1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 514 VPTransformState &State, Value *CanonicalIV); 515 516 /// Construct the vector value of a scalarized value \p V one lane at a time. 517 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 518 VPTransformState &State); 519 520 /// Try to vectorize interleaved access group \p Group with the base address 521 /// given in \p Addr, optionally masking the vector operations if \p 522 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 523 /// values in the vectorized loop. 524 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 525 ArrayRef<VPValue *> VPDefs, 526 VPTransformState &State, VPValue *Addr, 527 ArrayRef<VPValue *> StoredValues, 528 VPValue *BlockInMask = nullptr); 529 530 /// Set the debug location in the builder \p Ptr using the debug location in 531 /// \p V. If \p Ptr is None then it uses the class member's Builder. 532 void setDebugLocFromInst(const Value *V, 533 Optional<IRBuilder<> *> CustomBuilder = None); 534 535 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 536 void fixNonInductionPHIs(VPTransformState &State); 537 538 /// Returns true if the reordering of FP operations is not allowed, but we are 539 /// able to vectorize with strict in-order reductions for the given RdxDesc. 540 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// Add metadata from one instruction to another. 550 /// 551 /// This includes both the original MDs from \p From and additional ones (\see 552 /// addNewMetadata). Use this for *newly created* instructions in the vector 553 /// loop. 554 void addMetadata(Instruction *To, Instruction *From); 555 556 /// Similar to the previous function but it adds the metadata to a 557 /// vector of instructions. 558 void addMetadata(ArrayRef<Value *> To, Instruction *From); 559 560 // Returns the resume value (bc.merge.rdx) for a reduction as 561 // generated by fixReduction. 562 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 563 564 protected: 565 friend class LoopVectorizationPlanner; 566 567 /// A small list of PHINodes. 568 using PhiVector = SmallVector<PHINode *, 4>; 569 570 /// A type for scalarized values in the new loop. Each value from the 571 /// original loop, when scalarized, is represented by UF x VF scalar values 572 /// in the new unrolled loop, where UF is the unroll factor and VF is the 573 /// vectorization factor. 574 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 575 576 /// Set up the values of the IVs correctly when exiting the vector loop. 577 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 578 Value *CountRoundDown, Value *EndValue, 579 BasicBlock *MiddleBlock); 580 581 /// Introduce a conditional branch (on true, condition to be set later) at the 582 /// end of the header=latch connecting it to itself (across the backedge) and 583 /// to the exit block of \p L. 584 void createHeaderBranch(Loop *L); 585 586 /// Handle all cross-iteration phis in the header. 587 void fixCrossIterationPHIs(VPTransformState &State); 588 589 /// Create the exit value of first order recurrences in the middle block and 590 /// update their users. 591 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 592 VPTransformState &State); 593 594 /// Create code for the loop exit value of the reduction. 595 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 596 597 /// Clear NSW/NUW flags from reduction instructions if necessary. 598 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 599 VPTransformState &State); 600 601 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 602 /// means we need to add the appropriate incoming value from the middle 603 /// block as exiting edges from the scalar epilogue loop (if present) are 604 /// already in place, and we exit the vector loop exclusively to the middle 605 /// block. 606 void fixLCSSAPHIs(VPTransformState &State); 607 608 /// Iteratively sink the scalarized operands of a predicated instruction into 609 /// the block that was created for it. 610 void sinkScalarOperands(Instruction *PredInst); 611 612 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 613 /// represented as. 614 void truncateToMinimalBitwidths(VPTransformState &State); 615 616 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 617 /// variable on which to base the steps, \p Step is the size of the step, and 618 /// \p EntryVal is the value from the original loop that maps to the steps. 619 /// Note that \p EntryVal doesn't have to be an induction variable - it 620 /// can also be a truncate instruction. 621 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 622 const InductionDescriptor &ID, VPValue *Def, 623 VPTransformState &State); 624 625 /// Create a vector induction phi node based on an existing scalar one. \p 626 /// EntryVal is the value from the original loop that maps to the vector phi 627 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 628 /// truncate instruction, instead of widening the original IV, we widen a 629 /// version of the IV truncated to \p EntryVal's type. 630 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 631 Value *Step, Value *Start, 632 Instruction *EntryVal, VPValue *Def, 633 VPTransformState &State); 634 635 /// Returns (and creates if needed) the original loop trip count. 636 Value *getOrCreateTripCount(Loop *NewLoop); 637 638 /// Returns (and creates if needed) the trip count of the widened loop. 639 Value *getOrCreateVectorTripCount(Loop *NewLoop); 640 641 /// Returns a bitcasted value to the requested vector type. 642 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 643 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 644 const DataLayout &DL); 645 646 /// Emit a bypass check to see if the vector trip count is zero, including if 647 /// it overflows. 648 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 649 650 /// Emit a bypass check to see if all of the SCEV assumptions we've 651 /// had to make are correct. Returns the block containing the checks or 652 /// nullptr if no checks have been added. 653 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Emit bypass checks to check any memory assumptions we may have made. 656 /// Returns the block containing the checks or nullptr if no checks have been 657 /// added. 658 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 667 const DataLayout &DL, 668 const InductionDescriptor &ID, 669 BasicBlock *VectorHeader) const; 670 671 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 672 /// vector loop preheader, middle block and scalar preheader. Also 673 /// allocate a loop object for the new vector loop and return it. 674 Loop *createVectorLoopSkeleton(StringRef Prefix); 675 676 /// Create new phi nodes for the induction variables to resume iteration count 677 /// in the scalar epilogue, from where the vectorized loop left off. 678 /// In cases where the loop skeleton is more complicated (eg. epilogue 679 /// vectorization) and the resume values can come from an additional bypass 680 /// block, the \p AdditionalBypass pair provides information about the bypass 681 /// block and the end value on the edge from bypass to this loop. 682 void createInductionResumeValues( 683 Loop *L, 684 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 685 686 /// Complete the loop skeleton by adding debug MDs, creating appropriate 687 /// conditional branches in the middle block, preparing the builder and 688 /// running the verifier. Take in the vector loop \p L as argument, and return 689 /// the preheader of the completed vector loop. 690 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 691 692 /// Add additional metadata to \p To that was not present on \p Orig. 693 /// 694 /// Currently this is used to add the noalias annotations based on the 695 /// inserted memchecks. Use this for instructions that are *cloned* into the 696 /// vector loop. 697 void addNewMetadata(Instruction *To, const Instruction *Orig); 698 699 /// Collect poison-generating recipes that may generate a poison value that is 700 /// used after vectorization, even when their operands are not poison. Those 701 /// recipes meet the following conditions: 702 /// * Contribute to the address computation of a recipe generating a widen 703 /// memory load/store (VPWidenMemoryInstructionRecipe or 704 /// VPInterleaveRecipe). 705 /// * Such a widen memory load/store has at least one underlying Instruction 706 /// that is in a basic block that needs predication and after vectorization 707 /// the generated instruction won't be predicated. 708 void collectPoisonGeneratingRecipes(VPTransformState &State); 709 710 /// Allow subclasses to override and print debug traces before/after vplan 711 /// execution, when trace information is requested. 712 virtual void printDebugTracesAtStart(){}; 713 virtual void printDebugTracesAtEnd(){}; 714 715 /// The original loop. 716 Loop *OrigLoop; 717 718 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 719 /// dynamic knowledge to simplify SCEV expressions and converts them to a 720 /// more usable form. 721 PredicatedScalarEvolution &PSE; 722 723 /// Loop Info. 724 LoopInfo *LI; 725 726 /// Dominator Tree. 727 DominatorTree *DT; 728 729 /// Alias Analysis. 730 AAResults *AA; 731 732 /// Target Library Info. 733 const TargetLibraryInfo *TLI; 734 735 /// Target Transform Info. 736 const TargetTransformInfo *TTI; 737 738 /// Assumption Cache. 739 AssumptionCache *AC; 740 741 /// Interface to emit optimization remarks. 742 OptimizationRemarkEmitter *ORE; 743 744 /// LoopVersioning. It's only set up (non-null) if memchecks were 745 /// used. 746 /// 747 /// This is currently only used to add no-alias metadata based on the 748 /// memchecks. The actually versioning is performed manually. 749 std::unique_ptr<LoopVersioning> LVer; 750 751 /// The vectorization SIMD factor to use. Each vector will have this many 752 /// vector elements. 753 ElementCount VF; 754 755 /// The vectorization unroll factor to use. Each scalar is vectorized to this 756 /// many different vector instructions. 757 unsigned UF; 758 759 /// The builder that we use 760 IRBuilder<> Builder; 761 762 // --- Vectorization state --- 763 764 /// The vector-loop preheader. 765 BasicBlock *LoopVectorPreHeader; 766 767 /// The scalar-loop preheader. 768 BasicBlock *LoopScalarPreHeader; 769 770 /// Middle Block between the vector and the scalar. 771 BasicBlock *LoopMiddleBlock; 772 773 /// The unique ExitBlock of the scalar loop if one exists. Note that 774 /// there can be multiple exiting edges reaching this block. 775 BasicBlock *LoopExitBlock; 776 777 /// The vector loop body. 778 BasicBlock *LoopVectorBody; 779 780 /// The scalar loop body. 781 BasicBlock *LoopScalarBody; 782 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// Store instructions that were predicated. 787 SmallVector<Instruction *, 4> PredicatedInstructions; 788 789 /// Trip count of the original loop. 790 Value *TripCount = nullptr; 791 792 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 793 Value *VectorTripCount = nullptr; 794 795 /// The legality analysis. 796 LoopVectorizationLegality *Legal; 797 798 /// The profitablity analysis. 799 LoopVectorizationCostModel *Cost; 800 801 // Record whether runtime checks are added. 802 bool AddedSafetyChecks = false; 803 804 // Holds the end values for each induction variable. We save the end values 805 // so we can later fix-up the external users of the induction variables. 806 DenseMap<PHINode *, Value *> IVEndValues; 807 808 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 809 // fixed up at the end of vector code generation. 810 SmallVector<PHINode *, 8> OrigPHIsToFix; 811 812 /// BFI and PSI are used to check for profile guided size optimizations. 813 BlockFrequencyInfo *BFI; 814 ProfileSummaryInfo *PSI; 815 816 // Whether this loop should be optimized for size based on profile guided size 817 // optimizatios. 818 bool OptForSizeBasedOnProfile; 819 820 /// Structure to hold information about generated runtime checks, responsible 821 /// for cleaning the checks, if vectorization turns out unprofitable. 822 GeneratedRTChecks &RTChecks; 823 824 // Holds the resume values for reductions in the loops, used to set the 825 // correct start value of reduction PHIs when vectorizing the epilogue. 826 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 827 ReductionResumeValues; 828 }; 829 830 class InnerLoopUnroller : public InnerLoopVectorizer { 831 public: 832 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 833 LoopInfo *LI, DominatorTree *DT, 834 const TargetLibraryInfo *TLI, 835 const TargetTransformInfo *TTI, AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 837 LoopVectorizationLegality *LVL, 838 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 839 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 840 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 841 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 842 BFI, PSI, Check) {} 843 844 private: 845 Value *getBroadcastInstrs(Value *V) override; 846 }; 847 848 /// Encapsulate information regarding vectorization of a loop and its epilogue. 849 /// This information is meant to be updated and used across two stages of 850 /// epilogue vectorization. 851 struct EpilogueLoopVectorizationInfo { 852 ElementCount MainLoopVF = ElementCount::getFixed(0); 853 unsigned MainLoopUF = 0; 854 ElementCount EpilogueVF = ElementCount::getFixed(0); 855 unsigned EpilogueUF = 0; 856 BasicBlock *MainLoopIterationCountCheck = nullptr; 857 BasicBlock *EpilogueIterationCountCheck = nullptr; 858 BasicBlock *SCEVSafetyCheck = nullptr; 859 BasicBlock *MemSafetyCheck = nullptr; 860 Value *TripCount = nullptr; 861 Value *VectorTripCount = nullptr; 862 863 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 864 ElementCount EVF, unsigned EUF) 865 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 866 assert(EUF == 1 && 867 "A high UF for the epilogue loop is likely not beneficial."); 868 } 869 }; 870 871 /// An extension of the inner loop vectorizer that creates a skeleton for a 872 /// vectorized loop that has its epilogue (residual) also vectorized. 873 /// The idea is to run the vplan on a given loop twice, firstly to setup the 874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 875 /// from the first step and vectorize the epilogue. This is achieved by 876 /// deriving two concrete strategy classes from this base class and invoking 877 /// them in succession from the loop vectorizer planner. 878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 879 public: 880 InnerLoopAndEpilogueVectorizer( 881 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 882 DominatorTree *DT, const TargetLibraryInfo *TLI, 883 const TargetTransformInfo *TTI, AssumptionCache *AC, 884 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 885 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 886 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 887 GeneratedRTChecks &Checks) 888 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 889 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 890 Checks), 891 EPI(EPI) {} 892 893 // Override this function to handle the more complex control flow around the 894 // three loops. 895 std::pair<BasicBlock *, Value *> 896 createVectorizedLoopSkeleton() final override { 897 return createEpilogueVectorizedLoopSkeleton(); 898 } 899 900 /// The interface for creating a vectorized skeleton using one of two 901 /// different strategies, each corresponding to one execution of the vplan 902 /// as described above. 903 virtual std::pair<BasicBlock *, Value *> 904 createEpilogueVectorizedLoopSkeleton() = 0; 905 906 /// Holds and updates state information required to vectorize the main loop 907 /// and its epilogue in two separate passes. This setup helps us avoid 908 /// regenerating and recomputing runtime safety checks. It also helps us to 909 /// shorten the iteration-count-check path length for the cases where the 910 /// iteration count of the loop is so small that the main vector loop is 911 /// completely skipped. 912 EpilogueLoopVectorizationInfo &EPI; 913 }; 914 915 /// A specialized derived class of inner loop vectorizer that performs 916 /// vectorization of *main* loops in the process of vectorizing loops and their 917 /// epilogues. 918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 919 public: 920 EpilogueVectorizerMainLoop( 921 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 922 DominatorTree *DT, const TargetLibraryInfo *TLI, 923 const TargetTransformInfo *TTI, AssumptionCache *AC, 924 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 925 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 926 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 927 GeneratedRTChecks &Check) 928 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 929 EPI, LVL, CM, BFI, PSI, Check) {} 930 /// Implements the interface for creating a vectorized skeleton using the 931 /// *main loop* strategy (ie the first pass of vplan execution). 932 std::pair<BasicBlock *, Value *> 933 createEpilogueVectorizedLoopSkeleton() final override; 934 935 protected: 936 /// Emits an iteration count bypass check once for the main loop (when \p 937 /// ForEpilogue is false) and once for the epilogue loop (when \p 938 /// ForEpilogue is true). 939 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 940 bool ForEpilogue); 941 void printDebugTracesAtStart() override; 942 void printDebugTracesAtEnd() override; 943 }; 944 945 // A specialized derived class of inner loop vectorizer that performs 946 // vectorization of *epilogue* loops in the process of vectorizing loops and 947 // their epilogues. 948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 949 public: 950 EpilogueVectorizerEpilogueLoop( 951 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 952 DominatorTree *DT, const TargetLibraryInfo *TLI, 953 const TargetTransformInfo *TTI, AssumptionCache *AC, 954 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 955 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 956 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 957 GeneratedRTChecks &Checks) 958 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 959 EPI, LVL, CM, BFI, PSI, Checks) {} 960 /// Implements the interface for creating a vectorized skeleton using the 961 /// *epilogue loop* strategy (ie the second pass of vplan execution). 962 std::pair<BasicBlock *, Value *> 963 createEpilogueVectorizedLoopSkeleton() final override; 964 965 protected: 966 /// Emits an iteration count bypass check after the main vector loop has 967 /// finished to see if there are any iterations left to execute by either 968 /// the vector epilogue or the scalar epilogue. 969 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 970 BasicBlock *Bypass, 971 BasicBlock *Insert); 972 void printDebugTracesAtStart() override; 973 void printDebugTracesAtEnd() override; 974 }; 975 } // end namespace llvm 976 977 /// Look for a meaningful debug location on the instruction or it's 978 /// operands. 979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 980 if (!I) 981 return I; 982 983 DebugLoc Empty; 984 if (I->getDebugLoc() != Empty) 985 return I; 986 987 for (Use &Op : I->operands()) { 988 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 989 if (OpInst->getDebugLoc() != Empty) 990 return OpInst; 991 } 992 993 return I; 994 } 995 996 void InnerLoopVectorizer::setDebugLocFromInst( 997 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 998 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 999 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1000 const DILocation *DIL = Inst->getDebugLoc(); 1001 1002 // When a FSDiscriminator is enabled, we don't need to add the multiply 1003 // factors to the discriminators. 1004 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1005 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1006 // FIXME: For scalable vectors, assume vscale=1. 1007 auto NewDIL = 1008 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1009 if (NewDIL) 1010 B->SetCurrentDebugLocation(NewDIL.getValue()); 1011 else 1012 LLVM_DEBUG(dbgs() 1013 << "Failed to create new discriminator: " 1014 << DIL->getFilename() << " Line: " << DIL->getLine()); 1015 } else 1016 B->SetCurrentDebugLocation(DIL); 1017 } else 1018 B->SetCurrentDebugLocation(DebugLoc()); 1019 } 1020 1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1022 /// is passed, the message relates to that particular instruction. 1023 #ifndef NDEBUG 1024 static void debugVectorizationMessage(const StringRef Prefix, 1025 const StringRef DebugMsg, 1026 Instruction *I) { 1027 dbgs() << "LV: " << Prefix << DebugMsg; 1028 if (I != nullptr) 1029 dbgs() << " " << *I; 1030 else 1031 dbgs() << '.'; 1032 dbgs() << '\n'; 1033 } 1034 #endif 1035 1036 /// Create an analysis remark that explains why vectorization failed 1037 /// 1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1039 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1040 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1041 /// the location of the remark. \return the remark object that can be 1042 /// streamed to. 1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1044 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1045 Value *CodeRegion = TheLoop->getHeader(); 1046 DebugLoc DL = TheLoop->getStartLoc(); 1047 1048 if (I) { 1049 CodeRegion = I->getParent(); 1050 // If there is no debug location attached to the instruction, revert back to 1051 // using the loop's. 1052 if (I->getDebugLoc()) 1053 DL = I->getDebugLoc(); 1054 } 1055 1056 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1057 } 1058 1059 namespace llvm { 1060 1061 /// Return a value for Step multiplied by VF. 1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1063 int64_t Step) { 1064 assert(Ty->isIntegerTy() && "Expected an integer step"); 1065 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1066 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1067 } 1068 1069 /// Return the runtime value for VF. 1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1071 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1072 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1073 } 1074 1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1076 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1077 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1078 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1079 return B.CreateUIToFP(RuntimeVF, FTy); 1080 } 1081 1082 void reportVectorizationFailure(const StringRef DebugMsg, 1083 const StringRef OREMsg, const StringRef ORETag, 1084 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1085 Instruction *I) { 1086 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1087 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1088 ORE->emit( 1089 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1090 << "loop not vectorized: " << OREMsg); 1091 } 1092 1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1094 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1095 Instruction *I) { 1096 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1097 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1098 ORE->emit( 1099 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1100 << Msg); 1101 } 1102 1103 } // end namespace llvm 1104 1105 #ifndef NDEBUG 1106 /// \return string containing a file name and a line # for the given loop. 1107 static std::string getDebugLocString(const Loop *L) { 1108 std::string Result; 1109 if (L) { 1110 raw_string_ostream OS(Result); 1111 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1112 LoopDbgLoc.print(OS); 1113 else 1114 // Just print the module name. 1115 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1116 OS.flush(); 1117 } 1118 return Result; 1119 } 1120 #endif 1121 1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1123 const Instruction *Orig) { 1124 // If the loop was versioned with memchecks, add the corresponding no-alias 1125 // metadata. 1126 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1127 LVer->annotateInstWithNoAlias(To, Orig); 1128 } 1129 1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1131 VPTransformState &State) { 1132 1133 // Collect recipes in the backward slice of `Root` that may generate a poison 1134 // value that is used after vectorization. 1135 SmallPtrSet<VPRecipeBase *, 16> Visited; 1136 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1137 SmallVector<VPRecipeBase *, 16> Worklist; 1138 Worklist.push_back(Root); 1139 1140 // Traverse the backward slice of Root through its use-def chain. 1141 while (!Worklist.empty()) { 1142 VPRecipeBase *CurRec = Worklist.back(); 1143 Worklist.pop_back(); 1144 1145 if (!Visited.insert(CurRec).second) 1146 continue; 1147 1148 // Prune search if we find another recipe generating a widen memory 1149 // instruction. Widen memory instructions involved in address computation 1150 // will lead to gather/scatter instructions, which don't need to be 1151 // handled. 1152 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1153 isa<VPInterleaveRecipe>(CurRec) || 1154 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1155 continue; 1156 1157 // This recipe contributes to the address computation of a widen 1158 // load/store. Collect recipe if its underlying instruction has 1159 // poison-generating flags. 1160 Instruction *Instr = CurRec->getUnderlyingInstr(); 1161 if (Instr && Instr->hasPoisonGeneratingFlags()) 1162 State.MayGeneratePoisonRecipes.insert(CurRec); 1163 1164 // Add new definitions to the worklist. 1165 for (VPValue *operand : CurRec->operands()) 1166 if (VPDef *OpDef = operand->getDef()) 1167 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1168 } 1169 }); 1170 1171 // Traverse all the recipes in the VPlan and collect the poison-generating 1172 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1173 // VPInterleaveRecipe. 1174 auto Iter = depth_first( 1175 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1176 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1177 for (VPRecipeBase &Recipe : *VPBB) { 1178 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1179 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1180 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1181 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1182 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1183 collectPoisonGeneratingInstrsInBackwardSlice( 1184 cast<VPRecipeBase>(AddrDef)); 1185 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1186 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1187 if (AddrDef) { 1188 // Check if any member of the interleave group needs predication. 1189 const InterleaveGroup<Instruction> *InterGroup = 1190 InterleaveRec->getInterleaveGroup(); 1191 bool NeedPredication = false; 1192 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1193 I < NumMembers; ++I) { 1194 Instruction *Member = InterGroup->getMember(I); 1195 if (Member) 1196 NeedPredication |= 1197 Legal->blockNeedsPredication(Member->getParent()); 1198 } 1199 1200 if (NeedPredication) 1201 collectPoisonGeneratingInstrsInBackwardSlice( 1202 cast<VPRecipeBase>(AddrDef)); 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 void InnerLoopVectorizer::addMetadata(Instruction *To, 1210 Instruction *From) { 1211 propagateMetadata(To, From); 1212 addNewMetadata(To, From); 1213 } 1214 1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1216 Instruction *From) { 1217 for (Value *V : To) { 1218 if (Instruction *I = dyn_cast<Instruction>(V)) 1219 addMetadata(I, From); 1220 } 1221 } 1222 1223 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1224 const RecurrenceDescriptor &RdxDesc) { 1225 auto It = ReductionResumeValues.find(&RdxDesc); 1226 assert(It != ReductionResumeValues.end() && 1227 "Expected to find a resume value for the reduction."); 1228 return It->second; 1229 } 1230 1231 namespace llvm { 1232 1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1234 // lowered. 1235 enum ScalarEpilogueLowering { 1236 1237 // The default: allowing scalar epilogues. 1238 CM_ScalarEpilogueAllowed, 1239 1240 // Vectorization with OptForSize: don't allow epilogues. 1241 CM_ScalarEpilogueNotAllowedOptSize, 1242 1243 // A special case of vectorisation with OptForSize: loops with a very small 1244 // trip count are considered for vectorization under OptForSize, thereby 1245 // making sure the cost of their loop body is dominant, free of runtime 1246 // guards and scalar iteration overheads. 1247 CM_ScalarEpilogueNotAllowedLowTripLoop, 1248 1249 // Loop hint predicate indicating an epilogue is undesired. 1250 CM_ScalarEpilogueNotNeededUsePredicate, 1251 1252 // Directive indicating we must either tail fold or not vectorize 1253 CM_ScalarEpilogueNotAllowedUsePredicate 1254 }; 1255 1256 /// ElementCountComparator creates a total ordering for ElementCount 1257 /// for the purposes of using it in a set structure. 1258 struct ElementCountComparator { 1259 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1260 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1261 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1262 } 1263 }; 1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1265 1266 /// LoopVectorizationCostModel - estimates the expected speedups due to 1267 /// vectorization. 1268 /// In many cases vectorization is not profitable. This can happen because of 1269 /// a number of reasons. In this class we mainly attempt to predict the 1270 /// expected speedup/slowdowns due to the supported instruction set. We use the 1271 /// TargetTransformInfo to query the different backends for the cost of 1272 /// different operations. 1273 class LoopVectorizationCostModel { 1274 public: 1275 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1276 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1277 LoopVectorizationLegality *Legal, 1278 const TargetTransformInfo &TTI, 1279 const TargetLibraryInfo *TLI, DemandedBits *DB, 1280 AssumptionCache *AC, 1281 OptimizationRemarkEmitter *ORE, const Function *F, 1282 const LoopVectorizeHints *Hints, 1283 InterleavedAccessInfo &IAI) 1284 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1285 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1286 Hints(Hints), InterleaveInfo(IAI) {} 1287 1288 /// \return An upper bound for the vectorization factors (both fixed and 1289 /// scalable). If the factors are 0, vectorization and interleaving should be 1290 /// avoided up front. 1291 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1292 1293 /// \return True if runtime checks are required for vectorization, and false 1294 /// otherwise. 1295 bool runtimeChecksRequired(); 1296 1297 /// \return The most profitable vectorization factor and the cost of that VF. 1298 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1299 /// then this vectorization factor will be selected if vectorization is 1300 /// possible. 1301 VectorizationFactor 1302 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1303 1304 VectorizationFactor 1305 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1306 const LoopVectorizationPlanner &LVP); 1307 1308 /// Setup cost-based decisions for user vectorization factor. 1309 /// \return true if the UserVF is a feasible VF to be chosen. 1310 bool selectUserVectorizationFactor(ElementCount UserVF) { 1311 collectUniformsAndScalars(UserVF); 1312 collectInstsToScalarize(UserVF); 1313 return expectedCost(UserVF).first.isValid(); 1314 } 1315 1316 /// \return The size (in bits) of the smallest and widest types in the code 1317 /// that needs to be vectorized. We ignore values that remain scalar such as 1318 /// 64 bit loop indices. 1319 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1320 1321 /// \return The desired interleave count. 1322 /// If interleave count has been specified by metadata it will be returned. 1323 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1324 /// are the selected vectorization factor and the cost of the selected VF. 1325 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1326 1327 /// Memory access instruction may be vectorized in more than one way. 1328 /// Form of instruction after vectorization depends on cost. 1329 /// This function takes cost-based decisions for Load/Store instructions 1330 /// and collects them in a map. This decisions map is used for building 1331 /// the lists of loop-uniform and loop-scalar instructions. 1332 /// The calculated cost is saved with widening decision in order to 1333 /// avoid redundant calculations. 1334 void setCostBasedWideningDecision(ElementCount VF); 1335 1336 /// A struct that represents some properties of the register usage 1337 /// of a loop. 1338 struct RegisterUsage { 1339 /// Holds the number of loop invariant values that are used in the loop. 1340 /// The key is ClassID of target-provided register class. 1341 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1342 /// Holds the maximum number of concurrent live intervals in the loop. 1343 /// The key is ClassID of target-provided register class. 1344 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1345 }; 1346 1347 /// \return Returns information about the register usages of the loop for the 1348 /// given vectorization factors. 1349 SmallVector<RegisterUsage, 8> 1350 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1351 1352 /// Collect values we want to ignore in the cost model. 1353 void collectValuesToIgnore(); 1354 1355 /// Collect all element types in the loop for which widening is needed. 1356 void collectElementTypesForWidening(); 1357 1358 /// Split reductions into those that happen in the loop, and those that happen 1359 /// outside. In loop reductions are collected into InLoopReductionChains. 1360 void collectInLoopReductions(); 1361 1362 /// Returns true if we should use strict in-order reductions for the given 1363 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1364 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1365 /// of FP operations. 1366 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1367 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1368 } 1369 1370 /// \returns The smallest bitwidth each instruction can be represented with. 1371 /// The vector equivalents of these instructions should be truncated to this 1372 /// type. 1373 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1374 return MinBWs; 1375 } 1376 1377 /// \returns True if it is more profitable to scalarize instruction \p I for 1378 /// vectorization factor \p VF. 1379 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1380 assert(VF.isVector() && 1381 "Profitable to scalarize relevant only for VF > 1."); 1382 1383 // Cost model is not run in the VPlan-native path - return conservative 1384 // result until this changes. 1385 if (EnableVPlanNativePath) 1386 return false; 1387 1388 auto Scalars = InstsToScalarize.find(VF); 1389 assert(Scalars != InstsToScalarize.end() && 1390 "VF not yet analyzed for scalarization profitability"); 1391 return Scalars->second.find(I) != Scalars->second.end(); 1392 } 1393 1394 /// Returns true if \p I is known to be uniform after vectorization. 1395 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1396 if (VF.isScalar()) 1397 return true; 1398 1399 // Cost model is not run in the VPlan-native path - return conservative 1400 // result until this changes. 1401 if (EnableVPlanNativePath) 1402 return false; 1403 1404 auto UniformsPerVF = Uniforms.find(VF); 1405 assert(UniformsPerVF != Uniforms.end() && 1406 "VF not yet analyzed for uniformity"); 1407 return UniformsPerVF->second.count(I); 1408 } 1409 1410 /// Returns true if \p I is known to be scalar after vectorization. 1411 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1412 if (VF.isScalar()) 1413 return true; 1414 1415 // Cost model is not run in the VPlan-native path - return conservative 1416 // result until this changes. 1417 if (EnableVPlanNativePath) 1418 return false; 1419 1420 auto ScalarsPerVF = Scalars.find(VF); 1421 assert(ScalarsPerVF != Scalars.end() && 1422 "Scalar values are not calculated for VF"); 1423 return ScalarsPerVF->second.count(I); 1424 } 1425 1426 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1427 /// for vectorization factor \p VF. 1428 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1429 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1430 !isProfitableToScalarize(I, VF) && 1431 !isScalarAfterVectorization(I, VF); 1432 } 1433 1434 /// Decision that was taken during cost calculation for memory instruction. 1435 enum InstWidening { 1436 CM_Unknown, 1437 CM_Widen, // For consecutive accesses with stride +1. 1438 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1439 CM_Interleave, 1440 CM_GatherScatter, 1441 CM_Scalarize 1442 }; 1443 1444 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1445 /// instruction \p I and vector width \p VF. 1446 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1450 } 1451 1452 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1453 /// interleaving group \p Grp and vector width \p VF. 1454 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1455 ElementCount VF, InstWidening W, 1456 InstructionCost Cost) { 1457 assert(VF.isVector() && "Expected VF >=2"); 1458 /// Broadcast this decicion to all instructions inside the group. 1459 /// But the cost will be assigned to one instruction only. 1460 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1461 if (auto *I = Grp->getMember(i)) { 1462 if (Grp->getInsertPos() == I) 1463 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1464 else 1465 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1466 } 1467 } 1468 } 1469 1470 /// Return the cost model decision for the given instruction \p I and vector 1471 /// width \p VF. Return CM_Unknown if this instruction did not pass 1472 /// through the cost modeling. 1473 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1474 assert(VF.isVector() && "Expected VF to be a vector VF"); 1475 // Cost model is not run in the VPlan-native path - return conservative 1476 // result until this changes. 1477 if (EnableVPlanNativePath) 1478 return CM_GatherScatter; 1479 1480 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1481 auto Itr = WideningDecisions.find(InstOnVF); 1482 if (Itr == WideningDecisions.end()) 1483 return CM_Unknown; 1484 return Itr->second.first; 1485 } 1486 1487 /// Return the vectorization cost for the given instruction \p I and vector 1488 /// width \p VF. 1489 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1490 assert(VF.isVector() && "Expected VF >=2"); 1491 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1492 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1493 "The cost is not calculated"); 1494 return WideningDecisions[InstOnVF].second; 1495 } 1496 1497 /// Return True if instruction \p I is an optimizable truncate whose operand 1498 /// is an induction variable. Such a truncate will be removed by adding a new 1499 /// induction variable with the destination type. 1500 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1501 // If the instruction is not a truncate, return false. 1502 auto *Trunc = dyn_cast<TruncInst>(I); 1503 if (!Trunc) 1504 return false; 1505 1506 // Get the source and destination types of the truncate. 1507 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1508 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1509 1510 // If the truncate is free for the given types, return false. Replacing a 1511 // free truncate with an induction variable would add an induction variable 1512 // update instruction to each iteration of the loop. We exclude from this 1513 // check the primary induction variable since it will need an update 1514 // instruction regardless. 1515 Value *Op = Trunc->getOperand(0); 1516 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1517 return false; 1518 1519 // If the truncated value is not an induction variable, return false. 1520 return Legal->isInductionPhi(Op); 1521 } 1522 1523 /// Collects the instructions to scalarize for each predicated instruction in 1524 /// the loop. 1525 void collectInstsToScalarize(ElementCount VF); 1526 1527 /// Collect Uniform and Scalar values for the given \p VF. 1528 /// The sets depend on CM decision for Load/Store instructions 1529 /// that may be vectorized as interleave, gather-scatter or scalarized. 1530 void collectUniformsAndScalars(ElementCount VF) { 1531 // Do the analysis once. 1532 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1533 return; 1534 setCostBasedWideningDecision(VF); 1535 collectLoopUniforms(VF); 1536 collectLoopScalars(VF); 1537 } 1538 1539 /// Returns true if the target machine supports masked store operation 1540 /// for the given \p DataType and kind of access to \p Ptr. 1541 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1542 return Legal->isConsecutivePtr(DataType, Ptr) && 1543 TTI.isLegalMaskedStore(DataType, Alignment); 1544 } 1545 1546 /// Returns true if the target machine supports masked load operation 1547 /// for the given \p DataType and kind of access to \p Ptr. 1548 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1549 return Legal->isConsecutivePtr(DataType, Ptr) && 1550 TTI.isLegalMaskedLoad(DataType, Alignment); 1551 } 1552 1553 /// Returns true if the target machine can represent \p V as a masked gather 1554 /// or scatter operation. 1555 bool isLegalGatherOrScatter(Value *V, 1556 ElementCount VF = ElementCount::getFixed(1)) { 1557 bool LI = isa<LoadInst>(V); 1558 bool SI = isa<StoreInst>(V); 1559 if (!LI && !SI) 1560 return false; 1561 auto *Ty = getLoadStoreType(V); 1562 Align Align = getLoadStoreAlignment(V); 1563 if (VF.isVector()) 1564 Ty = VectorType::get(Ty, VF); 1565 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1566 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1567 } 1568 1569 /// Returns true if the target machine supports all of the reduction 1570 /// variables found for the given VF. 1571 bool canVectorizeReductions(ElementCount VF) const { 1572 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1573 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1574 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1575 })); 1576 } 1577 1578 /// Returns true if \p I is an instruction that will be scalarized with 1579 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1580 /// instructions include conditional stores and instructions that may divide 1581 /// by zero. 1582 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1583 1584 // Returns true if \p I is an instruction that will be predicated either 1585 // through scalar predication or masked load/store or masked gather/scatter. 1586 // \p VF is the vectorization factor that will be used to vectorize \p I. 1587 // Superset of instructions that return true for isScalarWithPredication. 1588 bool isPredicatedInst(Instruction *I, ElementCount VF, 1589 bool IsKnownUniform = false) { 1590 // When we know the load is uniform and the original scalar loop was not 1591 // predicated we don't need to mark it as a predicated instruction. Any 1592 // vectorised blocks created when tail-folding are something artificial we 1593 // have introduced and we know there is always at least one active lane. 1594 // That's why we call Legal->blockNeedsPredication here because it doesn't 1595 // query tail-folding. 1596 if (IsKnownUniform && isa<LoadInst>(I) && 1597 !Legal->blockNeedsPredication(I->getParent())) 1598 return false; 1599 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1600 return false; 1601 // Loads and stores that need some form of masked operation are predicated 1602 // instructions. 1603 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1604 return Legal->isMaskRequired(I); 1605 return isScalarWithPredication(I, VF); 1606 } 1607 1608 /// Returns true if \p I is a memory instruction with consecutive memory 1609 /// access that can be widened. 1610 bool 1611 memoryInstructionCanBeWidened(Instruction *I, 1612 ElementCount VF = ElementCount::getFixed(1)); 1613 1614 /// Returns true if \p I is a memory instruction in an interleaved-group 1615 /// of memory accesses that can be vectorized with wide vector loads/stores 1616 /// and shuffles. 1617 bool 1618 interleavedAccessCanBeWidened(Instruction *I, 1619 ElementCount VF = ElementCount::getFixed(1)); 1620 1621 /// Check if \p Instr belongs to any interleaved access group. 1622 bool isAccessInterleaved(Instruction *Instr) { 1623 return InterleaveInfo.isInterleaved(Instr); 1624 } 1625 1626 /// Get the interleaved access group that \p Instr belongs to. 1627 const InterleaveGroup<Instruction> * 1628 getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// Returns true if we're required to use a scalar epilogue for at least 1633 /// the final iteration of the original loop. 1634 bool requiresScalarEpilogue(ElementCount VF) const { 1635 if (!isScalarEpilogueAllowed()) 1636 return false; 1637 // If we might exit from anywhere but the latch, must run the exiting 1638 // iteration in scalar form. 1639 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1640 return true; 1641 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1642 } 1643 1644 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1645 /// loop hint annotation. 1646 bool isScalarEpilogueAllowed() const { 1647 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1648 } 1649 1650 /// Returns true if all loop blocks should be masked to fold tail loop. 1651 bool foldTailByMasking() const { return FoldTailByMasking; } 1652 1653 /// Returns true if the instructions in this block requires predication 1654 /// for any reason, e.g. because tail folding now requires a predicate 1655 /// or because the block in the original loop was predicated. 1656 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1657 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1658 } 1659 1660 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1661 /// nodes to the chain of instructions representing the reductions. Uses a 1662 /// MapVector to ensure deterministic iteration order. 1663 using ReductionChainMap = 1664 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1665 1666 /// Return the chain of instructions representing an inloop reduction. 1667 const ReductionChainMap &getInLoopReductionChains() const { 1668 return InLoopReductionChains; 1669 } 1670 1671 /// Returns true if the Phi is part of an inloop reduction. 1672 bool isInLoopReduction(PHINode *Phi) const { 1673 return InLoopReductionChains.count(Phi); 1674 } 1675 1676 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1677 /// with factor VF. Return the cost of the instruction, including 1678 /// scalarization overhead if it's needed. 1679 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1680 1681 /// Estimate cost of a call instruction CI if it were vectorized with factor 1682 /// VF. Return the cost of the instruction, including scalarization overhead 1683 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1684 /// scalarized - 1685 /// i.e. either vector version isn't available, or is too expensive. 1686 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1687 bool &NeedToScalarize) const; 1688 1689 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1690 /// that of B. 1691 bool isMoreProfitable(const VectorizationFactor &A, 1692 const VectorizationFactor &B) const; 1693 1694 /// Invalidates decisions already taken by the cost model. 1695 void invalidateCostModelingDecisions() { 1696 WideningDecisions.clear(); 1697 Uniforms.clear(); 1698 Scalars.clear(); 1699 } 1700 1701 private: 1702 unsigned NumPredStores = 0; 1703 1704 /// \return An upper bound for the vectorization factors for both 1705 /// fixed and scalable vectorization, where the minimum-known number of 1706 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1707 /// disabled or unsupported, then the scalable part will be equal to 1708 /// ElementCount::getScalable(0). 1709 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1710 ElementCount UserVF, 1711 bool FoldTailByMasking); 1712 1713 /// \return the maximized element count based on the targets vector 1714 /// registers and the loop trip-count, but limited to a maximum safe VF. 1715 /// This is a helper function of computeFeasibleMaxVF. 1716 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1717 /// issue that occurred on one of the buildbots which cannot be reproduced 1718 /// without having access to the properietary compiler (see comments on 1719 /// D98509). The issue is currently under investigation and this workaround 1720 /// will be removed as soon as possible. 1721 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1722 unsigned SmallestType, 1723 unsigned WidestType, 1724 const ElementCount &MaxSafeVF, 1725 bool FoldTailByMasking); 1726 1727 /// \return the maximum legal scalable VF, based on the safe max number 1728 /// of elements. 1729 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1730 1731 /// The vectorization cost is a combination of the cost itself and a boolean 1732 /// indicating whether any of the contributing operations will actually 1733 /// operate on vector values after type legalization in the backend. If this 1734 /// latter value is false, then all operations will be scalarized (i.e. no 1735 /// vectorization has actually taken place). 1736 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1737 1738 /// Returns the expected execution cost. The unit of the cost does 1739 /// not matter because we use the 'cost' units to compare different 1740 /// vector widths. The cost that is returned is *not* normalized by 1741 /// the factor width. If \p Invalid is not nullptr, this function 1742 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1743 /// each instruction that has an Invalid cost for the given VF. 1744 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1745 VectorizationCostTy 1746 expectedCost(ElementCount VF, 1747 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1748 1749 /// Returns the execution time cost of an instruction for a given vector 1750 /// width. Vector width of one means scalar. 1751 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1752 1753 /// The cost-computation logic from getInstructionCost which provides 1754 /// the vector type as an output parameter. 1755 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1756 Type *&VectorTy); 1757 1758 /// Return the cost of instructions in an inloop reduction pattern, if I is 1759 /// part of that pattern. 1760 Optional<InstructionCost> 1761 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1762 TTI::TargetCostKind CostKind); 1763 1764 /// Calculate vectorization cost of memory instruction \p I. 1765 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for scalarized memory instruction. 1768 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1769 1770 /// The cost computation for interleaving group of memory instructions. 1771 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1772 1773 /// The cost computation for Gather/Scatter instruction. 1774 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1775 1776 /// The cost computation for widening instruction \p I with consecutive 1777 /// memory access. 1778 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1779 1780 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1781 /// Load: scalar load + broadcast. 1782 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1783 /// element) 1784 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1785 1786 /// Estimate the overhead of scalarizing an instruction. This is a 1787 /// convenience wrapper for the type-based getScalarizationOverhead API. 1788 InstructionCost getScalarizationOverhead(Instruction *I, 1789 ElementCount VF) const; 1790 1791 /// Returns whether the instruction is a load or store and will be a emitted 1792 /// as a vector operation. 1793 bool isConsecutiveLoadOrStore(Instruction *I); 1794 1795 /// Returns true if an artificially high cost for emulated masked memrefs 1796 /// should be used. 1797 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1798 1799 /// Map of scalar integer values to the smallest bitwidth they can be legally 1800 /// represented as. The vector equivalents of these values should be truncated 1801 /// to this type. 1802 MapVector<Instruction *, uint64_t> MinBWs; 1803 1804 /// A type representing the costs for instructions if they were to be 1805 /// scalarized rather than vectorized. The entries are Instruction-Cost 1806 /// pairs. 1807 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1808 1809 /// A set containing all BasicBlocks that are known to present after 1810 /// vectorization as a predicated block. 1811 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1812 1813 /// Records whether it is allowed to have the original scalar loop execute at 1814 /// least once. This may be needed as a fallback loop in case runtime 1815 /// aliasing/dependence checks fail, or to handle the tail/remainder 1816 /// iterations when the trip count is unknown or doesn't divide by the VF, 1817 /// or as a peel-loop to handle gaps in interleave-groups. 1818 /// Under optsize and when the trip count is very small we don't allow any 1819 /// iterations to execute in the scalar loop. 1820 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1821 1822 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1823 bool FoldTailByMasking = false; 1824 1825 /// A map holding scalar costs for different vectorization factors. The 1826 /// presence of a cost for an instruction in the mapping indicates that the 1827 /// instruction will be scalarized when vectorizing with the associated 1828 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1829 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1830 1831 /// Holds the instructions known to be uniform after vectorization. 1832 /// The data is collected per VF. 1833 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1834 1835 /// Holds the instructions known to be scalar after vectorization. 1836 /// The data is collected per VF. 1837 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1838 1839 /// Holds the instructions (address computations) that are forced to be 1840 /// scalarized. 1841 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1842 1843 /// PHINodes of the reductions that should be expanded in-loop along with 1844 /// their associated chains of reduction operations, in program order from top 1845 /// (PHI) to bottom 1846 ReductionChainMap InLoopReductionChains; 1847 1848 /// A Map of inloop reduction operations and their immediate chain operand. 1849 /// FIXME: This can be removed once reductions can be costed correctly in 1850 /// vplan. This was added to allow quick lookup to the inloop operations, 1851 /// without having to loop through InLoopReductionChains. 1852 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1853 1854 /// Returns the expected difference in cost from scalarizing the expression 1855 /// feeding a predicated instruction \p PredInst. The instructions to 1856 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1857 /// non-negative return value implies the expression will be scalarized. 1858 /// Currently, only single-use chains are considered for scalarization. 1859 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1860 ElementCount VF); 1861 1862 /// Collect the instructions that are uniform after vectorization. An 1863 /// instruction is uniform if we represent it with a single scalar value in 1864 /// the vectorized loop corresponding to each vector iteration. Examples of 1865 /// uniform instructions include pointer operands of consecutive or 1866 /// interleaved memory accesses. Note that although uniformity implies an 1867 /// instruction will be scalar, the reverse is not true. In general, a 1868 /// scalarized instruction will be represented by VF scalar values in the 1869 /// vectorized loop, each corresponding to an iteration of the original 1870 /// scalar loop. 1871 void collectLoopUniforms(ElementCount VF); 1872 1873 /// Collect the instructions that are scalar after vectorization. An 1874 /// instruction is scalar if it is known to be uniform or will be scalarized 1875 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1876 /// to the list if they are used by a load/store instruction that is marked as 1877 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1878 /// VF values in the vectorized loop, each corresponding to an iteration of 1879 /// the original scalar loop. 1880 void collectLoopScalars(ElementCount VF); 1881 1882 /// Keeps cost model vectorization decision and cost for instructions. 1883 /// Right now it is used for memory instructions only. 1884 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1885 std::pair<InstWidening, InstructionCost>>; 1886 1887 DecisionList WideningDecisions; 1888 1889 /// Returns true if \p V is expected to be vectorized and it needs to be 1890 /// extracted. 1891 bool needsExtract(Value *V, ElementCount VF) const { 1892 Instruction *I = dyn_cast<Instruction>(V); 1893 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1894 TheLoop->isLoopInvariant(I)) 1895 return false; 1896 1897 // Assume we can vectorize V (and hence we need extraction) if the 1898 // scalars are not computed yet. This can happen, because it is called 1899 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1900 // the scalars are collected. That should be a safe assumption in most 1901 // cases, because we check if the operands have vectorizable types 1902 // beforehand in LoopVectorizationLegality. 1903 return Scalars.find(VF) == Scalars.end() || 1904 !isScalarAfterVectorization(I, VF); 1905 }; 1906 1907 /// Returns a range containing only operands needing to be extracted. 1908 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1909 ElementCount VF) const { 1910 return SmallVector<Value *, 4>(make_filter_range( 1911 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1912 } 1913 1914 /// Determines if we have the infrastructure to vectorize loop \p L and its 1915 /// epilogue, assuming the main loop is vectorized by \p VF. 1916 bool isCandidateForEpilogueVectorization(const Loop &L, 1917 const ElementCount VF) const; 1918 1919 /// Returns true if epilogue vectorization is considered profitable, and 1920 /// false otherwise. 1921 /// \p VF is the vectorization factor chosen for the original loop. 1922 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1923 1924 public: 1925 /// The loop that we evaluate. 1926 Loop *TheLoop; 1927 1928 /// Predicated scalar evolution analysis. 1929 PredicatedScalarEvolution &PSE; 1930 1931 /// Loop Info analysis. 1932 LoopInfo *LI; 1933 1934 /// Vectorization legality. 1935 LoopVectorizationLegality *Legal; 1936 1937 /// Vector target information. 1938 const TargetTransformInfo &TTI; 1939 1940 /// Target Library Info. 1941 const TargetLibraryInfo *TLI; 1942 1943 /// Demanded bits analysis. 1944 DemandedBits *DB; 1945 1946 /// Assumption cache. 1947 AssumptionCache *AC; 1948 1949 /// Interface to emit optimization remarks. 1950 OptimizationRemarkEmitter *ORE; 1951 1952 const Function *TheFunction; 1953 1954 /// Loop Vectorize Hint. 1955 const LoopVectorizeHints *Hints; 1956 1957 /// The interleave access information contains groups of interleaved accesses 1958 /// with the same stride and close to each other. 1959 InterleavedAccessInfo &InterleaveInfo; 1960 1961 /// Values to ignore in the cost model. 1962 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1963 1964 /// Values to ignore in the cost model when VF > 1. 1965 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1966 1967 /// All element types found in the loop. 1968 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1969 1970 /// Profitable vector factors. 1971 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1972 }; 1973 } // end namespace llvm 1974 1975 /// Helper struct to manage generating runtime checks for vectorization. 1976 /// 1977 /// The runtime checks are created up-front in temporary blocks to allow better 1978 /// estimating the cost and un-linked from the existing IR. After deciding to 1979 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1980 /// temporary blocks are completely removed. 1981 class GeneratedRTChecks { 1982 /// Basic block which contains the generated SCEV checks, if any. 1983 BasicBlock *SCEVCheckBlock = nullptr; 1984 1985 /// The value representing the result of the generated SCEV checks. If it is 1986 /// nullptr, either no SCEV checks have been generated or they have been used. 1987 Value *SCEVCheckCond = nullptr; 1988 1989 /// Basic block which contains the generated memory runtime checks, if any. 1990 BasicBlock *MemCheckBlock = nullptr; 1991 1992 /// The value representing the result of the generated memory runtime checks. 1993 /// If it is nullptr, either no memory runtime checks have been generated or 1994 /// they have been used. 1995 Value *MemRuntimeCheckCond = nullptr; 1996 1997 DominatorTree *DT; 1998 LoopInfo *LI; 1999 2000 SCEVExpander SCEVExp; 2001 SCEVExpander MemCheckExp; 2002 2003 public: 2004 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2005 const DataLayout &DL) 2006 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2007 MemCheckExp(SE, DL, "scev.check") {} 2008 2009 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2010 /// accurately estimate the cost of the runtime checks. The blocks are 2011 /// un-linked from the IR and is added back during vector code generation. If 2012 /// there is no vector code generation, the check blocks are removed 2013 /// completely. 2014 void Create(Loop *L, const LoopAccessInfo &LAI, 2015 const SCEVUnionPredicate &UnionPred) { 2016 2017 BasicBlock *LoopHeader = L->getHeader(); 2018 BasicBlock *Preheader = L->getLoopPreheader(); 2019 2020 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2021 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2022 // may be used by SCEVExpander. The blocks will be un-linked from their 2023 // predecessors and removed from LI & DT at the end of the function. 2024 if (!UnionPred.isAlwaysTrue()) { 2025 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2026 nullptr, "vector.scevcheck"); 2027 2028 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2029 &UnionPred, SCEVCheckBlock->getTerminator()); 2030 } 2031 2032 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2033 if (RtPtrChecking.Need) { 2034 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2035 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2036 "vector.memcheck"); 2037 2038 MemRuntimeCheckCond = 2039 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2040 RtPtrChecking.getChecks(), MemCheckExp); 2041 assert(MemRuntimeCheckCond && 2042 "no RT checks generated although RtPtrChecking " 2043 "claimed checks are required"); 2044 } 2045 2046 if (!MemCheckBlock && !SCEVCheckBlock) 2047 return; 2048 2049 // Unhook the temporary block with the checks, update various places 2050 // accordingly. 2051 if (SCEVCheckBlock) 2052 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2053 if (MemCheckBlock) 2054 MemCheckBlock->replaceAllUsesWith(Preheader); 2055 2056 if (SCEVCheckBlock) { 2057 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2058 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2059 Preheader->getTerminator()->eraseFromParent(); 2060 } 2061 if (MemCheckBlock) { 2062 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2063 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2064 Preheader->getTerminator()->eraseFromParent(); 2065 } 2066 2067 DT->changeImmediateDominator(LoopHeader, Preheader); 2068 if (MemCheckBlock) { 2069 DT->eraseNode(MemCheckBlock); 2070 LI->removeBlock(MemCheckBlock); 2071 } 2072 if (SCEVCheckBlock) { 2073 DT->eraseNode(SCEVCheckBlock); 2074 LI->removeBlock(SCEVCheckBlock); 2075 } 2076 } 2077 2078 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2079 /// unused. 2080 ~GeneratedRTChecks() { 2081 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2082 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2083 if (!SCEVCheckCond) 2084 SCEVCleaner.markResultUsed(); 2085 2086 if (!MemRuntimeCheckCond) 2087 MemCheckCleaner.markResultUsed(); 2088 2089 if (MemRuntimeCheckCond) { 2090 auto &SE = *MemCheckExp.getSE(); 2091 // Memory runtime check generation creates compares that use expanded 2092 // values. Remove them before running the SCEVExpanderCleaners. 2093 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2094 if (MemCheckExp.isInsertedInstruction(&I)) 2095 continue; 2096 SE.forgetValue(&I); 2097 I.eraseFromParent(); 2098 } 2099 } 2100 MemCheckCleaner.cleanup(); 2101 SCEVCleaner.cleanup(); 2102 2103 if (SCEVCheckCond) 2104 SCEVCheckBlock->eraseFromParent(); 2105 if (MemRuntimeCheckCond) 2106 MemCheckBlock->eraseFromParent(); 2107 } 2108 2109 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2110 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2111 /// depending on the generated condition. 2112 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2113 BasicBlock *LoopVectorPreHeader, 2114 BasicBlock *LoopExitBlock) { 2115 if (!SCEVCheckCond) 2116 return nullptr; 2117 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2118 if (C->isZero()) 2119 return nullptr; 2120 2121 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2122 2123 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2124 // Create new preheader for vector loop. 2125 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2126 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2127 2128 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2129 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2130 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2131 SCEVCheckBlock); 2132 2133 DT->addNewBlock(SCEVCheckBlock, Pred); 2134 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2135 2136 ReplaceInstWithInst( 2137 SCEVCheckBlock->getTerminator(), 2138 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2139 // Mark the check as used, to prevent it from being removed during cleanup. 2140 SCEVCheckCond = nullptr; 2141 return SCEVCheckBlock; 2142 } 2143 2144 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2145 /// the branches to branch to the vector preheader or \p Bypass, depending on 2146 /// the generated condition. 2147 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2148 BasicBlock *LoopVectorPreHeader) { 2149 // Check if we generated code that checks in runtime if arrays overlap. 2150 if (!MemRuntimeCheckCond) 2151 return nullptr; 2152 2153 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2154 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2155 MemCheckBlock); 2156 2157 DT->addNewBlock(MemCheckBlock, Pred); 2158 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2159 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2160 2161 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2162 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2163 2164 ReplaceInstWithInst( 2165 MemCheckBlock->getTerminator(), 2166 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2167 MemCheckBlock->getTerminator()->setDebugLoc( 2168 Pred->getTerminator()->getDebugLoc()); 2169 2170 // Mark the check as used, to prevent it from being removed during cleanup. 2171 MemRuntimeCheckCond = nullptr; 2172 return MemCheckBlock; 2173 } 2174 }; 2175 2176 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2177 // vectorization. The loop needs to be annotated with #pragma omp simd 2178 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2179 // vector length information is not provided, vectorization is not considered 2180 // explicit. Interleave hints are not allowed either. These limitations will be 2181 // relaxed in the future. 2182 // Please, note that we are currently forced to abuse the pragma 'clang 2183 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2184 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2185 // provides *explicit vectorization hints* (LV can bypass legal checks and 2186 // assume that vectorization is legal). However, both hints are implemented 2187 // using the same metadata (llvm.loop.vectorize, processed by 2188 // LoopVectorizeHints). This will be fixed in the future when the native IR 2189 // representation for pragma 'omp simd' is introduced. 2190 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2191 OptimizationRemarkEmitter *ORE) { 2192 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2193 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2194 2195 // Only outer loops with an explicit vectorization hint are supported. 2196 // Unannotated outer loops are ignored. 2197 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2198 return false; 2199 2200 Function *Fn = OuterLp->getHeader()->getParent(); 2201 if (!Hints.allowVectorization(Fn, OuterLp, 2202 true /*VectorizeOnlyWhenForced*/)) { 2203 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2204 return false; 2205 } 2206 2207 if (Hints.getInterleave() > 1) { 2208 // TODO: Interleave support is future work. 2209 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2210 "outer loops.\n"); 2211 Hints.emitRemarkWithHints(); 2212 return false; 2213 } 2214 2215 return true; 2216 } 2217 2218 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2219 OptimizationRemarkEmitter *ORE, 2220 SmallVectorImpl<Loop *> &V) { 2221 // Collect inner loops and outer loops without irreducible control flow. For 2222 // now, only collect outer loops that have explicit vectorization hints. If we 2223 // are stress testing the VPlan H-CFG construction, we collect the outermost 2224 // loop of every loop nest. 2225 if (L.isInnermost() || VPlanBuildStressTest || 2226 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2227 LoopBlocksRPO RPOT(&L); 2228 RPOT.perform(LI); 2229 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2230 V.push_back(&L); 2231 // TODO: Collect inner loops inside marked outer loops in case 2232 // vectorization fails for the outer loop. Do not invoke 2233 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2234 // already known to be reducible. We can use an inherited attribute for 2235 // that. 2236 return; 2237 } 2238 } 2239 for (Loop *InnerL : L) 2240 collectSupportedLoops(*InnerL, LI, ORE, V); 2241 } 2242 2243 namespace { 2244 2245 /// The LoopVectorize Pass. 2246 struct LoopVectorize : public FunctionPass { 2247 /// Pass identification, replacement for typeid 2248 static char ID; 2249 2250 LoopVectorizePass Impl; 2251 2252 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2253 bool VectorizeOnlyWhenForced = false) 2254 : FunctionPass(ID), 2255 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2256 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2257 } 2258 2259 bool runOnFunction(Function &F) override { 2260 if (skipFunction(F)) 2261 return false; 2262 2263 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2264 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2265 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2266 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2267 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2268 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2269 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2270 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2271 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2272 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2273 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2274 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2275 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2276 2277 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2278 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2279 2280 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2281 GetLAA, *ORE, PSI).MadeAnyChange; 2282 } 2283 2284 void getAnalysisUsage(AnalysisUsage &AU) const override { 2285 AU.addRequired<AssumptionCacheTracker>(); 2286 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2287 AU.addRequired<DominatorTreeWrapperPass>(); 2288 AU.addRequired<LoopInfoWrapperPass>(); 2289 AU.addRequired<ScalarEvolutionWrapperPass>(); 2290 AU.addRequired<TargetTransformInfoWrapperPass>(); 2291 AU.addRequired<AAResultsWrapperPass>(); 2292 AU.addRequired<LoopAccessLegacyAnalysis>(); 2293 AU.addRequired<DemandedBitsWrapperPass>(); 2294 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2295 AU.addRequired<InjectTLIMappingsLegacy>(); 2296 2297 // We currently do not preserve loopinfo/dominator analyses with outer loop 2298 // vectorization. Until this is addressed, mark these analyses as preserved 2299 // only for non-VPlan-native path. 2300 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2301 if (!EnableVPlanNativePath) { 2302 AU.addPreserved<LoopInfoWrapperPass>(); 2303 AU.addPreserved<DominatorTreeWrapperPass>(); 2304 } 2305 2306 AU.addPreserved<BasicAAWrapperPass>(); 2307 AU.addPreserved<GlobalsAAWrapperPass>(); 2308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2309 } 2310 }; 2311 2312 } // end anonymous namespace 2313 2314 //===----------------------------------------------------------------------===// 2315 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2316 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2317 //===----------------------------------------------------------------------===// 2318 2319 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2320 // We need to place the broadcast of invariant variables outside the loop, 2321 // but only if it's proven safe to do so. Else, broadcast will be inside 2322 // vector loop body. 2323 Instruction *Instr = dyn_cast<Instruction>(V); 2324 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2325 (!Instr || 2326 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2327 // Place the code for broadcasting invariant variables in the new preheader. 2328 IRBuilder<>::InsertPointGuard Guard(Builder); 2329 if (SafeToHoist) 2330 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2331 2332 // Broadcast the scalar into all locations in the vector. 2333 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2334 2335 return Shuf; 2336 } 2337 2338 /// This function adds 2339 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2340 /// to each vector element of Val. The sequence starts at StartIndex. 2341 /// \p Opcode is relevant for FP induction variable. 2342 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2343 Instruction::BinaryOps BinOp, ElementCount VF, 2344 IRBuilder<> &Builder) { 2345 assert(VF.isVector() && "only vector VFs are supported"); 2346 2347 // Create and check the types. 2348 auto *ValVTy = cast<VectorType>(Val->getType()); 2349 ElementCount VLen = ValVTy->getElementCount(); 2350 2351 Type *STy = Val->getType()->getScalarType(); 2352 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2353 "Induction Step must be an integer or FP"); 2354 assert(Step->getType() == STy && "Step has wrong type"); 2355 2356 SmallVector<Constant *, 8> Indices; 2357 2358 // Create a vector of consecutive numbers from zero to VF. 2359 VectorType *InitVecValVTy = ValVTy; 2360 Type *InitVecValSTy = STy; 2361 if (STy->isFloatingPointTy()) { 2362 InitVecValSTy = 2363 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2364 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2365 } 2366 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2367 2368 // Splat the StartIdx 2369 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2370 2371 if (STy->isIntegerTy()) { 2372 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2373 Step = Builder.CreateVectorSplat(VLen, Step); 2374 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2375 // FIXME: The newly created binary instructions should contain nsw/nuw 2376 // flags, which can be found from the original scalar operations. 2377 Step = Builder.CreateMul(InitVec, Step); 2378 return Builder.CreateAdd(Val, Step, "induction"); 2379 } 2380 2381 // Floating point induction. 2382 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2383 "Binary Opcode should be specified for FP induction"); 2384 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2385 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2386 2387 Step = Builder.CreateVectorSplat(VLen, Step); 2388 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2389 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2390 } 2391 2392 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2393 const InductionDescriptor &II, Value *Step, Value *Start, 2394 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2395 IRBuilder<> &Builder = State.Builder; 2396 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2397 "Expected either an induction phi-node or a truncate of it!"); 2398 2399 // Construct the initial value of the vector IV in the vector loop preheader 2400 auto CurrIP = Builder.saveIP(); 2401 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2402 if (isa<TruncInst>(EntryVal)) { 2403 assert(Start->getType()->isIntegerTy() && 2404 "Truncation requires an integer type"); 2405 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2406 Step = Builder.CreateTrunc(Step, TruncType); 2407 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2408 } 2409 2410 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2411 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2412 Value *SteppedStart = getStepVector( 2413 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2414 2415 // We create vector phi nodes for both integer and floating-point induction 2416 // variables. Here, we determine the kind of arithmetic we will perform. 2417 Instruction::BinaryOps AddOp; 2418 Instruction::BinaryOps MulOp; 2419 if (Step->getType()->isIntegerTy()) { 2420 AddOp = Instruction::Add; 2421 MulOp = Instruction::Mul; 2422 } else { 2423 AddOp = II.getInductionOpcode(); 2424 MulOp = Instruction::FMul; 2425 } 2426 2427 // Multiply the vectorization factor by the step using integer or 2428 // floating-point arithmetic as appropriate. 2429 Type *StepType = Step->getType(); 2430 Value *RuntimeVF; 2431 if (Step->getType()->isFloatingPointTy()) 2432 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2433 else 2434 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2435 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2436 2437 // Create a vector splat to use in the induction update. 2438 // 2439 // FIXME: If the step is non-constant, we create the vector splat with 2440 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2441 // handle a constant vector splat. 2442 Value *SplatVF = isa<Constant>(Mul) 2443 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2444 : Builder.CreateVectorSplat(State.VF, Mul); 2445 Builder.restoreIP(CurrIP); 2446 2447 // We may need to add the step a number of times, depending on the unroll 2448 // factor. The last of those goes into the PHI. 2449 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2450 &*LoopVectorBody->getFirstInsertionPt()); 2451 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2452 Instruction *LastInduction = VecInd; 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 State.set(Def, LastInduction, Part); 2455 2456 if (isa<TruncInst>(EntryVal)) 2457 addMetadata(LastInduction, EntryVal); 2458 2459 LastInduction = cast<Instruction>( 2460 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2461 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2462 } 2463 2464 // Move the last step to the end of the latch block. This ensures consistent 2465 // placement of all induction updates. 2466 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2467 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2468 LastInduction->moveBefore(Br); 2469 LastInduction->setName("vec.ind.next"); 2470 2471 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2472 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2473 } 2474 2475 void InnerLoopVectorizer::widenIntOrFpInduction( 2476 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2477 Value *CanonicalIV) { 2478 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2479 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2480 TruncInst *Trunc = Def->getTruncInst(); 2481 IRBuilder<> &Builder = State.Builder; 2482 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2483 assert(!State.VF.isZero() && "VF must be non-zero"); 2484 2485 // The value from the original loop to which we are mapping the new induction 2486 // variable. 2487 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2488 2489 auto &DL = EntryVal->getModule()->getDataLayout(); 2490 2491 // Generate code for the induction step. Note that induction steps are 2492 // required to be loop-invariant 2493 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2494 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2495 "Induction step should be loop invariant"); 2496 if (PSE.getSE()->isSCEVable(IV->getType())) { 2497 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2498 return Exp.expandCodeFor(Step, Step->getType(), 2499 State.CFG.VectorPreHeader->getTerminator()); 2500 } 2501 return cast<SCEVUnknown>(Step)->getValue(); 2502 }; 2503 2504 // The scalar value to broadcast. This is derived from the canonical 2505 // induction variable. If a truncation type is given, truncate the canonical 2506 // induction variable and step. Otherwise, derive these values from the 2507 // induction descriptor. 2508 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2509 Value *ScalarIV = CanonicalIV; 2510 Type *NeededType = IV->getType(); 2511 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2512 ScalarIV = 2513 NeededType->isIntegerTy() 2514 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2515 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2516 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2517 State.CFG.PrevBB); 2518 ScalarIV->setName("offset.idx"); 2519 } 2520 if (Trunc) { 2521 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2522 assert(Step->getType()->isIntegerTy() && 2523 "Truncation requires an integer step"); 2524 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2525 Step = Builder.CreateTrunc(Step, TruncType); 2526 } 2527 return ScalarIV; 2528 }; 2529 2530 // Fast-math-flags propagate from the original induction instruction. 2531 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2532 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2533 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2534 2535 // Now do the actual transformations, and start with creating the step value. 2536 Value *Step = CreateStepValue(ID.getStep()); 2537 if (State.VF.isScalar()) { 2538 Value *ScalarIV = CreateScalarIV(Step); 2539 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2540 Step->getType()->getScalarSizeInBits()); 2541 2542 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2543 if (IncOp == Instruction::BinaryOpsEnd) 2544 IncOp = Instruction::Add; 2545 for (unsigned Part = 0; Part < UF; ++Part) { 2546 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2547 Instruction::BinaryOps MulOp = Instruction::Mul; 2548 if (Step->getType()->isFloatingPointTy()) { 2549 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2550 MulOp = Instruction::FMul; 2551 } 2552 2553 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2554 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2555 State.set(Def, EntryPart, Part); 2556 if (Trunc) { 2557 assert(!Step->getType()->isFloatingPointTy() && 2558 "fp inductions shouldn't be truncated"); 2559 addMetadata(EntryPart, Trunc); 2560 } 2561 } 2562 return; 2563 } 2564 2565 // Create a new independent vector induction variable, if one is needed. 2566 if (Def->needsVectorIV()) 2567 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2568 2569 if (Def->needsScalarIV()) { 2570 // Create scalar steps that can be used by instructions we will later 2571 // scalarize. Note that the addition of the scalar steps will not increase 2572 // the number of instructions in the loop in the common case prior to 2573 // InstCombine. We will be trading one vector extract for each scalar step. 2574 Value *ScalarIV = CreateScalarIV(Step); 2575 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2576 } 2577 } 2578 2579 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2580 Instruction *EntryVal, 2581 const InductionDescriptor &ID, 2582 VPValue *Def, 2583 VPTransformState &State) { 2584 IRBuilder<> &Builder = State.Builder; 2585 // We shouldn't have to build scalar steps if we aren't vectorizing. 2586 assert(State.VF.isVector() && "VF should be greater than one"); 2587 // Get the value type and ensure it and the step have the same integer type. 2588 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2589 assert(ScalarIVTy == Step->getType() && 2590 "Val and Step should have the same type"); 2591 2592 // We build scalar steps for both integer and floating-point induction 2593 // variables. Here, we determine the kind of arithmetic we will perform. 2594 Instruction::BinaryOps AddOp; 2595 Instruction::BinaryOps MulOp; 2596 if (ScalarIVTy->isIntegerTy()) { 2597 AddOp = Instruction::Add; 2598 MulOp = Instruction::Mul; 2599 } else { 2600 AddOp = ID.getInductionOpcode(); 2601 MulOp = Instruction::FMul; 2602 } 2603 2604 // Determine the number of scalars we need to generate for each unroll 2605 // iteration. 2606 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2607 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2608 // Compute the scalar steps and save the results in State. 2609 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2610 ScalarIVTy->getScalarSizeInBits()); 2611 Type *VecIVTy = nullptr; 2612 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2613 if (!FirstLaneOnly && State.VF.isScalable()) { 2614 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2615 UnitStepVec = 2616 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2617 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2618 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2619 } 2620 2621 for (unsigned Part = 0; Part < State.UF; ++Part) { 2622 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2623 2624 if (!FirstLaneOnly && State.VF.isScalable()) { 2625 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2626 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2627 if (ScalarIVTy->isFloatingPointTy()) 2628 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2629 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2630 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2631 State.set(Def, Add, Part); 2632 // It's useful to record the lane values too for the known minimum number 2633 // of elements so we do those below. This improves the code quality when 2634 // trying to extract the first element, for example. 2635 } 2636 2637 if (ScalarIVTy->isFloatingPointTy()) 2638 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2639 2640 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2641 Value *StartIdx = Builder.CreateBinOp( 2642 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2643 // The step returned by `createStepForVF` is a runtime-evaluated value 2644 // when VF is scalable. Otherwise, it should be folded into a Constant. 2645 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2646 "Expected StartIdx to be folded to a constant when VF is not " 2647 "scalable"); 2648 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2649 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2650 State.set(Def, Add, VPIteration(Part, Lane)); 2651 } 2652 } 2653 } 2654 2655 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2656 const VPIteration &Instance, 2657 VPTransformState &State) { 2658 Value *ScalarInst = State.get(Def, Instance); 2659 Value *VectorValue = State.get(Def, Instance.Part); 2660 VectorValue = Builder.CreateInsertElement( 2661 VectorValue, ScalarInst, 2662 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2663 State.set(Def, VectorValue, Instance.Part); 2664 } 2665 2666 // Return whether we allow using masked interleave-groups (for dealing with 2667 // strided loads/stores that reside in predicated blocks, or for dealing 2668 // with gaps). 2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2670 // If an override option has been passed in for interleaved accesses, use it. 2671 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2672 return EnableMaskedInterleavedMemAccesses; 2673 2674 return TTI.enableMaskedInterleavedAccessVectorization(); 2675 } 2676 2677 // Try to vectorize the interleave group that \p Instr belongs to. 2678 // 2679 // E.g. Translate following interleaved load group (factor = 3): 2680 // for (i = 0; i < N; i+=3) { 2681 // R = Pic[i]; // Member of index 0 2682 // G = Pic[i+1]; // Member of index 1 2683 // B = Pic[i+2]; // Member of index 2 2684 // ... // do something to R, G, B 2685 // } 2686 // To: 2687 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2688 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2689 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2690 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2691 // 2692 // Or translate following interleaved store group (factor = 3): 2693 // for (i = 0; i < N; i+=3) { 2694 // ... do something to R, G, B 2695 // Pic[i] = R; // Member of index 0 2696 // Pic[i+1] = G; // Member of index 1 2697 // Pic[i+2] = B; // Member of index 2 2698 // } 2699 // To: 2700 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2701 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2702 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2703 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2704 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2705 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2706 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2707 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2708 VPValue *BlockInMask) { 2709 Instruction *Instr = Group->getInsertPos(); 2710 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2711 2712 // Prepare for the vector type of the interleaved load/store. 2713 Type *ScalarTy = getLoadStoreType(Instr); 2714 unsigned InterleaveFactor = Group->getFactor(); 2715 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2716 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2717 2718 // Prepare for the new pointers. 2719 SmallVector<Value *, 2> AddrParts; 2720 unsigned Index = Group->getIndex(Instr); 2721 2722 // TODO: extend the masked interleaved-group support to reversed access. 2723 assert((!BlockInMask || !Group->isReverse()) && 2724 "Reversed masked interleave-group not supported."); 2725 2726 // If the group is reverse, adjust the index to refer to the last vector lane 2727 // instead of the first. We adjust the index from the first vector lane, 2728 // rather than directly getting the pointer for lane VF - 1, because the 2729 // pointer operand of the interleaved access is supposed to be uniform. For 2730 // uniform instructions, we're only required to generate a value for the 2731 // first vector lane in each unroll iteration. 2732 if (Group->isReverse()) 2733 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2734 2735 for (unsigned Part = 0; Part < UF; Part++) { 2736 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2737 setDebugLocFromInst(AddrPart); 2738 2739 // Notice current instruction could be any index. Need to adjust the address 2740 // to the member of index 0. 2741 // 2742 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2743 // b = A[i]; // Member of index 0 2744 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2745 // 2746 // E.g. A[i+1] = a; // Member of index 1 2747 // A[i] = b; // Member of index 0 2748 // A[i+2] = c; // Member of index 2 (Current instruction) 2749 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2750 2751 bool InBounds = false; 2752 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2753 InBounds = gep->isInBounds(); 2754 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2755 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2756 2757 // Cast to the vector pointer type. 2758 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2759 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2760 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2761 } 2762 2763 setDebugLocFromInst(Instr); 2764 Value *PoisonVec = PoisonValue::get(VecTy); 2765 2766 Value *MaskForGaps = nullptr; 2767 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2768 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2769 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2770 } 2771 2772 // Vectorize the interleaved load group. 2773 if (isa<LoadInst>(Instr)) { 2774 // For each unroll part, create a wide load for the group. 2775 SmallVector<Value *, 2> NewLoads; 2776 for (unsigned Part = 0; Part < UF; Part++) { 2777 Instruction *NewLoad; 2778 if (BlockInMask || MaskForGaps) { 2779 assert(useMaskedInterleavedAccesses(*TTI) && 2780 "masked interleaved groups are not allowed."); 2781 Value *GroupMask = MaskForGaps; 2782 if (BlockInMask) { 2783 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2784 Value *ShuffledMask = Builder.CreateShuffleVector( 2785 BlockInMaskPart, 2786 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2787 "interleaved.mask"); 2788 GroupMask = MaskForGaps 2789 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2790 MaskForGaps) 2791 : ShuffledMask; 2792 } 2793 NewLoad = 2794 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2795 GroupMask, PoisonVec, "wide.masked.vec"); 2796 } 2797 else 2798 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2799 Group->getAlign(), "wide.vec"); 2800 Group->addMetadata(NewLoad); 2801 NewLoads.push_back(NewLoad); 2802 } 2803 2804 // For each member in the group, shuffle out the appropriate data from the 2805 // wide loads. 2806 unsigned J = 0; 2807 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2808 Instruction *Member = Group->getMember(I); 2809 2810 // Skip the gaps in the group. 2811 if (!Member) 2812 continue; 2813 2814 auto StrideMask = 2815 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2816 for (unsigned Part = 0; Part < UF; Part++) { 2817 Value *StridedVec = Builder.CreateShuffleVector( 2818 NewLoads[Part], StrideMask, "strided.vec"); 2819 2820 // If this member has different type, cast the result type. 2821 if (Member->getType() != ScalarTy) { 2822 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2823 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2824 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2825 } 2826 2827 if (Group->isReverse()) 2828 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2829 2830 State.set(VPDefs[J], StridedVec, Part); 2831 } 2832 ++J; 2833 } 2834 return; 2835 } 2836 2837 // The sub vector type for current instruction. 2838 auto *SubVT = VectorType::get(ScalarTy, VF); 2839 2840 // Vectorize the interleaved store group. 2841 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2842 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2843 "masked interleaved groups are not allowed."); 2844 assert((!MaskForGaps || !VF.isScalable()) && 2845 "masking gaps for scalable vectors is not yet supported."); 2846 for (unsigned Part = 0; Part < UF; Part++) { 2847 // Collect the stored vector from each member. 2848 SmallVector<Value *, 4> StoredVecs; 2849 for (unsigned i = 0; i < InterleaveFactor; i++) { 2850 assert((Group->getMember(i) || MaskForGaps) && 2851 "Fail to get a member from an interleaved store group"); 2852 Instruction *Member = Group->getMember(i); 2853 2854 // Skip the gaps in the group. 2855 if (!Member) { 2856 Value *Undef = PoisonValue::get(SubVT); 2857 StoredVecs.push_back(Undef); 2858 continue; 2859 } 2860 2861 Value *StoredVec = State.get(StoredValues[i], Part); 2862 2863 if (Group->isReverse()) 2864 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2865 2866 // If this member has different type, cast it to a unified type. 2867 2868 if (StoredVec->getType() != SubVT) 2869 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2870 2871 StoredVecs.push_back(StoredVec); 2872 } 2873 2874 // Concatenate all vectors into a wide vector. 2875 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2876 2877 // Interleave the elements in the wide vector. 2878 Value *IVec = Builder.CreateShuffleVector( 2879 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2880 "interleaved.vec"); 2881 2882 Instruction *NewStoreInstr; 2883 if (BlockInMask || MaskForGaps) { 2884 Value *GroupMask = MaskForGaps; 2885 if (BlockInMask) { 2886 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2887 Value *ShuffledMask = Builder.CreateShuffleVector( 2888 BlockInMaskPart, 2889 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2890 "interleaved.mask"); 2891 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2892 ShuffledMask, MaskForGaps) 2893 : ShuffledMask; 2894 } 2895 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2896 Group->getAlign(), GroupMask); 2897 } else 2898 NewStoreInstr = 2899 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2900 2901 Group->addMetadata(NewStoreInstr); 2902 } 2903 } 2904 2905 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2906 VPReplicateRecipe *RepRecipe, 2907 const VPIteration &Instance, 2908 bool IfPredicateInstr, 2909 VPTransformState &State) { 2910 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2911 2912 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2913 // the first lane and part. 2914 if (isa<NoAliasScopeDeclInst>(Instr)) 2915 if (!Instance.isFirstIteration()) 2916 return; 2917 2918 setDebugLocFromInst(Instr); 2919 2920 // Does this instruction return a value ? 2921 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2922 2923 Instruction *Cloned = Instr->clone(); 2924 if (!IsVoidRetTy) 2925 Cloned->setName(Instr->getName() + ".cloned"); 2926 2927 // If the scalarized instruction contributes to the address computation of a 2928 // widen masked load/store which was in a basic block that needed predication 2929 // and is not predicated after vectorization, we can't propagate 2930 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2931 // instruction could feed a poison value to the base address of the widen 2932 // load/store. 2933 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2934 Cloned->dropPoisonGeneratingFlags(); 2935 2936 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2937 Builder.GetInsertPoint()); 2938 // Replace the operands of the cloned instructions with their scalar 2939 // equivalents in the new loop. 2940 for (auto &I : enumerate(RepRecipe->operands())) { 2941 auto InputInstance = Instance; 2942 VPValue *Operand = I.value(); 2943 if (State.Plan->isUniformAfterVectorization(Operand)) 2944 InputInstance.Lane = VPLane::getFirstLane(); 2945 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2946 } 2947 addNewMetadata(Cloned, Instr); 2948 2949 // Place the cloned scalar in the new loop. 2950 Builder.Insert(Cloned); 2951 2952 State.set(RepRecipe, Cloned, Instance); 2953 2954 // If we just cloned a new assumption, add it the assumption cache. 2955 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2956 AC->registerAssumption(II); 2957 2958 // End if-block. 2959 if (IfPredicateInstr) 2960 PredicatedInstructions.push_back(Cloned); 2961 } 2962 2963 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2964 BasicBlock *Header = L->getHeader(); 2965 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2966 2967 IRBuilder<> B(Header->getTerminator()); 2968 Instruction *OldInst = 2969 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2970 setDebugLocFromInst(OldInst, &B); 2971 2972 // Connect the header to the exit and header blocks and replace the old 2973 // terminator. 2974 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2975 2976 // Now we have two terminators. Remove the old one from the block. 2977 Header->getTerminator()->eraseFromParent(); 2978 } 2979 2980 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2981 if (TripCount) 2982 return TripCount; 2983 2984 assert(L && "Create Trip Count for null loop."); 2985 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2986 // Find the loop boundaries. 2987 ScalarEvolution *SE = PSE.getSE(); 2988 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2989 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2990 "Invalid loop count"); 2991 2992 Type *IdxTy = Legal->getWidestInductionType(); 2993 assert(IdxTy && "No type for induction"); 2994 2995 // The exit count might have the type of i64 while the phi is i32. This can 2996 // happen if we have an induction variable that is sign extended before the 2997 // compare. The only way that we get a backedge taken count is that the 2998 // induction variable was signed and as such will not overflow. In such a case 2999 // truncation is legal. 3000 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3001 IdxTy->getPrimitiveSizeInBits()) 3002 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3003 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3004 3005 // Get the total trip count from the count by adding 1. 3006 const SCEV *ExitCount = SE->getAddExpr( 3007 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3008 3009 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3010 3011 // Expand the trip count and place the new instructions in the preheader. 3012 // Notice that the pre-header does not change, only the loop body. 3013 SCEVExpander Exp(*SE, DL, "induction"); 3014 3015 // Count holds the overall loop count (N). 3016 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3017 L->getLoopPreheader()->getTerminator()); 3018 3019 if (TripCount->getType()->isPointerTy()) 3020 TripCount = 3021 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3022 L->getLoopPreheader()->getTerminator()); 3023 3024 return TripCount; 3025 } 3026 3027 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3028 if (VectorTripCount) 3029 return VectorTripCount; 3030 3031 Value *TC = getOrCreateTripCount(L); 3032 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3033 3034 Type *Ty = TC->getType(); 3035 // This is where we can make the step a runtime constant. 3036 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3037 3038 // If the tail is to be folded by masking, round the number of iterations N 3039 // up to a multiple of Step instead of rounding down. This is done by first 3040 // adding Step-1 and then rounding down. Note that it's ok if this addition 3041 // overflows: the vector induction variable will eventually wrap to zero given 3042 // that it starts at zero and its Step is a power of two; the loop will then 3043 // exit, with the last early-exit vector comparison also producing all-true. 3044 if (Cost->foldTailByMasking()) { 3045 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3046 "VF*UF must be a power of 2 when folding tail by masking"); 3047 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3048 TC = Builder.CreateAdd( 3049 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3050 } 3051 3052 // Now we need to generate the expression for the part of the loop that the 3053 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3054 // iterations are not required for correctness, or N - Step, otherwise. Step 3055 // is equal to the vectorization factor (number of SIMD elements) times the 3056 // unroll factor (number of SIMD instructions). 3057 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3058 3059 // There are cases where we *must* run at least one iteration in the remainder 3060 // loop. See the cost model for when this can happen. If the step evenly 3061 // divides the trip count, we set the remainder to be equal to the step. If 3062 // the step does not evenly divide the trip count, no adjustment is necessary 3063 // since there will already be scalar iterations. Note that the minimum 3064 // iterations check ensures that N >= Step. 3065 if (Cost->requiresScalarEpilogue(VF)) { 3066 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3067 R = Builder.CreateSelect(IsZero, Step, R); 3068 } 3069 3070 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3071 3072 return VectorTripCount; 3073 } 3074 3075 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3076 const DataLayout &DL) { 3077 // Verify that V is a vector type with same number of elements as DstVTy. 3078 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3079 unsigned VF = DstFVTy->getNumElements(); 3080 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3081 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3082 Type *SrcElemTy = SrcVecTy->getElementType(); 3083 Type *DstElemTy = DstFVTy->getElementType(); 3084 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3085 "Vector elements must have same size"); 3086 3087 // Do a direct cast if element types are castable. 3088 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3089 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3090 } 3091 // V cannot be directly casted to desired vector type. 3092 // May happen when V is a floating point vector but DstVTy is a vector of 3093 // pointers or vice-versa. Handle this using a two-step bitcast using an 3094 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3095 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3096 "Only one type should be a pointer type"); 3097 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3098 "Only one type should be a floating point type"); 3099 Type *IntTy = 3100 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3101 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3102 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3103 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3104 } 3105 3106 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3107 BasicBlock *Bypass) { 3108 Value *Count = getOrCreateTripCount(L); 3109 // Reuse existing vector loop preheader for TC checks. 3110 // Note that new preheader block is generated for vector loop. 3111 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3112 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3113 3114 // Generate code to check if the loop's trip count is less than VF * UF, or 3115 // equal to it in case a scalar epilogue is required; this implies that the 3116 // vector trip count is zero. This check also covers the case where adding one 3117 // to the backedge-taken count overflowed leading to an incorrect trip count 3118 // of zero. In this case we will also jump to the scalar loop. 3119 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3120 : ICmpInst::ICMP_ULT; 3121 3122 // If tail is to be folded, vector loop takes care of all iterations. 3123 Value *CheckMinIters = Builder.getFalse(); 3124 if (!Cost->foldTailByMasking()) { 3125 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3126 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3127 } 3128 // Create new preheader for vector loop. 3129 LoopVectorPreHeader = 3130 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3131 "vector.ph"); 3132 3133 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3134 DT->getNode(Bypass)->getIDom()) && 3135 "TC check is expected to dominate Bypass"); 3136 3137 // Update dominator for Bypass & LoopExit (if needed). 3138 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3139 if (!Cost->requiresScalarEpilogue(VF)) 3140 // If there is an epilogue which must run, there's no edge from the 3141 // middle block to exit blocks and thus no need to update the immediate 3142 // dominator of the exit blocks. 3143 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3144 3145 ReplaceInstWithInst( 3146 TCCheckBlock->getTerminator(), 3147 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3148 LoopBypassBlocks.push_back(TCCheckBlock); 3149 } 3150 3151 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3152 3153 BasicBlock *const SCEVCheckBlock = 3154 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3155 if (!SCEVCheckBlock) 3156 return nullptr; 3157 3158 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3159 (OptForSizeBasedOnProfile && 3160 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3161 "Cannot SCEV check stride or overflow when optimizing for size"); 3162 3163 3164 // Update dominator only if this is first RT check. 3165 if (LoopBypassBlocks.empty()) { 3166 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3167 if (!Cost->requiresScalarEpilogue(VF)) 3168 // If there is an epilogue which must run, there's no edge from the 3169 // middle block to exit blocks and thus no need to update the immediate 3170 // dominator of the exit blocks. 3171 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3172 } 3173 3174 LoopBypassBlocks.push_back(SCEVCheckBlock); 3175 AddedSafetyChecks = true; 3176 return SCEVCheckBlock; 3177 } 3178 3179 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3180 BasicBlock *Bypass) { 3181 // VPlan-native path does not do any analysis for runtime checks currently. 3182 if (EnableVPlanNativePath) 3183 return nullptr; 3184 3185 BasicBlock *const MemCheckBlock = 3186 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3187 3188 // Check if we generated code that checks in runtime if arrays overlap. We put 3189 // the checks into a separate block to make the more common case of few 3190 // elements faster. 3191 if (!MemCheckBlock) 3192 return nullptr; 3193 3194 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3195 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3196 "Cannot emit memory checks when optimizing for size, unless forced " 3197 "to vectorize."); 3198 ORE->emit([&]() { 3199 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3200 L->getStartLoc(), L->getHeader()) 3201 << "Code-size may be reduced by not forcing " 3202 "vectorization, or by source-code modifications " 3203 "eliminating the need for runtime checks " 3204 "(e.g., adding 'restrict')."; 3205 }); 3206 } 3207 3208 LoopBypassBlocks.push_back(MemCheckBlock); 3209 3210 AddedSafetyChecks = true; 3211 3212 // We currently don't use LoopVersioning for the actual loop cloning but we 3213 // still use it to add the noalias metadata. 3214 LVer = std::make_unique<LoopVersioning>( 3215 *Legal->getLAI(), 3216 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3217 DT, PSE.getSE()); 3218 LVer->prepareNoAliasMetadata(); 3219 return MemCheckBlock; 3220 } 3221 3222 Value *InnerLoopVectorizer::emitTransformedIndex( 3223 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3224 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3225 3226 SCEVExpander Exp(*SE, DL, "induction"); 3227 auto Step = ID.getStep(); 3228 auto StartValue = ID.getStartValue(); 3229 assert(Index->getType()->getScalarType() == Step->getType() && 3230 "Index scalar type does not match StepValue type"); 3231 3232 // Note: the IR at this point is broken. We cannot use SE to create any new 3233 // SCEV and then expand it, hoping that SCEV's simplification will give us 3234 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3235 // lead to various SCEV crashes. So all we can do is to use builder and rely 3236 // on InstCombine for future simplifications. Here we handle some trivial 3237 // cases only. 3238 auto CreateAdd = [&B](Value *X, Value *Y) { 3239 assert(X->getType() == Y->getType() && "Types don't match!"); 3240 if (auto *CX = dyn_cast<ConstantInt>(X)) 3241 if (CX->isZero()) 3242 return Y; 3243 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3244 if (CY->isZero()) 3245 return X; 3246 return B.CreateAdd(X, Y); 3247 }; 3248 3249 // We allow X to be a vector type, in which case Y will potentially be 3250 // splatted into a vector with the same element count. 3251 auto CreateMul = [&B](Value *X, Value *Y) { 3252 assert(X->getType()->getScalarType() == Y->getType() && 3253 "Types don't match!"); 3254 if (auto *CX = dyn_cast<ConstantInt>(X)) 3255 if (CX->isOne()) 3256 return Y; 3257 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3258 if (CY->isOne()) 3259 return X; 3260 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3261 if (XVTy && !isa<VectorType>(Y->getType())) 3262 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3263 return B.CreateMul(X, Y); 3264 }; 3265 3266 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3267 // loop, choose the end of the vector loop header (=VectorHeader), because 3268 // the DomTree is not kept up-to-date for additional blocks generated in the 3269 // vector loop. By using the header as insertion point, we guarantee that the 3270 // expanded instructions dominate all their uses. 3271 auto GetInsertPoint = [this, &B, VectorHeader]() { 3272 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3273 if (InsertBB != LoopVectorBody && 3274 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3275 return VectorHeader->getTerminator(); 3276 return &*B.GetInsertPoint(); 3277 }; 3278 3279 switch (ID.getKind()) { 3280 case InductionDescriptor::IK_IntInduction: { 3281 assert(!isa<VectorType>(Index->getType()) && 3282 "Vector indices not supported for integer inductions yet"); 3283 assert(Index->getType() == StartValue->getType() && 3284 "Index type does not match StartValue type"); 3285 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3286 return B.CreateSub(StartValue, Index); 3287 auto *Offset = CreateMul( 3288 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3289 return CreateAdd(StartValue, Offset); 3290 } 3291 case InductionDescriptor::IK_PtrInduction: { 3292 assert(isa<SCEVConstant>(Step) && 3293 "Expected constant step for pointer induction"); 3294 return B.CreateGEP( 3295 ID.getElementType(), StartValue, 3296 CreateMul(Index, 3297 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3298 GetInsertPoint()))); 3299 } 3300 case InductionDescriptor::IK_FpInduction: { 3301 assert(!isa<VectorType>(Index->getType()) && 3302 "Vector indices not supported for FP inductions yet"); 3303 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3304 auto InductionBinOp = ID.getInductionBinOp(); 3305 assert(InductionBinOp && 3306 (InductionBinOp->getOpcode() == Instruction::FAdd || 3307 InductionBinOp->getOpcode() == Instruction::FSub) && 3308 "Original bin op should be defined for FP induction"); 3309 3310 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3311 Value *MulExp = B.CreateFMul(StepValue, Index); 3312 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3313 "induction"); 3314 } 3315 case InductionDescriptor::IK_NoInduction: 3316 return nullptr; 3317 } 3318 llvm_unreachable("invalid enum"); 3319 } 3320 3321 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3322 LoopScalarBody = OrigLoop->getHeader(); 3323 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3324 assert(LoopVectorPreHeader && "Invalid loop structure"); 3325 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3326 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3327 "multiple exit loop without required epilogue?"); 3328 3329 LoopMiddleBlock = 3330 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3331 LI, nullptr, Twine(Prefix) + "middle.block"); 3332 LoopScalarPreHeader = 3333 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3334 nullptr, Twine(Prefix) + "scalar.ph"); 3335 3336 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3337 3338 // Set up the middle block terminator. Two cases: 3339 // 1) If we know that we must execute the scalar epilogue, emit an 3340 // unconditional branch. 3341 // 2) Otherwise, we must have a single unique exit block (due to how we 3342 // implement the multiple exit case). In this case, set up a conditonal 3343 // branch from the middle block to the loop scalar preheader, and the 3344 // exit block. completeLoopSkeleton will update the condition to use an 3345 // iteration check, if required to decide whether to execute the remainder. 3346 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3347 BranchInst::Create(LoopScalarPreHeader) : 3348 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3349 Builder.getTrue()); 3350 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3351 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3352 3353 // We intentionally don't let SplitBlock to update LoopInfo since 3354 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3355 // LoopVectorBody is explicitly added to the correct place few lines later. 3356 LoopVectorBody = 3357 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3358 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3359 3360 // Update dominator for loop exit. 3361 if (!Cost->requiresScalarEpilogue(VF)) 3362 // If there is an epilogue which must run, there's no edge from the 3363 // middle block to exit blocks and thus no need to update the immediate 3364 // dominator of the exit blocks. 3365 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3366 3367 // Create and register the new vector loop. 3368 Loop *Lp = LI->AllocateLoop(); 3369 Loop *ParentLoop = OrigLoop->getParentLoop(); 3370 3371 // Insert the new loop into the loop nest and register the new basic blocks 3372 // before calling any utilities such as SCEV that require valid LoopInfo. 3373 if (ParentLoop) { 3374 ParentLoop->addChildLoop(Lp); 3375 } else { 3376 LI->addTopLevelLoop(Lp); 3377 } 3378 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3379 return Lp; 3380 } 3381 3382 void InnerLoopVectorizer::createInductionResumeValues( 3383 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3384 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3385 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3386 "Inconsistent information about additional bypass."); 3387 3388 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3389 assert(VectorTripCount && L && "Expected valid arguments"); 3390 // We are going to resume the execution of the scalar loop. 3391 // Go over all of the induction variables that we found and fix the 3392 // PHIs that are left in the scalar version of the loop. 3393 // The starting values of PHI nodes depend on the counter of the last 3394 // iteration in the vectorized loop. 3395 // If we come from a bypass edge then we need to start from the original 3396 // start value. 3397 Instruction *OldInduction = Legal->getPrimaryInduction(); 3398 for (auto &InductionEntry : Legal->getInductionVars()) { 3399 PHINode *OrigPhi = InductionEntry.first; 3400 InductionDescriptor II = InductionEntry.second; 3401 3402 // Create phi nodes to merge from the backedge-taken check block. 3403 PHINode *BCResumeVal = 3404 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3405 LoopScalarPreHeader->getTerminator()); 3406 // Copy original phi DL over to the new one. 3407 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3408 Value *&EndValue = IVEndValues[OrigPhi]; 3409 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3410 if (OrigPhi == OldInduction) { 3411 // We know what the end value is. 3412 EndValue = VectorTripCount; 3413 } else { 3414 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3415 3416 // Fast-math-flags propagate from the original induction instruction. 3417 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3418 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3419 3420 Type *StepType = II.getStep()->getType(); 3421 Instruction::CastOps CastOp = 3422 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3423 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3424 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3425 EndValue = 3426 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3427 EndValue->setName("ind.end"); 3428 3429 // Compute the end value for the additional bypass (if applicable). 3430 if (AdditionalBypass.first) { 3431 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3432 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3433 StepType, true); 3434 CRD = 3435 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3436 EndValueFromAdditionalBypass = 3437 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3438 EndValueFromAdditionalBypass->setName("ind.end"); 3439 } 3440 } 3441 // The new PHI merges the original incoming value, in case of a bypass, 3442 // or the value at the end of the vectorized loop. 3443 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3444 3445 // Fix the scalar body counter (PHI node). 3446 // The old induction's phi node in the scalar body needs the truncated 3447 // value. 3448 for (BasicBlock *BB : LoopBypassBlocks) 3449 BCResumeVal->addIncoming(II.getStartValue(), BB); 3450 3451 if (AdditionalBypass.first) 3452 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3453 EndValueFromAdditionalBypass); 3454 3455 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3456 } 3457 } 3458 3459 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3460 MDNode *OrigLoopID) { 3461 assert(L && "Expected valid loop."); 3462 3463 // The trip counts should be cached by now. 3464 Value *Count = getOrCreateTripCount(L); 3465 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3466 3467 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3468 3469 // Add a check in the middle block to see if we have completed 3470 // all of the iterations in the first vector loop. Three cases: 3471 // 1) If we require a scalar epilogue, there is no conditional branch as 3472 // we unconditionally branch to the scalar preheader. Do nothing. 3473 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3474 // Thus if tail is to be folded, we know we don't need to run the 3475 // remainder and we can use the previous value for the condition (true). 3476 // 3) Otherwise, construct a runtime check. 3477 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3478 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3479 Count, VectorTripCount, "cmp.n", 3480 LoopMiddleBlock->getTerminator()); 3481 3482 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3483 // of the corresponding compare because they may have ended up with 3484 // different line numbers and we want to avoid awkward line stepping while 3485 // debugging. Eg. if the compare has got a line number inside the loop. 3486 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3487 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3488 } 3489 3490 // Get ready to start creating new instructions into the vectorized body. 3491 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3492 "Inconsistent vector loop preheader"); 3493 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3494 3495 #ifdef EXPENSIVE_CHECKS 3496 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3497 LI->verify(*DT); 3498 #endif 3499 3500 return LoopVectorPreHeader; 3501 } 3502 3503 std::pair<BasicBlock *, Value *> 3504 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3505 /* 3506 In this function we generate a new loop. The new loop will contain 3507 the vectorized instructions while the old loop will continue to run the 3508 scalar remainder. 3509 3510 [ ] <-- loop iteration number check. 3511 / | 3512 / v 3513 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3514 | / | 3515 | / v 3516 || [ ] <-- vector pre header. 3517 |/ | 3518 | v 3519 | [ ] \ 3520 | [ ]_| <-- vector loop. 3521 | | 3522 | v 3523 \ -[ ] <--- middle-block. 3524 \/ | 3525 /\ v 3526 | ->[ ] <--- new preheader. 3527 | | 3528 (opt) v <-- edge from middle to exit iff epilogue is not required. 3529 | [ ] \ 3530 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3531 \ | 3532 \ v 3533 >[ ] <-- exit block(s). 3534 ... 3535 */ 3536 3537 // Get the metadata of the original loop before it gets modified. 3538 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3539 3540 // Workaround! Compute the trip count of the original loop and cache it 3541 // before we start modifying the CFG. This code has a systemic problem 3542 // wherein it tries to run analysis over partially constructed IR; this is 3543 // wrong, and not simply for SCEV. The trip count of the original loop 3544 // simply happens to be prone to hitting this in practice. In theory, we 3545 // can hit the same issue for any SCEV, or ValueTracking query done during 3546 // mutation. See PR49900. 3547 getOrCreateTripCount(OrigLoop); 3548 3549 // Create an empty vector loop, and prepare basic blocks for the runtime 3550 // checks. 3551 Loop *Lp = createVectorLoopSkeleton(""); 3552 3553 // Now, compare the new count to zero. If it is zero skip the vector loop and 3554 // jump to the scalar loop. This check also covers the case where the 3555 // backedge-taken count is uint##_max: adding one to it will overflow leading 3556 // to an incorrect trip count of zero. In this (rare) case we will also jump 3557 // to the scalar loop. 3558 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3559 3560 // Generate the code to check any assumptions that we've made for SCEV 3561 // expressions. 3562 emitSCEVChecks(Lp, LoopScalarPreHeader); 3563 3564 // Generate the code that checks in runtime if arrays overlap. We put the 3565 // checks into a separate block to make the more common case of few elements 3566 // faster. 3567 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3568 3569 createHeaderBranch(Lp); 3570 3571 // Emit phis for the new starting index of the scalar loop. 3572 createInductionResumeValues(Lp); 3573 3574 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3575 } 3576 3577 // Fix up external users of the induction variable. At this point, we are 3578 // in LCSSA form, with all external PHIs that use the IV having one input value, 3579 // coming from the remainder loop. We need those PHIs to also have a correct 3580 // value for the IV when arriving directly from the middle block. 3581 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3582 const InductionDescriptor &II, 3583 Value *CountRoundDown, Value *EndValue, 3584 BasicBlock *MiddleBlock) { 3585 // There are two kinds of external IV usages - those that use the value 3586 // computed in the last iteration (the PHI) and those that use the penultimate 3587 // value (the value that feeds into the phi from the loop latch). 3588 // We allow both, but they, obviously, have different values. 3589 3590 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3591 3592 DenseMap<Value *, Value *> MissingVals; 3593 3594 // An external user of the last iteration's value should see the value that 3595 // the remainder loop uses to initialize its own IV. 3596 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3597 for (User *U : PostInc->users()) { 3598 Instruction *UI = cast<Instruction>(U); 3599 if (!OrigLoop->contains(UI)) { 3600 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3601 MissingVals[UI] = EndValue; 3602 } 3603 } 3604 3605 // An external user of the penultimate value need to see EndValue - Step. 3606 // The simplest way to get this is to recompute it from the constituent SCEVs, 3607 // that is Start + (Step * (CRD - 1)). 3608 for (User *U : OrigPhi->users()) { 3609 auto *UI = cast<Instruction>(U); 3610 if (!OrigLoop->contains(UI)) { 3611 const DataLayout &DL = 3612 OrigLoop->getHeader()->getModule()->getDataLayout(); 3613 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3614 3615 IRBuilder<> B(MiddleBlock->getTerminator()); 3616 3617 // Fast-math-flags propagate from the original induction instruction. 3618 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3619 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3620 3621 Value *CountMinusOne = B.CreateSub( 3622 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3623 Value *CMO = 3624 !II.getStep()->getType()->isIntegerTy() 3625 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3626 II.getStep()->getType()) 3627 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3628 CMO->setName("cast.cmo"); 3629 Value *Escape = 3630 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3631 Escape->setName("ind.escape"); 3632 MissingVals[UI] = Escape; 3633 } 3634 } 3635 3636 for (auto &I : MissingVals) { 3637 PHINode *PHI = cast<PHINode>(I.first); 3638 // One corner case we have to handle is two IVs "chasing" each-other, 3639 // that is %IV2 = phi [...], [ %IV1, %latch ] 3640 // In this case, if IV1 has an external use, we need to avoid adding both 3641 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3642 // don't already have an incoming value for the middle block. 3643 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3644 PHI->addIncoming(I.second, MiddleBlock); 3645 } 3646 } 3647 3648 namespace { 3649 3650 struct CSEDenseMapInfo { 3651 static bool canHandle(const Instruction *I) { 3652 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3653 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3654 } 3655 3656 static inline Instruction *getEmptyKey() { 3657 return DenseMapInfo<Instruction *>::getEmptyKey(); 3658 } 3659 3660 static inline Instruction *getTombstoneKey() { 3661 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3662 } 3663 3664 static unsigned getHashValue(const Instruction *I) { 3665 assert(canHandle(I) && "Unknown instruction!"); 3666 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3667 I->value_op_end())); 3668 } 3669 3670 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3671 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3672 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3673 return LHS == RHS; 3674 return LHS->isIdenticalTo(RHS); 3675 } 3676 }; 3677 3678 } // end anonymous namespace 3679 3680 ///Perform cse of induction variable instructions. 3681 static void cse(BasicBlock *BB) { 3682 // Perform simple cse. 3683 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3684 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3685 if (!CSEDenseMapInfo::canHandle(&In)) 3686 continue; 3687 3688 // Check if we can replace this instruction with any of the 3689 // visited instructions. 3690 if (Instruction *V = CSEMap.lookup(&In)) { 3691 In.replaceAllUsesWith(V); 3692 In.eraseFromParent(); 3693 continue; 3694 } 3695 3696 CSEMap[&In] = &In; 3697 } 3698 } 3699 3700 InstructionCost 3701 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3702 bool &NeedToScalarize) const { 3703 Function *F = CI->getCalledFunction(); 3704 Type *ScalarRetTy = CI->getType(); 3705 SmallVector<Type *, 4> Tys, ScalarTys; 3706 for (auto &ArgOp : CI->args()) 3707 ScalarTys.push_back(ArgOp->getType()); 3708 3709 // Estimate cost of scalarized vector call. The source operands are assumed 3710 // to be vectors, so we need to extract individual elements from there, 3711 // execute VF scalar calls, and then gather the result into the vector return 3712 // value. 3713 InstructionCost ScalarCallCost = 3714 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3715 if (VF.isScalar()) 3716 return ScalarCallCost; 3717 3718 // Compute corresponding vector type for return value and arguments. 3719 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3720 for (Type *ScalarTy : ScalarTys) 3721 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3722 3723 // Compute costs of unpacking argument values for the scalar calls and 3724 // packing the return values to a vector. 3725 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3726 3727 InstructionCost Cost = 3728 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3729 3730 // If we can't emit a vector call for this function, then the currently found 3731 // cost is the cost we need to return. 3732 NeedToScalarize = true; 3733 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3734 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3735 3736 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3737 return Cost; 3738 3739 // If the corresponding vector cost is cheaper, return its cost. 3740 InstructionCost VectorCallCost = 3741 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3742 if (VectorCallCost < Cost) { 3743 NeedToScalarize = false; 3744 Cost = VectorCallCost; 3745 } 3746 return Cost; 3747 } 3748 3749 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3750 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3751 return Elt; 3752 return VectorType::get(Elt, VF); 3753 } 3754 3755 InstructionCost 3756 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3757 ElementCount VF) const { 3758 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3759 assert(ID && "Expected intrinsic call!"); 3760 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3761 FastMathFlags FMF; 3762 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3763 FMF = FPMO->getFastMathFlags(); 3764 3765 SmallVector<const Value *> Arguments(CI->args()); 3766 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3767 SmallVector<Type *> ParamTys; 3768 std::transform(FTy->param_begin(), FTy->param_end(), 3769 std::back_inserter(ParamTys), 3770 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3771 3772 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3773 dyn_cast<IntrinsicInst>(CI)); 3774 return TTI.getIntrinsicInstrCost(CostAttrs, 3775 TargetTransformInfo::TCK_RecipThroughput); 3776 } 3777 3778 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3779 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3780 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3781 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3782 } 3783 3784 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3785 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3786 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3787 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3788 } 3789 3790 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3791 // For every instruction `I` in MinBWs, truncate the operands, create a 3792 // truncated version of `I` and reextend its result. InstCombine runs 3793 // later and will remove any ext/trunc pairs. 3794 SmallPtrSet<Value *, 4> Erased; 3795 for (const auto &KV : Cost->getMinimalBitwidths()) { 3796 // If the value wasn't vectorized, we must maintain the original scalar 3797 // type. The absence of the value from State indicates that it 3798 // wasn't vectorized. 3799 // FIXME: Should not rely on getVPValue at this point. 3800 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3801 if (!State.hasAnyVectorValue(Def)) 3802 continue; 3803 for (unsigned Part = 0; Part < UF; ++Part) { 3804 Value *I = State.get(Def, Part); 3805 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3806 continue; 3807 Type *OriginalTy = I->getType(); 3808 Type *ScalarTruncatedTy = 3809 IntegerType::get(OriginalTy->getContext(), KV.second); 3810 auto *TruncatedTy = VectorType::get( 3811 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3812 if (TruncatedTy == OriginalTy) 3813 continue; 3814 3815 IRBuilder<> B(cast<Instruction>(I)); 3816 auto ShrinkOperand = [&](Value *V) -> Value * { 3817 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3818 if (ZI->getSrcTy() == TruncatedTy) 3819 return ZI->getOperand(0); 3820 return B.CreateZExtOrTrunc(V, TruncatedTy); 3821 }; 3822 3823 // The actual instruction modification depends on the instruction type, 3824 // unfortunately. 3825 Value *NewI = nullptr; 3826 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3827 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3828 ShrinkOperand(BO->getOperand(1))); 3829 3830 // Any wrapping introduced by shrinking this operation shouldn't be 3831 // considered undefined behavior. So, we can't unconditionally copy 3832 // arithmetic wrapping flags to NewI. 3833 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3834 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3835 NewI = 3836 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3837 ShrinkOperand(CI->getOperand(1))); 3838 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3839 NewI = B.CreateSelect(SI->getCondition(), 3840 ShrinkOperand(SI->getTrueValue()), 3841 ShrinkOperand(SI->getFalseValue())); 3842 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3843 switch (CI->getOpcode()) { 3844 default: 3845 llvm_unreachable("Unhandled cast!"); 3846 case Instruction::Trunc: 3847 NewI = ShrinkOperand(CI->getOperand(0)); 3848 break; 3849 case Instruction::SExt: 3850 NewI = B.CreateSExtOrTrunc( 3851 CI->getOperand(0), 3852 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3853 break; 3854 case Instruction::ZExt: 3855 NewI = B.CreateZExtOrTrunc( 3856 CI->getOperand(0), 3857 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3858 break; 3859 } 3860 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3861 auto Elements0 = 3862 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3863 auto *O0 = B.CreateZExtOrTrunc( 3864 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3865 auto Elements1 = 3866 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3867 auto *O1 = B.CreateZExtOrTrunc( 3868 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3869 3870 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3871 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3872 // Don't do anything with the operands, just extend the result. 3873 continue; 3874 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3875 auto Elements = 3876 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3877 auto *O0 = B.CreateZExtOrTrunc( 3878 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3879 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3880 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3881 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3882 auto Elements = 3883 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3884 auto *O0 = B.CreateZExtOrTrunc( 3885 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3886 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3887 } else { 3888 // If we don't know what to do, be conservative and don't do anything. 3889 continue; 3890 } 3891 3892 // Lastly, extend the result. 3893 NewI->takeName(cast<Instruction>(I)); 3894 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3895 I->replaceAllUsesWith(Res); 3896 cast<Instruction>(I)->eraseFromParent(); 3897 Erased.insert(I); 3898 State.reset(Def, Res, Part); 3899 } 3900 } 3901 3902 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3903 for (const auto &KV : Cost->getMinimalBitwidths()) { 3904 // If the value wasn't vectorized, we must maintain the original scalar 3905 // type. The absence of the value from State indicates that it 3906 // wasn't vectorized. 3907 // FIXME: Should not rely on getVPValue at this point. 3908 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3909 if (!State.hasAnyVectorValue(Def)) 3910 continue; 3911 for (unsigned Part = 0; Part < UF; ++Part) { 3912 Value *I = State.get(Def, Part); 3913 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3914 if (Inst && Inst->use_empty()) { 3915 Value *NewI = Inst->getOperand(0); 3916 Inst->eraseFromParent(); 3917 State.reset(Def, NewI, Part); 3918 } 3919 } 3920 } 3921 } 3922 3923 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3924 // Insert truncates and extends for any truncated instructions as hints to 3925 // InstCombine. 3926 if (VF.isVector()) 3927 truncateToMinimalBitwidths(State); 3928 3929 // Fix widened non-induction PHIs by setting up the PHI operands. 3930 if (OrigPHIsToFix.size()) { 3931 assert(EnableVPlanNativePath && 3932 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3933 fixNonInductionPHIs(State); 3934 } 3935 3936 // At this point every instruction in the original loop is widened to a 3937 // vector form. Now we need to fix the recurrences in the loop. These PHI 3938 // nodes are currently empty because we did not want to introduce cycles. 3939 // This is the second stage of vectorizing recurrences. 3940 fixCrossIterationPHIs(State); 3941 3942 // Forget the original basic block. 3943 PSE.getSE()->forgetLoop(OrigLoop); 3944 3945 // If we inserted an edge from the middle block to the unique exit block, 3946 // update uses outside the loop (phis) to account for the newly inserted 3947 // edge. 3948 if (!Cost->requiresScalarEpilogue(VF)) { 3949 // Fix-up external users of the induction variables. 3950 for (auto &Entry : Legal->getInductionVars()) 3951 fixupIVUsers(Entry.first, Entry.second, 3952 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3953 IVEndValues[Entry.first], LoopMiddleBlock); 3954 3955 fixLCSSAPHIs(State); 3956 } 3957 3958 for (Instruction *PI : PredicatedInstructions) 3959 sinkScalarOperands(&*PI); 3960 3961 // Remove redundant induction instructions. 3962 cse(LoopVectorBody); 3963 3964 // Set/update profile weights for the vector and remainder loops as original 3965 // loop iterations are now distributed among them. Note that original loop 3966 // represented by LoopScalarBody becomes remainder loop after vectorization. 3967 // 3968 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3969 // end up getting slightly roughened result but that should be OK since 3970 // profile is not inherently precise anyway. Note also possible bypass of 3971 // vector code caused by legality checks is ignored, assigning all the weight 3972 // to the vector loop, optimistically. 3973 // 3974 // For scalable vectorization we can't know at compile time how many iterations 3975 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3976 // vscale of '1'. 3977 setProfileInfoAfterUnrolling( 3978 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3979 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3980 } 3981 3982 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3983 // In order to support recurrences we need to be able to vectorize Phi nodes. 3984 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3985 // stage #2: We now need to fix the recurrences by adding incoming edges to 3986 // the currently empty PHI nodes. At this point every instruction in the 3987 // original loop is widened to a vector form so we can use them to construct 3988 // the incoming edges. 3989 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3990 for (VPRecipeBase &R : Header->phis()) { 3991 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3992 fixReduction(ReductionPhi, State); 3993 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3994 fixFirstOrderRecurrence(FOR, State); 3995 } 3996 } 3997 3998 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3999 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4000 // This is the second phase of vectorizing first-order recurrences. An 4001 // overview of the transformation is described below. Suppose we have the 4002 // following loop. 4003 // 4004 // for (int i = 0; i < n; ++i) 4005 // b[i] = a[i] - a[i - 1]; 4006 // 4007 // There is a first-order recurrence on "a". For this loop, the shorthand 4008 // scalar IR looks like: 4009 // 4010 // scalar.ph: 4011 // s_init = a[-1] 4012 // br scalar.body 4013 // 4014 // scalar.body: 4015 // i = phi [0, scalar.ph], [i+1, scalar.body] 4016 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4017 // s2 = a[i] 4018 // b[i] = s2 - s1 4019 // br cond, scalar.body, ... 4020 // 4021 // In this example, s1 is a recurrence because it's value depends on the 4022 // previous iteration. In the first phase of vectorization, we created a 4023 // vector phi v1 for s1. We now complete the vectorization and produce the 4024 // shorthand vector IR shown below (for VF = 4, UF = 1). 4025 // 4026 // vector.ph: 4027 // v_init = vector(..., ..., ..., a[-1]) 4028 // br vector.body 4029 // 4030 // vector.body 4031 // i = phi [0, vector.ph], [i+4, vector.body] 4032 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4033 // v2 = a[i, i+1, i+2, i+3]; 4034 // v3 = vector(v1(3), v2(0, 1, 2)) 4035 // b[i, i+1, i+2, i+3] = v2 - v3 4036 // br cond, vector.body, middle.block 4037 // 4038 // middle.block: 4039 // x = v2(3) 4040 // br scalar.ph 4041 // 4042 // scalar.ph: 4043 // s_init = phi [x, middle.block], [a[-1], otherwise] 4044 // br scalar.body 4045 // 4046 // After execution completes the vector loop, we extract the next value of 4047 // the recurrence (x) to use as the initial value in the scalar loop. 4048 4049 // Extract the last vector element in the middle block. This will be the 4050 // initial value for the recurrence when jumping to the scalar loop. 4051 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4052 Value *Incoming = State.get(PreviousDef, UF - 1); 4053 auto *ExtractForScalar = Incoming; 4054 auto *IdxTy = Builder.getInt32Ty(); 4055 if (VF.isVector()) { 4056 auto *One = ConstantInt::get(IdxTy, 1); 4057 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4058 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4059 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4060 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4061 "vector.recur.extract"); 4062 } 4063 // Extract the second last element in the middle block if the 4064 // Phi is used outside the loop. We need to extract the phi itself 4065 // and not the last element (the phi update in the current iteration). This 4066 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4067 // when the scalar loop is not run at all. 4068 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4069 if (VF.isVector()) { 4070 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4071 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4072 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4073 Incoming, Idx, "vector.recur.extract.for.phi"); 4074 } else if (UF > 1) 4075 // When loop is unrolled without vectorizing, initialize 4076 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4077 // of `Incoming`. This is analogous to the vectorized case above: extracting 4078 // the second last element when VF > 1. 4079 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4080 4081 // Fix the initial value of the original recurrence in the scalar loop. 4082 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4083 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4084 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4085 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4086 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4087 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4088 Start->addIncoming(Incoming, BB); 4089 } 4090 4091 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4092 Phi->setName("scalar.recur"); 4093 4094 // Finally, fix users of the recurrence outside the loop. The users will need 4095 // either the last value of the scalar recurrence or the last value of the 4096 // vector recurrence we extracted in the middle block. Since the loop is in 4097 // LCSSA form, we just need to find all the phi nodes for the original scalar 4098 // recurrence in the exit block, and then add an edge for the middle block. 4099 // Note that LCSSA does not imply single entry when the original scalar loop 4100 // had multiple exiting edges (as we always run the last iteration in the 4101 // scalar epilogue); in that case, there is no edge from middle to exit and 4102 // and thus no phis which needed updated. 4103 if (!Cost->requiresScalarEpilogue(VF)) 4104 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4105 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4106 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4107 } 4108 4109 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4110 VPTransformState &State) { 4111 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4112 // Get it's reduction variable descriptor. 4113 assert(Legal->isReductionVariable(OrigPhi) && 4114 "Unable to find the reduction variable"); 4115 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4116 4117 RecurKind RK = RdxDesc.getRecurrenceKind(); 4118 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4119 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4120 setDebugLocFromInst(ReductionStartValue); 4121 4122 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4123 // This is the vector-clone of the value that leaves the loop. 4124 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4125 4126 // Wrap flags are in general invalid after vectorization, clear them. 4127 clearReductionWrapFlags(RdxDesc, State); 4128 4129 // Before each round, move the insertion point right between 4130 // the PHIs and the values we are going to write. 4131 // This allows us to write both PHINodes and the extractelement 4132 // instructions. 4133 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4134 4135 setDebugLocFromInst(LoopExitInst); 4136 4137 Type *PhiTy = OrigPhi->getType(); 4138 // If tail is folded by masking, the vector value to leave the loop should be 4139 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4140 // instead of the former. For an inloop reduction the reduction will already 4141 // be predicated, and does not need to be handled here. 4142 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4143 for (unsigned Part = 0; Part < UF; ++Part) { 4144 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4145 Value *Sel = nullptr; 4146 for (User *U : VecLoopExitInst->users()) { 4147 if (isa<SelectInst>(U)) { 4148 assert(!Sel && "Reduction exit feeding two selects"); 4149 Sel = U; 4150 } else 4151 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4152 } 4153 assert(Sel && "Reduction exit feeds no select"); 4154 State.reset(LoopExitInstDef, Sel, Part); 4155 4156 // If the target can create a predicated operator for the reduction at no 4157 // extra cost in the loop (for example a predicated vadd), it can be 4158 // cheaper for the select to remain in the loop than be sunk out of it, 4159 // and so use the select value for the phi instead of the old 4160 // LoopExitValue. 4161 if (PreferPredicatedReductionSelect || 4162 TTI->preferPredicatedReductionSelect( 4163 RdxDesc.getOpcode(), PhiTy, 4164 TargetTransformInfo::ReductionFlags())) { 4165 auto *VecRdxPhi = 4166 cast<PHINode>(State.get(PhiR, Part)); 4167 VecRdxPhi->setIncomingValueForBlock( 4168 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4169 } 4170 } 4171 } 4172 4173 // If the vector reduction can be performed in a smaller type, we truncate 4174 // then extend the loop exit value to enable InstCombine to evaluate the 4175 // entire expression in the smaller type. 4176 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4177 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4178 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4179 Builder.SetInsertPoint( 4180 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4181 VectorParts RdxParts(UF); 4182 for (unsigned Part = 0; Part < UF; ++Part) { 4183 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4184 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4185 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4186 : Builder.CreateZExt(Trunc, VecTy); 4187 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4188 if (U != Trunc) { 4189 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4190 RdxParts[Part] = Extnd; 4191 } 4192 } 4193 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4194 for (unsigned Part = 0; Part < UF; ++Part) { 4195 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4196 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4197 } 4198 } 4199 4200 // Reduce all of the unrolled parts into a single vector. 4201 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4202 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4203 4204 // The middle block terminator has already been assigned a DebugLoc here (the 4205 // OrigLoop's single latch terminator). We want the whole middle block to 4206 // appear to execute on this line because: (a) it is all compiler generated, 4207 // (b) these instructions are always executed after evaluating the latch 4208 // conditional branch, and (c) other passes may add new predecessors which 4209 // terminate on this line. This is the easiest way to ensure we don't 4210 // accidentally cause an extra step back into the loop while debugging. 4211 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4212 if (PhiR->isOrdered()) 4213 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4214 else { 4215 // Floating-point operations should have some FMF to enable the reduction. 4216 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4217 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4218 for (unsigned Part = 1; Part < UF; ++Part) { 4219 Value *RdxPart = State.get(LoopExitInstDef, Part); 4220 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4221 ReducedPartRdx = Builder.CreateBinOp( 4222 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4223 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4224 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4225 ReducedPartRdx, RdxPart); 4226 else 4227 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4228 } 4229 } 4230 4231 // Create the reduction after the loop. Note that inloop reductions create the 4232 // target reduction in the loop using a Reduction recipe. 4233 if (VF.isVector() && !PhiR->isInLoop()) { 4234 ReducedPartRdx = 4235 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4236 // If the reduction can be performed in a smaller type, we need to extend 4237 // the reduction to the wider type before we branch to the original loop. 4238 if (PhiTy != RdxDesc.getRecurrenceType()) 4239 ReducedPartRdx = RdxDesc.isSigned() 4240 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4241 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4242 } 4243 4244 PHINode *ResumePhi = 4245 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4246 4247 // Create a phi node that merges control-flow from the backedge-taken check 4248 // block and the middle block. 4249 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4250 LoopScalarPreHeader->getTerminator()); 4251 4252 // If we are fixing reductions in the epilogue loop then we should already 4253 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4254 // we carry over the incoming values correctly. 4255 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4256 if (Incoming == LoopMiddleBlock) 4257 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4258 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4259 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4260 Incoming); 4261 else 4262 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4263 } 4264 4265 // Set the resume value for this reduction 4266 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4267 4268 // Now, we need to fix the users of the reduction variable 4269 // inside and outside of the scalar remainder loop. 4270 4271 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4272 // in the exit blocks. See comment on analogous loop in 4273 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4274 if (!Cost->requiresScalarEpilogue(VF)) 4275 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4276 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4277 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4278 4279 // Fix the scalar loop reduction variable with the incoming reduction sum 4280 // from the vector body and from the backedge value. 4281 int IncomingEdgeBlockIdx = 4282 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4283 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4284 // Pick the other block. 4285 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4286 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4287 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4288 } 4289 4290 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4291 VPTransformState &State) { 4292 RecurKind RK = RdxDesc.getRecurrenceKind(); 4293 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4294 return; 4295 4296 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4297 assert(LoopExitInstr && "null loop exit instruction"); 4298 SmallVector<Instruction *, 8> Worklist; 4299 SmallPtrSet<Instruction *, 8> Visited; 4300 Worklist.push_back(LoopExitInstr); 4301 Visited.insert(LoopExitInstr); 4302 4303 while (!Worklist.empty()) { 4304 Instruction *Cur = Worklist.pop_back_val(); 4305 if (isa<OverflowingBinaryOperator>(Cur)) 4306 for (unsigned Part = 0; Part < UF; ++Part) { 4307 // FIXME: Should not rely on getVPValue at this point. 4308 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4309 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4310 } 4311 4312 for (User *U : Cur->users()) { 4313 Instruction *UI = cast<Instruction>(U); 4314 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4315 Visited.insert(UI).second) 4316 Worklist.push_back(UI); 4317 } 4318 } 4319 } 4320 4321 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4322 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4323 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4324 // Some phis were already hand updated by the reduction and recurrence 4325 // code above, leave them alone. 4326 continue; 4327 4328 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4329 // Non-instruction incoming values will have only one value. 4330 4331 VPLane Lane = VPLane::getFirstLane(); 4332 if (isa<Instruction>(IncomingValue) && 4333 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4334 VF)) 4335 Lane = VPLane::getLastLaneForVF(VF); 4336 4337 // Can be a loop invariant incoming value or the last scalar value to be 4338 // extracted from the vectorized loop. 4339 // FIXME: Should not rely on getVPValue at this point. 4340 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4341 Value *lastIncomingValue = 4342 OrigLoop->isLoopInvariant(IncomingValue) 4343 ? IncomingValue 4344 : State.get(State.Plan->getVPValue(IncomingValue, true), 4345 VPIteration(UF - 1, Lane)); 4346 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4347 } 4348 } 4349 4350 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4351 // The basic block and loop containing the predicated instruction. 4352 auto *PredBB = PredInst->getParent(); 4353 auto *VectorLoop = LI->getLoopFor(PredBB); 4354 4355 // Initialize a worklist with the operands of the predicated instruction. 4356 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4357 4358 // Holds instructions that we need to analyze again. An instruction may be 4359 // reanalyzed if we don't yet know if we can sink it or not. 4360 SmallVector<Instruction *, 8> InstsToReanalyze; 4361 4362 // Returns true if a given use occurs in the predicated block. Phi nodes use 4363 // their operands in their corresponding predecessor blocks. 4364 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4365 auto *I = cast<Instruction>(U.getUser()); 4366 BasicBlock *BB = I->getParent(); 4367 if (auto *Phi = dyn_cast<PHINode>(I)) 4368 BB = Phi->getIncomingBlock( 4369 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4370 return BB == PredBB; 4371 }; 4372 4373 // Iteratively sink the scalarized operands of the predicated instruction 4374 // into the block we created for it. When an instruction is sunk, it's 4375 // operands are then added to the worklist. The algorithm ends after one pass 4376 // through the worklist doesn't sink a single instruction. 4377 bool Changed; 4378 do { 4379 // Add the instructions that need to be reanalyzed to the worklist, and 4380 // reset the changed indicator. 4381 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4382 InstsToReanalyze.clear(); 4383 Changed = false; 4384 4385 while (!Worklist.empty()) { 4386 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4387 4388 // We can't sink an instruction if it is a phi node, is not in the loop, 4389 // or may have side effects. 4390 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4391 I->mayHaveSideEffects()) 4392 continue; 4393 4394 // If the instruction is already in PredBB, check if we can sink its 4395 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4396 // sinking the scalar instruction I, hence it appears in PredBB; but it 4397 // may have failed to sink I's operands (recursively), which we try 4398 // (again) here. 4399 if (I->getParent() == PredBB) { 4400 Worklist.insert(I->op_begin(), I->op_end()); 4401 continue; 4402 } 4403 4404 // It's legal to sink the instruction if all its uses occur in the 4405 // predicated block. Otherwise, there's nothing to do yet, and we may 4406 // need to reanalyze the instruction. 4407 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4408 InstsToReanalyze.push_back(I); 4409 continue; 4410 } 4411 4412 // Move the instruction to the beginning of the predicated block, and add 4413 // it's operands to the worklist. 4414 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4415 Worklist.insert(I->op_begin(), I->op_end()); 4416 4417 // The sinking may have enabled other instructions to be sunk, so we will 4418 // need to iterate. 4419 Changed = true; 4420 } 4421 } while (Changed); 4422 } 4423 4424 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4425 for (PHINode *OrigPhi : OrigPHIsToFix) { 4426 VPWidenPHIRecipe *VPPhi = 4427 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4428 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4429 // Make sure the builder has a valid insert point. 4430 Builder.SetInsertPoint(NewPhi); 4431 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4432 VPValue *Inc = VPPhi->getIncomingValue(i); 4433 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4434 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4435 } 4436 } 4437 } 4438 4439 bool InnerLoopVectorizer::useOrderedReductions( 4440 const RecurrenceDescriptor &RdxDesc) { 4441 return Cost->useOrderedReductions(RdxDesc); 4442 } 4443 4444 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4445 VPWidenPHIRecipe *PhiR, 4446 VPTransformState &State) { 4447 PHINode *P = cast<PHINode>(PN); 4448 if (EnableVPlanNativePath) { 4449 // Currently we enter here in the VPlan-native path for non-induction 4450 // PHIs where all control flow is uniform. We simply widen these PHIs. 4451 // Create a vector phi with no operands - the vector phi operands will be 4452 // set at the end of vector code generation. 4453 Type *VecTy = (State.VF.isScalar()) 4454 ? PN->getType() 4455 : VectorType::get(PN->getType(), State.VF); 4456 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4457 State.set(PhiR, VecPhi, 0); 4458 OrigPHIsToFix.push_back(P); 4459 4460 return; 4461 } 4462 4463 assert(PN->getParent() == OrigLoop->getHeader() && 4464 "Non-header phis should have been handled elsewhere"); 4465 4466 // In order to support recurrences we need to be able to vectorize Phi nodes. 4467 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4468 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4469 // this value when we vectorize all of the instructions that use the PHI. 4470 4471 assert(!Legal->isReductionVariable(P) && 4472 "reductions should be handled elsewhere"); 4473 4474 setDebugLocFromInst(P); 4475 4476 // This PHINode must be an induction variable. 4477 // Make sure that we know about it. 4478 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4479 4480 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4481 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4482 4483 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4484 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4485 4486 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4487 // which can be found from the original scalar operations. 4488 switch (II.getKind()) { 4489 case InductionDescriptor::IK_NoInduction: 4490 llvm_unreachable("Unknown induction"); 4491 case InductionDescriptor::IK_IntInduction: 4492 case InductionDescriptor::IK_FpInduction: 4493 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4494 case InductionDescriptor::IK_PtrInduction: { 4495 // Handle the pointer induction variable case. 4496 assert(P->getType()->isPointerTy() && "Unexpected type."); 4497 4498 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4499 // This is the normalized GEP that starts counting at zero. 4500 Value *PtrInd = 4501 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4502 // Determine the number of scalars we need to generate for each unroll 4503 // iteration. If the instruction is uniform, we only need to generate the 4504 // first lane. Otherwise, we generate all VF values. 4505 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4506 assert((IsUniform || !State.VF.isScalable()) && 4507 "Cannot scalarize a scalable VF"); 4508 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4509 4510 for (unsigned Part = 0; Part < UF; ++Part) { 4511 Value *PartStart = 4512 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4513 4514 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4515 Value *Idx = Builder.CreateAdd( 4516 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4517 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4518 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4519 DL, II, State.CFG.PrevBB); 4520 SclrGep->setName("next.gep"); 4521 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4522 } 4523 } 4524 return; 4525 } 4526 assert(isa<SCEVConstant>(II.getStep()) && 4527 "Induction step not a SCEV constant!"); 4528 Type *PhiType = II.getStep()->getType(); 4529 4530 // Build a pointer phi 4531 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4532 Type *ScStValueType = ScalarStartValue->getType(); 4533 PHINode *NewPointerPhi = 4534 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4535 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4536 4537 // A pointer induction, performed by using a gep 4538 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4539 Instruction *InductionLoc = LoopLatch->getTerminator(); 4540 const SCEV *ScalarStep = II.getStep(); 4541 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4542 Value *ScalarStepValue = 4543 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4544 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4545 Value *NumUnrolledElems = 4546 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4547 Value *InductionGEP = GetElementPtrInst::Create( 4548 II.getElementType(), NewPointerPhi, 4549 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4550 InductionLoc); 4551 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4552 4553 // Create UF many actual address geps that use the pointer 4554 // phi as base and a vectorized version of the step value 4555 // (<step*0, ..., step*N>) as offset. 4556 for (unsigned Part = 0; Part < State.UF; ++Part) { 4557 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4558 Value *StartOffsetScalar = 4559 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4560 Value *StartOffset = 4561 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4562 // Create a vector of consecutive numbers from zero to VF. 4563 StartOffset = 4564 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4565 4566 Value *GEP = Builder.CreateGEP( 4567 II.getElementType(), NewPointerPhi, 4568 Builder.CreateMul( 4569 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4570 "vector.gep")); 4571 State.set(PhiR, GEP, Part); 4572 } 4573 } 4574 } 4575 } 4576 4577 /// A helper function for checking whether an integer division-related 4578 /// instruction may divide by zero (in which case it must be predicated if 4579 /// executed conditionally in the scalar code). 4580 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4581 /// Non-zero divisors that are non compile-time constants will not be 4582 /// converted into multiplication, so we will still end up scalarizing 4583 /// the division, but can do so w/o predication. 4584 static bool mayDivideByZero(Instruction &I) { 4585 assert((I.getOpcode() == Instruction::UDiv || 4586 I.getOpcode() == Instruction::SDiv || 4587 I.getOpcode() == Instruction::URem || 4588 I.getOpcode() == Instruction::SRem) && 4589 "Unexpected instruction"); 4590 Value *Divisor = I.getOperand(1); 4591 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4592 return !CInt || CInt->isZero(); 4593 } 4594 4595 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4596 VPUser &ArgOperands, 4597 VPTransformState &State) { 4598 assert(!isa<DbgInfoIntrinsic>(I) && 4599 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4600 setDebugLocFromInst(&I); 4601 4602 Module *M = I.getParent()->getParent()->getParent(); 4603 auto *CI = cast<CallInst>(&I); 4604 4605 SmallVector<Type *, 4> Tys; 4606 for (Value *ArgOperand : CI->args()) 4607 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4608 4609 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4610 4611 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4612 // version of the instruction. 4613 // Is it beneficial to perform intrinsic call compared to lib call? 4614 bool NeedToScalarize = false; 4615 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4616 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4617 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4618 assert((UseVectorIntrinsic || !NeedToScalarize) && 4619 "Instruction should be scalarized elsewhere."); 4620 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4621 "Either the intrinsic cost or vector call cost must be valid"); 4622 4623 for (unsigned Part = 0; Part < UF; ++Part) { 4624 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4625 SmallVector<Value *, 4> Args; 4626 for (auto &I : enumerate(ArgOperands.operands())) { 4627 // Some intrinsics have a scalar argument - don't replace it with a 4628 // vector. 4629 Value *Arg; 4630 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4631 Arg = State.get(I.value(), Part); 4632 else { 4633 Arg = State.get(I.value(), VPIteration(0, 0)); 4634 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4635 TysForDecl.push_back(Arg->getType()); 4636 } 4637 Args.push_back(Arg); 4638 } 4639 4640 Function *VectorF; 4641 if (UseVectorIntrinsic) { 4642 // Use vector version of the intrinsic. 4643 if (VF.isVector()) 4644 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4645 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4646 assert(VectorF && "Can't retrieve vector intrinsic."); 4647 } else { 4648 // Use vector version of the function call. 4649 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4650 #ifndef NDEBUG 4651 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4652 "Can't create vector function."); 4653 #endif 4654 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4655 } 4656 SmallVector<OperandBundleDef, 1> OpBundles; 4657 CI->getOperandBundlesAsDefs(OpBundles); 4658 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4659 4660 if (isa<FPMathOperator>(V)) 4661 V->copyFastMathFlags(CI); 4662 4663 State.set(Def, V, Part); 4664 addMetadata(V, &I); 4665 } 4666 } 4667 4668 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4669 // We should not collect Scalars more than once per VF. Right now, this 4670 // function is called from collectUniformsAndScalars(), which already does 4671 // this check. Collecting Scalars for VF=1 does not make any sense. 4672 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4673 "This function should not be visited twice for the same VF"); 4674 4675 SmallSetVector<Instruction *, 8> Worklist; 4676 4677 // These sets are used to seed the analysis with pointers used by memory 4678 // accesses that will remain scalar. 4679 SmallSetVector<Instruction *, 8> ScalarPtrs; 4680 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4681 auto *Latch = TheLoop->getLoopLatch(); 4682 4683 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4684 // The pointer operands of loads and stores will be scalar as long as the 4685 // memory access is not a gather or scatter operation. The value operand of a 4686 // store will remain scalar if the store is scalarized. 4687 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4688 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4689 assert(WideningDecision != CM_Unknown && 4690 "Widening decision should be ready at this moment"); 4691 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4692 if (Ptr == Store->getValueOperand()) 4693 return WideningDecision == CM_Scalarize; 4694 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4695 "Ptr is neither a value or pointer operand"); 4696 return WideningDecision != CM_GatherScatter; 4697 }; 4698 4699 // A helper that returns true if the given value is a bitcast or 4700 // getelementptr instruction contained in the loop. 4701 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4702 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4703 isa<GetElementPtrInst>(V)) && 4704 !TheLoop->isLoopInvariant(V); 4705 }; 4706 4707 // A helper that evaluates a memory access's use of a pointer. If the use will 4708 // be a scalar use and the pointer is only used by memory accesses, we place 4709 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4710 // PossibleNonScalarPtrs. 4711 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4712 // We only care about bitcast and getelementptr instructions contained in 4713 // the loop. 4714 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4715 return; 4716 4717 // If the pointer has already been identified as scalar (e.g., if it was 4718 // also identified as uniform), there's nothing to do. 4719 auto *I = cast<Instruction>(Ptr); 4720 if (Worklist.count(I)) 4721 return; 4722 4723 // If the use of the pointer will be a scalar use, and all users of the 4724 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4725 // place the pointer in PossibleNonScalarPtrs. 4726 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4727 return isa<LoadInst>(U) || isa<StoreInst>(U); 4728 })) 4729 ScalarPtrs.insert(I); 4730 else 4731 PossibleNonScalarPtrs.insert(I); 4732 }; 4733 4734 // We seed the scalars analysis with three classes of instructions: (1) 4735 // instructions marked uniform-after-vectorization and (2) bitcast, 4736 // getelementptr and (pointer) phi instructions used by memory accesses 4737 // requiring a scalar use. 4738 // 4739 // (1) Add to the worklist all instructions that have been identified as 4740 // uniform-after-vectorization. 4741 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4742 4743 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4744 // memory accesses requiring a scalar use. The pointer operands of loads and 4745 // stores will be scalar as long as the memory accesses is not a gather or 4746 // scatter operation. The value operand of a store will remain scalar if the 4747 // store is scalarized. 4748 for (auto *BB : TheLoop->blocks()) 4749 for (auto &I : *BB) { 4750 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4751 evaluatePtrUse(Load, Load->getPointerOperand()); 4752 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4753 evaluatePtrUse(Store, Store->getPointerOperand()); 4754 evaluatePtrUse(Store, Store->getValueOperand()); 4755 } 4756 } 4757 for (auto *I : ScalarPtrs) 4758 if (!PossibleNonScalarPtrs.count(I)) { 4759 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4760 Worklist.insert(I); 4761 } 4762 4763 // Insert the forced scalars. 4764 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4765 // induction variable when the PHI user is scalarized. 4766 auto ForcedScalar = ForcedScalars.find(VF); 4767 if (ForcedScalar != ForcedScalars.end()) 4768 for (auto *I : ForcedScalar->second) 4769 Worklist.insert(I); 4770 4771 // Expand the worklist by looking through any bitcasts and getelementptr 4772 // instructions we've already identified as scalar. This is similar to the 4773 // expansion step in collectLoopUniforms(); however, here we're only 4774 // expanding to include additional bitcasts and getelementptr instructions. 4775 unsigned Idx = 0; 4776 while (Idx != Worklist.size()) { 4777 Instruction *Dst = Worklist[Idx++]; 4778 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4779 continue; 4780 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4781 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4782 auto *J = cast<Instruction>(U); 4783 return !TheLoop->contains(J) || Worklist.count(J) || 4784 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4785 isScalarUse(J, Src)); 4786 })) { 4787 Worklist.insert(Src); 4788 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4789 } 4790 } 4791 4792 // An induction variable will remain scalar if all users of the induction 4793 // variable and induction variable update remain scalar. 4794 for (auto &Induction : Legal->getInductionVars()) { 4795 auto *Ind = Induction.first; 4796 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4797 4798 // If tail-folding is applied, the primary induction variable will be used 4799 // to feed a vector compare. 4800 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4801 continue; 4802 4803 // Returns true if \p Indvar is a pointer induction that is used directly by 4804 // load/store instruction \p I. 4805 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4806 Instruction *I) { 4807 return Induction.second.getKind() == 4808 InductionDescriptor::IK_PtrInduction && 4809 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4810 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4811 }; 4812 4813 // Determine if all users of the induction variable are scalar after 4814 // vectorization. 4815 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4816 auto *I = cast<Instruction>(U); 4817 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4818 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4819 }); 4820 if (!ScalarInd) 4821 continue; 4822 4823 // Determine if all users of the induction variable update instruction are 4824 // scalar after vectorization. 4825 auto ScalarIndUpdate = 4826 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4827 auto *I = cast<Instruction>(U); 4828 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4829 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4830 }); 4831 if (!ScalarIndUpdate) 4832 continue; 4833 4834 // The induction variable and its update instruction will remain scalar. 4835 Worklist.insert(Ind); 4836 Worklist.insert(IndUpdate); 4837 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4838 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4839 << "\n"); 4840 } 4841 4842 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4843 } 4844 4845 bool LoopVectorizationCostModel::isScalarWithPredication( 4846 Instruction *I, ElementCount VF) const { 4847 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4848 return false; 4849 switch(I->getOpcode()) { 4850 default: 4851 break; 4852 case Instruction::Load: 4853 case Instruction::Store: { 4854 if (!Legal->isMaskRequired(I)) 4855 return false; 4856 auto *Ptr = getLoadStorePointerOperand(I); 4857 auto *Ty = getLoadStoreType(I); 4858 Type *VTy = Ty; 4859 if (VF.isVector()) 4860 VTy = VectorType::get(Ty, VF); 4861 const Align Alignment = getLoadStoreAlignment(I); 4862 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4863 TTI.isLegalMaskedGather(VTy, Alignment)) 4864 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4865 TTI.isLegalMaskedScatter(VTy, Alignment)); 4866 } 4867 case Instruction::UDiv: 4868 case Instruction::SDiv: 4869 case Instruction::SRem: 4870 case Instruction::URem: 4871 return mayDivideByZero(*I); 4872 } 4873 return false; 4874 } 4875 4876 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4877 Instruction *I, ElementCount VF) { 4878 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4879 assert(getWideningDecision(I, VF) == CM_Unknown && 4880 "Decision should not be set yet."); 4881 auto *Group = getInterleavedAccessGroup(I); 4882 assert(Group && "Must have a group."); 4883 4884 // If the instruction's allocated size doesn't equal it's type size, it 4885 // requires padding and will be scalarized. 4886 auto &DL = I->getModule()->getDataLayout(); 4887 auto *ScalarTy = getLoadStoreType(I); 4888 if (hasIrregularType(ScalarTy, DL)) 4889 return false; 4890 4891 // Check if masking is required. 4892 // A Group may need masking for one of two reasons: it resides in a block that 4893 // needs predication, or it was decided to use masking to deal with gaps 4894 // (either a gap at the end of a load-access that may result in a speculative 4895 // load, or any gaps in a store-access). 4896 bool PredicatedAccessRequiresMasking = 4897 blockNeedsPredicationForAnyReason(I->getParent()) && 4898 Legal->isMaskRequired(I); 4899 bool LoadAccessWithGapsRequiresEpilogMasking = 4900 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4901 !isScalarEpilogueAllowed(); 4902 bool StoreAccessWithGapsRequiresMasking = 4903 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4904 if (!PredicatedAccessRequiresMasking && 4905 !LoadAccessWithGapsRequiresEpilogMasking && 4906 !StoreAccessWithGapsRequiresMasking) 4907 return true; 4908 4909 // If masked interleaving is required, we expect that the user/target had 4910 // enabled it, because otherwise it either wouldn't have been created or 4911 // it should have been invalidated by the CostModel. 4912 assert(useMaskedInterleavedAccesses(TTI) && 4913 "Masked interleave-groups for predicated accesses are not enabled."); 4914 4915 if (Group->isReverse()) 4916 return false; 4917 4918 auto *Ty = getLoadStoreType(I); 4919 const Align Alignment = getLoadStoreAlignment(I); 4920 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4921 : TTI.isLegalMaskedStore(Ty, Alignment); 4922 } 4923 4924 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4925 Instruction *I, ElementCount VF) { 4926 // Get and ensure we have a valid memory instruction. 4927 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4928 4929 auto *Ptr = getLoadStorePointerOperand(I); 4930 auto *ScalarTy = getLoadStoreType(I); 4931 4932 // In order to be widened, the pointer should be consecutive, first of all. 4933 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4934 return false; 4935 4936 // If the instruction is a store located in a predicated block, it will be 4937 // scalarized. 4938 if (isScalarWithPredication(I, VF)) 4939 return false; 4940 4941 // If the instruction's allocated size doesn't equal it's type size, it 4942 // requires padding and will be scalarized. 4943 auto &DL = I->getModule()->getDataLayout(); 4944 if (hasIrregularType(ScalarTy, DL)) 4945 return false; 4946 4947 return true; 4948 } 4949 4950 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4951 // We should not collect Uniforms more than once per VF. Right now, 4952 // this function is called from collectUniformsAndScalars(), which 4953 // already does this check. Collecting Uniforms for VF=1 does not make any 4954 // sense. 4955 4956 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4957 "This function should not be visited twice for the same VF"); 4958 4959 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4960 // not analyze again. Uniforms.count(VF) will return 1. 4961 Uniforms[VF].clear(); 4962 4963 // We now know that the loop is vectorizable! 4964 // Collect instructions inside the loop that will remain uniform after 4965 // vectorization. 4966 4967 // Global values, params and instructions outside of current loop are out of 4968 // scope. 4969 auto isOutOfScope = [&](Value *V) -> bool { 4970 Instruction *I = dyn_cast<Instruction>(V); 4971 return (!I || !TheLoop->contains(I)); 4972 }; 4973 4974 // Worklist containing uniform instructions demanding lane 0. 4975 SetVector<Instruction *> Worklist; 4976 BasicBlock *Latch = TheLoop->getLoopLatch(); 4977 4978 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4979 // that are scalar with predication must not be considered uniform after 4980 // vectorization, because that would create an erroneous replicating region 4981 // where only a single instance out of VF should be formed. 4982 // TODO: optimize such seldom cases if found important, see PR40816. 4983 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4984 if (isOutOfScope(I)) { 4985 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4986 << *I << "\n"); 4987 return; 4988 } 4989 if (isScalarWithPredication(I, VF)) { 4990 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4991 << *I << "\n"); 4992 return; 4993 } 4994 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4995 Worklist.insert(I); 4996 }; 4997 4998 // Start with the conditional branch. If the branch condition is an 4999 // instruction contained in the loop that is only used by the branch, it is 5000 // uniform. 5001 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5002 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5003 addToWorklistIfAllowed(Cmp); 5004 5005 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5006 InstWidening WideningDecision = getWideningDecision(I, VF); 5007 assert(WideningDecision != CM_Unknown && 5008 "Widening decision should be ready at this moment"); 5009 5010 // A uniform memory op is itself uniform. We exclude uniform stores 5011 // here as they demand the last lane, not the first one. 5012 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5013 assert(WideningDecision == CM_Scalarize); 5014 return true; 5015 } 5016 5017 return (WideningDecision == CM_Widen || 5018 WideningDecision == CM_Widen_Reverse || 5019 WideningDecision == CM_Interleave); 5020 }; 5021 5022 5023 // Returns true if Ptr is the pointer operand of a memory access instruction 5024 // I, and I is known to not require scalarization. 5025 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5026 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5027 }; 5028 5029 // Holds a list of values which are known to have at least one uniform use. 5030 // Note that there may be other uses which aren't uniform. A "uniform use" 5031 // here is something which only demands lane 0 of the unrolled iterations; 5032 // it does not imply that all lanes produce the same value (e.g. this is not 5033 // the usual meaning of uniform) 5034 SetVector<Value *> HasUniformUse; 5035 5036 // Scan the loop for instructions which are either a) known to have only 5037 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5038 for (auto *BB : TheLoop->blocks()) 5039 for (auto &I : *BB) { 5040 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5041 switch (II->getIntrinsicID()) { 5042 case Intrinsic::sideeffect: 5043 case Intrinsic::experimental_noalias_scope_decl: 5044 case Intrinsic::assume: 5045 case Intrinsic::lifetime_start: 5046 case Intrinsic::lifetime_end: 5047 if (TheLoop->hasLoopInvariantOperands(&I)) 5048 addToWorklistIfAllowed(&I); 5049 break; 5050 default: 5051 break; 5052 } 5053 } 5054 5055 // ExtractValue instructions must be uniform, because the operands are 5056 // known to be loop-invariant. 5057 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5058 assert(isOutOfScope(EVI->getAggregateOperand()) && 5059 "Expected aggregate value to be loop invariant"); 5060 addToWorklistIfAllowed(EVI); 5061 continue; 5062 } 5063 5064 // If there's no pointer operand, there's nothing to do. 5065 auto *Ptr = getLoadStorePointerOperand(&I); 5066 if (!Ptr) 5067 continue; 5068 5069 // A uniform memory op is itself uniform. We exclude uniform stores 5070 // here as they demand the last lane, not the first one. 5071 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5072 addToWorklistIfAllowed(&I); 5073 5074 if (isUniformDecision(&I, VF)) { 5075 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5076 HasUniformUse.insert(Ptr); 5077 } 5078 } 5079 5080 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5081 // demanding) users. Since loops are assumed to be in LCSSA form, this 5082 // disallows uses outside the loop as well. 5083 for (auto *V : HasUniformUse) { 5084 if (isOutOfScope(V)) 5085 continue; 5086 auto *I = cast<Instruction>(V); 5087 auto UsersAreMemAccesses = 5088 llvm::all_of(I->users(), [&](User *U) -> bool { 5089 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5090 }); 5091 if (UsersAreMemAccesses) 5092 addToWorklistIfAllowed(I); 5093 } 5094 5095 // Expand Worklist in topological order: whenever a new instruction 5096 // is added , its users should be already inside Worklist. It ensures 5097 // a uniform instruction will only be used by uniform instructions. 5098 unsigned idx = 0; 5099 while (idx != Worklist.size()) { 5100 Instruction *I = Worklist[idx++]; 5101 5102 for (auto OV : I->operand_values()) { 5103 // isOutOfScope operands cannot be uniform instructions. 5104 if (isOutOfScope(OV)) 5105 continue; 5106 // First order recurrence Phi's should typically be considered 5107 // non-uniform. 5108 auto *OP = dyn_cast<PHINode>(OV); 5109 if (OP && Legal->isFirstOrderRecurrence(OP)) 5110 continue; 5111 // If all the users of the operand are uniform, then add the 5112 // operand into the uniform worklist. 5113 auto *OI = cast<Instruction>(OV); 5114 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5115 auto *J = cast<Instruction>(U); 5116 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5117 })) 5118 addToWorklistIfAllowed(OI); 5119 } 5120 } 5121 5122 // For an instruction to be added into Worklist above, all its users inside 5123 // the loop should also be in Worklist. However, this condition cannot be 5124 // true for phi nodes that form a cyclic dependence. We must process phi 5125 // nodes separately. An induction variable will remain uniform if all users 5126 // of the induction variable and induction variable update remain uniform. 5127 // The code below handles both pointer and non-pointer induction variables. 5128 for (auto &Induction : Legal->getInductionVars()) { 5129 auto *Ind = Induction.first; 5130 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5131 5132 // Determine if all users of the induction variable are uniform after 5133 // vectorization. 5134 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5135 auto *I = cast<Instruction>(U); 5136 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5137 isVectorizedMemAccessUse(I, Ind); 5138 }); 5139 if (!UniformInd) 5140 continue; 5141 5142 // Determine if all users of the induction variable update instruction are 5143 // uniform after vectorization. 5144 auto UniformIndUpdate = 5145 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5146 auto *I = cast<Instruction>(U); 5147 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5148 isVectorizedMemAccessUse(I, IndUpdate); 5149 }); 5150 if (!UniformIndUpdate) 5151 continue; 5152 5153 // The induction variable and its update instruction will remain uniform. 5154 addToWorklistIfAllowed(Ind); 5155 addToWorklistIfAllowed(IndUpdate); 5156 } 5157 5158 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5159 } 5160 5161 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5162 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5163 5164 if (Legal->getRuntimePointerChecking()->Need) { 5165 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5166 "runtime pointer checks needed. Enable vectorization of this " 5167 "loop with '#pragma clang loop vectorize(enable)' when " 5168 "compiling with -Os/-Oz", 5169 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5170 return true; 5171 } 5172 5173 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5174 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5175 "runtime SCEV checks needed. Enable vectorization of this " 5176 "loop with '#pragma clang loop vectorize(enable)' when " 5177 "compiling with -Os/-Oz", 5178 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5179 return true; 5180 } 5181 5182 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5183 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5184 reportVectorizationFailure("Runtime stride check for small trip count", 5185 "runtime stride == 1 checks needed. Enable vectorization of " 5186 "this loop without such check by compiling with -Os/-Oz", 5187 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5188 return true; 5189 } 5190 5191 return false; 5192 } 5193 5194 ElementCount 5195 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5196 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5197 return ElementCount::getScalable(0); 5198 5199 if (Hints->isScalableVectorizationDisabled()) { 5200 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5201 "ScalableVectorizationDisabled", ORE, TheLoop); 5202 return ElementCount::getScalable(0); 5203 } 5204 5205 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5206 5207 auto MaxScalableVF = ElementCount::getScalable( 5208 std::numeric_limits<ElementCount::ScalarTy>::max()); 5209 5210 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5211 // FIXME: While for scalable vectors this is currently sufficient, this should 5212 // be replaced by a more detailed mechanism that filters out specific VFs, 5213 // instead of invalidating vectorization for a whole set of VFs based on the 5214 // MaxVF. 5215 5216 // Disable scalable vectorization if the loop contains unsupported reductions. 5217 if (!canVectorizeReductions(MaxScalableVF)) { 5218 reportVectorizationInfo( 5219 "Scalable vectorization not supported for the reduction " 5220 "operations found in this loop.", 5221 "ScalableVFUnfeasible", ORE, TheLoop); 5222 return ElementCount::getScalable(0); 5223 } 5224 5225 // Disable scalable vectorization if the loop contains any instructions 5226 // with element types not supported for scalable vectors. 5227 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5228 return !Ty->isVoidTy() && 5229 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5230 })) { 5231 reportVectorizationInfo("Scalable vectorization is not supported " 5232 "for all element types found in this loop.", 5233 "ScalableVFUnfeasible", ORE, TheLoop); 5234 return ElementCount::getScalable(0); 5235 } 5236 5237 if (Legal->isSafeForAnyVectorWidth()) 5238 return MaxScalableVF; 5239 5240 // Limit MaxScalableVF by the maximum safe dependence distance. 5241 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5242 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5243 MaxVScale = 5244 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5245 MaxScalableVF = ElementCount::getScalable( 5246 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5247 if (!MaxScalableVF) 5248 reportVectorizationInfo( 5249 "Max legal vector width too small, scalable vectorization " 5250 "unfeasible.", 5251 "ScalableVFUnfeasible", ORE, TheLoop); 5252 5253 return MaxScalableVF; 5254 } 5255 5256 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5257 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5258 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5259 unsigned SmallestType, WidestType; 5260 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5261 5262 // Get the maximum safe dependence distance in bits computed by LAA. 5263 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5264 // the memory accesses that is most restrictive (involved in the smallest 5265 // dependence distance). 5266 unsigned MaxSafeElements = 5267 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5268 5269 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5270 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5271 5272 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5273 << ".\n"); 5274 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5275 << ".\n"); 5276 5277 // First analyze the UserVF, fall back if the UserVF should be ignored. 5278 if (UserVF) { 5279 auto MaxSafeUserVF = 5280 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5281 5282 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5283 // If `VF=vscale x N` is safe, then so is `VF=N` 5284 if (UserVF.isScalable()) 5285 return FixedScalableVFPair( 5286 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5287 else 5288 return UserVF; 5289 } 5290 5291 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5292 5293 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5294 // is better to ignore the hint and let the compiler choose a suitable VF. 5295 if (!UserVF.isScalable()) { 5296 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5297 << " is unsafe, clamping to max safe VF=" 5298 << MaxSafeFixedVF << ".\n"); 5299 ORE->emit([&]() { 5300 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5301 TheLoop->getStartLoc(), 5302 TheLoop->getHeader()) 5303 << "User-specified vectorization factor " 5304 << ore::NV("UserVectorizationFactor", UserVF) 5305 << " is unsafe, clamping to maximum safe vectorization factor " 5306 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5307 }); 5308 return MaxSafeFixedVF; 5309 } 5310 5311 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5312 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5313 << " is ignored because scalable vectors are not " 5314 "available.\n"); 5315 ORE->emit([&]() { 5316 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5317 TheLoop->getStartLoc(), 5318 TheLoop->getHeader()) 5319 << "User-specified vectorization factor " 5320 << ore::NV("UserVectorizationFactor", UserVF) 5321 << " is ignored because the target does not support scalable " 5322 "vectors. The compiler will pick a more suitable value."; 5323 }); 5324 } else { 5325 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5326 << " is unsafe. Ignoring scalable UserVF.\n"); 5327 ORE->emit([&]() { 5328 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5329 TheLoop->getStartLoc(), 5330 TheLoop->getHeader()) 5331 << "User-specified vectorization factor " 5332 << ore::NV("UserVectorizationFactor", UserVF) 5333 << " is unsafe. Ignoring the hint to let the compiler pick a " 5334 "more suitable value."; 5335 }); 5336 } 5337 } 5338 5339 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5340 << " / " << WidestType << " bits.\n"); 5341 5342 FixedScalableVFPair Result(ElementCount::getFixed(1), 5343 ElementCount::getScalable(0)); 5344 if (auto MaxVF = 5345 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5346 MaxSafeFixedVF, FoldTailByMasking)) 5347 Result.FixedVF = MaxVF; 5348 5349 if (auto MaxVF = 5350 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5351 MaxSafeScalableVF, FoldTailByMasking)) 5352 if (MaxVF.isScalable()) { 5353 Result.ScalableVF = MaxVF; 5354 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5355 << "\n"); 5356 } 5357 5358 return Result; 5359 } 5360 5361 FixedScalableVFPair 5362 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5363 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5364 // TODO: It may by useful to do since it's still likely to be dynamically 5365 // uniform if the target can skip. 5366 reportVectorizationFailure( 5367 "Not inserting runtime ptr check for divergent target", 5368 "runtime pointer checks needed. Not enabled for divergent target", 5369 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5370 return FixedScalableVFPair::getNone(); 5371 } 5372 5373 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5374 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5375 if (TC == 1) { 5376 reportVectorizationFailure("Single iteration (non) loop", 5377 "loop trip count is one, irrelevant for vectorization", 5378 "SingleIterationLoop", ORE, TheLoop); 5379 return FixedScalableVFPair::getNone(); 5380 } 5381 5382 switch (ScalarEpilogueStatus) { 5383 case CM_ScalarEpilogueAllowed: 5384 return computeFeasibleMaxVF(TC, UserVF, false); 5385 case CM_ScalarEpilogueNotAllowedUsePredicate: 5386 LLVM_FALLTHROUGH; 5387 case CM_ScalarEpilogueNotNeededUsePredicate: 5388 LLVM_DEBUG( 5389 dbgs() << "LV: vector predicate hint/switch found.\n" 5390 << "LV: Not allowing scalar epilogue, creating predicated " 5391 << "vector loop.\n"); 5392 break; 5393 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5394 // fallthrough as a special case of OptForSize 5395 case CM_ScalarEpilogueNotAllowedOptSize: 5396 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5397 LLVM_DEBUG( 5398 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5399 else 5400 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5401 << "count.\n"); 5402 5403 // Bail if runtime checks are required, which are not good when optimising 5404 // for size. 5405 if (runtimeChecksRequired()) 5406 return FixedScalableVFPair::getNone(); 5407 5408 break; 5409 } 5410 5411 // The only loops we can vectorize without a scalar epilogue, are loops with 5412 // a bottom-test and a single exiting block. We'd have to handle the fact 5413 // that not every instruction executes on the last iteration. This will 5414 // require a lane mask which varies through the vector loop body. (TODO) 5415 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5416 // If there was a tail-folding hint/switch, but we can't fold the tail by 5417 // masking, fallback to a vectorization with a scalar epilogue. 5418 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5419 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5420 "scalar epilogue instead.\n"); 5421 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5422 return computeFeasibleMaxVF(TC, UserVF, false); 5423 } 5424 return FixedScalableVFPair::getNone(); 5425 } 5426 5427 // Now try the tail folding 5428 5429 // Invalidate interleave groups that require an epilogue if we can't mask 5430 // the interleave-group. 5431 if (!useMaskedInterleavedAccesses(TTI)) { 5432 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5433 "No decisions should have been taken at this point"); 5434 // Note: There is no need to invalidate any cost modeling decisions here, as 5435 // non where taken so far. 5436 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5437 } 5438 5439 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5440 // Avoid tail folding if the trip count is known to be a multiple of any VF 5441 // we chose. 5442 // FIXME: The condition below pessimises the case for fixed-width vectors, 5443 // when scalable VFs are also candidates for vectorization. 5444 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5445 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5446 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5447 "MaxFixedVF must be a power of 2"); 5448 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5449 : MaxFixedVF.getFixedValue(); 5450 ScalarEvolution *SE = PSE.getSE(); 5451 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5452 const SCEV *ExitCount = SE->getAddExpr( 5453 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5454 const SCEV *Rem = SE->getURemExpr( 5455 SE->applyLoopGuards(ExitCount, TheLoop), 5456 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5457 if (Rem->isZero()) { 5458 // Accept MaxFixedVF if we do not have a tail. 5459 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5460 return MaxFactors; 5461 } 5462 } 5463 5464 // For scalable vectors don't use tail folding for low trip counts or 5465 // optimizing for code size. We only permit this if the user has explicitly 5466 // requested it. 5467 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5468 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5469 MaxFactors.ScalableVF.isVector()) 5470 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5471 5472 // If we don't know the precise trip count, or if the trip count that we 5473 // found modulo the vectorization factor is not zero, try to fold the tail 5474 // by masking. 5475 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5476 if (Legal->prepareToFoldTailByMasking()) { 5477 FoldTailByMasking = true; 5478 return MaxFactors; 5479 } 5480 5481 // If there was a tail-folding hint/switch, but we can't fold the tail by 5482 // masking, fallback to a vectorization with a scalar epilogue. 5483 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5484 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5485 "scalar epilogue instead.\n"); 5486 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5487 return MaxFactors; 5488 } 5489 5490 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5491 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5492 return FixedScalableVFPair::getNone(); 5493 } 5494 5495 if (TC == 0) { 5496 reportVectorizationFailure( 5497 "Unable to calculate the loop count due to complex control flow", 5498 "unable to calculate the loop count due to complex control flow", 5499 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5500 return FixedScalableVFPair::getNone(); 5501 } 5502 5503 reportVectorizationFailure( 5504 "Cannot optimize for size and vectorize at the same time.", 5505 "cannot optimize for size and vectorize at the same time. " 5506 "Enable vectorization of this loop with '#pragma clang loop " 5507 "vectorize(enable)' when compiling with -Os/-Oz", 5508 "NoTailLoopWithOptForSize", ORE, TheLoop); 5509 return FixedScalableVFPair::getNone(); 5510 } 5511 5512 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5513 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5514 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5515 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5516 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5517 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5518 : TargetTransformInfo::RGK_FixedWidthVector); 5519 5520 // Convenience function to return the minimum of two ElementCounts. 5521 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5522 assert((LHS.isScalable() == RHS.isScalable()) && 5523 "Scalable flags must match"); 5524 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5525 }; 5526 5527 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5528 // Note that both WidestRegister and WidestType may not be a powers of 2. 5529 auto MaxVectorElementCount = ElementCount::get( 5530 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5531 ComputeScalableMaxVF); 5532 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5533 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5534 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5535 5536 if (!MaxVectorElementCount) { 5537 LLVM_DEBUG(dbgs() << "LV: The target has no " 5538 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5539 << " vector registers.\n"); 5540 return ElementCount::getFixed(1); 5541 } 5542 5543 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5544 if (ConstTripCount && 5545 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5546 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5547 // If loop trip count (TC) is known at compile time there is no point in 5548 // choosing VF greater than TC (as done in the loop below). Select maximum 5549 // power of two which doesn't exceed TC. 5550 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5551 // when the TC is less than or equal to the known number of lanes. 5552 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5553 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5554 "exceeding the constant trip count: " 5555 << ClampedConstTripCount << "\n"); 5556 return ElementCount::getFixed(ClampedConstTripCount); 5557 } 5558 5559 ElementCount MaxVF = MaxVectorElementCount; 5560 if (TTI.shouldMaximizeVectorBandwidth() || 5561 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5562 auto MaxVectorElementCountMaxBW = ElementCount::get( 5563 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5564 ComputeScalableMaxVF); 5565 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5566 5567 // Collect all viable vectorization factors larger than the default MaxVF 5568 // (i.e. MaxVectorElementCount). 5569 SmallVector<ElementCount, 8> VFs; 5570 for (ElementCount VS = MaxVectorElementCount * 2; 5571 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5572 VFs.push_back(VS); 5573 5574 // For each VF calculate its register usage. 5575 auto RUs = calculateRegisterUsage(VFs); 5576 5577 // Select the largest VF which doesn't require more registers than existing 5578 // ones. 5579 for (int i = RUs.size() - 1; i >= 0; --i) { 5580 bool Selected = true; 5581 for (auto &pair : RUs[i].MaxLocalUsers) { 5582 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5583 if (pair.second > TargetNumRegisters) 5584 Selected = false; 5585 } 5586 if (Selected) { 5587 MaxVF = VFs[i]; 5588 break; 5589 } 5590 } 5591 if (ElementCount MinVF = 5592 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5593 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5594 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5595 << ") with target's minimum: " << MinVF << '\n'); 5596 MaxVF = MinVF; 5597 } 5598 } 5599 } 5600 return MaxVF; 5601 } 5602 5603 bool LoopVectorizationCostModel::isMoreProfitable( 5604 const VectorizationFactor &A, const VectorizationFactor &B) const { 5605 InstructionCost CostA = A.Cost; 5606 InstructionCost CostB = B.Cost; 5607 5608 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5609 5610 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5611 MaxTripCount) { 5612 // If we are folding the tail and the trip count is a known (possibly small) 5613 // constant, the trip count will be rounded up to an integer number of 5614 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5615 // which we compare directly. When not folding the tail, the total cost will 5616 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5617 // approximated with the per-lane cost below instead of using the tripcount 5618 // as here. 5619 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5620 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5621 return RTCostA < RTCostB; 5622 } 5623 5624 // Improve estimate for the vector width if it is scalable. 5625 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5626 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5627 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5628 if (A.Width.isScalable()) 5629 EstimatedWidthA *= VScale.getValue(); 5630 if (B.Width.isScalable()) 5631 EstimatedWidthB *= VScale.getValue(); 5632 } 5633 5634 // Assume vscale may be larger than 1 (or the value being tuned for), 5635 // so that scalable vectorization is slightly favorable over fixed-width 5636 // vectorization. 5637 if (A.Width.isScalable() && !B.Width.isScalable()) 5638 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5639 5640 // To avoid the need for FP division: 5641 // (CostA / A.Width) < (CostB / B.Width) 5642 // <=> (CostA * B.Width) < (CostB * A.Width) 5643 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5644 } 5645 5646 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5647 const ElementCountSet &VFCandidates) { 5648 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5649 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5650 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5651 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5652 "Expected Scalar VF to be a candidate"); 5653 5654 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5655 VectorizationFactor ChosenFactor = ScalarCost; 5656 5657 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5658 if (ForceVectorization && VFCandidates.size() > 1) { 5659 // Ignore scalar width, because the user explicitly wants vectorization. 5660 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5661 // evaluation. 5662 ChosenFactor.Cost = InstructionCost::getMax(); 5663 } 5664 5665 SmallVector<InstructionVFPair> InvalidCosts; 5666 for (const auto &i : VFCandidates) { 5667 // The cost for scalar VF=1 is already calculated, so ignore it. 5668 if (i.isScalar()) 5669 continue; 5670 5671 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5672 VectorizationFactor Candidate(i, C.first); 5673 5674 #ifndef NDEBUG 5675 unsigned AssumedMinimumVscale = 1; 5676 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5677 AssumedMinimumVscale = VScale.getValue(); 5678 unsigned Width = 5679 Candidate.Width.isScalable() 5680 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5681 : Candidate.Width.getFixedValue(); 5682 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5683 << " costs: " << (Candidate.Cost / Width)); 5684 if (i.isScalable()) 5685 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5686 << AssumedMinimumVscale << ")"); 5687 LLVM_DEBUG(dbgs() << ".\n"); 5688 #endif 5689 5690 if (!C.second && !ForceVectorization) { 5691 LLVM_DEBUG( 5692 dbgs() << "LV: Not considering vector loop of width " << i 5693 << " because it will not generate any vector instructions.\n"); 5694 continue; 5695 } 5696 5697 // If profitable add it to ProfitableVF list. 5698 if (isMoreProfitable(Candidate, ScalarCost)) 5699 ProfitableVFs.push_back(Candidate); 5700 5701 if (isMoreProfitable(Candidate, ChosenFactor)) 5702 ChosenFactor = Candidate; 5703 } 5704 5705 // Emit a report of VFs with invalid costs in the loop. 5706 if (!InvalidCosts.empty()) { 5707 // Group the remarks per instruction, keeping the instruction order from 5708 // InvalidCosts. 5709 std::map<Instruction *, unsigned> Numbering; 5710 unsigned I = 0; 5711 for (auto &Pair : InvalidCosts) 5712 if (!Numbering.count(Pair.first)) 5713 Numbering[Pair.first] = I++; 5714 5715 // Sort the list, first on instruction(number) then on VF. 5716 llvm::sort(InvalidCosts, 5717 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5718 if (Numbering[A.first] != Numbering[B.first]) 5719 return Numbering[A.first] < Numbering[B.first]; 5720 ElementCountComparator ECC; 5721 return ECC(A.second, B.second); 5722 }); 5723 5724 // For a list of ordered instruction-vf pairs: 5725 // [(load, vf1), (load, vf2), (store, vf1)] 5726 // Group the instructions together to emit separate remarks for: 5727 // load (vf1, vf2) 5728 // store (vf1) 5729 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5730 auto Subset = ArrayRef<InstructionVFPair>(); 5731 do { 5732 if (Subset.empty()) 5733 Subset = Tail.take_front(1); 5734 5735 Instruction *I = Subset.front().first; 5736 5737 // If the next instruction is different, or if there are no other pairs, 5738 // emit a remark for the collated subset. e.g. 5739 // [(load, vf1), (load, vf2))] 5740 // to emit: 5741 // remark: invalid costs for 'load' at VF=(vf, vf2) 5742 if (Subset == Tail || Tail[Subset.size()].first != I) { 5743 std::string OutString; 5744 raw_string_ostream OS(OutString); 5745 assert(!Subset.empty() && "Unexpected empty range"); 5746 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5747 for (auto &Pair : Subset) 5748 OS << (Pair.second == Subset.front().second ? "" : ", ") 5749 << Pair.second; 5750 OS << "):"; 5751 if (auto *CI = dyn_cast<CallInst>(I)) 5752 OS << " call to " << CI->getCalledFunction()->getName(); 5753 else 5754 OS << " " << I->getOpcodeName(); 5755 OS.flush(); 5756 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5757 Tail = Tail.drop_front(Subset.size()); 5758 Subset = {}; 5759 } else 5760 // Grow the subset by one element 5761 Subset = Tail.take_front(Subset.size() + 1); 5762 } while (!Tail.empty()); 5763 } 5764 5765 if (!EnableCondStoresVectorization && NumPredStores) { 5766 reportVectorizationFailure("There are conditional stores.", 5767 "store that is conditionally executed prevents vectorization", 5768 "ConditionalStore", ORE, TheLoop); 5769 ChosenFactor = ScalarCost; 5770 } 5771 5772 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5773 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5774 << "LV: Vectorization seems to be not beneficial, " 5775 << "but was forced by a user.\n"); 5776 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5777 return ChosenFactor; 5778 } 5779 5780 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5781 const Loop &L, ElementCount VF) const { 5782 // Cross iteration phis such as reductions need special handling and are 5783 // currently unsupported. 5784 if (any_of(L.getHeader()->phis(), 5785 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5786 return false; 5787 5788 // Phis with uses outside of the loop require special handling and are 5789 // currently unsupported. 5790 for (auto &Entry : Legal->getInductionVars()) { 5791 // Look for uses of the value of the induction at the last iteration. 5792 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5793 for (User *U : PostInc->users()) 5794 if (!L.contains(cast<Instruction>(U))) 5795 return false; 5796 // Look for uses of penultimate value of the induction. 5797 for (User *U : Entry.first->users()) 5798 if (!L.contains(cast<Instruction>(U))) 5799 return false; 5800 } 5801 5802 // Induction variables that are widened require special handling that is 5803 // currently not supported. 5804 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5805 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5806 this->isProfitableToScalarize(Entry.first, VF)); 5807 })) 5808 return false; 5809 5810 // Epilogue vectorization code has not been auditted to ensure it handles 5811 // non-latch exits properly. It may be fine, but it needs auditted and 5812 // tested. 5813 if (L.getExitingBlock() != L.getLoopLatch()) 5814 return false; 5815 5816 return true; 5817 } 5818 5819 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5820 const ElementCount VF) const { 5821 // FIXME: We need a much better cost-model to take different parameters such 5822 // as register pressure, code size increase and cost of extra branches into 5823 // account. For now we apply a very crude heuristic and only consider loops 5824 // with vectorization factors larger than a certain value. 5825 // We also consider epilogue vectorization unprofitable for targets that don't 5826 // consider interleaving beneficial (eg. MVE). 5827 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5828 return false; 5829 // FIXME: We should consider changing the threshold for scalable 5830 // vectors to take VScaleForTuning into account. 5831 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5832 return true; 5833 return false; 5834 } 5835 5836 VectorizationFactor 5837 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5838 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5839 VectorizationFactor Result = VectorizationFactor::Disabled(); 5840 if (!EnableEpilogueVectorization) { 5841 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5842 return Result; 5843 } 5844 5845 if (!isScalarEpilogueAllowed()) { 5846 LLVM_DEBUG( 5847 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5848 "allowed.\n";); 5849 return Result; 5850 } 5851 5852 // Not really a cost consideration, but check for unsupported cases here to 5853 // simplify the logic. 5854 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5855 LLVM_DEBUG( 5856 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5857 "not a supported candidate.\n";); 5858 return Result; 5859 } 5860 5861 if (EpilogueVectorizationForceVF > 1) { 5862 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5863 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5864 if (LVP.hasPlanWithVF(ForcedEC)) 5865 return {ForcedEC, 0}; 5866 else { 5867 LLVM_DEBUG( 5868 dbgs() 5869 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5870 return Result; 5871 } 5872 } 5873 5874 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5875 TheLoop->getHeader()->getParent()->hasMinSize()) { 5876 LLVM_DEBUG( 5877 dbgs() 5878 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5879 return Result; 5880 } 5881 5882 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5883 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5884 "this loop\n"); 5885 return Result; 5886 } 5887 5888 for (auto &NextVF : ProfitableVFs) 5889 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 5890 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5891 LVP.hasPlanWithVF(NextVF.Width)) 5892 Result = NextVF; 5893 5894 if (Result != VectorizationFactor::Disabled()) 5895 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5896 << Result.Width << "\n";); 5897 return Result; 5898 } 5899 5900 std::pair<unsigned, unsigned> 5901 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5902 unsigned MinWidth = -1U; 5903 unsigned MaxWidth = 8; 5904 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5905 // For in-loop reductions, no element types are added to ElementTypesInLoop 5906 // if there are no loads/stores in the loop. In this case, check through the 5907 // reduction variables to determine the maximum width. 5908 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5909 // Reset MaxWidth so that we can find the smallest type used by recurrences 5910 // in the loop. 5911 MaxWidth = -1U; 5912 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5913 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5914 // When finding the min width used by the recurrence we need to account 5915 // for casts on the input operands of the recurrence. 5916 MaxWidth = std::min<unsigned>( 5917 MaxWidth, std::min<unsigned>( 5918 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5919 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5920 } 5921 } else { 5922 for (Type *T : ElementTypesInLoop) { 5923 MinWidth = std::min<unsigned>( 5924 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5925 MaxWidth = std::max<unsigned>( 5926 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5927 } 5928 } 5929 return {MinWidth, MaxWidth}; 5930 } 5931 5932 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5933 ElementTypesInLoop.clear(); 5934 // For each block. 5935 for (BasicBlock *BB : TheLoop->blocks()) { 5936 // For each instruction in the loop. 5937 for (Instruction &I : BB->instructionsWithoutDebug()) { 5938 Type *T = I.getType(); 5939 5940 // Skip ignored values. 5941 if (ValuesToIgnore.count(&I)) 5942 continue; 5943 5944 // Only examine Loads, Stores and PHINodes. 5945 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5946 continue; 5947 5948 // Examine PHI nodes that are reduction variables. Update the type to 5949 // account for the recurrence type. 5950 if (auto *PN = dyn_cast<PHINode>(&I)) { 5951 if (!Legal->isReductionVariable(PN)) 5952 continue; 5953 const RecurrenceDescriptor &RdxDesc = 5954 Legal->getReductionVars().find(PN)->second; 5955 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5956 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5957 RdxDesc.getRecurrenceType(), 5958 TargetTransformInfo::ReductionFlags())) 5959 continue; 5960 T = RdxDesc.getRecurrenceType(); 5961 } 5962 5963 // Examine the stored values. 5964 if (auto *ST = dyn_cast<StoreInst>(&I)) 5965 T = ST->getValueOperand()->getType(); 5966 5967 assert(T->isSized() && 5968 "Expected the load/store/recurrence type to be sized"); 5969 5970 ElementTypesInLoop.insert(T); 5971 } 5972 } 5973 } 5974 5975 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5976 unsigned LoopCost) { 5977 // -- The interleave heuristics -- 5978 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5979 // There are many micro-architectural considerations that we can't predict 5980 // at this level. For example, frontend pressure (on decode or fetch) due to 5981 // code size, or the number and capabilities of the execution ports. 5982 // 5983 // We use the following heuristics to select the interleave count: 5984 // 1. If the code has reductions, then we interleave to break the cross 5985 // iteration dependency. 5986 // 2. If the loop is really small, then we interleave to reduce the loop 5987 // overhead. 5988 // 3. We don't interleave if we think that we will spill registers to memory 5989 // due to the increased register pressure. 5990 5991 if (!isScalarEpilogueAllowed()) 5992 return 1; 5993 5994 // We used the distance for the interleave count. 5995 if (Legal->getMaxSafeDepDistBytes() != -1U) 5996 return 1; 5997 5998 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5999 const bool HasReductions = !Legal->getReductionVars().empty(); 6000 // Do not interleave loops with a relatively small known or estimated trip 6001 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6002 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6003 // because with the above conditions interleaving can expose ILP and break 6004 // cross iteration dependences for reductions. 6005 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6006 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6007 return 1; 6008 6009 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6010 // We divide by these constants so assume that we have at least one 6011 // instruction that uses at least one register. 6012 for (auto& pair : R.MaxLocalUsers) { 6013 pair.second = std::max(pair.second, 1U); 6014 } 6015 6016 // We calculate the interleave count using the following formula. 6017 // Subtract the number of loop invariants from the number of available 6018 // registers. These registers are used by all of the interleaved instances. 6019 // Next, divide the remaining registers by the number of registers that is 6020 // required by the loop, in order to estimate how many parallel instances 6021 // fit without causing spills. All of this is rounded down if necessary to be 6022 // a power of two. We want power of two interleave count to simplify any 6023 // addressing operations or alignment considerations. 6024 // We also want power of two interleave counts to ensure that the induction 6025 // variable of the vector loop wraps to zero, when tail is folded by masking; 6026 // this currently happens when OptForSize, in which case IC is set to 1 above. 6027 unsigned IC = UINT_MAX; 6028 6029 for (auto& pair : R.MaxLocalUsers) { 6030 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6031 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6032 << " registers of " 6033 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6034 if (VF.isScalar()) { 6035 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6036 TargetNumRegisters = ForceTargetNumScalarRegs; 6037 } else { 6038 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6039 TargetNumRegisters = ForceTargetNumVectorRegs; 6040 } 6041 unsigned MaxLocalUsers = pair.second; 6042 unsigned LoopInvariantRegs = 0; 6043 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6044 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6045 6046 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6047 // Don't count the induction variable as interleaved. 6048 if (EnableIndVarRegisterHeur) { 6049 TmpIC = 6050 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6051 std::max(1U, (MaxLocalUsers - 1))); 6052 } 6053 6054 IC = std::min(IC, TmpIC); 6055 } 6056 6057 // Clamp the interleave ranges to reasonable counts. 6058 unsigned MaxInterleaveCount = 6059 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6060 6061 // Check if the user has overridden the max. 6062 if (VF.isScalar()) { 6063 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6064 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6065 } else { 6066 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6067 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6068 } 6069 6070 // If trip count is known or estimated compile time constant, limit the 6071 // interleave count to be less than the trip count divided by VF, provided it 6072 // is at least 1. 6073 // 6074 // For scalable vectors we can't know if interleaving is beneficial. It may 6075 // not be beneficial for small loops if none of the lanes in the second vector 6076 // iterations is enabled. However, for larger loops, there is likely to be a 6077 // similar benefit as for fixed-width vectors. For now, we choose to leave 6078 // the InterleaveCount as if vscale is '1', although if some information about 6079 // the vector is known (e.g. min vector size), we can make a better decision. 6080 if (BestKnownTC) { 6081 MaxInterleaveCount = 6082 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6083 // Make sure MaxInterleaveCount is greater than 0. 6084 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6085 } 6086 6087 assert(MaxInterleaveCount > 0 && 6088 "Maximum interleave count must be greater than 0"); 6089 6090 // Clamp the calculated IC to be between the 1 and the max interleave count 6091 // that the target and trip count allows. 6092 if (IC > MaxInterleaveCount) 6093 IC = MaxInterleaveCount; 6094 else 6095 // Make sure IC is greater than 0. 6096 IC = std::max(1u, IC); 6097 6098 assert(IC > 0 && "Interleave count must be greater than 0."); 6099 6100 // If we did not calculate the cost for VF (because the user selected the VF) 6101 // then we calculate the cost of VF here. 6102 if (LoopCost == 0) { 6103 InstructionCost C = expectedCost(VF).first; 6104 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6105 LoopCost = *C.getValue(); 6106 } 6107 6108 assert(LoopCost && "Non-zero loop cost expected"); 6109 6110 // Interleave if we vectorized this loop and there is a reduction that could 6111 // benefit from interleaving. 6112 if (VF.isVector() && HasReductions) { 6113 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6114 return IC; 6115 } 6116 6117 // Note that if we've already vectorized the loop we will have done the 6118 // runtime check and so interleaving won't require further checks. 6119 bool InterleavingRequiresRuntimePointerCheck = 6120 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6121 6122 // We want to interleave small loops in order to reduce the loop overhead and 6123 // potentially expose ILP opportunities. 6124 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6125 << "LV: IC is " << IC << '\n' 6126 << "LV: VF is " << VF << '\n'); 6127 const bool AggressivelyInterleaveReductions = 6128 TTI.enableAggressiveInterleaving(HasReductions); 6129 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6130 // We assume that the cost overhead is 1 and we use the cost model 6131 // to estimate the cost of the loop and interleave until the cost of the 6132 // loop overhead is about 5% of the cost of the loop. 6133 unsigned SmallIC = 6134 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6135 6136 // Interleave until store/load ports (estimated by max interleave count) are 6137 // saturated. 6138 unsigned NumStores = Legal->getNumStores(); 6139 unsigned NumLoads = Legal->getNumLoads(); 6140 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6141 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6142 6143 // There is little point in interleaving for reductions containing selects 6144 // and compares when VF=1 since it may just create more overhead than it's 6145 // worth for loops with small trip counts. This is because we still have to 6146 // do the final reduction after the loop. 6147 bool HasSelectCmpReductions = 6148 HasReductions && 6149 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6150 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6151 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6152 RdxDesc.getRecurrenceKind()); 6153 }); 6154 if (HasSelectCmpReductions) { 6155 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6156 return 1; 6157 } 6158 6159 // If we have a scalar reduction (vector reductions are already dealt with 6160 // by this point), we can increase the critical path length if the loop 6161 // we're interleaving is inside another loop. For tree-wise reductions 6162 // set the limit to 2, and for ordered reductions it's best to disable 6163 // interleaving entirely. 6164 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6165 bool HasOrderedReductions = 6166 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6167 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6168 return RdxDesc.isOrdered(); 6169 }); 6170 if (HasOrderedReductions) { 6171 LLVM_DEBUG( 6172 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6173 return 1; 6174 } 6175 6176 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6177 SmallIC = std::min(SmallIC, F); 6178 StoresIC = std::min(StoresIC, F); 6179 LoadsIC = std::min(LoadsIC, F); 6180 } 6181 6182 if (EnableLoadStoreRuntimeInterleave && 6183 std::max(StoresIC, LoadsIC) > SmallIC) { 6184 LLVM_DEBUG( 6185 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6186 return std::max(StoresIC, LoadsIC); 6187 } 6188 6189 // If there are scalar reductions and TTI has enabled aggressive 6190 // interleaving for reductions, we will interleave to expose ILP. 6191 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6192 AggressivelyInterleaveReductions) { 6193 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6194 // Interleave no less than SmallIC but not as aggressive as the normal IC 6195 // to satisfy the rare situation when resources are too limited. 6196 return std::max(IC / 2, SmallIC); 6197 } else { 6198 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6199 return SmallIC; 6200 } 6201 } 6202 6203 // Interleave if this is a large loop (small loops are already dealt with by 6204 // this point) that could benefit from interleaving. 6205 if (AggressivelyInterleaveReductions) { 6206 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6207 return IC; 6208 } 6209 6210 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6211 return 1; 6212 } 6213 6214 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6215 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6216 // This function calculates the register usage by measuring the highest number 6217 // of values that are alive at a single location. Obviously, this is a very 6218 // rough estimation. We scan the loop in a topological order in order and 6219 // assign a number to each instruction. We use RPO to ensure that defs are 6220 // met before their users. We assume that each instruction that has in-loop 6221 // users starts an interval. We record every time that an in-loop value is 6222 // used, so we have a list of the first and last occurrences of each 6223 // instruction. Next, we transpose this data structure into a multi map that 6224 // holds the list of intervals that *end* at a specific location. This multi 6225 // map allows us to perform a linear search. We scan the instructions linearly 6226 // and record each time that a new interval starts, by placing it in a set. 6227 // If we find this value in the multi-map then we remove it from the set. 6228 // The max register usage is the maximum size of the set. 6229 // We also search for instructions that are defined outside the loop, but are 6230 // used inside the loop. We need this number separately from the max-interval 6231 // usage number because when we unroll, loop-invariant values do not take 6232 // more register. 6233 LoopBlocksDFS DFS(TheLoop); 6234 DFS.perform(LI); 6235 6236 RegisterUsage RU; 6237 6238 // Each 'key' in the map opens a new interval. The values 6239 // of the map are the index of the 'last seen' usage of the 6240 // instruction that is the key. 6241 using IntervalMap = DenseMap<Instruction *, unsigned>; 6242 6243 // Maps instruction to its index. 6244 SmallVector<Instruction *, 64> IdxToInstr; 6245 // Marks the end of each interval. 6246 IntervalMap EndPoint; 6247 // Saves the list of instruction indices that are used in the loop. 6248 SmallPtrSet<Instruction *, 8> Ends; 6249 // Saves the list of values that are used in the loop but are 6250 // defined outside the loop, such as arguments and constants. 6251 SmallPtrSet<Value *, 8> LoopInvariants; 6252 6253 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6254 for (Instruction &I : BB->instructionsWithoutDebug()) { 6255 IdxToInstr.push_back(&I); 6256 6257 // Save the end location of each USE. 6258 for (Value *U : I.operands()) { 6259 auto *Instr = dyn_cast<Instruction>(U); 6260 6261 // Ignore non-instruction values such as arguments, constants, etc. 6262 if (!Instr) 6263 continue; 6264 6265 // If this instruction is outside the loop then record it and continue. 6266 if (!TheLoop->contains(Instr)) { 6267 LoopInvariants.insert(Instr); 6268 continue; 6269 } 6270 6271 // Overwrite previous end points. 6272 EndPoint[Instr] = IdxToInstr.size(); 6273 Ends.insert(Instr); 6274 } 6275 } 6276 } 6277 6278 // Saves the list of intervals that end with the index in 'key'. 6279 using InstrList = SmallVector<Instruction *, 2>; 6280 DenseMap<unsigned, InstrList> TransposeEnds; 6281 6282 // Transpose the EndPoints to a list of values that end at each index. 6283 for (auto &Interval : EndPoint) 6284 TransposeEnds[Interval.second].push_back(Interval.first); 6285 6286 SmallPtrSet<Instruction *, 8> OpenIntervals; 6287 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6288 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6289 6290 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6291 6292 // A lambda that gets the register usage for the given type and VF. 6293 const auto &TTICapture = TTI; 6294 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6295 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6296 return 0; 6297 InstructionCost::CostType RegUsage = 6298 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6299 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6300 "Nonsensical values for register usage."); 6301 return RegUsage; 6302 }; 6303 6304 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6305 Instruction *I = IdxToInstr[i]; 6306 6307 // Remove all of the instructions that end at this location. 6308 InstrList &List = TransposeEnds[i]; 6309 for (Instruction *ToRemove : List) 6310 OpenIntervals.erase(ToRemove); 6311 6312 // Ignore instructions that are never used within the loop. 6313 if (!Ends.count(I)) 6314 continue; 6315 6316 // Skip ignored values. 6317 if (ValuesToIgnore.count(I)) 6318 continue; 6319 6320 // For each VF find the maximum usage of registers. 6321 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6322 // Count the number of live intervals. 6323 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6324 6325 if (VFs[j].isScalar()) { 6326 for (auto Inst : OpenIntervals) { 6327 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6328 if (RegUsage.find(ClassID) == RegUsage.end()) 6329 RegUsage[ClassID] = 1; 6330 else 6331 RegUsage[ClassID] += 1; 6332 } 6333 } else { 6334 collectUniformsAndScalars(VFs[j]); 6335 for (auto Inst : OpenIntervals) { 6336 // Skip ignored values for VF > 1. 6337 if (VecValuesToIgnore.count(Inst)) 6338 continue; 6339 if (isScalarAfterVectorization(Inst, VFs[j])) { 6340 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6341 if (RegUsage.find(ClassID) == RegUsage.end()) 6342 RegUsage[ClassID] = 1; 6343 else 6344 RegUsage[ClassID] += 1; 6345 } else { 6346 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6347 if (RegUsage.find(ClassID) == RegUsage.end()) 6348 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6349 else 6350 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6351 } 6352 } 6353 } 6354 6355 for (auto& pair : RegUsage) { 6356 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6357 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6358 else 6359 MaxUsages[j][pair.first] = pair.second; 6360 } 6361 } 6362 6363 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6364 << OpenIntervals.size() << '\n'); 6365 6366 // Add the current instruction to the list of open intervals. 6367 OpenIntervals.insert(I); 6368 } 6369 6370 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6371 SmallMapVector<unsigned, unsigned, 4> Invariant; 6372 6373 for (auto Inst : LoopInvariants) { 6374 unsigned Usage = 6375 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6376 unsigned ClassID = 6377 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6378 if (Invariant.find(ClassID) == Invariant.end()) 6379 Invariant[ClassID] = Usage; 6380 else 6381 Invariant[ClassID] += Usage; 6382 } 6383 6384 LLVM_DEBUG({ 6385 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6386 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6387 << " item\n"; 6388 for (const auto &pair : MaxUsages[i]) { 6389 dbgs() << "LV(REG): RegisterClass: " 6390 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6391 << " registers\n"; 6392 } 6393 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6394 << " item\n"; 6395 for (const auto &pair : Invariant) { 6396 dbgs() << "LV(REG): RegisterClass: " 6397 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6398 << " registers\n"; 6399 } 6400 }); 6401 6402 RU.LoopInvariantRegs = Invariant; 6403 RU.MaxLocalUsers = MaxUsages[i]; 6404 RUs[i] = RU; 6405 } 6406 6407 return RUs; 6408 } 6409 6410 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6411 ElementCount VF) { 6412 // TODO: Cost model for emulated masked load/store is completely 6413 // broken. This hack guides the cost model to use an artificially 6414 // high enough value to practically disable vectorization with such 6415 // operations, except where previously deployed legality hack allowed 6416 // using very low cost values. This is to avoid regressions coming simply 6417 // from moving "masked load/store" check from legality to cost model. 6418 // Masked Load/Gather emulation was previously never allowed. 6419 // Limited number of Masked Store/Scatter emulation was allowed. 6420 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6421 return isa<LoadInst>(I) || 6422 (isa<StoreInst>(I) && 6423 NumPredStores > NumberOfStoresToPredicate); 6424 } 6425 6426 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6427 // If we aren't vectorizing the loop, or if we've already collected the 6428 // instructions to scalarize, there's nothing to do. Collection may already 6429 // have occurred if we have a user-selected VF and are now computing the 6430 // expected cost for interleaving. 6431 if (VF.isScalar() || VF.isZero() || 6432 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6433 return; 6434 6435 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6436 // not profitable to scalarize any instructions, the presence of VF in the 6437 // map will indicate that we've analyzed it already. 6438 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6439 6440 // Find all the instructions that are scalar with predication in the loop and 6441 // determine if it would be better to not if-convert the blocks they are in. 6442 // If so, we also record the instructions to scalarize. 6443 for (BasicBlock *BB : TheLoop->blocks()) { 6444 if (!blockNeedsPredicationForAnyReason(BB)) 6445 continue; 6446 for (Instruction &I : *BB) 6447 if (isScalarWithPredication(&I, VF)) { 6448 ScalarCostsTy ScalarCosts; 6449 // Do not apply discount if scalable, because that would lead to 6450 // invalid scalarization costs. 6451 // Do not apply discount logic if hacked cost is needed 6452 // for emulated masked memrefs. 6453 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6454 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6455 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6456 // Remember that BB will remain after vectorization. 6457 PredicatedBBsAfterVectorization.insert(BB); 6458 } 6459 } 6460 } 6461 6462 int LoopVectorizationCostModel::computePredInstDiscount( 6463 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6464 assert(!isUniformAfterVectorization(PredInst, VF) && 6465 "Instruction marked uniform-after-vectorization will be predicated"); 6466 6467 // Initialize the discount to zero, meaning that the scalar version and the 6468 // vector version cost the same. 6469 InstructionCost Discount = 0; 6470 6471 // Holds instructions to analyze. The instructions we visit are mapped in 6472 // ScalarCosts. Those instructions are the ones that would be scalarized if 6473 // we find that the scalar version costs less. 6474 SmallVector<Instruction *, 8> Worklist; 6475 6476 // Returns true if the given instruction can be scalarized. 6477 auto canBeScalarized = [&](Instruction *I) -> bool { 6478 // We only attempt to scalarize instructions forming a single-use chain 6479 // from the original predicated block that would otherwise be vectorized. 6480 // Although not strictly necessary, we give up on instructions we know will 6481 // already be scalar to avoid traversing chains that are unlikely to be 6482 // beneficial. 6483 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6484 isScalarAfterVectorization(I, VF)) 6485 return false; 6486 6487 // If the instruction is scalar with predication, it will be analyzed 6488 // separately. We ignore it within the context of PredInst. 6489 if (isScalarWithPredication(I, VF)) 6490 return false; 6491 6492 // If any of the instruction's operands are uniform after vectorization, 6493 // the instruction cannot be scalarized. This prevents, for example, a 6494 // masked load from being scalarized. 6495 // 6496 // We assume we will only emit a value for lane zero of an instruction 6497 // marked uniform after vectorization, rather than VF identical values. 6498 // Thus, if we scalarize an instruction that uses a uniform, we would 6499 // create uses of values corresponding to the lanes we aren't emitting code 6500 // for. This behavior can be changed by allowing getScalarValue to clone 6501 // the lane zero values for uniforms rather than asserting. 6502 for (Use &U : I->operands()) 6503 if (auto *J = dyn_cast<Instruction>(U.get())) 6504 if (isUniformAfterVectorization(J, VF)) 6505 return false; 6506 6507 // Otherwise, we can scalarize the instruction. 6508 return true; 6509 }; 6510 6511 // Compute the expected cost discount from scalarizing the entire expression 6512 // feeding the predicated instruction. We currently only consider expressions 6513 // that are single-use instruction chains. 6514 Worklist.push_back(PredInst); 6515 while (!Worklist.empty()) { 6516 Instruction *I = Worklist.pop_back_val(); 6517 6518 // If we've already analyzed the instruction, there's nothing to do. 6519 if (ScalarCosts.find(I) != ScalarCosts.end()) 6520 continue; 6521 6522 // Compute the cost of the vector instruction. Note that this cost already 6523 // includes the scalarization overhead of the predicated instruction. 6524 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6525 6526 // Compute the cost of the scalarized instruction. This cost is the cost of 6527 // the instruction as if it wasn't if-converted and instead remained in the 6528 // predicated block. We will scale this cost by block probability after 6529 // computing the scalarization overhead. 6530 InstructionCost ScalarCost = 6531 VF.getFixedValue() * 6532 getInstructionCost(I, ElementCount::getFixed(1)).first; 6533 6534 // Compute the scalarization overhead of needed insertelement instructions 6535 // and phi nodes. 6536 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6537 ScalarCost += TTI.getScalarizationOverhead( 6538 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6539 APInt::getAllOnes(VF.getFixedValue()), true, false); 6540 ScalarCost += 6541 VF.getFixedValue() * 6542 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6543 } 6544 6545 // Compute the scalarization overhead of needed extractelement 6546 // instructions. For each of the instruction's operands, if the operand can 6547 // be scalarized, add it to the worklist; otherwise, account for the 6548 // overhead. 6549 for (Use &U : I->operands()) 6550 if (auto *J = dyn_cast<Instruction>(U.get())) { 6551 assert(VectorType::isValidElementType(J->getType()) && 6552 "Instruction has non-scalar type"); 6553 if (canBeScalarized(J)) 6554 Worklist.push_back(J); 6555 else if (needsExtract(J, VF)) { 6556 ScalarCost += TTI.getScalarizationOverhead( 6557 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6558 APInt::getAllOnes(VF.getFixedValue()), false, true); 6559 } 6560 } 6561 6562 // Scale the total scalar cost by block probability. 6563 ScalarCost /= getReciprocalPredBlockProb(); 6564 6565 // Compute the discount. A non-negative discount means the vector version 6566 // of the instruction costs more, and scalarizing would be beneficial. 6567 Discount += VectorCost - ScalarCost; 6568 ScalarCosts[I] = ScalarCost; 6569 } 6570 6571 return *Discount.getValue(); 6572 } 6573 6574 LoopVectorizationCostModel::VectorizationCostTy 6575 LoopVectorizationCostModel::expectedCost( 6576 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6577 VectorizationCostTy Cost; 6578 6579 // For each block. 6580 for (BasicBlock *BB : TheLoop->blocks()) { 6581 VectorizationCostTy BlockCost; 6582 6583 // For each instruction in the old loop. 6584 for (Instruction &I : BB->instructionsWithoutDebug()) { 6585 // Skip ignored values. 6586 if (ValuesToIgnore.count(&I) || 6587 (VF.isVector() && VecValuesToIgnore.count(&I))) 6588 continue; 6589 6590 VectorizationCostTy C = getInstructionCost(&I, VF); 6591 6592 // Check if we should override the cost. 6593 if (C.first.isValid() && 6594 ForceTargetInstructionCost.getNumOccurrences() > 0) 6595 C.first = InstructionCost(ForceTargetInstructionCost); 6596 6597 // Keep a list of instructions with invalid costs. 6598 if (Invalid && !C.first.isValid()) 6599 Invalid->emplace_back(&I, VF); 6600 6601 BlockCost.first += C.first; 6602 BlockCost.second |= C.second; 6603 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6604 << " for VF " << VF << " For instruction: " << I 6605 << '\n'); 6606 } 6607 6608 // If we are vectorizing a predicated block, it will have been 6609 // if-converted. This means that the block's instructions (aside from 6610 // stores and instructions that may divide by zero) will now be 6611 // unconditionally executed. For the scalar case, we may not always execute 6612 // the predicated block, if it is an if-else block. Thus, scale the block's 6613 // cost by the probability of executing it. blockNeedsPredication from 6614 // Legal is used so as to not include all blocks in tail folded loops. 6615 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6616 BlockCost.first /= getReciprocalPredBlockProb(); 6617 6618 Cost.first += BlockCost.first; 6619 Cost.second |= BlockCost.second; 6620 } 6621 6622 return Cost; 6623 } 6624 6625 /// Gets Address Access SCEV after verifying that the access pattern 6626 /// is loop invariant except the induction variable dependence. 6627 /// 6628 /// This SCEV can be sent to the Target in order to estimate the address 6629 /// calculation cost. 6630 static const SCEV *getAddressAccessSCEV( 6631 Value *Ptr, 6632 LoopVectorizationLegality *Legal, 6633 PredicatedScalarEvolution &PSE, 6634 const Loop *TheLoop) { 6635 6636 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6637 if (!Gep) 6638 return nullptr; 6639 6640 // We are looking for a gep with all loop invariant indices except for one 6641 // which should be an induction variable. 6642 auto SE = PSE.getSE(); 6643 unsigned NumOperands = Gep->getNumOperands(); 6644 for (unsigned i = 1; i < NumOperands; ++i) { 6645 Value *Opd = Gep->getOperand(i); 6646 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6647 !Legal->isInductionVariable(Opd)) 6648 return nullptr; 6649 } 6650 6651 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6652 return PSE.getSCEV(Ptr); 6653 } 6654 6655 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6656 return Legal->hasStride(I->getOperand(0)) || 6657 Legal->hasStride(I->getOperand(1)); 6658 } 6659 6660 InstructionCost 6661 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6662 ElementCount VF) { 6663 assert(VF.isVector() && 6664 "Scalarization cost of instruction implies vectorization."); 6665 if (VF.isScalable()) 6666 return InstructionCost::getInvalid(); 6667 6668 Type *ValTy = getLoadStoreType(I); 6669 auto SE = PSE.getSE(); 6670 6671 unsigned AS = getLoadStoreAddressSpace(I); 6672 Value *Ptr = getLoadStorePointerOperand(I); 6673 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6674 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6675 // that it is being called from this specific place. 6676 6677 // Figure out whether the access is strided and get the stride value 6678 // if it's known in compile time 6679 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6680 6681 // Get the cost of the scalar memory instruction and address computation. 6682 InstructionCost Cost = 6683 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6684 6685 // Don't pass *I here, since it is scalar but will actually be part of a 6686 // vectorized loop where the user of it is a vectorized instruction. 6687 const Align Alignment = getLoadStoreAlignment(I); 6688 Cost += VF.getKnownMinValue() * 6689 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6690 AS, TTI::TCK_RecipThroughput); 6691 6692 // Get the overhead of the extractelement and insertelement instructions 6693 // we might create due to scalarization. 6694 Cost += getScalarizationOverhead(I, VF); 6695 6696 // If we have a predicated load/store, it will need extra i1 extracts and 6697 // conditional branches, but may not be executed for each vector lane. Scale 6698 // the cost by the probability of executing the predicated block. 6699 if (isPredicatedInst(I, VF)) { 6700 Cost /= getReciprocalPredBlockProb(); 6701 6702 // Add the cost of an i1 extract and a branch 6703 auto *Vec_i1Ty = 6704 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6705 Cost += TTI.getScalarizationOverhead( 6706 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6707 /*Insert=*/false, /*Extract=*/true); 6708 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6709 6710 if (useEmulatedMaskMemRefHack(I, VF)) 6711 // Artificially setting to a high enough value to practically disable 6712 // vectorization with such operations. 6713 Cost = 3000000; 6714 } 6715 6716 return Cost; 6717 } 6718 6719 InstructionCost 6720 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6721 ElementCount VF) { 6722 Type *ValTy = getLoadStoreType(I); 6723 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6724 Value *Ptr = getLoadStorePointerOperand(I); 6725 unsigned AS = getLoadStoreAddressSpace(I); 6726 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6727 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6728 6729 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6730 "Stride should be 1 or -1 for consecutive memory access"); 6731 const Align Alignment = getLoadStoreAlignment(I); 6732 InstructionCost Cost = 0; 6733 if (Legal->isMaskRequired(I)) 6734 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6735 CostKind); 6736 else 6737 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6738 CostKind, I); 6739 6740 bool Reverse = ConsecutiveStride < 0; 6741 if (Reverse) 6742 Cost += 6743 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6744 return Cost; 6745 } 6746 6747 InstructionCost 6748 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6749 ElementCount VF) { 6750 assert(Legal->isUniformMemOp(*I)); 6751 6752 Type *ValTy = getLoadStoreType(I); 6753 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6754 const Align Alignment = getLoadStoreAlignment(I); 6755 unsigned AS = getLoadStoreAddressSpace(I); 6756 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6757 if (isa<LoadInst>(I)) { 6758 return TTI.getAddressComputationCost(ValTy) + 6759 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6760 CostKind) + 6761 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6762 } 6763 StoreInst *SI = cast<StoreInst>(I); 6764 6765 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6766 return TTI.getAddressComputationCost(ValTy) + 6767 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6768 CostKind) + 6769 (isLoopInvariantStoreValue 6770 ? 0 6771 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6772 VF.getKnownMinValue() - 1)); 6773 } 6774 6775 InstructionCost 6776 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6777 ElementCount VF) { 6778 Type *ValTy = getLoadStoreType(I); 6779 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6780 const Align Alignment = getLoadStoreAlignment(I); 6781 const Value *Ptr = getLoadStorePointerOperand(I); 6782 6783 return TTI.getAddressComputationCost(VectorTy) + 6784 TTI.getGatherScatterOpCost( 6785 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6786 TargetTransformInfo::TCK_RecipThroughput, I); 6787 } 6788 6789 InstructionCost 6790 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6791 ElementCount VF) { 6792 // TODO: Once we have support for interleaving with scalable vectors 6793 // we can calculate the cost properly here. 6794 if (VF.isScalable()) 6795 return InstructionCost::getInvalid(); 6796 6797 Type *ValTy = getLoadStoreType(I); 6798 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6799 unsigned AS = getLoadStoreAddressSpace(I); 6800 6801 auto Group = getInterleavedAccessGroup(I); 6802 assert(Group && "Fail to get an interleaved access group."); 6803 6804 unsigned InterleaveFactor = Group->getFactor(); 6805 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6806 6807 // Holds the indices of existing members in the interleaved group. 6808 SmallVector<unsigned, 4> Indices; 6809 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6810 if (Group->getMember(IF)) 6811 Indices.push_back(IF); 6812 6813 // Calculate the cost of the whole interleaved group. 6814 bool UseMaskForGaps = 6815 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6816 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6817 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6818 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6819 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6820 6821 if (Group->isReverse()) { 6822 // TODO: Add support for reversed masked interleaved access. 6823 assert(!Legal->isMaskRequired(I) && 6824 "Reverse masked interleaved access not supported."); 6825 Cost += 6826 Group->getNumMembers() * 6827 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6828 } 6829 return Cost; 6830 } 6831 6832 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6833 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6834 using namespace llvm::PatternMatch; 6835 // Early exit for no inloop reductions 6836 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6837 return None; 6838 auto *VectorTy = cast<VectorType>(Ty); 6839 6840 // We are looking for a pattern of, and finding the minimal acceptable cost: 6841 // reduce(mul(ext(A), ext(B))) or 6842 // reduce(mul(A, B)) or 6843 // reduce(ext(A)) or 6844 // reduce(A). 6845 // The basic idea is that we walk down the tree to do that, finding the root 6846 // reduction instruction in InLoopReductionImmediateChains. From there we find 6847 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6848 // of the components. If the reduction cost is lower then we return it for the 6849 // reduction instruction and 0 for the other instructions in the pattern. If 6850 // it is not we return an invalid cost specifying the orignal cost method 6851 // should be used. 6852 Instruction *RetI = I; 6853 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6854 if (!RetI->hasOneUser()) 6855 return None; 6856 RetI = RetI->user_back(); 6857 } 6858 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6859 RetI->user_back()->getOpcode() == Instruction::Add) { 6860 if (!RetI->hasOneUser()) 6861 return None; 6862 RetI = RetI->user_back(); 6863 } 6864 6865 // Test if the found instruction is a reduction, and if not return an invalid 6866 // cost specifying the parent to use the original cost modelling. 6867 if (!InLoopReductionImmediateChains.count(RetI)) 6868 return None; 6869 6870 // Find the reduction this chain is a part of and calculate the basic cost of 6871 // the reduction on its own. 6872 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6873 Instruction *ReductionPhi = LastChain; 6874 while (!isa<PHINode>(ReductionPhi)) 6875 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6876 6877 const RecurrenceDescriptor &RdxDesc = 6878 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6879 6880 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6881 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6882 6883 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6884 // normal fmul instruction to the cost of the fadd reduction. 6885 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6886 BaseCost += 6887 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6888 6889 // If we're using ordered reductions then we can just return the base cost 6890 // here, since getArithmeticReductionCost calculates the full ordered 6891 // reduction cost when FP reassociation is not allowed. 6892 if (useOrderedReductions(RdxDesc)) 6893 return BaseCost; 6894 6895 // Get the operand that was not the reduction chain and match it to one of the 6896 // patterns, returning the better cost if it is found. 6897 Instruction *RedOp = RetI->getOperand(1) == LastChain 6898 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6899 : dyn_cast<Instruction>(RetI->getOperand(1)); 6900 6901 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6902 6903 Instruction *Op0, *Op1; 6904 if (RedOp && 6905 match(RedOp, 6906 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6907 match(Op0, m_ZExtOrSExt(m_Value())) && 6908 Op0->getOpcode() == Op1->getOpcode() && 6909 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6910 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6911 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6912 6913 // Matched reduce(ext(mul(ext(A), ext(B))) 6914 // Note that the extend opcodes need to all match, or if A==B they will have 6915 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6916 // which is equally fine. 6917 bool IsUnsigned = isa<ZExtInst>(Op0); 6918 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6919 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6920 6921 InstructionCost ExtCost = 6922 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6923 TTI::CastContextHint::None, CostKind, Op0); 6924 InstructionCost MulCost = 6925 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6926 InstructionCost Ext2Cost = 6927 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6928 TTI::CastContextHint::None, CostKind, RedOp); 6929 6930 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6931 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6932 CostKind); 6933 6934 if (RedCost.isValid() && 6935 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6936 return I == RetI ? RedCost : 0; 6937 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6938 !TheLoop->isLoopInvariant(RedOp)) { 6939 // Matched reduce(ext(A)) 6940 bool IsUnsigned = isa<ZExtInst>(RedOp); 6941 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6942 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6943 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6944 CostKind); 6945 6946 InstructionCost ExtCost = 6947 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6948 TTI::CastContextHint::None, CostKind, RedOp); 6949 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6950 return I == RetI ? RedCost : 0; 6951 } else if (RedOp && 6952 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6953 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6954 Op0->getOpcode() == Op1->getOpcode() && 6955 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6956 bool IsUnsigned = isa<ZExtInst>(Op0); 6957 Type *Op0Ty = Op0->getOperand(0)->getType(); 6958 Type *Op1Ty = Op1->getOperand(0)->getType(); 6959 Type *LargestOpTy = 6960 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6961 : Op0Ty; 6962 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6963 6964 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6965 // different sizes. We take the largest type as the ext to reduce, and add 6966 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6967 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6968 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6969 TTI::CastContextHint::None, CostKind, Op0); 6970 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6971 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6972 TTI::CastContextHint::None, CostKind, Op1); 6973 InstructionCost MulCost = 6974 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6975 6976 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6977 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6978 CostKind); 6979 InstructionCost ExtraExtCost = 0; 6980 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6981 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6982 ExtraExtCost = TTI.getCastInstrCost( 6983 ExtraExtOp->getOpcode(), ExtType, 6984 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6985 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6986 } 6987 6988 if (RedCost.isValid() && 6989 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6990 return I == RetI ? RedCost : 0; 6991 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6992 // Matched reduce(mul()) 6993 InstructionCost MulCost = 6994 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6995 6996 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6997 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6998 CostKind); 6999 7000 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7001 return I == RetI ? RedCost : 0; 7002 } 7003 } 7004 7005 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7006 } 7007 7008 InstructionCost 7009 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7010 ElementCount VF) { 7011 // Calculate scalar cost only. Vectorization cost should be ready at this 7012 // moment. 7013 if (VF.isScalar()) { 7014 Type *ValTy = getLoadStoreType(I); 7015 const Align Alignment = getLoadStoreAlignment(I); 7016 unsigned AS = getLoadStoreAddressSpace(I); 7017 7018 return TTI.getAddressComputationCost(ValTy) + 7019 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7020 TTI::TCK_RecipThroughput, I); 7021 } 7022 return getWideningCost(I, VF); 7023 } 7024 7025 LoopVectorizationCostModel::VectorizationCostTy 7026 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7027 ElementCount VF) { 7028 // If we know that this instruction will remain uniform, check the cost of 7029 // the scalar version. 7030 if (isUniformAfterVectorization(I, VF)) 7031 VF = ElementCount::getFixed(1); 7032 7033 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7034 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7035 7036 // Forced scalars do not have any scalarization overhead. 7037 auto ForcedScalar = ForcedScalars.find(VF); 7038 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7039 auto InstSet = ForcedScalar->second; 7040 if (InstSet.count(I)) 7041 return VectorizationCostTy( 7042 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7043 VF.getKnownMinValue()), 7044 false); 7045 } 7046 7047 Type *VectorTy; 7048 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7049 7050 bool TypeNotScalarized = false; 7051 if (VF.isVector() && VectorTy->isVectorTy()) { 7052 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7053 if (NumParts) 7054 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7055 else 7056 C = InstructionCost::getInvalid(); 7057 } 7058 return VectorizationCostTy(C, TypeNotScalarized); 7059 } 7060 7061 InstructionCost 7062 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7063 ElementCount VF) const { 7064 7065 // There is no mechanism yet to create a scalable scalarization loop, 7066 // so this is currently Invalid. 7067 if (VF.isScalable()) 7068 return InstructionCost::getInvalid(); 7069 7070 if (VF.isScalar()) 7071 return 0; 7072 7073 InstructionCost Cost = 0; 7074 Type *RetTy = ToVectorTy(I->getType(), VF); 7075 if (!RetTy->isVoidTy() && 7076 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7077 Cost += TTI.getScalarizationOverhead( 7078 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7079 false); 7080 7081 // Some targets keep addresses scalar. 7082 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7083 return Cost; 7084 7085 // Some targets support efficient element stores. 7086 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7087 return Cost; 7088 7089 // Collect operands to consider. 7090 CallInst *CI = dyn_cast<CallInst>(I); 7091 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7092 7093 // Skip operands that do not require extraction/scalarization and do not incur 7094 // any overhead. 7095 SmallVector<Type *> Tys; 7096 for (auto *V : filterExtractingOperands(Ops, VF)) 7097 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7098 return Cost + TTI.getOperandsScalarizationOverhead( 7099 filterExtractingOperands(Ops, VF), Tys); 7100 } 7101 7102 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7103 if (VF.isScalar()) 7104 return; 7105 NumPredStores = 0; 7106 for (BasicBlock *BB : TheLoop->blocks()) { 7107 // For each instruction in the old loop. 7108 for (Instruction &I : *BB) { 7109 Value *Ptr = getLoadStorePointerOperand(&I); 7110 if (!Ptr) 7111 continue; 7112 7113 // TODO: We should generate better code and update the cost model for 7114 // predicated uniform stores. Today they are treated as any other 7115 // predicated store (see added test cases in 7116 // invariant-store-vectorization.ll). 7117 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7118 NumPredStores++; 7119 7120 if (Legal->isUniformMemOp(I)) { 7121 // TODO: Avoid replicating loads and stores instead of 7122 // relying on instcombine to remove them. 7123 // Load: Scalar load + broadcast 7124 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7125 InstructionCost Cost; 7126 if (isa<StoreInst>(&I) && VF.isScalable() && 7127 isLegalGatherOrScatter(&I, VF)) { 7128 Cost = getGatherScatterCost(&I, VF); 7129 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7130 } else { 7131 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7132 "Cannot yet scalarize uniform stores"); 7133 Cost = getUniformMemOpCost(&I, VF); 7134 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7135 } 7136 continue; 7137 } 7138 7139 // We assume that widening is the best solution when possible. 7140 if (memoryInstructionCanBeWidened(&I, VF)) { 7141 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7142 int ConsecutiveStride = Legal->isConsecutivePtr( 7143 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7144 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7145 "Expected consecutive stride."); 7146 InstWidening Decision = 7147 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7148 setWideningDecision(&I, VF, Decision, Cost); 7149 continue; 7150 } 7151 7152 // Choose between Interleaving, Gather/Scatter or Scalarization. 7153 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7154 unsigned NumAccesses = 1; 7155 if (isAccessInterleaved(&I)) { 7156 auto Group = getInterleavedAccessGroup(&I); 7157 assert(Group && "Fail to get an interleaved access group."); 7158 7159 // Make one decision for the whole group. 7160 if (getWideningDecision(&I, VF) != CM_Unknown) 7161 continue; 7162 7163 NumAccesses = Group->getNumMembers(); 7164 if (interleavedAccessCanBeWidened(&I, VF)) 7165 InterleaveCost = getInterleaveGroupCost(&I, VF); 7166 } 7167 7168 InstructionCost GatherScatterCost = 7169 isLegalGatherOrScatter(&I, VF) 7170 ? getGatherScatterCost(&I, VF) * NumAccesses 7171 : InstructionCost::getInvalid(); 7172 7173 InstructionCost ScalarizationCost = 7174 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7175 7176 // Choose better solution for the current VF, 7177 // write down this decision and use it during vectorization. 7178 InstructionCost Cost; 7179 InstWidening Decision; 7180 if (InterleaveCost <= GatherScatterCost && 7181 InterleaveCost < ScalarizationCost) { 7182 Decision = CM_Interleave; 7183 Cost = InterleaveCost; 7184 } else if (GatherScatterCost < ScalarizationCost) { 7185 Decision = CM_GatherScatter; 7186 Cost = GatherScatterCost; 7187 } else { 7188 Decision = CM_Scalarize; 7189 Cost = ScalarizationCost; 7190 } 7191 // If the instructions belongs to an interleave group, the whole group 7192 // receives the same decision. The whole group receives the cost, but 7193 // the cost will actually be assigned to one instruction. 7194 if (auto Group = getInterleavedAccessGroup(&I)) 7195 setWideningDecision(Group, VF, Decision, Cost); 7196 else 7197 setWideningDecision(&I, VF, Decision, Cost); 7198 } 7199 } 7200 7201 // Make sure that any load of address and any other address computation 7202 // remains scalar unless there is gather/scatter support. This avoids 7203 // inevitable extracts into address registers, and also has the benefit of 7204 // activating LSR more, since that pass can't optimize vectorized 7205 // addresses. 7206 if (TTI.prefersVectorizedAddressing()) 7207 return; 7208 7209 // Start with all scalar pointer uses. 7210 SmallPtrSet<Instruction *, 8> AddrDefs; 7211 for (BasicBlock *BB : TheLoop->blocks()) 7212 for (Instruction &I : *BB) { 7213 Instruction *PtrDef = 7214 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7215 if (PtrDef && TheLoop->contains(PtrDef) && 7216 getWideningDecision(&I, VF) != CM_GatherScatter) 7217 AddrDefs.insert(PtrDef); 7218 } 7219 7220 // Add all instructions used to generate the addresses. 7221 SmallVector<Instruction *, 4> Worklist; 7222 append_range(Worklist, AddrDefs); 7223 while (!Worklist.empty()) { 7224 Instruction *I = Worklist.pop_back_val(); 7225 for (auto &Op : I->operands()) 7226 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7227 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7228 AddrDefs.insert(InstOp).second) 7229 Worklist.push_back(InstOp); 7230 } 7231 7232 for (auto *I : AddrDefs) { 7233 if (isa<LoadInst>(I)) { 7234 // Setting the desired widening decision should ideally be handled in 7235 // by cost functions, but since this involves the task of finding out 7236 // if the loaded register is involved in an address computation, it is 7237 // instead changed here when we know this is the case. 7238 InstWidening Decision = getWideningDecision(I, VF); 7239 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7240 // Scalarize a widened load of address. 7241 setWideningDecision( 7242 I, VF, CM_Scalarize, 7243 (VF.getKnownMinValue() * 7244 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7245 else if (auto Group = getInterleavedAccessGroup(I)) { 7246 // Scalarize an interleave group of address loads. 7247 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7248 if (Instruction *Member = Group->getMember(I)) 7249 setWideningDecision( 7250 Member, VF, CM_Scalarize, 7251 (VF.getKnownMinValue() * 7252 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7253 } 7254 } 7255 } else 7256 // Make sure I gets scalarized and a cost estimate without 7257 // scalarization overhead. 7258 ForcedScalars[VF].insert(I); 7259 } 7260 } 7261 7262 InstructionCost 7263 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7264 Type *&VectorTy) { 7265 Type *RetTy = I->getType(); 7266 if (canTruncateToMinimalBitwidth(I, VF)) 7267 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7268 auto SE = PSE.getSE(); 7269 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7270 7271 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7272 ElementCount VF) -> bool { 7273 if (VF.isScalar()) 7274 return true; 7275 7276 auto Scalarized = InstsToScalarize.find(VF); 7277 assert(Scalarized != InstsToScalarize.end() && 7278 "VF not yet analyzed for scalarization profitability"); 7279 return !Scalarized->second.count(I) && 7280 llvm::all_of(I->users(), [&](User *U) { 7281 auto *UI = cast<Instruction>(U); 7282 return !Scalarized->second.count(UI); 7283 }); 7284 }; 7285 (void) hasSingleCopyAfterVectorization; 7286 7287 if (isScalarAfterVectorization(I, VF)) { 7288 // With the exception of GEPs and PHIs, after scalarization there should 7289 // only be one copy of the instruction generated in the loop. This is 7290 // because the VF is either 1, or any instructions that need scalarizing 7291 // have already been dealt with by the the time we get here. As a result, 7292 // it means we don't have to multiply the instruction cost by VF. 7293 assert(I->getOpcode() == Instruction::GetElementPtr || 7294 I->getOpcode() == Instruction::PHI || 7295 (I->getOpcode() == Instruction::BitCast && 7296 I->getType()->isPointerTy()) || 7297 hasSingleCopyAfterVectorization(I, VF)); 7298 VectorTy = RetTy; 7299 } else 7300 VectorTy = ToVectorTy(RetTy, VF); 7301 7302 // TODO: We need to estimate the cost of intrinsic calls. 7303 switch (I->getOpcode()) { 7304 case Instruction::GetElementPtr: 7305 // We mark this instruction as zero-cost because the cost of GEPs in 7306 // vectorized code depends on whether the corresponding memory instruction 7307 // is scalarized or not. Therefore, we handle GEPs with the memory 7308 // instruction cost. 7309 return 0; 7310 case Instruction::Br: { 7311 // In cases of scalarized and predicated instructions, there will be VF 7312 // predicated blocks in the vectorized loop. Each branch around these 7313 // blocks requires also an extract of its vector compare i1 element. 7314 bool ScalarPredicatedBB = false; 7315 BranchInst *BI = cast<BranchInst>(I); 7316 if (VF.isVector() && BI->isConditional() && 7317 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7318 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7319 ScalarPredicatedBB = true; 7320 7321 if (ScalarPredicatedBB) { 7322 // Not possible to scalarize scalable vector with predicated instructions. 7323 if (VF.isScalable()) 7324 return InstructionCost::getInvalid(); 7325 // Return cost for branches around scalarized and predicated blocks. 7326 auto *Vec_i1Ty = 7327 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7328 return ( 7329 TTI.getScalarizationOverhead( 7330 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7331 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7332 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7333 // The back-edge branch will remain, as will all scalar branches. 7334 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7335 else 7336 // This branch will be eliminated by if-conversion. 7337 return 0; 7338 // Note: We currently assume zero cost for an unconditional branch inside 7339 // a predicated block since it will become a fall-through, although we 7340 // may decide in the future to call TTI for all branches. 7341 } 7342 case Instruction::PHI: { 7343 auto *Phi = cast<PHINode>(I); 7344 7345 // First-order recurrences are replaced by vector shuffles inside the loop. 7346 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7347 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7348 return TTI.getShuffleCost( 7349 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7350 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7351 7352 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7353 // converted into select instructions. We require N - 1 selects per phi 7354 // node, where N is the number of incoming values. 7355 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7356 return (Phi->getNumIncomingValues() - 1) * 7357 TTI.getCmpSelInstrCost( 7358 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7359 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7360 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7361 7362 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7363 } 7364 case Instruction::UDiv: 7365 case Instruction::SDiv: 7366 case Instruction::URem: 7367 case Instruction::SRem: 7368 // If we have a predicated instruction, it may not be executed for each 7369 // vector lane. Get the scalarization cost and scale this amount by the 7370 // probability of executing the predicated block. If the instruction is not 7371 // predicated, we fall through to the next case. 7372 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7373 InstructionCost Cost = 0; 7374 7375 // These instructions have a non-void type, so account for the phi nodes 7376 // that we will create. This cost is likely to be zero. The phi node 7377 // cost, if any, should be scaled by the block probability because it 7378 // models a copy at the end of each predicated block. 7379 Cost += VF.getKnownMinValue() * 7380 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7381 7382 // The cost of the non-predicated instruction. 7383 Cost += VF.getKnownMinValue() * 7384 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7385 7386 // The cost of insertelement and extractelement instructions needed for 7387 // scalarization. 7388 Cost += getScalarizationOverhead(I, VF); 7389 7390 // Scale the cost by the probability of executing the predicated blocks. 7391 // This assumes the predicated block for each vector lane is equally 7392 // likely. 7393 return Cost / getReciprocalPredBlockProb(); 7394 } 7395 LLVM_FALLTHROUGH; 7396 case Instruction::Add: 7397 case Instruction::FAdd: 7398 case Instruction::Sub: 7399 case Instruction::FSub: 7400 case Instruction::Mul: 7401 case Instruction::FMul: 7402 case Instruction::FDiv: 7403 case Instruction::FRem: 7404 case Instruction::Shl: 7405 case Instruction::LShr: 7406 case Instruction::AShr: 7407 case Instruction::And: 7408 case Instruction::Or: 7409 case Instruction::Xor: { 7410 // Since we will replace the stride by 1 the multiplication should go away. 7411 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7412 return 0; 7413 7414 // Detect reduction patterns 7415 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7416 return *RedCost; 7417 7418 // Certain instructions can be cheaper to vectorize if they have a constant 7419 // second vector operand. One example of this are shifts on x86. 7420 Value *Op2 = I->getOperand(1); 7421 TargetTransformInfo::OperandValueProperties Op2VP; 7422 TargetTransformInfo::OperandValueKind Op2VK = 7423 TTI.getOperandInfo(Op2, Op2VP); 7424 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7425 Op2VK = TargetTransformInfo::OK_UniformValue; 7426 7427 SmallVector<const Value *, 4> Operands(I->operand_values()); 7428 return TTI.getArithmeticInstrCost( 7429 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7430 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7431 } 7432 case Instruction::FNeg: { 7433 return TTI.getArithmeticInstrCost( 7434 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7435 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7436 TargetTransformInfo::OP_None, I->getOperand(0), I); 7437 } 7438 case Instruction::Select: { 7439 SelectInst *SI = cast<SelectInst>(I); 7440 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7441 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7442 7443 const Value *Op0, *Op1; 7444 using namespace llvm::PatternMatch; 7445 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7446 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7447 // select x, y, false --> x & y 7448 // select x, true, y --> x | y 7449 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7450 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7451 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7452 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7453 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7454 Op1->getType()->getScalarSizeInBits() == 1); 7455 7456 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7457 return TTI.getArithmeticInstrCost( 7458 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7459 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7460 } 7461 7462 Type *CondTy = SI->getCondition()->getType(); 7463 if (!ScalarCond) 7464 CondTy = VectorType::get(CondTy, VF); 7465 7466 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7467 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7468 Pred = Cmp->getPredicate(); 7469 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7470 CostKind, I); 7471 } 7472 case Instruction::ICmp: 7473 case Instruction::FCmp: { 7474 Type *ValTy = I->getOperand(0)->getType(); 7475 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7476 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7477 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7478 VectorTy = ToVectorTy(ValTy, VF); 7479 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7480 cast<CmpInst>(I)->getPredicate(), CostKind, 7481 I); 7482 } 7483 case Instruction::Store: 7484 case Instruction::Load: { 7485 ElementCount Width = VF; 7486 if (Width.isVector()) { 7487 InstWidening Decision = getWideningDecision(I, Width); 7488 assert(Decision != CM_Unknown && 7489 "CM decision should be taken at this point"); 7490 if (Decision == CM_Scalarize) 7491 Width = ElementCount::getFixed(1); 7492 } 7493 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7494 return getMemoryInstructionCost(I, VF); 7495 } 7496 case Instruction::BitCast: 7497 if (I->getType()->isPointerTy()) 7498 return 0; 7499 LLVM_FALLTHROUGH; 7500 case Instruction::ZExt: 7501 case Instruction::SExt: 7502 case Instruction::FPToUI: 7503 case Instruction::FPToSI: 7504 case Instruction::FPExt: 7505 case Instruction::PtrToInt: 7506 case Instruction::IntToPtr: 7507 case Instruction::SIToFP: 7508 case Instruction::UIToFP: 7509 case Instruction::Trunc: 7510 case Instruction::FPTrunc: { 7511 // Computes the CastContextHint from a Load/Store instruction. 7512 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7513 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7514 "Expected a load or a store!"); 7515 7516 if (VF.isScalar() || !TheLoop->contains(I)) 7517 return TTI::CastContextHint::Normal; 7518 7519 switch (getWideningDecision(I, VF)) { 7520 case LoopVectorizationCostModel::CM_GatherScatter: 7521 return TTI::CastContextHint::GatherScatter; 7522 case LoopVectorizationCostModel::CM_Interleave: 7523 return TTI::CastContextHint::Interleave; 7524 case LoopVectorizationCostModel::CM_Scalarize: 7525 case LoopVectorizationCostModel::CM_Widen: 7526 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7527 : TTI::CastContextHint::Normal; 7528 case LoopVectorizationCostModel::CM_Widen_Reverse: 7529 return TTI::CastContextHint::Reversed; 7530 case LoopVectorizationCostModel::CM_Unknown: 7531 llvm_unreachable("Instr did not go through cost modelling?"); 7532 } 7533 7534 llvm_unreachable("Unhandled case!"); 7535 }; 7536 7537 unsigned Opcode = I->getOpcode(); 7538 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7539 // For Trunc, the context is the only user, which must be a StoreInst. 7540 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7541 if (I->hasOneUse()) 7542 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7543 CCH = ComputeCCH(Store); 7544 } 7545 // For Z/Sext, the context is the operand, which must be a LoadInst. 7546 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7547 Opcode == Instruction::FPExt) { 7548 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7549 CCH = ComputeCCH(Load); 7550 } 7551 7552 // We optimize the truncation of induction variables having constant 7553 // integer steps. The cost of these truncations is the same as the scalar 7554 // operation. 7555 if (isOptimizableIVTruncate(I, VF)) { 7556 auto *Trunc = cast<TruncInst>(I); 7557 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7558 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7559 } 7560 7561 // Detect reduction patterns 7562 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7563 return *RedCost; 7564 7565 Type *SrcScalarTy = I->getOperand(0)->getType(); 7566 Type *SrcVecTy = 7567 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7568 if (canTruncateToMinimalBitwidth(I, VF)) { 7569 // This cast is going to be shrunk. This may remove the cast or it might 7570 // turn it into slightly different cast. For example, if MinBW == 16, 7571 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7572 // 7573 // Calculate the modified src and dest types. 7574 Type *MinVecTy = VectorTy; 7575 if (Opcode == Instruction::Trunc) { 7576 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7577 VectorTy = 7578 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7579 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7580 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7581 VectorTy = 7582 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7583 } 7584 } 7585 7586 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7587 } 7588 case Instruction::Call: { 7589 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7590 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7591 return *RedCost; 7592 bool NeedToScalarize; 7593 CallInst *CI = cast<CallInst>(I); 7594 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7595 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7596 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7597 return std::min(CallCost, IntrinsicCost); 7598 } 7599 return CallCost; 7600 } 7601 case Instruction::ExtractValue: 7602 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7603 case Instruction::Alloca: 7604 // We cannot easily widen alloca to a scalable alloca, as 7605 // the result would need to be a vector of pointers. 7606 if (VF.isScalable()) 7607 return InstructionCost::getInvalid(); 7608 LLVM_FALLTHROUGH; 7609 default: 7610 // This opcode is unknown. Assume that it is the same as 'mul'. 7611 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7612 } // end of switch. 7613 } 7614 7615 char LoopVectorize::ID = 0; 7616 7617 static const char lv_name[] = "Loop Vectorization"; 7618 7619 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7620 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7621 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7622 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7623 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7624 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7625 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7626 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7627 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7628 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7629 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7630 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7631 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7632 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7633 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7634 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7635 7636 namespace llvm { 7637 7638 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7639 7640 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7641 bool VectorizeOnlyWhenForced) { 7642 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7643 } 7644 7645 } // end namespace llvm 7646 7647 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7648 // Check if the pointer operand of a load or store instruction is 7649 // consecutive. 7650 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7651 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7652 return false; 7653 } 7654 7655 void LoopVectorizationCostModel::collectValuesToIgnore() { 7656 // Ignore ephemeral values. 7657 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7658 7659 // Ignore type-promoting instructions we identified during reduction 7660 // detection. 7661 for (auto &Reduction : Legal->getReductionVars()) { 7662 const RecurrenceDescriptor &RedDes = Reduction.second; 7663 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7664 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7665 } 7666 // Ignore type-casting instructions we identified during induction 7667 // detection. 7668 for (auto &Induction : Legal->getInductionVars()) { 7669 const InductionDescriptor &IndDes = Induction.second; 7670 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7671 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7672 } 7673 } 7674 7675 void LoopVectorizationCostModel::collectInLoopReductions() { 7676 for (auto &Reduction : Legal->getReductionVars()) { 7677 PHINode *Phi = Reduction.first; 7678 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7679 7680 // We don't collect reductions that are type promoted (yet). 7681 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7682 continue; 7683 7684 // If the target would prefer this reduction to happen "in-loop", then we 7685 // want to record it as such. 7686 unsigned Opcode = RdxDesc.getOpcode(); 7687 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7688 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7689 TargetTransformInfo::ReductionFlags())) 7690 continue; 7691 7692 // Check that we can correctly put the reductions into the loop, by 7693 // finding the chain of operations that leads from the phi to the loop 7694 // exit value. 7695 SmallVector<Instruction *, 4> ReductionOperations = 7696 RdxDesc.getReductionOpChain(Phi, TheLoop); 7697 bool InLoop = !ReductionOperations.empty(); 7698 if (InLoop) { 7699 InLoopReductionChains[Phi] = ReductionOperations; 7700 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7701 Instruction *LastChain = Phi; 7702 for (auto *I : ReductionOperations) { 7703 InLoopReductionImmediateChains[I] = LastChain; 7704 LastChain = I; 7705 } 7706 } 7707 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7708 << " reduction for phi: " << *Phi << "\n"); 7709 } 7710 } 7711 7712 // TODO: we could return a pair of values that specify the max VF and 7713 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7714 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7715 // doesn't have a cost model that can choose which plan to execute if 7716 // more than one is generated. 7717 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7718 LoopVectorizationCostModel &CM) { 7719 unsigned WidestType; 7720 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7721 return WidestVectorRegBits / WidestType; 7722 } 7723 7724 VectorizationFactor 7725 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7726 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7727 ElementCount VF = UserVF; 7728 // Outer loop handling: They may require CFG and instruction level 7729 // transformations before even evaluating whether vectorization is profitable. 7730 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7731 // the vectorization pipeline. 7732 if (!OrigLoop->isInnermost()) { 7733 // If the user doesn't provide a vectorization factor, determine a 7734 // reasonable one. 7735 if (UserVF.isZero()) { 7736 VF = ElementCount::getFixed(determineVPlanVF( 7737 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7738 .getFixedSize(), 7739 CM)); 7740 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7741 7742 // Make sure we have a VF > 1 for stress testing. 7743 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7744 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7745 << "overriding computed VF.\n"); 7746 VF = ElementCount::getFixed(4); 7747 } 7748 } 7749 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7750 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7751 "VF needs to be a power of two"); 7752 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7753 << "VF " << VF << " to build VPlans.\n"); 7754 buildVPlans(VF, VF); 7755 7756 // For VPlan build stress testing, we bail out after VPlan construction. 7757 if (VPlanBuildStressTest) 7758 return VectorizationFactor::Disabled(); 7759 7760 return {VF, 0 /*Cost*/}; 7761 } 7762 7763 LLVM_DEBUG( 7764 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7765 "VPlan-native path.\n"); 7766 return VectorizationFactor::Disabled(); 7767 } 7768 7769 Optional<VectorizationFactor> 7770 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7771 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7772 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7773 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7774 return None; 7775 7776 // Invalidate interleave groups if all blocks of loop will be predicated. 7777 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7778 !useMaskedInterleavedAccesses(*TTI)) { 7779 LLVM_DEBUG( 7780 dbgs() 7781 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7782 "which requires masked-interleaved support.\n"); 7783 if (CM.InterleaveInfo.invalidateGroups()) 7784 // Invalidating interleave groups also requires invalidating all decisions 7785 // based on them, which includes widening decisions and uniform and scalar 7786 // values. 7787 CM.invalidateCostModelingDecisions(); 7788 } 7789 7790 ElementCount MaxUserVF = 7791 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7792 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7793 if (!UserVF.isZero() && UserVFIsLegal) { 7794 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7795 "VF needs to be a power of two"); 7796 // Collect the instructions (and their associated costs) that will be more 7797 // profitable to scalarize. 7798 if (CM.selectUserVectorizationFactor(UserVF)) { 7799 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7800 CM.collectInLoopReductions(); 7801 buildVPlansWithVPRecipes(UserVF, UserVF); 7802 LLVM_DEBUG(printPlans(dbgs())); 7803 return {{UserVF, 0}}; 7804 } else 7805 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7806 "InvalidCost", ORE, OrigLoop); 7807 } 7808 7809 // Populate the set of Vectorization Factor Candidates. 7810 ElementCountSet VFCandidates; 7811 for (auto VF = ElementCount::getFixed(1); 7812 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7813 VFCandidates.insert(VF); 7814 for (auto VF = ElementCount::getScalable(1); 7815 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7816 VFCandidates.insert(VF); 7817 7818 for (const auto &VF : VFCandidates) { 7819 // Collect Uniform and Scalar instructions after vectorization with VF. 7820 CM.collectUniformsAndScalars(VF); 7821 7822 // Collect the instructions (and their associated costs) that will be more 7823 // profitable to scalarize. 7824 if (VF.isVector()) 7825 CM.collectInstsToScalarize(VF); 7826 } 7827 7828 CM.collectInLoopReductions(); 7829 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7830 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7831 7832 LLVM_DEBUG(printPlans(dbgs())); 7833 if (!MaxFactors.hasVector()) 7834 return VectorizationFactor::Disabled(); 7835 7836 // Select the optimal vectorization factor. 7837 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7838 7839 // Check if it is profitable to vectorize with runtime checks. 7840 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7841 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7842 bool PragmaThresholdReached = 7843 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7844 bool ThresholdReached = 7845 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7846 if ((ThresholdReached && !Hints.allowReordering()) || 7847 PragmaThresholdReached) { 7848 ORE->emit([&]() { 7849 return OptimizationRemarkAnalysisAliasing( 7850 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7851 OrigLoop->getHeader()) 7852 << "loop not vectorized: cannot prove it is safe to reorder " 7853 "memory operations"; 7854 }); 7855 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7856 Hints.emitRemarkWithHints(); 7857 return VectorizationFactor::Disabled(); 7858 } 7859 } 7860 return SelectedVF; 7861 } 7862 7863 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7864 assert(count_if(VPlans, 7865 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7866 1 && 7867 "Best VF has not a single VPlan."); 7868 7869 for (const VPlanPtr &Plan : VPlans) { 7870 if (Plan->hasVF(VF)) 7871 return *Plan.get(); 7872 } 7873 llvm_unreachable("No plan found!"); 7874 } 7875 7876 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7877 SmallVector<Metadata *, 4> MDs; 7878 // Reserve first location for self reference to the LoopID metadata node. 7879 MDs.push_back(nullptr); 7880 bool IsUnrollMetadata = false; 7881 MDNode *LoopID = L->getLoopID(); 7882 if (LoopID) { 7883 // First find existing loop unrolling disable metadata. 7884 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7885 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7886 if (MD) { 7887 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7888 IsUnrollMetadata = 7889 S && S->getString().startswith("llvm.loop.unroll.disable"); 7890 } 7891 MDs.push_back(LoopID->getOperand(i)); 7892 } 7893 } 7894 7895 if (!IsUnrollMetadata) { 7896 // Add runtime unroll disable metadata. 7897 LLVMContext &Context = L->getHeader()->getContext(); 7898 SmallVector<Metadata *, 1> DisableOperands; 7899 DisableOperands.push_back( 7900 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7901 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7902 MDs.push_back(DisableNode); 7903 MDNode *NewLoopID = MDNode::get(Context, MDs); 7904 // Set operand 0 to refer to the loop id itself. 7905 NewLoopID->replaceOperandWith(0, NewLoopID); 7906 L->setLoopID(NewLoopID); 7907 } 7908 } 7909 7910 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7911 VPlan &BestVPlan, 7912 InnerLoopVectorizer &ILV, 7913 DominatorTree *DT) { 7914 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7915 << '\n'); 7916 7917 // Perform the actual loop transformation. 7918 7919 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7920 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7921 Value *CanonicalIVStartValue; 7922 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7923 ILV.createVectorizedLoopSkeleton(); 7924 ILV.collectPoisonGeneratingRecipes(State); 7925 7926 ILV.printDebugTracesAtStart(); 7927 7928 //===------------------------------------------------===// 7929 // 7930 // Notice: any optimization or new instruction that go 7931 // into the code below should also be implemented in 7932 // the cost-model. 7933 // 7934 //===------------------------------------------------===// 7935 7936 // 2. Copy and widen instructions from the old loop into the new loop. 7937 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7938 ILV.getOrCreateVectorTripCount(nullptr), 7939 CanonicalIVStartValue, State); 7940 BestVPlan.execute(&State); 7941 7942 // Keep all loop hints from the original loop on the vector loop (we'll 7943 // replace the vectorizer-specific hints below). 7944 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7945 7946 Optional<MDNode *> VectorizedLoopID = 7947 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7948 LLVMLoopVectorizeFollowupVectorized}); 7949 7950 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7951 if (VectorizedLoopID.hasValue()) 7952 L->setLoopID(VectorizedLoopID.getValue()); 7953 else { 7954 // Keep all loop hints from the original loop on the vector loop (we'll 7955 // replace the vectorizer-specific hints below). 7956 if (MDNode *LID = OrigLoop->getLoopID()) 7957 L->setLoopID(LID); 7958 7959 LoopVectorizeHints Hints(L, true, *ORE); 7960 Hints.setAlreadyVectorized(); 7961 } 7962 // Disable runtime unrolling when vectorizing the epilogue loop. 7963 if (CanonicalIVStartValue) 7964 AddRuntimeUnrollDisableMetaData(L); 7965 7966 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7967 // predication, updating analyses. 7968 ILV.fixVectorizedLoop(State); 7969 7970 ILV.printDebugTracesAtEnd(); 7971 } 7972 7973 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7974 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7975 for (const auto &Plan : VPlans) 7976 if (PrintVPlansInDotFormat) 7977 Plan->printDOT(O); 7978 else 7979 Plan->print(O); 7980 } 7981 #endif 7982 7983 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7984 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7985 7986 // We create new control-flow for the vectorized loop, so the original exit 7987 // conditions will be dead after vectorization if it's only used by the 7988 // terminator 7989 SmallVector<BasicBlock*> ExitingBlocks; 7990 OrigLoop->getExitingBlocks(ExitingBlocks); 7991 for (auto *BB : ExitingBlocks) { 7992 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7993 if (!Cmp || !Cmp->hasOneUse()) 7994 continue; 7995 7996 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7997 if (!DeadInstructions.insert(Cmp).second) 7998 continue; 7999 8000 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8001 // TODO: can recurse through operands in general 8002 for (Value *Op : Cmp->operands()) { 8003 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8004 DeadInstructions.insert(cast<Instruction>(Op)); 8005 } 8006 } 8007 8008 // We create new "steps" for induction variable updates to which the original 8009 // induction variables map. An original update instruction will be dead if 8010 // all its users except the induction variable are dead. 8011 auto *Latch = OrigLoop->getLoopLatch(); 8012 for (auto &Induction : Legal->getInductionVars()) { 8013 PHINode *Ind = Induction.first; 8014 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8015 8016 // If the tail is to be folded by masking, the primary induction variable, 8017 // if exists, isn't dead: it will be used for masking. Don't kill it. 8018 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8019 continue; 8020 8021 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8022 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8023 })) 8024 DeadInstructions.insert(IndUpdate); 8025 } 8026 } 8027 8028 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8029 8030 //===--------------------------------------------------------------------===// 8031 // EpilogueVectorizerMainLoop 8032 //===--------------------------------------------------------------------===// 8033 8034 /// This function is partially responsible for generating the control flow 8035 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8036 std::pair<BasicBlock *, Value *> 8037 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8038 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8039 Loop *Lp = createVectorLoopSkeleton(""); 8040 8041 // Generate the code to check the minimum iteration count of the vector 8042 // epilogue (see below). 8043 EPI.EpilogueIterationCountCheck = 8044 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8045 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8046 8047 // Generate the code to check any assumptions that we've made for SCEV 8048 // expressions. 8049 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8050 8051 // Generate the code that checks at runtime if arrays overlap. We put the 8052 // checks into a separate block to make the more common case of few elements 8053 // faster. 8054 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8055 8056 // Generate the iteration count check for the main loop, *after* the check 8057 // for the epilogue loop, so that the path-length is shorter for the case 8058 // that goes directly through the vector epilogue. The longer-path length for 8059 // the main loop is compensated for, by the gain from vectorizing the larger 8060 // trip count. Note: the branch will get updated later on when we vectorize 8061 // the epilogue. 8062 EPI.MainLoopIterationCountCheck = 8063 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8064 8065 // Generate the induction variable. 8066 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8067 EPI.VectorTripCount = CountRoundDown; 8068 createHeaderBranch(Lp); 8069 8070 // Skip induction resume value creation here because they will be created in 8071 // the second pass. If we created them here, they wouldn't be used anyway, 8072 // because the vplan in the second pass still contains the inductions from the 8073 // original loop. 8074 8075 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8076 } 8077 8078 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8079 LLVM_DEBUG({ 8080 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8081 << "Main Loop VF:" << EPI.MainLoopVF 8082 << ", Main Loop UF:" << EPI.MainLoopUF 8083 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8084 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8085 }); 8086 } 8087 8088 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8089 DEBUG_WITH_TYPE(VerboseDebug, { 8090 dbgs() << "intermediate fn:\n" 8091 << *OrigLoop->getHeader()->getParent() << "\n"; 8092 }); 8093 } 8094 8095 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8096 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8097 assert(L && "Expected valid Loop."); 8098 assert(Bypass && "Expected valid bypass basic block."); 8099 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8100 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8101 Value *Count = getOrCreateTripCount(L); 8102 // Reuse existing vector loop preheader for TC checks. 8103 // Note that new preheader block is generated for vector loop. 8104 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8105 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8106 8107 // Generate code to check if the loop's trip count is less than VF * UF of the 8108 // main vector loop. 8109 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8110 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8111 8112 Value *CheckMinIters = Builder.CreateICmp( 8113 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8114 "min.iters.check"); 8115 8116 if (!ForEpilogue) 8117 TCCheckBlock->setName("vector.main.loop.iter.check"); 8118 8119 // Create new preheader for vector loop. 8120 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8121 DT, LI, nullptr, "vector.ph"); 8122 8123 if (ForEpilogue) { 8124 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8125 DT->getNode(Bypass)->getIDom()) && 8126 "TC check is expected to dominate Bypass"); 8127 8128 // Update dominator for Bypass & LoopExit. 8129 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8130 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8131 // For loops with multiple exits, there's no edge from the middle block 8132 // to exit blocks (as the epilogue must run) and thus no need to update 8133 // the immediate dominator of the exit blocks. 8134 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8135 8136 LoopBypassBlocks.push_back(TCCheckBlock); 8137 8138 // Save the trip count so we don't have to regenerate it in the 8139 // vec.epilog.iter.check. This is safe to do because the trip count 8140 // generated here dominates the vector epilog iter check. 8141 EPI.TripCount = Count; 8142 } 8143 8144 ReplaceInstWithInst( 8145 TCCheckBlock->getTerminator(), 8146 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8147 8148 return TCCheckBlock; 8149 } 8150 8151 //===--------------------------------------------------------------------===// 8152 // EpilogueVectorizerEpilogueLoop 8153 //===--------------------------------------------------------------------===// 8154 8155 /// This function is partially responsible for generating the control flow 8156 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8157 std::pair<BasicBlock *, Value *> 8158 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8159 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8160 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8161 8162 // Now, compare the remaining count and if there aren't enough iterations to 8163 // execute the vectorized epilogue skip to the scalar part. 8164 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8165 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8166 LoopVectorPreHeader = 8167 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8168 LI, nullptr, "vec.epilog.ph"); 8169 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8170 VecEpilogueIterationCountCheck); 8171 8172 // Adjust the control flow taking the state info from the main loop 8173 // vectorization into account. 8174 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8175 "expected this to be saved from the previous pass."); 8176 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8177 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8178 8179 DT->changeImmediateDominator(LoopVectorPreHeader, 8180 EPI.MainLoopIterationCountCheck); 8181 8182 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8183 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8184 8185 if (EPI.SCEVSafetyCheck) 8186 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8187 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8188 if (EPI.MemSafetyCheck) 8189 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8190 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8191 8192 DT->changeImmediateDominator( 8193 VecEpilogueIterationCountCheck, 8194 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8195 8196 DT->changeImmediateDominator(LoopScalarPreHeader, 8197 EPI.EpilogueIterationCountCheck); 8198 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8199 // If there is an epilogue which must run, there's no edge from the 8200 // middle block to exit blocks and thus no need to update the immediate 8201 // dominator of the exit blocks. 8202 DT->changeImmediateDominator(LoopExitBlock, 8203 EPI.EpilogueIterationCountCheck); 8204 8205 // Keep track of bypass blocks, as they feed start values to the induction 8206 // phis in the scalar loop preheader. 8207 if (EPI.SCEVSafetyCheck) 8208 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8209 if (EPI.MemSafetyCheck) 8210 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8211 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8212 8213 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8214 // merge control-flow from the latch block and the middle block. Update the 8215 // incoming values here and move the Phi into the preheader. 8216 SmallVector<PHINode *, 4> PhisInBlock; 8217 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8218 PhisInBlock.push_back(&Phi); 8219 8220 for (PHINode *Phi : PhisInBlock) { 8221 Phi->replaceIncomingBlockWith( 8222 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8223 VecEpilogueIterationCountCheck); 8224 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8225 if (EPI.SCEVSafetyCheck) 8226 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8227 if (EPI.MemSafetyCheck) 8228 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8229 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8230 } 8231 8232 // Generate a resume induction for the vector epilogue and put it in the 8233 // vector epilogue preheader 8234 Type *IdxTy = Legal->getWidestInductionType(); 8235 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8236 LoopVectorPreHeader->getFirstNonPHI()); 8237 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8238 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8239 EPI.MainLoopIterationCountCheck); 8240 8241 // Generate the induction variable. 8242 createHeaderBranch(Lp); 8243 8244 // Generate induction resume values. These variables save the new starting 8245 // indexes for the scalar loop. They are used to test if there are any tail 8246 // iterations left once the vector loop has completed. 8247 // Note that when the vectorized epilogue is skipped due to iteration count 8248 // check, then the resume value for the induction variable comes from 8249 // the trip count of the main vector loop, hence passing the AdditionalBypass 8250 // argument. 8251 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8252 EPI.VectorTripCount} /* AdditionalBypass */); 8253 8254 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8255 } 8256 8257 BasicBlock * 8258 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8259 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8260 8261 assert(EPI.TripCount && 8262 "Expected trip count to have been safed in the first pass."); 8263 assert( 8264 (!isa<Instruction>(EPI.TripCount) || 8265 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8266 "saved trip count does not dominate insertion point."); 8267 Value *TC = EPI.TripCount; 8268 IRBuilder<> Builder(Insert->getTerminator()); 8269 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8270 8271 // Generate code to check if the loop's trip count is less than VF * UF of the 8272 // vector epilogue loop. 8273 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8274 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8275 8276 Value *CheckMinIters = 8277 Builder.CreateICmp(P, Count, 8278 createStepForVF(Builder, Count->getType(), 8279 EPI.EpilogueVF, EPI.EpilogueUF), 8280 "min.epilog.iters.check"); 8281 8282 ReplaceInstWithInst( 8283 Insert->getTerminator(), 8284 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8285 8286 LoopBypassBlocks.push_back(Insert); 8287 return Insert; 8288 } 8289 8290 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8291 LLVM_DEBUG({ 8292 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8293 << "Epilogue Loop VF:" << EPI.EpilogueVF 8294 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8295 }); 8296 } 8297 8298 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8299 DEBUG_WITH_TYPE(VerboseDebug, { 8300 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8301 }); 8302 } 8303 8304 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8305 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8306 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8307 bool PredicateAtRangeStart = Predicate(Range.Start); 8308 8309 for (ElementCount TmpVF = Range.Start * 2; 8310 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8311 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8312 Range.End = TmpVF; 8313 break; 8314 } 8315 8316 return PredicateAtRangeStart; 8317 } 8318 8319 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8320 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8321 /// of VF's starting at a given VF and extending it as much as possible. Each 8322 /// vectorization decision can potentially shorten this sub-range during 8323 /// buildVPlan(). 8324 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8325 ElementCount MaxVF) { 8326 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8327 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8328 VFRange SubRange = {VF, MaxVFPlusOne}; 8329 VPlans.push_back(buildVPlan(SubRange)); 8330 VF = SubRange.End; 8331 } 8332 } 8333 8334 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8335 VPlanPtr &Plan) { 8336 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8337 8338 // Look for cached value. 8339 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8340 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8341 if (ECEntryIt != EdgeMaskCache.end()) 8342 return ECEntryIt->second; 8343 8344 VPValue *SrcMask = createBlockInMask(Src, Plan); 8345 8346 // The terminator has to be a branch inst! 8347 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8348 assert(BI && "Unexpected terminator found"); 8349 8350 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8351 return EdgeMaskCache[Edge] = SrcMask; 8352 8353 // If source is an exiting block, we know the exit edge is dynamically dead 8354 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8355 // adding uses of an otherwise potentially dead instruction. 8356 if (OrigLoop->isLoopExiting(Src)) 8357 return EdgeMaskCache[Edge] = SrcMask; 8358 8359 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8360 assert(EdgeMask && "No Edge Mask found for condition"); 8361 8362 if (BI->getSuccessor(0) != Dst) 8363 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8364 8365 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8366 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8367 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8368 // The select version does not introduce new UB if SrcMask is false and 8369 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8370 VPValue *False = Plan->getOrAddVPValue( 8371 ConstantInt::getFalse(BI->getCondition()->getType())); 8372 EdgeMask = 8373 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8374 } 8375 8376 return EdgeMaskCache[Edge] = EdgeMask; 8377 } 8378 8379 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8380 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8381 8382 // Look for cached value. 8383 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8384 if (BCEntryIt != BlockMaskCache.end()) 8385 return BCEntryIt->second; 8386 8387 // All-one mask is modelled as no-mask following the convention for masked 8388 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8389 VPValue *BlockMask = nullptr; 8390 8391 if (OrigLoop->getHeader() == BB) { 8392 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8393 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8394 8395 // Introduce the early-exit compare IV <= BTC to form header block mask. 8396 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8397 // constructing the desired canonical IV in the header block as its first 8398 // non-phi instructions. 8399 assert(CM.foldTailByMasking() && "must fold the tail"); 8400 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8401 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8402 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8403 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8404 8405 VPBuilder::InsertPointGuard Guard(Builder); 8406 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8407 if (CM.TTI.emitGetActiveLaneMask()) { 8408 VPValue *TC = Plan->getOrCreateTripCount(); 8409 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8410 } else { 8411 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8412 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8413 } 8414 return BlockMaskCache[BB] = BlockMask; 8415 } 8416 8417 // This is the block mask. We OR all incoming edges. 8418 for (auto *Predecessor : predecessors(BB)) { 8419 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8420 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8421 return BlockMaskCache[BB] = EdgeMask; 8422 8423 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8424 BlockMask = EdgeMask; 8425 continue; 8426 } 8427 8428 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8429 } 8430 8431 return BlockMaskCache[BB] = BlockMask; 8432 } 8433 8434 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8435 ArrayRef<VPValue *> Operands, 8436 VFRange &Range, 8437 VPlanPtr &Plan) { 8438 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8439 "Must be called with either a load or store"); 8440 8441 auto willWiden = [&](ElementCount VF) -> bool { 8442 if (VF.isScalar()) 8443 return false; 8444 LoopVectorizationCostModel::InstWidening Decision = 8445 CM.getWideningDecision(I, VF); 8446 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8447 "CM decision should be taken at this point."); 8448 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8449 return true; 8450 if (CM.isScalarAfterVectorization(I, VF) || 8451 CM.isProfitableToScalarize(I, VF)) 8452 return false; 8453 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8454 }; 8455 8456 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8457 return nullptr; 8458 8459 VPValue *Mask = nullptr; 8460 if (Legal->isMaskRequired(I)) 8461 Mask = createBlockInMask(I->getParent(), Plan); 8462 8463 // Determine if the pointer operand of the access is either consecutive or 8464 // reverse consecutive. 8465 LoopVectorizationCostModel::InstWidening Decision = 8466 CM.getWideningDecision(I, Range.Start); 8467 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8468 bool Consecutive = 8469 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8470 8471 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8472 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8473 Consecutive, Reverse); 8474 8475 StoreInst *Store = cast<StoreInst>(I); 8476 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8477 Mask, Consecutive, Reverse); 8478 } 8479 8480 static VPWidenIntOrFpInductionRecipe * 8481 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8482 VPValue *Start, const InductionDescriptor &IndDesc, 8483 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8484 VFRange &Range) { 8485 // Returns true if an instruction \p I should be scalarized instead of 8486 // vectorized for the chosen vectorization factor. 8487 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8488 return CM.isScalarAfterVectorization(I, VF) || 8489 CM.isProfitableToScalarize(I, VF); 8490 }; 8491 8492 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8493 [&](ElementCount VF) { 8494 // Returns true if we should generate a scalar version of \p IV. 8495 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8496 return true; 8497 auto isScalarInst = [&](User *U) -> bool { 8498 auto *I = cast<Instruction>(U); 8499 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8500 }; 8501 return any_of(PhiOrTrunc->users(), isScalarInst); 8502 }, 8503 Range); 8504 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8505 [&](ElementCount VF) { 8506 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8507 }, 8508 Range); 8509 assert(IndDesc.getStartValue() == 8510 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8511 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8512 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8513 NeedsScalarIV, !NeedsScalarIVOnly); 8514 } 8515 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8516 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8517 !NeedsScalarIVOnly); 8518 } 8519 8520 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8521 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8522 8523 // Check if this is an integer or fp induction. If so, build the recipe that 8524 // produces its scalar and vector values. 8525 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8526 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8527 Range); 8528 8529 return nullptr; 8530 } 8531 8532 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8533 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8534 VPlan &Plan) const { 8535 // Optimize the special case where the source is a constant integer 8536 // induction variable. Notice that we can only optimize the 'trunc' case 8537 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8538 // (c) other casts depend on pointer size. 8539 8540 // Determine whether \p K is a truncation based on an induction variable that 8541 // can be optimized. 8542 auto isOptimizableIVTruncate = 8543 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8544 return [=](ElementCount VF) -> bool { 8545 return CM.isOptimizableIVTruncate(K, VF); 8546 }; 8547 }; 8548 8549 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8550 isOptimizableIVTruncate(I), Range)) { 8551 8552 auto *Phi = cast<PHINode>(I->getOperand(0)); 8553 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8554 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8555 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8556 } 8557 return nullptr; 8558 } 8559 8560 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8561 ArrayRef<VPValue *> Operands, 8562 VPlanPtr &Plan) { 8563 // If all incoming values are equal, the incoming VPValue can be used directly 8564 // instead of creating a new VPBlendRecipe. 8565 VPValue *FirstIncoming = Operands[0]; 8566 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8567 return FirstIncoming == Inc; 8568 })) { 8569 return Operands[0]; 8570 } 8571 8572 // We know that all PHIs in non-header blocks are converted into selects, so 8573 // we don't have to worry about the insertion order and we can just use the 8574 // builder. At this point we generate the predication tree. There may be 8575 // duplications since this is a simple recursive scan, but future 8576 // optimizations will clean it up. 8577 SmallVector<VPValue *, 2> OperandsWithMask; 8578 unsigned NumIncoming = Phi->getNumIncomingValues(); 8579 8580 for (unsigned In = 0; In < NumIncoming; In++) { 8581 VPValue *EdgeMask = 8582 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8583 assert((EdgeMask || NumIncoming == 1) && 8584 "Multiple predecessors with one having a full mask"); 8585 OperandsWithMask.push_back(Operands[In]); 8586 if (EdgeMask) 8587 OperandsWithMask.push_back(EdgeMask); 8588 } 8589 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8590 } 8591 8592 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8593 ArrayRef<VPValue *> Operands, 8594 VFRange &Range) const { 8595 8596 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8597 [this, CI](ElementCount VF) { 8598 return CM.isScalarWithPredication(CI, VF); 8599 }, 8600 Range); 8601 8602 if (IsPredicated) 8603 return nullptr; 8604 8605 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8606 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8607 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8608 ID == Intrinsic::pseudoprobe || 8609 ID == Intrinsic::experimental_noalias_scope_decl)) 8610 return nullptr; 8611 8612 auto willWiden = [&](ElementCount VF) -> bool { 8613 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8614 // The following case may be scalarized depending on the VF. 8615 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8616 // version of the instruction. 8617 // Is it beneficial to perform intrinsic call compared to lib call? 8618 bool NeedToScalarize = false; 8619 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8620 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8621 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8622 return UseVectorIntrinsic || !NeedToScalarize; 8623 }; 8624 8625 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8626 return nullptr; 8627 8628 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8629 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8630 } 8631 8632 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8633 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8634 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8635 // Instruction should be widened, unless it is scalar after vectorization, 8636 // scalarization is profitable or it is predicated. 8637 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8638 return CM.isScalarAfterVectorization(I, VF) || 8639 CM.isProfitableToScalarize(I, VF) || 8640 CM.isScalarWithPredication(I, VF); 8641 }; 8642 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8643 Range); 8644 } 8645 8646 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8647 ArrayRef<VPValue *> Operands) const { 8648 auto IsVectorizableOpcode = [](unsigned Opcode) { 8649 switch (Opcode) { 8650 case Instruction::Add: 8651 case Instruction::And: 8652 case Instruction::AShr: 8653 case Instruction::BitCast: 8654 case Instruction::FAdd: 8655 case Instruction::FCmp: 8656 case Instruction::FDiv: 8657 case Instruction::FMul: 8658 case Instruction::FNeg: 8659 case Instruction::FPExt: 8660 case Instruction::FPToSI: 8661 case Instruction::FPToUI: 8662 case Instruction::FPTrunc: 8663 case Instruction::FRem: 8664 case Instruction::FSub: 8665 case Instruction::ICmp: 8666 case Instruction::IntToPtr: 8667 case Instruction::LShr: 8668 case Instruction::Mul: 8669 case Instruction::Or: 8670 case Instruction::PtrToInt: 8671 case Instruction::SDiv: 8672 case Instruction::Select: 8673 case Instruction::SExt: 8674 case Instruction::Shl: 8675 case Instruction::SIToFP: 8676 case Instruction::SRem: 8677 case Instruction::Sub: 8678 case Instruction::Trunc: 8679 case Instruction::UDiv: 8680 case Instruction::UIToFP: 8681 case Instruction::URem: 8682 case Instruction::Xor: 8683 case Instruction::ZExt: 8684 return true; 8685 } 8686 return false; 8687 }; 8688 8689 if (!IsVectorizableOpcode(I->getOpcode())) 8690 return nullptr; 8691 8692 // Success: widen this instruction. 8693 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8694 } 8695 8696 void VPRecipeBuilder::fixHeaderPhis() { 8697 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8698 for (VPHeaderPHIRecipe *R : PhisToFix) { 8699 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8700 VPRecipeBase *IncR = 8701 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8702 R->addOperand(IncR->getVPSingleValue()); 8703 } 8704 } 8705 8706 VPBasicBlock *VPRecipeBuilder::handleReplication( 8707 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8708 VPlanPtr &Plan) { 8709 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8710 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8711 Range); 8712 8713 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8714 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8715 Range); 8716 8717 // Even if the instruction is not marked as uniform, there are certain 8718 // intrinsic calls that can be effectively treated as such, so we check for 8719 // them here. Conservatively, we only do this for scalable vectors, since 8720 // for fixed-width VFs we can always fall back on full scalarization. 8721 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8722 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8723 case Intrinsic::assume: 8724 case Intrinsic::lifetime_start: 8725 case Intrinsic::lifetime_end: 8726 // For scalable vectors if one of the operands is variant then we still 8727 // want to mark as uniform, which will generate one instruction for just 8728 // the first lane of the vector. We can't scalarize the call in the same 8729 // way as for fixed-width vectors because we don't know how many lanes 8730 // there are. 8731 // 8732 // The reasons for doing it this way for scalable vectors are: 8733 // 1. For the assume intrinsic generating the instruction for the first 8734 // lane is still be better than not generating any at all. For 8735 // example, the input may be a splat across all lanes. 8736 // 2. For the lifetime start/end intrinsics the pointer operand only 8737 // does anything useful when the input comes from a stack object, 8738 // which suggests it should always be uniform. For non-stack objects 8739 // the effect is to poison the object, which still allows us to 8740 // remove the call. 8741 IsUniform = true; 8742 break; 8743 default: 8744 break; 8745 } 8746 } 8747 8748 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8749 IsUniform, IsPredicated); 8750 setRecipe(I, Recipe); 8751 Plan->addVPValue(I, Recipe); 8752 8753 // Find if I uses a predicated instruction. If so, it will use its scalar 8754 // value. Avoid hoisting the insert-element which packs the scalar value into 8755 // a vector value, as that happens iff all users use the vector value. 8756 for (VPValue *Op : Recipe->operands()) { 8757 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8758 if (!PredR) 8759 continue; 8760 auto *RepR = 8761 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8762 assert(RepR->isPredicated() && 8763 "expected Replicate recipe to be predicated"); 8764 RepR->setAlsoPack(false); 8765 } 8766 8767 // Finalize the recipe for Instr, first if it is not predicated. 8768 if (!IsPredicated) { 8769 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8770 VPBB->appendRecipe(Recipe); 8771 return VPBB; 8772 } 8773 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8774 8775 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8776 assert(SingleSucc && "VPBB must have a single successor when handling " 8777 "predicated replication."); 8778 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8779 // Record predicated instructions for above packing optimizations. 8780 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8781 VPBlockUtils::insertBlockAfter(Region, VPBB); 8782 auto *RegSucc = new VPBasicBlock(); 8783 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8784 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8785 return RegSucc; 8786 } 8787 8788 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8789 VPRecipeBase *PredRecipe, 8790 VPlanPtr &Plan) { 8791 // Instructions marked for predication are replicated and placed under an 8792 // if-then construct to prevent side-effects. 8793 8794 // Generate recipes to compute the block mask for this region. 8795 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8796 8797 // Build the triangular if-then region. 8798 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8799 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8800 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8801 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8802 auto *PHIRecipe = Instr->getType()->isVoidTy() 8803 ? nullptr 8804 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8805 if (PHIRecipe) { 8806 Plan->removeVPValueFor(Instr); 8807 Plan->addVPValue(Instr, PHIRecipe); 8808 } 8809 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8810 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8811 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8812 8813 // Note: first set Entry as region entry and then connect successors starting 8814 // from it in order, to propagate the "parent" of each VPBasicBlock. 8815 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8816 VPBlockUtils::connectBlocks(Pred, Exit); 8817 8818 return Region; 8819 } 8820 8821 VPRecipeOrVPValueTy 8822 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8823 ArrayRef<VPValue *> Operands, 8824 VFRange &Range, VPlanPtr &Plan) { 8825 // First, check for specific widening recipes that deal with calls, memory 8826 // operations, inductions and Phi nodes. 8827 if (auto *CI = dyn_cast<CallInst>(Instr)) 8828 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8829 8830 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8831 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8832 8833 VPRecipeBase *Recipe; 8834 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8835 if (Phi->getParent() != OrigLoop->getHeader()) 8836 return tryToBlend(Phi, Operands, Plan); 8837 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8838 return toVPRecipeResult(Recipe); 8839 8840 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8841 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8842 VPValue *StartV = Operands[0]; 8843 if (Legal->isReductionVariable(Phi)) { 8844 const RecurrenceDescriptor &RdxDesc = 8845 Legal->getReductionVars().find(Phi)->second; 8846 assert(RdxDesc.getRecurrenceStartValue() == 8847 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8848 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8849 CM.isInLoopReduction(Phi), 8850 CM.useOrderedReductions(RdxDesc)); 8851 } else { 8852 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8853 } 8854 8855 // Record the incoming value from the backedge, so we can add the incoming 8856 // value from the backedge after all recipes have been created. 8857 recordRecipeOf(cast<Instruction>( 8858 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8859 PhisToFix.push_back(PhiRecipe); 8860 } else { 8861 // TODO: record backedge value for remaining pointer induction phis. 8862 assert(Phi->getType()->isPointerTy() && 8863 "only pointer phis should be handled here"); 8864 assert(Legal->getInductionVars().count(Phi) && 8865 "Not an induction variable"); 8866 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8867 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8868 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8869 } 8870 8871 return toVPRecipeResult(PhiRecipe); 8872 } 8873 8874 if (isa<TruncInst>(Instr) && 8875 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8876 Range, *Plan))) 8877 return toVPRecipeResult(Recipe); 8878 8879 if (!shouldWiden(Instr, Range)) 8880 return nullptr; 8881 8882 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8883 return toVPRecipeResult(new VPWidenGEPRecipe( 8884 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8885 8886 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8887 bool InvariantCond = 8888 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8889 return toVPRecipeResult(new VPWidenSelectRecipe( 8890 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8891 } 8892 8893 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8894 } 8895 8896 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8897 ElementCount MaxVF) { 8898 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8899 8900 // Collect instructions from the original loop that will become trivially dead 8901 // in the vectorized loop. We don't need to vectorize these instructions. For 8902 // example, original induction update instructions can become dead because we 8903 // separately emit induction "steps" when generating code for the new loop. 8904 // Similarly, we create a new latch condition when setting up the structure 8905 // of the new loop, so the old one can become dead. 8906 SmallPtrSet<Instruction *, 4> DeadInstructions; 8907 collectTriviallyDeadInstructions(DeadInstructions); 8908 8909 // Add assume instructions we need to drop to DeadInstructions, to prevent 8910 // them from being added to the VPlan. 8911 // TODO: We only need to drop assumes in blocks that get flattend. If the 8912 // control flow is preserved, we should keep them. 8913 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8914 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8915 8916 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8917 // Dead instructions do not need sinking. Remove them from SinkAfter. 8918 for (Instruction *I : DeadInstructions) 8919 SinkAfter.erase(I); 8920 8921 // Cannot sink instructions after dead instructions (there won't be any 8922 // recipes for them). Instead, find the first non-dead previous instruction. 8923 for (auto &P : Legal->getSinkAfter()) { 8924 Instruction *SinkTarget = P.second; 8925 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8926 (void)FirstInst; 8927 while (DeadInstructions.contains(SinkTarget)) { 8928 assert( 8929 SinkTarget != FirstInst && 8930 "Must find a live instruction (at least the one feeding the " 8931 "first-order recurrence PHI) before reaching beginning of the block"); 8932 SinkTarget = SinkTarget->getPrevNode(); 8933 assert(SinkTarget != P.first && 8934 "sink source equals target, no sinking required"); 8935 } 8936 P.second = SinkTarget; 8937 } 8938 8939 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8940 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8941 VFRange SubRange = {VF, MaxVFPlusOne}; 8942 VPlans.push_back( 8943 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8944 VF = SubRange.End; 8945 } 8946 } 8947 8948 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8949 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8950 // BranchOnCount VPInstruction to the latch. 8951 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8952 bool HasNUW, bool IsVPlanNative) { 8953 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8954 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8955 8956 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8957 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8958 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8959 if (IsVPlanNative) 8960 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8961 Header->insert(CanonicalIVPHI, Header->begin()); 8962 8963 auto *CanonicalIVIncrement = 8964 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8965 : VPInstruction::CanonicalIVIncrement, 8966 {CanonicalIVPHI}, DL); 8967 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8968 8969 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8970 if (IsVPlanNative) { 8971 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8972 EB->setCondBit(nullptr); 8973 } 8974 EB->appendRecipe(CanonicalIVIncrement); 8975 8976 auto *BranchOnCount = 8977 new VPInstruction(VPInstruction::BranchOnCount, 8978 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8979 EB->appendRecipe(BranchOnCount); 8980 } 8981 8982 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8983 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8984 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8985 8986 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8987 8988 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8989 8990 // --------------------------------------------------------------------------- 8991 // Pre-construction: record ingredients whose recipes we'll need to further 8992 // process after constructing the initial VPlan. 8993 // --------------------------------------------------------------------------- 8994 8995 // Mark instructions we'll need to sink later and their targets as 8996 // ingredients whose recipe we'll need to record. 8997 for (auto &Entry : SinkAfter) { 8998 RecipeBuilder.recordRecipeOf(Entry.first); 8999 RecipeBuilder.recordRecipeOf(Entry.second); 9000 } 9001 for (auto &Reduction : CM.getInLoopReductionChains()) { 9002 PHINode *Phi = Reduction.first; 9003 RecurKind Kind = 9004 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9005 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9006 9007 RecipeBuilder.recordRecipeOf(Phi); 9008 for (auto &R : ReductionOperations) { 9009 RecipeBuilder.recordRecipeOf(R); 9010 // For min/max reducitons, where we have a pair of icmp/select, we also 9011 // need to record the ICmp recipe, so it can be removed later. 9012 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9013 "Only min/max recurrences allowed for inloop reductions"); 9014 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9015 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9016 } 9017 } 9018 9019 // For each interleave group which is relevant for this (possibly trimmed) 9020 // Range, add it to the set of groups to be later applied to the VPlan and add 9021 // placeholders for its members' Recipes which we'll be replacing with a 9022 // single VPInterleaveRecipe. 9023 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9024 auto applyIG = [IG, this](ElementCount VF) -> bool { 9025 return (VF.isVector() && // Query is illegal for VF == 1 9026 CM.getWideningDecision(IG->getInsertPos(), VF) == 9027 LoopVectorizationCostModel::CM_Interleave); 9028 }; 9029 if (!getDecisionAndClampRange(applyIG, Range)) 9030 continue; 9031 InterleaveGroups.insert(IG); 9032 for (unsigned i = 0; i < IG->getFactor(); i++) 9033 if (Instruction *Member = IG->getMember(i)) 9034 RecipeBuilder.recordRecipeOf(Member); 9035 }; 9036 9037 // --------------------------------------------------------------------------- 9038 // Build initial VPlan: Scan the body of the loop in a topological order to 9039 // visit each basic block after having visited its predecessor basic blocks. 9040 // --------------------------------------------------------------------------- 9041 9042 // Create initial VPlan skeleton, with separate header and latch blocks. 9043 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9044 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9045 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9046 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9047 auto Plan = std::make_unique<VPlan>(TopRegion); 9048 9049 Instruction *DLInst = 9050 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9051 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9052 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9053 !CM.foldTailByMasking(), false); 9054 9055 // Scan the body of the loop in a topological order to visit each basic block 9056 // after having visited its predecessor basic blocks. 9057 LoopBlocksDFS DFS(OrigLoop); 9058 DFS.perform(LI); 9059 9060 VPBasicBlock *VPBB = HeaderVPBB; 9061 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9062 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9063 // Relevant instructions from basic block BB will be grouped into VPRecipe 9064 // ingredients and fill a new VPBasicBlock. 9065 unsigned VPBBsForBB = 0; 9066 VPBB->setName(BB->getName()); 9067 Builder.setInsertPoint(VPBB); 9068 9069 // Introduce each ingredient into VPlan. 9070 // TODO: Model and preserve debug instrinsics in VPlan. 9071 for (Instruction &I : BB->instructionsWithoutDebug()) { 9072 Instruction *Instr = &I; 9073 9074 // First filter out irrelevant instructions, to ensure no recipes are 9075 // built for them. 9076 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9077 continue; 9078 9079 SmallVector<VPValue *, 4> Operands; 9080 auto *Phi = dyn_cast<PHINode>(Instr); 9081 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9082 Operands.push_back(Plan->getOrAddVPValue( 9083 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9084 } else { 9085 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9086 Operands = {OpRange.begin(), OpRange.end()}; 9087 } 9088 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9089 Instr, Operands, Range, Plan)) { 9090 // If Instr can be simplified to an existing VPValue, use it. 9091 if (RecipeOrValue.is<VPValue *>()) { 9092 auto *VPV = RecipeOrValue.get<VPValue *>(); 9093 Plan->addVPValue(Instr, VPV); 9094 // If the re-used value is a recipe, register the recipe for the 9095 // instruction, in case the recipe for Instr needs to be recorded. 9096 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9097 RecipeBuilder.setRecipe(Instr, R); 9098 continue; 9099 } 9100 // Otherwise, add the new recipe. 9101 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9102 for (auto *Def : Recipe->definedValues()) { 9103 auto *UV = Def->getUnderlyingValue(); 9104 Plan->addVPValue(UV, Def); 9105 } 9106 9107 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9108 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9109 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9110 // of the header block. That can happen for truncates of induction 9111 // variables. Those recipes are moved to the phi section of the header 9112 // block after applying SinkAfter, which relies on the original 9113 // position of the trunc. 9114 assert(isa<TruncInst>(Instr)); 9115 InductionsToMove.push_back( 9116 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9117 } 9118 RecipeBuilder.setRecipe(Instr, Recipe); 9119 VPBB->appendRecipe(Recipe); 9120 continue; 9121 } 9122 9123 // Otherwise, if all widening options failed, Instruction is to be 9124 // replicated. This may create a successor for VPBB. 9125 VPBasicBlock *NextVPBB = 9126 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9127 if (NextVPBB != VPBB) { 9128 VPBB = NextVPBB; 9129 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9130 : ""); 9131 } 9132 } 9133 9134 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9135 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9136 } 9137 9138 // Fold the last, empty block into its predecessor. 9139 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9140 assert(VPBB && "expected to fold last (empty) block"); 9141 // After here, VPBB should not be used. 9142 VPBB = nullptr; 9143 9144 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9145 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9146 "entry block must be set to a VPRegionBlock having a non-empty entry " 9147 "VPBasicBlock"); 9148 RecipeBuilder.fixHeaderPhis(); 9149 9150 // --------------------------------------------------------------------------- 9151 // Transform initial VPlan: Apply previously taken decisions, in order, to 9152 // bring the VPlan to its final state. 9153 // --------------------------------------------------------------------------- 9154 9155 // Apply Sink-After legal constraints. 9156 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9157 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9158 if (Region && Region->isReplicator()) { 9159 assert(Region->getNumSuccessors() == 1 && 9160 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9161 assert(R->getParent()->size() == 1 && 9162 "A recipe in an original replicator region must be the only " 9163 "recipe in its block"); 9164 return Region; 9165 } 9166 return nullptr; 9167 }; 9168 for (auto &Entry : SinkAfter) { 9169 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9170 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9171 9172 auto *TargetRegion = GetReplicateRegion(Target); 9173 auto *SinkRegion = GetReplicateRegion(Sink); 9174 if (!SinkRegion) { 9175 // If the sink source is not a replicate region, sink the recipe directly. 9176 if (TargetRegion) { 9177 // The target is in a replication region, make sure to move Sink to 9178 // the block after it, not into the replication region itself. 9179 VPBasicBlock *NextBlock = 9180 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9181 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9182 } else 9183 Sink->moveAfter(Target); 9184 continue; 9185 } 9186 9187 // The sink source is in a replicate region. Unhook the region from the CFG. 9188 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9189 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9190 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9191 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9192 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9193 9194 if (TargetRegion) { 9195 // The target recipe is also in a replicate region, move the sink region 9196 // after the target region. 9197 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9198 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9199 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9200 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9201 } else { 9202 // The sink source is in a replicate region, we need to move the whole 9203 // replicate region, which should only contain a single recipe in the 9204 // main block. 9205 auto *SplitBlock = 9206 Target->getParent()->splitAt(std::next(Target->getIterator())); 9207 9208 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9209 9210 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9211 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9212 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9213 } 9214 } 9215 9216 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9217 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9218 9219 // Now that sink-after is done, move induction recipes for optimized truncates 9220 // to the phi section of the header block. 9221 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9222 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9223 9224 // Adjust the recipes for any inloop reductions. 9225 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9226 RecipeBuilder, Range.Start); 9227 9228 // Introduce a recipe to combine the incoming and previous values of a 9229 // first-order recurrence. 9230 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9231 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9232 if (!RecurPhi) 9233 continue; 9234 9235 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9236 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9237 auto *Region = GetReplicateRegion(PrevRecipe); 9238 if (Region) 9239 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9240 if (Region || PrevRecipe->isPhi()) 9241 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9242 else 9243 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9244 9245 auto *RecurSplice = cast<VPInstruction>( 9246 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9247 {RecurPhi, RecurPhi->getBackedgeValue()})); 9248 9249 RecurPhi->replaceAllUsesWith(RecurSplice); 9250 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9251 // all users. 9252 RecurSplice->setOperand(0, RecurPhi); 9253 } 9254 9255 // Interleave memory: for each Interleave Group we marked earlier as relevant 9256 // for this VPlan, replace the Recipes widening its memory instructions with a 9257 // single VPInterleaveRecipe at its insertion point. 9258 for (auto IG : InterleaveGroups) { 9259 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9260 RecipeBuilder.getRecipe(IG->getInsertPos())); 9261 SmallVector<VPValue *, 4> StoredValues; 9262 for (unsigned i = 0; i < IG->getFactor(); ++i) 9263 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9264 auto *StoreR = 9265 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9266 StoredValues.push_back(StoreR->getStoredValue()); 9267 } 9268 9269 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9270 Recipe->getMask()); 9271 VPIG->insertBefore(Recipe); 9272 unsigned J = 0; 9273 for (unsigned i = 0; i < IG->getFactor(); ++i) 9274 if (Instruction *Member = IG->getMember(i)) { 9275 if (!Member->getType()->isVoidTy()) { 9276 VPValue *OriginalV = Plan->getVPValue(Member); 9277 Plan->removeVPValueFor(Member); 9278 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9279 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9280 J++; 9281 } 9282 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9283 } 9284 } 9285 9286 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9287 // in ways that accessing values using original IR values is incorrect. 9288 Plan->disableValue2VPValue(); 9289 9290 VPlanTransforms::sinkScalarOperands(*Plan); 9291 VPlanTransforms::mergeReplicateRegions(*Plan); 9292 9293 std::string PlanName; 9294 raw_string_ostream RSO(PlanName); 9295 ElementCount VF = Range.Start; 9296 Plan->addVF(VF); 9297 RSO << "Initial VPlan for VF={" << VF; 9298 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9299 Plan->addVF(VF); 9300 RSO << "," << VF; 9301 } 9302 RSO << "},UF>=1"; 9303 RSO.flush(); 9304 Plan->setName(PlanName); 9305 9306 // Fold Exit block into its predecessor if possible. 9307 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9308 // VPBasicBlock as exit. 9309 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9310 9311 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9312 return Plan; 9313 } 9314 9315 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9316 // Outer loop handling: They may require CFG and instruction level 9317 // transformations before even evaluating whether vectorization is profitable. 9318 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9319 // the vectorization pipeline. 9320 assert(!OrigLoop->isInnermost()); 9321 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9322 9323 // Create new empty VPlan 9324 auto Plan = std::make_unique<VPlan>(); 9325 9326 // Build hierarchical CFG 9327 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9328 HCFGBuilder.buildHierarchicalCFG(); 9329 9330 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9331 VF *= 2) 9332 Plan->addVF(VF); 9333 9334 if (EnableVPlanPredication) { 9335 VPlanPredicator VPP(*Plan); 9336 VPP.predicate(); 9337 9338 // Avoid running transformation to recipes until masked code generation in 9339 // VPlan-native path is in place. 9340 return Plan; 9341 } 9342 9343 SmallPtrSet<Instruction *, 1> DeadInstructions; 9344 VPlanTransforms::VPInstructionsToVPRecipes( 9345 OrigLoop, Plan, 9346 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9347 DeadInstructions, *PSE.getSE()); 9348 9349 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9350 true, true); 9351 return Plan; 9352 } 9353 9354 // Adjust the recipes for reductions. For in-loop reductions the chain of 9355 // instructions leading from the loop exit instr to the phi need to be converted 9356 // to reductions, with one operand being vector and the other being the scalar 9357 // reduction chain. For other reductions, a select is introduced between the phi 9358 // and live-out recipes when folding the tail. 9359 void LoopVectorizationPlanner::adjustRecipesForReductions( 9360 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9361 ElementCount MinVF) { 9362 for (auto &Reduction : CM.getInLoopReductionChains()) { 9363 PHINode *Phi = Reduction.first; 9364 const RecurrenceDescriptor &RdxDesc = 9365 Legal->getReductionVars().find(Phi)->second; 9366 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9367 9368 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9369 continue; 9370 9371 // ReductionOperations are orders top-down from the phi's use to the 9372 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9373 // which of the two operands will remain scalar and which will be reduced. 9374 // For minmax the chain will be the select instructions. 9375 Instruction *Chain = Phi; 9376 for (Instruction *R : ReductionOperations) { 9377 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9378 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9379 9380 VPValue *ChainOp = Plan->getVPValue(Chain); 9381 unsigned FirstOpId; 9382 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9383 "Only min/max recurrences allowed for inloop reductions"); 9384 // Recognize a call to the llvm.fmuladd intrinsic. 9385 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9386 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9387 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9388 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9389 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9390 "Expected to replace a VPWidenSelectSC"); 9391 FirstOpId = 1; 9392 } else { 9393 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9394 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9395 "Expected to replace a VPWidenSC"); 9396 FirstOpId = 0; 9397 } 9398 unsigned VecOpId = 9399 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9400 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9401 9402 auto *CondOp = CM.foldTailByMasking() 9403 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9404 : nullptr; 9405 9406 if (IsFMulAdd) { 9407 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9408 // need to create an fmul recipe to use as the vector operand for the 9409 // fadd reduction. 9410 VPInstruction *FMulRecipe = new VPInstruction( 9411 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9412 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9413 WidenRecipe->getParent()->insert(FMulRecipe, 9414 WidenRecipe->getIterator()); 9415 VecOp = FMulRecipe; 9416 } 9417 VPReductionRecipe *RedRecipe = 9418 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9419 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9420 Plan->removeVPValueFor(R); 9421 Plan->addVPValue(R, RedRecipe); 9422 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9423 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9424 WidenRecipe->eraseFromParent(); 9425 9426 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9427 VPRecipeBase *CompareRecipe = 9428 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9429 assert(isa<VPWidenRecipe>(CompareRecipe) && 9430 "Expected to replace a VPWidenSC"); 9431 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9432 "Expected no remaining users"); 9433 CompareRecipe->eraseFromParent(); 9434 } 9435 Chain = R; 9436 } 9437 } 9438 9439 // If tail is folded by masking, introduce selects between the phi 9440 // and the live-out instruction of each reduction, at the beginning of the 9441 // dedicated latch block. 9442 if (CM.foldTailByMasking()) { 9443 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9444 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9445 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9446 if (!PhiR || PhiR->isInLoop()) 9447 continue; 9448 VPValue *Cond = 9449 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9450 VPValue *Red = PhiR->getBackedgeValue(); 9451 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9452 "reduction recipe must be defined before latch"); 9453 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9454 } 9455 } 9456 } 9457 9458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9459 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9460 VPSlotTracker &SlotTracker) const { 9461 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9462 IG->getInsertPos()->printAsOperand(O, false); 9463 O << ", "; 9464 getAddr()->printAsOperand(O, SlotTracker); 9465 VPValue *Mask = getMask(); 9466 if (Mask) { 9467 O << ", "; 9468 Mask->printAsOperand(O, SlotTracker); 9469 } 9470 9471 unsigned OpIdx = 0; 9472 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9473 if (!IG->getMember(i)) 9474 continue; 9475 if (getNumStoreOperands() > 0) { 9476 O << "\n" << Indent << " store "; 9477 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9478 O << " to index " << i; 9479 } else { 9480 O << "\n" << Indent << " "; 9481 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9482 O << " = load from index " << i; 9483 } 9484 ++OpIdx; 9485 } 9486 } 9487 #endif 9488 9489 void VPWidenCallRecipe::execute(VPTransformState &State) { 9490 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9491 *this, State); 9492 } 9493 9494 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9495 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9496 State.ILV->setDebugLocFromInst(&I); 9497 9498 // The condition can be loop invariant but still defined inside the 9499 // loop. This means that we can't just use the original 'cond' value. 9500 // We have to take the 'vectorized' value and pick the first lane. 9501 // Instcombine will make this a no-op. 9502 auto *InvarCond = 9503 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9504 9505 for (unsigned Part = 0; Part < State.UF; ++Part) { 9506 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9507 Value *Op0 = State.get(getOperand(1), Part); 9508 Value *Op1 = State.get(getOperand(2), Part); 9509 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9510 State.set(this, Sel, Part); 9511 State.ILV->addMetadata(Sel, &I); 9512 } 9513 } 9514 9515 void VPWidenRecipe::execute(VPTransformState &State) { 9516 auto &I = *cast<Instruction>(getUnderlyingValue()); 9517 auto &Builder = State.Builder; 9518 switch (I.getOpcode()) { 9519 case Instruction::Call: 9520 case Instruction::Br: 9521 case Instruction::PHI: 9522 case Instruction::GetElementPtr: 9523 case Instruction::Select: 9524 llvm_unreachable("This instruction is handled by a different recipe."); 9525 case Instruction::UDiv: 9526 case Instruction::SDiv: 9527 case Instruction::SRem: 9528 case Instruction::URem: 9529 case Instruction::Add: 9530 case Instruction::FAdd: 9531 case Instruction::Sub: 9532 case Instruction::FSub: 9533 case Instruction::FNeg: 9534 case Instruction::Mul: 9535 case Instruction::FMul: 9536 case Instruction::FDiv: 9537 case Instruction::FRem: 9538 case Instruction::Shl: 9539 case Instruction::LShr: 9540 case Instruction::AShr: 9541 case Instruction::And: 9542 case Instruction::Or: 9543 case Instruction::Xor: { 9544 // Just widen unops and binops. 9545 State.ILV->setDebugLocFromInst(&I); 9546 9547 for (unsigned Part = 0; Part < State.UF; ++Part) { 9548 SmallVector<Value *, 2> Ops; 9549 for (VPValue *VPOp : operands()) 9550 Ops.push_back(State.get(VPOp, Part)); 9551 9552 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9553 9554 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9555 VecOp->copyIRFlags(&I); 9556 9557 // If the instruction is vectorized and was in a basic block that needed 9558 // predication, we can't propagate poison-generating flags (nuw/nsw, 9559 // exact, etc.). The control flow has been linearized and the 9560 // instruction is no longer guarded by the predicate, which could make 9561 // the flag properties to no longer hold. 9562 if (State.MayGeneratePoisonRecipes.contains(this)) 9563 VecOp->dropPoisonGeneratingFlags(); 9564 } 9565 9566 // Use this vector value for all users of the original instruction. 9567 State.set(this, V, Part); 9568 State.ILV->addMetadata(V, &I); 9569 } 9570 9571 break; 9572 } 9573 case Instruction::ICmp: 9574 case Instruction::FCmp: { 9575 // Widen compares. Generate vector compares. 9576 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9577 auto *Cmp = cast<CmpInst>(&I); 9578 State.ILV->setDebugLocFromInst(Cmp); 9579 for (unsigned Part = 0; Part < State.UF; ++Part) { 9580 Value *A = State.get(getOperand(0), Part); 9581 Value *B = State.get(getOperand(1), Part); 9582 Value *C = nullptr; 9583 if (FCmp) { 9584 // Propagate fast math flags. 9585 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9586 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9587 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9588 } else { 9589 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9590 } 9591 State.set(this, C, Part); 9592 State.ILV->addMetadata(C, &I); 9593 } 9594 9595 break; 9596 } 9597 9598 case Instruction::ZExt: 9599 case Instruction::SExt: 9600 case Instruction::FPToUI: 9601 case Instruction::FPToSI: 9602 case Instruction::FPExt: 9603 case Instruction::PtrToInt: 9604 case Instruction::IntToPtr: 9605 case Instruction::SIToFP: 9606 case Instruction::UIToFP: 9607 case Instruction::Trunc: 9608 case Instruction::FPTrunc: 9609 case Instruction::BitCast: { 9610 auto *CI = cast<CastInst>(&I); 9611 State.ILV->setDebugLocFromInst(CI); 9612 9613 /// Vectorize casts. 9614 Type *DestTy = (State.VF.isScalar()) 9615 ? CI->getType() 9616 : VectorType::get(CI->getType(), State.VF); 9617 9618 for (unsigned Part = 0; Part < State.UF; ++Part) { 9619 Value *A = State.get(getOperand(0), Part); 9620 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9621 State.set(this, Cast, Part); 9622 State.ILV->addMetadata(Cast, &I); 9623 } 9624 break; 9625 } 9626 default: 9627 // This instruction is not vectorized by simple widening. 9628 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9629 llvm_unreachable("Unhandled instruction!"); 9630 } // end of switch. 9631 } 9632 9633 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9634 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9635 // Construct a vector GEP by widening the operands of the scalar GEP as 9636 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9637 // results in a vector of pointers when at least one operand of the GEP 9638 // is vector-typed. Thus, to keep the representation compact, we only use 9639 // vector-typed operands for loop-varying values. 9640 9641 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9642 // If we are vectorizing, but the GEP has only loop-invariant operands, 9643 // the GEP we build (by only using vector-typed operands for 9644 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9645 // produce a vector of pointers, we need to either arbitrarily pick an 9646 // operand to broadcast, or broadcast a clone of the original GEP. 9647 // Here, we broadcast a clone of the original. 9648 // 9649 // TODO: If at some point we decide to scalarize instructions having 9650 // loop-invariant operands, this special case will no longer be 9651 // required. We would add the scalarization decision to 9652 // collectLoopScalars() and teach getVectorValue() to broadcast 9653 // the lane-zero scalar value. 9654 auto *Clone = State.Builder.Insert(GEP->clone()); 9655 for (unsigned Part = 0; Part < State.UF; ++Part) { 9656 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9657 State.set(this, EntryPart, Part); 9658 State.ILV->addMetadata(EntryPart, GEP); 9659 } 9660 } else { 9661 // If the GEP has at least one loop-varying operand, we are sure to 9662 // produce a vector of pointers. But if we are only unrolling, we want 9663 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9664 // produce with the code below will be scalar (if VF == 1) or vector 9665 // (otherwise). Note that for the unroll-only case, we still maintain 9666 // values in the vector mapping with initVector, as we do for other 9667 // instructions. 9668 for (unsigned Part = 0; Part < State.UF; ++Part) { 9669 // The pointer operand of the new GEP. If it's loop-invariant, we 9670 // won't broadcast it. 9671 auto *Ptr = IsPtrLoopInvariant 9672 ? State.get(getOperand(0), VPIteration(0, 0)) 9673 : State.get(getOperand(0), Part); 9674 9675 // Collect all the indices for the new GEP. If any index is 9676 // loop-invariant, we won't broadcast it. 9677 SmallVector<Value *, 4> Indices; 9678 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9679 VPValue *Operand = getOperand(I); 9680 if (IsIndexLoopInvariant[I - 1]) 9681 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9682 else 9683 Indices.push_back(State.get(Operand, Part)); 9684 } 9685 9686 // If the GEP instruction is vectorized and was in a basic block that 9687 // needed predication, we can't propagate the poison-generating 'inbounds' 9688 // flag. The control flow has been linearized and the GEP is no longer 9689 // guarded by the predicate, which could make the 'inbounds' properties to 9690 // no longer hold. 9691 bool IsInBounds = 9692 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9693 9694 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9695 // but it should be a vector, otherwise. 9696 auto *NewGEP = IsInBounds 9697 ? State.Builder.CreateInBoundsGEP( 9698 GEP->getSourceElementType(), Ptr, Indices) 9699 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9700 Ptr, Indices); 9701 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9702 "NewGEP is not a pointer vector"); 9703 State.set(this, NewGEP, Part); 9704 State.ILV->addMetadata(NewGEP, GEP); 9705 } 9706 } 9707 } 9708 9709 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9710 assert(!State.Instance && "Int or FP induction being replicated."); 9711 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9712 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9713 } 9714 9715 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9716 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9717 State); 9718 } 9719 9720 void VPBlendRecipe::execute(VPTransformState &State) { 9721 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9722 // We know that all PHIs in non-header blocks are converted into 9723 // selects, so we don't have to worry about the insertion order and we 9724 // can just use the builder. 9725 // At this point we generate the predication tree. There may be 9726 // duplications since this is a simple recursive scan, but future 9727 // optimizations will clean it up. 9728 9729 unsigned NumIncoming = getNumIncomingValues(); 9730 9731 // Generate a sequence of selects of the form: 9732 // SELECT(Mask3, In3, 9733 // SELECT(Mask2, In2, 9734 // SELECT(Mask1, In1, 9735 // In0))) 9736 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9737 // are essentially undef are taken from In0. 9738 InnerLoopVectorizer::VectorParts Entry(State.UF); 9739 for (unsigned In = 0; In < NumIncoming; ++In) { 9740 for (unsigned Part = 0; Part < State.UF; ++Part) { 9741 // We might have single edge PHIs (blocks) - use an identity 9742 // 'select' for the first PHI operand. 9743 Value *In0 = State.get(getIncomingValue(In), Part); 9744 if (In == 0) 9745 Entry[Part] = In0; // Initialize with the first incoming value. 9746 else { 9747 // Select between the current value and the previous incoming edge 9748 // based on the incoming mask. 9749 Value *Cond = State.get(getMask(In), Part); 9750 Entry[Part] = 9751 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9752 } 9753 } 9754 } 9755 for (unsigned Part = 0; Part < State.UF; ++Part) 9756 State.set(this, Entry[Part], Part); 9757 } 9758 9759 void VPInterleaveRecipe::execute(VPTransformState &State) { 9760 assert(!State.Instance && "Interleave group being replicated."); 9761 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9762 getStoredValues(), getMask()); 9763 } 9764 9765 void VPReductionRecipe::execute(VPTransformState &State) { 9766 assert(!State.Instance && "Reduction being replicated."); 9767 Value *PrevInChain = State.get(getChainOp(), 0); 9768 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9769 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9770 // Propagate the fast-math flags carried by the underlying instruction. 9771 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9772 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9773 for (unsigned Part = 0; Part < State.UF; ++Part) { 9774 Value *NewVecOp = State.get(getVecOp(), Part); 9775 if (VPValue *Cond = getCondOp()) { 9776 Value *NewCond = State.get(Cond, Part); 9777 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9778 Value *Iden = RdxDesc->getRecurrenceIdentity( 9779 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9780 Value *IdenVec = 9781 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9782 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9783 NewVecOp = Select; 9784 } 9785 Value *NewRed; 9786 Value *NextInChain; 9787 if (IsOrdered) { 9788 if (State.VF.isVector()) 9789 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9790 PrevInChain); 9791 else 9792 NewRed = State.Builder.CreateBinOp( 9793 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9794 NewVecOp); 9795 PrevInChain = NewRed; 9796 } else { 9797 PrevInChain = State.get(getChainOp(), Part); 9798 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9799 } 9800 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9801 NextInChain = 9802 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9803 NewRed, PrevInChain); 9804 } else if (IsOrdered) 9805 NextInChain = NewRed; 9806 else 9807 NextInChain = State.Builder.CreateBinOp( 9808 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9809 PrevInChain); 9810 State.set(this, NextInChain, Part); 9811 } 9812 } 9813 9814 void VPReplicateRecipe::execute(VPTransformState &State) { 9815 if (State.Instance) { // Generate a single instance. 9816 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9817 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9818 IsPredicated, State); 9819 // Insert scalar instance packing it into a vector. 9820 if (AlsoPack && State.VF.isVector()) { 9821 // If we're constructing lane 0, initialize to start from poison. 9822 if (State.Instance->Lane.isFirstLane()) { 9823 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9824 Value *Poison = PoisonValue::get( 9825 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9826 State.set(this, Poison, State.Instance->Part); 9827 } 9828 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9829 } 9830 return; 9831 } 9832 9833 // Generate scalar instances for all VF lanes of all UF parts, unless the 9834 // instruction is uniform inwhich case generate only the first lane for each 9835 // of the UF parts. 9836 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9837 assert((!State.VF.isScalable() || IsUniform) && 9838 "Can't scalarize a scalable vector"); 9839 for (unsigned Part = 0; Part < State.UF; ++Part) 9840 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9841 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9842 VPIteration(Part, Lane), IsPredicated, 9843 State); 9844 } 9845 9846 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9847 assert(State.Instance && "Branch on Mask works only on single instance."); 9848 9849 unsigned Part = State.Instance->Part; 9850 unsigned Lane = State.Instance->Lane.getKnownLane(); 9851 9852 Value *ConditionBit = nullptr; 9853 VPValue *BlockInMask = getMask(); 9854 if (BlockInMask) { 9855 ConditionBit = State.get(BlockInMask, Part); 9856 if (ConditionBit->getType()->isVectorTy()) 9857 ConditionBit = State.Builder.CreateExtractElement( 9858 ConditionBit, State.Builder.getInt32(Lane)); 9859 } else // Block in mask is all-one. 9860 ConditionBit = State.Builder.getTrue(); 9861 9862 // Replace the temporary unreachable terminator with a new conditional branch, 9863 // whose two destinations will be set later when they are created. 9864 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9865 assert(isa<UnreachableInst>(CurrentTerminator) && 9866 "Expected to replace unreachable terminator with conditional branch."); 9867 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9868 CondBr->setSuccessor(0, nullptr); 9869 ReplaceInstWithInst(CurrentTerminator, CondBr); 9870 } 9871 9872 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9873 assert(State.Instance && "Predicated instruction PHI works per instance."); 9874 Instruction *ScalarPredInst = 9875 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9876 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9877 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9878 assert(PredicatingBB && "Predicated block has no single predecessor."); 9879 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9880 "operand must be VPReplicateRecipe"); 9881 9882 // By current pack/unpack logic we need to generate only a single phi node: if 9883 // a vector value for the predicated instruction exists at this point it means 9884 // the instruction has vector users only, and a phi for the vector value is 9885 // needed. In this case the recipe of the predicated instruction is marked to 9886 // also do that packing, thereby "hoisting" the insert-element sequence. 9887 // Otherwise, a phi node for the scalar value is needed. 9888 unsigned Part = State.Instance->Part; 9889 if (State.hasVectorValue(getOperand(0), Part)) { 9890 Value *VectorValue = State.get(getOperand(0), Part); 9891 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9892 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9893 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9894 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9895 if (State.hasVectorValue(this, Part)) 9896 State.reset(this, VPhi, Part); 9897 else 9898 State.set(this, VPhi, Part); 9899 // NOTE: Currently we need to update the value of the operand, so the next 9900 // predicated iteration inserts its generated value in the correct vector. 9901 State.reset(getOperand(0), VPhi, Part); 9902 } else { 9903 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9904 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9905 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9906 PredicatingBB); 9907 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9908 if (State.hasScalarValue(this, *State.Instance)) 9909 State.reset(this, Phi, *State.Instance); 9910 else 9911 State.set(this, Phi, *State.Instance); 9912 // NOTE: Currently we need to update the value of the operand, so the next 9913 // predicated iteration inserts its generated value in the correct vector. 9914 State.reset(getOperand(0), Phi, *State.Instance); 9915 } 9916 } 9917 9918 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9919 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9920 9921 // Attempt to issue a wide load. 9922 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9923 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9924 9925 assert((LI || SI) && "Invalid Load/Store instruction"); 9926 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9927 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9928 9929 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9930 9931 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9932 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9933 bool CreateGatherScatter = !Consecutive; 9934 9935 auto &Builder = State.Builder; 9936 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9937 bool isMaskRequired = getMask(); 9938 if (isMaskRequired) 9939 for (unsigned Part = 0; Part < State.UF; ++Part) 9940 BlockInMaskParts[Part] = State.get(getMask(), Part); 9941 9942 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9943 // Calculate the pointer for the specific unroll-part. 9944 GetElementPtrInst *PartPtr = nullptr; 9945 9946 bool InBounds = false; 9947 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9948 InBounds = gep->isInBounds(); 9949 if (Reverse) { 9950 // If the address is consecutive but reversed, then the 9951 // wide store needs to start at the last vector element. 9952 // RunTimeVF = VScale * VF.getKnownMinValue() 9953 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9954 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9955 // NumElt = -Part * RunTimeVF 9956 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9957 // LastLane = 1 - RunTimeVF 9958 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9959 PartPtr = 9960 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9961 PartPtr->setIsInBounds(InBounds); 9962 PartPtr = cast<GetElementPtrInst>( 9963 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9964 PartPtr->setIsInBounds(InBounds); 9965 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9966 BlockInMaskParts[Part] = 9967 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9968 } else { 9969 Value *Increment = 9970 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9971 PartPtr = cast<GetElementPtrInst>( 9972 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9973 PartPtr->setIsInBounds(InBounds); 9974 } 9975 9976 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9977 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9978 }; 9979 9980 // Handle Stores: 9981 if (SI) { 9982 State.ILV->setDebugLocFromInst(SI); 9983 9984 for (unsigned Part = 0; Part < State.UF; ++Part) { 9985 Instruction *NewSI = nullptr; 9986 Value *StoredVal = State.get(StoredValue, Part); 9987 if (CreateGatherScatter) { 9988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9989 Value *VectorGep = State.get(getAddr(), Part); 9990 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9991 MaskPart); 9992 } else { 9993 if (Reverse) { 9994 // If we store to reverse consecutive memory locations, then we need 9995 // to reverse the order of elements in the stored value. 9996 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9997 // We don't want to update the value in the map as it might be used in 9998 // another expression. So don't call resetVectorValue(StoredVal). 9999 } 10000 auto *VecPtr = 10001 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10002 if (isMaskRequired) 10003 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10004 BlockInMaskParts[Part]); 10005 else 10006 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10007 } 10008 State.ILV->addMetadata(NewSI, SI); 10009 } 10010 return; 10011 } 10012 10013 // Handle loads. 10014 assert(LI && "Must have a load instruction"); 10015 State.ILV->setDebugLocFromInst(LI); 10016 for (unsigned Part = 0; Part < State.UF; ++Part) { 10017 Value *NewLI; 10018 if (CreateGatherScatter) { 10019 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10020 Value *VectorGep = State.get(getAddr(), Part); 10021 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10022 nullptr, "wide.masked.gather"); 10023 State.ILV->addMetadata(NewLI, LI); 10024 } else { 10025 auto *VecPtr = 10026 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10027 if (isMaskRequired) 10028 NewLI = Builder.CreateMaskedLoad( 10029 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10030 PoisonValue::get(DataTy), "wide.masked.load"); 10031 else 10032 NewLI = 10033 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10034 10035 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10036 State.ILV->addMetadata(NewLI, LI); 10037 if (Reverse) 10038 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10039 } 10040 10041 State.set(this, NewLI, Part); 10042 } 10043 } 10044 10045 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10046 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10047 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10048 // for predication. 10049 static ScalarEpilogueLowering getScalarEpilogueLowering( 10050 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10051 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10052 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10053 LoopVectorizationLegality &LVL) { 10054 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10055 // don't look at hints or options, and don't request a scalar epilogue. 10056 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10057 // LoopAccessInfo (due to code dependency and not being able to reliably get 10058 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10059 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10060 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10061 // back to the old way and vectorize with versioning when forced. See D81345.) 10062 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10063 PGSOQueryType::IRPass) && 10064 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10065 return CM_ScalarEpilogueNotAllowedOptSize; 10066 10067 // 2) If set, obey the directives 10068 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10069 switch (PreferPredicateOverEpilogue) { 10070 case PreferPredicateTy::ScalarEpilogue: 10071 return CM_ScalarEpilogueAllowed; 10072 case PreferPredicateTy::PredicateElseScalarEpilogue: 10073 return CM_ScalarEpilogueNotNeededUsePredicate; 10074 case PreferPredicateTy::PredicateOrDontVectorize: 10075 return CM_ScalarEpilogueNotAllowedUsePredicate; 10076 }; 10077 } 10078 10079 // 3) If set, obey the hints 10080 switch (Hints.getPredicate()) { 10081 case LoopVectorizeHints::FK_Enabled: 10082 return CM_ScalarEpilogueNotNeededUsePredicate; 10083 case LoopVectorizeHints::FK_Disabled: 10084 return CM_ScalarEpilogueAllowed; 10085 }; 10086 10087 // 4) if the TTI hook indicates this is profitable, request predication. 10088 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10089 LVL.getLAI())) 10090 return CM_ScalarEpilogueNotNeededUsePredicate; 10091 10092 return CM_ScalarEpilogueAllowed; 10093 } 10094 10095 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10096 // If Values have been set for this Def return the one relevant for \p Part. 10097 if (hasVectorValue(Def, Part)) 10098 return Data.PerPartOutput[Def][Part]; 10099 10100 if (!hasScalarValue(Def, {Part, 0})) { 10101 Value *IRV = Def->getLiveInIRValue(); 10102 Value *B = ILV->getBroadcastInstrs(IRV); 10103 set(Def, B, Part); 10104 return B; 10105 } 10106 10107 Value *ScalarValue = get(Def, {Part, 0}); 10108 // If we aren't vectorizing, we can just copy the scalar map values over 10109 // to the vector map. 10110 if (VF.isScalar()) { 10111 set(Def, ScalarValue, Part); 10112 return ScalarValue; 10113 } 10114 10115 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10116 bool IsUniform = RepR && RepR->isUniform(); 10117 10118 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10119 // Check if there is a scalar value for the selected lane. 10120 if (!hasScalarValue(Def, {Part, LastLane})) { 10121 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10122 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10123 "unexpected recipe found to be invariant"); 10124 IsUniform = true; 10125 LastLane = 0; 10126 } 10127 10128 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10129 // Set the insert point after the last scalarized instruction or after the 10130 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10131 // will directly follow the scalar definitions. 10132 auto OldIP = Builder.saveIP(); 10133 auto NewIP = 10134 isa<PHINode>(LastInst) 10135 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10136 : std::next(BasicBlock::iterator(LastInst)); 10137 Builder.SetInsertPoint(&*NewIP); 10138 10139 // However, if we are vectorizing, we need to construct the vector values. 10140 // If the value is known to be uniform after vectorization, we can just 10141 // broadcast the scalar value corresponding to lane zero for each unroll 10142 // iteration. Otherwise, we construct the vector values using 10143 // insertelement instructions. Since the resulting vectors are stored in 10144 // State, we will only generate the insertelements once. 10145 Value *VectorValue = nullptr; 10146 if (IsUniform) { 10147 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10148 set(Def, VectorValue, Part); 10149 } else { 10150 // Initialize packing with insertelements to start from undef. 10151 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10152 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10153 set(Def, Undef, Part); 10154 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10155 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10156 VectorValue = get(Def, Part); 10157 } 10158 Builder.restoreIP(OldIP); 10159 return VectorValue; 10160 } 10161 10162 // Process the loop in the VPlan-native vectorization path. This path builds 10163 // VPlan upfront in the vectorization pipeline, which allows to apply 10164 // VPlan-to-VPlan transformations from the very beginning without modifying the 10165 // input LLVM IR. 10166 static bool processLoopInVPlanNativePath( 10167 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10168 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10169 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10170 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10171 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10172 LoopVectorizationRequirements &Requirements) { 10173 10174 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10175 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10176 return false; 10177 } 10178 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10179 Function *F = L->getHeader()->getParent(); 10180 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10181 10182 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10183 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10184 10185 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10186 &Hints, IAI); 10187 // Use the planner for outer loop vectorization. 10188 // TODO: CM is not used at this point inside the planner. Turn CM into an 10189 // optional argument if we don't need it in the future. 10190 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10191 Requirements, ORE); 10192 10193 // Get user vectorization factor. 10194 ElementCount UserVF = Hints.getWidth(); 10195 10196 CM.collectElementTypesForWidening(); 10197 10198 // Plan how to best vectorize, return the best VF and its cost. 10199 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10200 10201 // If we are stress testing VPlan builds, do not attempt to generate vector 10202 // code. Masked vector code generation support will follow soon. 10203 // Also, do not attempt to vectorize if no vector code will be produced. 10204 if (VPlanBuildStressTest || EnableVPlanPredication || 10205 VectorizationFactor::Disabled() == VF) 10206 return false; 10207 10208 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10209 10210 { 10211 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10212 F->getParent()->getDataLayout()); 10213 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10214 &CM, BFI, PSI, Checks); 10215 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10216 << L->getHeader()->getParent()->getName() << "\"\n"); 10217 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10218 } 10219 10220 // Mark the loop as already vectorized to avoid vectorizing again. 10221 Hints.setAlreadyVectorized(); 10222 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10223 return true; 10224 } 10225 10226 // Emit a remark if there are stores to floats that required a floating point 10227 // extension. If the vectorized loop was generated with floating point there 10228 // will be a performance penalty from the conversion overhead and the change in 10229 // the vector width. 10230 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10231 SmallVector<Instruction *, 4> Worklist; 10232 for (BasicBlock *BB : L->getBlocks()) { 10233 for (Instruction &Inst : *BB) { 10234 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10235 if (S->getValueOperand()->getType()->isFloatTy()) 10236 Worklist.push_back(S); 10237 } 10238 } 10239 } 10240 10241 // Traverse the floating point stores upwards searching, for floating point 10242 // conversions. 10243 SmallPtrSet<const Instruction *, 4> Visited; 10244 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10245 while (!Worklist.empty()) { 10246 auto *I = Worklist.pop_back_val(); 10247 if (!L->contains(I)) 10248 continue; 10249 if (!Visited.insert(I).second) 10250 continue; 10251 10252 // Emit a remark if the floating point store required a floating 10253 // point conversion. 10254 // TODO: More work could be done to identify the root cause such as a 10255 // constant or a function return type and point the user to it. 10256 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10257 ORE->emit([&]() { 10258 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10259 I->getDebugLoc(), L->getHeader()) 10260 << "floating point conversion changes vector width. " 10261 << "Mixed floating point precision requires an up/down " 10262 << "cast that will negatively impact performance."; 10263 }); 10264 10265 for (Use &Op : I->operands()) 10266 if (auto *OpI = dyn_cast<Instruction>(Op)) 10267 Worklist.push_back(OpI); 10268 } 10269 } 10270 10271 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10272 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10273 !EnableLoopInterleaving), 10274 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10275 !EnableLoopVectorization) {} 10276 10277 bool LoopVectorizePass::processLoop(Loop *L) { 10278 assert((EnableVPlanNativePath || L->isInnermost()) && 10279 "VPlan-native path is not enabled. Only process inner loops."); 10280 10281 #ifndef NDEBUG 10282 const std::string DebugLocStr = getDebugLocString(L); 10283 #endif /* NDEBUG */ 10284 10285 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10286 << L->getHeader()->getParent()->getName() << "\" from " 10287 << DebugLocStr << "\n"); 10288 10289 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10290 10291 LLVM_DEBUG( 10292 dbgs() << "LV: Loop hints:" 10293 << " force=" 10294 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10295 ? "disabled" 10296 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10297 ? "enabled" 10298 : "?")) 10299 << " width=" << Hints.getWidth() 10300 << " interleave=" << Hints.getInterleave() << "\n"); 10301 10302 // Function containing loop 10303 Function *F = L->getHeader()->getParent(); 10304 10305 // Looking at the diagnostic output is the only way to determine if a loop 10306 // was vectorized (other than looking at the IR or machine code), so it 10307 // is important to generate an optimization remark for each loop. Most of 10308 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10309 // generated as OptimizationRemark and OptimizationRemarkMissed are 10310 // less verbose reporting vectorized loops and unvectorized loops that may 10311 // benefit from vectorization, respectively. 10312 10313 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10314 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10315 return false; 10316 } 10317 10318 PredicatedScalarEvolution PSE(*SE, *L); 10319 10320 // Check if it is legal to vectorize the loop. 10321 LoopVectorizationRequirements Requirements; 10322 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10323 &Requirements, &Hints, DB, AC, BFI, PSI); 10324 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10325 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10326 Hints.emitRemarkWithHints(); 10327 return false; 10328 } 10329 10330 // Check the function attributes and profiles to find out if this function 10331 // should be optimized for size. 10332 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10333 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10334 10335 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10336 // here. They may require CFG and instruction level transformations before 10337 // even evaluating whether vectorization is profitable. Since we cannot modify 10338 // the incoming IR, we need to build VPlan upfront in the vectorization 10339 // pipeline. 10340 if (!L->isInnermost()) 10341 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10342 ORE, BFI, PSI, Hints, Requirements); 10343 10344 assert(L->isInnermost() && "Inner loop expected."); 10345 10346 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10347 // count by optimizing for size, to minimize overheads. 10348 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10349 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10350 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10351 << "This loop is worth vectorizing only if no scalar " 10352 << "iteration overheads are incurred."); 10353 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10354 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10355 else { 10356 LLVM_DEBUG(dbgs() << "\n"); 10357 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10358 } 10359 } 10360 10361 // Check the function attributes to see if implicit floats are allowed. 10362 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10363 // an integer loop and the vector instructions selected are purely integer 10364 // vector instructions? 10365 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10366 reportVectorizationFailure( 10367 "Can't vectorize when the NoImplicitFloat attribute is used", 10368 "loop not vectorized due to NoImplicitFloat attribute", 10369 "NoImplicitFloat", ORE, L); 10370 Hints.emitRemarkWithHints(); 10371 return false; 10372 } 10373 10374 // Check if the target supports potentially unsafe FP vectorization. 10375 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10376 // for the target we're vectorizing for, to make sure none of the 10377 // additional fp-math flags can help. 10378 if (Hints.isPotentiallyUnsafe() && 10379 TTI->isFPVectorizationPotentiallyUnsafe()) { 10380 reportVectorizationFailure( 10381 "Potentially unsafe FP op prevents vectorization", 10382 "loop not vectorized due to unsafe FP support.", 10383 "UnsafeFP", ORE, L); 10384 Hints.emitRemarkWithHints(); 10385 return false; 10386 } 10387 10388 bool AllowOrderedReductions; 10389 // If the flag is set, use that instead and override the TTI behaviour. 10390 if (ForceOrderedReductions.getNumOccurrences() > 0) 10391 AllowOrderedReductions = ForceOrderedReductions; 10392 else 10393 AllowOrderedReductions = TTI->enableOrderedReductions(); 10394 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10395 ORE->emit([&]() { 10396 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10397 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10398 ExactFPMathInst->getDebugLoc(), 10399 ExactFPMathInst->getParent()) 10400 << "loop not vectorized: cannot prove it is safe to reorder " 10401 "floating-point operations"; 10402 }); 10403 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10404 "reorder floating-point operations\n"); 10405 Hints.emitRemarkWithHints(); 10406 return false; 10407 } 10408 10409 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10410 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10411 10412 // If an override option has been passed in for interleaved accesses, use it. 10413 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10414 UseInterleaved = EnableInterleavedMemAccesses; 10415 10416 // Analyze interleaved memory accesses. 10417 if (UseInterleaved) { 10418 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10419 } 10420 10421 // Use the cost model. 10422 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10423 F, &Hints, IAI); 10424 CM.collectValuesToIgnore(); 10425 CM.collectElementTypesForWidening(); 10426 10427 // Use the planner for vectorization. 10428 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10429 Requirements, ORE); 10430 10431 // Get user vectorization factor and interleave count. 10432 ElementCount UserVF = Hints.getWidth(); 10433 unsigned UserIC = Hints.getInterleave(); 10434 10435 // Plan how to best vectorize, return the best VF and its cost. 10436 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10437 10438 VectorizationFactor VF = VectorizationFactor::Disabled(); 10439 unsigned IC = 1; 10440 10441 if (MaybeVF) { 10442 VF = *MaybeVF; 10443 // Select the interleave count. 10444 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10445 } 10446 10447 // Identify the diagnostic messages that should be produced. 10448 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10449 bool VectorizeLoop = true, InterleaveLoop = true; 10450 if (VF.Width.isScalar()) { 10451 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10452 VecDiagMsg = std::make_pair( 10453 "VectorizationNotBeneficial", 10454 "the cost-model indicates that vectorization is not beneficial"); 10455 VectorizeLoop = false; 10456 } 10457 10458 if (!MaybeVF && UserIC > 1) { 10459 // Tell the user interleaving was avoided up-front, despite being explicitly 10460 // requested. 10461 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10462 "interleaving should be avoided up front\n"); 10463 IntDiagMsg = std::make_pair( 10464 "InterleavingAvoided", 10465 "Ignoring UserIC, because interleaving was avoided up front"); 10466 InterleaveLoop = false; 10467 } else if (IC == 1 && UserIC <= 1) { 10468 // Tell the user interleaving is not beneficial. 10469 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10470 IntDiagMsg = std::make_pair( 10471 "InterleavingNotBeneficial", 10472 "the cost-model indicates that interleaving is not beneficial"); 10473 InterleaveLoop = false; 10474 if (UserIC == 1) { 10475 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10476 IntDiagMsg.second += 10477 " and is explicitly disabled or interleave count is set to 1"; 10478 } 10479 } else if (IC > 1 && UserIC == 1) { 10480 // Tell the user interleaving is beneficial, but it explicitly disabled. 10481 LLVM_DEBUG( 10482 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10483 IntDiagMsg = std::make_pair( 10484 "InterleavingBeneficialButDisabled", 10485 "the cost-model indicates that interleaving is beneficial " 10486 "but is explicitly disabled or interleave count is set to 1"); 10487 InterleaveLoop = false; 10488 } 10489 10490 // Override IC if user provided an interleave count. 10491 IC = UserIC > 0 ? UserIC : IC; 10492 10493 // Emit diagnostic messages, if any. 10494 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10495 if (!VectorizeLoop && !InterleaveLoop) { 10496 // Do not vectorize or interleaving the loop. 10497 ORE->emit([&]() { 10498 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10499 L->getStartLoc(), L->getHeader()) 10500 << VecDiagMsg.second; 10501 }); 10502 ORE->emit([&]() { 10503 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10504 L->getStartLoc(), L->getHeader()) 10505 << IntDiagMsg.second; 10506 }); 10507 return false; 10508 } else if (!VectorizeLoop && InterleaveLoop) { 10509 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10510 ORE->emit([&]() { 10511 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10512 L->getStartLoc(), L->getHeader()) 10513 << VecDiagMsg.second; 10514 }); 10515 } else if (VectorizeLoop && !InterleaveLoop) { 10516 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10517 << ") in " << DebugLocStr << '\n'); 10518 ORE->emit([&]() { 10519 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10520 L->getStartLoc(), L->getHeader()) 10521 << IntDiagMsg.second; 10522 }); 10523 } else if (VectorizeLoop && InterleaveLoop) { 10524 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10525 << ") in " << DebugLocStr << '\n'); 10526 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10527 } 10528 10529 bool DisableRuntimeUnroll = false; 10530 MDNode *OrigLoopID = L->getLoopID(); 10531 { 10532 // Optimistically generate runtime checks. Drop them if they turn out to not 10533 // be profitable. Limit the scope of Checks, so the cleanup happens 10534 // immediately after vector codegeneration is done. 10535 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10536 F->getParent()->getDataLayout()); 10537 if (!VF.Width.isScalar() || IC > 1) 10538 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10539 10540 using namespace ore; 10541 if (!VectorizeLoop) { 10542 assert(IC > 1 && "interleave count should not be 1 or 0"); 10543 // If we decided that it is not legal to vectorize the loop, then 10544 // interleave it. 10545 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10546 &CM, BFI, PSI, Checks); 10547 10548 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10549 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10550 10551 ORE->emit([&]() { 10552 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10553 L->getHeader()) 10554 << "interleaved loop (interleaved count: " 10555 << NV("InterleaveCount", IC) << ")"; 10556 }); 10557 } else { 10558 // If we decided that it is *legal* to vectorize the loop, then do it. 10559 10560 // Consider vectorizing the epilogue too if it's profitable. 10561 VectorizationFactor EpilogueVF = 10562 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10563 if (EpilogueVF.Width.isVector()) { 10564 10565 // The first pass vectorizes the main loop and creates a scalar epilogue 10566 // to be vectorized by executing the plan (potentially with a different 10567 // factor) again shortly afterwards. 10568 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10569 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10570 EPI, &LVL, &CM, BFI, PSI, Checks); 10571 10572 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10573 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10574 DT); 10575 ++LoopsVectorized; 10576 10577 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10578 formLCSSARecursively(*L, *DT, LI, SE); 10579 10580 // Second pass vectorizes the epilogue and adjusts the control flow 10581 // edges from the first pass. 10582 EPI.MainLoopVF = EPI.EpilogueVF; 10583 EPI.MainLoopUF = EPI.EpilogueUF; 10584 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10585 ORE, EPI, &LVL, &CM, BFI, PSI, 10586 Checks); 10587 10588 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10589 10590 // Ensure that the start values for any VPReductionPHIRecipes are 10591 // updated before vectorising the epilogue loop. 10592 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10593 for (VPRecipeBase &R : Header->phis()) { 10594 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10595 if (auto *Resume = MainILV.getReductionResumeValue( 10596 ReductionPhi->getRecurrenceDescriptor())) { 10597 VPValue *StartVal = new VPValue(Resume); 10598 BestEpiPlan.addExternalDef(StartVal); 10599 ReductionPhi->setOperand(0, StartVal); 10600 } 10601 } 10602 } 10603 10604 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10605 DT); 10606 ++LoopsEpilogueVectorized; 10607 10608 if (!MainILV.areSafetyChecksAdded()) 10609 DisableRuntimeUnroll = true; 10610 } else { 10611 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10612 &LVL, &CM, BFI, PSI, Checks); 10613 10614 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10615 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10616 ++LoopsVectorized; 10617 10618 // Add metadata to disable runtime unrolling a scalar loop when there 10619 // are no runtime checks about strides and memory. A scalar loop that is 10620 // rarely used is not worth unrolling. 10621 if (!LB.areSafetyChecksAdded()) 10622 DisableRuntimeUnroll = true; 10623 } 10624 // Report the vectorization decision. 10625 ORE->emit([&]() { 10626 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10627 L->getHeader()) 10628 << "vectorized loop (vectorization width: " 10629 << NV("VectorizationFactor", VF.Width) 10630 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10631 }); 10632 } 10633 10634 if (ORE->allowExtraAnalysis(LV_NAME)) 10635 checkMixedPrecision(L, ORE); 10636 } 10637 10638 Optional<MDNode *> RemainderLoopID = 10639 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10640 LLVMLoopVectorizeFollowupEpilogue}); 10641 if (RemainderLoopID.hasValue()) { 10642 L->setLoopID(RemainderLoopID.getValue()); 10643 } else { 10644 if (DisableRuntimeUnroll) 10645 AddRuntimeUnrollDisableMetaData(L); 10646 10647 // Mark the loop as already vectorized to avoid vectorizing again. 10648 Hints.setAlreadyVectorized(); 10649 } 10650 10651 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10652 return true; 10653 } 10654 10655 LoopVectorizeResult LoopVectorizePass::runImpl( 10656 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10657 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10658 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10659 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10660 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10661 SE = &SE_; 10662 LI = &LI_; 10663 TTI = &TTI_; 10664 DT = &DT_; 10665 BFI = &BFI_; 10666 TLI = TLI_; 10667 AA = &AA_; 10668 AC = &AC_; 10669 GetLAA = &GetLAA_; 10670 DB = &DB_; 10671 ORE = &ORE_; 10672 PSI = PSI_; 10673 10674 // Don't attempt if 10675 // 1. the target claims to have no vector registers, and 10676 // 2. interleaving won't help ILP. 10677 // 10678 // The second condition is necessary because, even if the target has no 10679 // vector registers, loop vectorization may still enable scalar 10680 // interleaving. 10681 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10682 TTI->getMaxInterleaveFactor(1) < 2) 10683 return LoopVectorizeResult(false, false); 10684 10685 bool Changed = false, CFGChanged = false; 10686 10687 // The vectorizer requires loops to be in simplified form. 10688 // Since simplification may add new inner loops, it has to run before the 10689 // legality and profitability checks. This means running the loop vectorizer 10690 // will simplify all loops, regardless of whether anything end up being 10691 // vectorized. 10692 for (auto &L : *LI) 10693 Changed |= CFGChanged |= 10694 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10695 10696 // Build up a worklist of inner-loops to vectorize. This is necessary as 10697 // the act of vectorizing or partially unrolling a loop creates new loops 10698 // and can invalidate iterators across the loops. 10699 SmallVector<Loop *, 8> Worklist; 10700 10701 for (Loop *L : *LI) 10702 collectSupportedLoops(*L, LI, ORE, Worklist); 10703 10704 LoopsAnalyzed += Worklist.size(); 10705 10706 // Now walk the identified inner loops. 10707 while (!Worklist.empty()) { 10708 Loop *L = Worklist.pop_back_val(); 10709 10710 // For the inner loops we actually process, form LCSSA to simplify the 10711 // transform. 10712 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10713 10714 Changed |= CFGChanged |= processLoop(L); 10715 } 10716 10717 // Process each loop nest in the function. 10718 return LoopVectorizeResult(Changed, CFGChanged); 10719 } 10720 10721 PreservedAnalyses LoopVectorizePass::run(Function &F, 10722 FunctionAnalysisManager &AM) { 10723 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10724 auto &LI = AM.getResult<LoopAnalysis>(F); 10725 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10726 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10727 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10728 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10729 auto &AA = AM.getResult<AAManager>(F); 10730 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10731 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10732 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10733 10734 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10735 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10736 [&](Loop &L) -> const LoopAccessInfo & { 10737 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10738 TLI, TTI, nullptr, nullptr, nullptr}; 10739 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10740 }; 10741 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10742 ProfileSummaryInfo *PSI = 10743 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10744 LoopVectorizeResult Result = 10745 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10746 if (!Result.MadeAnyChange) 10747 return PreservedAnalyses::all(); 10748 PreservedAnalyses PA; 10749 10750 // We currently do not preserve loopinfo/dominator analyses with outer loop 10751 // vectorization. Until this is addressed, mark these analyses as preserved 10752 // only for non-VPlan-native path. 10753 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10754 if (!EnableVPlanNativePath) { 10755 PA.preserve<LoopAnalysis>(); 10756 PA.preserve<DominatorTreeAnalysis>(); 10757 } 10758 10759 if (Result.MadeCFGChange) { 10760 // Making CFG changes likely means a loop got vectorized. Indicate that 10761 // extra simplification passes should be run. 10762 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10763 // be run if runtime checks have been added. 10764 AM.getResult<ShouldRunExtraVectorPasses>(F); 10765 PA.preserve<ShouldRunExtraVectorPasses>(); 10766 } else { 10767 PA.preserveSet<CFGAnalyses>(); 10768 } 10769 return PA; 10770 } 10771 10772 void LoopVectorizePass::printPipeline( 10773 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10774 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10775 OS, MapClassName2PassName); 10776 10777 OS << "<"; 10778 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10779 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10780 OS << ">"; 10781 } 10782