xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp (revision 1838bd0f4839006b42d41a02a787b7f578655223)
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns (and creates if needed) the original loop trip count.
636   Value *getOrCreateTripCount(Loop *NewLoop);
637 
638   /// Returns (and creates if needed) the trip count of the widened loop.
639   Value *getOrCreateVectorTripCount(Loop *NewLoop);
640 
641   /// Returns a bitcasted value to the requested vector type.
642   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
643   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
644                                 const DataLayout &DL);
645 
646   /// Emit a bypass check to see if the vector trip count is zero, including if
647   /// it overflows.
648   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
649 
650   /// Emit a bypass check to see if all of the SCEV assumptions we've
651   /// had to make are correct. Returns the block containing the checks or
652   /// nullptr if no checks have been added.
653   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
654 
655   /// Emit bypass checks to check any memory assumptions we may have made.
656   /// Returns the block containing the checks or nullptr if no checks have been
657   /// added.
658   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
659 
660   /// Compute the transformed value of Index at offset StartValue using step
661   /// StepValue.
662   /// For integer induction, returns StartValue + Index * StepValue.
663   /// For pointer induction, returns StartValue[Index * StepValue].
664   /// FIXME: The newly created binary instructions should contain nsw/nuw
665   /// flags, which can be found from the original scalar operations.
666   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
667                               const DataLayout &DL,
668                               const InductionDescriptor &ID,
669                               BasicBlock *VectorHeader) const;
670 
671   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
672   /// vector loop preheader, middle block and scalar preheader. Also
673   /// allocate a loop object for the new vector loop and return it.
674   Loop *createVectorLoopSkeleton(StringRef Prefix);
675 
676   /// Create new phi nodes for the induction variables to resume iteration count
677   /// in the scalar epilogue, from where the vectorized loop left off.
678   /// In cases where the loop skeleton is more complicated (eg. epilogue
679   /// vectorization) and the resume values can come from an additional bypass
680   /// block, the \p AdditionalBypass pair provides information about the bypass
681   /// block and the end value on the edge from bypass to this loop.
682   void createInductionResumeValues(
683       Loop *L,
684       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
685 
686   /// Complete the loop skeleton by adding debug MDs, creating appropriate
687   /// conditional branches in the middle block, preparing the builder and
688   /// running the verifier. Take in the vector loop \p L as argument, and return
689   /// the preheader of the completed vector loop.
690   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
691 
692   /// Add additional metadata to \p To that was not present on \p Orig.
693   ///
694   /// Currently this is used to add the noalias annotations based on the
695   /// inserted memchecks.  Use this for instructions that are *cloned* into the
696   /// vector loop.
697   void addNewMetadata(Instruction *To, const Instruction *Orig);
698 
699   /// Collect poison-generating recipes that may generate a poison value that is
700   /// used after vectorization, even when their operands are not poison. Those
701   /// recipes meet the following conditions:
702   ///  * Contribute to the address computation of a recipe generating a widen
703   ///    memory load/store (VPWidenMemoryInstructionRecipe or
704   ///    VPInterleaveRecipe).
705   ///  * Such a widen memory load/store has at least one underlying Instruction
706   ///    that is in a basic block that needs predication and after vectorization
707   ///    the generated instruction won't be predicated.
708   void collectPoisonGeneratingRecipes(VPTransformState &State);
709 
710   /// Allow subclasses to override and print debug traces before/after vplan
711   /// execution, when trace information is requested.
712   virtual void printDebugTracesAtStart(){};
713   virtual void printDebugTracesAtEnd(){};
714 
715   /// The original loop.
716   Loop *OrigLoop;
717 
718   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
719   /// dynamic knowledge to simplify SCEV expressions and converts them to a
720   /// more usable form.
721   PredicatedScalarEvolution &PSE;
722 
723   /// Loop Info.
724   LoopInfo *LI;
725 
726   /// Dominator Tree.
727   DominatorTree *DT;
728 
729   /// Alias Analysis.
730   AAResults *AA;
731 
732   /// Target Library Info.
733   const TargetLibraryInfo *TLI;
734 
735   /// Target Transform Info.
736   const TargetTransformInfo *TTI;
737 
738   /// Assumption Cache.
739   AssumptionCache *AC;
740 
741   /// Interface to emit optimization remarks.
742   OptimizationRemarkEmitter *ORE;
743 
744   /// LoopVersioning.  It's only set up (non-null) if memchecks were
745   /// used.
746   ///
747   /// This is currently only used to add no-alias metadata based on the
748   /// memchecks.  The actually versioning is performed manually.
749   std::unique_ptr<LoopVersioning> LVer;
750 
751   /// The vectorization SIMD factor to use. Each vector will have this many
752   /// vector elements.
753   ElementCount VF;
754 
755   /// The vectorization unroll factor to use. Each scalar is vectorized to this
756   /// many different vector instructions.
757   unsigned UF;
758 
759   /// The builder that we use
760   IRBuilder<> Builder;
761 
762   // --- Vectorization state ---
763 
764   /// The vector-loop preheader.
765   BasicBlock *LoopVectorPreHeader;
766 
767   /// The scalar-loop preheader.
768   BasicBlock *LoopScalarPreHeader;
769 
770   /// Middle Block between the vector and the scalar.
771   BasicBlock *LoopMiddleBlock;
772 
773   /// The unique ExitBlock of the scalar loop if one exists.  Note that
774   /// there can be multiple exiting edges reaching this block.
775   BasicBlock *LoopExitBlock;
776 
777   /// The vector loop body.
778   BasicBlock *LoopVectorBody;
779 
780   /// The scalar loop body.
781   BasicBlock *LoopScalarBody;
782 
783   /// A list of all bypass blocks. The first block is the entry of the loop.
784   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
785 
786   /// Store instructions that were predicated.
787   SmallVector<Instruction *, 4> PredicatedInstructions;
788 
789   /// Trip count of the original loop.
790   Value *TripCount = nullptr;
791 
792   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
793   Value *VectorTripCount = nullptr;
794 
795   /// The legality analysis.
796   LoopVectorizationLegality *Legal;
797 
798   /// The profitablity analysis.
799   LoopVectorizationCostModel *Cost;
800 
801   // Record whether runtime checks are added.
802   bool AddedSafetyChecks = false;
803 
804   // Holds the end values for each induction variable. We save the end values
805   // so we can later fix-up the external users of the induction variables.
806   DenseMap<PHINode *, Value *> IVEndValues;
807 
808   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
809   // fixed up at the end of vector code generation.
810   SmallVector<PHINode *, 8> OrigPHIsToFix;
811 
812   /// BFI and PSI are used to check for profile guided size optimizations.
813   BlockFrequencyInfo *BFI;
814   ProfileSummaryInfo *PSI;
815 
816   // Whether this loop should be optimized for size based on profile guided size
817   // optimizatios.
818   bool OptForSizeBasedOnProfile;
819 
820   /// Structure to hold information about generated runtime checks, responsible
821   /// for cleaning the checks, if vectorization turns out unprofitable.
822   GeneratedRTChecks &RTChecks;
823 
824   // Holds the resume values for reductions in the loops, used to set the
825   // correct start value of reduction PHIs when vectorizing the epilogue.
826   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
827       ReductionResumeValues;
828 };
829 
830 class InnerLoopUnroller : public InnerLoopVectorizer {
831 public:
832   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
833                     LoopInfo *LI, DominatorTree *DT,
834                     const TargetLibraryInfo *TLI,
835                     const TargetTransformInfo *TTI, AssumptionCache *AC,
836                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
837                     LoopVectorizationLegality *LVL,
838                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
839                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
840       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
841                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
842                             BFI, PSI, Check) {}
843 
844 private:
845   Value *getBroadcastInstrs(Value *V) override;
846 };
847 
848 /// Encapsulate information regarding vectorization of a loop and its epilogue.
849 /// This information is meant to be updated and used across two stages of
850 /// epilogue vectorization.
851 struct EpilogueLoopVectorizationInfo {
852   ElementCount MainLoopVF = ElementCount::getFixed(0);
853   unsigned MainLoopUF = 0;
854   ElementCount EpilogueVF = ElementCount::getFixed(0);
855   unsigned EpilogueUF = 0;
856   BasicBlock *MainLoopIterationCountCheck = nullptr;
857   BasicBlock *EpilogueIterationCountCheck = nullptr;
858   BasicBlock *SCEVSafetyCheck = nullptr;
859   BasicBlock *MemSafetyCheck = nullptr;
860   Value *TripCount = nullptr;
861   Value *VectorTripCount = nullptr;
862 
863   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
864                                 ElementCount EVF, unsigned EUF)
865       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
866     assert(EUF == 1 &&
867            "A high UF for the epilogue loop is likely not beneficial.");
868   }
869 };
870 
871 /// An extension of the inner loop vectorizer that creates a skeleton for a
872 /// vectorized loop that has its epilogue (residual) also vectorized.
873 /// The idea is to run the vplan on a given loop twice, firstly to setup the
874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
875 /// from the first step and vectorize the epilogue.  This is achieved by
876 /// deriving two concrete strategy classes from this base class and invoking
877 /// them in succession from the loop vectorizer planner.
878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
879 public:
880   InnerLoopAndEpilogueVectorizer(
881       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
882       DominatorTree *DT, const TargetLibraryInfo *TLI,
883       const TargetTransformInfo *TTI, AssumptionCache *AC,
884       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
885       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
886       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
887       GeneratedRTChecks &Checks)
888       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
889                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
890                             Checks),
891         EPI(EPI) {}
892 
893   // Override this function to handle the more complex control flow around the
894   // three loops.
895   std::pair<BasicBlock *, Value *>
896   createVectorizedLoopSkeleton() final override {
897     return createEpilogueVectorizedLoopSkeleton();
898   }
899 
900   /// The interface for creating a vectorized skeleton using one of two
901   /// different strategies, each corresponding to one execution of the vplan
902   /// as described above.
903   virtual std::pair<BasicBlock *, Value *>
904   createEpilogueVectorizedLoopSkeleton() = 0;
905 
906   /// Holds and updates state information required to vectorize the main loop
907   /// and its epilogue in two separate passes. This setup helps us avoid
908   /// regenerating and recomputing runtime safety checks. It also helps us to
909   /// shorten the iteration-count-check path length for the cases where the
910   /// iteration count of the loop is so small that the main vector loop is
911   /// completely skipped.
912   EpilogueLoopVectorizationInfo &EPI;
913 };
914 
915 /// A specialized derived class of inner loop vectorizer that performs
916 /// vectorization of *main* loops in the process of vectorizing loops and their
917 /// epilogues.
918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
919 public:
920   EpilogueVectorizerMainLoop(
921       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
922       DominatorTree *DT, const TargetLibraryInfo *TLI,
923       const TargetTransformInfo *TTI, AssumptionCache *AC,
924       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
925       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
926       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
927       GeneratedRTChecks &Check)
928       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
929                                        EPI, LVL, CM, BFI, PSI, Check) {}
930   /// Implements the interface for creating a vectorized skeleton using the
931   /// *main loop* strategy (ie the first pass of vplan execution).
932   std::pair<BasicBlock *, Value *>
933   createEpilogueVectorizedLoopSkeleton() final override;
934 
935 protected:
936   /// Emits an iteration count bypass check once for the main loop (when \p
937   /// ForEpilogue is false) and once for the epilogue loop (when \p
938   /// ForEpilogue is true).
939   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
940                                              bool ForEpilogue);
941   void printDebugTracesAtStart() override;
942   void printDebugTracesAtEnd() override;
943 };
944 
945 // A specialized derived class of inner loop vectorizer that performs
946 // vectorization of *epilogue* loops in the process of vectorizing loops and
947 // their epilogues.
948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
949 public:
950   EpilogueVectorizerEpilogueLoop(
951       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
952       DominatorTree *DT, const TargetLibraryInfo *TLI,
953       const TargetTransformInfo *TTI, AssumptionCache *AC,
954       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
955       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
956       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
957       GeneratedRTChecks &Checks)
958       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
959                                        EPI, LVL, CM, BFI, PSI, Checks) {}
960   /// Implements the interface for creating a vectorized skeleton using the
961   /// *epilogue loop* strategy (ie the second pass of vplan execution).
962   std::pair<BasicBlock *, Value *>
963   createEpilogueVectorizedLoopSkeleton() final override;
964 
965 protected:
966   /// Emits an iteration count bypass check after the main vector loop has
967   /// finished to see if there are any iterations left to execute by either
968   /// the vector epilogue or the scalar epilogue.
969   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
970                                                       BasicBlock *Bypass,
971                                                       BasicBlock *Insert);
972   void printDebugTracesAtStart() override;
973   void printDebugTracesAtEnd() override;
974 };
975 } // end namespace llvm
976 
977 /// Look for a meaningful debug location on the instruction or it's
978 /// operands.
979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
980   if (!I)
981     return I;
982 
983   DebugLoc Empty;
984   if (I->getDebugLoc() != Empty)
985     return I;
986 
987   for (Use &Op : I->operands()) {
988     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
989       if (OpInst->getDebugLoc() != Empty)
990         return OpInst;
991   }
992 
993   return I;
994 }
995 
996 void InnerLoopVectorizer::setDebugLocFromInst(
997     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
998   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
999   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1000     const DILocation *DIL = Inst->getDebugLoc();
1001 
1002     // When a FSDiscriminator is enabled, we don't need to add the multiply
1003     // factors to the discriminators.
1004     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1005         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1006       // FIXME: For scalable vectors, assume vscale=1.
1007       auto NewDIL =
1008           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1009       if (NewDIL)
1010         B->SetCurrentDebugLocation(NewDIL.getValue());
1011       else
1012         LLVM_DEBUG(dbgs()
1013                    << "Failed to create new discriminator: "
1014                    << DIL->getFilename() << " Line: " << DIL->getLine());
1015     } else
1016       B->SetCurrentDebugLocation(DIL);
1017   } else
1018     B->SetCurrentDebugLocation(DebugLoc());
1019 }
1020 
1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1022 /// is passed, the message relates to that particular instruction.
1023 #ifndef NDEBUG
1024 static void debugVectorizationMessage(const StringRef Prefix,
1025                                       const StringRef DebugMsg,
1026                                       Instruction *I) {
1027   dbgs() << "LV: " << Prefix << DebugMsg;
1028   if (I != nullptr)
1029     dbgs() << " " << *I;
1030   else
1031     dbgs() << '.';
1032   dbgs() << '\n';
1033 }
1034 #endif
1035 
1036 /// Create an analysis remark that explains why vectorization failed
1037 ///
1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1039 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1040 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1041 /// the location of the remark.  \return the remark object that can be
1042 /// streamed to.
1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1044     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1045   Value *CodeRegion = TheLoop->getHeader();
1046   DebugLoc DL = TheLoop->getStartLoc();
1047 
1048   if (I) {
1049     CodeRegion = I->getParent();
1050     // If there is no debug location attached to the instruction, revert back to
1051     // using the loop's.
1052     if (I->getDebugLoc())
1053       DL = I->getDebugLoc();
1054   }
1055 
1056   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1057 }
1058 
1059 namespace llvm {
1060 
1061 /// Return a value for Step multiplied by VF.
1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1063                        int64_t Step) {
1064   assert(Ty->isIntegerTy() && "Expected an integer step");
1065   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1066   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1067 }
1068 
1069 /// Return the runtime value for VF.
1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1071   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1072   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1073 }
1074 
1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1076   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1077   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1078   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1079   return B.CreateUIToFP(RuntimeVF, FTy);
1080 }
1081 
1082 void reportVectorizationFailure(const StringRef DebugMsg,
1083                                 const StringRef OREMsg, const StringRef ORETag,
1084                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1085                                 Instruction *I) {
1086   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1087   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1088   ORE->emit(
1089       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1090       << "loop not vectorized: " << OREMsg);
1091 }
1092 
1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1094                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1095                              Instruction *I) {
1096   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1097   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1098   ORE->emit(
1099       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1100       << Msg);
1101 }
1102 
1103 } // end namespace llvm
1104 
1105 #ifndef NDEBUG
1106 /// \return string containing a file name and a line # for the given loop.
1107 static std::string getDebugLocString(const Loop *L) {
1108   std::string Result;
1109   if (L) {
1110     raw_string_ostream OS(Result);
1111     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1112       LoopDbgLoc.print(OS);
1113     else
1114       // Just print the module name.
1115       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1116     OS.flush();
1117   }
1118   return Result;
1119 }
1120 #endif
1121 
1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1123                                          const Instruction *Orig) {
1124   // If the loop was versioned with memchecks, add the corresponding no-alias
1125   // metadata.
1126   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1127     LVer->annotateInstWithNoAlias(To, Orig);
1128 }
1129 
1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1131     VPTransformState &State) {
1132 
1133   // Collect recipes in the backward slice of `Root` that may generate a poison
1134   // value that is used after vectorization.
1135   SmallPtrSet<VPRecipeBase *, 16> Visited;
1136   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1137     SmallVector<VPRecipeBase *, 16> Worklist;
1138     Worklist.push_back(Root);
1139 
1140     // Traverse the backward slice of Root through its use-def chain.
1141     while (!Worklist.empty()) {
1142       VPRecipeBase *CurRec = Worklist.back();
1143       Worklist.pop_back();
1144 
1145       if (!Visited.insert(CurRec).second)
1146         continue;
1147 
1148       // Prune search if we find another recipe generating a widen memory
1149       // instruction. Widen memory instructions involved in address computation
1150       // will lead to gather/scatter instructions, which don't need to be
1151       // handled.
1152       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1153           isa<VPInterleaveRecipe>(CurRec) ||
1154           isa<VPCanonicalIVPHIRecipe>(CurRec))
1155         continue;
1156 
1157       // This recipe contributes to the address computation of a widen
1158       // load/store. Collect recipe if its underlying instruction has
1159       // poison-generating flags.
1160       Instruction *Instr = CurRec->getUnderlyingInstr();
1161       if (Instr && Instr->hasPoisonGeneratingFlags())
1162         State.MayGeneratePoisonRecipes.insert(CurRec);
1163 
1164       // Add new definitions to the worklist.
1165       for (VPValue *operand : CurRec->operands())
1166         if (VPDef *OpDef = operand->getDef())
1167           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1168     }
1169   });
1170 
1171   // Traverse all the recipes in the VPlan and collect the poison-generating
1172   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1173   // VPInterleaveRecipe.
1174   auto Iter = depth_first(
1175       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1176   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1177     for (VPRecipeBase &Recipe : *VPBB) {
1178       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1179         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1180         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1181         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1182             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1183           collectPoisonGeneratingInstrsInBackwardSlice(
1184               cast<VPRecipeBase>(AddrDef));
1185       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1186         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1187         if (AddrDef) {
1188           // Check if any member of the interleave group needs predication.
1189           const InterleaveGroup<Instruction> *InterGroup =
1190               InterleaveRec->getInterleaveGroup();
1191           bool NeedPredication = false;
1192           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1193                I < NumMembers; ++I) {
1194             Instruction *Member = InterGroup->getMember(I);
1195             if (Member)
1196               NeedPredication |=
1197                   Legal->blockNeedsPredication(Member->getParent());
1198           }
1199 
1200           if (NeedPredication)
1201             collectPoisonGeneratingInstrsInBackwardSlice(
1202                 cast<VPRecipeBase>(AddrDef));
1203         }
1204       }
1205     }
1206   }
1207 }
1208 
1209 void InnerLoopVectorizer::addMetadata(Instruction *To,
1210                                       Instruction *From) {
1211   propagateMetadata(To, From);
1212   addNewMetadata(To, From);
1213 }
1214 
1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1216                                       Instruction *From) {
1217   for (Value *V : To) {
1218     if (Instruction *I = dyn_cast<Instruction>(V))
1219       addMetadata(I, From);
1220   }
1221 }
1222 
1223 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1224     const RecurrenceDescriptor &RdxDesc) {
1225   auto It = ReductionResumeValues.find(&RdxDesc);
1226   assert(It != ReductionResumeValues.end() &&
1227          "Expected to find a resume value for the reduction.");
1228   return It->second;
1229 }
1230 
1231 namespace llvm {
1232 
1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1234 // lowered.
1235 enum ScalarEpilogueLowering {
1236 
1237   // The default: allowing scalar epilogues.
1238   CM_ScalarEpilogueAllowed,
1239 
1240   // Vectorization with OptForSize: don't allow epilogues.
1241   CM_ScalarEpilogueNotAllowedOptSize,
1242 
1243   // A special case of vectorisation with OptForSize: loops with a very small
1244   // trip count are considered for vectorization under OptForSize, thereby
1245   // making sure the cost of their loop body is dominant, free of runtime
1246   // guards and scalar iteration overheads.
1247   CM_ScalarEpilogueNotAllowedLowTripLoop,
1248 
1249   // Loop hint predicate indicating an epilogue is undesired.
1250   CM_ScalarEpilogueNotNeededUsePredicate,
1251 
1252   // Directive indicating we must either tail fold or not vectorize
1253   CM_ScalarEpilogueNotAllowedUsePredicate
1254 };
1255 
1256 /// ElementCountComparator creates a total ordering for ElementCount
1257 /// for the purposes of using it in a set structure.
1258 struct ElementCountComparator {
1259   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1260     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1261            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1262   }
1263 };
1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1265 
1266 /// LoopVectorizationCostModel - estimates the expected speedups due to
1267 /// vectorization.
1268 /// In many cases vectorization is not profitable. This can happen because of
1269 /// a number of reasons. In this class we mainly attempt to predict the
1270 /// expected speedup/slowdowns due to the supported instruction set. We use the
1271 /// TargetTransformInfo to query the different backends for the cost of
1272 /// different operations.
1273 class LoopVectorizationCostModel {
1274 public:
1275   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1276                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1277                              LoopVectorizationLegality *Legal,
1278                              const TargetTransformInfo &TTI,
1279                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1280                              AssumptionCache *AC,
1281                              OptimizationRemarkEmitter *ORE, const Function *F,
1282                              const LoopVectorizeHints *Hints,
1283                              InterleavedAccessInfo &IAI)
1284       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1285         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1286         Hints(Hints), InterleaveInfo(IAI) {}
1287 
1288   /// \return An upper bound for the vectorization factors (both fixed and
1289   /// scalable). If the factors are 0, vectorization and interleaving should be
1290   /// avoided up front.
1291   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1292 
1293   /// \return True if runtime checks are required for vectorization, and false
1294   /// otherwise.
1295   bool runtimeChecksRequired();
1296 
1297   /// \return The most profitable vectorization factor and the cost of that VF.
1298   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1299   /// then this vectorization factor will be selected if vectorization is
1300   /// possible.
1301   VectorizationFactor
1302   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1303 
1304   VectorizationFactor
1305   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1306                                     const LoopVectorizationPlanner &LVP);
1307 
1308   /// Setup cost-based decisions for user vectorization factor.
1309   /// \return true if the UserVF is a feasible VF to be chosen.
1310   bool selectUserVectorizationFactor(ElementCount UserVF) {
1311     collectUniformsAndScalars(UserVF);
1312     collectInstsToScalarize(UserVF);
1313     return expectedCost(UserVF).first.isValid();
1314   }
1315 
1316   /// \return The size (in bits) of the smallest and widest types in the code
1317   /// that needs to be vectorized. We ignore values that remain scalar such as
1318   /// 64 bit loop indices.
1319   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1320 
1321   /// \return The desired interleave count.
1322   /// If interleave count has been specified by metadata it will be returned.
1323   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1324   /// are the selected vectorization factor and the cost of the selected VF.
1325   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1326 
1327   /// Memory access instruction may be vectorized in more than one way.
1328   /// Form of instruction after vectorization depends on cost.
1329   /// This function takes cost-based decisions for Load/Store instructions
1330   /// and collects them in a map. This decisions map is used for building
1331   /// the lists of loop-uniform and loop-scalar instructions.
1332   /// The calculated cost is saved with widening decision in order to
1333   /// avoid redundant calculations.
1334   void setCostBasedWideningDecision(ElementCount VF);
1335 
1336   /// A struct that represents some properties of the register usage
1337   /// of a loop.
1338   struct RegisterUsage {
1339     /// Holds the number of loop invariant values that are used in the loop.
1340     /// The key is ClassID of target-provided register class.
1341     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1342     /// Holds the maximum number of concurrent live intervals in the loop.
1343     /// The key is ClassID of target-provided register class.
1344     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1345   };
1346 
1347   /// \return Returns information about the register usages of the loop for the
1348   /// given vectorization factors.
1349   SmallVector<RegisterUsage, 8>
1350   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1351 
1352   /// Collect values we want to ignore in the cost model.
1353   void collectValuesToIgnore();
1354 
1355   /// Collect all element types in the loop for which widening is needed.
1356   void collectElementTypesForWidening();
1357 
1358   /// Split reductions into those that happen in the loop, and those that happen
1359   /// outside. In loop reductions are collected into InLoopReductionChains.
1360   void collectInLoopReductions();
1361 
1362   /// Returns true if we should use strict in-order reductions for the given
1363   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1364   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1365   /// of FP operations.
1366   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1367     return !Hints->allowReordering() && RdxDesc.isOrdered();
1368   }
1369 
1370   /// \returns The smallest bitwidth each instruction can be represented with.
1371   /// The vector equivalents of these instructions should be truncated to this
1372   /// type.
1373   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1374     return MinBWs;
1375   }
1376 
1377   /// \returns True if it is more profitable to scalarize instruction \p I for
1378   /// vectorization factor \p VF.
1379   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1380     assert(VF.isVector() &&
1381            "Profitable to scalarize relevant only for VF > 1.");
1382 
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return false;
1387 
1388     auto Scalars = InstsToScalarize.find(VF);
1389     assert(Scalars != InstsToScalarize.end() &&
1390            "VF not yet analyzed for scalarization profitability");
1391     return Scalars->second.find(I) != Scalars->second.end();
1392   }
1393 
1394   /// Returns true if \p I is known to be uniform after vectorization.
1395   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1396     if (VF.isScalar())
1397       return true;
1398 
1399     // Cost model is not run in the VPlan-native path - return conservative
1400     // result until this changes.
1401     if (EnableVPlanNativePath)
1402       return false;
1403 
1404     auto UniformsPerVF = Uniforms.find(VF);
1405     assert(UniformsPerVF != Uniforms.end() &&
1406            "VF not yet analyzed for uniformity");
1407     return UniformsPerVF->second.count(I);
1408   }
1409 
1410   /// Returns true if \p I is known to be scalar after vectorization.
1411   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1412     if (VF.isScalar())
1413       return true;
1414 
1415     // Cost model is not run in the VPlan-native path - return conservative
1416     // result until this changes.
1417     if (EnableVPlanNativePath)
1418       return false;
1419 
1420     auto ScalarsPerVF = Scalars.find(VF);
1421     assert(ScalarsPerVF != Scalars.end() &&
1422            "Scalar values are not calculated for VF");
1423     return ScalarsPerVF->second.count(I);
1424   }
1425 
1426   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1427   /// for vectorization factor \p VF.
1428   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1429     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1430            !isProfitableToScalarize(I, VF) &&
1431            !isScalarAfterVectorization(I, VF);
1432   }
1433 
1434   /// Decision that was taken during cost calculation for memory instruction.
1435   enum InstWidening {
1436     CM_Unknown,
1437     CM_Widen,         // For consecutive accesses with stride +1.
1438     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1439     CM_Interleave,
1440     CM_GatherScatter,
1441     CM_Scalarize
1442   };
1443 
1444   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1445   /// instruction \p I and vector width \p VF.
1446   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1450   }
1451 
1452   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1453   /// interleaving group \p Grp and vector width \p VF.
1454   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1455                            ElementCount VF, InstWidening W,
1456                            InstructionCost Cost) {
1457     assert(VF.isVector() && "Expected VF >=2");
1458     /// Broadcast this decicion to all instructions inside the group.
1459     /// But the cost will be assigned to one instruction only.
1460     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1461       if (auto *I = Grp->getMember(i)) {
1462         if (Grp->getInsertPos() == I)
1463           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1464         else
1465           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1466       }
1467     }
1468   }
1469 
1470   /// Return the cost model decision for the given instruction \p I and vector
1471   /// width \p VF. Return CM_Unknown if this instruction did not pass
1472   /// through the cost modeling.
1473   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1474     assert(VF.isVector() && "Expected VF to be a vector VF");
1475     // Cost model is not run in the VPlan-native path - return conservative
1476     // result until this changes.
1477     if (EnableVPlanNativePath)
1478       return CM_GatherScatter;
1479 
1480     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1481     auto Itr = WideningDecisions.find(InstOnVF);
1482     if (Itr == WideningDecisions.end())
1483       return CM_Unknown;
1484     return Itr->second.first;
1485   }
1486 
1487   /// Return the vectorization cost for the given instruction \p I and vector
1488   /// width \p VF.
1489   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1490     assert(VF.isVector() && "Expected VF >=2");
1491     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1492     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1493            "The cost is not calculated");
1494     return WideningDecisions[InstOnVF].second;
1495   }
1496 
1497   /// Return True if instruction \p I is an optimizable truncate whose operand
1498   /// is an induction variable. Such a truncate will be removed by adding a new
1499   /// induction variable with the destination type.
1500   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1501     // If the instruction is not a truncate, return false.
1502     auto *Trunc = dyn_cast<TruncInst>(I);
1503     if (!Trunc)
1504       return false;
1505 
1506     // Get the source and destination types of the truncate.
1507     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1508     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1509 
1510     // If the truncate is free for the given types, return false. Replacing a
1511     // free truncate with an induction variable would add an induction variable
1512     // update instruction to each iteration of the loop. We exclude from this
1513     // check the primary induction variable since it will need an update
1514     // instruction regardless.
1515     Value *Op = Trunc->getOperand(0);
1516     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1517       return false;
1518 
1519     // If the truncated value is not an induction variable, return false.
1520     return Legal->isInductionPhi(Op);
1521   }
1522 
1523   /// Collects the instructions to scalarize for each predicated instruction in
1524   /// the loop.
1525   void collectInstsToScalarize(ElementCount VF);
1526 
1527   /// Collect Uniform and Scalar values for the given \p VF.
1528   /// The sets depend on CM decision for Load/Store instructions
1529   /// that may be vectorized as interleave, gather-scatter or scalarized.
1530   void collectUniformsAndScalars(ElementCount VF) {
1531     // Do the analysis once.
1532     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1533       return;
1534     setCostBasedWideningDecision(VF);
1535     collectLoopUniforms(VF);
1536     collectLoopScalars(VF);
1537   }
1538 
1539   /// Returns true if the target machine supports masked store operation
1540   /// for the given \p DataType and kind of access to \p Ptr.
1541   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1542     return Legal->isConsecutivePtr(DataType, Ptr) &&
1543            TTI.isLegalMaskedStore(DataType, Alignment);
1544   }
1545 
1546   /// Returns true if the target machine supports masked load operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedLoad(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine can represent \p V as a masked gather
1554   /// or scatter operation.
1555   bool isLegalGatherOrScatter(Value *V,
1556                               ElementCount VF = ElementCount::getFixed(1)) {
1557     bool LI = isa<LoadInst>(V);
1558     bool SI = isa<StoreInst>(V);
1559     if (!LI && !SI)
1560       return false;
1561     auto *Ty = getLoadStoreType(V);
1562     Align Align = getLoadStoreAlignment(V);
1563     if (VF.isVector())
1564       Ty = VectorType::get(Ty, VF);
1565     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1566            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1567   }
1568 
1569   /// Returns true if the target machine supports all of the reduction
1570   /// variables found for the given VF.
1571   bool canVectorizeReductions(ElementCount VF) const {
1572     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1573       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1574       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1575     }));
1576   }
1577 
1578   /// Returns true if \p I is an instruction that will be scalarized with
1579   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1580   /// instructions include conditional stores and instructions that may divide
1581   /// by zero.
1582   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1583 
1584   // Returns true if \p I is an instruction that will be predicated either
1585   // through scalar predication or masked load/store or masked gather/scatter.
1586   // \p VF is the vectorization factor that will be used to vectorize \p I.
1587   // Superset of instructions that return true for isScalarWithPredication.
1588   bool isPredicatedInst(Instruction *I, ElementCount VF,
1589                         bool IsKnownUniform = false) {
1590     // When we know the load is uniform and the original scalar loop was not
1591     // predicated we don't need to mark it as a predicated instruction. Any
1592     // vectorised blocks created when tail-folding are something artificial we
1593     // have introduced and we know there is always at least one active lane.
1594     // That's why we call Legal->blockNeedsPredication here because it doesn't
1595     // query tail-folding.
1596     if (IsKnownUniform && isa<LoadInst>(I) &&
1597         !Legal->blockNeedsPredication(I->getParent()))
1598       return false;
1599     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1600       return false;
1601     // Loads and stores that need some form of masked operation are predicated
1602     // instructions.
1603     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1604       return Legal->isMaskRequired(I);
1605     return isScalarWithPredication(I, VF);
1606   }
1607 
1608   /// Returns true if \p I is a memory instruction with consecutive memory
1609   /// access that can be widened.
1610   bool
1611   memoryInstructionCanBeWidened(Instruction *I,
1612                                 ElementCount VF = ElementCount::getFixed(1));
1613 
1614   /// Returns true if \p I is a memory instruction in an interleaved-group
1615   /// of memory accesses that can be vectorized with wide vector loads/stores
1616   /// and shuffles.
1617   bool
1618   interleavedAccessCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Check if \p Instr belongs to any interleaved access group.
1622   bool isAccessInterleaved(Instruction *Instr) {
1623     return InterleaveInfo.isInterleaved(Instr);
1624   }
1625 
1626   /// Get the interleaved access group that \p Instr belongs to.
1627   const InterleaveGroup<Instruction> *
1628   getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// Returns true if we're required to use a scalar epilogue for at least
1633   /// the final iteration of the original loop.
1634   bool requiresScalarEpilogue(ElementCount VF) const {
1635     if (!isScalarEpilogueAllowed())
1636       return false;
1637     // If we might exit from anywhere but the latch, must run the exiting
1638     // iteration in scalar form.
1639     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1640       return true;
1641     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1642   }
1643 
1644   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1645   /// loop hint annotation.
1646   bool isScalarEpilogueAllowed() const {
1647     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1648   }
1649 
1650   /// Returns true if all loop blocks should be masked to fold tail loop.
1651   bool foldTailByMasking() const { return FoldTailByMasking; }
1652 
1653   /// Returns true if the instructions in this block requires predication
1654   /// for any reason, e.g. because tail folding now requires a predicate
1655   /// or because the block in the original loop was predicated.
1656   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1657     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1658   }
1659 
1660   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1661   /// nodes to the chain of instructions representing the reductions. Uses a
1662   /// MapVector to ensure deterministic iteration order.
1663   using ReductionChainMap =
1664       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1665 
1666   /// Return the chain of instructions representing an inloop reduction.
1667   const ReductionChainMap &getInLoopReductionChains() const {
1668     return InLoopReductionChains;
1669   }
1670 
1671   /// Returns true if the Phi is part of an inloop reduction.
1672   bool isInLoopReduction(PHINode *Phi) const {
1673     return InLoopReductionChains.count(Phi);
1674   }
1675 
1676   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1677   /// with factor VF.  Return the cost of the instruction, including
1678   /// scalarization overhead if it's needed.
1679   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1680 
1681   /// Estimate cost of a call instruction CI if it were vectorized with factor
1682   /// VF. Return the cost of the instruction, including scalarization overhead
1683   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1684   /// scalarized -
1685   /// i.e. either vector version isn't available, or is too expensive.
1686   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1687                                     bool &NeedToScalarize) const;
1688 
1689   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1690   /// that of B.
1691   bool isMoreProfitable(const VectorizationFactor &A,
1692                         const VectorizationFactor &B) const;
1693 
1694   /// Invalidates decisions already taken by the cost model.
1695   void invalidateCostModelingDecisions() {
1696     WideningDecisions.clear();
1697     Uniforms.clear();
1698     Scalars.clear();
1699   }
1700 
1701 private:
1702   unsigned NumPredStores = 0;
1703 
1704   /// \return An upper bound for the vectorization factors for both
1705   /// fixed and scalable vectorization, where the minimum-known number of
1706   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1707   /// disabled or unsupported, then the scalable part will be equal to
1708   /// ElementCount::getScalable(0).
1709   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1710                                            ElementCount UserVF,
1711                                            bool FoldTailByMasking);
1712 
1713   /// \return the maximized element count based on the targets vector
1714   /// registers and the loop trip-count, but limited to a maximum safe VF.
1715   /// This is a helper function of computeFeasibleMaxVF.
1716   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1717   /// issue that occurred on one of the buildbots which cannot be reproduced
1718   /// without having access to the properietary compiler (see comments on
1719   /// D98509). The issue is currently under investigation and this workaround
1720   /// will be removed as soon as possible.
1721   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1722                                        unsigned SmallestType,
1723                                        unsigned WidestType,
1724                                        const ElementCount &MaxSafeVF,
1725                                        bool FoldTailByMasking);
1726 
1727   /// \return the maximum legal scalable VF, based on the safe max number
1728   /// of elements.
1729   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1730 
1731   /// The vectorization cost is a combination of the cost itself and a boolean
1732   /// indicating whether any of the contributing operations will actually
1733   /// operate on vector values after type legalization in the backend. If this
1734   /// latter value is false, then all operations will be scalarized (i.e. no
1735   /// vectorization has actually taken place).
1736   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1737 
1738   /// Returns the expected execution cost. The unit of the cost does
1739   /// not matter because we use the 'cost' units to compare different
1740   /// vector widths. The cost that is returned is *not* normalized by
1741   /// the factor width. If \p Invalid is not nullptr, this function
1742   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1743   /// each instruction that has an Invalid cost for the given VF.
1744   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1745   VectorizationCostTy
1746   expectedCost(ElementCount VF,
1747                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1748 
1749   /// Returns the execution time cost of an instruction for a given vector
1750   /// width. Vector width of one means scalar.
1751   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1752 
1753   /// The cost-computation logic from getInstructionCost which provides
1754   /// the vector type as an output parameter.
1755   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1756                                      Type *&VectorTy);
1757 
1758   /// Return the cost of instructions in an inloop reduction pattern, if I is
1759   /// part of that pattern.
1760   Optional<InstructionCost>
1761   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1762                           TTI::TargetCostKind CostKind);
1763 
1764   /// Calculate vectorization cost of memory instruction \p I.
1765   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1766 
1767   /// The cost computation for scalarized memory instruction.
1768   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1769 
1770   /// The cost computation for interleaving group of memory instructions.
1771   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1772 
1773   /// The cost computation for Gather/Scatter instruction.
1774   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1775 
1776   /// The cost computation for widening instruction \p I with consecutive
1777   /// memory access.
1778   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1779 
1780   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1781   /// Load: scalar load + broadcast.
1782   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1783   /// element)
1784   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1785 
1786   /// Estimate the overhead of scalarizing an instruction. This is a
1787   /// convenience wrapper for the type-based getScalarizationOverhead API.
1788   InstructionCost getScalarizationOverhead(Instruction *I,
1789                                            ElementCount VF) const;
1790 
1791   /// Returns whether the instruction is a load or store and will be a emitted
1792   /// as a vector operation.
1793   bool isConsecutiveLoadOrStore(Instruction *I);
1794 
1795   /// Returns true if an artificially high cost for emulated masked memrefs
1796   /// should be used.
1797   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1798 
1799   /// Map of scalar integer values to the smallest bitwidth they can be legally
1800   /// represented as. The vector equivalents of these values should be truncated
1801   /// to this type.
1802   MapVector<Instruction *, uint64_t> MinBWs;
1803 
1804   /// A type representing the costs for instructions if they were to be
1805   /// scalarized rather than vectorized. The entries are Instruction-Cost
1806   /// pairs.
1807   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1808 
1809   /// A set containing all BasicBlocks that are known to present after
1810   /// vectorization as a predicated block.
1811   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1812 
1813   /// Records whether it is allowed to have the original scalar loop execute at
1814   /// least once. This may be needed as a fallback loop in case runtime
1815   /// aliasing/dependence checks fail, or to handle the tail/remainder
1816   /// iterations when the trip count is unknown or doesn't divide by the VF,
1817   /// or as a peel-loop to handle gaps in interleave-groups.
1818   /// Under optsize and when the trip count is very small we don't allow any
1819   /// iterations to execute in the scalar loop.
1820   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1821 
1822   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1823   bool FoldTailByMasking = false;
1824 
1825   /// A map holding scalar costs for different vectorization factors. The
1826   /// presence of a cost for an instruction in the mapping indicates that the
1827   /// instruction will be scalarized when vectorizing with the associated
1828   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1829   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1830 
1831   /// Holds the instructions known to be uniform after vectorization.
1832   /// The data is collected per VF.
1833   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1834 
1835   /// Holds the instructions known to be scalar after vectorization.
1836   /// The data is collected per VF.
1837   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1838 
1839   /// Holds the instructions (address computations) that are forced to be
1840   /// scalarized.
1841   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1842 
1843   /// PHINodes of the reductions that should be expanded in-loop along with
1844   /// their associated chains of reduction operations, in program order from top
1845   /// (PHI) to bottom
1846   ReductionChainMap InLoopReductionChains;
1847 
1848   /// A Map of inloop reduction operations and their immediate chain operand.
1849   /// FIXME: This can be removed once reductions can be costed correctly in
1850   /// vplan. This was added to allow quick lookup to the inloop operations,
1851   /// without having to loop through InLoopReductionChains.
1852   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1853 
1854   /// Returns the expected difference in cost from scalarizing the expression
1855   /// feeding a predicated instruction \p PredInst. The instructions to
1856   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1857   /// non-negative return value implies the expression will be scalarized.
1858   /// Currently, only single-use chains are considered for scalarization.
1859   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1860                               ElementCount VF);
1861 
1862   /// Collect the instructions that are uniform after vectorization. An
1863   /// instruction is uniform if we represent it with a single scalar value in
1864   /// the vectorized loop corresponding to each vector iteration. Examples of
1865   /// uniform instructions include pointer operands of consecutive or
1866   /// interleaved memory accesses. Note that although uniformity implies an
1867   /// instruction will be scalar, the reverse is not true. In general, a
1868   /// scalarized instruction will be represented by VF scalar values in the
1869   /// vectorized loop, each corresponding to an iteration of the original
1870   /// scalar loop.
1871   void collectLoopUniforms(ElementCount VF);
1872 
1873   /// Collect the instructions that are scalar after vectorization. An
1874   /// instruction is scalar if it is known to be uniform or will be scalarized
1875   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1876   /// to the list if they are used by a load/store instruction that is marked as
1877   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1878   /// VF values in the vectorized loop, each corresponding to an iteration of
1879   /// the original scalar loop.
1880   void collectLoopScalars(ElementCount VF);
1881 
1882   /// Keeps cost model vectorization decision and cost for instructions.
1883   /// Right now it is used for memory instructions only.
1884   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1885                                 std::pair<InstWidening, InstructionCost>>;
1886 
1887   DecisionList WideningDecisions;
1888 
1889   /// Returns true if \p V is expected to be vectorized and it needs to be
1890   /// extracted.
1891   bool needsExtract(Value *V, ElementCount VF) const {
1892     Instruction *I = dyn_cast<Instruction>(V);
1893     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1894         TheLoop->isLoopInvariant(I))
1895       return false;
1896 
1897     // Assume we can vectorize V (and hence we need extraction) if the
1898     // scalars are not computed yet. This can happen, because it is called
1899     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1900     // the scalars are collected. That should be a safe assumption in most
1901     // cases, because we check if the operands have vectorizable types
1902     // beforehand in LoopVectorizationLegality.
1903     return Scalars.find(VF) == Scalars.end() ||
1904            !isScalarAfterVectorization(I, VF);
1905   };
1906 
1907   /// Returns a range containing only operands needing to be extracted.
1908   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1909                                                    ElementCount VF) const {
1910     return SmallVector<Value *, 4>(make_filter_range(
1911         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1912   }
1913 
1914   /// Determines if we have the infrastructure to vectorize loop \p L and its
1915   /// epilogue, assuming the main loop is vectorized by \p VF.
1916   bool isCandidateForEpilogueVectorization(const Loop &L,
1917                                            const ElementCount VF) const;
1918 
1919   /// Returns true if epilogue vectorization is considered profitable, and
1920   /// false otherwise.
1921   /// \p VF is the vectorization factor chosen for the original loop.
1922   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1923 
1924 public:
1925   /// The loop that we evaluate.
1926   Loop *TheLoop;
1927 
1928   /// Predicated scalar evolution analysis.
1929   PredicatedScalarEvolution &PSE;
1930 
1931   /// Loop Info analysis.
1932   LoopInfo *LI;
1933 
1934   /// Vectorization legality.
1935   LoopVectorizationLegality *Legal;
1936 
1937   /// Vector target information.
1938   const TargetTransformInfo &TTI;
1939 
1940   /// Target Library Info.
1941   const TargetLibraryInfo *TLI;
1942 
1943   /// Demanded bits analysis.
1944   DemandedBits *DB;
1945 
1946   /// Assumption cache.
1947   AssumptionCache *AC;
1948 
1949   /// Interface to emit optimization remarks.
1950   OptimizationRemarkEmitter *ORE;
1951 
1952   const Function *TheFunction;
1953 
1954   /// Loop Vectorize Hint.
1955   const LoopVectorizeHints *Hints;
1956 
1957   /// The interleave access information contains groups of interleaved accesses
1958   /// with the same stride and close to each other.
1959   InterleavedAccessInfo &InterleaveInfo;
1960 
1961   /// Values to ignore in the cost model.
1962   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1963 
1964   /// Values to ignore in the cost model when VF > 1.
1965   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1966 
1967   /// All element types found in the loop.
1968   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1969 
1970   /// Profitable vector factors.
1971   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1972 };
1973 } // end namespace llvm
1974 
1975 /// Helper struct to manage generating runtime checks for vectorization.
1976 ///
1977 /// The runtime checks are created up-front in temporary blocks to allow better
1978 /// estimating the cost and un-linked from the existing IR. After deciding to
1979 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1980 /// temporary blocks are completely removed.
1981 class GeneratedRTChecks {
1982   /// Basic block which contains the generated SCEV checks, if any.
1983   BasicBlock *SCEVCheckBlock = nullptr;
1984 
1985   /// The value representing the result of the generated SCEV checks. If it is
1986   /// nullptr, either no SCEV checks have been generated or they have been used.
1987   Value *SCEVCheckCond = nullptr;
1988 
1989   /// Basic block which contains the generated memory runtime checks, if any.
1990   BasicBlock *MemCheckBlock = nullptr;
1991 
1992   /// The value representing the result of the generated memory runtime checks.
1993   /// If it is nullptr, either no memory runtime checks have been generated or
1994   /// they have been used.
1995   Value *MemRuntimeCheckCond = nullptr;
1996 
1997   DominatorTree *DT;
1998   LoopInfo *LI;
1999 
2000   SCEVExpander SCEVExp;
2001   SCEVExpander MemCheckExp;
2002 
2003 public:
2004   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2005                     const DataLayout &DL)
2006       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2007         MemCheckExp(SE, DL, "scev.check") {}
2008 
2009   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2010   /// accurately estimate the cost of the runtime checks. The blocks are
2011   /// un-linked from the IR and is added back during vector code generation. If
2012   /// there is no vector code generation, the check blocks are removed
2013   /// completely.
2014   void Create(Loop *L, const LoopAccessInfo &LAI,
2015               const SCEVUnionPredicate &UnionPred) {
2016 
2017     BasicBlock *LoopHeader = L->getHeader();
2018     BasicBlock *Preheader = L->getLoopPreheader();
2019 
2020     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2021     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2022     // may be used by SCEVExpander. The blocks will be un-linked from their
2023     // predecessors and removed from LI & DT at the end of the function.
2024     if (!UnionPred.isAlwaysTrue()) {
2025       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2026                                   nullptr, "vector.scevcheck");
2027 
2028       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2029           &UnionPred, SCEVCheckBlock->getTerminator());
2030     }
2031 
2032     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2033     if (RtPtrChecking.Need) {
2034       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2035       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2036                                  "vector.memcheck");
2037 
2038       MemRuntimeCheckCond =
2039           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2040                            RtPtrChecking.getChecks(), MemCheckExp);
2041       assert(MemRuntimeCheckCond &&
2042              "no RT checks generated although RtPtrChecking "
2043              "claimed checks are required");
2044     }
2045 
2046     if (!MemCheckBlock && !SCEVCheckBlock)
2047       return;
2048 
2049     // Unhook the temporary block with the checks, update various places
2050     // accordingly.
2051     if (SCEVCheckBlock)
2052       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2053     if (MemCheckBlock)
2054       MemCheckBlock->replaceAllUsesWith(Preheader);
2055 
2056     if (SCEVCheckBlock) {
2057       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2058       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2059       Preheader->getTerminator()->eraseFromParent();
2060     }
2061     if (MemCheckBlock) {
2062       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2063       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2064       Preheader->getTerminator()->eraseFromParent();
2065     }
2066 
2067     DT->changeImmediateDominator(LoopHeader, Preheader);
2068     if (MemCheckBlock) {
2069       DT->eraseNode(MemCheckBlock);
2070       LI->removeBlock(MemCheckBlock);
2071     }
2072     if (SCEVCheckBlock) {
2073       DT->eraseNode(SCEVCheckBlock);
2074       LI->removeBlock(SCEVCheckBlock);
2075     }
2076   }
2077 
2078   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2079   /// unused.
2080   ~GeneratedRTChecks() {
2081     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2082     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2083     if (!SCEVCheckCond)
2084       SCEVCleaner.markResultUsed();
2085 
2086     if (!MemRuntimeCheckCond)
2087       MemCheckCleaner.markResultUsed();
2088 
2089     if (MemRuntimeCheckCond) {
2090       auto &SE = *MemCheckExp.getSE();
2091       // Memory runtime check generation creates compares that use expanded
2092       // values. Remove them before running the SCEVExpanderCleaners.
2093       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2094         if (MemCheckExp.isInsertedInstruction(&I))
2095           continue;
2096         SE.forgetValue(&I);
2097         I.eraseFromParent();
2098       }
2099     }
2100     MemCheckCleaner.cleanup();
2101     SCEVCleaner.cleanup();
2102 
2103     if (SCEVCheckCond)
2104       SCEVCheckBlock->eraseFromParent();
2105     if (MemRuntimeCheckCond)
2106       MemCheckBlock->eraseFromParent();
2107   }
2108 
2109   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2110   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2111   /// depending on the generated condition.
2112   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2113                              BasicBlock *LoopVectorPreHeader,
2114                              BasicBlock *LoopExitBlock) {
2115     if (!SCEVCheckCond)
2116       return nullptr;
2117     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2118       if (C->isZero())
2119         return nullptr;
2120 
2121     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2122 
2123     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2124     // Create new preheader for vector loop.
2125     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2126       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2127 
2128     SCEVCheckBlock->getTerminator()->eraseFromParent();
2129     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2130     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2131                                                 SCEVCheckBlock);
2132 
2133     DT->addNewBlock(SCEVCheckBlock, Pred);
2134     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2135 
2136     ReplaceInstWithInst(
2137         SCEVCheckBlock->getTerminator(),
2138         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2139     // Mark the check as used, to prevent it from being removed during cleanup.
2140     SCEVCheckCond = nullptr;
2141     return SCEVCheckBlock;
2142   }
2143 
2144   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2145   /// the branches to branch to the vector preheader or \p Bypass, depending on
2146   /// the generated condition.
2147   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2148                                    BasicBlock *LoopVectorPreHeader) {
2149     // Check if we generated code that checks in runtime if arrays overlap.
2150     if (!MemRuntimeCheckCond)
2151       return nullptr;
2152 
2153     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2154     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2155                                                 MemCheckBlock);
2156 
2157     DT->addNewBlock(MemCheckBlock, Pred);
2158     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2159     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2160 
2161     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2162       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2163 
2164     ReplaceInstWithInst(
2165         MemCheckBlock->getTerminator(),
2166         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2167     MemCheckBlock->getTerminator()->setDebugLoc(
2168         Pred->getTerminator()->getDebugLoc());
2169 
2170     // Mark the check as used, to prevent it from being removed during cleanup.
2171     MemRuntimeCheckCond = nullptr;
2172     return MemCheckBlock;
2173   }
2174 };
2175 
2176 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2177 // vectorization. The loop needs to be annotated with #pragma omp simd
2178 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2179 // vector length information is not provided, vectorization is not considered
2180 // explicit. Interleave hints are not allowed either. These limitations will be
2181 // relaxed in the future.
2182 // Please, note that we are currently forced to abuse the pragma 'clang
2183 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2184 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2185 // provides *explicit vectorization hints* (LV can bypass legal checks and
2186 // assume that vectorization is legal). However, both hints are implemented
2187 // using the same metadata (llvm.loop.vectorize, processed by
2188 // LoopVectorizeHints). This will be fixed in the future when the native IR
2189 // representation for pragma 'omp simd' is introduced.
2190 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2191                                    OptimizationRemarkEmitter *ORE) {
2192   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2193   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2194 
2195   // Only outer loops with an explicit vectorization hint are supported.
2196   // Unannotated outer loops are ignored.
2197   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2198     return false;
2199 
2200   Function *Fn = OuterLp->getHeader()->getParent();
2201   if (!Hints.allowVectorization(Fn, OuterLp,
2202                                 true /*VectorizeOnlyWhenForced*/)) {
2203     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2204     return false;
2205   }
2206 
2207   if (Hints.getInterleave() > 1) {
2208     // TODO: Interleave support is future work.
2209     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2210                          "outer loops.\n");
2211     Hints.emitRemarkWithHints();
2212     return false;
2213   }
2214 
2215   return true;
2216 }
2217 
2218 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2219                                   OptimizationRemarkEmitter *ORE,
2220                                   SmallVectorImpl<Loop *> &V) {
2221   // Collect inner loops and outer loops without irreducible control flow. For
2222   // now, only collect outer loops that have explicit vectorization hints. If we
2223   // are stress testing the VPlan H-CFG construction, we collect the outermost
2224   // loop of every loop nest.
2225   if (L.isInnermost() || VPlanBuildStressTest ||
2226       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2227     LoopBlocksRPO RPOT(&L);
2228     RPOT.perform(LI);
2229     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2230       V.push_back(&L);
2231       // TODO: Collect inner loops inside marked outer loops in case
2232       // vectorization fails for the outer loop. Do not invoke
2233       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2234       // already known to be reducible. We can use an inherited attribute for
2235       // that.
2236       return;
2237     }
2238   }
2239   for (Loop *InnerL : L)
2240     collectSupportedLoops(*InnerL, LI, ORE, V);
2241 }
2242 
2243 namespace {
2244 
2245 /// The LoopVectorize Pass.
2246 struct LoopVectorize : public FunctionPass {
2247   /// Pass identification, replacement for typeid
2248   static char ID;
2249 
2250   LoopVectorizePass Impl;
2251 
2252   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2253                          bool VectorizeOnlyWhenForced = false)
2254       : FunctionPass(ID),
2255         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2256     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2257   }
2258 
2259   bool runOnFunction(Function &F) override {
2260     if (skipFunction(F))
2261       return false;
2262 
2263     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2264     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2265     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2266     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2267     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2268     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2269     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2270     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2271     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2272     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2273     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2274     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2275     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2276 
2277     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2278         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2279 
2280     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2281                         GetLAA, *ORE, PSI).MadeAnyChange;
2282   }
2283 
2284   void getAnalysisUsage(AnalysisUsage &AU) const override {
2285     AU.addRequired<AssumptionCacheTracker>();
2286     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2287     AU.addRequired<DominatorTreeWrapperPass>();
2288     AU.addRequired<LoopInfoWrapperPass>();
2289     AU.addRequired<ScalarEvolutionWrapperPass>();
2290     AU.addRequired<TargetTransformInfoWrapperPass>();
2291     AU.addRequired<AAResultsWrapperPass>();
2292     AU.addRequired<LoopAccessLegacyAnalysis>();
2293     AU.addRequired<DemandedBitsWrapperPass>();
2294     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2295     AU.addRequired<InjectTLIMappingsLegacy>();
2296 
2297     // We currently do not preserve loopinfo/dominator analyses with outer loop
2298     // vectorization. Until this is addressed, mark these analyses as preserved
2299     // only for non-VPlan-native path.
2300     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2301     if (!EnableVPlanNativePath) {
2302       AU.addPreserved<LoopInfoWrapperPass>();
2303       AU.addPreserved<DominatorTreeWrapperPass>();
2304     }
2305 
2306     AU.addPreserved<BasicAAWrapperPass>();
2307     AU.addPreserved<GlobalsAAWrapperPass>();
2308     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2309   }
2310 };
2311 
2312 } // end anonymous namespace
2313 
2314 //===----------------------------------------------------------------------===//
2315 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2316 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2317 //===----------------------------------------------------------------------===//
2318 
2319 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2320   // We need to place the broadcast of invariant variables outside the loop,
2321   // but only if it's proven safe to do so. Else, broadcast will be inside
2322   // vector loop body.
2323   Instruction *Instr = dyn_cast<Instruction>(V);
2324   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2325                      (!Instr ||
2326                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2327   // Place the code for broadcasting invariant variables in the new preheader.
2328   IRBuilder<>::InsertPointGuard Guard(Builder);
2329   if (SafeToHoist)
2330     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2331 
2332   // Broadcast the scalar into all locations in the vector.
2333   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2334 
2335   return Shuf;
2336 }
2337 
2338 /// This function adds
2339 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2340 /// to each vector element of Val. The sequence starts at StartIndex.
2341 /// \p Opcode is relevant for FP induction variable.
2342 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2343                             Instruction::BinaryOps BinOp, ElementCount VF,
2344                             IRBuilder<> &Builder) {
2345   assert(VF.isVector() && "only vector VFs are supported");
2346 
2347   // Create and check the types.
2348   auto *ValVTy = cast<VectorType>(Val->getType());
2349   ElementCount VLen = ValVTy->getElementCount();
2350 
2351   Type *STy = Val->getType()->getScalarType();
2352   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2353          "Induction Step must be an integer or FP");
2354   assert(Step->getType() == STy && "Step has wrong type");
2355 
2356   SmallVector<Constant *, 8> Indices;
2357 
2358   // Create a vector of consecutive numbers from zero to VF.
2359   VectorType *InitVecValVTy = ValVTy;
2360   Type *InitVecValSTy = STy;
2361   if (STy->isFloatingPointTy()) {
2362     InitVecValSTy =
2363         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2364     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2365   }
2366   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2367 
2368   // Splat the StartIdx
2369   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2370 
2371   if (STy->isIntegerTy()) {
2372     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2373     Step = Builder.CreateVectorSplat(VLen, Step);
2374     assert(Step->getType() == Val->getType() && "Invalid step vec");
2375     // FIXME: The newly created binary instructions should contain nsw/nuw
2376     // flags, which can be found from the original scalar operations.
2377     Step = Builder.CreateMul(InitVec, Step);
2378     return Builder.CreateAdd(Val, Step, "induction");
2379   }
2380 
2381   // Floating point induction.
2382   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2383          "Binary Opcode should be specified for FP induction");
2384   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2385   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2386 
2387   Step = Builder.CreateVectorSplat(VLen, Step);
2388   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2389   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2390 }
2391 
2392 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2393     const InductionDescriptor &II, Value *Step, Value *Start,
2394     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2395   IRBuilder<> &Builder = State.Builder;
2396   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2397          "Expected either an induction phi-node or a truncate of it!");
2398 
2399   // Construct the initial value of the vector IV in the vector loop preheader
2400   auto CurrIP = Builder.saveIP();
2401   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2402   if (isa<TruncInst>(EntryVal)) {
2403     assert(Start->getType()->isIntegerTy() &&
2404            "Truncation requires an integer type");
2405     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2406     Step = Builder.CreateTrunc(Step, TruncType);
2407     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2408   }
2409 
2410   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2411   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2412   Value *SteppedStart = getStepVector(
2413       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2414 
2415   // We create vector phi nodes for both integer and floating-point induction
2416   // variables. Here, we determine the kind of arithmetic we will perform.
2417   Instruction::BinaryOps AddOp;
2418   Instruction::BinaryOps MulOp;
2419   if (Step->getType()->isIntegerTy()) {
2420     AddOp = Instruction::Add;
2421     MulOp = Instruction::Mul;
2422   } else {
2423     AddOp = II.getInductionOpcode();
2424     MulOp = Instruction::FMul;
2425   }
2426 
2427   // Multiply the vectorization factor by the step using integer or
2428   // floating-point arithmetic as appropriate.
2429   Type *StepType = Step->getType();
2430   Value *RuntimeVF;
2431   if (Step->getType()->isFloatingPointTy())
2432     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2433   else
2434     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2435   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2436 
2437   // Create a vector splat to use in the induction update.
2438   //
2439   // FIXME: If the step is non-constant, we create the vector splat with
2440   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2441   //        handle a constant vector splat.
2442   Value *SplatVF = isa<Constant>(Mul)
2443                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2444                        : Builder.CreateVectorSplat(State.VF, Mul);
2445   Builder.restoreIP(CurrIP);
2446 
2447   // We may need to add the step a number of times, depending on the unroll
2448   // factor. The last of those goes into the PHI.
2449   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2450                                     &*LoopVectorBody->getFirstInsertionPt());
2451   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2452   Instruction *LastInduction = VecInd;
2453   for (unsigned Part = 0; Part < UF; ++Part) {
2454     State.set(Def, LastInduction, Part);
2455 
2456     if (isa<TruncInst>(EntryVal))
2457       addMetadata(LastInduction, EntryVal);
2458 
2459     LastInduction = cast<Instruction>(
2460         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2461     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2462   }
2463 
2464   // Move the last step to the end of the latch block. This ensures consistent
2465   // placement of all induction updates.
2466   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2467   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2468   LastInduction->moveBefore(Br);
2469   LastInduction->setName("vec.ind.next");
2470 
2471   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2472   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2473 }
2474 
2475 void InnerLoopVectorizer::widenIntOrFpInduction(
2476     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2477     Value *CanonicalIV) {
2478   Value *Start = Def->getStartValue()->getLiveInIRValue();
2479   const InductionDescriptor &ID = Def->getInductionDescriptor();
2480   TruncInst *Trunc = Def->getTruncInst();
2481   IRBuilder<> &Builder = State.Builder;
2482   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2483   assert(!State.VF.isZero() && "VF must be non-zero");
2484 
2485   // The value from the original loop to which we are mapping the new induction
2486   // variable.
2487   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2488 
2489   auto &DL = EntryVal->getModule()->getDataLayout();
2490 
2491   // Generate code for the induction step. Note that induction steps are
2492   // required to be loop-invariant
2493   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2494     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2495            "Induction step should be loop invariant");
2496     if (PSE.getSE()->isSCEVable(IV->getType())) {
2497       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2498       return Exp.expandCodeFor(Step, Step->getType(),
2499                                State.CFG.VectorPreHeader->getTerminator());
2500     }
2501     return cast<SCEVUnknown>(Step)->getValue();
2502   };
2503 
2504   // The scalar value to broadcast. This is derived from the canonical
2505   // induction variable. If a truncation type is given, truncate the canonical
2506   // induction variable and step. Otherwise, derive these values from the
2507   // induction descriptor.
2508   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2509     Value *ScalarIV = CanonicalIV;
2510     Type *NeededType = IV->getType();
2511     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2512       ScalarIV =
2513           NeededType->isIntegerTy()
2514               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2515               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2516       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2517                                       State.CFG.PrevBB);
2518       ScalarIV->setName("offset.idx");
2519     }
2520     if (Trunc) {
2521       auto *TruncType = cast<IntegerType>(Trunc->getType());
2522       assert(Step->getType()->isIntegerTy() &&
2523              "Truncation requires an integer step");
2524       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2525       Step = Builder.CreateTrunc(Step, TruncType);
2526     }
2527     return ScalarIV;
2528   };
2529 
2530   // Fast-math-flags propagate from the original induction instruction.
2531   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2532   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2533     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2534 
2535   // Now do the actual transformations, and start with creating the step value.
2536   Value *Step = CreateStepValue(ID.getStep());
2537   if (State.VF.isScalar()) {
2538     Value *ScalarIV = CreateScalarIV(Step);
2539     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2540                                       Step->getType()->getScalarSizeInBits());
2541 
2542     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2543     if (IncOp == Instruction::BinaryOpsEnd)
2544       IncOp = Instruction::Add;
2545     for (unsigned Part = 0; Part < UF; ++Part) {
2546       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2547       Instruction::BinaryOps MulOp = Instruction::Mul;
2548       if (Step->getType()->isFloatingPointTy()) {
2549         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2550         MulOp = Instruction::FMul;
2551       }
2552 
2553       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2554       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2555       State.set(Def, EntryPart, Part);
2556       if (Trunc) {
2557         assert(!Step->getType()->isFloatingPointTy() &&
2558                "fp inductions shouldn't be truncated");
2559         addMetadata(EntryPart, Trunc);
2560       }
2561     }
2562     return;
2563   }
2564 
2565   // Create a new independent vector induction variable, if one is needed.
2566   if (Def->needsVectorIV())
2567     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2568 
2569   if (Def->needsScalarIV()) {
2570     // Create scalar steps that can be used by instructions we will later
2571     // scalarize. Note that the addition of the scalar steps will not increase
2572     // the number of instructions in the loop in the common case prior to
2573     // InstCombine. We will be trading one vector extract for each scalar step.
2574     Value *ScalarIV = CreateScalarIV(Step);
2575     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2576   }
2577 }
2578 
2579 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2580                                            Instruction *EntryVal,
2581                                            const InductionDescriptor &ID,
2582                                            VPValue *Def,
2583                                            VPTransformState &State) {
2584   IRBuilder<> &Builder = State.Builder;
2585   // We shouldn't have to build scalar steps if we aren't vectorizing.
2586   assert(State.VF.isVector() && "VF should be greater than one");
2587   // Get the value type and ensure it and the step have the same integer type.
2588   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2589   assert(ScalarIVTy == Step->getType() &&
2590          "Val and Step should have the same type");
2591 
2592   // We build scalar steps for both integer and floating-point induction
2593   // variables. Here, we determine the kind of arithmetic we will perform.
2594   Instruction::BinaryOps AddOp;
2595   Instruction::BinaryOps MulOp;
2596   if (ScalarIVTy->isIntegerTy()) {
2597     AddOp = Instruction::Add;
2598     MulOp = Instruction::Mul;
2599   } else {
2600     AddOp = ID.getInductionOpcode();
2601     MulOp = Instruction::FMul;
2602   }
2603 
2604   // Determine the number of scalars we need to generate for each unroll
2605   // iteration.
2606   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2607   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2608   // Compute the scalar steps and save the results in State.
2609   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2610                                      ScalarIVTy->getScalarSizeInBits());
2611   Type *VecIVTy = nullptr;
2612   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2613   if (!FirstLaneOnly && State.VF.isScalable()) {
2614     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2615     UnitStepVec =
2616         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2617     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2618     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2619   }
2620 
2621   for (unsigned Part = 0; Part < State.UF; ++Part) {
2622     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2623 
2624     if (!FirstLaneOnly && State.VF.isScalable()) {
2625       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2626       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2627       if (ScalarIVTy->isFloatingPointTy())
2628         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2629       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2630       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2631       State.set(Def, Add, Part);
2632       // It's useful to record the lane values too for the known minimum number
2633       // of elements so we do those below. This improves the code quality when
2634       // trying to extract the first element, for example.
2635     }
2636 
2637     if (ScalarIVTy->isFloatingPointTy())
2638       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2639 
2640     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2641       Value *StartIdx = Builder.CreateBinOp(
2642           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2643       // The step returned by `createStepForVF` is a runtime-evaluated value
2644       // when VF is scalable. Otherwise, it should be folded into a Constant.
2645       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2646              "Expected StartIdx to be folded to a constant when VF is not "
2647              "scalable");
2648       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2649       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2650       State.set(Def, Add, VPIteration(Part, Lane));
2651     }
2652   }
2653 }
2654 
2655 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2656                                                     const VPIteration &Instance,
2657                                                     VPTransformState &State) {
2658   Value *ScalarInst = State.get(Def, Instance);
2659   Value *VectorValue = State.get(Def, Instance.Part);
2660   VectorValue = Builder.CreateInsertElement(
2661       VectorValue, ScalarInst,
2662       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2663   State.set(Def, VectorValue, Instance.Part);
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2842   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2843          "masked interleaved groups are not allowed.");
2844   assert((!MaskForGaps || !VF.isScalable()) &&
2845          "masking gaps for scalable vectors is not yet supported.");
2846   for (unsigned Part = 0; Part < UF; Part++) {
2847     // Collect the stored vector from each member.
2848     SmallVector<Value *, 4> StoredVecs;
2849     for (unsigned i = 0; i < InterleaveFactor; i++) {
2850       assert((Group->getMember(i) || MaskForGaps) &&
2851              "Fail to get a member from an interleaved store group");
2852       Instruction *Member = Group->getMember(i);
2853 
2854       // Skip the gaps in the group.
2855       if (!Member) {
2856         Value *Undef = PoisonValue::get(SubVT);
2857         StoredVecs.push_back(Undef);
2858         continue;
2859       }
2860 
2861       Value *StoredVec = State.get(StoredValues[i], Part);
2862 
2863       if (Group->isReverse())
2864         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2865 
2866       // If this member has different type, cast it to a unified type.
2867 
2868       if (StoredVec->getType() != SubVT)
2869         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2870 
2871       StoredVecs.push_back(StoredVec);
2872     }
2873 
2874     // Concatenate all vectors into a wide vector.
2875     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2876 
2877     // Interleave the elements in the wide vector.
2878     Value *IVec = Builder.CreateShuffleVector(
2879         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2880         "interleaved.vec");
2881 
2882     Instruction *NewStoreInstr;
2883     if (BlockInMask || MaskForGaps) {
2884       Value *GroupMask = MaskForGaps;
2885       if (BlockInMask) {
2886         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2887         Value *ShuffledMask = Builder.CreateShuffleVector(
2888             BlockInMaskPart,
2889             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2890             "interleaved.mask");
2891         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2892                                                       ShuffledMask, MaskForGaps)
2893                                 : ShuffledMask;
2894       }
2895       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2896                                                 Group->getAlign(), GroupMask);
2897     } else
2898       NewStoreInstr =
2899           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2900 
2901     Group->addMetadata(NewStoreInstr);
2902   }
2903 }
2904 
2905 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2906                                                VPReplicateRecipe *RepRecipe,
2907                                                const VPIteration &Instance,
2908                                                bool IfPredicateInstr,
2909                                                VPTransformState &State) {
2910   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2911 
2912   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2913   // the first lane and part.
2914   if (isa<NoAliasScopeDeclInst>(Instr))
2915     if (!Instance.isFirstIteration())
2916       return;
2917 
2918   setDebugLocFromInst(Instr);
2919 
2920   // Does this instruction return a value ?
2921   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2922 
2923   Instruction *Cloned = Instr->clone();
2924   if (!IsVoidRetTy)
2925     Cloned->setName(Instr->getName() + ".cloned");
2926 
2927   // If the scalarized instruction contributes to the address computation of a
2928   // widen masked load/store which was in a basic block that needed predication
2929   // and is not predicated after vectorization, we can't propagate
2930   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2931   // instruction could feed a poison value to the base address of the widen
2932   // load/store.
2933   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2934     Cloned->dropPoisonGeneratingFlags();
2935 
2936   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2937                                Builder.GetInsertPoint());
2938   // Replace the operands of the cloned instructions with their scalar
2939   // equivalents in the new loop.
2940   for (auto &I : enumerate(RepRecipe->operands())) {
2941     auto InputInstance = Instance;
2942     VPValue *Operand = I.value();
2943     if (State.Plan->isUniformAfterVectorization(Operand))
2944       InputInstance.Lane = VPLane::getFirstLane();
2945     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2946   }
2947   addNewMetadata(Cloned, Instr);
2948 
2949   // Place the cloned scalar in the new loop.
2950   Builder.Insert(Cloned);
2951 
2952   State.set(RepRecipe, Cloned, Instance);
2953 
2954   // If we just cloned a new assumption, add it the assumption cache.
2955   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2956     AC->registerAssumption(II);
2957 
2958   // End if-block.
2959   if (IfPredicateInstr)
2960     PredicatedInstructions.push_back(Cloned);
2961 }
2962 
2963 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2964   BasicBlock *Header = L->getHeader();
2965   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2966 
2967   IRBuilder<> B(Header->getTerminator());
2968   Instruction *OldInst =
2969       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2970   setDebugLocFromInst(OldInst, &B);
2971 
2972   // Connect the header to the exit and header blocks and replace the old
2973   // terminator.
2974   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2975 
2976   // Now we have two terminators. Remove the old one from the block.
2977   Header->getTerminator()->eraseFromParent();
2978 }
2979 
2980 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2981   if (TripCount)
2982     return TripCount;
2983 
2984   assert(L && "Create Trip Count for null loop.");
2985   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2986   // Find the loop boundaries.
2987   ScalarEvolution *SE = PSE.getSE();
2988   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2989   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2990          "Invalid loop count");
2991 
2992   Type *IdxTy = Legal->getWidestInductionType();
2993   assert(IdxTy && "No type for induction");
2994 
2995   // The exit count might have the type of i64 while the phi is i32. This can
2996   // happen if we have an induction variable that is sign extended before the
2997   // compare. The only way that we get a backedge taken count is that the
2998   // induction variable was signed and as such will not overflow. In such a case
2999   // truncation is legal.
3000   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3001       IdxTy->getPrimitiveSizeInBits())
3002     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3003   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3004 
3005   // Get the total trip count from the count by adding 1.
3006   const SCEV *ExitCount = SE->getAddExpr(
3007       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3008 
3009   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3010 
3011   // Expand the trip count and place the new instructions in the preheader.
3012   // Notice that the pre-header does not change, only the loop body.
3013   SCEVExpander Exp(*SE, DL, "induction");
3014 
3015   // Count holds the overall loop count (N).
3016   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3017                                 L->getLoopPreheader()->getTerminator());
3018 
3019   if (TripCount->getType()->isPointerTy())
3020     TripCount =
3021         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3022                                     L->getLoopPreheader()->getTerminator());
3023 
3024   return TripCount;
3025 }
3026 
3027 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3028   if (VectorTripCount)
3029     return VectorTripCount;
3030 
3031   Value *TC = getOrCreateTripCount(L);
3032   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3033 
3034   Type *Ty = TC->getType();
3035   // This is where we can make the step a runtime constant.
3036   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3037 
3038   // If the tail is to be folded by masking, round the number of iterations N
3039   // up to a multiple of Step instead of rounding down. This is done by first
3040   // adding Step-1 and then rounding down. Note that it's ok if this addition
3041   // overflows: the vector induction variable will eventually wrap to zero given
3042   // that it starts at zero and its Step is a power of two; the loop will then
3043   // exit, with the last early-exit vector comparison also producing all-true.
3044   if (Cost->foldTailByMasking()) {
3045     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3046            "VF*UF must be a power of 2 when folding tail by masking");
3047     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3048     TC = Builder.CreateAdd(
3049         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3050   }
3051 
3052   // Now we need to generate the expression for the part of the loop that the
3053   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3054   // iterations are not required for correctness, or N - Step, otherwise. Step
3055   // is equal to the vectorization factor (number of SIMD elements) times the
3056   // unroll factor (number of SIMD instructions).
3057   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3058 
3059   // There are cases where we *must* run at least one iteration in the remainder
3060   // loop.  See the cost model for when this can happen.  If the step evenly
3061   // divides the trip count, we set the remainder to be equal to the step. If
3062   // the step does not evenly divide the trip count, no adjustment is necessary
3063   // since there will already be scalar iterations. Note that the minimum
3064   // iterations check ensures that N >= Step.
3065   if (Cost->requiresScalarEpilogue(VF)) {
3066     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3067     R = Builder.CreateSelect(IsZero, Step, R);
3068   }
3069 
3070   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3071 
3072   return VectorTripCount;
3073 }
3074 
3075 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3076                                                    const DataLayout &DL) {
3077   // Verify that V is a vector type with same number of elements as DstVTy.
3078   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3079   unsigned VF = DstFVTy->getNumElements();
3080   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3081   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3082   Type *SrcElemTy = SrcVecTy->getElementType();
3083   Type *DstElemTy = DstFVTy->getElementType();
3084   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3085          "Vector elements must have same size");
3086 
3087   // Do a direct cast if element types are castable.
3088   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3089     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3090   }
3091   // V cannot be directly casted to desired vector type.
3092   // May happen when V is a floating point vector but DstVTy is a vector of
3093   // pointers or vice-versa. Handle this using a two-step bitcast using an
3094   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3095   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3096          "Only one type should be a pointer type");
3097   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3098          "Only one type should be a floating point type");
3099   Type *IntTy =
3100       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3101   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3102   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3103   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3104 }
3105 
3106 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3107                                                          BasicBlock *Bypass) {
3108   Value *Count = getOrCreateTripCount(L);
3109   // Reuse existing vector loop preheader for TC checks.
3110   // Note that new preheader block is generated for vector loop.
3111   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3112   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3113 
3114   // Generate code to check if the loop's trip count is less than VF * UF, or
3115   // equal to it in case a scalar epilogue is required; this implies that the
3116   // vector trip count is zero. This check also covers the case where adding one
3117   // to the backedge-taken count overflowed leading to an incorrect trip count
3118   // of zero. In this case we will also jump to the scalar loop.
3119   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3120                                             : ICmpInst::ICMP_ULT;
3121 
3122   // If tail is to be folded, vector loop takes care of all iterations.
3123   Value *CheckMinIters = Builder.getFalse();
3124   if (!Cost->foldTailByMasking()) {
3125     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3126     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3127   }
3128   // Create new preheader for vector loop.
3129   LoopVectorPreHeader =
3130       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3131                  "vector.ph");
3132 
3133   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3134                                DT->getNode(Bypass)->getIDom()) &&
3135          "TC check is expected to dominate Bypass");
3136 
3137   // Update dominator for Bypass & LoopExit (if needed).
3138   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3139   if (!Cost->requiresScalarEpilogue(VF))
3140     // If there is an epilogue which must run, there's no edge from the
3141     // middle block to exit blocks  and thus no need to update the immediate
3142     // dominator of the exit blocks.
3143     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3144 
3145   ReplaceInstWithInst(
3146       TCCheckBlock->getTerminator(),
3147       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3148   LoopBypassBlocks.push_back(TCCheckBlock);
3149 }
3150 
3151 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3152 
3153   BasicBlock *const SCEVCheckBlock =
3154       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3155   if (!SCEVCheckBlock)
3156     return nullptr;
3157 
3158   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3159            (OptForSizeBasedOnProfile &&
3160             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3161          "Cannot SCEV check stride or overflow when optimizing for size");
3162 
3163 
3164   // Update dominator only if this is first RT check.
3165   if (LoopBypassBlocks.empty()) {
3166     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3167     if (!Cost->requiresScalarEpilogue(VF))
3168       // If there is an epilogue which must run, there's no edge from the
3169       // middle block to exit blocks  and thus no need to update the immediate
3170       // dominator of the exit blocks.
3171       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3172   }
3173 
3174   LoopBypassBlocks.push_back(SCEVCheckBlock);
3175   AddedSafetyChecks = true;
3176   return SCEVCheckBlock;
3177 }
3178 
3179 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3180                                                       BasicBlock *Bypass) {
3181   // VPlan-native path does not do any analysis for runtime checks currently.
3182   if (EnableVPlanNativePath)
3183     return nullptr;
3184 
3185   BasicBlock *const MemCheckBlock =
3186       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3187 
3188   // Check if we generated code that checks in runtime if arrays overlap. We put
3189   // the checks into a separate block to make the more common case of few
3190   // elements faster.
3191   if (!MemCheckBlock)
3192     return nullptr;
3193 
3194   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3195     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3196            "Cannot emit memory checks when optimizing for size, unless forced "
3197            "to vectorize.");
3198     ORE->emit([&]() {
3199       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3200                                         L->getStartLoc(), L->getHeader())
3201              << "Code-size may be reduced by not forcing "
3202                 "vectorization, or by source-code modifications "
3203                 "eliminating the need for runtime checks "
3204                 "(e.g., adding 'restrict').";
3205     });
3206   }
3207 
3208   LoopBypassBlocks.push_back(MemCheckBlock);
3209 
3210   AddedSafetyChecks = true;
3211 
3212   // We currently don't use LoopVersioning for the actual loop cloning but we
3213   // still use it to add the noalias metadata.
3214   LVer = std::make_unique<LoopVersioning>(
3215       *Legal->getLAI(),
3216       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3217       DT, PSE.getSE());
3218   LVer->prepareNoAliasMetadata();
3219   return MemCheckBlock;
3220 }
3221 
3222 Value *InnerLoopVectorizer::emitTransformedIndex(
3223     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3224     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3225 
3226   SCEVExpander Exp(*SE, DL, "induction");
3227   auto Step = ID.getStep();
3228   auto StartValue = ID.getStartValue();
3229   assert(Index->getType()->getScalarType() == Step->getType() &&
3230          "Index scalar type does not match StepValue type");
3231 
3232   // Note: the IR at this point is broken. We cannot use SE to create any new
3233   // SCEV and then expand it, hoping that SCEV's simplification will give us
3234   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3235   // lead to various SCEV crashes. So all we can do is to use builder and rely
3236   // on InstCombine for future simplifications. Here we handle some trivial
3237   // cases only.
3238   auto CreateAdd = [&B](Value *X, Value *Y) {
3239     assert(X->getType() == Y->getType() && "Types don't match!");
3240     if (auto *CX = dyn_cast<ConstantInt>(X))
3241       if (CX->isZero())
3242         return Y;
3243     if (auto *CY = dyn_cast<ConstantInt>(Y))
3244       if (CY->isZero())
3245         return X;
3246     return B.CreateAdd(X, Y);
3247   };
3248 
3249   // We allow X to be a vector type, in which case Y will potentially be
3250   // splatted into a vector with the same element count.
3251   auto CreateMul = [&B](Value *X, Value *Y) {
3252     assert(X->getType()->getScalarType() == Y->getType() &&
3253            "Types don't match!");
3254     if (auto *CX = dyn_cast<ConstantInt>(X))
3255       if (CX->isOne())
3256         return Y;
3257     if (auto *CY = dyn_cast<ConstantInt>(Y))
3258       if (CY->isOne())
3259         return X;
3260     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3261     if (XVTy && !isa<VectorType>(Y->getType()))
3262       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3263     return B.CreateMul(X, Y);
3264   };
3265 
3266   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3267   // loop, choose the end of the vector loop header (=VectorHeader), because
3268   // the DomTree is not kept up-to-date for additional blocks generated in the
3269   // vector loop. By using the header as insertion point, we guarantee that the
3270   // expanded instructions dominate all their uses.
3271   auto GetInsertPoint = [this, &B, VectorHeader]() {
3272     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3273     if (InsertBB != LoopVectorBody &&
3274         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3275       return VectorHeader->getTerminator();
3276     return &*B.GetInsertPoint();
3277   };
3278 
3279   switch (ID.getKind()) {
3280   case InductionDescriptor::IK_IntInduction: {
3281     assert(!isa<VectorType>(Index->getType()) &&
3282            "Vector indices not supported for integer inductions yet");
3283     assert(Index->getType() == StartValue->getType() &&
3284            "Index type does not match StartValue type");
3285     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3286       return B.CreateSub(StartValue, Index);
3287     auto *Offset = CreateMul(
3288         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3289     return CreateAdd(StartValue, Offset);
3290   }
3291   case InductionDescriptor::IK_PtrInduction: {
3292     assert(isa<SCEVConstant>(Step) &&
3293            "Expected constant step for pointer induction");
3294     return B.CreateGEP(
3295         ID.getElementType(), StartValue,
3296         CreateMul(Index,
3297                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3298                                     GetInsertPoint())));
3299   }
3300   case InductionDescriptor::IK_FpInduction: {
3301     assert(!isa<VectorType>(Index->getType()) &&
3302            "Vector indices not supported for FP inductions yet");
3303     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3304     auto InductionBinOp = ID.getInductionBinOp();
3305     assert(InductionBinOp &&
3306            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3307             InductionBinOp->getOpcode() == Instruction::FSub) &&
3308            "Original bin op should be defined for FP induction");
3309 
3310     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3311     Value *MulExp = B.CreateFMul(StepValue, Index);
3312     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3313                          "induction");
3314   }
3315   case InductionDescriptor::IK_NoInduction:
3316     return nullptr;
3317   }
3318   llvm_unreachable("invalid enum");
3319 }
3320 
3321 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3322   LoopScalarBody = OrigLoop->getHeader();
3323   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3324   assert(LoopVectorPreHeader && "Invalid loop structure");
3325   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3326   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3327          "multiple exit loop without required epilogue?");
3328 
3329   LoopMiddleBlock =
3330       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3331                  LI, nullptr, Twine(Prefix) + "middle.block");
3332   LoopScalarPreHeader =
3333       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3334                  nullptr, Twine(Prefix) + "scalar.ph");
3335 
3336   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3337 
3338   // Set up the middle block terminator.  Two cases:
3339   // 1) If we know that we must execute the scalar epilogue, emit an
3340   //    unconditional branch.
3341   // 2) Otherwise, we must have a single unique exit block (due to how we
3342   //    implement the multiple exit case).  In this case, set up a conditonal
3343   //    branch from the middle block to the loop scalar preheader, and the
3344   //    exit block.  completeLoopSkeleton will update the condition to use an
3345   //    iteration check, if required to decide whether to execute the remainder.
3346   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3347     BranchInst::Create(LoopScalarPreHeader) :
3348     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3349                        Builder.getTrue());
3350   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3351   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3352 
3353   // We intentionally don't let SplitBlock to update LoopInfo since
3354   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3355   // LoopVectorBody is explicitly added to the correct place few lines later.
3356   LoopVectorBody =
3357       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3358                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3359 
3360   // Update dominator for loop exit.
3361   if (!Cost->requiresScalarEpilogue(VF))
3362     // If there is an epilogue which must run, there's no edge from the
3363     // middle block to exit blocks  and thus no need to update the immediate
3364     // dominator of the exit blocks.
3365     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3366 
3367   // Create and register the new vector loop.
3368   Loop *Lp = LI->AllocateLoop();
3369   Loop *ParentLoop = OrigLoop->getParentLoop();
3370 
3371   // Insert the new loop into the loop nest and register the new basic blocks
3372   // before calling any utilities such as SCEV that require valid LoopInfo.
3373   if (ParentLoop) {
3374     ParentLoop->addChildLoop(Lp);
3375   } else {
3376     LI->addTopLevelLoop(Lp);
3377   }
3378   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3379   return Lp;
3380 }
3381 
3382 void InnerLoopVectorizer::createInductionResumeValues(
3383     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3384   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3385           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3386          "Inconsistent information about additional bypass.");
3387 
3388   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3389   assert(VectorTripCount && L && "Expected valid arguments");
3390   // We are going to resume the execution of the scalar loop.
3391   // Go over all of the induction variables that we found and fix the
3392   // PHIs that are left in the scalar version of the loop.
3393   // The starting values of PHI nodes depend on the counter of the last
3394   // iteration in the vectorized loop.
3395   // If we come from a bypass edge then we need to start from the original
3396   // start value.
3397   Instruction *OldInduction = Legal->getPrimaryInduction();
3398   for (auto &InductionEntry : Legal->getInductionVars()) {
3399     PHINode *OrigPhi = InductionEntry.first;
3400     InductionDescriptor II = InductionEntry.second;
3401 
3402     // Create phi nodes to merge from the  backedge-taken check block.
3403     PHINode *BCResumeVal =
3404         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3405                         LoopScalarPreHeader->getTerminator());
3406     // Copy original phi DL over to the new one.
3407     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3408     Value *&EndValue = IVEndValues[OrigPhi];
3409     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3410     if (OrigPhi == OldInduction) {
3411       // We know what the end value is.
3412       EndValue = VectorTripCount;
3413     } else {
3414       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3415 
3416       // Fast-math-flags propagate from the original induction instruction.
3417       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3418         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3419 
3420       Type *StepType = II.getStep()->getType();
3421       Instruction::CastOps CastOp =
3422           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3423       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3424       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3425       EndValue =
3426           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3427       EndValue->setName("ind.end");
3428 
3429       // Compute the end value for the additional bypass (if applicable).
3430       if (AdditionalBypass.first) {
3431         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3432         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3433                                          StepType, true);
3434         CRD =
3435             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3436         EndValueFromAdditionalBypass =
3437             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3438         EndValueFromAdditionalBypass->setName("ind.end");
3439       }
3440     }
3441     // The new PHI merges the original incoming value, in case of a bypass,
3442     // or the value at the end of the vectorized loop.
3443     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3444 
3445     // Fix the scalar body counter (PHI node).
3446     // The old induction's phi node in the scalar body needs the truncated
3447     // value.
3448     for (BasicBlock *BB : LoopBypassBlocks)
3449       BCResumeVal->addIncoming(II.getStartValue(), BB);
3450 
3451     if (AdditionalBypass.first)
3452       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3453                                             EndValueFromAdditionalBypass);
3454 
3455     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3456   }
3457 }
3458 
3459 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3460                                                       MDNode *OrigLoopID) {
3461   assert(L && "Expected valid loop.");
3462 
3463   // The trip counts should be cached by now.
3464   Value *Count = getOrCreateTripCount(L);
3465   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3466 
3467   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3468 
3469   // Add a check in the middle block to see if we have completed
3470   // all of the iterations in the first vector loop.  Three cases:
3471   // 1) If we require a scalar epilogue, there is no conditional branch as
3472   //    we unconditionally branch to the scalar preheader.  Do nothing.
3473   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3474   //    Thus if tail is to be folded, we know we don't need to run the
3475   //    remainder and we can use the previous value for the condition (true).
3476   // 3) Otherwise, construct a runtime check.
3477   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3478     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3479                                         Count, VectorTripCount, "cmp.n",
3480                                         LoopMiddleBlock->getTerminator());
3481 
3482     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3483     // of the corresponding compare because they may have ended up with
3484     // different line numbers and we want to avoid awkward line stepping while
3485     // debugging. Eg. if the compare has got a line number inside the loop.
3486     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3487     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3488   }
3489 
3490   // Get ready to start creating new instructions into the vectorized body.
3491   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3492          "Inconsistent vector loop preheader");
3493   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3494 
3495 #ifdef EXPENSIVE_CHECKS
3496   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3497   LI->verify(*DT);
3498 #endif
3499 
3500   return LoopVectorPreHeader;
3501 }
3502 
3503 std::pair<BasicBlock *, Value *>
3504 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3505   /*
3506    In this function we generate a new loop. The new loop will contain
3507    the vectorized instructions while the old loop will continue to run the
3508    scalar remainder.
3509 
3510        [ ] <-- loop iteration number check.
3511     /   |
3512    /    v
3513   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3514   |  /  |
3515   | /   v
3516   ||   [ ]     <-- vector pre header.
3517   |/    |
3518   |     v
3519   |    [  ] \
3520   |    [  ]_|   <-- vector loop.
3521   |     |
3522   |     v
3523   \   -[ ]   <--- middle-block.
3524    \/   |
3525    /\   v
3526    | ->[ ]     <--- new preheader.
3527    |    |
3528  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3529    |   [ ] \
3530    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3531     \   |
3532      \  v
3533       >[ ]     <-- exit block(s).
3534    ...
3535    */
3536 
3537   // Get the metadata of the original loop before it gets modified.
3538   MDNode *OrigLoopID = OrigLoop->getLoopID();
3539 
3540   // Workaround!  Compute the trip count of the original loop and cache it
3541   // before we start modifying the CFG.  This code has a systemic problem
3542   // wherein it tries to run analysis over partially constructed IR; this is
3543   // wrong, and not simply for SCEV.  The trip count of the original loop
3544   // simply happens to be prone to hitting this in practice.  In theory, we
3545   // can hit the same issue for any SCEV, or ValueTracking query done during
3546   // mutation.  See PR49900.
3547   getOrCreateTripCount(OrigLoop);
3548 
3549   // Create an empty vector loop, and prepare basic blocks for the runtime
3550   // checks.
3551   Loop *Lp = createVectorLoopSkeleton("");
3552 
3553   // Now, compare the new count to zero. If it is zero skip the vector loop and
3554   // jump to the scalar loop. This check also covers the case where the
3555   // backedge-taken count is uint##_max: adding one to it will overflow leading
3556   // to an incorrect trip count of zero. In this (rare) case we will also jump
3557   // to the scalar loop.
3558   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3559 
3560   // Generate the code to check any assumptions that we've made for SCEV
3561   // expressions.
3562   emitSCEVChecks(Lp, LoopScalarPreHeader);
3563 
3564   // Generate the code that checks in runtime if arrays overlap. We put the
3565   // checks into a separate block to make the more common case of few elements
3566   // faster.
3567   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3568 
3569   createHeaderBranch(Lp);
3570 
3571   // Emit phis for the new starting index of the scalar loop.
3572   createInductionResumeValues(Lp);
3573 
3574   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3575 }
3576 
3577 // Fix up external users of the induction variable. At this point, we are
3578 // in LCSSA form, with all external PHIs that use the IV having one input value,
3579 // coming from the remainder loop. We need those PHIs to also have a correct
3580 // value for the IV when arriving directly from the middle block.
3581 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3582                                        const InductionDescriptor &II,
3583                                        Value *CountRoundDown, Value *EndValue,
3584                                        BasicBlock *MiddleBlock) {
3585   // There are two kinds of external IV usages - those that use the value
3586   // computed in the last iteration (the PHI) and those that use the penultimate
3587   // value (the value that feeds into the phi from the loop latch).
3588   // We allow both, but they, obviously, have different values.
3589 
3590   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3591 
3592   DenseMap<Value *, Value *> MissingVals;
3593 
3594   // An external user of the last iteration's value should see the value that
3595   // the remainder loop uses to initialize its own IV.
3596   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3597   for (User *U : PostInc->users()) {
3598     Instruction *UI = cast<Instruction>(U);
3599     if (!OrigLoop->contains(UI)) {
3600       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3601       MissingVals[UI] = EndValue;
3602     }
3603   }
3604 
3605   // An external user of the penultimate value need to see EndValue - Step.
3606   // The simplest way to get this is to recompute it from the constituent SCEVs,
3607   // that is Start + (Step * (CRD - 1)).
3608   for (User *U : OrigPhi->users()) {
3609     auto *UI = cast<Instruction>(U);
3610     if (!OrigLoop->contains(UI)) {
3611       const DataLayout &DL =
3612           OrigLoop->getHeader()->getModule()->getDataLayout();
3613       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3614 
3615       IRBuilder<> B(MiddleBlock->getTerminator());
3616 
3617       // Fast-math-flags propagate from the original induction instruction.
3618       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3619         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3620 
3621       Value *CountMinusOne = B.CreateSub(
3622           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3623       Value *CMO =
3624           !II.getStep()->getType()->isIntegerTy()
3625               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3626                              II.getStep()->getType())
3627               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3628       CMO->setName("cast.cmo");
3629       Value *Escape =
3630           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3631       Escape->setName("ind.escape");
3632       MissingVals[UI] = Escape;
3633     }
3634   }
3635 
3636   for (auto &I : MissingVals) {
3637     PHINode *PHI = cast<PHINode>(I.first);
3638     // One corner case we have to handle is two IVs "chasing" each-other,
3639     // that is %IV2 = phi [...], [ %IV1, %latch ]
3640     // In this case, if IV1 has an external use, we need to avoid adding both
3641     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3642     // don't already have an incoming value for the middle block.
3643     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3644       PHI->addIncoming(I.second, MiddleBlock);
3645   }
3646 }
3647 
3648 namespace {
3649 
3650 struct CSEDenseMapInfo {
3651   static bool canHandle(const Instruction *I) {
3652     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3653            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3654   }
3655 
3656   static inline Instruction *getEmptyKey() {
3657     return DenseMapInfo<Instruction *>::getEmptyKey();
3658   }
3659 
3660   static inline Instruction *getTombstoneKey() {
3661     return DenseMapInfo<Instruction *>::getTombstoneKey();
3662   }
3663 
3664   static unsigned getHashValue(const Instruction *I) {
3665     assert(canHandle(I) && "Unknown instruction!");
3666     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3667                                                            I->value_op_end()));
3668   }
3669 
3670   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3671     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3672         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3673       return LHS == RHS;
3674     return LHS->isIdenticalTo(RHS);
3675   }
3676 };
3677 
3678 } // end anonymous namespace
3679 
3680 ///Perform cse of induction variable instructions.
3681 static void cse(BasicBlock *BB) {
3682   // Perform simple cse.
3683   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3684   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3685     if (!CSEDenseMapInfo::canHandle(&In))
3686       continue;
3687 
3688     // Check if we can replace this instruction with any of the
3689     // visited instructions.
3690     if (Instruction *V = CSEMap.lookup(&In)) {
3691       In.replaceAllUsesWith(V);
3692       In.eraseFromParent();
3693       continue;
3694     }
3695 
3696     CSEMap[&In] = &In;
3697   }
3698 }
3699 
3700 InstructionCost
3701 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3702                                               bool &NeedToScalarize) const {
3703   Function *F = CI->getCalledFunction();
3704   Type *ScalarRetTy = CI->getType();
3705   SmallVector<Type *, 4> Tys, ScalarTys;
3706   for (auto &ArgOp : CI->args())
3707     ScalarTys.push_back(ArgOp->getType());
3708 
3709   // Estimate cost of scalarized vector call. The source operands are assumed
3710   // to be vectors, so we need to extract individual elements from there,
3711   // execute VF scalar calls, and then gather the result into the vector return
3712   // value.
3713   InstructionCost ScalarCallCost =
3714       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3715   if (VF.isScalar())
3716     return ScalarCallCost;
3717 
3718   // Compute corresponding vector type for return value and arguments.
3719   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3720   for (Type *ScalarTy : ScalarTys)
3721     Tys.push_back(ToVectorTy(ScalarTy, VF));
3722 
3723   // Compute costs of unpacking argument values for the scalar calls and
3724   // packing the return values to a vector.
3725   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3726 
3727   InstructionCost Cost =
3728       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3729 
3730   // If we can't emit a vector call for this function, then the currently found
3731   // cost is the cost we need to return.
3732   NeedToScalarize = true;
3733   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3734   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3735 
3736   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3737     return Cost;
3738 
3739   // If the corresponding vector cost is cheaper, return its cost.
3740   InstructionCost VectorCallCost =
3741       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3742   if (VectorCallCost < Cost) {
3743     NeedToScalarize = false;
3744     Cost = VectorCallCost;
3745   }
3746   return Cost;
3747 }
3748 
3749 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3750   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3751     return Elt;
3752   return VectorType::get(Elt, VF);
3753 }
3754 
3755 InstructionCost
3756 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3757                                                    ElementCount VF) const {
3758   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3759   assert(ID && "Expected intrinsic call!");
3760   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3761   FastMathFlags FMF;
3762   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3763     FMF = FPMO->getFastMathFlags();
3764 
3765   SmallVector<const Value *> Arguments(CI->args());
3766   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3767   SmallVector<Type *> ParamTys;
3768   std::transform(FTy->param_begin(), FTy->param_end(),
3769                  std::back_inserter(ParamTys),
3770                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3771 
3772   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3773                                     dyn_cast<IntrinsicInst>(CI));
3774   return TTI.getIntrinsicInstrCost(CostAttrs,
3775                                    TargetTransformInfo::TCK_RecipThroughput);
3776 }
3777 
3778 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3779   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3780   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3781   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3782 }
3783 
3784 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3785   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3786   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3787   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3788 }
3789 
3790 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3791   // For every instruction `I` in MinBWs, truncate the operands, create a
3792   // truncated version of `I` and reextend its result. InstCombine runs
3793   // later and will remove any ext/trunc pairs.
3794   SmallPtrSet<Value *, 4> Erased;
3795   for (const auto &KV : Cost->getMinimalBitwidths()) {
3796     // If the value wasn't vectorized, we must maintain the original scalar
3797     // type. The absence of the value from State indicates that it
3798     // wasn't vectorized.
3799     // FIXME: Should not rely on getVPValue at this point.
3800     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3801     if (!State.hasAnyVectorValue(Def))
3802       continue;
3803     for (unsigned Part = 0; Part < UF; ++Part) {
3804       Value *I = State.get(Def, Part);
3805       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3806         continue;
3807       Type *OriginalTy = I->getType();
3808       Type *ScalarTruncatedTy =
3809           IntegerType::get(OriginalTy->getContext(), KV.second);
3810       auto *TruncatedTy = VectorType::get(
3811           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3812       if (TruncatedTy == OriginalTy)
3813         continue;
3814 
3815       IRBuilder<> B(cast<Instruction>(I));
3816       auto ShrinkOperand = [&](Value *V) -> Value * {
3817         if (auto *ZI = dyn_cast<ZExtInst>(V))
3818           if (ZI->getSrcTy() == TruncatedTy)
3819             return ZI->getOperand(0);
3820         return B.CreateZExtOrTrunc(V, TruncatedTy);
3821       };
3822 
3823       // The actual instruction modification depends on the instruction type,
3824       // unfortunately.
3825       Value *NewI = nullptr;
3826       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3827         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3828                              ShrinkOperand(BO->getOperand(1)));
3829 
3830         // Any wrapping introduced by shrinking this operation shouldn't be
3831         // considered undefined behavior. So, we can't unconditionally copy
3832         // arithmetic wrapping flags to NewI.
3833         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3834       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3835         NewI =
3836             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3837                          ShrinkOperand(CI->getOperand(1)));
3838       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3839         NewI = B.CreateSelect(SI->getCondition(),
3840                               ShrinkOperand(SI->getTrueValue()),
3841                               ShrinkOperand(SI->getFalseValue()));
3842       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3843         switch (CI->getOpcode()) {
3844         default:
3845           llvm_unreachable("Unhandled cast!");
3846         case Instruction::Trunc:
3847           NewI = ShrinkOperand(CI->getOperand(0));
3848           break;
3849         case Instruction::SExt:
3850           NewI = B.CreateSExtOrTrunc(
3851               CI->getOperand(0),
3852               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3853           break;
3854         case Instruction::ZExt:
3855           NewI = B.CreateZExtOrTrunc(
3856               CI->getOperand(0),
3857               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3858           break;
3859         }
3860       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3861         auto Elements0 =
3862             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3863         auto *O0 = B.CreateZExtOrTrunc(
3864             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3865         auto Elements1 =
3866             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3867         auto *O1 = B.CreateZExtOrTrunc(
3868             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3869 
3870         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3871       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3872         // Don't do anything with the operands, just extend the result.
3873         continue;
3874       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3875         auto Elements =
3876             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3877         auto *O0 = B.CreateZExtOrTrunc(
3878             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3879         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3880         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3881       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3882         auto Elements =
3883             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3884         auto *O0 = B.CreateZExtOrTrunc(
3885             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3886         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3887       } else {
3888         // If we don't know what to do, be conservative and don't do anything.
3889         continue;
3890       }
3891 
3892       // Lastly, extend the result.
3893       NewI->takeName(cast<Instruction>(I));
3894       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3895       I->replaceAllUsesWith(Res);
3896       cast<Instruction>(I)->eraseFromParent();
3897       Erased.insert(I);
3898       State.reset(Def, Res, Part);
3899     }
3900   }
3901 
3902   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3903   for (const auto &KV : Cost->getMinimalBitwidths()) {
3904     // If the value wasn't vectorized, we must maintain the original scalar
3905     // type. The absence of the value from State indicates that it
3906     // wasn't vectorized.
3907     // FIXME: Should not rely on getVPValue at this point.
3908     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3909     if (!State.hasAnyVectorValue(Def))
3910       continue;
3911     for (unsigned Part = 0; Part < UF; ++Part) {
3912       Value *I = State.get(Def, Part);
3913       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3914       if (Inst && Inst->use_empty()) {
3915         Value *NewI = Inst->getOperand(0);
3916         Inst->eraseFromParent();
3917         State.reset(Def, NewI, Part);
3918       }
3919     }
3920   }
3921 }
3922 
3923 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3924   // Insert truncates and extends for any truncated instructions as hints to
3925   // InstCombine.
3926   if (VF.isVector())
3927     truncateToMinimalBitwidths(State);
3928 
3929   // Fix widened non-induction PHIs by setting up the PHI operands.
3930   if (OrigPHIsToFix.size()) {
3931     assert(EnableVPlanNativePath &&
3932            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3933     fixNonInductionPHIs(State);
3934   }
3935 
3936   // At this point every instruction in the original loop is widened to a
3937   // vector form. Now we need to fix the recurrences in the loop. These PHI
3938   // nodes are currently empty because we did not want to introduce cycles.
3939   // This is the second stage of vectorizing recurrences.
3940   fixCrossIterationPHIs(State);
3941 
3942   // Forget the original basic block.
3943   PSE.getSE()->forgetLoop(OrigLoop);
3944 
3945   // If we inserted an edge from the middle block to the unique exit block,
3946   // update uses outside the loop (phis) to account for the newly inserted
3947   // edge.
3948   if (!Cost->requiresScalarEpilogue(VF)) {
3949     // Fix-up external users of the induction variables.
3950     for (auto &Entry : Legal->getInductionVars())
3951       fixupIVUsers(Entry.first, Entry.second,
3952                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3953                    IVEndValues[Entry.first], LoopMiddleBlock);
3954 
3955     fixLCSSAPHIs(State);
3956   }
3957 
3958   for (Instruction *PI : PredicatedInstructions)
3959     sinkScalarOperands(&*PI);
3960 
3961   // Remove redundant induction instructions.
3962   cse(LoopVectorBody);
3963 
3964   // Set/update profile weights for the vector and remainder loops as original
3965   // loop iterations are now distributed among them. Note that original loop
3966   // represented by LoopScalarBody becomes remainder loop after vectorization.
3967   //
3968   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3969   // end up getting slightly roughened result but that should be OK since
3970   // profile is not inherently precise anyway. Note also possible bypass of
3971   // vector code caused by legality checks is ignored, assigning all the weight
3972   // to the vector loop, optimistically.
3973   //
3974   // For scalable vectorization we can't know at compile time how many iterations
3975   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3976   // vscale of '1'.
3977   setProfileInfoAfterUnrolling(
3978       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3979       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3980 }
3981 
3982 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3983   // In order to support recurrences we need to be able to vectorize Phi nodes.
3984   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3985   // stage #2: We now need to fix the recurrences by adding incoming edges to
3986   // the currently empty PHI nodes. At this point every instruction in the
3987   // original loop is widened to a vector form so we can use them to construct
3988   // the incoming edges.
3989   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3990   for (VPRecipeBase &R : Header->phis()) {
3991     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3992       fixReduction(ReductionPhi, State);
3993     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3994       fixFirstOrderRecurrence(FOR, State);
3995   }
3996 }
3997 
3998 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3999     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4000   // This is the second phase of vectorizing first-order recurrences. An
4001   // overview of the transformation is described below. Suppose we have the
4002   // following loop.
4003   //
4004   //   for (int i = 0; i < n; ++i)
4005   //     b[i] = a[i] - a[i - 1];
4006   //
4007   // There is a first-order recurrence on "a". For this loop, the shorthand
4008   // scalar IR looks like:
4009   //
4010   //   scalar.ph:
4011   //     s_init = a[-1]
4012   //     br scalar.body
4013   //
4014   //   scalar.body:
4015   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4016   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4017   //     s2 = a[i]
4018   //     b[i] = s2 - s1
4019   //     br cond, scalar.body, ...
4020   //
4021   // In this example, s1 is a recurrence because it's value depends on the
4022   // previous iteration. In the first phase of vectorization, we created a
4023   // vector phi v1 for s1. We now complete the vectorization and produce the
4024   // shorthand vector IR shown below (for VF = 4, UF = 1).
4025   //
4026   //   vector.ph:
4027   //     v_init = vector(..., ..., ..., a[-1])
4028   //     br vector.body
4029   //
4030   //   vector.body
4031   //     i = phi [0, vector.ph], [i+4, vector.body]
4032   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4033   //     v2 = a[i, i+1, i+2, i+3];
4034   //     v3 = vector(v1(3), v2(0, 1, 2))
4035   //     b[i, i+1, i+2, i+3] = v2 - v3
4036   //     br cond, vector.body, middle.block
4037   //
4038   //   middle.block:
4039   //     x = v2(3)
4040   //     br scalar.ph
4041   //
4042   //   scalar.ph:
4043   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4044   //     br scalar.body
4045   //
4046   // After execution completes the vector loop, we extract the next value of
4047   // the recurrence (x) to use as the initial value in the scalar loop.
4048 
4049   // Extract the last vector element in the middle block. This will be the
4050   // initial value for the recurrence when jumping to the scalar loop.
4051   VPValue *PreviousDef = PhiR->getBackedgeValue();
4052   Value *Incoming = State.get(PreviousDef, UF - 1);
4053   auto *ExtractForScalar = Incoming;
4054   auto *IdxTy = Builder.getInt32Ty();
4055   if (VF.isVector()) {
4056     auto *One = ConstantInt::get(IdxTy, 1);
4057     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4058     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4059     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4060     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4061                                                     "vector.recur.extract");
4062   }
4063   // Extract the second last element in the middle block if the
4064   // Phi is used outside the loop. We need to extract the phi itself
4065   // and not the last element (the phi update in the current iteration). This
4066   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4067   // when the scalar loop is not run at all.
4068   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4069   if (VF.isVector()) {
4070     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4071     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4072     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4073         Incoming, Idx, "vector.recur.extract.for.phi");
4074   } else if (UF > 1)
4075     // When loop is unrolled without vectorizing, initialize
4076     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4077     // of `Incoming`. This is analogous to the vectorized case above: extracting
4078     // the second last element when VF > 1.
4079     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4080 
4081   // Fix the initial value of the original recurrence in the scalar loop.
4082   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4083   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4084   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4085   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4086   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4087     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4088     Start->addIncoming(Incoming, BB);
4089   }
4090 
4091   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4092   Phi->setName("scalar.recur");
4093 
4094   // Finally, fix users of the recurrence outside the loop. The users will need
4095   // either the last value of the scalar recurrence or the last value of the
4096   // vector recurrence we extracted in the middle block. Since the loop is in
4097   // LCSSA form, we just need to find all the phi nodes for the original scalar
4098   // recurrence in the exit block, and then add an edge for the middle block.
4099   // Note that LCSSA does not imply single entry when the original scalar loop
4100   // had multiple exiting edges (as we always run the last iteration in the
4101   // scalar epilogue); in that case, there is no edge from middle to exit and
4102   // and thus no phis which needed updated.
4103   if (!Cost->requiresScalarEpilogue(VF))
4104     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4105       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4106         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4107 }
4108 
4109 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4110                                        VPTransformState &State) {
4111   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4112   // Get it's reduction variable descriptor.
4113   assert(Legal->isReductionVariable(OrigPhi) &&
4114          "Unable to find the reduction variable");
4115   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4116 
4117   RecurKind RK = RdxDesc.getRecurrenceKind();
4118   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4119   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4120   setDebugLocFromInst(ReductionStartValue);
4121 
4122   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4123   // This is the vector-clone of the value that leaves the loop.
4124   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4125 
4126   // Wrap flags are in general invalid after vectorization, clear them.
4127   clearReductionWrapFlags(RdxDesc, State);
4128 
4129   // Before each round, move the insertion point right between
4130   // the PHIs and the values we are going to write.
4131   // This allows us to write both PHINodes and the extractelement
4132   // instructions.
4133   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4134 
4135   setDebugLocFromInst(LoopExitInst);
4136 
4137   Type *PhiTy = OrigPhi->getType();
4138   // If tail is folded by masking, the vector value to leave the loop should be
4139   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4140   // instead of the former. For an inloop reduction the reduction will already
4141   // be predicated, and does not need to be handled here.
4142   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4143     for (unsigned Part = 0; Part < UF; ++Part) {
4144       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4145       Value *Sel = nullptr;
4146       for (User *U : VecLoopExitInst->users()) {
4147         if (isa<SelectInst>(U)) {
4148           assert(!Sel && "Reduction exit feeding two selects");
4149           Sel = U;
4150         } else
4151           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4152       }
4153       assert(Sel && "Reduction exit feeds no select");
4154       State.reset(LoopExitInstDef, Sel, Part);
4155 
4156       // If the target can create a predicated operator for the reduction at no
4157       // extra cost in the loop (for example a predicated vadd), it can be
4158       // cheaper for the select to remain in the loop than be sunk out of it,
4159       // and so use the select value for the phi instead of the old
4160       // LoopExitValue.
4161       if (PreferPredicatedReductionSelect ||
4162           TTI->preferPredicatedReductionSelect(
4163               RdxDesc.getOpcode(), PhiTy,
4164               TargetTransformInfo::ReductionFlags())) {
4165         auto *VecRdxPhi =
4166             cast<PHINode>(State.get(PhiR, Part));
4167         VecRdxPhi->setIncomingValueForBlock(
4168             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4169       }
4170     }
4171   }
4172 
4173   // If the vector reduction can be performed in a smaller type, we truncate
4174   // then extend the loop exit value to enable InstCombine to evaluate the
4175   // entire expression in the smaller type.
4176   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4177     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4178     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4179     Builder.SetInsertPoint(
4180         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4181     VectorParts RdxParts(UF);
4182     for (unsigned Part = 0; Part < UF; ++Part) {
4183       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4184       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4185       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4186                                         : Builder.CreateZExt(Trunc, VecTy);
4187       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4188         if (U != Trunc) {
4189           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4190           RdxParts[Part] = Extnd;
4191         }
4192     }
4193     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4194     for (unsigned Part = 0; Part < UF; ++Part) {
4195       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4196       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4197     }
4198   }
4199 
4200   // Reduce all of the unrolled parts into a single vector.
4201   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4202   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4203 
4204   // The middle block terminator has already been assigned a DebugLoc here (the
4205   // OrigLoop's single latch terminator). We want the whole middle block to
4206   // appear to execute on this line because: (a) it is all compiler generated,
4207   // (b) these instructions are always executed after evaluating the latch
4208   // conditional branch, and (c) other passes may add new predecessors which
4209   // terminate on this line. This is the easiest way to ensure we don't
4210   // accidentally cause an extra step back into the loop while debugging.
4211   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4212   if (PhiR->isOrdered())
4213     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4214   else {
4215     // Floating-point operations should have some FMF to enable the reduction.
4216     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4217     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4218     for (unsigned Part = 1; Part < UF; ++Part) {
4219       Value *RdxPart = State.get(LoopExitInstDef, Part);
4220       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4221         ReducedPartRdx = Builder.CreateBinOp(
4222             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4223       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4224         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4225                                            ReducedPartRdx, RdxPart);
4226       else
4227         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4228     }
4229   }
4230 
4231   // Create the reduction after the loop. Note that inloop reductions create the
4232   // target reduction in the loop using a Reduction recipe.
4233   if (VF.isVector() && !PhiR->isInLoop()) {
4234     ReducedPartRdx =
4235         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4236     // If the reduction can be performed in a smaller type, we need to extend
4237     // the reduction to the wider type before we branch to the original loop.
4238     if (PhiTy != RdxDesc.getRecurrenceType())
4239       ReducedPartRdx = RdxDesc.isSigned()
4240                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4241                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4242   }
4243 
4244   PHINode *ResumePhi =
4245       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4246 
4247   // Create a phi node that merges control-flow from the backedge-taken check
4248   // block and the middle block.
4249   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4250                                         LoopScalarPreHeader->getTerminator());
4251 
4252   // If we are fixing reductions in the epilogue loop then we should already
4253   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4254   // we carry over the incoming values correctly.
4255   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4256     if (Incoming == LoopMiddleBlock)
4257       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4258     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4259       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4260                               Incoming);
4261     else
4262       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4263   }
4264 
4265   // Set the resume value for this reduction
4266   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4267 
4268   // Now, we need to fix the users of the reduction variable
4269   // inside and outside of the scalar remainder loop.
4270 
4271   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4272   // in the exit blocks.  See comment on analogous loop in
4273   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4274   if (!Cost->requiresScalarEpilogue(VF))
4275     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4276       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4277         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4278 
4279   // Fix the scalar loop reduction variable with the incoming reduction sum
4280   // from the vector body and from the backedge value.
4281   int IncomingEdgeBlockIdx =
4282       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4283   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4284   // Pick the other block.
4285   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4286   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4287   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4288 }
4289 
4290 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4291                                                   VPTransformState &State) {
4292   RecurKind RK = RdxDesc.getRecurrenceKind();
4293   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4294     return;
4295 
4296   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4297   assert(LoopExitInstr && "null loop exit instruction");
4298   SmallVector<Instruction *, 8> Worklist;
4299   SmallPtrSet<Instruction *, 8> Visited;
4300   Worklist.push_back(LoopExitInstr);
4301   Visited.insert(LoopExitInstr);
4302 
4303   while (!Worklist.empty()) {
4304     Instruction *Cur = Worklist.pop_back_val();
4305     if (isa<OverflowingBinaryOperator>(Cur))
4306       for (unsigned Part = 0; Part < UF; ++Part) {
4307         // FIXME: Should not rely on getVPValue at this point.
4308         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4309         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4310       }
4311 
4312     for (User *U : Cur->users()) {
4313       Instruction *UI = cast<Instruction>(U);
4314       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4315           Visited.insert(UI).second)
4316         Worklist.push_back(UI);
4317     }
4318   }
4319 }
4320 
4321 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4322   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4323     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4324       // Some phis were already hand updated by the reduction and recurrence
4325       // code above, leave them alone.
4326       continue;
4327 
4328     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4329     // Non-instruction incoming values will have only one value.
4330 
4331     VPLane Lane = VPLane::getFirstLane();
4332     if (isa<Instruction>(IncomingValue) &&
4333         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4334                                            VF))
4335       Lane = VPLane::getLastLaneForVF(VF);
4336 
4337     // Can be a loop invariant incoming value or the last scalar value to be
4338     // extracted from the vectorized loop.
4339     // FIXME: Should not rely on getVPValue at this point.
4340     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4341     Value *lastIncomingValue =
4342         OrigLoop->isLoopInvariant(IncomingValue)
4343             ? IncomingValue
4344             : State.get(State.Plan->getVPValue(IncomingValue, true),
4345                         VPIteration(UF - 1, Lane));
4346     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4347   }
4348 }
4349 
4350 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4351   // The basic block and loop containing the predicated instruction.
4352   auto *PredBB = PredInst->getParent();
4353   auto *VectorLoop = LI->getLoopFor(PredBB);
4354 
4355   // Initialize a worklist with the operands of the predicated instruction.
4356   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4357 
4358   // Holds instructions that we need to analyze again. An instruction may be
4359   // reanalyzed if we don't yet know if we can sink it or not.
4360   SmallVector<Instruction *, 8> InstsToReanalyze;
4361 
4362   // Returns true if a given use occurs in the predicated block. Phi nodes use
4363   // their operands in their corresponding predecessor blocks.
4364   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4365     auto *I = cast<Instruction>(U.getUser());
4366     BasicBlock *BB = I->getParent();
4367     if (auto *Phi = dyn_cast<PHINode>(I))
4368       BB = Phi->getIncomingBlock(
4369           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4370     return BB == PredBB;
4371   };
4372 
4373   // Iteratively sink the scalarized operands of the predicated instruction
4374   // into the block we created for it. When an instruction is sunk, it's
4375   // operands are then added to the worklist. The algorithm ends after one pass
4376   // through the worklist doesn't sink a single instruction.
4377   bool Changed;
4378   do {
4379     // Add the instructions that need to be reanalyzed to the worklist, and
4380     // reset the changed indicator.
4381     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4382     InstsToReanalyze.clear();
4383     Changed = false;
4384 
4385     while (!Worklist.empty()) {
4386       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4387 
4388       // We can't sink an instruction if it is a phi node, is not in the loop,
4389       // or may have side effects.
4390       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4391           I->mayHaveSideEffects())
4392         continue;
4393 
4394       // If the instruction is already in PredBB, check if we can sink its
4395       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4396       // sinking the scalar instruction I, hence it appears in PredBB; but it
4397       // may have failed to sink I's operands (recursively), which we try
4398       // (again) here.
4399       if (I->getParent() == PredBB) {
4400         Worklist.insert(I->op_begin(), I->op_end());
4401         continue;
4402       }
4403 
4404       // It's legal to sink the instruction if all its uses occur in the
4405       // predicated block. Otherwise, there's nothing to do yet, and we may
4406       // need to reanalyze the instruction.
4407       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4408         InstsToReanalyze.push_back(I);
4409         continue;
4410       }
4411 
4412       // Move the instruction to the beginning of the predicated block, and add
4413       // it's operands to the worklist.
4414       I->moveBefore(&*PredBB->getFirstInsertionPt());
4415       Worklist.insert(I->op_begin(), I->op_end());
4416 
4417       // The sinking may have enabled other instructions to be sunk, so we will
4418       // need to iterate.
4419       Changed = true;
4420     }
4421   } while (Changed);
4422 }
4423 
4424 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4425   for (PHINode *OrigPhi : OrigPHIsToFix) {
4426     VPWidenPHIRecipe *VPPhi =
4427         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4428     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4429     // Make sure the builder has a valid insert point.
4430     Builder.SetInsertPoint(NewPhi);
4431     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4432       VPValue *Inc = VPPhi->getIncomingValue(i);
4433       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4434       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4435     }
4436   }
4437 }
4438 
4439 bool InnerLoopVectorizer::useOrderedReductions(
4440     const RecurrenceDescriptor &RdxDesc) {
4441   return Cost->useOrderedReductions(RdxDesc);
4442 }
4443 
4444 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4445                                               VPWidenPHIRecipe *PhiR,
4446                                               VPTransformState &State) {
4447   PHINode *P = cast<PHINode>(PN);
4448   if (EnableVPlanNativePath) {
4449     // Currently we enter here in the VPlan-native path for non-induction
4450     // PHIs where all control flow is uniform. We simply widen these PHIs.
4451     // Create a vector phi with no operands - the vector phi operands will be
4452     // set at the end of vector code generation.
4453     Type *VecTy = (State.VF.isScalar())
4454                       ? PN->getType()
4455                       : VectorType::get(PN->getType(), State.VF);
4456     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4457     State.set(PhiR, VecPhi, 0);
4458     OrigPHIsToFix.push_back(P);
4459 
4460     return;
4461   }
4462 
4463   assert(PN->getParent() == OrigLoop->getHeader() &&
4464          "Non-header phis should have been handled elsewhere");
4465 
4466   // In order to support recurrences we need to be able to vectorize Phi nodes.
4467   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4468   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4469   // this value when we vectorize all of the instructions that use the PHI.
4470 
4471   assert(!Legal->isReductionVariable(P) &&
4472          "reductions should be handled elsewhere");
4473 
4474   setDebugLocFromInst(P);
4475 
4476   // This PHINode must be an induction variable.
4477   // Make sure that we know about it.
4478   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4479 
4480   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4481   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4482 
4483   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4484   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4485 
4486   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4487   // which can be found from the original scalar operations.
4488   switch (II.getKind()) {
4489   case InductionDescriptor::IK_NoInduction:
4490     llvm_unreachable("Unknown induction");
4491   case InductionDescriptor::IK_IntInduction:
4492   case InductionDescriptor::IK_FpInduction:
4493     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4494   case InductionDescriptor::IK_PtrInduction: {
4495     // Handle the pointer induction variable case.
4496     assert(P->getType()->isPointerTy() && "Unexpected type.");
4497 
4498     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4499       // This is the normalized GEP that starts counting at zero.
4500       Value *PtrInd =
4501           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4502       // Determine the number of scalars we need to generate for each unroll
4503       // iteration. If the instruction is uniform, we only need to generate the
4504       // first lane. Otherwise, we generate all VF values.
4505       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4506       assert((IsUniform || !State.VF.isScalable()) &&
4507              "Cannot scalarize a scalable VF");
4508       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4509 
4510       for (unsigned Part = 0; Part < UF; ++Part) {
4511         Value *PartStart =
4512             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4513 
4514         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4515           Value *Idx = Builder.CreateAdd(
4516               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4517           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4518           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4519                                                 DL, II, State.CFG.PrevBB);
4520           SclrGep->setName("next.gep");
4521           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4522         }
4523       }
4524       return;
4525     }
4526     assert(isa<SCEVConstant>(II.getStep()) &&
4527            "Induction step not a SCEV constant!");
4528     Type *PhiType = II.getStep()->getType();
4529 
4530     // Build a pointer phi
4531     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4532     Type *ScStValueType = ScalarStartValue->getType();
4533     PHINode *NewPointerPhi =
4534         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4535     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4536 
4537     // A pointer induction, performed by using a gep
4538     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4539     Instruction *InductionLoc = LoopLatch->getTerminator();
4540     const SCEV *ScalarStep = II.getStep();
4541     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4542     Value *ScalarStepValue =
4543         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4544     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4545     Value *NumUnrolledElems =
4546         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4547     Value *InductionGEP = GetElementPtrInst::Create(
4548         II.getElementType(), NewPointerPhi,
4549         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4550         InductionLoc);
4551     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4552 
4553     // Create UF many actual address geps that use the pointer
4554     // phi as base and a vectorized version of the step value
4555     // (<step*0, ..., step*N>) as offset.
4556     for (unsigned Part = 0; Part < State.UF; ++Part) {
4557       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4558       Value *StartOffsetScalar =
4559           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4560       Value *StartOffset =
4561           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4562       // Create a vector of consecutive numbers from zero to VF.
4563       StartOffset =
4564           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4565 
4566       Value *GEP = Builder.CreateGEP(
4567           II.getElementType(), NewPointerPhi,
4568           Builder.CreateMul(
4569               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4570               "vector.gep"));
4571       State.set(PhiR, GEP, Part);
4572     }
4573   }
4574   }
4575 }
4576 
4577 /// A helper function for checking whether an integer division-related
4578 /// instruction may divide by zero (in which case it must be predicated if
4579 /// executed conditionally in the scalar code).
4580 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4581 /// Non-zero divisors that are non compile-time constants will not be
4582 /// converted into multiplication, so we will still end up scalarizing
4583 /// the division, but can do so w/o predication.
4584 static bool mayDivideByZero(Instruction &I) {
4585   assert((I.getOpcode() == Instruction::UDiv ||
4586           I.getOpcode() == Instruction::SDiv ||
4587           I.getOpcode() == Instruction::URem ||
4588           I.getOpcode() == Instruction::SRem) &&
4589          "Unexpected instruction");
4590   Value *Divisor = I.getOperand(1);
4591   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4592   return !CInt || CInt->isZero();
4593 }
4594 
4595 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4596                                                VPUser &ArgOperands,
4597                                                VPTransformState &State) {
4598   assert(!isa<DbgInfoIntrinsic>(I) &&
4599          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4600   setDebugLocFromInst(&I);
4601 
4602   Module *M = I.getParent()->getParent()->getParent();
4603   auto *CI = cast<CallInst>(&I);
4604 
4605   SmallVector<Type *, 4> Tys;
4606   for (Value *ArgOperand : CI->args())
4607     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4608 
4609   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4610 
4611   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4612   // version of the instruction.
4613   // Is it beneficial to perform intrinsic call compared to lib call?
4614   bool NeedToScalarize = false;
4615   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4616   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4617   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4618   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4619          "Instruction should be scalarized elsewhere.");
4620   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4621          "Either the intrinsic cost or vector call cost must be valid");
4622 
4623   for (unsigned Part = 0; Part < UF; ++Part) {
4624     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4625     SmallVector<Value *, 4> Args;
4626     for (auto &I : enumerate(ArgOperands.operands())) {
4627       // Some intrinsics have a scalar argument - don't replace it with a
4628       // vector.
4629       Value *Arg;
4630       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4631         Arg = State.get(I.value(), Part);
4632       else {
4633         Arg = State.get(I.value(), VPIteration(0, 0));
4634         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4635           TysForDecl.push_back(Arg->getType());
4636       }
4637       Args.push_back(Arg);
4638     }
4639 
4640     Function *VectorF;
4641     if (UseVectorIntrinsic) {
4642       // Use vector version of the intrinsic.
4643       if (VF.isVector())
4644         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4645       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4646       assert(VectorF && "Can't retrieve vector intrinsic.");
4647     } else {
4648       // Use vector version of the function call.
4649       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4650 #ifndef NDEBUG
4651       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4652              "Can't create vector function.");
4653 #endif
4654         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4655     }
4656       SmallVector<OperandBundleDef, 1> OpBundles;
4657       CI->getOperandBundlesAsDefs(OpBundles);
4658       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4659 
4660       if (isa<FPMathOperator>(V))
4661         V->copyFastMathFlags(CI);
4662 
4663       State.set(Def, V, Part);
4664       addMetadata(V, &I);
4665   }
4666 }
4667 
4668 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4669   // We should not collect Scalars more than once per VF. Right now, this
4670   // function is called from collectUniformsAndScalars(), which already does
4671   // this check. Collecting Scalars for VF=1 does not make any sense.
4672   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4673          "This function should not be visited twice for the same VF");
4674 
4675   SmallSetVector<Instruction *, 8> Worklist;
4676 
4677   // These sets are used to seed the analysis with pointers used by memory
4678   // accesses that will remain scalar.
4679   SmallSetVector<Instruction *, 8> ScalarPtrs;
4680   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4681   auto *Latch = TheLoop->getLoopLatch();
4682 
4683   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4684   // The pointer operands of loads and stores will be scalar as long as the
4685   // memory access is not a gather or scatter operation. The value operand of a
4686   // store will remain scalar if the store is scalarized.
4687   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4688     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4689     assert(WideningDecision != CM_Unknown &&
4690            "Widening decision should be ready at this moment");
4691     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4692       if (Ptr == Store->getValueOperand())
4693         return WideningDecision == CM_Scalarize;
4694     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4695            "Ptr is neither a value or pointer operand");
4696     return WideningDecision != CM_GatherScatter;
4697   };
4698 
4699   // A helper that returns true if the given value is a bitcast or
4700   // getelementptr instruction contained in the loop.
4701   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4702     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4703             isa<GetElementPtrInst>(V)) &&
4704            !TheLoop->isLoopInvariant(V);
4705   };
4706 
4707   // A helper that evaluates a memory access's use of a pointer. If the use will
4708   // be a scalar use and the pointer is only used by memory accesses, we place
4709   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4710   // PossibleNonScalarPtrs.
4711   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4712     // We only care about bitcast and getelementptr instructions contained in
4713     // the loop.
4714     if (!isLoopVaryingBitCastOrGEP(Ptr))
4715       return;
4716 
4717     // If the pointer has already been identified as scalar (e.g., if it was
4718     // also identified as uniform), there's nothing to do.
4719     auto *I = cast<Instruction>(Ptr);
4720     if (Worklist.count(I))
4721       return;
4722 
4723     // If the use of the pointer will be a scalar use, and all users of the
4724     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4725     // place the pointer in PossibleNonScalarPtrs.
4726     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4727           return isa<LoadInst>(U) || isa<StoreInst>(U);
4728         }))
4729       ScalarPtrs.insert(I);
4730     else
4731       PossibleNonScalarPtrs.insert(I);
4732   };
4733 
4734   // We seed the scalars analysis with three classes of instructions: (1)
4735   // instructions marked uniform-after-vectorization and (2) bitcast,
4736   // getelementptr and (pointer) phi instructions used by memory accesses
4737   // requiring a scalar use.
4738   //
4739   // (1) Add to the worklist all instructions that have been identified as
4740   // uniform-after-vectorization.
4741   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4742 
4743   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4744   // memory accesses requiring a scalar use. The pointer operands of loads and
4745   // stores will be scalar as long as the memory accesses is not a gather or
4746   // scatter operation. The value operand of a store will remain scalar if the
4747   // store is scalarized.
4748   for (auto *BB : TheLoop->blocks())
4749     for (auto &I : *BB) {
4750       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4751         evaluatePtrUse(Load, Load->getPointerOperand());
4752       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4753         evaluatePtrUse(Store, Store->getPointerOperand());
4754         evaluatePtrUse(Store, Store->getValueOperand());
4755       }
4756     }
4757   for (auto *I : ScalarPtrs)
4758     if (!PossibleNonScalarPtrs.count(I)) {
4759       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4760       Worklist.insert(I);
4761     }
4762 
4763   // Insert the forced scalars.
4764   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4765   // induction variable when the PHI user is scalarized.
4766   auto ForcedScalar = ForcedScalars.find(VF);
4767   if (ForcedScalar != ForcedScalars.end())
4768     for (auto *I : ForcedScalar->second)
4769       Worklist.insert(I);
4770 
4771   // Expand the worklist by looking through any bitcasts and getelementptr
4772   // instructions we've already identified as scalar. This is similar to the
4773   // expansion step in collectLoopUniforms(); however, here we're only
4774   // expanding to include additional bitcasts and getelementptr instructions.
4775   unsigned Idx = 0;
4776   while (Idx != Worklist.size()) {
4777     Instruction *Dst = Worklist[Idx++];
4778     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4779       continue;
4780     auto *Src = cast<Instruction>(Dst->getOperand(0));
4781     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4782           auto *J = cast<Instruction>(U);
4783           return !TheLoop->contains(J) || Worklist.count(J) ||
4784                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4785                   isScalarUse(J, Src));
4786         })) {
4787       Worklist.insert(Src);
4788       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4789     }
4790   }
4791 
4792   // An induction variable will remain scalar if all users of the induction
4793   // variable and induction variable update remain scalar.
4794   for (auto &Induction : Legal->getInductionVars()) {
4795     auto *Ind = Induction.first;
4796     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4797 
4798     // If tail-folding is applied, the primary induction variable will be used
4799     // to feed a vector compare.
4800     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4801       continue;
4802 
4803     // Returns true if \p Indvar is a pointer induction that is used directly by
4804     // load/store instruction \p I.
4805     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4806                                               Instruction *I) {
4807       return Induction.second.getKind() ==
4808                  InductionDescriptor::IK_PtrInduction &&
4809              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4810              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4811     };
4812 
4813     // Determine if all users of the induction variable are scalar after
4814     // vectorization.
4815     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4816       auto *I = cast<Instruction>(U);
4817       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4818              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4819     });
4820     if (!ScalarInd)
4821       continue;
4822 
4823     // Determine if all users of the induction variable update instruction are
4824     // scalar after vectorization.
4825     auto ScalarIndUpdate =
4826         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4827           auto *I = cast<Instruction>(U);
4828           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4829                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4830         });
4831     if (!ScalarIndUpdate)
4832       continue;
4833 
4834     // The induction variable and its update instruction will remain scalar.
4835     Worklist.insert(Ind);
4836     Worklist.insert(IndUpdate);
4837     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4838     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4839                       << "\n");
4840   }
4841 
4842   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4843 }
4844 
4845 bool LoopVectorizationCostModel::isScalarWithPredication(
4846     Instruction *I, ElementCount VF) const {
4847   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4848     return false;
4849   switch(I->getOpcode()) {
4850   default:
4851     break;
4852   case Instruction::Load:
4853   case Instruction::Store: {
4854     if (!Legal->isMaskRequired(I))
4855       return false;
4856     auto *Ptr = getLoadStorePointerOperand(I);
4857     auto *Ty = getLoadStoreType(I);
4858     Type *VTy = Ty;
4859     if (VF.isVector())
4860       VTy = VectorType::get(Ty, VF);
4861     const Align Alignment = getLoadStoreAlignment(I);
4862     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4863                                 TTI.isLegalMaskedGather(VTy, Alignment))
4864                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4865                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4866   }
4867   case Instruction::UDiv:
4868   case Instruction::SDiv:
4869   case Instruction::SRem:
4870   case Instruction::URem:
4871     return mayDivideByZero(*I);
4872   }
4873   return false;
4874 }
4875 
4876 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4877     Instruction *I, ElementCount VF) {
4878   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4879   assert(getWideningDecision(I, VF) == CM_Unknown &&
4880          "Decision should not be set yet.");
4881   auto *Group = getInterleavedAccessGroup(I);
4882   assert(Group && "Must have a group.");
4883 
4884   // If the instruction's allocated size doesn't equal it's type size, it
4885   // requires padding and will be scalarized.
4886   auto &DL = I->getModule()->getDataLayout();
4887   auto *ScalarTy = getLoadStoreType(I);
4888   if (hasIrregularType(ScalarTy, DL))
4889     return false;
4890 
4891   // Check if masking is required.
4892   // A Group may need masking for one of two reasons: it resides in a block that
4893   // needs predication, or it was decided to use masking to deal with gaps
4894   // (either a gap at the end of a load-access that may result in a speculative
4895   // load, or any gaps in a store-access).
4896   bool PredicatedAccessRequiresMasking =
4897       blockNeedsPredicationForAnyReason(I->getParent()) &&
4898       Legal->isMaskRequired(I);
4899   bool LoadAccessWithGapsRequiresEpilogMasking =
4900       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4901       !isScalarEpilogueAllowed();
4902   bool StoreAccessWithGapsRequiresMasking =
4903       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4904   if (!PredicatedAccessRequiresMasking &&
4905       !LoadAccessWithGapsRequiresEpilogMasking &&
4906       !StoreAccessWithGapsRequiresMasking)
4907     return true;
4908 
4909   // If masked interleaving is required, we expect that the user/target had
4910   // enabled it, because otherwise it either wouldn't have been created or
4911   // it should have been invalidated by the CostModel.
4912   assert(useMaskedInterleavedAccesses(TTI) &&
4913          "Masked interleave-groups for predicated accesses are not enabled.");
4914 
4915   if (Group->isReverse())
4916     return false;
4917 
4918   auto *Ty = getLoadStoreType(I);
4919   const Align Alignment = getLoadStoreAlignment(I);
4920   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4921                           : TTI.isLegalMaskedStore(Ty, Alignment);
4922 }
4923 
4924 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4925     Instruction *I, ElementCount VF) {
4926   // Get and ensure we have a valid memory instruction.
4927   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4928 
4929   auto *Ptr = getLoadStorePointerOperand(I);
4930   auto *ScalarTy = getLoadStoreType(I);
4931 
4932   // In order to be widened, the pointer should be consecutive, first of all.
4933   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4934     return false;
4935 
4936   // If the instruction is a store located in a predicated block, it will be
4937   // scalarized.
4938   if (isScalarWithPredication(I, VF))
4939     return false;
4940 
4941   // If the instruction's allocated size doesn't equal it's type size, it
4942   // requires padding and will be scalarized.
4943   auto &DL = I->getModule()->getDataLayout();
4944   if (hasIrregularType(ScalarTy, DL))
4945     return false;
4946 
4947   return true;
4948 }
4949 
4950 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4951   // We should not collect Uniforms more than once per VF. Right now,
4952   // this function is called from collectUniformsAndScalars(), which
4953   // already does this check. Collecting Uniforms for VF=1 does not make any
4954   // sense.
4955 
4956   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4957          "This function should not be visited twice for the same VF");
4958 
4959   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4960   // not analyze again.  Uniforms.count(VF) will return 1.
4961   Uniforms[VF].clear();
4962 
4963   // We now know that the loop is vectorizable!
4964   // Collect instructions inside the loop that will remain uniform after
4965   // vectorization.
4966 
4967   // Global values, params and instructions outside of current loop are out of
4968   // scope.
4969   auto isOutOfScope = [&](Value *V) -> bool {
4970     Instruction *I = dyn_cast<Instruction>(V);
4971     return (!I || !TheLoop->contains(I));
4972   };
4973 
4974   // Worklist containing uniform instructions demanding lane 0.
4975   SetVector<Instruction *> Worklist;
4976   BasicBlock *Latch = TheLoop->getLoopLatch();
4977 
4978   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4979   // that are scalar with predication must not be considered uniform after
4980   // vectorization, because that would create an erroneous replicating region
4981   // where only a single instance out of VF should be formed.
4982   // TODO: optimize such seldom cases if found important, see PR40816.
4983   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4984     if (isOutOfScope(I)) {
4985       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4986                         << *I << "\n");
4987       return;
4988     }
4989     if (isScalarWithPredication(I, VF)) {
4990       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4991                         << *I << "\n");
4992       return;
4993     }
4994     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4995     Worklist.insert(I);
4996   };
4997 
4998   // Start with the conditional branch. If the branch condition is an
4999   // instruction contained in the loop that is only used by the branch, it is
5000   // uniform.
5001   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5002   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5003     addToWorklistIfAllowed(Cmp);
5004 
5005   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5006     InstWidening WideningDecision = getWideningDecision(I, VF);
5007     assert(WideningDecision != CM_Unknown &&
5008            "Widening decision should be ready at this moment");
5009 
5010     // A uniform memory op is itself uniform.  We exclude uniform stores
5011     // here as they demand the last lane, not the first one.
5012     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5013       assert(WideningDecision == CM_Scalarize);
5014       return true;
5015     }
5016 
5017     return (WideningDecision == CM_Widen ||
5018             WideningDecision == CM_Widen_Reverse ||
5019             WideningDecision == CM_Interleave);
5020   };
5021 
5022 
5023   // Returns true if Ptr is the pointer operand of a memory access instruction
5024   // I, and I is known to not require scalarization.
5025   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5026     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5027   };
5028 
5029   // Holds a list of values which are known to have at least one uniform use.
5030   // Note that there may be other uses which aren't uniform.  A "uniform use"
5031   // here is something which only demands lane 0 of the unrolled iterations;
5032   // it does not imply that all lanes produce the same value (e.g. this is not
5033   // the usual meaning of uniform)
5034   SetVector<Value *> HasUniformUse;
5035 
5036   // Scan the loop for instructions which are either a) known to have only
5037   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5038   for (auto *BB : TheLoop->blocks())
5039     for (auto &I : *BB) {
5040       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5041         switch (II->getIntrinsicID()) {
5042         case Intrinsic::sideeffect:
5043         case Intrinsic::experimental_noalias_scope_decl:
5044         case Intrinsic::assume:
5045         case Intrinsic::lifetime_start:
5046         case Intrinsic::lifetime_end:
5047           if (TheLoop->hasLoopInvariantOperands(&I))
5048             addToWorklistIfAllowed(&I);
5049           break;
5050         default:
5051           break;
5052         }
5053       }
5054 
5055       // ExtractValue instructions must be uniform, because the operands are
5056       // known to be loop-invariant.
5057       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5058         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5059                "Expected aggregate value to be loop invariant");
5060         addToWorklistIfAllowed(EVI);
5061         continue;
5062       }
5063 
5064       // If there's no pointer operand, there's nothing to do.
5065       auto *Ptr = getLoadStorePointerOperand(&I);
5066       if (!Ptr)
5067         continue;
5068 
5069       // A uniform memory op is itself uniform.  We exclude uniform stores
5070       // here as they demand the last lane, not the first one.
5071       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5072         addToWorklistIfAllowed(&I);
5073 
5074       if (isUniformDecision(&I, VF)) {
5075         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5076         HasUniformUse.insert(Ptr);
5077       }
5078     }
5079 
5080   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5081   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5082   // disallows uses outside the loop as well.
5083   for (auto *V : HasUniformUse) {
5084     if (isOutOfScope(V))
5085       continue;
5086     auto *I = cast<Instruction>(V);
5087     auto UsersAreMemAccesses =
5088       llvm::all_of(I->users(), [&](User *U) -> bool {
5089         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5090       });
5091     if (UsersAreMemAccesses)
5092       addToWorklistIfAllowed(I);
5093   }
5094 
5095   // Expand Worklist in topological order: whenever a new instruction
5096   // is added , its users should be already inside Worklist.  It ensures
5097   // a uniform instruction will only be used by uniform instructions.
5098   unsigned idx = 0;
5099   while (idx != Worklist.size()) {
5100     Instruction *I = Worklist[idx++];
5101 
5102     for (auto OV : I->operand_values()) {
5103       // isOutOfScope operands cannot be uniform instructions.
5104       if (isOutOfScope(OV))
5105         continue;
5106       // First order recurrence Phi's should typically be considered
5107       // non-uniform.
5108       auto *OP = dyn_cast<PHINode>(OV);
5109       if (OP && Legal->isFirstOrderRecurrence(OP))
5110         continue;
5111       // If all the users of the operand are uniform, then add the
5112       // operand into the uniform worklist.
5113       auto *OI = cast<Instruction>(OV);
5114       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5115             auto *J = cast<Instruction>(U);
5116             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5117           }))
5118         addToWorklistIfAllowed(OI);
5119     }
5120   }
5121 
5122   // For an instruction to be added into Worklist above, all its users inside
5123   // the loop should also be in Worklist. However, this condition cannot be
5124   // true for phi nodes that form a cyclic dependence. We must process phi
5125   // nodes separately. An induction variable will remain uniform if all users
5126   // of the induction variable and induction variable update remain uniform.
5127   // The code below handles both pointer and non-pointer induction variables.
5128   for (auto &Induction : Legal->getInductionVars()) {
5129     auto *Ind = Induction.first;
5130     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5131 
5132     // Determine if all users of the induction variable are uniform after
5133     // vectorization.
5134     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5135       auto *I = cast<Instruction>(U);
5136       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5137              isVectorizedMemAccessUse(I, Ind);
5138     });
5139     if (!UniformInd)
5140       continue;
5141 
5142     // Determine if all users of the induction variable update instruction are
5143     // uniform after vectorization.
5144     auto UniformIndUpdate =
5145         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5146           auto *I = cast<Instruction>(U);
5147           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5148                  isVectorizedMemAccessUse(I, IndUpdate);
5149         });
5150     if (!UniformIndUpdate)
5151       continue;
5152 
5153     // The induction variable and its update instruction will remain uniform.
5154     addToWorklistIfAllowed(Ind);
5155     addToWorklistIfAllowed(IndUpdate);
5156   }
5157 
5158   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5159 }
5160 
5161 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5162   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5163 
5164   if (Legal->getRuntimePointerChecking()->Need) {
5165     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5166         "runtime pointer checks needed. Enable vectorization of this "
5167         "loop with '#pragma clang loop vectorize(enable)' when "
5168         "compiling with -Os/-Oz",
5169         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5170     return true;
5171   }
5172 
5173   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5174     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5175         "runtime SCEV checks needed. Enable vectorization of this "
5176         "loop with '#pragma clang loop vectorize(enable)' when "
5177         "compiling with -Os/-Oz",
5178         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5179     return true;
5180   }
5181 
5182   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5183   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5184     reportVectorizationFailure("Runtime stride check for small trip count",
5185         "runtime stride == 1 checks needed. Enable vectorization of "
5186         "this loop without such check by compiling with -Os/-Oz",
5187         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5188     return true;
5189   }
5190 
5191   return false;
5192 }
5193 
5194 ElementCount
5195 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5196   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5197     return ElementCount::getScalable(0);
5198 
5199   if (Hints->isScalableVectorizationDisabled()) {
5200     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5201                             "ScalableVectorizationDisabled", ORE, TheLoop);
5202     return ElementCount::getScalable(0);
5203   }
5204 
5205   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5206 
5207   auto MaxScalableVF = ElementCount::getScalable(
5208       std::numeric_limits<ElementCount::ScalarTy>::max());
5209 
5210   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5211   // FIXME: While for scalable vectors this is currently sufficient, this should
5212   // be replaced by a more detailed mechanism that filters out specific VFs,
5213   // instead of invalidating vectorization for a whole set of VFs based on the
5214   // MaxVF.
5215 
5216   // Disable scalable vectorization if the loop contains unsupported reductions.
5217   if (!canVectorizeReductions(MaxScalableVF)) {
5218     reportVectorizationInfo(
5219         "Scalable vectorization not supported for the reduction "
5220         "operations found in this loop.",
5221         "ScalableVFUnfeasible", ORE, TheLoop);
5222     return ElementCount::getScalable(0);
5223   }
5224 
5225   // Disable scalable vectorization if the loop contains any instructions
5226   // with element types not supported for scalable vectors.
5227   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5228         return !Ty->isVoidTy() &&
5229                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5230       })) {
5231     reportVectorizationInfo("Scalable vectorization is not supported "
5232                             "for all element types found in this loop.",
5233                             "ScalableVFUnfeasible", ORE, TheLoop);
5234     return ElementCount::getScalable(0);
5235   }
5236 
5237   if (Legal->isSafeForAnyVectorWidth())
5238     return MaxScalableVF;
5239 
5240   // Limit MaxScalableVF by the maximum safe dependence distance.
5241   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5242   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5243     MaxVScale =
5244         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5245   MaxScalableVF = ElementCount::getScalable(
5246       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5247   if (!MaxScalableVF)
5248     reportVectorizationInfo(
5249         "Max legal vector width too small, scalable vectorization "
5250         "unfeasible.",
5251         "ScalableVFUnfeasible", ORE, TheLoop);
5252 
5253   return MaxScalableVF;
5254 }
5255 
5256 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5257     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5258   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5259   unsigned SmallestType, WidestType;
5260   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5261 
5262   // Get the maximum safe dependence distance in bits computed by LAA.
5263   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5264   // the memory accesses that is most restrictive (involved in the smallest
5265   // dependence distance).
5266   unsigned MaxSafeElements =
5267       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5268 
5269   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5270   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5271 
5272   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5273                     << ".\n");
5274   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5275                     << ".\n");
5276 
5277   // First analyze the UserVF, fall back if the UserVF should be ignored.
5278   if (UserVF) {
5279     auto MaxSafeUserVF =
5280         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5281 
5282     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5283       // If `VF=vscale x N` is safe, then so is `VF=N`
5284       if (UserVF.isScalable())
5285         return FixedScalableVFPair(
5286             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5287       else
5288         return UserVF;
5289     }
5290 
5291     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5292 
5293     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5294     // is better to ignore the hint and let the compiler choose a suitable VF.
5295     if (!UserVF.isScalable()) {
5296       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5297                         << " is unsafe, clamping to max safe VF="
5298                         << MaxSafeFixedVF << ".\n");
5299       ORE->emit([&]() {
5300         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5301                                           TheLoop->getStartLoc(),
5302                                           TheLoop->getHeader())
5303                << "User-specified vectorization factor "
5304                << ore::NV("UserVectorizationFactor", UserVF)
5305                << " is unsafe, clamping to maximum safe vectorization factor "
5306                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5307       });
5308       return MaxSafeFixedVF;
5309     }
5310 
5311     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5312       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5313                         << " is ignored because scalable vectors are not "
5314                            "available.\n");
5315       ORE->emit([&]() {
5316         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5317                                           TheLoop->getStartLoc(),
5318                                           TheLoop->getHeader())
5319                << "User-specified vectorization factor "
5320                << ore::NV("UserVectorizationFactor", UserVF)
5321                << " is ignored because the target does not support scalable "
5322                   "vectors. The compiler will pick a more suitable value.";
5323       });
5324     } else {
5325       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5326                         << " is unsafe. Ignoring scalable UserVF.\n");
5327       ORE->emit([&]() {
5328         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5329                                           TheLoop->getStartLoc(),
5330                                           TheLoop->getHeader())
5331                << "User-specified vectorization factor "
5332                << ore::NV("UserVectorizationFactor", UserVF)
5333                << " is unsafe. Ignoring the hint to let the compiler pick a "
5334                   "more suitable value.";
5335       });
5336     }
5337   }
5338 
5339   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5340                     << " / " << WidestType << " bits.\n");
5341 
5342   FixedScalableVFPair Result(ElementCount::getFixed(1),
5343                              ElementCount::getScalable(0));
5344   if (auto MaxVF =
5345           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5346                                   MaxSafeFixedVF, FoldTailByMasking))
5347     Result.FixedVF = MaxVF;
5348 
5349   if (auto MaxVF =
5350           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5351                                   MaxSafeScalableVF, FoldTailByMasking))
5352     if (MaxVF.isScalable()) {
5353       Result.ScalableVF = MaxVF;
5354       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5355                         << "\n");
5356     }
5357 
5358   return Result;
5359 }
5360 
5361 FixedScalableVFPair
5362 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5363   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5364     // TODO: It may by useful to do since it's still likely to be dynamically
5365     // uniform if the target can skip.
5366     reportVectorizationFailure(
5367         "Not inserting runtime ptr check for divergent target",
5368         "runtime pointer checks needed. Not enabled for divergent target",
5369         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5370     return FixedScalableVFPair::getNone();
5371   }
5372 
5373   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5374   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5375   if (TC == 1) {
5376     reportVectorizationFailure("Single iteration (non) loop",
5377         "loop trip count is one, irrelevant for vectorization",
5378         "SingleIterationLoop", ORE, TheLoop);
5379     return FixedScalableVFPair::getNone();
5380   }
5381 
5382   switch (ScalarEpilogueStatus) {
5383   case CM_ScalarEpilogueAllowed:
5384     return computeFeasibleMaxVF(TC, UserVF, false);
5385   case CM_ScalarEpilogueNotAllowedUsePredicate:
5386     LLVM_FALLTHROUGH;
5387   case CM_ScalarEpilogueNotNeededUsePredicate:
5388     LLVM_DEBUG(
5389         dbgs() << "LV: vector predicate hint/switch found.\n"
5390                << "LV: Not allowing scalar epilogue, creating predicated "
5391                << "vector loop.\n");
5392     break;
5393   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5394     // fallthrough as a special case of OptForSize
5395   case CM_ScalarEpilogueNotAllowedOptSize:
5396     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5397       LLVM_DEBUG(
5398           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5399     else
5400       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5401                         << "count.\n");
5402 
5403     // Bail if runtime checks are required, which are not good when optimising
5404     // for size.
5405     if (runtimeChecksRequired())
5406       return FixedScalableVFPair::getNone();
5407 
5408     break;
5409   }
5410 
5411   // The only loops we can vectorize without a scalar epilogue, are loops with
5412   // a bottom-test and a single exiting block. We'd have to handle the fact
5413   // that not every instruction executes on the last iteration.  This will
5414   // require a lane mask which varies through the vector loop body.  (TODO)
5415   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5416     // If there was a tail-folding hint/switch, but we can't fold the tail by
5417     // masking, fallback to a vectorization with a scalar epilogue.
5418     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5419       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5420                            "scalar epilogue instead.\n");
5421       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5422       return computeFeasibleMaxVF(TC, UserVF, false);
5423     }
5424     return FixedScalableVFPair::getNone();
5425   }
5426 
5427   // Now try the tail folding
5428 
5429   // Invalidate interleave groups that require an epilogue if we can't mask
5430   // the interleave-group.
5431   if (!useMaskedInterleavedAccesses(TTI)) {
5432     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5433            "No decisions should have been taken at this point");
5434     // Note: There is no need to invalidate any cost modeling decisions here, as
5435     // non where taken so far.
5436     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5437   }
5438 
5439   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5440   // Avoid tail folding if the trip count is known to be a multiple of any VF
5441   // we chose.
5442   // FIXME: The condition below pessimises the case for fixed-width vectors,
5443   // when scalable VFs are also candidates for vectorization.
5444   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5445     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5446     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5447            "MaxFixedVF must be a power of 2");
5448     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5449                                    : MaxFixedVF.getFixedValue();
5450     ScalarEvolution *SE = PSE.getSE();
5451     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5452     const SCEV *ExitCount = SE->getAddExpr(
5453         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5454     const SCEV *Rem = SE->getURemExpr(
5455         SE->applyLoopGuards(ExitCount, TheLoop),
5456         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5457     if (Rem->isZero()) {
5458       // Accept MaxFixedVF if we do not have a tail.
5459       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5460       return MaxFactors;
5461     }
5462   }
5463 
5464   // For scalable vectors don't use tail folding for low trip counts or
5465   // optimizing for code size. We only permit this if the user has explicitly
5466   // requested it.
5467   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5468       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5469       MaxFactors.ScalableVF.isVector())
5470     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5471 
5472   // If we don't know the precise trip count, or if the trip count that we
5473   // found modulo the vectorization factor is not zero, try to fold the tail
5474   // by masking.
5475   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5476   if (Legal->prepareToFoldTailByMasking()) {
5477     FoldTailByMasking = true;
5478     return MaxFactors;
5479   }
5480 
5481   // If there was a tail-folding hint/switch, but we can't fold the tail by
5482   // masking, fallback to a vectorization with a scalar epilogue.
5483   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5484     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5485                          "scalar epilogue instead.\n");
5486     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5487     return MaxFactors;
5488   }
5489 
5490   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5491     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5492     return FixedScalableVFPair::getNone();
5493   }
5494 
5495   if (TC == 0) {
5496     reportVectorizationFailure(
5497         "Unable to calculate the loop count due to complex control flow",
5498         "unable to calculate the loop count due to complex control flow",
5499         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5500     return FixedScalableVFPair::getNone();
5501   }
5502 
5503   reportVectorizationFailure(
5504       "Cannot optimize for size and vectorize at the same time.",
5505       "cannot optimize for size and vectorize at the same time. "
5506       "Enable vectorization of this loop with '#pragma clang loop "
5507       "vectorize(enable)' when compiling with -Os/-Oz",
5508       "NoTailLoopWithOptForSize", ORE, TheLoop);
5509   return FixedScalableVFPair::getNone();
5510 }
5511 
5512 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5513     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5514     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5515   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5516   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5517       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5518                            : TargetTransformInfo::RGK_FixedWidthVector);
5519 
5520   // Convenience function to return the minimum of two ElementCounts.
5521   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5522     assert((LHS.isScalable() == RHS.isScalable()) &&
5523            "Scalable flags must match");
5524     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5525   };
5526 
5527   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5528   // Note that both WidestRegister and WidestType may not be a powers of 2.
5529   auto MaxVectorElementCount = ElementCount::get(
5530       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5531       ComputeScalableMaxVF);
5532   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5533   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5534                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5535 
5536   if (!MaxVectorElementCount) {
5537     LLVM_DEBUG(dbgs() << "LV: The target has no "
5538                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5539                       << " vector registers.\n");
5540     return ElementCount::getFixed(1);
5541   }
5542 
5543   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5544   if (ConstTripCount &&
5545       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5546       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5547     // If loop trip count (TC) is known at compile time there is no point in
5548     // choosing VF greater than TC (as done in the loop below). Select maximum
5549     // power of two which doesn't exceed TC.
5550     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5551     // when the TC is less than or equal to the known number of lanes.
5552     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5553     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5554                          "exceeding the constant trip count: "
5555                       << ClampedConstTripCount << "\n");
5556     return ElementCount::getFixed(ClampedConstTripCount);
5557   }
5558 
5559   ElementCount MaxVF = MaxVectorElementCount;
5560   if (TTI.shouldMaximizeVectorBandwidth() ||
5561       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5562     auto MaxVectorElementCountMaxBW = ElementCount::get(
5563         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5564         ComputeScalableMaxVF);
5565     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5566 
5567     // Collect all viable vectorization factors larger than the default MaxVF
5568     // (i.e. MaxVectorElementCount).
5569     SmallVector<ElementCount, 8> VFs;
5570     for (ElementCount VS = MaxVectorElementCount * 2;
5571          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5572       VFs.push_back(VS);
5573 
5574     // For each VF calculate its register usage.
5575     auto RUs = calculateRegisterUsage(VFs);
5576 
5577     // Select the largest VF which doesn't require more registers than existing
5578     // ones.
5579     for (int i = RUs.size() - 1; i >= 0; --i) {
5580       bool Selected = true;
5581       for (auto &pair : RUs[i].MaxLocalUsers) {
5582         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5583         if (pair.second > TargetNumRegisters)
5584           Selected = false;
5585       }
5586       if (Selected) {
5587         MaxVF = VFs[i];
5588         break;
5589       }
5590     }
5591     if (ElementCount MinVF =
5592             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5593       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5594         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5595                           << ") with target's minimum: " << MinVF << '\n');
5596         MaxVF = MinVF;
5597       }
5598     }
5599   }
5600   return MaxVF;
5601 }
5602 
5603 bool LoopVectorizationCostModel::isMoreProfitable(
5604     const VectorizationFactor &A, const VectorizationFactor &B) const {
5605   InstructionCost CostA = A.Cost;
5606   InstructionCost CostB = B.Cost;
5607 
5608   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5609 
5610   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5611       MaxTripCount) {
5612     // If we are folding the tail and the trip count is a known (possibly small)
5613     // constant, the trip count will be rounded up to an integer number of
5614     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5615     // which we compare directly. When not folding the tail, the total cost will
5616     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5617     // approximated with the per-lane cost below instead of using the tripcount
5618     // as here.
5619     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5620     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5621     return RTCostA < RTCostB;
5622   }
5623 
5624   // Improve estimate for the vector width if it is scalable.
5625   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5626   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5627   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
5628     if (A.Width.isScalable())
5629       EstimatedWidthA *= VScale.getValue();
5630     if (B.Width.isScalable())
5631       EstimatedWidthB *= VScale.getValue();
5632   }
5633 
5634   // Assume vscale may be larger than 1 (or the value being tuned for),
5635   // so that scalable vectorization is slightly favorable over fixed-width
5636   // vectorization.
5637   if (A.Width.isScalable() && !B.Width.isScalable())
5638     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5639 
5640   // To avoid the need for FP division:
5641   //      (CostA / A.Width) < (CostB / B.Width)
5642   // <=>  (CostA * B.Width) < (CostB * A.Width)
5643   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5644 }
5645 
5646 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5647     const ElementCountSet &VFCandidates) {
5648   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5649   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5650   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5651   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5652          "Expected Scalar VF to be a candidate");
5653 
5654   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5655   VectorizationFactor ChosenFactor = ScalarCost;
5656 
5657   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5658   if (ForceVectorization && VFCandidates.size() > 1) {
5659     // Ignore scalar width, because the user explicitly wants vectorization.
5660     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5661     // evaluation.
5662     ChosenFactor.Cost = InstructionCost::getMax();
5663   }
5664 
5665   SmallVector<InstructionVFPair> InvalidCosts;
5666   for (const auto &i : VFCandidates) {
5667     // The cost for scalar VF=1 is already calculated, so ignore it.
5668     if (i.isScalar())
5669       continue;
5670 
5671     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5672     VectorizationFactor Candidate(i, C.first);
5673 
5674 #ifndef NDEBUG
5675     unsigned AssumedMinimumVscale = 1;
5676     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
5677       AssumedMinimumVscale = VScale.getValue();
5678     unsigned Width =
5679         Candidate.Width.isScalable()
5680             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5681             : Candidate.Width.getFixedValue();
5682     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5683                       << " costs: " << (Candidate.Cost / Width));
5684     if (i.isScalable())
5685       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5686                         << AssumedMinimumVscale << ")");
5687     LLVM_DEBUG(dbgs() << ".\n");
5688 #endif
5689 
5690     if (!C.second && !ForceVectorization) {
5691       LLVM_DEBUG(
5692           dbgs() << "LV: Not considering vector loop of width " << i
5693                  << " because it will not generate any vector instructions.\n");
5694       continue;
5695     }
5696 
5697     // If profitable add it to ProfitableVF list.
5698     if (isMoreProfitable(Candidate, ScalarCost))
5699       ProfitableVFs.push_back(Candidate);
5700 
5701     if (isMoreProfitable(Candidate, ChosenFactor))
5702       ChosenFactor = Candidate;
5703   }
5704 
5705   // Emit a report of VFs with invalid costs in the loop.
5706   if (!InvalidCosts.empty()) {
5707     // Group the remarks per instruction, keeping the instruction order from
5708     // InvalidCosts.
5709     std::map<Instruction *, unsigned> Numbering;
5710     unsigned I = 0;
5711     for (auto &Pair : InvalidCosts)
5712       if (!Numbering.count(Pair.first))
5713         Numbering[Pair.first] = I++;
5714 
5715     // Sort the list, first on instruction(number) then on VF.
5716     llvm::sort(InvalidCosts,
5717                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5718                  if (Numbering[A.first] != Numbering[B.first])
5719                    return Numbering[A.first] < Numbering[B.first];
5720                  ElementCountComparator ECC;
5721                  return ECC(A.second, B.second);
5722                });
5723 
5724     // For a list of ordered instruction-vf pairs:
5725     //   [(load, vf1), (load, vf2), (store, vf1)]
5726     // Group the instructions together to emit separate remarks for:
5727     //   load  (vf1, vf2)
5728     //   store (vf1)
5729     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5730     auto Subset = ArrayRef<InstructionVFPair>();
5731     do {
5732       if (Subset.empty())
5733         Subset = Tail.take_front(1);
5734 
5735       Instruction *I = Subset.front().first;
5736 
5737       // If the next instruction is different, or if there are no other pairs,
5738       // emit a remark for the collated subset. e.g.
5739       //   [(load, vf1), (load, vf2))]
5740       // to emit:
5741       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5742       if (Subset == Tail || Tail[Subset.size()].first != I) {
5743         std::string OutString;
5744         raw_string_ostream OS(OutString);
5745         assert(!Subset.empty() && "Unexpected empty range");
5746         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5747         for (auto &Pair : Subset)
5748           OS << (Pair.second == Subset.front().second ? "" : ", ")
5749              << Pair.second;
5750         OS << "):";
5751         if (auto *CI = dyn_cast<CallInst>(I))
5752           OS << " call to " << CI->getCalledFunction()->getName();
5753         else
5754           OS << " " << I->getOpcodeName();
5755         OS.flush();
5756         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5757         Tail = Tail.drop_front(Subset.size());
5758         Subset = {};
5759       } else
5760         // Grow the subset by one element
5761         Subset = Tail.take_front(Subset.size() + 1);
5762     } while (!Tail.empty());
5763   }
5764 
5765   if (!EnableCondStoresVectorization && NumPredStores) {
5766     reportVectorizationFailure("There are conditional stores.",
5767         "store that is conditionally executed prevents vectorization",
5768         "ConditionalStore", ORE, TheLoop);
5769     ChosenFactor = ScalarCost;
5770   }
5771 
5772   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5773                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5774              << "LV: Vectorization seems to be not beneficial, "
5775              << "but was forced by a user.\n");
5776   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5777   return ChosenFactor;
5778 }
5779 
5780 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5781     const Loop &L, ElementCount VF) const {
5782   // Cross iteration phis such as reductions need special handling and are
5783   // currently unsupported.
5784   if (any_of(L.getHeader()->phis(),
5785              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5786     return false;
5787 
5788   // Phis with uses outside of the loop require special handling and are
5789   // currently unsupported.
5790   for (auto &Entry : Legal->getInductionVars()) {
5791     // Look for uses of the value of the induction at the last iteration.
5792     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5793     for (User *U : PostInc->users())
5794       if (!L.contains(cast<Instruction>(U)))
5795         return false;
5796     // Look for uses of penultimate value of the induction.
5797     for (User *U : Entry.first->users())
5798       if (!L.contains(cast<Instruction>(U)))
5799         return false;
5800   }
5801 
5802   // Induction variables that are widened require special handling that is
5803   // currently not supported.
5804   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5805         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5806                  this->isProfitableToScalarize(Entry.first, VF));
5807       }))
5808     return false;
5809 
5810   // Epilogue vectorization code has not been auditted to ensure it handles
5811   // non-latch exits properly.  It may be fine, but it needs auditted and
5812   // tested.
5813   if (L.getExitingBlock() != L.getLoopLatch())
5814     return false;
5815 
5816   return true;
5817 }
5818 
5819 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5820     const ElementCount VF) const {
5821   // FIXME: We need a much better cost-model to take different parameters such
5822   // as register pressure, code size increase and cost of extra branches into
5823   // account. For now we apply a very crude heuristic and only consider loops
5824   // with vectorization factors larger than a certain value.
5825   // We also consider epilogue vectorization unprofitable for targets that don't
5826   // consider interleaving beneficial (eg. MVE).
5827   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5828     return false;
5829   // FIXME: We should consider changing the threshold for scalable
5830   // vectors to take VScaleForTuning into account.
5831   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5832     return true;
5833   return false;
5834 }
5835 
5836 VectorizationFactor
5837 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5838     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5839   VectorizationFactor Result = VectorizationFactor::Disabled();
5840   if (!EnableEpilogueVectorization) {
5841     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5842     return Result;
5843   }
5844 
5845   if (!isScalarEpilogueAllowed()) {
5846     LLVM_DEBUG(
5847         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5848                   "allowed.\n";);
5849     return Result;
5850   }
5851 
5852   // Not really a cost consideration, but check for unsupported cases here to
5853   // simplify the logic.
5854   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5855     LLVM_DEBUG(
5856         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5857                   "not a supported candidate.\n";);
5858     return Result;
5859   }
5860 
5861   if (EpilogueVectorizationForceVF > 1) {
5862     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5863     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5864     if (LVP.hasPlanWithVF(ForcedEC))
5865       return {ForcedEC, 0};
5866     else {
5867       LLVM_DEBUG(
5868           dbgs()
5869               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5870       return Result;
5871     }
5872   }
5873 
5874   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5875       TheLoop->getHeader()->getParent()->hasMinSize()) {
5876     LLVM_DEBUG(
5877         dbgs()
5878             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5879     return Result;
5880   }
5881 
5882   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5883     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5884                          "this loop\n");
5885     return Result;
5886   }
5887 
5888   for (auto &NextVF : ProfitableVFs)
5889     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
5890         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5891         LVP.hasPlanWithVF(NextVF.Width))
5892       Result = NextVF;
5893 
5894   if (Result != VectorizationFactor::Disabled())
5895     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5896                       << Result.Width << "\n";);
5897   return Result;
5898 }
5899 
5900 std::pair<unsigned, unsigned>
5901 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5902   unsigned MinWidth = -1U;
5903   unsigned MaxWidth = 8;
5904   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5905   // For in-loop reductions, no element types are added to ElementTypesInLoop
5906   // if there are no loads/stores in the loop. In this case, check through the
5907   // reduction variables to determine the maximum width.
5908   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5909     // Reset MaxWidth so that we can find the smallest type used by recurrences
5910     // in the loop.
5911     MaxWidth = -1U;
5912     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5913       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5914       // When finding the min width used by the recurrence we need to account
5915       // for casts on the input operands of the recurrence.
5916       MaxWidth = std::min<unsigned>(
5917           MaxWidth, std::min<unsigned>(
5918                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5919                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5920     }
5921   } else {
5922     for (Type *T : ElementTypesInLoop) {
5923       MinWidth = std::min<unsigned>(
5924           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5925       MaxWidth = std::max<unsigned>(
5926           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5927     }
5928   }
5929   return {MinWidth, MaxWidth};
5930 }
5931 
5932 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5933   ElementTypesInLoop.clear();
5934   // For each block.
5935   for (BasicBlock *BB : TheLoop->blocks()) {
5936     // For each instruction in the loop.
5937     for (Instruction &I : BB->instructionsWithoutDebug()) {
5938       Type *T = I.getType();
5939 
5940       // Skip ignored values.
5941       if (ValuesToIgnore.count(&I))
5942         continue;
5943 
5944       // Only examine Loads, Stores and PHINodes.
5945       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5946         continue;
5947 
5948       // Examine PHI nodes that are reduction variables. Update the type to
5949       // account for the recurrence type.
5950       if (auto *PN = dyn_cast<PHINode>(&I)) {
5951         if (!Legal->isReductionVariable(PN))
5952           continue;
5953         const RecurrenceDescriptor &RdxDesc =
5954             Legal->getReductionVars().find(PN)->second;
5955         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5956             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5957                                       RdxDesc.getRecurrenceType(),
5958                                       TargetTransformInfo::ReductionFlags()))
5959           continue;
5960         T = RdxDesc.getRecurrenceType();
5961       }
5962 
5963       // Examine the stored values.
5964       if (auto *ST = dyn_cast<StoreInst>(&I))
5965         T = ST->getValueOperand()->getType();
5966 
5967       assert(T->isSized() &&
5968              "Expected the load/store/recurrence type to be sized");
5969 
5970       ElementTypesInLoop.insert(T);
5971     }
5972   }
5973 }
5974 
5975 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5976                                                            unsigned LoopCost) {
5977   // -- The interleave heuristics --
5978   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5979   // There are many micro-architectural considerations that we can't predict
5980   // at this level. For example, frontend pressure (on decode or fetch) due to
5981   // code size, or the number and capabilities of the execution ports.
5982   //
5983   // We use the following heuristics to select the interleave count:
5984   // 1. If the code has reductions, then we interleave to break the cross
5985   // iteration dependency.
5986   // 2. If the loop is really small, then we interleave to reduce the loop
5987   // overhead.
5988   // 3. We don't interleave if we think that we will spill registers to memory
5989   // due to the increased register pressure.
5990 
5991   if (!isScalarEpilogueAllowed())
5992     return 1;
5993 
5994   // We used the distance for the interleave count.
5995   if (Legal->getMaxSafeDepDistBytes() != -1U)
5996     return 1;
5997 
5998   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5999   const bool HasReductions = !Legal->getReductionVars().empty();
6000   // Do not interleave loops with a relatively small known or estimated trip
6001   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6002   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6003   // because with the above conditions interleaving can expose ILP and break
6004   // cross iteration dependences for reductions.
6005   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6006       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6007     return 1;
6008 
6009   RegisterUsage R = calculateRegisterUsage({VF})[0];
6010   // We divide by these constants so assume that we have at least one
6011   // instruction that uses at least one register.
6012   for (auto& pair : R.MaxLocalUsers) {
6013     pair.second = std::max(pair.second, 1U);
6014   }
6015 
6016   // We calculate the interleave count using the following formula.
6017   // Subtract the number of loop invariants from the number of available
6018   // registers. These registers are used by all of the interleaved instances.
6019   // Next, divide the remaining registers by the number of registers that is
6020   // required by the loop, in order to estimate how many parallel instances
6021   // fit without causing spills. All of this is rounded down if necessary to be
6022   // a power of two. We want power of two interleave count to simplify any
6023   // addressing operations or alignment considerations.
6024   // We also want power of two interleave counts to ensure that the induction
6025   // variable of the vector loop wraps to zero, when tail is folded by masking;
6026   // this currently happens when OptForSize, in which case IC is set to 1 above.
6027   unsigned IC = UINT_MAX;
6028 
6029   for (auto& pair : R.MaxLocalUsers) {
6030     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6031     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6032                       << " registers of "
6033                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6034     if (VF.isScalar()) {
6035       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6036         TargetNumRegisters = ForceTargetNumScalarRegs;
6037     } else {
6038       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6039         TargetNumRegisters = ForceTargetNumVectorRegs;
6040     }
6041     unsigned MaxLocalUsers = pair.second;
6042     unsigned LoopInvariantRegs = 0;
6043     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6044       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6045 
6046     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6047     // Don't count the induction variable as interleaved.
6048     if (EnableIndVarRegisterHeur) {
6049       TmpIC =
6050           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6051                         std::max(1U, (MaxLocalUsers - 1)));
6052     }
6053 
6054     IC = std::min(IC, TmpIC);
6055   }
6056 
6057   // Clamp the interleave ranges to reasonable counts.
6058   unsigned MaxInterleaveCount =
6059       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6060 
6061   // Check if the user has overridden the max.
6062   if (VF.isScalar()) {
6063     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6064       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6065   } else {
6066     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6067       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6068   }
6069 
6070   // If trip count is known or estimated compile time constant, limit the
6071   // interleave count to be less than the trip count divided by VF, provided it
6072   // is at least 1.
6073   //
6074   // For scalable vectors we can't know if interleaving is beneficial. It may
6075   // not be beneficial for small loops if none of the lanes in the second vector
6076   // iterations is enabled. However, for larger loops, there is likely to be a
6077   // similar benefit as for fixed-width vectors. For now, we choose to leave
6078   // the InterleaveCount as if vscale is '1', although if some information about
6079   // the vector is known (e.g. min vector size), we can make a better decision.
6080   if (BestKnownTC) {
6081     MaxInterleaveCount =
6082         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6083     // Make sure MaxInterleaveCount is greater than 0.
6084     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6085   }
6086 
6087   assert(MaxInterleaveCount > 0 &&
6088          "Maximum interleave count must be greater than 0");
6089 
6090   // Clamp the calculated IC to be between the 1 and the max interleave count
6091   // that the target and trip count allows.
6092   if (IC > MaxInterleaveCount)
6093     IC = MaxInterleaveCount;
6094   else
6095     // Make sure IC is greater than 0.
6096     IC = std::max(1u, IC);
6097 
6098   assert(IC > 0 && "Interleave count must be greater than 0.");
6099 
6100   // If we did not calculate the cost for VF (because the user selected the VF)
6101   // then we calculate the cost of VF here.
6102   if (LoopCost == 0) {
6103     InstructionCost C = expectedCost(VF).first;
6104     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6105     LoopCost = *C.getValue();
6106   }
6107 
6108   assert(LoopCost && "Non-zero loop cost expected");
6109 
6110   // Interleave if we vectorized this loop and there is a reduction that could
6111   // benefit from interleaving.
6112   if (VF.isVector() && HasReductions) {
6113     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6114     return IC;
6115   }
6116 
6117   // Note that if we've already vectorized the loop we will have done the
6118   // runtime check and so interleaving won't require further checks.
6119   bool InterleavingRequiresRuntimePointerCheck =
6120       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6121 
6122   // We want to interleave small loops in order to reduce the loop overhead and
6123   // potentially expose ILP opportunities.
6124   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6125                     << "LV: IC is " << IC << '\n'
6126                     << "LV: VF is " << VF << '\n');
6127   const bool AggressivelyInterleaveReductions =
6128       TTI.enableAggressiveInterleaving(HasReductions);
6129   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6130     // We assume that the cost overhead is 1 and we use the cost model
6131     // to estimate the cost of the loop and interleave until the cost of the
6132     // loop overhead is about 5% of the cost of the loop.
6133     unsigned SmallIC =
6134         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6135 
6136     // Interleave until store/load ports (estimated by max interleave count) are
6137     // saturated.
6138     unsigned NumStores = Legal->getNumStores();
6139     unsigned NumLoads = Legal->getNumLoads();
6140     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6141     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6142 
6143     // There is little point in interleaving for reductions containing selects
6144     // and compares when VF=1 since it may just create more overhead than it's
6145     // worth for loops with small trip counts. This is because we still have to
6146     // do the final reduction after the loop.
6147     bool HasSelectCmpReductions =
6148         HasReductions &&
6149         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6150           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6151           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6152               RdxDesc.getRecurrenceKind());
6153         });
6154     if (HasSelectCmpReductions) {
6155       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6156       return 1;
6157     }
6158 
6159     // If we have a scalar reduction (vector reductions are already dealt with
6160     // by this point), we can increase the critical path length if the loop
6161     // we're interleaving is inside another loop. For tree-wise reductions
6162     // set the limit to 2, and for ordered reductions it's best to disable
6163     // interleaving entirely.
6164     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6165       bool HasOrderedReductions =
6166           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6167             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6168             return RdxDesc.isOrdered();
6169           });
6170       if (HasOrderedReductions) {
6171         LLVM_DEBUG(
6172             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6173         return 1;
6174       }
6175 
6176       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6177       SmallIC = std::min(SmallIC, F);
6178       StoresIC = std::min(StoresIC, F);
6179       LoadsIC = std::min(LoadsIC, F);
6180     }
6181 
6182     if (EnableLoadStoreRuntimeInterleave &&
6183         std::max(StoresIC, LoadsIC) > SmallIC) {
6184       LLVM_DEBUG(
6185           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6186       return std::max(StoresIC, LoadsIC);
6187     }
6188 
6189     // If there are scalar reductions and TTI has enabled aggressive
6190     // interleaving for reductions, we will interleave to expose ILP.
6191     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6192         AggressivelyInterleaveReductions) {
6193       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6194       // Interleave no less than SmallIC but not as aggressive as the normal IC
6195       // to satisfy the rare situation when resources are too limited.
6196       return std::max(IC / 2, SmallIC);
6197     } else {
6198       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6199       return SmallIC;
6200     }
6201   }
6202 
6203   // Interleave if this is a large loop (small loops are already dealt with by
6204   // this point) that could benefit from interleaving.
6205   if (AggressivelyInterleaveReductions) {
6206     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6207     return IC;
6208   }
6209 
6210   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6211   return 1;
6212 }
6213 
6214 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6215 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6216   // This function calculates the register usage by measuring the highest number
6217   // of values that are alive at a single location. Obviously, this is a very
6218   // rough estimation. We scan the loop in a topological order in order and
6219   // assign a number to each instruction. We use RPO to ensure that defs are
6220   // met before their users. We assume that each instruction that has in-loop
6221   // users starts an interval. We record every time that an in-loop value is
6222   // used, so we have a list of the first and last occurrences of each
6223   // instruction. Next, we transpose this data structure into a multi map that
6224   // holds the list of intervals that *end* at a specific location. This multi
6225   // map allows us to perform a linear search. We scan the instructions linearly
6226   // and record each time that a new interval starts, by placing it in a set.
6227   // If we find this value in the multi-map then we remove it from the set.
6228   // The max register usage is the maximum size of the set.
6229   // We also search for instructions that are defined outside the loop, but are
6230   // used inside the loop. We need this number separately from the max-interval
6231   // usage number because when we unroll, loop-invariant values do not take
6232   // more register.
6233   LoopBlocksDFS DFS(TheLoop);
6234   DFS.perform(LI);
6235 
6236   RegisterUsage RU;
6237 
6238   // Each 'key' in the map opens a new interval. The values
6239   // of the map are the index of the 'last seen' usage of the
6240   // instruction that is the key.
6241   using IntervalMap = DenseMap<Instruction *, unsigned>;
6242 
6243   // Maps instruction to its index.
6244   SmallVector<Instruction *, 64> IdxToInstr;
6245   // Marks the end of each interval.
6246   IntervalMap EndPoint;
6247   // Saves the list of instruction indices that are used in the loop.
6248   SmallPtrSet<Instruction *, 8> Ends;
6249   // Saves the list of values that are used in the loop but are
6250   // defined outside the loop, such as arguments and constants.
6251   SmallPtrSet<Value *, 8> LoopInvariants;
6252 
6253   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6254     for (Instruction &I : BB->instructionsWithoutDebug()) {
6255       IdxToInstr.push_back(&I);
6256 
6257       // Save the end location of each USE.
6258       for (Value *U : I.operands()) {
6259         auto *Instr = dyn_cast<Instruction>(U);
6260 
6261         // Ignore non-instruction values such as arguments, constants, etc.
6262         if (!Instr)
6263           continue;
6264 
6265         // If this instruction is outside the loop then record it and continue.
6266         if (!TheLoop->contains(Instr)) {
6267           LoopInvariants.insert(Instr);
6268           continue;
6269         }
6270 
6271         // Overwrite previous end points.
6272         EndPoint[Instr] = IdxToInstr.size();
6273         Ends.insert(Instr);
6274       }
6275     }
6276   }
6277 
6278   // Saves the list of intervals that end with the index in 'key'.
6279   using InstrList = SmallVector<Instruction *, 2>;
6280   DenseMap<unsigned, InstrList> TransposeEnds;
6281 
6282   // Transpose the EndPoints to a list of values that end at each index.
6283   for (auto &Interval : EndPoint)
6284     TransposeEnds[Interval.second].push_back(Interval.first);
6285 
6286   SmallPtrSet<Instruction *, 8> OpenIntervals;
6287   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6288   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6289 
6290   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6291 
6292   // A lambda that gets the register usage for the given type and VF.
6293   const auto &TTICapture = TTI;
6294   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6295     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6296       return 0;
6297     InstructionCost::CostType RegUsage =
6298         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6299     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6300            "Nonsensical values for register usage.");
6301     return RegUsage;
6302   };
6303 
6304   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6305     Instruction *I = IdxToInstr[i];
6306 
6307     // Remove all of the instructions that end at this location.
6308     InstrList &List = TransposeEnds[i];
6309     for (Instruction *ToRemove : List)
6310       OpenIntervals.erase(ToRemove);
6311 
6312     // Ignore instructions that are never used within the loop.
6313     if (!Ends.count(I))
6314       continue;
6315 
6316     // Skip ignored values.
6317     if (ValuesToIgnore.count(I))
6318       continue;
6319 
6320     // For each VF find the maximum usage of registers.
6321     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6322       // Count the number of live intervals.
6323       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6324 
6325       if (VFs[j].isScalar()) {
6326         for (auto Inst : OpenIntervals) {
6327           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6328           if (RegUsage.find(ClassID) == RegUsage.end())
6329             RegUsage[ClassID] = 1;
6330           else
6331             RegUsage[ClassID] += 1;
6332         }
6333       } else {
6334         collectUniformsAndScalars(VFs[j]);
6335         for (auto Inst : OpenIntervals) {
6336           // Skip ignored values for VF > 1.
6337           if (VecValuesToIgnore.count(Inst))
6338             continue;
6339           if (isScalarAfterVectorization(Inst, VFs[j])) {
6340             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6341             if (RegUsage.find(ClassID) == RegUsage.end())
6342               RegUsage[ClassID] = 1;
6343             else
6344               RegUsage[ClassID] += 1;
6345           } else {
6346             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6347             if (RegUsage.find(ClassID) == RegUsage.end())
6348               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6349             else
6350               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6351           }
6352         }
6353       }
6354 
6355       for (auto& pair : RegUsage) {
6356         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6357           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6358         else
6359           MaxUsages[j][pair.first] = pair.second;
6360       }
6361     }
6362 
6363     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6364                       << OpenIntervals.size() << '\n');
6365 
6366     // Add the current instruction to the list of open intervals.
6367     OpenIntervals.insert(I);
6368   }
6369 
6370   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6371     SmallMapVector<unsigned, unsigned, 4> Invariant;
6372 
6373     for (auto Inst : LoopInvariants) {
6374       unsigned Usage =
6375           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6376       unsigned ClassID =
6377           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6378       if (Invariant.find(ClassID) == Invariant.end())
6379         Invariant[ClassID] = Usage;
6380       else
6381         Invariant[ClassID] += Usage;
6382     }
6383 
6384     LLVM_DEBUG({
6385       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6386       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6387              << " item\n";
6388       for (const auto &pair : MaxUsages[i]) {
6389         dbgs() << "LV(REG): RegisterClass: "
6390                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6391                << " registers\n";
6392       }
6393       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6394              << " item\n";
6395       for (const auto &pair : Invariant) {
6396         dbgs() << "LV(REG): RegisterClass: "
6397                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6398                << " registers\n";
6399       }
6400     });
6401 
6402     RU.LoopInvariantRegs = Invariant;
6403     RU.MaxLocalUsers = MaxUsages[i];
6404     RUs[i] = RU;
6405   }
6406 
6407   return RUs;
6408 }
6409 
6410 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6411                                                            ElementCount VF) {
6412   // TODO: Cost model for emulated masked load/store is completely
6413   // broken. This hack guides the cost model to use an artificially
6414   // high enough value to practically disable vectorization with such
6415   // operations, except where previously deployed legality hack allowed
6416   // using very low cost values. This is to avoid regressions coming simply
6417   // from moving "masked load/store" check from legality to cost model.
6418   // Masked Load/Gather emulation was previously never allowed.
6419   // Limited number of Masked Store/Scatter emulation was allowed.
6420   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6421   return isa<LoadInst>(I) ||
6422          (isa<StoreInst>(I) &&
6423           NumPredStores > NumberOfStoresToPredicate);
6424 }
6425 
6426 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6427   // If we aren't vectorizing the loop, or if we've already collected the
6428   // instructions to scalarize, there's nothing to do. Collection may already
6429   // have occurred if we have a user-selected VF and are now computing the
6430   // expected cost for interleaving.
6431   if (VF.isScalar() || VF.isZero() ||
6432       InstsToScalarize.find(VF) != InstsToScalarize.end())
6433     return;
6434 
6435   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6436   // not profitable to scalarize any instructions, the presence of VF in the
6437   // map will indicate that we've analyzed it already.
6438   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6439 
6440   // Find all the instructions that are scalar with predication in the loop and
6441   // determine if it would be better to not if-convert the blocks they are in.
6442   // If so, we also record the instructions to scalarize.
6443   for (BasicBlock *BB : TheLoop->blocks()) {
6444     if (!blockNeedsPredicationForAnyReason(BB))
6445       continue;
6446     for (Instruction &I : *BB)
6447       if (isScalarWithPredication(&I, VF)) {
6448         ScalarCostsTy ScalarCosts;
6449         // Do not apply discount if scalable, because that would lead to
6450         // invalid scalarization costs.
6451         // Do not apply discount logic if hacked cost is needed
6452         // for emulated masked memrefs.
6453         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6454             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6455           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6456         // Remember that BB will remain after vectorization.
6457         PredicatedBBsAfterVectorization.insert(BB);
6458       }
6459   }
6460 }
6461 
6462 int LoopVectorizationCostModel::computePredInstDiscount(
6463     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6464   assert(!isUniformAfterVectorization(PredInst, VF) &&
6465          "Instruction marked uniform-after-vectorization will be predicated");
6466 
6467   // Initialize the discount to zero, meaning that the scalar version and the
6468   // vector version cost the same.
6469   InstructionCost Discount = 0;
6470 
6471   // Holds instructions to analyze. The instructions we visit are mapped in
6472   // ScalarCosts. Those instructions are the ones that would be scalarized if
6473   // we find that the scalar version costs less.
6474   SmallVector<Instruction *, 8> Worklist;
6475 
6476   // Returns true if the given instruction can be scalarized.
6477   auto canBeScalarized = [&](Instruction *I) -> bool {
6478     // We only attempt to scalarize instructions forming a single-use chain
6479     // from the original predicated block that would otherwise be vectorized.
6480     // Although not strictly necessary, we give up on instructions we know will
6481     // already be scalar to avoid traversing chains that are unlikely to be
6482     // beneficial.
6483     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6484         isScalarAfterVectorization(I, VF))
6485       return false;
6486 
6487     // If the instruction is scalar with predication, it will be analyzed
6488     // separately. We ignore it within the context of PredInst.
6489     if (isScalarWithPredication(I, VF))
6490       return false;
6491 
6492     // If any of the instruction's operands are uniform after vectorization,
6493     // the instruction cannot be scalarized. This prevents, for example, a
6494     // masked load from being scalarized.
6495     //
6496     // We assume we will only emit a value for lane zero of an instruction
6497     // marked uniform after vectorization, rather than VF identical values.
6498     // Thus, if we scalarize an instruction that uses a uniform, we would
6499     // create uses of values corresponding to the lanes we aren't emitting code
6500     // for. This behavior can be changed by allowing getScalarValue to clone
6501     // the lane zero values for uniforms rather than asserting.
6502     for (Use &U : I->operands())
6503       if (auto *J = dyn_cast<Instruction>(U.get()))
6504         if (isUniformAfterVectorization(J, VF))
6505           return false;
6506 
6507     // Otherwise, we can scalarize the instruction.
6508     return true;
6509   };
6510 
6511   // Compute the expected cost discount from scalarizing the entire expression
6512   // feeding the predicated instruction. We currently only consider expressions
6513   // that are single-use instruction chains.
6514   Worklist.push_back(PredInst);
6515   while (!Worklist.empty()) {
6516     Instruction *I = Worklist.pop_back_val();
6517 
6518     // If we've already analyzed the instruction, there's nothing to do.
6519     if (ScalarCosts.find(I) != ScalarCosts.end())
6520       continue;
6521 
6522     // Compute the cost of the vector instruction. Note that this cost already
6523     // includes the scalarization overhead of the predicated instruction.
6524     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6525 
6526     // Compute the cost of the scalarized instruction. This cost is the cost of
6527     // the instruction as if it wasn't if-converted and instead remained in the
6528     // predicated block. We will scale this cost by block probability after
6529     // computing the scalarization overhead.
6530     InstructionCost ScalarCost =
6531         VF.getFixedValue() *
6532         getInstructionCost(I, ElementCount::getFixed(1)).first;
6533 
6534     // Compute the scalarization overhead of needed insertelement instructions
6535     // and phi nodes.
6536     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6537       ScalarCost += TTI.getScalarizationOverhead(
6538           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6539           APInt::getAllOnes(VF.getFixedValue()), true, false);
6540       ScalarCost +=
6541           VF.getFixedValue() *
6542           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6543     }
6544 
6545     // Compute the scalarization overhead of needed extractelement
6546     // instructions. For each of the instruction's operands, if the operand can
6547     // be scalarized, add it to the worklist; otherwise, account for the
6548     // overhead.
6549     for (Use &U : I->operands())
6550       if (auto *J = dyn_cast<Instruction>(U.get())) {
6551         assert(VectorType::isValidElementType(J->getType()) &&
6552                "Instruction has non-scalar type");
6553         if (canBeScalarized(J))
6554           Worklist.push_back(J);
6555         else if (needsExtract(J, VF)) {
6556           ScalarCost += TTI.getScalarizationOverhead(
6557               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6558               APInt::getAllOnes(VF.getFixedValue()), false, true);
6559         }
6560       }
6561 
6562     // Scale the total scalar cost by block probability.
6563     ScalarCost /= getReciprocalPredBlockProb();
6564 
6565     // Compute the discount. A non-negative discount means the vector version
6566     // of the instruction costs more, and scalarizing would be beneficial.
6567     Discount += VectorCost - ScalarCost;
6568     ScalarCosts[I] = ScalarCost;
6569   }
6570 
6571   return *Discount.getValue();
6572 }
6573 
6574 LoopVectorizationCostModel::VectorizationCostTy
6575 LoopVectorizationCostModel::expectedCost(
6576     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6577   VectorizationCostTy Cost;
6578 
6579   // For each block.
6580   for (BasicBlock *BB : TheLoop->blocks()) {
6581     VectorizationCostTy BlockCost;
6582 
6583     // For each instruction in the old loop.
6584     for (Instruction &I : BB->instructionsWithoutDebug()) {
6585       // Skip ignored values.
6586       if (ValuesToIgnore.count(&I) ||
6587           (VF.isVector() && VecValuesToIgnore.count(&I)))
6588         continue;
6589 
6590       VectorizationCostTy C = getInstructionCost(&I, VF);
6591 
6592       // Check if we should override the cost.
6593       if (C.first.isValid() &&
6594           ForceTargetInstructionCost.getNumOccurrences() > 0)
6595         C.first = InstructionCost(ForceTargetInstructionCost);
6596 
6597       // Keep a list of instructions with invalid costs.
6598       if (Invalid && !C.first.isValid())
6599         Invalid->emplace_back(&I, VF);
6600 
6601       BlockCost.first += C.first;
6602       BlockCost.second |= C.second;
6603       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6604                         << " for VF " << VF << " For instruction: " << I
6605                         << '\n');
6606     }
6607 
6608     // If we are vectorizing a predicated block, it will have been
6609     // if-converted. This means that the block's instructions (aside from
6610     // stores and instructions that may divide by zero) will now be
6611     // unconditionally executed. For the scalar case, we may not always execute
6612     // the predicated block, if it is an if-else block. Thus, scale the block's
6613     // cost by the probability of executing it. blockNeedsPredication from
6614     // Legal is used so as to not include all blocks in tail folded loops.
6615     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6616       BlockCost.first /= getReciprocalPredBlockProb();
6617 
6618     Cost.first += BlockCost.first;
6619     Cost.second |= BlockCost.second;
6620   }
6621 
6622   return Cost;
6623 }
6624 
6625 /// Gets Address Access SCEV after verifying that the access pattern
6626 /// is loop invariant except the induction variable dependence.
6627 ///
6628 /// This SCEV can be sent to the Target in order to estimate the address
6629 /// calculation cost.
6630 static const SCEV *getAddressAccessSCEV(
6631               Value *Ptr,
6632               LoopVectorizationLegality *Legal,
6633               PredicatedScalarEvolution &PSE,
6634               const Loop *TheLoop) {
6635 
6636   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6637   if (!Gep)
6638     return nullptr;
6639 
6640   // We are looking for a gep with all loop invariant indices except for one
6641   // which should be an induction variable.
6642   auto SE = PSE.getSE();
6643   unsigned NumOperands = Gep->getNumOperands();
6644   for (unsigned i = 1; i < NumOperands; ++i) {
6645     Value *Opd = Gep->getOperand(i);
6646     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6647         !Legal->isInductionVariable(Opd))
6648       return nullptr;
6649   }
6650 
6651   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6652   return PSE.getSCEV(Ptr);
6653 }
6654 
6655 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6656   return Legal->hasStride(I->getOperand(0)) ||
6657          Legal->hasStride(I->getOperand(1));
6658 }
6659 
6660 InstructionCost
6661 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6662                                                         ElementCount VF) {
6663   assert(VF.isVector() &&
6664          "Scalarization cost of instruction implies vectorization.");
6665   if (VF.isScalable())
6666     return InstructionCost::getInvalid();
6667 
6668   Type *ValTy = getLoadStoreType(I);
6669   auto SE = PSE.getSE();
6670 
6671   unsigned AS = getLoadStoreAddressSpace(I);
6672   Value *Ptr = getLoadStorePointerOperand(I);
6673   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6674   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6675   //       that it is being called from this specific place.
6676 
6677   // Figure out whether the access is strided and get the stride value
6678   // if it's known in compile time
6679   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6680 
6681   // Get the cost of the scalar memory instruction and address computation.
6682   InstructionCost Cost =
6683       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6684 
6685   // Don't pass *I here, since it is scalar but will actually be part of a
6686   // vectorized loop where the user of it is a vectorized instruction.
6687   const Align Alignment = getLoadStoreAlignment(I);
6688   Cost += VF.getKnownMinValue() *
6689           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6690                               AS, TTI::TCK_RecipThroughput);
6691 
6692   // Get the overhead of the extractelement and insertelement instructions
6693   // we might create due to scalarization.
6694   Cost += getScalarizationOverhead(I, VF);
6695 
6696   // If we have a predicated load/store, it will need extra i1 extracts and
6697   // conditional branches, but may not be executed for each vector lane. Scale
6698   // the cost by the probability of executing the predicated block.
6699   if (isPredicatedInst(I, VF)) {
6700     Cost /= getReciprocalPredBlockProb();
6701 
6702     // Add the cost of an i1 extract and a branch
6703     auto *Vec_i1Ty =
6704         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6705     Cost += TTI.getScalarizationOverhead(
6706         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6707         /*Insert=*/false, /*Extract=*/true);
6708     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6709 
6710     if (useEmulatedMaskMemRefHack(I, VF))
6711       // Artificially setting to a high enough value to practically disable
6712       // vectorization with such operations.
6713       Cost = 3000000;
6714   }
6715 
6716   return Cost;
6717 }
6718 
6719 InstructionCost
6720 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6721                                                     ElementCount VF) {
6722   Type *ValTy = getLoadStoreType(I);
6723   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6724   Value *Ptr = getLoadStorePointerOperand(I);
6725   unsigned AS = getLoadStoreAddressSpace(I);
6726   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6727   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6728 
6729   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6730          "Stride should be 1 or -1 for consecutive memory access");
6731   const Align Alignment = getLoadStoreAlignment(I);
6732   InstructionCost Cost = 0;
6733   if (Legal->isMaskRequired(I))
6734     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6735                                       CostKind);
6736   else
6737     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6738                                 CostKind, I);
6739 
6740   bool Reverse = ConsecutiveStride < 0;
6741   if (Reverse)
6742     Cost +=
6743         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6744   return Cost;
6745 }
6746 
6747 InstructionCost
6748 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6749                                                 ElementCount VF) {
6750   assert(Legal->isUniformMemOp(*I));
6751 
6752   Type *ValTy = getLoadStoreType(I);
6753   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6754   const Align Alignment = getLoadStoreAlignment(I);
6755   unsigned AS = getLoadStoreAddressSpace(I);
6756   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6757   if (isa<LoadInst>(I)) {
6758     return TTI.getAddressComputationCost(ValTy) +
6759            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6760                                CostKind) +
6761            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6762   }
6763   StoreInst *SI = cast<StoreInst>(I);
6764 
6765   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6766   return TTI.getAddressComputationCost(ValTy) +
6767          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6768                              CostKind) +
6769          (isLoopInvariantStoreValue
6770               ? 0
6771               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6772                                        VF.getKnownMinValue() - 1));
6773 }
6774 
6775 InstructionCost
6776 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6777                                                  ElementCount VF) {
6778   Type *ValTy = getLoadStoreType(I);
6779   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6780   const Align Alignment = getLoadStoreAlignment(I);
6781   const Value *Ptr = getLoadStorePointerOperand(I);
6782 
6783   return TTI.getAddressComputationCost(VectorTy) +
6784          TTI.getGatherScatterOpCost(
6785              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6786              TargetTransformInfo::TCK_RecipThroughput, I);
6787 }
6788 
6789 InstructionCost
6790 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6791                                                    ElementCount VF) {
6792   // TODO: Once we have support for interleaving with scalable vectors
6793   // we can calculate the cost properly here.
6794   if (VF.isScalable())
6795     return InstructionCost::getInvalid();
6796 
6797   Type *ValTy = getLoadStoreType(I);
6798   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6799   unsigned AS = getLoadStoreAddressSpace(I);
6800 
6801   auto Group = getInterleavedAccessGroup(I);
6802   assert(Group && "Fail to get an interleaved access group.");
6803 
6804   unsigned InterleaveFactor = Group->getFactor();
6805   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6806 
6807   // Holds the indices of existing members in the interleaved group.
6808   SmallVector<unsigned, 4> Indices;
6809   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6810     if (Group->getMember(IF))
6811       Indices.push_back(IF);
6812 
6813   // Calculate the cost of the whole interleaved group.
6814   bool UseMaskForGaps =
6815       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6816       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6817   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6818       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6819       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6820 
6821   if (Group->isReverse()) {
6822     // TODO: Add support for reversed masked interleaved access.
6823     assert(!Legal->isMaskRequired(I) &&
6824            "Reverse masked interleaved access not supported.");
6825     Cost +=
6826         Group->getNumMembers() *
6827         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6828   }
6829   return Cost;
6830 }
6831 
6832 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6833     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6834   using namespace llvm::PatternMatch;
6835   // Early exit for no inloop reductions
6836   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6837     return None;
6838   auto *VectorTy = cast<VectorType>(Ty);
6839 
6840   // We are looking for a pattern of, and finding the minimal acceptable cost:
6841   //  reduce(mul(ext(A), ext(B))) or
6842   //  reduce(mul(A, B)) or
6843   //  reduce(ext(A)) or
6844   //  reduce(A).
6845   // The basic idea is that we walk down the tree to do that, finding the root
6846   // reduction instruction in InLoopReductionImmediateChains. From there we find
6847   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6848   // of the components. If the reduction cost is lower then we return it for the
6849   // reduction instruction and 0 for the other instructions in the pattern. If
6850   // it is not we return an invalid cost specifying the orignal cost method
6851   // should be used.
6852   Instruction *RetI = I;
6853   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6854     if (!RetI->hasOneUser())
6855       return None;
6856     RetI = RetI->user_back();
6857   }
6858   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6859       RetI->user_back()->getOpcode() == Instruction::Add) {
6860     if (!RetI->hasOneUser())
6861       return None;
6862     RetI = RetI->user_back();
6863   }
6864 
6865   // Test if the found instruction is a reduction, and if not return an invalid
6866   // cost specifying the parent to use the original cost modelling.
6867   if (!InLoopReductionImmediateChains.count(RetI))
6868     return None;
6869 
6870   // Find the reduction this chain is a part of and calculate the basic cost of
6871   // the reduction on its own.
6872   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6873   Instruction *ReductionPhi = LastChain;
6874   while (!isa<PHINode>(ReductionPhi))
6875     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6876 
6877   const RecurrenceDescriptor &RdxDesc =
6878       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6879 
6880   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6881       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6882 
6883   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6884   // normal fmul instruction to the cost of the fadd reduction.
6885   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6886     BaseCost +=
6887         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6888 
6889   // If we're using ordered reductions then we can just return the base cost
6890   // here, since getArithmeticReductionCost calculates the full ordered
6891   // reduction cost when FP reassociation is not allowed.
6892   if (useOrderedReductions(RdxDesc))
6893     return BaseCost;
6894 
6895   // Get the operand that was not the reduction chain and match it to one of the
6896   // patterns, returning the better cost if it is found.
6897   Instruction *RedOp = RetI->getOperand(1) == LastChain
6898                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6899                            : dyn_cast<Instruction>(RetI->getOperand(1));
6900 
6901   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6902 
6903   Instruction *Op0, *Op1;
6904   if (RedOp &&
6905       match(RedOp,
6906             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6907       match(Op0, m_ZExtOrSExt(m_Value())) &&
6908       Op0->getOpcode() == Op1->getOpcode() &&
6909       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6910       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6911       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6912 
6913     // Matched reduce(ext(mul(ext(A), ext(B)))
6914     // Note that the extend opcodes need to all match, or if A==B they will have
6915     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6916     // which is equally fine.
6917     bool IsUnsigned = isa<ZExtInst>(Op0);
6918     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6919     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6920 
6921     InstructionCost ExtCost =
6922         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6923                              TTI::CastContextHint::None, CostKind, Op0);
6924     InstructionCost MulCost =
6925         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6926     InstructionCost Ext2Cost =
6927         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6928                              TTI::CastContextHint::None, CostKind, RedOp);
6929 
6930     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6931         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6932         CostKind);
6933 
6934     if (RedCost.isValid() &&
6935         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6936       return I == RetI ? RedCost : 0;
6937   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6938              !TheLoop->isLoopInvariant(RedOp)) {
6939     // Matched reduce(ext(A))
6940     bool IsUnsigned = isa<ZExtInst>(RedOp);
6941     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6942     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6943         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6944         CostKind);
6945 
6946     InstructionCost ExtCost =
6947         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6948                              TTI::CastContextHint::None, CostKind, RedOp);
6949     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6950       return I == RetI ? RedCost : 0;
6951   } else if (RedOp &&
6952              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6953     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6954         Op0->getOpcode() == Op1->getOpcode() &&
6955         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6956       bool IsUnsigned = isa<ZExtInst>(Op0);
6957       Type *Op0Ty = Op0->getOperand(0)->getType();
6958       Type *Op1Ty = Op1->getOperand(0)->getType();
6959       Type *LargestOpTy =
6960           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6961                                                                     : Op0Ty;
6962       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6963 
6964       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6965       // different sizes. We take the largest type as the ext to reduce, and add
6966       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6967       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6968           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6969           TTI::CastContextHint::None, CostKind, Op0);
6970       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6971           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6972           TTI::CastContextHint::None, CostKind, Op1);
6973       InstructionCost MulCost =
6974           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6975 
6976       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6977           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6978           CostKind);
6979       InstructionCost ExtraExtCost = 0;
6980       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6981         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6982         ExtraExtCost = TTI.getCastInstrCost(
6983             ExtraExtOp->getOpcode(), ExtType,
6984             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6985             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6986       }
6987 
6988       if (RedCost.isValid() &&
6989           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6990         return I == RetI ? RedCost : 0;
6991     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6992       // Matched reduce(mul())
6993       InstructionCost MulCost =
6994           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6995 
6996       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6997           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6998           CostKind);
6999 
7000       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7001         return I == RetI ? RedCost : 0;
7002     }
7003   }
7004 
7005   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7006 }
7007 
7008 InstructionCost
7009 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7010                                                      ElementCount VF) {
7011   // Calculate scalar cost only. Vectorization cost should be ready at this
7012   // moment.
7013   if (VF.isScalar()) {
7014     Type *ValTy = getLoadStoreType(I);
7015     const Align Alignment = getLoadStoreAlignment(I);
7016     unsigned AS = getLoadStoreAddressSpace(I);
7017 
7018     return TTI.getAddressComputationCost(ValTy) +
7019            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7020                                TTI::TCK_RecipThroughput, I);
7021   }
7022   return getWideningCost(I, VF);
7023 }
7024 
7025 LoopVectorizationCostModel::VectorizationCostTy
7026 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7027                                                ElementCount VF) {
7028   // If we know that this instruction will remain uniform, check the cost of
7029   // the scalar version.
7030   if (isUniformAfterVectorization(I, VF))
7031     VF = ElementCount::getFixed(1);
7032 
7033   if (VF.isVector() && isProfitableToScalarize(I, VF))
7034     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7035 
7036   // Forced scalars do not have any scalarization overhead.
7037   auto ForcedScalar = ForcedScalars.find(VF);
7038   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7039     auto InstSet = ForcedScalar->second;
7040     if (InstSet.count(I))
7041       return VectorizationCostTy(
7042           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7043            VF.getKnownMinValue()),
7044           false);
7045   }
7046 
7047   Type *VectorTy;
7048   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7049 
7050   bool TypeNotScalarized = false;
7051   if (VF.isVector() && VectorTy->isVectorTy()) {
7052     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7053     if (NumParts)
7054       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7055     else
7056       C = InstructionCost::getInvalid();
7057   }
7058   return VectorizationCostTy(C, TypeNotScalarized);
7059 }
7060 
7061 InstructionCost
7062 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7063                                                      ElementCount VF) const {
7064 
7065   // There is no mechanism yet to create a scalable scalarization loop,
7066   // so this is currently Invalid.
7067   if (VF.isScalable())
7068     return InstructionCost::getInvalid();
7069 
7070   if (VF.isScalar())
7071     return 0;
7072 
7073   InstructionCost Cost = 0;
7074   Type *RetTy = ToVectorTy(I->getType(), VF);
7075   if (!RetTy->isVoidTy() &&
7076       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7077     Cost += TTI.getScalarizationOverhead(
7078         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7079         false);
7080 
7081   // Some targets keep addresses scalar.
7082   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7083     return Cost;
7084 
7085   // Some targets support efficient element stores.
7086   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7087     return Cost;
7088 
7089   // Collect operands to consider.
7090   CallInst *CI = dyn_cast<CallInst>(I);
7091   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7092 
7093   // Skip operands that do not require extraction/scalarization and do not incur
7094   // any overhead.
7095   SmallVector<Type *> Tys;
7096   for (auto *V : filterExtractingOperands(Ops, VF))
7097     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7098   return Cost + TTI.getOperandsScalarizationOverhead(
7099                     filterExtractingOperands(Ops, VF), Tys);
7100 }
7101 
7102 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7103   if (VF.isScalar())
7104     return;
7105   NumPredStores = 0;
7106   for (BasicBlock *BB : TheLoop->blocks()) {
7107     // For each instruction in the old loop.
7108     for (Instruction &I : *BB) {
7109       Value *Ptr =  getLoadStorePointerOperand(&I);
7110       if (!Ptr)
7111         continue;
7112 
7113       // TODO: We should generate better code and update the cost model for
7114       // predicated uniform stores. Today they are treated as any other
7115       // predicated store (see added test cases in
7116       // invariant-store-vectorization.ll).
7117       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7118         NumPredStores++;
7119 
7120       if (Legal->isUniformMemOp(I)) {
7121         // TODO: Avoid replicating loads and stores instead of
7122         // relying on instcombine to remove them.
7123         // Load: Scalar load + broadcast
7124         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7125         InstructionCost Cost;
7126         if (isa<StoreInst>(&I) && VF.isScalable() &&
7127             isLegalGatherOrScatter(&I, VF)) {
7128           Cost = getGatherScatterCost(&I, VF);
7129           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7130         } else {
7131           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7132                  "Cannot yet scalarize uniform stores");
7133           Cost = getUniformMemOpCost(&I, VF);
7134           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7135         }
7136         continue;
7137       }
7138 
7139       // We assume that widening is the best solution when possible.
7140       if (memoryInstructionCanBeWidened(&I, VF)) {
7141         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7142         int ConsecutiveStride = Legal->isConsecutivePtr(
7143             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7144         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7145                "Expected consecutive stride.");
7146         InstWidening Decision =
7147             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7148         setWideningDecision(&I, VF, Decision, Cost);
7149         continue;
7150       }
7151 
7152       // Choose between Interleaving, Gather/Scatter or Scalarization.
7153       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7154       unsigned NumAccesses = 1;
7155       if (isAccessInterleaved(&I)) {
7156         auto Group = getInterleavedAccessGroup(&I);
7157         assert(Group && "Fail to get an interleaved access group.");
7158 
7159         // Make one decision for the whole group.
7160         if (getWideningDecision(&I, VF) != CM_Unknown)
7161           continue;
7162 
7163         NumAccesses = Group->getNumMembers();
7164         if (interleavedAccessCanBeWidened(&I, VF))
7165           InterleaveCost = getInterleaveGroupCost(&I, VF);
7166       }
7167 
7168       InstructionCost GatherScatterCost =
7169           isLegalGatherOrScatter(&I, VF)
7170               ? getGatherScatterCost(&I, VF) * NumAccesses
7171               : InstructionCost::getInvalid();
7172 
7173       InstructionCost ScalarizationCost =
7174           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7175 
7176       // Choose better solution for the current VF,
7177       // write down this decision and use it during vectorization.
7178       InstructionCost Cost;
7179       InstWidening Decision;
7180       if (InterleaveCost <= GatherScatterCost &&
7181           InterleaveCost < ScalarizationCost) {
7182         Decision = CM_Interleave;
7183         Cost = InterleaveCost;
7184       } else if (GatherScatterCost < ScalarizationCost) {
7185         Decision = CM_GatherScatter;
7186         Cost = GatherScatterCost;
7187       } else {
7188         Decision = CM_Scalarize;
7189         Cost = ScalarizationCost;
7190       }
7191       // If the instructions belongs to an interleave group, the whole group
7192       // receives the same decision. The whole group receives the cost, but
7193       // the cost will actually be assigned to one instruction.
7194       if (auto Group = getInterleavedAccessGroup(&I))
7195         setWideningDecision(Group, VF, Decision, Cost);
7196       else
7197         setWideningDecision(&I, VF, Decision, Cost);
7198     }
7199   }
7200 
7201   // Make sure that any load of address and any other address computation
7202   // remains scalar unless there is gather/scatter support. This avoids
7203   // inevitable extracts into address registers, and also has the benefit of
7204   // activating LSR more, since that pass can't optimize vectorized
7205   // addresses.
7206   if (TTI.prefersVectorizedAddressing())
7207     return;
7208 
7209   // Start with all scalar pointer uses.
7210   SmallPtrSet<Instruction *, 8> AddrDefs;
7211   for (BasicBlock *BB : TheLoop->blocks())
7212     for (Instruction &I : *BB) {
7213       Instruction *PtrDef =
7214         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7215       if (PtrDef && TheLoop->contains(PtrDef) &&
7216           getWideningDecision(&I, VF) != CM_GatherScatter)
7217         AddrDefs.insert(PtrDef);
7218     }
7219 
7220   // Add all instructions used to generate the addresses.
7221   SmallVector<Instruction *, 4> Worklist;
7222   append_range(Worklist, AddrDefs);
7223   while (!Worklist.empty()) {
7224     Instruction *I = Worklist.pop_back_val();
7225     for (auto &Op : I->operands())
7226       if (auto *InstOp = dyn_cast<Instruction>(Op))
7227         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7228             AddrDefs.insert(InstOp).second)
7229           Worklist.push_back(InstOp);
7230   }
7231 
7232   for (auto *I : AddrDefs) {
7233     if (isa<LoadInst>(I)) {
7234       // Setting the desired widening decision should ideally be handled in
7235       // by cost functions, but since this involves the task of finding out
7236       // if the loaded register is involved in an address computation, it is
7237       // instead changed here when we know this is the case.
7238       InstWidening Decision = getWideningDecision(I, VF);
7239       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7240         // Scalarize a widened load of address.
7241         setWideningDecision(
7242             I, VF, CM_Scalarize,
7243             (VF.getKnownMinValue() *
7244              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7245       else if (auto Group = getInterleavedAccessGroup(I)) {
7246         // Scalarize an interleave group of address loads.
7247         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7248           if (Instruction *Member = Group->getMember(I))
7249             setWideningDecision(
7250                 Member, VF, CM_Scalarize,
7251                 (VF.getKnownMinValue() *
7252                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7253         }
7254       }
7255     } else
7256       // Make sure I gets scalarized and a cost estimate without
7257       // scalarization overhead.
7258       ForcedScalars[VF].insert(I);
7259   }
7260 }
7261 
7262 InstructionCost
7263 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7264                                                Type *&VectorTy) {
7265   Type *RetTy = I->getType();
7266   if (canTruncateToMinimalBitwidth(I, VF))
7267     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7268   auto SE = PSE.getSE();
7269   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7270 
7271   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7272                                                 ElementCount VF) -> bool {
7273     if (VF.isScalar())
7274       return true;
7275 
7276     auto Scalarized = InstsToScalarize.find(VF);
7277     assert(Scalarized != InstsToScalarize.end() &&
7278            "VF not yet analyzed for scalarization profitability");
7279     return !Scalarized->second.count(I) &&
7280            llvm::all_of(I->users(), [&](User *U) {
7281              auto *UI = cast<Instruction>(U);
7282              return !Scalarized->second.count(UI);
7283            });
7284   };
7285   (void) hasSingleCopyAfterVectorization;
7286 
7287   if (isScalarAfterVectorization(I, VF)) {
7288     // With the exception of GEPs and PHIs, after scalarization there should
7289     // only be one copy of the instruction generated in the loop. This is
7290     // because the VF is either 1, or any instructions that need scalarizing
7291     // have already been dealt with by the the time we get here. As a result,
7292     // it means we don't have to multiply the instruction cost by VF.
7293     assert(I->getOpcode() == Instruction::GetElementPtr ||
7294            I->getOpcode() == Instruction::PHI ||
7295            (I->getOpcode() == Instruction::BitCast &&
7296             I->getType()->isPointerTy()) ||
7297            hasSingleCopyAfterVectorization(I, VF));
7298     VectorTy = RetTy;
7299   } else
7300     VectorTy = ToVectorTy(RetTy, VF);
7301 
7302   // TODO: We need to estimate the cost of intrinsic calls.
7303   switch (I->getOpcode()) {
7304   case Instruction::GetElementPtr:
7305     // We mark this instruction as zero-cost because the cost of GEPs in
7306     // vectorized code depends on whether the corresponding memory instruction
7307     // is scalarized or not. Therefore, we handle GEPs with the memory
7308     // instruction cost.
7309     return 0;
7310   case Instruction::Br: {
7311     // In cases of scalarized and predicated instructions, there will be VF
7312     // predicated blocks in the vectorized loop. Each branch around these
7313     // blocks requires also an extract of its vector compare i1 element.
7314     bool ScalarPredicatedBB = false;
7315     BranchInst *BI = cast<BranchInst>(I);
7316     if (VF.isVector() && BI->isConditional() &&
7317         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7318          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7319       ScalarPredicatedBB = true;
7320 
7321     if (ScalarPredicatedBB) {
7322       // Not possible to scalarize scalable vector with predicated instructions.
7323       if (VF.isScalable())
7324         return InstructionCost::getInvalid();
7325       // Return cost for branches around scalarized and predicated blocks.
7326       auto *Vec_i1Ty =
7327           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7328       return (
7329           TTI.getScalarizationOverhead(
7330               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7331           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7332     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7333       // The back-edge branch will remain, as will all scalar branches.
7334       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7335     else
7336       // This branch will be eliminated by if-conversion.
7337       return 0;
7338     // Note: We currently assume zero cost for an unconditional branch inside
7339     // a predicated block since it will become a fall-through, although we
7340     // may decide in the future to call TTI for all branches.
7341   }
7342   case Instruction::PHI: {
7343     auto *Phi = cast<PHINode>(I);
7344 
7345     // First-order recurrences are replaced by vector shuffles inside the loop.
7346     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7347     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7348       return TTI.getShuffleCost(
7349           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7350           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7351 
7352     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7353     // converted into select instructions. We require N - 1 selects per phi
7354     // node, where N is the number of incoming values.
7355     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7356       return (Phi->getNumIncomingValues() - 1) *
7357              TTI.getCmpSelInstrCost(
7358                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7359                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7360                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7361 
7362     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7363   }
7364   case Instruction::UDiv:
7365   case Instruction::SDiv:
7366   case Instruction::URem:
7367   case Instruction::SRem:
7368     // If we have a predicated instruction, it may not be executed for each
7369     // vector lane. Get the scalarization cost and scale this amount by the
7370     // probability of executing the predicated block. If the instruction is not
7371     // predicated, we fall through to the next case.
7372     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7373       InstructionCost Cost = 0;
7374 
7375       // These instructions have a non-void type, so account for the phi nodes
7376       // that we will create. This cost is likely to be zero. The phi node
7377       // cost, if any, should be scaled by the block probability because it
7378       // models a copy at the end of each predicated block.
7379       Cost += VF.getKnownMinValue() *
7380               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7381 
7382       // The cost of the non-predicated instruction.
7383       Cost += VF.getKnownMinValue() *
7384               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7385 
7386       // The cost of insertelement and extractelement instructions needed for
7387       // scalarization.
7388       Cost += getScalarizationOverhead(I, VF);
7389 
7390       // Scale the cost by the probability of executing the predicated blocks.
7391       // This assumes the predicated block for each vector lane is equally
7392       // likely.
7393       return Cost / getReciprocalPredBlockProb();
7394     }
7395     LLVM_FALLTHROUGH;
7396   case Instruction::Add:
7397   case Instruction::FAdd:
7398   case Instruction::Sub:
7399   case Instruction::FSub:
7400   case Instruction::Mul:
7401   case Instruction::FMul:
7402   case Instruction::FDiv:
7403   case Instruction::FRem:
7404   case Instruction::Shl:
7405   case Instruction::LShr:
7406   case Instruction::AShr:
7407   case Instruction::And:
7408   case Instruction::Or:
7409   case Instruction::Xor: {
7410     // Since we will replace the stride by 1 the multiplication should go away.
7411     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7412       return 0;
7413 
7414     // Detect reduction patterns
7415     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7416       return *RedCost;
7417 
7418     // Certain instructions can be cheaper to vectorize if they have a constant
7419     // second vector operand. One example of this are shifts on x86.
7420     Value *Op2 = I->getOperand(1);
7421     TargetTransformInfo::OperandValueProperties Op2VP;
7422     TargetTransformInfo::OperandValueKind Op2VK =
7423         TTI.getOperandInfo(Op2, Op2VP);
7424     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7425       Op2VK = TargetTransformInfo::OK_UniformValue;
7426 
7427     SmallVector<const Value *, 4> Operands(I->operand_values());
7428     return TTI.getArithmeticInstrCost(
7429         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7430         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7431   }
7432   case Instruction::FNeg: {
7433     return TTI.getArithmeticInstrCost(
7434         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7435         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7436         TargetTransformInfo::OP_None, I->getOperand(0), I);
7437   }
7438   case Instruction::Select: {
7439     SelectInst *SI = cast<SelectInst>(I);
7440     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7441     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7442 
7443     const Value *Op0, *Op1;
7444     using namespace llvm::PatternMatch;
7445     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7446                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7447       // select x, y, false --> x & y
7448       // select x, true, y --> x | y
7449       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7450       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7451       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7452       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7453       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7454               Op1->getType()->getScalarSizeInBits() == 1);
7455 
7456       SmallVector<const Value *, 2> Operands{Op0, Op1};
7457       return TTI.getArithmeticInstrCost(
7458           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7459           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7460     }
7461 
7462     Type *CondTy = SI->getCondition()->getType();
7463     if (!ScalarCond)
7464       CondTy = VectorType::get(CondTy, VF);
7465 
7466     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7467     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7468       Pred = Cmp->getPredicate();
7469     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7470                                   CostKind, I);
7471   }
7472   case Instruction::ICmp:
7473   case Instruction::FCmp: {
7474     Type *ValTy = I->getOperand(0)->getType();
7475     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7476     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7477       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7478     VectorTy = ToVectorTy(ValTy, VF);
7479     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7480                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7481                                   I);
7482   }
7483   case Instruction::Store:
7484   case Instruction::Load: {
7485     ElementCount Width = VF;
7486     if (Width.isVector()) {
7487       InstWidening Decision = getWideningDecision(I, Width);
7488       assert(Decision != CM_Unknown &&
7489              "CM decision should be taken at this point");
7490       if (Decision == CM_Scalarize)
7491         Width = ElementCount::getFixed(1);
7492     }
7493     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7494     return getMemoryInstructionCost(I, VF);
7495   }
7496   case Instruction::BitCast:
7497     if (I->getType()->isPointerTy())
7498       return 0;
7499     LLVM_FALLTHROUGH;
7500   case Instruction::ZExt:
7501   case Instruction::SExt:
7502   case Instruction::FPToUI:
7503   case Instruction::FPToSI:
7504   case Instruction::FPExt:
7505   case Instruction::PtrToInt:
7506   case Instruction::IntToPtr:
7507   case Instruction::SIToFP:
7508   case Instruction::UIToFP:
7509   case Instruction::Trunc:
7510   case Instruction::FPTrunc: {
7511     // Computes the CastContextHint from a Load/Store instruction.
7512     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7513       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7514              "Expected a load or a store!");
7515 
7516       if (VF.isScalar() || !TheLoop->contains(I))
7517         return TTI::CastContextHint::Normal;
7518 
7519       switch (getWideningDecision(I, VF)) {
7520       case LoopVectorizationCostModel::CM_GatherScatter:
7521         return TTI::CastContextHint::GatherScatter;
7522       case LoopVectorizationCostModel::CM_Interleave:
7523         return TTI::CastContextHint::Interleave;
7524       case LoopVectorizationCostModel::CM_Scalarize:
7525       case LoopVectorizationCostModel::CM_Widen:
7526         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7527                                         : TTI::CastContextHint::Normal;
7528       case LoopVectorizationCostModel::CM_Widen_Reverse:
7529         return TTI::CastContextHint::Reversed;
7530       case LoopVectorizationCostModel::CM_Unknown:
7531         llvm_unreachable("Instr did not go through cost modelling?");
7532       }
7533 
7534       llvm_unreachable("Unhandled case!");
7535     };
7536 
7537     unsigned Opcode = I->getOpcode();
7538     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7539     // For Trunc, the context is the only user, which must be a StoreInst.
7540     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7541       if (I->hasOneUse())
7542         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7543           CCH = ComputeCCH(Store);
7544     }
7545     // For Z/Sext, the context is the operand, which must be a LoadInst.
7546     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7547              Opcode == Instruction::FPExt) {
7548       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7549         CCH = ComputeCCH(Load);
7550     }
7551 
7552     // We optimize the truncation of induction variables having constant
7553     // integer steps. The cost of these truncations is the same as the scalar
7554     // operation.
7555     if (isOptimizableIVTruncate(I, VF)) {
7556       auto *Trunc = cast<TruncInst>(I);
7557       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7558                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7559     }
7560 
7561     // Detect reduction patterns
7562     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7563       return *RedCost;
7564 
7565     Type *SrcScalarTy = I->getOperand(0)->getType();
7566     Type *SrcVecTy =
7567         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7568     if (canTruncateToMinimalBitwidth(I, VF)) {
7569       // This cast is going to be shrunk. This may remove the cast or it might
7570       // turn it into slightly different cast. For example, if MinBW == 16,
7571       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7572       //
7573       // Calculate the modified src and dest types.
7574       Type *MinVecTy = VectorTy;
7575       if (Opcode == Instruction::Trunc) {
7576         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7577         VectorTy =
7578             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7579       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7580         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7581         VectorTy =
7582             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7583       }
7584     }
7585 
7586     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7587   }
7588   case Instruction::Call: {
7589     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7590       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7591         return *RedCost;
7592     bool NeedToScalarize;
7593     CallInst *CI = cast<CallInst>(I);
7594     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7595     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7596       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7597       return std::min(CallCost, IntrinsicCost);
7598     }
7599     return CallCost;
7600   }
7601   case Instruction::ExtractValue:
7602     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7603   case Instruction::Alloca:
7604     // We cannot easily widen alloca to a scalable alloca, as
7605     // the result would need to be a vector of pointers.
7606     if (VF.isScalable())
7607       return InstructionCost::getInvalid();
7608     LLVM_FALLTHROUGH;
7609   default:
7610     // This opcode is unknown. Assume that it is the same as 'mul'.
7611     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7612   } // end of switch.
7613 }
7614 
7615 char LoopVectorize::ID = 0;
7616 
7617 static const char lv_name[] = "Loop Vectorization";
7618 
7619 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7620 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7621 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7622 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7623 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7624 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7625 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7626 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7627 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7628 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7629 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7630 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7631 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7632 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7633 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7634 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7635 
7636 namespace llvm {
7637 
7638 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7639 
7640 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7641                               bool VectorizeOnlyWhenForced) {
7642   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7643 }
7644 
7645 } // end namespace llvm
7646 
7647 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7648   // Check if the pointer operand of a load or store instruction is
7649   // consecutive.
7650   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7651     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7652   return false;
7653 }
7654 
7655 void LoopVectorizationCostModel::collectValuesToIgnore() {
7656   // Ignore ephemeral values.
7657   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7658 
7659   // Ignore type-promoting instructions we identified during reduction
7660   // detection.
7661   for (auto &Reduction : Legal->getReductionVars()) {
7662     const RecurrenceDescriptor &RedDes = Reduction.second;
7663     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7664     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7665   }
7666   // Ignore type-casting instructions we identified during induction
7667   // detection.
7668   for (auto &Induction : Legal->getInductionVars()) {
7669     const InductionDescriptor &IndDes = Induction.second;
7670     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7671     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7672   }
7673 }
7674 
7675 void LoopVectorizationCostModel::collectInLoopReductions() {
7676   for (auto &Reduction : Legal->getReductionVars()) {
7677     PHINode *Phi = Reduction.first;
7678     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7679 
7680     // We don't collect reductions that are type promoted (yet).
7681     if (RdxDesc.getRecurrenceType() != Phi->getType())
7682       continue;
7683 
7684     // If the target would prefer this reduction to happen "in-loop", then we
7685     // want to record it as such.
7686     unsigned Opcode = RdxDesc.getOpcode();
7687     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7688         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7689                                    TargetTransformInfo::ReductionFlags()))
7690       continue;
7691 
7692     // Check that we can correctly put the reductions into the loop, by
7693     // finding the chain of operations that leads from the phi to the loop
7694     // exit value.
7695     SmallVector<Instruction *, 4> ReductionOperations =
7696         RdxDesc.getReductionOpChain(Phi, TheLoop);
7697     bool InLoop = !ReductionOperations.empty();
7698     if (InLoop) {
7699       InLoopReductionChains[Phi] = ReductionOperations;
7700       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7701       Instruction *LastChain = Phi;
7702       for (auto *I : ReductionOperations) {
7703         InLoopReductionImmediateChains[I] = LastChain;
7704         LastChain = I;
7705       }
7706     }
7707     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7708                       << " reduction for phi: " << *Phi << "\n");
7709   }
7710 }
7711 
7712 // TODO: we could return a pair of values that specify the max VF and
7713 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7714 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7715 // doesn't have a cost model that can choose which plan to execute if
7716 // more than one is generated.
7717 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7718                                  LoopVectorizationCostModel &CM) {
7719   unsigned WidestType;
7720   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7721   return WidestVectorRegBits / WidestType;
7722 }
7723 
7724 VectorizationFactor
7725 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7726   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7727   ElementCount VF = UserVF;
7728   // Outer loop handling: They may require CFG and instruction level
7729   // transformations before even evaluating whether vectorization is profitable.
7730   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7731   // the vectorization pipeline.
7732   if (!OrigLoop->isInnermost()) {
7733     // If the user doesn't provide a vectorization factor, determine a
7734     // reasonable one.
7735     if (UserVF.isZero()) {
7736       VF = ElementCount::getFixed(determineVPlanVF(
7737           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7738               .getFixedSize(),
7739           CM));
7740       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7741 
7742       // Make sure we have a VF > 1 for stress testing.
7743       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7744         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7745                           << "overriding computed VF.\n");
7746         VF = ElementCount::getFixed(4);
7747       }
7748     }
7749     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7750     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7751            "VF needs to be a power of two");
7752     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7753                       << "VF " << VF << " to build VPlans.\n");
7754     buildVPlans(VF, VF);
7755 
7756     // For VPlan build stress testing, we bail out after VPlan construction.
7757     if (VPlanBuildStressTest)
7758       return VectorizationFactor::Disabled();
7759 
7760     return {VF, 0 /*Cost*/};
7761   }
7762 
7763   LLVM_DEBUG(
7764       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7765                 "VPlan-native path.\n");
7766   return VectorizationFactor::Disabled();
7767 }
7768 
7769 Optional<VectorizationFactor>
7770 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7771   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7772   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7773   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7774     return None;
7775 
7776   // Invalidate interleave groups if all blocks of loop will be predicated.
7777   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7778       !useMaskedInterleavedAccesses(*TTI)) {
7779     LLVM_DEBUG(
7780         dbgs()
7781         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7782            "which requires masked-interleaved support.\n");
7783     if (CM.InterleaveInfo.invalidateGroups())
7784       // Invalidating interleave groups also requires invalidating all decisions
7785       // based on them, which includes widening decisions and uniform and scalar
7786       // values.
7787       CM.invalidateCostModelingDecisions();
7788   }
7789 
7790   ElementCount MaxUserVF =
7791       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7792   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7793   if (!UserVF.isZero() && UserVFIsLegal) {
7794     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7795            "VF needs to be a power of two");
7796     // Collect the instructions (and their associated costs) that will be more
7797     // profitable to scalarize.
7798     if (CM.selectUserVectorizationFactor(UserVF)) {
7799       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7800       CM.collectInLoopReductions();
7801       buildVPlansWithVPRecipes(UserVF, UserVF);
7802       LLVM_DEBUG(printPlans(dbgs()));
7803       return {{UserVF, 0}};
7804     } else
7805       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7806                               "InvalidCost", ORE, OrigLoop);
7807   }
7808 
7809   // Populate the set of Vectorization Factor Candidates.
7810   ElementCountSet VFCandidates;
7811   for (auto VF = ElementCount::getFixed(1);
7812        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7813     VFCandidates.insert(VF);
7814   for (auto VF = ElementCount::getScalable(1);
7815        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7816     VFCandidates.insert(VF);
7817 
7818   for (const auto &VF : VFCandidates) {
7819     // Collect Uniform and Scalar instructions after vectorization with VF.
7820     CM.collectUniformsAndScalars(VF);
7821 
7822     // Collect the instructions (and their associated costs) that will be more
7823     // profitable to scalarize.
7824     if (VF.isVector())
7825       CM.collectInstsToScalarize(VF);
7826   }
7827 
7828   CM.collectInLoopReductions();
7829   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7830   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7831 
7832   LLVM_DEBUG(printPlans(dbgs()));
7833   if (!MaxFactors.hasVector())
7834     return VectorizationFactor::Disabled();
7835 
7836   // Select the optimal vectorization factor.
7837   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7838 
7839   // Check if it is profitable to vectorize with runtime checks.
7840   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7841   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7842     bool PragmaThresholdReached =
7843         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7844     bool ThresholdReached =
7845         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7846     if ((ThresholdReached && !Hints.allowReordering()) ||
7847         PragmaThresholdReached) {
7848       ORE->emit([&]() {
7849         return OptimizationRemarkAnalysisAliasing(
7850                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7851                    OrigLoop->getHeader())
7852                << "loop not vectorized: cannot prove it is safe to reorder "
7853                   "memory operations";
7854       });
7855       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7856       Hints.emitRemarkWithHints();
7857       return VectorizationFactor::Disabled();
7858     }
7859   }
7860   return SelectedVF;
7861 }
7862 
7863 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7864   assert(count_if(VPlans,
7865                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7866              1 &&
7867          "Best VF has not a single VPlan.");
7868 
7869   for (const VPlanPtr &Plan : VPlans) {
7870     if (Plan->hasVF(VF))
7871       return *Plan.get();
7872   }
7873   llvm_unreachable("No plan found!");
7874 }
7875 
7876 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7877   SmallVector<Metadata *, 4> MDs;
7878   // Reserve first location for self reference to the LoopID metadata node.
7879   MDs.push_back(nullptr);
7880   bool IsUnrollMetadata = false;
7881   MDNode *LoopID = L->getLoopID();
7882   if (LoopID) {
7883     // First find existing loop unrolling disable metadata.
7884     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7885       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7886       if (MD) {
7887         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7888         IsUnrollMetadata =
7889             S && S->getString().startswith("llvm.loop.unroll.disable");
7890       }
7891       MDs.push_back(LoopID->getOperand(i));
7892     }
7893   }
7894 
7895   if (!IsUnrollMetadata) {
7896     // Add runtime unroll disable metadata.
7897     LLVMContext &Context = L->getHeader()->getContext();
7898     SmallVector<Metadata *, 1> DisableOperands;
7899     DisableOperands.push_back(
7900         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7901     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7902     MDs.push_back(DisableNode);
7903     MDNode *NewLoopID = MDNode::get(Context, MDs);
7904     // Set operand 0 to refer to the loop id itself.
7905     NewLoopID->replaceOperandWith(0, NewLoopID);
7906     L->setLoopID(NewLoopID);
7907   }
7908 }
7909 
7910 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7911                                            VPlan &BestVPlan,
7912                                            InnerLoopVectorizer &ILV,
7913                                            DominatorTree *DT) {
7914   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7915                     << '\n');
7916 
7917   // Perform the actual loop transformation.
7918 
7919   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7920   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7921   Value *CanonicalIVStartValue;
7922   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7923       ILV.createVectorizedLoopSkeleton();
7924   ILV.collectPoisonGeneratingRecipes(State);
7925 
7926   ILV.printDebugTracesAtStart();
7927 
7928   //===------------------------------------------------===//
7929   //
7930   // Notice: any optimization or new instruction that go
7931   // into the code below should also be implemented in
7932   // the cost-model.
7933   //
7934   //===------------------------------------------------===//
7935 
7936   // 2. Copy and widen instructions from the old loop into the new loop.
7937   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7938                              ILV.getOrCreateVectorTripCount(nullptr),
7939                              CanonicalIVStartValue, State);
7940   BestVPlan.execute(&State);
7941 
7942   // Keep all loop hints from the original loop on the vector loop (we'll
7943   // replace the vectorizer-specific hints below).
7944   MDNode *OrigLoopID = OrigLoop->getLoopID();
7945 
7946   Optional<MDNode *> VectorizedLoopID =
7947       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7948                                       LLVMLoopVectorizeFollowupVectorized});
7949 
7950   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7951   if (VectorizedLoopID.hasValue())
7952     L->setLoopID(VectorizedLoopID.getValue());
7953   else {
7954     // Keep all loop hints from the original loop on the vector loop (we'll
7955     // replace the vectorizer-specific hints below).
7956     if (MDNode *LID = OrigLoop->getLoopID())
7957       L->setLoopID(LID);
7958 
7959     LoopVectorizeHints Hints(L, true, *ORE);
7960     Hints.setAlreadyVectorized();
7961   }
7962   // Disable runtime unrolling when vectorizing the epilogue loop.
7963   if (CanonicalIVStartValue)
7964     AddRuntimeUnrollDisableMetaData(L);
7965 
7966   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7967   //    predication, updating analyses.
7968   ILV.fixVectorizedLoop(State);
7969 
7970   ILV.printDebugTracesAtEnd();
7971 }
7972 
7973 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7974 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7975   for (const auto &Plan : VPlans)
7976     if (PrintVPlansInDotFormat)
7977       Plan->printDOT(O);
7978     else
7979       Plan->print(O);
7980 }
7981 #endif
7982 
7983 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7984     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7985 
7986   // We create new control-flow for the vectorized loop, so the original exit
7987   // conditions will be dead after vectorization if it's only used by the
7988   // terminator
7989   SmallVector<BasicBlock*> ExitingBlocks;
7990   OrigLoop->getExitingBlocks(ExitingBlocks);
7991   for (auto *BB : ExitingBlocks) {
7992     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7993     if (!Cmp || !Cmp->hasOneUse())
7994       continue;
7995 
7996     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7997     if (!DeadInstructions.insert(Cmp).second)
7998       continue;
7999 
8000     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8001     // TODO: can recurse through operands in general
8002     for (Value *Op : Cmp->operands()) {
8003       if (isa<TruncInst>(Op) && Op->hasOneUse())
8004           DeadInstructions.insert(cast<Instruction>(Op));
8005     }
8006   }
8007 
8008   // We create new "steps" for induction variable updates to which the original
8009   // induction variables map. An original update instruction will be dead if
8010   // all its users except the induction variable are dead.
8011   auto *Latch = OrigLoop->getLoopLatch();
8012   for (auto &Induction : Legal->getInductionVars()) {
8013     PHINode *Ind = Induction.first;
8014     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8015 
8016     // If the tail is to be folded by masking, the primary induction variable,
8017     // if exists, isn't dead: it will be used for masking. Don't kill it.
8018     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8019       continue;
8020 
8021     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8022           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8023         }))
8024       DeadInstructions.insert(IndUpdate);
8025   }
8026 }
8027 
8028 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8029 
8030 //===--------------------------------------------------------------------===//
8031 // EpilogueVectorizerMainLoop
8032 //===--------------------------------------------------------------------===//
8033 
8034 /// This function is partially responsible for generating the control flow
8035 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8036 std::pair<BasicBlock *, Value *>
8037 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8038   MDNode *OrigLoopID = OrigLoop->getLoopID();
8039   Loop *Lp = createVectorLoopSkeleton("");
8040 
8041   // Generate the code to check the minimum iteration count of the vector
8042   // epilogue (see below).
8043   EPI.EpilogueIterationCountCheck =
8044       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8045   EPI.EpilogueIterationCountCheck->setName("iter.check");
8046 
8047   // Generate the code to check any assumptions that we've made for SCEV
8048   // expressions.
8049   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8050 
8051   // Generate the code that checks at runtime if arrays overlap. We put the
8052   // checks into a separate block to make the more common case of few elements
8053   // faster.
8054   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8055 
8056   // Generate the iteration count check for the main loop, *after* the check
8057   // for the epilogue loop, so that the path-length is shorter for the case
8058   // that goes directly through the vector epilogue. The longer-path length for
8059   // the main loop is compensated for, by the gain from vectorizing the larger
8060   // trip count. Note: the branch will get updated later on when we vectorize
8061   // the epilogue.
8062   EPI.MainLoopIterationCountCheck =
8063       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8064 
8065   // Generate the induction variable.
8066   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8067   EPI.VectorTripCount = CountRoundDown;
8068   createHeaderBranch(Lp);
8069 
8070   // Skip induction resume value creation here because they will be created in
8071   // the second pass. If we created them here, they wouldn't be used anyway,
8072   // because the vplan in the second pass still contains the inductions from the
8073   // original loop.
8074 
8075   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8076 }
8077 
8078 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8079   LLVM_DEBUG({
8080     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8081            << "Main Loop VF:" << EPI.MainLoopVF
8082            << ", Main Loop UF:" << EPI.MainLoopUF
8083            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8084            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8085   });
8086 }
8087 
8088 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8089   DEBUG_WITH_TYPE(VerboseDebug, {
8090     dbgs() << "intermediate fn:\n"
8091            << *OrigLoop->getHeader()->getParent() << "\n";
8092   });
8093 }
8094 
8095 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8096     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8097   assert(L && "Expected valid Loop.");
8098   assert(Bypass && "Expected valid bypass basic block.");
8099   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8100   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8101   Value *Count = getOrCreateTripCount(L);
8102   // Reuse existing vector loop preheader for TC checks.
8103   // Note that new preheader block is generated for vector loop.
8104   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8105   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8106 
8107   // Generate code to check if the loop's trip count is less than VF * UF of the
8108   // main vector loop.
8109   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8110       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8111 
8112   Value *CheckMinIters = Builder.CreateICmp(
8113       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8114       "min.iters.check");
8115 
8116   if (!ForEpilogue)
8117     TCCheckBlock->setName("vector.main.loop.iter.check");
8118 
8119   // Create new preheader for vector loop.
8120   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8121                                    DT, LI, nullptr, "vector.ph");
8122 
8123   if (ForEpilogue) {
8124     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8125                                  DT->getNode(Bypass)->getIDom()) &&
8126            "TC check is expected to dominate Bypass");
8127 
8128     // Update dominator for Bypass & LoopExit.
8129     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8130     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8131       // For loops with multiple exits, there's no edge from the middle block
8132       // to exit blocks (as the epilogue must run) and thus no need to update
8133       // the immediate dominator of the exit blocks.
8134       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8135 
8136     LoopBypassBlocks.push_back(TCCheckBlock);
8137 
8138     // Save the trip count so we don't have to regenerate it in the
8139     // vec.epilog.iter.check. This is safe to do because the trip count
8140     // generated here dominates the vector epilog iter check.
8141     EPI.TripCount = Count;
8142   }
8143 
8144   ReplaceInstWithInst(
8145       TCCheckBlock->getTerminator(),
8146       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8147 
8148   return TCCheckBlock;
8149 }
8150 
8151 //===--------------------------------------------------------------------===//
8152 // EpilogueVectorizerEpilogueLoop
8153 //===--------------------------------------------------------------------===//
8154 
8155 /// This function is partially responsible for generating the control flow
8156 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8157 std::pair<BasicBlock *, Value *>
8158 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8159   MDNode *OrigLoopID = OrigLoop->getLoopID();
8160   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8161 
8162   // Now, compare the remaining count and if there aren't enough iterations to
8163   // execute the vectorized epilogue skip to the scalar part.
8164   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8165   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8166   LoopVectorPreHeader =
8167       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8168                  LI, nullptr, "vec.epilog.ph");
8169   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8170                                           VecEpilogueIterationCountCheck);
8171 
8172   // Adjust the control flow taking the state info from the main loop
8173   // vectorization into account.
8174   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8175          "expected this to be saved from the previous pass.");
8176   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8177       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8178 
8179   DT->changeImmediateDominator(LoopVectorPreHeader,
8180                                EPI.MainLoopIterationCountCheck);
8181 
8182   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8183       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8184 
8185   if (EPI.SCEVSafetyCheck)
8186     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8187         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8188   if (EPI.MemSafetyCheck)
8189     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8190         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8191 
8192   DT->changeImmediateDominator(
8193       VecEpilogueIterationCountCheck,
8194       VecEpilogueIterationCountCheck->getSinglePredecessor());
8195 
8196   DT->changeImmediateDominator(LoopScalarPreHeader,
8197                                EPI.EpilogueIterationCountCheck);
8198   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8199     // If there is an epilogue which must run, there's no edge from the
8200     // middle block to exit blocks  and thus no need to update the immediate
8201     // dominator of the exit blocks.
8202     DT->changeImmediateDominator(LoopExitBlock,
8203                                  EPI.EpilogueIterationCountCheck);
8204 
8205   // Keep track of bypass blocks, as they feed start values to the induction
8206   // phis in the scalar loop preheader.
8207   if (EPI.SCEVSafetyCheck)
8208     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8209   if (EPI.MemSafetyCheck)
8210     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8211   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8212 
8213   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8214   // merge control-flow from the latch block and the middle block. Update the
8215   // incoming values here and move the Phi into the preheader.
8216   SmallVector<PHINode *, 4> PhisInBlock;
8217   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8218     PhisInBlock.push_back(&Phi);
8219 
8220   for (PHINode *Phi : PhisInBlock) {
8221     Phi->replaceIncomingBlockWith(
8222         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8223         VecEpilogueIterationCountCheck);
8224     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8225     if (EPI.SCEVSafetyCheck)
8226       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8227     if (EPI.MemSafetyCheck)
8228       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8229     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8230   }
8231 
8232   // Generate a resume induction for the vector epilogue and put it in the
8233   // vector epilogue preheader
8234   Type *IdxTy = Legal->getWidestInductionType();
8235   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8236                                          LoopVectorPreHeader->getFirstNonPHI());
8237   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8238   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8239                            EPI.MainLoopIterationCountCheck);
8240 
8241   // Generate the induction variable.
8242   createHeaderBranch(Lp);
8243 
8244   // Generate induction resume values. These variables save the new starting
8245   // indexes for the scalar loop. They are used to test if there are any tail
8246   // iterations left once the vector loop has completed.
8247   // Note that when the vectorized epilogue is skipped due to iteration count
8248   // check, then the resume value for the induction variable comes from
8249   // the trip count of the main vector loop, hence passing the AdditionalBypass
8250   // argument.
8251   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8252                                    EPI.VectorTripCount} /* AdditionalBypass */);
8253 
8254   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8255 }
8256 
8257 BasicBlock *
8258 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8259     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8260 
8261   assert(EPI.TripCount &&
8262          "Expected trip count to have been safed in the first pass.");
8263   assert(
8264       (!isa<Instruction>(EPI.TripCount) ||
8265        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8266       "saved trip count does not dominate insertion point.");
8267   Value *TC = EPI.TripCount;
8268   IRBuilder<> Builder(Insert->getTerminator());
8269   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8270 
8271   // Generate code to check if the loop's trip count is less than VF * UF of the
8272   // vector epilogue loop.
8273   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8274       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8275 
8276   Value *CheckMinIters =
8277       Builder.CreateICmp(P, Count,
8278                          createStepForVF(Builder, Count->getType(),
8279                                          EPI.EpilogueVF, EPI.EpilogueUF),
8280                          "min.epilog.iters.check");
8281 
8282   ReplaceInstWithInst(
8283       Insert->getTerminator(),
8284       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8285 
8286   LoopBypassBlocks.push_back(Insert);
8287   return Insert;
8288 }
8289 
8290 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8291   LLVM_DEBUG({
8292     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8293            << "Epilogue Loop VF:" << EPI.EpilogueVF
8294            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8295   });
8296 }
8297 
8298 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8299   DEBUG_WITH_TYPE(VerboseDebug, {
8300     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8301   });
8302 }
8303 
8304 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8305     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8306   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8307   bool PredicateAtRangeStart = Predicate(Range.Start);
8308 
8309   for (ElementCount TmpVF = Range.Start * 2;
8310        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8311     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8312       Range.End = TmpVF;
8313       break;
8314     }
8315 
8316   return PredicateAtRangeStart;
8317 }
8318 
8319 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8320 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8321 /// of VF's starting at a given VF and extending it as much as possible. Each
8322 /// vectorization decision can potentially shorten this sub-range during
8323 /// buildVPlan().
8324 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8325                                            ElementCount MaxVF) {
8326   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8327   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8328     VFRange SubRange = {VF, MaxVFPlusOne};
8329     VPlans.push_back(buildVPlan(SubRange));
8330     VF = SubRange.End;
8331   }
8332 }
8333 
8334 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8335                                          VPlanPtr &Plan) {
8336   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8337 
8338   // Look for cached value.
8339   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8340   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8341   if (ECEntryIt != EdgeMaskCache.end())
8342     return ECEntryIt->second;
8343 
8344   VPValue *SrcMask = createBlockInMask(Src, Plan);
8345 
8346   // The terminator has to be a branch inst!
8347   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8348   assert(BI && "Unexpected terminator found");
8349 
8350   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8351     return EdgeMaskCache[Edge] = SrcMask;
8352 
8353   // If source is an exiting block, we know the exit edge is dynamically dead
8354   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8355   // adding uses of an otherwise potentially dead instruction.
8356   if (OrigLoop->isLoopExiting(Src))
8357     return EdgeMaskCache[Edge] = SrcMask;
8358 
8359   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8360   assert(EdgeMask && "No Edge Mask found for condition");
8361 
8362   if (BI->getSuccessor(0) != Dst)
8363     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8364 
8365   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8366     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8367     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8368     // The select version does not introduce new UB if SrcMask is false and
8369     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8370     VPValue *False = Plan->getOrAddVPValue(
8371         ConstantInt::getFalse(BI->getCondition()->getType()));
8372     EdgeMask =
8373         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8374   }
8375 
8376   return EdgeMaskCache[Edge] = EdgeMask;
8377 }
8378 
8379 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8380   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8381 
8382   // Look for cached value.
8383   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8384   if (BCEntryIt != BlockMaskCache.end())
8385     return BCEntryIt->second;
8386 
8387   // All-one mask is modelled as no-mask following the convention for masked
8388   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8389   VPValue *BlockMask = nullptr;
8390 
8391   if (OrigLoop->getHeader() == BB) {
8392     if (!CM.blockNeedsPredicationForAnyReason(BB))
8393       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8394 
8395     // Introduce the early-exit compare IV <= BTC to form header block mask.
8396     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8397     // constructing the desired canonical IV in the header block as its first
8398     // non-phi instructions.
8399     assert(CM.foldTailByMasking() && "must fold the tail");
8400     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8401     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8402     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8403     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8404 
8405     VPBuilder::InsertPointGuard Guard(Builder);
8406     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8407     if (CM.TTI.emitGetActiveLaneMask()) {
8408       VPValue *TC = Plan->getOrCreateTripCount();
8409       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8410     } else {
8411       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8412       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8413     }
8414     return BlockMaskCache[BB] = BlockMask;
8415   }
8416 
8417   // This is the block mask. We OR all incoming edges.
8418   for (auto *Predecessor : predecessors(BB)) {
8419     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8420     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8421       return BlockMaskCache[BB] = EdgeMask;
8422 
8423     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8424       BlockMask = EdgeMask;
8425       continue;
8426     }
8427 
8428     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8429   }
8430 
8431   return BlockMaskCache[BB] = BlockMask;
8432 }
8433 
8434 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8435                                                 ArrayRef<VPValue *> Operands,
8436                                                 VFRange &Range,
8437                                                 VPlanPtr &Plan) {
8438   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8439          "Must be called with either a load or store");
8440 
8441   auto willWiden = [&](ElementCount VF) -> bool {
8442     if (VF.isScalar())
8443       return false;
8444     LoopVectorizationCostModel::InstWidening Decision =
8445         CM.getWideningDecision(I, VF);
8446     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8447            "CM decision should be taken at this point.");
8448     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8449       return true;
8450     if (CM.isScalarAfterVectorization(I, VF) ||
8451         CM.isProfitableToScalarize(I, VF))
8452       return false;
8453     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8454   };
8455 
8456   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8457     return nullptr;
8458 
8459   VPValue *Mask = nullptr;
8460   if (Legal->isMaskRequired(I))
8461     Mask = createBlockInMask(I->getParent(), Plan);
8462 
8463   // Determine if the pointer operand of the access is either consecutive or
8464   // reverse consecutive.
8465   LoopVectorizationCostModel::InstWidening Decision =
8466       CM.getWideningDecision(I, Range.Start);
8467   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8468   bool Consecutive =
8469       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8470 
8471   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8472     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8473                                               Consecutive, Reverse);
8474 
8475   StoreInst *Store = cast<StoreInst>(I);
8476   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8477                                             Mask, Consecutive, Reverse);
8478 }
8479 
8480 static VPWidenIntOrFpInductionRecipe *
8481 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8482                            VPValue *Start, const InductionDescriptor &IndDesc,
8483                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8484                            VFRange &Range) {
8485   // Returns true if an instruction \p I should be scalarized instead of
8486   // vectorized for the chosen vectorization factor.
8487   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8488     return CM.isScalarAfterVectorization(I, VF) ||
8489            CM.isProfitableToScalarize(I, VF);
8490   };
8491 
8492   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8493       [&](ElementCount VF) {
8494         // Returns true if we should generate a scalar version of \p IV.
8495         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8496           return true;
8497         auto isScalarInst = [&](User *U) -> bool {
8498           auto *I = cast<Instruction>(U);
8499           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8500         };
8501         return any_of(PhiOrTrunc->users(), isScalarInst);
8502       },
8503       Range);
8504   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8505       [&](ElementCount VF) {
8506         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8507       },
8508       Range);
8509   assert(IndDesc.getStartValue() ==
8510          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8511   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8512     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8513                                              NeedsScalarIV, !NeedsScalarIVOnly);
8514   }
8515   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8516   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8517                                            !NeedsScalarIVOnly);
8518 }
8519 
8520 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8521     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8522 
8523   // Check if this is an integer or fp induction. If so, build the recipe that
8524   // produces its scalar and vector values.
8525   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8526     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8527                                       Range);
8528 
8529   return nullptr;
8530 }
8531 
8532 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8533     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8534     VPlan &Plan) const {
8535   // Optimize the special case where the source is a constant integer
8536   // induction variable. Notice that we can only optimize the 'trunc' case
8537   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8538   // (c) other casts depend on pointer size.
8539 
8540   // Determine whether \p K is a truncation based on an induction variable that
8541   // can be optimized.
8542   auto isOptimizableIVTruncate =
8543       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8544     return [=](ElementCount VF) -> bool {
8545       return CM.isOptimizableIVTruncate(K, VF);
8546     };
8547   };
8548 
8549   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8550           isOptimizableIVTruncate(I), Range)) {
8551 
8552     auto *Phi = cast<PHINode>(I->getOperand(0));
8553     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8554     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8555     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8556   }
8557   return nullptr;
8558 }
8559 
8560 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8561                                                 ArrayRef<VPValue *> Operands,
8562                                                 VPlanPtr &Plan) {
8563   // If all incoming values are equal, the incoming VPValue can be used directly
8564   // instead of creating a new VPBlendRecipe.
8565   VPValue *FirstIncoming = Operands[0];
8566   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8567         return FirstIncoming == Inc;
8568       })) {
8569     return Operands[0];
8570   }
8571 
8572   // We know that all PHIs in non-header blocks are converted into selects, so
8573   // we don't have to worry about the insertion order and we can just use the
8574   // builder. At this point we generate the predication tree. There may be
8575   // duplications since this is a simple recursive scan, but future
8576   // optimizations will clean it up.
8577   SmallVector<VPValue *, 2> OperandsWithMask;
8578   unsigned NumIncoming = Phi->getNumIncomingValues();
8579 
8580   for (unsigned In = 0; In < NumIncoming; In++) {
8581     VPValue *EdgeMask =
8582       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8583     assert((EdgeMask || NumIncoming == 1) &&
8584            "Multiple predecessors with one having a full mask");
8585     OperandsWithMask.push_back(Operands[In]);
8586     if (EdgeMask)
8587       OperandsWithMask.push_back(EdgeMask);
8588   }
8589   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8590 }
8591 
8592 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8593                                                    ArrayRef<VPValue *> Operands,
8594                                                    VFRange &Range) const {
8595 
8596   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8597       [this, CI](ElementCount VF) {
8598         return CM.isScalarWithPredication(CI, VF);
8599       },
8600       Range);
8601 
8602   if (IsPredicated)
8603     return nullptr;
8604 
8605   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8606   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8607              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8608              ID == Intrinsic::pseudoprobe ||
8609              ID == Intrinsic::experimental_noalias_scope_decl))
8610     return nullptr;
8611 
8612   auto willWiden = [&](ElementCount VF) -> bool {
8613     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8614     // The following case may be scalarized depending on the VF.
8615     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8616     // version of the instruction.
8617     // Is it beneficial to perform intrinsic call compared to lib call?
8618     bool NeedToScalarize = false;
8619     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8620     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8621     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8622     return UseVectorIntrinsic || !NeedToScalarize;
8623   };
8624 
8625   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8626     return nullptr;
8627 
8628   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8629   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8630 }
8631 
8632 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8633   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8634          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8635   // Instruction should be widened, unless it is scalar after vectorization,
8636   // scalarization is profitable or it is predicated.
8637   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8638     return CM.isScalarAfterVectorization(I, VF) ||
8639            CM.isProfitableToScalarize(I, VF) ||
8640            CM.isScalarWithPredication(I, VF);
8641   };
8642   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8643                                                              Range);
8644 }
8645 
8646 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8647                                            ArrayRef<VPValue *> Operands) const {
8648   auto IsVectorizableOpcode = [](unsigned Opcode) {
8649     switch (Opcode) {
8650     case Instruction::Add:
8651     case Instruction::And:
8652     case Instruction::AShr:
8653     case Instruction::BitCast:
8654     case Instruction::FAdd:
8655     case Instruction::FCmp:
8656     case Instruction::FDiv:
8657     case Instruction::FMul:
8658     case Instruction::FNeg:
8659     case Instruction::FPExt:
8660     case Instruction::FPToSI:
8661     case Instruction::FPToUI:
8662     case Instruction::FPTrunc:
8663     case Instruction::FRem:
8664     case Instruction::FSub:
8665     case Instruction::ICmp:
8666     case Instruction::IntToPtr:
8667     case Instruction::LShr:
8668     case Instruction::Mul:
8669     case Instruction::Or:
8670     case Instruction::PtrToInt:
8671     case Instruction::SDiv:
8672     case Instruction::Select:
8673     case Instruction::SExt:
8674     case Instruction::Shl:
8675     case Instruction::SIToFP:
8676     case Instruction::SRem:
8677     case Instruction::Sub:
8678     case Instruction::Trunc:
8679     case Instruction::UDiv:
8680     case Instruction::UIToFP:
8681     case Instruction::URem:
8682     case Instruction::Xor:
8683     case Instruction::ZExt:
8684       return true;
8685     }
8686     return false;
8687   };
8688 
8689   if (!IsVectorizableOpcode(I->getOpcode()))
8690     return nullptr;
8691 
8692   // Success: widen this instruction.
8693   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8694 }
8695 
8696 void VPRecipeBuilder::fixHeaderPhis() {
8697   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8698   for (VPHeaderPHIRecipe *R : PhisToFix) {
8699     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8700     VPRecipeBase *IncR =
8701         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8702     R->addOperand(IncR->getVPSingleValue());
8703   }
8704 }
8705 
8706 VPBasicBlock *VPRecipeBuilder::handleReplication(
8707     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8708     VPlanPtr &Plan) {
8709   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8710       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8711       Range);
8712 
8713   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8714       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8715       Range);
8716 
8717   // Even if the instruction is not marked as uniform, there are certain
8718   // intrinsic calls that can be effectively treated as such, so we check for
8719   // them here. Conservatively, we only do this for scalable vectors, since
8720   // for fixed-width VFs we can always fall back on full scalarization.
8721   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8722     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8723     case Intrinsic::assume:
8724     case Intrinsic::lifetime_start:
8725     case Intrinsic::lifetime_end:
8726       // For scalable vectors if one of the operands is variant then we still
8727       // want to mark as uniform, which will generate one instruction for just
8728       // the first lane of the vector. We can't scalarize the call in the same
8729       // way as for fixed-width vectors because we don't know how many lanes
8730       // there are.
8731       //
8732       // The reasons for doing it this way for scalable vectors are:
8733       //   1. For the assume intrinsic generating the instruction for the first
8734       //      lane is still be better than not generating any at all. For
8735       //      example, the input may be a splat across all lanes.
8736       //   2. For the lifetime start/end intrinsics the pointer operand only
8737       //      does anything useful when the input comes from a stack object,
8738       //      which suggests it should always be uniform. For non-stack objects
8739       //      the effect is to poison the object, which still allows us to
8740       //      remove the call.
8741       IsUniform = true;
8742       break;
8743     default:
8744       break;
8745     }
8746   }
8747 
8748   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8749                                        IsUniform, IsPredicated);
8750   setRecipe(I, Recipe);
8751   Plan->addVPValue(I, Recipe);
8752 
8753   // Find if I uses a predicated instruction. If so, it will use its scalar
8754   // value. Avoid hoisting the insert-element which packs the scalar value into
8755   // a vector value, as that happens iff all users use the vector value.
8756   for (VPValue *Op : Recipe->operands()) {
8757     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8758     if (!PredR)
8759       continue;
8760     auto *RepR =
8761         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8762     assert(RepR->isPredicated() &&
8763            "expected Replicate recipe to be predicated");
8764     RepR->setAlsoPack(false);
8765   }
8766 
8767   // Finalize the recipe for Instr, first if it is not predicated.
8768   if (!IsPredicated) {
8769     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8770     VPBB->appendRecipe(Recipe);
8771     return VPBB;
8772   }
8773   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8774 
8775   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8776   assert(SingleSucc && "VPBB must have a single successor when handling "
8777                        "predicated replication.");
8778   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8779   // Record predicated instructions for above packing optimizations.
8780   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8781   VPBlockUtils::insertBlockAfter(Region, VPBB);
8782   auto *RegSucc = new VPBasicBlock();
8783   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8784   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8785   return RegSucc;
8786 }
8787 
8788 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8789                                                       VPRecipeBase *PredRecipe,
8790                                                       VPlanPtr &Plan) {
8791   // Instructions marked for predication are replicated and placed under an
8792   // if-then construct to prevent side-effects.
8793 
8794   // Generate recipes to compute the block mask for this region.
8795   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8796 
8797   // Build the triangular if-then region.
8798   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8799   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8800   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8801   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8802   auto *PHIRecipe = Instr->getType()->isVoidTy()
8803                         ? nullptr
8804                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8805   if (PHIRecipe) {
8806     Plan->removeVPValueFor(Instr);
8807     Plan->addVPValue(Instr, PHIRecipe);
8808   }
8809   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8810   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8811   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8812 
8813   // Note: first set Entry as region entry and then connect successors starting
8814   // from it in order, to propagate the "parent" of each VPBasicBlock.
8815   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8816   VPBlockUtils::connectBlocks(Pred, Exit);
8817 
8818   return Region;
8819 }
8820 
8821 VPRecipeOrVPValueTy
8822 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8823                                         ArrayRef<VPValue *> Operands,
8824                                         VFRange &Range, VPlanPtr &Plan) {
8825   // First, check for specific widening recipes that deal with calls, memory
8826   // operations, inductions and Phi nodes.
8827   if (auto *CI = dyn_cast<CallInst>(Instr))
8828     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8829 
8830   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8831     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8832 
8833   VPRecipeBase *Recipe;
8834   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8835     if (Phi->getParent() != OrigLoop->getHeader())
8836       return tryToBlend(Phi, Operands, Plan);
8837     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8838       return toVPRecipeResult(Recipe);
8839 
8840     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8841     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8842       VPValue *StartV = Operands[0];
8843       if (Legal->isReductionVariable(Phi)) {
8844         const RecurrenceDescriptor &RdxDesc =
8845             Legal->getReductionVars().find(Phi)->second;
8846         assert(RdxDesc.getRecurrenceStartValue() ==
8847                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8848         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8849                                              CM.isInLoopReduction(Phi),
8850                                              CM.useOrderedReductions(RdxDesc));
8851       } else {
8852         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8853       }
8854 
8855       // Record the incoming value from the backedge, so we can add the incoming
8856       // value from the backedge after all recipes have been created.
8857       recordRecipeOf(cast<Instruction>(
8858           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8859       PhisToFix.push_back(PhiRecipe);
8860     } else {
8861       // TODO: record backedge value for remaining pointer induction phis.
8862       assert(Phi->getType()->isPointerTy() &&
8863              "only pointer phis should be handled here");
8864       assert(Legal->getInductionVars().count(Phi) &&
8865              "Not an induction variable");
8866       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8867       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8868       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8869     }
8870 
8871     return toVPRecipeResult(PhiRecipe);
8872   }
8873 
8874   if (isa<TruncInst>(Instr) &&
8875       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8876                                                Range, *Plan)))
8877     return toVPRecipeResult(Recipe);
8878 
8879   if (!shouldWiden(Instr, Range))
8880     return nullptr;
8881 
8882   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8883     return toVPRecipeResult(new VPWidenGEPRecipe(
8884         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8885 
8886   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8887     bool InvariantCond =
8888         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8889     return toVPRecipeResult(new VPWidenSelectRecipe(
8890         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8891   }
8892 
8893   return toVPRecipeResult(tryToWiden(Instr, Operands));
8894 }
8895 
8896 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8897                                                         ElementCount MaxVF) {
8898   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8899 
8900   // Collect instructions from the original loop that will become trivially dead
8901   // in the vectorized loop. We don't need to vectorize these instructions. For
8902   // example, original induction update instructions can become dead because we
8903   // separately emit induction "steps" when generating code for the new loop.
8904   // Similarly, we create a new latch condition when setting up the structure
8905   // of the new loop, so the old one can become dead.
8906   SmallPtrSet<Instruction *, 4> DeadInstructions;
8907   collectTriviallyDeadInstructions(DeadInstructions);
8908 
8909   // Add assume instructions we need to drop to DeadInstructions, to prevent
8910   // them from being added to the VPlan.
8911   // TODO: We only need to drop assumes in blocks that get flattend. If the
8912   // control flow is preserved, we should keep them.
8913   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8914   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8915 
8916   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8917   // Dead instructions do not need sinking. Remove them from SinkAfter.
8918   for (Instruction *I : DeadInstructions)
8919     SinkAfter.erase(I);
8920 
8921   // Cannot sink instructions after dead instructions (there won't be any
8922   // recipes for them). Instead, find the first non-dead previous instruction.
8923   for (auto &P : Legal->getSinkAfter()) {
8924     Instruction *SinkTarget = P.second;
8925     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8926     (void)FirstInst;
8927     while (DeadInstructions.contains(SinkTarget)) {
8928       assert(
8929           SinkTarget != FirstInst &&
8930           "Must find a live instruction (at least the one feeding the "
8931           "first-order recurrence PHI) before reaching beginning of the block");
8932       SinkTarget = SinkTarget->getPrevNode();
8933       assert(SinkTarget != P.first &&
8934              "sink source equals target, no sinking required");
8935     }
8936     P.second = SinkTarget;
8937   }
8938 
8939   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8940   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8941     VFRange SubRange = {VF, MaxVFPlusOne};
8942     VPlans.push_back(
8943         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8944     VF = SubRange.End;
8945   }
8946 }
8947 
8948 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8949 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8950 // BranchOnCount VPInstruction to the latch.
8951 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8952                                   bool HasNUW, bool IsVPlanNative) {
8953   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8954   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8955 
8956   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8957   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8958   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8959   if (IsVPlanNative)
8960     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8961   Header->insert(CanonicalIVPHI, Header->begin());
8962 
8963   auto *CanonicalIVIncrement =
8964       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8965                                : VPInstruction::CanonicalIVIncrement,
8966                         {CanonicalIVPHI}, DL);
8967   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8968 
8969   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8970   if (IsVPlanNative) {
8971     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8972     EB->setCondBit(nullptr);
8973   }
8974   EB->appendRecipe(CanonicalIVIncrement);
8975 
8976   auto *BranchOnCount =
8977       new VPInstruction(VPInstruction::BranchOnCount,
8978                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8979   EB->appendRecipe(BranchOnCount);
8980 }
8981 
8982 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8983     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8984     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8985 
8986   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8987 
8988   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8989 
8990   // ---------------------------------------------------------------------------
8991   // Pre-construction: record ingredients whose recipes we'll need to further
8992   // process after constructing the initial VPlan.
8993   // ---------------------------------------------------------------------------
8994 
8995   // Mark instructions we'll need to sink later and their targets as
8996   // ingredients whose recipe we'll need to record.
8997   for (auto &Entry : SinkAfter) {
8998     RecipeBuilder.recordRecipeOf(Entry.first);
8999     RecipeBuilder.recordRecipeOf(Entry.second);
9000   }
9001   for (auto &Reduction : CM.getInLoopReductionChains()) {
9002     PHINode *Phi = Reduction.first;
9003     RecurKind Kind =
9004         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9005     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9006 
9007     RecipeBuilder.recordRecipeOf(Phi);
9008     for (auto &R : ReductionOperations) {
9009       RecipeBuilder.recordRecipeOf(R);
9010       // For min/max reducitons, where we have a pair of icmp/select, we also
9011       // need to record the ICmp recipe, so it can be removed later.
9012       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9013              "Only min/max recurrences allowed for inloop reductions");
9014       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9015         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9016     }
9017   }
9018 
9019   // For each interleave group which is relevant for this (possibly trimmed)
9020   // Range, add it to the set of groups to be later applied to the VPlan and add
9021   // placeholders for its members' Recipes which we'll be replacing with a
9022   // single VPInterleaveRecipe.
9023   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9024     auto applyIG = [IG, this](ElementCount VF) -> bool {
9025       return (VF.isVector() && // Query is illegal for VF == 1
9026               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9027                   LoopVectorizationCostModel::CM_Interleave);
9028     };
9029     if (!getDecisionAndClampRange(applyIG, Range))
9030       continue;
9031     InterleaveGroups.insert(IG);
9032     for (unsigned i = 0; i < IG->getFactor(); i++)
9033       if (Instruction *Member = IG->getMember(i))
9034         RecipeBuilder.recordRecipeOf(Member);
9035   };
9036 
9037   // ---------------------------------------------------------------------------
9038   // Build initial VPlan: Scan the body of the loop in a topological order to
9039   // visit each basic block after having visited its predecessor basic blocks.
9040   // ---------------------------------------------------------------------------
9041 
9042   // Create initial VPlan skeleton, with separate header and latch blocks.
9043   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9044   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9045   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9046   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9047   auto Plan = std::make_unique<VPlan>(TopRegion);
9048 
9049   Instruction *DLInst =
9050       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9051   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9052                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9053                         !CM.foldTailByMasking(), false);
9054 
9055   // Scan the body of the loop in a topological order to visit each basic block
9056   // after having visited its predecessor basic blocks.
9057   LoopBlocksDFS DFS(OrigLoop);
9058   DFS.perform(LI);
9059 
9060   VPBasicBlock *VPBB = HeaderVPBB;
9061   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9062   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9063     // Relevant instructions from basic block BB will be grouped into VPRecipe
9064     // ingredients and fill a new VPBasicBlock.
9065     unsigned VPBBsForBB = 0;
9066     VPBB->setName(BB->getName());
9067     Builder.setInsertPoint(VPBB);
9068 
9069     // Introduce each ingredient into VPlan.
9070     // TODO: Model and preserve debug instrinsics in VPlan.
9071     for (Instruction &I : BB->instructionsWithoutDebug()) {
9072       Instruction *Instr = &I;
9073 
9074       // First filter out irrelevant instructions, to ensure no recipes are
9075       // built for them.
9076       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9077         continue;
9078 
9079       SmallVector<VPValue *, 4> Operands;
9080       auto *Phi = dyn_cast<PHINode>(Instr);
9081       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9082         Operands.push_back(Plan->getOrAddVPValue(
9083             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9084       } else {
9085         auto OpRange = Plan->mapToVPValues(Instr->operands());
9086         Operands = {OpRange.begin(), OpRange.end()};
9087       }
9088       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9089               Instr, Operands, Range, Plan)) {
9090         // If Instr can be simplified to an existing VPValue, use it.
9091         if (RecipeOrValue.is<VPValue *>()) {
9092           auto *VPV = RecipeOrValue.get<VPValue *>();
9093           Plan->addVPValue(Instr, VPV);
9094           // If the re-used value is a recipe, register the recipe for the
9095           // instruction, in case the recipe for Instr needs to be recorded.
9096           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9097             RecipeBuilder.setRecipe(Instr, R);
9098           continue;
9099         }
9100         // Otherwise, add the new recipe.
9101         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9102         for (auto *Def : Recipe->definedValues()) {
9103           auto *UV = Def->getUnderlyingValue();
9104           Plan->addVPValue(UV, Def);
9105         }
9106 
9107         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9108             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9109           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9110           // of the header block. That can happen for truncates of induction
9111           // variables. Those recipes are moved to the phi section of the header
9112           // block after applying SinkAfter, which relies on the original
9113           // position of the trunc.
9114           assert(isa<TruncInst>(Instr));
9115           InductionsToMove.push_back(
9116               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9117         }
9118         RecipeBuilder.setRecipe(Instr, Recipe);
9119         VPBB->appendRecipe(Recipe);
9120         continue;
9121       }
9122 
9123       // Otherwise, if all widening options failed, Instruction is to be
9124       // replicated. This may create a successor for VPBB.
9125       VPBasicBlock *NextVPBB =
9126           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9127       if (NextVPBB != VPBB) {
9128         VPBB = NextVPBB;
9129         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9130                                     : "");
9131       }
9132     }
9133 
9134     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9135     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9136   }
9137 
9138   // Fold the last, empty block into its predecessor.
9139   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9140   assert(VPBB && "expected to fold last (empty) block");
9141   // After here, VPBB should not be used.
9142   VPBB = nullptr;
9143 
9144   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9145          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9146          "entry block must be set to a VPRegionBlock having a non-empty entry "
9147          "VPBasicBlock");
9148   RecipeBuilder.fixHeaderPhis();
9149 
9150   // ---------------------------------------------------------------------------
9151   // Transform initial VPlan: Apply previously taken decisions, in order, to
9152   // bring the VPlan to its final state.
9153   // ---------------------------------------------------------------------------
9154 
9155   // Apply Sink-After legal constraints.
9156   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9157     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9158     if (Region && Region->isReplicator()) {
9159       assert(Region->getNumSuccessors() == 1 &&
9160              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9161       assert(R->getParent()->size() == 1 &&
9162              "A recipe in an original replicator region must be the only "
9163              "recipe in its block");
9164       return Region;
9165     }
9166     return nullptr;
9167   };
9168   for (auto &Entry : SinkAfter) {
9169     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9170     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9171 
9172     auto *TargetRegion = GetReplicateRegion(Target);
9173     auto *SinkRegion = GetReplicateRegion(Sink);
9174     if (!SinkRegion) {
9175       // If the sink source is not a replicate region, sink the recipe directly.
9176       if (TargetRegion) {
9177         // The target is in a replication region, make sure to move Sink to
9178         // the block after it, not into the replication region itself.
9179         VPBasicBlock *NextBlock =
9180             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9181         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9182       } else
9183         Sink->moveAfter(Target);
9184       continue;
9185     }
9186 
9187     // The sink source is in a replicate region. Unhook the region from the CFG.
9188     auto *SinkPred = SinkRegion->getSinglePredecessor();
9189     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9190     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9191     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9192     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9193 
9194     if (TargetRegion) {
9195       // The target recipe is also in a replicate region, move the sink region
9196       // after the target region.
9197       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9198       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9199       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9200       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9201     } else {
9202       // The sink source is in a replicate region, we need to move the whole
9203       // replicate region, which should only contain a single recipe in the
9204       // main block.
9205       auto *SplitBlock =
9206           Target->getParent()->splitAt(std::next(Target->getIterator()));
9207 
9208       auto *SplitPred = SplitBlock->getSinglePredecessor();
9209 
9210       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9211       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9212       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9213     }
9214   }
9215 
9216   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9217   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9218 
9219   // Now that sink-after is done, move induction recipes for optimized truncates
9220   // to the phi section of the header block.
9221   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9222     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9223 
9224   // Adjust the recipes for any inloop reductions.
9225   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9226                              RecipeBuilder, Range.Start);
9227 
9228   // Introduce a recipe to combine the incoming and previous values of a
9229   // first-order recurrence.
9230   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9231     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9232     if (!RecurPhi)
9233       continue;
9234 
9235     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9236     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9237     auto *Region = GetReplicateRegion(PrevRecipe);
9238     if (Region)
9239       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9240     if (Region || PrevRecipe->isPhi())
9241       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9242     else
9243       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9244 
9245     auto *RecurSplice = cast<VPInstruction>(
9246         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9247                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9248 
9249     RecurPhi->replaceAllUsesWith(RecurSplice);
9250     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9251     // all users.
9252     RecurSplice->setOperand(0, RecurPhi);
9253   }
9254 
9255   // Interleave memory: for each Interleave Group we marked earlier as relevant
9256   // for this VPlan, replace the Recipes widening its memory instructions with a
9257   // single VPInterleaveRecipe at its insertion point.
9258   for (auto IG : InterleaveGroups) {
9259     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9260         RecipeBuilder.getRecipe(IG->getInsertPos()));
9261     SmallVector<VPValue *, 4> StoredValues;
9262     for (unsigned i = 0; i < IG->getFactor(); ++i)
9263       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9264         auto *StoreR =
9265             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9266         StoredValues.push_back(StoreR->getStoredValue());
9267       }
9268 
9269     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9270                                         Recipe->getMask());
9271     VPIG->insertBefore(Recipe);
9272     unsigned J = 0;
9273     for (unsigned i = 0; i < IG->getFactor(); ++i)
9274       if (Instruction *Member = IG->getMember(i)) {
9275         if (!Member->getType()->isVoidTy()) {
9276           VPValue *OriginalV = Plan->getVPValue(Member);
9277           Plan->removeVPValueFor(Member);
9278           Plan->addVPValue(Member, VPIG->getVPValue(J));
9279           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9280           J++;
9281         }
9282         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9283       }
9284   }
9285 
9286   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9287   // in ways that accessing values using original IR values is incorrect.
9288   Plan->disableValue2VPValue();
9289 
9290   VPlanTransforms::sinkScalarOperands(*Plan);
9291   VPlanTransforms::mergeReplicateRegions(*Plan);
9292 
9293   std::string PlanName;
9294   raw_string_ostream RSO(PlanName);
9295   ElementCount VF = Range.Start;
9296   Plan->addVF(VF);
9297   RSO << "Initial VPlan for VF={" << VF;
9298   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9299     Plan->addVF(VF);
9300     RSO << "," << VF;
9301   }
9302   RSO << "},UF>=1";
9303   RSO.flush();
9304   Plan->setName(PlanName);
9305 
9306   // Fold Exit block into its predecessor if possible.
9307   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9308   // VPBasicBlock as exit.
9309   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9310 
9311   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9312   return Plan;
9313 }
9314 
9315 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9316   // Outer loop handling: They may require CFG and instruction level
9317   // transformations before even evaluating whether vectorization is profitable.
9318   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9319   // the vectorization pipeline.
9320   assert(!OrigLoop->isInnermost());
9321   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9322 
9323   // Create new empty VPlan
9324   auto Plan = std::make_unique<VPlan>();
9325 
9326   // Build hierarchical CFG
9327   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9328   HCFGBuilder.buildHierarchicalCFG();
9329 
9330   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9331        VF *= 2)
9332     Plan->addVF(VF);
9333 
9334   if (EnableVPlanPredication) {
9335     VPlanPredicator VPP(*Plan);
9336     VPP.predicate();
9337 
9338     // Avoid running transformation to recipes until masked code generation in
9339     // VPlan-native path is in place.
9340     return Plan;
9341   }
9342 
9343   SmallPtrSet<Instruction *, 1> DeadInstructions;
9344   VPlanTransforms::VPInstructionsToVPRecipes(
9345       OrigLoop, Plan,
9346       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9347       DeadInstructions, *PSE.getSE());
9348 
9349   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9350                         true, true);
9351   return Plan;
9352 }
9353 
9354 // Adjust the recipes for reductions. For in-loop reductions the chain of
9355 // instructions leading from the loop exit instr to the phi need to be converted
9356 // to reductions, with one operand being vector and the other being the scalar
9357 // reduction chain. For other reductions, a select is introduced between the phi
9358 // and live-out recipes when folding the tail.
9359 void LoopVectorizationPlanner::adjustRecipesForReductions(
9360     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9361     ElementCount MinVF) {
9362   for (auto &Reduction : CM.getInLoopReductionChains()) {
9363     PHINode *Phi = Reduction.first;
9364     const RecurrenceDescriptor &RdxDesc =
9365         Legal->getReductionVars().find(Phi)->second;
9366     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9367 
9368     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9369       continue;
9370 
9371     // ReductionOperations are orders top-down from the phi's use to the
9372     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9373     // which of the two operands will remain scalar and which will be reduced.
9374     // For minmax the chain will be the select instructions.
9375     Instruction *Chain = Phi;
9376     for (Instruction *R : ReductionOperations) {
9377       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9378       RecurKind Kind = RdxDesc.getRecurrenceKind();
9379 
9380       VPValue *ChainOp = Plan->getVPValue(Chain);
9381       unsigned FirstOpId;
9382       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9383              "Only min/max recurrences allowed for inloop reductions");
9384       // Recognize a call to the llvm.fmuladd intrinsic.
9385       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9386       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9387              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9388       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9389         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9390                "Expected to replace a VPWidenSelectSC");
9391         FirstOpId = 1;
9392       } else {
9393         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9394                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9395                "Expected to replace a VPWidenSC");
9396         FirstOpId = 0;
9397       }
9398       unsigned VecOpId =
9399           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9400       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9401 
9402       auto *CondOp = CM.foldTailByMasking()
9403                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9404                          : nullptr;
9405 
9406       if (IsFMulAdd) {
9407         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9408         // need to create an fmul recipe to use as the vector operand for the
9409         // fadd reduction.
9410         VPInstruction *FMulRecipe = new VPInstruction(
9411             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9412         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9413         WidenRecipe->getParent()->insert(FMulRecipe,
9414                                          WidenRecipe->getIterator());
9415         VecOp = FMulRecipe;
9416       }
9417       VPReductionRecipe *RedRecipe =
9418           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9419       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9420       Plan->removeVPValueFor(R);
9421       Plan->addVPValue(R, RedRecipe);
9422       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9423       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9424       WidenRecipe->eraseFromParent();
9425 
9426       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9427         VPRecipeBase *CompareRecipe =
9428             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9429         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9430                "Expected to replace a VPWidenSC");
9431         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9432                "Expected no remaining users");
9433         CompareRecipe->eraseFromParent();
9434       }
9435       Chain = R;
9436     }
9437   }
9438 
9439   // If tail is folded by masking, introduce selects between the phi
9440   // and the live-out instruction of each reduction, at the beginning of the
9441   // dedicated latch block.
9442   if (CM.foldTailByMasking()) {
9443     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9444     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9445       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9446       if (!PhiR || PhiR->isInLoop())
9447         continue;
9448       VPValue *Cond =
9449           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9450       VPValue *Red = PhiR->getBackedgeValue();
9451       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9452              "reduction recipe must be defined before latch");
9453       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9454     }
9455   }
9456 }
9457 
9458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9459 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9460                                VPSlotTracker &SlotTracker) const {
9461   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9462   IG->getInsertPos()->printAsOperand(O, false);
9463   O << ", ";
9464   getAddr()->printAsOperand(O, SlotTracker);
9465   VPValue *Mask = getMask();
9466   if (Mask) {
9467     O << ", ";
9468     Mask->printAsOperand(O, SlotTracker);
9469   }
9470 
9471   unsigned OpIdx = 0;
9472   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9473     if (!IG->getMember(i))
9474       continue;
9475     if (getNumStoreOperands() > 0) {
9476       O << "\n" << Indent << "  store ";
9477       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9478       O << " to index " << i;
9479     } else {
9480       O << "\n" << Indent << "  ";
9481       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9482       O << " = load from index " << i;
9483     }
9484     ++OpIdx;
9485   }
9486 }
9487 #endif
9488 
9489 void VPWidenCallRecipe::execute(VPTransformState &State) {
9490   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9491                                   *this, State);
9492 }
9493 
9494 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9495   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9496   State.ILV->setDebugLocFromInst(&I);
9497 
9498   // The condition can be loop invariant  but still defined inside the
9499   // loop. This means that we can't just use the original 'cond' value.
9500   // We have to take the 'vectorized' value and pick the first lane.
9501   // Instcombine will make this a no-op.
9502   auto *InvarCond =
9503       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9504 
9505   for (unsigned Part = 0; Part < State.UF; ++Part) {
9506     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9507     Value *Op0 = State.get(getOperand(1), Part);
9508     Value *Op1 = State.get(getOperand(2), Part);
9509     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9510     State.set(this, Sel, Part);
9511     State.ILV->addMetadata(Sel, &I);
9512   }
9513 }
9514 
9515 void VPWidenRecipe::execute(VPTransformState &State) {
9516   auto &I = *cast<Instruction>(getUnderlyingValue());
9517   auto &Builder = State.Builder;
9518   switch (I.getOpcode()) {
9519   case Instruction::Call:
9520   case Instruction::Br:
9521   case Instruction::PHI:
9522   case Instruction::GetElementPtr:
9523   case Instruction::Select:
9524     llvm_unreachable("This instruction is handled by a different recipe.");
9525   case Instruction::UDiv:
9526   case Instruction::SDiv:
9527   case Instruction::SRem:
9528   case Instruction::URem:
9529   case Instruction::Add:
9530   case Instruction::FAdd:
9531   case Instruction::Sub:
9532   case Instruction::FSub:
9533   case Instruction::FNeg:
9534   case Instruction::Mul:
9535   case Instruction::FMul:
9536   case Instruction::FDiv:
9537   case Instruction::FRem:
9538   case Instruction::Shl:
9539   case Instruction::LShr:
9540   case Instruction::AShr:
9541   case Instruction::And:
9542   case Instruction::Or:
9543   case Instruction::Xor: {
9544     // Just widen unops and binops.
9545     State.ILV->setDebugLocFromInst(&I);
9546 
9547     for (unsigned Part = 0; Part < State.UF; ++Part) {
9548       SmallVector<Value *, 2> Ops;
9549       for (VPValue *VPOp : operands())
9550         Ops.push_back(State.get(VPOp, Part));
9551 
9552       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9553 
9554       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9555         VecOp->copyIRFlags(&I);
9556 
9557         // If the instruction is vectorized and was in a basic block that needed
9558         // predication, we can't propagate poison-generating flags (nuw/nsw,
9559         // exact, etc.). The control flow has been linearized and the
9560         // instruction is no longer guarded by the predicate, which could make
9561         // the flag properties to no longer hold.
9562         if (State.MayGeneratePoisonRecipes.contains(this))
9563           VecOp->dropPoisonGeneratingFlags();
9564       }
9565 
9566       // Use this vector value for all users of the original instruction.
9567       State.set(this, V, Part);
9568       State.ILV->addMetadata(V, &I);
9569     }
9570 
9571     break;
9572   }
9573   case Instruction::ICmp:
9574   case Instruction::FCmp: {
9575     // Widen compares. Generate vector compares.
9576     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9577     auto *Cmp = cast<CmpInst>(&I);
9578     State.ILV->setDebugLocFromInst(Cmp);
9579     for (unsigned Part = 0; Part < State.UF; ++Part) {
9580       Value *A = State.get(getOperand(0), Part);
9581       Value *B = State.get(getOperand(1), Part);
9582       Value *C = nullptr;
9583       if (FCmp) {
9584         // Propagate fast math flags.
9585         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9586         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9587         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9588       } else {
9589         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9590       }
9591       State.set(this, C, Part);
9592       State.ILV->addMetadata(C, &I);
9593     }
9594 
9595     break;
9596   }
9597 
9598   case Instruction::ZExt:
9599   case Instruction::SExt:
9600   case Instruction::FPToUI:
9601   case Instruction::FPToSI:
9602   case Instruction::FPExt:
9603   case Instruction::PtrToInt:
9604   case Instruction::IntToPtr:
9605   case Instruction::SIToFP:
9606   case Instruction::UIToFP:
9607   case Instruction::Trunc:
9608   case Instruction::FPTrunc:
9609   case Instruction::BitCast: {
9610     auto *CI = cast<CastInst>(&I);
9611     State.ILV->setDebugLocFromInst(CI);
9612 
9613     /// Vectorize casts.
9614     Type *DestTy = (State.VF.isScalar())
9615                        ? CI->getType()
9616                        : VectorType::get(CI->getType(), State.VF);
9617 
9618     for (unsigned Part = 0; Part < State.UF; ++Part) {
9619       Value *A = State.get(getOperand(0), Part);
9620       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9621       State.set(this, Cast, Part);
9622       State.ILV->addMetadata(Cast, &I);
9623     }
9624     break;
9625   }
9626   default:
9627     // This instruction is not vectorized by simple widening.
9628     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9629     llvm_unreachable("Unhandled instruction!");
9630   } // end of switch.
9631 }
9632 
9633 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9634   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9635   // Construct a vector GEP by widening the operands of the scalar GEP as
9636   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9637   // results in a vector of pointers when at least one operand of the GEP
9638   // is vector-typed. Thus, to keep the representation compact, we only use
9639   // vector-typed operands for loop-varying values.
9640 
9641   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9642     // If we are vectorizing, but the GEP has only loop-invariant operands,
9643     // the GEP we build (by only using vector-typed operands for
9644     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9645     // produce a vector of pointers, we need to either arbitrarily pick an
9646     // operand to broadcast, or broadcast a clone of the original GEP.
9647     // Here, we broadcast a clone of the original.
9648     //
9649     // TODO: If at some point we decide to scalarize instructions having
9650     //       loop-invariant operands, this special case will no longer be
9651     //       required. We would add the scalarization decision to
9652     //       collectLoopScalars() and teach getVectorValue() to broadcast
9653     //       the lane-zero scalar value.
9654     auto *Clone = State.Builder.Insert(GEP->clone());
9655     for (unsigned Part = 0; Part < State.UF; ++Part) {
9656       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9657       State.set(this, EntryPart, Part);
9658       State.ILV->addMetadata(EntryPart, GEP);
9659     }
9660   } else {
9661     // If the GEP has at least one loop-varying operand, we are sure to
9662     // produce a vector of pointers. But if we are only unrolling, we want
9663     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9664     // produce with the code below will be scalar (if VF == 1) or vector
9665     // (otherwise). Note that for the unroll-only case, we still maintain
9666     // values in the vector mapping with initVector, as we do for other
9667     // instructions.
9668     for (unsigned Part = 0; Part < State.UF; ++Part) {
9669       // The pointer operand of the new GEP. If it's loop-invariant, we
9670       // won't broadcast it.
9671       auto *Ptr = IsPtrLoopInvariant
9672                       ? State.get(getOperand(0), VPIteration(0, 0))
9673                       : State.get(getOperand(0), Part);
9674 
9675       // Collect all the indices for the new GEP. If any index is
9676       // loop-invariant, we won't broadcast it.
9677       SmallVector<Value *, 4> Indices;
9678       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9679         VPValue *Operand = getOperand(I);
9680         if (IsIndexLoopInvariant[I - 1])
9681           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9682         else
9683           Indices.push_back(State.get(Operand, Part));
9684       }
9685 
9686       // If the GEP instruction is vectorized and was in a basic block that
9687       // needed predication, we can't propagate the poison-generating 'inbounds'
9688       // flag. The control flow has been linearized and the GEP is no longer
9689       // guarded by the predicate, which could make the 'inbounds' properties to
9690       // no longer hold.
9691       bool IsInBounds =
9692           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9693 
9694       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9695       // but it should be a vector, otherwise.
9696       auto *NewGEP = IsInBounds
9697                          ? State.Builder.CreateInBoundsGEP(
9698                                GEP->getSourceElementType(), Ptr, Indices)
9699                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9700                                                    Ptr, Indices);
9701       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9702              "NewGEP is not a pointer vector");
9703       State.set(this, NewGEP, Part);
9704       State.ILV->addMetadata(NewGEP, GEP);
9705     }
9706   }
9707 }
9708 
9709 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9710   assert(!State.Instance && "Int or FP induction being replicated.");
9711   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9712   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9713 }
9714 
9715 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9716   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9717                                  State);
9718 }
9719 
9720 void VPBlendRecipe::execute(VPTransformState &State) {
9721   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9722   // We know that all PHIs in non-header blocks are converted into
9723   // selects, so we don't have to worry about the insertion order and we
9724   // can just use the builder.
9725   // At this point we generate the predication tree. There may be
9726   // duplications since this is a simple recursive scan, but future
9727   // optimizations will clean it up.
9728 
9729   unsigned NumIncoming = getNumIncomingValues();
9730 
9731   // Generate a sequence of selects of the form:
9732   // SELECT(Mask3, In3,
9733   //        SELECT(Mask2, In2,
9734   //               SELECT(Mask1, In1,
9735   //                      In0)))
9736   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9737   // are essentially undef are taken from In0.
9738   InnerLoopVectorizer::VectorParts Entry(State.UF);
9739   for (unsigned In = 0; In < NumIncoming; ++In) {
9740     for (unsigned Part = 0; Part < State.UF; ++Part) {
9741       // We might have single edge PHIs (blocks) - use an identity
9742       // 'select' for the first PHI operand.
9743       Value *In0 = State.get(getIncomingValue(In), Part);
9744       if (In == 0)
9745         Entry[Part] = In0; // Initialize with the first incoming value.
9746       else {
9747         // Select between the current value and the previous incoming edge
9748         // based on the incoming mask.
9749         Value *Cond = State.get(getMask(In), Part);
9750         Entry[Part] =
9751             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9752       }
9753     }
9754   }
9755   for (unsigned Part = 0; Part < State.UF; ++Part)
9756     State.set(this, Entry[Part], Part);
9757 }
9758 
9759 void VPInterleaveRecipe::execute(VPTransformState &State) {
9760   assert(!State.Instance && "Interleave group being replicated.");
9761   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9762                                       getStoredValues(), getMask());
9763 }
9764 
9765 void VPReductionRecipe::execute(VPTransformState &State) {
9766   assert(!State.Instance && "Reduction being replicated.");
9767   Value *PrevInChain = State.get(getChainOp(), 0);
9768   RecurKind Kind = RdxDesc->getRecurrenceKind();
9769   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9770   // Propagate the fast-math flags carried by the underlying instruction.
9771   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9772   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9773   for (unsigned Part = 0; Part < State.UF; ++Part) {
9774     Value *NewVecOp = State.get(getVecOp(), Part);
9775     if (VPValue *Cond = getCondOp()) {
9776       Value *NewCond = State.get(Cond, Part);
9777       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9778       Value *Iden = RdxDesc->getRecurrenceIdentity(
9779           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9780       Value *IdenVec =
9781           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9782       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9783       NewVecOp = Select;
9784     }
9785     Value *NewRed;
9786     Value *NextInChain;
9787     if (IsOrdered) {
9788       if (State.VF.isVector())
9789         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9790                                         PrevInChain);
9791       else
9792         NewRed = State.Builder.CreateBinOp(
9793             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9794             NewVecOp);
9795       PrevInChain = NewRed;
9796     } else {
9797       PrevInChain = State.get(getChainOp(), Part);
9798       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9799     }
9800     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9801       NextInChain =
9802           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9803                          NewRed, PrevInChain);
9804     } else if (IsOrdered)
9805       NextInChain = NewRed;
9806     else
9807       NextInChain = State.Builder.CreateBinOp(
9808           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9809           PrevInChain);
9810     State.set(this, NextInChain, Part);
9811   }
9812 }
9813 
9814 void VPReplicateRecipe::execute(VPTransformState &State) {
9815   if (State.Instance) { // Generate a single instance.
9816     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9817     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9818                                     IsPredicated, State);
9819     // Insert scalar instance packing it into a vector.
9820     if (AlsoPack && State.VF.isVector()) {
9821       // If we're constructing lane 0, initialize to start from poison.
9822       if (State.Instance->Lane.isFirstLane()) {
9823         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9824         Value *Poison = PoisonValue::get(
9825             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9826         State.set(this, Poison, State.Instance->Part);
9827       }
9828       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9829     }
9830     return;
9831   }
9832 
9833   // Generate scalar instances for all VF lanes of all UF parts, unless the
9834   // instruction is uniform inwhich case generate only the first lane for each
9835   // of the UF parts.
9836   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9837   assert((!State.VF.isScalable() || IsUniform) &&
9838          "Can't scalarize a scalable vector");
9839   for (unsigned Part = 0; Part < State.UF; ++Part)
9840     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9841       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9842                                       VPIteration(Part, Lane), IsPredicated,
9843                                       State);
9844 }
9845 
9846 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9847   assert(State.Instance && "Branch on Mask works only on single instance.");
9848 
9849   unsigned Part = State.Instance->Part;
9850   unsigned Lane = State.Instance->Lane.getKnownLane();
9851 
9852   Value *ConditionBit = nullptr;
9853   VPValue *BlockInMask = getMask();
9854   if (BlockInMask) {
9855     ConditionBit = State.get(BlockInMask, Part);
9856     if (ConditionBit->getType()->isVectorTy())
9857       ConditionBit = State.Builder.CreateExtractElement(
9858           ConditionBit, State.Builder.getInt32(Lane));
9859   } else // Block in mask is all-one.
9860     ConditionBit = State.Builder.getTrue();
9861 
9862   // Replace the temporary unreachable terminator with a new conditional branch,
9863   // whose two destinations will be set later when they are created.
9864   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9865   assert(isa<UnreachableInst>(CurrentTerminator) &&
9866          "Expected to replace unreachable terminator with conditional branch.");
9867   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9868   CondBr->setSuccessor(0, nullptr);
9869   ReplaceInstWithInst(CurrentTerminator, CondBr);
9870 }
9871 
9872 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9873   assert(State.Instance && "Predicated instruction PHI works per instance.");
9874   Instruction *ScalarPredInst =
9875       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9876   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9877   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9878   assert(PredicatingBB && "Predicated block has no single predecessor.");
9879   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9880          "operand must be VPReplicateRecipe");
9881 
9882   // By current pack/unpack logic we need to generate only a single phi node: if
9883   // a vector value for the predicated instruction exists at this point it means
9884   // the instruction has vector users only, and a phi for the vector value is
9885   // needed. In this case the recipe of the predicated instruction is marked to
9886   // also do that packing, thereby "hoisting" the insert-element sequence.
9887   // Otherwise, a phi node for the scalar value is needed.
9888   unsigned Part = State.Instance->Part;
9889   if (State.hasVectorValue(getOperand(0), Part)) {
9890     Value *VectorValue = State.get(getOperand(0), Part);
9891     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9892     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9893     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9894     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9895     if (State.hasVectorValue(this, Part))
9896       State.reset(this, VPhi, Part);
9897     else
9898       State.set(this, VPhi, Part);
9899     // NOTE: Currently we need to update the value of the operand, so the next
9900     // predicated iteration inserts its generated value in the correct vector.
9901     State.reset(getOperand(0), VPhi, Part);
9902   } else {
9903     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9904     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9905     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9906                      PredicatingBB);
9907     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9908     if (State.hasScalarValue(this, *State.Instance))
9909       State.reset(this, Phi, *State.Instance);
9910     else
9911       State.set(this, Phi, *State.Instance);
9912     // NOTE: Currently we need to update the value of the operand, so the next
9913     // predicated iteration inserts its generated value in the correct vector.
9914     State.reset(getOperand(0), Phi, *State.Instance);
9915   }
9916 }
9917 
9918 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9919   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9920 
9921   // Attempt to issue a wide load.
9922   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9923   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9924 
9925   assert((LI || SI) && "Invalid Load/Store instruction");
9926   assert((!SI || StoredValue) && "No stored value provided for widened store");
9927   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9928 
9929   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9930 
9931   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9932   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9933   bool CreateGatherScatter = !Consecutive;
9934 
9935   auto &Builder = State.Builder;
9936   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9937   bool isMaskRequired = getMask();
9938   if (isMaskRequired)
9939     for (unsigned Part = 0; Part < State.UF; ++Part)
9940       BlockInMaskParts[Part] = State.get(getMask(), Part);
9941 
9942   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9943     // Calculate the pointer for the specific unroll-part.
9944     GetElementPtrInst *PartPtr = nullptr;
9945 
9946     bool InBounds = false;
9947     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9948       InBounds = gep->isInBounds();
9949     if (Reverse) {
9950       // If the address is consecutive but reversed, then the
9951       // wide store needs to start at the last vector element.
9952       // RunTimeVF =  VScale * VF.getKnownMinValue()
9953       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9954       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9955       // NumElt = -Part * RunTimeVF
9956       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9957       // LastLane = 1 - RunTimeVF
9958       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9959       PartPtr =
9960           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9961       PartPtr->setIsInBounds(InBounds);
9962       PartPtr = cast<GetElementPtrInst>(
9963           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9964       PartPtr->setIsInBounds(InBounds);
9965       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9966         BlockInMaskParts[Part] =
9967             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9968     } else {
9969       Value *Increment =
9970           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9971       PartPtr = cast<GetElementPtrInst>(
9972           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9973       PartPtr->setIsInBounds(InBounds);
9974     }
9975 
9976     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9977     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9978   };
9979 
9980   // Handle Stores:
9981   if (SI) {
9982     State.ILV->setDebugLocFromInst(SI);
9983 
9984     for (unsigned Part = 0; Part < State.UF; ++Part) {
9985       Instruction *NewSI = nullptr;
9986       Value *StoredVal = State.get(StoredValue, Part);
9987       if (CreateGatherScatter) {
9988         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9989         Value *VectorGep = State.get(getAddr(), Part);
9990         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9991                                             MaskPart);
9992       } else {
9993         if (Reverse) {
9994           // If we store to reverse consecutive memory locations, then we need
9995           // to reverse the order of elements in the stored value.
9996           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9997           // We don't want to update the value in the map as it might be used in
9998           // another expression. So don't call resetVectorValue(StoredVal).
9999         }
10000         auto *VecPtr =
10001             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10002         if (isMaskRequired)
10003           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10004                                             BlockInMaskParts[Part]);
10005         else
10006           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10007       }
10008       State.ILV->addMetadata(NewSI, SI);
10009     }
10010     return;
10011   }
10012 
10013   // Handle loads.
10014   assert(LI && "Must have a load instruction");
10015   State.ILV->setDebugLocFromInst(LI);
10016   for (unsigned Part = 0; Part < State.UF; ++Part) {
10017     Value *NewLI;
10018     if (CreateGatherScatter) {
10019       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10020       Value *VectorGep = State.get(getAddr(), Part);
10021       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10022                                          nullptr, "wide.masked.gather");
10023       State.ILV->addMetadata(NewLI, LI);
10024     } else {
10025       auto *VecPtr =
10026           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10027       if (isMaskRequired)
10028         NewLI = Builder.CreateMaskedLoad(
10029             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10030             PoisonValue::get(DataTy), "wide.masked.load");
10031       else
10032         NewLI =
10033             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10034 
10035       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10036       State.ILV->addMetadata(NewLI, LI);
10037       if (Reverse)
10038         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10039     }
10040 
10041     State.set(this, NewLI, Part);
10042   }
10043 }
10044 
10045 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10046 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10047 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10048 // for predication.
10049 static ScalarEpilogueLowering getScalarEpilogueLowering(
10050     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10051     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10052     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10053     LoopVectorizationLegality &LVL) {
10054   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10055   // don't look at hints or options, and don't request a scalar epilogue.
10056   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10057   // LoopAccessInfo (due to code dependency and not being able to reliably get
10058   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10059   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10060   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10061   // back to the old way and vectorize with versioning when forced. See D81345.)
10062   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10063                                                       PGSOQueryType::IRPass) &&
10064                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10065     return CM_ScalarEpilogueNotAllowedOptSize;
10066 
10067   // 2) If set, obey the directives
10068   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10069     switch (PreferPredicateOverEpilogue) {
10070     case PreferPredicateTy::ScalarEpilogue:
10071       return CM_ScalarEpilogueAllowed;
10072     case PreferPredicateTy::PredicateElseScalarEpilogue:
10073       return CM_ScalarEpilogueNotNeededUsePredicate;
10074     case PreferPredicateTy::PredicateOrDontVectorize:
10075       return CM_ScalarEpilogueNotAllowedUsePredicate;
10076     };
10077   }
10078 
10079   // 3) If set, obey the hints
10080   switch (Hints.getPredicate()) {
10081   case LoopVectorizeHints::FK_Enabled:
10082     return CM_ScalarEpilogueNotNeededUsePredicate;
10083   case LoopVectorizeHints::FK_Disabled:
10084     return CM_ScalarEpilogueAllowed;
10085   };
10086 
10087   // 4) if the TTI hook indicates this is profitable, request predication.
10088   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10089                                        LVL.getLAI()))
10090     return CM_ScalarEpilogueNotNeededUsePredicate;
10091 
10092   return CM_ScalarEpilogueAllowed;
10093 }
10094 
10095 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10096   // If Values have been set for this Def return the one relevant for \p Part.
10097   if (hasVectorValue(Def, Part))
10098     return Data.PerPartOutput[Def][Part];
10099 
10100   if (!hasScalarValue(Def, {Part, 0})) {
10101     Value *IRV = Def->getLiveInIRValue();
10102     Value *B = ILV->getBroadcastInstrs(IRV);
10103     set(Def, B, Part);
10104     return B;
10105   }
10106 
10107   Value *ScalarValue = get(Def, {Part, 0});
10108   // If we aren't vectorizing, we can just copy the scalar map values over
10109   // to the vector map.
10110   if (VF.isScalar()) {
10111     set(Def, ScalarValue, Part);
10112     return ScalarValue;
10113   }
10114 
10115   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10116   bool IsUniform = RepR && RepR->isUniform();
10117 
10118   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10119   // Check if there is a scalar value for the selected lane.
10120   if (!hasScalarValue(Def, {Part, LastLane})) {
10121     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10122     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10123            "unexpected recipe found to be invariant");
10124     IsUniform = true;
10125     LastLane = 0;
10126   }
10127 
10128   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10129   // Set the insert point after the last scalarized instruction or after the
10130   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10131   // will directly follow the scalar definitions.
10132   auto OldIP = Builder.saveIP();
10133   auto NewIP =
10134       isa<PHINode>(LastInst)
10135           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10136           : std::next(BasicBlock::iterator(LastInst));
10137   Builder.SetInsertPoint(&*NewIP);
10138 
10139   // However, if we are vectorizing, we need to construct the vector values.
10140   // If the value is known to be uniform after vectorization, we can just
10141   // broadcast the scalar value corresponding to lane zero for each unroll
10142   // iteration. Otherwise, we construct the vector values using
10143   // insertelement instructions. Since the resulting vectors are stored in
10144   // State, we will only generate the insertelements once.
10145   Value *VectorValue = nullptr;
10146   if (IsUniform) {
10147     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10148     set(Def, VectorValue, Part);
10149   } else {
10150     // Initialize packing with insertelements to start from undef.
10151     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10152     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10153     set(Def, Undef, Part);
10154     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10155       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10156     VectorValue = get(Def, Part);
10157   }
10158   Builder.restoreIP(OldIP);
10159   return VectorValue;
10160 }
10161 
10162 // Process the loop in the VPlan-native vectorization path. This path builds
10163 // VPlan upfront in the vectorization pipeline, which allows to apply
10164 // VPlan-to-VPlan transformations from the very beginning without modifying the
10165 // input LLVM IR.
10166 static bool processLoopInVPlanNativePath(
10167     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10168     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10169     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10170     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10171     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10172     LoopVectorizationRequirements &Requirements) {
10173 
10174   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10175     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10176     return false;
10177   }
10178   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10179   Function *F = L->getHeader()->getParent();
10180   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10181 
10182   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10183       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10184 
10185   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10186                                 &Hints, IAI);
10187   // Use the planner for outer loop vectorization.
10188   // TODO: CM is not used at this point inside the planner. Turn CM into an
10189   // optional argument if we don't need it in the future.
10190   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10191                                Requirements, ORE);
10192 
10193   // Get user vectorization factor.
10194   ElementCount UserVF = Hints.getWidth();
10195 
10196   CM.collectElementTypesForWidening();
10197 
10198   // Plan how to best vectorize, return the best VF and its cost.
10199   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10200 
10201   // If we are stress testing VPlan builds, do not attempt to generate vector
10202   // code. Masked vector code generation support will follow soon.
10203   // Also, do not attempt to vectorize if no vector code will be produced.
10204   if (VPlanBuildStressTest || EnableVPlanPredication ||
10205       VectorizationFactor::Disabled() == VF)
10206     return false;
10207 
10208   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10209 
10210   {
10211     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10212                              F->getParent()->getDataLayout());
10213     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10214                            &CM, BFI, PSI, Checks);
10215     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10216                       << L->getHeader()->getParent()->getName() << "\"\n");
10217     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10218   }
10219 
10220   // Mark the loop as already vectorized to avoid vectorizing again.
10221   Hints.setAlreadyVectorized();
10222   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10223   return true;
10224 }
10225 
10226 // Emit a remark if there are stores to floats that required a floating point
10227 // extension. If the vectorized loop was generated with floating point there
10228 // will be a performance penalty from the conversion overhead and the change in
10229 // the vector width.
10230 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10231   SmallVector<Instruction *, 4> Worklist;
10232   for (BasicBlock *BB : L->getBlocks()) {
10233     for (Instruction &Inst : *BB) {
10234       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10235         if (S->getValueOperand()->getType()->isFloatTy())
10236           Worklist.push_back(S);
10237       }
10238     }
10239   }
10240 
10241   // Traverse the floating point stores upwards searching, for floating point
10242   // conversions.
10243   SmallPtrSet<const Instruction *, 4> Visited;
10244   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10245   while (!Worklist.empty()) {
10246     auto *I = Worklist.pop_back_val();
10247     if (!L->contains(I))
10248       continue;
10249     if (!Visited.insert(I).second)
10250       continue;
10251 
10252     // Emit a remark if the floating point store required a floating
10253     // point conversion.
10254     // TODO: More work could be done to identify the root cause such as a
10255     // constant or a function return type and point the user to it.
10256     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10257       ORE->emit([&]() {
10258         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10259                                           I->getDebugLoc(), L->getHeader())
10260                << "floating point conversion changes vector width. "
10261                << "Mixed floating point precision requires an up/down "
10262                << "cast that will negatively impact performance.";
10263       });
10264 
10265     for (Use &Op : I->operands())
10266       if (auto *OpI = dyn_cast<Instruction>(Op))
10267         Worklist.push_back(OpI);
10268   }
10269 }
10270 
10271 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10272     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10273                                !EnableLoopInterleaving),
10274       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10275                               !EnableLoopVectorization) {}
10276 
10277 bool LoopVectorizePass::processLoop(Loop *L) {
10278   assert((EnableVPlanNativePath || L->isInnermost()) &&
10279          "VPlan-native path is not enabled. Only process inner loops.");
10280 
10281 #ifndef NDEBUG
10282   const std::string DebugLocStr = getDebugLocString(L);
10283 #endif /* NDEBUG */
10284 
10285   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10286                     << L->getHeader()->getParent()->getName() << "\" from "
10287                     << DebugLocStr << "\n");
10288 
10289   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10290 
10291   LLVM_DEBUG(
10292       dbgs() << "LV: Loop hints:"
10293              << " force="
10294              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10295                      ? "disabled"
10296                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10297                             ? "enabled"
10298                             : "?"))
10299              << " width=" << Hints.getWidth()
10300              << " interleave=" << Hints.getInterleave() << "\n");
10301 
10302   // Function containing loop
10303   Function *F = L->getHeader()->getParent();
10304 
10305   // Looking at the diagnostic output is the only way to determine if a loop
10306   // was vectorized (other than looking at the IR or machine code), so it
10307   // is important to generate an optimization remark for each loop. Most of
10308   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10309   // generated as OptimizationRemark and OptimizationRemarkMissed are
10310   // less verbose reporting vectorized loops and unvectorized loops that may
10311   // benefit from vectorization, respectively.
10312 
10313   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10314     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10315     return false;
10316   }
10317 
10318   PredicatedScalarEvolution PSE(*SE, *L);
10319 
10320   // Check if it is legal to vectorize the loop.
10321   LoopVectorizationRequirements Requirements;
10322   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10323                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10324   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10325     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10326     Hints.emitRemarkWithHints();
10327     return false;
10328   }
10329 
10330   // Check the function attributes and profiles to find out if this function
10331   // should be optimized for size.
10332   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10333       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10334 
10335   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10336   // here. They may require CFG and instruction level transformations before
10337   // even evaluating whether vectorization is profitable. Since we cannot modify
10338   // the incoming IR, we need to build VPlan upfront in the vectorization
10339   // pipeline.
10340   if (!L->isInnermost())
10341     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10342                                         ORE, BFI, PSI, Hints, Requirements);
10343 
10344   assert(L->isInnermost() && "Inner loop expected.");
10345 
10346   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10347   // count by optimizing for size, to minimize overheads.
10348   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10349   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10350     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10351                       << "This loop is worth vectorizing only if no scalar "
10352                       << "iteration overheads are incurred.");
10353     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10354       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10355     else {
10356       LLVM_DEBUG(dbgs() << "\n");
10357       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10358     }
10359   }
10360 
10361   // Check the function attributes to see if implicit floats are allowed.
10362   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10363   // an integer loop and the vector instructions selected are purely integer
10364   // vector instructions?
10365   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10366     reportVectorizationFailure(
10367         "Can't vectorize when the NoImplicitFloat attribute is used",
10368         "loop not vectorized due to NoImplicitFloat attribute",
10369         "NoImplicitFloat", ORE, L);
10370     Hints.emitRemarkWithHints();
10371     return false;
10372   }
10373 
10374   // Check if the target supports potentially unsafe FP vectorization.
10375   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10376   // for the target we're vectorizing for, to make sure none of the
10377   // additional fp-math flags can help.
10378   if (Hints.isPotentiallyUnsafe() &&
10379       TTI->isFPVectorizationPotentiallyUnsafe()) {
10380     reportVectorizationFailure(
10381         "Potentially unsafe FP op prevents vectorization",
10382         "loop not vectorized due to unsafe FP support.",
10383         "UnsafeFP", ORE, L);
10384     Hints.emitRemarkWithHints();
10385     return false;
10386   }
10387 
10388   bool AllowOrderedReductions;
10389   // If the flag is set, use that instead and override the TTI behaviour.
10390   if (ForceOrderedReductions.getNumOccurrences() > 0)
10391     AllowOrderedReductions = ForceOrderedReductions;
10392   else
10393     AllowOrderedReductions = TTI->enableOrderedReductions();
10394   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10395     ORE->emit([&]() {
10396       auto *ExactFPMathInst = Requirements.getExactFPInst();
10397       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10398                                                  ExactFPMathInst->getDebugLoc(),
10399                                                  ExactFPMathInst->getParent())
10400              << "loop not vectorized: cannot prove it is safe to reorder "
10401                 "floating-point operations";
10402     });
10403     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10404                          "reorder floating-point operations\n");
10405     Hints.emitRemarkWithHints();
10406     return false;
10407   }
10408 
10409   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10410   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10411 
10412   // If an override option has been passed in for interleaved accesses, use it.
10413   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10414     UseInterleaved = EnableInterleavedMemAccesses;
10415 
10416   // Analyze interleaved memory accesses.
10417   if (UseInterleaved) {
10418     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10419   }
10420 
10421   // Use the cost model.
10422   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10423                                 F, &Hints, IAI);
10424   CM.collectValuesToIgnore();
10425   CM.collectElementTypesForWidening();
10426 
10427   // Use the planner for vectorization.
10428   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10429                                Requirements, ORE);
10430 
10431   // Get user vectorization factor and interleave count.
10432   ElementCount UserVF = Hints.getWidth();
10433   unsigned UserIC = Hints.getInterleave();
10434 
10435   // Plan how to best vectorize, return the best VF and its cost.
10436   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10437 
10438   VectorizationFactor VF = VectorizationFactor::Disabled();
10439   unsigned IC = 1;
10440 
10441   if (MaybeVF) {
10442     VF = *MaybeVF;
10443     // Select the interleave count.
10444     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10445   }
10446 
10447   // Identify the diagnostic messages that should be produced.
10448   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10449   bool VectorizeLoop = true, InterleaveLoop = true;
10450   if (VF.Width.isScalar()) {
10451     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10452     VecDiagMsg = std::make_pair(
10453         "VectorizationNotBeneficial",
10454         "the cost-model indicates that vectorization is not beneficial");
10455     VectorizeLoop = false;
10456   }
10457 
10458   if (!MaybeVF && UserIC > 1) {
10459     // Tell the user interleaving was avoided up-front, despite being explicitly
10460     // requested.
10461     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10462                          "interleaving should be avoided up front\n");
10463     IntDiagMsg = std::make_pair(
10464         "InterleavingAvoided",
10465         "Ignoring UserIC, because interleaving was avoided up front");
10466     InterleaveLoop = false;
10467   } else if (IC == 1 && UserIC <= 1) {
10468     // Tell the user interleaving is not beneficial.
10469     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10470     IntDiagMsg = std::make_pair(
10471         "InterleavingNotBeneficial",
10472         "the cost-model indicates that interleaving is not beneficial");
10473     InterleaveLoop = false;
10474     if (UserIC == 1) {
10475       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10476       IntDiagMsg.second +=
10477           " and is explicitly disabled or interleave count is set to 1";
10478     }
10479   } else if (IC > 1 && UserIC == 1) {
10480     // Tell the user interleaving is beneficial, but it explicitly disabled.
10481     LLVM_DEBUG(
10482         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10483     IntDiagMsg = std::make_pair(
10484         "InterleavingBeneficialButDisabled",
10485         "the cost-model indicates that interleaving is beneficial "
10486         "but is explicitly disabled or interleave count is set to 1");
10487     InterleaveLoop = false;
10488   }
10489 
10490   // Override IC if user provided an interleave count.
10491   IC = UserIC > 0 ? UserIC : IC;
10492 
10493   // Emit diagnostic messages, if any.
10494   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10495   if (!VectorizeLoop && !InterleaveLoop) {
10496     // Do not vectorize or interleaving the loop.
10497     ORE->emit([&]() {
10498       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10499                                       L->getStartLoc(), L->getHeader())
10500              << VecDiagMsg.second;
10501     });
10502     ORE->emit([&]() {
10503       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10504                                       L->getStartLoc(), L->getHeader())
10505              << IntDiagMsg.second;
10506     });
10507     return false;
10508   } else if (!VectorizeLoop && InterleaveLoop) {
10509     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10510     ORE->emit([&]() {
10511       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10512                                         L->getStartLoc(), L->getHeader())
10513              << VecDiagMsg.second;
10514     });
10515   } else if (VectorizeLoop && !InterleaveLoop) {
10516     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10517                       << ") in " << DebugLocStr << '\n');
10518     ORE->emit([&]() {
10519       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10520                                         L->getStartLoc(), L->getHeader())
10521              << IntDiagMsg.second;
10522     });
10523   } else if (VectorizeLoop && InterleaveLoop) {
10524     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10525                       << ") in " << DebugLocStr << '\n');
10526     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10527   }
10528 
10529   bool DisableRuntimeUnroll = false;
10530   MDNode *OrigLoopID = L->getLoopID();
10531   {
10532     // Optimistically generate runtime checks. Drop them if they turn out to not
10533     // be profitable. Limit the scope of Checks, so the cleanup happens
10534     // immediately after vector codegeneration is done.
10535     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10536                              F->getParent()->getDataLayout());
10537     if (!VF.Width.isScalar() || IC > 1)
10538       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10539 
10540     using namespace ore;
10541     if (!VectorizeLoop) {
10542       assert(IC > 1 && "interleave count should not be 1 or 0");
10543       // If we decided that it is not legal to vectorize the loop, then
10544       // interleave it.
10545       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10546                                  &CM, BFI, PSI, Checks);
10547 
10548       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10549       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10550 
10551       ORE->emit([&]() {
10552         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10553                                   L->getHeader())
10554                << "interleaved loop (interleaved count: "
10555                << NV("InterleaveCount", IC) << ")";
10556       });
10557     } else {
10558       // If we decided that it is *legal* to vectorize the loop, then do it.
10559 
10560       // Consider vectorizing the epilogue too if it's profitable.
10561       VectorizationFactor EpilogueVF =
10562           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10563       if (EpilogueVF.Width.isVector()) {
10564 
10565         // The first pass vectorizes the main loop and creates a scalar epilogue
10566         // to be vectorized by executing the plan (potentially with a different
10567         // factor) again shortly afterwards.
10568         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10569         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10570                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10571 
10572         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10573         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10574                         DT);
10575         ++LoopsVectorized;
10576 
10577         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10578         formLCSSARecursively(*L, *DT, LI, SE);
10579 
10580         // Second pass vectorizes the epilogue and adjusts the control flow
10581         // edges from the first pass.
10582         EPI.MainLoopVF = EPI.EpilogueVF;
10583         EPI.MainLoopUF = EPI.EpilogueUF;
10584         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10585                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10586                                                  Checks);
10587 
10588         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10589 
10590         // Ensure that the start values for any VPReductionPHIRecipes are
10591         // updated before vectorising the epilogue loop.
10592         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10593         for (VPRecipeBase &R : Header->phis()) {
10594           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10595             if (auto *Resume = MainILV.getReductionResumeValue(
10596                     ReductionPhi->getRecurrenceDescriptor())) {
10597               VPValue *StartVal = new VPValue(Resume);
10598               BestEpiPlan.addExternalDef(StartVal);
10599               ReductionPhi->setOperand(0, StartVal);
10600             }
10601           }
10602         }
10603 
10604         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10605                         DT);
10606         ++LoopsEpilogueVectorized;
10607 
10608         if (!MainILV.areSafetyChecksAdded())
10609           DisableRuntimeUnroll = true;
10610       } else {
10611         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10612                                &LVL, &CM, BFI, PSI, Checks);
10613 
10614         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10615         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10616         ++LoopsVectorized;
10617 
10618         // Add metadata to disable runtime unrolling a scalar loop when there
10619         // are no runtime checks about strides and memory. A scalar loop that is
10620         // rarely used is not worth unrolling.
10621         if (!LB.areSafetyChecksAdded())
10622           DisableRuntimeUnroll = true;
10623       }
10624       // Report the vectorization decision.
10625       ORE->emit([&]() {
10626         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10627                                   L->getHeader())
10628                << "vectorized loop (vectorization width: "
10629                << NV("VectorizationFactor", VF.Width)
10630                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10631       });
10632     }
10633 
10634     if (ORE->allowExtraAnalysis(LV_NAME))
10635       checkMixedPrecision(L, ORE);
10636   }
10637 
10638   Optional<MDNode *> RemainderLoopID =
10639       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10640                                       LLVMLoopVectorizeFollowupEpilogue});
10641   if (RemainderLoopID.hasValue()) {
10642     L->setLoopID(RemainderLoopID.getValue());
10643   } else {
10644     if (DisableRuntimeUnroll)
10645       AddRuntimeUnrollDisableMetaData(L);
10646 
10647     // Mark the loop as already vectorized to avoid vectorizing again.
10648     Hints.setAlreadyVectorized();
10649   }
10650 
10651   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10652   return true;
10653 }
10654 
10655 LoopVectorizeResult LoopVectorizePass::runImpl(
10656     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10657     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10658     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10659     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10660     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10661   SE = &SE_;
10662   LI = &LI_;
10663   TTI = &TTI_;
10664   DT = &DT_;
10665   BFI = &BFI_;
10666   TLI = TLI_;
10667   AA = &AA_;
10668   AC = &AC_;
10669   GetLAA = &GetLAA_;
10670   DB = &DB_;
10671   ORE = &ORE_;
10672   PSI = PSI_;
10673 
10674   // Don't attempt if
10675   // 1. the target claims to have no vector registers, and
10676   // 2. interleaving won't help ILP.
10677   //
10678   // The second condition is necessary because, even if the target has no
10679   // vector registers, loop vectorization may still enable scalar
10680   // interleaving.
10681   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10682       TTI->getMaxInterleaveFactor(1) < 2)
10683     return LoopVectorizeResult(false, false);
10684 
10685   bool Changed = false, CFGChanged = false;
10686 
10687   // The vectorizer requires loops to be in simplified form.
10688   // Since simplification may add new inner loops, it has to run before the
10689   // legality and profitability checks. This means running the loop vectorizer
10690   // will simplify all loops, regardless of whether anything end up being
10691   // vectorized.
10692   for (auto &L : *LI)
10693     Changed |= CFGChanged |=
10694         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10695 
10696   // Build up a worklist of inner-loops to vectorize. This is necessary as
10697   // the act of vectorizing or partially unrolling a loop creates new loops
10698   // and can invalidate iterators across the loops.
10699   SmallVector<Loop *, 8> Worklist;
10700 
10701   for (Loop *L : *LI)
10702     collectSupportedLoops(*L, LI, ORE, Worklist);
10703 
10704   LoopsAnalyzed += Worklist.size();
10705 
10706   // Now walk the identified inner loops.
10707   while (!Worklist.empty()) {
10708     Loop *L = Worklist.pop_back_val();
10709 
10710     // For the inner loops we actually process, form LCSSA to simplify the
10711     // transform.
10712     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10713 
10714     Changed |= CFGChanged |= processLoop(L);
10715   }
10716 
10717   // Process each loop nest in the function.
10718   return LoopVectorizeResult(Changed, CFGChanged);
10719 }
10720 
10721 PreservedAnalyses LoopVectorizePass::run(Function &F,
10722                                          FunctionAnalysisManager &AM) {
10723     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10724     auto &LI = AM.getResult<LoopAnalysis>(F);
10725     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10726     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10727     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10728     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10729     auto &AA = AM.getResult<AAManager>(F);
10730     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10731     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10732     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10733 
10734     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10735     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10736         [&](Loop &L) -> const LoopAccessInfo & {
10737       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10738                                         TLI, TTI, nullptr, nullptr, nullptr};
10739       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10740     };
10741     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10742     ProfileSummaryInfo *PSI =
10743         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10744     LoopVectorizeResult Result =
10745         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10746     if (!Result.MadeAnyChange)
10747       return PreservedAnalyses::all();
10748     PreservedAnalyses PA;
10749 
10750     // We currently do not preserve loopinfo/dominator analyses with outer loop
10751     // vectorization. Until this is addressed, mark these analyses as preserved
10752     // only for non-VPlan-native path.
10753     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10754     if (!EnableVPlanNativePath) {
10755       PA.preserve<LoopAnalysis>();
10756       PA.preserve<DominatorTreeAnalysis>();
10757     }
10758 
10759     if (Result.MadeCFGChange) {
10760       // Making CFG changes likely means a loop got vectorized. Indicate that
10761       // extra simplification passes should be run.
10762       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10763       // be run if runtime checks have been added.
10764       AM.getResult<ShouldRunExtraVectorPasses>(F);
10765       PA.preserve<ShouldRunExtraVectorPasses>();
10766     } else {
10767       PA.preserveSet<CFGAnalyses>();
10768     }
10769     return PA;
10770 }
10771 
10772 void LoopVectorizePass::printPipeline(
10773     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10774   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10775       OS, MapClassName2PassName);
10776 
10777   OS << "<";
10778   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10779   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10780   OS << ">";
10781 }
10782