     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6139     auto Subset = ArrayRef<InstructionVFPair>();
6140     do {
6141       if (Subset.empty())
6142         Subset = Tail.take_front(1);
6143 
6144       Instruction *I = Subset.front().first;
6145 
6146       // If the next instruction is different, or if there are no other pairs,
6147       // emit a remark for the collated subset. e.g.
6148       //   [(load, vf1), (load, vf2))]
6149       // to emit:
6150       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6151       if (Subset == Tail || Tail[Subset.size()].first != I) {
6152         std::string OutString;
6153         raw_string_ostream OS(OutString);
6154         assert(!Subset.empty() && "Unexpected empty range");
6155         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6156         for (auto &Pair : Subset)
6157           OS << (Pair.second == Subset.front().second ? "" : ", ")
6158              << Pair.second;
6159         OS << "):";
6160         if (auto *CI = dyn_cast<CallInst>(I))
6161           OS << " call to " << CI->getCalledFunction()->getName();
6162         else
6163           OS << " " << I->getOpcodeName();
6164         OS.flush();
6165         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6166         Tail = Tail.drop_front(Subset.size());
6167         Subset = {};
6168       } else
6169         // Grow the subset by one element
6170         Subset = Tail.take_front(Subset.size() + 1);
6171     } while (!Tail.empty());
6172   }
6173 
6174   if (!EnableCondStoresVectorization && NumPredStores) {
6175     reportVectorizationFailure("There are conditional stores.",
6176         "store that is conditionally executed prevents vectorization",
6177         "ConditionalStore", ORE, TheLoop);
6178     ChosenFactor = ScalarCost;
6179   }
6180 
6181   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6182                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6183              << "LV: Vectorization seems to be not beneficial, "
6184              << "but was forced by a user.\n");
6185   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6186   return ChosenFactor;
6187 }
6188 
6189 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6190     const Loop &L, ElementCount VF) const {
6191   // Cross iteration phis such as reductions need special handling and are
6192   // currently unsupported.
6193   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6194         return Legal->isFirstOrderRecurrence(&Phi) ||
6195                Legal->isReductionVariable(&Phi);
6196       }))
6197     return false;
6198 
6199   // Phis with uses outside of the loop require special handling and are
6200   // currently unsupported.
6201   for (auto &Entry : Legal->getInductionVars()) {
6202     // Look for uses of the value of the induction at the last iteration.
6203     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6204     for (User *U : PostInc->users())
6205       if (!L.contains(cast<Instruction>(U)))
6206         return false;
6207     // Look for uses of penultimate value of the induction.
6208     for (User *U : Entry.first->users())
6209       if (!L.contains(cast<Instruction>(U)))
6210         return false;
6211   }
6212 
6213   // Induction variables that are widened require special handling that is
6214   // currently not supported.
6215   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6216         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6217                  this->isProfitableToScalarize(Entry.first, VF));
6218       }))
6219     return false;
6220 
6221   // Epilogue vectorization code has not been auditted to ensure it handles
6222   // non-latch exits properly.  It may be fine, but it needs auditted and
6223   // tested.
6224   if (L.getExitingBlock() != L.getLoopLatch())
6225     return false;
6226 
6227   return true;
6228 }
6229 
6230 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6231     const ElementCount VF) const {
6232   // FIXME: We need a much better cost-model to take different parameters such
6233   // as register pressure, code size increase and cost of extra branches into
6234   // account. For now we apply a very crude heuristic and only consider loops
6235   // with vectorization factors larger than a certain value.
6236   // We also consider epilogue vectorization unprofitable for targets that don't
6237   // consider interleaving beneficial (eg. MVE).
6238   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6239     return false;
6240   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6241     return true;
6242   return false;
6243 }
6244 
6245 VectorizationFactor
6246 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6247     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6248   VectorizationFactor Result = VectorizationFactor::Disabled();
6249   if (!EnableEpilogueVectorization) {
6250     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6251     return Result;
6252   }
6253 
6254   if (!isScalarEpilogueAllowed()) {
6255     LLVM_DEBUG(
6256         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6257                   "allowed.\n";);
6258     return Result;
6259   }
6260 
6261   // Not really a cost consideration, but check for unsupported cases here to
6262   // simplify the logic.
6263   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6264     LLVM_DEBUG(
6265         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6266                   "not a supported candidate.\n";);
6267     return Result;
6268   }
6269 
6270   if (EpilogueVectorizationForceVF > 1) {
6271     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6272     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6273     if (LVP.hasPlanWithVF(ForcedEC))
6274       return {ForcedEC, 0};
6275     else {
6276       LLVM_DEBUG(
6277           dbgs()
6278               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6279       return Result;
6280     }
6281   }
6282 
6283   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6284       TheLoop->getHeader()->getParent()->hasMinSize()) {
6285     LLVM_DEBUG(
6286         dbgs()
6287             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6288     return Result;
6289   }
6290 
6291   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
6292   if (MainLoopVF.isScalable())
6293     LLVM_DEBUG(
6294         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
6295                   "yet supported. Converting to fixed-width (VF="
6296                << FixedMainLoopVF << ") instead\n");
6297 
6298   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
6299     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
6300                          "this loop\n");
6301     return Result;
6302   }
6303 
6304   for (auto &NextVF : ProfitableVFs)
6305     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
6306         (Result.Width.getFixedValue() == 1 ||
6307          isMoreProfitable(NextVF, Result)) &&
6308         LVP.hasPlanWithVF(NextVF.Width))
6309       Result = NextVF;
6310 
6311   if (Result != VectorizationFactor::Disabled())
6312     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6313                       << Result.Width.getFixedValue() << "\n";);
6314   return Result;
6315 }
6316 
6317 std::pair<unsigned, unsigned>
6318 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6319   unsigned MinWidth = -1U;
6320   unsigned MaxWidth = 8;
6321   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6322   for (Type *T : ElementTypesInLoop) {
6323     MinWidth = std::min<unsigned>(
6324         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6325     MaxWidth = std::max<unsigned>(
6326         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6327   }
6328   return {MinWidth, MaxWidth};
6329 }
6330 
6331 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6332   ElementTypesInLoop.clear();
6333   // For each block.
6334   for (BasicBlock *BB : TheLoop->blocks()) {
6335     // For each instruction in the loop.
6336     for (Instruction &I : BB->instructionsWithoutDebug()) {
6337       Type *T = I.getType();
6338 
6339       // Skip ignored values.
6340       if (ValuesToIgnore.count(&I))
6341         continue;
6342 
6343       // Only examine Loads, Stores and PHINodes.
6344       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6345         continue;
6346 
6347       // Examine PHI nodes that are reduction variables. Update the type to
6348       // account for the recurrence type.
6349       if (auto *PN = dyn_cast<PHINode>(&I)) {
6350         if (!Legal->isReductionVariable(PN))
6351           continue;
6352         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6353         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6354             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6355                                       RdxDesc.getRecurrenceType(),
6356                                       TargetTransformInfo::ReductionFlags()))
6357           continue;
6358         T = RdxDesc.getRecurrenceType();
6359       }
6360 
6361       // Examine the stored values.
6362       if (auto *ST = dyn_cast<StoreInst>(&I))
6363         T = ST->getValueOperand()->getType();
6364 
6365       // Ignore loaded pointer types and stored pointer types that are not
6366       // vectorizable.
6367       //
6368       // FIXME: The check here attempts to predict whether a load or store will
6369       //        be vectorized. We only know this for certain after a VF has
6370       //        been selected. Here, we assume that if an access can be
6371       //        vectorized, it will be. We should also look at extending this
6372       //        optimization to non-pointer types.
6373       //
6374       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6375           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6376         continue;
6377 
6378       ElementTypesInLoop.insert(T);
6379     }
6380   }
6381 }
6382 
6383 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6384                                                            unsigned LoopCost) {
6385   // -- The interleave heuristics --
6386   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6387   // There are many micro-architectural considerations that we can't predict
6388   // at this level. For example, frontend pressure (on decode or fetch) due to
6389   // code size, or the number and capabilities of the execution ports.
6390   //
6391   // We use the following heuristics to select the interleave count:
6392   // 1. If the code has reductions, then we interleave to break the cross
6393   // iteration dependency.
6394   // 2. If the loop is really small, then we interleave to reduce the loop
6395   // overhead.
6396   // 3. We don't interleave if we think that we will spill registers to memory
6397   // due to the increased register pressure.
6398 
6399   if (!isScalarEpilogueAllowed())
6400     return 1;
6401 
6402   // We used the distance for the interleave count.
6403   if (Legal->getMaxSafeDepDistBytes() != -1U)
6404     return 1;
6405 
6406   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6407   const bool HasReductions = !Legal->getReductionVars().empty();
6408   // Do not interleave loops with a relatively small known or estimated trip
6409   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6410   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6411   // because with the above conditions interleaving can expose ILP and break
6412   // cross iteration dependences for reductions.
6413   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6414       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6415     return 1;
6416 
6417   RegisterUsage R = calculateRegisterUsage({VF})[0];
6418   // We divide by these constants so assume that we have at least one
6419   // instruction that uses at least one register.
6420   for (auto& pair : R.MaxLocalUsers) {
6421     pair.second = std::max(pair.second, 1U);
6422   }
6423 
6424   // We calculate the interleave count using the following formula.
6425   // Subtract the number of loop invariants from the number of available
6426   // registers. These registers are used by all of the interleaved instances.
6427   // Next, divide the remaining registers by the number of registers that is
6428   // required by the loop, in order to estimate how many parallel instances
6429   // fit without causing spills. All of this is rounded down if necessary to be
6430   // a power of two. We want power of two interleave count to simplify any
6431   // addressing operations or alignment considerations.
6432   // We also want power of two interleave counts to ensure that the induction
6433   // variable of the vector loop wraps to zero, when tail is folded by masking;
6434   // this currently happens when OptForSize, in which case IC is set to 1 above.
6435   unsigned IC = UINT_MAX;
6436 
6437   for (auto& pair : R.MaxLocalUsers) {
6438     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6439     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6440                       << " registers of "
6441                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6442     if (VF.isScalar()) {
6443       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6444         TargetNumRegisters = ForceTargetNumScalarRegs;
6445     } else {
6446       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6447         TargetNumRegisters = ForceTargetNumVectorRegs;
6448     }
6449     unsigned MaxLocalUsers = pair.second;
6450     unsigned LoopInvariantRegs = 0;
6451     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6452       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6453 
6454     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6455     // Don't count the induction variable as interleaved.
6456     if (EnableIndVarRegisterHeur) {
6457       TmpIC =
6458           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6459                         std::max(1U, (MaxLocalUsers - 1)));
6460     }
6461 
6462     IC = std::min(IC, TmpIC);
6463   }
6464 
6465   // Clamp the interleave ranges to reasonable counts.
6466   unsigned MaxInterleaveCount =
6467       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6468 
6469   // Check if the user has overridden the max.
6470   if (VF.isScalar()) {
6471     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6472       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6473   } else {
6474     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6475       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6476   }
6477 
6478   // If trip count is known or estimated compile time constant, limit the
6479   // interleave count to be less than the trip count divided by VF, provided it
6480   // is at least 1.
6481   //
6482   // For scalable vectors we can't know if interleaving is beneficial. It may
6483   // not be beneficial for small loops if none of the lanes in the second vector
6484   // iterations is enabled. However, for larger loops, there is likely to be a
6485   // similar benefit as for fixed-width vectors. For now, we choose to leave
6486   // the InterleaveCount as if vscale is '1', although if some information about
6487   // the vector is known (e.g. min vector size), we can make a better decision.
6488   if (BestKnownTC) {
6489     MaxInterleaveCount =
6490         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6491     // Make sure MaxInterleaveCount is greater than 0.
6492     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6493   }
6494 
6495   assert(MaxInterleaveCount > 0 &&
6496          "Maximum interleave count must be greater than 0");
6497 
6498   // Clamp the calculated IC to be between the 1 and the max interleave count
6499   // that the target and trip count allows.
6500   if (IC > MaxInterleaveCount)
6501     IC = MaxInterleaveCount;
6502   else
6503     // Make sure IC is greater than 0.
6504     IC = std::max(1u, IC);
6505 
6506   assert(IC > 0 && "Interleave count must be greater than 0.");
6507 
6508   // If we did not calculate the cost for VF (because the user selected the VF)
6509   // then we calculate the cost of VF here.
6510   if (LoopCost == 0) {
6511     InstructionCost C = expectedCost(VF).first;
6512     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6513     LoopCost = *C.getValue();
6514   }
6515 
6516   assert(LoopCost && "Non-zero loop cost expected");
6517 
6518   // Interleave if we vectorized this loop and there is a reduction that could
6519   // benefit from interleaving.
6520   if (VF.isVector() && HasReductions) {
6521     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6522     return IC;
6523   }
6524 
6525   // Note that if we've already vectorized the loop we will have done the
6526   // runtime check and so interleaving won't require further checks.
6527   bool InterleavingRequiresRuntimePointerCheck =
6528       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6529 
6530   // We want to interleave small loops in order to reduce the loop overhead and
6531   // potentially expose ILP opportunities.
6532   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6533                     << "LV: IC is " << IC << '\n'
6534                     << "LV: VF is " << VF << '\n');
6535   const bool AggressivelyInterleaveReductions =
6536       TTI.enableAggressiveInterleaving(HasReductions);
6537   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6538     // We assume that the cost overhead is 1 and we use the cost model
6539     // to estimate the cost of the loop and interleave until the cost of the
6540     // loop overhead is about 5% of the cost of the loop.
6541     unsigned SmallIC =
6542         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6543 
6544     // Interleave until store/load ports (estimated by max interleave count) are
6545     // saturated.
6546     unsigned NumStores = Legal->getNumStores();
6547     unsigned NumLoads = Legal->getNumLoads();
6548     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6549     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6550 
6551     // There is little point in interleaving for reductions containing selects
6552     // and compares when VF=1 since it may just create more overhead than it's
6553     // worth for loops with small trip counts. This is because we still have to
6554     // do the final reduction after the loop.
6555     bool HasSelectCmpReductions =
6556         HasReductions &&
6557         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6558           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6559           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6560               RdxDesc.getRecurrenceKind());
6561         });
6562     if (HasSelectCmpReductions) {
6563       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6564       return 1;
6565     }
6566 
6567     // If we have a scalar reduction (vector reductions are already dealt with
6568     // by this point), we can increase the critical path length if the loop
6569     // we're interleaving is inside another loop. For tree-wise reductions
6570     // set the limit to 2, and for ordered reductions it's best to disable
6571     // interleaving entirely.
6572     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6573       bool HasOrderedReductions =
6574           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6575             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6576             return RdxDesc.isOrdered();
6577           });
6578       if (HasOrderedReductions) {
6579         LLVM_DEBUG(
6580             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6581         return 1;
6582       }
6583 
6584       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6585       SmallIC = std::min(SmallIC, F);
6586       StoresIC = std::min(StoresIC, F);
6587       LoadsIC = std::min(LoadsIC, F);
6588     }
6589 
6590     if (EnableLoadStoreRuntimeInterleave &&
6591         std::max(StoresIC, LoadsIC) > SmallIC) {
6592       LLVM_DEBUG(
6593           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6594       return std::max(StoresIC, LoadsIC);
6595     }
6596 
6597     // If there are scalar reductions and TTI has enabled aggressive
6598     // interleaving for reductions, we will interleave to expose ILP.
6599     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6600         AggressivelyInterleaveReductions) {
6601       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6602       // Interleave no less than SmallIC but not as aggressive as the normal IC
6603       // to satisfy the rare situation when resources are too limited.
6604       return std::max(IC / 2, SmallIC);
6605     } else {
6606       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6607       return SmallIC;
6608     }
6609   }
6610 
6611   // Interleave if this is a large loop (small loops are already dealt with by
6612   // this point) that could benefit from interleaving.
6613   if (AggressivelyInterleaveReductions) {
6614     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6615     return IC;
6616   }
6617 
6618   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6619   return 1;
6620 }
6621 
6622 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6623 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6624   // This function calculates the register usage by measuring the highest number
6625   // of values that are alive at a single location. Obviously, this is a very
6626   // rough estimation. We scan the loop in a topological order in order and
6627   // assign a number to each instruction. We use RPO to ensure that defs are
6628   // met before their users. We assume that each instruction that has in-loop
6629   // users starts an interval. We record every time that an in-loop value is
6630   // used, so we have a list of the first and last occurrences of each
6631   // instruction. Next, we transpose this data structure into a multi map that
6632   // holds the list of intervals that *end* at a specific location. This multi
6633   // map allows us to perform a linear search. We scan the instructions linearly
6634   // and record each time that a new interval starts, by placing it in a set.
6635   // If we find this value in the multi-map then we remove it from the set.
6636   // The max register usage is the maximum size of the set.
6637   // We also search for instructions that are defined outside the loop, but are
6638   // used inside the loop. We need this number separately from the max-interval
6639   // usage number because when we unroll, loop-invariant values do not take
6640   // more register.
6641   LoopBlocksDFS DFS(TheLoop);
6642   DFS.perform(LI);
6643 
6644   RegisterUsage RU;
6645 
6646   // Each 'key' in the map opens a new interval. The values
6647   // of the map are the index of the 'last seen' usage of the
6648   // instruction that is the key.
6649   using IntervalMap = DenseMap<Instruction *, unsigned>;
6650 
6651   // Maps instruction to its index.
6652   SmallVector<Instruction *, 64> IdxToInstr;
6653   // Marks the end of each interval.
6654   IntervalMap EndPoint;
6655   // Saves the list of instruction indices that are used in the loop.
6656   SmallPtrSet<Instruction *, 8> Ends;
6657   // Saves the list of values that are used in the loop but are
6658   // defined outside the loop, such as arguments and constants.
6659   SmallPtrSet<Value *, 8> LoopInvariants;
6660 
6661   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6662     for (Instruction &I : BB->instructionsWithoutDebug()) {
6663       IdxToInstr.push_back(&I);
6664 
6665       // Save the end location of each USE.
6666       for (Value *U : I.operands()) {
6667         auto *Instr = dyn_cast<Instruction>(U);
6668 
6669         // Ignore non-instruction values such as arguments, constants, etc.
6670         if (!Instr)
6671           continue;
6672 
6673         // If this instruction is outside the loop then record it and continue.
6674         if (!TheLoop->contains(Instr)) {
6675           LoopInvariants.insert(Instr);
6676           continue;
6677         }
6678 
6679         // Overwrite previous end points.
6680         EndPoint[Instr] = IdxToInstr.size();
6681         Ends.insert(Instr);
6682       }
6683     }
6684   }
6685 
6686   // Saves the list of intervals that end with the index in 'key'.
6687   using InstrList = SmallVector<Instruction *, 2>;
6688   DenseMap<unsigned, InstrList> TransposeEnds;
6689 
6690   // Transpose the EndPoints to a list of values that end at each index.
6691   for (auto &Interval : EndPoint)
6692     TransposeEnds[Interval.second].push_back(Interval.first);
6693 
6694   SmallPtrSet<Instruction *, 8> OpenIntervals;
6695   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6696   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6697 
6698   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6699 
6700   // A lambda that gets the register usage for the given type and VF.
6701   const auto &TTICapture = TTI;
6702   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6703     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6704       return 0;
6705     InstructionCost::CostType RegUsage =
6706         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6707     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6708            "Nonsensical values for register usage.");
6709     return RegUsage;
6710   };
6711 
6712   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6713     Instruction *I = IdxToInstr[i];
6714 
6715     // Remove all of the instructions that end at this location.
6716     InstrList &List = TransposeEnds[i];
6717     for (Instruction *ToRemove : List)
6718       OpenIntervals.erase(ToRemove);
6719 
6720     // Ignore instructions that are never used within the loop.
6721     if (!Ends.count(I))
6722       continue;
6723 
6724     // Skip ignored values.
6725     if (ValuesToIgnore.count(I))
6726       continue;
6727 
6728     // For each VF find the maximum usage of registers.
6729     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6730       // Count the number of live intervals.
6731       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6732 
6733       if (VFs[j].isScalar()) {
6734         for (auto Inst : OpenIntervals) {
6735           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6736           if (RegUsage.find(ClassID) == RegUsage.end())
6737             RegUsage[ClassID] = 1;
6738           else
6739             RegUsage[ClassID] += 1;
6740         }
6741       } else {
6742         collectUniformsAndScalars(VFs[j]);
6743         for (auto Inst : OpenIntervals) {
6744           // Skip ignored values for VF > 1.
6745           if (VecValuesToIgnore.count(Inst))
6746             continue;
6747           if (isScalarAfterVectorization(Inst, VFs[j])) {
6748             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6749             if (RegUsage.find(ClassID) == RegUsage.end())
6750               RegUsage[ClassID] = 1;
6751             else
6752               RegUsage[ClassID] += 1;
6753           } else {
6754             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6755             if (RegUsage.find(ClassID) == RegUsage.end())
6756               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6757             else
6758               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6759           }
6760         }
6761       }
6762 
6763       for (auto& pair : RegUsage) {
6764         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6765           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6766         else
6767           MaxUsages[j][pair.first] = pair.second;
6768       }
6769     }
6770 
6771     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6772                       << OpenIntervals.size() << '\n');
6773 
6774     // Add the current instruction to the list of open intervals.
6775     OpenIntervals.insert(I);
6776   }
6777 
6778   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6779     SmallMapVector<unsigned, unsigned, 4> Invariant;
6780 
6781     for (auto Inst : LoopInvariants) {
6782       unsigned Usage =
6783           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6784       unsigned ClassID =
6785           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6786       if (Invariant.find(ClassID) == Invariant.end())
6787         Invariant[ClassID] = Usage;
6788       else
6789         Invariant[ClassID] += Usage;
6790     }
6791 
6792     LLVM_DEBUG({
6793       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6794       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6795              << " item\n";
6796       for (const auto &pair : MaxUsages[i]) {
6797         dbgs() << "LV(REG): RegisterClass: "
6798                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6799                << " registers\n";
6800       }
6801       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6802              << " item\n";
6803       for (const auto &pair : Invariant) {
6804         dbgs() << "LV(REG): RegisterClass: "
6805                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6806                << " registers\n";
6807       }
6808     });
6809 
6810     RU.LoopInvariantRegs = Invariant;
6811     RU.MaxLocalUsers = MaxUsages[i];
6812     RUs[i] = RU;
6813   }
6814 
6815   return RUs;
6816 }
6817 
6818 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6819   // TODO: Cost model for emulated masked load/store is completely
6820   // broken. This hack guides the cost model to use an artificially
6821   // high enough value to practically disable vectorization with such
6822   // operations, except where previously deployed legality hack allowed
6823   // using very low cost values. This is to avoid regressions coming simply
6824   // from moving "masked load/store" check from legality to cost model.
6825   // Masked Load/Gather emulation was previously never allowed.
6826   // Limited number of Masked Store/Scatter emulation was allowed.
6827   assert(isPredicatedInst(I) &&
6828          "Expecting a scalar emulated instruction");
6829   return isa<LoadInst>(I) ||
6830          (isa<StoreInst>(I) &&
6831           NumPredStores > NumberOfStoresToPredicate);
6832 }
6833 
6834 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6835   // If we aren't vectorizing the loop, or if we've already collected the
6836   // instructions to scalarize, there's nothing to do. Collection may already
6837   // have occurred if we have a user-selected VF and are now computing the
6838   // expected cost for interleaving.
6839   if (VF.isScalar() || VF.isZero() ||
6840       InstsToScalarize.find(VF) != InstsToScalarize.end())
6841     return;
6842 
6843   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6844   // not profitable to scalarize any instructions, the presence of VF in the
6845   // map will indicate that we've analyzed it already.
6846   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6847 
6848   // Find all the instructions that are scalar with predication in the loop and
6849   // determine if it would be better to not if-convert the blocks they are in.
6850   // If so, we also record the instructions to scalarize.
6851   for (BasicBlock *BB : TheLoop->blocks()) {
6852     if (!blockNeedsPredicationForAnyReason(BB))
6853       continue;
6854     for (Instruction &I : *BB)
6855       if (isScalarWithPredication(&I)) {
6856         ScalarCostsTy ScalarCosts;
6857         // Do not apply discount if scalable, because that would lead to
6858         // invalid scalarization costs.
6859         // Do not apply discount logic if hacked cost is needed
6860         // for emulated masked memrefs.
6861         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6862             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6863           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6864         // Remember that BB will remain after vectorization.
6865         PredicatedBBsAfterVectorization.insert(BB);
6866       }
6867   }
6868 }
6869 
6870 int LoopVectorizationCostModel::computePredInstDiscount(
6871     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6872   assert(!isUniformAfterVectorization(PredInst, VF) &&
6873          "Instruction marked uniform-after-vectorization will be predicated");
6874 
6875   // Initialize the discount to zero, meaning that the scalar version and the
6876   // vector version cost the same.
6877   InstructionCost Discount = 0;
6878 
6879   // Holds instructions to analyze. The instructions we visit are mapped in
6880   // ScalarCosts. Those instructions are the ones that would be scalarized if
6881   // we find that the scalar version costs less.
6882   SmallVector<Instruction *, 8> Worklist;
6883 
6884   // Returns true if the given instruction can be scalarized.
6885   auto canBeScalarized = [&](Instruction *I) -> bool {
6886     // We only attempt to scalarize instructions forming a single-use chain
6887     // from the original predicated block that would otherwise be vectorized.
6888     // Although not strictly necessary, we give up on instructions we know will
6889     // already be scalar to avoid traversing chains that are unlikely to be
6890     // beneficial.
6891     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6892         isScalarAfterVectorization(I, VF))
6893       return false;
6894 
6895     // If the instruction is scalar with predication, it will be analyzed
6896     // separately. We ignore it within the context of PredInst.
6897     if (isScalarWithPredication(I))
6898       return false;
6899 
6900     // If any of the instruction's operands are uniform after vectorization,
6901     // the instruction cannot be scalarized. This prevents, for example, a
6902     // masked load from being scalarized.
6903     //
6904     // We assume we will only emit a value for lane zero of an instruction
6905     // marked uniform after vectorization, rather than VF identical values.
6906     // Thus, if we scalarize an instruction that uses a uniform, we would
6907     // create uses of values corresponding to the lanes we aren't emitting code
6908     // for. This behavior can be changed by allowing getScalarValue to clone
6909     // the lane zero values for uniforms rather than asserting.
6910     for (Use &U : I->operands())
6911       if (auto *J = dyn_cast<Instruction>(U.get()))
6912         if (isUniformAfterVectorization(J, VF))
6913           return false;
6914 
6915     // Otherwise, we can scalarize the instruction.
6916     return true;
6917   };
6918 
6919   // Compute the expected cost discount from scalarizing the entire expression
6920   // feeding the predicated instruction. We currently only consider expressions
6921   // that are single-use instruction chains.
6922   Worklist.push_back(PredInst);
6923   while (!Worklist.empty()) {
6924     Instruction *I = Worklist.pop_back_val();
6925 
6926     // If we've already analyzed the instruction, there's nothing to do.
6927     if (ScalarCosts.find(I) != ScalarCosts.end())
6928       continue;
6929 
6930     // Compute the cost of the vector instruction. Note that this cost already
6931     // includes the scalarization overhead of the predicated instruction.
6932     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6933 
6934     // Compute the cost of the scalarized instruction. This cost is the cost of
6935     // the instruction as if it wasn't if-converted and instead remained in the
6936     // predicated block. We will scale this cost by block probability after
6937     // computing the scalarization overhead.
6938     InstructionCost ScalarCost =
6939         VF.getFixedValue() *
6940         getInstructionCost(I, ElementCount::getFixed(1)).first;
6941 
6942     // Compute the scalarization overhead of needed insertelement instructions
6943     // and phi nodes.
6944     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6945       ScalarCost += TTI.getScalarizationOverhead(
6946           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6947           APInt::getAllOnes(VF.getFixedValue()), true, false);
6948       ScalarCost +=
6949           VF.getFixedValue() *
6950           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6951     }
6952 
6953     // Compute the scalarization overhead of needed extractelement
6954     // instructions. For each of the instruction's operands, if the operand can
6955     // be scalarized, add it to the worklist; otherwise, account for the
6956     // overhead.
6957     for (Use &U : I->operands())
6958       if (auto *J = dyn_cast<Instruction>(U.get())) {
6959         assert(VectorType::isValidElementType(J->getType()) &&
6960                "Instruction has non-scalar type");
6961         if (canBeScalarized(J))
6962           Worklist.push_back(J);
6963         else if (needsExtract(J, VF)) {
6964           ScalarCost += TTI.getScalarizationOverhead(
6965               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6966               APInt::getAllOnes(VF.getFixedValue()), false, true);
6967         }
6968       }
6969 
6970     // Scale the total scalar cost by block probability.
6971     ScalarCost /= getReciprocalPredBlockProb();
6972 
6973     // Compute the discount. A non-negative discount means the vector version
6974     // of the instruction costs more, and scalarizing would be beneficial.
6975     Discount += VectorCost - ScalarCost;
6976     ScalarCosts[I] = ScalarCost;
6977   }
6978 
6979   return *Discount.getValue();
6980 }
6981 
6982 LoopVectorizationCostModel::VectorizationCostTy
6983 LoopVectorizationCostModel::expectedCost(
6984     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6985   VectorizationCostTy Cost;
6986 
6987   // For each block.
6988   for (BasicBlock *BB : TheLoop->blocks()) {
6989     VectorizationCostTy BlockCost;
6990 
6991     // For each instruction in the old loop.
6992     for (Instruction &I : BB->instructionsWithoutDebug()) {
6993       // Skip ignored values.
6994       if (ValuesToIgnore.count(&I) ||
6995           (VF.isVector() && VecValuesToIgnore.count(&I)))
6996         continue;
6997 
6998       VectorizationCostTy C = getInstructionCost(&I, VF);
6999 
7000       // Check if we should override the cost.
7001       if (C.first.isValid() &&
7002           ForceTargetInstructionCost.getNumOccurrences() > 0)
7003         C.first = InstructionCost(ForceTargetInstructionCost);
7004 
7005       // Keep a list of instructions with invalid costs.
7006       if (Invalid && !C.first.isValid())
7007         Invalid->emplace_back(&I, VF);
7008 
7009       BlockCost.first += C.first;
7010       BlockCost.second |= C.second;
7011       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
7012                         << " for VF " << VF << " For instruction: " << I
7013                         << '\n');
7014     }
7015 
7016     // If we are vectorizing a predicated block, it will have been
7017     // if-converted. This means that the block's instructions (aside from
7018     // stores and instructions that may divide by zero) will now be
7019     // unconditionally executed. For the scalar case, we may not always execute
7020     // the predicated block, if it is an if-else block. Thus, scale the block's
7021     // cost by the probability of executing it. blockNeedsPredication from
7022     // Legal is used so as to not include all blocks in tail folded loops.
7023     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7024       BlockCost.first /= getReciprocalPredBlockProb();
7025 
7026     Cost.first += BlockCost.first;
7027     Cost.second |= BlockCost.second;
7028   }
7029 
7030   return Cost;
7031 }
7032 
7033 /// Gets Address Access SCEV after verifying that the access pattern
7034 /// is loop invariant except the induction variable dependence.
7035 ///
7036 /// This SCEV can be sent to the Target in order to estimate the address
7037 /// calculation cost.
7038 static const SCEV *getAddressAccessSCEV(
7039               Value *Ptr,
7040               LoopVectorizationLegality *Legal,
7041               PredicatedScalarEvolution &PSE,
7042               const Loop *TheLoop) {
7043 
7044   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7045   if (!Gep)
7046     return nullptr;
7047 
7048   // We are looking for a gep with all loop invariant indices except for one
7049   // which should be an induction variable.
7050   auto SE = PSE.getSE();
7051   unsigned NumOperands = Gep->getNumOperands();
7052   for (unsigned i = 1; i < NumOperands; ++i) {
7053     Value *Opd = Gep->getOperand(i);
7054     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7055         !Legal->isInductionVariable(Opd))
7056       return nullptr;
7057   }
7058 
7059   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7060   return PSE.getSCEV(Ptr);
7061 }
7062 
7063 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7064   return Legal->hasStride(I->getOperand(0)) ||
7065          Legal->hasStride(I->getOperand(1));
7066 }
7067 
7068 InstructionCost
7069 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7070                                                         ElementCount VF) {
7071   assert(VF.isVector() &&
7072          "Scalarization cost of instruction implies vectorization.");
7073   if (VF.isScalable())
7074     return InstructionCost::getInvalid();
7075 
7076   Type *ValTy = getLoadStoreType(I);
7077   auto SE = PSE.getSE();
7078 
7079   unsigned AS = getLoadStoreAddressSpace(I);
7080   Value *Ptr = getLoadStorePointerOperand(I);
7081   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7082 
7083   // Figure out whether the access is strided and get the stride value
7084   // if it's known in compile time
7085   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7086 
7087   // Get the cost of the scalar memory instruction and address computation.
7088   InstructionCost Cost =
7089       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7090 
7091   // Don't pass *I here, since it is scalar but will actually be part of a
7092   // vectorized loop where the user of it is a vectorized instruction.
7093   const Align Alignment = getLoadStoreAlignment(I);
7094   Cost += VF.getKnownMinValue() *
7095           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7096                               AS, TTI::TCK_RecipThroughput);
7097 
7098   // Get the overhead of the extractelement and insertelement instructions
7099   // we might create due to scalarization.
7100   Cost += getScalarizationOverhead(I, VF);
7101 
7102   // If we have a predicated load/store, it will need extra i1 extracts and
7103   // conditional branches, but may not be executed for each vector lane. Scale
7104   // the cost by the probability of executing the predicated block.
7105   if (isPredicatedInst(I)) {
7106     Cost /= getReciprocalPredBlockProb();
7107 
7108     // Add the cost of an i1 extract and a branch
7109     auto *Vec_i1Ty =
7110         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7111     Cost += TTI.getScalarizationOverhead(
7112         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7113         /*Insert=*/false, /*Extract=*/true);
7114     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7115 
7116     if (useEmulatedMaskMemRefHack(I))
7117       // Artificially setting to a high enough value to practically disable
7118       // vectorization with such operations.
7119       Cost = 3000000;
7120   }
7121 
7122   return Cost;
7123 }
7124 
7125 InstructionCost
7126 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7127                                                     ElementCount VF) {
7128   Type *ValTy = getLoadStoreType(I);
7129   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7130   Value *Ptr = getLoadStorePointerOperand(I);
7131   unsigned AS = getLoadStoreAddressSpace(I);
7132   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7133   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7134 
7135   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7136          "Stride should be 1 or -1 for consecutive memory access");
7137   const Align Alignment = getLoadStoreAlignment(I);
7138   InstructionCost Cost = 0;
7139   if (Legal->isMaskRequired(I))
7140     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7141                                       CostKind);
7142   else
7143     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7144                                 CostKind, I);
7145 
7146   bool Reverse = ConsecutiveStride < 0;
7147   if (Reverse)
7148     Cost +=
7149         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7150   return Cost;
7151 }
7152 
7153 InstructionCost
7154 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7155                                                 ElementCount VF) {
7156   assert(Legal->isUniformMemOp(*I));
7157 
7158   Type *ValTy = getLoadStoreType(I);
7159   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7160   const Align Alignment = getLoadStoreAlignment(I);
7161   unsigned AS = getLoadStoreAddressSpace(I);
7162   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7163   if (isa<LoadInst>(I)) {
7164     return TTI.getAddressComputationCost(ValTy) +
7165            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7166                                CostKind) +
7167            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7168   }
7169   StoreInst *SI = cast<StoreInst>(I);
7170 
7171   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7172   return TTI.getAddressComputationCost(ValTy) +
7173          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7174                              CostKind) +
7175          (isLoopInvariantStoreValue
7176               ? 0
7177               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7178                                        VF.getKnownMinValue() - 1));
7179 }
7180 
7181 InstructionCost
7182 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7183                                                  ElementCount VF) {
7184   Type *ValTy = getLoadStoreType(I);
7185   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7186   const Align Alignment = getLoadStoreAlignment(I);
7187   const Value *Ptr = getLoadStorePointerOperand(I);
7188 
7189   return TTI.getAddressComputationCost(VectorTy) +
7190          TTI.getGatherScatterOpCost(
7191              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7192              TargetTransformInfo::TCK_RecipThroughput, I);
7193 }
7194 
7195 InstructionCost
7196 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7197                                                    ElementCount VF) {
7198   // TODO: Once we have support for interleaving with scalable vectors
7199   // we can calculate the cost properly here.
7200   if (VF.isScalable())
7201     return InstructionCost::getInvalid();
7202 
7203   Type *ValTy = getLoadStoreType(I);
7204   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7205   unsigned AS = getLoadStoreAddressSpace(I);
7206 
7207   auto Group = getInterleavedAccessGroup(I);
7208   assert(Group && "Fail to get an interleaved access group.");
7209 
7210   unsigned InterleaveFactor = Group->getFactor();
7211   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7212 
7213   // Holds the indices of existing members in the interleaved group.
7214   SmallVector<unsigned, 4> Indices;
7215   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7216     if (Group->getMember(IF))
7217       Indices.push_back(IF);
7218 
7219   // Calculate the cost of the whole interleaved group.
7220   bool UseMaskForGaps =
7221       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7222       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7223   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7224       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7225       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7226 
7227   if (Group->isReverse()) {
7228     // TODO: Add support for reversed masked interleaved access.
7229     assert(!Legal->isMaskRequired(I) &&
7230            "Reverse masked interleaved access not supported.");
7231     Cost +=
7232         Group->getNumMembers() *
7233         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7234   }
7235   return Cost;
7236 }
7237 
7238 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7239     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7240   using namespace llvm::PatternMatch;
7241   // Early exit for no inloop reductions
7242   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7243     return None;
7244   auto *VectorTy = cast<VectorType>(Ty);
7245 
7246   // We are looking for a pattern of, and finding the minimal acceptable cost:
7247   //  reduce(mul(ext(A), ext(B))) or
7248   //  reduce(mul(A, B)) or
7249   //  reduce(ext(A)) or
7250   //  reduce(A).
7251   // The basic idea is that we walk down the tree to do that, finding the root
7252   // reduction instruction in InLoopReductionImmediateChains. From there we find
7253   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7254   // of the components. If the reduction cost is lower then we return it for the
7255   // reduction instruction and 0 for the other instructions in the pattern. If
7256   // it is not we return an invalid cost specifying the orignal cost method
7257   // should be used.
7258   Instruction *RetI = I;
7259   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7260     if (!RetI->hasOneUser())
7261       return None;
7262     RetI = RetI->user_back();
7263   }
7264   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7265       RetI->user_back()->getOpcode() == Instruction::Add) {
7266     if (!RetI->hasOneUser())
7267       return None;
7268     RetI = RetI->user_back();
7269   }
7270 
7271   // Test if the found instruction is a reduction, and if not return an invalid
7272   // cost specifying the parent to use the original cost modelling.
7273   if (!InLoopReductionImmediateChains.count(RetI))
7274     return None;
7275 
7276   // Find the reduction this chain is a part of and calculate the basic cost of
7277   // the reduction on its own.
7278   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7279   Instruction *ReductionPhi = LastChain;
7280   while (!isa<PHINode>(ReductionPhi))
7281     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7282 
7283   const RecurrenceDescriptor &RdxDesc =
7284       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7285 
7286   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7287       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7288 
7289   // If we're using ordered reductions then we can just return the base cost
7290   // here, since getArithmeticReductionCost calculates the full ordered
7291   // reduction cost when FP reassociation is not allowed.
7292   if (useOrderedReductions(RdxDesc))
7293     return BaseCost;
7294 
7295   // Get the operand that was not the reduction chain and match it to one of the
7296   // patterns, returning the better cost if it is found.
7297   Instruction *RedOp = RetI->getOperand(1) == LastChain
7298                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7299                            : dyn_cast<Instruction>(RetI->getOperand(1));
7300 
7301   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7302 
7303   Instruction *Op0, *Op1;
7304   if (RedOp &&
7305       match(RedOp,
7306             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7307       match(Op0, m_ZExtOrSExt(m_Value())) &&
7308       Op0->getOpcode() == Op1->getOpcode() &&
7309       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7310       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7311       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7312 
7313     // Matched reduce(ext(mul(ext(A), ext(B)))
7314     // Note that the extend opcodes need to all match, or if A==B they will have
7315     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7316     // which is equally fine.
7317     bool IsUnsigned = isa<ZExtInst>(Op0);
7318     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7319     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7320 
7321     InstructionCost ExtCost =
7322         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7323                              TTI::CastContextHint::None, CostKind, Op0);
7324     InstructionCost MulCost =
7325         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7326     InstructionCost Ext2Cost =
7327         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7328                              TTI::CastContextHint::None, CostKind, RedOp);
7329 
7330     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7331         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7332         CostKind);
7333 
7334     if (RedCost.isValid() &&
7335         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7336       return I == RetI ? RedCost : 0;
7337   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7338              !TheLoop->isLoopInvariant(RedOp)) {
7339     // Matched reduce(ext(A))
7340     bool IsUnsigned = isa<ZExtInst>(RedOp);
7341     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7342     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7343         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7344         CostKind);
7345 
7346     InstructionCost ExtCost =
7347         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7348                              TTI::CastContextHint::None, CostKind, RedOp);
7349     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7350       return I == RetI ? RedCost : 0;
7351   } else if (RedOp &&
7352              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7353     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7354         Op0->getOpcode() == Op1->getOpcode() &&
7355         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7356         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7357       bool IsUnsigned = isa<ZExtInst>(Op0);
7358       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7359       // Matched reduce(mul(ext, ext))
7360       InstructionCost ExtCost =
7361           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7362                                TTI::CastContextHint::None, CostKind, Op0);
7363       InstructionCost MulCost =
7364           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7365 
7366       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7367           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7368           CostKind);
7369 
7370       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7371         return I == RetI ? RedCost : 0;
7372     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7373       // Matched reduce(mul())
7374       InstructionCost MulCost =
7375           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7376 
7377       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7378           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7379           CostKind);
7380 
7381       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7382         return I == RetI ? RedCost : 0;
7383     }
7384   }
7385 
7386   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7387 }
7388 
7389 InstructionCost
7390 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7391                                                      ElementCount VF) {
7392   // Calculate scalar cost only. Vectorization cost should be ready at this
7393   // moment.
7394   if (VF.isScalar()) {
7395     Type *ValTy = getLoadStoreType(I);
7396     const Align Alignment = getLoadStoreAlignment(I);
7397     unsigned AS = getLoadStoreAddressSpace(I);
7398 
7399     return TTI.getAddressComputationCost(ValTy) +
7400            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7401                                TTI::TCK_RecipThroughput, I);
7402   }
7403   return getWideningCost(I, VF);
7404 }
7405 
7406 LoopVectorizationCostModel::VectorizationCostTy
7407 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7408                                                ElementCount VF) {
7409   // If we know that this instruction will remain uniform, check the cost of
7410   // the scalar version.
7411   if (isUniformAfterVectorization(I, VF))
7412     VF = ElementCount::getFixed(1);
7413 
7414   if (VF.isVector() && isProfitableToScalarize(I, VF))
7415     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7416 
7417   // Forced scalars do not have any scalarization overhead.
7418   auto ForcedScalar = ForcedScalars.find(VF);
7419   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7420     auto InstSet = ForcedScalar->second;
7421     if (InstSet.count(I))
7422       return VectorizationCostTy(
7423           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7424            VF.getKnownMinValue()),
7425           false);
7426   }
7427 
7428   Type *VectorTy;
7429   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7430 
7431   bool TypeNotScalarized = false;
7432   if (VF.isVector() && VectorTy->isVectorTy()) {
7433     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7434     if (NumParts)
7435       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7436     else
7437       C = InstructionCost::getInvalid();
7438   }
7439   return VectorizationCostTy(C, TypeNotScalarized);
7440 }
7441 
7442 InstructionCost
7443 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7444                                                      ElementCount VF) const {
7445 
7446   // There is no mechanism yet to create a scalable scalarization loop,
7447   // so this is currently Invalid.
7448   if (VF.isScalable())
7449     return InstructionCost::getInvalid();
7450 
7451   if (VF.isScalar())
7452     return 0;
7453 
7454   InstructionCost Cost = 0;
7455   Type *RetTy = ToVectorTy(I->getType(), VF);
7456   if (!RetTy->isVoidTy() &&
7457       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7458     Cost += TTI.getScalarizationOverhead(
7459         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7460         false);
7461 
7462   // Some targets keep addresses scalar.
7463   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7464     return Cost;
7465 
7466   // Some targets support efficient element stores.
7467   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7468     return Cost;
7469 
7470   // Collect operands to consider.
7471   CallInst *CI = dyn_cast<CallInst>(I);
7472   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7473 
7474   // Skip operands that do not require extraction/scalarization and do not incur
7475   // any overhead.
7476   SmallVector<Type *> Tys;
7477   for (auto *V : filterExtractingOperands(Ops, VF))
7478     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7479   return Cost + TTI.getOperandsScalarizationOverhead(
7480                     filterExtractingOperands(Ops, VF), Tys);
7481 }
7482 
7483 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7484   if (VF.isScalar())
7485     return;
7486   NumPredStores = 0;
7487   for (BasicBlock *BB : TheLoop->blocks()) {
7488     // For each instruction in the old loop.
7489     for (Instruction &I : *BB) {
7490       Value *Ptr =  getLoadStorePointerOperand(&I);
7491       if (!Ptr)
7492         continue;
7493 
7494       // TODO: We should generate better code and update the cost model for
7495       // predicated uniform stores. Today they are treated as any other
7496       // predicated store (see added test cases in
7497       // invariant-store-vectorization.ll).
7498       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7499         NumPredStores++;
7500 
7501       if (Legal->isUniformMemOp(I)) {
7502         // TODO: Avoid replicating loads and stores instead of
7503         // relying on instcombine to remove them.
7504         // Load: Scalar load + broadcast
7505         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7506         InstructionCost Cost;
7507         if (isa<StoreInst>(&I) && VF.isScalable() &&
7508             isLegalGatherOrScatter(&I)) {
7509           Cost = getGatherScatterCost(&I, VF);
7510           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7511         } else {
7512           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7513                  "Cannot yet scalarize uniform stores");
7514           Cost = getUniformMemOpCost(&I, VF);
7515           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7516         }
7517         continue;
7518       }
7519 
7520       // We assume that widening is the best solution when possible.
7521       if (memoryInstructionCanBeWidened(&I, VF)) {
7522         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7523         int ConsecutiveStride = Legal->isConsecutivePtr(
7524             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7525         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7526                "Expected consecutive stride.");
7527         InstWidening Decision =
7528             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7529         setWideningDecision(&I, VF, Decision, Cost);
7530         continue;
7531       }
7532 
7533       // Choose between Interleaving, Gather/Scatter or Scalarization.
7534       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7535       unsigned NumAccesses = 1;
7536       if (isAccessInterleaved(&I)) {
7537         auto Group = getInterleavedAccessGroup(&I);
7538         assert(Group && "Fail to get an interleaved access group.");
7539 
7540         // Make one decision for the whole group.
7541         if (getWideningDecision(&I, VF) != CM_Unknown)
7542           continue;
7543 
7544         NumAccesses = Group->getNumMembers();
7545         if (interleavedAccessCanBeWidened(&I, VF))
7546           InterleaveCost = getInterleaveGroupCost(&I, VF);
7547       }
7548 
7549       InstructionCost GatherScatterCost =
7550           isLegalGatherOrScatter(&I)
7551               ? getGatherScatterCost(&I, VF) * NumAccesses
7552               : InstructionCost::getInvalid();
7553 
7554       InstructionCost ScalarizationCost =
7555           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7556 
7557       // Choose better solution for the current VF,
7558       // write down this decision and use it during vectorization.
7559       InstructionCost Cost;
7560       InstWidening Decision;
7561       if (InterleaveCost <= GatherScatterCost &&
7562           InterleaveCost < ScalarizationCost) {
7563         Decision = CM_Interleave;
7564         Cost = InterleaveCost;
7565       } else if (GatherScatterCost < ScalarizationCost) {
7566         Decision = CM_GatherScatter;
7567         Cost = GatherScatterCost;
7568       } else {
7569         Decision = CM_Scalarize;
7570         Cost = ScalarizationCost;
7571       }
7572       // If the instructions belongs to an interleave group, the whole group
7573       // receives the same decision. The whole group receives the cost, but
7574       // the cost will actually be assigned to one instruction.
7575       if (auto Group = getInterleavedAccessGroup(&I))
7576         setWideningDecision(Group, VF, Decision, Cost);
7577       else
7578         setWideningDecision(&I, VF, Decision, Cost);
7579     }
7580   }
7581 
7582   // Make sure that any load of address and any other address computation
7583   // remains scalar unless there is gather/scatter support. This avoids
7584   // inevitable extracts into address registers, and also has the benefit of
7585   // activating LSR more, since that pass can't optimize vectorized
7586   // addresses.
7587   if (TTI.prefersVectorizedAddressing())
7588     return;
7589 
7590   // Start with all scalar pointer uses.
7591   SmallPtrSet<Instruction *, 8> AddrDefs;
7592   for (BasicBlock *BB : TheLoop->blocks())
7593     for (Instruction &I : *BB) {
7594       Instruction *PtrDef =
7595         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7596       if (PtrDef && TheLoop->contains(PtrDef) &&
7597           getWideningDecision(&I, VF) != CM_GatherScatter)
7598         AddrDefs.insert(PtrDef);
7599     }
7600 
7601   // Add all instructions used to generate the addresses.
7602   SmallVector<Instruction *, 4> Worklist;
7603   append_range(Worklist, AddrDefs);
7604   while (!Worklist.empty()) {
7605     Instruction *I = Worklist.pop_back_val();
7606     for (auto &Op : I->operands())
7607       if (auto *InstOp = dyn_cast<Instruction>(Op))
7608         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7609             AddrDefs.insert(InstOp).second)
7610           Worklist.push_back(InstOp);
7611   }
7612 
7613   for (auto *I : AddrDefs) {
7614     if (isa<LoadInst>(I)) {
7615       // Setting the desired widening decision should ideally be handled in
7616       // by cost functions, but since this involves the task of finding out
7617       // if the loaded register is involved in an address computation, it is
7618       // instead changed here when we know this is the case.
7619       InstWidening Decision = getWideningDecision(I, VF);
7620       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7621         // Scalarize a widened load of address.
7622         setWideningDecision(
7623             I, VF, CM_Scalarize,
7624             (VF.getKnownMinValue() *
7625              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7626       else if (auto Group = getInterleavedAccessGroup(I)) {
7627         // Scalarize an interleave group of address loads.
7628         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7629           if (Instruction *Member = Group->getMember(I))
7630             setWideningDecision(
7631                 Member, VF, CM_Scalarize,
7632                 (VF.getKnownMinValue() *
7633                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7634         }
7635       }
7636     } else
7637       // Make sure I gets scalarized and a cost estimate without
7638       // scalarization overhead.
7639       ForcedScalars[VF].insert(I);
7640   }
7641 }
7642 
7643 InstructionCost
7644 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7645                                                Type *&VectorTy) {
7646   Type *RetTy = I->getType();
7647   if (canTruncateToMinimalBitwidth(I, VF))
7648     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7649   auto SE = PSE.getSE();
7650   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7651 
7652   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7653                                                 ElementCount VF) -> bool {
7654     if (VF.isScalar())
7655       return true;
7656 
7657     auto Scalarized = InstsToScalarize.find(VF);
7658     assert(Scalarized != InstsToScalarize.end() &&
7659            "VF not yet analyzed for scalarization profitability");
7660     return !Scalarized->second.count(I) &&
7661            llvm::all_of(I->users(), [&](User *U) {
7662              auto *UI = cast<Instruction>(U);
7663              return !Scalarized->second.count(UI);
7664            });
7665   };
7666   (void) hasSingleCopyAfterVectorization;
7667 
7668   if (isScalarAfterVectorization(I, VF)) {
7669     // With the exception of GEPs and PHIs, after scalarization there should
7670     // only be one copy of the instruction generated in the loop. This is
7671     // because the VF is either 1, or any instructions that need scalarizing
7672     // have already been dealt with by the the time we get here. As a result,
7673     // it means we don't have to multiply the instruction cost by VF.
7674     assert(I->getOpcode() == Instruction::GetElementPtr ||
7675            I->getOpcode() == Instruction::PHI ||
7676            (I->getOpcode() == Instruction::BitCast &&
7677             I->getType()->isPointerTy()) ||
7678            hasSingleCopyAfterVectorization(I, VF));
7679     VectorTy = RetTy;
7680   } else
7681     VectorTy = ToVectorTy(RetTy, VF);
7682 
7683   // TODO: We need to estimate the cost of intrinsic calls.
7684   switch (I->getOpcode()) {
7685   case Instruction::GetElementPtr:
7686     // We mark this instruction as zero-cost because the cost of GEPs in
7687     // vectorized code depends on whether the corresponding memory instruction
7688     // is scalarized or not. Therefore, we handle GEPs with the memory
7689     // instruction cost.
7690     return 0;
7691   case Instruction::Br: {
7692     // In cases of scalarized and predicated instructions, there will be VF
7693     // predicated blocks in the vectorized loop. Each branch around these
7694     // blocks requires also an extract of its vector compare i1 element.
7695     bool ScalarPredicatedBB = false;
7696     BranchInst *BI = cast<BranchInst>(I);
7697     if (VF.isVector() && BI->isConditional() &&
7698         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7699          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7700       ScalarPredicatedBB = true;
7701 
7702     if (ScalarPredicatedBB) {
7703       // Not possible to scalarize scalable vector with predicated instructions.
7704       if (VF.isScalable())
7705         return InstructionCost::getInvalid();
7706       // Return cost for branches around scalarized and predicated blocks.
7707       auto *Vec_i1Ty =
7708           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7709       return (
7710           TTI.getScalarizationOverhead(
7711               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7712           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7713     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7714       // The back-edge branch will remain, as will all scalar branches.
7715       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7716     else
7717       // This branch will be eliminated by if-conversion.
7718       return 0;
7719     // Note: We currently assume zero cost for an unconditional branch inside
7720     // a predicated block since it will become a fall-through, although we
7721     // may decide in the future to call TTI for all branches.
7722   }
7723   case Instruction::PHI: {
7724     auto *Phi = cast<PHINode>(I);
7725 
7726     // First-order recurrences are replaced by vector shuffles inside the loop.
7727     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7728     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7729       return TTI.getShuffleCost(
7730           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7731           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7732 
7733     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7734     // converted into select instructions. We require N - 1 selects per phi
7735     // node, where N is the number of incoming values.
7736     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7737       return (Phi->getNumIncomingValues() - 1) *
7738              TTI.getCmpSelInstrCost(
7739                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7740                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7741                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7742 
7743     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7744   }
7745   case Instruction::UDiv:
7746   case Instruction::SDiv:
7747   case Instruction::URem:
7748   case Instruction::SRem:
7749     // If we have a predicated instruction, it may not be executed for each
7750     // vector lane. Get the scalarization cost and scale this amount by the
7751     // probability of executing the predicated block. If the instruction is not
7752     // predicated, we fall through to the next case.
7753     if (VF.isVector() && isScalarWithPredication(I)) {
7754       InstructionCost Cost = 0;
7755 
7756       // These instructions have a non-void type, so account for the phi nodes
7757       // that we will create. This cost is likely to be zero. The phi node
7758       // cost, if any, should be scaled by the block probability because it
7759       // models a copy at the end of each predicated block.
7760       Cost += VF.getKnownMinValue() *
7761               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7762 
7763       // The cost of the non-predicated instruction.
7764       Cost += VF.getKnownMinValue() *
7765               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7766 
7767       // The cost of insertelement and extractelement instructions needed for
7768       // scalarization.
7769       Cost += getScalarizationOverhead(I, VF);
7770 
7771       // Scale the cost by the probability of executing the predicated blocks.
7772       // This assumes the predicated block for each vector lane is equally
7773       // likely.
7774       return Cost / getReciprocalPredBlockProb();
7775     }
7776     LLVM_FALLTHROUGH;
7777   case Instruction::Add:
7778   case Instruction::FAdd:
7779   case Instruction::Sub:
7780   case Instruction::FSub:
7781   case Instruction::Mul:
7782   case Instruction::FMul:
7783   case Instruction::FDiv:
7784   case Instruction::FRem:
7785   case Instruction::Shl:
7786   case Instruction::LShr:
7787   case Instruction::AShr:
7788   case Instruction::And:
7789   case Instruction::Or:
7790   case Instruction::Xor: {
7791     // Since we will replace the stride by 1 the multiplication should go away.
7792     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7793       return 0;
7794 
7795     // Detect reduction patterns
7796     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7797       return *RedCost;
7798 
7799     // Certain instructions can be cheaper to vectorize if they have a constant
7800     // second vector operand. One example of this are shifts on x86.
7801     Value *Op2 = I->getOperand(1);
7802     TargetTransformInfo::OperandValueProperties Op2VP;
7803     TargetTransformInfo::OperandValueKind Op2VK =
7804         TTI.getOperandInfo(Op2, Op2VP);
7805     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7806       Op2VK = TargetTransformInfo::OK_UniformValue;
7807 
7808     SmallVector<const Value *, 4> Operands(I->operand_values());
7809     return TTI.getArithmeticInstrCost(
7810         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7811         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7812   }
7813   case Instruction::FNeg: {
7814     return TTI.getArithmeticInstrCost(
7815         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7816         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7817         TargetTransformInfo::OP_None, I->getOperand(0), I);
7818   }
7819   case Instruction::Select: {
7820     SelectInst *SI = cast<SelectInst>(I);
7821     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7822     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7823 
7824     const Value *Op0, *Op1;
7825     using namespace llvm::PatternMatch;
7826     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7827                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7828       // select x, y, false --> x & y
7829       // select x, true, y --> x | y
7830       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7831       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7832       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7833       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7834       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7835               Op1->getType()->getScalarSizeInBits() == 1);
7836 
7837       SmallVector<const Value *, 2> Operands{Op0, Op1};
7838       return TTI.getArithmeticInstrCost(
7839           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7840           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7841     }
7842 
7843     Type *CondTy = SI->getCondition()->getType();
7844     if (!ScalarCond)
7845       CondTy = VectorType::get(CondTy, VF);
7846     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7847                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7848   }
7849   case Instruction::ICmp:
7850   case Instruction::FCmp: {
7851     Type *ValTy = I->getOperand(0)->getType();
7852     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7853     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7854       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7855     VectorTy = ToVectorTy(ValTy, VF);
7856     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7857                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7858   }
7859   case Instruction::Store:
7860   case Instruction::Load: {
7861     ElementCount Width = VF;
7862     if (Width.isVector()) {
7863       InstWidening Decision = getWideningDecision(I, Width);
7864       assert(Decision != CM_Unknown &&
7865              "CM decision should be taken at this point");
7866       if (Decision == CM_Scalarize)
7867         Width = ElementCount::getFixed(1);
7868     }
7869     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7870     return getMemoryInstructionCost(I, VF);
7871   }
7872   case Instruction::BitCast:
7873     if (I->getType()->isPointerTy())
7874       return 0;
7875     LLVM_FALLTHROUGH;
7876   case Instruction::ZExt:
7877   case Instruction::SExt:
7878   case Instruction::FPToUI:
7879   case Instruction::FPToSI:
7880   case Instruction::FPExt:
7881   case Instruction::PtrToInt:
7882   case Instruction::IntToPtr:
7883   case Instruction::SIToFP:
7884   case Instruction::UIToFP:
7885   case Instruction::Trunc:
7886   case Instruction::FPTrunc: {
7887     // Computes the CastContextHint from a Load/Store instruction.
7888     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7889       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7890              "Expected a load or a store!");
7891 
7892       if (VF.isScalar() || !TheLoop->contains(I))
7893         return TTI::CastContextHint::Normal;
7894 
7895       switch (getWideningDecision(I, VF)) {
7896       case LoopVectorizationCostModel::CM_GatherScatter:
7897         return TTI::CastContextHint::GatherScatter;
7898       case LoopVectorizationCostModel::CM_Interleave:
7899         return TTI::CastContextHint::Interleave;
7900       case LoopVectorizationCostModel::CM_Scalarize:
7901       case LoopVectorizationCostModel::CM_Widen:
7902         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7903                                         : TTI::CastContextHint::Normal;
7904       case LoopVectorizationCostModel::CM_Widen_Reverse:
7905         return TTI::CastContextHint::Reversed;
7906       case LoopVectorizationCostModel::CM_Unknown:
7907         llvm_unreachable("Instr did not go through cost modelling?");
7908       }
7909 
7910       llvm_unreachable("Unhandled case!");
7911     };
7912 
7913     unsigned Opcode = I->getOpcode();
7914     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7915     // For Trunc, the context is the only user, which must be a StoreInst.
7916     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7917       if (I->hasOneUse())
7918         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7919           CCH = ComputeCCH(Store);
7920     }
7921     // For Z/Sext, the context is the operand, which must be a LoadInst.
7922     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7923              Opcode == Instruction::FPExt) {
7924       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7925         CCH = ComputeCCH(Load);
7926     }
7927 
7928     // We optimize the truncation of induction variables having constant
7929     // integer steps. The cost of these truncations is the same as the scalar
7930     // operation.
7931     if (isOptimizableIVTruncate(I, VF)) {
7932       auto *Trunc = cast<TruncInst>(I);
7933       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7934                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7935     }
7936 
7937     // Detect reduction patterns
7938     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7939       return *RedCost;
7940 
7941     Type *SrcScalarTy = I->getOperand(0)->getType();
7942     Type *SrcVecTy =
7943         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7944     if (canTruncateToMinimalBitwidth(I, VF)) {
7945       // This cast is going to be shrunk. This may remove the cast or it might
7946       // turn it into slightly different cast. For example, if MinBW == 16,
7947       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7948       //
7949       // Calculate the modified src and dest types.
7950       Type *MinVecTy = VectorTy;
7951       if (Opcode == Instruction::Trunc) {
7952         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7953         VectorTy =
7954             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7955       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7956         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7957         VectorTy =
7958             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7959       }
7960     }
7961 
7962     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7963   }
7964   case Instruction::Call: {
7965     bool NeedToScalarize;
7966     CallInst *CI = cast<CallInst>(I);
7967     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7968     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7969       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7970       return std::min(CallCost, IntrinsicCost);
7971     }
7972     return CallCost;
7973   }
7974   case Instruction::ExtractValue:
7975     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7976   case Instruction::Alloca:
7977     // We cannot easily widen alloca to a scalable alloca, as
7978     // the result would need to be a vector of pointers.
7979     if (VF.isScalable())
7980       return InstructionCost::getInvalid();
7981     LLVM_FALLTHROUGH;
7982   default:
7983     // This opcode is unknown. Assume that it is the same as 'mul'.
7984     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7985   } // end of switch.
7986 }
7987 
7988 char LoopVectorize::ID = 0;
7989 
7990 static const char lv_name[] = "Loop Vectorization";
7991 
7992 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7993 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7994 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7995 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7996 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7997 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7998 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7999 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
8000 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8001 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
8002 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
8003 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8004 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8005 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
8006 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8007 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
8008 
8009 namespace llvm {
8010 
8011 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
8012 
8013 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
8014                               bool VectorizeOnlyWhenForced) {
8015   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
8016 }
8017 
8018 } // end namespace llvm
8019 
8020 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
8021   // Check if the pointer operand of a load or store instruction is
8022   // consecutive.
8023   if (auto *Ptr = getLoadStorePointerOperand(Inst))
8024     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
8025   return false;
8026 }
8027 
8028 void LoopVectorizationCostModel::collectValuesToIgnore() {
8029   // Ignore ephemeral values.
8030   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8031 
8032   // Ignore type-promoting instructions we identified during reduction
8033   // detection.
8034   for (auto &Reduction : Legal->getReductionVars()) {
8035     RecurrenceDescriptor &RedDes = Reduction.second;
8036     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8037     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8038   }
8039   // Ignore type-casting instructions we identified during induction
8040   // detection.
8041   for (auto &Induction : Legal->getInductionVars()) {
8042     InductionDescriptor &IndDes = Induction.second;
8043     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8044     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8045   }
8046 }
8047 
8048 void LoopVectorizationCostModel::collectInLoopReductions() {
8049   for (auto &Reduction : Legal->getReductionVars()) {
8050     PHINode *Phi = Reduction.first;
8051     RecurrenceDescriptor &RdxDesc = Reduction.second;
8052 
8053     // We don't collect reductions that are type promoted (yet).
8054     if (RdxDesc.getRecurrenceType() != Phi->getType())
8055       continue;
8056 
8057     // If the target would prefer this reduction to happen "in-loop", then we
8058     // want to record it as such.
8059     unsigned Opcode = RdxDesc.getOpcode();
8060     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8061         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8062                                    TargetTransformInfo::ReductionFlags()))
8063       continue;
8064 
8065     // Check that we can correctly put the reductions into the loop, by
8066     // finding the chain of operations that leads from the phi to the loop
8067     // exit value.
8068     SmallVector<Instruction *, 4> ReductionOperations =
8069         RdxDesc.getReductionOpChain(Phi, TheLoop);
8070     bool InLoop = !ReductionOperations.empty();
8071     if (InLoop) {
8072       InLoopReductionChains[Phi] = ReductionOperations;
8073       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8074       Instruction *LastChain = Phi;
8075       for (auto *I : ReductionOperations) {
8076         InLoopReductionImmediateChains[I] = LastChain;
8077         LastChain = I;
8078       }
8079     }
8080     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8081                       << " reduction for phi: " << *Phi << "\n");
8082   }
8083 }
8084 
8085 // TODO: we could return a pair of values that specify the max VF and
8086 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8087 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8088 // doesn't have a cost model that can choose which plan to execute if
8089 // more than one is generated.
8090 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8091                                  LoopVectorizationCostModel &CM) {
8092   unsigned WidestType;
8093   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8094   return WidestVectorRegBits / WidestType;
8095 }
8096 
8097 VectorizationFactor
8098 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8099   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8100   ElementCount VF = UserVF;
8101   // Outer loop handling: They may require CFG and instruction level
8102   // transformations before even evaluating whether vectorization is profitable.
8103   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8104   // the vectorization pipeline.
8105   if (!OrigLoop->isInnermost()) {
8106     // If the user doesn't provide a vectorization factor, determine a
8107     // reasonable one.
8108     if (UserVF.isZero()) {
8109       VF = ElementCount::getFixed(determineVPlanVF(
8110           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8111               .getFixedSize(),
8112           CM));
8113       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8114 
8115       // Make sure we have a VF > 1 for stress testing.
8116       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8117         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8118                           << "overriding computed VF.\n");
8119         VF = ElementCount::getFixed(4);
8120       }
8121     }
8122     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8123     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8124            "VF needs to be a power of two");
8125     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8126                       << "VF " << VF << " to build VPlans.\n");
8127     buildVPlans(VF, VF);
8128 
8129     // For VPlan build stress testing, we bail out after VPlan construction.
8130     if (VPlanBuildStressTest)
8131       return VectorizationFactor::Disabled();
8132 
8133     return {VF, 0 /*Cost*/};
8134   }
8135 
8136   LLVM_DEBUG(
8137       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8138                 "VPlan-native path.\n");
8139   return VectorizationFactor::Disabled();
8140 }
8141 
8142 Optional<VectorizationFactor>
8143 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8144   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8145   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8146   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8147     return None;
8148 
8149   // Invalidate interleave groups if all blocks of loop will be predicated.
8150   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
8151       !useMaskedInterleavedAccesses(*TTI)) {
8152     LLVM_DEBUG(
8153         dbgs()
8154         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8155            "which requires masked-interleaved support.\n");
8156     if (CM.InterleaveInfo.invalidateGroups())
8157       // Invalidating interleave groups also requires invalidating all decisions
8158       // based on them, which includes widening decisions and uniform and scalar
8159       // values.
8160       CM.invalidateCostModelingDecisions();
8161   }
8162 
8163   ElementCount MaxUserVF =
8164       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8165   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8166   if (!UserVF.isZero() && UserVFIsLegal) {
8167     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8168            "VF needs to be a power of two");
8169     // Collect the instructions (and their associated costs) that will be more
8170     // profitable to scalarize.
8171     if (CM.selectUserVectorizationFactor(UserVF)) {
8172       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8173       CM.collectInLoopReductions();
8174       buildVPlansWithVPRecipes(UserVF, UserVF);
8175       LLVM_DEBUG(printPlans(dbgs()));
8176       return {{UserVF, 0}};
8177     } else
8178       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8179                               "InvalidCost", ORE, OrigLoop);
8180   }
8181 
8182   // Populate the set of Vectorization Factor Candidates.
8183   ElementCountSet VFCandidates;
8184   for (auto VF = ElementCount::getFixed(1);
8185        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8186     VFCandidates.insert(VF);
8187   for (auto VF = ElementCount::getScalable(1);
8188        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8189     VFCandidates.insert(VF);
8190 
8191   for (const auto &VF : VFCandidates) {
8192     // Collect Uniform and Scalar instructions after vectorization with VF.
8193     CM.collectUniformsAndScalars(VF);
8194 
8195     // Collect the instructions (and their associated costs) that will be more
8196     // profitable to scalarize.
8197     if (VF.isVector())
8198       CM.collectInstsToScalarize(VF);
8199   }
8200 
8201   CM.collectInLoopReductions();
8202   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8203   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8204 
8205   LLVM_DEBUG(printPlans(dbgs()));
8206   if (!MaxFactors.hasVector())
8207     return VectorizationFactor::Disabled();
8208 
8209   // Select the optimal vectorization factor.
8210   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8211 
8212   // Check if it is profitable to vectorize with runtime checks.
8213   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8214   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8215     bool PragmaThresholdReached =
8216         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8217     bool ThresholdReached =
8218         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8219     if ((ThresholdReached && !Hints.allowReordering()) ||
8220         PragmaThresholdReached) {
8221       ORE->emit([&]() {
8222         return OptimizationRemarkAnalysisAliasing(
8223                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8224                    OrigLoop->getHeader())
8225                << "loop not vectorized: cannot prove it is safe to reorder "
8226                   "memory operations";
8227       });
8228       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8229       Hints.emitRemarkWithHints();
8230       return VectorizationFactor::Disabled();
8231     }
8232   }
8233   return SelectedVF;
8234 }
8235 
8236 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8237   assert(count_if(VPlans,
8238                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8239              1 &&
8240          "Best VF has not a single VPlan.");
8241 
8242   for (const VPlanPtr &Plan : VPlans) {
8243     if (Plan->hasVF(VF))
8244       return *Plan.get();
8245   }
8246   llvm_unreachable("No plan found!");
8247 }
8248 
8249 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8250                                            VPlan &BestVPlan,
8251                                            InnerLoopVectorizer &ILV,
8252                                            DominatorTree *DT) {
8253   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8254                     << '\n');
8255 
8256   // Perform the actual loop transformation.
8257 
8258   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8259   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8260   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8261   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8262   State.CanonicalIV = ILV.Induction;
8263 
8264   ILV.printDebugTracesAtStart();
8265 
8266   //===------------------------------------------------===//
8267   //
8268   // Notice: any optimization or new instruction that go
8269   // into the code below should also be implemented in
8270   // the cost-model.
8271   //
8272   //===------------------------------------------------===//
8273 
8274   // 2. Copy and widen instructions from the old loop into the new loop.
8275   BestVPlan.execute(&State);
8276 
8277   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8278   //    predication, updating analyses.
8279   ILV.fixVectorizedLoop(State);
8280 
8281   ILV.printDebugTracesAtEnd();
8282 }
8283 
8284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8285 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8286   for (const auto &Plan : VPlans)
8287     if (PrintVPlansInDotFormat)
8288       Plan->printDOT(O);
8289     else
8290       Plan->print(O);
8291 }
8292 #endif
8293 
8294 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8295     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8296 
8297   // We create new control-flow for the vectorized loop, so the original exit
8298   // conditions will be dead after vectorization if it's only used by the
8299   // terminator
8300   SmallVector<BasicBlock*> ExitingBlocks;
8301   OrigLoop->getExitingBlocks(ExitingBlocks);
8302   for (auto *BB : ExitingBlocks) {
8303     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8304     if (!Cmp || !Cmp->hasOneUse())
8305       continue;
8306 
8307     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8308     if (!DeadInstructions.insert(Cmp).second)
8309       continue;
8310 
8311     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8312     // TODO: can recurse through operands in general
8313     for (Value *Op : Cmp->operands()) {
8314       if (isa<TruncInst>(Op) && Op->hasOneUse())
8315           DeadInstructions.insert(cast<Instruction>(Op));
8316     }
8317   }
8318 
8319   // We create new "steps" for induction variable updates to which the original
8320   // induction variables map. An original update instruction will be dead if
8321   // all its users except the induction variable are dead.
8322   auto *Latch = OrigLoop->getLoopLatch();
8323   for (auto &Induction : Legal->getInductionVars()) {
8324     PHINode *Ind = Induction.first;
8325     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8326 
8327     // If the tail is to be folded by masking, the primary induction variable,
8328     // if exists, isn't dead: it will be used for masking. Don't kill it.
8329     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8330       continue;
8331 
8332     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8333           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8334         }))
8335       DeadInstructions.insert(IndUpdate);
8336 
8337     // We record as "Dead" also the type-casting instructions we had identified
8338     // during induction analysis. We don't need any handling for them in the
8339     // vectorized loop because we have proven that, under a proper runtime
8340     // test guarding the vectorized loop, the value of the phi, and the casted
8341     // value of the phi, are the same. The last instruction in this casting chain
8342     // will get its scalar/vector/widened def from the scalar/vector/widened def
8343     // of the respective phi node. Any other casts in the induction def-use chain
8344     // have no other uses outside the phi update chain, and will be ignored.
8345     InductionDescriptor &IndDes = Induction.second;
8346     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8347     DeadInstructions.insert(Casts.begin(), Casts.end());
8348   }
8349 }
8350 
8351 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8352 
8353 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8354 
8355 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8356                                         Value *Step,
8357                                         Instruction::BinaryOps BinOp) {
8358   // When unrolling and the VF is 1, we only need to add a simple scalar.
8359   Type *Ty = Val->getType();
8360   assert(!Ty->isVectorTy() && "Val must be a scalar");
8361 
8362   if (Ty->isFloatingPointTy()) {
8363     // Floating-point operations inherit FMF via the builder's flags.
8364     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8365     return Builder.CreateBinOp(BinOp, Val, MulOp);
8366   }
8367   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8368 }
8369 
8370 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8371   SmallVector<Metadata *, 4> MDs;
8372   // Reserve first location for self reference to the LoopID metadata node.
8373   MDs.push_back(nullptr);
8374   bool IsUnrollMetadata = false;
8375   MDNode *LoopID = L->getLoopID();
8376   if (LoopID) {
8377     // First find existing loop unrolling disable metadata.
8378     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8379       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8380       if (MD) {
8381         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8382         IsUnrollMetadata =
8383             S && S->getString().startswith("llvm.loop.unroll.disable");
8384       }
8385       MDs.push_back(LoopID->getOperand(i));
8386     }
8387   }
8388 
8389   if (!IsUnrollMetadata) {
8390     // Add runtime unroll disable metadata.
8391     LLVMContext &Context = L->getHeader()->getContext();
8392     SmallVector<Metadata *, 1> DisableOperands;
8393     DisableOperands.push_back(
8394         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8395     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8396     MDs.push_back(DisableNode);
8397     MDNode *NewLoopID = MDNode::get(Context, MDs);
8398     // Set operand 0 to refer to the loop id itself.
8399     NewLoopID->replaceOperandWith(0, NewLoopID);
8400     L->setLoopID(NewLoopID);
8401   }
8402 }
8403 
8404 //===--------------------------------------------------------------------===//
8405 // EpilogueVectorizerMainLoop
8406 //===--------------------------------------------------------------------===//
8407 
8408 /// This function is partially responsible for generating the control flow
8409 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8410 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8411   MDNode *OrigLoopID = OrigLoop->getLoopID();
8412   Loop *Lp = createVectorLoopSkeleton("");
8413 
8414   // Generate the code to check the minimum iteration count of the vector
8415   // epilogue (see below).
8416   EPI.EpilogueIterationCountCheck =
8417       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8418   EPI.EpilogueIterationCountCheck->setName("iter.check");
8419 
8420   // Generate the code to check any assumptions that we've made for SCEV
8421   // expressions.
8422   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8423 
8424   // Generate the code that checks at runtime if arrays overlap. We put the
8425   // checks into a separate block to make the more common case of few elements
8426   // faster.
8427   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8428 
8429   // Generate the iteration count check for the main loop, *after* the check
8430   // for the epilogue loop, so that the path-length is shorter for the case
8431   // that goes directly through the vector epilogue. The longer-path length for
8432   // the main loop is compensated for, by the gain from vectorizing the larger
8433   // trip count. Note: the branch will get updated later on when we vectorize
8434   // the epilogue.
8435   EPI.MainLoopIterationCountCheck =
8436       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8437 
8438   // Generate the induction variable.
8439   OldInduction = Legal->getPrimaryInduction();
8440   Type *IdxTy = Legal->getWidestInductionType();
8441   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8442 
8443   IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt());
8444   Value *Step = getRuntimeVF(B, IdxTy, VF * UF);
8445   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8446   EPI.VectorTripCount = CountRoundDown;
8447   Induction =
8448       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8449                               getDebugLocFromInstOrOperands(OldInduction));
8450 
8451   // Skip induction resume value creation here because they will be created in
8452   // the second pass. If we created them here, they wouldn't be used anyway,
8453   // because the vplan in the second pass still contains the inductions from the
8454   // original loop.
8455 
8456   return completeLoopSkeleton(Lp, OrigLoopID);
8457 }
8458 
8459 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8460   LLVM_DEBUG({
8461     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8462            << "Main Loop VF:" << EPI.MainLoopVF
8463            << ", Main Loop UF:" << EPI.MainLoopUF
8464            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8465            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8466   });
8467 }
8468 
8469 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8470   DEBUG_WITH_TYPE(VerboseDebug, {
8471     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8472   });
8473 }
8474 
8475 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8476     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8477   assert(L && "Expected valid Loop.");
8478   assert(Bypass && "Expected valid bypass basic block.");
8479   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8480   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8481   Value *Count = getOrCreateTripCount(L);
8482   // Reuse existing vector loop preheader for TC checks.
8483   // Note that new preheader block is generated for vector loop.
8484   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8485   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8486 
8487   // Generate code to check if the loop's trip count is less than VF * UF of the
8488   // main vector loop.
8489   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8490       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8491 
8492   Value *CheckMinIters = Builder.CreateICmp(
8493       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8494       "min.iters.check");
8495 
8496   if (!ForEpilogue)
8497     TCCheckBlock->setName("vector.main.loop.iter.check");
8498 
8499   // Create new preheader for vector loop.
8500   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8501                                    DT, LI, nullptr, "vector.ph");
8502 
8503   if (ForEpilogue) {
8504     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8505                                  DT->getNode(Bypass)->getIDom()) &&
8506            "TC check is expected to dominate Bypass");
8507 
8508     // Update dominator for Bypass & LoopExit.
8509     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8510     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8511       // For loops with multiple exits, there's no edge from the middle block
8512       // to exit blocks (as the epilogue must run) and thus no need to update
8513       // the immediate dominator of the exit blocks.
8514       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8515 
8516     LoopBypassBlocks.push_back(TCCheckBlock);
8517 
8518     // Save the trip count so we don't have to regenerate it in the
8519     // vec.epilog.iter.check. This is safe to do because the trip count
8520     // generated here dominates the vector epilog iter check.
8521     EPI.TripCount = Count;
8522   }
8523 
8524   ReplaceInstWithInst(
8525       TCCheckBlock->getTerminator(),
8526       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8527 
8528   return TCCheckBlock;
8529 }
8530 
8531 //===--------------------------------------------------------------------===//
8532 // EpilogueVectorizerEpilogueLoop
8533 //===--------------------------------------------------------------------===//
8534 
8535 /// This function is partially responsible for generating the control flow
8536 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8537 BasicBlock *
8538 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8539   MDNode *OrigLoopID = OrigLoop->getLoopID();
8540   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8541 
8542   // Now, compare the remaining count and if there aren't enough iterations to
8543   // execute the vectorized epilogue skip to the scalar part.
8544   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8545   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8546   LoopVectorPreHeader =
8547       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8548                  LI, nullptr, "vec.epilog.ph");
8549   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8550                                           VecEpilogueIterationCountCheck);
8551 
8552   // Adjust the control flow taking the state info from the main loop
8553   // vectorization into account.
8554   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8555          "expected this to be saved from the previous pass.");
8556   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8557       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8558 
8559   DT->changeImmediateDominator(LoopVectorPreHeader,
8560                                EPI.MainLoopIterationCountCheck);
8561 
8562   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8563       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8564 
8565   if (EPI.SCEVSafetyCheck)
8566     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8567         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8568   if (EPI.MemSafetyCheck)
8569     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8570         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8571 
8572   DT->changeImmediateDominator(
8573       VecEpilogueIterationCountCheck,
8574       VecEpilogueIterationCountCheck->getSinglePredecessor());
8575 
8576   DT->changeImmediateDominator(LoopScalarPreHeader,
8577                                EPI.EpilogueIterationCountCheck);
8578   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8579     // If there is an epilogue which must run, there's no edge from the
8580     // middle block to exit blocks  and thus no need to update the immediate
8581     // dominator of the exit blocks.
8582     DT->changeImmediateDominator(LoopExitBlock,
8583                                  EPI.EpilogueIterationCountCheck);
8584 
8585   // Keep track of bypass blocks, as they feed start values to the induction
8586   // phis in the scalar loop preheader.
8587   if (EPI.SCEVSafetyCheck)
8588     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8589   if (EPI.MemSafetyCheck)
8590     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8591   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8592 
8593   // Generate a resume induction for the vector epilogue and put it in the
8594   // vector epilogue preheader
8595   Type *IdxTy = Legal->getWidestInductionType();
8596   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8597                                          LoopVectorPreHeader->getFirstNonPHI());
8598   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8599   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8600                            EPI.MainLoopIterationCountCheck);
8601 
8602   // Generate the induction variable.
8603   OldInduction = Legal->getPrimaryInduction();
8604   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8605   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8606   Value *StartIdx = EPResumeVal;
8607   Induction =
8608       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8609                               getDebugLocFromInstOrOperands(OldInduction));
8610 
8611   // Generate induction resume values. These variables save the new starting
8612   // indexes for the scalar loop. They are used to test if there are any tail
8613   // iterations left once the vector loop has completed.
8614   // Note that when the vectorized epilogue is skipped due to iteration count
8615   // check, then the resume value for the induction variable comes from
8616   // the trip count of the main vector loop, hence passing the AdditionalBypass
8617   // argument.
8618   createInductionResumeValues(Lp, CountRoundDown,
8619                               {VecEpilogueIterationCountCheck,
8620                                EPI.VectorTripCount} /* AdditionalBypass */);
8621 
8622   AddRuntimeUnrollDisableMetaData(Lp);
8623   return completeLoopSkeleton(Lp, OrigLoopID);
8624 }
8625 
8626 BasicBlock *
8627 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8628     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8629 
8630   assert(EPI.TripCount &&
8631          "Expected trip count to have been safed in the first pass.");
8632   assert(
8633       (!isa<Instruction>(EPI.TripCount) ||
8634        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8635       "saved trip count does not dominate insertion point.");
8636   Value *TC = EPI.TripCount;
8637   IRBuilder<> Builder(Insert->getTerminator());
8638   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8639 
8640   // Generate code to check if the loop's trip count is less than VF * UF of the
8641   // vector epilogue loop.
8642   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8643       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8644 
8645   Value *CheckMinIters =
8646       Builder.CreateICmp(P, Count,
8647                          createStepForVF(Builder, Count->getType(),
8648                                          EPI.EpilogueVF, EPI.EpilogueUF),
8649                          "min.epilog.iters.check");
8650 
8651   ReplaceInstWithInst(
8652       Insert->getTerminator(),
8653       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8654 
8655   LoopBypassBlocks.push_back(Insert);
8656   return Insert;
8657 }
8658 
8659 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8660   LLVM_DEBUG({
8661     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8662            << "Epilogue Loop VF:" << EPI.EpilogueVF
8663            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8664   });
8665 }
8666 
8667 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8668   DEBUG_WITH_TYPE(VerboseDebug, {
8669     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8670   });
8671 }
8672 
8673 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8674     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8675   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8676   bool PredicateAtRangeStart = Predicate(Range.Start);
8677 
8678   for (ElementCount TmpVF = Range.Start * 2;
8679        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8680     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8681       Range.End = TmpVF;
8682       break;
8683     }
8684 
8685   return PredicateAtRangeStart;
8686 }
8687 
8688 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8689 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8690 /// of VF's starting at a given VF and extending it as much as possible. Each
8691 /// vectorization decision can potentially shorten this sub-range during
8692 /// buildVPlan().
8693 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8694                                            ElementCount MaxVF) {
8695   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8696   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8697     VFRange SubRange = {VF, MaxVFPlusOne};
8698     VPlans.push_back(buildVPlan(SubRange));
8699     VF = SubRange.End;
8700   }
8701 }
8702 
8703 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8704                                          VPlanPtr &Plan) {
8705   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8706 
8707   // Look for cached value.
8708   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8709   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8710   if (ECEntryIt != EdgeMaskCache.end())
8711     return ECEntryIt->second;
8712 
8713   VPValue *SrcMask = createBlockInMask(Src, Plan);
8714 
8715   // The terminator has to be a branch inst!
8716   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8717   assert(BI && "Unexpected terminator found");
8718 
8719   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8720     return EdgeMaskCache[Edge] = SrcMask;
8721 
8722   // If source is an exiting block, we know the exit edge is dynamically dead
8723   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8724   // adding uses of an otherwise potentially dead instruction.
8725   if (OrigLoop->isLoopExiting(Src))
8726     return EdgeMaskCache[Edge] = SrcMask;
8727 
8728   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8729   assert(EdgeMask && "No Edge Mask found for condition");
8730 
8731   if (BI->getSuccessor(0) != Dst)
8732     EdgeMask = Builder.createNot(EdgeMask);
8733 
8734   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8735     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8736     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8737     // The select version does not introduce new UB if SrcMask is false and
8738     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8739     VPValue *False = Plan->getOrAddVPValue(
8740         ConstantInt::getFalse(BI->getCondition()->getType()));
8741     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8742   }
8743 
8744   return EdgeMaskCache[Edge] = EdgeMask;
8745 }
8746 
8747 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8748   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8749 
8750   // Look for cached value.
8751   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8752   if (BCEntryIt != BlockMaskCache.end())
8753     return BCEntryIt->second;
8754 
8755   // All-one mask is modelled as no-mask following the convention for masked
8756   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8757   VPValue *BlockMask = nullptr;
8758 
8759   if (OrigLoop->getHeader() == BB) {
8760     if (!CM.blockNeedsPredicationForAnyReason(BB))
8761       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8762 
8763     // Create the block in mask as the first non-phi instruction in the block.
8764     VPBuilder::InsertPointGuard Guard(Builder);
8765     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8766     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8767 
8768     // Introduce the early-exit compare IV <= BTC to form header block mask.
8769     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8770     // Start by constructing the desired canonical IV.
8771     VPValue *IV = nullptr;
8772     if (Legal->getPrimaryInduction())
8773       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8774     else {
8775       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8776       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8777       IV = IVRecipe;
8778     }
8779     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8780     bool TailFolded = !CM.isScalarEpilogueAllowed();
8781 
8782     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8783       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8784       // as a second argument, we only pass the IV here and extract the
8785       // tripcount from the transform state where codegen of the VP instructions
8786       // happen.
8787       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8788     } else {
8789       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8790     }
8791     return BlockMaskCache[BB] = BlockMask;
8792   }
8793 
8794   // This is the block mask. We OR all incoming edges.
8795   for (auto *Predecessor : predecessors(BB)) {
8796     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8797     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8798       return BlockMaskCache[BB] = EdgeMask;
8799 
8800     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8801       BlockMask = EdgeMask;
8802       continue;
8803     }
8804 
8805     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8806   }
8807 
8808   return BlockMaskCache[BB] = BlockMask;
8809 }
8810 
8811 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8812                                                 ArrayRef<VPValue *> Operands,
8813                                                 VFRange &Range,
8814                                                 VPlanPtr &Plan) {
8815   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8816          "Must be called with either a load or store");
8817 
8818   auto willWiden = [&](ElementCount VF) -> bool {
8819     if (VF.isScalar())
8820       return false;
8821     LoopVectorizationCostModel::InstWidening Decision =
8822         CM.getWideningDecision(I, VF);
8823     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8824            "CM decision should be taken at this point.");
8825     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8826       return true;
8827     if (CM.isScalarAfterVectorization(I, VF) ||
8828         CM.isProfitableToScalarize(I, VF))
8829       return false;
8830     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8831   };
8832 
8833   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8834     return nullptr;
8835 
8836   VPValue *Mask = nullptr;
8837   if (Legal->isMaskRequired(I))
8838     Mask = createBlockInMask(I->getParent(), Plan);
8839 
8840   // Determine if the pointer operand of the access is either consecutive or
8841   // reverse consecutive.
8842   LoopVectorizationCostModel::InstWidening Decision =
8843       CM.getWideningDecision(I, Range.Start);
8844   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8845   bool Consecutive =
8846       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8847 
8848   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8849     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8850                                               Consecutive, Reverse);
8851 
8852   StoreInst *Store = cast<StoreInst>(I);
8853   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8854                                             Mask, Consecutive, Reverse);
8855 }
8856 
8857 VPWidenIntOrFpInductionRecipe *
8858 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8859                                            ArrayRef<VPValue *> Operands) const {
8860   // Check if this is an integer or fp induction. If so, build the recipe that
8861   // produces its scalar and vector values.
8862   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8863   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8864       II.getKind() == InductionDescriptor::IK_FpInduction) {
8865     assert(II.getStartValue() ==
8866            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8867     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8868     return new VPWidenIntOrFpInductionRecipe(
8869         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8870   }
8871 
8872   return nullptr;
8873 }
8874 
8875 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8876     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8877     VPlan &Plan) const {
8878   // Optimize the special case where the source is a constant integer
8879   // induction variable. Notice that we can only optimize the 'trunc' case
8880   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8881   // (c) other casts depend on pointer size.
8882 
8883   // Determine whether \p K is a truncation based on an induction variable that
8884   // can be optimized.
8885   auto isOptimizableIVTruncate =
8886       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8887     return [=](ElementCount VF) -> bool {
8888       return CM.isOptimizableIVTruncate(K, VF);
8889     };
8890   };
8891 
8892   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8893           isOptimizableIVTruncate(I), Range)) {
8894 
8895     InductionDescriptor II =
8896         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8897     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8898     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8899                                              Start, nullptr, I);
8900   }
8901   return nullptr;
8902 }
8903 
8904 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8905                                                 ArrayRef<VPValue *> Operands,
8906                                                 VPlanPtr &Plan) {
8907   // If all incoming values are equal, the incoming VPValue can be used directly
8908   // instead of creating a new VPBlendRecipe.
8909   VPValue *FirstIncoming = Operands[0];
8910   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8911         return FirstIncoming == Inc;
8912       })) {
8913     return Operands[0];
8914   }
8915 
8916   // We know that all PHIs in non-header blocks are converted into selects, so
8917   // we don't have to worry about the insertion order and we can just use the
8918   // builder. At this point we generate the predication tree. There may be
8919   // duplications since this is a simple recursive scan, but future
8920   // optimizations will clean it up.
8921   SmallVector<VPValue *, 2> OperandsWithMask;
8922   unsigned NumIncoming = Phi->getNumIncomingValues();
8923 
8924   for (unsigned In = 0; In < NumIncoming; In++) {
8925     VPValue *EdgeMask =
8926       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8927     assert((EdgeMask || NumIncoming == 1) &&
8928            "Multiple predecessors with one having a full mask");
8929     OperandsWithMask.push_back(Operands[In]);
8930     if (EdgeMask)
8931       OperandsWithMask.push_back(EdgeMask);
8932   }
8933   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8934 }
8935 
8936 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8937                                                    ArrayRef<VPValue *> Operands,
8938                                                    VFRange &Range) const {
8939 
8940   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8941       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8942       Range);
8943 
8944   if (IsPredicated)
8945     return nullptr;
8946 
8947   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8948   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8949              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8950              ID == Intrinsic::pseudoprobe ||
8951              ID == Intrinsic::experimental_noalias_scope_decl))
8952     return nullptr;
8953 
8954   auto willWiden = [&](ElementCount VF) -> bool {
8955     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8956     // The following case may be scalarized depending on the VF.
8957     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8958     // version of the instruction.
8959     // Is it beneficial to perform intrinsic call compared to lib call?
8960     bool NeedToScalarize = false;
8961     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8962     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8963     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8964     return UseVectorIntrinsic || !NeedToScalarize;
8965   };
8966 
8967   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8968     return nullptr;
8969 
8970   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8971   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8972 }
8973 
8974 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8975   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8976          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8977   // Instruction should be widened, unless it is scalar after vectorization,
8978   // scalarization is profitable or it is predicated.
8979   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8980     return CM.isScalarAfterVectorization(I, VF) ||
8981            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8982   };
8983   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8984                                                              Range);
8985 }
8986 
8987 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8988                                            ArrayRef<VPValue *> Operands) const {
8989   auto IsVectorizableOpcode = [](unsigned Opcode) {
8990     switch (Opcode) {
8991     case Instruction::Add:
8992     case Instruction::And:
8993     case Instruction::AShr:
8994     case Instruction::BitCast:
8995     case Instruction::FAdd:
8996     case Instruction::FCmp:
8997     case Instruction::FDiv:
8998     case Instruction::FMul:
8999     case Instruction::FNeg:
9000     case Instruction::FPExt:
9001     case Instruction::FPToSI:
9002     case Instruction::FPToUI:
9003     case Instruction::FPTrunc:
9004     case Instruction::FRem:
9005     case Instruction::FSub:
9006     case Instruction::ICmp:
9007     case Instruction::IntToPtr:
9008     case Instruction::LShr:
9009     case Instruction::Mul:
9010     case Instruction::Or:
9011     case Instruction::PtrToInt:
9012     case Instruction::SDiv:
9013     case Instruction::Select:
9014     case Instruction::SExt:
9015     case Instruction::Shl:
9016     case Instruction::SIToFP:
9017     case Instruction::SRem:
9018     case Instruction::Sub:
9019     case Instruction::Trunc:
9020     case Instruction::UDiv:
9021     case Instruction::UIToFP:
9022     case Instruction::URem:
9023     case Instruction::Xor:
9024     case Instruction::ZExt:
9025       return true;
9026     }
9027     return false;
9028   };
9029 
9030   if (!IsVectorizableOpcode(I->getOpcode()))
9031     return nullptr;
9032 
9033   // Success: widen this instruction.
9034   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9035 }
9036 
9037 void VPRecipeBuilder::fixHeaderPhis() {
9038   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9039   for (VPWidenPHIRecipe *R : PhisToFix) {
9040     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9041     VPRecipeBase *IncR =
9042         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9043     R->addOperand(IncR->getVPSingleValue());
9044   }
9045 }
9046 
9047 VPBasicBlock *VPRecipeBuilder::handleReplication(
9048     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9049     VPlanPtr &Plan) {
9050   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9051       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9052       Range);
9053 
9054   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9055       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9056 
9057   // Even if the instruction is not marked as uniform, there are certain
9058   // intrinsic calls that can be effectively treated as such, so we check for
9059   // them here. Conservatively, we only do this for scalable vectors, since
9060   // for fixed-width VFs we can always fall back on full scalarization.
9061   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9062     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9063     case Intrinsic::assume:
9064     case Intrinsic::lifetime_start:
9065     case Intrinsic::lifetime_end:
9066       // For scalable vectors if one of the operands is variant then we still
9067       // want to mark as uniform, which will generate one instruction for just
9068       // the first lane of the vector. We can't scalarize the call in the same
9069       // way as for fixed-width vectors because we don't know how many lanes
9070       // there are.
9071       //
9072       // The reasons for doing it this way for scalable vectors are:
9073       //   1. For the assume intrinsic generating the instruction for the first
9074       //      lane is still be better than not generating any at all. For
9075       //      example, the input may be a splat across all lanes.
9076       //   2. For the lifetime start/end intrinsics the pointer operand only
9077       //      does anything useful when the input comes from a stack object,
9078       //      which suggests it should always be uniform. For non-stack objects
9079       //      the effect is to poison the object, which still allows us to
9080       //      remove the call.
9081       IsUniform = true;
9082       break;
9083     default:
9084       break;
9085     }
9086   }
9087 
9088   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9089                                        IsUniform, IsPredicated);
9090   setRecipe(I, Recipe);
9091   Plan->addVPValue(I, Recipe);
9092 
9093   // Find if I uses a predicated instruction. If so, it will use its scalar
9094   // value. Avoid hoisting the insert-element which packs the scalar value into
9095   // a vector value, as that happens iff all users use the vector value.
9096   for (VPValue *Op : Recipe->operands()) {
9097     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9098     if (!PredR)
9099       continue;
9100     auto *RepR =
9101         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9102     assert(RepR->isPredicated() &&
9103            "expected Replicate recipe to be predicated");
9104     RepR->setAlsoPack(false);
9105   }
9106 
9107   // Finalize the recipe for Instr, first if it is not predicated.
9108   if (!IsPredicated) {
9109     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9110     VPBB->appendRecipe(Recipe);
9111     return VPBB;
9112   }
9113   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9114   assert(VPBB->getSuccessors().empty() &&
9115          "VPBB has successors when handling predicated replication.");
9116   // Record predicated instructions for above packing optimizations.
9117   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9118   VPBlockUtils::insertBlockAfter(Region, VPBB);
9119   auto *RegSucc = new VPBasicBlock();
9120   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9121   return RegSucc;
9122 }
9123 
9124 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9125                                                       VPRecipeBase *PredRecipe,
9126                                                       VPlanPtr &Plan) {
9127   // Instructions marked for predication are replicated and placed under an
9128   // if-then construct to prevent side-effects.
9129 
9130   // Generate recipes to compute the block mask for this region.
9131   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9132 
9133   // Build the triangular if-then region.
9134   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9135   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9136   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9137   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9138   auto *PHIRecipe = Instr->getType()->isVoidTy()
9139                         ? nullptr
9140                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9141   if (PHIRecipe) {
9142     Plan->removeVPValueFor(Instr);
9143     Plan->addVPValue(Instr, PHIRecipe);
9144   }
9145   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9146   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9147   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9148 
9149   // Note: first set Entry as region entry and then connect successors starting
9150   // from it in order, to propagate the "parent" of each VPBasicBlock.
9151   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9152   VPBlockUtils::connectBlocks(Pred, Exit);
9153 
9154   return Region;
9155 }
9156 
9157 VPRecipeOrVPValueTy
9158 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9159                                         ArrayRef<VPValue *> Operands,
9160                                         VFRange &Range, VPlanPtr &Plan) {
9161   // First, check for specific widening recipes that deal with calls, memory
9162   // operations, inductions and Phi nodes.
9163   if (auto *CI = dyn_cast<CallInst>(Instr))
9164     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9165 
9166   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9167     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9168 
9169   VPRecipeBase *Recipe;
9170   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9171     if (Phi->getParent() != OrigLoop->getHeader())
9172       return tryToBlend(Phi, Operands, Plan);
9173     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9174       return toVPRecipeResult(Recipe);
9175 
9176     VPWidenPHIRecipe *PhiRecipe = nullptr;
9177     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9178       VPValue *StartV = Operands[0];
9179       if (Legal->isReductionVariable(Phi)) {
9180         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9181         assert(RdxDesc.getRecurrenceStartValue() ==
9182                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9183         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9184                                              CM.isInLoopReduction(Phi),
9185                                              CM.useOrderedReductions(RdxDesc));
9186       } else {
9187         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9188       }
9189 
9190       // Record the incoming value from the backedge, so we can add the incoming
9191       // value from the backedge after all recipes have been created.
9192       recordRecipeOf(cast<Instruction>(
9193           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9194       PhisToFix.push_back(PhiRecipe);
9195     } else {
9196       // TODO: record start and backedge value for remaining pointer induction
9197       // phis.
9198       assert(Phi->getType()->isPointerTy() &&
9199              "only pointer phis should be handled here");
9200       PhiRecipe = new VPWidenPHIRecipe(Phi);
9201     }
9202 
9203     return toVPRecipeResult(PhiRecipe);
9204   }
9205 
9206   if (isa<TruncInst>(Instr) &&
9207       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9208                                                Range, *Plan)))
9209     return toVPRecipeResult(Recipe);
9210 
9211   if (!shouldWiden(Instr, Range))
9212     return nullptr;
9213 
9214   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9215     return toVPRecipeResult(new VPWidenGEPRecipe(
9216         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9217 
9218   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9219     bool InvariantCond =
9220         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9221     return toVPRecipeResult(new VPWidenSelectRecipe(
9222         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9223   }
9224 
9225   return toVPRecipeResult(tryToWiden(Instr, Operands));
9226 }
9227 
9228 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9229                                                         ElementCount MaxVF) {
9230   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9231 
9232   // Collect instructions from the original loop that will become trivially dead
9233   // in the vectorized loop. We don't need to vectorize these instructions. For
9234   // example, original induction update instructions can become dead because we
9235   // separately emit induction "steps" when generating code for the new loop.
9236   // Similarly, we create a new latch condition when setting up the structure
9237   // of the new loop, so the old one can become dead.
9238   SmallPtrSet<Instruction *, 4> DeadInstructions;
9239   collectTriviallyDeadInstructions(DeadInstructions);
9240 
9241   // Add assume instructions we need to drop to DeadInstructions, to prevent
9242   // them from being added to the VPlan.
9243   // TODO: We only need to drop assumes in blocks that get flattend. If the
9244   // control flow is preserved, we should keep them.
9245   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9246   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9247 
9248   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9249   // Dead instructions do not need sinking. Remove them from SinkAfter.
9250   for (Instruction *I : DeadInstructions)
9251     SinkAfter.erase(I);
9252 
9253   // Cannot sink instructions after dead instructions (there won't be any
9254   // recipes for them). Instead, find the first non-dead previous instruction.
9255   for (auto &P : Legal->getSinkAfter()) {
9256     Instruction *SinkTarget = P.second;
9257     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9258     (void)FirstInst;
9259     while (DeadInstructions.contains(SinkTarget)) {
9260       assert(
9261           SinkTarget != FirstInst &&
9262           "Must find a live instruction (at least the one feeding the "
9263           "first-order recurrence PHI) before reaching beginning of the block");
9264       SinkTarget = SinkTarget->getPrevNode();
9265       assert(SinkTarget != P.first &&
9266              "sink source equals target, no sinking required");
9267     }
9268     P.second = SinkTarget;
9269   }
9270 
9271   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9272   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9273     VFRange SubRange = {VF, MaxVFPlusOne};
9274     VPlans.push_back(
9275         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9276     VF = SubRange.End;
9277   }
9278 }
9279 
9280 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9281     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9282     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9283 
9284   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9285 
9286   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9287 
9288   // ---------------------------------------------------------------------------
9289   // Pre-construction: record ingredients whose recipes we'll need to further
9290   // process after constructing the initial VPlan.
9291   // ---------------------------------------------------------------------------
9292 
9293   // Mark instructions we'll need to sink later and their targets as
9294   // ingredients whose recipe we'll need to record.
9295   for (auto &Entry : SinkAfter) {
9296     RecipeBuilder.recordRecipeOf(Entry.first);
9297     RecipeBuilder.recordRecipeOf(Entry.second);
9298   }
9299   for (auto &Reduction : CM.getInLoopReductionChains()) {
9300     PHINode *Phi = Reduction.first;
9301     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9302     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9303 
9304     RecipeBuilder.recordRecipeOf(Phi);
9305     for (auto &R : ReductionOperations) {
9306       RecipeBuilder.recordRecipeOf(R);
9307       // For min/max reducitons, where we have a pair of icmp/select, we also
9308       // need to record the ICmp recipe, so it can be removed later.
9309       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9310              "Only min/max recurrences allowed for inloop reductions");
9311       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9312         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9313     }
9314   }
9315 
9316   // For each interleave group which is relevant for this (possibly trimmed)
9317   // Range, add it to the set of groups to be later applied to the VPlan and add
9318   // placeholders for its members' Recipes which we'll be replacing with a
9319   // single VPInterleaveRecipe.
9320   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9321     auto applyIG = [IG, this](ElementCount VF) -> bool {
9322       return (VF.isVector() && // Query is illegal for VF == 1
9323               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9324                   LoopVectorizationCostModel::CM_Interleave);
9325     };
9326     if (!getDecisionAndClampRange(applyIG, Range))
9327       continue;
9328     InterleaveGroups.insert(IG);
9329     for (unsigned i = 0; i < IG->getFactor(); i++)
9330       if (Instruction *Member = IG->getMember(i))
9331         RecipeBuilder.recordRecipeOf(Member);
9332   };
9333 
9334   // ---------------------------------------------------------------------------
9335   // Build initial VPlan: Scan the body of the loop in a topological order to
9336   // visit each basic block after having visited its predecessor basic blocks.
9337   // ---------------------------------------------------------------------------
9338 
9339   auto Plan = std::make_unique<VPlan>();
9340 
9341   // Scan the body of the loop in a topological order to visit each basic block
9342   // after having visited its predecessor basic blocks.
9343   LoopBlocksDFS DFS(OrigLoop);
9344   DFS.perform(LI);
9345 
9346   VPBasicBlock *VPBB = nullptr;
9347   VPBasicBlock *HeaderVPBB = nullptr;
9348   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9349   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9350     // Relevant instructions from basic block BB will be grouped into VPRecipe
9351     // ingredients and fill a new VPBasicBlock.
9352     unsigned VPBBsForBB = 0;
9353     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9354     if (VPBB)
9355       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9356     else {
9357       Plan->setEntry(FirstVPBBForBB);
9358       HeaderVPBB = FirstVPBBForBB;
9359     }
9360     VPBB = FirstVPBBForBB;
9361     Builder.setInsertPoint(VPBB);
9362 
9363     // Introduce each ingredient into VPlan.
9364     // TODO: Model and preserve debug instrinsics in VPlan.
9365     for (Instruction &I : BB->instructionsWithoutDebug()) {
9366       Instruction *Instr = &I;
9367 
9368       // First filter out irrelevant instructions, to ensure no recipes are
9369       // built for them.
9370       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9371         continue;
9372 
9373       SmallVector<VPValue *, 4> Operands;
9374       auto *Phi = dyn_cast<PHINode>(Instr);
9375       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9376         Operands.push_back(Plan->getOrAddVPValue(
9377             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9378       } else {
9379         auto OpRange = Plan->mapToVPValues(Instr->operands());
9380         Operands = {OpRange.begin(), OpRange.end()};
9381       }
9382       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9383               Instr, Operands, Range, Plan)) {
9384         // If Instr can be simplified to an existing VPValue, use it.
9385         if (RecipeOrValue.is<VPValue *>()) {
9386           auto *VPV = RecipeOrValue.get<VPValue *>();
9387           Plan->addVPValue(Instr, VPV);
9388           // If the re-used value is a recipe, register the recipe for the
9389           // instruction, in case the recipe for Instr needs to be recorded.
9390           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9391             RecipeBuilder.setRecipe(Instr, R);
9392           continue;
9393         }
9394         // Otherwise, add the new recipe.
9395         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9396         for (auto *Def : Recipe->definedValues()) {
9397           auto *UV = Def->getUnderlyingValue();
9398           Plan->addVPValue(UV, Def);
9399         }
9400 
9401         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9402             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9403           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9404           // of the header block. That can happen for truncates of induction
9405           // variables. Those recipes are moved to the phi section of the header
9406           // block after applying SinkAfter, which relies on the original
9407           // position of the trunc.
9408           assert(isa<TruncInst>(Instr));
9409           InductionsToMove.push_back(
9410               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9411         }
9412         RecipeBuilder.setRecipe(Instr, Recipe);
9413         VPBB->appendRecipe(Recipe);
9414         continue;
9415       }
9416 
9417       // Otherwise, if all widening options failed, Instruction is to be
9418       // replicated. This may create a successor for VPBB.
9419       VPBasicBlock *NextVPBB =
9420           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9421       if (NextVPBB != VPBB) {
9422         VPBB = NextVPBB;
9423         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9424                                     : "");
9425       }
9426     }
9427   }
9428 
9429   assert(isa<VPBasicBlock>(Plan->getEntry()) &&
9430          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9431          "entry block must be set to a non-empty VPBasicBlock");
9432   RecipeBuilder.fixHeaderPhis();
9433 
9434   // ---------------------------------------------------------------------------
9435   // Transform initial VPlan: Apply previously taken decisions, in order, to
9436   // bring the VPlan to its final state.
9437   // ---------------------------------------------------------------------------
9438 
9439   // Apply Sink-After legal constraints.
9440   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9441     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9442     if (Region && Region->isReplicator()) {
9443       assert(Region->getNumSuccessors() == 1 &&
9444              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9445       assert(R->getParent()->size() == 1 &&
9446              "A recipe in an original replicator region must be the only "
9447              "recipe in its block");
9448       return Region;
9449     }
9450     return nullptr;
9451   };
9452   for (auto &Entry : SinkAfter) {
9453     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9454     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9455 
9456     auto *TargetRegion = GetReplicateRegion(Target);
9457     auto *SinkRegion = GetReplicateRegion(Sink);
9458     if (!SinkRegion) {
9459       // If the sink source is not a replicate region, sink the recipe directly.
9460       if (TargetRegion) {
9461         // The target is in a replication region, make sure to move Sink to
9462         // the block after it, not into the replication region itself.
9463         VPBasicBlock *NextBlock =
9464             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9465         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9466       } else
9467         Sink->moveAfter(Target);
9468       continue;
9469     }
9470 
9471     // The sink source is in a replicate region. Unhook the region from the CFG.
9472     auto *SinkPred = SinkRegion->getSinglePredecessor();
9473     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9474     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9475     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9476     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9477 
9478     if (TargetRegion) {
9479       // The target recipe is also in a replicate region, move the sink region
9480       // after the target region.
9481       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9482       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9483       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9484       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9485     } else {
9486       // The sink source is in a replicate region, we need to move the whole
9487       // replicate region, which should only contain a single recipe in the
9488       // main block.
9489       auto *SplitBlock =
9490           Target->getParent()->splitAt(std::next(Target->getIterator()));
9491 
9492       auto *SplitPred = SplitBlock->getSinglePredecessor();
9493 
9494       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9495       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9496       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9497       if (VPBB == SplitPred)
9498         VPBB = SplitBlock;
9499     }
9500   }
9501 
9502   // Now that sink-after is done, move induction recipes for optimized truncates
9503   // to the phi section of the header block.
9504   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9505     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9506 
9507   // Adjust the recipes for any inloop reductions.
9508   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9509 
9510   // Introduce a recipe to combine the incoming and previous values of a
9511   // first-order recurrence.
9512   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9513     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9514     if (!RecurPhi)
9515       continue;
9516 
9517     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9518     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9519     auto *Region = GetReplicateRegion(PrevRecipe);
9520     if (Region)
9521       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9522     if (Region || PrevRecipe->isPhi())
9523       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9524     else
9525       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9526 
9527     auto *RecurSplice = cast<VPInstruction>(
9528         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9529                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9530 
9531     RecurPhi->replaceAllUsesWith(RecurSplice);
9532     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9533     // all users.
9534     RecurSplice->setOperand(0, RecurPhi);
9535   }
9536 
9537   // Interleave memory: for each Interleave Group we marked earlier as relevant
9538   // for this VPlan, replace the Recipes widening its memory instructions with a
9539   // single VPInterleaveRecipe at its insertion point.
9540   for (auto IG : InterleaveGroups) {
9541     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9542         RecipeBuilder.getRecipe(IG->getInsertPos()));
9543     SmallVector<VPValue *, 4> StoredValues;
9544     for (unsigned i = 0; i < IG->getFactor(); ++i)
9545       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9546         auto *StoreR =
9547             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9548         StoredValues.push_back(StoreR->getStoredValue());
9549       }
9550 
9551     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9552                                         Recipe->getMask());
9553     VPIG->insertBefore(Recipe);
9554     unsigned J = 0;
9555     for (unsigned i = 0; i < IG->getFactor(); ++i)
9556       if (Instruction *Member = IG->getMember(i)) {
9557         if (!Member->getType()->isVoidTy()) {
9558           VPValue *OriginalV = Plan->getVPValue(Member);
9559           Plan->removeVPValueFor(Member);
9560           Plan->addVPValue(Member, VPIG->getVPValue(J));
9561           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9562           J++;
9563         }
9564         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9565       }
9566   }
9567 
9568   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9569   // in ways that accessing values using original IR values is incorrect.
9570   Plan->disableValue2VPValue();
9571 
9572   VPlanTransforms::sinkScalarOperands(*Plan);
9573   VPlanTransforms::mergeReplicateRegions(*Plan);
9574 
9575   std::string PlanName;
9576   raw_string_ostream RSO(PlanName);
9577   ElementCount VF = Range.Start;
9578   Plan->addVF(VF);
9579   RSO << "Initial VPlan for VF={" << VF;
9580   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9581     Plan->addVF(VF);
9582     RSO << "," << VF;
9583   }
9584   RSO << "},UF>=1";
9585   RSO.flush();
9586   Plan->setName(PlanName);
9587 
9588   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9589   return Plan;
9590 }
9591 
9592 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9593   // Outer loop handling: They may require CFG and instruction level
9594   // transformations before even evaluating whether vectorization is profitable.
9595   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9596   // the vectorization pipeline.
9597   assert(!OrigLoop->isInnermost());
9598   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9599 
9600   // Create new empty VPlan
9601   auto Plan = std::make_unique<VPlan>();
9602 
9603   // Build hierarchical CFG
9604   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9605   HCFGBuilder.buildHierarchicalCFG();
9606 
9607   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9608        VF *= 2)
9609     Plan->addVF(VF);
9610 
9611   if (EnableVPlanPredication) {
9612     VPlanPredicator VPP(*Plan);
9613     VPP.predicate();
9614 
9615     // Avoid running transformation to recipes until masked code generation in
9616     // VPlan-native path is in place.
9617     return Plan;
9618   }
9619 
9620   SmallPtrSet<Instruction *, 1> DeadInstructions;
9621   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9622                                              Legal->getInductionVars(),
9623                                              DeadInstructions, *PSE.getSE());
9624   return Plan;
9625 }
9626 
9627 // Adjust the recipes for reductions. For in-loop reductions the chain of
9628 // instructions leading from the loop exit instr to the phi need to be converted
9629 // to reductions, with one operand being vector and the other being the scalar
9630 // reduction chain. For other reductions, a select is introduced between the phi
9631 // and live-out recipes when folding the tail.
9632 void LoopVectorizationPlanner::adjustRecipesForReductions(
9633     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9634     ElementCount MinVF) {
9635   for (auto &Reduction : CM.getInLoopReductionChains()) {
9636     PHINode *Phi = Reduction.first;
9637     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9638     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9639 
9640     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9641       continue;
9642 
9643     // ReductionOperations are orders top-down from the phi's use to the
9644     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9645     // which of the two operands will remain scalar and which will be reduced.
9646     // For minmax the chain will be the select instructions.
9647     Instruction *Chain = Phi;
9648     for (Instruction *R : ReductionOperations) {
9649       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9650       RecurKind Kind = RdxDesc.getRecurrenceKind();
9651 
9652       VPValue *ChainOp = Plan->getVPValue(Chain);
9653       unsigned FirstOpId;
9654       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9655              "Only min/max recurrences allowed for inloop reductions");
9656       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9657         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9658                "Expected to replace a VPWidenSelectSC");
9659         FirstOpId = 1;
9660       } else {
9661         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9662                "Expected to replace a VPWidenSC");
9663         FirstOpId = 0;
9664       }
9665       unsigned VecOpId =
9666           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9667       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9668 
9669       auto *CondOp = CM.foldTailByMasking()
9670                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9671                          : nullptr;
9672       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9673           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9674       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9675       Plan->removeVPValueFor(R);
9676       Plan->addVPValue(R, RedRecipe);
9677       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9678       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9679       WidenRecipe->eraseFromParent();
9680 
9681       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9682         VPRecipeBase *CompareRecipe =
9683             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9684         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9685                "Expected to replace a VPWidenSC");
9686         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9687                "Expected no remaining users");
9688         CompareRecipe->eraseFromParent();
9689       }
9690       Chain = R;
9691     }
9692   }
9693 
9694   // If tail is folded by masking, introduce selects between the phi
9695   // and the live-out instruction of each reduction, at the end of the latch.
9696   if (CM.foldTailByMasking()) {
9697     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9698       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9699       if (!PhiR || PhiR->isInLoop())
9700         continue;
9701       Builder.setInsertPoint(LatchVPBB);
9702       VPValue *Cond =
9703           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9704       VPValue *Red = PhiR->getBackedgeValue();
9705       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9706     }
9707   }
9708 }
9709 
9710 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9711 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9712                                VPSlotTracker &SlotTracker) const {
9713   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9714   IG->getInsertPos()->printAsOperand(O, false);
9715   O << ", ";
9716   getAddr()->printAsOperand(O, SlotTracker);
9717   VPValue *Mask = getMask();
9718   if (Mask) {
9719     O << ", ";
9720     Mask->printAsOperand(O, SlotTracker);
9721   }
9722 
9723   unsigned OpIdx = 0;
9724   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9725     if (!IG->getMember(i))
9726       continue;
9727     if (getNumStoreOperands() > 0) {
9728       O << "\n" << Indent << "  store ";
9729       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9730       O << " to index " << i;
9731     } else {
9732       O << "\n" << Indent << "  ";
9733       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9734       O << " = load from index " << i;
9735     }
9736     ++OpIdx;
9737   }
9738 }
9739 #endif
9740 
9741 void VPWidenCallRecipe::execute(VPTransformState &State) {
9742   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9743                                   *this, State);
9744 }
9745 
9746 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9747   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9748                                     this, *this, InvariantCond, State);
9749 }
9750 
9751 void VPWidenRecipe::execute(VPTransformState &State) {
9752   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9753 }
9754 
9755 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9756   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9757                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9758                       IsIndexLoopInvariant, State);
9759 }
9760 
9761 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9762   assert(!State.Instance && "Int or FP induction being replicated.");
9763   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9764                                    getTruncInst(), getVPValue(0),
9765                                    getCastValue(), State);
9766 }
9767 
9768 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9769   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9770                                  State);
9771 }
9772 
9773 void VPBlendRecipe::execute(VPTransformState &State) {
9774   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9775   // We know that all PHIs in non-header blocks are converted into
9776   // selects, so we don't have to worry about the insertion order and we
9777   // can just use the builder.
9778   // At this point we generate the predication tree. There may be
9779   // duplications since this is a simple recursive scan, but future
9780   // optimizations will clean it up.
9781 
9782   unsigned NumIncoming = getNumIncomingValues();
9783 
9784   // Generate a sequence of selects of the form:
9785   // SELECT(Mask3, In3,
9786   //        SELECT(Mask2, In2,
9787   //               SELECT(Mask1, In1,
9788   //                      In0)))
9789   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9790   // are essentially undef are taken from In0.
9791   InnerLoopVectorizer::VectorParts Entry(State.UF);
9792   for (unsigned In = 0; In < NumIncoming; ++In) {
9793     for (unsigned Part = 0; Part < State.UF; ++Part) {
9794       // We might have single edge PHIs (blocks) - use an identity
9795       // 'select' for the first PHI operand.
9796       Value *In0 = State.get(getIncomingValue(In), Part);
9797       if (In == 0)
9798         Entry[Part] = In0; // Initialize with the first incoming value.
9799       else {
9800         // Select between the current value and the previous incoming edge
9801         // based on the incoming mask.
9802         Value *Cond = State.get(getMask(In), Part);
9803         Entry[Part] =
9804             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9805       }
9806     }
9807   }
9808   for (unsigned Part = 0; Part < State.UF; ++Part)
9809     State.set(this, Entry[Part], Part);
9810 }
9811 
9812 void VPInterleaveRecipe::execute(VPTransformState &State) {
9813   assert(!State.Instance && "Interleave group being replicated.");
9814   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9815                                       getStoredValues(), getMask());
9816 }
9817 
9818 void VPReductionRecipe::execute(VPTransformState &State) {
9819   assert(!State.Instance && "Reduction being replicated.");
9820   Value *PrevInChain = State.get(getChainOp(), 0);
9821   RecurKind Kind = RdxDesc->getRecurrenceKind();
9822   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9823   // Propagate the fast-math flags carried by the underlying instruction.
9824   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9825   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9826   for (unsigned Part = 0; Part < State.UF; ++Part) {
9827     Value *NewVecOp = State.get(getVecOp(), Part);
9828     if (VPValue *Cond = getCondOp()) {
9829       Value *NewCond = State.get(Cond, Part);
9830       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9831       Value *Iden = RdxDesc->getRecurrenceIdentity(
9832           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9833       Value *IdenVec =
9834           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9835       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9836       NewVecOp = Select;
9837     }
9838     Value *NewRed;
9839     Value *NextInChain;
9840     if (IsOrdered) {
9841       if (State.VF.isVector())
9842         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9843                                         PrevInChain);
9844       else
9845         NewRed = State.Builder.CreateBinOp(
9846             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9847             NewVecOp);
9848       PrevInChain = NewRed;
9849     } else {
9850       PrevInChain = State.get(getChainOp(), Part);
9851       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9852     }
9853     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9854       NextInChain =
9855           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9856                          NewRed, PrevInChain);
9857     } else if (IsOrdered)
9858       NextInChain = NewRed;
9859     else
9860       NextInChain = State.Builder.CreateBinOp(
9861           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9862           PrevInChain);
9863     State.set(this, NextInChain, Part);
9864   }
9865 }
9866 
9867 void VPReplicateRecipe::execute(VPTransformState &State) {
9868   if (State.Instance) { // Generate a single instance.
9869     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9870     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9871                                     *State.Instance, IsPredicated, State);
9872     // Insert scalar instance packing it into a vector.
9873     if (AlsoPack && State.VF.isVector()) {
9874       // If we're constructing lane 0, initialize to start from poison.
9875       if (State.Instance->Lane.isFirstLane()) {
9876         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9877         Value *Poison = PoisonValue::get(
9878             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9879         State.set(this, Poison, State.Instance->Part);
9880       }
9881       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9882     }
9883     return;
9884   }
9885 
9886   // Generate scalar instances for all VF lanes of all UF parts, unless the
9887   // instruction is uniform inwhich case generate only the first lane for each
9888   // of the UF parts.
9889   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9890   assert((!State.VF.isScalable() || IsUniform) &&
9891          "Can't scalarize a scalable vector");
9892   for (unsigned Part = 0; Part < State.UF; ++Part)
9893     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9894       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9895                                       VPIteration(Part, Lane), IsPredicated,
9896                                       State);
9897 }
9898 
9899 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9900   assert(State.Instance && "Branch on Mask works only on single instance.");
9901 
9902   unsigned Part = State.Instance->Part;
9903   unsigned Lane = State.Instance->Lane.getKnownLane();
9904 
9905   Value *ConditionBit = nullptr;
9906   VPValue *BlockInMask = getMask();
9907   if (BlockInMask) {
9908     ConditionBit = State.get(BlockInMask, Part);
9909     if (ConditionBit->getType()->isVectorTy())
9910       ConditionBit = State.Builder.CreateExtractElement(
9911           ConditionBit, State.Builder.getInt32(Lane));
9912   } else // Block in mask is all-one.
9913     ConditionBit = State.Builder.getTrue();
9914 
9915   // Replace the temporary unreachable terminator with a new conditional branch,
9916   // whose two destinations will be set later when they are created.
9917   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9918   assert(isa<UnreachableInst>(CurrentTerminator) &&
9919          "Expected to replace unreachable terminator with conditional branch.");
9920   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9921   CondBr->setSuccessor(0, nullptr);
9922   ReplaceInstWithInst(CurrentTerminator, CondBr);
9923 }
9924 
9925 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9926   assert(State.Instance && "Predicated instruction PHI works per instance.");
9927   Instruction *ScalarPredInst =
9928       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9929   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9930   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9931   assert(PredicatingBB && "Predicated block has no single predecessor.");
9932   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9933          "operand must be VPReplicateRecipe");
9934 
9935   // By current pack/unpack logic we need to generate only a single phi node: if
9936   // a vector value for the predicated instruction exists at this point it means
9937   // the instruction has vector users only, and a phi for the vector value is
9938   // needed. In this case the recipe of the predicated instruction is marked to
9939   // also do that packing, thereby "hoisting" the insert-element sequence.
9940   // Otherwise, a phi node for the scalar value is needed.
9941   unsigned Part = State.Instance->Part;
9942   if (State.hasVectorValue(getOperand(0), Part)) {
9943     Value *VectorValue = State.get(getOperand(0), Part);
9944     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9945     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9946     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9947     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9948     if (State.hasVectorValue(this, Part))
9949       State.reset(this, VPhi, Part);
9950     else
9951       State.set(this, VPhi, Part);
9952     // NOTE: Currently we need to update the value of the operand, so the next
9953     // predicated iteration inserts its generated value in the correct vector.
9954     State.reset(getOperand(0), VPhi, Part);
9955   } else {
9956     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9957     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9958     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9959                      PredicatingBB);
9960     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9961     if (State.hasScalarValue(this, *State.Instance))
9962       State.reset(this, Phi, *State.Instance);
9963     else
9964       State.set(this, Phi, *State.Instance);
9965     // NOTE: Currently we need to update the value of the operand, so the next
9966     // predicated iteration inserts its generated value in the correct vector.
9967     State.reset(getOperand(0), Phi, *State.Instance);
9968   }
9969 }
9970 
9971 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9972   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9973   State.ILV->vectorizeMemoryInstruction(
9974       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9975       StoredValue, getMask(), Consecutive, Reverse);
9976 }
9977 
9978 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9979 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9980 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9981 // for predication.
9982 static ScalarEpilogueLowering getScalarEpilogueLowering(
9983     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9984     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9985     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9986     LoopVectorizationLegality &LVL) {
9987   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9988   // don't look at hints or options, and don't request a scalar epilogue.
9989   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9990   // LoopAccessInfo (due to code dependency and not being able to reliably get
9991   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9992   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9993   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9994   // back to the old way and vectorize with versioning when forced. See D81345.)
9995   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9996                                                       PGSOQueryType::IRPass) &&
9997                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9998     return CM_ScalarEpilogueNotAllowedOptSize;
9999 
10000   // 2) If set, obey the directives
10001   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10002     switch (PreferPredicateOverEpilogue) {
10003     case PreferPredicateTy::ScalarEpilogue:
10004       return CM_ScalarEpilogueAllowed;
10005     case PreferPredicateTy::PredicateElseScalarEpilogue:
10006       return CM_ScalarEpilogueNotNeededUsePredicate;
10007     case PreferPredicateTy::PredicateOrDontVectorize:
10008       return CM_ScalarEpilogueNotAllowedUsePredicate;
10009     };
10010   }
10011 
10012   // 3) If set, obey the hints
10013   switch (Hints.getPredicate()) {
10014   case LoopVectorizeHints::FK_Enabled:
10015     return CM_ScalarEpilogueNotNeededUsePredicate;
10016   case LoopVectorizeHints::FK_Disabled:
10017     return CM_ScalarEpilogueAllowed;
10018   };
10019 
10020   // 4) if the TTI hook indicates this is profitable, request predication.
10021   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10022                                        LVL.getLAI()))
10023     return CM_ScalarEpilogueNotNeededUsePredicate;
10024 
10025   return CM_ScalarEpilogueAllowed;
10026 }
10027 
10028 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10029   // If Values have been set for this Def return the one relevant for \p Part.
10030   if (hasVectorValue(Def, Part))
10031     return Data.PerPartOutput[Def][Part];
10032 
10033   if (!hasScalarValue(Def, {Part, 0})) {
10034     Value *IRV = Def->getLiveInIRValue();
10035     Value *B = ILV->getBroadcastInstrs(IRV);
10036     set(Def, B, Part);
10037     return B;
10038   }
10039 
10040   Value *ScalarValue = get(Def, {Part, 0});
10041   // If we aren't vectorizing, we can just copy the scalar map values over
10042   // to the vector map.
10043   if (VF.isScalar()) {
10044     set(Def, ScalarValue, Part);
10045     return ScalarValue;
10046   }
10047 
10048   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10049   bool IsUniform = RepR && RepR->isUniform();
10050 
10051   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10052   // Check if there is a scalar value for the selected lane.
10053   if (!hasScalarValue(Def, {Part, LastLane})) {
10054     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10055     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10056            "unexpected recipe found to be invariant");
10057     IsUniform = true;
10058     LastLane = 0;
10059   }
10060 
10061   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10062   // Set the insert point after the last scalarized instruction or after the
10063   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10064   // will directly follow the scalar definitions.
10065   auto OldIP = Builder.saveIP();
10066   auto NewIP =
10067       isa<PHINode>(LastInst)
10068           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10069           : std::next(BasicBlock::iterator(LastInst));
10070   Builder.SetInsertPoint(&*NewIP);
10071 
10072   // However, if we are vectorizing, we need to construct the vector values.
10073   // If the value is known to be uniform after vectorization, we can just
10074   // broadcast the scalar value corresponding to lane zero for each unroll
10075   // iteration. Otherwise, we construct the vector values using
10076   // insertelement instructions. Since the resulting vectors are stored in
10077   // State, we will only generate the insertelements once.
10078   Value *VectorValue = nullptr;
10079   if (IsUniform) {
10080     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10081     set(Def, VectorValue, Part);
10082   } else {
10083     // Initialize packing with insertelements to start from undef.
10084     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10085     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10086     set(Def, Undef, Part);
10087     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10088       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10089     VectorValue = get(Def, Part);
10090   }
10091   Builder.restoreIP(OldIP);
10092   return VectorValue;
10093 }
10094 
10095 // Process the loop in the VPlan-native vectorization path. This path builds
10096 // VPlan upfront in the vectorization pipeline, which allows to apply
10097 // VPlan-to-VPlan transformations from the very beginning without modifying the
10098 // input LLVM IR.
10099 static bool processLoopInVPlanNativePath(
10100     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10101     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10102     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10103     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10104     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10105     LoopVectorizationRequirements &Requirements) {
10106 
10107   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10108     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10109     return false;
10110   }
10111   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10112   Function *F = L->getHeader()->getParent();
10113   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10114 
10115   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10116       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10117 
10118   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10119                                 &Hints, IAI);
10120   // Use the planner for outer loop vectorization.
10121   // TODO: CM is not used at this point inside the planner. Turn CM into an
10122   // optional argument if we don't need it in the future.
10123   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10124                                Requirements, ORE);
10125 
10126   // Get user vectorization factor.
10127   ElementCount UserVF = Hints.getWidth();
10128 
10129   CM.collectElementTypesForWidening();
10130 
10131   // Plan how to best vectorize, return the best VF and its cost.
10132   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10133 
10134   // If we are stress testing VPlan builds, do not attempt to generate vector
10135   // code. Masked vector code generation support will follow soon.
10136   // Also, do not attempt to vectorize if no vector code will be produced.
10137   if (VPlanBuildStressTest || EnableVPlanPredication ||
10138       VectorizationFactor::Disabled() == VF)
10139     return false;
10140 
10141   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10142 
10143   {
10144     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10145                              F->getParent()->getDataLayout());
10146     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10147                            &CM, BFI, PSI, Checks);
10148     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10149                       << L->getHeader()->getParent()->getName() << "\"\n");
10150     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10151   }
10152 
10153   // Mark the loop as already vectorized to avoid vectorizing again.
10154   Hints.setAlreadyVectorized();
10155   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10156   return true;
10157 }
10158 
10159 // Emit a remark if there are stores to floats that required a floating point
10160 // extension. If the vectorized loop was generated with floating point there
10161 // will be a performance penalty from the conversion overhead and the change in
10162 // the vector width.
10163 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10164   SmallVector<Instruction *, 4> Worklist;
10165   for (BasicBlock *BB : L->getBlocks()) {
10166     for (Instruction &Inst : *BB) {
10167       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10168         if (S->getValueOperand()->getType()->isFloatTy())
10169           Worklist.push_back(S);
10170       }
10171     }
10172   }
10173 
10174   // Traverse the floating point stores upwards searching, for floating point
10175   // conversions.
10176   SmallPtrSet<const Instruction *, 4> Visited;
10177   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10178   while (!Worklist.empty()) {
10179     auto *I = Worklist.pop_back_val();
10180     if (!L->contains(I))
10181       continue;
10182     if (!Visited.insert(I).second)
10183       continue;
10184 
10185     // Emit a remark if the floating point store required a floating
10186     // point conversion.
10187     // TODO: More work could be done to identify the root cause such as a
10188     // constant or a function return type and point the user to it.
10189     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10190       ORE->emit([&]() {
10191         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10192                                           I->getDebugLoc(), L->getHeader())
10193                << "floating point conversion changes vector width. "
10194                << "Mixed floating point precision requires an up/down "
10195                << "cast that will negatively impact performance.";
10196       });
10197 
10198     for (Use &Op : I->operands())
10199       if (auto *OpI = dyn_cast<Instruction>(Op))
10200         Worklist.push_back(OpI);
10201   }
10202 }
10203 
10204 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10205     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10206                                !EnableLoopInterleaving),
10207       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10208                               !EnableLoopVectorization) {}
10209 
10210 bool LoopVectorizePass::processLoop(Loop *L) {
10211   assert((EnableVPlanNativePath || L->isInnermost()) &&
10212          "VPlan-native path is not enabled. Only process inner loops.");
10213 
10214 #ifndef NDEBUG
10215   const std::string DebugLocStr = getDebugLocString(L);
10216 #endif /* NDEBUG */
10217 
10218   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10219                     << L->getHeader()->getParent()->getName() << "\" from "
10220                     << DebugLocStr << "\n");
10221 
10222   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10223 
10224   LLVM_DEBUG(
10225       dbgs() << "LV: Loop hints:"
10226              << " force="
10227              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10228                      ? "disabled"
10229                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10230                             ? "enabled"
10231                             : "?"))
10232              << " width=" << Hints.getWidth()
10233              << " interleave=" << Hints.getInterleave() << "\n");
10234 
10235   // Function containing loop
10236   Function *F = L->getHeader()->getParent();
10237 
10238   // Looking at the diagnostic output is the only way to determine if a loop
10239   // was vectorized (other than looking at the IR or machine code), so it
10240   // is important to generate an optimization remark for each loop. Most of
10241   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10242   // generated as OptimizationRemark and OptimizationRemarkMissed are
10243   // less verbose reporting vectorized loops and unvectorized loops that may
10244   // benefit from vectorization, respectively.
10245 
10246   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10247     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10248     return false;
10249   }
10250 
10251   PredicatedScalarEvolution PSE(*SE, *L);
10252 
10253   // Check if it is legal to vectorize the loop.
10254   LoopVectorizationRequirements Requirements;
10255   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10256                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10257   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10258     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10259     Hints.emitRemarkWithHints();
10260     return false;
10261   }
10262 
10263   // Check the function attributes and profiles to find out if this function
10264   // should be optimized for size.
10265   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10266       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10267 
10268   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10269   // here. They may require CFG and instruction level transformations before
10270   // even evaluating whether vectorization is profitable. Since we cannot modify
10271   // the incoming IR, we need to build VPlan upfront in the vectorization
10272   // pipeline.
10273   if (!L->isInnermost())
10274     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10275                                         ORE, BFI, PSI, Hints, Requirements);
10276 
10277   assert(L->isInnermost() && "Inner loop expected.");
10278 
10279   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10280   // count by optimizing for size, to minimize overheads.
10281   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10282   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10283     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10284                       << "This loop is worth vectorizing only if no scalar "
10285                       << "iteration overheads are incurred.");
10286     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10287       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10288     else {
10289       LLVM_DEBUG(dbgs() << "\n");
10290       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10291     }
10292   }
10293 
10294   // Check the function attributes to see if implicit floats are allowed.
10295   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10296   // an integer loop and the vector instructions selected are purely integer
10297   // vector instructions?
10298   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10299     reportVectorizationFailure(
10300         "Can't vectorize when the NoImplicitFloat attribute is used",
10301         "loop not vectorized due to NoImplicitFloat attribute",
10302         "NoImplicitFloat", ORE, L);
10303     Hints.emitRemarkWithHints();
10304     return false;
10305   }
10306 
10307   // Check if the target supports potentially unsafe FP vectorization.
10308   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10309   // for the target we're vectorizing for, to make sure none of the
10310   // additional fp-math flags can help.
10311   if (Hints.isPotentiallyUnsafe() &&
10312       TTI->isFPVectorizationPotentiallyUnsafe()) {
10313     reportVectorizationFailure(
10314         "Potentially unsafe FP op prevents vectorization",
10315         "loop not vectorized due to unsafe FP support.",
10316         "UnsafeFP", ORE, L);
10317     Hints.emitRemarkWithHints();
10318     return false;
10319   }
10320 
10321   bool AllowOrderedReductions;
10322   // If the flag is set, use that instead and override the TTI behaviour.
10323   if (ForceOrderedReductions.getNumOccurrences() > 0)
10324     AllowOrderedReductions = ForceOrderedReductions;
10325   else
10326     AllowOrderedReductions = TTI->enableOrderedReductions();
10327   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10328     ORE->emit([&]() {
10329       auto *ExactFPMathInst = Requirements.getExactFPInst();
10330       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10331                                                  ExactFPMathInst->getDebugLoc(),
10332                                                  ExactFPMathInst->getParent())
10333              << "loop not vectorized: cannot prove it is safe to reorder "
10334                 "floating-point operations";
10335     });
10336     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10337                          "reorder floating-point operations\n");
10338     Hints.emitRemarkWithHints();
10339     return false;
10340   }
10341 
10342   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10343   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10344 
10345   // If an override option has been passed in for interleaved accesses, use it.
10346   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10347     UseInterleaved = EnableInterleavedMemAccesses;
10348 
10349   // Analyze interleaved memory accesses.
10350   if (UseInterleaved) {
10351     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10352   }
10353 
10354   // Use the cost model.
10355   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10356                                 F, &Hints, IAI);
10357   CM.collectValuesToIgnore();
10358   CM.collectElementTypesForWidening();
10359 
10360   // Use the planner for vectorization.
10361   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10362                                Requirements, ORE);
10363 
10364   // Get user vectorization factor and interleave count.
10365   ElementCount UserVF = Hints.getWidth();
10366   unsigned UserIC = Hints.getInterleave();
10367 
10368   // Plan how to best vectorize, return the best VF and its cost.
10369   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10370 
10371   VectorizationFactor VF = VectorizationFactor::Disabled();
10372   unsigned IC = 1;
10373 
10374   if (MaybeVF) {
10375     VF = *MaybeVF;
10376     // Select the interleave count.
10377     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10378   }
10379 
10380   // Identify the diagnostic messages that should be produced.
10381   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10382   bool VectorizeLoop = true, InterleaveLoop = true;
10383   if (VF.Width.isScalar()) {
10384     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10385     VecDiagMsg = std::make_pair(
10386         "VectorizationNotBeneficial",
10387         "the cost-model indicates that vectorization is not beneficial");
10388     VectorizeLoop = false;
10389   }
10390 
10391   if (!MaybeVF && UserIC > 1) {
10392     // Tell the user interleaving was avoided up-front, despite being explicitly
10393     // requested.
10394     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10395                          "interleaving should be avoided up front\n");
10396     IntDiagMsg = std::make_pair(
10397         "InterleavingAvoided",
10398         "Ignoring UserIC, because interleaving was avoided up front");
10399     InterleaveLoop = false;
10400   } else if (IC == 1 && UserIC <= 1) {
10401     // Tell the user interleaving is not beneficial.
10402     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10403     IntDiagMsg = std::make_pair(
10404         "InterleavingNotBeneficial",
10405         "the cost-model indicates that interleaving is not beneficial");
10406     InterleaveLoop = false;
10407     if (UserIC == 1) {
10408       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10409       IntDiagMsg.second +=
10410           " and is explicitly disabled or interleave count is set to 1";
10411     }
10412   } else if (IC > 1 && UserIC == 1) {
10413     // Tell the user interleaving is beneficial, but it explicitly disabled.
10414     LLVM_DEBUG(
10415         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10416     IntDiagMsg = std::make_pair(
10417         "InterleavingBeneficialButDisabled",
10418         "the cost-model indicates that interleaving is beneficial "
10419         "but is explicitly disabled or interleave count is set to 1");
10420     InterleaveLoop = false;
10421   }
10422 
10423   // Override IC if user provided an interleave count.
10424   IC = UserIC > 0 ? UserIC : IC;
10425 
10426   // Emit diagnostic messages, if any.
10427   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10428   if (!VectorizeLoop && !InterleaveLoop) {
10429     // Do not vectorize or interleaving the loop.
10430     ORE->emit([&]() {
10431       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10432                                       L->getStartLoc(), L->getHeader())
10433              << VecDiagMsg.second;
10434     });
10435     ORE->emit([&]() {
10436       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10437                                       L->getStartLoc(), L->getHeader())
10438              << IntDiagMsg.second;
10439     });
10440     return false;
10441   } else if (!VectorizeLoop && InterleaveLoop) {
10442     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10443     ORE->emit([&]() {
10444       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10445                                         L->getStartLoc(), L->getHeader())
10446              << VecDiagMsg.second;
10447     });
10448   } else if (VectorizeLoop && !InterleaveLoop) {
10449     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10450                       << ") in " << DebugLocStr << '\n');
10451     ORE->emit([&]() {
10452       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10453                                         L->getStartLoc(), L->getHeader())
10454              << IntDiagMsg.second;
10455     });
10456   } else if (VectorizeLoop && InterleaveLoop) {
10457     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10458                       << ") in " << DebugLocStr << '\n');
10459     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10460   }
10461 
10462   bool DisableRuntimeUnroll = false;
10463   MDNode *OrigLoopID = L->getLoopID();
10464   {
10465     // Optimistically generate runtime checks. Drop them if they turn out to not
10466     // be profitable. Limit the scope of Checks, so the cleanup happens
10467     // immediately after vector codegeneration is done.
10468     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10469                              F->getParent()->getDataLayout());
10470     if (!VF.Width.isScalar() || IC > 1)
10471       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10472 
10473     using namespace ore;
10474     if (!VectorizeLoop) {
10475       assert(IC > 1 && "interleave count should not be 1 or 0");
10476       // If we decided that it is not legal to vectorize the loop, then
10477       // interleave it.
10478       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10479                                  &CM, BFI, PSI, Checks);
10480 
10481       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10482       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10483 
10484       ORE->emit([&]() {
10485         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10486                                   L->getHeader())
10487                << "interleaved loop (interleaved count: "
10488                << NV("InterleaveCount", IC) << ")";
10489       });
10490     } else {
10491       // If we decided that it is *legal* to vectorize the loop, then do it.
10492 
10493       // Consider vectorizing the epilogue too if it's profitable.
10494       VectorizationFactor EpilogueVF =
10495           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10496       if (EpilogueVF.Width.isVector()) {
10497 
10498         // The first pass vectorizes the main loop and creates a scalar epilogue
10499         // to be vectorized by executing the plan (potentially with a different
10500         // factor) again shortly afterwards.
10501         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10502         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10503                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10504 
10505         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10506         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10507                         DT);
10508         ++LoopsVectorized;
10509 
10510         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10511         formLCSSARecursively(*L, *DT, LI, SE);
10512 
10513         // Second pass vectorizes the epilogue and adjusts the control flow
10514         // edges from the first pass.
10515         EPI.MainLoopVF = EPI.EpilogueVF;
10516         EPI.MainLoopUF = EPI.EpilogueUF;
10517         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10518                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10519                                                  Checks);
10520 
10521         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10522         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10523                         DT);
10524         ++LoopsEpilogueVectorized;
10525 
10526         if (!MainILV.areSafetyChecksAdded())
10527           DisableRuntimeUnroll = true;
10528       } else {
10529         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10530                                &LVL, &CM, BFI, PSI, Checks);
10531 
10532         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10533         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10534         ++LoopsVectorized;
10535 
10536         // Add metadata to disable runtime unrolling a scalar loop when there
10537         // are no runtime checks about strides and memory. A scalar loop that is
10538         // rarely used is not worth unrolling.
10539         if (!LB.areSafetyChecksAdded())
10540           DisableRuntimeUnroll = true;
10541       }
10542       // Report the vectorization decision.
10543       ORE->emit([&]() {
10544         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10545                                   L->getHeader())
10546                << "vectorized loop (vectorization width: "
10547                << NV("VectorizationFactor", VF.Width)
10548                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10549       });
10550     }
10551 
10552     if (ORE->allowExtraAnalysis(LV_NAME))
10553       checkMixedPrecision(L, ORE);
10554   }
10555 
10556   Optional<MDNode *> RemainderLoopID =
10557       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10558                                       LLVMLoopVectorizeFollowupEpilogue});
10559   if (RemainderLoopID.hasValue()) {
10560     L->setLoopID(RemainderLoopID.getValue());
10561   } else {
10562     if (DisableRuntimeUnroll)
10563       AddRuntimeUnrollDisableMetaData(L);
10564 
10565     // Mark the loop as already vectorized to avoid vectorizing again.
10566     Hints.setAlreadyVectorized();
10567   }
10568 
10569   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10570   return true;
10571 }
10572 
10573 LoopVectorizeResult LoopVectorizePass::runImpl(
10574     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10575     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10576     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10577     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10578     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10579   SE = &SE_;
10580   LI = &LI_;
10581   TTI = &TTI_;
10582   DT = &DT_;
10583   BFI = &BFI_;
10584   TLI = TLI_;
10585   AA = &AA_;
10586   AC = &AC_;
10587   GetLAA = &GetLAA_;
10588   DB = &DB_;
10589   ORE = &ORE_;
10590   PSI = PSI_;
10591 
10592   // Don't attempt if
10593   // 1. the target claims to have no vector registers, and
10594   // 2. interleaving won't help ILP.
10595   //
10596   // The second condition is necessary because, even if the target has no
10597   // vector registers, loop vectorization may still enable scalar
10598   // interleaving.
10599   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10600       TTI->getMaxInterleaveFactor(1) < 2)
10601     return LoopVectorizeResult(false, false);
10602 
10603   bool Changed = false, CFGChanged = false;
10604 
10605   // The vectorizer requires loops to be in simplified form.
10606   // Since simplification may add new inner loops, it has to run before the
10607   // legality and profitability checks. This means running the loop vectorizer
10608   // will simplify all loops, regardless of whether anything end up being
10609   // vectorized.
10610   for (auto &L : *LI)
10611     Changed |= CFGChanged |=
10612         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10613 
10614   // Build up a worklist of inner-loops to vectorize. This is necessary as
10615   // the act of vectorizing or partially unrolling a loop creates new loops
10616   // and can invalidate iterators across the loops.
10617   SmallVector<Loop *, 8> Worklist;
10618 
10619   for (Loop *L : *LI)
10620     collectSupportedLoops(*L, LI, ORE, Worklist);
10621 
10622   LoopsAnalyzed += Worklist.size();
10623 
10624   // Now walk the identified inner loops.
10625   while (!Worklist.empty()) {
10626     Loop *L = Worklist.pop_back_val();
10627 
10628     // For the inner loops we actually process, form LCSSA to simplify the
10629     // transform.
10630     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10631 
10632     Changed |= CFGChanged |= processLoop(L);
10633   }
10634 
10635   // Process each loop nest in the function.
10636   return LoopVectorizeResult(Changed, CFGChanged);
10637 }
10638 
10639 PreservedAnalyses LoopVectorizePass::run(Function &F,
10640                                          FunctionAnalysisManager &AM) {
10641     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10642     auto &LI = AM.getResult<LoopAnalysis>(F);
10643     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10644     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10645     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10646     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10647     auto &AA = AM.getResult<AAManager>(F);
10648     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10649     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10650     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10651 
10652     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10653     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10654         [&](Loop &L) -> const LoopAccessInfo & {
10655       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10656                                         TLI, TTI, nullptr, nullptr, nullptr};
10657       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10658     };
10659     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10660     ProfileSummaryInfo *PSI =
10661         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10662     LoopVectorizeResult Result =
10663         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10664     if (!Result.MadeAnyChange)
10665       return PreservedAnalyses::all();
10666     PreservedAnalyses PA;
10667 
10668     // We currently do not preserve loopinfo/dominator analyses with outer loop
10669     // vectorization. Until this is addressed, mark these analyses as preserved
10670     // only for non-VPlan-native path.
10671     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10672     if (!EnableVPlanNativePath) {
10673       PA.preserve<LoopAnalysis>();
10674       PA.preserve<DominatorTreeAnalysis>();
10675     }
10676     if (!Result.MadeCFGChange)
10677       PA.preserveSet<CFGAnalyses>();
10678     return PA;
10679 }
10680 
10681 void LoopVectorizePass::printPipeline(
10682     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10683   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10684       OS, MapClassName2PassName);
10685 
10686   OS << "<";
10687   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10688   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10689   OS << ">";
10690 }
10691