1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single call instruction within the innermost loop. 477 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 478 VPTransformState &State); 479 480 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 481 void fixVectorizedLoop(VPTransformState &State); 482 483 // Return true if any runtime check is added. 484 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 485 486 /// A type for vectorized values in the new loop. Each value from the 487 /// original loop, when vectorized, is represented by UF vector values in the 488 /// new unrolled loop, where UF is the unroll factor. 489 using VectorParts = SmallVector<Value *, 2>; 490 491 /// Vectorize a single first-order recurrence or pointer induction PHINode in 492 /// a block. This method handles the induction variable canonicalization. It 493 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 494 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 495 VPTransformState &State); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 510 VPValue *Def, VPValue *CastDef, 511 VPTransformState &State); 512 513 /// Construct the vector value of a scalarized value \p V one lane at a time. 514 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 515 VPTransformState &State); 516 517 /// Try to vectorize interleaved access group \p Group with the base address 518 /// given in \p Addr, optionally masking the vector operations if \p 519 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 520 /// values in the vectorized loop. 521 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 522 ArrayRef<VPValue *> VPDefs, 523 VPTransformState &State, VPValue *Addr, 524 ArrayRef<VPValue *> StoredValues, 525 VPValue *BlockInMask = nullptr); 526 527 /// Set the debug location in the builder \p Ptr using the debug location in 528 /// \p V. If \p Ptr is None then it uses the class member's Builder. 529 void setDebugLocFromInst(const Value *V, 530 Optional<IRBuilder<> *> CustomBuilder = None); 531 532 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 533 void fixNonInductionPHIs(VPTransformState &State); 534 535 /// Returns true if the reordering of FP operations is not allowed, but we are 536 /// able to vectorize with strict in-order reductions for the given RdxDesc. 537 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 538 539 /// Create a broadcast instruction. This method generates a broadcast 540 /// instruction (shuffle) for loop invariant values and for the induction 541 /// value. If this is the induction variable then we extend it to N, N+1, ... 542 /// this is needed because each iteration in the loop corresponds to a SIMD 543 /// element. 544 virtual Value *getBroadcastInstrs(Value *V); 545 546 /// Add metadata from one instruction to another. 547 /// 548 /// This includes both the original MDs from \p From and additional ones (\see 549 /// addNewMetadata). Use this for *newly created* instructions in the vector 550 /// loop. 551 void addMetadata(Instruction *To, Instruction *From); 552 553 /// Similar to the previous function but it adds the metadata to a 554 /// vector of instructions. 555 void addMetadata(ArrayRef<Value *> To, Instruction *From); 556 557 protected: 558 friend class LoopVectorizationPlanner; 559 560 /// A small list of PHINodes. 561 using PhiVector = SmallVector<PHINode *, 4>; 562 563 /// A type for scalarized values in the new loop. Each value from the 564 /// original loop, when scalarized, is represented by UF x VF scalar values 565 /// in the new unrolled loop, where UF is the unroll factor and VF is the 566 /// vectorization factor. 567 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 568 569 /// Set up the values of the IVs correctly when exiting the vector loop. 570 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 571 Value *CountRoundDown, Value *EndValue, 572 BasicBlock *MiddleBlock); 573 574 /// Create a new induction variable inside L. 575 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 576 Value *Step, Instruction *DL); 577 578 /// Handle all cross-iteration phis in the header. 579 void fixCrossIterationPHIs(VPTransformState &State); 580 581 /// Create the exit value of first order recurrences in the middle block and 582 /// update their users. 583 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 584 585 /// Create code for the loop exit value of the reduction. 586 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 587 588 /// Clear NSW/NUW flags from reduction instructions if necessary. 589 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 590 VPTransformState &State); 591 592 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 593 /// means we need to add the appropriate incoming value from the middle 594 /// block as exiting edges from the scalar epilogue loop (if present) are 595 /// already in place, and we exit the vector loop exclusively to the middle 596 /// block. 597 void fixLCSSAPHIs(VPTransformState &State); 598 599 /// Iteratively sink the scalarized operands of a predicated instruction into 600 /// the block that was created for it. 601 void sinkScalarOperands(Instruction *PredInst); 602 603 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 604 /// represented as. 605 void truncateToMinimalBitwidths(VPTransformState &State); 606 607 /// This function adds 608 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 609 /// to each vector element of Val. The sequence starts at StartIndex. 610 /// \p Opcode is relevant for FP induction variable. 611 virtual Value * 612 getStepVector(Value *Val, Value *StartIdx, Value *Step, 613 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd); 614 615 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 616 /// variable on which to base the steps, \p Step is the size of the step, and 617 /// \p EntryVal is the value from the original loop that maps to the steps. 618 /// Note that \p EntryVal doesn't have to be an induction variable - it 619 /// can also be a truncate instruction. 620 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 621 const InductionDescriptor &ID, VPValue *Def, 622 VPValue *CastDef, VPTransformState &State); 623 624 /// Create a vector induction phi node based on an existing scalar one. \p 625 /// EntryVal is the value from the original loop that maps to the vector phi 626 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 627 /// truncate instruction, instead of widening the original IV, we widen a 628 /// version of the IV truncated to \p EntryVal's type. 629 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 630 Value *Step, Value *Start, 631 Instruction *EntryVal, VPValue *Def, 632 VPValue *CastDef, 633 VPTransformState &State); 634 635 /// Returns true if an instruction \p I should be scalarized instead of 636 /// vectorized for the chosen vectorization factor. 637 bool shouldScalarizeInstruction(Instruction *I) const; 638 639 /// Returns true if we should generate a scalar version of \p IV. 640 bool needsScalarInduction(Instruction *IV) const; 641 642 /// If there is a cast involved in the induction variable \p ID, which should 643 /// be ignored in the vectorized loop body, this function records the 644 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 645 /// cast. We had already proved that the casted Phi is equal to the uncasted 646 /// Phi in the vectorized loop (under a runtime guard), and therefore 647 /// there is no need to vectorize the cast - the same value can be used in the 648 /// vector loop for both the Phi and the cast. 649 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 650 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 651 /// 652 /// \p EntryVal is the value from the original loop that maps to the vector 653 /// phi node and is used to distinguish what is the IV currently being 654 /// processed - original one (if \p EntryVal is a phi corresponding to the 655 /// original IV) or the "newly-created" one based on the proof mentioned above 656 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 657 /// latter case \p EntryVal is a TruncInst and we must not record anything for 658 /// that IV, but it's error-prone to expect callers of this routine to care 659 /// about that, hence this explicit parameter. 660 void recordVectorLoopValueForInductionCast( 661 const InductionDescriptor &ID, const Instruction *EntryVal, 662 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 663 unsigned Part, unsigned Lane = UINT_MAX); 664 665 /// Generate a shuffle sequence that will reverse the vector Vec. 666 virtual Value *reverseVector(Value *Vec); 667 668 /// Returns (and creates if needed) the original loop trip count. 669 Value *getOrCreateTripCount(Loop *NewLoop); 670 671 /// Returns (and creates if needed) the trip count of the widened loop. 672 Value *getOrCreateVectorTripCount(Loop *NewLoop); 673 674 /// Returns a bitcasted value to the requested vector type. 675 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 676 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 677 const DataLayout &DL); 678 679 /// Emit a bypass check to see if the vector trip count is zero, including if 680 /// it overflows. 681 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 682 683 /// Emit a bypass check to see if all of the SCEV assumptions we've 684 /// had to make are correct. Returns the block containing the checks or 685 /// nullptr if no checks have been added. 686 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 687 688 /// Emit bypass checks to check any memory assumptions we may have made. 689 /// Returns the block containing the checks or nullptr if no checks have been 690 /// added. 691 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 692 693 /// Compute the transformed value of Index at offset StartValue using step 694 /// StepValue. 695 /// For integer induction, returns StartValue + Index * StepValue. 696 /// For pointer induction, returns StartValue[Index * StepValue]. 697 /// FIXME: The newly created binary instructions should contain nsw/nuw 698 /// flags, which can be found from the original scalar operations. 699 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 700 const DataLayout &DL, 701 const InductionDescriptor &ID) const; 702 703 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 704 /// vector loop preheader, middle block and scalar preheader. Also 705 /// allocate a loop object for the new vector loop and return it. 706 Loop *createVectorLoopSkeleton(StringRef Prefix); 707 708 /// Create new phi nodes for the induction variables to resume iteration count 709 /// in the scalar epilogue, from where the vectorized loop left off (given by 710 /// \p VectorTripCount). 711 /// In cases where the loop skeleton is more complicated (eg. epilogue 712 /// vectorization) and the resume values can come from an additional bypass 713 /// block, the \p AdditionalBypass pair provides information about the bypass 714 /// block and the end value on the edge from bypass to this loop. 715 void createInductionResumeValues( 716 Loop *L, Value *VectorTripCount, 717 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 718 719 /// Complete the loop skeleton by adding debug MDs, creating appropriate 720 /// conditional branches in the middle block, preparing the builder and 721 /// running the verifier. Take in the vector loop \p L as argument, and return 722 /// the preheader of the completed vector loop. 723 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 724 725 /// Add additional metadata to \p To that was not present on \p Orig. 726 /// 727 /// Currently this is used to add the noalias annotations based on the 728 /// inserted memchecks. Use this for instructions that are *cloned* into the 729 /// vector loop. 730 void addNewMetadata(Instruction *To, const Instruction *Orig); 731 732 /// Collect poison-generating recipes that may generate a poison value that is 733 /// used after vectorization, even when their operands are not poison. Those 734 /// recipes meet the following conditions: 735 /// * Contribute to the address computation of a recipe generating a widen 736 /// memory load/store (VPWidenMemoryInstructionRecipe or 737 /// VPInterleaveRecipe). 738 /// * Such a widen memory load/store has at least one underlying Instruction 739 /// that is in a basic block that needs predication and after vectorization 740 /// the generated instruction won't be predicated. 741 void collectPoisonGeneratingRecipes(VPTransformState &State); 742 743 /// Allow subclasses to override and print debug traces before/after vplan 744 /// execution, when trace information is requested. 745 virtual void printDebugTracesAtStart(){}; 746 virtual void printDebugTracesAtEnd(){}; 747 748 /// The original loop. 749 Loop *OrigLoop; 750 751 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 752 /// dynamic knowledge to simplify SCEV expressions and converts them to a 753 /// more usable form. 754 PredicatedScalarEvolution &PSE; 755 756 /// Loop Info. 757 LoopInfo *LI; 758 759 /// Dominator Tree. 760 DominatorTree *DT; 761 762 /// Alias Analysis. 763 AAResults *AA; 764 765 /// Target Library Info. 766 const TargetLibraryInfo *TLI; 767 768 /// Target Transform Info. 769 const TargetTransformInfo *TTI; 770 771 /// Assumption Cache. 772 AssumptionCache *AC; 773 774 /// Interface to emit optimization remarks. 775 OptimizationRemarkEmitter *ORE; 776 777 /// LoopVersioning. It's only set up (non-null) if memchecks were 778 /// used. 779 /// 780 /// This is currently only used to add no-alias metadata based on the 781 /// memchecks. The actually versioning is performed manually. 782 std::unique_ptr<LoopVersioning> LVer; 783 784 /// The vectorization SIMD factor to use. Each vector will have this many 785 /// vector elements. 786 ElementCount VF; 787 788 /// The vectorization unroll factor to use. Each scalar is vectorized to this 789 /// many different vector instructions. 790 unsigned UF; 791 792 /// The builder that we use 793 IRBuilder<> Builder; 794 795 // --- Vectorization state --- 796 797 /// The vector-loop preheader. 798 BasicBlock *LoopVectorPreHeader; 799 800 /// The scalar-loop preheader. 801 BasicBlock *LoopScalarPreHeader; 802 803 /// Middle Block between the vector and the scalar. 804 BasicBlock *LoopMiddleBlock; 805 806 /// The unique ExitBlock of the scalar loop if one exists. Note that 807 /// there can be multiple exiting edges reaching this block. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Store instructions that were predicated. 826 SmallVector<Instruction *, 4> PredicatedInstructions; 827 828 /// Trip count of the original loop. 829 Value *TripCount = nullptr; 830 831 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 832 Value *VectorTripCount = nullptr; 833 834 /// The legality analysis. 835 LoopVectorizationLegality *Legal; 836 837 /// The profitablity analysis. 838 LoopVectorizationCostModel *Cost; 839 840 // Record whether runtime checks are added. 841 bool AddedSafetyChecks = false; 842 843 // Holds the end values for each induction variable. We save the end values 844 // so we can later fix-up the external users of the induction variables. 845 DenseMap<PHINode *, Value *> IVEndValues; 846 847 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 848 // fixed up at the end of vector code generation. 849 SmallVector<PHINode *, 8> OrigPHIsToFix; 850 851 /// BFI and PSI are used to check for profile guided size optimizations. 852 BlockFrequencyInfo *BFI; 853 ProfileSummaryInfo *PSI; 854 855 // Whether this loop should be optimized for size based on profile guided size 856 // optimizatios. 857 bool OptForSizeBasedOnProfile; 858 859 /// Structure to hold information about generated runtime checks, responsible 860 /// for cleaning the checks, if vectorization turns out unprofitable. 861 GeneratedRTChecks &RTChecks; 862 }; 863 864 class InnerLoopUnroller : public InnerLoopVectorizer { 865 public: 866 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 867 LoopInfo *LI, DominatorTree *DT, 868 const TargetLibraryInfo *TLI, 869 const TargetTransformInfo *TTI, AssumptionCache *AC, 870 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 871 LoopVectorizationLegality *LVL, 872 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 873 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 874 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 875 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 876 BFI, PSI, Check) {} 877 878 private: 879 Value *getBroadcastInstrs(Value *V) override; 880 Value *getStepVector( 881 Value *Val, Value *StartIdx, Value *Step, 882 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override; 883 Value *reverseVector(Value *Vec) override; 884 }; 885 886 /// Encapsulate information regarding vectorization of a loop and its epilogue. 887 /// This information is meant to be updated and used across two stages of 888 /// epilogue vectorization. 889 struct EpilogueLoopVectorizationInfo { 890 ElementCount MainLoopVF = ElementCount::getFixed(0); 891 unsigned MainLoopUF = 0; 892 ElementCount EpilogueVF = ElementCount::getFixed(0); 893 unsigned EpilogueUF = 0; 894 BasicBlock *MainLoopIterationCountCheck = nullptr; 895 BasicBlock *EpilogueIterationCountCheck = nullptr; 896 BasicBlock *SCEVSafetyCheck = nullptr; 897 BasicBlock *MemSafetyCheck = nullptr; 898 Value *TripCount = nullptr; 899 Value *VectorTripCount = nullptr; 900 901 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 902 ElementCount EVF, unsigned EUF) 903 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 904 assert(EUF == 1 && 905 "A high UF for the epilogue loop is likely not beneficial."); 906 } 907 }; 908 909 /// An extension of the inner loop vectorizer that creates a skeleton for a 910 /// vectorized loop that has its epilogue (residual) also vectorized. 911 /// The idea is to run the vplan on a given loop twice, firstly to setup the 912 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 913 /// from the first step and vectorize the epilogue. This is achieved by 914 /// deriving two concrete strategy classes from this base class and invoking 915 /// them in succession from the loop vectorizer planner. 916 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 917 public: 918 InnerLoopAndEpilogueVectorizer( 919 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 920 DominatorTree *DT, const TargetLibraryInfo *TLI, 921 const TargetTransformInfo *TTI, AssumptionCache *AC, 922 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 923 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 924 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 925 GeneratedRTChecks &Checks) 926 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 927 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 928 Checks), 929 EPI(EPI) {} 930 931 // Override this function to handle the more complex control flow around the 932 // three loops. 933 BasicBlock *createVectorizedLoopSkeleton() final override { 934 return createEpilogueVectorizedLoopSkeleton(); 935 } 936 937 /// The interface for creating a vectorized skeleton using one of two 938 /// different strategies, each corresponding to one execution of the vplan 939 /// as described above. 940 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 941 942 /// Holds and updates state information required to vectorize the main loop 943 /// and its epilogue in two separate passes. This setup helps us avoid 944 /// regenerating and recomputing runtime safety checks. It also helps us to 945 /// shorten the iteration-count-check path length for the cases where the 946 /// iteration count of the loop is so small that the main vector loop is 947 /// completely skipped. 948 EpilogueLoopVectorizationInfo &EPI; 949 }; 950 951 /// A specialized derived class of inner loop vectorizer that performs 952 /// vectorization of *main* loops in the process of vectorizing loops and their 953 /// epilogues. 954 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 955 public: 956 EpilogueVectorizerMainLoop( 957 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 958 DominatorTree *DT, const TargetLibraryInfo *TLI, 959 const TargetTransformInfo *TTI, AssumptionCache *AC, 960 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 961 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 962 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 963 GeneratedRTChecks &Check) 964 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 965 EPI, LVL, CM, BFI, PSI, Check) {} 966 /// Implements the interface for creating a vectorized skeleton using the 967 /// *main loop* strategy (ie the first pass of vplan execution). 968 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 969 970 protected: 971 /// Emits an iteration count bypass check once for the main loop (when \p 972 /// ForEpilogue is false) and once for the epilogue loop (when \p 973 /// ForEpilogue is true). 974 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 975 bool ForEpilogue); 976 void printDebugTracesAtStart() override; 977 void printDebugTracesAtEnd() override; 978 }; 979 980 // A specialized derived class of inner loop vectorizer that performs 981 // vectorization of *epilogue* loops in the process of vectorizing loops and 982 // their epilogues. 983 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 984 public: 985 EpilogueVectorizerEpilogueLoop( 986 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 987 DominatorTree *DT, const TargetLibraryInfo *TLI, 988 const TargetTransformInfo *TTI, AssumptionCache *AC, 989 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 990 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 991 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 992 GeneratedRTChecks &Checks) 993 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 994 EPI, LVL, CM, BFI, PSI, Checks) {} 995 /// Implements the interface for creating a vectorized skeleton using the 996 /// *epilogue loop* strategy (ie the second pass of vplan execution). 997 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 998 999 protected: 1000 /// Emits an iteration count bypass check after the main vector loop has 1001 /// finished to see if there are any iterations left to execute by either 1002 /// the vector epilogue or the scalar epilogue. 1003 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1004 BasicBlock *Bypass, 1005 BasicBlock *Insert); 1006 void printDebugTracesAtStart() override; 1007 void printDebugTracesAtEnd() override; 1008 }; 1009 } // end namespace llvm 1010 1011 /// Look for a meaningful debug location on the instruction or it's 1012 /// operands. 1013 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1014 if (!I) 1015 return I; 1016 1017 DebugLoc Empty; 1018 if (I->getDebugLoc() != Empty) 1019 return I; 1020 1021 for (Use &Op : I->operands()) { 1022 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1023 if (OpInst->getDebugLoc() != Empty) 1024 return OpInst; 1025 } 1026 1027 return I; 1028 } 1029 1030 void InnerLoopVectorizer::setDebugLocFromInst( 1031 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1032 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1033 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1034 const DILocation *DIL = Inst->getDebugLoc(); 1035 1036 // When a FSDiscriminator is enabled, we don't need to add the multiply 1037 // factors to the discriminators. 1038 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1039 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1040 // FIXME: For scalable vectors, assume vscale=1. 1041 auto NewDIL = 1042 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1043 if (NewDIL) 1044 B->SetCurrentDebugLocation(NewDIL.getValue()); 1045 else 1046 LLVM_DEBUG(dbgs() 1047 << "Failed to create new discriminator: " 1048 << DIL->getFilename() << " Line: " << DIL->getLine()); 1049 } else 1050 B->SetCurrentDebugLocation(DIL); 1051 } else 1052 B->SetCurrentDebugLocation(DebugLoc()); 1053 } 1054 1055 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1056 /// is passed, the message relates to that particular instruction. 1057 #ifndef NDEBUG 1058 static void debugVectorizationMessage(const StringRef Prefix, 1059 const StringRef DebugMsg, 1060 Instruction *I) { 1061 dbgs() << "LV: " << Prefix << DebugMsg; 1062 if (I != nullptr) 1063 dbgs() << " " << *I; 1064 else 1065 dbgs() << '.'; 1066 dbgs() << '\n'; 1067 } 1068 #endif 1069 1070 /// Create an analysis remark that explains why vectorization failed 1071 /// 1072 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1073 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1074 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1075 /// the location of the remark. \return the remark object that can be 1076 /// streamed to. 1077 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1078 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1079 Value *CodeRegion = TheLoop->getHeader(); 1080 DebugLoc DL = TheLoop->getStartLoc(); 1081 1082 if (I) { 1083 CodeRegion = I->getParent(); 1084 // If there is no debug location attached to the instruction, revert back to 1085 // using the loop's. 1086 if (I->getDebugLoc()) 1087 DL = I->getDebugLoc(); 1088 } 1089 1090 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1091 } 1092 1093 /// Return a value for Step multiplied by VF. 1094 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1095 int64_t Step) { 1096 assert(Ty->isIntegerTy() && "Expected an integer step"); 1097 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1098 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1099 } 1100 1101 namespace llvm { 1102 1103 /// Return the runtime value for VF. 1104 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1105 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1106 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1107 } 1108 1109 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1110 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1111 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1112 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1113 return B.CreateUIToFP(RuntimeVF, FTy); 1114 } 1115 1116 void reportVectorizationFailure(const StringRef DebugMsg, 1117 const StringRef OREMsg, const StringRef ORETag, 1118 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1119 Instruction *I) { 1120 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1121 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1122 ORE->emit( 1123 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1124 << "loop not vectorized: " << OREMsg); 1125 } 1126 1127 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1128 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1129 Instruction *I) { 1130 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1131 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1132 ORE->emit( 1133 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1134 << Msg); 1135 } 1136 1137 } // end namespace llvm 1138 1139 #ifndef NDEBUG 1140 /// \return string containing a file name and a line # for the given loop. 1141 static std::string getDebugLocString(const Loop *L) { 1142 std::string Result; 1143 if (L) { 1144 raw_string_ostream OS(Result); 1145 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1146 LoopDbgLoc.print(OS); 1147 else 1148 // Just print the module name. 1149 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1150 OS.flush(); 1151 } 1152 return Result; 1153 } 1154 #endif 1155 1156 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1157 const Instruction *Orig) { 1158 // If the loop was versioned with memchecks, add the corresponding no-alias 1159 // metadata. 1160 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1161 LVer->annotateInstWithNoAlias(To, Orig); 1162 } 1163 1164 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1165 VPTransformState &State) { 1166 1167 // Collect recipes in the backward slice of `Root` that may generate a poison 1168 // value that is used after vectorization. 1169 SmallPtrSet<VPRecipeBase *, 16> Visited; 1170 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1171 SmallVector<VPRecipeBase *, 16> Worklist; 1172 Worklist.push_back(Root); 1173 1174 // Traverse the backward slice of Root through its use-def chain. 1175 while (!Worklist.empty()) { 1176 VPRecipeBase *CurRec = Worklist.back(); 1177 Worklist.pop_back(); 1178 1179 if (!Visited.insert(CurRec).second) 1180 continue; 1181 1182 // Prune search if we find another recipe generating a widen memory 1183 // instruction. Widen memory instructions involved in address computation 1184 // will lead to gather/scatter instructions, which don't need to be 1185 // handled. 1186 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1187 isa<VPInterleaveRecipe>(CurRec)) 1188 continue; 1189 1190 // This recipe contributes to the address computation of a widen 1191 // load/store. Collect recipe if its underlying instruction has 1192 // poison-generating flags. 1193 Instruction *Instr = CurRec->getUnderlyingInstr(); 1194 if (Instr && Instr->hasPoisonGeneratingFlags()) 1195 State.MayGeneratePoisonRecipes.insert(CurRec); 1196 1197 // Add new definitions to the worklist. 1198 for (VPValue *operand : CurRec->operands()) 1199 if (VPDef *OpDef = operand->getDef()) 1200 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1201 } 1202 }); 1203 1204 // Traverse all the recipes in the VPlan and collect the poison-generating 1205 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1206 // VPInterleaveRecipe. 1207 auto Iter = depth_first( 1208 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1209 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1210 for (VPRecipeBase &Recipe : *VPBB) { 1211 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1212 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1213 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1214 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1215 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1216 collectPoisonGeneratingInstrsInBackwardSlice( 1217 cast<VPRecipeBase>(AddrDef)); 1218 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1219 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1220 if (AddrDef) { 1221 // Check if any member of the interleave group needs predication. 1222 const InterleaveGroup<Instruction> *InterGroup = 1223 InterleaveRec->getInterleaveGroup(); 1224 bool NeedPredication = false; 1225 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1226 I < NumMembers; ++I) { 1227 Instruction *Member = InterGroup->getMember(I); 1228 if (Member) 1229 NeedPredication |= 1230 Legal->blockNeedsPredication(Member->getParent()); 1231 } 1232 1233 if (NeedPredication) 1234 collectPoisonGeneratingInstrsInBackwardSlice( 1235 cast<VPRecipeBase>(AddrDef)); 1236 } 1237 } 1238 } 1239 } 1240 } 1241 1242 void InnerLoopVectorizer::addMetadata(Instruction *To, 1243 Instruction *From) { 1244 propagateMetadata(To, From); 1245 addNewMetadata(To, From); 1246 } 1247 1248 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1249 Instruction *From) { 1250 for (Value *V : To) { 1251 if (Instruction *I = dyn_cast<Instruction>(V)) 1252 addMetadata(I, From); 1253 } 1254 } 1255 1256 namespace llvm { 1257 1258 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1259 // lowered. 1260 enum ScalarEpilogueLowering { 1261 1262 // The default: allowing scalar epilogues. 1263 CM_ScalarEpilogueAllowed, 1264 1265 // Vectorization with OptForSize: don't allow epilogues. 1266 CM_ScalarEpilogueNotAllowedOptSize, 1267 1268 // A special case of vectorisation with OptForSize: loops with a very small 1269 // trip count are considered for vectorization under OptForSize, thereby 1270 // making sure the cost of their loop body is dominant, free of runtime 1271 // guards and scalar iteration overheads. 1272 CM_ScalarEpilogueNotAllowedLowTripLoop, 1273 1274 // Loop hint predicate indicating an epilogue is undesired. 1275 CM_ScalarEpilogueNotNeededUsePredicate, 1276 1277 // Directive indicating we must either tail fold or not vectorize 1278 CM_ScalarEpilogueNotAllowedUsePredicate 1279 }; 1280 1281 /// ElementCountComparator creates a total ordering for ElementCount 1282 /// for the purposes of using it in a set structure. 1283 struct ElementCountComparator { 1284 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1285 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1286 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1287 } 1288 }; 1289 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1290 1291 /// LoopVectorizationCostModel - estimates the expected speedups due to 1292 /// vectorization. 1293 /// In many cases vectorization is not profitable. This can happen because of 1294 /// a number of reasons. In this class we mainly attempt to predict the 1295 /// expected speedup/slowdowns due to the supported instruction set. We use the 1296 /// TargetTransformInfo to query the different backends for the cost of 1297 /// different operations. 1298 class LoopVectorizationCostModel { 1299 public: 1300 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1301 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1302 LoopVectorizationLegality *Legal, 1303 const TargetTransformInfo &TTI, 1304 const TargetLibraryInfo *TLI, DemandedBits *DB, 1305 AssumptionCache *AC, 1306 OptimizationRemarkEmitter *ORE, const Function *F, 1307 const LoopVectorizeHints *Hints, 1308 InterleavedAccessInfo &IAI) 1309 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1310 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1311 Hints(Hints), InterleaveInfo(IAI) {} 1312 1313 /// \return An upper bound for the vectorization factors (both fixed and 1314 /// scalable). If the factors are 0, vectorization and interleaving should be 1315 /// avoided up front. 1316 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1317 1318 /// \return True if runtime checks are required for vectorization, and false 1319 /// otherwise. 1320 bool runtimeChecksRequired(); 1321 1322 /// \return The most profitable vectorization factor and the cost of that VF. 1323 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1324 /// then this vectorization factor will be selected if vectorization is 1325 /// possible. 1326 VectorizationFactor 1327 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1328 1329 VectorizationFactor 1330 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1331 const LoopVectorizationPlanner &LVP); 1332 1333 /// Setup cost-based decisions for user vectorization factor. 1334 /// \return true if the UserVF is a feasible VF to be chosen. 1335 bool selectUserVectorizationFactor(ElementCount UserVF) { 1336 collectUniformsAndScalars(UserVF); 1337 collectInstsToScalarize(UserVF); 1338 return expectedCost(UserVF).first.isValid(); 1339 } 1340 1341 /// \return The size (in bits) of the smallest and widest types in the code 1342 /// that needs to be vectorized. We ignore values that remain scalar such as 1343 /// 64 bit loop indices. 1344 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1345 1346 /// \return The desired interleave count. 1347 /// If interleave count has been specified by metadata it will be returned. 1348 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1349 /// are the selected vectorization factor and the cost of the selected VF. 1350 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1351 1352 /// Memory access instruction may be vectorized in more than one way. 1353 /// Form of instruction after vectorization depends on cost. 1354 /// This function takes cost-based decisions for Load/Store instructions 1355 /// and collects them in a map. This decisions map is used for building 1356 /// the lists of loop-uniform and loop-scalar instructions. 1357 /// The calculated cost is saved with widening decision in order to 1358 /// avoid redundant calculations. 1359 void setCostBasedWideningDecision(ElementCount VF); 1360 1361 /// A struct that represents some properties of the register usage 1362 /// of a loop. 1363 struct RegisterUsage { 1364 /// Holds the number of loop invariant values that are used in the loop. 1365 /// The key is ClassID of target-provided register class. 1366 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1367 /// Holds the maximum number of concurrent live intervals in the loop. 1368 /// The key is ClassID of target-provided register class. 1369 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1370 }; 1371 1372 /// \return Returns information about the register usages of the loop for the 1373 /// given vectorization factors. 1374 SmallVector<RegisterUsage, 8> 1375 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1376 1377 /// Collect values we want to ignore in the cost model. 1378 void collectValuesToIgnore(); 1379 1380 /// Collect all element types in the loop for which widening is needed. 1381 void collectElementTypesForWidening(); 1382 1383 /// Split reductions into those that happen in the loop, and those that happen 1384 /// outside. In loop reductions are collected into InLoopReductionChains. 1385 void collectInLoopReductions(); 1386 1387 /// Returns true if we should use strict in-order reductions for the given 1388 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1389 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1390 /// of FP operations. 1391 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1392 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1393 } 1394 1395 /// \returns The smallest bitwidth each instruction can be represented with. 1396 /// The vector equivalents of these instructions should be truncated to this 1397 /// type. 1398 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1399 return MinBWs; 1400 } 1401 1402 /// \returns True if it is more profitable to scalarize instruction \p I for 1403 /// vectorization factor \p VF. 1404 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1405 assert(VF.isVector() && 1406 "Profitable to scalarize relevant only for VF > 1."); 1407 1408 // Cost model is not run in the VPlan-native path - return conservative 1409 // result until this changes. 1410 if (EnableVPlanNativePath) 1411 return false; 1412 1413 auto Scalars = InstsToScalarize.find(VF); 1414 assert(Scalars != InstsToScalarize.end() && 1415 "VF not yet analyzed for scalarization profitability"); 1416 return Scalars->second.find(I) != Scalars->second.end(); 1417 } 1418 1419 /// Returns true if \p I is known to be uniform after vectorization. 1420 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1421 if (VF.isScalar()) 1422 return true; 1423 1424 // Cost model is not run in the VPlan-native path - return conservative 1425 // result until this changes. 1426 if (EnableVPlanNativePath) 1427 return false; 1428 1429 auto UniformsPerVF = Uniforms.find(VF); 1430 assert(UniformsPerVF != Uniforms.end() && 1431 "VF not yet analyzed for uniformity"); 1432 return UniformsPerVF->second.count(I); 1433 } 1434 1435 /// Returns true if \p I is known to be scalar after vectorization. 1436 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1437 if (VF.isScalar()) 1438 return true; 1439 1440 // Cost model is not run in the VPlan-native path - return conservative 1441 // result until this changes. 1442 if (EnableVPlanNativePath) 1443 return false; 1444 1445 auto ScalarsPerVF = Scalars.find(VF); 1446 assert(ScalarsPerVF != Scalars.end() && 1447 "Scalar values are not calculated for VF"); 1448 return ScalarsPerVF->second.count(I); 1449 } 1450 1451 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1452 /// for vectorization factor \p VF. 1453 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1454 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1455 !isProfitableToScalarize(I, VF) && 1456 !isScalarAfterVectorization(I, VF); 1457 } 1458 1459 /// Decision that was taken during cost calculation for memory instruction. 1460 enum InstWidening { 1461 CM_Unknown, 1462 CM_Widen, // For consecutive accesses with stride +1. 1463 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1464 CM_Interleave, 1465 CM_GatherScatter, 1466 CM_Scalarize 1467 }; 1468 1469 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1470 /// instruction \p I and vector width \p VF. 1471 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1472 InstructionCost Cost) { 1473 assert(VF.isVector() && "Expected VF >=2"); 1474 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1475 } 1476 1477 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1478 /// interleaving group \p Grp and vector width \p VF. 1479 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1480 ElementCount VF, InstWidening W, 1481 InstructionCost Cost) { 1482 assert(VF.isVector() && "Expected VF >=2"); 1483 /// Broadcast this decicion to all instructions inside the group. 1484 /// But the cost will be assigned to one instruction only. 1485 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1486 if (auto *I = Grp->getMember(i)) { 1487 if (Grp->getInsertPos() == I) 1488 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1489 else 1490 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1491 } 1492 } 1493 } 1494 1495 /// Return the cost model decision for the given instruction \p I and vector 1496 /// width \p VF. Return CM_Unknown if this instruction did not pass 1497 /// through the cost modeling. 1498 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1499 assert(VF.isVector() && "Expected VF to be a vector VF"); 1500 // Cost model is not run in the VPlan-native path - return conservative 1501 // result until this changes. 1502 if (EnableVPlanNativePath) 1503 return CM_GatherScatter; 1504 1505 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1506 auto Itr = WideningDecisions.find(InstOnVF); 1507 if (Itr == WideningDecisions.end()) 1508 return CM_Unknown; 1509 return Itr->second.first; 1510 } 1511 1512 /// Return the vectorization cost for the given instruction \p I and vector 1513 /// width \p VF. 1514 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1515 assert(VF.isVector() && "Expected VF >=2"); 1516 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1517 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1518 "The cost is not calculated"); 1519 return WideningDecisions[InstOnVF].second; 1520 } 1521 1522 /// Return True if instruction \p I is an optimizable truncate whose operand 1523 /// is an induction variable. Such a truncate will be removed by adding a new 1524 /// induction variable with the destination type. 1525 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1526 // If the instruction is not a truncate, return false. 1527 auto *Trunc = dyn_cast<TruncInst>(I); 1528 if (!Trunc) 1529 return false; 1530 1531 // Get the source and destination types of the truncate. 1532 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1533 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1534 1535 // If the truncate is free for the given types, return false. Replacing a 1536 // free truncate with an induction variable would add an induction variable 1537 // update instruction to each iteration of the loop. We exclude from this 1538 // check the primary induction variable since it will need an update 1539 // instruction regardless. 1540 Value *Op = Trunc->getOperand(0); 1541 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1542 return false; 1543 1544 // If the truncated value is not an induction variable, return false. 1545 return Legal->isInductionPhi(Op); 1546 } 1547 1548 /// Collects the instructions to scalarize for each predicated instruction in 1549 /// the loop. 1550 void collectInstsToScalarize(ElementCount VF); 1551 1552 /// Collect Uniform and Scalar values for the given \p VF. 1553 /// The sets depend on CM decision for Load/Store instructions 1554 /// that may be vectorized as interleave, gather-scatter or scalarized. 1555 void collectUniformsAndScalars(ElementCount VF) { 1556 // Do the analysis once. 1557 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1558 return; 1559 setCostBasedWideningDecision(VF); 1560 collectLoopUniforms(VF); 1561 collectLoopScalars(VF); 1562 } 1563 1564 /// Returns true if the target machine supports masked store operation 1565 /// for the given \p DataType and kind of access to \p Ptr. 1566 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1567 return Legal->isConsecutivePtr(DataType, Ptr) && 1568 TTI.isLegalMaskedStore(DataType, Alignment); 1569 } 1570 1571 /// Returns true if the target machine supports masked load operation 1572 /// for the given \p DataType and kind of access to \p Ptr. 1573 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1574 return Legal->isConsecutivePtr(DataType, Ptr) && 1575 TTI.isLegalMaskedLoad(DataType, Alignment); 1576 } 1577 1578 /// Returns true if the target machine can represent \p V as a masked gather 1579 /// or scatter operation. 1580 bool isLegalGatherOrScatter(Value *V) { 1581 bool LI = isa<LoadInst>(V); 1582 bool SI = isa<StoreInst>(V); 1583 if (!LI && !SI) 1584 return false; 1585 auto *Ty = getLoadStoreType(V); 1586 Align Align = getLoadStoreAlignment(V); 1587 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1588 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1589 } 1590 1591 /// Returns true if the target machine supports all of the reduction 1592 /// variables found for the given VF. 1593 bool canVectorizeReductions(ElementCount VF) const { 1594 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1595 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1596 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1597 })); 1598 } 1599 1600 /// Returns true if \p I is an instruction that will be scalarized with 1601 /// predication. Such instructions include conditional stores and 1602 /// instructions that may divide by zero. 1603 /// If a non-zero VF has been calculated, we check if I will be scalarized 1604 /// predication for that VF. 1605 bool isScalarWithPredication(Instruction *I) const; 1606 1607 // Returns true if \p I is an instruction that will be predicated either 1608 // through scalar predication or masked load/store or masked gather/scatter. 1609 // Superset of instructions that return true for isScalarWithPredication. 1610 bool isPredicatedInst(Instruction *I, bool IsKnownUniform = false) { 1611 // When we know the load is uniform and the original scalar loop was not 1612 // predicated we don't need to mark it as a predicated instruction. Any 1613 // vectorised blocks created when tail-folding are something artificial we 1614 // have introduced and we know there is always at least one active lane. 1615 // That's why we call Legal->blockNeedsPredication here because it doesn't 1616 // query tail-folding. 1617 if (IsKnownUniform && isa<LoadInst>(I) && 1618 !Legal->blockNeedsPredication(I->getParent())) 1619 return false; 1620 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1621 return false; 1622 // Loads and stores that need some form of masked operation are predicated 1623 // instructions. 1624 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1625 return Legal->isMaskRequired(I); 1626 return isScalarWithPredication(I); 1627 } 1628 1629 /// Returns true if \p I is a memory instruction with consecutive memory 1630 /// access that can be widened. 1631 bool 1632 memoryInstructionCanBeWidened(Instruction *I, 1633 ElementCount VF = ElementCount::getFixed(1)); 1634 1635 /// Returns true if \p I is a memory instruction in an interleaved-group 1636 /// of memory accesses that can be vectorized with wide vector loads/stores 1637 /// and shuffles. 1638 bool 1639 interleavedAccessCanBeWidened(Instruction *I, 1640 ElementCount VF = ElementCount::getFixed(1)); 1641 1642 /// Check if \p Instr belongs to any interleaved access group. 1643 bool isAccessInterleaved(Instruction *Instr) { 1644 return InterleaveInfo.isInterleaved(Instr); 1645 } 1646 1647 /// Get the interleaved access group that \p Instr belongs to. 1648 const InterleaveGroup<Instruction> * 1649 getInterleavedAccessGroup(Instruction *Instr) { 1650 return InterleaveInfo.getInterleaveGroup(Instr); 1651 } 1652 1653 /// Returns true if we're required to use a scalar epilogue for at least 1654 /// the final iteration of the original loop. 1655 bool requiresScalarEpilogue(ElementCount VF) const { 1656 if (!isScalarEpilogueAllowed()) 1657 return false; 1658 // If we might exit from anywhere but the latch, must run the exiting 1659 // iteration in scalar form. 1660 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1661 return true; 1662 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1663 } 1664 1665 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1666 /// loop hint annotation. 1667 bool isScalarEpilogueAllowed() const { 1668 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1669 } 1670 1671 /// Returns true if all loop blocks should be masked to fold tail loop. 1672 bool foldTailByMasking() const { return FoldTailByMasking; } 1673 1674 /// Returns true if the instructions in this block requires predication 1675 /// for any reason, e.g. because tail folding now requires a predicate 1676 /// or because the block in the original loop was predicated. 1677 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1678 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1679 } 1680 1681 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1682 /// nodes to the chain of instructions representing the reductions. Uses a 1683 /// MapVector to ensure deterministic iteration order. 1684 using ReductionChainMap = 1685 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1686 1687 /// Return the chain of instructions representing an inloop reduction. 1688 const ReductionChainMap &getInLoopReductionChains() const { 1689 return InLoopReductionChains; 1690 } 1691 1692 /// Returns true if the Phi is part of an inloop reduction. 1693 bool isInLoopReduction(PHINode *Phi) const { 1694 return InLoopReductionChains.count(Phi); 1695 } 1696 1697 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1698 /// with factor VF. Return the cost of the instruction, including 1699 /// scalarization overhead if it's needed. 1700 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1701 1702 /// Estimate cost of a call instruction CI if it were vectorized with factor 1703 /// VF. Return the cost of the instruction, including scalarization overhead 1704 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1705 /// scalarized - 1706 /// i.e. either vector version isn't available, or is too expensive. 1707 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1708 bool &NeedToScalarize) const; 1709 1710 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1711 /// that of B. 1712 bool isMoreProfitable(const VectorizationFactor &A, 1713 const VectorizationFactor &B) const; 1714 1715 /// Invalidates decisions already taken by the cost model. 1716 void invalidateCostModelingDecisions() { 1717 WideningDecisions.clear(); 1718 Uniforms.clear(); 1719 Scalars.clear(); 1720 } 1721 1722 private: 1723 unsigned NumPredStores = 0; 1724 1725 /// \return An upper bound for the vectorization factors for both 1726 /// fixed and scalable vectorization, where the minimum-known number of 1727 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1728 /// disabled or unsupported, then the scalable part will be equal to 1729 /// ElementCount::getScalable(0). 1730 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1731 ElementCount UserVF); 1732 1733 /// \return the maximized element count based on the targets vector 1734 /// registers and the loop trip-count, but limited to a maximum safe VF. 1735 /// This is a helper function of computeFeasibleMaxVF. 1736 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1737 /// issue that occurred on one of the buildbots which cannot be reproduced 1738 /// without having access to the properietary compiler (see comments on 1739 /// D98509). The issue is currently under investigation and this workaround 1740 /// will be removed as soon as possible. 1741 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1742 unsigned SmallestType, 1743 unsigned WidestType, 1744 const ElementCount &MaxSafeVF); 1745 1746 /// \return the maximum legal scalable VF, based on the safe max number 1747 /// of elements. 1748 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1749 1750 /// The vectorization cost is a combination of the cost itself and a boolean 1751 /// indicating whether any of the contributing operations will actually 1752 /// operate on vector values after type legalization in the backend. If this 1753 /// latter value is false, then all operations will be scalarized (i.e. no 1754 /// vectorization has actually taken place). 1755 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1756 1757 /// Returns the expected execution cost. The unit of the cost does 1758 /// not matter because we use the 'cost' units to compare different 1759 /// vector widths. The cost that is returned is *not* normalized by 1760 /// the factor width. If \p Invalid is not nullptr, this function 1761 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1762 /// each instruction that has an Invalid cost for the given VF. 1763 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1764 VectorizationCostTy 1765 expectedCost(ElementCount VF, 1766 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1767 1768 /// Returns the execution time cost of an instruction for a given vector 1769 /// width. Vector width of one means scalar. 1770 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1771 1772 /// The cost-computation logic from getInstructionCost which provides 1773 /// the vector type as an output parameter. 1774 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1775 Type *&VectorTy); 1776 1777 /// Return the cost of instructions in an inloop reduction pattern, if I is 1778 /// part of that pattern. 1779 Optional<InstructionCost> 1780 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1781 TTI::TargetCostKind CostKind); 1782 1783 /// Calculate vectorization cost of memory instruction \p I. 1784 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1785 1786 /// The cost computation for scalarized memory instruction. 1787 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1788 1789 /// The cost computation for interleaving group of memory instructions. 1790 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1791 1792 /// The cost computation for Gather/Scatter instruction. 1793 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1794 1795 /// The cost computation for widening instruction \p I with consecutive 1796 /// memory access. 1797 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1798 1799 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1800 /// Load: scalar load + broadcast. 1801 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1802 /// element) 1803 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1804 1805 /// Estimate the overhead of scalarizing an instruction. This is a 1806 /// convenience wrapper for the type-based getScalarizationOverhead API. 1807 InstructionCost getScalarizationOverhead(Instruction *I, 1808 ElementCount VF) const; 1809 1810 /// Returns whether the instruction is a load or store and will be a emitted 1811 /// as a vector operation. 1812 bool isConsecutiveLoadOrStore(Instruction *I); 1813 1814 /// Returns true if an artificially high cost for emulated masked memrefs 1815 /// should be used. 1816 bool useEmulatedMaskMemRefHack(Instruction *I); 1817 1818 /// Map of scalar integer values to the smallest bitwidth they can be legally 1819 /// represented as. The vector equivalents of these values should be truncated 1820 /// to this type. 1821 MapVector<Instruction *, uint64_t> MinBWs; 1822 1823 /// A type representing the costs for instructions if they were to be 1824 /// scalarized rather than vectorized. The entries are Instruction-Cost 1825 /// pairs. 1826 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1827 1828 /// A set containing all BasicBlocks that are known to present after 1829 /// vectorization as a predicated block. 1830 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1831 1832 /// Records whether it is allowed to have the original scalar loop execute at 1833 /// least once. This may be needed as a fallback loop in case runtime 1834 /// aliasing/dependence checks fail, or to handle the tail/remainder 1835 /// iterations when the trip count is unknown or doesn't divide by the VF, 1836 /// or as a peel-loop to handle gaps in interleave-groups. 1837 /// Under optsize and when the trip count is very small we don't allow any 1838 /// iterations to execute in the scalar loop. 1839 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1840 1841 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1842 bool FoldTailByMasking = false; 1843 1844 /// A map holding scalar costs for different vectorization factors. The 1845 /// presence of a cost for an instruction in the mapping indicates that the 1846 /// instruction will be scalarized when vectorizing with the associated 1847 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1848 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1849 1850 /// Holds the instructions known to be uniform after vectorization. 1851 /// The data is collected per VF. 1852 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1853 1854 /// Holds the instructions known to be scalar after vectorization. 1855 /// The data is collected per VF. 1856 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1857 1858 /// Holds the instructions (address computations) that are forced to be 1859 /// scalarized. 1860 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1861 1862 /// PHINodes of the reductions that should be expanded in-loop along with 1863 /// their associated chains of reduction operations, in program order from top 1864 /// (PHI) to bottom 1865 ReductionChainMap InLoopReductionChains; 1866 1867 /// A Map of inloop reduction operations and their immediate chain operand. 1868 /// FIXME: This can be removed once reductions can be costed correctly in 1869 /// vplan. This was added to allow quick lookup to the inloop operations, 1870 /// without having to loop through InLoopReductionChains. 1871 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1872 1873 /// Returns the expected difference in cost from scalarizing the expression 1874 /// feeding a predicated instruction \p PredInst. The instructions to 1875 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1876 /// non-negative return value implies the expression will be scalarized. 1877 /// Currently, only single-use chains are considered for scalarization. 1878 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1879 ElementCount VF); 1880 1881 /// Collect the instructions that are uniform after vectorization. An 1882 /// instruction is uniform if we represent it with a single scalar value in 1883 /// the vectorized loop corresponding to each vector iteration. Examples of 1884 /// uniform instructions include pointer operands of consecutive or 1885 /// interleaved memory accesses. Note that although uniformity implies an 1886 /// instruction will be scalar, the reverse is not true. In general, a 1887 /// scalarized instruction will be represented by VF scalar values in the 1888 /// vectorized loop, each corresponding to an iteration of the original 1889 /// scalar loop. 1890 void collectLoopUniforms(ElementCount VF); 1891 1892 /// Collect the instructions that are scalar after vectorization. An 1893 /// instruction is scalar if it is known to be uniform or will be scalarized 1894 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1895 /// to the list if they are used by a load/store instruction that is marked as 1896 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1897 /// VF values in the vectorized loop, each corresponding to an iteration of 1898 /// the original scalar loop. 1899 void collectLoopScalars(ElementCount VF); 1900 1901 /// Keeps cost model vectorization decision and cost for instructions. 1902 /// Right now it is used for memory instructions only. 1903 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1904 std::pair<InstWidening, InstructionCost>>; 1905 1906 DecisionList WideningDecisions; 1907 1908 /// Returns true if \p V is expected to be vectorized and it needs to be 1909 /// extracted. 1910 bool needsExtract(Value *V, ElementCount VF) const { 1911 Instruction *I = dyn_cast<Instruction>(V); 1912 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1913 TheLoop->isLoopInvariant(I)) 1914 return false; 1915 1916 // Assume we can vectorize V (and hence we need extraction) if the 1917 // scalars are not computed yet. This can happen, because it is called 1918 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1919 // the scalars are collected. That should be a safe assumption in most 1920 // cases, because we check if the operands have vectorizable types 1921 // beforehand in LoopVectorizationLegality. 1922 return Scalars.find(VF) == Scalars.end() || 1923 !isScalarAfterVectorization(I, VF); 1924 }; 1925 1926 /// Returns a range containing only operands needing to be extracted. 1927 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1928 ElementCount VF) const { 1929 return SmallVector<Value *, 4>(make_filter_range( 1930 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1931 } 1932 1933 /// Determines if we have the infrastructure to vectorize loop \p L and its 1934 /// epilogue, assuming the main loop is vectorized by \p VF. 1935 bool isCandidateForEpilogueVectorization(const Loop &L, 1936 const ElementCount VF) const; 1937 1938 /// Returns true if epilogue vectorization is considered profitable, and 1939 /// false otherwise. 1940 /// \p VF is the vectorization factor chosen for the original loop. 1941 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1942 1943 public: 1944 /// The loop that we evaluate. 1945 Loop *TheLoop; 1946 1947 /// Predicated scalar evolution analysis. 1948 PredicatedScalarEvolution &PSE; 1949 1950 /// Loop Info analysis. 1951 LoopInfo *LI; 1952 1953 /// Vectorization legality. 1954 LoopVectorizationLegality *Legal; 1955 1956 /// Vector target information. 1957 const TargetTransformInfo &TTI; 1958 1959 /// Target Library Info. 1960 const TargetLibraryInfo *TLI; 1961 1962 /// Demanded bits analysis. 1963 DemandedBits *DB; 1964 1965 /// Assumption cache. 1966 AssumptionCache *AC; 1967 1968 /// Interface to emit optimization remarks. 1969 OptimizationRemarkEmitter *ORE; 1970 1971 const Function *TheFunction; 1972 1973 /// Loop Vectorize Hint. 1974 const LoopVectorizeHints *Hints; 1975 1976 /// The interleave access information contains groups of interleaved accesses 1977 /// with the same stride and close to each other. 1978 InterleavedAccessInfo &InterleaveInfo; 1979 1980 /// Values to ignore in the cost model. 1981 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1982 1983 /// Values to ignore in the cost model when VF > 1. 1984 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1985 1986 /// All element types found in the loop. 1987 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1988 1989 /// Profitable vector factors. 1990 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1991 }; 1992 } // end namespace llvm 1993 1994 /// Helper struct to manage generating runtime checks for vectorization. 1995 /// 1996 /// The runtime checks are created up-front in temporary blocks to allow better 1997 /// estimating the cost and un-linked from the existing IR. After deciding to 1998 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1999 /// temporary blocks are completely removed. 2000 class GeneratedRTChecks { 2001 /// Basic block which contains the generated SCEV checks, if any. 2002 BasicBlock *SCEVCheckBlock = nullptr; 2003 2004 /// The value representing the result of the generated SCEV checks. If it is 2005 /// nullptr, either no SCEV checks have been generated or they have been used. 2006 Value *SCEVCheckCond = nullptr; 2007 2008 /// Basic block which contains the generated memory runtime checks, if any. 2009 BasicBlock *MemCheckBlock = nullptr; 2010 2011 /// The value representing the result of the generated memory runtime checks. 2012 /// If it is nullptr, either no memory runtime checks have been generated or 2013 /// they have been used. 2014 Value *MemRuntimeCheckCond = nullptr; 2015 2016 DominatorTree *DT; 2017 LoopInfo *LI; 2018 2019 SCEVExpander SCEVExp; 2020 SCEVExpander MemCheckExp; 2021 2022 public: 2023 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2024 const DataLayout &DL) 2025 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2026 MemCheckExp(SE, DL, "scev.check") {} 2027 2028 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2029 /// accurately estimate the cost of the runtime checks. The blocks are 2030 /// un-linked from the IR and is added back during vector code generation. If 2031 /// there is no vector code generation, the check blocks are removed 2032 /// completely. 2033 void Create(Loop *L, const LoopAccessInfo &LAI, 2034 const SCEVUnionPredicate &UnionPred) { 2035 2036 BasicBlock *LoopHeader = L->getHeader(); 2037 BasicBlock *Preheader = L->getLoopPreheader(); 2038 2039 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2040 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2041 // may be used by SCEVExpander. The blocks will be un-linked from their 2042 // predecessors and removed from LI & DT at the end of the function. 2043 if (!UnionPred.isAlwaysTrue()) { 2044 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2045 nullptr, "vector.scevcheck"); 2046 2047 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2048 &UnionPred, SCEVCheckBlock->getTerminator()); 2049 } 2050 2051 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2052 if (RtPtrChecking.Need) { 2053 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2054 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2055 "vector.memcheck"); 2056 2057 MemRuntimeCheckCond = 2058 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2059 RtPtrChecking.getChecks(), MemCheckExp); 2060 assert(MemRuntimeCheckCond && 2061 "no RT checks generated although RtPtrChecking " 2062 "claimed checks are required"); 2063 } 2064 2065 if (!MemCheckBlock && !SCEVCheckBlock) 2066 return; 2067 2068 // Unhook the temporary block with the checks, update various places 2069 // accordingly. 2070 if (SCEVCheckBlock) 2071 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2072 if (MemCheckBlock) 2073 MemCheckBlock->replaceAllUsesWith(Preheader); 2074 2075 if (SCEVCheckBlock) { 2076 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2077 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2078 Preheader->getTerminator()->eraseFromParent(); 2079 } 2080 if (MemCheckBlock) { 2081 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2082 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2083 Preheader->getTerminator()->eraseFromParent(); 2084 } 2085 2086 DT->changeImmediateDominator(LoopHeader, Preheader); 2087 if (MemCheckBlock) { 2088 DT->eraseNode(MemCheckBlock); 2089 LI->removeBlock(MemCheckBlock); 2090 } 2091 if (SCEVCheckBlock) { 2092 DT->eraseNode(SCEVCheckBlock); 2093 LI->removeBlock(SCEVCheckBlock); 2094 } 2095 } 2096 2097 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2098 /// unused. 2099 ~GeneratedRTChecks() { 2100 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2101 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2102 if (!SCEVCheckCond) 2103 SCEVCleaner.markResultUsed(); 2104 2105 if (!MemRuntimeCheckCond) 2106 MemCheckCleaner.markResultUsed(); 2107 2108 if (MemRuntimeCheckCond) { 2109 auto &SE = *MemCheckExp.getSE(); 2110 // Memory runtime check generation creates compares that use expanded 2111 // values. Remove them before running the SCEVExpanderCleaners. 2112 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2113 if (MemCheckExp.isInsertedInstruction(&I)) 2114 continue; 2115 SE.forgetValue(&I); 2116 I.eraseFromParent(); 2117 } 2118 } 2119 MemCheckCleaner.cleanup(); 2120 SCEVCleaner.cleanup(); 2121 2122 if (SCEVCheckCond) 2123 SCEVCheckBlock->eraseFromParent(); 2124 if (MemRuntimeCheckCond) 2125 MemCheckBlock->eraseFromParent(); 2126 } 2127 2128 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2129 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2130 /// depending on the generated condition. 2131 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2132 BasicBlock *LoopVectorPreHeader, 2133 BasicBlock *LoopExitBlock) { 2134 if (!SCEVCheckCond) 2135 return nullptr; 2136 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2137 if (C->isZero()) 2138 return nullptr; 2139 2140 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2141 2142 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2143 // Create new preheader for vector loop. 2144 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2145 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2146 2147 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2148 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2149 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2150 SCEVCheckBlock); 2151 2152 DT->addNewBlock(SCEVCheckBlock, Pred); 2153 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2154 2155 ReplaceInstWithInst( 2156 SCEVCheckBlock->getTerminator(), 2157 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2158 // Mark the check as used, to prevent it from being removed during cleanup. 2159 SCEVCheckCond = nullptr; 2160 return SCEVCheckBlock; 2161 } 2162 2163 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2164 /// the branches to branch to the vector preheader or \p Bypass, depending on 2165 /// the generated condition. 2166 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2167 BasicBlock *LoopVectorPreHeader) { 2168 // Check if we generated code that checks in runtime if arrays overlap. 2169 if (!MemRuntimeCheckCond) 2170 return nullptr; 2171 2172 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2173 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2174 MemCheckBlock); 2175 2176 DT->addNewBlock(MemCheckBlock, Pred); 2177 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2178 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2179 2180 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2181 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2182 2183 ReplaceInstWithInst( 2184 MemCheckBlock->getTerminator(), 2185 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2186 MemCheckBlock->getTerminator()->setDebugLoc( 2187 Pred->getTerminator()->getDebugLoc()); 2188 2189 // Mark the check as used, to prevent it from being removed during cleanup. 2190 MemRuntimeCheckCond = nullptr; 2191 return MemCheckBlock; 2192 } 2193 }; 2194 2195 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2196 // vectorization. The loop needs to be annotated with #pragma omp simd 2197 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2198 // vector length information is not provided, vectorization is not considered 2199 // explicit. Interleave hints are not allowed either. These limitations will be 2200 // relaxed in the future. 2201 // Please, note that we are currently forced to abuse the pragma 'clang 2202 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2203 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2204 // provides *explicit vectorization hints* (LV can bypass legal checks and 2205 // assume that vectorization is legal). However, both hints are implemented 2206 // using the same metadata (llvm.loop.vectorize, processed by 2207 // LoopVectorizeHints). This will be fixed in the future when the native IR 2208 // representation for pragma 'omp simd' is introduced. 2209 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2210 OptimizationRemarkEmitter *ORE) { 2211 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2212 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2213 2214 // Only outer loops with an explicit vectorization hint are supported. 2215 // Unannotated outer loops are ignored. 2216 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2217 return false; 2218 2219 Function *Fn = OuterLp->getHeader()->getParent(); 2220 if (!Hints.allowVectorization(Fn, OuterLp, 2221 true /*VectorizeOnlyWhenForced*/)) { 2222 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2223 return false; 2224 } 2225 2226 if (Hints.getInterleave() > 1) { 2227 // TODO: Interleave support is future work. 2228 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2229 "outer loops.\n"); 2230 Hints.emitRemarkWithHints(); 2231 return false; 2232 } 2233 2234 return true; 2235 } 2236 2237 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2238 OptimizationRemarkEmitter *ORE, 2239 SmallVectorImpl<Loop *> &V) { 2240 // Collect inner loops and outer loops without irreducible control flow. For 2241 // now, only collect outer loops that have explicit vectorization hints. If we 2242 // are stress testing the VPlan H-CFG construction, we collect the outermost 2243 // loop of every loop nest. 2244 if (L.isInnermost() || VPlanBuildStressTest || 2245 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2246 LoopBlocksRPO RPOT(&L); 2247 RPOT.perform(LI); 2248 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2249 V.push_back(&L); 2250 // TODO: Collect inner loops inside marked outer loops in case 2251 // vectorization fails for the outer loop. Do not invoke 2252 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2253 // already known to be reducible. We can use an inherited attribute for 2254 // that. 2255 return; 2256 } 2257 } 2258 for (Loop *InnerL : L) 2259 collectSupportedLoops(*InnerL, LI, ORE, V); 2260 } 2261 2262 namespace { 2263 2264 /// The LoopVectorize Pass. 2265 struct LoopVectorize : public FunctionPass { 2266 /// Pass identification, replacement for typeid 2267 static char ID; 2268 2269 LoopVectorizePass Impl; 2270 2271 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2272 bool VectorizeOnlyWhenForced = false) 2273 : FunctionPass(ID), 2274 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2275 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2276 } 2277 2278 bool runOnFunction(Function &F) override { 2279 if (skipFunction(F)) 2280 return false; 2281 2282 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2283 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2284 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2285 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2286 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2287 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2288 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2289 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2290 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2291 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2292 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2293 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2294 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2295 2296 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2297 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2298 2299 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2300 GetLAA, *ORE, PSI).MadeAnyChange; 2301 } 2302 2303 void getAnalysisUsage(AnalysisUsage &AU) const override { 2304 AU.addRequired<AssumptionCacheTracker>(); 2305 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2306 AU.addRequired<DominatorTreeWrapperPass>(); 2307 AU.addRequired<LoopInfoWrapperPass>(); 2308 AU.addRequired<ScalarEvolutionWrapperPass>(); 2309 AU.addRequired<TargetTransformInfoWrapperPass>(); 2310 AU.addRequired<AAResultsWrapperPass>(); 2311 AU.addRequired<LoopAccessLegacyAnalysis>(); 2312 AU.addRequired<DemandedBitsWrapperPass>(); 2313 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2314 AU.addRequired<InjectTLIMappingsLegacy>(); 2315 2316 // We currently do not preserve loopinfo/dominator analyses with outer loop 2317 // vectorization. Until this is addressed, mark these analyses as preserved 2318 // only for non-VPlan-native path. 2319 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2320 if (!EnableVPlanNativePath) { 2321 AU.addPreserved<LoopInfoWrapperPass>(); 2322 AU.addPreserved<DominatorTreeWrapperPass>(); 2323 } 2324 2325 AU.addPreserved<BasicAAWrapperPass>(); 2326 AU.addPreserved<GlobalsAAWrapperPass>(); 2327 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2328 } 2329 }; 2330 2331 } // end anonymous namespace 2332 2333 //===----------------------------------------------------------------------===// 2334 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2335 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2336 //===----------------------------------------------------------------------===// 2337 2338 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2339 // We need to place the broadcast of invariant variables outside the loop, 2340 // but only if it's proven safe to do so. Else, broadcast will be inside 2341 // vector loop body. 2342 Instruction *Instr = dyn_cast<Instruction>(V); 2343 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2344 (!Instr || 2345 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2346 // Place the code for broadcasting invariant variables in the new preheader. 2347 IRBuilder<>::InsertPointGuard Guard(Builder); 2348 if (SafeToHoist) 2349 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2350 2351 // Broadcast the scalar into all locations in the vector. 2352 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2353 2354 return Shuf; 2355 } 2356 2357 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2358 const InductionDescriptor &II, Value *Step, Value *Start, 2359 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2360 VPTransformState &State) { 2361 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2362 "Expected either an induction phi-node or a truncate of it!"); 2363 2364 // Construct the initial value of the vector IV in the vector loop preheader 2365 auto CurrIP = Builder.saveIP(); 2366 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2367 if (isa<TruncInst>(EntryVal)) { 2368 assert(Start->getType()->isIntegerTy() && 2369 "Truncation requires an integer type"); 2370 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2371 Step = Builder.CreateTrunc(Step, TruncType); 2372 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2373 } 2374 2375 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2376 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2377 Value *SteppedStart = 2378 getStepVector(SplatStart, Zero, Step, II.getInductionOpcode()); 2379 2380 // We create vector phi nodes for both integer and floating-point induction 2381 // variables. Here, we determine the kind of arithmetic we will perform. 2382 Instruction::BinaryOps AddOp; 2383 Instruction::BinaryOps MulOp; 2384 if (Step->getType()->isIntegerTy()) { 2385 AddOp = Instruction::Add; 2386 MulOp = Instruction::Mul; 2387 } else { 2388 AddOp = II.getInductionOpcode(); 2389 MulOp = Instruction::FMul; 2390 } 2391 2392 // Multiply the vectorization factor by the step using integer or 2393 // floating-point arithmetic as appropriate. 2394 Type *StepType = Step->getType(); 2395 Value *RuntimeVF; 2396 if (Step->getType()->isFloatingPointTy()) 2397 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF); 2398 else 2399 RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2400 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2401 2402 // Create a vector splat to use in the induction update. 2403 // 2404 // FIXME: If the step is non-constant, we create the vector splat with 2405 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2406 // handle a constant vector splat. 2407 Value *SplatVF = isa<Constant>(Mul) 2408 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2409 : Builder.CreateVectorSplat(VF, Mul); 2410 Builder.restoreIP(CurrIP); 2411 2412 // We may need to add the step a number of times, depending on the unroll 2413 // factor. The last of those goes into the PHI. 2414 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2415 &*LoopVectorBody->getFirstInsertionPt()); 2416 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2417 Instruction *LastInduction = VecInd; 2418 for (unsigned Part = 0; Part < UF; ++Part) { 2419 State.set(Def, LastInduction, Part); 2420 2421 if (isa<TruncInst>(EntryVal)) 2422 addMetadata(LastInduction, EntryVal); 2423 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2424 State, Part); 2425 2426 LastInduction = cast<Instruction>( 2427 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2428 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2429 } 2430 2431 // Move the last step to the end of the latch block. This ensures consistent 2432 // placement of all induction updates. 2433 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2434 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2435 auto *ICmp = cast<Instruction>(Br->getCondition()); 2436 LastInduction->moveBefore(ICmp); 2437 LastInduction->setName("vec.ind.next"); 2438 2439 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2440 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2441 } 2442 2443 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2444 return Cost->isScalarAfterVectorization(I, VF) || 2445 Cost->isProfitableToScalarize(I, VF); 2446 } 2447 2448 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2449 if (shouldScalarizeInstruction(IV)) 2450 return true; 2451 auto isScalarInst = [&](User *U) -> bool { 2452 auto *I = cast<Instruction>(U); 2453 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2454 }; 2455 return llvm::any_of(IV->users(), isScalarInst); 2456 } 2457 2458 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2459 const InductionDescriptor &ID, const Instruction *EntryVal, 2460 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2461 unsigned Part, unsigned Lane) { 2462 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2463 "Expected either an induction phi-node or a truncate of it!"); 2464 2465 // This induction variable is not the phi from the original loop but the 2466 // newly-created IV based on the proof that casted Phi is equal to the 2467 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2468 // re-uses the same InductionDescriptor that original IV uses but we don't 2469 // have to do any recording in this case - that is done when original IV is 2470 // processed. 2471 if (isa<TruncInst>(EntryVal)) 2472 return; 2473 2474 if (!CastDef) { 2475 assert(ID.getCastInsts().empty() && 2476 "there are casts for ID, but no CastDef"); 2477 return; 2478 } 2479 assert(!ID.getCastInsts().empty() && 2480 "there is a CastDef, but no casts for ID"); 2481 // Only the first Cast instruction in the Casts vector is of interest. 2482 // The rest of the Casts (if exist) have no uses outside the 2483 // induction update chain itself. 2484 if (Lane < UINT_MAX) 2485 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2486 else 2487 State.set(CastDef, VectorLoopVal, Part); 2488 } 2489 2490 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2491 TruncInst *Trunc, VPValue *Def, 2492 VPValue *CastDef, 2493 VPTransformState &State) { 2494 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2495 "Primary induction variable must have an integer type"); 2496 2497 auto II = Legal->getInductionVars().find(IV); 2498 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2499 2500 auto ID = II->second; 2501 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2502 2503 // The value from the original loop to which we are mapping the new induction 2504 // variable. 2505 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2506 2507 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2508 2509 // Generate code for the induction step. Note that induction steps are 2510 // required to be loop-invariant 2511 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2512 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2513 "Induction step should be loop invariant"); 2514 if (PSE.getSE()->isSCEVable(IV->getType())) { 2515 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2516 return Exp.expandCodeFor(Step, Step->getType(), 2517 LoopVectorPreHeader->getTerminator()); 2518 } 2519 return cast<SCEVUnknown>(Step)->getValue(); 2520 }; 2521 2522 // The scalar value to broadcast. This is derived from the canonical 2523 // induction variable. If a truncation type is given, truncate the canonical 2524 // induction variable and step. Otherwise, derive these values from the 2525 // induction descriptor. 2526 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2527 Value *ScalarIV = Induction; 2528 if (IV != OldInduction) { 2529 ScalarIV = IV->getType()->isIntegerTy() 2530 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2531 : Builder.CreateCast(Instruction::SIToFP, Induction, 2532 IV->getType()); 2533 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2534 ScalarIV->setName("offset.idx"); 2535 } 2536 if (Trunc) { 2537 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2538 assert(Step->getType()->isIntegerTy() && 2539 "Truncation requires an integer step"); 2540 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2541 Step = Builder.CreateTrunc(Step, TruncType); 2542 } 2543 return ScalarIV; 2544 }; 2545 2546 // Create the vector values from the scalar IV, in the absence of creating a 2547 // vector IV. 2548 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2549 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2550 for (unsigned Part = 0; Part < UF; ++Part) { 2551 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2552 Value *StartIdx; 2553 if (Step->getType()->isFloatingPointTy()) 2554 StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part); 2555 else 2556 StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part); 2557 2558 Value *EntryPart = 2559 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode()); 2560 State.set(Def, EntryPart, Part); 2561 if (Trunc) 2562 addMetadata(EntryPart, Trunc); 2563 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2564 State, Part); 2565 } 2566 }; 2567 2568 // Fast-math-flags propagate from the original induction instruction. 2569 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2570 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2571 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2572 2573 // Now do the actual transformations, and start with creating the step value. 2574 Value *Step = CreateStepValue(ID.getStep()); 2575 if (VF.isZero() || VF.isScalar()) { 2576 Value *ScalarIV = CreateScalarIV(Step); 2577 CreateSplatIV(ScalarIV, Step); 2578 return; 2579 } 2580 2581 // Determine if we want a scalar version of the induction variable. This is 2582 // true if the induction variable itself is not widened, or if it has at 2583 // least one user in the loop that is not widened. 2584 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2585 if (!NeedsScalarIV) { 2586 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2587 State); 2588 return; 2589 } 2590 2591 // Try to create a new independent vector induction variable. If we can't 2592 // create the phi node, we will splat the scalar induction variable in each 2593 // loop iteration. 2594 if (!shouldScalarizeInstruction(EntryVal)) { 2595 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2596 State); 2597 Value *ScalarIV = CreateScalarIV(Step); 2598 // Create scalar steps that can be used by instructions we will later 2599 // scalarize. Note that the addition of the scalar steps will not increase 2600 // the number of instructions in the loop in the common case prior to 2601 // InstCombine. We will be trading one vector extract for each scalar step. 2602 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2603 return; 2604 } 2605 2606 // All IV users are scalar instructions, so only emit a scalar IV, not a 2607 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2608 // predicate used by the masked loads/stores. 2609 Value *ScalarIV = CreateScalarIV(Step); 2610 if (!Cost->isScalarEpilogueAllowed()) 2611 CreateSplatIV(ScalarIV, Step); 2612 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2613 } 2614 2615 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx, 2616 Value *Step, 2617 Instruction::BinaryOps BinOp) { 2618 // Create and check the types. 2619 auto *ValVTy = cast<VectorType>(Val->getType()); 2620 ElementCount VLen = ValVTy->getElementCount(); 2621 2622 Type *STy = Val->getType()->getScalarType(); 2623 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2624 "Induction Step must be an integer or FP"); 2625 assert(Step->getType() == STy && "Step has wrong type"); 2626 2627 SmallVector<Constant *, 8> Indices; 2628 2629 // Create a vector of consecutive numbers from zero to VF. 2630 VectorType *InitVecValVTy = ValVTy; 2631 Type *InitVecValSTy = STy; 2632 if (STy->isFloatingPointTy()) { 2633 InitVecValSTy = 2634 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2635 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2636 } 2637 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2638 2639 // Splat the StartIdx 2640 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2641 2642 if (STy->isIntegerTy()) { 2643 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2644 Step = Builder.CreateVectorSplat(VLen, Step); 2645 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2646 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2647 // which can be found from the original scalar operations. 2648 Step = Builder.CreateMul(InitVec, Step); 2649 return Builder.CreateAdd(Val, Step, "induction"); 2650 } 2651 2652 // Floating point induction. 2653 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2654 "Binary Opcode should be specified for FP induction"); 2655 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2656 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2657 2658 Step = Builder.CreateVectorSplat(VLen, Step); 2659 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2660 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2661 } 2662 2663 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2664 Instruction *EntryVal, 2665 const InductionDescriptor &ID, 2666 VPValue *Def, VPValue *CastDef, 2667 VPTransformState &State) { 2668 // We shouldn't have to build scalar steps if we aren't vectorizing. 2669 assert(VF.isVector() && "VF should be greater than one"); 2670 // Get the value type and ensure it and the step have the same integer type. 2671 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2672 assert(ScalarIVTy == Step->getType() && 2673 "Val and Step should have the same type"); 2674 2675 // We build scalar steps for both integer and floating-point induction 2676 // variables. Here, we determine the kind of arithmetic we will perform. 2677 Instruction::BinaryOps AddOp; 2678 Instruction::BinaryOps MulOp; 2679 if (ScalarIVTy->isIntegerTy()) { 2680 AddOp = Instruction::Add; 2681 MulOp = Instruction::Mul; 2682 } else { 2683 AddOp = ID.getInductionOpcode(); 2684 MulOp = Instruction::FMul; 2685 } 2686 2687 // Determine the number of scalars we need to generate for each unroll 2688 // iteration. If EntryVal is uniform, we only need to generate the first 2689 // lane. Otherwise, we generate all VF values. 2690 bool IsUniform = 2691 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2692 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2693 // Compute the scalar steps and save the results in State. 2694 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2695 ScalarIVTy->getScalarSizeInBits()); 2696 Type *VecIVTy = nullptr; 2697 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2698 if (!IsUniform && VF.isScalable()) { 2699 VecIVTy = VectorType::get(ScalarIVTy, VF); 2700 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2701 SplatStep = Builder.CreateVectorSplat(VF, Step); 2702 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2703 } 2704 2705 for (unsigned Part = 0; Part < UF; ++Part) { 2706 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part); 2707 2708 if (!IsUniform && VF.isScalable()) { 2709 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2710 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2711 if (ScalarIVTy->isFloatingPointTy()) 2712 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2713 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2714 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2715 State.set(Def, Add, Part); 2716 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2717 Part); 2718 // It's useful to record the lane values too for the known minimum number 2719 // of elements so we do those below. This improves the code quality when 2720 // trying to extract the first element, for example. 2721 } 2722 2723 if (ScalarIVTy->isFloatingPointTy()) 2724 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2725 2726 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2727 Value *StartIdx = Builder.CreateBinOp( 2728 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2729 // The step returned by `createStepForVF` is a runtime-evaluated value 2730 // when VF is scalable. Otherwise, it should be folded into a Constant. 2731 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2732 "Expected StartIdx to be folded to a constant when VF is not " 2733 "scalable"); 2734 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2735 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2736 State.set(Def, Add, VPIteration(Part, Lane)); 2737 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2738 Part, Lane); 2739 } 2740 } 2741 } 2742 2743 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2744 const VPIteration &Instance, 2745 VPTransformState &State) { 2746 Value *ScalarInst = State.get(Def, Instance); 2747 Value *VectorValue = State.get(Def, Instance.Part); 2748 VectorValue = Builder.CreateInsertElement( 2749 VectorValue, ScalarInst, 2750 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2751 State.set(Def, VectorValue, Instance.Part); 2752 } 2753 2754 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2755 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2756 return Builder.CreateVectorReverse(Vec, "reverse"); 2757 } 2758 2759 // Return whether we allow using masked interleave-groups (for dealing with 2760 // strided loads/stores that reside in predicated blocks, or for dealing 2761 // with gaps). 2762 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2763 // If an override option has been passed in for interleaved accesses, use it. 2764 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2765 return EnableMaskedInterleavedMemAccesses; 2766 2767 return TTI.enableMaskedInterleavedAccessVectorization(); 2768 } 2769 2770 // Try to vectorize the interleave group that \p Instr belongs to. 2771 // 2772 // E.g. Translate following interleaved load group (factor = 3): 2773 // for (i = 0; i < N; i+=3) { 2774 // R = Pic[i]; // Member of index 0 2775 // G = Pic[i+1]; // Member of index 1 2776 // B = Pic[i+2]; // Member of index 2 2777 // ... // do something to R, G, B 2778 // } 2779 // To: 2780 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2781 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2782 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2783 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2784 // 2785 // Or translate following interleaved store group (factor = 3): 2786 // for (i = 0; i < N; i+=3) { 2787 // ... do something to R, G, B 2788 // Pic[i] = R; // Member of index 0 2789 // Pic[i+1] = G; // Member of index 1 2790 // Pic[i+2] = B; // Member of index 2 2791 // } 2792 // To: 2793 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2794 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2795 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2796 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2797 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2798 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2799 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2800 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2801 VPValue *BlockInMask) { 2802 Instruction *Instr = Group->getInsertPos(); 2803 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2804 2805 // Prepare for the vector type of the interleaved load/store. 2806 Type *ScalarTy = getLoadStoreType(Instr); 2807 unsigned InterleaveFactor = Group->getFactor(); 2808 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2809 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2810 2811 // Prepare for the new pointers. 2812 SmallVector<Value *, 2> AddrParts; 2813 unsigned Index = Group->getIndex(Instr); 2814 2815 // TODO: extend the masked interleaved-group support to reversed access. 2816 assert((!BlockInMask || !Group->isReverse()) && 2817 "Reversed masked interleave-group not supported."); 2818 2819 // If the group is reverse, adjust the index to refer to the last vector lane 2820 // instead of the first. We adjust the index from the first vector lane, 2821 // rather than directly getting the pointer for lane VF - 1, because the 2822 // pointer operand of the interleaved access is supposed to be uniform. For 2823 // uniform instructions, we're only required to generate a value for the 2824 // first vector lane in each unroll iteration. 2825 if (Group->isReverse()) 2826 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2827 2828 for (unsigned Part = 0; Part < UF; Part++) { 2829 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2830 setDebugLocFromInst(AddrPart); 2831 2832 // Notice current instruction could be any index. Need to adjust the address 2833 // to the member of index 0. 2834 // 2835 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2836 // b = A[i]; // Member of index 0 2837 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2838 // 2839 // E.g. A[i+1] = a; // Member of index 1 2840 // A[i] = b; // Member of index 0 2841 // A[i+2] = c; // Member of index 2 (Current instruction) 2842 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2843 2844 bool InBounds = false; 2845 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2846 InBounds = gep->isInBounds(); 2847 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2848 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2849 2850 // Cast to the vector pointer type. 2851 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2852 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2853 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2854 } 2855 2856 setDebugLocFromInst(Instr); 2857 Value *PoisonVec = PoisonValue::get(VecTy); 2858 2859 Value *MaskForGaps = nullptr; 2860 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2861 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2862 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2863 } 2864 2865 // Vectorize the interleaved load group. 2866 if (isa<LoadInst>(Instr)) { 2867 // For each unroll part, create a wide load for the group. 2868 SmallVector<Value *, 2> NewLoads; 2869 for (unsigned Part = 0; Part < UF; Part++) { 2870 Instruction *NewLoad; 2871 if (BlockInMask || MaskForGaps) { 2872 assert(useMaskedInterleavedAccesses(*TTI) && 2873 "masked interleaved groups are not allowed."); 2874 Value *GroupMask = MaskForGaps; 2875 if (BlockInMask) { 2876 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2877 Value *ShuffledMask = Builder.CreateShuffleVector( 2878 BlockInMaskPart, 2879 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2880 "interleaved.mask"); 2881 GroupMask = MaskForGaps 2882 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2883 MaskForGaps) 2884 : ShuffledMask; 2885 } 2886 NewLoad = 2887 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2888 GroupMask, PoisonVec, "wide.masked.vec"); 2889 } 2890 else 2891 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2892 Group->getAlign(), "wide.vec"); 2893 Group->addMetadata(NewLoad); 2894 NewLoads.push_back(NewLoad); 2895 } 2896 2897 // For each member in the group, shuffle out the appropriate data from the 2898 // wide loads. 2899 unsigned J = 0; 2900 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2901 Instruction *Member = Group->getMember(I); 2902 2903 // Skip the gaps in the group. 2904 if (!Member) 2905 continue; 2906 2907 auto StrideMask = 2908 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2909 for (unsigned Part = 0; Part < UF; Part++) { 2910 Value *StridedVec = Builder.CreateShuffleVector( 2911 NewLoads[Part], StrideMask, "strided.vec"); 2912 2913 // If this member has different type, cast the result type. 2914 if (Member->getType() != ScalarTy) { 2915 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2916 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2917 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2918 } 2919 2920 if (Group->isReverse()) 2921 StridedVec = reverseVector(StridedVec); 2922 2923 State.set(VPDefs[J], StridedVec, Part); 2924 } 2925 ++J; 2926 } 2927 return; 2928 } 2929 2930 // The sub vector type for current instruction. 2931 auto *SubVT = VectorType::get(ScalarTy, VF); 2932 2933 // Vectorize the interleaved store group. 2934 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2935 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2936 "masked interleaved groups are not allowed."); 2937 assert((!MaskForGaps || !VF.isScalable()) && 2938 "masking gaps for scalable vectors is not yet supported."); 2939 for (unsigned Part = 0; Part < UF; Part++) { 2940 // Collect the stored vector from each member. 2941 SmallVector<Value *, 4> StoredVecs; 2942 for (unsigned i = 0; i < InterleaveFactor; i++) { 2943 assert((Group->getMember(i) || MaskForGaps) && 2944 "Fail to get a member from an interleaved store group"); 2945 Instruction *Member = Group->getMember(i); 2946 2947 // Skip the gaps in the group. 2948 if (!Member) { 2949 Value *Undef = PoisonValue::get(SubVT); 2950 StoredVecs.push_back(Undef); 2951 continue; 2952 } 2953 2954 Value *StoredVec = State.get(StoredValues[i], Part); 2955 2956 if (Group->isReverse()) 2957 StoredVec = reverseVector(StoredVec); 2958 2959 // If this member has different type, cast it to a unified type. 2960 2961 if (StoredVec->getType() != SubVT) 2962 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2963 2964 StoredVecs.push_back(StoredVec); 2965 } 2966 2967 // Concatenate all vectors into a wide vector. 2968 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2969 2970 // Interleave the elements in the wide vector. 2971 Value *IVec = Builder.CreateShuffleVector( 2972 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2973 "interleaved.vec"); 2974 2975 Instruction *NewStoreInstr; 2976 if (BlockInMask || MaskForGaps) { 2977 Value *GroupMask = MaskForGaps; 2978 if (BlockInMask) { 2979 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2980 Value *ShuffledMask = Builder.CreateShuffleVector( 2981 BlockInMaskPart, 2982 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2983 "interleaved.mask"); 2984 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2985 ShuffledMask, MaskForGaps) 2986 : ShuffledMask; 2987 } 2988 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2989 Group->getAlign(), GroupMask); 2990 } else 2991 NewStoreInstr = 2992 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2993 2994 Group->addMetadata(NewStoreInstr); 2995 } 2996 } 2997 2998 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2999 VPReplicateRecipe *RepRecipe, 3000 const VPIteration &Instance, 3001 bool IfPredicateInstr, 3002 VPTransformState &State) { 3003 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3004 3005 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3006 // the first lane and part. 3007 if (isa<NoAliasScopeDeclInst>(Instr)) 3008 if (!Instance.isFirstIteration()) 3009 return; 3010 3011 setDebugLocFromInst(Instr); 3012 3013 // Does this instruction return a value ? 3014 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3015 3016 Instruction *Cloned = Instr->clone(); 3017 if (!IsVoidRetTy) 3018 Cloned->setName(Instr->getName() + ".cloned"); 3019 3020 // If the scalarized instruction contributes to the address computation of a 3021 // widen masked load/store which was in a basic block that needed predication 3022 // and is not predicated after vectorization, we can't propagate 3023 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 3024 // instruction could feed a poison value to the base address of the widen 3025 // load/store. 3026 if (State.MayGeneratePoisonRecipes.count(RepRecipe) > 0) 3027 Cloned->dropPoisonGeneratingFlags(); 3028 3029 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3030 Builder.GetInsertPoint()); 3031 // Replace the operands of the cloned instructions with their scalar 3032 // equivalents in the new loop. 3033 for (unsigned op = 0, e = RepRecipe->getNumOperands(); op != e; ++op) { 3034 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3035 auto InputInstance = Instance; 3036 if (!Operand || !OrigLoop->contains(Operand) || 3037 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3038 InputInstance.Lane = VPLane::getFirstLane(); 3039 auto *NewOp = State.get(RepRecipe->getOperand(op), InputInstance); 3040 Cloned->setOperand(op, NewOp); 3041 } 3042 addNewMetadata(Cloned, Instr); 3043 3044 // Place the cloned scalar in the new loop. 3045 Builder.Insert(Cloned); 3046 3047 State.set(RepRecipe, Cloned, Instance); 3048 3049 // If we just cloned a new assumption, add it the assumption cache. 3050 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3051 AC->registerAssumption(II); 3052 3053 // End if-block. 3054 if (IfPredicateInstr) 3055 PredicatedInstructions.push_back(Cloned); 3056 } 3057 3058 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3059 Value *End, Value *Step, 3060 Instruction *DL) { 3061 BasicBlock *Header = L->getHeader(); 3062 BasicBlock *Latch = L->getLoopLatch(); 3063 // As we're just creating this loop, it's possible no latch exists 3064 // yet. If so, use the header as this will be a single block loop. 3065 if (!Latch) 3066 Latch = Header; 3067 3068 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3069 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3070 setDebugLocFromInst(OldInst, &B); 3071 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3072 3073 B.SetInsertPoint(Latch->getTerminator()); 3074 setDebugLocFromInst(OldInst, &B); 3075 3076 // Create i+1 and fill the PHINode. 3077 // 3078 // If the tail is not folded, we know that End - Start >= Step (either 3079 // statically or through the minimum iteration checks). We also know that both 3080 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3081 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3082 // overflows and we can mark the induction increment as NUW. 3083 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3084 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3085 Induction->addIncoming(Start, L->getLoopPreheader()); 3086 Induction->addIncoming(Next, Latch); 3087 // Create the compare. 3088 Value *ICmp = B.CreateICmpEQ(Next, End); 3089 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3090 3091 // Now we have two terminators. Remove the old one from the block. 3092 Latch->getTerminator()->eraseFromParent(); 3093 3094 return Induction; 3095 } 3096 3097 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3098 if (TripCount) 3099 return TripCount; 3100 3101 assert(L && "Create Trip Count for null loop."); 3102 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3103 // Find the loop boundaries. 3104 ScalarEvolution *SE = PSE.getSE(); 3105 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3106 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3107 "Invalid loop count"); 3108 3109 Type *IdxTy = Legal->getWidestInductionType(); 3110 assert(IdxTy && "No type for induction"); 3111 3112 // The exit count might have the type of i64 while the phi is i32. This can 3113 // happen if we have an induction variable that is sign extended before the 3114 // compare. The only way that we get a backedge taken count is that the 3115 // induction variable was signed and as such will not overflow. In such a case 3116 // truncation is legal. 3117 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3118 IdxTy->getPrimitiveSizeInBits()) 3119 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3120 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3121 3122 // Get the total trip count from the count by adding 1. 3123 const SCEV *ExitCount = SE->getAddExpr( 3124 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3125 3126 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3127 3128 // Expand the trip count and place the new instructions in the preheader. 3129 // Notice that the pre-header does not change, only the loop body. 3130 SCEVExpander Exp(*SE, DL, "induction"); 3131 3132 // Count holds the overall loop count (N). 3133 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3134 L->getLoopPreheader()->getTerminator()); 3135 3136 if (TripCount->getType()->isPointerTy()) 3137 TripCount = 3138 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3139 L->getLoopPreheader()->getTerminator()); 3140 3141 return TripCount; 3142 } 3143 3144 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3145 if (VectorTripCount) 3146 return VectorTripCount; 3147 3148 Value *TC = getOrCreateTripCount(L); 3149 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3150 3151 Type *Ty = TC->getType(); 3152 // This is where we can make the step a runtime constant. 3153 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3154 3155 // If the tail is to be folded by masking, round the number of iterations N 3156 // up to a multiple of Step instead of rounding down. This is done by first 3157 // adding Step-1 and then rounding down. Note that it's ok if this addition 3158 // overflows: the vector induction variable will eventually wrap to zero given 3159 // that it starts at zero and its Step is a power of two; the loop will then 3160 // exit, with the last early-exit vector comparison also producing all-true. 3161 if (Cost->foldTailByMasking()) { 3162 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3163 "VF*UF must be a power of 2 when folding tail by masking"); 3164 assert(!VF.isScalable() && 3165 "Tail folding not yet supported for scalable vectors"); 3166 TC = Builder.CreateAdd( 3167 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3168 } 3169 3170 // Now we need to generate the expression for the part of the loop that the 3171 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3172 // iterations are not required for correctness, or N - Step, otherwise. Step 3173 // is equal to the vectorization factor (number of SIMD elements) times the 3174 // unroll factor (number of SIMD instructions). 3175 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3176 3177 // There are cases where we *must* run at least one iteration in the remainder 3178 // loop. See the cost model for when this can happen. If the step evenly 3179 // divides the trip count, we set the remainder to be equal to the step. If 3180 // the step does not evenly divide the trip count, no adjustment is necessary 3181 // since there will already be scalar iterations. Note that the minimum 3182 // iterations check ensures that N >= Step. 3183 if (Cost->requiresScalarEpilogue(VF)) { 3184 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3185 R = Builder.CreateSelect(IsZero, Step, R); 3186 } 3187 3188 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3189 3190 return VectorTripCount; 3191 } 3192 3193 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3194 const DataLayout &DL) { 3195 // Verify that V is a vector type with same number of elements as DstVTy. 3196 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3197 unsigned VF = DstFVTy->getNumElements(); 3198 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3199 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3200 Type *SrcElemTy = SrcVecTy->getElementType(); 3201 Type *DstElemTy = DstFVTy->getElementType(); 3202 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3203 "Vector elements must have same size"); 3204 3205 // Do a direct cast if element types are castable. 3206 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3207 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3208 } 3209 // V cannot be directly casted to desired vector type. 3210 // May happen when V is a floating point vector but DstVTy is a vector of 3211 // pointers or vice-versa. Handle this using a two-step bitcast using an 3212 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3213 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3214 "Only one type should be a pointer type"); 3215 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3216 "Only one type should be a floating point type"); 3217 Type *IntTy = 3218 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3219 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3220 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3221 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3222 } 3223 3224 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3225 BasicBlock *Bypass) { 3226 Value *Count = getOrCreateTripCount(L); 3227 // Reuse existing vector loop preheader for TC checks. 3228 // Note that new preheader block is generated for vector loop. 3229 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3230 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3231 3232 // Generate code to check if the loop's trip count is less than VF * UF, or 3233 // equal to it in case a scalar epilogue is required; this implies that the 3234 // vector trip count is zero. This check also covers the case where adding one 3235 // to the backedge-taken count overflowed leading to an incorrect trip count 3236 // of zero. In this case we will also jump to the scalar loop. 3237 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3238 : ICmpInst::ICMP_ULT; 3239 3240 // If tail is to be folded, vector loop takes care of all iterations. 3241 Value *CheckMinIters = Builder.getFalse(); 3242 if (!Cost->foldTailByMasking()) { 3243 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3244 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3245 } 3246 // Create new preheader for vector loop. 3247 LoopVectorPreHeader = 3248 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3249 "vector.ph"); 3250 3251 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3252 DT->getNode(Bypass)->getIDom()) && 3253 "TC check is expected to dominate Bypass"); 3254 3255 // Update dominator for Bypass & LoopExit (if needed). 3256 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3257 if (!Cost->requiresScalarEpilogue(VF)) 3258 // If there is an epilogue which must run, there's no edge from the 3259 // middle block to exit blocks and thus no need to update the immediate 3260 // dominator of the exit blocks. 3261 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3262 3263 ReplaceInstWithInst( 3264 TCCheckBlock->getTerminator(), 3265 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3266 LoopBypassBlocks.push_back(TCCheckBlock); 3267 } 3268 3269 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3270 3271 BasicBlock *const SCEVCheckBlock = 3272 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3273 if (!SCEVCheckBlock) 3274 return nullptr; 3275 3276 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3277 (OptForSizeBasedOnProfile && 3278 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3279 "Cannot SCEV check stride or overflow when optimizing for size"); 3280 3281 3282 // Update dominator only if this is first RT check. 3283 if (LoopBypassBlocks.empty()) { 3284 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3285 if (!Cost->requiresScalarEpilogue(VF)) 3286 // If there is an epilogue which must run, there's no edge from the 3287 // middle block to exit blocks and thus no need to update the immediate 3288 // dominator of the exit blocks. 3289 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3290 } 3291 3292 LoopBypassBlocks.push_back(SCEVCheckBlock); 3293 AddedSafetyChecks = true; 3294 return SCEVCheckBlock; 3295 } 3296 3297 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3298 BasicBlock *Bypass) { 3299 // VPlan-native path does not do any analysis for runtime checks currently. 3300 if (EnableVPlanNativePath) 3301 return nullptr; 3302 3303 BasicBlock *const MemCheckBlock = 3304 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3305 3306 // Check if we generated code that checks in runtime if arrays overlap. We put 3307 // the checks into a separate block to make the more common case of few 3308 // elements faster. 3309 if (!MemCheckBlock) 3310 return nullptr; 3311 3312 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3313 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3314 "Cannot emit memory checks when optimizing for size, unless forced " 3315 "to vectorize."); 3316 ORE->emit([&]() { 3317 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3318 L->getStartLoc(), L->getHeader()) 3319 << "Code-size may be reduced by not forcing " 3320 "vectorization, or by source-code modifications " 3321 "eliminating the need for runtime checks " 3322 "(e.g., adding 'restrict')."; 3323 }); 3324 } 3325 3326 LoopBypassBlocks.push_back(MemCheckBlock); 3327 3328 AddedSafetyChecks = true; 3329 3330 // We currently don't use LoopVersioning for the actual loop cloning but we 3331 // still use it to add the noalias metadata. 3332 LVer = std::make_unique<LoopVersioning>( 3333 *Legal->getLAI(), 3334 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3335 DT, PSE.getSE()); 3336 LVer->prepareNoAliasMetadata(); 3337 return MemCheckBlock; 3338 } 3339 3340 Value *InnerLoopVectorizer::emitTransformedIndex( 3341 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3342 const InductionDescriptor &ID) const { 3343 3344 SCEVExpander Exp(*SE, DL, "induction"); 3345 auto Step = ID.getStep(); 3346 auto StartValue = ID.getStartValue(); 3347 assert(Index->getType()->getScalarType() == Step->getType() && 3348 "Index scalar type does not match StepValue type"); 3349 3350 // Note: the IR at this point is broken. We cannot use SE to create any new 3351 // SCEV and then expand it, hoping that SCEV's simplification will give us 3352 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3353 // lead to various SCEV crashes. So all we can do is to use builder and rely 3354 // on InstCombine for future simplifications. Here we handle some trivial 3355 // cases only. 3356 auto CreateAdd = [&B](Value *X, Value *Y) { 3357 assert(X->getType() == Y->getType() && "Types don't match!"); 3358 if (auto *CX = dyn_cast<ConstantInt>(X)) 3359 if (CX->isZero()) 3360 return Y; 3361 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3362 if (CY->isZero()) 3363 return X; 3364 return B.CreateAdd(X, Y); 3365 }; 3366 3367 // We allow X to be a vector type, in which case Y will potentially be 3368 // splatted into a vector with the same element count. 3369 auto CreateMul = [&B](Value *X, Value *Y) { 3370 assert(X->getType()->getScalarType() == Y->getType() && 3371 "Types don't match!"); 3372 if (auto *CX = dyn_cast<ConstantInt>(X)) 3373 if (CX->isOne()) 3374 return Y; 3375 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3376 if (CY->isOne()) 3377 return X; 3378 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3379 if (XVTy && !isa<VectorType>(Y->getType())) 3380 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3381 return B.CreateMul(X, Y); 3382 }; 3383 3384 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3385 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3386 // the DomTree is not kept up-to-date for additional blocks generated in the 3387 // vector loop. By using the header as insertion point, we guarantee that the 3388 // expanded instructions dominate all their uses. 3389 auto GetInsertPoint = [this, &B]() { 3390 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3391 if (InsertBB != LoopVectorBody && 3392 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3393 return LoopVectorBody->getTerminator(); 3394 return &*B.GetInsertPoint(); 3395 }; 3396 3397 switch (ID.getKind()) { 3398 case InductionDescriptor::IK_IntInduction: { 3399 assert(!isa<VectorType>(Index->getType()) && 3400 "Vector indices not supported for integer inductions yet"); 3401 assert(Index->getType() == StartValue->getType() && 3402 "Index type does not match StartValue type"); 3403 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3404 return B.CreateSub(StartValue, Index); 3405 auto *Offset = CreateMul( 3406 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3407 return CreateAdd(StartValue, Offset); 3408 } 3409 case InductionDescriptor::IK_PtrInduction: { 3410 assert(isa<SCEVConstant>(Step) && 3411 "Expected constant step for pointer induction"); 3412 return B.CreateGEP( 3413 ID.getElementType(), StartValue, 3414 CreateMul(Index, 3415 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3416 GetInsertPoint()))); 3417 } 3418 case InductionDescriptor::IK_FpInduction: { 3419 assert(!isa<VectorType>(Index->getType()) && 3420 "Vector indices not supported for FP inductions yet"); 3421 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3422 auto InductionBinOp = ID.getInductionBinOp(); 3423 assert(InductionBinOp && 3424 (InductionBinOp->getOpcode() == Instruction::FAdd || 3425 InductionBinOp->getOpcode() == Instruction::FSub) && 3426 "Original bin op should be defined for FP induction"); 3427 3428 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3429 Value *MulExp = B.CreateFMul(StepValue, Index); 3430 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3431 "induction"); 3432 } 3433 case InductionDescriptor::IK_NoInduction: 3434 return nullptr; 3435 } 3436 llvm_unreachable("invalid enum"); 3437 } 3438 3439 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3440 LoopScalarBody = OrigLoop->getHeader(); 3441 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3442 assert(LoopVectorPreHeader && "Invalid loop structure"); 3443 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3444 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3445 "multiple exit loop without required epilogue?"); 3446 3447 LoopMiddleBlock = 3448 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3449 LI, nullptr, Twine(Prefix) + "middle.block"); 3450 LoopScalarPreHeader = 3451 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3452 nullptr, Twine(Prefix) + "scalar.ph"); 3453 3454 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3455 3456 // Set up the middle block terminator. Two cases: 3457 // 1) If we know that we must execute the scalar epilogue, emit an 3458 // unconditional branch. 3459 // 2) Otherwise, we must have a single unique exit block (due to how we 3460 // implement the multiple exit case). In this case, set up a conditonal 3461 // branch from the middle block to the loop scalar preheader, and the 3462 // exit block. completeLoopSkeleton will update the condition to use an 3463 // iteration check, if required to decide whether to execute the remainder. 3464 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3465 BranchInst::Create(LoopScalarPreHeader) : 3466 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3467 Builder.getTrue()); 3468 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3469 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3470 3471 // We intentionally don't let SplitBlock to update LoopInfo since 3472 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3473 // LoopVectorBody is explicitly added to the correct place few lines later. 3474 LoopVectorBody = 3475 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3476 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3477 3478 // Update dominator for loop exit. 3479 if (!Cost->requiresScalarEpilogue(VF)) 3480 // If there is an epilogue which must run, there's no edge from the 3481 // middle block to exit blocks and thus no need to update the immediate 3482 // dominator of the exit blocks. 3483 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3484 3485 // Create and register the new vector loop. 3486 Loop *Lp = LI->AllocateLoop(); 3487 Loop *ParentLoop = OrigLoop->getParentLoop(); 3488 3489 // Insert the new loop into the loop nest and register the new basic blocks 3490 // before calling any utilities such as SCEV that require valid LoopInfo. 3491 if (ParentLoop) { 3492 ParentLoop->addChildLoop(Lp); 3493 } else { 3494 LI->addTopLevelLoop(Lp); 3495 } 3496 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3497 return Lp; 3498 } 3499 3500 void InnerLoopVectorizer::createInductionResumeValues( 3501 Loop *L, Value *VectorTripCount, 3502 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3503 assert(VectorTripCount && L && "Expected valid arguments"); 3504 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3505 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3506 "Inconsistent information about additional bypass."); 3507 // We are going to resume the execution of the scalar loop. 3508 // Go over all of the induction variables that we found and fix the 3509 // PHIs that are left in the scalar version of the loop. 3510 // The starting values of PHI nodes depend on the counter of the last 3511 // iteration in the vectorized loop. 3512 // If we come from a bypass edge then we need to start from the original 3513 // start value. 3514 for (auto &InductionEntry : Legal->getInductionVars()) { 3515 PHINode *OrigPhi = InductionEntry.first; 3516 InductionDescriptor II = InductionEntry.second; 3517 3518 // Create phi nodes to merge from the backedge-taken check block. 3519 PHINode *BCResumeVal = 3520 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3521 LoopScalarPreHeader->getTerminator()); 3522 // Copy original phi DL over to the new one. 3523 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3524 Value *&EndValue = IVEndValues[OrigPhi]; 3525 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3526 if (OrigPhi == OldInduction) { 3527 // We know what the end value is. 3528 EndValue = VectorTripCount; 3529 } else { 3530 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3531 3532 // Fast-math-flags propagate from the original induction instruction. 3533 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3534 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3535 3536 Type *StepType = II.getStep()->getType(); 3537 Instruction::CastOps CastOp = 3538 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3539 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3540 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3541 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3542 EndValue->setName("ind.end"); 3543 3544 // Compute the end value for the additional bypass (if applicable). 3545 if (AdditionalBypass.first) { 3546 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3547 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3548 StepType, true); 3549 CRD = 3550 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3551 EndValueFromAdditionalBypass = 3552 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3553 EndValueFromAdditionalBypass->setName("ind.end"); 3554 } 3555 } 3556 // The new PHI merges the original incoming value, in case of a bypass, 3557 // or the value at the end of the vectorized loop. 3558 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3559 3560 // Fix the scalar body counter (PHI node). 3561 // The old induction's phi node in the scalar body needs the truncated 3562 // value. 3563 for (BasicBlock *BB : LoopBypassBlocks) 3564 BCResumeVal->addIncoming(II.getStartValue(), BB); 3565 3566 if (AdditionalBypass.first) 3567 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3568 EndValueFromAdditionalBypass); 3569 3570 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3571 } 3572 } 3573 3574 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3575 MDNode *OrigLoopID) { 3576 assert(L && "Expected valid loop."); 3577 3578 // The trip counts should be cached by now. 3579 Value *Count = getOrCreateTripCount(L); 3580 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3581 3582 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3583 3584 // Add a check in the middle block to see if we have completed 3585 // all of the iterations in the first vector loop. Three cases: 3586 // 1) If we require a scalar epilogue, there is no conditional branch as 3587 // we unconditionally branch to the scalar preheader. Do nothing. 3588 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3589 // Thus if tail is to be folded, we know we don't need to run the 3590 // remainder and we can use the previous value for the condition (true). 3591 // 3) Otherwise, construct a runtime check. 3592 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3593 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3594 Count, VectorTripCount, "cmp.n", 3595 LoopMiddleBlock->getTerminator()); 3596 3597 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3598 // of the corresponding compare because they may have ended up with 3599 // different line numbers and we want to avoid awkward line stepping while 3600 // debugging. Eg. if the compare has got a line number inside the loop. 3601 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3602 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3603 } 3604 3605 // Get ready to start creating new instructions into the vectorized body. 3606 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3607 "Inconsistent vector loop preheader"); 3608 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3609 3610 Optional<MDNode *> VectorizedLoopID = 3611 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3612 LLVMLoopVectorizeFollowupVectorized}); 3613 if (VectorizedLoopID.hasValue()) { 3614 L->setLoopID(VectorizedLoopID.getValue()); 3615 3616 // Do not setAlreadyVectorized if loop attributes have been defined 3617 // explicitly. 3618 return LoopVectorPreHeader; 3619 } 3620 3621 // Keep all loop hints from the original loop on the vector loop (we'll 3622 // replace the vectorizer-specific hints below). 3623 if (MDNode *LID = OrigLoop->getLoopID()) 3624 L->setLoopID(LID); 3625 3626 LoopVectorizeHints Hints(L, true, *ORE); 3627 Hints.setAlreadyVectorized(); 3628 3629 #ifdef EXPENSIVE_CHECKS 3630 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3631 LI->verify(*DT); 3632 #endif 3633 3634 return LoopVectorPreHeader; 3635 } 3636 3637 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3638 /* 3639 In this function we generate a new loop. The new loop will contain 3640 the vectorized instructions while the old loop will continue to run the 3641 scalar remainder. 3642 3643 [ ] <-- loop iteration number check. 3644 / | 3645 / v 3646 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3647 | / | 3648 | / v 3649 || [ ] <-- vector pre header. 3650 |/ | 3651 | v 3652 | [ ] \ 3653 | [ ]_| <-- vector loop. 3654 | | 3655 | v 3656 \ -[ ] <--- middle-block. 3657 \/ | 3658 /\ v 3659 | ->[ ] <--- new preheader. 3660 | | 3661 (opt) v <-- edge from middle to exit iff epilogue is not required. 3662 | [ ] \ 3663 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3664 \ | 3665 \ v 3666 >[ ] <-- exit block(s). 3667 ... 3668 */ 3669 3670 // Get the metadata of the original loop before it gets modified. 3671 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3672 3673 // Workaround! Compute the trip count of the original loop and cache it 3674 // before we start modifying the CFG. This code has a systemic problem 3675 // wherein it tries to run analysis over partially constructed IR; this is 3676 // wrong, and not simply for SCEV. The trip count of the original loop 3677 // simply happens to be prone to hitting this in practice. In theory, we 3678 // can hit the same issue for any SCEV, or ValueTracking query done during 3679 // mutation. See PR49900. 3680 getOrCreateTripCount(OrigLoop); 3681 3682 // Create an empty vector loop, and prepare basic blocks for the runtime 3683 // checks. 3684 Loop *Lp = createVectorLoopSkeleton(""); 3685 3686 // Now, compare the new count to zero. If it is zero skip the vector loop and 3687 // jump to the scalar loop. This check also covers the case where the 3688 // backedge-taken count is uint##_max: adding one to it will overflow leading 3689 // to an incorrect trip count of zero. In this (rare) case we will also jump 3690 // to the scalar loop. 3691 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3692 3693 // Generate the code to check any assumptions that we've made for SCEV 3694 // expressions. 3695 emitSCEVChecks(Lp, LoopScalarPreHeader); 3696 3697 // Generate the code that checks in runtime if arrays overlap. We put the 3698 // checks into a separate block to make the more common case of few elements 3699 // faster. 3700 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3701 3702 // Some loops have a single integer induction variable, while other loops 3703 // don't. One example is c++ iterators that often have multiple pointer 3704 // induction variables. In the code below we also support a case where we 3705 // don't have a single induction variable. 3706 // 3707 // We try to obtain an induction variable from the original loop as hard 3708 // as possible. However if we don't find one that: 3709 // - is an integer 3710 // - counts from zero, stepping by one 3711 // - is the size of the widest induction variable type 3712 // then we create a new one. 3713 OldInduction = Legal->getPrimaryInduction(); 3714 Type *IdxTy = Legal->getWidestInductionType(); 3715 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3716 // The loop step is equal to the vectorization factor (num of SIMD elements) 3717 // times the unroll factor (num of SIMD instructions). 3718 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3719 Value *Step = createStepForVF(Builder, IdxTy, VF, UF); 3720 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3721 Induction = 3722 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3723 getDebugLocFromInstOrOperands(OldInduction)); 3724 3725 // Emit phis for the new starting index of the scalar loop. 3726 createInductionResumeValues(Lp, CountRoundDown); 3727 3728 return completeLoopSkeleton(Lp, OrigLoopID); 3729 } 3730 3731 // Fix up external users of the induction variable. At this point, we are 3732 // in LCSSA form, with all external PHIs that use the IV having one input value, 3733 // coming from the remainder loop. We need those PHIs to also have a correct 3734 // value for the IV when arriving directly from the middle block. 3735 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3736 const InductionDescriptor &II, 3737 Value *CountRoundDown, Value *EndValue, 3738 BasicBlock *MiddleBlock) { 3739 // There are two kinds of external IV usages - those that use the value 3740 // computed in the last iteration (the PHI) and those that use the penultimate 3741 // value (the value that feeds into the phi from the loop latch). 3742 // We allow both, but they, obviously, have different values. 3743 3744 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3745 3746 DenseMap<Value *, Value *> MissingVals; 3747 3748 // An external user of the last iteration's value should see the value that 3749 // the remainder loop uses to initialize its own IV. 3750 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3751 for (User *U : PostInc->users()) { 3752 Instruction *UI = cast<Instruction>(U); 3753 if (!OrigLoop->contains(UI)) { 3754 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3755 MissingVals[UI] = EndValue; 3756 } 3757 } 3758 3759 // An external user of the penultimate value need to see EndValue - Step. 3760 // The simplest way to get this is to recompute it from the constituent SCEVs, 3761 // that is Start + (Step * (CRD - 1)). 3762 for (User *U : OrigPhi->users()) { 3763 auto *UI = cast<Instruction>(U); 3764 if (!OrigLoop->contains(UI)) { 3765 const DataLayout &DL = 3766 OrigLoop->getHeader()->getModule()->getDataLayout(); 3767 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3768 3769 IRBuilder<> B(MiddleBlock->getTerminator()); 3770 3771 // Fast-math-flags propagate from the original induction instruction. 3772 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3773 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3774 3775 Value *CountMinusOne = B.CreateSub( 3776 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3777 Value *CMO = 3778 !II.getStep()->getType()->isIntegerTy() 3779 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3780 II.getStep()->getType()) 3781 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3782 CMO->setName("cast.cmo"); 3783 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3784 Escape->setName("ind.escape"); 3785 MissingVals[UI] = Escape; 3786 } 3787 } 3788 3789 for (auto &I : MissingVals) { 3790 PHINode *PHI = cast<PHINode>(I.first); 3791 // One corner case we have to handle is two IVs "chasing" each-other, 3792 // that is %IV2 = phi [...], [ %IV1, %latch ] 3793 // In this case, if IV1 has an external use, we need to avoid adding both 3794 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3795 // don't already have an incoming value for the middle block. 3796 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3797 PHI->addIncoming(I.second, MiddleBlock); 3798 } 3799 } 3800 3801 namespace { 3802 3803 struct CSEDenseMapInfo { 3804 static bool canHandle(const Instruction *I) { 3805 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3806 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3807 } 3808 3809 static inline Instruction *getEmptyKey() { 3810 return DenseMapInfo<Instruction *>::getEmptyKey(); 3811 } 3812 3813 static inline Instruction *getTombstoneKey() { 3814 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3815 } 3816 3817 static unsigned getHashValue(const Instruction *I) { 3818 assert(canHandle(I) && "Unknown instruction!"); 3819 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3820 I->value_op_end())); 3821 } 3822 3823 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3824 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3825 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3826 return LHS == RHS; 3827 return LHS->isIdenticalTo(RHS); 3828 } 3829 }; 3830 3831 } // end anonymous namespace 3832 3833 ///Perform cse of induction variable instructions. 3834 static void cse(BasicBlock *BB) { 3835 // Perform simple cse. 3836 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3837 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3838 if (!CSEDenseMapInfo::canHandle(&In)) 3839 continue; 3840 3841 // Check if we can replace this instruction with any of the 3842 // visited instructions. 3843 if (Instruction *V = CSEMap.lookup(&In)) { 3844 In.replaceAllUsesWith(V); 3845 In.eraseFromParent(); 3846 continue; 3847 } 3848 3849 CSEMap[&In] = &In; 3850 } 3851 } 3852 3853 InstructionCost 3854 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3855 bool &NeedToScalarize) const { 3856 Function *F = CI->getCalledFunction(); 3857 Type *ScalarRetTy = CI->getType(); 3858 SmallVector<Type *, 4> Tys, ScalarTys; 3859 for (auto &ArgOp : CI->args()) 3860 ScalarTys.push_back(ArgOp->getType()); 3861 3862 // Estimate cost of scalarized vector call. The source operands are assumed 3863 // to be vectors, so we need to extract individual elements from there, 3864 // execute VF scalar calls, and then gather the result into the vector return 3865 // value. 3866 InstructionCost ScalarCallCost = 3867 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3868 if (VF.isScalar()) 3869 return ScalarCallCost; 3870 3871 // Compute corresponding vector type for return value and arguments. 3872 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3873 for (Type *ScalarTy : ScalarTys) 3874 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3875 3876 // Compute costs of unpacking argument values for the scalar calls and 3877 // packing the return values to a vector. 3878 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3879 3880 InstructionCost Cost = 3881 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3882 3883 // If we can't emit a vector call for this function, then the currently found 3884 // cost is the cost we need to return. 3885 NeedToScalarize = true; 3886 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3887 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3888 3889 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3890 return Cost; 3891 3892 // If the corresponding vector cost is cheaper, return its cost. 3893 InstructionCost VectorCallCost = 3894 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3895 if (VectorCallCost < Cost) { 3896 NeedToScalarize = false; 3897 Cost = VectorCallCost; 3898 } 3899 return Cost; 3900 } 3901 3902 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3903 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3904 return Elt; 3905 return VectorType::get(Elt, VF); 3906 } 3907 3908 InstructionCost 3909 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3910 ElementCount VF) const { 3911 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3912 assert(ID && "Expected intrinsic call!"); 3913 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3914 FastMathFlags FMF; 3915 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3916 FMF = FPMO->getFastMathFlags(); 3917 3918 SmallVector<const Value *> Arguments(CI->args()); 3919 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3920 SmallVector<Type *> ParamTys; 3921 std::transform(FTy->param_begin(), FTy->param_end(), 3922 std::back_inserter(ParamTys), 3923 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3924 3925 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3926 dyn_cast<IntrinsicInst>(CI)); 3927 return TTI.getIntrinsicInstrCost(CostAttrs, 3928 TargetTransformInfo::TCK_RecipThroughput); 3929 } 3930 3931 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3932 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3933 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3934 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3935 } 3936 3937 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3938 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3939 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3940 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3941 } 3942 3943 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3944 // For every instruction `I` in MinBWs, truncate the operands, create a 3945 // truncated version of `I` and reextend its result. InstCombine runs 3946 // later and will remove any ext/trunc pairs. 3947 SmallPtrSet<Value *, 4> Erased; 3948 for (const auto &KV : Cost->getMinimalBitwidths()) { 3949 // If the value wasn't vectorized, we must maintain the original scalar 3950 // type. The absence of the value from State indicates that it 3951 // wasn't vectorized. 3952 // FIXME: Should not rely on getVPValue at this point. 3953 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3954 if (!State.hasAnyVectorValue(Def)) 3955 continue; 3956 for (unsigned Part = 0; Part < UF; ++Part) { 3957 Value *I = State.get(Def, Part); 3958 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3959 continue; 3960 Type *OriginalTy = I->getType(); 3961 Type *ScalarTruncatedTy = 3962 IntegerType::get(OriginalTy->getContext(), KV.second); 3963 auto *TruncatedTy = VectorType::get( 3964 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3965 if (TruncatedTy == OriginalTy) 3966 continue; 3967 3968 IRBuilder<> B(cast<Instruction>(I)); 3969 auto ShrinkOperand = [&](Value *V) -> Value * { 3970 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3971 if (ZI->getSrcTy() == TruncatedTy) 3972 return ZI->getOperand(0); 3973 return B.CreateZExtOrTrunc(V, TruncatedTy); 3974 }; 3975 3976 // The actual instruction modification depends on the instruction type, 3977 // unfortunately. 3978 Value *NewI = nullptr; 3979 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3980 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3981 ShrinkOperand(BO->getOperand(1))); 3982 3983 // Any wrapping introduced by shrinking this operation shouldn't be 3984 // considered undefined behavior. So, we can't unconditionally copy 3985 // arithmetic wrapping flags to NewI. 3986 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3987 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3988 NewI = 3989 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3990 ShrinkOperand(CI->getOperand(1))); 3991 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3992 NewI = B.CreateSelect(SI->getCondition(), 3993 ShrinkOperand(SI->getTrueValue()), 3994 ShrinkOperand(SI->getFalseValue())); 3995 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3996 switch (CI->getOpcode()) { 3997 default: 3998 llvm_unreachable("Unhandled cast!"); 3999 case Instruction::Trunc: 4000 NewI = ShrinkOperand(CI->getOperand(0)); 4001 break; 4002 case Instruction::SExt: 4003 NewI = B.CreateSExtOrTrunc( 4004 CI->getOperand(0), 4005 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4006 break; 4007 case Instruction::ZExt: 4008 NewI = B.CreateZExtOrTrunc( 4009 CI->getOperand(0), 4010 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4011 break; 4012 } 4013 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4014 auto Elements0 = 4015 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4016 auto *O0 = B.CreateZExtOrTrunc( 4017 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4018 auto Elements1 = 4019 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4020 auto *O1 = B.CreateZExtOrTrunc( 4021 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4022 4023 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4024 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4025 // Don't do anything with the operands, just extend the result. 4026 continue; 4027 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4028 auto Elements = 4029 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4030 auto *O0 = B.CreateZExtOrTrunc( 4031 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4032 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4033 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4034 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4035 auto Elements = 4036 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4037 auto *O0 = B.CreateZExtOrTrunc( 4038 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4039 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4040 } else { 4041 // If we don't know what to do, be conservative and don't do anything. 4042 continue; 4043 } 4044 4045 // Lastly, extend the result. 4046 NewI->takeName(cast<Instruction>(I)); 4047 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4048 I->replaceAllUsesWith(Res); 4049 cast<Instruction>(I)->eraseFromParent(); 4050 Erased.insert(I); 4051 State.reset(Def, Res, Part); 4052 } 4053 } 4054 4055 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4056 for (const auto &KV : Cost->getMinimalBitwidths()) { 4057 // If the value wasn't vectorized, we must maintain the original scalar 4058 // type. The absence of the value from State indicates that it 4059 // wasn't vectorized. 4060 // FIXME: Should not rely on getVPValue at this point. 4061 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4062 if (!State.hasAnyVectorValue(Def)) 4063 continue; 4064 for (unsigned Part = 0; Part < UF; ++Part) { 4065 Value *I = State.get(Def, Part); 4066 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4067 if (Inst && Inst->use_empty()) { 4068 Value *NewI = Inst->getOperand(0); 4069 Inst->eraseFromParent(); 4070 State.reset(Def, NewI, Part); 4071 } 4072 } 4073 } 4074 } 4075 4076 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4077 // Insert truncates and extends for any truncated instructions as hints to 4078 // InstCombine. 4079 if (VF.isVector()) 4080 truncateToMinimalBitwidths(State); 4081 4082 // Fix widened non-induction PHIs by setting up the PHI operands. 4083 if (OrigPHIsToFix.size()) { 4084 assert(EnableVPlanNativePath && 4085 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4086 fixNonInductionPHIs(State); 4087 } 4088 4089 // At this point every instruction in the original loop is widened to a 4090 // vector form. Now we need to fix the recurrences in the loop. These PHI 4091 // nodes are currently empty because we did not want to introduce cycles. 4092 // This is the second stage of vectorizing recurrences. 4093 fixCrossIterationPHIs(State); 4094 4095 // Forget the original basic block. 4096 PSE.getSE()->forgetLoop(OrigLoop); 4097 4098 // If we inserted an edge from the middle block to the unique exit block, 4099 // update uses outside the loop (phis) to account for the newly inserted 4100 // edge. 4101 if (!Cost->requiresScalarEpilogue(VF)) { 4102 // Fix-up external users of the induction variables. 4103 for (auto &Entry : Legal->getInductionVars()) 4104 fixupIVUsers(Entry.first, Entry.second, 4105 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4106 IVEndValues[Entry.first], LoopMiddleBlock); 4107 4108 fixLCSSAPHIs(State); 4109 } 4110 4111 for (Instruction *PI : PredicatedInstructions) 4112 sinkScalarOperands(&*PI); 4113 4114 // Remove redundant induction instructions. 4115 cse(LoopVectorBody); 4116 4117 // Set/update profile weights for the vector and remainder loops as original 4118 // loop iterations are now distributed among them. Note that original loop 4119 // represented by LoopScalarBody becomes remainder loop after vectorization. 4120 // 4121 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4122 // end up getting slightly roughened result but that should be OK since 4123 // profile is not inherently precise anyway. Note also possible bypass of 4124 // vector code caused by legality checks is ignored, assigning all the weight 4125 // to the vector loop, optimistically. 4126 // 4127 // For scalable vectorization we can't know at compile time how many iterations 4128 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4129 // vscale of '1'. 4130 setProfileInfoAfterUnrolling( 4131 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4132 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4133 } 4134 4135 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4136 // In order to support recurrences we need to be able to vectorize Phi nodes. 4137 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4138 // stage #2: We now need to fix the recurrences by adding incoming edges to 4139 // the currently empty PHI nodes. At this point every instruction in the 4140 // original loop is widened to a vector form so we can use them to construct 4141 // the incoming edges. 4142 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4143 for (VPRecipeBase &R : Header->phis()) { 4144 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4145 fixReduction(ReductionPhi, State); 4146 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4147 fixFirstOrderRecurrence(FOR, State); 4148 } 4149 } 4150 4151 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4152 VPTransformState &State) { 4153 // This is the second phase of vectorizing first-order recurrences. An 4154 // overview of the transformation is described below. Suppose we have the 4155 // following loop. 4156 // 4157 // for (int i = 0; i < n; ++i) 4158 // b[i] = a[i] - a[i - 1]; 4159 // 4160 // There is a first-order recurrence on "a". For this loop, the shorthand 4161 // scalar IR looks like: 4162 // 4163 // scalar.ph: 4164 // s_init = a[-1] 4165 // br scalar.body 4166 // 4167 // scalar.body: 4168 // i = phi [0, scalar.ph], [i+1, scalar.body] 4169 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4170 // s2 = a[i] 4171 // b[i] = s2 - s1 4172 // br cond, scalar.body, ... 4173 // 4174 // In this example, s1 is a recurrence because it's value depends on the 4175 // previous iteration. In the first phase of vectorization, we created a 4176 // vector phi v1 for s1. We now complete the vectorization and produce the 4177 // shorthand vector IR shown below (for VF = 4, UF = 1). 4178 // 4179 // vector.ph: 4180 // v_init = vector(..., ..., ..., a[-1]) 4181 // br vector.body 4182 // 4183 // vector.body 4184 // i = phi [0, vector.ph], [i+4, vector.body] 4185 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4186 // v2 = a[i, i+1, i+2, i+3]; 4187 // v3 = vector(v1(3), v2(0, 1, 2)) 4188 // b[i, i+1, i+2, i+3] = v2 - v3 4189 // br cond, vector.body, middle.block 4190 // 4191 // middle.block: 4192 // x = v2(3) 4193 // br scalar.ph 4194 // 4195 // scalar.ph: 4196 // s_init = phi [x, middle.block], [a[-1], otherwise] 4197 // br scalar.body 4198 // 4199 // After execution completes the vector loop, we extract the next value of 4200 // the recurrence (x) to use as the initial value in the scalar loop. 4201 4202 // Extract the last vector element in the middle block. This will be the 4203 // initial value for the recurrence when jumping to the scalar loop. 4204 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4205 Value *Incoming = State.get(PreviousDef, UF - 1); 4206 auto *ExtractForScalar = Incoming; 4207 auto *IdxTy = Builder.getInt32Ty(); 4208 if (VF.isVector()) { 4209 auto *One = ConstantInt::get(IdxTy, 1); 4210 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4211 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4212 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4213 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4214 "vector.recur.extract"); 4215 } 4216 // Extract the second last element in the middle block if the 4217 // Phi is used outside the loop. We need to extract the phi itself 4218 // and not the last element (the phi update in the current iteration). This 4219 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4220 // when the scalar loop is not run at all. 4221 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4222 if (VF.isVector()) { 4223 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4224 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4225 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4226 Incoming, Idx, "vector.recur.extract.for.phi"); 4227 } else if (UF > 1) 4228 // When loop is unrolled without vectorizing, initialize 4229 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4230 // of `Incoming`. This is analogous to the vectorized case above: extracting 4231 // the second last element when VF > 1. 4232 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4233 4234 // Fix the initial value of the original recurrence in the scalar loop. 4235 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4236 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4237 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4238 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4239 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4240 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4241 Start->addIncoming(Incoming, BB); 4242 } 4243 4244 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4245 Phi->setName("scalar.recur"); 4246 4247 // Finally, fix users of the recurrence outside the loop. The users will need 4248 // either the last value of the scalar recurrence or the last value of the 4249 // vector recurrence we extracted in the middle block. Since the loop is in 4250 // LCSSA form, we just need to find all the phi nodes for the original scalar 4251 // recurrence in the exit block, and then add an edge for the middle block. 4252 // Note that LCSSA does not imply single entry when the original scalar loop 4253 // had multiple exiting edges (as we always run the last iteration in the 4254 // scalar epilogue); in that case, there is no edge from middle to exit and 4255 // and thus no phis which needed updated. 4256 if (!Cost->requiresScalarEpilogue(VF)) 4257 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4258 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4259 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4260 } 4261 4262 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4263 VPTransformState &State) { 4264 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4265 // Get it's reduction variable descriptor. 4266 assert(Legal->isReductionVariable(OrigPhi) && 4267 "Unable to find the reduction variable"); 4268 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4269 4270 RecurKind RK = RdxDesc.getRecurrenceKind(); 4271 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4272 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4273 setDebugLocFromInst(ReductionStartValue); 4274 4275 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4276 // This is the vector-clone of the value that leaves the loop. 4277 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4278 4279 // Wrap flags are in general invalid after vectorization, clear them. 4280 clearReductionWrapFlags(RdxDesc, State); 4281 4282 // Before each round, move the insertion point right between 4283 // the PHIs and the values we are going to write. 4284 // This allows us to write both PHINodes and the extractelement 4285 // instructions. 4286 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4287 4288 setDebugLocFromInst(LoopExitInst); 4289 4290 Type *PhiTy = OrigPhi->getType(); 4291 // If tail is folded by masking, the vector value to leave the loop should be 4292 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4293 // instead of the former. For an inloop reduction the reduction will already 4294 // be predicated, and does not need to be handled here. 4295 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4296 for (unsigned Part = 0; Part < UF; ++Part) { 4297 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4298 Value *Sel = nullptr; 4299 for (User *U : VecLoopExitInst->users()) { 4300 if (isa<SelectInst>(U)) { 4301 assert(!Sel && "Reduction exit feeding two selects"); 4302 Sel = U; 4303 } else 4304 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4305 } 4306 assert(Sel && "Reduction exit feeds no select"); 4307 State.reset(LoopExitInstDef, Sel, Part); 4308 4309 // If the target can create a predicated operator for the reduction at no 4310 // extra cost in the loop (for example a predicated vadd), it can be 4311 // cheaper for the select to remain in the loop than be sunk out of it, 4312 // and so use the select value for the phi instead of the old 4313 // LoopExitValue. 4314 if (PreferPredicatedReductionSelect || 4315 TTI->preferPredicatedReductionSelect( 4316 RdxDesc.getOpcode(), PhiTy, 4317 TargetTransformInfo::ReductionFlags())) { 4318 auto *VecRdxPhi = 4319 cast<PHINode>(State.get(PhiR, Part)); 4320 VecRdxPhi->setIncomingValueForBlock( 4321 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4322 } 4323 } 4324 } 4325 4326 // If the vector reduction can be performed in a smaller type, we truncate 4327 // then extend the loop exit value to enable InstCombine to evaluate the 4328 // entire expression in the smaller type. 4329 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4330 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4331 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4332 Builder.SetInsertPoint( 4333 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4334 VectorParts RdxParts(UF); 4335 for (unsigned Part = 0; Part < UF; ++Part) { 4336 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4337 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4338 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4339 : Builder.CreateZExt(Trunc, VecTy); 4340 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4341 if (U != Trunc) { 4342 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4343 RdxParts[Part] = Extnd; 4344 } 4345 } 4346 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4347 for (unsigned Part = 0; Part < UF; ++Part) { 4348 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4349 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4350 } 4351 } 4352 4353 // Reduce all of the unrolled parts into a single vector. 4354 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4355 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4356 4357 // The middle block terminator has already been assigned a DebugLoc here (the 4358 // OrigLoop's single latch terminator). We want the whole middle block to 4359 // appear to execute on this line because: (a) it is all compiler generated, 4360 // (b) these instructions are always executed after evaluating the latch 4361 // conditional branch, and (c) other passes may add new predecessors which 4362 // terminate on this line. This is the easiest way to ensure we don't 4363 // accidentally cause an extra step back into the loop while debugging. 4364 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4365 if (PhiR->isOrdered()) 4366 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4367 else { 4368 // Floating-point operations should have some FMF to enable the reduction. 4369 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4370 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4371 for (unsigned Part = 1; Part < UF; ++Part) { 4372 Value *RdxPart = State.get(LoopExitInstDef, Part); 4373 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4374 ReducedPartRdx = Builder.CreateBinOp( 4375 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4376 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4377 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4378 ReducedPartRdx, RdxPart); 4379 else 4380 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4381 } 4382 } 4383 4384 // Create the reduction after the loop. Note that inloop reductions create the 4385 // target reduction in the loop using a Reduction recipe. 4386 if (VF.isVector() && !PhiR->isInLoop()) { 4387 ReducedPartRdx = 4388 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4389 // If the reduction can be performed in a smaller type, we need to extend 4390 // the reduction to the wider type before we branch to the original loop. 4391 if (PhiTy != RdxDesc.getRecurrenceType()) 4392 ReducedPartRdx = RdxDesc.isSigned() 4393 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4394 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4395 } 4396 4397 // Create a phi node that merges control-flow from the backedge-taken check 4398 // block and the middle block. 4399 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4400 LoopScalarPreHeader->getTerminator()); 4401 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4402 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4403 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4404 4405 // Now, we need to fix the users of the reduction variable 4406 // inside and outside of the scalar remainder loop. 4407 4408 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4409 // in the exit blocks. See comment on analogous loop in 4410 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4411 if (!Cost->requiresScalarEpilogue(VF)) 4412 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4413 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4414 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4415 4416 // Fix the scalar loop reduction variable with the incoming reduction sum 4417 // from the vector body and from the backedge value. 4418 int IncomingEdgeBlockIdx = 4419 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4420 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4421 // Pick the other block. 4422 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4423 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4424 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4425 } 4426 4427 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4428 VPTransformState &State) { 4429 RecurKind RK = RdxDesc.getRecurrenceKind(); 4430 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4431 return; 4432 4433 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4434 assert(LoopExitInstr && "null loop exit instruction"); 4435 SmallVector<Instruction *, 8> Worklist; 4436 SmallPtrSet<Instruction *, 8> Visited; 4437 Worklist.push_back(LoopExitInstr); 4438 Visited.insert(LoopExitInstr); 4439 4440 while (!Worklist.empty()) { 4441 Instruction *Cur = Worklist.pop_back_val(); 4442 if (isa<OverflowingBinaryOperator>(Cur)) 4443 for (unsigned Part = 0; Part < UF; ++Part) { 4444 // FIXME: Should not rely on getVPValue at this point. 4445 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4446 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4447 } 4448 4449 for (User *U : Cur->users()) { 4450 Instruction *UI = cast<Instruction>(U); 4451 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4452 Visited.insert(UI).second) 4453 Worklist.push_back(UI); 4454 } 4455 } 4456 } 4457 4458 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4459 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4460 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4461 // Some phis were already hand updated by the reduction and recurrence 4462 // code above, leave them alone. 4463 continue; 4464 4465 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4466 // Non-instruction incoming values will have only one value. 4467 4468 VPLane Lane = VPLane::getFirstLane(); 4469 if (isa<Instruction>(IncomingValue) && 4470 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4471 VF)) 4472 Lane = VPLane::getLastLaneForVF(VF); 4473 4474 // Can be a loop invariant incoming value or the last scalar value to be 4475 // extracted from the vectorized loop. 4476 // FIXME: Should not rely on getVPValue at this point. 4477 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4478 Value *lastIncomingValue = 4479 OrigLoop->isLoopInvariant(IncomingValue) 4480 ? IncomingValue 4481 : State.get(State.Plan->getVPValue(IncomingValue, true), 4482 VPIteration(UF - 1, Lane)); 4483 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4484 } 4485 } 4486 4487 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4488 // The basic block and loop containing the predicated instruction. 4489 auto *PredBB = PredInst->getParent(); 4490 auto *VectorLoop = LI->getLoopFor(PredBB); 4491 4492 // Initialize a worklist with the operands of the predicated instruction. 4493 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4494 4495 // Holds instructions that we need to analyze again. An instruction may be 4496 // reanalyzed if we don't yet know if we can sink it or not. 4497 SmallVector<Instruction *, 8> InstsToReanalyze; 4498 4499 // Returns true if a given use occurs in the predicated block. Phi nodes use 4500 // their operands in their corresponding predecessor blocks. 4501 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4502 auto *I = cast<Instruction>(U.getUser()); 4503 BasicBlock *BB = I->getParent(); 4504 if (auto *Phi = dyn_cast<PHINode>(I)) 4505 BB = Phi->getIncomingBlock( 4506 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4507 return BB == PredBB; 4508 }; 4509 4510 // Iteratively sink the scalarized operands of the predicated instruction 4511 // into the block we created for it. When an instruction is sunk, it's 4512 // operands are then added to the worklist. The algorithm ends after one pass 4513 // through the worklist doesn't sink a single instruction. 4514 bool Changed; 4515 do { 4516 // Add the instructions that need to be reanalyzed to the worklist, and 4517 // reset the changed indicator. 4518 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4519 InstsToReanalyze.clear(); 4520 Changed = false; 4521 4522 while (!Worklist.empty()) { 4523 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4524 4525 // We can't sink an instruction if it is a phi node, is not in the loop, 4526 // or may have side effects. 4527 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4528 I->mayHaveSideEffects()) 4529 continue; 4530 4531 // If the instruction is already in PredBB, check if we can sink its 4532 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4533 // sinking the scalar instruction I, hence it appears in PredBB; but it 4534 // may have failed to sink I's operands (recursively), which we try 4535 // (again) here. 4536 if (I->getParent() == PredBB) { 4537 Worklist.insert(I->op_begin(), I->op_end()); 4538 continue; 4539 } 4540 4541 // It's legal to sink the instruction if all its uses occur in the 4542 // predicated block. Otherwise, there's nothing to do yet, and we may 4543 // need to reanalyze the instruction. 4544 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4545 InstsToReanalyze.push_back(I); 4546 continue; 4547 } 4548 4549 // Move the instruction to the beginning of the predicated block, and add 4550 // it's operands to the worklist. 4551 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4552 Worklist.insert(I->op_begin(), I->op_end()); 4553 4554 // The sinking may have enabled other instructions to be sunk, so we will 4555 // need to iterate. 4556 Changed = true; 4557 } 4558 } while (Changed); 4559 } 4560 4561 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4562 for (PHINode *OrigPhi : OrigPHIsToFix) { 4563 VPWidenPHIRecipe *VPPhi = 4564 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4565 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4566 // Make sure the builder has a valid insert point. 4567 Builder.SetInsertPoint(NewPhi); 4568 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4569 VPValue *Inc = VPPhi->getIncomingValue(i); 4570 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4571 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4572 } 4573 } 4574 } 4575 4576 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4577 return Cost->useOrderedReductions(RdxDesc); 4578 } 4579 4580 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4581 VPWidenPHIRecipe *PhiR, 4582 VPTransformState &State) { 4583 PHINode *P = cast<PHINode>(PN); 4584 if (EnableVPlanNativePath) { 4585 // Currently we enter here in the VPlan-native path for non-induction 4586 // PHIs where all control flow is uniform. We simply widen these PHIs. 4587 // Create a vector phi with no operands - the vector phi operands will be 4588 // set at the end of vector code generation. 4589 Type *VecTy = (State.VF.isScalar()) 4590 ? PN->getType() 4591 : VectorType::get(PN->getType(), State.VF); 4592 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4593 State.set(PhiR, VecPhi, 0); 4594 OrigPHIsToFix.push_back(P); 4595 4596 return; 4597 } 4598 4599 assert(PN->getParent() == OrigLoop->getHeader() && 4600 "Non-header phis should have been handled elsewhere"); 4601 4602 // In order to support recurrences we need to be able to vectorize Phi nodes. 4603 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4604 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4605 // this value when we vectorize all of the instructions that use the PHI. 4606 4607 assert(!Legal->isReductionVariable(P) && 4608 "reductions should be handled elsewhere"); 4609 4610 setDebugLocFromInst(P); 4611 4612 // This PHINode must be an induction variable. 4613 // Make sure that we know about it. 4614 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4615 4616 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4617 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4618 4619 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4620 // which can be found from the original scalar operations. 4621 switch (II.getKind()) { 4622 case InductionDescriptor::IK_NoInduction: 4623 llvm_unreachable("Unknown induction"); 4624 case InductionDescriptor::IK_IntInduction: 4625 case InductionDescriptor::IK_FpInduction: 4626 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4627 case InductionDescriptor::IK_PtrInduction: { 4628 // Handle the pointer induction variable case. 4629 assert(P->getType()->isPointerTy() && "Unexpected type."); 4630 4631 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4632 // This is the normalized GEP that starts counting at zero. 4633 Value *PtrInd = 4634 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4635 // Determine the number of scalars we need to generate for each unroll 4636 // iteration. If the instruction is uniform, we only need to generate the 4637 // first lane. Otherwise, we generate all VF values. 4638 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4639 assert((IsUniform || !State.VF.isScalable()) && 4640 "Cannot scalarize a scalable VF"); 4641 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4642 4643 for (unsigned Part = 0; Part < UF; ++Part) { 4644 Value *PartStart = 4645 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4646 4647 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4648 Value *Idx = Builder.CreateAdd( 4649 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4650 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4651 Value *SclrGep = 4652 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4653 SclrGep->setName("next.gep"); 4654 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4655 } 4656 } 4657 return; 4658 } 4659 assert(isa<SCEVConstant>(II.getStep()) && 4660 "Induction step not a SCEV constant!"); 4661 Type *PhiType = II.getStep()->getType(); 4662 4663 // Build a pointer phi 4664 Value *ScalarStartValue = II.getStartValue(); 4665 Type *ScStValueType = ScalarStartValue->getType(); 4666 PHINode *NewPointerPhi = 4667 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4668 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4669 4670 // A pointer induction, performed by using a gep 4671 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4672 Instruction *InductionLoc = LoopLatch->getTerminator(); 4673 const SCEV *ScalarStep = II.getStep(); 4674 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4675 Value *ScalarStepValue = 4676 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4677 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4678 Value *NumUnrolledElems = 4679 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4680 Value *InductionGEP = GetElementPtrInst::Create( 4681 II.getElementType(), NewPointerPhi, 4682 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4683 InductionLoc); 4684 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4685 4686 // Create UF many actual address geps that use the pointer 4687 // phi as base and a vectorized version of the step value 4688 // (<step*0, ..., step*N>) as offset. 4689 for (unsigned Part = 0; Part < State.UF; ++Part) { 4690 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4691 Value *StartOffsetScalar = 4692 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4693 Value *StartOffset = 4694 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4695 // Create a vector of consecutive numbers from zero to VF. 4696 StartOffset = 4697 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4698 4699 Value *GEP = Builder.CreateGEP( 4700 II.getElementType(), NewPointerPhi, 4701 Builder.CreateMul( 4702 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4703 "vector.gep")); 4704 State.set(PhiR, GEP, Part); 4705 } 4706 } 4707 } 4708 } 4709 4710 /// A helper function for checking whether an integer division-related 4711 /// instruction may divide by zero (in which case it must be predicated if 4712 /// executed conditionally in the scalar code). 4713 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4714 /// Non-zero divisors that are non compile-time constants will not be 4715 /// converted into multiplication, so we will still end up scalarizing 4716 /// the division, but can do so w/o predication. 4717 static bool mayDivideByZero(Instruction &I) { 4718 assert((I.getOpcode() == Instruction::UDiv || 4719 I.getOpcode() == Instruction::SDiv || 4720 I.getOpcode() == Instruction::URem || 4721 I.getOpcode() == Instruction::SRem) && 4722 "Unexpected instruction"); 4723 Value *Divisor = I.getOperand(1); 4724 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4725 return !CInt || CInt->isZero(); 4726 } 4727 4728 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4729 VPUser &ArgOperands, 4730 VPTransformState &State) { 4731 assert(!isa<DbgInfoIntrinsic>(I) && 4732 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4733 setDebugLocFromInst(&I); 4734 4735 Module *M = I.getParent()->getParent()->getParent(); 4736 auto *CI = cast<CallInst>(&I); 4737 4738 SmallVector<Type *, 4> Tys; 4739 for (Value *ArgOperand : CI->args()) 4740 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4741 4742 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4743 4744 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4745 // version of the instruction. 4746 // Is it beneficial to perform intrinsic call compared to lib call? 4747 bool NeedToScalarize = false; 4748 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4749 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4750 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4751 assert((UseVectorIntrinsic || !NeedToScalarize) && 4752 "Instruction should be scalarized elsewhere."); 4753 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4754 "Either the intrinsic cost or vector call cost must be valid"); 4755 4756 for (unsigned Part = 0; Part < UF; ++Part) { 4757 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4758 SmallVector<Value *, 4> Args; 4759 for (auto &I : enumerate(ArgOperands.operands())) { 4760 // Some intrinsics have a scalar argument - don't replace it with a 4761 // vector. 4762 Value *Arg; 4763 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4764 Arg = State.get(I.value(), Part); 4765 else { 4766 Arg = State.get(I.value(), VPIteration(0, 0)); 4767 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4768 TysForDecl.push_back(Arg->getType()); 4769 } 4770 Args.push_back(Arg); 4771 } 4772 4773 Function *VectorF; 4774 if (UseVectorIntrinsic) { 4775 // Use vector version of the intrinsic. 4776 if (VF.isVector()) 4777 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4778 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4779 assert(VectorF && "Can't retrieve vector intrinsic."); 4780 } else { 4781 // Use vector version of the function call. 4782 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4783 #ifndef NDEBUG 4784 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4785 "Can't create vector function."); 4786 #endif 4787 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4788 } 4789 SmallVector<OperandBundleDef, 1> OpBundles; 4790 CI->getOperandBundlesAsDefs(OpBundles); 4791 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4792 4793 if (isa<FPMathOperator>(V)) 4794 V->copyFastMathFlags(CI); 4795 4796 State.set(Def, V, Part); 4797 addMetadata(V, &I); 4798 } 4799 } 4800 4801 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4802 // We should not collect Scalars more than once per VF. Right now, this 4803 // function is called from collectUniformsAndScalars(), which already does 4804 // this check. Collecting Scalars for VF=1 does not make any sense. 4805 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4806 "This function should not be visited twice for the same VF"); 4807 4808 SmallSetVector<Instruction *, 8> Worklist; 4809 4810 // These sets are used to seed the analysis with pointers used by memory 4811 // accesses that will remain scalar. 4812 SmallSetVector<Instruction *, 8> ScalarPtrs; 4813 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4814 auto *Latch = TheLoop->getLoopLatch(); 4815 4816 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4817 // The pointer operands of loads and stores will be scalar as long as the 4818 // memory access is not a gather or scatter operation. The value operand of a 4819 // store will remain scalar if the store is scalarized. 4820 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4821 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4822 assert(WideningDecision != CM_Unknown && 4823 "Widening decision should be ready at this moment"); 4824 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4825 if (Ptr == Store->getValueOperand()) 4826 return WideningDecision == CM_Scalarize; 4827 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4828 "Ptr is neither a value or pointer operand"); 4829 return WideningDecision != CM_GatherScatter; 4830 }; 4831 4832 // A helper that returns true if the given value is a bitcast or 4833 // getelementptr instruction contained in the loop. 4834 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4835 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4836 isa<GetElementPtrInst>(V)) && 4837 !TheLoop->isLoopInvariant(V); 4838 }; 4839 4840 // A helper that evaluates a memory access's use of a pointer. If the use will 4841 // be a scalar use and the pointer is only used by memory accesses, we place 4842 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4843 // PossibleNonScalarPtrs. 4844 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4845 // We only care about bitcast and getelementptr instructions contained in 4846 // the loop. 4847 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4848 return; 4849 4850 // If the pointer has already been identified as scalar (e.g., if it was 4851 // also identified as uniform), there's nothing to do. 4852 auto *I = cast<Instruction>(Ptr); 4853 if (Worklist.count(I)) 4854 return; 4855 4856 // If the use of the pointer will be a scalar use, and all users of the 4857 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4858 // place the pointer in PossibleNonScalarPtrs. 4859 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4860 return isa<LoadInst>(U) || isa<StoreInst>(U); 4861 })) 4862 ScalarPtrs.insert(I); 4863 else 4864 PossibleNonScalarPtrs.insert(I); 4865 }; 4866 4867 // We seed the scalars analysis with three classes of instructions: (1) 4868 // instructions marked uniform-after-vectorization and (2) bitcast, 4869 // getelementptr and (pointer) phi instructions used by memory accesses 4870 // requiring a scalar use. 4871 // 4872 // (1) Add to the worklist all instructions that have been identified as 4873 // uniform-after-vectorization. 4874 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4875 4876 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4877 // memory accesses requiring a scalar use. The pointer operands of loads and 4878 // stores will be scalar as long as the memory accesses is not a gather or 4879 // scatter operation. The value operand of a store will remain scalar if the 4880 // store is scalarized. 4881 for (auto *BB : TheLoop->blocks()) 4882 for (auto &I : *BB) { 4883 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4884 evaluatePtrUse(Load, Load->getPointerOperand()); 4885 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4886 evaluatePtrUse(Store, Store->getPointerOperand()); 4887 evaluatePtrUse(Store, Store->getValueOperand()); 4888 } 4889 } 4890 for (auto *I : ScalarPtrs) 4891 if (!PossibleNonScalarPtrs.count(I)) { 4892 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4893 Worklist.insert(I); 4894 } 4895 4896 // Insert the forced scalars. 4897 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4898 // induction variable when the PHI user is scalarized. 4899 auto ForcedScalar = ForcedScalars.find(VF); 4900 if (ForcedScalar != ForcedScalars.end()) 4901 for (auto *I : ForcedScalar->second) 4902 Worklist.insert(I); 4903 4904 // Expand the worklist by looking through any bitcasts and getelementptr 4905 // instructions we've already identified as scalar. This is similar to the 4906 // expansion step in collectLoopUniforms(); however, here we're only 4907 // expanding to include additional bitcasts and getelementptr instructions. 4908 unsigned Idx = 0; 4909 while (Idx != Worklist.size()) { 4910 Instruction *Dst = Worklist[Idx++]; 4911 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4912 continue; 4913 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4914 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4915 auto *J = cast<Instruction>(U); 4916 return !TheLoop->contains(J) || Worklist.count(J) || 4917 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4918 isScalarUse(J, Src)); 4919 })) { 4920 Worklist.insert(Src); 4921 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4922 } 4923 } 4924 4925 // An induction variable will remain scalar if all users of the induction 4926 // variable and induction variable update remain scalar. 4927 for (auto &Induction : Legal->getInductionVars()) { 4928 auto *Ind = Induction.first; 4929 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4930 4931 // If tail-folding is applied, the primary induction variable will be used 4932 // to feed a vector compare. 4933 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4934 continue; 4935 4936 // Returns true if \p Indvar is a pointer induction that is used directly by 4937 // load/store instruction \p I. 4938 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4939 Instruction *I) { 4940 return Induction.second.getKind() == 4941 InductionDescriptor::IK_PtrInduction && 4942 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4943 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4944 }; 4945 4946 // Determine if all users of the induction variable are scalar after 4947 // vectorization. 4948 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4949 auto *I = cast<Instruction>(U); 4950 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4951 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4952 }); 4953 if (!ScalarInd) 4954 continue; 4955 4956 // Determine if all users of the induction variable update instruction are 4957 // scalar after vectorization. 4958 auto ScalarIndUpdate = 4959 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4960 auto *I = cast<Instruction>(U); 4961 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4962 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4963 }); 4964 if (!ScalarIndUpdate) 4965 continue; 4966 4967 // The induction variable and its update instruction will remain scalar. 4968 Worklist.insert(Ind); 4969 Worklist.insert(IndUpdate); 4970 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4971 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4972 << "\n"); 4973 } 4974 4975 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4976 } 4977 4978 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 4979 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4980 return false; 4981 switch(I->getOpcode()) { 4982 default: 4983 break; 4984 case Instruction::Load: 4985 case Instruction::Store: { 4986 if (!Legal->isMaskRequired(I)) 4987 return false; 4988 auto *Ptr = getLoadStorePointerOperand(I); 4989 auto *Ty = getLoadStoreType(I); 4990 const Align Alignment = getLoadStoreAlignment(I); 4991 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4992 TTI.isLegalMaskedGather(Ty, Alignment)) 4993 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4994 TTI.isLegalMaskedScatter(Ty, Alignment)); 4995 } 4996 case Instruction::UDiv: 4997 case Instruction::SDiv: 4998 case Instruction::SRem: 4999 case Instruction::URem: 5000 return mayDivideByZero(*I); 5001 } 5002 return false; 5003 } 5004 5005 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5006 Instruction *I, ElementCount VF) { 5007 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5008 assert(getWideningDecision(I, VF) == CM_Unknown && 5009 "Decision should not be set yet."); 5010 auto *Group = getInterleavedAccessGroup(I); 5011 assert(Group && "Must have a group."); 5012 5013 // If the instruction's allocated size doesn't equal it's type size, it 5014 // requires padding and will be scalarized. 5015 auto &DL = I->getModule()->getDataLayout(); 5016 auto *ScalarTy = getLoadStoreType(I); 5017 if (hasIrregularType(ScalarTy, DL)) 5018 return false; 5019 5020 // Check if masking is required. 5021 // A Group may need masking for one of two reasons: it resides in a block that 5022 // needs predication, or it was decided to use masking to deal with gaps 5023 // (either a gap at the end of a load-access that may result in a speculative 5024 // load, or any gaps in a store-access). 5025 bool PredicatedAccessRequiresMasking = 5026 blockNeedsPredicationForAnyReason(I->getParent()) && 5027 Legal->isMaskRequired(I); 5028 bool LoadAccessWithGapsRequiresEpilogMasking = 5029 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5030 !isScalarEpilogueAllowed(); 5031 bool StoreAccessWithGapsRequiresMasking = 5032 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5033 if (!PredicatedAccessRequiresMasking && 5034 !LoadAccessWithGapsRequiresEpilogMasking && 5035 !StoreAccessWithGapsRequiresMasking) 5036 return true; 5037 5038 // If masked interleaving is required, we expect that the user/target had 5039 // enabled it, because otherwise it either wouldn't have been created or 5040 // it should have been invalidated by the CostModel. 5041 assert(useMaskedInterleavedAccesses(TTI) && 5042 "Masked interleave-groups for predicated accesses are not enabled."); 5043 5044 if (Group->isReverse()) 5045 return false; 5046 5047 auto *Ty = getLoadStoreType(I); 5048 const Align Alignment = getLoadStoreAlignment(I); 5049 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5050 : TTI.isLegalMaskedStore(Ty, Alignment); 5051 } 5052 5053 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5054 Instruction *I, ElementCount VF) { 5055 // Get and ensure we have a valid memory instruction. 5056 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5057 5058 auto *Ptr = getLoadStorePointerOperand(I); 5059 auto *ScalarTy = getLoadStoreType(I); 5060 5061 // In order to be widened, the pointer should be consecutive, first of all. 5062 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5063 return false; 5064 5065 // If the instruction is a store located in a predicated block, it will be 5066 // scalarized. 5067 if (isScalarWithPredication(I)) 5068 return false; 5069 5070 // If the instruction's allocated size doesn't equal it's type size, it 5071 // requires padding and will be scalarized. 5072 auto &DL = I->getModule()->getDataLayout(); 5073 if (hasIrregularType(ScalarTy, DL)) 5074 return false; 5075 5076 return true; 5077 } 5078 5079 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5080 // We should not collect Uniforms more than once per VF. Right now, 5081 // this function is called from collectUniformsAndScalars(), which 5082 // already does this check. Collecting Uniforms for VF=1 does not make any 5083 // sense. 5084 5085 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5086 "This function should not be visited twice for the same VF"); 5087 5088 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5089 // not analyze again. Uniforms.count(VF) will return 1. 5090 Uniforms[VF].clear(); 5091 5092 // We now know that the loop is vectorizable! 5093 // Collect instructions inside the loop that will remain uniform after 5094 // vectorization. 5095 5096 // Global values, params and instructions outside of current loop are out of 5097 // scope. 5098 auto isOutOfScope = [&](Value *V) -> bool { 5099 Instruction *I = dyn_cast<Instruction>(V); 5100 return (!I || !TheLoop->contains(I)); 5101 }; 5102 5103 // Worklist containing uniform instructions demanding lane 0. 5104 SetVector<Instruction *> Worklist; 5105 BasicBlock *Latch = TheLoop->getLoopLatch(); 5106 5107 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5108 // that are scalar with predication must not be considered uniform after 5109 // vectorization, because that would create an erroneous replicating region 5110 // where only a single instance out of VF should be formed. 5111 // TODO: optimize such seldom cases if found important, see PR40816. 5112 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5113 if (isOutOfScope(I)) { 5114 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5115 << *I << "\n"); 5116 return; 5117 } 5118 if (isScalarWithPredication(I)) { 5119 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5120 << *I << "\n"); 5121 return; 5122 } 5123 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5124 Worklist.insert(I); 5125 }; 5126 5127 // Start with the conditional branch. If the branch condition is an 5128 // instruction contained in the loop that is only used by the branch, it is 5129 // uniform. 5130 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5131 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5132 addToWorklistIfAllowed(Cmp); 5133 5134 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5135 InstWidening WideningDecision = getWideningDecision(I, VF); 5136 assert(WideningDecision != CM_Unknown && 5137 "Widening decision should be ready at this moment"); 5138 5139 // A uniform memory op is itself uniform. We exclude uniform stores 5140 // here as they demand the last lane, not the first one. 5141 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5142 assert(WideningDecision == CM_Scalarize); 5143 return true; 5144 } 5145 5146 return (WideningDecision == CM_Widen || 5147 WideningDecision == CM_Widen_Reverse || 5148 WideningDecision == CM_Interleave); 5149 }; 5150 5151 5152 // Returns true if Ptr is the pointer operand of a memory access instruction 5153 // I, and I is known to not require scalarization. 5154 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5155 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5156 }; 5157 5158 // Holds a list of values which are known to have at least one uniform use. 5159 // Note that there may be other uses which aren't uniform. A "uniform use" 5160 // here is something which only demands lane 0 of the unrolled iterations; 5161 // it does not imply that all lanes produce the same value (e.g. this is not 5162 // the usual meaning of uniform) 5163 SetVector<Value *> HasUniformUse; 5164 5165 // Scan the loop for instructions which are either a) known to have only 5166 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5167 for (auto *BB : TheLoop->blocks()) 5168 for (auto &I : *BB) { 5169 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5170 switch (II->getIntrinsicID()) { 5171 case Intrinsic::sideeffect: 5172 case Intrinsic::experimental_noalias_scope_decl: 5173 case Intrinsic::assume: 5174 case Intrinsic::lifetime_start: 5175 case Intrinsic::lifetime_end: 5176 if (TheLoop->hasLoopInvariantOperands(&I)) 5177 addToWorklistIfAllowed(&I); 5178 break; 5179 default: 5180 break; 5181 } 5182 } 5183 5184 // ExtractValue instructions must be uniform, because the operands are 5185 // known to be loop-invariant. 5186 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5187 assert(isOutOfScope(EVI->getAggregateOperand()) && 5188 "Expected aggregate value to be loop invariant"); 5189 addToWorklistIfAllowed(EVI); 5190 continue; 5191 } 5192 5193 // If there's no pointer operand, there's nothing to do. 5194 auto *Ptr = getLoadStorePointerOperand(&I); 5195 if (!Ptr) 5196 continue; 5197 5198 // A uniform memory op is itself uniform. We exclude uniform stores 5199 // here as they demand the last lane, not the first one. 5200 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5201 addToWorklistIfAllowed(&I); 5202 5203 if (isUniformDecision(&I, VF)) { 5204 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5205 HasUniformUse.insert(Ptr); 5206 } 5207 } 5208 5209 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5210 // demanding) users. Since loops are assumed to be in LCSSA form, this 5211 // disallows uses outside the loop as well. 5212 for (auto *V : HasUniformUse) { 5213 if (isOutOfScope(V)) 5214 continue; 5215 auto *I = cast<Instruction>(V); 5216 auto UsersAreMemAccesses = 5217 llvm::all_of(I->users(), [&](User *U) -> bool { 5218 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5219 }); 5220 if (UsersAreMemAccesses) 5221 addToWorklistIfAllowed(I); 5222 } 5223 5224 // Expand Worklist in topological order: whenever a new instruction 5225 // is added , its users should be already inside Worklist. It ensures 5226 // a uniform instruction will only be used by uniform instructions. 5227 unsigned idx = 0; 5228 while (idx != Worklist.size()) { 5229 Instruction *I = Worklist[idx++]; 5230 5231 for (auto OV : I->operand_values()) { 5232 // isOutOfScope operands cannot be uniform instructions. 5233 if (isOutOfScope(OV)) 5234 continue; 5235 // First order recurrence Phi's should typically be considered 5236 // non-uniform. 5237 auto *OP = dyn_cast<PHINode>(OV); 5238 if (OP && Legal->isFirstOrderRecurrence(OP)) 5239 continue; 5240 // If all the users of the operand are uniform, then add the 5241 // operand into the uniform worklist. 5242 auto *OI = cast<Instruction>(OV); 5243 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5244 auto *J = cast<Instruction>(U); 5245 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5246 })) 5247 addToWorklistIfAllowed(OI); 5248 } 5249 } 5250 5251 // For an instruction to be added into Worklist above, all its users inside 5252 // the loop should also be in Worklist. However, this condition cannot be 5253 // true for phi nodes that form a cyclic dependence. We must process phi 5254 // nodes separately. An induction variable will remain uniform if all users 5255 // of the induction variable and induction variable update remain uniform. 5256 // The code below handles both pointer and non-pointer induction variables. 5257 for (auto &Induction : Legal->getInductionVars()) { 5258 auto *Ind = Induction.first; 5259 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5260 5261 // Determine if all users of the induction variable are uniform after 5262 // vectorization. 5263 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5264 auto *I = cast<Instruction>(U); 5265 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5266 isVectorizedMemAccessUse(I, Ind); 5267 }); 5268 if (!UniformInd) 5269 continue; 5270 5271 // Determine if all users of the induction variable update instruction are 5272 // uniform after vectorization. 5273 auto UniformIndUpdate = 5274 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5275 auto *I = cast<Instruction>(U); 5276 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5277 isVectorizedMemAccessUse(I, IndUpdate); 5278 }); 5279 if (!UniformIndUpdate) 5280 continue; 5281 5282 // The induction variable and its update instruction will remain uniform. 5283 addToWorklistIfAllowed(Ind); 5284 addToWorklistIfAllowed(IndUpdate); 5285 } 5286 5287 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5288 } 5289 5290 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5291 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5292 5293 if (Legal->getRuntimePointerChecking()->Need) { 5294 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5295 "runtime pointer checks needed. Enable vectorization of this " 5296 "loop with '#pragma clang loop vectorize(enable)' when " 5297 "compiling with -Os/-Oz", 5298 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5299 return true; 5300 } 5301 5302 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5303 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5304 "runtime SCEV checks needed. Enable vectorization of this " 5305 "loop with '#pragma clang loop vectorize(enable)' when " 5306 "compiling with -Os/-Oz", 5307 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5308 return true; 5309 } 5310 5311 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5312 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5313 reportVectorizationFailure("Runtime stride check for small trip count", 5314 "runtime stride == 1 checks needed. Enable vectorization of " 5315 "this loop without such check by compiling with -Os/-Oz", 5316 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5317 return true; 5318 } 5319 5320 return false; 5321 } 5322 5323 ElementCount 5324 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5325 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5326 return ElementCount::getScalable(0); 5327 5328 if (Hints->isScalableVectorizationDisabled()) { 5329 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5330 "ScalableVectorizationDisabled", ORE, TheLoop); 5331 return ElementCount::getScalable(0); 5332 } 5333 5334 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5335 5336 auto MaxScalableVF = ElementCount::getScalable( 5337 std::numeric_limits<ElementCount::ScalarTy>::max()); 5338 5339 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5340 // FIXME: While for scalable vectors this is currently sufficient, this should 5341 // be replaced by a more detailed mechanism that filters out specific VFs, 5342 // instead of invalidating vectorization for a whole set of VFs based on the 5343 // MaxVF. 5344 5345 // Disable scalable vectorization if the loop contains unsupported reductions. 5346 if (!canVectorizeReductions(MaxScalableVF)) { 5347 reportVectorizationInfo( 5348 "Scalable vectorization not supported for the reduction " 5349 "operations found in this loop.", 5350 "ScalableVFUnfeasible", ORE, TheLoop); 5351 return ElementCount::getScalable(0); 5352 } 5353 5354 // Disable scalable vectorization if the loop contains any instructions 5355 // with element types not supported for scalable vectors. 5356 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5357 return !Ty->isVoidTy() && 5358 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5359 })) { 5360 reportVectorizationInfo("Scalable vectorization is not supported " 5361 "for all element types found in this loop.", 5362 "ScalableVFUnfeasible", ORE, TheLoop); 5363 return ElementCount::getScalable(0); 5364 } 5365 5366 if (Legal->isSafeForAnyVectorWidth()) 5367 return MaxScalableVF; 5368 5369 // Limit MaxScalableVF by the maximum safe dependence distance. 5370 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5371 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5372 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5373 .getVScaleRangeArgs() 5374 .second; 5375 if (VScaleMax > 0) 5376 MaxVScale = VScaleMax; 5377 } 5378 MaxScalableVF = ElementCount::getScalable( 5379 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5380 if (!MaxScalableVF) 5381 reportVectorizationInfo( 5382 "Max legal vector width too small, scalable vectorization " 5383 "unfeasible.", 5384 "ScalableVFUnfeasible", ORE, TheLoop); 5385 5386 return MaxScalableVF; 5387 } 5388 5389 FixedScalableVFPair 5390 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5391 ElementCount UserVF) { 5392 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5393 unsigned SmallestType, WidestType; 5394 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5395 5396 // Get the maximum safe dependence distance in bits computed by LAA. 5397 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5398 // the memory accesses that is most restrictive (involved in the smallest 5399 // dependence distance). 5400 unsigned MaxSafeElements = 5401 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5402 5403 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5404 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5405 5406 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5407 << ".\n"); 5408 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5409 << ".\n"); 5410 5411 // First analyze the UserVF, fall back if the UserVF should be ignored. 5412 if (UserVF) { 5413 auto MaxSafeUserVF = 5414 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5415 5416 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5417 // If `VF=vscale x N` is safe, then so is `VF=N` 5418 if (UserVF.isScalable()) 5419 return FixedScalableVFPair( 5420 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5421 else 5422 return UserVF; 5423 } 5424 5425 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5426 5427 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5428 // is better to ignore the hint and let the compiler choose a suitable VF. 5429 if (!UserVF.isScalable()) { 5430 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5431 << " is unsafe, clamping to max safe VF=" 5432 << MaxSafeFixedVF << ".\n"); 5433 ORE->emit([&]() { 5434 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5435 TheLoop->getStartLoc(), 5436 TheLoop->getHeader()) 5437 << "User-specified vectorization factor " 5438 << ore::NV("UserVectorizationFactor", UserVF) 5439 << " is unsafe, clamping to maximum safe vectorization factor " 5440 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5441 }); 5442 return MaxSafeFixedVF; 5443 } 5444 5445 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5446 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5447 << " is ignored because scalable vectors are not " 5448 "available.\n"); 5449 ORE->emit([&]() { 5450 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5451 TheLoop->getStartLoc(), 5452 TheLoop->getHeader()) 5453 << "User-specified vectorization factor " 5454 << ore::NV("UserVectorizationFactor", UserVF) 5455 << " is ignored because the target does not support scalable " 5456 "vectors. The compiler will pick a more suitable value."; 5457 }); 5458 } else { 5459 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5460 << " is unsafe. Ignoring scalable UserVF.\n"); 5461 ORE->emit([&]() { 5462 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5463 TheLoop->getStartLoc(), 5464 TheLoop->getHeader()) 5465 << "User-specified vectorization factor " 5466 << ore::NV("UserVectorizationFactor", UserVF) 5467 << " is unsafe. Ignoring the hint to let the compiler pick a " 5468 "more suitable value."; 5469 }); 5470 } 5471 } 5472 5473 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5474 << " / " << WidestType << " bits.\n"); 5475 5476 FixedScalableVFPair Result(ElementCount::getFixed(1), 5477 ElementCount::getScalable(0)); 5478 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5479 WidestType, MaxSafeFixedVF)) 5480 Result.FixedVF = MaxVF; 5481 5482 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5483 WidestType, MaxSafeScalableVF)) 5484 if (MaxVF.isScalable()) { 5485 Result.ScalableVF = MaxVF; 5486 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5487 << "\n"); 5488 } 5489 5490 return Result; 5491 } 5492 5493 FixedScalableVFPair 5494 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5495 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5496 // TODO: It may by useful to do since it's still likely to be dynamically 5497 // uniform if the target can skip. 5498 reportVectorizationFailure( 5499 "Not inserting runtime ptr check for divergent target", 5500 "runtime pointer checks needed. Not enabled for divergent target", 5501 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5502 return FixedScalableVFPair::getNone(); 5503 } 5504 5505 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5506 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5507 if (TC == 1) { 5508 reportVectorizationFailure("Single iteration (non) loop", 5509 "loop trip count is one, irrelevant for vectorization", 5510 "SingleIterationLoop", ORE, TheLoop); 5511 return FixedScalableVFPair::getNone(); 5512 } 5513 5514 switch (ScalarEpilogueStatus) { 5515 case CM_ScalarEpilogueAllowed: 5516 return computeFeasibleMaxVF(TC, UserVF); 5517 case CM_ScalarEpilogueNotAllowedUsePredicate: 5518 LLVM_FALLTHROUGH; 5519 case CM_ScalarEpilogueNotNeededUsePredicate: 5520 LLVM_DEBUG( 5521 dbgs() << "LV: vector predicate hint/switch found.\n" 5522 << "LV: Not allowing scalar epilogue, creating predicated " 5523 << "vector loop.\n"); 5524 break; 5525 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5526 // fallthrough as a special case of OptForSize 5527 case CM_ScalarEpilogueNotAllowedOptSize: 5528 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5529 LLVM_DEBUG( 5530 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5531 else 5532 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5533 << "count.\n"); 5534 5535 // Bail if runtime checks are required, which are not good when optimising 5536 // for size. 5537 if (runtimeChecksRequired()) 5538 return FixedScalableVFPair::getNone(); 5539 5540 break; 5541 } 5542 5543 // The only loops we can vectorize without a scalar epilogue, are loops with 5544 // a bottom-test and a single exiting block. We'd have to handle the fact 5545 // that not every instruction executes on the last iteration. This will 5546 // require a lane mask which varies through the vector loop body. (TODO) 5547 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5548 // If there was a tail-folding hint/switch, but we can't fold the tail by 5549 // masking, fallback to a vectorization with a scalar epilogue. 5550 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5551 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5552 "scalar epilogue instead.\n"); 5553 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5554 return computeFeasibleMaxVF(TC, UserVF); 5555 } 5556 return FixedScalableVFPair::getNone(); 5557 } 5558 5559 // Now try the tail folding 5560 5561 // Invalidate interleave groups that require an epilogue if we can't mask 5562 // the interleave-group. 5563 if (!useMaskedInterleavedAccesses(TTI)) { 5564 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5565 "No decisions should have been taken at this point"); 5566 // Note: There is no need to invalidate any cost modeling decisions here, as 5567 // non where taken so far. 5568 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5569 } 5570 5571 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5572 // Avoid tail folding if the trip count is known to be a multiple of any VF 5573 // we chose. 5574 // FIXME: The condition below pessimises the case for fixed-width vectors, 5575 // when scalable VFs are also candidates for vectorization. 5576 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5577 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5578 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5579 "MaxFixedVF must be a power of 2"); 5580 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5581 : MaxFixedVF.getFixedValue(); 5582 ScalarEvolution *SE = PSE.getSE(); 5583 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5584 const SCEV *ExitCount = SE->getAddExpr( 5585 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5586 const SCEV *Rem = SE->getURemExpr( 5587 SE->applyLoopGuards(ExitCount, TheLoop), 5588 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5589 if (Rem->isZero()) { 5590 // Accept MaxFixedVF if we do not have a tail. 5591 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5592 return MaxFactors; 5593 } 5594 } 5595 5596 // For scalable vectors, don't use tail folding as this is currently not yet 5597 // supported. The code is likely to have ended up here if the tripcount is 5598 // low, in which case it makes sense not to use scalable vectors. 5599 if (MaxFactors.ScalableVF.isVector()) 5600 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5601 5602 // If we don't know the precise trip count, or if the trip count that we 5603 // found modulo the vectorization factor is not zero, try to fold the tail 5604 // by masking. 5605 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5606 if (Legal->prepareToFoldTailByMasking()) { 5607 FoldTailByMasking = true; 5608 return MaxFactors; 5609 } 5610 5611 // If there was a tail-folding hint/switch, but we can't fold the tail by 5612 // masking, fallback to a vectorization with a scalar epilogue. 5613 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5614 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5615 "scalar epilogue instead.\n"); 5616 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5617 return MaxFactors; 5618 } 5619 5620 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5621 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5622 return FixedScalableVFPair::getNone(); 5623 } 5624 5625 if (TC == 0) { 5626 reportVectorizationFailure( 5627 "Unable to calculate the loop count due to complex control flow", 5628 "unable to calculate the loop count due to complex control flow", 5629 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5630 return FixedScalableVFPair::getNone(); 5631 } 5632 5633 reportVectorizationFailure( 5634 "Cannot optimize for size and vectorize at the same time.", 5635 "cannot optimize for size and vectorize at the same time. " 5636 "Enable vectorization of this loop with '#pragma clang loop " 5637 "vectorize(enable)' when compiling with -Os/-Oz", 5638 "NoTailLoopWithOptForSize", ORE, TheLoop); 5639 return FixedScalableVFPair::getNone(); 5640 } 5641 5642 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5643 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5644 const ElementCount &MaxSafeVF) { 5645 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5646 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5647 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5648 : TargetTransformInfo::RGK_FixedWidthVector); 5649 5650 // Convenience function to return the minimum of two ElementCounts. 5651 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5652 assert((LHS.isScalable() == RHS.isScalable()) && 5653 "Scalable flags must match"); 5654 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5655 }; 5656 5657 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5658 // Note that both WidestRegister and WidestType may not be a powers of 2. 5659 auto MaxVectorElementCount = ElementCount::get( 5660 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5661 ComputeScalableMaxVF); 5662 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5663 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5664 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5665 5666 if (!MaxVectorElementCount) { 5667 LLVM_DEBUG(dbgs() << "LV: The target has no " 5668 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5669 << " vector registers.\n"); 5670 return ElementCount::getFixed(1); 5671 } 5672 5673 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5674 if (ConstTripCount && 5675 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5676 isPowerOf2_32(ConstTripCount)) { 5677 // We need to clamp the VF to be the ConstTripCount. There is no point in 5678 // choosing a higher viable VF as done in the loop below. If 5679 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5680 // the TC is less than or equal to the known number of lanes. 5681 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5682 << ConstTripCount << "\n"); 5683 return TripCountEC; 5684 } 5685 5686 ElementCount MaxVF = MaxVectorElementCount; 5687 if (TTI.shouldMaximizeVectorBandwidth() || 5688 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5689 auto MaxVectorElementCountMaxBW = ElementCount::get( 5690 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5691 ComputeScalableMaxVF); 5692 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5693 5694 // Collect all viable vectorization factors larger than the default MaxVF 5695 // (i.e. MaxVectorElementCount). 5696 SmallVector<ElementCount, 8> VFs; 5697 for (ElementCount VS = MaxVectorElementCount * 2; 5698 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5699 VFs.push_back(VS); 5700 5701 // For each VF calculate its register usage. 5702 auto RUs = calculateRegisterUsage(VFs); 5703 5704 // Select the largest VF which doesn't require more registers than existing 5705 // ones. 5706 for (int i = RUs.size() - 1; i >= 0; --i) { 5707 bool Selected = true; 5708 for (auto &pair : RUs[i].MaxLocalUsers) { 5709 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5710 if (pair.second > TargetNumRegisters) 5711 Selected = false; 5712 } 5713 if (Selected) { 5714 MaxVF = VFs[i]; 5715 break; 5716 } 5717 } 5718 if (ElementCount MinVF = 5719 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5720 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5721 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5722 << ") with target's minimum: " << MinVF << '\n'); 5723 MaxVF = MinVF; 5724 } 5725 } 5726 } 5727 return MaxVF; 5728 } 5729 5730 bool LoopVectorizationCostModel::isMoreProfitable( 5731 const VectorizationFactor &A, const VectorizationFactor &B) const { 5732 InstructionCost CostA = A.Cost; 5733 InstructionCost CostB = B.Cost; 5734 5735 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5736 5737 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5738 MaxTripCount) { 5739 // If we are folding the tail and the trip count is a known (possibly small) 5740 // constant, the trip count will be rounded up to an integer number of 5741 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5742 // which we compare directly. When not folding the tail, the total cost will 5743 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5744 // approximated with the per-lane cost below instead of using the tripcount 5745 // as here. 5746 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5747 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5748 return RTCostA < RTCostB; 5749 } 5750 5751 // Improve estimate for the vector width if it is scalable. 5752 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5753 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5754 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5755 if (A.Width.isScalable()) 5756 EstimatedWidthA *= VScale.getValue(); 5757 if (B.Width.isScalable()) 5758 EstimatedWidthB *= VScale.getValue(); 5759 } 5760 5761 // When set to preferred, for now assume vscale may be larger than 1 (or the 5762 // one being tuned for), so that scalable vectorization is slightly favorable 5763 // over fixed-width vectorization. 5764 if (Hints->isScalableVectorizationPreferred()) 5765 if (A.Width.isScalable() && !B.Width.isScalable()) 5766 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5767 5768 // To avoid the need for FP division: 5769 // (CostA / A.Width) < (CostB / B.Width) 5770 // <=> (CostA * B.Width) < (CostB * A.Width) 5771 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5772 } 5773 5774 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5775 const ElementCountSet &VFCandidates) { 5776 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5777 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5778 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5779 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5780 "Expected Scalar VF to be a candidate"); 5781 5782 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5783 VectorizationFactor ChosenFactor = ScalarCost; 5784 5785 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5786 if (ForceVectorization && VFCandidates.size() > 1) { 5787 // Ignore scalar width, because the user explicitly wants vectorization. 5788 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5789 // evaluation. 5790 ChosenFactor.Cost = InstructionCost::getMax(); 5791 } 5792 5793 SmallVector<InstructionVFPair> InvalidCosts; 5794 for (const auto &i : VFCandidates) { 5795 // The cost for scalar VF=1 is already calculated, so ignore it. 5796 if (i.isScalar()) 5797 continue; 5798 5799 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5800 VectorizationFactor Candidate(i, C.first); 5801 5802 #ifndef NDEBUG 5803 unsigned AssumedMinimumVscale = 1; 5804 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5805 AssumedMinimumVscale = VScale.getValue(); 5806 unsigned Width = 5807 Candidate.Width.isScalable() 5808 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5809 : Candidate.Width.getFixedValue(); 5810 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5811 << " costs: " << (Candidate.Cost / Width)); 5812 if (i.isScalable()) 5813 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5814 << AssumedMinimumVscale << ")"); 5815 LLVM_DEBUG(dbgs() << ".\n"); 5816 #endif 5817 5818 if (!C.second && !ForceVectorization) { 5819 LLVM_DEBUG( 5820 dbgs() << "LV: Not considering vector loop of width " << i 5821 << " because it will not generate any vector instructions.\n"); 5822 continue; 5823 } 5824 5825 // If profitable add it to ProfitableVF list. 5826 if (isMoreProfitable(Candidate, ScalarCost)) 5827 ProfitableVFs.push_back(Candidate); 5828 5829 if (isMoreProfitable(Candidate, ChosenFactor)) 5830 ChosenFactor = Candidate; 5831 } 5832 5833 // Emit a report of VFs with invalid costs in the loop. 5834 if (!InvalidCosts.empty()) { 5835 // Group the remarks per instruction, keeping the instruction order from 5836 // InvalidCosts. 5837 std::map<Instruction *, unsigned> Numbering; 5838 unsigned I = 0; 5839 for (auto &Pair : InvalidCosts) 5840 if (!Numbering.count(Pair.first)) 5841 Numbering[Pair.first] = I++; 5842 5843 // Sort the list, first on instruction(number) then on VF. 5844 llvm::sort(InvalidCosts, 5845 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5846 if (Numbering[A.first] != Numbering[B.first]) 5847 return Numbering[A.first] < Numbering[B.first]; 5848 ElementCountComparator ECC; 5849 return ECC(A.second, B.second); 5850 }); 5851 5852 // For a list of ordered instruction-vf pairs: 5853 // [(load, vf1), (load, vf2), (store, vf1)] 5854 // Group the instructions together to emit separate remarks for: 5855 // load (vf1, vf2) 5856 // store (vf1) 5857 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5858 auto Subset = ArrayRef<InstructionVFPair>(); 5859 do { 5860 if (Subset.empty()) 5861 Subset = Tail.take_front(1); 5862 5863 Instruction *I = Subset.front().first; 5864 5865 // If the next instruction is different, or if there are no other pairs, 5866 // emit a remark for the collated subset. e.g. 5867 // [(load, vf1), (load, vf2))] 5868 // to emit: 5869 // remark: invalid costs for 'load' at VF=(vf, vf2) 5870 if (Subset == Tail || Tail[Subset.size()].first != I) { 5871 std::string OutString; 5872 raw_string_ostream OS(OutString); 5873 assert(!Subset.empty() && "Unexpected empty range"); 5874 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5875 for (auto &Pair : Subset) 5876 OS << (Pair.second == Subset.front().second ? "" : ", ") 5877 << Pair.second; 5878 OS << "):"; 5879 if (auto *CI = dyn_cast<CallInst>(I)) 5880 OS << " call to " << CI->getCalledFunction()->getName(); 5881 else 5882 OS << " " << I->getOpcodeName(); 5883 OS.flush(); 5884 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5885 Tail = Tail.drop_front(Subset.size()); 5886 Subset = {}; 5887 } else 5888 // Grow the subset by one element 5889 Subset = Tail.take_front(Subset.size() + 1); 5890 } while (!Tail.empty()); 5891 } 5892 5893 if (!EnableCondStoresVectorization && NumPredStores) { 5894 reportVectorizationFailure("There are conditional stores.", 5895 "store that is conditionally executed prevents vectorization", 5896 "ConditionalStore", ORE, TheLoop); 5897 ChosenFactor = ScalarCost; 5898 } 5899 5900 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5901 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5902 << "LV: Vectorization seems to be not beneficial, " 5903 << "but was forced by a user.\n"); 5904 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5905 return ChosenFactor; 5906 } 5907 5908 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5909 const Loop &L, ElementCount VF) const { 5910 // Cross iteration phis such as reductions need special handling and are 5911 // currently unsupported. 5912 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5913 return Legal->isFirstOrderRecurrence(&Phi) || 5914 Legal->isReductionVariable(&Phi); 5915 })) 5916 return false; 5917 5918 // Phis with uses outside of the loop require special handling and are 5919 // currently unsupported. 5920 for (auto &Entry : Legal->getInductionVars()) { 5921 // Look for uses of the value of the induction at the last iteration. 5922 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5923 for (User *U : PostInc->users()) 5924 if (!L.contains(cast<Instruction>(U))) 5925 return false; 5926 // Look for uses of penultimate value of the induction. 5927 for (User *U : Entry.first->users()) 5928 if (!L.contains(cast<Instruction>(U))) 5929 return false; 5930 } 5931 5932 // Induction variables that are widened require special handling that is 5933 // currently not supported. 5934 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5935 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5936 this->isProfitableToScalarize(Entry.first, VF)); 5937 })) 5938 return false; 5939 5940 // Epilogue vectorization code has not been auditted to ensure it handles 5941 // non-latch exits properly. It may be fine, but it needs auditted and 5942 // tested. 5943 if (L.getExitingBlock() != L.getLoopLatch()) 5944 return false; 5945 5946 return true; 5947 } 5948 5949 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5950 const ElementCount VF) const { 5951 // FIXME: We need a much better cost-model to take different parameters such 5952 // as register pressure, code size increase and cost of extra branches into 5953 // account. For now we apply a very crude heuristic and only consider loops 5954 // with vectorization factors larger than a certain value. 5955 // We also consider epilogue vectorization unprofitable for targets that don't 5956 // consider interleaving beneficial (eg. MVE). 5957 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5958 return false; 5959 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5960 return true; 5961 return false; 5962 } 5963 5964 VectorizationFactor 5965 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5966 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5967 VectorizationFactor Result = VectorizationFactor::Disabled(); 5968 if (!EnableEpilogueVectorization) { 5969 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5970 return Result; 5971 } 5972 5973 if (!isScalarEpilogueAllowed()) { 5974 LLVM_DEBUG( 5975 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5976 "allowed.\n";); 5977 return Result; 5978 } 5979 5980 // Not really a cost consideration, but check for unsupported cases here to 5981 // simplify the logic. 5982 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5983 LLVM_DEBUG( 5984 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5985 "not a supported candidate.\n";); 5986 return Result; 5987 } 5988 5989 if (EpilogueVectorizationForceVF > 1) { 5990 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5991 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5992 if (LVP.hasPlanWithVF(ForcedEC)) 5993 return {ForcedEC, 0}; 5994 else { 5995 LLVM_DEBUG( 5996 dbgs() 5997 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5998 return Result; 5999 } 6000 } 6001 6002 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6003 TheLoop->getHeader()->getParent()->hasMinSize()) { 6004 LLVM_DEBUG( 6005 dbgs() 6006 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6007 return Result; 6008 } 6009 6010 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 6011 if (MainLoopVF.isScalable()) 6012 LLVM_DEBUG( 6013 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 6014 "yet supported. Converting to fixed-width (VF=" 6015 << FixedMainLoopVF << ") instead\n"); 6016 6017 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 6018 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 6019 "this loop\n"); 6020 return Result; 6021 } 6022 6023 for (auto &NextVF : ProfitableVFs) 6024 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 6025 (Result.Width.getFixedValue() == 1 || 6026 isMoreProfitable(NextVF, Result)) && 6027 LVP.hasPlanWithVF(NextVF.Width)) 6028 Result = NextVF; 6029 6030 if (Result != VectorizationFactor::Disabled()) 6031 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6032 << Result.Width.getFixedValue() << "\n";); 6033 return Result; 6034 } 6035 6036 std::pair<unsigned, unsigned> 6037 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6038 unsigned MinWidth = -1U; 6039 unsigned MaxWidth = 8; 6040 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6041 for (Type *T : ElementTypesInLoop) { 6042 MinWidth = std::min<unsigned>( 6043 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6044 MaxWidth = std::max<unsigned>( 6045 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6046 } 6047 return {MinWidth, MaxWidth}; 6048 } 6049 6050 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6051 ElementTypesInLoop.clear(); 6052 // For each block. 6053 for (BasicBlock *BB : TheLoop->blocks()) { 6054 // For each instruction in the loop. 6055 for (Instruction &I : BB->instructionsWithoutDebug()) { 6056 Type *T = I.getType(); 6057 6058 // Skip ignored values. 6059 if (ValuesToIgnore.count(&I)) 6060 continue; 6061 6062 // Only examine Loads, Stores and PHINodes. 6063 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6064 continue; 6065 6066 // Examine PHI nodes that are reduction variables. Update the type to 6067 // account for the recurrence type. 6068 if (auto *PN = dyn_cast<PHINode>(&I)) { 6069 if (!Legal->isReductionVariable(PN)) 6070 continue; 6071 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6072 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6073 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6074 RdxDesc.getRecurrenceType(), 6075 TargetTransformInfo::ReductionFlags())) 6076 continue; 6077 T = RdxDesc.getRecurrenceType(); 6078 } 6079 6080 // Examine the stored values. 6081 if (auto *ST = dyn_cast<StoreInst>(&I)) 6082 T = ST->getValueOperand()->getType(); 6083 6084 // Ignore loaded pointer types and stored pointer types that are not 6085 // vectorizable. 6086 // 6087 // FIXME: The check here attempts to predict whether a load or store will 6088 // be vectorized. We only know this for certain after a VF has 6089 // been selected. Here, we assume that if an access can be 6090 // vectorized, it will be. We should also look at extending this 6091 // optimization to non-pointer types. 6092 // 6093 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6094 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6095 continue; 6096 6097 ElementTypesInLoop.insert(T); 6098 } 6099 } 6100 } 6101 6102 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6103 unsigned LoopCost) { 6104 // -- The interleave heuristics -- 6105 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6106 // There are many micro-architectural considerations that we can't predict 6107 // at this level. For example, frontend pressure (on decode or fetch) due to 6108 // code size, or the number and capabilities of the execution ports. 6109 // 6110 // We use the following heuristics to select the interleave count: 6111 // 1. If the code has reductions, then we interleave to break the cross 6112 // iteration dependency. 6113 // 2. If the loop is really small, then we interleave to reduce the loop 6114 // overhead. 6115 // 3. We don't interleave if we think that we will spill registers to memory 6116 // due to the increased register pressure. 6117 6118 if (!isScalarEpilogueAllowed()) 6119 return 1; 6120 6121 // We used the distance for the interleave count. 6122 if (Legal->getMaxSafeDepDistBytes() != -1U) 6123 return 1; 6124 6125 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6126 const bool HasReductions = !Legal->getReductionVars().empty(); 6127 // Do not interleave loops with a relatively small known or estimated trip 6128 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6129 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6130 // because with the above conditions interleaving can expose ILP and break 6131 // cross iteration dependences for reductions. 6132 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6133 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6134 return 1; 6135 6136 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6137 // We divide by these constants so assume that we have at least one 6138 // instruction that uses at least one register. 6139 for (auto& pair : R.MaxLocalUsers) { 6140 pair.second = std::max(pair.second, 1U); 6141 } 6142 6143 // We calculate the interleave count using the following formula. 6144 // Subtract the number of loop invariants from the number of available 6145 // registers. These registers are used by all of the interleaved instances. 6146 // Next, divide the remaining registers by the number of registers that is 6147 // required by the loop, in order to estimate how many parallel instances 6148 // fit without causing spills. All of this is rounded down if necessary to be 6149 // a power of two. We want power of two interleave count to simplify any 6150 // addressing operations or alignment considerations. 6151 // We also want power of two interleave counts to ensure that the induction 6152 // variable of the vector loop wraps to zero, when tail is folded by masking; 6153 // this currently happens when OptForSize, in which case IC is set to 1 above. 6154 unsigned IC = UINT_MAX; 6155 6156 for (auto& pair : R.MaxLocalUsers) { 6157 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6158 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6159 << " registers of " 6160 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6161 if (VF.isScalar()) { 6162 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6163 TargetNumRegisters = ForceTargetNumScalarRegs; 6164 } else { 6165 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6166 TargetNumRegisters = ForceTargetNumVectorRegs; 6167 } 6168 unsigned MaxLocalUsers = pair.second; 6169 unsigned LoopInvariantRegs = 0; 6170 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6171 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6172 6173 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6174 // Don't count the induction variable as interleaved. 6175 if (EnableIndVarRegisterHeur) { 6176 TmpIC = 6177 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6178 std::max(1U, (MaxLocalUsers - 1))); 6179 } 6180 6181 IC = std::min(IC, TmpIC); 6182 } 6183 6184 // Clamp the interleave ranges to reasonable counts. 6185 unsigned MaxInterleaveCount = 6186 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6187 6188 // Check if the user has overridden the max. 6189 if (VF.isScalar()) { 6190 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6191 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6192 } else { 6193 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6194 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6195 } 6196 6197 // If trip count is known or estimated compile time constant, limit the 6198 // interleave count to be less than the trip count divided by VF, provided it 6199 // is at least 1. 6200 // 6201 // For scalable vectors we can't know if interleaving is beneficial. It may 6202 // not be beneficial for small loops if none of the lanes in the second vector 6203 // iterations is enabled. However, for larger loops, there is likely to be a 6204 // similar benefit as for fixed-width vectors. For now, we choose to leave 6205 // the InterleaveCount as if vscale is '1', although if some information about 6206 // the vector is known (e.g. min vector size), we can make a better decision. 6207 if (BestKnownTC) { 6208 MaxInterleaveCount = 6209 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6210 // Make sure MaxInterleaveCount is greater than 0. 6211 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6212 } 6213 6214 assert(MaxInterleaveCount > 0 && 6215 "Maximum interleave count must be greater than 0"); 6216 6217 // Clamp the calculated IC to be between the 1 and the max interleave count 6218 // that the target and trip count allows. 6219 if (IC > MaxInterleaveCount) 6220 IC = MaxInterleaveCount; 6221 else 6222 // Make sure IC is greater than 0. 6223 IC = std::max(1u, IC); 6224 6225 assert(IC > 0 && "Interleave count must be greater than 0."); 6226 6227 // If we did not calculate the cost for VF (because the user selected the VF) 6228 // then we calculate the cost of VF here. 6229 if (LoopCost == 0) { 6230 InstructionCost C = expectedCost(VF).first; 6231 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6232 LoopCost = *C.getValue(); 6233 } 6234 6235 assert(LoopCost && "Non-zero loop cost expected"); 6236 6237 // Interleave if we vectorized this loop and there is a reduction that could 6238 // benefit from interleaving. 6239 if (VF.isVector() && HasReductions) { 6240 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6241 return IC; 6242 } 6243 6244 // Note that if we've already vectorized the loop we will have done the 6245 // runtime check and so interleaving won't require further checks. 6246 bool InterleavingRequiresRuntimePointerCheck = 6247 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6248 6249 // We want to interleave small loops in order to reduce the loop overhead and 6250 // potentially expose ILP opportunities. 6251 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6252 << "LV: IC is " << IC << '\n' 6253 << "LV: VF is " << VF << '\n'); 6254 const bool AggressivelyInterleaveReductions = 6255 TTI.enableAggressiveInterleaving(HasReductions); 6256 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6257 // We assume that the cost overhead is 1 and we use the cost model 6258 // to estimate the cost of the loop and interleave until the cost of the 6259 // loop overhead is about 5% of the cost of the loop. 6260 unsigned SmallIC = 6261 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6262 6263 // Interleave until store/load ports (estimated by max interleave count) are 6264 // saturated. 6265 unsigned NumStores = Legal->getNumStores(); 6266 unsigned NumLoads = Legal->getNumLoads(); 6267 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6268 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6269 6270 // There is little point in interleaving for reductions containing selects 6271 // and compares when VF=1 since it may just create more overhead than it's 6272 // worth for loops with small trip counts. This is because we still have to 6273 // do the final reduction after the loop. 6274 bool HasSelectCmpReductions = 6275 HasReductions && 6276 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6277 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6278 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6279 RdxDesc.getRecurrenceKind()); 6280 }); 6281 if (HasSelectCmpReductions) { 6282 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6283 return 1; 6284 } 6285 6286 // If we have a scalar reduction (vector reductions are already dealt with 6287 // by this point), we can increase the critical path length if the loop 6288 // we're interleaving is inside another loop. For tree-wise reductions 6289 // set the limit to 2, and for ordered reductions it's best to disable 6290 // interleaving entirely. 6291 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6292 bool HasOrderedReductions = 6293 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6294 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6295 return RdxDesc.isOrdered(); 6296 }); 6297 if (HasOrderedReductions) { 6298 LLVM_DEBUG( 6299 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6300 return 1; 6301 } 6302 6303 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6304 SmallIC = std::min(SmallIC, F); 6305 StoresIC = std::min(StoresIC, F); 6306 LoadsIC = std::min(LoadsIC, F); 6307 } 6308 6309 if (EnableLoadStoreRuntimeInterleave && 6310 std::max(StoresIC, LoadsIC) > SmallIC) { 6311 LLVM_DEBUG( 6312 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6313 return std::max(StoresIC, LoadsIC); 6314 } 6315 6316 // If there are scalar reductions and TTI has enabled aggressive 6317 // interleaving for reductions, we will interleave to expose ILP. 6318 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6319 AggressivelyInterleaveReductions) { 6320 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6321 // Interleave no less than SmallIC but not as aggressive as the normal IC 6322 // to satisfy the rare situation when resources are too limited. 6323 return std::max(IC / 2, SmallIC); 6324 } else { 6325 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6326 return SmallIC; 6327 } 6328 } 6329 6330 // Interleave if this is a large loop (small loops are already dealt with by 6331 // this point) that could benefit from interleaving. 6332 if (AggressivelyInterleaveReductions) { 6333 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6334 return IC; 6335 } 6336 6337 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6338 return 1; 6339 } 6340 6341 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6342 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6343 // This function calculates the register usage by measuring the highest number 6344 // of values that are alive at a single location. Obviously, this is a very 6345 // rough estimation. We scan the loop in a topological order in order and 6346 // assign a number to each instruction. We use RPO to ensure that defs are 6347 // met before their users. We assume that each instruction that has in-loop 6348 // users starts an interval. We record every time that an in-loop value is 6349 // used, so we have a list of the first and last occurrences of each 6350 // instruction. Next, we transpose this data structure into a multi map that 6351 // holds the list of intervals that *end* at a specific location. This multi 6352 // map allows us to perform a linear search. We scan the instructions linearly 6353 // and record each time that a new interval starts, by placing it in a set. 6354 // If we find this value in the multi-map then we remove it from the set. 6355 // The max register usage is the maximum size of the set. 6356 // We also search for instructions that are defined outside the loop, but are 6357 // used inside the loop. We need this number separately from the max-interval 6358 // usage number because when we unroll, loop-invariant values do not take 6359 // more register. 6360 LoopBlocksDFS DFS(TheLoop); 6361 DFS.perform(LI); 6362 6363 RegisterUsage RU; 6364 6365 // Each 'key' in the map opens a new interval. The values 6366 // of the map are the index of the 'last seen' usage of the 6367 // instruction that is the key. 6368 using IntervalMap = DenseMap<Instruction *, unsigned>; 6369 6370 // Maps instruction to its index. 6371 SmallVector<Instruction *, 64> IdxToInstr; 6372 // Marks the end of each interval. 6373 IntervalMap EndPoint; 6374 // Saves the list of instruction indices that are used in the loop. 6375 SmallPtrSet<Instruction *, 8> Ends; 6376 // Saves the list of values that are used in the loop but are 6377 // defined outside the loop, such as arguments and constants. 6378 SmallPtrSet<Value *, 8> LoopInvariants; 6379 6380 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6381 for (Instruction &I : BB->instructionsWithoutDebug()) { 6382 IdxToInstr.push_back(&I); 6383 6384 // Save the end location of each USE. 6385 for (Value *U : I.operands()) { 6386 auto *Instr = dyn_cast<Instruction>(U); 6387 6388 // Ignore non-instruction values such as arguments, constants, etc. 6389 if (!Instr) 6390 continue; 6391 6392 // If this instruction is outside the loop then record it and continue. 6393 if (!TheLoop->contains(Instr)) { 6394 LoopInvariants.insert(Instr); 6395 continue; 6396 } 6397 6398 // Overwrite previous end points. 6399 EndPoint[Instr] = IdxToInstr.size(); 6400 Ends.insert(Instr); 6401 } 6402 } 6403 } 6404 6405 // Saves the list of intervals that end with the index in 'key'. 6406 using InstrList = SmallVector<Instruction *, 2>; 6407 DenseMap<unsigned, InstrList> TransposeEnds; 6408 6409 // Transpose the EndPoints to a list of values that end at each index. 6410 for (auto &Interval : EndPoint) 6411 TransposeEnds[Interval.second].push_back(Interval.first); 6412 6413 SmallPtrSet<Instruction *, 8> OpenIntervals; 6414 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6415 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6416 6417 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6418 6419 // A lambda that gets the register usage for the given type and VF. 6420 const auto &TTICapture = TTI; 6421 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6422 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6423 return 0; 6424 InstructionCost::CostType RegUsage = 6425 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6426 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6427 "Nonsensical values for register usage."); 6428 return RegUsage; 6429 }; 6430 6431 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6432 Instruction *I = IdxToInstr[i]; 6433 6434 // Remove all of the instructions that end at this location. 6435 InstrList &List = TransposeEnds[i]; 6436 for (Instruction *ToRemove : List) 6437 OpenIntervals.erase(ToRemove); 6438 6439 // Ignore instructions that are never used within the loop. 6440 if (!Ends.count(I)) 6441 continue; 6442 6443 // Skip ignored values. 6444 if (ValuesToIgnore.count(I)) 6445 continue; 6446 6447 // For each VF find the maximum usage of registers. 6448 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6449 // Count the number of live intervals. 6450 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6451 6452 if (VFs[j].isScalar()) { 6453 for (auto Inst : OpenIntervals) { 6454 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6455 if (RegUsage.find(ClassID) == RegUsage.end()) 6456 RegUsage[ClassID] = 1; 6457 else 6458 RegUsage[ClassID] += 1; 6459 } 6460 } else { 6461 collectUniformsAndScalars(VFs[j]); 6462 for (auto Inst : OpenIntervals) { 6463 // Skip ignored values for VF > 1. 6464 if (VecValuesToIgnore.count(Inst)) 6465 continue; 6466 if (isScalarAfterVectorization(Inst, VFs[j])) { 6467 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6468 if (RegUsage.find(ClassID) == RegUsage.end()) 6469 RegUsage[ClassID] = 1; 6470 else 6471 RegUsage[ClassID] += 1; 6472 } else { 6473 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6474 if (RegUsage.find(ClassID) == RegUsage.end()) 6475 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6476 else 6477 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6478 } 6479 } 6480 } 6481 6482 for (auto& pair : RegUsage) { 6483 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6484 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6485 else 6486 MaxUsages[j][pair.first] = pair.second; 6487 } 6488 } 6489 6490 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6491 << OpenIntervals.size() << '\n'); 6492 6493 // Add the current instruction to the list of open intervals. 6494 OpenIntervals.insert(I); 6495 } 6496 6497 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6498 SmallMapVector<unsigned, unsigned, 4> Invariant; 6499 6500 for (auto Inst : LoopInvariants) { 6501 unsigned Usage = 6502 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6503 unsigned ClassID = 6504 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6505 if (Invariant.find(ClassID) == Invariant.end()) 6506 Invariant[ClassID] = Usage; 6507 else 6508 Invariant[ClassID] += Usage; 6509 } 6510 6511 LLVM_DEBUG({ 6512 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6513 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6514 << " item\n"; 6515 for (const auto &pair : MaxUsages[i]) { 6516 dbgs() << "LV(REG): RegisterClass: " 6517 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6518 << " registers\n"; 6519 } 6520 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6521 << " item\n"; 6522 for (const auto &pair : Invariant) { 6523 dbgs() << "LV(REG): RegisterClass: " 6524 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6525 << " registers\n"; 6526 } 6527 }); 6528 6529 RU.LoopInvariantRegs = Invariant; 6530 RU.MaxLocalUsers = MaxUsages[i]; 6531 RUs[i] = RU; 6532 } 6533 6534 return RUs; 6535 } 6536 6537 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6538 // TODO: Cost model for emulated masked load/store is completely 6539 // broken. This hack guides the cost model to use an artificially 6540 // high enough value to practically disable vectorization with such 6541 // operations, except where previously deployed legality hack allowed 6542 // using very low cost values. This is to avoid regressions coming simply 6543 // from moving "masked load/store" check from legality to cost model. 6544 // Masked Load/Gather emulation was previously never allowed. 6545 // Limited number of Masked Store/Scatter emulation was allowed. 6546 assert(isPredicatedInst(I) && 6547 "Expecting a scalar emulated instruction"); 6548 return isa<LoadInst>(I) || 6549 (isa<StoreInst>(I) && 6550 NumPredStores > NumberOfStoresToPredicate); 6551 } 6552 6553 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6554 // If we aren't vectorizing the loop, or if we've already collected the 6555 // instructions to scalarize, there's nothing to do. Collection may already 6556 // have occurred if we have a user-selected VF and are now computing the 6557 // expected cost for interleaving. 6558 if (VF.isScalar() || VF.isZero() || 6559 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6560 return; 6561 6562 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6563 // not profitable to scalarize any instructions, the presence of VF in the 6564 // map will indicate that we've analyzed it already. 6565 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6566 6567 // Find all the instructions that are scalar with predication in the loop and 6568 // determine if it would be better to not if-convert the blocks they are in. 6569 // If so, we also record the instructions to scalarize. 6570 for (BasicBlock *BB : TheLoop->blocks()) { 6571 if (!blockNeedsPredicationForAnyReason(BB)) 6572 continue; 6573 for (Instruction &I : *BB) 6574 if (isScalarWithPredication(&I)) { 6575 ScalarCostsTy ScalarCosts; 6576 // Do not apply discount if scalable, because that would lead to 6577 // invalid scalarization costs. 6578 // Do not apply discount logic if hacked cost is needed 6579 // for emulated masked memrefs. 6580 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6581 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6582 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6583 // Remember that BB will remain after vectorization. 6584 PredicatedBBsAfterVectorization.insert(BB); 6585 } 6586 } 6587 } 6588 6589 int LoopVectorizationCostModel::computePredInstDiscount( 6590 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6591 assert(!isUniformAfterVectorization(PredInst, VF) && 6592 "Instruction marked uniform-after-vectorization will be predicated"); 6593 6594 // Initialize the discount to zero, meaning that the scalar version and the 6595 // vector version cost the same. 6596 InstructionCost Discount = 0; 6597 6598 // Holds instructions to analyze. The instructions we visit are mapped in 6599 // ScalarCosts. Those instructions are the ones that would be scalarized if 6600 // we find that the scalar version costs less. 6601 SmallVector<Instruction *, 8> Worklist; 6602 6603 // Returns true if the given instruction can be scalarized. 6604 auto canBeScalarized = [&](Instruction *I) -> bool { 6605 // We only attempt to scalarize instructions forming a single-use chain 6606 // from the original predicated block that would otherwise be vectorized. 6607 // Although not strictly necessary, we give up on instructions we know will 6608 // already be scalar to avoid traversing chains that are unlikely to be 6609 // beneficial. 6610 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6611 isScalarAfterVectorization(I, VF)) 6612 return false; 6613 6614 // If the instruction is scalar with predication, it will be analyzed 6615 // separately. We ignore it within the context of PredInst. 6616 if (isScalarWithPredication(I)) 6617 return false; 6618 6619 // If any of the instruction's operands are uniform after vectorization, 6620 // the instruction cannot be scalarized. This prevents, for example, a 6621 // masked load from being scalarized. 6622 // 6623 // We assume we will only emit a value for lane zero of an instruction 6624 // marked uniform after vectorization, rather than VF identical values. 6625 // Thus, if we scalarize an instruction that uses a uniform, we would 6626 // create uses of values corresponding to the lanes we aren't emitting code 6627 // for. This behavior can be changed by allowing getScalarValue to clone 6628 // the lane zero values for uniforms rather than asserting. 6629 for (Use &U : I->operands()) 6630 if (auto *J = dyn_cast<Instruction>(U.get())) 6631 if (isUniformAfterVectorization(J, VF)) 6632 return false; 6633 6634 // Otherwise, we can scalarize the instruction. 6635 return true; 6636 }; 6637 6638 // Compute the expected cost discount from scalarizing the entire expression 6639 // feeding the predicated instruction. We currently only consider expressions 6640 // that are single-use instruction chains. 6641 Worklist.push_back(PredInst); 6642 while (!Worklist.empty()) { 6643 Instruction *I = Worklist.pop_back_val(); 6644 6645 // If we've already analyzed the instruction, there's nothing to do. 6646 if (ScalarCosts.find(I) != ScalarCosts.end()) 6647 continue; 6648 6649 // Compute the cost of the vector instruction. Note that this cost already 6650 // includes the scalarization overhead of the predicated instruction. 6651 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6652 6653 // Compute the cost of the scalarized instruction. This cost is the cost of 6654 // the instruction as if it wasn't if-converted and instead remained in the 6655 // predicated block. We will scale this cost by block probability after 6656 // computing the scalarization overhead. 6657 InstructionCost ScalarCost = 6658 VF.getFixedValue() * 6659 getInstructionCost(I, ElementCount::getFixed(1)).first; 6660 6661 // Compute the scalarization overhead of needed insertelement instructions 6662 // and phi nodes. 6663 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6664 ScalarCost += TTI.getScalarizationOverhead( 6665 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6666 APInt::getAllOnes(VF.getFixedValue()), true, false); 6667 ScalarCost += 6668 VF.getFixedValue() * 6669 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6670 } 6671 6672 // Compute the scalarization overhead of needed extractelement 6673 // instructions. For each of the instruction's operands, if the operand can 6674 // be scalarized, add it to the worklist; otherwise, account for the 6675 // overhead. 6676 for (Use &U : I->operands()) 6677 if (auto *J = dyn_cast<Instruction>(U.get())) { 6678 assert(VectorType::isValidElementType(J->getType()) && 6679 "Instruction has non-scalar type"); 6680 if (canBeScalarized(J)) 6681 Worklist.push_back(J); 6682 else if (needsExtract(J, VF)) { 6683 ScalarCost += TTI.getScalarizationOverhead( 6684 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6685 APInt::getAllOnes(VF.getFixedValue()), false, true); 6686 } 6687 } 6688 6689 // Scale the total scalar cost by block probability. 6690 ScalarCost /= getReciprocalPredBlockProb(); 6691 6692 // Compute the discount. A non-negative discount means the vector version 6693 // of the instruction costs more, and scalarizing would be beneficial. 6694 Discount += VectorCost - ScalarCost; 6695 ScalarCosts[I] = ScalarCost; 6696 } 6697 6698 return *Discount.getValue(); 6699 } 6700 6701 LoopVectorizationCostModel::VectorizationCostTy 6702 LoopVectorizationCostModel::expectedCost( 6703 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6704 VectorizationCostTy Cost; 6705 6706 // For each block. 6707 for (BasicBlock *BB : TheLoop->blocks()) { 6708 VectorizationCostTy BlockCost; 6709 6710 // For each instruction in the old loop. 6711 for (Instruction &I : BB->instructionsWithoutDebug()) { 6712 // Skip ignored values. 6713 if (ValuesToIgnore.count(&I) || 6714 (VF.isVector() && VecValuesToIgnore.count(&I))) 6715 continue; 6716 6717 VectorizationCostTy C = getInstructionCost(&I, VF); 6718 6719 // Check if we should override the cost. 6720 if (C.first.isValid() && 6721 ForceTargetInstructionCost.getNumOccurrences() > 0) 6722 C.first = InstructionCost(ForceTargetInstructionCost); 6723 6724 // Keep a list of instructions with invalid costs. 6725 if (Invalid && !C.first.isValid()) 6726 Invalid->emplace_back(&I, VF); 6727 6728 BlockCost.first += C.first; 6729 BlockCost.second |= C.second; 6730 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6731 << " for VF " << VF << " For instruction: " << I 6732 << '\n'); 6733 } 6734 6735 // If we are vectorizing a predicated block, it will have been 6736 // if-converted. This means that the block's instructions (aside from 6737 // stores and instructions that may divide by zero) will now be 6738 // unconditionally executed. For the scalar case, we may not always execute 6739 // the predicated block, if it is an if-else block. Thus, scale the block's 6740 // cost by the probability of executing it. blockNeedsPredication from 6741 // Legal is used so as to not include all blocks in tail folded loops. 6742 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6743 BlockCost.first /= getReciprocalPredBlockProb(); 6744 6745 Cost.first += BlockCost.first; 6746 Cost.second |= BlockCost.second; 6747 } 6748 6749 return Cost; 6750 } 6751 6752 /// Gets Address Access SCEV after verifying that the access pattern 6753 /// is loop invariant except the induction variable dependence. 6754 /// 6755 /// This SCEV can be sent to the Target in order to estimate the address 6756 /// calculation cost. 6757 static const SCEV *getAddressAccessSCEV( 6758 Value *Ptr, 6759 LoopVectorizationLegality *Legal, 6760 PredicatedScalarEvolution &PSE, 6761 const Loop *TheLoop) { 6762 6763 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6764 if (!Gep) 6765 return nullptr; 6766 6767 // We are looking for a gep with all loop invariant indices except for one 6768 // which should be an induction variable. 6769 auto SE = PSE.getSE(); 6770 unsigned NumOperands = Gep->getNumOperands(); 6771 for (unsigned i = 1; i < NumOperands; ++i) { 6772 Value *Opd = Gep->getOperand(i); 6773 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6774 !Legal->isInductionVariable(Opd)) 6775 return nullptr; 6776 } 6777 6778 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6779 return PSE.getSCEV(Ptr); 6780 } 6781 6782 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6783 return Legal->hasStride(I->getOperand(0)) || 6784 Legal->hasStride(I->getOperand(1)); 6785 } 6786 6787 InstructionCost 6788 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6789 ElementCount VF) { 6790 assert(VF.isVector() && 6791 "Scalarization cost of instruction implies vectorization."); 6792 if (VF.isScalable()) 6793 return InstructionCost::getInvalid(); 6794 6795 Type *ValTy = getLoadStoreType(I); 6796 auto SE = PSE.getSE(); 6797 6798 unsigned AS = getLoadStoreAddressSpace(I); 6799 Value *Ptr = getLoadStorePointerOperand(I); 6800 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6801 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6802 // that it is being called from this specific place. 6803 6804 // Figure out whether the access is strided and get the stride value 6805 // if it's known in compile time 6806 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6807 6808 // Get the cost of the scalar memory instruction and address computation. 6809 InstructionCost Cost = 6810 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6811 6812 // Don't pass *I here, since it is scalar but will actually be part of a 6813 // vectorized loop where the user of it is a vectorized instruction. 6814 const Align Alignment = getLoadStoreAlignment(I); 6815 Cost += VF.getKnownMinValue() * 6816 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6817 AS, TTI::TCK_RecipThroughput); 6818 6819 // Get the overhead of the extractelement and insertelement instructions 6820 // we might create due to scalarization. 6821 Cost += getScalarizationOverhead(I, VF); 6822 6823 // If we have a predicated load/store, it will need extra i1 extracts and 6824 // conditional branches, but may not be executed for each vector lane. Scale 6825 // the cost by the probability of executing the predicated block. 6826 if (isPredicatedInst(I)) { 6827 Cost /= getReciprocalPredBlockProb(); 6828 6829 // Add the cost of an i1 extract and a branch 6830 auto *Vec_i1Ty = 6831 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6832 Cost += TTI.getScalarizationOverhead( 6833 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6834 /*Insert=*/false, /*Extract=*/true); 6835 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6836 6837 if (useEmulatedMaskMemRefHack(I)) 6838 // Artificially setting to a high enough value to practically disable 6839 // vectorization with such operations. 6840 Cost = 3000000; 6841 } 6842 6843 return Cost; 6844 } 6845 6846 InstructionCost 6847 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6848 ElementCount VF) { 6849 Type *ValTy = getLoadStoreType(I); 6850 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6851 Value *Ptr = getLoadStorePointerOperand(I); 6852 unsigned AS = getLoadStoreAddressSpace(I); 6853 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6854 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6855 6856 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6857 "Stride should be 1 or -1 for consecutive memory access"); 6858 const Align Alignment = getLoadStoreAlignment(I); 6859 InstructionCost Cost = 0; 6860 if (Legal->isMaskRequired(I)) 6861 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6862 CostKind); 6863 else 6864 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6865 CostKind, I); 6866 6867 bool Reverse = ConsecutiveStride < 0; 6868 if (Reverse) 6869 Cost += 6870 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6871 return Cost; 6872 } 6873 6874 InstructionCost 6875 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6876 ElementCount VF) { 6877 assert(Legal->isUniformMemOp(*I)); 6878 6879 Type *ValTy = getLoadStoreType(I); 6880 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6881 const Align Alignment = getLoadStoreAlignment(I); 6882 unsigned AS = getLoadStoreAddressSpace(I); 6883 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6884 if (isa<LoadInst>(I)) { 6885 return TTI.getAddressComputationCost(ValTy) + 6886 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6887 CostKind) + 6888 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6889 } 6890 StoreInst *SI = cast<StoreInst>(I); 6891 6892 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6893 return TTI.getAddressComputationCost(ValTy) + 6894 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6895 CostKind) + 6896 (isLoopInvariantStoreValue 6897 ? 0 6898 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6899 VF.getKnownMinValue() - 1)); 6900 } 6901 6902 InstructionCost 6903 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6904 ElementCount VF) { 6905 Type *ValTy = getLoadStoreType(I); 6906 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6907 const Align Alignment = getLoadStoreAlignment(I); 6908 const Value *Ptr = getLoadStorePointerOperand(I); 6909 6910 return TTI.getAddressComputationCost(VectorTy) + 6911 TTI.getGatherScatterOpCost( 6912 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6913 TargetTransformInfo::TCK_RecipThroughput, I); 6914 } 6915 6916 InstructionCost 6917 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6918 ElementCount VF) { 6919 // TODO: Once we have support for interleaving with scalable vectors 6920 // we can calculate the cost properly here. 6921 if (VF.isScalable()) 6922 return InstructionCost::getInvalid(); 6923 6924 Type *ValTy = getLoadStoreType(I); 6925 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6926 unsigned AS = getLoadStoreAddressSpace(I); 6927 6928 auto Group = getInterleavedAccessGroup(I); 6929 assert(Group && "Fail to get an interleaved access group."); 6930 6931 unsigned InterleaveFactor = Group->getFactor(); 6932 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6933 6934 // Holds the indices of existing members in the interleaved group. 6935 SmallVector<unsigned, 4> Indices; 6936 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6937 if (Group->getMember(IF)) 6938 Indices.push_back(IF); 6939 6940 // Calculate the cost of the whole interleaved group. 6941 bool UseMaskForGaps = 6942 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6943 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6944 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6945 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6946 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6947 6948 if (Group->isReverse()) { 6949 // TODO: Add support for reversed masked interleaved access. 6950 assert(!Legal->isMaskRequired(I) && 6951 "Reverse masked interleaved access not supported."); 6952 Cost += 6953 Group->getNumMembers() * 6954 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6955 } 6956 return Cost; 6957 } 6958 6959 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6960 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6961 using namespace llvm::PatternMatch; 6962 // Early exit for no inloop reductions 6963 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6964 return None; 6965 auto *VectorTy = cast<VectorType>(Ty); 6966 6967 // We are looking for a pattern of, and finding the minimal acceptable cost: 6968 // reduce(mul(ext(A), ext(B))) or 6969 // reduce(mul(A, B)) or 6970 // reduce(ext(A)) or 6971 // reduce(A). 6972 // The basic idea is that we walk down the tree to do that, finding the root 6973 // reduction instruction in InLoopReductionImmediateChains. From there we find 6974 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6975 // of the components. If the reduction cost is lower then we return it for the 6976 // reduction instruction and 0 for the other instructions in the pattern. If 6977 // it is not we return an invalid cost specifying the orignal cost method 6978 // should be used. 6979 Instruction *RetI = I; 6980 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6981 if (!RetI->hasOneUser()) 6982 return None; 6983 RetI = RetI->user_back(); 6984 } 6985 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6986 RetI->user_back()->getOpcode() == Instruction::Add) { 6987 if (!RetI->hasOneUser()) 6988 return None; 6989 RetI = RetI->user_back(); 6990 } 6991 6992 // Test if the found instruction is a reduction, and if not return an invalid 6993 // cost specifying the parent to use the original cost modelling. 6994 if (!InLoopReductionImmediateChains.count(RetI)) 6995 return None; 6996 6997 // Find the reduction this chain is a part of and calculate the basic cost of 6998 // the reduction on its own. 6999 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7000 Instruction *ReductionPhi = LastChain; 7001 while (!isa<PHINode>(ReductionPhi)) 7002 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7003 7004 const RecurrenceDescriptor &RdxDesc = 7005 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7006 7007 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7008 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7009 7010 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 7011 // normal fmul instruction to the cost of the fadd reduction. 7012 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 7013 BaseCost += 7014 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 7015 7016 // If we're using ordered reductions then we can just return the base cost 7017 // here, since getArithmeticReductionCost calculates the full ordered 7018 // reduction cost when FP reassociation is not allowed. 7019 if (useOrderedReductions(RdxDesc)) 7020 return BaseCost; 7021 7022 // Get the operand that was not the reduction chain and match it to one of the 7023 // patterns, returning the better cost if it is found. 7024 Instruction *RedOp = RetI->getOperand(1) == LastChain 7025 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7026 : dyn_cast<Instruction>(RetI->getOperand(1)); 7027 7028 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7029 7030 Instruction *Op0, *Op1; 7031 if (RedOp && 7032 match(RedOp, 7033 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7034 match(Op0, m_ZExtOrSExt(m_Value())) && 7035 Op0->getOpcode() == Op1->getOpcode() && 7036 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7037 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7038 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7039 7040 // Matched reduce(ext(mul(ext(A), ext(B))) 7041 // Note that the extend opcodes need to all match, or if A==B they will have 7042 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7043 // which is equally fine. 7044 bool IsUnsigned = isa<ZExtInst>(Op0); 7045 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7046 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7047 7048 InstructionCost ExtCost = 7049 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7050 TTI::CastContextHint::None, CostKind, Op0); 7051 InstructionCost MulCost = 7052 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7053 InstructionCost Ext2Cost = 7054 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7055 TTI::CastContextHint::None, CostKind, RedOp); 7056 7057 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7058 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7059 CostKind); 7060 7061 if (RedCost.isValid() && 7062 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7063 return I == RetI ? RedCost : 0; 7064 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7065 !TheLoop->isLoopInvariant(RedOp)) { 7066 // Matched reduce(ext(A)) 7067 bool IsUnsigned = isa<ZExtInst>(RedOp); 7068 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7069 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7070 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7071 CostKind); 7072 7073 InstructionCost ExtCost = 7074 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7075 TTI::CastContextHint::None, CostKind, RedOp); 7076 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7077 return I == RetI ? RedCost : 0; 7078 } else if (RedOp && 7079 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7080 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7081 Op0->getOpcode() == Op1->getOpcode() && 7082 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7083 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7084 bool IsUnsigned = isa<ZExtInst>(Op0); 7085 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7086 // Matched reduce(mul(ext, ext)) 7087 InstructionCost ExtCost = 7088 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7089 TTI::CastContextHint::None, CostKind, Op0); 7090 InstructionCost MulCost = 7091 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7092 7093 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7094 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7095 CostKind); 7096 7097 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7098 return I == RetI ? RedCost : 0; 7099 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7100 // Matched reduce(mul()) 7101 InstructionCost MulCost = 7102 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7103 7104 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7105 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7106 CostKind); 7107 7108 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7109 return I == RetI ? RedCost : 0; 7110 } 7111 } 7112 7113 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7114 } 7115 7116 InstructionCost 7117 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7118 ElementCount VF) { 7119 // Calculate scalar cost only. Vectorization cost should be ready at this 7120 // moment. 7121 if (VF.isScalar()) { 7122 Type *ValTy = getLoadStoreType(I); 7123 const Align Alignment = getLoadStoreAlignment(I); 7124 unsigned AS = getLoadStoreAddressSpace(I); 7125 7126 return TTI.getAddressComputationCost(ValTy) + 7127 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7128 TTI::TCK_RecipThroughput, I); 7129 } 7130 return getWideningCost(I, VF); 7131 } 7132 7133 LoopVectorizationCostModel::VectorizationCostTy 7134 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7135 ElementCount VF) { 7136 // If we know that this instruction will remain uniform, check the cost of 7137 // the scalar version. 7138 if (isUniformAfterVectorization(I, VF)) 7139 VF = ElementCount::getFixed(1); 7140 7141 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7142 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7143 7144 // Forced scalars do not have any scalarization overhead. 7145 auto ForcedScalar = ForcedScalars.find(VF); 7146 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7147 auto InstSet = ForcedScalar->second; 7148 if (InstSet.count(I)) 7149 return VectorizationCostTy( 7150 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7151 VF.getKnownMinValue()), 7152 false); 7153 } 7154 7155 Type *VectorTy; 7156 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7157 7158 bool TypeNotScalarized = false; 7159 if (VF.isVector() && VectorTy->isVectorTy()) { 7160 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7161 if (NumParts) 7162 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7163 else 7164 C = InstructionCost::getInvalid(); 7165 } 7166 return VectorizationCostTy(C, TypeNotScalarized); 7167 } 7168 7169 InstructionCost 7170 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7171 ElementCount VF) const { 7172 7173 // There is no mechanism yet to create a scalable scalarization loop, 7174 // so this is currently Invalid. 7175 if (VF.isScalable()) 7176 return InstructionCost::getInvalid(); 7177 7178 if (VF.isScalar()) 7179 return 0; 7180 7181 InstructionCost Cost = 0; 7182 Type *RetTy = ToVectorTy(I->getType(), VF); 7183 if (!RetTy->isVoidTy() && 7184 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7185 Cost += TTI.getScalarizationOverhead( 7186 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7187 false); 7188 7189 // Some targets keep addresses scalar. 7190 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7191 return Cost; 7192 7193 // Some targets support efficient element stores. 7194 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7195 return Cost; 7196 7197 // Collect operands to consider. 7198 CallInst *CI = dyn_cast<CallInst>(I); 7199 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7200 7201 // Skip operands that do not require extraction/scalarization and do not incur 7202 // any overhead. 7203 SmallVector<Type *> Tys; 7204 for (auto *V : filterExtractingOperands(Ops, VF)) 7205 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7206 return Cost + TTI.getOperandsScalarizationOverhead( 7207 filterExtractingOperands(Ops, VF), Tys); 7208 } 7209 7210 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7211 if (VF.isScalar()) 7212 return; 7213 NumPredStores = 0; 7214 for (BasicBlock *BB : TheLoop->blocks()) { 7215 // For each instruction in the old loop. 7216 for (Instruction &I : *BB) { 7217 Value *Ptr = getLoadStorePointerOperand(&I); 7218 if (!Ptr) 7219 continue; 7220 7221 // TODO: We should generate better code and update the cost model for 7222 // predicated uniform stores. Today they are treated as any other 7223 // predicated store (see added test cases in 7224 // invariant-store-vectorization.ll). 7225 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7226 NumPredStores++; 7227 7228 if (Legal->isUniformMemOp(I)) { 7229 // TODO: Avoid replicating loads and stores instead of 7230 // relying on instcombine to remove them. 7231 // Load: Scalar load + broadcast 7232 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7233 InstructionCost Cost; 7234 if (isa<StoreInst>(&I) && VF.isScalable() && 7235 isLegalGatherOrScatter(&I)) { 7236 Cost = getGatherScatterCost(&I, VF); 7237 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7238 } else { 7239 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7240 "Cannot yet scalarize uniform stores"); 7241 Cost = getUniformMemOpCost(&I, VF); 7242 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7243 } 7244 continue; 7245 } 7246 7247 // We assume that widening is the best solution when possible. 7248 if (memoryInstructionCanBeWidened(&I, VF)) { 7249 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7250 int ConsecutiveStride = Legal->isConsecutivePtr( 7251 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7252 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7253 "Expected consecutive stride."); 7254 InstWidening Decision = 7255 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7256 setWideningDecision(&I, VF, Decision, Cost); 7257 continue; 7258 } 7259 7260 // Choose between Interleaving, Gather/Scatter or Scalarization. 7261 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7262 unsigned NumAccesses = 1; 7263 if (isAccessInterleaved(&I)) { 7264 auto Group = getInterleavedAccessGroup(&I); 7265 assert(Group && "Fail to get an interleaved access group."); 7266 7267 // Make one decision for the whole group. 7268 if (getWideningDecision(&I, VF) != CM_Unknown) 7269 continue; 7270 7271 NumAccesses = Group->getNumMembers(); 7272 if (interleavedAccessCanBeWidened(&I, VF)) 7273 InterleaveCost = getInterleaveGroupCost(&I, VF); 7274 } 7275 7276 InstructionCost GatherScatterCost = 7277 isLegalGatherOrScatter(&I) 7278 ? getGatherScatterCost(&I, VF) * NumAccesses 7279 : InstructionCost::getInvalid(); 7280 7281 InstructionCost ScalarizationCost = 7282 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7283 7284 // Choose better solution for the current VF, 7285 // write down this decision and use it during vectorization. 7286 InstructionCost Cost; 7287 InstWidening Decision; 7288 if (InterleaveCost <= GatherScatterCost && 7289 InterleaveCost < ScalarizationCost) { 7290 Decision = CM_Interleave; 7291 Cost = InterleaveCost; 7292 } else if (GatherScatterCost < ScalarizationCost) { 7293 Decision = CM_GatherScatter; 7294 Cost = GatherScatterCost; 7295 } else { 7296 Decision = CM_Scalarize; 7297 Cost = ScalarizationCost; 7298 } 7299 // If the instructions belongs to an interleave group, the whole group 7300 // receives the same decision. The whole group receives the cost, but 7301 // the cost will actually be assigned to one instruction. 7302 if (auto Group = getInterleavedAccessGroup(&I)) 7303 setWideningDecision(Group, VF, Decision, Cost); 7304 else 7305 setWideningDecision(&I, VF, Decision, Cost); 7306 } 7307 } 7308 7309 // Make sure that any load of address and any other address computation 7310 // remains scalar unless there is gather/scatter support. This avoids 7311 // inevitable extracts into address registers, and also has the benefit of 7312 // activating LSR more, since that pass can't optimize vectorized 7313 // addresses. 7314 if (TTI.prefersVectorizedAddressing()) 7315 return; 7316 7317 // Start with all scalar pointer uses. 7318 SmallPtrSet<Instruction *, 8> AddrDefs; 7319 for (BasicBlock *BB : TheLoop->blocks()) 7320 for (Instruction &I : *BB) { 7321 Instruction *PtrDef = 7322 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7323 if (PtrDef && TheLoop->contains(PtrDef) && 7324 getWideningDecision(&I, VF) != CM_GatherScatter) 7325 AddrDefs.insert(PtrDef); 7326 } 7327 7328 // Add all instructions used to generate the addresses. 7329 SmallVector<Instruction *, 4> Worklist; 7330 append_range(Worklist, AddrDefs); 7331 while (!Worklist.empty()) { 7332 Instruction *I = Worklist.pop_back_val(); 7333 for (auto &Op : I->operands()) 7334 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7335 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7336 AddrDefs.insert(InstOp).second) 7337 Worklist.push_back(InstOp); 7338 } 7339 7340 for (auto *I : AddrDefs) { 7341 if (isa<LoadInst>(I)) { 7342 // Setting the desired widening decision should ideally be handled in 7343 // by cost functions, but since this involves the task of finding out 7344 // if the loaded register is involved in an address computation, it is 7345 // instead changed here when we know this is the case. 7346 InstWidening Decision = getWideningDecision(I, VF); 7347 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7348 // Scalarize a widened load of address. 7349 setWideningDecision( 7350 I, VF, CM_Scalarize, 7351 (VF.getKnownMinValue() * 7352 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7353 else if (auto Group = getInterleavedAccessGroup(I)) { 7354 // Scalarize an interleave group of address loads. 7355 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7356 if (Instruction *Member = Group->getMember(I)) 7357 setWideningDecision( 7358 Member, VF, CM_Scalarize, 7359 (VF.getKnownMinValue() * 7360 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7361 } 7362 } 7363 } else 7364 // Make sure I gets scalarized and a cost estimate without 7365 // scalarization overhead. 7366 ForcedScalars[VF].insert(I); 7367 } 7368 } 7369 7370 InstructionCost 7371 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7372 Type *&VectorTy) { 7373 Type *RetTy = I->getType(); 7374 if (canTruncateToMinimalBitwidth(I, VF)) 7375 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7376 auto SE = PSE.getSE(); 7377 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7378 7379 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7380 ElementCount VF) -> bool { 7381 if (VF.isScalar()) 7382 return true; 7383 7384 auto Scalarized = InstsToScalarize.find(VF); 7385 assert(Scalarized != InstsToScalarize.end() && 7386 "VF not yet analyzed for scalarization profitability"); 7387 return !Scalarized->second.count(I) && 7388 llvm::all_of(I->users(), [&](User *U) { 7389 auto *UI = cast<Instruction>(U); 7390 return !Scalarized->second.count(UI); 7391 }); 7392 }; 7393 (void) hasSingleCopyAfterVectorization; 7394 7395 if (isScalarAfterVectorization(I, VF)) { 7396 // With the exception of GEPs and PHIs, after scalarization there should 7397 // only be one copy of the instruction generated in the loop. This is 7398 // because the VF is either 1, or any instructions that need scalarizing 7399 // have already been dealt with by the the time we get here. As a result, 7400 // it means we don't have to multiply the instruction cost by VF. 7401 assert(I->getOpcode() == Instruction::GetElementPtr || 7402 I->getOpcode() == Instruction::PHI || 7403 (I->getOpcode() == Instruction::BitCast && 7404 I->getType()->isPointerTy()) || 7405 hasSingleCopyAfterVectorization(I, VF)); 7406 VectorTy = RetTy; 7407 } else 7408 VectorTy = ToVectorTy(RetTy, VF); 7409 7410 // TODO: We need to estimate the cost of intrinsic calls. 7411 switch (I->getOpcode()) { 7412 case Instruction::GetElementPtr: 7413 // We mark this instruction as zero-cost because the cost of GEPs in 7414 // vectorized code depends on whether the corresponding memory instruction 7415 // is scalarized or not. Therefore, we handle GEPs with the memory 7416 // instruction cost. 7417 return 0; 7418 case Instruction::Br: { 7419 // In cases of scalarized and predicated instructions, there will be VF 7420 // predicated blocks in the vectorized loop. Each branch around these 7421 // blocks requires also an extract of its vector compare i1 element. 7422 bool ScalarPredicatedBB = false; 7423 BranchInst *BI = cast<BranchInst>(I); 7424 if (VF.isVector() && BI->isConditional() && 7425 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7426 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7427 ScalarPredicatedBB = true; 7428 7429 if (ScalarPredicatedBB) { 7430 // Not possible to scalarize scalable vector with predicated instructions. 7431 if (VF.isScalable()) 7432 return InstructionCost::getInvalid(); 7433 // Return cost for branches around scalarized and predicated blocks. 7434 auto *Vec_i1Ty = 7435 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7436 return ( 7437 TTI.getScalarizationOverhead( 7438 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7439 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7440 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7441 // The back-edge branch will remain, as will all scalar branches. 7442 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7443 else 7444 // This branch will be eliminated by if-conversion. 7445 return 0; 7446 // Note: We currently assume zero cost for an unconditional branch inside 7447 // a predicated block since it will become a fall-through, although we 7448 // may decide in the future to call TTI for all branches. 7449 } 7450 case Instruction::PHI: { 7451 auto *Phi = cast<PHINode>(I); 7452 7453 // First-order recurrences are replaced by vector shuffles inside the loop. 7454 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7455 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7456 return TTI.getShuffleCost( 7457 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7458 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7459 7460 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7461 // converted into select instructions. We require N - 1 selects per phi 7462 // node, where N is the number of incoming values. 7463 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7464 return (Phi->getNumIncomingValues() - 1) * 7465 TTI.getCmpSelInstrCost( 7466 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7467 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7468 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7469 7470 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7471 } 7472 case Instruction::UDiv: 7473 case Instruction::SDiv: 7474 case Instruction::URem: 7475 case Instruction::SRem: 7476 // If we have a predicated instruction, it may not be executed for each 7477 // vector lane. Get the scalarization cost and scale this amount by the 7478 // probability of executing the predicated block. If the instruction is not 7479 // predicated, we fall through to the next case. 7480 if (VF.isVector() && isScalarWithPredication(I)) { 7481 InstructionCost Cost = 0; 7482 7483 // These instructions have a non-void type, so account for the phi nodes 7484 // that we will create. This cost is likely to be zero. The phi node 7485 // cost, if any, should be scaled by the block probability because it 7486 // models a copy at the end of each predicated block. 7487 Cost += VF.getKnownMinValue() * 7488 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7489 7490 // The cost of the non-predicated instruction. 7491 Cost += VF.getKnownMinValue() * 7492 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7493 7494 // The cost of insertelement and extractelement instructions needed for 7495 // scalarization. 7496 Cost += getScalarizationOverhead(I, VF); 7497 7498 // Scale the cost by the probability of executing the predicated blocks. 7499 // This assumes the predicated block for each vector lane is equally 7500 // likely. 7501 return Cost / getReciprocalPredBlockProb(); 7502 } 7503 LLVM_FALLTHROUGH; 7504 case Instruction::Add: 7505 case Instruction::FAdd: 7506 case Instruction::Sub: 7507 case Instruction::FSub: 7508 case Instruction::Mul: 7509 case Instruction::FMul: 7510 case Instruction::FDiv: 7511 case Instruction::FRem: 7512 case Instruction::Shl: 7513 case Instruction::LShr: 7514 case Instruction::AShr: 7515 case Instruction::And: 7516 case Instruction::Or: 7517 case Instruction::Xor: { 7518 // Since we will replace the stride by 1 the multiplication should go away. 7519 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7520 return 0; 7521 7522 // Detect reduction patterns 7523 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7524 return *RedCost; 7525 7526 // Certain instructions can be cheaper to vectorize if they have a constant 7527 // second vector operand. One example of this are shifts on x86. 7528 Value *Op2 = I->getOperand(1); 7529 TargetTransformInfo::OperandValueProperties Op2VP; 7530 TargetTransformInfo::OperandValueKind Op2VK = 7531 TTI.getOperandInfo(Op2, Op2VP); 7532 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7533 Op2VK = TargetTransformInfo::OK_UniformValue; 7534 7535 SmallVector<const Value *, 4> Operands(I->operand_values()); 7536 return TTI.getArithmeticInstrCost( 7537 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7538 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7539 } 7540 case Instruction::FNeg: { 7541 return TTI.getArithmeticInstrCost( 7542 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7543 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7544 TargetTransformInfo::OP_None, I->getOperand(0), I); 7545 } 7546 case Instruction::Select: { 7547 SelectInst *SI = cast<SelectInst>(I); 7548 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7549 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7550 7551 const Value *Op0, *Op1; 7552 using namespace llvm::PatternMatch; 7553 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7554 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7555 // select x, y, false --> x & y 7556 // select x, true, y --> x | y 7557 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7558 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7559 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7560 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7561 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7562 Op1->getType()->getScalarSizeInBits() == 1); 7563 7564 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7565 return TTI.getArithmeticInstrCost( 7566 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7567 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7568 } 7569 7570 Type *CondTy = SI->getCondition()->getType(); 7571 if (!ScalarCond) 7572 CondTy = VectorType::get(CondTy, VF); 7573 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7574 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7575 } 7576 case Instruction::ICmp: 7577 case Instruction::FCmp: { 7578 Type *ValTy = I->getOperand(0)->getType(); 7579 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7580 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7581 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7582 VectorTy = ToVectorTy(ValTy, VF); 7583 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7584 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7585 } 7586 case Instruction::Store: 7587 case Instruction::Load: { 7588 ElementCount Width = VF; 7589 if (Width.isVector()) { 7590 InstWidening Decision = getWideningDecision(I, Width); 7591 assert(Decision != CM_Unknown && 7592 "CM decision should be taken at this point"); 7593 if (Decision == CM_Scalarize) 7594 Width = ElementCount::getFixed(1); 7595 } 7596 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7597 return getMemoryInstructionCost(I, VF); 7598 } 7599 case Instruction::BitCast: 7600 if (I->getType()->isPointerTy()) 7601 return 0; 7602 LLVM_FALLTHROUGH; 7603 case Instruction::ZExt: 7604 case Instruction::SExt: 7605 case Instruction::FPToUI: 7606 case Instruction::FPToSI: 7607 case Instruction::FPExt: 7608 case Instruction::PtrToInt: 7609 case Instruction::IntToPtr: 7610 case Instruction::SIToFP: 7611 case Instruction::UIToFP: 7612 case Instruction::Trunc: 7613 case Instruction::FPTrunc: { 7614 // Computes the CastContextHint from a Load/Store instruction. 7615 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7616 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7617 "Expected a load or a store!"); 7618 7619 if (VF.isScalar() || !TheLoop->contains(I)) 7620 return TTI::CastContextHint::Normal; 7621 7622 switch (getWideningDecision(I, VF)) { 7623 case LoopVectorizationCostModel::CM_GatherScatter: 7624 return TTI::CastContextHint::GatherScatter; 7625 case LoopVectorizationCostModel::CM_Interleave: 7626 return TTI::CastContextHint::Interleave; 7627 case LoopVectorizationCostModel::CM_Scalarize: 7628 case LoopVectorizationCostModel::CM_Widen: 7629 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7630 : TTI::CastContextHint::Normal; 7631 case LoopVectorizationCostModel::CM_Widen_Reverse: 7632 return TTI::CastContextHint::Reversed; 7633 case LoopVectorizationCostModel::CM_Unknown: 7634 llvm_unreachable("Instr did not go through cost modelling?"); 7635 } 7636 7637 llvm_unreachable("Unhandled case!"); 7638 }; 7639 7640 unsigned Opcode = I->getOpcode(); 7641 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7642 // For Trunc, the context is the only user, which must be a StoreInst. 7643 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7644 if (I->hasOneUse()) 7645 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7646 CCH = ComputeCCH(Store); 7647 } 7648 // For Z/Sext, the context is the operand, which must be a LoadInst. 7649 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7650 Opcode == Instruction::FPExt) { 7651 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7652 CCH = ComputeCCH(Load); 7653 } 7654 7655 // We optimize the truncation of induction variables having constant 7656 // integer steps. The cost of these truncations is the same as the scalar 7657 // operation. 7658 if (isOptimizableIVTruncate(I, VF)) { 7659 auto *Trunc = cast<TruncInst>(I); 7660 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7661 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7662 } 7663 7664 // Detect reduction patterns 7665 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7666 return *RedCost; 7667 7668 Type *SrcScalarTy = I->getOperand(0)->getType(); 7669 Type *SrcVecTy = 7670 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7671 if (canTruncateToMinimalBitwidth(I, VF)) { 7672 // This cast is going to be shrunk. This may remove the cast or it might 7673 // turn it into slightly different cast. For example, if MinBW == 16, 7674 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7675 // 7676 // Calculate the modified src and dest types. 7677 Type *MinVecTy = VectorTy; 7678 if (Opcode == Instruction::Trunc) { 7679 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7680 VectorTy = 7681 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7682 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7683 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7684 VectorTy = 7685 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7686 } 7687 } 7688 7689 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7690 } 7691 case Instruction::Call: { 7692 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7693 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7694 return *RedCost; 7695 bool NeedToScalarize; 7696 CallInst *CI = cast<CallInst>(I); 7697 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7698 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7699 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7700 return std::min(CallCost, IntrinsicCost); 7701 } 7702 return CallCost; 7703 } 7704 case Instruction::ExtractValue: 7705 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7706 case Instruction::Alloca: 7707 // We cannot easily widen alloca to a scalable alloca, as 7708 // the result would need to be a vector of pointers. 7709 if (VF.isScalable()) 7710 return InstructionCost::getInvalid(); 7711 LLVM_FALLTHROUGH; 7712 default: 7713 // This opcode is unknown. Assume that it is the same as 'mul'. 7714 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7715 } // end of switch. 7716 } 7717 7718 char LoopVectorize::ID = 0; 7719 7720 static const char lv_name[] = "Loop Vectorization"; 7721 7722 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7723 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7724 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7725 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7726 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7727 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7729 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7730 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7731 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7732 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7733 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7734 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7735 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7736 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7737 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7738 7739 namespace llvm { 7740 7741 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7742 7743 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7744 bool VectorizeOnlyWhenForced) { 7745 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7746 } 7747 7748 } // end namespace llvm 7749 7750 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7751 // Check if the pointer operand of a load or store instruction is 7752 // consecutive. 7753 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7754 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7755 return false; 7756 } 7757 7758 void LoopVectorizationCostModel::collectValuesToIgnore() { 7759 // Ignore ephemeral values. 7760 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7761 7762 // Ignore type-promoting instructions we identified during reduction 7763 // detection. 7764 for (auto &Reduction : Legal->getReductionVars()) { 7765 RecurrenceDescriptor &RedDes = Reduction.second; 7766 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7767 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7768 } 7769 // Ignore type-casting instructions we identified during induction 7770 // detection. 7771 for (auto &Induction : Legal->getInductionVars()) { 7772 InductionDescriptor &IndDes = Induction.second; 7773 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7774 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7775 } 7776 } 7777 7778 void LoopVectorizationCostModel::collectInLoopReductions() { 7779 for (auto &Reduction : Legal->getReductionVars()) { 7780 PHINode *Phi = Reduction.first; 7781 RecurrenceDescriptor &RdxDesc = Reduction.second; 7782 7783 // We don't collect reductions that are type promoted (yet). 7784 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7785 continue; 7786 7787 // If the target would prefer this reduction to happen "in-loop", then we 7788 // want to record it as such. 7789 unsigned Opcode = RdxDesc.getOpcode(); 7790 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7791 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7792 TargetTransformInfo::ReductionFlags())) 7793 continue; 7794 7795 // Check that we can correctly put the reductions into the loop, by 7796 // finding the chain of operations that leads from the phi to the loop 7797 // exit value. 7798 SmallVector<Instruction *, 4> ReductionOperations = 7799 RdxDesc.getReductionOpChain(Phi, TheLoop); 7800 bool InLoop = !ReductionOperations.empty(); 7801 if (InLoop) { 7802 InLoopReductionChains[Phi] = ReductionOperations; 7803 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7804 Instruction *LastChain = Phi; 7805 for (auto *I : ReductionOperations) { 7806 InLoopReductionImmediateChains[I] = LastChain; 7807 LastChain = I; 7808 } 7809 } 7810 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7811 << " reduction for phi: " << *Phi << "\n"); 7812 } 7813 } 7814 7815 // TODO: we could return a pair of values that specify the max VF and 7816 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7817 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7818 // doesn't have a cost model that can choose which plan to execute if 7819 // more than one is generated. 7820 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7821 LoopVectorizationCostModel &CM) { 7822 unsigned WidestType; 7823 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7824 return WidestVectorRegBits / WidestType; 7825 } 7826 7827 VectorizationFactor 7828 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7829 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7830 ElementCount VF = UserVF; 7831 // Outer loop handling: They may require CFG and instruction level 7832 // transformations before even evaluating whether vectorization is profitable. 7833 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7834 // the vectorization pipeline. 7835 if (!OrigLoop->isInnermost()) { 7836 // If the user doesn't provide a vectorization factor, determine a 7837 // reasonable one. 7838 if (UserVF.isZero()) { 7839 VF = ElementCount::getFixed(determineVPlanVF( 7840 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7841 .getFixedSize(), 7842 CM)); 7843 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7844 7845 // Make sure we have a VF > 1 for stress testing. 7846 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7847 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7848 << "overriding computed VF.\n"); 7849 VF = ElementCount::getFixed(4); 7850 } 7851 } 7852 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7853 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7854 "VF needs to be a power of two"); 7855 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7856 << "VF " << VF << " to build VPlans.\n"); 7857 buildVPlans(VF, VF); 7858 7859 // For VPlan build stress testing, we bail out after VPlan construction. 7860 if (VPlanBuildStressTest) 7861 return VectorizationFactor::Disabled(); 7862 7863 return {VF, 0 /*Cost*/}; 7864 } 7865 7866 LLVM_DEBUG( 7867 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7868 "VPlan-native path.\n"); 7869 return VectorizationFactor::Disabled(); 7870 } 7871 7872 Optional<VectorizationFactor> 7873 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7874 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7875 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7876 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7877 return None; 7878 7879 // Invalidate interleave groups if all blocks of loop will be predicated. 7880 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7881 !useMaskedInterleavedAccesses(*TTI)) { 7882 LLVM_DEBUG( 7883 dbgs() 7884 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7885 "which requires masked-interleaved support.\n"); 7886 if (CM.InterleaveInfo.invalidateGroups()) 7887 // Invalidating interleave groups also requires invalidating all decisions 7888 // based on them, which includes widening decisions and uniform and scalar 7889 // values. 7890 CM.invalidateCostModelingDecisions(); 7891 } 7892 7893 ElementCount MaxUserVF = 7894 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7895 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7896 if (!UserVF.isZero() && UserVFIsLegal) { 7897 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7898 "VF needs to be a power of two"); 7899 // Collect the instructions (and their associated costs) that will be more 7900 // profitable to scalarize. 7901 if (CM.selectUserVectorizationFactor(UserVF)) { 7902 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7903 CM.collectInLoopReductions(); 7904 buildVPlansWithVPRecipes(UserVF, UserVF); 7905 LLVM_DEBUG(printPlans(dbgs())); 7906 return {{UserVF, 0}}; 7907 } else 7908 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7909 "InvalidCost", ORE, OrigLoop); 7910 } 7911 7912 // Populate the set of Vectorization Factor Candidates. 7913 ElementCountSet VFCandidates; 7914 for (auto VF = ElementCount::getFixed(1); 7915 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7916 VFCandidates.insert(VF); 7917 for (auto VF = ElementCount::getScalable(1); 7918 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7919 VFCandidates.insert(VF); 7920 7921 for (const auto &VF : VFCandidates) { 7922 // Collect Uniform and Scalar instructions after vectorization with VF. 7923 CM.collectUniformsAndScalars(VF); 7924 7925 // Collect the instructions (and their associated costs) that will be more 7926 // profitable to scalarize. 7927 if (VF.isVector()) 7928 CM.collectInstsToScalarize(VF); 7929 } 7930 7931 CM.collectInLoopReductions(); 7932 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7933 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7934 7935 LLVM_DEBUG(printPlans(dbgs())); 7936 if (!MaxFactors.hasVector()) 7937 return VectorizationFactor::Disabled(); 7938 7939 // Select the optimal vectorization factor. 7940 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7941 7942 // Check if it is profitable to vectorize with runtime checks. 7943 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7944 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7945 bool PragmaThresholdReached = 7946 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7947 bool ThresholdReached = 7948 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7949 if ((ThresholdReached && !Hints.allowReordering()) || 7950 PragmaThresholdReached) { 7951 ORE->emit([&]() { 7952 return OptimizationRemarkAnalysisAliasing( 7953 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7954 OrigLoop->getHeader()) 7955 << "loop not vectorized: cannot prove it is safe to reorder " 7956 "memory operations"; 7957 }); 7958 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7959 Hints.emitRemarkWithHints(); 7960 return VectorizationFactor::Disabled(); 7961 } 7962 } 7963 return SelectedVF; 7964 } 7965 7966 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7967 assert(count_if(VPlans, 7968 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7969 1 && 7970 "Best VF has not a single VPlan."); 7971 7972 for (const VPlanPtr &Plan : VPlans) { 7973 if (Plan->hasVF(VF)) 7974 return *Plan.get(); 7975 } 7976 llvm_unreachable("No plan found!"); 7977 } 7978 7979 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7980 VPlan &BestVPlan, 7981 InnerLoopVectorizer &ILV, 7982 DominatorTree *DT) { 7983 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7984 << '\n'); 7985 7986 // Perform the actual loop transformation. 7987 7988 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7989 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7990 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7991 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7992 State.CanonicalIV = ILV.Induction; 7993 ILV.collectPoisonGeneratingRecipes(State); 7994 7995 ILV.printDebugTracesAtStart(); 7996 7997 //===------------------------------------------------===// 7998 // 7999 // Notice: any optimization or new instruction that go 8000 // into the code below should also be implemented in 8001 // the cost-model. 8002 // 8003 //===------------------------------------------------===// 8004 8005 // 2. Copy and widen instructions from the old loop into the new loop. 8006 BestVPlan.execute(&State); 8007 8008 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8009 // predication, updating analyses. 8010 ILV.fixVectorizedLoop(State); 8011 8012 ILV.printDebugTracesAtEnd(); 8013 } 8014 8015 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8016 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8017 for (const auto &Plan : VPlans) 8018 if (PrintVPlansInDotFormat) 8019 Plan->printDOT(O); 8020 else 8021 Plan->print(O); 8022 } 8023 #endif 8024 8025 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8026 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8027 8028 // We create new control-flow for the vectorized loop, so the original exit 8029 // conditions will be dead after vectorization if it's only used by the 8030 // terminator 8031 SmallVector<BasicBlock*> ExitingBlocks; 8032 OrigLoop->getExitingBlocks(ExitingBlocks); 8033 for (auto *BB : ExitingBlocks) { 8034 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8035 if (!Cmp || !Cmp->hasOneUse()) 8036 continue; 8037 8038 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8039 if (!DeadInstructions.insert(Cmp).second) 8040 continue; 8041 8042 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8043 // TODO: can recurse through operands in general 8044 for (Value *Op : Cmp->operands()) { 8045 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8046 DeadInstructions.insert(cast<Instruction>(Op)); 8047 } 8048 } 8049 8050 // We create new "steps" for induction variable updates to which the original 8051 // induction variables map. An original update instruction will be dead if 8052 // all its users except the induction variable are dead. 8053 auto *Latch = OrigLoop->getLoopLatch(); 8054 for (auto &Induction : Legal->getInductionVars()) { 8055 PHINode *Ind = Induction.first; 8056 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8057 8058 // If the tail is to be folded by masking, the primary induction variable, 8059 // if exists, isn't dead: it will be used for masking. Don't kill it. 8060 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8061 continue; 8062 8063 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8064 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8065 })) 8066 DeadInstructions.insert(IndUpdate); 8067 8068 // We record as "Dead" also the type-casting instructions we had identified 8069 // during induction analysis. We don't need any handling for them in the 8070 // vectorized loop because we have proven that, under a proper runtime 8071 // test guarding the vectorized loop, the value of the phi, and the casted 8072 // value of the phi, are the same. The last instruction in this casting chain 8073 // will get its scalar/vector/widened def from the scalar/vector/widened def 8074 // of the respective phi node. Any other casts in the induction def-use chain 8075 // have no other uses outside the phi update chain, and will be ignored. 8076 InductionDescriptor &IndDes = Induction.second; 8077 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8078 DeadInstructions.insert(Casts.begin(), Casts.end()); 8079 } 8080 } 8081 8082 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8083 8084 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8085 8086 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx, 8087 Value *Step, 8088 Instruction::BinaryOps BinOp) { 8089 // When unrolling and the VF is 1, we only need to add a simple scalar. 8090 Type *Ty = Val->getType(); 8091 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8092 8093 if (Ty->isFloatingPointTy()) { 8094 // Floating-point operations inherit FMF via the builder's flags. 8095 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 8096 return Builder.CreateBinOp(BinOp, Val, MulOp); 8097 } 8098 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction"); 8099 } 8100 8101 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8102 SmallVector<Metadata *, 4> MDs; 8103 // Reserve first location for self reference to the LoopID metadata node. 8104 MDs.push_back(nullptr); 8105 bool IsUnrollMetadata = false; 8106 MDNode *LoopID = L->getLoopID(); 8107 if (LoopID) { 8108 // First find existing loop unrolling disable metadata. 8109 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8110 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8111 if (MD) { 8112 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8113 IsUnrollMetadata = 8114 S && S->getString().startswith("llvm.loop.unroll.disable"); 8115 } 8116 MDs.push_back(LoopID->getOperand(i)); 8117 } 8118 } 8119 8120 if (!IsUnrollMetadata) { 8121 // Add runtime unroll disable metadata. 8122 LLVMContext &Context = L->getHeader()->getContext(); 8123 SmallVector<Metadata *, 1> DisableOperands; 8124 DisableOperands.push_back( 8125 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8126 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8127 MDs.push_back(DisableNode); 8128 MDNode *NewLoopID = MDNode::get(Context, MDs); 8129 // Set operand 0 to refer to the loop id itself. 8130 NewLoopID->replaceOperandWith(0, NewLoopID); 8131 L->setLoopID(NewLoopID); 8132 } 8133 } 8134 8135 //===--------------------------------------------------------------------===// 8136 // EpilogueVectorizerMainLoop 8137 //===--------------------------------------------------------------------===// 8138 8139 /// This function is partially responsible for generating the control flow 8140 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8141 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8142 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8143 Loop *Lp = createVectorLoopSkeleton(""); 8144 8145 // Generate the code to check the minimum iteration count of the vector 8146 // epilogue (see below). 8147 EPI.EpilogueIterationCountCheck = 8148 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8149 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8150 8151 // Generate the code to check any assumptions that we've made for SCEV 8152 // expressions. 8153 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8154 8155 // Generate the code that checks at runtime if arrays overlap. We put the 8156 // checks into a separate block to make the more common case of few elements 8157 // faster. 8158 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8159 8160 // Generate the iteration count check for the main loop, *after* the check 8161 // for the epilogue loop, so that the path-length is shorter for the case 8162 // that goes directly through the vector epilogue. The longer-path length for 8163 // the main loop is compensated for, by the gain from vectorizing the larger 8164 // trip count. Note: the branch will get updated later on when we vectorize 8165 // the epilogue. 8166 EPI.MainLoopIterationCountCheck = 8167 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8168 8169 // Generate the induction variable. 8170 OldInduction = Legal->getPrimaryInduction(); 8171 Type *IdxTy = Legal->getWidestInductionType(); 8172 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8173 8174 IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt()); 8175 Value *Step = getRuntimeVF(B, IdxTy, VF * UF); 8176 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8177 EPI.VectorTripCount = CountRoundDown; 8178 Induction = 8179 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8180 getDebugLocFromInstOrOperands(OldInduction)); 8181 8182 // Skip induction resume value creation here because they will be created in 8183 // the second pass. If we created them here, they wouldn't be used anyway, 8184 // because the vplan in the second pass still contains the inductions from the 8185 // original loop. 8186 8187 return completeLoopSkeleton(Lp, OrigLoopID); 8188 } 8189 8190 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8191 LLVM_DEBUG({ 8192 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8193 << "Main Loop VF:" << EPI.MainLoopVF 8194 << ", Main Loop UF:" << EPI.MainLoopUF 8195 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8196 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8197 }); 8198 } 8199 8200 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8201 DEBUG_WITH_TYPE(VerboseDebug, { 8202 dbgs() << "intermediate fn:\n" 8203 << *OrigLoop->getHeader()->getParent() << "\n"; 8204 }); 8205 } 8206 8207 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8208 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8209 assert(L && "Expected valid Loop."); 8210 assert(Bypass && "Expected valid bypass basic block."); 8211 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8212 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8213 Value *Count = getOrCreateTripCount(L); 8214 // Reuse existing vector loop preheader for TC checks. 8215 // Note that new preheader block is generated for vector loop. 8216 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8217 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8218 8219 // Generate code to check if the loop's trip count is less than VF * UF of the 8220 // main vector loop. 8221 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8222 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8223 8224 Value *CheckMinIters = Builder.CreateICmp( 8225 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8226 "min.iters.check"); 8227 8228 if (!ForEpilogue) 8229 TCCheckBlock->setName("vector.main.loop.iter.check"); 8230 8231 // Create new preheader for vector loop. 8232 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8233 DT, LI, nullptr, "vector.ph"); 8234 8235 if (ForEpilogue) { 8236 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8237 DT->getNode(Bypass)->getIDom()) && 8238 "TC check is expected to dominate Bypass"); 8239 8240 // Update dominator for Bypass & LoopExit. 8241 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8242 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8243 // For loops with multiple exits, there's no edge from the middle block 8244 // to exit blocks (as the epilogue must run) and thus no need to update 8245 // the immediate dominator of the exit blocks. 8246 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8247 8248 LoopBypassBlocks.push_back(TCCheckBlock); 8249 8250 // Save the trip count so we don't have to regenerate it in the 8251 // vec.epilog.iter.check. This is safe to do because the trip count 8252 // generated here dominates the vector epilog iter check. 8253 EPI.TripCount = Count; 8254 } 8255 8256 ReplaceInstWithInst( 8257 TCCheckBlock->getTerminator(), 8258 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8259 8260 return TCCheckBlock; 8261 } 8262 8263 //===--------------------------------------------------------------------===// 8264 // EpilogueVectorizerEpilogueLoop 8265 //===--------------------------------------------------------------------===// 8266 8267 /// This function is partially responsible for generating the control flow 8268 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8269 BasicBlock * 8270 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8271 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8272 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8273 8274 // Now, compare the remaining count and if there aren't enough iterations to 8275 // execute the vectorized epilogue skip to the scalar part. 8276 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8277 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8278 LoopVectorPreHeader = 8279 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8280 LI, nullptr, "vec.epilog.ph"); 8281 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8282 VecEpilogueIterationCountCheck); 8283 8284 // Adjust the control flow taking the state info from the main loop 8285 // vectorization into account. 8286 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8287 "expected this to be saved from the previous pass."); 8288 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8289 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8290 8291 DT->changeImmediateDominator(LoopVectorPreHeader, 8292 EPI.MainLoopIterationCountCheck); 8293 8294 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8295 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8296 8297 if (EPI.SCEVSafetyCheck) 8298 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8299 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8300 if (EPI.MemSafetyCheck) 8301 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8302 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8303 8304 DT->changeImmediateDominator( 8305 VecEpilogueIterationCountCheck, 8306 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8307 8308 DT->changeImmediateDominator(LoopScalarPreHeader, 8309 EPI.EpilogueIterationCountCheck); 8310 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8311 // If there is an epilogue which must run, there's no edge from the 8312 // middle block to exit blocks and thus no need to update the immediate 8313 // dominator of the exit blocks. 8314 DT->changeImmediateDominator(LoopExitBlock, 8315 EPI.EpilogueIterationCountCheck); 8316 8317 // Keep track of bypass blocks, as they feed start values to the induction 8318 // phis in the scalar loop preheader. 8319 if (EPI.SCEVSafetyCheck) 8320 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8321 if (EPI.MemSafetyCheck) 8322 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8323 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8324 8325 // Generate a resume induction for the vector epilogue and put it in the 8326 // vector epilogue preheader 8327 Type *IdxTy = Legal->getWidestInductionType(); 8328 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8329 LoopVectorPreHeader->getFirstNonPHI()); 8330 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8331 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8332 EPI.MainLoopIterationCountCheck); 8333 8334 // Generate the induction variable. 8335 OldInduction = Legal->getPrimaryInduction(); 8336 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8337 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8338 Value *StartIdx = EPResumeVal; 8339 Induction = 8340 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8341 getDebugLocFromInstOrOperands(OldInduction)); 8342 8343 // Generate induction resume values. These variables save the new starting 8344 // indexes for the scalar loop. They are used to test if there are any tail 8345 // iterations left once the vector loop has completed. 8346 // Note that when the vectorized epilogue is skipped due to iteration count 8347 // check, then the resume value for the induction variable comes from 8348 // the trip count of the main vector loop, hence passing the AdditionalBypass 8349 // argument. 8350 createInductionResumeValues(Lp, CountRoundDown, 8351 {VecEpilogueIterationCountCheck, 8352 EPI.VectorTripCount} /* AdditionalBypass */); 8353 8354 AddRuntimeUnrollDisableMetaData(Lp); 8355 return completeLoopSkeleton(Lp, OrigLoopID); 8356 } 8357 8358 BasicBlock * 8359 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8360 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8361 8362 assert(EPI.TripCount && 8363 "Expected trip count to have been safed in the first pass."); 8364 assert( 8365 (!isa<Instruction>(EPI.TripCount) || 8366 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8367 "saved trip count does not dominate insertion point."); 8368 Value *TC = EPI.TripCount; 8369 IRBuilder<> Builder(Insert->getTerminator()); 8370 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8371 8372 // Generate code to check if the loop's trip count is less than VF * UF of the 8373 // vector epilogue loop. 8374 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8375 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8376 8377 Value *CheckMinIters = 8378 Builder.CreateICmp(P, Count, 8379 createStepForVF(Builder, Count->getType(), 8380 EPI.EpilogueVF, EPI.EpilogueUF), 8381 "min.epilog.iters.check"); 8382 8383 ReplaceInstWithInst( 8384 Insert->getTerminator(), 8385 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8386 8387 LoopBypassBlocks.push_back(Insert); 8388 return Insert; 8389 } 8390 8391 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8392 LLVM_DEBUG({ 8393 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8394 << "Epilogue Loop VF:" << EPI.EpilogueVF 8395 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8396 }); 8397 } 8398 8399 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8400 DEBUG_WITH_TYPE(VerboseDebug, { 8401 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8402 }); 8403 } 8404 8405 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8406 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8407 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8408 bool PredicateAtRangeStart = Predicate(Range.Start); 8409 8410 for (ElementCount TmpVF = Range.Start * 2; 8411 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8412 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8413 Range.End = TmpVF; 8414 break; 8415 } 8416 8417 return PredicateAtRangeStart; 8418 } 8419 8420 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8421 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8422 /// of VF's starting at a given VF and extending it as much as possible. Each 8423 /// vectorization decision can potentially shorten this sub-range during 8424 /// buildVPlan(). 8425 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8426 ElementCount MaxVF) { 8427 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8428 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8429 VFRange SubRange = {VF, MaxVFPlusOne}; 8430 VPlans.push_back(buildVPlan(SubRange)); 8431 VF = SubRange.End; 8432 } 8433 } 8434 8435 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8436 VPlanPtr &Plan) { 8437 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8438 8439 // Look for cached value. 8440 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8441 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8442 if (ECEntryIt != EdgeMaskCache.end()) 8443 return ECEntryIt->second; 8444 8445 VPValue *SrcMask = createBlockInMask(Src, Plan); 8446 8447 // The terminator has to be a branch inst! 8448 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8449 assert(BI && "Unexpected terminator found"); 8450 8451 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8452 return EdgeMaskCache[Edge] = SrcMask; 8453 8454 // If source is an exiting block, we know the exit edge is dynamically dead 8455 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8456 // adding uses of an otherwise potentially dead instruction. 8457 if (OrigLoop->isLoopExiting(Src)) 8458 return EdgeMaskCache[Edge] = SrcMask; 8459 8460 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8461 assert(EdgeMask && "No Edge Mask found for condition"); 8462 8463 if (BI->getSuccessor(0) != Dst) 8464 EdgeMask = Builder.createNot(EdgeMask); 8465 8466 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8467 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8468 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8469 // The select version does not introduce new UB if SrcMask is false and 8470 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8471 VPValue *False = Plan->getOrAddVPValue( 8472 ConstantInt::getFalse(BI->getCondition()->getType())); 8473 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8474 } 8475 8476 return EdgeMaskCache[Edge] = EdgeMask; 8477 } 8478 8479 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8480 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8481 8482 // Look for cached value. 8483 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8484 if (BCEntryIt != BlockMaskCache.end()) 8485 return BCEntryIt->second; 8486 8487 // All-one mask is modelled as no-mask following the convention for masked 8488 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8489 VPValue *BlockMask = nullptr; 8490 8491 if (OrigLoop->getHeader() == BB) { 8492 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8493 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8494 8495 // Create the block in mask as the first non-phi instruction in the block. 8496 VPBuilder::InsertPointGuard Guard(Builder); 8497 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8498 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8499 8500 // Introduce the early-exit compare IV <= BTC to form header block mask. 8501 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8502 // Start by constructing the desired canonical IV. 8503 VPValue *IV = nullptr; 8504 if (Legal->getPrimaryInduction()) 8505 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8506 else { 8507 auto *IVRecipe = new VPWidenCanonicalIVRecipe(); 8508 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8509 IV = IVRecipe; 8510 } 8511 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8512 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8513 8514 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8515 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8516 // as a second argument, we only pass the IV here and extract the 8517 // tripcount from the transform state where codegen of the VP instructions 8518 // happen. 8519 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8520 } else { 8521 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8522 } 8523 return BlockMaskCache[BB] = BlockMask; 8524 } 8525 8526 // This is the block mask. We OR all incoming edges. 8527 for (auto *Predecessor : predecessors(BB)) { 8528 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8529 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8530 return BlockMaskCache[BB] = EdgeMask; 8531 8532 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8533 BlockMask = EdgeMask; 8534 continue; 8535 } 8536 8537 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8538 } 8539 8540 return BlockMaskCache[BB] = BlockMask; 8541 } 8542 8543 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8544 ArrayRef<VPValue *> Operands, 8545 VFRange &Range, 8546 VPlanPtr &Plan) { 8547 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8548 "Must be called with either a load or store"); 8549 8550 auto willWiden = [&](ElementCount VF) -> bool { 8551 if (VF.isScalar()) 8552 return false; 8553 LoopVectorizationCostModel::InstWidening Decision = 8554 CM.getWideningDecision(I, VF); 8555 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8556 "CM decision should be taken at this point."); 8557 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8558 return true; 8559 if (CM.isScalarAfterVectorization(I, VF) || 8560 CM.isProfitableToScalarize(I, VF)) 8561 return false; 8562 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8563 }; 8564 8565 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8566 return nullptr; 8567 8568 VPValue *Mask = nullptr; 8569 if (Legal->isMaskRequired(I)) 8570 Mask = createBlockInMask(I->getParent(), Plan); 8571 8572 // Determine if the pointer operand of the access is either consecutive or 8573 // reverse consecutive. 8574 LoopVectorizationCostModel::InstWidening Decision = 8575 CM.getWideningDecision(I, Range.Start); 8576 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8577 bool Consecutive = 8578 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8579 8580 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8581 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8582 Consecutive, Reverse); 8583 8584 StoreInst *Store = cast<StoreInst>(I); 8585 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8586 Mask, Consecutive, Reverse); 8587 } 8588 8589 VPWidenIntOrFpInductionRecipe * 8590 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8591 ArrayRef<VPValue *> Operands) const { 8592 // Check if this is an integer or fp induction. If so, build the recipe that 8593 // produces its scalar and vector values. 8594 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8595 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8596 II.getKind() == InductionDescriptor::IK_FpInduction) { 8597 assert(II.getStartValue() == 8598 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8599 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8600 return new VPWidenIntOrFpInductionRecipe( 8601 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8602 } 8603 8604 return nullptr; 8605 } 8606 8607 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8608 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8609 VPlan &Plan) const { 8610 // Optimize the special case where the source is a constant integer 8611 // induction variable. Notice that we can only optimize the 'trunc' case 8612 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8613 // (c) other casts depend on pointer size. 8614 8615 // Determine whether \p K is a truncation based on an induction variable that 8616 // can be optimized. 8617 auto isOptimizableIVTruncate = 8618 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8619 return [=](ElementCount VF) -> bool { 8620 return CM.isOptimizableIVTruncate(K, VF); 8621 }; 8622 }; 8623 8624 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8625 isOptimizableIVTruncate(I), Range)) { 8626 8627 InductionDescriptor II = 8628 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8629 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8630 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8631 Start, nullptr, I); 8632 } 8633 return nullptr; 8634 } 8635 8636 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8637 ArrayRef<VPValue *> Operands, 8638 VPlanPtr &Plan) { 8639 // If all incoming values are equal, the incoming VPValue can be used directly 8640 // instead of creating a new VPBlendRecipe. 8641 VPValue *FirstIncoming = Operands[0]; 8642 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8643 return FirstIncoming == Inc; 8644 })) { 8645 return Operands[0]; 8646 } 8647 8648 // We know that all PHIs in non-header blocks are converted into selects, so 8649 // we don't have to worry about the insertion order and we can just use the 8650 // builder. At this point we generate the predication tree. There may be 8651 // duplications since this is a simple recursive scan, but future 8652 // optimizations will clean it up. 8653 SmallVector<VPValue *, 2> OperandsWithMask; 8654 unsigned NumIncoming = Phi->getNumIncomingValues(); 8655 8656 for (unsigned In = 0; In < NumIncoming; In++) { 8657 VPValue *EdgeMask = 8658 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8659 assert((EdgeMask || NumIncoming == 1) && 8660 "Multiple predecessors with one having a full mask"); 8661 OperandsWithMask.push_back(Operands[In]); 8662 if (EdgeMask) 8663 OperandsWithMask.push_back(EdgeMask); 8664 } 8665 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8666 } 8667 8668 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8669 ArrayRef<VPValue *> Operands, 8670 VFRange &Range) const { 8671 8672 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8673 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8674 Range); 8675 8676 if (IsPredicated) 8677 return nullptr; 8678 8679 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8680 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8681 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8682 ID == Intrinsic::pseudoprobe || 8683 ID == Intrinsic::experimental_noalias_scope_decl)) 8684 return nullptr; 8685 8686 auto willWiden = [&](ElementCount VF) -> bool { 8687 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8688 // The following case may be scalarized depending on the VF. 8689 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8690 // version of the instruction. 8691 // Is it beneficial to perform intrinsic call compared to lib call? 8692 bool NeedToScalarize = false; 8693 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8694 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8695 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8696 return UseVectorIntrinsic || !NeedToScalarize; 8697 }; 8698 8699 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8700 return nullptr; 8701 8702 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8703 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8704 } 8705 8706 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8707 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8708 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8709 // Instruction should be widened, unless it is scalar after vectorization, 8710 // scalarization is profitable or it is predicated. 8711 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8712 return CM.isScalarAfterVectorization(I, VF) || 8713 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8714 }; 8715 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8716 Range); 8717 } 8718 8719 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8720 ArrayRef<VPValue *> Operands) const { 8721 auto IsVectorizableOpcode = [](unsigned Opcode) { 8722 switch (Opcode) { 8723 case Instruction::Add: 8724 case Instruction::And: 8725 case Instruction::AShr: 8726 case Instruction::BitCast: 8727 case Instruction::FAdd: 8728 case Instruction::FCmp: 8729 case Instruction::FDiv: 8730 case Instruction::FMul: 8731 case Instruction::FNeg: 8732 case Instruction::FPExt: 8733 case Instruction::FPToSI: 8734 case Instruction::FPToUI: 8735 case Instruction::FPTrunc: 8736 case Instruction::FRem: 8737 case Instruction::FSub: 8738 case Instruction::ICmp: 8739 case Instruction::IntToPtr: 8740 case Instruction::LShr: 8741 case Instruction::Mul: 8742 case Instruction::Or: 8743 case Instruction::PtrToInt: 8744 case Instruction::SDiv: 8745 case Instruction::Select: 8746 case Instruction::SExt: 8747 case Instruction::Shl: 8748 case Instruction::SIToFP: 8749 case Instruction::SRem: 8750 case Instruction::Sub: 8751 case Instruction::Trunc: 8752 case Instruction::UDiv: 8753 case Instruction::UIToFP: 8754 case Instruction::URem: 8755 case Instruction::Xor: 8756 case Instruction::ZExt: 8757 return true; 8758 } 8759 return false; 8760 }; 8761 8762 if (!IsVectorizableOpcode(I->getOpcode())) 8763 return nullptr; 8764 8765 // Success: widen this instruction. 8766 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8767 } 8768 8769 void VPRecipeBuilder::fixHeaderPhis() { 8770 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8771 for (VPWidenPHIRecipe *R : PhisToFix) { 8772 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8773 VPRecipeBase *IncR = 8774 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8775 R->addOperand(IncR->getVPSingleValue()); 8776 } 8777 } 8778 8779 VPBasicBlock *VPRecipeBuilder::handleReplication( 8780 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8781 VPlanPtr &Plan) { 8782 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8783 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8784 Range); 8785 8786 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8787 [&](ElementCount VF) { return CM.isPredicatedInst(I, IsUniform); }, 8788 Range); 8789 8790 // Even if the instruction is not marked as uniform, there are certain 8791 // intrinsic calls that can be effectively treated as such, so we check for 8792 // them here. Conservatively, we only do this for scalable vectors, since 8793 // for fixed-width VFs we can always fall back on full scalarization. 8794 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8795 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8796 case Intrinsic::assume: 8797 case Intrinsic::lifetime_start: 8798 case Intrinsic::lifetime_end: 8799 // For scalable vectors if one of the operands is variant then we still 8800 // want to mark as uniform, which will generate one instruction for just 8801 // the first lane of the vector. We can't scalarize the call in the same 8802 // way as for fixed-width vectors because we don't know how many lanes 8803 // there are. 8804 // 8805 // The reasons for doing it this way for scalable vectors are: 8806 // 1. For the assume intrinsic generating the instruction for the first 8807 // lane is still be better than not generating any at all. For 8808 // example, the input may be a splat across all lanes. 8809 // 2. For the lifetime start/end intrinsics the pointer operand only 8810 // does anything useful when the input comes from a stack object, 8811 // which suggests it should always be uniform. For non-stack objects 8812 // the effect is to poison the object, which still allows us to 8813 // remove the call. 8814 IsUniform = true; 8815 break; 8816 default: 8817 break; 8818 } 8819 } 8820 8821 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8822 IsUniform, IsPredicated); 8823 setRecipe(I, Recipe); 8824 Plan->addVPValue(I, Recipe); 8825 8826 // Find if I uses a predicated instruction. If so, it will use its scalar 8827 // value. Avoid hoisting the insert-element which packs the scalar value into 8828 // a vector value, as that happens iff all users use the vector value. 8829 for (VPValue *Op : Recipe->operands()) { 8830 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8831 if (!PredR) 8832 continue; 8833 auto *RepR = 8834 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8835 assert(RepR->isPredicated() && 8836 "expected Replicate recipe to be predicated"); 8837 RepR->setAlsoPack(false); 8838 } 8839 8840 // Finalize the recipe for Instr, first if it is not predicated. 8841 if (!IsPredicated) { 8842 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8843 VPBB->appendRecipe(Recipe); 8844 return VPBB; 8845 } 8846 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8847 assert(VPBB->getSuccessors().empty() && 8848 "VPBB has successors when handling predicated replication."); 8849 // Record predicated instructions for above packing optimizations. 8850 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8851 VPBlockUtils::insertBlockAfter(Region, VPBB); 8852 auto *RegSucc = new VPBasicBlock(); 8853 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8854 return RegSucc; 8855 } 8856 8857 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8858 VPRecipeBase *PredRecipe, 8859 VPlanPtr &Plan) { 8860 // Instructions marked for predication are replicated and placed under an 8861 // if-then construct to prevent side-effects. 8862 8863 // Generate recipes to compute the block mask for this region. 8864 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8865 8866 // Build the triangular if-then region. 8867 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8868 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8869 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8870 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8871 auto *PHIRecipe = Instr->getType()->isVoidTy() 8872 ? nullptr 8873 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8874 if (PHIRecipe) { 8875 Plan->removeVPValueFor(Instr); 8876 Plan->addVPValue(Instr, PHIRecipe); 8877 } 8878 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8879 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8880 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8881 8882 // Note: first set Entry as region entry and then connect successors starting 8883 // from it in order, to propagate the "parent" of each VPBasicBlock. 8884 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8885 VPBlockUtils::connectBlocks(Pred, Exit); 8886 8887 return Region; 8888 } 8889 8890 VPRecipeOrVPValueTy 8891 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8892 ArrayRef<VPValue *> Operands, 8893 VFRange &Range, VPlanPtr &Plan) { 8894 // First, check for specific widening recipes that deal with calls, memory 8895 // operations, inductions and Phi nodes. 8896 if (auto *CI = dyn_cast<CallInst>(Instr)) 8897 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8898 8899 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8900 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8901 8902 VPRecipeBase *Recipe; 8903 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8904 if (Phi->getParent() != OrigLoop->getHeader()) 8905 return tryToBlend(Phi, Operands, Plan); 8906 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8907 return toVPRecipeResult(Recipe); 8908 8909 VPWidenPHIRecipe *PhiRecipe = nullptr; 8910 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8911 VPValue *StartV = Operands[0]; 8912 if (Legal->isReductionVariable(Phi)) { 8913 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8914 assert(RdxDesc.getRecurrenceStartValue() == 8915 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8916 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8917 CM.isInLoopReduction(Phi), 8918 CM.useOrderedReductions(RdxDesc)); 8919 } else { 8920 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8921 } 8922 8923 // Record the incoming value from the backedge, so we can add the incoming 8924 // value from the backedge after all recipes have been created. 8925 recordRecipeOf(cast<Instruction>( 8926 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8927 PhisToFix.push_back(PhiRecipe); 8928 } else { 8929 // TODO: record start and backedge value for remaining pointer induction 8930 // phis. 8931 assert(Phi->getType()->isPointerTy() && 8932 "only pointer phis should be handled here"); 8933 PhiRecipe = new VPWidenPHIRecipe(Phi); 8934 } 8935 8936 return toVPRecipeResult(PhiRecipe); 8937 } 8938 8939 if (isa<TruncInst>(Instr) && 8940 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8941 Range, *Plan))) 8942 return toVPRecipeResult(Recipe); 8943 8944 if (!shouldWiden(Instr, Range)) 8945 return nullptr; 8946 8947 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8948 return toVPRecipeResult(new VPWidenGEPRecipe( 8949 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8950 8951 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8952 bool InvariantCond = 8953 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8954 return toVPRecipeResult(new VPWidenSelectRecipe( 8955 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8956 } 8957 8958 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8959 } 8960 8961 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8962 ElementCount MaxVF) { 8963 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8964 8965 // Collect instructions from the original loop that will become trivially dead 8966 // in the vectorized loop. We don't need to vectorize these instructions. For 8967 // example, original induction update instructions can become dead because we 8968 // separately emit induction "steps" when generating code for the new loop. 8969 // Similarly, we create a new latch condition when setting up the structure 8970 // of the new loop, so the old one can become dead. 8971 SmallPtrSet<Instruction *, 4> DeadInstructions; 8972 collectTriviallyDeadInstructions(DeadInstructions); 8973 8974 // Add assume instructions we need to drop to DeadInstructions, to prevent 8975 // them from being added to the VPlan. 8976 // TODO: We only need to drop assumes in blocks that get flattend. If the 8977 // control flow is preserved, we should keep them. 8978 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8979 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8980 8981 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8982 // Dead instructions do not need sinking. Remove them from SinkAfter. 8983 for (Instruction *I : DeadInstructions) 8984 SinkAfter.erase(I); 8985 8986 // Cannot sink instructions after dead instructions (there won't be any 8987 // recipes for them). Instead, find the first non-dead previous instruction. 8988 for (auto &P : Legal->getSinkAfter()) { 8989 Instruction *SinkTarget = P.second; 8990 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8991 (void)FirstInst; 8992 while (DeadInstructions.contains(SinkTarget)) { 8993 assert( 8994 SinkTarget != FirstInst && 8995 "Must find a live instruction (at least the one feeding the " 8996 "first-order recurrence PHI) before reaching beginning of the block"); 8997 SinkTarget = SinkTarget->getPrevNode(); 8998 assert(SinkTarget != P.first && 8999 "sink source equals target, no sinking required"); 9000 } 9001 P.second = SinkTarget; 9002 } 9003 9004 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9005 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9006 VFRange SubRange = {VF, MaxVFPlusOne}; 9007 VPlans.push_back( 9008 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9009 VF = SubRange.End; 9010 } 9011 } 9012 9013 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9014 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9015 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9016 9017 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9018 9019 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9020 9021 // --------------------------------------------------------------------------- 9022 // Pre-construction: record ingredients whose recipes we'll need to further 9023 // process after constructing the initial VPlan. 9024 // --------------------------------------------------------------------------- 9025 9026 // Mark instructions we'll need to sink later and their targets as 9027 // ingredients whose recipe we'll need to record. 9028 for (auto &Entry : SinkAfter) { 9029 RecipeBuilder.recordRecipeOf(Entry.first); 9030 RecipeBuilder.recordRecipeOf(Entry.second); 9031 } 9032 for (auto &Reduction : CM.getInLoopReductionChains()) { 9033 PHINode *Phi = Reduction.first; 9034 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9035 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9036 9037 RecipeBuilder.recordRecipeOf(Phi); 9038 for (auto &R : ReductionOperations) { 9039 RecipeBuilder.recordRecipeOf(R); 9040 // For min/max reducitons, where we have a pair of icmp/select, we also 9041 // need to record the ICmp recipe, so it can be removed later. 9042 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9043 "Only min/max recurrences allowed for inloop reductions"); 9044 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9045 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9046 } 9047 } 9048 9049 // For each interleave group which is relevant for this (possibly trimmed) 9050 // Range, add it to the set of groups to be later applied to the VPlan and add 9051 // placeholders for its members' Recipes which we'll be replacing with a 9052 // single VPInterleaveRecipe. 9053 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9054 auto applyIG = [IG, this](ElementCount VF) -> bool { 9055 return (VF.isVector() && // Query is illegal for VF == 1 9056 CM.getWideningDecision(IG->getInsertPos(), VF) == 9057 LoopVectorizationCostModel::CM_Interleave); 9058 }; 9059 if (!getDecisionAndClampRange(applyIG, Range)) 9060 continue; 9061 InterleaveGroups.insert(IG); 9062 for (unsigned i = 0; i < IG->getFactor(); i++) 9063 if (Instruction *Member = IG->getMember(i)) 9064 RecipeBuilder.recordRecipeOf(Member); 9065 }; 9066 9067 // --------------------------------------------------------------------------- 9068 // Build initial VPlan: Scan the body of the loop in a topological order to 9069 // visit each basic block after having visited its predecessor basic blocks. 9070 // --------------------------------------------------------------------------- 9071 9072 auto Plan = std::make_unique<VPlan>(); 9073 9074 // Scan the body of the loop in a topological order to visit each basic block 9075 // after having visited its predecessor basic blocks. 9076 LoopBlocksDFS DFS(OrigLoop); 9077 DFS.perform(LI); 9078 9079 VPBasicBlock *VPBB = nullptr; 9080 VPBasicBlock *HeaderVPBB = nullptr; 9081 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9082 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9083 // Relevant instructions from basic block BB will be grouped into VPRecipe 9084 // ingredients and fill a new VPBasicBlock. 9085 unsigned VPBBsForBB = 0; 9086 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9087 if (VPBB) 9088 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9089 else { 9090 auto *TopRegion = new VPRegionBlock("vector loop"); 9091 TopRegion->setEntry(FirstVPBBForBB); 9092 Plan->setEntry(TopRegion); 9093 HeaderVPBB = FirstVPBBForBB; 9094 } 9095 VPBB = FirstVPBBForBB; 9096 Builder.setInsertPoint(VPBB); 9097 9098 // Introduce each ingredient into VPlan. 9099 // TODO: Model and preserve debug instrinsics in VPlan. 9100 for (Instruction &I : BB->instructionsWithoutDebug()) { 9101 Instruction *Instr = &I; 9102 9103 // First filter out irrelevant instructions, to ensure no recipes are 9104 // built for them. 9105 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9106 continue; 9107 9108 SmallVector<VPValue *, 4> Operands; 9109 auto *Phi = dyn_cast<PHINode>(Instr); 9110 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9111 Operands.push_back(Plan->getOrAddVPValue( 9112 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9113 } else { 9114 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9115 Operands = {OpRange.begin(), OpRange.end()}; 9116 } 9117 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9118 Instr, Operands, Range, Plan)) { 9119 // If Instr can be simplified to an existing VPValue, use it. 9120 if (RecipeOrValue.is<VPValue *>()) { 9121 auto *VPV = RecipeOrValue.get<VPValue *>(); 9122 Plan->addVPValue(Instr, VPV); 9123 // If the re-used value is a recipe, register the recipe for the 9124 // instruction, in case the recipe for Instr needs to be recorded. 9125 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9126 RecipeBuilder.setRecipe(Instr, R); 9127 continue; 9128 } 9129 // Otherwise, add the new recipe. 9130 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9131 for (auto *Def : Recipe->definedValues()) { 9132 auto *UV = Def->getUnderlyingValue(); 9133 Plan->addVPValue(UV, Def); 9134 } 9135 9136 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9137 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9138 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9139 // of the header block. That can happen for truncates of induction 9140 // variables. Those recipes are moved to the phi section of the header 9141 // block after applying SinkAfter, which relies on the original 9142 // position of the trunc. 9143 assert(isa<TruncInst>(Instr)); 9144 InductionsToMove.push_back( 9145 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9146 } 9147 RecipeBuilder.setRecipe(Instr, Recipe); 9148 VPBB->appendRecipe(Recipe); 9149 continue; 9150 } 9151 9152 // Otherwise, if all widening options failed, Instruction is to be 9153 // replicated. This may create a successor for VPBB. 9154 VPBasicBlock *NextVPBB = 9155 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9156 if (NextVPBB != VPBB) { 9157 VPBB = NextVPBB; 9158 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9159 : ""); 9160 } 9161 } 9162 } 9163 9164 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9165 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9166 "entry block must be set to a VPRegionBlock having a non-empty entry " 9167 "VPBasicBlock"); 9168 cast<VPRegionBlock>(Plan->getEntry())->setExit(VPBB); 9169 RecipeBuilder.fixHeaderPhis(); 9170 9171 // --------------------------------------------------------------------------- 9172 // Transform initial VPlan: Apply previously taken decisions, in order, to 9173 // bring the VPlan to its final state. 9174 // --------------------------------------------------------------------------- 9175 9176 // Apply Sink-After legal constraints. 9177 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9178 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9179 if (Region && Region->isReplicator()) { 9180 assert(Region->getNumSuccessors() == 1 && 9181 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9182 assert(R->getParent()->size() == 1 && 9183 "A recipe in an original replicator region must be the only " 9184 "recipe in its block"); 9185 return Region; 9186 } 9187 return nullptr; 9188 }; 9189 for (auto &Entry : SinkAfter) { 9190 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9191 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9192 9193 auto *TargetRegion = GetReplicateRegion(Target); 9194 auto *SinkRegion = GetReplicateRegion(Sink); 9195 if (!SinkRegion) { 9196 // If the sink source is not a replicate region, sink the recipe directly. 9197 if (TargetRegion) { 9198 // The target is in a replication region, make sure to move Sink to 9199 // the block after it, not into the replication region itself. 9200 VPBasicBlock *NextBlock = 9201 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9202 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9203 } else 9204 Sink->moveAfter(Target); 9205 continue; 9206 } 9207 9208 // The sink source is in a replicate region. Unhook the region from the CFG. 9209 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9210 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9211 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9212 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9213 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9214 9215 if (TargetRegion) { 9216 // The target recipe is also in a replicate region, move the sink region 9217 // after the target region. 9218 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9219 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9220 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9221 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9222 } else { 9223 // The sink source is in a replicate region, we need to move the whole 9224 // replicate region, which should only contain a single recipe in the 9225 // main block. 9226 auto *SplitBlock = 9227 Target->getParent()->splitAt(std::next(Target->getIterator())); 9228 9229 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9230 9231 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9232 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9233 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9234 if (VPBB == SplitPred) 9235 VPBB = SplitBlock; 9236 } 9237 } 9238 9239 // Now that sink-after is done, move induction recipes for optimized truncates 9240 // to the phi section of the header block. 9241 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9242 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9243 9244 // Adjust the recipes for any inloop reductions. 9245 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9246 9247 // Introduce a recipe to combine the incoming and previous values of a 9248 // first-order recurrence. 9249 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9250 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9251 if (!RecurPhi) 9252 continue; 9253 9254 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9255 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9256 auto *Region = GetReplicateRegion(PrevRecipe); 9257 if (Region) 9258 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9259 if (Region || PrevRecipe->isPhi()) 9260 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9261 else 9262 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9263 9264 auto *RecurSplice = cast<VPInstruction>( 9265 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9266 {RecurPhi, RecurPhi->getBackedgeValue()})); 9267 9268 RecurPhi->replaceAllUsesWith(RecurSplice); 9269 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9270 // all users. 9271 RecurSplice->setOperand(0, RecurPhi); 9272 } 9273 9274 // Interleave memory: for each Interleave Group we marked earlier as relevant 9275 // for this VPlan, replace the Recipes widening its memory instructions with a 9276 // single VPInterleaveRecipe at its insertion point. 9277 for (auto IG : InterleaveGroups) { 9278 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9279 RecipeBuilder.getRecipe(IG->getInsertPos())); 9280 SmallVector<VPValue *, 4> StoredValues; 9281 for (unsigned i = 0; i < IG->getFactor(); ++i) 9282 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9283 auto *StoreR = 9284 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9285 StoredValues.push_back(StoreR->getStoredValue()); 9286 } 9287 9288 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9289 Recipe->getMask()); 9290 VPIG->insertBefore(Recipe); 9291 unsigned J = 0; 9292 for (unsigned i = 0; i < IG->getFactor(); ++i) 9293 if (Instruction *Member = IG->getMember(i)) { 9294 if (!Member->getType()->isVoidTy()) { 9295 VPValue *OriginalV = Plan->getVPValue(Member); 9296 Plan->removeVPValueFor(Member); 9297 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9298 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9299 J++; 9300 } 9301 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9302 } 9303 } 9304 9305 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9306 // in ways that accessing values using original IR values is incorrect. 9307 Plan->disableValue2VPValue(); 9308 9309 VPlanTransforms::sinkScalarOperands(*Plan); 9310 VPlanTransforms::mergeReplicateRegions(*Plan); 9311 9312 std::string PlanName; 9313 raw_string_ostream RSO(PlanName); 9314 ElementCount VF = Range.Start; 9315 Plan->addVF(VF); 9316 RSO << "Initial VPlan for VF={" << VF; 9317 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9318 Plan->addVF(VF); 9319 RSO << "," << VF; 9320 } 9321 RSO << "},UF>=1"; 9322 RSO.flush(); 9323 Plan->setName(PlanName); 9324 9325 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9326 return Plan; 9327 } 9328 9329 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9330 // Outer loop handling: They may require CFG and instruction level 9331 // transformations before even evaluating whether vectorization is profitable. 9332 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9333 // the vectorization pipeline. 9334 assert(!OrigLoop->isInnermost()); 9335 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9336 9337 // Create new empty VPlan 9338 auto Plan = std::make_unique<VPlan>(); 9339 9340 // Build hierarchical CFG 9341 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9342 HCFGBuilder.buildHierarchicalCFG(); 9343 9344 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9345 VF *= 2) 9346 Plan->addVF(VF); 9347 9348 if (EnableVPlanPredication) { 9349 VPlanPredicator VPP(*Plan); 9350 VPP.predicate(); 9351 9352 // Avoid running transformation to recipes until masked code generation in 9353 // VPlan-native path is in place. 9354 return Plan; 9355 } 9356 9357 SmallPtrSet<Instruction *, 1> DeadInstructions; 9358 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9359 Legal->getInductionVars(), 9360 DeadInstructions, *PSE.getSE()); 9361 return Plan; 9362 } 9363 9364 // Adjust the recipes for reductions. For in-loop reductions the chain of 9365 // instructions leading from the loop exit instr to the phi need to be converted 9366 // to reductions, with one operand being vector and the other being the scalar 9367 // reduction chain. For other reductions, a select is introduced between the phi 9368 // and live-out recipes when folding the tail. 9369 void LoopVectorizationPlanner::adjustRecipesForReductions( 9370 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9371 ElementCount MinVF) { 9372 for (auto &Reduction : CM.getInLoopReductionChains()) { 9373 PHINode *Phi = Reduction.first; 9374 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9375 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9376 9377 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9378 continue; 9379 9380 // ReductionOperations are orders top-down from the phi's use to the 9381 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9382 // which of the two operands will remain scalar and which will be reduced. 9383 // For minmax the chain will be the select instructions. 9384 Instruction *Chain = Phi; 9385 for (Instruction *R : ReductionOperations) { 9386 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9387 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9388 9389 VPValue *ChainOp = Plan->getVPValue(Chain); 9390 unsigned FirstOpId; 9391 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9392 "Only min/max recurrences allowed for inloop reductions"); 9393 // Recognize a call to the llvm.fmuladd intrinsic. 9394 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9395 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9396 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9397 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9398 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9399 "Expected to replace a VPWidenSelectSC"); 9400 FirstOpId = 1; 9401 } else { 9402 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9403 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9404 "Expected to replace a VPWidenSC"); 9405 FirstOpId = 0; 9406 } 9407 unsigned VecOpId = 9408 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9409 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9410 9411 auto *CondOp = CM.foldTailByMasking() 9412 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9413 : nullptr; 9414 9415 if (IsFMulAdd) { 9416 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9417 // need to create an fmul recipe to use as the vector operand for the 9418 // fadd reduction. 9419 VPInstruction *FMulRecipe = new VPInstruction( 9420 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9421 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9422 WidenRecipe->getParent()->insert(FMulRecipe, 9423 WidenRecipe->getIterator()); 9424 VecOp = FMulRecipe; 9425 } 9426 VPReductionRecipe *RedRecipe = 9427 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9428 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9429 Plan->removeVPValueFor(R); 9430 Plan->addVPValue(R, RedRecipe); 9431 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9432 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9433 WidenRecipe->eraseFromParent(); 9434 9435 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9436 VPRecipeBase *CompareRecipe = 9437 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9438 assert(isa<VPWidenRecipe>(CompareRecipe) && 9439 "Expected to replace a VPWidenSC"); 9440 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9441 "Expected no remaining users"); 9442 CompareRecipe->eraseFromParent(); 9443 } 9444 Chain = R; 9445 } 9446 } 9447 9448 // If tail is folded by masking, introduce selects between the phi 9449 // and the live-out instruction of each reduction, at the end of the latch. 9450 if (CM.foldTailByMasking()) { 9451 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9452 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9453 if (!PhiR || PhiR->isInLoop()) 9454 continue; 9455 Builder.setInsertPoint(LatchVPBB); 9456 VPValue *Cond = 9457 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9458 VPValue *Red = PhiR->getBackedgeValue(); 9459 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9460 } 9461 } 9462 } 9463 9464 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9465 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9466 VPSlotTracker &SlotTracker) const { 9467 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9468 IG->getInsertPos()->printAsOperand(O, false); 9469 O << ", "; 9470 getAddr()->printAsOperand(O, SlotTracker); 9471 VPValue *Mask = getMask(); 9472 if (Mask) { 9473 O << ", "; 9474 Mask->printAsOperand(O, SlotTracker); 9475 } 9476 9477 unsigned OpIdx = 0; 9478 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9479 if (!IG->getMember(i)) 9480 continue; 9481 if (getNumStoreOperands() > 0) { 9482 O << "\n" << Indent << " store "; 9483 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9484 O << " to index " << i; 9485 } else { 9486 O << "\n" << Indent << " "; 9487 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9488 O << " = load from index " << i; 9489 } 9490 ++OpIdx; 9491 } 9492 } 9493 #endif 9494 9495 void VPWidenCallRecipe::execute(VPTransformState &State) { 9496 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9497 *this, State); 9498 } 9499 9500 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9501 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9502 State.ILV->setDebugLocFromInst(&I); 9503 9504 // The condition can be loop invariant but still defined inside the 9505 // loop. This means that we can't just use the original 'cond' value. 9506 // We have to take the 'vectorized' value and pick the first lane. 9507 // Instcombine will make this a no-op. 9508 auto *InvarCond = 9509 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9510 9511 for (unsigned Part = 0; Part < State.UF; ++Part) { 9512 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9513 Value *Op0 = State.get(getOperand(1), Part); 9514 Value *Op1 = State.get(getOperand(2), Part); 9515 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9516 State.set(this, Sel, Part); 9517 State.ILV->addMetadata(Sel, &I); 9518 } 9519 } 9520 9521 void VPWidenRecipe::execute(VPTransformState &State) { 9522 auto &I = *cast<Instruction>(getUnderlyingValue()); 9523 auto &Builder = State.Builder; 9524 switch (I.getOpcode()) { 9525 case Instruction::Call: 9526 case Instruction::Br: 9527 case Instruction::PHI: 9528 case Instruction::GetElementPtr: 9529 case Instruction::Select: 9530 llvm_unreachable("This instruction is handled by a different recipe."); 9531 case Instruction::UDiv: 9532 case Instruction::SDiv: 9533 case Instruction::SRem: 9534 case Instruction::URem: 9535 case Instruction::Add: 9536 case Instruction::FAdd: 9537 case Instruction::Sub: 9538 case Instruction::FSub: 9539 case Instruction::FNeg: 9540 case Instruction::Mul: 9541 case Instruction::FMul: 9542 case Instruction::FDiv: 9543 case Instruction::FRem: 9544 case Instruction::Shl: 9545 case Instruction::LShr: 9546 case Instruction::AShr: 9547 case Instruction::And: 9548 case Instruction::Or: 9549 case Instruction::Xor: { 9550 // Just widen unops and binops. 9551 State.ILV->setDebugLocFromInst(&I); 9552 9553 for (unsigned Part = 0; Part < State.UF; ++Part) { 9554 SmallVector<Value *, 2> Ops; 9555 for (VPValue *VPOp : operands()) 9556 Ops.push_back(State.get(VPOp, Part)); 9557 9558 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9559 9560 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9561 VecOp->copyIRFlags(&I); 9562 9563 // If the instruction is vectorized and was in a basic block that needed 9564 // predication, we can't propagate poison-generating flags (nuw/nsw, 9565 // exact, etc.). The control flow has been linearized and the 9566 // instruction is no longer guarded by the predicate, which could make 9567 // the flag properties to no longer hold. 9568 if (State.MayGeneratePoisonRecipes.count(this) > 0) 9569 VecOp->dropPoisonGeneratingFlags(); 9570 } 9571 9572 // Use this vector value for all users of the original instruction. 9573 State.set(this, V, Part); 9574 State.ILV->addMetadata(V, &I); 9575 } 9576 9577 break; 9578 } 9579 case Instruction::ICmp: 9580 case Instruction::FCmp: { 9581 // Widen compares. Generate vector compares. 9582 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9583 auto *Cmp = cast<CmpInst>(&I); 9584 State.ILV->setDebugLocFromInst(Cmp); 9585 for (unsigned Part = 0; Part < State.UF; ++Part) { 9586 Value *A = State.get(getOperand(0), Part); 9587 Value *B = State.get(getOperand(1), Part); 9588 Value *C = nullptr; 9589 if (FCmp) { 9590 // Propagate fast math flags. 9591 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9592 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9593 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9594 } else { 9595 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9596 } 9597 State.set(this, C, Part); 9598 State.ILV->addMetadata(C, &I); 9599 } 9600 9601 break; 9602 } 9603 9604 case Instruction::ZExt: 9605 case Instruction::SExt: 9606 case Instruction::FPToUI: 9607 case Instruction::FPToSI: 9608 case Instruction::FPExt: 9609 case Instruction::PtrToInt: 9610 case Instruction::IntToPtr: 9611 case Instruction::SIToFP: 9612 case Instruction::UIToFP: 9613 case Instruction::Trunc: 9614 case Instruction::FPTrunc: 9615 case Instruction::BitCast: { 9616 auto *CI = cast<CastInst>(&I); 9617 State.ILV->setDebugLocFromInst(CI); 9618 9619 /// Vectorize casts. 9620 Type *DestTy = (State.VF.isScalar()) 9621 ? CI->getType() 9622 : VectorType::get(CI->getType(), State.VF); 9623 9624 for (unsigned Part = 0; Part < State.UF; ++Part) { 9625 Value *A = State.get(getOperand(0), Part); 9626 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9627 State.set(this, Cast, Part); 9628 State.ILV->addMetadata(Cast, &I); 9629 } 9630 break; 9631 } 9632 default: 9633 // This instruction is not vectorized by simple widening. 9634 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9635 llvm_unreachable("Unhandled instruction!"); 9636 } // end of switch. 9637 } 9638 9639 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9640 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9641 // Construct a vector GEP by widening the operands of the scalar GEP as 9642 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9643 // results in a vector of pointers when at least one operand of the GEP 9644 // is vector-typed. Thus, to keep the representation compact, we only use 9645 // vector-typed operands for loop-varying values. 9646 9647 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9648 // If we are vectorizing, but the GEP has only loop-invariant operands, 9649 // the GEP we build (by only using vector-typed operands for 9650 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9651 // produce a vector of pointers, we need to either arbitrarily pick an 9652 // operand to broadcast, or broadcast a clone of the original GEP. 9653 // Here, we broadcast a clone of the original. 9654 // 9655 // TODO: If at some point we decide to scalarize instructions having 9656 // loop-invariant operands, this special case will no longer be 9657 // required. We would add the scalarization decision to 9658 // collectLoopScalars() and teach getVectorValue() to broadcast 9659 // the lane-zero scalar value. 9660 auto *Clone = State.Builder.Insert(GEP->clone()); 9661 for (unsigned Part = 0; Part < State.UF; ++Part) { 9662 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9663 State.set(this, EntryPart, Part); 9664 State.ILV->addMetadata(EntryPart, GEP); 9665 } 9666 } else { 9667 // If the GEP has at least one loop-varying operand, we are sure to 9668 // produce a vector of pointers. But if we are only unrolling, we want 9669 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9670 // produce with the code below will be scalar (if VF == 1) or vector 9671 // (otherwise). Note that for the unroll-only case, we still maintain 9672 // values in the vector mapping with initVector, as we do for other 9673 // instructions. 9674 for (unsigned Part = 0; Part < State.UF; ++Part) { 9675 // The pointer operand of the new GEP. If it's loop-invariant, we 9676 // won't broadcast it. 9677 auto *Ptr = IsPtrLoopInvariant 9678 ? State.get(getOperand(0), VPIteration(0, 0)) 9679 : State.get(getOperand(0), Part); 9680 9681 // Collect all the indices for the new GEP. If any index is 9682 // loop-invariant, we won't broadcast it. 9683 SmallVector<Value *, 4> Indices; 9684 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9685 VPValue *Operand = getOperand(I); 9686 if (IsIndexLoopInvariant[I - 1]) 9687 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9688 else 9689 Indices.push_back(State.get(Operand, Part)); 9690 } 9691 9692 // If the GEP instruction is vectorized and was in a basic block that 9693 // needed predication, we can't propagate the poison-generating 'inbounds' 9694 // flag. The control flow has been linearized and the GEP is no longer 9695 // guarded by the predicate, which could make the 'inbounds' properties to 9696 // no longer hold. 9697 bool IsInBounds = 9698 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9699 9700 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9701 // but it should be a vector, otherwise. 9702 auto *NewGEP = IsInBounds 9703 ? State.Builder.CreateInBoundsGEP( 9704 GEP->getSourceElementType(), Ptr, Indices) 9705 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9706 Ptr, Indices); 9707 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9708 "NewGEP is not a pointer vector"); 9709 State.set(this, NewGEP, Part); 9710 State.ILV->addMetadata(NewGEP, GEP); 9711 } 9712 } 9713 } 9714 9715 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9716 assert(!State.Instance && "Int or FP induction being replicated."); 9717 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9718 getTruncInst(), getVPValue(0), 9719 getCastValue(), State); 9720 } 9721 9722 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9723 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9724 State); 9725 } 9726 9727 void VPBlendRecipe::execute(VPTransformState &State) { 9728 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9729 // We know that all PHIs in non-header blocks are converted into 9730 // selects, so we don't have to worry about the insertion order and we 9731 // can just use the builder. 9732 // At this point we generate the predication tree. There may be 9733 // duplications since this is a simple recursive scan, but future 9734 // optimizations will clean it up. 9735 9736 unsigned NumIncoming = getNumIncomingValues(); 9737 9738 // Generate a sequence of selects of the form: 9739 // SELECT(Mask3, In3, 9740 // SELECT(Mask2, In2, 9741 // SELECT(Mask1, In1, 9742 // In0))) 9743 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9744 // are essentially undef are taken from In0. 9745 InnerLoopVectorizer::VectorParts Entry(State.UF); 9746 for (unsigned In = 0; In < NumIncoming; ++In) { 9747 for (unsigned Part = 0; Part < State.UF; ++Part) { 9748 // We might have single edge PHIs (blocks) - use an identity 9749 // 'select' for the first PHI operand. 9750 Value *In0 = State.get(getIncomingValue(In), Part); 9751 if (In == 0) 9752 Entry[Part] = In0; // Initialize with the first incoming value. 9753 else { 9754 // Select between the current value and the previous incoming edge 9755 // based on the incoming mask. 9756 Value *Cond = State.get(getMask(In), Part); 9757 Entry[Part] = 9758 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9759 } 9760 } 9761 } 9762 for (unsigned Part = 0; Part < State.UF; ++Part) 9763 State.set(this, Entry[Part], Part); 9764 } 9765 9766 void VPInterleaveRecipe::execute(VPTransformState &State) { 9767 assert(!State.Instance && "Interleave group being replicated."); 9768 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9769 getStoredValues(), getMask()); 9770 } 9771 9772 void VPReductionRecipe::execute(VPTransformState &State) { 9773 assert(!State.Instance && "Reduction being replicated."); 9774 Value *PrevInChain = State.get(getChainOp(), 0); 9775 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9776 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9777 // Propagate the fast-math flags carried by the underlying instruction. 9778 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9779 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9780 for (unsigned Part = 0; Part < State.UF; ++Part) { 9781 Value *NewVecOp = State.get(getVecOp(), Part); 9782 if (VPValue *Cond = getCondOp()) { 9783 Value *NewCond = State.get(Cond, Part); 9784 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9785 Value *Iden = RdxDesc->getRecurrenceIdentity( 9786 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9787 Value *IdenVec = 9788 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9789 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9790 NewVecOp = Select; 9791 } 9792 Value *NewRed; 9793 Value *NextInChain; 9794 if (IsOrdered) { 9795 if (State.VF.isVector()) 9796 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9797 PrevInChain); 9798 else 9799 NewRed = State.Builder.CreateBinOp( 9800 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9801 NewVecOp); 9802 PrevInChain = NewRed; 9803 } else { 9804 PrevInChain = State.get(getChainOp(), Part); 9805 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9806 } 9807 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9808 NextInChain = 9809 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9810 NewRed, PrevInChain); 9811 } else if (IsOrdered) 9812 NextInChain = NewRed; 9813 else 9814 NextInChain = State.Builder.CreateBinOp( 9815 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9816 PrevInChain); 9817 State.set(this, NextInChain, Part); 9818 } 9819 } 9820 9821 void VPReplicateRecipe::execute(VPTransformState &State) { 9822 if (State.Instance) { // Generate a single instance. 9823 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9824 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9825 IsPredicated, State); 9826 // Insert scalar instance packing it into a vector. 9827 if (AlsoPack && State.VF.isVector()) { 9828 // If we're constructing lane 0, initialize to start from poison. 9829 if (State.Instance->Lane.isFirstLane()) { 9830 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9831 Value *Poison = PoisonValue::get( 9832 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9833 State.set(this, Poison, State.Instance->Part); 9834 } 9835 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9836 } 9837 return; 9838 } 9839 9840 // Generate scalar instances for all VF lanes of all UF parts, unless the 9841 // instruction is uniform inwhich case generate only the first lane for each 9842 // of the UF parts. 9843 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9844 assert((!State.VF.isScalable() || IsUniform) && 9845 "Can't scalarize a scalable vector"); 9846 for (unsigned Part = 0; Part < State.UF; ++Part) 9847 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9848 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9849 VPIteration(Part, Lane), IsPredicated, 9850 State); 9851 } 9852 9853 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9854 assert(State.Instance && "Branch on Mask works only on single instance."); 9855 9856 unsigned Part = State.Instance->Part; 9857 unsigned Lane = State.Instance->Lane.getKnownLane(); 9858 9859 Value *ConditionBit = nullptr; 9860 VPValue *BlockInMask = getMask(); 9861 if (BlockInMask) { 9862 ConditionBit = State.get(BlockInMask, Part); 9863 if (ConditionBit->getType()->isVectorTy()) 9864 ConditionBit = State.Builder.CreateExtractElement( 9865 ConditionBit, State.Builder.getInt32(Lane)); 9866 } else // Block in mask is all-one. 9867 ConditionBit = State.Builder.getTrue(); 9868 9869 // Replace the temporary unreachable terminator with a new conditional branch, 9870 // whose two destinations will be set later when they are created. 9871 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9872 assert(isa<UnreachableInst>(CurrentTerminator) && 9873 "Expected to replace unreachable terminator with conditional branch."); 9874 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9875 CondBr->setSuccessor(0, nullptr); 9876 ReplaceInstWithInst(CurrentTerminator, CondBr); 9877 } 9878 9879 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9880 assert(State.Instance && "Predicated instruction PHI works per instance."); 9881 Instruction *ScalarPredInst = 9882 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9883 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9884 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9885 assert(PredicatingBB && "Predicated block has no single predecessor."); 9886 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9887 "operand must be VPReplicateRecipe"); 9888 9889 // By current pack/unpack logic we need to generate only a single phi node: if 9890 // a vector value for the predicated instruction exists at this point it means 9891 // the instruction has vector users only, and a phi for the vector value is 9892 // needed. In this case the recipe of the predicated instruction is marked to 9893 // also do that packing, thereby "hoisting" the insert-element sequence. 9894 // Otherwise, a phi node for the scalar value is needed. 9895 unsigned Part = State.Instance->Part; 9896 if (State.hasVectorValue(getOperand(0), Part)) { 9897 Value *VectorValue = State.get(getOperand(0), Part); 9898 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9899 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9900 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9901 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9902 if (State.hasVectorValue(this, Part)) 9903 State.reset(this, VPhi, Part); 9904 else 9905 State.set(this, VPhi, Part); 9906 // NOTE: Currently we need to update the value of the operand, so the next 9907 // predicated iteration inserts its generated value in the correct vector. 9908 State.reset(getOperand(0), VPhi, Part); 9909 } else { 9910 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9911 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9912 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9913 PredicatingBB); 9914 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9915 if (State.hasScalarValue(this, *State.Instance)) 9916 State.reset(this, Phi, *State.Instance); 9917 else 9918 State.set(this, Phi, *State.Instance); 9919 // NOTE: Currently we need to update the value of the operand, so the next 9920 // predicated iteration inserts its generated value in the correct vector. 9921 State.reset(getOperand(0), Phi, *State.Instance); 9922 } 9923 } 9924 9925 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9926 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9927 9928 // Attempt to issue a wide load. 9929 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9930 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9931 9932 assert((LI || SI) && "Invalid Load/Store instruction"); 9933 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9934 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9935 9936 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9937 9938 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9939 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9940 bool CreateGatherScatter = !Consecutive; 9941 9942 auto &Builder = State.Builder; 9943 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9944 bool isMaskRequired = getMask(); 9945 if (isMaskRequired) 9946 for (unsigned Part = 0; Part < State.UF; ++Part) 9947 BlockInMaskParts[Part] = State.get(getMask(), Part); 9948 9949 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9950 // Calculate the pointer for the specific unroll-part. 9951 GetElementPtrInst *PartPtr = nullptr; 9952 9953 bool InBounds = false; 9954 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9955 InBounds = gep->isInBounds(); 9956 if (Reverse) { 9957 // If the address is consecutive but reversed, then the 9958 // wide store needs to start at the last vector element. 9959 // RunTimeVF = VScale * VF.getKnownMinValue() 9960 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9961 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9962 // NumElt = -Part * RunTimeVF 9963 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9964 // LastLane = 1 - RunTimeVF 9965 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9966 PartPtr = 9967 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9968 PartPtr->setIsInBounds(InBounds); 9969 PartPtr = cast<GetElementPtrInst>( 9970 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9971 PartPtr->setIsInBounds(InBounds); 9972 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9973 BlockInMaskParts[Part] = 9974 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9975 } else { 9976 Value *Increment = 9977 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9978 PartPtr = cast<GetElementPtrInst>( 9979 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9980 PartPtr->setIsInBounds(InBounds); 9981 } 9982 9983 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9984 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9985 }; 9986 9987 // Handle Stores: 9988 if (SI) { 9989 State.ILV->setDebugLocFromInst(SI); 9990 9991 for (unsigned Part = 0; Part < State.UF; ++Part) { 9992 Instruction *NewSI = nullptr; 9993 Value *StoredVal = State.get(StoredValue, Part); 9994 if (CreateGatherScatter) { 9995 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9996 Value *VectorGep = State.get(getAddr(), Part); 9997 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9998 MaskPart); 9999 } else { 10000 if (Reverse) { 10001 // If we store to reverse consecutive memory locations, then we need 10002 // to reverse the order of elements in the stored value. 10003 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10004 // We don't want to update the value in the map as it might be used in 10005 // another expression. So don't call resetVectorValue(StoredVal). 10006 } 10007 auto *VecPtr = 10008 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10009 if (isMaskRequired) 10010 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10011 BlockInMaskParts[Part]); 10012 else 10013 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10014 } 10015 State.ILV->addMetadata(NewSI, SI); 10016 } 10017 return; 10018 } 10019 10020 // Handle loads. 10021 assert(LI && "Must have a load instruction"); 10022 State.ILV->setDebugLocFromInst(LI); 10023 for (unsigned Part = 0; Part < State.UF; ++Part) { 10024 Value *NewLI; 10025 if (CreateGatherScatter) { 10026 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10027 Value *VectorGep = State.get(getAddr(), Part); 10028 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10029 nullptr, "wide.masked.gather"); 10030 State.ILV->addMetadata(NewLI, LI); 10031 } else { 10032 auto *VecPtr = 10033 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10034 if (isMaskRequired) 10035 NewLI = Builder.CreateMaskedLoad( 10036 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10037 PoisonValue::get(DataTy), "wide.masked.load"); 10038 else 10039 NewLI = 10040 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10041 10042 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10043 State.ILV->addMetadata(NewLI, LI); 10044 if (Reverse) 10045 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10046 } 10047 10048 State.set(getVPSingleValue(), NewLI, Part); 10049 } 10050 } 10051 10052 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10053 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10054 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10055 // for predication. 10056 static ScalarEpilogueLowering getScalarEpilogueLowering( 10057 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10058 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10059 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10060 LoopVectorizationLegality &LVL) { 10061 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10062 // don't look at hints or options, and don't request a scalar epilogue. 10063 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10064 // LoopAccessInfo (due to code dependency and not being able to reliably get 10065 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10066 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10067 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10068 // back to the old way and vectorize with versioning when forced. See D81345.) 10069 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10070 PGSOQueryType::IRPass) && 10071 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10072 return CM_ScalarEpilogueNotAllowedOptSize; 10073 10074 // 2) If set, obey the directives 10075 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10076 switch (PreferPredicateOverEpilogue) { 10077 case PreferPredicateTy::ScalarEpilogue: 10078 return CM_ScalarEpilogueAllowed; 10079 case PreferPredicateTy::PredicateElseScalarEpilogue: 10080 return CM_ScalarEpilogueNotNeededUsePredicate; 10081 case PreferPredicateTy::PredicateOrDontVectorize: 10082 return CM_ScalarEpilogueNotAllowedUsePredicate; 10083 }; 10084 } 10085 10086 // 3) If set, obey the hints 10087 switch (Hints.getPredicate()) { 10088 case LoopVectorizeHints::FK_Enabled: 10089 return CM_ScalarEpilogueNotNeededUsePredicate; 10090 case LoopVectorizeHints::FK_Disabled: 10091 return CM_ScalarEpilogueAllowed; 10092 }; 10093 10094 // 4) if the TTI hook indicates this is profitable, request predication. 10095 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10096 LVL.getLAI())) 10097 return CM_ScalarEpilogueNotNeededUsePredicate; 10098 10099 return CM_ScalarEpilogueAllowed; 10100 } 10101 10102 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10103 // If Values have been set for this Def return the one relevant for \p Part. 10104 if (hasVectorValue(Def, Part)) 10105 return Data.PerPartOutput[Def][Part]; 10106 10107 if (!hasScalarValue(Def, {Part, 0})) { 10108 Value *IRV = Def->getLiveInIRValue(); 10109 Value *B = ILV->getBroadcastInstrs(IRV); 10110 set(Def, B, Part); 10111 return B; 10112 } 10113 10114 Value *ScalarValue = get(Def, {Part, 0}); 10115 // If we aren't vectorizing, we can just copy the scalar map values over 10116 // to the vector map. 10117 if (VF.isScalar()) { 10118 set(Def, ScalarValue, Part); 10119 return ScalarValue; 10120 } 10121 10122 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10123 bool IsUniform = RepR && RepR->isUniform(); 10124 10125 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10126 // Check if there is a scalar value for the selected lane. 10127 if (!hasScalarValue(Def, {Part, LastLane})) { 10128 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10129 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10130 "unexpected recipe found to be invariant"); 10131 IsUniform = true; 10132 LastLane = 0; 10133 } 10134 10135 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10136 // Set the insert point after the last scalarized instruction or after the 10137 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10138 // will directly follow the scalar definitions. 10139 auto OldIP = Builder.saveIP(); 10140 auto NewIP = 10141 isa<PHINode>(LastInst) 10142 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10143 : std::next(BasicBlock::iterator(LastInst)); 10144 Builder.SetInsertPoint(&*NewIP); 10145 10146 // However, if we are vectorizing, we need to construct the vector values. 10147 // If the value is known to be uniform after vectorization, we can just 10148 // broadcast the scalar value corresponding to lane zero for each unroll 10149 // iteration. Otherwise, we construct the vector values using 10150 // insertelement instructions. Since the resulting vectors are stored in 10151 // State, we will only generate the insertelements once. 10152 Value *VectorValue = nullptr; 10153 if (IsUniform) { 10154 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10155 set(Def, VectorValue, Part); 10156 } else { 10157 // Initialize packing with insertelements to start from undef. 10158 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10159 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10160 set(Def, Undef, Part); 10161 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10162 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10163 VectorValue = get(Def, Part); 10164 } 10165 Builder.restoreIP(OldIP); 10166 return VectorValue; 10167 } 10168 10169 // Process the loop in the VPlan-native vectorization path. This path builds 10170 // VPlan upfront in the vectorization pipeline, which allows to apply 10171 // VPlan-to-VPlan transformations from the very beginning without modifying the 10172 // input LLVM IR. 10173 static bool processLoopInVPlanNativePath( 10174 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10175 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10176 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10177 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10178 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10179 LoopVectorizationRequirements &Requirements) { 10180 10181 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10182 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10183 return false; 10184 } 10185 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10186 Function *F = L->getHeader()->getParent(); 10187 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10188 10189 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10190 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10191 10192 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10193 &Hints, IAI); 10194 // Use the planner for outer loop vectorization. 10195 // TODO: CM is not used at this point inside the planner. Turn CM into an 10196 // optional argument if we don't need it in the future. 10197 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10198 Requirements, ORE); 10199 10200 // Get user vectorization factor. 10201 ElementCount UserVF = Hints.getWidth(); 10202 10203 CM.collectElementTypesForWidening(); 10204 10205 // Plan how to best vectorize, return the best VF and its cost. 10206 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10207 10208 // If we are stress testing VPlan builds, do not attempt to generate vector 10209 // code. Masked vector code generation support will follow soon. 10210 // Also, do not attempt to vectorize if no vector code will be produced. 10211 if (VPlanBuildStressTest || EnableVPlanPredication || 10212 VectorizationFactor::Disabled() == VF) 10213 return false; 10214 10215 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10216 10217 { 10218 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10219 F->getParent()->getDataLayout()); 10220 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10221 &CM, BFI, PSI, Checks); 10222 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10223 << L->getHeader()->getParent()->getName() << "\"\n"); 10224 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10225 } 10226 10227 // Mark the loop as already vectorized to avoid vectorizing again. 10228 Hints.setAlreadyVectorized(); 10229 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10230 return true; 10231 } 10232 10233 // Emit a remark if there are stores to floats that required a floating point 10234 // extension. If the vectorized loop was generated with floating point there 10235 // will be a performance penalty from the conversion overhead and the change in 10236 // the vector width. 10237 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10238 SmallVector<Instruction *, 4> Worklist; 10239 for (BasicBlock *BB : L->getBlocks()) { 10240 for (Instruction &Inst : *BB) { 10241 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10242 if (S->getValueOperand()->getType()->isFloatTy()) 10243 Worklist.push_back(S); 10244 } 10245 } 10246 } 10247 10248 // Traverse the floating point stores upwards searching, for floating point 10249 // conversions. 10250 SmallPtrSet<const Instruction *, 4> Visited; 10251 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10252 while (!Worklist.empty()) { 10253 auto *I = Worklist.pop_back_val(); 10254 if (!L->contains(I)) 10255 continue; 10256 if (!Visited.insert(I).second) 10257 continue; 10258 10259 // Emit a remark if the floating point store required a floating 10260 // point conversion. 10261 // TODO: More work could be done to identify the root cause such as a 10262 // constant or a function return type and point the user to it. 10263 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10264 ORE->emit([&]() { 10265 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10266 I->getDebugLoc(), L->getHeader()) 10267 << "floating point conversion changes vector width. " 10268 << "Mixed floating point precision requires an up/down " 10269 << "cast that will negatively impact performance."; 10270 }); 10271 10272 for (Use &Op : I->operands()) 10273 if (auto *OpI = dyn_cast<Instruction>(Op)) 10274 Worklist.push_back(OpI); 10275 } 10276 } 10277 10278 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10279 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10280 !EnableLoopInterleaving), 10281 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10282 !EnableLoopVectorization) {} 10283 10284 bool LoopVectorizePass::processLoop(Loop *L) { 10285 assert((EnableVPlanNativePath || L->isInnermost()) && 10286 "VPlan-native path is not enabled. Only process inner loops."); 10287 10288 #ifndef NDEBUG 10289 const std::string DebugLocStr = getDebugLocString(L); 10290 #endif /* NDEBUG */ 10291 10292 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10293 << L->getHeader()->getParent()->getName() << "\" from " 10294 << DebugLocStr << "\n"); 10295 10296 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10297 10298 LLVM_DEBUG( 10299 dbgs() << "LV: Loop hints:" 10300 << " force=" 10301 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10302 ? "disabled" 10303 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10304 ? "enabled" 10305 : "?")) 10306 << " width=" << Hints.getWidth() 10307 << " interleave=" << Hints.getInterleave() << "\n"); 10308 10309 // Function containing loop 10310 Function *F = L->getHeader()->getParent(); 10311 10312 // Looking at the diagnostic output is the only way to determine if a loop 10313 // was vectorized (other than looking at the IR or machine code), so it 10314 // is important to generate an optimization remark for each loop. Most of 10315 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10316 // generated as OptimizationRemark and OptimizationRemarkMissed are 10317 // less verbose reporting vectorized loops and unvectorized loops that may 10318 // benefit from vectorization, respectively. 10319 10320 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10321 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10322 return false; 10323 } 10324 10325 PredicatedScalarEvolution PSE(*SE, *L); 10326 10327 // Check if it is legal to vectorize the loop. 10328 LoopVectorizationRequirements Requirements; 10329 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10330 &Requirements, &Hints, DB, AC, BFI, PSI); 10331 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10332 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10333 Hints.emitRemarkWithHints(); 10334 return false; 10335 } 10336 10337 // Check the function attributes and profiles to find out if this function 10338 // should be optimized for size. 10339 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10340 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10341 10342 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10343 // here. They may require CFG and instruction level transformations before 10344 // even evaluating whether vectorization is profitable. Since we cannot modify 10345 // the incoming IR, we need to build VPlan upfront in the vectorization 10346 // pipeline. 10347 if (!L->isInnermost()) 10348 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10349 ORE, BFI, PSI, Hints, Requirements); 10350 10351 assert(L->isInnermost() && "Inner loop expected."); 10352 10353 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10354 // count by optimizing for size, to minimize overheads. 10355 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10356 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10357 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10358 << "This loop is worth vectorizing only if no scalar " 10359 << "iteration overheads are incurred."); 10360 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10361 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10362 else { 10363 LLVM_DEBUG(dbgs() << "\n"); 10364 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10365 } 10366 } 10367 10368 // Check the function attributes to see if implicit floats are allowed. 10369 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10370 // an integer loop and the vector instructions selected are purely integer 10371 // vector instructions? 10372 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10373 reportVectorizationFailure( 10374 "Can't vectorize when the NoImplicitFloat attribute is used", 10375 "loop not vectorized due to NoImplicitFloat attribute", 10376 "NoImplicitFloat", ORE, L); 10377 Hints.emitRemarkWithHints(); 10378 return false; 10379 } 10380 10381 // Check if the target supports potentially unsafe FP vectorization. 10382 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10383 // for the target we're vectorizing for, to make sure none of the 10384 // additional fp-math flags can help. 10385 if (Hints.isPotentiallyUnsafe() && 10386 TTI->isFPVectorizationPotentiallyUnsafe()) { 10387 reportVectorizationFailure( 10388 "Potentially unsafe FP op prevents vectorization", 10389 "loop not vectorized due to unsafe FP support.", 10390 "UnsafeFP", ORE, L); 10391 Hints.emitRemarkWithHints(); 10392 return false; 10393 } 10394 10395 bool AllowOrderedReductions; 10396 // If the flag is set, use that instead and override the TTI behaviour. 10397 if (ForceOrderedReductions.getNumOccurrences() > 0) 10398 AllowOrderedReductions = ForceOrderedReductions; 10399 else 10400 AllowOrderedReductions = TTI->enableOrderedReductions(); 10401 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10402 ORE->emit([&]() { 10403 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10404 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10405 ExactFPMathInst->getDebugLoc(), 10406 ExactFPMathInst->getParent()) 10407 << "loop not vectorized: cannot prove it is safe to reorder " 10408 "floating-point operations"; 10409 }); 10410 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10411 "reorder floating-point operations\n"); 10412 Hints.emitRemarkWithHints(); 10413 return false; 10414 } 10415 10416 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10417 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10418 10419 // If an override option has been passed in for interleaved accesses, use it. 10420 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10421 UseInterleaved = EnableInterleavedMemAccesses; 10422 10423 // Analyze interleaved memory accesses. 10424 if (UseInterleaved) { 10425 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10426 } 10427 10428 // Use the cost model. 10429 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10430 F, &Hints, IAI); 10431 CM.collectValuesToIgnore(); 10432 CM.collectElementTypesForWidening(); 10433 10434 // Use the planner for vectorization. 10435 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10436 Requirements, ORE); 10437 10438 // Get user vectorization factor and interleave count. 10439 ElementCount UserVF = Hints.getWidth(); 10440 unsigned UserIC = Hints.getInterleave(); 10441 10442 // Plan how to best vectorize, return the best VF and its cost. 10443 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10444 10445 VectorizationFactor VF = VectorizationFactor::Disabled(); 10446 unsigned IC = 1; 10447 10448 if (MaybeVF) { 10449 VF = *MaybeVF; 10450 // Select the interleave count. 10451 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10452 } 10453 10454 // Identify the diagnostic messages that should be produced. 10455 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10456 bool VectorizeLoop = true, InterleaveLoop = true; 10457 if (VF.Width.isScalar()) { 10458 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10459 VecDiagMsg = std::make_pair( 10460 "VectorizationNotBeneficial", 10461 "the cost-model indicates that vectorization is not beneficial"); 10462 VectorizeLoop = false; 10463 } 10464 10465 if (!MaybeVF && UserIC > 1) { 10466 // Tell the user interleaving was avoided up-front, despite being explicitly 10467 // requested. 10468 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10469 "interleaving should be avoided up front\n"); 10470 IntDiagMsg = std::make_pair( 10471 "InterleavingAvoided", 10472 "Ignoring UserIC, because interleaving was avoided up front"); 10473 InterleaveLoop = false; 10474 } else if (IC == 1 && UserIC <= 1) { 10475 // Tell the user interleaving is not beneficial. 10476 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10477 IntDiagMsg = std::make_pair( 10478 "InterleavingNotBeneficial", 10479 "the cost-model indicates that interleaving is not beneficial"); 10480 InterleaveLoop = false; 10481 if (UserIC == 1) { 10482 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10483 IntDiagMsg.second += 10484 " and is explicitly disabled or interleave count is set to 1"; 10485 } 10486 } else if (IC > 1 && UserIC == 1) { 10487 // Tell the user interleaving is beneficial, but it explicitly disabled. 10488 LLVM_DEBUG( 10489 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10490 IntDiagMsg = std::make_pair( 10491 "InterleavingBeneficialButDisabled", 10492 "the cost-model indicates that interleaving is beneficial " 10493 "but is explicitly disabled or interleave count is set to 1"); 10494 InterleaveLoop = false; 10495 } 10496 10497 // Override IC if user provided an interleave count. 10498 IC = UserIC > 0 ? UserIC : IC; 10499 10500 // Emit diagnostic messages, if any. 10501 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10502 if (!VectorizeLoop && !InterleaveLoop) { 10503 // Do not vectorize or interleaving the loop. 10504 ORE->emit([&]() { 10505 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10506 L->getStartLoc(), L->getHeader()) 10507 << VecDiagMsg.second; 10508 }); 10509 ORE->emit([&]() { 10510 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10511 L->getStartLoc(), L->getHeader()) 10512 << IntDiagMsg.second; 10513 }); 10514 return false; 10515 } else if (!VectorizeLoop && InterleaveLoop) { 10516 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10517 ORE->emit([&]() { 10518 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10519 L->getStartLoc(), L->getHeader()) 10520 << VecDiagMsg.second; 10521 }); 10522 } else if (VectorizeLoop && !InterleaveLoop) { 10523 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10524 << ") in " << DebugLocStr << '\n'); 10525 ORE->emit([&]() { 10526 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10527 L->getStartLoc(), L->getHeader()) 10528 << IntDiagMsg.second; 10529 }); 10530 } else if (VectorizeLoop && InterleaveLoop) { 10531 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10532 << ") in " << DebugLocStr << '\n'); 10533 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10534 } 10535 10536 bool DisableRuntimeUnroll = false; 10537 MDNode *OrigLoopID = L->getLoopID(); 10538 { 10539 // Optimistically generate runtime checks. Drop them if they turn out to not 10540 // be profitable. Limit the scope of Checks, so the cleanup happens 10541 // immediately after vector codegeneration is done. 10542 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10543 F->getParent()->getDataLayout()); 10544 if (!VF.Width.isScalar() || IC > 1) 10545 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10546 10547 using namespace ore; 10548 if (!VectorizeLoop) { 10549 assert(IC > 1 && "interleave count should not be 1 or 0"); 10550 // If we decided that it is not legal to vectorize the loop, then 10551 // interleave it. 10552 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10553 &CM, BFI, PSI, Checks); 10554 10555 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10556 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10557 10558 ORE->emit([&]() { 10559 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10560 L->getHeader()) 10561 << "interleaved loop (interleaved count: " 10562 << NV("InterleaveCount", IC) << ")"; 10563 }); 10564 } else { 10565 // If we decided that it is *legal* to vectorize the loop, then do it. 10566 10567 // Consider vectorizing the epilogue too if it's profitable. 10568 VectorizationFactor EpilogueVF = 10569 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10570 if (EpilogueVF.Width.isVector()) { 10571 10572 // The first pass vectorizes the main loop and creates a scalar epilogue 10573 // to be vectorized by executing the plan (potentially with a different 10574 // factor) again shortly afterwards. 10575 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10576 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10577 EPI, &LVL, &CM, BFI, PSI, Checks); 10578 10579 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10580 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10581 DT); 10582 ++LoopsVectorized; 10583 10584 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10585 formLCSSARecursively(*L, *DT, LI, SE); 10586 10587 // Second pass vectorizes the epilogue and adjusts the control flow 10588 // edges from the first pass. 10589 EPI.MainLoopVF = EPI.EpilogueVF; 10590 EPI.MainLoopUF = EPI.EpilogueUF; 10591 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10592 ORE, EPI, &LVL, &CM, BFI, PSI, 10593 Checks); 10594 10595 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10596 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10597 DT); 10598 ++LoopsEpilogueVectorized; 10599 10600 if (!MainILV.areSafetyChecksAdded()) 10601 DisableRuntimeUnroll = true; 10602 } else { 10603 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10604 &LVL, &CM, BFI, PSI, Checks); 10605 10606 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10607 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10608 ++LoopsVectorized; 10609 10610 // Add metadata to disable runtime unrolling a scalar loop when there 10611 // are no runtime checks about strides and memory. A scalar loop that is 10612 // rarely used is not worth unrolling. 10613 if (!LB.areSafetyChecksAdded()) 10614 DisableRuntimeUnroll = true; 10615 } 10616 // Report the vectorization decision. 10617 ORE->emit([&]() { 10618 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10619 L->getHeader()) 10620 << "vectorized loop (vectorization width: " 10621 << NV("VectorizationFactor", VF.Width) 10622 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10623 }); 10624 } 10625 10626 if (ORE->allowExtraAnalysis(LV_NAME)) 10627 checkMixedPrecision(L, ORE); 10628 } 10629 10630 Optional<MDNode *> RemainderLoopID = 10631 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10632 LLVMLoopVectorizeFollowupEpilogue}); 10633 if (RemainderLoopID.hasValue()) { 10634 L->setLoopID(RemainderLoopID.getValue()); 10635 } else { 10636 if (DisableRuntimeUnroll) 10637 AddRuntimeUnrollDisableMetaData(L); 10638 10639 // Mark the loop as already vectorized to avoid vectorizing again. 10640 Hints.setAlreadyVectorized(); 10641 } 10642 10643 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10644 return true; 10645 } 10646 10647 LoopVectorizeResult LoopVectorizePass::runImpl( 10648 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10649 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10650 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10651 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10652 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10653 SE = &SE_; 10654 LI = &LI_; 10655 TTI = &TTI_; 10656 DT = &DT_; 10657 BFI = &BFI_; 10658 TLI = TLI_; 10659 AA = &AA_; 10660 AC = &AC_; 10661 GetLAA = &GetLAA_; 10662 DB = &DB_; 10663 ORE = &ORE_; 10664 PSI = PSI_; 10665 10666 // Don't attempt if 10667 // 1. the target claims to have no vector registers, and 10668 // 2. interleaving won't help ILP. 10669 // 10670 // The second condition is necessary because, even if the target has no 10671 // vector registers, loop vectorization may still enable scalar 10672 // interleaving. 10673 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10674 TTI->getMaxInterleaveFactor(1) < 2) 10675 return LoopVectorizeResult(false, false); 10676 10677 bool Changed = false, CFGChanged = false; 10678 10679 // The vectorizer requires loops to be in simplified form. 10680 // Since simplification may add new inner loops, it has to run before the 10681 // legality and profitability checks. This means running the loop vectorizer 10682 // will simplify all loops, regardless of whether anything end up being 10683 // vectorized. 10684 for (auto &L : *LI) 10685 Changed |= CFGChanged |= 10686 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10687 10688 // Build up a worklist of inner-loops to vectorize. This is necessary as 10689 // the act of vectorizing or partially unrolling a loop creates new loops 10690 // and can invalidate iterators across the loops. 10691 SmallVector<Loop *, 8> Worklist; 10692 10693 for (Loop *L : *LI) 10694 collectSupportedLoops(*L, LI, ORE, Worklist); 10695 10696 LoopsAnalyzed += Worklist.size(); 10697 10698 // Now walk the identified inner loops. 10699 while (!Worklist.empty()) { 10700 Loop *L = Worklist.pop_back_val(); 10701 10702 // For the inner loops we actually process, form LCSSA to simplify the 10703 // transform. 10704 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10705 10706 Changed |= CFGChanged |= processLoop(L); 10707 } 10708 10709 // Process each loop nest in the function. 10710 return LoopVectorizeResult(Changed, CFGChanged); 10711 } 10712 10713 PreservedAnalyses LoopVectorizePass::run(Function &F, 10714 FunctionAnalysisManager &AM) { 10715 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10716 auto &LI = AM.getResult<LoopAnalysis>(F); 10717 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10718 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10719 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10720 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10721 auto &AA = AM.getResult<AAManager>(F); 10722 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10723 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10724 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10725 10726 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10727 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10728 [&](Loop &L) -> const LoopAccessInfo & { 10729 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10730 TLI, TTI, nullptr, nullptr, nullptr}; 10731 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10732 }; 10733 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10734 ProfileSummaryInfo *PSI = 10735 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10736 LoopVectorizeResult Result = 10737 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10738 if (!Result.MadeAnyChange) 10739 return PreservedAnalyses::all(); 10740 PreservedAnalyses PA; 10741 10742 // We currently do not preserve loopinfo/dominator analyses with outer loop 10743 // vectorization. Until this is addressed, mark these analyses as preserved 10744 // only for non-VPlan-native path. 10745 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10746 if (!EnableVPlanNativePath) { 10747 PA.preserve<LoopAnalysis>(); 10748 PA.preserve<DominatorTreeAnalysis>(); 10749 } 10750 if (!Result.MadeCFGChange) 10751 PA.preserveSet<CFGAnalyses>(); 10752 return PA; 10753 } 10754 10755 void LoopVectorizePass::printPipeline( 10756 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10757 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10758 OS, MapClassName2PassName); 10759 10760 OS << "<"; 10761 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10762 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10763 OS << ">"; 10764 } 10765